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ABSTRACT

Dose-Finding Designs for Early-Phase Clinical Trials and Outcome Dependent Sampling
for Longitudinal Studies of Gene-Environment Interaction

by
Zhichao Sun

Co-Chair: Thomas M. Braun

Co-Chair: Bhramar Mukherjee

In this dissertation, we develop study designs for (I) early-phase clinical trials with

the goal of identifying the maximum tolerated combination of two agents based on toxi-

city alone, or the optimal biological dose (OBD) based on bivariate outcomes of toxicity

and efficacy, and (II) longitudinal cohort studies with a focus on gene-environment (GxE)

interactions.

In the first project, we extend the nonparametric biased coin design (BCD) for studying

a single agent to a two-stage adaptive procedure that can be easily implemented for dual-

agent Phase I trials. The basic idea of our design is to divide the entire trial into two stages

and apply the BCD, with modification, in each stage. Through simulations we show that

our design is competitive with four contemporary parametric approaches and promotes

patients safety by limiting patient exposure to toxic combinations.

In the second project, we propose two designs for Phase I/II trials when the dose-

efficacy curve plateaus within the dose range of interest. We incorporate multiple sets of

x



pre-specified efficacy probabilities and use Bayesian model averaging to address misspec-

ification in the pattern of efficacy with dose. Dose assignment is determined adaptively by

maximization of the posterior selection probability among the set of admissible doses. The

simulation results demonstrate that our designs identify the OBD effectively and allocate

patients around the OBD frequently when compared to a competing approach designed

for non-monotonic dose-efficacy curves.

To investigate GxE interaction in longitudinal studies, in the third project, we propose

exposure enriched outcome trajectory dependent designs that can inform sample selection

by leveraging individual exposure and outcome trajectory, and develop a full conditional

likelihood (FCL) analysis that corrects for the biased sampling. We compare the perfor-

mance of our proposed designs and analysis to combinations of different sampling designs

and estimation approaches via simulation. We observe that the FCL provides improved

estimates for both interaction and joint exposure effects over uncorrected complete-case

analysis, and the exposure enriched outcome trajectory dependent design enhances the

estimation efficiency and detection power for the GxE interaction compared to random se-

lection of subjects. We also illustrate the utility of our designs and analysis by an example

from the Normative Aging Study, a longitudinal study of Boston area veterans.
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CHAPTER I

Introduction

Study design is important to the success of a study because it governs how the data will

be collected. A well-designed study can greatly increase the efficiency of the study and

strengthen the conclusions from the study. In this dissertation, we will focus on the study

design for two specific problems, early-phase dose-finding trials and longitudinal studies

of gene-environment interaction. Statistical analysis is closely related to the design of the

study, so for each of the problems we consider we will discuss both study design and its

corresponding statistical analysis.

1.1 Early-Phase Clinical Trials

Drug development is a continuous process through which the safety and efficacy of a

new drug is evaluated. Conventionally, it constitutes four phases: Phase I determines a

safe dosage range and identifies side effects of the drug in a small group of people. Phase

II assesses the efficacy, in addition to the safety, of the drug in a larger group of people.

Phase III provides a thorough examination on the effectiveness of the drug, through a direct

comparison to a standard therapy or placebo, using hundreds to thousands of patients.

Phase IV monitors the long-term effectiveness and side effects after FDA approval of the

drug.

1
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As the first study involving humans, the primary goal of Phase I trials is to identify the

maximum tolerated dose (MTD), which is a dose whose rate of dose limiting toxicities

(DLT) is closest to a pre-specified target. There are a number of approaches developed

for the design of single-agent Phase I clinical trials, which have been well summarized in

recent reviews and book chapters (Rosenberger and Haines, 2002; Chevret, 2006; Ting,

2006). The simplest approach is the algorithm-based 3+3 design which relies on the phi-

losophy that MTD is readily identifiable from the data. Patients are enrolled in cohorts of

three, with each one in the cohort receiving the same dose. If one patient in the current

cohort experiences DLT, and at least one patient among an additional cohort at the same

dose experiences DLT, the trial is terminated with the MTD defined as one dose lower than

the last assigned dose level (Storer, 1989). In spite of its simplicity in implementation, the

3+3 design has been criticized by being inflexible and over-conservative (Ivanova, 2006).

When considering the MTD as a parameter to be estimated, O’Quigley et al. (1990)

proposed a model-based design, the Continual Reassessment Method (CRM). The CRM

is a Bayesian adaptive procedure which updates the posterior estimates of the dose tox-

icity probabilities as the trial proceeds and assigns the next cohort to the dose closest to

the MTD. Extensions and modifications to the CRM to address patient safety have been

proposed (Goodman et al., 1995; Møller, 1995; Leung and Wang, 2002), and a maximum

likelihood version of the CRM also exists (O’Quigley and Shen, 1996). Other parametric

designs are described in Braun (2014).

In contrast to the model-based approaches, Durham and Flournoy (1995) developed

a nonparametric approach they named the Biased Coin Design (BCD). In the BCD, if a

patient experiences a DLT on a dose, the next patient will be assigned to a lower dose. If

a patient does not experience a DLT on a dose, the next patient will be randomized to the

same dose or a higher dose through the flip of a biased coin. This randomization induces
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a random walk that has a limiting distribution of dose assignment, with its mode peaked

around a pre-specified quantile (Durham et al., 1997). Other examples of up-and-down

designs, a family of designs of which the BCD is a member, are described in Ivanova et al.

(2003). Advantages of the BCD include its simplicity of utility, its flexibility of specifying

any targeted toxicity probability, its performance comparable to parametric designs like

the CRM (Durham et al., 1997), and its asymptotic properties based upon Markov Chain

theory (Durham and Flournoy, 1995).

In this dissertation, we focus on study designs of Phase I clinical trials that can be

extended into two directions. The first extension is to identify the maximum tolerated

combination (MTC) for two agents administered together. In comparison to single agent

trials, it is often more complex to develop an approach for dual-agent Phase I trials. The

first difficulty involves the potential synergistic or antagonistic effect of the two agents.

Provided that an interaction effect exists, the combined risk of toxicity would markedly

differ from the sum of the two marginal risks of toxicity estimated separately, leading to

the complete order of the joint risk of toxicities not being fully predictable and a number

of dose combinations exhibiting similar toxicities (Conaway et al., 2004). A second diffi-

culty relates to the dilemma of limited sample size relative to the number of combinations

being studied. As the number of dose levels for each agent increases, the two-dimensional

search space expands multiplicatively. For example, in a combination trial in which each

agent has 4 dose levels, an exhaustive search of the whole space requires approximately

100 subjects (16 combinations × 6 subjects/combination), which is unrealistic for a dose-

finding trial, as few trials have a sample size larger than 50 in practice. A third difficulty

focuses on the selection of the admissible set of combinations and the choice of the dose

escalation scheme. Unlike a one-to-one correspondence in a single-agent trial, 3 assign-

ment actions (escalation, stay, and de-escalation) can be associated with 9 possible dose
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combinations (current combination and 8 adjacent combinations) for subsequent patients

in a two-dimensional space. In Chapter II, we aim to develop a simple adaptive algo-

rithm that allows for efficient identification of multiple MTCs, while exerts a control over

excessive toxicities based upon the theory of the single agent BCD.

Another problem with current Phase I clinical trials is that, dose-finding on the basis

of toxicity, while ignoring efficacy, may no longer be appropriate for further investigation

when the dose-efficacy curve reaches a plateau at nontoxic dose levels. With cytotoxic

agents in oncology trials, the general belief is that the more toxic dose level is, the more

effective it will be. In contrast, with cytostatic molecularity targeted agents (MTAs), effi-

cacy may not continuously increase with dose escalation, but level off at certain dose due

to their distinct biological mechanism (Korn et al., 2001). In an effort to address this prob-

lem, in Chapter III, we aim to develop dose-finding strategies for MTAs by incorporating

both toxicity and efficacy as endpoints in seamless Phase I/II trials. The primary objec-

tive of such a trial is to identify the optimal biological dose (OBD) that is safe and most

efficacious by imposing pre-specified constraints on the toxicity and efficacy probabilities.

1.2 Longitudinal Studies of Gene-Environment Interaction

Investigation on the etiology of complex human diseases has led to increased interest

in the genetic and environment risk factors. Accumulating evidence has suggested the

presence of gene-environment (GxE) interaction in that the association between an envi-

ronmental exposure and an outcome can be changed for a subgroup with a certain genotype

(Hunter, 2005). For instance, physical activity was found to attenuate the effect of FTO

variant on the waist size in an Indian health study (Moore et al., 2012). However, it is

often difficult to detect a GxE interaction due to the large sample required, as compared

to a marginal genetic or environmental effect. In case-control studies, for example, sam-
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ple size in the thousands of subjects is needed for GxE interaction using candidate genes,

while tens of thousands are needed in a genome-wide search. Consequently, data collec-

tion for studies of GxE interaction would become prohibitive given a high genotyping or

exposure assay cost.

While there has been extensive literature on statistical analysis for estimating or testing

multiplicative GxE interactions (Mukherjee et al., 2012b), in Chapter IV of this disserta-

tion, we address the problem from a different perspective, by considering study designs

that can improve the detection power and estimation efficiency of a GxE interaction.

Two-phase sampling design is known to be of great use when the cost of measuring

a specific covariate of interest is high relative to others. In a two-phase design for GxE

interaction, suppose inexpensive data including environmental exposure, response, and

other covariates are collected in a Phase I sample. These data are utilized to help inform the

selection of subsample in Phase II where subjects are genotyped. In studies with budgetary

constraints, two-phase design, commonly used for case-control studies, can enhance the

precision of estimates (Chatterjee and Mukherjee, 2008).

Longitudinal cohort design has been recommended for GxE interactions over case-

control study mainly because of its ability to characterize time-varying genetic suscepti-

bility, and potentially time-dependent GxE interactions, both of which are important to

describe the complex genetic architecture of a disease-related quantitative trait and its im-

plications on public health. In Chapter IV, we aim to develop study designs/sampling

schemes that combine features of two-phase sampling and longitudinal cohort study in

order to better detect/evaluate the GxE interactions.



CHAPTER II

A Two-Dimensional Biased Coin Design for Dual-Agent
Dose-Finding Trials

2.1 Introduction

In a Phase I clinical trial, the primary goal is to determine the highest dose with a dose

limiting toxicity (DLT) rate closest to a pre-specified target; this dose is named the max-

imum tolerated dose (MTD). Phase I clinical trials typically have small sample sizes and

are driven by the ethical constraint of minimizing patients exposed to toxic doses while

controlling the likelihood that patients are treated at ineffective doses (Rosenberger and

Haines, 2002). Given the limited efficacy observed with single agents, there is growing

interest in identifying the maximum tolerated combination (MTC) for two agents, such

as two agents with different biological targets that may show enhanced treatment efficacy

when used together. Paller et al. (2014), as part of an NCI task force examining combi-

nation trials in oncology, published a consensus of their findings, and they produced an

excellent survey of previous combination trials in oncology and a series of recommenda-

tions for the design future of combination trials.

Beyond the examples provided by Paller et al., we provide two more recent examples

of combination trials in oncology. Berenson et al. (2009) conducted a combination trial

examining the safety, tolerability and initial efficacy of samarium lexidronam and borte-

6
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zomib for patients with relapsed or refractory multiple myeloma. Gandhi et al. (2014)

presented a Phase I trial that combined neratinib and temsirolimus, which were found

in preclinical data to be synergistic with respect to inhibiting tumor growth, suggesting

their use for treating patients with advanced solid tumors. Unfortunately, these studies

and many of their counterparts have tended to use simplistic designs and have motivated a

body of methodology focused on statistically sound designs for combination trials that be-

long to two general classes of parametric designs. We emphasize that we consider designs

that are based solely on toxicity and do not incorporate efficacy data.

One strategy simplifies the two-dimensional search by splitting the trial into several

subtrials and confining exploration of dose combinations within each subtrial. An example

is the independent design employed by Kuzuya et al. (2001), in which the dose of one

agent is fixed in each subtrial and the dose of the other agent varies. Yuan and Yin (2008)

suggested conducting a series of subtrials in sequential order to reduce the overall sample

size and eliminate suboptimal combinations examined in the independent design.

An alternative parametric design allows simultaneous modification of doses for both

agents. Thall et al. (2003) described a Bayesian two-stage design that models the joint

toxicity risk of dose combinations via a six-parameter logistic regression model. Wang

and Ivanova (2005) proposed a linear model for the dose-toxicity relationship on the basis

of standardized and log transformed dose levels, with two parameters characterizing the

marginal effects and one parameter for the interaction effect. Yin and Yuan (2009a) and

Yin and Yuan (2009c) developed copula-type models in which the joint toxicity risk is

modeled as a function of the marginal risk of each agent, as well as correlation parameter

to quantify any interaction. Braun and Wang (2010) proposed a hierarchical design that

uses a Beta-Binomial model and links the hyperparameters to dose levels through log-

linear regression models, and a proportional odds logistic regression model for the joint
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toxicity risk was used by Braun and Jia (2013).

Despite the empirical evidence supporting the utility of parametric approaches, there

are some concerns over the assumed models, either the over-parameterization of complex

models relative to the limited sample size used in dose-finding trials, or the failure of a

parsimonious model to account for interactions or other complicated relationships between

the two agents (Gasparini, 2013). The idea of partial ordering was developed as an attempt

to address both of these limitations and was first proposed by Kramar et al. (1999), who

introduced the idea of specifying a prior ordering of toxicity risks for a selected subset of

dose combinations. Conaway et al. (2004) and Wages et al. (2011) recently extended this

idea to multiple-agent trials by evaluating all possible orders of combinations.

Nonparametric methods have also been suggested as a remedy to the perceived con-

cerns with parametric models. The most common nonparametric approach is often some

variant of the standard 3+3 algorithm for single agent trials (Fan et al., 2009; Hamberg

et al., 2010; Braun and Alonzo, 2011). In a slightly different vein, Ivanova and Wang

(2004) proposed a design in which the direction of dose escalation of either agent depends

jointly upon the number of DLTs in the most recent cohort and the cumulative toxicity

probability of the current dose combination . Their approach is nonparametric in the sense

that no formal model is used to explain how the probability of DLT is related to doses of

both agents and is an extension of the Narayana design developed for single-agent designs

(Ivanova et al., 2003).

Another member of nonparametric designs for single agent trials is the Biased Coin

Design (BCD), which is a simple up-and-down algorithm that determines dose assign-

ments for future patients using the outcomes of enrolled patients without the use of a

formal model (Durham and Flournoy, 1995; Durham et al., 1997). We propose a two-

stage BCD that would be appropriate for combination trials such as those of Berenson
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et al. (2009) and Gandhi et al. (2014) that we described earlier. Our design inherits the fa-

vorable properties of the BCD and enables adaptive learning from sequentially conducted

stages. In Section 2.2, we describe the dose-finding algorithm and estimation procedure

of our proposed design. Section 2.3 describes the steps necessary for implementing our

design and presents the dose assignments that might occur in an actual trial to demonstrate

how our design works. Section 2.4 presents operating characteristics of our proposed

design in comparison with four existing designs under different simulation settings, and

Section 2.5 concludes our work with a discussion.

2.2 Methods

Let us consider a dual-agent dose finding trial with J discrete dose levels of agent A,

A1 < A2 < · · · < AJ , and K discrete dose levels of agent B, B1 < B2 < · · · < BK ,

under investigation. The maximum number of patients to be enrolled in the trial is N . Let

AjBk represent the combination of agent A at dose level Aj , j = 1, ..., J , and agent B

at dose level Bk, k = 1, ..., K, and let Yijk denote the binary outcome of experiencing

DLT for patient i, i = 1, ..., N , treated at combination AjBk. The probability of DLT at

this combination is πjk = Pr{Yijk = 1}; we assume the probability of DLT increases

with dose escalation for one or both agents, i.e. πjk ≤ πj′k′ for j ≤ j
′ and k ≤ k

′ . If

the target probability of DLT is pre-specified at γ (γ ≤ 0.5), our goal is to identify a set

of combinations whose estimated probabilities of DLT are closest to the target, similar

to the rule used by the Continual Reassessment Method (CRM) for single-agent trials

(O’Quigley et al., 1990).

2.2.1 BCD for a Single Agent

The original BCD was created for identifying the MTD of a single agent, say agent

A, using up-and-down rules (Durham and Flournoy, 1995). If dose Aj has been given to
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patient i, the assignment of patient i+ 1 is based upon the outcome of patient i. If patient

i experiences DLT, patient i+ 1 receives dose level Aj−1. If patient i does not experience

DLT, we flip a biased coin with probability of heads b = γ/(1 − γ). If the coin shows

tails, patient i+1 receives dose Aj , and if the coin shows heads, patient i+1 receives dose

Aj+1. Naturally, as our target DLT rate γ increases, the probability of heads also increases,

so that we are more likely to escalate in the absence of DLTs.

Durham and Flournoy (1995) showed that the random walk induced by the BCD is

irreducible and recurrent. Thus, there is a guarantee that a stationary distribution of dose

assignments exists, with a unique mode peaked around the targeted quantile. Furthermore,

under the sequential allocation of dose levels to patients, the fast convergence rate of the

random walk makes it possible for the favorable properties of the asymptotic distribution

to hold in a finite sample size. It has been suggested that within the class of up-and-down

designs, the BCD is the optimal one with regard to the “peakedness” of its stationary

distribution around the mode (Giovagnoli and Pintacuda, 1998). With a sample size of

25 patients under numerous simulation configurations, similar operating characteristics

between the CRM and the BCD have been seen (Durham et al., 1997).

2.2.2 BCD-2d: Stage 1

Description of how the BCD can be applied to a dose combination study first requires

a visual schematic of the dose combinations under study. Figure 2.1 visually presents the

16 dose combinations examined in a hypothetical trial of four doses of each agent. The

first stage of our design examines the set of ordered combinations S1 = {A1B1, A2B2, ...,

A`B`} in which ` = min{J,K}. In reference to Figure 2.1, ` = 4 and S1 is simply all

combinations lying on the diagonal of the grid. Since the DLT rates of the combinations

in S1 are ordered, it is straightforward to use the BCD to determine the combination in S1
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assigned to each patient in Stage 1. Specifically, we assign the first patient to combination

A1B1 and then determine the assignments of future patients using the BCD as described

in Section 2.2.1.

Our idea of first searching “diagonally” among the grid of combinations is a discretized

approach to the method used by Thall et al. (2003) in their parametric design. The ap-

proach of Thall et al. is motivated by the belief that there is a contour that connects

combinations from the upper left corner of the grid to the lower right corner of the grid

such that all combinations on the contour have the desired DLT rate γ. By searching along

the diagonal starting at combination A1B1, we expect to eventually intersect with the con-

tour and examine a combination that also lies on, or is close to, this contour. It is this

combination that would ideally be identified as the MTC by the end of Stage 1 with our

design. And certainly the concept of using a “lead-in” subset of combinations to direct the

focus of a later stage examining remaining combinations has been suggested by others as

well (Yuan and Yin, 2008; Fan et al., 2009).

Given that Stage 1 is really an exploratory stage among a small fraction of all combi-

nations under study, we suggest that the number of patients allocated to Stage 1, which we

denote as N1, be approximately 1/3 of the total sample size available to the entire study

N . Thus, with a total sample size of N = 50, which is not uncommon for combination

studies, this allocates 16-17 patients to Stage 1, which is close to the size of a traditional

single-agent study. It was suggested by a reviewer that a more equal allocation of patients

to Stages 1 and 2 might be possible as well. However, in simulations described in Section

2.4, we found that a 50/50 allocation of patients did not improve the operating charac-

teristics of the BCD-2d and actually increased the rate of early termination in settings

where termination was not necessary. The idea of an imbalanced allocation scheme is also

proposed by Thall et al. (2003).
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At the end of Stage 1, we smooth the observed DLT rates for the combinations in S1

using isotonic regression and select as the MTC the dose combination whose estimated

DLT rate is closest to the target γ; we let AmBm denote this combination. One issue with

isotonic regression is that often two or more combinations will have the same smoothed

DLT rate. Continuing with our example in Figure 2.1, suppose we assign one, two, four,

and three subjects, respectively, to combinations A1B1, A2B2, A3B3, and A4B4, and we

observe 0/1, 1/3, 1/4, and 1/3 DLTs, respectively, at each combination. The corresponding

smoothed DLT rates from isotonic regression would be 0, 2/7, 2/7, and 1/3. If the target

DLT rate were γ = 0.3, then both combinations A2B2 an A3B3 would qualify as the MTC

after Stage 1. In general, to break such ties for the MTC, we choose the combination of

lowest doses when the DLT rates are equal to or above γ, and we choose the combination

of highest doses when the DLT rates are below γ. It is also possible that two combinations

will have smoothed DLT rates in which one DLT rate is less than γ by the same amount

that the other DLT rate is above γ. If this occurs, we move forward to Stage 2 with the

combination of lower doses.

We note that in Stage 1, we also incorporate a stopping rule for early termination of the

study when combinationA1B1 appears to be overly toxic. Specifically, if at any time in the

trial the number of patients assigned to combination A1B1 who experience DLT reaches a

threshold of C1, the trial will be terminated. Otherwise, enrollment will continue until all

N1 patients have been enrolled in Stage 1.

2.2.3 BCD-2d: Stages 2a and 2b

In Stage 2, we take the remaining N2 = N − N1 patients and allocate half of them

to Stage 2a, which examines all combinations in S2a = {AjBk, j ≥ m, k ≤ m}, i.e. the

combinations “above and to the left” of AmBm. The other N2/2 patients are allocated to
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Stage 2b, which examines all combinations in S2b = {AjBk, j ≤ m, k ≥ m} i.e. the

combinations “below and to the right” of AmBm. Dose-finding in Stages 2a and 2b will

be conducted in parallel in order to minimize the length of the trial. By the assumption of

a monotonic dose-toxicity relationship for both agents, DLT rates of combinations in S2a

and S2b are bounded by the DLT rates of combinations Am−1Bm−1 and Am+1Bm+1, and

it is possible to find combinations in S2a and S2b that have DLT rates close to γ. We now

assign two patients to combination AmBm, one to direct dose assignments in Stage 2a and

one to direct dose assignments in Stage 2b and observe both patients for occurrence of

DLT.

Unlike the traditional BCD for doses of a single agent, the decisions to “escalate,” “de-

escalate,” and “remain” at the current dose with the BCD-2d do not have unique actions

associated with them. If the current patient has been assigned to combination AjBk, there

are a maximum of nine combinations to consider; the number of combinations is less

than nine whenever the current combination contains the highest or lowest dose of one

of the agents, which we refer to as a “boundary” condition. “Escalation” occurs when

the dose of either or both agents is increased, i.e. combinations AjBk+1, Aj+1Bk, and

Aj+1Bk+1. “De-escalation” occurs when the dose of either or both agents is decreased,

i.e. combinations AjBk−1, Aj−1Bk, and Aj−1Bk−1. The other three combinations AjBk,

Aj−1Bk+1, and Aj+1Bk−1 are considered “remain” because the ordering of the DLT rates

of Aj−1Bk+1 and Aj+1Bk−1 relative to that of AjBk is unknown. Within each of these

decisions, we emphasize that we prefer to move as far from the current assignment as

possible to promote exploration through the entire space of combinations.

We now focus upon Stage 2a, as the same decision rules apply directly to Stage 2b. If

the current patient in Stage 2a experiences a DLT, the BCD states de-escalation is neces-

sary for the next patient. For this de-escalation, we will simultaneously decrease the doses
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of both agents, if that combination is a part of S2a. If that combination is not possible,

then we consider dose de-escalation of only one agent. If both of these single-agent dose

reductions are possible, we randomly choose one of them with equal probability.

If the current patient in Stage 2a does not experience a DLT, we flip a biased coin with

probability of heads equal to b = γ/(1 − γ). If the coin shows heads, the BCD states

that escalation is necessary for the next patient. We will simultaneously increase the doses

of both agents, if that combination is a part of S2a. If that combination is not possible,

then we consider dose escalation of only one agent. If both of these single-agent dose

increases are possible, we randomly choose one of them with equal probability. If the coin

instead shows tails, the BCD states that we should “remain.” Since our goal is to explore

as much as possible, we first consider the two combinations in which the dose of one agent

is increased and the dose of the other agent is decreased. We select the combination that

is a member of S2a and randomly choose one if both are members. If neither is a member,

then we remain at the current combination. Lastly, at any point in the trial, if none of the

possible assignments are members of S2a, then assignment should remain at the current

combination.

We highlight the fact that boundary conditions on S2a and S2b will restrict the possible

assignments for future patients. Using our example presented in Figure 1, if the current

patient in Stage 2a were assigned to combination A4B1 and experienced a DLT, further

dose de-escalation of Agent B is not possible, and combination A3B1 would be the only

assignment option for the next patient. As another example, if the current patient in Stage

2a were assigned to combination A3B1 and experienced a DLT, we could not further de-

escalate to combination A2B1 because that combination is not an element of S2a. As a

result, we would assign the next patient to combination A3B1 as well.

Each of the rules above is also subject to a stopping rule based upon the cumulative
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observed number of DLTs seen at each combination. We select a threshold of C2, and if at

least C2 patients, all assigned to combination AjBk, experience DLTs, combination AjBk,

and any combination with a higher dose of either agent, can no longer be assigned to future

patients. For example, using our example described in Figure 1, if an excessive number

of DLTs were seen for combination A3B2, then this combination, as well as combinations

A3B3, A3B4, A4B2, A4B3, and A4B4 could no longer be assigned to future patients.

Our design allocates an equal number of patients to each of Stage 2a and Stage 2b and

those sample sizes are fixed at the beginning of the trial. In settings where there are more

toxic combinations in Stage 2a relative to 2b, or vice versa, we might want to adaptively

alter the number of patients allocated to each stage. To that end, we propose modification

to the BCD-2d that allows for adaptive allocation of patients to Stages 2a and 2b; we call

this design BCD-2da. We let p2a and p2b denote the collective probabilities of experiencing

DLT for all combinations in Stage 2a and 2b, respectively, and we place a prior Beta (θ, θ)

distribution on both p2a and p2b, with θ being a fixed value determined before Stage 2

commences. At any point in Stage 2, we will have enrolled n2a patients in Stage 2a

and n2b patients in Stage 2b, and we let m2a and m2a denote the accumulated number of

DLTs observed among all combinations in Stage 2a and 2b, respectively. The respective

posterior means for p2a and p2b would be (m2a + θ)/(n2a + 2θ) and (m2b + θ)/(n2b + 2θ),

and we would assign the next patient to the stage with the lower posterior mean, as it

suggests that stage has a lower expectation of DLTs among its combinations. If the two

posterior means are tied, we would randomly assign the next patient to one of the stages

with equal probability.

When all N patients are completely followed to the end of the trial, we use bivariate

isotonic regression (Bril et al., 1984) to estimate the DLT probabilities for J × K com-

binations, and identify dose combinations with their estimates closest to the target γ as
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the MTCs. In settings where multiple estimated DLT probabilities are equidistant from

γ, recommendation as MTCs will be given to: (a) combinations with a smaller sum of

discrete dose levels (j + k) if π̂jk > γ; (b) combinations with a larger sum of dose levels

if π̂jk < γ; or (c) all tied combinations if π̂jk = γ.

2.3 Guidelines for Practical Implementation

In order to use the BCD-2d in practice, investigators must first define quantities that

are a part of all two-agent designs: (a) the number of doses of Agent A (J) and doses of

Agent B to study (K), (b) the targeted DLT rate (γ), and (c) the maximum sample size

(N ). As we stated earlier, a total sample size of N = 50 seems to be common for most

designs, and the sample size in Stage 1 should be approximatelyN1 = N/3, which is 16 or

17 patients. These sample sizes are simply guidelines; a sensitivity analysis of operating

characteristics examining a small set of potential sample sizes should certainly be done

when designing an actual trial.

Beyond these universal quantities, investigators must further consider two additional

quantities specific to the stopping rules in the BCD-2d. The first quantity is C1, the cu-

mulative number of DLTs in Stage 1 observed in patients assigned to combination A1B1.

The second quantity is C2, the cumulative number of DLTs in Stage 2 observed on any

combination that then makes that combination and all combinations consisting of higher

doses, no longer available for assignment to future patients. Certainly the values for C1

and C2 will be context-dependent and different values of both quantities should be exam-

ined in a sensitivity analysis to determine the trade-off between limiting patient exposure

to possibly toxic combinations (smaller value of C1 and/or C2) and continuing with the

trial and increasing the likelihood of identifying the MTC (larger value of C1 and/or C2).

To illustrate how assignments are made for each patient by the BCD-2d without adap-
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tive assignments, we consider the setting examined by Gandhi et al. (2014), which was

a clinical trial to assess combinations of four doses of Neratinib (120, 160, 200, and 240

mg), which in our notation is Agent A, and four doses of Temsirolimus (15, 25, 50, and

75 mg), which in our notation is Agent B. We enroll a total sample size of N = 50, and

we allocate the first N1 = 16 patients to Stage 1. Our targeted DLT rate is γ = 0.20.

Table 2.1 contains three pieces of information for each patient in this trial: (i) the as-

signed combination, (ii) an indicator of DLT, and (3) the result of the coin flip, if necessary.

The first patient is assigned to combination A1B1 and did not have a DLT. The resulting

coin toss produced a head, so no escalation occurs and the second patient is also assigned

to combination A1B1. This pattern continues until the fifth patient who does not have a

DLT and the coin toss now results in a head. Thus, escalation occurs with the sixth pa-

tient. It is not until the eleventh patient that another head results in absence of DLT. Thus,

escalation occurs again with patient 12, who then experiences DLT. Thus, no coin toss is

necessary and de-escalation occurs with patient 13. Patients 14 and 15 are also assigned

to combination A2B2, and Patient 16 is assigned to combination A1B1 because patient 15

experienced a DLT.

After all N1 = 16 patients have been enrolled and observed for DLT in Stage 1, the

observed DLT rates for combinations A1B1, A2B2, A3B3, A4B4, are 1/6, 1/9, 1/1, and 0/0,

respectively. Isotonic regression leads to combination A2B2 having an estimated DLT

rate closest to our target so that the first patient in each of Stages 2a and 2b is assigned

to combination A2B2. We note that the stopping rule threshold for Stage 1 was C1 = 3.

Since the number of DLTs at combinationA1B1 was belowC1, Stage 1 was not terminated

early.

In Stage 2a, assignment is restricted within S2a = {A2B1, A2B2, A3B1, A3B2, A4B1, A4B2}.

Patient 17 does not experience DLT, and the coin toss results in a tail, leading to a decision
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to “remain.” Thus, patient 18 is assigned to combination A3B1 (A1B3 was not consid-

ered because it is not a member of S2a). Since patient 18 goes on to experience DLT,

de-escalation is warranted. Thus, patient 19 is assigned to combination A2B1 since no

lower dose of Agent B is available. The next four successive patients (20, 21, 22, and 23)

are also assigned to combination A2B1 in the absence of further DLTs and coin tosses all

showing tails. At this point, patient 23 experiences DLT, but further de-escalation is not

possible because combination A1B1 is not a member of S2a. Thus, at this point in Stage

2a, the only way to move from combination A2B1 is for a patient to not have a DLT and a

coin toss producing a head, which is exactly what happens with patient 26. We leave the

reader to work through the remaining assignments in Stage 2a.

In Stage 2b, assignment is restricted within S2b = {A1B2, A2B2, A1B3, A2B3, A1B4, A2B4}.

We leave the reader to reason through the assignments of the first seven patients, at which

point patient 40 has been assigned to combination A2B4. Due to boundary conditions,

future assignments cannot deviate from this combination until a DLT is observed. Thus,

even though we do toss a coin after the next several patients, all of whom do not experience

DLT, the outcomes of those coin tosses are irrelevant. It is not until patient 48 experiences

a DLT that we decide to de-escalate the assignment for patient 49 to combination A1B3.

Once all 50 patients have been assigned a combination and observed for DLT, we use

bivariate isotonic regression to compute smoothed DLT rates for all combinations and find

that combinations A2B2, A2B3, and A2B4 all have an estimated DLT rate of 0.17 that is

closest to the target γ. We select combination A2B4 as the MTC because the sum of its

dose levels (2+4) is the largest among the three combinations. Our threshold value in Stage

2 was C2 = 3, so no combinations were eliminated in Stage 2a nor Stage 2b because the

cumulative number of DLTs at combinations in either stage did not exceed the threshold

value.
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User-friendly code written for the statistical package R that can be used for implement-

ing the BCD-2d (as well as the adaptive version of the BCD-2d) in an actual trial can be

found at http://www-personal.umich.edu/∼tombraun/software.html.

2.4 Simulations

2.4.1 Description of Settings and Methods

We sought to evaluate the performance of the BCD-2d, both with and without adaptive

assignment in Stage 2, in a variety of plausible settings for two-agent trials. These settings

varied not only in the pattern of DLT rates, but also in the number of dose combinations

being examined and the targeted DLT rate. We present the results for ten of these set-

tings, the DLT rates of which are given in Table 2.2. Scenarios A-F are trials studying

combinations of four doses of each of two agents, Scenarios G and H are trials studying

combinations of five doses of each agent, and Scenarios I and J are trials studying com-

binations of six doses of each agent. The targeted DLT rate is γ = 0.2 for Scenarios A-F

and γ = 0.3 for Scenarios G-J.

Regardless of the setting, we set the maximum sample size to N = 50 patients, of

whom N1 = 16 patients will be enrolled in Stage 1. We also examined maximum sample

sizes of N = 40 and N = 60, and found that increasing the sample size from N = 40 to

N = 50 led to better performance in terms of both MTC identification and patient assign-

ment, while further increasing the sample size fromN = 50 toN = 60 did not appreciably

change the results, supporting N = 50 as an appropriate sample size in our trials. We also

tried using a balanced sample size distribution with N/2 patients allocated to Stage 1 and

N/2 patients allocated to Stage 2 (N1 = N2 = N/2), but found no improvement in op-

erating characteristics and an increased rate of early termination when termination was

unwarranted.
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We compare the operating characteristics of the BCD-2d and BCD-2da with four exist-

ing approaches: the copula-based approaches of Yin and Yuan (2009a) and Yin and Yuan

(2009c), the proportional odds logistic regression model of Braun and Jia (2013), as well

as the continual reassessment method for partial ordering (POCRM) (Wages et al., 2011).

We used the same priors, skeleton DLT rates and stopping rules as described in Braun and

Jia (2013) for the first three approaches. For the POCRM, we generated skeletons by the

algorithm of Lee and Cheung (2009) with a indifference interval half-width of 0.03, en-

forced an initial escalation scheme that simultaneously increases the doses of both agents

before occurrence of the first DLT, and utilized the R package pocrm to run simulated tri-

als. No early stopping rule is specified in the POCRM, so we used the same one as in the

BCD-2d.

In the BCD-2d, the sample size in Stage 2a and Stage 2b is fixed at 17 patients, while

in the BCD-2da we specified θ = 3 as the hyperparameter for the prior distribution of

the collective probabilities p2a and p2b. We examined other values of θ, but found that

patient allocation is relatively insensitive to value of θ, and we felt that θ = 3 led to a

prior that was not overly informative and allowed the posterior means of the p2a and p2b

to adequately alter allocation when the number of DLTs varied greatly between Stages 2a

and 2b.

For Stage 1, we set our stopping rule threshold to C1 = 3 as the maximum number of

allowable DLTs for combination A1B1 before terminating the entire trial. Likewise, for

Stage 2, we set our stopping rule threshold C2 = 3 as the maximum number of allowable

DLTs for a combination in Stages 2 that would remove that combination and more toxic

combinations from further study in that stage.

For each scenario and each of the six designs examined, we simulated 2,000 hypo-

thetical trials and summarized the performance of the designs with three quantities: the
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proportion of simulations in which specific combinations were identified as the MTC after

Stage 2, the average percentage of patients that were assigned to specific combinations in

both Stages 1 and 2, and the average number of DLTs observed in the trial.

2.4.2 Summary of Operating Characteristics

Table 2.3 presents the simulation results for Scenarios A-F in which sixteen combina-

tions are examined and only one of those combinations is the MTC. Overall, the operating

characteristics of the BCD-2d and BCD-2da are extremely similar to each other in all

the scenarios, suggesting that the ability of the BCD-2d to identify the MTC and assign

patients is fairly insensitive to incorporation of our suggested adaptive allocation scheme.

The BCD-2d and BCD-2da also have the lowest average number of observed DLTs among

all the designs, which provides strong evidence that our design is at least as safe, and per-

haps safer, than other published designs. This finding is impressive, especially for a setting

such as Scenario E in which Stage 2a will examine mostly safe combinations, whereas

Stage 2b will examine mostly toxic combinations. Nonetheless, we see in Table 2.3 that

the BCD-2d and BCD-2da assign patients within a 10-point neighborhood (in terms of

DLT rate) of the MTC as well as the other designs.

In Scenario A where all sixteen combinations are safe, we see all designs do very well

in terms of identifying the MTC, with a slight edge to the competing designs over the BCD-

2d and BCD-2da. The conservative nature of the BCD-2d and BCD-2da is also obvious in

this setting with a greater proportion of patients assigned to combinations with DLT rates

less than 0.10. Scenario B is a setting in which most combinations are toxic and toxicity

increases faster with dose increases of Agent A than with Agent B. Although we see that all

designs identify the MTC within a 10-point neighborhood of the true MTC in a majority of

simulations, the BCD-2d and BCD-2da is more likely than its competitors to identify the
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MTC at a combination whose true DLT is more than 10 points beyond the target. Likewise,

the BCD-2d and BCD-2da assign combinations outside the 10-point neighborhood of the

correct MTC more often than the other designs. This result occurs because combinations

along the diagonal have DLT rates that increase rapidly and combination A1B1 has a DLT

rate closest to the target γ and should be recommended at the end of Stage 1. However,

in our simulations, we found that the BCD-2d selected combinations A1B1 and A2B2 in

53% and 36% of simulations, respectively, as the MTC at the end of Stage 1.

Scenario C represents a situation in which all combinations are excessively toxic and

early termination of the trial is desired and demonstrates that all the designs examined tend

to have equivalent safety profiles. In Scenario D, where the DLT rates increase greatly with

increases of Agent B and the DLT rates of all 16 combinations span over a reasonable range

(0.08-0.41), we see better performance of the BCD-2d and BCD-2da relative to the com-

peting designs, as reflected by the appreciable increase in the likelihood of identifying the

MTC in a 10-point neighborhood of the correct MTC. We also see competitive operating

characteristics among the designs in Scenarios E and F that suggest that the BCD-2d and

BCD-2da work as well as the other designs, especially in settings where a simple additive

model is not able to account for the dose-toxicity pattern.

Table 2.4 contains the operating characteristics of the designs in settings where greater

numbers of dose combinations are examined and more than one combination is the MTC.

The priors used by the Bayesian designs in Scenarios G and H were calibrated using the

DLT rates of Scenario G in Table 2.2 and for Scenarios I and J, the priors were calibrated

using the DLT rates of Scenario I in Table 2.2. In all four settings, we see that our designs

identify the MTC at combinations whose actual DLT rates are within 10 points of the

target more often than the competing designs, although the ability to identify the MTC at

a combination whose DLT rate is exactly equal to the target varies among the designs and
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among the settings.

Figure 2.2 is a plot of the average DLT rate of the combinations assigned to each patient

in Scenarios A to J using the BCD-2d as a way to assess how well assignments converge

over time toward a combination with the targeted DLT rate. Scenario C is not presented

because all the combinations under study are toxic and there is no possible convergence

toward the targeted DLT rate. In Scenario A, we see that all combinations have DLT

rates below the target; as a result, convergence remains below the targeted DLT rate, but

gets as close to the targeted DLT rate as possible. In the other eight scenarios, we see

excellent convergence by the end of Stage 1, regardless of the number of combinations

being examined.

Convergence in Stage 2 is much more variable from setting to setting and is highly

dependent upon the actual DLT rates of the combinations that are examined in Stages 2a

and 2b. For example, in Scenarios B, D, F, G, and J, we see that patients near the end of

Stages 2a and 2b are very likely to be assigned to combinations with DLT rates close to

the target, but in Scenario E, patients in Stage 2a are much more likely to be assigned to

combinations with DLT rates above the target simply because Stage 2a has little chance of

containing either combination A1B1 or A2B2, whose DLT rates are below the target. We

also see slightly poorer convergence in Stage 2 for Scenarios H and I, but the positive side

of these results is that the BCD-2d tends to err toward combinations with DLT rates below

the target whenever possible.

All of the scenarios presented to this point have been in settings with equal numbers of

doses of both agents. However, the BCD-2d can be applied to combination trials in which

the two agents have unequal numbers of doses. We investigated the operating character-

istics of the BCD-2d in such settings by taking Scenarios B, D, and E displayed in Table

2.2 and removing the highest dose of Agent B. This results in three scenarios, referred
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to as Scenarios B′, D′, and E′, with four dose levels of Agent A and three dose levels of

Agent B. We again simulated 2,000 trials under each of these scenarios, and the operat-

ing characteristics of the BCD-2d are summarized in Table 2.5. In all three scenarios, we

see that the BCD-2d identifies combinations with similar probabilities and assigns similar

proportions of patients in the neighborhood of the MTC as it did in Scenarios B, D and E.

2.5 Discussion

In this study, we have proposed a procedure for dual-agent dose-finding trials that is an

extension of the BCD proposed for single agent trials. In the numerous simulation scenar-

ios we have examined, our method performs well in terms of identification of MTC and

allocation of patients relative to the performance of existing parametric methods. Since

the BCD-2d makes no parametric assumptions regarding how DLT rates vary with doses

of both agents, our proposed design is robust to model misspecification. The BCD-2d also

inherits the desirable properties of the original BCD, including its flexibility of targeting

any DLT rate and its fast convergence of assignments to a stationary distribution. We

feel a strength of our design is conducting the trial in two sequential stages, which uses

the information collected on the combinations in Stage 1 to inform the study as to which

combinations to examine in Stage 2. By doing so, we expect to increase the likelihood

of patients being treated to combinations in a neighborhood of the MTC and improve the

precision of the estimated DLT rates for those combinations.

We stated in Section 2.2.2 that our intent is to promote exploration over the entire grid

of combinations so that each future assignment differs from the previous assignment as

much as possible. However, as we see in the example presented in Section 2.3, several

patients can end up with the same assignment due to boundary restrictions. An important

future area of research would be developing methods that increase the rate of exploration of
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the BCD-2d. However, this increased exploration must also be balanced with the desire to

treat as many patients as possible to combinations with DLT rates at or close to the targeted

DLT rate. Related to this concept is exploring other options to our adaptive allocation rule

suggested for the BCD-2da, which, although reasonable, is quite simplistic.

Save for one exception (Cheung, 2013), sample size determination is an imprecise sci-

ence for most Phase I clinical trial designs, which as we state, is done through a sensitivity

analysis comparing the operating characteristics that result from several candidate sample

sizes. However, because a closed-form expression for the expected number of assignments

per dose in the original BCD is available (Durham et al., 1995), we are pursuing work that

will provide practical guidance toward a sample size calculation for dual-agent trials, both

in terms of the total sample size, as well as how much of that sample size is distributed

among Stages 1, 2a, and 2b.
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Stage 2a: 

Stage 2b: 
A1

A2

A3

A4

B1 B2 B3 B4
Figure 2.1: Illustration of three stages divided in the BCD-2d with four dose levels for each

agent. Dose combinations to be tested in Stage 1 are represented by circles.
Assume combination A3B3 is identified as the MTC after Stage 1 (shaded in
grey), dashed rectangles indicate refined search spaces of Stages 2a and 2b,
and diamonds indicate combinations to be examined in Stages 2a and 2b.
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Figure 2.2: Average DLT rates of combinations sequentially assigned to each patient using
the BCD-2d. The horizontal line shows the targeted DLT rate, and the vertical
dashed line represents the start of Stage 2a and Stage 2b.
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Table 2.1: Data resulting from a hypothetical trial using the BCD-2d. For each patient,
0=no DLT and 1=DLT; H=heads, T=tails, and •=no coin toss necessary.

Stage 1 Stage 2a Stage 2b

Combo Coin Combo Coin Combo Coin
Patient Assigned DLT Toss Patient Assigned DLT Toss Patient Assigned DLT Toss

1 A1B1 0 T 17 A2B2 0 T 34 A2B2 0 T
2 A1B1 0 T 18 A3B1 1 • 35 A1B3 0 T
3 A1B1 0 T 19 A2B1 0 T 36 A2B2 1 •
4 A1B1 0 T 20 A2B1 0 T 37 A1B2 0 T
5 A1B1 0 H 21 A2B1 0 T 38 A1B2 0 H
6 A2B2 0 T 22 A2B1 0 T 39 A2B3 0 H
7 A2B2 0 T 23 A2B1 1 • 40 A2B4 0 T
8 A2B2 0 T 24 A2B1 0 T 41 A2B4 0 T
9 A2B2 0 T 25 A2B1 0 T 42 A2B4 0 T

10 A2B2 0 T 26 A2B1 0 H 43 A2B4 0 H
11 A2B2 0 H 27 A3B2 0 T 44 A2B4 0 H
12 A3B3 1 • 28 A4B1 1 • 45 A2B4 0 T
13 A2B2 0 T 29 A3B1 0 T 46 A2B4 0 T
14 A2B2 0 T 30 A4B2 0 H 47 A2B4 0 H
15 A2B2 1 • 31 A4B2 1 • 48 A2B4 1 •
16 A1B1 1 • 32 A3B1 1 • 49 A1B3 0 T

33 A2B1 0 • 50 A2B2 0 •
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Table 2.2: True DLT rates for ten scenarios in a combination trial, with the targeted DLT
probability shown in bold.

Agent B Agent B

Agent A k=1 k=2 k=3 k=4 k=5 k=6 Agent A k=1 k=2 k=3 k=4 k=5 k=6

Scenario A Scenario B
j=4 0.11 0.13 0.15 0.17 j=4 0.55 0.65 0.75 0.85
j=3 0.08 0.10 0.12 0.14 j=3 0.40 0.50 0.60 0.70
j=2 0.05 0.07 0.09 0.11 j=2 0.25 0.35 0.45 0.55
j=1 0.02 0.04 0.06 0.08 j=1 0.10 0.20 0.30 0.40

Scenario C Scenario D
j=4 0.62 0.66 0.70 0.74 j=4 0.11 0.21 0.31 0.41
j=3 0.56 0.60 0.64 0.68 j=3 0.10 0.20 0.30 0.31
j=2 0.50 0.54 0.58 0.62 j=2 0.09 0.19 0.29 0.30
j=1 0.44 0.48 0.52 0.56 j=1 0.08 0.18 0.28 0.29

Scenario E Scenario F
j=4 0.50 0.52 0.54 0.55 j=4 0.10 0.30 0.50 0.80
j=3 0.44 0.45 0.46 0.47 j=3 0.06 0.15 0.30 0.45
j=2 0.16 0.18 0.20 0.22 j=2 0.04 0.10 0.15 0.20
j=1 0.12 0.13 0.14 0.15 j=1 0.01 0.02 0.03 0.04

Scenario G Scenario H
j=5 0.45 0.56 0.64 0.72 0.80 j=5 0.19 0.30 0.42 0.50 0.60
j=4 0.30 0.42 0.52 0.62 0.70 j=4 0.10 0.19 0.30 0.41 0.50
j=3 0.20 0.30 0.40 0.50 0.60 j=3 0.09 0.12 0.20 0.30 0.40
j=2 0.12 0.20 0.30 0.40 0.50 j=2 0.08 0.09 0.12 0.20 0.30
j=1 0.05 0.10 0.20 0.30 0.40 j=1 0.06 0.08 0.10 0.12 0.20

Scenario I Scenario J
j=6 0.10 0.20 0.30 0.40 0.50 0.60 j=6 0.10 0.30 0.40 0.50 0.60 0.65
j=5 0.08 0.14 0.20 0.30 0.40 0.60 j=5 0.08 0.14 0.20 0.30 0.41 0.60
j=4 0.06 0.12 0.15 0.20 0.30 0.40 j=4 0.06 0.12 0.15 0.30 0.40 0.60
j=3 0.04 0.10 0.13 0.16 0.20 0.30 j=3 0.04 0.10 0.13 0.16 0.20 0.30
j=2 0.03 0.08 0.12 0.14 0.18 0.20 j=2 0.03 0.08 0.12 0.14 0.18 0.20
j=1 0.02 0.06 0.10 0.12 0.15 0.18 j=1 0.02 0.06 0.10 0.12 0.15 0.18
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Table 2.3: Summary of simulations from Scenarios A to F: average probability (%) of
selection as the MTC and the mean percentage of allocation for combinations
whose DLT rates are at target γ = 0.2, within 10 points of γ, and beyond
10 percentages from γ, and the average number of DLTs. The five designs
(described in Section 2.4.1) are the proportional odds logistic regression design
(gCRM), two copula-based designs (YY09a & YY09b), the CRM for partial
ordering (POCRM), and the proposed BCD-2d and BCD-2da. No selection or
allocation to further patients will be made when a early stopping condition is
met.

Selection Allocation Number

Design At γ 1-10 pts of γ >10 pts of γ None At γ 1-10 pts of γ >10 pts of γ None of DLTs

Scenario A
gCRM 0 94 3 3 0 87 13 0 8
YY09a 0 99 1 0 0 86 14 0 8
YY09b 0 96 4 0 0 85 15 0 8

POCRM 0 95 5 0 0 85 15 0 7
BCD-2d 0 88 12 0 0 63 37 0 5

BCD-2da 0 89 11 0 0 64 36 0 5
Scenario B

gCRM 45 39 5 11 30 41 18 11 17
YY09a 41 50 5 4 27 54 16 3 16
YY09b 42 47 5 6 29 55 11 5 16

POCRM 30 52 9 9 20 49 22 9 12
BCD-2d 22 48 21 9 12 51 24 13 10

BCD-2da 23 51 18 8 13 52 26 9 10
Scenario C

gCRM 0 0 4 96 0 0 22 78 12
YY09a 0 0 1 99 0 0 20 80 10
YY09b 0 0 1 99 0 0 16 84 12

POCRM 0 0 9 91 0 0 19 81 7
BCD-2d 0 0 9 91 0 0 19 81 4

BCD-2da 0 0 9 91 0 0 19 81 1
Scenario D

gCRM 9 70 14 7 5 56 32 7 15
YY09a 6 65 27 2 9 55 24 2 14
YY09b 7 67 25 1 6 54 38 2 15

POCRM 14 69 15 3 9 61 27 3 11
BCD-2d 9 81 7 3 3 60 32 5 9

BCD-2da 11 80 6 3 5 62 31 2 9
Scenario E

gCRM 13 70 6 11 10 64 16 10 16
YY09a 14 76 6 4 7 75 14 4 15
YY09b 12 74 7 7 7 77 9 7 16

POCRM 14 64 13 9 10 60 21 9 11
BCD-2d 11 67 13 9 3 69 17 11 10

BCD-2da 12 70 9 9 4 73 14 9 9
Scenario F

gCRM 25 68 5 2 18 57 24 1 15
YY09a 12 76 12 0 3 71 26 0 15
YY09b 15 72 13 0 7 61 32 0 15

POCRM 34 59 7 0 20 58 22 0 10
BCD-2d 21 70 9 0 8 59 33 0 7

BCD-2da 21 71 8 0 9 59 32 0 7
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Table 2.4: Summary of simulations from Scenarios G to J: average probability (%) of se-
lection as the MTC and the mean percentage of allocation for combinations
whose DLT rates are at target γ = 0.3, within 10 points of γ, and beyond 10
percentages from γ, and the average number of DLTs. The five designs (de-
scribed in Section 2.4.1) are the proportional odds logistic regression design
(gCRM), two copula-based designs (YY09a & YY09b), the CRM for partial
ordering (POCRM), and the proposed BCD-2d and BCD-2da. No selection or
allocation to further patients will be made when a early stopping condition is
met.

Selection Allocation Number

Design At γ 1-10 pts of γ >10 pts of γ None At γ 1-10 pts of γ >10 pts of γ None of DLTs

Scenario G
gCRM 52 19 29 0 34 20 42 4 16
YY09a 55 17 26 2 42 20 36 2 16
YY09b 53 23 23 1 41 25 33 1 14

POCRM 52 12 31 5 38 17 40 5 16
BCD-2d 38 40 17 5 16 40 36 8 12

BCD-2da 37 43 16 4 17 43 36 4 12
Scenario H

gCRM 49 17 30 4 32 16 47 5 15
YY09a 51 7 41 1 38 9 51 2 13
YY09b 47 14 39 0 31 13 55 1 12

POCRM 47 15 35 3 33 14 50 3 14
BCD-2d 35 26 36 3 15 23 58 4 11

BCD-2da 34 29 34 3 16 22 59 3 11
Scenario I

gCRM 41 28 31 0 27 22 50 1 15
YY09a 32 26 40 2 21 20 58 1 15
YY09b 34 27 39 0 22 21 55 2 15

POCRM 40 18 42 0 27 18 55 0 13
BCD-2d 33 47 20 0 14 37 49 0 11

BCD-2da 31 46 23 0 14 34 52 0 10
Scenario J

gCRM 45 18 35 2 30 15 55 0 15
YY09a 30 19 49 2 22 13 62 3 15
YY09b 31 20 48 1 22 12 64 2 15

POCRM 28 22 50 0 24 15 61 0 13
BCD-2d 35 30 35 0 19 17 64 0 12

BCD-2da 37 28 35 0 18 17 65 0 10
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Table 2.5: Summary of simulations from Scenarios B′, D′ and E′ using the BCD-2d for
combination trials with unequal dose levels of two agents: average probability
(%) of selection as the MTC and the mean percentage of allocation for com-
binations whose DLT rates are at target γ, within 10 points of γ = 0.2, and
beyond 10 percentages from γ, and the average number of DLTs. No selection
or allocation to further patients will be made when a early stopping condition is
met.

Selection Allocation

Scenario At γ 1-10 pts of γ >10 pts of γ None At γ 1-10 pts of γ >10 pts of γ None DLTs

B′ 23 51 16 10 12 51 23 14 10
D′ 10 81 6 4 3 63 29 5 8
E′ 19 59 13 9 8 65 15 11 9



CHAPTER III

A dose-Finding Design for Phase I/II Trials When the
Dose-Efficacy Curve Plateaus

3.1 Introduction

Toxicity and efficacy of chemotherapeutic agents in oncology are often evaluated in

two separate phases, termed Phase I and Phase II. A Phase I trial examines the toxicity

profile of several dose levels of an agent and identifies the maximum tolerated dose (MTD)

that has a dose limiting toxicity rate closest to and no greater than a pre-specified target.

A Phase II trial assesses the efficacy of the agent at the established MTD with the assump-

tion that both toxicity and efficacy increase monotonically with dose escalation so that the

MTD has the greatest likelihood of efficacy while being safe. However, the emergence

of molecularly targeted agents (MTAs) has challenged such a sequential paradigm (Korn

et al., 2001). By interacting specifically with molecules involved in tumor growth, MTAs

are expected to be less toxic than chemotherapeutic agents, and their efficacy may no

longer follow the monotonicity assumption but plateau at certain dose level beyond which

no higher efficacy can be achieved (Jain et al., 2010; LeTourneau et al., 2010; LoRusso

et al., 2010). As a result, the MTD based solely on toxicity in Phase I is no longer ap-

propriate for further investigation in Phase II trials. For these agents, there is a need to

consider a dose-finding design for Phase I/II trials that can incorporate both toxicity and

33
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efficacy outcomes in order to identify the optimal biological dose (OBD), which is defined

as the lowest dose with the highest efficacy probability and toxicity probability at or below

a desired threshold.

Recently, there has been increasing research into the development of Phase I/II trial

designs. One strategy collapses binary outcomes of toxicity and efficacy into a ordinal

trinary outcome (no efficacy and no toxicity, efficacy and no toxicity, and toxicity re-

gardless of efficacy), and utilizes either a proportional odds model (Thall and Russell,

1998) or a continuation ratio model (Zhang et al., 2006) to identify the OBD. An al-

ternate approach extends the Continual Reassessment Method (CRM) by joint modeling

toxicity and efficacy through copula models with a correlation parameter, and adaptively

allocates patients depending on a weighted Euclidean distance (Braun, 2002) or a pre-

specified efficacy-toxicity tradeoff (Thall and Cook, 2004). A further approach assumes

independence between toxicity and efficacy, models both outcomes separately, and selects

the OBD that has the highest efficacy among the set of admissible doses. The efficacy

probability estimates can be obtained by a wide variety of possible models, including fully

parametric logistic regression with a quadratic term, nonparametric isotonic regression,

and other smooth functions of the dose (Cunanan and Koopmeiners, 2014; Zang et al.,

2014).

Despite various nonmonotonic efficacy patterns considered, there are few dose-finding

designs suited for Phase I/II trials when the OBD is on a plateau of the dose-efficacy curve.

Wages and Tait (2015) developed a design that combines features of the CRM for toxicity

and order restricted inference for efficacy in the determination of the OBD. Asakawa et al.

(2014) extended the idea of Bayesian model averaging CRM (BMA-CRM), initially in-

troduced by Yin and Yuan (2009b) for Phase I trials, to accommodate the bivariate binary

outcomes of toxicity and efficacy. Both of these designs attempt to address misspecifi-
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cation in the pattern of efficacy with dose by incorporating multiple sets of prespecified

efficacy probabilities (also known as the skeleton). However, the methods differ because

Wages and Tait (2015) adopted a Bayesian model selection technique and chose the skele-

ton with the largest posterior model probability to guide dose assignments, while Asakawa

et al. (2014) allocated patients to the dose that minimizes the Euclidean distance of the

estimated toxicity and efficacy probabilities from 0 and 1, respectively. One issue with

this Euclidean distance is that a dose whose toxicity probability is u points higher may

be equivalent to another dose whose efficacy probability is u points lower. For example,

when comparing two doses, one with estimated toxicity and efficacy probabilities of 0.2

and 0.7, respectively, and the other with probabilities of 0.3 and 0.8, respectively, both

doses are equivalent estimates of the OBD by this criterion, whereas the latter dose would

be preferred if 0.3 is an acceptable rate of toxicity.

In this manuscript, we propose a design that would be appropriate for identification of

the OBD when the dose-efficacy curve plateaus within the range of therapeutic interest.

Specifically, we take into account different sets of skeletons for the dose-efficacy relation-

ship, each representing a prior guess of where the efficacy probability starts to plateau.

The decision of dose assignment is made adaptively through the computation of a pos-

terior selection probability that is applied to the set of doses whose toxicity probabilities

are bounded by a maximum acceptable rate. In Section 3.2, we describe the dose-finding

algorithm of our proposed design, which is implemented using both Bayesian and max-

imum likelihood methods. In Section 3.3, we conduct simulation studies to examine the

operating characteristics of our proposed design and compare it to those of Wages and Tait

(2015). We conclude with a brief discussion in Section 3.4.
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3.2 Methods

Consider a trial investigating J discrete dose levels of a targeted agent {dj : j =

1, ..., J}. Let Tj and Ej denote the binary indicators of toxicity and efficacy for patients

treated at dose dj . The marginal probabilities of toxicity and efficacy at dj are πTj =

Pr(Tj = 1) and πEj = Pr(Ej = 1), respectively. We consider an independence model

in which the joint probability of toxicity and efficacy is the product of their marginal

probabilities because Cunanan and Koopmeiners (2014) demonstrated that dose-selection

is relatively unaffected if the joint distribution is modeled through the use of a copula, and

the correlation parameter is estimated. We assume the probability of toxicity is strictly

increasing with dose escalation (πTj < πTj′ for j < j′), while the probability of efficacy

increases at low dose levels and plateaus at higher dose levels (πEj ≤ πEj′ for j < j′).

Provided that the maximum number of patients to be enrolled in the trial is N , we now

describe our dose-finding design for identifying the OBD, which is the lowest dose with

the largest efficacy that maintains a toxicity probability no greater than a pre-specified

maximum acceptable rate Γ.

3.2.1 Bayesian Approach

Modeling Probability of Toxicity

Following the CRM proposed by O’Quigley et al. (1990), we model the true toxicity

probability at dose dj by the power model, πTj(β) = p
exp(β)
j , which has been suggested to

work well in practice (Paoletti and Kramar, 2009). Here (p1, ..., pJ) is the set of elicited

toxicity probabilities (skeleton) for all dose levels under investigation, and β is the un-

known parameter that links the skeleton to the true toxicity probabilities. Suppose that

among Nj patients treated at dose dj , Tj and Ej patients have experienced toxicity and

efficacy, respectively. Let D = {(Nj, Tj, Ej), j = 1, ..., J} denote the observed data. The
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marginal likelihood for β is

(3.1) L(β|D) ∝
J∏
j=1

{πTj(β)}Tj{1− πTj(β)}Nj−Tj .

Using Bayes’ theorem, dose toxicity probabilities can be estimated based upon their pos-

terior means

(3.2) π̂Tj =

∫
p

exp(β)
j

L(β|D)f(β)∫
L(β|D)f(β)dβ

dβ,

where f(β) is the prior density for the parameter β. An approximate 95% credible interval

of the toxicity probability for dose dj can be constructed by

(3.3) [LB(π̂Tj), UB(π̂Tj)] = [p
exp
(
β̂−Z.975

√
V ar(β̂)

)
j , p

exp
(
β̂+Z.975

√
V ar(β̂)

)
j ],

where Z.975 is the 97.5th percentile of a standard normal distribution, and β̂ and V ar(β̂)

are the posterior mean and variance of β, respectively. This interval will be used in dose

allocation as described shortly.

Moreover, since the OBD has a prespecified maximum acceptable toxicity probability,

we can also compute for each dose level the posterior probability of the toxicity rate being

no greater than Γ as:

(3.4) P (πTj ≤ Γ|D) =

∫
I{pexp(β)

j ≤ Γ} L(β|D)f(β)∫
L(β|D)f(β)dβ

dβ,

where I{.} is an indicator function of the dose toxicity probability. The estimated toxicity

probability π̂Tj and posterior probability P (πTj ≤ Γ|D) at each dose level are updated as

data from each successive patient become available. Note that the posterior distribution of

β given D does not have a closed form expression. Thus, the integration in (3.2) and (3.4)

is approximated numerically using adaptive quadrature via the integrate function in the R

package ‘stats’ (Piessens et al., 1983).
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Modeling Probability of Efficacy

Unlike the CRM for strictly increasing dose-toxicity curves, characterization of a non-

monotonic dose-efficacy relationship depends heavily on the selection of an appropriate

skeleton. If elicited efficacy probabilities in the skeleton do not fit the underlying true

dose-efficacy relationship that plateaus at a certain dose level, the ability of the CRM in

identifying the OBD using a one-parameter model may be severely compromised (Ivanova

and Xiao, 2013). To address the potential problem of misspecification of the skeleton, we

adopt the idea of BMA-CRM (Yin and Yuan, 2009b) by enumerating K = J possible

plateau skeletons (which we refer to as working models) and obtaining the efficacy proba-

bility estimates as weighted averages of the posterior means across all models considered.

Let Mk (k = 1, ..., K) be the working model for the dose-efficacy relationship whose

skeleton (qk1, ..., qkJ) reaches the plateau at dose dk and remains constant at higher dose

levels. Similar to toxicity, we use a power model representing the dose-efficacy relation-

ship, πkEj = q
exp(θk)
kj . According to Bayes’ theorem, the posterior model probability forMk

given D is computed by

(3.5) P (Mk|D) =
P (Mk) ·

∫
L(θk|D ,Mk)f(θk|Mk)dθk∑K

l=1 P (Ml) ·
∫
L(θl|D ,Ml)f(θl|Ml)dθl

,

where P (Mk) is the prior probability that working model Mk is the true efficacy model,

f(θk|Mk) is the prior density of θk in model Mk, and the likelihood function under model

Mk is given by

(3.6) L(θk|D ,Mk) ∝
J∏
j=1

{πkEj}Ej{1− πkEj}Nj−Ej .

In this framework, the BMA estimate of the efficacy probability for dose dj can be obtained

by averaging posterior means of the model-specific efficacy probability π̂kEj , weighted by
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the posterior model probability,

(3.7) π̄Ej =
K∑
k=1

π̂kEjP (Mk|D).

An equal prior probability P (Mk) = 1/K for different skeletons is often used if informa-

tion regarding the preference of each skeleton is not prespecified. Compared to the CRM

that depends upon a single model while ignoring other plausible models, adoption of the

BMA-CRM is favored in that it takes into account all possible locations of the efficacy

plateau, which will directly influence the recommendation of the OBD, and provides well-

calibrated estimates by adaptively downweighing poorly fitted skeletons as more data are

accumulated in the trial (Yin and Yuan, 2009b).

Dose Assignment Algorithm

In the practical use of our proposed design, we wish to utilize the toxicity and effi-

cacy outcomes collected during the trial to guide the dose assignment sequentially, and to

choose from a set of dose levels that are (1) safe and most efficacious if the efficacy prob-

ability increases monotonically with dose escalation, or (2) lowest on the efficacy plateau

while maintaining safety if the efficacy probability stabilizes at a certain dose level. To

that end, we construct a compound measure that estimates the posterior probability of the

current dose being the OBD under various shapes of the efficacy plateau, and recommend

the dose with the maximum value for the patients enrolled next.

Stage 1: adaptive randomization There is a concern with the CRM, and adaptive

designs in general, that little data exist at the beginning of the trial and the prior distribu-

tion for the model parameter exhibits strong influence on parameter estimates (Mick and

Ratain, 1993), leading to few dose levels being assigned to patients. In order to promote

exploration and gain information for potentially promising dose levels, we introduce the

idea of a first stage in which patients are assigned to doses through adaptive randomization
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(Huang et al., 2007; Pan et al., 2014; Wages and Tait, 2015).

Specifically, we first define a set of acceptable doses by excluding overly toxic doses

if their updated 95% lower credible limits of the toxicity probability exceed the maximum

acceptable rate, A = {dj : LB(π̂Tj) ≤ Γ}. We then assign the next patient to one of the

acceptable doses based on a scaled randomization, with randomization probabilities equal

to

(3.8) Rj =
π̄Ej∑

dj∈A

π̄Ej
.

Unlike Wages and Tait (2015), who define acceptable doses using a clear cutoff for the

estimated toxicity probability, we allow any dose with a estimated probability of toxi-

city marginally above Γ to be selected if its BMA estimate of the efficacy probability

is sufficiently large, a modification that further varies dose assignments among patients.

Given that adaptive randomization expedites information accumulation on different dose

levels early in the trial, we allocate one-quarter the total sample size to the randomization,

N1 = N/4, as suggested by Wages and Tait (2015).

Stage 2: adaptive selection Once that sufficient data have been collected in Stage 1,

we proceed to assign patients directly to the dose that the data suggest is most likely to

be the OBD. To evaluate the probability that dose dj is the OBD given observed data D ,

we compute the following metric as an average of selection under all efficacy skeletons

considered weighted by their posterior model probabilities P (Mk|D), for j = 2, 3, ..., J−

1,

(3.9) pOBDj = P (πTj ≤ Γ < πTj+1|D)
K∑
k=j

P (Mk|D) + P (πTj+1 ≤ Γ|D)P (Mj|D)

where P (πTj ≤ Γ < πTj+1|D) is the posterior probability that the maximum acceptable

toxicity Γ is bounded by the toxicity rates of the current dose dj and the next higher
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dose dj+1. For example, suppose we are investigating four dose levels (J = 4) of one

agent in a hypothetical trial with Γ = 0.3. As illustrated in Figure 3.1, the posterior

probability of selecting dose d2 takes into account two possibilities: (a) when dose levels

higher than d2 are overly toxic (π̂Tj > Γ, j = 3, 4) and the dose level lower than d2 is

less effective (π̂kE1 < π̂kE2), such as under skeletons M2, M3, and M4 (k = 2, 3, 4); or

(b) when the efficacy skeleton levels off at dose d2 (π̂kE2 = π̂kE3 = π̂kE4, k = 2) and at

least two dose levels on the efficacy plateau are considered to be safe (π̂Tj ≤ Γ, j = 3

or 4). Dose d2 would not be selected as the OBD if the efficacy skeleton starts to plateau

at d1, regardless of the dose-toxicity relationship as shown in Figure 3.1 (c). Due to the

boundary conditions, the posterior selection probabilities for the lowest and highest doses

are

pOBD1 = P (πT2 > Γ|D) + P (πT2 ≤ Γ|D)P (M1|D)

pOBDJ = P (πTJ ≤ Γ|D)P (MJ |D)

Trial Conduct

The conduct of the trial is outlined as follows:

1. Start the trial by assigning the first patient to the lowest dose level d1.

2. For patient i = 2, ..., N1 in Stage 1, we obtain the set of acceptable doses A on the

basis of available information, compute the BMA-CRM estimated efficacy proba-

bilities π̄Ej , and randomize the next patient i + 1 to dose dj with probability Rj as

defined in Equation (3.8). Note that a patient cannot be assigned to an untried dose

if that dose is more than one dose level above the dose of the previous patient, the

so-called “no dose skipping” rule.

3. For patient i = N1+1, ..., N in Stage 2, we update the estimated toxicity and efficacy
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probabilities π̂Tj and π̄Ej using Equations (3.2) and (3.7) given accumulated data,

evaluate pOBDj for each dose level using Equation (3.9), and allocate the next patient

i + 1 to the dose with the largest value of pOBDj , subject to the “no dose skipping”

rule.

4. At any point in the trial, terminate the study early for safety if the lower bound of the

95% credible interval in Equation (3.3) for the lowest dose exceeds the maximum

acceptable toxicity rate, LB(π̂T1) > Γ.

5. Identify the OBD as the one with the largest posterior selection probability pOBDj

after observing all data for the maximum sample size of N patients.

3.2.2 Maximum Likelihood Approach

Just as there exists a maximum likelihood version of the CRM (O’Quigley and Shen,

1996), we present a maximum likelihood version of our design that can be used as an al-

ternative to the Bayesian approach described in Section 3.2.1. We apply the same models

and skeletons for both toxicity and efficacy outcomes as in the Bayesian approach. Instead

of numerical integration for the posterior means, estimates of toxicity and efficacy prob-

abilities in Equations (3.2) and (3.7) can be replaced by their corresponding maximum

likelihood estimates (MLEs),

π̃Tj = arg max
β

logL(β|D)

π̃kEj = arg max
θk

logL(θk|D ,Mk)

While approximate variances and confidence intervals for model parameters β and θk, k =

1, ..., K, using the observed information matrix are possible, we calculate them by the

posterior variances of model parameters with a dispersed (variance=500) normal prior

(Cheung, 2014).
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The posterior model probability under the BMA-CRM for the efficacy outcomes can

be linked with its likelihood function via the Bayes’ factor, a Bayesian equivalent of the

likelihood ratio test that compares model Mk with M1 (Hoeting et al., 1999),

(3.10) BFk,1 =
P (D |Mk)

P (D |M1)

where P (D |Mk) =
∫
L(θk|D ,Mk)f(θk|Mk)dθk is the marginal likelihood of model Mk

integrated over parameter θk. If there is no preference over any efficacy working model,

i.e. P (M1) = P (Mk), k = 2, ..., K, the posterior model probability can be derived as

(3.11) P (Mk|D) =
P (D |Mk)∑K
l=1 P (D |Ml)

=
BFk,1∑K
l=1BFl,1

.

Through an approximation of the Bayes’ factor (Hoeting et al., 1999; Jin et al., 2015),

given by

(3.12) 2 log BFk,1 ≈ 2{log L(θ̃k|D ,Mk)− log L(θ̃1|D ,M1)} − (rk − r1) · logN,

where rk is the dimension of parameter θk, we can approximate the posterior model prob-

ability as

(3.13) P (Mk|D) ≈ L(θ̃k|D ,Mk)∑K
l=1 L(θ̃l|D ,Ml)

.

We note that in the Bayesian approach, prior information is essential to parameter

estimation and sequential allocation for patients early in the trial. Without specifying

priors, the maximum likelihood approach requires a start-up rule to begin because the

MLE dose not exist when we have homogeneity among the outcomes. Therefore, we

follow the same dose-finding algorithm described in Section 3.2.1, but apply an additional

up-and-down scheme before Step (3) that dose escalation is enforced until the occurrence

of the first toxicity and efficacy (possibly in different patients). Meanwhile, in order to

control the number of patients treated at toxic doses, we de-escalate dose level if toxicity

has been observed earlier than the first efficacy.



44

3.3 Simulations

3.3.1 Simulation Settings

To investigate the operating characteristics of our proposed design, we considered

Phase I/II trials with J = 6 discrete dose levels in a variety of plausible settings. The

actual dose-toxicity and dose-efficacy relationships are illustrated in Figure 3.2. Scenarios

1 to 11 were previously examined by (Wages and Tait, 2015), representing combinations

of four toxicity curves (denoted T1 through T4) and three efficacy curves (denoted E1

through E3). The setting combining T4 and E3 was not considered because all dose lev-

els had equal toxicity and efficacy rates and was not useful for assessing our design. T1

assumes that marginal toxicity increases for the first five doses and stabilizes at a high

level, while all dose levels in T4 maintain a minimal toxicity rate and hence are deemed

safe. T2 and T3 exhibit two strictly increasing dose-toxicity curves with a steeper in-

crease for T2 than T3. In term of marginal efficacy, E1 reflects a monotonic increasing

pattern, E2 assumes a efficacy plateau at higher dose levels, and E3 remains at a relative

high efficacy rate regardless of the dose level. In addition, Scenario 12 is an example that

efficacy probabilities level off within the range of safe doses. We specify the maximum

acceptable toxicity rate Γ = 1/3 in Scenarios 1 to 11 and Γ = 0.2 in Scenario 12. Binary

outcomes of toxicity and efficacy were generated independently, because their true associ-

ation parameter is commonly unknown and there is numerical evidence that a dose-finding

algorithm assuming independence between toxicity and efficacy is robust to the existence

of correlation (Cunanan and Koopmeiners, 2014).

We compared our design to the approach of (Wages and Tait, 2015), denoted as WT15,

which is a competing method developed to address nonmonotonic dose-efficacy relation-

ship. According to the sample size distribution in WT15, we set the maximum sample

size in our simulations to be N = 64, of which the first N1 = 16 patients were subject to
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adaptive randomization in Stage 1 and the remaining 48 patients were a part of Stage 2.

We chose the toxicity skeleton as pj = (0.01, 0.08, 0.15, 0.22, 0.29, 0.36), and K = 6 sets

of efficacy skeletons

(3.14)

q1j = (0.6, 0.6, 0.6, 0.6, 0.6, 0.6)

q2j = (0.5, 0.6, 0.6, 0.6, 0.6, 0.6)

q3j = (0.4, 0.5, 0.6, 0.6, 0.6, 0.6)

q4j = (0.3, 0.4, 0.5, 0.6, 0.6, 0.6)

q5j = (0.2, 0.3, 0.4, 0.5, 0.6, 0.6)

q6j = (0.1, 0.2, 0.3, 0.4, 0.5, 0.6)

which are expected to represent different prior opinions on where the true dose-efficacy

curve starts to plateau. We placed a normal prior with mean 0 and variance 1.34 on the

model parameters β and θk (O’Quigley and Shen, 1996). We assigned a prior model

probability of P (Mk) = 1/6 to each efficacy skeleton. We used priors, skeleton rates and

stopping rules as suggested in Wages and Tait (2015) when implementing their design.

Under each scenario and each design, we simulated 2,000 hypothetical trials and quan-

tified the performance of each design by four metrics: (1) the average percentage of pa-

tients that were assigned to each dose level, (2) the average percentage of observed toxicity

across simulations, (3) the average percentage of observed efficacy across simulations, and

(4) the proportion of simulations in which each dose level was identified as the OBD at

the end of the trial.

3.3.2 Simulation Results

For direct comparison among designs, we adopted an accuracy index (AI) that can

summarize dose selection among all scenarios (Cheung, 2011):

(3.15) AI = 1− J ·
∑J

j=1 ρj · P (selection of dj)∑J
j=1 ρj
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where ρj is a discrepancy measure between dose level dj and the targeted OBD, defined as

the sum of squared differences for the toxicity and efficacy rates, ρj = (πTj − πOBDT )2 +

(πEj − πOBDE )2. Here, πOBDT and πOBDE are the actual toxicity and efficacy rates corre-

sponding to the targeted OBD in each simulation scenario. As an index that reflects the

accuracy of a design, AI penalizes for overly toxic and ineffective doses, so a larger AI

indicates selected doses are concentrated in the neighborhood of the OBD, and the max-

imum attainable value of AI is 1. Likewise, AI can be used to evaluate the safety of a

design by replacing P (selection of dj) with P (allocation of dj) in Equation (3.15) for the

distribution of dose assignment.

The operating characteristics of our proposed design, using both Bayesian and maxi-

mum likelihood methods, relative to those of WT15 under various scenarios are presented

in Tables 3.1 and 3.2. Overall, our proposed design is quite comparable to WT15 and

can yield improved performance in terms of identification of the OBD and allocation of

patients when the targeted OBD is on a plateau of the dose-efficacy curve. Our maximum

likelihood approach behaves similarly to the Bayesian approach for the sample size we

considered, although the Bayesian approach performs slightly better than the maximum

likelihood approach.

In Scenarios 1, 4, and 7 where the dose-efficacy relationship (E1) has a monotone

increasing pattern, the OBD d4 is the the highest dose whose toxicity probability stays

below Γ = 1/3. We see our designs are more likely to identify the true OBD than WT15,

with an approximate increase of 8-14 points in the selection probability of dose d4 for the

Bayesian approach and an approximate increase of 0-13 points for the maximum likeli-

hood approach. Similarly, both of our designs assign patients more frequently to the OBD

than WT15, with a range of 0-8 more patients. When the entire distributions of selection

and dose assignments are considered through the AI, our Bayesian approach compares



47

favorably to WT15 with regard to both the accuracy and safety of the design.

Scenarios 2, 5, and 8 represent situations in which the dose-efficacy relationship (E2)

increases until dose d4 and remains constant thereafter, so the lowest dose d4 on the effi-

cacy plateau that maintains safety is the OBD. Once again, our design correctly identifies

the OBD more often than WT15, assigns more patients to dose d4, and produces larger

accuracy and safety summary scores than WT15.

Scenarios 3, 6, and 9 provide some insight into the operating characteristics of exam-

ined designs when all dose levels are equally effective (E3) and the lowest dose d1 is the

OBD. We observe that our proposed design tends to select and assign patients more often

to dose levels above the OBD when compared to WT15. For example, 45% of simulations

selected the true OBD in the design of WT15, as opposed to 25% and 23% in our Bayesian

approach and maximum likelihood approach. And the numbers of patients treated at the

OBD in our designs (∼ 14-16) are approximately half the size treated in the WT15 (∼

29-30).

This differential in operating characteristics occurs because selection of the OBD now

depends solely on the minimum toxicity probability. However, given variability of the

binary outcomes and the limited sample size in the trial, observed data may not nec-

essarily support the underlying flat efficacy skeleton over others, leading to a relatively

small posterior model probability P (M1|D) and hence reduces the selection probability

for the true OBD. To address this problem, we investigated the sensitivity of our design

to the prior model probabilities in Scenarios 3, 6, and 9. Specifically, instead of giving

equal probability to all models, we instead assigned a larger probability to the flat efficacy

skeleton, i.e. P (M1) = 0.5, with the remaining models receiving equal probability, i.e.

P (M2) = · · · = P (M6) = 0.1. Results when using these prior model probabilities are

shown in Table 3.3; we found similar selection probability and improved allocation at the
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OBD relative to WT15.

All doses in Scenarios 10 and 11 are safe because they all maintain a minimal toxicity

probability (T4), so the OBD occurs at the dose with the maximum efficacy probability. In

Scenario 10 with a monotone increasing toxicity, our design correctly identified d6 as the

OBD in at least 64% of simulations and d6 was assigned to at least 57% of patients, which

is considerably better than the corresponding values for WT15. Scenario 11 has three

OBDs since the efficacy probabilities of doses d4, d5 and d6 are the same. We observe that

our design assigns 19% fewer patients at suboptimal doses and demonstrates larger AI

scores than WT15. In Scenario 12 where toxicity increases across the range of doses and

stays below Γ, while efficacy plateaus at higher doses, the benefits of our designs appear

to be substantial, with at least an 11% increase in the selection probability of the OBD (d4)

and 21% increase in the selection of safe and maximum effective doses (d4, d5, and d6) as

compared to WT15. A similar gain in terms of dose assignment can be achieved using our

proposed design.

Table 3.4 summarizes the average number of patients for whom toxicity or efficacy

was observed under various settings. In general, our Bayesian approach and maximum

likelihood approach provide toxicity and efficacy rates that are close to those with WT15,

providing evidence that our design is as safe and accurate as WT15.

3.4 Discussion

In this work, we have proposed a dose-finding design that can use either a Bayesian

approach based upon the idea of BMA-CRM (Yin and Yuan, 2009b) or a corresponding

maximum likelihood alternative, for identification of the OBD in a Phase I/II trial when

the dose-efficacy curve of the targeted agent reaches a plateau within the dose range of

interest. By incorporating multiple efficacy skeletons as working models, our designs are
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robust to the misspecification of the dose-efficacy curve. By constructing the posterior

selection probability, we are able to quantify the uncertainty for each dose being the OBD

and specify dose assignment adaptively.

The simulation results demonstrate improved performances of our proposed design in

most settings, as it assigns more patients to the OBD and identifies the OBD more often

than the design of Wages and Tait (2015). However, in rare situations where the underlying

true efficacy probability remains constant across all dose levels so that the lowest dose is

the OBD, our design had a reduced likelihood of allocation and selection at the OBD if

all dose-efficacy skeletons received equal probability. At this time, sensitivity analysis

is needed to calibrate an appropriate weight for the flat efficacy skeleton. Moreover, we

are exploring modifications to our proposed designs in the use of dual-agent Phase I/II

dose-finding trials, which is an area of current methodological interest.
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Figure 3.1: Possible situations in which dose d2 is selected as the OBD in a hypothetical
trial with four dose levels. Dose levels highlighted in gray are considered to
be overly toxic.
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Figure 3.2: Illustration of twelve simulation scenarios. The solid lines with cycles repre-
sent does-toxicity relationships and the dashed lines with triangles represent
dose-efficacy relationships. The true probabilities of toxicity and efficacy are
listed under each scenario. Toxicity probabilities of dose levels highlighted in
gray are greater than Γ.
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Table 3.1: Summary of dose selection from Scenarios 1 to 12: average probability (%) of
selection as the OBD at each dose level, and the accuracy index for the distri-
bution of dose selection. The targeted OBD indicated in bold, and the design
with the largest accuracy index underlined.

Scenario Design Dose 1 Dose 2 Dose 3 Dose 4 Dose 5 Dose 6 Accuracy
Index

1 WT15 2.9 9.1 30.6 51.1 6.3 0.0 0.677
Bayesian 0.2 3.0 32.8 59.0 5.0 0.0 0.815
ML 0.8 6.5 37.4 51.2 4.2 0.0 0.751

2 WT15 1.0 4.3 32.2 59.0 3.3 0.2 0.753
Bayesian 0.0 1.0 33.1 64.2 1.7 0.0 0.844
ML 0.2 1.8 34.6 61.6 1.8 0.0 0.784

3 WT15 45.6 33.0 16.8 4.5 0.1 0.0 0.911
Bayesian 24.2 25.4 35.0 14.9 0.4 0.0 0.786
ML 22.4 23.4 34.6 18.8 0.8 0.0 0.752

4 WT15 2.7 8.4 32.1 45.8 10.7 0.3 0.685
Bayesian 0.4 2.8 30.0 57.6 9.2 0.0 0.825
ML 0.6 4.3 35.3 51.8 8.0 0.0 0.790

5 WT15 0.5 4.1 30.6 54.1 10.6 0.1 0.777
Bayesian 0.0 0.5 29.9 66.3 3.2 0.0 0.867
ML 0.2 1.9 31.2 63.2 3.6 0.0 0.830

6 WT15 46.1 32.9 15.7 4.8 0.5 0.0 0.900
Bayesian 24.8 26.1 33.4 15.1 0.6 0.0 0.775
ML 22.6 22.1 34.2 20.0 1.1 0.0 0.731

7 WT15 3.3 7.0 20.3 39.2 26.5 3.7 0.555
Bayesian 0.3 1.5 11.6 52.8 31.7 2.2 0.707
ML 0.5 3.2 14.4 52.6 27.6 1.8 0.706

8 WT15 0.3 3.8 14.7 56.5 22.7 2.0 0.817
Bayesian 0.0 0.3 10.0 72.8 16.6 0.3 0.924
ML 0.0 0.8 9.7 71.3 17.8 0.4 0.914

9 WT15 45.2 31.4 17.2 5.9 0.3 0.0 0.901
Bayesian 24.9 25.4 26.3 19.9 3.5 0.0 0.736
ML 24.0 21.2 24.2 25.8 4.8 0.0 0.683

10 WT15 2.6 5.7 13.8 18.6 24.1 35.2 0.566
Bayesian 0.0 1.0 3.1 8.3 18.0 69.6 0.887
ML 0.2 1.0 4.8 10.2 20.0 63.8 0.853

11 WT15 0.5 2.3 9.4 37.7 30.0 20.1 0.895
Bayesian 0.0 0.2 3.0 30.4 27.1 39.4 0.983
ML 0.0 0.3 3.6 28.6 24.2 43.4 0.978

12 WT15 8.7 18.6 25.6 35.2 10.0 1.9 0.264
Bayesian 1.8 5.6 20.2 49.9 19.7 2.8 0.729
ML 2.8 9.0 20.7 46.3 18.8 2.5 0.638
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Table 3.2: Summary of dose assignment from Scenarios 1 to 12: the mean percentage of
allocation at each dose level, and the accuracy index for the distribution of dose
assignment. The targeted OBD indicated in bold, and the design with the largest
accuracy index underlined.

Scenario Design Dose 1 Dose 2 Dose 3 Dose 4 Dose 5 Dose 6 Accuracy
Index

1 WT15 9.9 17.0 29.4 34.8 7.6 1.3 0.405
Bayesian 3.4 10.9 33.0 39.6 10.4 2.7 0.563
ML 4.5 13.3 34.6 35.3 9.6 2.8 0.509

2 WT15 8.3 13.9 30.4 39.9 6.3 1.2 0.348
Bayesian 2.5 8.8 34.3 44.3 7.9 2.2 0.597
ML 3.3 9.6 33.8 42.2 8.4 2.7 0.556

3 WT15 42.2 32.5 18.5 6.0 0.7 0.1 0.878
Bayesian 21.3 27.5 31.2 14.9 3.6 1.4 0.680
ML 19.6 25.4 31.0 17.6 4.8 1.5 0.631

4 WT15 9.1 16.0 30.0 31.3 11.7 1.9 0.423
Bayesian 3.1 9.4 31.1 39.5 13.9 3.1 0.603
ML 3.8 12.0 32.9 35.7 12.6 3.0 0.556

5 WT15 7.9 14.0 28.6 37.4 10.6 1.5 0.363
Bayesian 2.6 7.7 32.5 45.1 9.5 2.5 0.628
ML 3.1 9.4 32.1 43.0 9.7 2.7 0.582

6 WT15 42.1 32.7 17.9 6.2 1.1 0.1 0.868
Bayesian 21.0 28.0 31.2 15.0 3.6 1.2 0.693
ML 19.6 23.7 31.4 18.4 5.3 1.6 0.629

7 WT15 9.5 14.8 22.7 28.8 18.7 5.5 0.335
Bayesian 2.6 6.2 18.3 40.7 25.9 6.3 0.545
ML 3.0 7.8 20.3 40.2 23.3 5.4 0.542

8 WT15 7.7 12.4 19.5 39.6 17.1 3.8 0.404
Bayesian 2.3 5.0 18.3 52.8 17.5 4.0 0.717
ML 2.4 5.4 18.2 52.2 17.5 4.3 0.706

9 WT15 41.3 32.4 18.3 6.7 1.2 0.1 0.870
Bayesian 21.3 24.8 27.1 18.7 6.0 2.1 0.624
ML 19.4 21.2 26.5 22.4 8.1 2.4 0.553

10 WT15 7.7 11.1 16.2 18.1 20.2 26.7 0.320
Bayesian 2.0 3.0 5.6 10.7 17.6 61.1 0.763
ML 2.1 3.4 7.1 12.0 18.7 56.6 0.730

11 WT15 6.6 9.1 14.3 31.3 22.3 16.4 0.519
Bayesian 1.9 2.6 6.1 24.8 22.7 42.0 0.854
ML 2.0 2.7 6.1 23.2 20.8 45.3 0.848

12 WT15 15.0 21.2 25.4 25.9 10.2 2.4 -0.001
Bayesian 3.8 8.5 23.1 37.3 18.2 9.1 0.578
ML 4.7 11.1 23.2 35.0 17.2 8.8 0.505
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Table 3.3: Sensitivity analysis to the prior model probability from Scenarios 3, 6, and 9:
the mean percentage of dose selection/assignment at each dose level, and the
accuracy index for the distribution of dose selection/assignment. The targeted
OBD indicated in bold.

Scenario Design Dose 1 Dose 2 Dose 3 Dose 4 Dose 5 Dose 6 Accuracy
Index

Dose selection
3 Bayesian 50.8 27.3 17.7 4.0 0.1 0.0 0.913

ML 41.9 26.9 23.2 7.8 0.3 0.0 0.868
6 Bayesian 53.1 25.8 16.6 4.4 0.1 0.0 0.909

ML 42.4 24.4 24.4 8.4 0.6 0.0 0.850
9 Bayesian 55.0 23.2 15.2 5.7 1.0 0.0 0.896

ML 44.0 23.2 22.6 8.7 1.4 0.0 0.853

Dose assignment
3 Bayesian 69.5 5.0 10.1 9.2 4.7 1.6 0.751

ML 68.4 4.8 10.0 10.1 5.1 1.7 0.733
6 Bayesian 69.8 5.0 9.7 9.1 4.7 1.7 0.772

ML 68.2 4.9 9.9 10.1 5.1 1.8 0.754
9 Bayesian 69.6 4.3 8.2 9.9 5.5 2.4 0.732

ML 68.2 4.4 8.8 10.1 5.8 2.6 0.717
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Table 3.4: The average percentage of toxicity and efficacy from Scenarios 1 to 12.

Toxicity (%) Efficacy (%)

Scenario WT15 Bayesian ML WT15 Bayesian ML

1 22.3 25.3 24.4 28.0 31.9 30.8
2 22.8 25.2 25.2 50.8 56.2 55.6
3 11.1 16.6 17.8 69.8 69.8 70.0
4 22.5 25.6 24.7 28.9 33.0 31.9
5 23.0 25.0 24.8 51.2 56.9 56.2
6 10.9 16.6 17.7 69.8 70.0 69.8
7 19.7 23.1 22.3 32.0 38.0 36.6
8 19.8 21.6 21.7 54.5 61.9 61.6
9 9.7 14.2 15.3 70.0 70.0 70.2

10 5.0 5.0 5.0 40.0 53.3 52.0
11 5.0 5.0 5.0 57.8 66.2 66.2
12 6.6 9.7 9.2 38.6 44.8 43.9



CHAPTER IV

Exposure Enriched Outcome Dependent Designs for
Longitudinal Studies of Gene-Environment Interaction

4.1 Introduction

Joint effects of genetic and environmental factors have been increasingly recognized in

the development of many complex human diseases (Hunter, 2005). Investigation of gene-

environment (GxE) interaction may not only provide biological insights into the etiology

of these diseases, but also assist in the discovery of novel genetic or environmental risk

factors (Dai et al., 2012). However, GxE interaction studies are statistically challenging

because of the prohibitive sample size requirement in each GxE configuration. The fre-

quency of the risk allele, the distribution of the environmental exposure, and the effect

size of the GxE interaction all contribute to the need for larger samples to detect such an

interaction with adequate power (Thomas, 2010).

Despite the popularity of case-control and case-only designs, longitudinal cohort stud-

ies have long been recommended for GxE interactions because of better characterization

of lifetime exposure history (Clayton and McKeigue, 2001), the ability to account for

within-subject variability of the outcome, and the potential to delineate the dynamic tem-

poral pattern of the genetic or GxE interaction effect, which is often missed in case-control

studies by design. Typically, in such studies, extensive information has been collected over

56
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the course of the longitudinal follow-up, including prospectively assessed environmental

exposures, repeatedly measured outcomes, and a detailed set of potential confounders. We

consider a situation where genetic data are to be collected retrospectively with exposures

and outcomes already measured; however, our proposed methods can be easily adapted

to the collection of new expensive biomarkers of exposure when genetic data is already

available. The ability to obtain both genetic and environmental data for all subjects in a

large cohort under the budget constraint is often challenging due to cost. To focus the lim-

ited resources on informative subjects, there is a need to apply a principled strategy that

prioritizes subjects for genotyping or exposure assay. This idea is akin to the two-phase

sampling design that is commonly used for case-control studies, and we aim to extend it to

longitudinal cohorts. Such a sampling design is also relevant when constructing an infor-

mative subsample using existing electronic health record (EHR) data to check a hypothesis

on the interplay between genes and environmental exposures/biomarkers.

As highlighted in a recent discussion by Kraft and Aschard (2015), the small number

of replicated GxE interactions in observational studies could be attributed to the lack of

exposure variability in standard designs. There has been recommendations for exposure

enriched sampling in case-control studies with binary exposure. For example, Ahn et al.

(2013) developed a disease-exposure stratified sampling accompanied by a Bayesian anal-

ysis framework, Chen et al. (2012) explored several two-phase designs conditional on the

exposure and case-control status, and Stenzel et al. (2015) evaluated the impacts of ex-

posure enriched sampling designs and exposure measurement error on the power for tests

of GxE interaction. All of them concluded with a consensus that an enriched selection

of exposed subjects leads to improved power for GxE interactions, as long as exposure

measurement error is not severe. Similarly, in cross-sectional studies with continuous ex-

posure and outcome, a substantial reduction in the required number of subjects is achieved
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by selecting subjects with extreme exposure levels (Boks et al., 2007).

In addition to exposure variability, it is also important to consider temporal variation

in outcomes when constructing an informative subsample in a longitudinal study. For in-

stance, Schildcrout and Heagerty (Schildcrout and Heagerty, 2008) introduced stratified

sampling conditional on a binary response series. Schildcrout et al. (2012) proposed aux-

iliary variable dependent sampling when an inexpensive auxiliary variable related to the

longitudinal binary response is available for repeated measures. For longitudinal continu-

ous outcomes, Schildcrout et al. (2013) developed outcome trajectory dependent sampling

that stratifies subjects by the summary measures of the individual outcome vector. In their

work, a genetic main effect and a gene-by-time interaction effect were assessed without

specific consideration of an environmental exposure. Improved efficiency of estimated

coefficients were observed when sampling on a summary measure that is related to the

targeted parameters.

To date, literature on sampling designs for longitudinal studies of GxE interaction is

quite limited. In this work, we consider designs to select a subsample for genotyping or

exposure assay on the basis of available data in an existing cohort/database. Specifically,

we propose variants of two-phase design for longitudinal outcomes. We are interested

in the GxE interaction, their joint effects, and potentially the time-varying GxE (GxExT)

interaction.

Under the two-phase design, standard maximum likelihood analysis ignoring the sam-

pling mechanism leads to biased estimates (Holt et al., 1980). To correct for the biased

design, some approaches consider only a subsample of individuals with a complete set

of information on the exposure, genotype, outcome, and other relevant covariates, and

make an adjustment using a weighted likelihood or a conditional likelihood (Robins et al.,

1994; Schildcrout and Heagerty, 2008; Schildcrout et al., 2013), while others treat it as
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a missing data problem. For example, partial information on subjects whose genetic or

environmental data are missing by design can be incorporated into the analysis, through

an underlying distribution of the missing covariate, either estimated empirically or mod-

eled parametrically (Lawless et al., 1999; Weaver and Zhou, 2005). Multiple imputation

strategies have been suggested for handling the selection bias (Schildcrout et al., 2015).

Furthermore, a full Bayesian analysis based on the joint likelihood of the entire cohort has

been proposed (Ahn et al., 2013). In order to improve estimation efficiency, we develop a

conditional likelihood-based approach using data available from both phases in conjunc-

tion with our proposed designs, and investigate their statistical properties relative to the

existing approaches.

We illustrate our methods using data from the Normative Aging Study (NAS), an on-

going longitudinal study of aging initiated by the Veterans Administration in 1963. In

this study, subjects who underwent bone lead measurement between 1991 and 2002 were

followed up for their blood pressure levels every three years. It has been documented in

the existing NAS cohort that lead exposure was associated with increased pulse pressure

(Perlstein et al., 2007), a marker of arterial stiffness, and this association becomes stronger

in subjects who are carriers of the risk alleles of the hemochromatosis (HFE) gene (Zhang

et al., 2010). We use this example to demonstrate the benefits of exposure enriched out-

come trajectory dependent sampling for a study of GxE interaction when a quantitative

trait in a longitudinal study is of interest.

The rest of the chapter is organized as follows. In Section 4.2, we describe five sam-

pling designs for longitudinal studies of GxE interaction. Section 4.3 provides four likeli-

hood approaches that can be utilized for parameter estimation and statistical inference. In

Sections 4.4 and 4.5, we perform simulation studies and use the NAS example to evalu-

ate the operating characteristics of different sampling designs and likelihood approaches.
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Section 4.6 concludes with a summary of our findings and discussions.

4.2 Sampling Designs

4.2.1 Notation

Our study objective is to detect and quantify the joint (both main and interaction)

effects of genetic and environmental factors on a continuous trait with repeated measure-

ments in a longitudinal study. Let Yij denote the outcome for subject i measured at the jth

follow-up for i = 1, . . . , N and j = 1, . . . , ri. Subject-specific design matrices of covari-

ates for fixed and random effects are denoted by Xi and Zi respectively. We characterize

the response trajectory Yi = (Yi1, Yi2, . . . , Yiri)
′ via a linear mixed effects model

(4.1) Yi = Xiβ + Zibi + εi

where β is a vector of fixed effects, bi are subject-specific random effects, εi are mea-

surement errors assumed to be normally distributed with mean zero and covariance matrix

Ri = σ2
eIri , and Iri is the ri-dimensional identity matrix.

In this longitudinal setting, the subject-specific design matrix for fixed effects Xi is

typically composed of a collection of confounding factors Vi, a variable representing time

Ti, a baseline environmental exposure Ei (binary or continuous), a retrospectively col-

lected genotype Gi that indicates the presence of the minor allele for a single nucleotide

polymorphism (0 = no copy, 1 = at least one copy), and a GxE interaction term GiEi,

e.g., Xi = (Vi, Ti, Ei, Gi, GiEi). Additional interactions between time and exposure- or

genotype-related covariates, such as EiTi, GiTi and GiEiTi, could be included given evi-

dence of significance or scientific justification. While many environmental exposures can

change over time, we focus on baseline exposure in this present study. Extension to time-

varying exposure is mentioned in the discussion.
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Under this linear mixed effects model, we consider the subject-specific design matrix

Zi = (1, Ti) for the random effects bi = (b0i, b1i)
′, which are assumed to follow a bivari-

ate normal distribution with mean zero and covariance matrix D that contains variance

components σ2
0 , σ2

1 , and a correlation coefficient ρ = corr(b0i, b1i). Integrating over the

random effects, the marginal distribution of the outcome follows a multivariate normal

distribution with mean vector µi = Xiβ and covariance matrix Σi = ZiDZ
′
i + Ri, i.e.

Yi|Xi ∼ (µi,Σi). Statistical inference for fixed effects can be made by maximizing the

marginal likelihood function:

(4.2)

L(β, σ) =
N∏
i=1

f(Yi|Xi; β, σ) =
N∏
i=1

(2π)−
ri
2 ·|Σi|−

1
2 ·exp

{
− 1

2
(Yi−Xiβ)′Σi

−1(Yi−Xiβ)
}

where f(Yi|Xi; β, σ) is the multivariate density of Yi given Xi, and covariance matrix Σi

with parameters σ = (σ0, σ1, ρ, σe).

Suppose (Yi, X
∗
i ), X∗i = (Vi, Ti, Ei), i = 1, . . . , N , are collected for the entire cohort

in an initial phase (Phase I), followed by a selection of the cohort with an expected sample

size n (n < N) for retrospective genotyping Gi in the second phase (Phase II). Let Si = 1

(Si = 0) denote the inclusion (exclusion) of subject i in Phase II. For example, one might

assign a constant selection probability P (Si = 1) = n/N to all subjects and draw samples

via independent Bernoulli trials. This sampling scheme renders a missing completely at

random pattern for Gi, so the standard maximum likelihood estimation should suffice and

be regarded as a baseline for comparison. To investigate how a two-phase design can

improve the efficiency of a longitudinal study of GxE interaction, we now describe five

sampling schemes that take advantage of observed information in Phase I to guide the

sample selection in Phase II.



62

4.2.2 Design 1: Exposure Stratified Sampling

Subjects observed in Phase I are partitioned by their environmental exposures into K

mutually exclusive strata Rk, where k = 1, ..., K. That is, exposure is the only sampling

variable, namely, Qi = Ei, regardless of the outcome. Within each stratum, individuals

are selected with a pre-specified stratum-specific probability π(Rk) = P (Si = 1|Qi ∈

Rk) = nk/Nk, where Nk is the number of subjects falling into stratum Rk, and nk is the

expected number of subjects sampled in Phase II from Rk. Larger selection probabilities

are allocated to the strata that are most informative. For binary exposure (stratum k = E

for exposed subjects, and k = Ē for unexposed), subjects with rare exposure are enriched

to achieve a certain proportion λ = nE/n. Note that although a balanced design (λ = 0.5)

with a equal number of exposed and unexposed subjects is desired, the maximum level of

enrichment is limited by the prevalence of exposure in the cohort and the overall sampling

probability, λ ≤ P (E = 1) ·(n/N)−1. For continuous exposure, subjects are stratified into

Rk (k = 1, 2, 3), where R1 = {Ei ≤ C1
e}, R2 = {C1

e < Ei ≤ C2
e}, and R3 = {Ei > C2

e}.

For instance, to draw a sample of n = 250 subjects from the original cohort of N = 1000,

one can choose cutpoints C1
e and C2

e as the 10th and 90th percentiles of the exposure

distribution. Subjects from the two tails (strata R1 and R3) are preferentially sampled

with a probability of 1.0, and a random sample from stratum R2 is drawn to reach the

genotyping capacity.

4.2.3 Design 2: Outcome Trajectory Dependent Sampling

To capture variation in individual outcome trajectories over time, Schildcrout et al.

(2013) proposed a sampling design that is based upon summary statistics of the individual

outcome vector, which we refer to as outcome trajectory dependent sampling in this paper.

They specify the sampling variable Qi as estimated effects from simple linear regression
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of the outcome for subject i on a single predictor time: E[Yij] = η0i + η1iTij = Ziηi,

i = 1, ..., N , j = 1, ..., ri, and ηi = (η0i, η1i)
′. For example, a univariate Qi considers

either estimated intercept Qi = η̂0i or estimated slope of time Qi = η̂1i, while a bivariate

Qi = η̂i considers both jointly.

In the case that Qi = η̂0i, subjects in Phase I are partitioned into three strata: R1 =

{η̂0i ∈ (−∞, C1]}, R2 = {η̂0i ∈ (C1, C2]}, and R3 = {η̂0i ∈ (C2,+∞)}, where strata

R1 and R3 represent two tails of the sampling distribution and cutpoints (C1, C2) are

determined by the percentiles of the empirical distribution of Q. When sampling from

the bivariate Qi, subjects lying in the center of the sampling distribution are stratified into

R2 = {(η̂0i, η̂1i) : C1
0 < η̂0i ≤ C2

0 , C
1
1 < η̂1i ≤ C2

1}, while others into R1 = {(η̂0i, η̂1i) /∈

R2}. Cutpoints (C1
0 , C

2
0 , C

1
1 , C

2
1 ) are determined by grid search of the empirical bivariate

distribution of Q, ensuring the fraction of subjects fall into the central stratum R2 using

bivariate Qi is the same as the fraction of R2 using univariate Qi. To capture a larger

variability in the outcome trajectory, subjects from both strataR1 andR3 are sampled with

probability 1.0.

An important property of this design is thatQi is a linear combination of the individual

outcome Yi, i.e., Qi = η̂i = WiYi, where the weight Wi = (Z ′iZi)
−1Z ′i. Note that subjects

with only one observation (ri = 1) do not have OLS estimate for the intercept or slope

of time due to the singular square matrix Z ′iZi. In this case, we assign η̂0i = yi1 and

η̂1i = 0. Given the marginal distribution assumption for Yi|Xi in the linear mixed model

in (4.1), the sampling variable should also follow a normal distribution Qi|Xi ∼ (µqi =

Wiµi,Σqi = WiΣiW
′
i ). As such, the probability of subject i being sampled in Phase II

given Xi, for a univariate Qi, can be obtained:

(4.3)

P (Si = 1|Xi) =
K∑
k=1

P (Si = 1, Qi ∈ Rk|Xi) =
K∑
k=1

π(Rk){FQi|Xi
(Ck)− FQi|Xi

(Ck−1)}
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where sample selection givenQi ∈ Rk is assumed to be independent ofXi|Qi ∈ Rk so that

P (Si = 1|Qi ∈ Rk, Xi) = P (Si = 1|Qi ∈ Rk) = π(Rk), and FQi|Xi
(·) is the cumulative

distribution function of Qi|Xi. Under an outcome dependent design where missingness

in Gi renders a missing at random mechanism, a closed form expression of this sampling

probability makes it possible to calculate the conditional likelihood that corrects for the

biased sampling.

4.2.4 Design 3: Exposure Enriched Outcome Trajectory Dependent Sampling

In Design 3, we combine the strategies of Design 1 and Design 2, and specify the

sampling variable as a bivariate Qi = (η̂0i, Ei)
′, Qi = (η̂1i, Ei)

′, or a multivariate Qi =

(η̂0i, η̂1i, Ei)
′. For binary exposure, we partition subjects into six strata: Rk,E = {η̂0i ∈

(Ck−1,E, Ck,E]} for exposed subjects and Rk,Ē = {η̂0i ∈ (Ck−1,Ē, Ck,Ē]} for unex-

posed, k = 1, 2, 3, if the rate of change of the outcome is not considered in Qi. Cut-

points Ck,E and Ck,Ē are determined by the percentiles of the empirical distribution of

Q. We set stratum-specific selection probabilities to ensure that subjects with extreme

η̂0i are over-represented, and the proportion of exposed subjects in Phase II is enriched,

λ =
∑

k nk,E/n, where nk,E is the expected number of subjects sampled from stra-

tum Rk,E . For continuous exposure, subjects are partitioned into two strata, of whom

R2 = {(η̂0i, η̂1i, Ei) : C1
0 < η̂0i ≤ C2

0 , C
1
1 < η̂1i ≤ C2

1 , C
1
e < Ei ≤ C2

e} contains those

located in the center of the sampling distribution and R1 = {(η̂0i, η̂1i, Ei) /∈ R2}, if a

multivariate Qi is considered. Cutpoints for subject stratification and stratum-specific se-

lection probabilities are chosen to match their counterparts in Design 2 with a bivariate

Qi.

As an extension to the outcome trajectory dependent sampling, this design tends to cap-

ture a larger exposure-outcome variation by incorporating an exposure enrichment strat-
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egy, while inheriting the favorable property of Design 2 that the conditional likelihood

adjusting for the sampling bias can be derived analytically. For instance, if Qi = (η̂0i, Ei)
′

and the binary exposure Ei = 1, the subject-specific correction for the sampling bias

P (Si = 1|Xi) can be computed by (4.3) as an average of stratum-specific selection prob-

abilities π(Rk,E) across k = 1, 2, 3, weighted by P (Qi ∈ Rk,E|Xi). Because personal

exposure Ei is observed as a part of Xi, the sampling variable Qi|Xi indeed follows the

same distribution as in Design 2 when sampling from Qi = η̂0i.

4.2.5 Design 4: Outcome Trajectory Dependent Sampling Using Best Linear Unbi-
ased Predictors of Random Effects

In unbalanced longitudinal studies, the number of measurements available for each in-

dividual can be different. Subjects who are lost to follow-up early may have unstable OLS

estimates, considering the small ratio of sample size to the number of parameters, ri/2,

in each simple linear regression. Furthermore, for subjects with only one measurement of

the outcome, it is infeasible to fit a regression model. To handle the unbalanced nature of

longitudinal data, and to describe the temporal pattern of the outcome while controlling

for confounding factors, in Design 4, we propose to use the best linear unbiased predic-

tors (BLUPs) from a linear mixed model with random intercept and random slope as the

sampling variable.

Specifically, we first construct a mixed model using the Phase I data: Yi = αX∗i +

aiZi + ei, i = 1, ..., N , where α is the vector of population regression coefficients,

ai = (a0i, a1i)
′ ∼ (0, D∗) is the vector of subject-specific random effects, and ei is the

measurement error assumed to be normally distributed with mean zero and covariance

matrix R∗i = (σ∗e)
2 · Iri . Under this sampling model, the empirical BLUPs of random

effects for subject i can be obtained by âi = D̂∗Z ′iΣ̂
∗
i
−1(Yi − X∗i α̂), where α̂, D̂∗, and

Σ̂∗i = ZiD̂
∗Z ′i + R̂∗i are the restricted maximum likelihood (REML) estimates for fixed
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effects α, covariance parameter D∗, and the marginal covariance of Yi|X∗i , respectively. If

we treat these REML estimates as fixed and define θ̂∗ = (α̂, D̂∗, σ̂∗e) and Wi = D̂∗Z ′iΣ̂
∗
i
−1,

the sampling variable based upon empirical BLUPs (Qi = âi) should follow a normal dis-

tribution Qi|Xi, θ̂
∗ ∼ (µqi = Wiµi −WiX

∗
i α̂,Σqi = WiΣiW

′
i ). Unlike Design 2, the dis-

tribution of the sampling variable Qi under Design 4 depends on both the subject-specific

design matrixXi and the parameter estimates θ̂∗ obtained in Phase I. We note that plugging

the REML estimates θ̂∗ into the distribution function of Qi|Xi may under-estimate param-

eter uncertainty, however, these fixed estimates allow us to derive the explicit formula for

the mean and covariance matrix of the sampling variable, and thus markedly improves the

computation of conditional likelihood.

Stratification of subjects, allocation of stratum-specific selection probabilities, and ran-

dom sampling within each stratum are implemented in a similar fashion as in Design 2.

Compared to Design 2, the major advantage of choosing BLUPs from a mixed model asQi

over OLS estimates from a simple linear regression is that, BLUPs not only uses informa-

tion on subject-specific (Yi, Ti) but also can borrow strength from other subjects (Yl, X∗l ),

l = 1, ..., N , l 6= i, therefore, it is expected to better characterize the individual outcome

trajectory with unbalanced data.

4.2.6 Design 5: Exposure Enriched Outcome Trajectory Dependent Sampling Us-
ing BLUPs of Random Effects

In Design 5, we propose sampling schemes that combine the exposure enrichment

strategy in Design 1 with the outcome trajectory dependent sampling using BLUPs of

random effects in Design 4. In the same way as how to convert Design 2 to Design

3, we first specify the joint sampling variable as Qi = (â0i, Ei)
′, Qi = (â1i, Ei)

′, or

Qi = (â0i, â0i, Ei)
′, and then calculate the correction probability P (Si = 1|Xi) for each

subject based upon identified distribution of Qi|Xi. We emphasize that although exposure



67

is adjusted in the mixed effect sampling model in Design 4, we believe enrich sample with

exposed subjects can further help to increase the exposure-outcome variation.

Figure 4.1 provides a visualization of sample selection under each study design, given

an overall selection probability of 0.25 from the original cohort ofN = 1000 subjects, with

a low exposure prevalence P (E = 1) = 0.2. For the brevity purpose, we do not present

sample selection for Design 4 and Design 5, because they are implemented similarly to

Design 2 and Design 3 but have OLS estimates replaced by BLUPs of random effects.

4.3 Likelihood Functions and Estimation Approaches

When data have been collected via one of the sampling designs described in Section

4.2, they consist of N subjects: {i : Si = 1} of whom have complete information (Yi, Xi),

which we refer to as complete-cases; while {i : Si = 0} of whom have partial informa-

tion (Yi, X
∗
i ), which we refer to as incomplete-cases. We now describe four likelihood

functions one can use to estimate the regression parameters.

4.3.1 Unweighted Uncorrected Likelihood

Regardless of the sampling mechanism, one can naively perform the analysis for a

standard prospective cohort, and make inference on parameters of interest in the linear

mixed model (4.1) by equating the derivative of the unweighted uncorrected log-likelihood

(UUL) to zero:

(4.4)
∑
i:Si=1

∂ log f(Yi|Xi; β, σ)

∂β
= 0

Solutions to this equation yield the maximum likelihood estimates of β (or σ). One prob-

lem of this naive analysis is that there is no guarantee for consistent estimates when sample

selection in Phase II is in relation to the outcome. Moreover, there is a consequence of re-
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duced precision when the likelihood function considers only complete-cases, while partial

information on incomplete-cases are ignored.

4.3.2 Inverse Probability Weighted Likelihood

In a two-phase design, when the sample selection in Phase II is driven by exposure

or outcome trajectory, selection bias may be introduced. To draw a valid inference that

accounts for the sampling mechanism, one may consider the inverse probability weighted

likelihood (IPWL), a modification of complete-case analysis that differentially weights

subjects to adjust for the selection bias.

In particular, under our sampling designs, subject-specific selection probability P (Si =

1|Yi, Xi) for the entire cohort i = 1, ..., N can be obtained by matching the stratum-

specific selection probability with identified personal stratum membership. Based upon

information on complete-cases, consistent estimators of β (or σ) can be derived by solving

the estimation equation

(4.5)
∑
i:Si=1

∂ log f(Yi|Xi; β, σ)

∂β
· [P (Si = 1|Yi, Xi)]

−1 = 0

Here, the contribution to the score function from a single subject in Phase II is weighted

by the inverse of its sampling probability (Robins et al., 1994). When a constant sam-

pling probability is assigned, such as n/N in random sampling, it is easy to show that

the IPWL becomes equivalent to the UUL. In IPWL, the idea of introducing weights into

the standard likelihood is simple and the computation of equation (4.5) is straightforward,

however, we lose estimation efficiency since the analysis is restricted to the complete-

cases. Furthermore, the IPWL estimates can be quite variable when the stratum-specific

selection probabilities get close to zero (Little and Rubin, 2014).
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4.3.3 Complete-Case Conditional Likelihood

To adjust for biased sampling from outcome trajectory dependent sampling (Design

2), Schildcrout et al. (2013) developed an ascertainment corrected maximum likelihood

for inference. In their analysis, subjects in the set of complete-cases contribute to the

likelihood by a conditional probability of the outcome vector given being sampled in Phase

II, P (Yi|Xi, Si = 1; β, σ). By Bayes’ theorem, its likelihood function, which we refer to

as the complete-case conditional likelihood (CCL), can be derived as:

(4.6)

LC(β, σ) =
∏
i:Si=1

f(Yi|Xi, Si = 1; β, σ)

=
∏
i:Si=1

P (Si = 1|Yi, Xi)f(Yi|Xi; β, σ)f(Xi)

P (Si = 1|Xi; β, σ)f(Xi)
=
∏
i:Si=1

π(qi) · f(Yi|Xi; β, σ)

P (Si = 1|Xi; β, σ)

Basically, subject-specific contribution to the CCL is composed of three terms: the mul-

tivariate density f(Yi|Xi; β, σ) in a standard analysis, the subject-specific correction term

P (Si = 1|Xi; β, σ) that adjusts for the biased sampling, and the subject-specific selection

probability P (Si = 1|Yi, Xi) = π(qi) determined by observed qi, which is functionally

independent of parameters β and σ.

We highlight the fact that all the sampling variables specified in Design 2 - Design 5

are linear functions of the outcome vector. Under the normality assumption of Yi|Xi in the

response model, these sampling variables should also follow a normal distribution with

its mean and covariance indexed by parameters β and σ, i.e., Qi|Xi ∼
(
µqi(β),Σqi(σ)

)
.

Accordingly, the correction term for subject i can be computed as a weighted average of

stratum-specific selection probabilities across all strata, P (Si = 1|Xi; β, σ) =
∑K

k=1 π(Rk)P (Qi ∈

Rk|Xi; β, σ). This ensures the CCL be expressed in a closed form, thereby considerably

conveniences the computation of the likelihood. Score functions of the CCL with respect

to parameters β and σ are calculated analytically as in Schildcrout et al. (2013). One can
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obtain the CCL estimates by solving the corresponding score equations using the Newton-

Raphson algorithm, and the covariance matrix by the inverse of the numerical derivative

of the score function.

4.3.4 Full Conditional Likelihood

Since the likelihood functions defined in the UUL, IPWL and CCL consider only

complete-cases while ignoring information available on the set of incomplete-cases, we

propose a full conditional likelihood (FCL) that accounts for all subjects into the likeli-

hood in hopes to gain efficiency in the parameter estimation. To describe the FCL, we first

consider a binary genotype Gi and let

(4.7) p(Gi|X∗i ; γ) =
exp(Gi ·X∗i γ)

1 + exp(X∗i γ)

denote the probability mass function of Gi given X∗i through a logistic regression model

with a nuisance parameter γ. Multinomial regression can be used in the case of a poly-

chotomous Gi. By Bayes’ theorem, we can write down the FCL that involves all subjects

enrolled in the full cohort as

(4.8)

LF (β, σ, γ) =
∏
i:Si=1

f(Yi, Gi|X∗i , Si = 1; β, σ, γ)
∏
i:Si=0

f(Yi|X∗i , Si = 0; β, σ, γ)

=
∏
i:Si=1

P (Si = 1|Yi, Gi, X
∗
i )f(Yi|Gi, X

∗
i ; β, σ)p(Gi|X∗i ; γ)f(X∗i )

P (Si = 1|X∗i ; β, σ, γ)f(X∗i )

·
∏
i:Si=0

P (Si = 0|Yi, X∗i )f(Yi|X∗i ; β, σ, γ)f(X∗i )

P (Si = 0|X∗i ; β, σ, γ)f(X∗i )

=
∏
i:Si=1

π(qi) · f(Yi|Xi; β, σ) · p(Gi|X∗i ; γ)

P (Si = 1|X∗i ; β, σ, γ)

∏
i:Si=0

[1− π(qi)] · f(Yi|X∗i ; β, σ, γ)

1− P (Si = 1|X∗i ; β, σ, γ)

Different from (4.6), complete-case contributes to the likelihood in (4.8) through a

joint probability of the outcome and genotype P (Yi, Gi|X∗i , Si = 1; β, σ, γ), a com-

mon strategy in the missing data literature (Lawless et al., 1999). For subjects with un-
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known Gi, their contribution to the likelihood in (4.8) is given by P (Yi|X∗i ; β, σ, γ) =∑
Gi∈{0,1} f(Yi|Gi, X

∗
i ; β, σ)p(Gi|X∗i ; γ). The FCL corrects for the sampling bias via

P (Si = 1|X∗i ; β, σ, γ) =
∑

Gi∈{0,1} P (Si = 1|Gi, X
∗
i ; β, σ)p(Gi|X∗i ; γ). Because the

genotype variable renders a missing at random mechanism, the subject-specific selection

probability determined by observed qi, is independent of parameters (β, σ, γ), P (Si =

1|Yi, Xi) = P (Si = 1|Yi, X∗i ) = π(qi).

We estimate parameters of the FCL by direct maximization using the Newton-Raphson

algorithm, with the initial values for (β, σ, γ) set equal to the standard maximum likelihood

estimates. Estimated covariance can be calculated numerically after the final Newton-

Raphson iteration.

4.4 Simulation Study

4.4.1 Description of Simulation Settings

We investigated the performance of the five sampling designs proposed in Section 4.2

using the four likelihood approaches described in Section 4.3 under various simulation

settings. Following the general form of linear mixed model in (4.1), we generated indi-

vidual level data with ri = 5 repeated measures of the continuous outcome at equally

spaced observation times Ti = {Ti1, ..., Ti5} = {−1,−0.5, ..., 1} for subject i = 1, ..., N .

This model involves a random intercept and a random slope of time Zi = (1, Ti), with its

marginal mean for subject i given by

(4.9) Xiβ = β0 +βTTi+βEEi+βETEiTi+βGGi+βGEGiEi+βGTGiTi+βGETGiEiTi

We considered a binary genotype with a minor allele frequency of P (Gi = 1) = 0.1. We

examined over a range of combinations for different exposure types, interaction models,

and G-E associations, as presented in Table 4.1. For simulation settings with binary ex-

posure, we used a prevalence rate of P (Ei = 1) = 0.2; and for simulation settings with
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continuous exposure, we used a standard normal distribution Ei ∼ (0, 1). When a two-

way interaction model was considered, we assumed a genetic modification effect on the

exposure-outcome association that was constant over time, in addition to the main effects

of the genotype and exposure. In the three-way interaction model where all parameters

in (4.9) were set to be non-zero, we assumed that both main and interaction effects of the

genotype and exposure are time-dependent. Under simulations when genotype and per-

sonal exposure were correlated, we controlled the strength of G-E association by a logistic

regression model defined by logit{P (Gi = 1|Ei; γ)} = γ0 + γEEi, where the association

parameter γE = 0.2 represents an odds ratio of 1.22. To maintain comparability across

simulation settings, parameters of fixed effects were selected to reflect the contribution of

time (10-20%), exposure (5%), genotype (1%), and GxE interaction (0.5-1%) in explain-

ing the variance of the outcome. Confounding factors were not considered in these models.

For simulating the random effect for subject i, we set bi = (b0i, b1i)
′ ∼ (0, D), where its

variance components σ2
0 = σ2

1 = 1 and ρ = 0. The error term εi ∼ (0, σ2
eIri) with σe set to

1 or 2. Moreover, we examined above simulation settings with both balanced and unbal-

anced data. Under longitudinal design with unbalanced data, 10% of remaining subjects

were randomly selected as dropouts at each follow-up observation, so by the end of the

study about 65% of subjects in the original cohort underwent five repeated measurements

of the outcome, implying a missing completely at random mechanism with a monotone

pattern.

Table 4.2 shows how the sampling variable Qi is related to the environmental expo-

sure and/or outcome trajectory, and provides guidance on the allocation of stratum-specific

selection probabilities under the five sampling designs. To reflect a moderate budgetary

constraint, we assumed that n = 250 from the original cohort of N = 1000 subjects

are sampled in Phase II under a two-way interaction model. Previous studies suggested
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that sampling subjects more towards the extremes of Qi led to larger efficiency gains

(Boks et al., 2007; Schildcrout et al., 2013), hence we used stratum sizes (N1, N2, N3) =

(100, 800, 100) for unvariate continuous Qi and (N1, N2) = (200, 800) for bivariate or

multivariate continuous Qi. Given the rare binary exposure in our settings, exposed sub-

jects were enriched to reach a proportion of λ = 0.5 in the selected sample. In Design 3 or

5, when the bivariate Qi depends upon the mixture of a continuous intercept (or slope) and

a binary exposure, we considered stratum sizes (N1,E, N2,E, N3,E;N1,Ē, N2,Ē, N3,Ē) =

(50, 100, 50; 50, 700, 50). Similarly, with a multivariate Qi depending upon both inter-

cept and slope and a binary exposure, subjects were partitioned into strata with differ-

ent sizes (N1,E, N2,E;N1,Ē, N2,Ē) = (100, 100; 100, 700). To detect the three-way Gx-

ExT interaction, n = 500 subjects out of N = 5000 were sampled in Phase II. While

the same enrichment proportion λ = 0.5 was targeted, adjustments to the stratum sizes

were made, (N1, N2, N3) = (200, 4600, 200) and (N1,E, N2,E, N3,E;N1,Ē, N2,Ē, N3,Ē) =

(100, 800, 100; 100, 3800, 100), in order to increase the variability in Qi given the geno-

typing capacity.

The efficiency of our proposed sampling designs and likelihood approaches were quan-

tified by three evaluation metrics: bias, relative efficiency, and detection power. Bias is

estimated as the average difference between the estimator and parameter over 1000 Monte

Carlo runs. Relative efficiency is defined as the ratio of the average mean squared error

(MSE) from random sampling with UUL, to the average MSE from a two-phase design

with one of the likelihood approaches (UUL, IPWL, CCML, and FCL). Power is estimated

as the proportion of correctly rejecting a non-zero effect using a two-sided Wald test at a

significance level of 0.05.
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4.4.2 Summary of Simulation Results

A change in the exposure-outcome relationship for a given genotype subgroup is of

interest in GxE interaction studies, so we focused on the detection and estimation of two

particular effects: the GxE interaction effect βGE (or GxExT interaction effect βGET under

a three-way interaction model), and the joint exposure effect βE+βGE (or βE+βET+βGE+

βGET under a three-way interaction model) among carriers of the risk allele (Gi = 1).

Bias: Table 4.3 presents estimated bias for GxE interaction and joint exposure effect

when the data were generated from a two-way GxE interaction model with rare exposure

and balanced data. Among the four likelihood approaches, FCL effect estimates are closest

to the true parameters in all of the designs considered, with the largest bias relative to the

parameter no greater than 6%. Estimated bias using the CCL is small (< 10%), but not

for the main effect of exposure under Design 3, leading to the over-estimation of the joint

exposure effect βE + βGE . The UUL that ignores the design for analysis yields severely

biased estimates (12% - 123%) when the sampling variable is related to the individual

mean of the outcome vector, e.g., η̂0i and â0i. IPWL estimate, considering the limited

sample size, produces modestly biased estimates. For example, under Design 2 with Qi =

η̂0i, estimated bias of βGE and βE + βGE in the UUL are 1.23 and -0.76, as compared to

-0.27 and -0.32 in the IPWL, respectively. No significant bias for the UUL estimates was

observed under Design 1.

We examine the impact of different sampling designs and likelihood approaches on es-

timated bias of time-varying GxE interaction and joint exposure effect under a three-way

GxExT interaction model (Table 4.6). Likewise, the FCL yields nearly unbiased estimates

with the smallest differences to the true parameters, followed by the CCL and IPWL. Note

that substantial bias for βET and βGET has been observed in the UUL estimate when the
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sampling mechanism is based upon individual slope of the outcome vector, such as η̂1i and

â1i. This is because subjects with greater temporal variation are more likely to be sam-

pled, bringing bias into the estimation of time-varying effects. In alternative settings not

reported in this paper, the benefits of using the FCL over other likelihood approaches are

preserved regardless of the exposure type, G-E association, and longitudinal data structure

(balanced or not).

Relative efficiency: Figure 4.2 illustrates the efficiency of GxE interaction and joint

exposure effect under each design and likelihood combination relative to the UUL esti-

mates using random sampling, given a rare exposure and balanced data. We note that

estimation efficiency for the GxE interaction effect is improved by two ways, increasing

the variation of the cross-product interaction term among sampled subjects by exposure

enrichment, as in Design 1; or increasing the variation of the outcome by relating the sam-

pling variable to the individual outcome trajectory, as in Designs 2 and 4. For example,

using the FCL, estimated relative efficiency for βGE under Design 1 and Designs 2 and

4 based upon an intercept estimate are 2.03, 2.29, and 2.25, respectively. An increase in

efficiency is achieved under designs that consider both personal exposure and estimated

intercept in the sample selection, such as Designs 3 and 5 with the estimated relative effi-

ciency for βGE exceeding 3.50.

With the same likelihood approach, we see little difference in the estimated efficiency

between Designs 2 and 4, as well as Designs 3 and 5. This is because subject stratification

under these two designs are highly concordant, approximately 90% of subjects in Phase I

are partitioned into the same stratum, despite model differences in characterizing the indi-

vidual outcome trajectory over time. To handle unbalanced data with a larger time effect

(βT corresponds to 20% variation in the outcome) and a smaller within-subject correlation
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(σe = 2), sampling design based upon BLUPs provides a larger efficiency improvement

over OLS estimates (Figure 4.4). For example, when estimating βGE , Design 4 is 39%

(1.56/1.12=1.39) more efficient than Design 2, and Design 5 is 26% (3.94/3.12=1.26)

more efficient than Design 3.

When the data are simulated from a three-way GxExT interaction model, estimated

relative efficiency for the time-varying effects βGET and βE + βET + βGE + βGET are

high when sampling is based upon estimated slope of the outcome vector instead of the

estimated intercept (Figure 4.5), which is consistent with prior findings (Schildcrout et al.,

2013, 2015). It has been reported that the assumption of G-E independence can improve

the efficiency of odds ratio of the GxE interaction in case-control studies (Chatterjee and

Chen, 2007). However, no appreciable difference has been observed in the presence of a

moderate G-E association, while keeping other parameters unchanged (results not shown).

This suggests that estimation of the GxE interaction effect on a longitudinal outcome is

insensitive to the incorporation of a G-E association at a realistic strength (ORGE = 1.22).

Moreover, due to increased resolution and enriched sampling at two tails, continuous ex-

posure under examined designs shows a similar pattern, but leads to a larger efficiency

gain for βE and βGE than a binary exposure. For example, relative efficiency for βGE

under Design 1 with the FCL is 2.03 with a binary exposure, but increases to 2.82 with a

continuous exposure.

Overall, the FCL provides most efficient estimates (15% - 29% gain in the relative

efficiency over the CCL, and 20% - 663% gain over the UUL) across all designs under

different simulation settings. Additionally, while the efficiency gain of the FCL over the

UUL is modest for βGE (for instance, 2.03/1.69 = 1.20 under Design 1 with a two-way

GxE interaction model), it becomes substantial for covariates not related to the genotype,

such as βE (3.54/1.54 = 2.30). This is because information available on subjects not
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sampled in Phase II are recovered using the FCL. Due to the use of a sandwich-type vari-

ance estimator, IPWL estimates are found to be less efficient than the CCL. In addition,

the impact of sampling design outweighs the impact of likelihood approach as long as the

selection bias is corrected by a conditional likelihood.

Detection power: Table 4.4 lists estimated power of detecting a causal GxE interac-

tion and a joint exposure effect among Gi = 1 under a two-way GxE interaction model

with rare exposure and balanced data. When testing βGE , we observe that oversampling

subjects by environmental exposure (Design 1) or estimated intercept (Design 2) are ap-

proximately 50% more powerful than random sampling (∼ 0.36/0.24 = 1.50), if the

sampling bias is corrected by a conditional likelihood. Sampling based upon both envi-

ronmental exposure and estimated intercept (Design 3) leads to a considerable improve-

ment that is 2.21 times the power from random sampling (∼ 0.53/0.24 = 2.21). When

testing βE + βGE , adequate power (> 95%) can be achieved by using any of the sam-

pling designs, as opposed to a 76% power from random sampling. Moreover, we find the

power for detecting the GxE interaction and the joint exposure effect under Design 2 (or

Design 3) is similar to Design 4 (or Design 5) due to the high correlation between OLS

estimates and the BLUPs of the individual outcome trajectory. No significant power gain

has been observed when replacing OLS estimates with the BLUPs in the sampling design

for unbalanced longitudinal data.

We also estimated sample size required to achieve 80% power for studying GxE inter-

action under different sampling designs. Assuming a full cohort of 5000 subjects among

which 20% are exposed, and an effect size of one unit reduction in the outcome for risk

allele carriers when exposed, random selection of 1100 subjects in Phase II provides ad-

equate power to detect the GxE interaction, while a subsample of 250 using exposure
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enriched outcome trajectory dependent sampling (Design 5) should suffice, leading to a

substantial reduction in the sample size requirement.

Comparisons among different likelihood approaches suggest that the FCL is most pow-

erful at detecting the GxE interaction and joint exposure effect. The CCL behaves similarly

to the FCL when the sampling variable is related to the outcome vector, but is less likely to

identify exposure-related effects when the sampling is exposure biased. For example, un-

der Design 3 with Qi = (η̂0i, Ei), the FCL yields the greatest power at 53% and 100% for

βGE and βE+βGE , whereas the CCL is able to detect these effects at an estimated 15% and

86%. This may relates to the fact the CCL restricts its analysis on complete-cases while

ignoring the exposure information collected on incomplete-cases. One should note that the

IPWL tends to have inflated detection power at the cost of reduced efficiency due to the

use of a sandwich variance estimator. The naive UUL constantly provides severely biased

and least powered estimate. We also examined sensitivity of our designs and likelihood

approaches to various simulation settings and found no qualitative differences.

4.5 Data Example: the Normative Aging Study

Since year 1991, participants of the NAS were invited to a bone lead assessment using

a K-x-ray fluorescence instrument, which provides an index of cumulative lead exposure.

The outcome of interest is the difference between systolic blood pressure and diastolic

blood pressure (pulse pressure, PP), which was measured at the time of bone lead assess-

ment (baseline, 1991-2002) and followed up every three years until 2013, with a median

follow-up time of 12.1 years. Indeed, lead exposure has been associated with increased PP

(Perlstein et al., 2007). Zhang et al. (2010) observed a significant GxE interaction between

polymorphisms in the HFE gene and cumulative lead exposure on PP . In this example, we

aim to illustrate the utility of exposure enriched outcome trajectory dependent sampling
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and FCL approach in the analysis of HFE by lead interaction.

We focused on 720 subjects from the NAS cohort who were successfully assessed for

cumulative lead exposure at the patella bone and genotyped for the HFE gene. Subjects

with compound heterozygotes were excluded because, between two major HFE variant

alleles (C282Y and H63D) the association between lead exposure and PP was found to

be exclusive among H63D variant carriers (having one or two H63D variant alleles but

no C282Y variant allele) (Ko et al., 2013). This results in a full cohort of 706 subjects

(descriptive characteristics in Table 4.5), of whom more than 96% had at least two mea-

surements, contributing to a total of 3265 observations. The majority (97%) of the sub-

jects were Caucasian, with an average age of 66.3 ± 7.2 at the baseline measurement and

a risk allele frequency of 21.8%. Patella bone lead concentration was measured contin-

uously, but dichotomized to reflect a relatively rare binary exposure with a prevalence of

0.1 (High:≥52 µg/g; Low: <52 µg/g).

For illustration purposes, we assume that personal genotype data were not available by

the end of longitudinal follow-up, and the budget constraint allows retrospective genotyp-

ing for only 200 subjects. Full cohort analysis aligned with the findings in Zhang et al.

(2010) that the mean PP was estimated to be 7.61 mm Hg (95% CI: [1.89, 13.33]) higher

for the high patella lead group than the low patella lead group among the H63D variant

carriers. For wild types, the difference in the mean PP between the high and low exposure

groups was estimated to be -1.57 mm Hg (95% CI: [-4.24, 1.10]). Supported by the the

Akaike information criterion (AIC), this analysis used a mixed effects model with random

intercept and random slope of time, adjusted for baseline age, body mass index, education

level, hypertension, and Type II diabetes as fixed effects.

In addition to random sampling, we examined five designs described in Section 4.2.

We initially included a lead by time interaction, a H63D by time interaction, and a H63D
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by lead by time interaction in the mixed model, and found none of these interactions were

significant in the full cohort analysis, thereby we considered sampling variables Qi in

Designs 2-5 that depend on the intercept estimate of the outcome trajectory η̂0i and â0i,

rather than the slope or bivariate estimate, provided the results in the simulation studies. In

particular, we specified stratum sizes (N1;N2;N3) = (71; 564; 71) for Designs 2 and 4,

and (N1,E, N2,E, N3,E;N1,Ē, N2,Ē, N3,Ē) = (7, 57, 7; 58, 519, 58) for Designs 3 and 5. Due

to the limited genotyping capacity and low exposure prevalence, the maximum stratum

sizes NE under Design 1 and NE = N1,E + N2,E + N3,E under Designs 3 and 5 were

no greater than 71 (≈ 706 × 0.1), leading to the proportion of high patella lead subjects

in Phase II at most λ = 71/200. Stratum-specific selection probabilities were computed

accordingly by Table 4.2. Because of the superior performance in the simulation, we used

the FCL for the estimation of regression coefficients.

Figure 4.3 shows average estimated exposure effects among subjects who are carriers

of the H63D variant or wild types under different designs based upon 500 replicated Phase

II samples. Consistent with simulation studies, we found that point estimates of βE and

βE + βGE using the FCL were close to results from the full cohort analysis, and estimated

efficiency of βE and βE +βGE were considerably improved by our examined designs. For

example, we observe that outcome trajectory dependent designs had an estimated relative

efficiency of 1.2-1.3 for βE +βGE compared to random sampling with a standard analysis,

whereas exposure enriched designs were approximately 1.6-2.6 times more efficient than

random sampling, given the rare exposure in this example. More importantly, we highlight

that incorporation of the exposure enrichment strategy enables detection of the deleterious

exposure effect among H63D variant carriers under Designs 1, 3 and 5. Specifically, the

expected PP was estimated to be 7.55 mm Hg (95% CI: [1.08, 14.02]) higher for the high

patella lead group among the H63D variant carriers under Design 1, 6.77 mm Hg (95%
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CI: [0.00, 13.55]) higher under Design 3, and 6.86 mm Hg (95% CI: [1.43, 12.29]) higher

under Design 5. However, this exposure effect, also seen in the full cohort analysis, was

considered to be statistically not significant under random sampling, Design 2, or Design

4. We realize that there could be unmeasured confounders in the NAS cohort, yet their

potential influence on the GxE interaction was not addressed in our data analysis.

4.6 Discussion

While novel analysis and powerful tests have been proposed to enhance the detection of

multiplicative GxE interaction with repeated measures data (Mukherjee et al., 2012a; Ko

et al., 2013), it remains relatively less addressed as to how sampling design would affect

the statistical inference about the GxE interaction in a longitudinal cohort study. In this pa-

per, we described five study designs that prioritize subjects for retrospective genotyping by

leveraging environmental exposure information and individual outcome trajectory during

the sample selection. We derived a conditional likelihood using data from both phases and

compared it with three alternative complete-case based strategies. Our results indicate that

the FCL provides nearly unbiased estimation and enhanced precision (15% - 663% gain

in relative efficiency) over existing alternatives. Among competing sampling schemes we

considered, exposure enriched outcome trajectory dependent design outperforms others in

terms of estimation efficiency and detection power of the GxE interaction. In addition,

we found sampling based upon personal exposure and estimated intercept (η̂0i or â0i) can

improve efficiency of the time-stationary GxE interaction, while sampling based upon per-

sonal exposure and estimated slope (η̂1i or â1i) can improve efficiency of the time-varying

GxE (GxExT) interaction. Therefore, we recommend the use of exposure enriched out-

come trajectory dependent design coupled with the FCL-based approach to evaluate the

GxE interaction.
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To characterize individual outcome trajectory, we compared two classes of regression

estimates: OLS estimates for intercept and slope of time from simple linear regressions, as

employed in Designs 2 and 3; and BLUPs for random intercept and random slope of time

from a linear mixed model, as employed in Designs 4 and 5. Both classes applied dimen-

sion reduction in constructing summary features of the longitudinal outcome, and shared

the property that analytical distribution of these features can be obtained in a closed form.

However, we emphasize that BLUPs can be advantageous, with a 25% - 39% gain in the

relative efficiency for the GxE interaction effect over the OLS estimates when accommo-

dating unbalanced data. This is because instead of using the subject-specific information

as in OLS estimates, BLUPs can borrow strength from other subjects in the mixed model,

making its estimates more robust to the missing data.

We acknowledge this study has several limitations that could be addressed in the future.

First, we focus on a time-stationary environmental exposure, but many such exposures

change over time in practice (Aschard et al., 2012). For cohort studies that collect longi-

tudinal exposure data, it would be helpful to utilize the time-varying exposure to guide the

sample selection in Phase II. Inspired by a recent discovery of gene-by-longitudinal envi-

ronmental exposure interaction in a case-control study (Wei et al., 2014), one may consider

decomposing the time-varying exposure trajectory into a few unrelated components via the

functional principal component analysis and explore sampling designs in terms of these

components. Secondly, we consider only a linear time trend in the longitudinal outcome

with a random intercept and random slope in the sampling model. To handle the possible

non-linear time effect, one may regress the outcome on multiple functions of time such

as polynomial terms or more general parametric spline basis, and then incorporate these

complex smooth features of the outcome trajectory into the sampling mechanism.
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,â
1i
)  

  (
E i

,â
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Figure 4.3: NAS results: average estimated effects under different study designs using the
FCL (n=200).
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Table 4.1: Description of different simulation settings.

Exposure GxE interaction G-E association Parameters of fixed effects
(β0, βT , βE, βET , βG, βGE, βGT , βGET )

Binary Two-way Independent (10, -0.7, -1.0, 0, -0.6, -1.0, 0, 0)
Dependent

Three-way Independent (10, -0.7, -1.0, -1.0, -0.6, -1.0, -1.0, -1.5)
Dependent

Continuous Two-way Independent (10, -0.7, -0.4, 0, -0.6, -0.5, 0, 0)
Dependent

Three-way Independent (10, -0.7, -0.4, -0.4, -0.6, -0.5, -1.0, -1.0)
Dependent
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Table 4.2: Configurations of examined two-phase longitudinal designs.

Sampling Sampling variable Exposure # Stratum-specific selection probabilities
scheme strata π(R1), ..., π(RK) = (n1/N1, ..., nK/NK)

Random* - - 1 n/N

Design 1 Qi = Ei Binary 2 (λn/NE, (1− λ)n/NĒ)
- E Continuous 3 (N1/N1, (n−N1 −N3)/N2, N3/N3)

Design 2 Qi = η̂0i - 3 (N1/N1, (n−N1 −N3)/N2, N3/N3)
- Y|T Qi = η̂1i - 3 (N1/N1, (n−N1 −N3)/N2, N3/N3)

Qi = (η̂0i, η̂1i) - 2 (N1/N1, (n−N1)/N2)

Design 3 Qi = (Ei, η̂0i) Binary 6 (N1,E/N1,E, (λn−N1,E −N3,E)/N2,E, N3,E/N3,E,
- E, Y|T† N1,Ē/N1,Ē, ((1− λ)n−N1,Ē −N3,Ē)/N2,Ē, N3,Ē/N3,Ē)

Continuous 2 (N1/N1, (n−N1)/N2)
Qi = (Ei, η̂1i) Binary 6 (N1,E/N1,E, (λn−N1,E −N3,E)/N2,E, N3,E/N3,E,

N1,Ē/N1,Ē, ((1− λ)n−N1,Ē −N3,Ē)/N2,Ē, N3,Ē/N3,Ē)
Continuous 2 (N1/N1, (n−N1)/N2)

Qi = (Ei, η̂0i, η̂1i) Binary 4 (N1,E/N1,E, (λn−N1,E)/N2,E,
N1,Ē/N1,Ē, ((1− λ)n−N1,Ē)/N2,Ē)

Continuous 2 (N1/N1, (n−N1)/N2)

Design 4 Qi = â0i - 3 (N1/N1, (n−N1 −N3)/N2, N3/N3)
- Y|T, E, V Qi = â1i - 3 (N1/N1, (n−N1 −N3)/N2, N3/N3)

Qi = (â0i, â1i) - 2 (N1/N1, (n−N1)/N2)

Design 5 Qi = (Ei, â0i) Binary 6 (N1,E/N1,E, (λn−N1,E −N3,E)/N2,E, N3,E/N3,E,
- E, Y|T, V† N1,Ē/N1,Ē, ((1− λ)n−N1,Ē −N3,Ē)/N2,Ē, N3,Ē/N3,Ē)

Continuous 2 (N1/N1, (n−N1)/N2)
Qi = (Ei, â1i) Binary 6 (N1,E/N1,E, (λn−N1,E −N3,E)/N2,E, N3,E/N3,E,

N1,Ē/N1,Ē, ((1− λ)n−N1,Ē −N3,Ē)/N2,Ē, N3,Ē/N3,Ē)
Continuous 2 (N1/N1, (n−N1)/N2)

Qi = (Ei, â0i, â1i) Binary 4 (N1,E/N1,E, (λn−N1,E)/N2,E,
N1,Ē/N1,Ē, ((1− λ)n−N1,Ē)/N2,Ē)

Continuous 2 (N1/N1, (n−N1)/N2)

*Random sampling assigns a constant probability to all subjects.
-Exposure type does not affect the sample variable and selection probabilities.
†In Designs 3 and 5 with binary exposure, the stratum-specific selection probabilities are
presented in the order of π(R1,E), π(R2,E), π(R3,E), π(R1,Ē), π(R2,Ē), π(R3,Ē) for bivariate
Qi, and π(R1,E), π(R2,E), π(R1,Ē), π(R2,Ē) for multivariate Qi.
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Table 4.3: Estimated bias for GxE interaction and joint exposure effects among Gi = 1
under the two-way GxE interaction model with a rare exposure and balanced
data. Estimates biased by at least 10% in bold.

Sampling Sampling UUL IPWL CCL FCL

scheme variable βGE βE + βGE βGE βE + βGE βGE βE + βGE βGE βE + βGE

Random sampling - 0.03 0.03 - - - - - -
Design 1 - E Ei 0.01 0.01 - - - - 0.02 0.01
Design 2 - Y|T η̂0i 1.23 -0.76 -0.27 -0.32 0.04 0.02 0.03 0.02

η̂1i 0.06 0.06 0.05 0.07 0.06 0.06 0.06 0.05
(η̂0i, η̂1i) 0.46 -0.57 -0.29 -0.32 0.01 -0.01 0.01 -0.01

Design 3 - E, Y|T (Ei, η̂0i) 0.71 0.63 0.10 0.09 0.02 0.27 0.01 0.02
(Ei, η̂1i) 0.04 0.03 0.06 0.04 0.03 0.03 0.04 0.04
(Ei, η̂0i, η̂1i) 0.43 0.39 0.02 0.02 0.03 0.30 0.02 0.03

Design 4 - Y|T, E, V â0i -0.38 -0.24 -0.33 -0.33 -0.07 -0.08 -0.04 -0.05
â1i 0.05 0.04 0.05 0.04 0.05 0.04 0.04 0.04
(â0i, â1i) -0.44 -0.33 -0.36 -0.36 -0.05 -0.05 -0.03 -0.03

Design 5 - E, Y|T, V (Ei, â0i) 0.69 0.62 0.07 0.08 0.09 0.08 0.01 0.01
(Ei, â1i) 0.03 0.03 0.05 0.05 0.03 0.03 0.03 0.03
(Ei, â0i, â1i) 0.43 0.40 0.04 0.05 0.01 0.03 0.02 0.02
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Table 4.4: The power (%) of detecting the non-zero genetic and GxE interaction effects
under the two-way GxE interaction model with a binary exposure and G-E in-
dependence assumption.

Sampling Sampling UUL IPWL CCL FCL

scheme variable βGE βE + βGE βGE βE + βGE βGE βE + βGE βGE βE + βGE

Random sampling - 24 76 - - - - - -
Design 1 - E Ei 37 93 - - - - 36 97
Design 2 - Y|T η̂0i 2 87 60 85 36 95 35 95

η̂1i 23 75 33 71 23 74 33 88
(η̂0i, η̂1i) 6 94 52 84 36 96 38 97

Design 3 - E, Y|T (Ei, η̂0i) 4 38 36 81 15 86 53 100
(Ei, η̂1i) 35 92 34 76 33 94 37 97
(Ei, η̂0i, η̂1i) 8 55 36 81 21 94 52 100

Design 4 - Y|T, E, V â0i 18 75 54 83 34 97 34 97
â1i 24 75 32 73 24 76 33 89
(â0i, â1i) 18 80 53 85 39 97 39 97

Design 5 - E, Y|T, V (Ei, â0i) 4 38 36 82 47 97 54 99
(Ei, â1i) 35 92 33 77 31 96 38 97
(Ei, â0i, â1i) 7 55 37 80 46 99 53 98
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Table 4.5: Baseline characteristics of 706 participants in the Normative Aging Study
(NAS)

Variable Mean ± SD, N (percent)

Baseline age (years) 66.3 ± 7.2
Body Mass Index (kg/m2) 27.9 ± 3.7
Pulse pressure (mmHg) 55.3 ± 15.1
Cumulative patella lead (µg/g) 26.5 [20.8]*
Race (white) 683 (97%)
Education (>12 years) 396 (56%)
Type II diabetes 72 (10%)
Hypertension 447 (63%)
Number of repeated measures on pulse pressure per subject

1–2 137 (19%)
3–4 221 (31%)
5–6 202 (29%)
7–8 146 (20%)

*Median [interquartile range] for lead exposure whose dis-
tribution is right skewed.
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4.7 Appendix
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Figure 4.4: Relative efficiency of parameter estimates under the two-way GxE interaction
model with a rare exposure and unbalanced data.
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Table 4.6: Estimated bias for the GxExT interaction and joint exposure effect among
Gi = 1 under the three-way GxExT interaction model with a rare exposure
and balanced data. Estimates biased by at least 10% in bold.

Sampling Sampling UUL IPWL CCL FCL

scheme variable GxExT Joint E GxExT Joint E GxExT Joint E GxExT Joint E

Random sampling - -0.02 0.02 - - - - - -
Design 1 - E Ei -0.01 -0.02 - - - - 0.01 -0.01
Design 2 - Y|T η̂0i -0.02 -0.41 0.02 -0.27 -0.02 -0.04 0.01 0.01

η̂1i 3.32 0.96 -0.09 -0.13 0.03 0.01 0.01 -0.01
(η̂0i, η̂1i) 1.36 0.52 -0.07 -0.12 0.01 0.01 0.00 0.01

Design 3 - E, Y|T (Ei, η̂0i) -0.01 0.36 0.03 -0.01 -0.01 0.29 0.01 0.02
(Ei, η̂1i) 0.92 1.01 0.01 0.03 -0.06 0.42 0.01 0.02
(Ei, η̂0i, η̂1i) 0.52 0.90 -0.02 -0.04 -0.07 0.44 0.01 0.02

Design 4 - Y|T, E, V â0i -0.01 -0.37 0.04 -0.35 -0.02 -0.08 0.02 0.01
â1i 0.30 0.66 -0.13 -0.17 0.01 0.01 -0.03 0.01
(â0i, â1i) 0.69 0.57 -0.13 -0.19 -0.02 -0.01 -0.01 -0.01

Design 5 - E, Y|T, V (Ei, â0i) -0.02 0.38 0.01 -0.01 -0.01 -0.02 0.03 0.01
(Ei, â1i) 0.91 1.01 -0.02 -0.02 -0.02 0.12 -0.01 0.01
(Ei, â0i, â1i) 0.52 0.90 -0.01 -0.04 -0.01 0.11 -0.02 -0.02



CHAPTER V

Summary

In the first two chapters of this dissertation, we developed study designs that extend

Phase I clinical trials into two directions: from single-agent to dual-agent, and from a

single endpoint of toxicity to bivariate endpoints of toxicity and efficacy. Specifically, in

Chapter II, we developed a nonparametric two-stage adaptive BCD that can be easily im-

plemented for dual-agent Phase I trials. The basic idea of our design was to divide the

entire trial into two stages and apply the BCD, with modification, in each stage. We com-

pared the operating characteristics of our design to four competing parametric approaches

via simulation in several numerical examples. Under all simulation scenarios we exam-

ined, our method performed well in terms of identification of the MTC and allocation

of patients relative to the performance of its competitors. Our design inherits the favor-

able statistical properties of the BCD, is competitive with existing designs, and promotes

patient safety by limiting patient exposure to toxic combinations whenever possible. In

our design, stopping rule criteria and the distribution of the total sample size among the

two stages are context-dependent, and both need careful consideration before adopting our

design in practice. Hence, one interesting direction worth exploration is the sample size

calculation given availability of asymptotic distribution for dose allocation in the original

BCD. As a nonparametric approach, our design has the risk of reduced efficiency in the
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estimation of DLT rates when compared to parametric approaches. However, considering

the small sample size in Phase I trials, we do not need to get precise estimates, instead, we

just need to identify the combination with its DLT rate closest to the MTC.

In Chapter III, we extended the BMA-CRM that considers DLT alone and proposed

a design for identification of the OBD in Phase I/II trials when the dose-efficacy curve

plateaus within the dose range of interest. We incorporated multiple sets of prespecified

efficacy probabilities and used BMA to enhance the robustness of our designs to vari-

ous non-monotonic dose-efficacy curves. During the trial, dose assignment is determined

adaptively in two stages, with a first stage that uses adaptive randomization based upon

the efficacy probability estimates, and a second stage that uses estimates of the poste-

rior probabilities that each dose is the OBD. We presented both Bayesian and maximum

likelihood approaches to estimation. The simulation results demonstrated that our design

is able to identify the OBD effectively and allocates patients to doses at and around the

OBD frequently when compared to a competing approach designed for non-monotonic

dose-efficacy curves. Despite that varying functional forms of the parameterized working

model for dose-toxicity and dose-efficacy exist, in our design, we have limited our use to

the simple one-parameter power model. If this model assumption may not hold suggested

by preclinical data, we can certainly adopt more complex models. It should also be noted

that when the underlying true efficacy remains minimal and constant across all dose levels,

appropriate design-based tuning parameters need to be carefully calibrated before imple-

mentation. A relevant future direction of our design is to consider modifications that can

be applied to dual-agent Phase I/II trials in the presence of dose-efficacy plateau. Further-

more, we are pursuing work that can extend our design to accommodate censored outcome

due to lagged time in the determination of treatment efficacy.

To investigate GxE interaction in longitudinal cohort studies, in Chapter IV, we pro-
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posed exposure enriched outcome trajectory dependent designs that can inform sample

selection by leveraging individual exposure and outcome trajectory, and developed a FCL-

based analysis that corrects for the biased sampling. We compared the performance of our

proposed designs and analysis to combinations of different sampling designs and estima-

tion approaches via simulation. We observed that the FCL provides improved estimates

for the GxE interaction and joint exposure effects over uncorrected complete-case analysis,

and the exposure enriched outcome trajectory dependent design outperforms other designs

in terms of estimation efficiency and detection power for the GxE interaction compared to

random selection of subjects. We also illustrated the utility of our designs and analysis in

an example from the Normative Aging Study, a longitudinal study of Boston area veterans.

In the future, this work can be extended in two promising directions, to explore sampling

designs that make use of the time-varying environmental exposure if long-term exposure

history is available, and to accommodate non-linear time trend in the longitudinal outcome

in the selection of subjects.
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