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theses) and percentage of replicates selecting g as the optimal DTR
(opt%) for regimes in biomarker Scenario 2 of Chapter II. . . . . . . 24

2.3 Summary statistics (mean ± SD) for patients with HbA1c < 6.5% at
initiation of insulin therapy and those with HbA1c ≥ 6.5% . . . . . 26

3.1 Simulation results for Scenario 1 in Chapter III with a single stage and
five treatment options. π is the propensity score model. ϕ(1) and ϕ(2)

indicate equal and varying penalties for misclassification. opt% shows
the empirical mean and standard deviation (SD) of the percentage of
subjects correctly classified to their optimal treatments. Ê{Y ∗(ĝopt)}
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ABSTRACT

Semiparametric Regression and Machine Learning Methods for Estimating Optimal
Dynamic Treatment Regimes

by

Yebin Tao

Chair: Associate Professor Lu Wang

Dynamic treatment regimes (DTRs) are sequential decision rules that focus simul-

taneously on treatment individualization and adaptation over time. They determine

treatment prescriptions based on each individual’s specific characteristics (e.g., demo-

graphics, clinical outcomes and genetic makeup) and also adapt the prescriptions over

time to evolving illness. We develop robust and flexible semiparametric regression and

machine learning methods for estimating optimal DTRs.

In the first project, we consider identifying the optimal personalized timing for treat-

ment initiation. Instead of considering multiple fixed decision stages as in most DTR

literature, we deal with continuous or multiple random decision points for treatment

initiation given each patient’s individual disease and treatment history. For a set of

predefined candidate DTRs, we propose to fit a flexible survival model with splines of

time-varying covariates to estimate patient-specific probabilities of adherence to each

DTR. Given the estimated probabilities, an inverse probability weighted estimator for

the counterfactual mean utility (prespecified criteria) is employed to assess each DTR
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and then the optimal one is identified among all candidates. We conduct simulations

to demonstrate the performance of our method and further illustrate the application

process with an example of insulin therapy initiation among type 2 diabetic patients.

In the second project, we propose a dynamic statistical learning method, adaptive

contrast weighted learning (ACWL), which combines doubly robust semiparamet-

ric regression estimators with flexible machine learning methods. Compared to the

method in Project 1, ACWL can handle multiple treatments at each stage and does

not require prespecifying candidate DTRs, despite being limited to a fixed number

of treatment stages. At each stage, we develop robust semiparametric regression-

based contrasts with the adaptation of treatment effect ordering for each patient, and

the adaptive contrasts simplify the problem of optimization with multiple treatment

comparisons to a weighted classification problem that can be solved using existing

machine learning techniques. The algorithm is implemented recursively using back-

ward induction. Through simulation studies, we show that the proposed method is

robust and efficient for the identification of the optimal DTR. We further illustrate

our method using observational data on esophageal cancer.

In the third project, we propose a tree-based reinforcement learning (T-RL) method

to directly estimate optimal DTRs in a multi-stage multi-treatment setting. At each

stage, T-RL builds an unsupervised decision tree that maintains the nature of batch-

mode reinforcement learning. Unlike ACWL, T-RL handles directly the problem of

optimization with multiple treatment comparisons, through the purity measure con-

structed with augmented inverse probability weighted estimators. For the multiple

stages, the algorithm is implemented recursively using backward induction. By com-

bining robust semiparametric regression with flexible tree-based learning, we show

that T-RL is robust, efficient and easy to interpret for the identification of optimal

DTRs. We illustrate our method in a case study to identify dynamic substance abuse

xiv



treatment regimes for adolescents.
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CHAPTER I

Introduction

As the importance of personalized medicine becomes more and more widely recognized

in today’s health care, a lot of research efforts are being made in the development of

individualized treatment strategies, which are decision rules that dictate what treat-

ment to provide given a patient’s specific characteristics (e.g., demographics, clin-

ical outcomes and genetic makeup). Dynamic treatment regimes (DTRs) (Robins ,

1986, 1997, 2004; Murphy , 2003) mathematically generalize personalized medicine to

a time-varying treatment setting, and focus simultaneously on treatment individual-

ization and adaptation over time. Identifying optimal DTRs offers an effective vehicle

for personalized management of diseases, and helps physicians tailor the treatment

strategies dynamically and individually based on clinical evidence, which provides a

key foundation for better chronic care (Wagner et al., 2001).

In this dissertation, we consider estimating optimal DTRs, which is difficult due to

the complex relationships between the alternating sequences of time-varying treat-

ments and clinical outcomes. Standard regression methods fail without being able

to adjust for time-varying confounding. The most popular methods for estimating

optimal DTRs include marginal structural models (MSMs) with inverse probability

weighting (IPW) (Robins , 2000; Hernán et al., 2001; Wang et al., 2012), G-estimation

of structural nested mean models (Robins , 1986, 1989, 1997), generalized by Murphy
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(2003) and Robins (2004), targeted maximum likelihood estimation (van der Laan

and Rubin, 2006), and likelihood-based approaches (Thall et al., 2007). Machine

learning methods have become popular alternative approaches on estimating optimal

DTRs, for example, Q-learning (Watkins and Dayan, 1992; Sutton and Barto, 1998)

and A-learning (Murphy , 2003; Schulte et al., 2014), both of which use backward

induction (Bather , 2000) to first optimize the treatment at the last stage and then

sequentially optimize the treatment at each of the earlier stages.

A DTR is essentially a multi-stage decision problem with two or more options at each

stage. It has been developed upon the simplest case of single-stage decision-making

with binary treatment options, the so-called individualized treatment regime (Zhang

et al., 2012b,a; Zhao et al., 2012; Zhou et al., 2015). Other studies have extended

the exploration into multiple treatment stages (Murphy , 2003; Zhang et al., 2013;

Zhao et al., 2015) or multiple treatment options (Laber and Zhao, 2015). We aim

to continue this endeavor into more decision stages and/or more treatment options,

using flexible and robust methods. In this dissertation, we utilize the counterfactual

framework for causal inference (Robins , 1986) to identify the optimal DTR, which

means that the optimal DTR would optimize the expectation of a counterfactual

mean outcome/utility.

Our first project as presented in Chapter II takes on the task of handling continuous

or multiple random decision points with binary treatment options. It is motivated

by the example of type 2 diabetes patients enrolled to initiate insulin therapy. Find-

ing the optimal personalized timing to initiate the therapy is essential to achieve the

best balance of treatment effectiveness and risk. In the data example, each type

2 diabetes patient has multiple clinical visits at random time points before treat-

ment initiation and the treatment decisions are made at each clinical visit. With

the advance in mobile-health technologies (Free et al., 2013) and wearable biosen-
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sor systems for health monitoring (Gatzoulis and Iakovidis , 2007; Pantelopoulos and

Bourbakis , 2010), it is now feasible to obtain biomarker measures, such as blood pres-

sure and heart rate, continuously over time, so that continuous treatment decisions

can be made. However, most existing methods for identifying optimal DTRs have

only considered multiple fixed treatment decision stages or even a single stage and

thus cannot deal with continuous or multiple random decision points. We provide

a general framework based on MSMs to identify the optimal personalized time for

treatment initiation given random or continuous decision points. To utilize MSMs

with IPW, one has to prespecify candidate DTRs, for example, defining the struc-

ture of the DTR to depend on a small set of covariates and searching over a grid of

thresholds of these covariates. In our study, we consider a set of predefined DTRs

with each representing a way of timing the treatment initiation based on patients’

up-to-date medical history, such as biomarker trajectories. These candidate DTRs

are compared by the expectation of a counterfactual mean utility, which also needs

to be predefined.

Instead of focusing on continuous or multiple random stages with binary treatment

options, Projects 2 and 3 (Chapters III and IV, respectively) work on multiple treat-

ment options in the context of multiple fixed decision stages. The treatment options

can be either multinomial or ordinal. A motivation example is the esophageal cancer

data where each patient went through two stages of chemotherapy and radiation ther-

apy. The methods in the second and third projects are fundamentally different from

the one in the first project. In Projects 2 and 3, we combine robust semiparamet-

ric regression with flexible machine learning methods for multi-stage multi-treatment

decision-making. The algorithms are implemented recursively from the last stage us-

ing backward induction (Bather , 2000). Due to the use of machine learning, there is

no need to predefine candidate DTRs.
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The problem of multi-stage decision-making has strong resemblance to reinforcement

learning (RL), which is a branch of machine learning (Chakraborty and Moodie, 2013).

Unlike supervised learning (SL) (e.g., regression and classification), the desired output

value or the optimal decision, known as label, is not observed in RL, and the learn-

ing agent has to keep interacting with the environment to learn the best policy for

decision-making. In a DTR problem, the optimal treatment for each patient at each

stage is also not observed and can only be inferred based on observed treatments and

outcomes from all subjects. In Chapter III, we develop a dynamic statistical learn-

ing method, adaptive contrast weighted learning (ACWL), to directly estimate the

optimal DTR through a sequence of weighted classifications. Basically, ACWL trans-

forms RL into SL by obtaining label from a working semiparametric regression model

which estimates the treatment effect ordering for each patient at each stage. ACWL

can deal with more than two treatments at each stage due to the use of contrasts with

the adaptation of treatment effect ordering. The proposed adaptive contrasts stand

for the minimum or maximum expected loss in the outcome given any sub-optimal

treatment for each patient, and simplify the problem of optimization with multiple

treatment comparisons to a weighted classification problem at each stage.

We show that ACWL is robust and efficient for the identification of the optimal DTR

and can be easily implemented using existing regression and classification methods.

However, it requires the extra step of transforming RL into SL, which may induce

additional uncertainty through the identification of label. It also may not the most

efficient method by avoiding multiple treatment comparisons. Therefore in Chapter

IV, we propose a tree-based reinforcement learning (T-RL) method to directly handle

the problem of optimization with multiple treatment comparisons while maintaining

the RL nature of the DTR problem. At each stage, T-RL builds an unsupervised

decision trees using a purity measure constructed with augmented inverse probability

weighted estimators for all treatment options. T-RL enjoys the advantages of typical

4



tree-based methods as being straightforward to understand and interpret, and capable

of handling various types of data without distributional assumptions. It is also robust

and efficient by combining robust semiparametric regression with flexible tree-based

learning. However, for non-tree-type underlying DTRs, ACWL may have better

performance with the ability of incorporating non-tree-based classification methods.
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CHAPTER II

Optimizing the Personalized Timing for Treatment

Initiation with Continuous or Multiple Random

Decision Points

2.1 Introduction

Many chronic diseases such as cancer and diabetes are of long duration and progres-

sive nature. Therefore, long-term health monitoring and dynamic treatment processes

with sequential intensification are necessary for patients with such diseases. An im-

portant but challenging problem is to find the optimal personalized timing to initiate

a treatment for the next stage of disease condition. For example, patients diagnosed

with type 2 diabetes usually start with oral anti-diabetic medications, such as met-

formin (Glucophage), and their glycated hemoglobin (HbA1c) levels are constantly

checked during their regular clinical visits. According to the American Diabetes As-

sociation, a reasonable HbA1c goal for many non-pregnant adults is < 7% (American

Diabetes Association, 2014). As the disease progresses, most patients eventually re-

quire and benefit from insulin therapy (Turner et al., 1999). Delayed insulin therapy

has been found related to reduced life expectancy and increased risk of microvas-

cular and macrovascular complications (Goodall et al., 2009). However, intensive
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glucose control (e.g., targeting HbA1c < 6%) is rarely effective in achieving tight

glycemic control (Hayward et al., 1997) and is associated with adverse effects such

as hypoglycemia and weight gain (Gerstein et al., 2008; Patel et al., 2008). There-

fore, finding the optimal timing to initiate insulin therapy is essential to achieve the

best balance of treatment effectiveness and risk. In most observational data, patients

with chronic diseases have their own schedules for examinations of clinical biomarkers

(e.g., HbA1c) and their physicians make treatment decisions each time the biomark-

ers are measured. The frequency of clinical visits can be considered as a random

variable which likely depends on a patient’s disease progression, physical status and

the physician’s personal judgment, and the clinical visits are in fact multiple random

decision points for treatment decisions. Moreover, with the advance in mobile-health

technologies (Free et al., 2013) and wearable biosensor systems for health monitoring

(Gatzoulis and Iakovidis , 2007; Pantelopoulos and Bourbakis , 2010), it is now feasible

to obtain some biomarker measures (e.g., blood pressure and heart rate) continuously

over time, so that continuous treatment decisions, which are more timely and precise,

can be made.

Motivated by these examples, we consider a situation where key biomarkers of dis-

ease severity are monitored at continuous or multiple random time points during a

follow-up period and each time the biomarkers are measured, a decision on treatment

initiation is made based on the patient’s up-to-date biomarker and treatment history.

Hence, personalized decisions on treatment initiation are made dynamically over time.

Regardless of continuous or multiple random visits, the time for each clinical visit can

be considered as a continuous random variable from a population perspective. The

difference is that with multiple random visits, the biomarker trajectories are not fully

observed and we may have to extrapolate using parametric or nonparametric meth-

ods. Our goal is to find the optimal timing for treatment initiation given a patient’s

biomarker and treatment history. This can be framed as a specific type of dynamic
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treatment regimes (DTRs) (Robins , 1986, 1997, 2004; Murphy , 2003). Instead of hav-

ing multiple fixed stages of treatment decisions as in most DTR literature, we consider

continuous or multiple random decision points for treatment initiation according to a

patient’s up-to-date medical history. Identifying such optimal DTRs offers an effec-

tive vehicle for personalized management of diseases, and helps physicians tailor the

treatment strategies dynamically and individually based on clinical evidence, which

provides a key foundation for better chronic care (Wagner et al., 2001).

Many recent studies have explored the designs of sequential multiple assignment ran-

domized trials (SMARTs) (Murphy , 2005) that aim at evaluating DTRs, as well as

analytic tools to estimate the effects of DTRs using longitudinal observational or ex-

perimental data, as reviewed in Wang et al. (2012). Although SMARTs are desirable

for causal inference, the more common source of data for constructing DTRs is obser-

vational studies. A lot of statistical research has focused on dealing with observational

data (Murphy , 2003; Robins , 2004; Henderson et al., 2010), where careful thoughts

and assumptions are required in order to make valid inference (Robins and Hernán,

2009). Diverse statistical methods have been developed including G-estimation of

structural nested mean models (SNMMs) (Robins , 1986, 1989, 1997), generalized by

Murphy (2003) and Robins (2004), marginal structural models (MSMs) with inverse

probability weighting (IPW) (Robins , 2000; Hernán et al., 2001), targeted maximum

likelihood estimators (van der Laan and Rubin, 2006), Q- and A-learning (Watkins

and Dayan, 1992; Robins , 2004; Murphy , 2005; Huang and Ning , 2012; Moodie et al.,

2012; Chakraborty and Moodie, 2013; Schulte et al., 2014), outcome weighted learning

and classification-based methods (Zhang et al., 2012a; Zhao et al., 2012, 2015). How-

ever, susceptibility to model misspecification remains as a major limitation of many

methods in this field and the computational burden would increase as the number

of decision stages increases. Moreover, for methods that rely on backward induction

(Bather , 2000), one needs to line up the treatment stages to a finite number. Thus
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most existing studies have only considered multiple fixed treatment decision stages or

even a single stage for decision making. Very few attempts exist to handle continuous

decision points. For example, Lok (2008) provides a conceptual framework and math-

ematical formalization of SNMs in continuous time. However, real data application

of their SNMMs based method is still limited to a finite number of stages (Lok and

DeGruttola, 2012). Johnson and Tsiatis (2005) consider the duration-response rela-

tionship with treatment duration being a continuous random variable, and they apply

MSMs to estimate the optimal regimes that are determined solely by the treatment

duration.

We aim to provide a general framework based on MSMs to identify the optimal

personalized time for treatment initiation given random or continuous decision points,

which also applies to dynamic decisions on binary and monotonic treatment switch.

We compare a set of predefined DTRs with each representing a way of timing the

treatment initiation based on patients’ up-to-date medical history, such as biomarker

trajectories. The cause of continuous or random decision points under this framework

is that the biomarkers are measured continuously over time or at multiple randomly

time points and decisions are made each time the biomarkers are measured. In the

type 2 diabetes example, if we consider the timing by the HbA1c level, a possible DTR

could be that we initiate insulin therapy only when a patient’s HbA1c level is between

6 ∼ 6.5%. In this case, decisions for treatment initiation are made continuously

based on the HbA1c trajectories. Furthermore, under each DTR, instead of modeling

directly the time from enrollment to treatment initiation, we focus on the duration

when a patient adheres to a given regime. The adherence duration, as a function

of the biomarker trajectories and the definition of the DTR, is a continuous random

variable specific to a given regime. Most MSMs based methods are limited to a finite

number of aligned stages so that one can apply pooled logistic regression to estimate

probabilities of adherence to a given DTR at all stages (Robins et al., 2000; Hernán

9



et al., 2001). It is nontrivial to extend this problem to accommodate continuous or

multiple random decision points, considering that as the number of stages goes to

infinity, the probabilities estimated by pooled logistic regression may go to zero and

no longer work in IPW.

The remainder of this paper is organized as follows. We define the DTRs of interest

within the framework of causal inference in Section 2.2 and establish our estimation

procedure in Section 2.3. We propose to build a survival model with splines of time-

varying covariates to calculate the probability of adherence to a given DTR for all

patients, given their own covariate history. This model allows much flexibility on how

the the risk of failure to follow a specific regime depends on time-varying biomark-

ers. Then we use the estimated probability to construct IPW estimators for the

counterfactual mean of the utility of interest (e.g., a prespecified measure balancing

treatment efficacy and toxicity). The simulation studies (Section 2.4) bring out the

salient features of our proposed method. We further illustrate the application process

in Section 2.5, using the example of insulin therapy initiation among type 2 diabetic

patients, where we consider a class of DTRs that the patients initiate insulin therapy

the first time their HbA1c levels reach a certain threshold. Finally, we conclude with

some discussions and suggestions for future studies in Section 2.6.

2.2 Notation and Dynamic Treatment Regimes

Suppose that N patients, a random sample from a large target population, are fol-

lowed up for a maximum duration of T ∗ since enrollment. For patient i at time t,

where i = 1, ..., N and 0 ≤ t ≤ T ∗, let Xi(t) denote the time-varying biomarkers

and we allow Xi(0) to further include all other baseline covariates. Let Ai(t) denote

the treatment prescription that takes the value 1 for starting treatment and 0 oth-
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erwise. Our interest is in the optimal timing to initiate treatment and we assume

that all patients have the same fixed post-initiation treatment plan during the study

period. Let Si denote patient i’s treatment initiation time and Si is considered as

administratively censored if no treatment is given during the follow-up period, i.e.,

Si > T ∗. Therefore, patient i’s observed follow-up duration for treatment initiation

is min(Si, T
∗), which we denote as Ti. Notably, Ti is also the patient’s duration of

continuous random decisions on treatment initiation. In some cases, a patient could

terminate study participation before T ∗ without being treated due to uncontrollable

factors such as death or simply loss to follow-up. These types of censoring can be

incorporated in our method if they are non-informative conditional on the observed

data. To simplify the problem, we only consider administrative censoring herein after.

For brevity, we suppress the patient index i in the following text when no confusion

exists. Following the convention in the literature, we use overbars to denote the

history of variables up to the indexed time, underbars to denote the future of variables

from the indexed time, capital letters for random variables or vectors, and small letters

for observations of the corresponding random variables. For example, the treatment

history up to time t is denoted as A(t) = {A(s) : 0 ≤ s ≤ t} and a possible observed

treatment history is denoted as a(t) with value in the range of A(t), where a(t) ∈ A(t).

We denote the observational data up to time t as O(t) = {A(t−),X(t)}, where A(t−)

is the treatment history up to, but not including, time t and X(t) denotes the covariate

history up to time t including baseline covariates X(0).

Since the treatment decisions are made continuously and dynamically based on pa-

tients’ own medical history, A(t) depends on A(t−) and X(t). Recursively, the time-

dependent biomarkers (e.g., HbA1c and morbidity) are also affected by previous treat-

ment decisions and past covariate history, i.e., X(t) also depends on A(t−) and X(t−).

A feasible DTR g =
{
g{t;A(t−),X(t)} : 0 ≤ t ≤ T ∗

}
is a sequential rule for deter-
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mining the next treatment prescription A(t) at time t. For convention, when t = 0,

we let A(0−) = ∅ and X(0) = X(0). We denote the collection of all DTRs g of

interest as G and g{t;A(t−),X(t)} is a map

[A(t−),X(t)]→ g{t;A(t−),X(t)} ∈ A(t) for any t ∈ [0, T ∗],

which may depend on a patient’s part or all of the recorded treatment history before

time t and biomarker information up to time t.

In our study, we consider a set of predefined g’s. The optimal DTR is the one that

optimizes the expected utility function if all patients in the population follow this

rule, which may be contrary to fact. To assess the causal effect of a specific DTR,

we consider the counterfactual framework for causal inference (Robins , 1986). Let

xg(t) denote the counterfactual X-history up to time t (e.g., biomarkers or clinical

outcomes) that would be observed in the world where the patient had followed regime

g. Similarly, let ag(t) denote the counterfactual A-history (e.g., treatment, action or

intervention) up to time t that would be observed in the world in which the patient had

followed regime g. To assess the treatment effects of g, we define a utility function

U at the end of the study that depends on both X(T ∗) and A(T ∗). Without loss

of generality, we assume that smaller values of U is preferred. Let U g denote the

counterfactual utility function if all subjects have followed regime g. The optimal

DTR is the one that minimizes the expected counterfactual utility function, i.e.,

gopt = argming∈GE(U g). (2.1)

Note that the expected utility depends on regime g, while the treatment decision at

time t according to regime g recursively depends on the patient’s up-to-date biomarker

history X(t). Thus, minimizing E(U g) provides the optimal personalized treatment
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decisions. Obviously, the utility function is the key to assess and compare various

regimes of interest, and one can define the utility function based on the goal of the

study. Our method can be applied to any study with a target utility function well

defined for every subject, but cannot deal with cases where the utility function may be

censored, for example, a time-to-event utility function. In that case, an alternative is

to redefine the utility function, such as restricted mean survival time, so as to remove

the censoring. Future research on time-to-event utility functions may be of great

interest, especially considering that the ultimate goal in many medical studies is to

prolong patients’ survival time.

2.3 Estimation of the Optimal Dynamic Treatment Regime

2.3.1 Identifiability of the Counterfactual Mean Utility

Note that in the ideal case, to solve the optimization problem (2.1), we need the

counterfactual data under all regimes g ∈ G, which is impractical since each patient

can only experience one treatment history. Therefore, instead of using data collected

from the counterfactual world as if everyone had followed g, we need to estimate

E(U g) using the observed data O(T ∗). In order to do that, we make the following

three assumptions suggested by previous studies (Murphy et al., 2001; Robins and

Hernán, 2009; Orellana et al., 2010a).

• Consistency assumption: For any regime g, if a given patient has A(t) =

g{t;A(t−),X(t)} for any t ∈ [0, t̃], then Xg(t̃) = X(t̃) for any t̃ ∈ [0, T ∗]; and if

A(t) = g{t;A(t−),X(t)} for any t ∈ [0, T ∗], then U g = U for that patient. That

is to say, if the actual treatment history observed for a patient is compatible

with DTR g, his or her observed biomarker and utility function are the same
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as the counterfactual ones under g.

• No unmeasured confounder assumption (NUCA): NUCA implies that at any

t ∈ [0, T ∗],

A(t) ⊥ {U g,X(t)}|{A(t−),X(t)}

for regime g, where X(t) is the future of variables X starting from time t. In

other words, the treatment decision at time t is independent of future observa-

tions and the counterfactual outcomes, conditional on {A(t−),X(t)} that are

recorded until just prior to assigning A(t).

• Positivity assumption: We assume that at any time t ∈ [0, T ∗],

P g
(
Pr
[
A(t) = g{t;A(t−),X(t)}|A(t−),X(t)

]
> 0
)

= 1,

where P g is the law of {A(t−),X(t)} in the counterfactual world where regime

g were enforced for the entire population. This assumption basically guarantees

that if in the counterfactual world where everyone followed regime g, there were

patients with history x(t) and a(t−), then in the observational data among the

subjects with the same covariates history x(t) who actually followed regime g

up to time t−, there is a subset who also follow regime g at time t.

With these assumptions, we are able to make inference about E(U g) using only the

observed data (Robins and Hernán, 2009; Orellana et al., 2010a,b). Specifically, for

a DTR g at any t ∈ [0, T ∗], we define Cg(t) = I[A(t) = g{t;A(t−),X(t)}] as the

indicator of adherence that takes the value 1 if a patient adheres to g at time t

and 0 otherwise. Therefore, if C
g
(t) = 1(t), where 1(t) is a function with constant

value of 1 up to t, it means that this patient follows g up to t. As defined before,

a patient’s decision process for treatment initiation is random till T = min(S, T ∗),

and thus we assess the patient’s adherence history up to T , i.e., C
g
(T ). Let F g
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denote the time to failure of adherence to DTR g and we have F g = mint{t ∈ [0, T ] :

Cg(t) = 0} for a patient whose failure of adherence is observed within T . On the other

hand, for a patient who follows g all the way to T , whether treated (i.e., T = S) or

administratively censored (i.e., T = T ∗), F g is not observed and the only information

is F g > T . In other words, the patient’s time to failure of adherence to g is censored

at T .

Using our notation, only patients with C
g
(T ) = 1(T ) actually follow g for treatment

initiation during the study and have U g observed. The observed utility U of other

patients who have Cg(t) = 0 for some t ∈ [0, T ] are actually affected by other treat-

ment assignments on and after F g, and thus cannot be used to estimate E(U g). If

we denote the counterfactual law under DTR g by P g and the observational law by

P , then under Assumptions (1) - (3) we have

dP g

dP

{
A(T ),X(T )

}
=

I
[
C
g
(T ) = 1(T )

]
Pr
[
C
g
(T ) = 1(T )|X(T )

] ,
where I(·) is the indicator function that takes the value 1 if · is true and 0 otherwise.

In our study, the patients compatible with g have their time to failure of adherence

to g censored at T . Therefore,

Pr
[
C
g
(T ) = 1(T )|X(T )

]
= Pr

[
F g > T |X(T )

]
.

If we define

ωg =
I
[
C(T ) = 1(T )

]
Pr
[
F g > T |X(T )

] ,
then under Assumptions (1) - (3),

E(U g) = E

[
U
dP g

dP

{
A(T ),X(T )

}]
= E(Uωg). (2.2)
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Therefore, the bias induced from using the subset of patients who actually follow g

in the observational data can be corrected for by weighting each patient with the

corresponding inverse probability of adherence. We apply the IPW method (Murphy

et al., 2001; Wang et al., 2012) and estimate E(U g) as the weighted mean of the

observed U among patients adherent to DTR g throughout the study period.

2.3.2 Estimation of the Weights and Counterfactual Mean Utility

We denote πg = Pr[F g > T |X(T )], the adherence probability. Then the weight ωg

for an adherent patient is 1/πg, while that of a non-adherent patient is 0. According

to (2.2), the estimation of E(U g) depends on ωg and equivalently, πg. Therefore, a

robust estimate of πg is essential to guarantee the validity of Ê(U g). We propose

a flexible time to failure of adherence model with time-varying biomarkers, which

allows both linear terms and flexible spline functions of covariates. Specifically, from

the biomarker set X, we select biomarkers XL
l (l = 1, ...,m) as linear terms (e.g.,

categorical variables) and XS
j (j = 1, ..., k) to be fit in spline terms (e.g., continuous

variables with unknown effects on adherence), which can be determined by scientific

knowledge related to the study and regime definition. Then the flexible Cox model

for the hazard of failing to adhere to DTR g at time t is

λg{t|X(t) = x(t)} = λg0(t)exp

[
m∑
l=1

βgl x
L
l (t) +

k∑
j=1

f gj
{
xSj (t)

}]
(2.3)

where λg0(t) is an unspecified baseline hazard function, βgl is an unknown parameter

for XL
l , and f gj (·) is a spline function for XS

j with details given below. Note that

we model the hazard at t with only the current biomarker observations, which can

be easily extended to include summary variables indicating certain aspects of the

covariate history up to t (e.g., percent of time with HbA1c over 8% from enrollment
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to t). For convenience, we write all covariates in the time-varying form and simply

let baseline covariates to be constant over time. The parameterization used for the

splines is

f gj (x) =
M+3∑
h=1

θgjhBjh(x)

where Bjh’s are standard cubic B-spline basis functions (De Boor , 1978), θgjh is the

parameter corresponding to Bjh and M is the number of knots. The constant term is

absorbed in the unknown baseline hazard λg0(t). The function f gj (·) is only required

to be smooth enough to have continuous second derivatives, and is not restricted

to any specific parametric form. Therefore, it allows enough flexibility in (2.3) to

get a robust estimate of πg, the adherence probability. Then we can obtain ω̂g, and

estimate E(U g) consistently with the IPW estimator (Wang et al., 2012)

Ê(U g) =

∑n
i=1 ω̂

g
iUi∑n

i=1 ω̂
g
i

. (2.4)

According to Robins (2000), the IPW estimator (2.4) will be consistent if the models

for estimating πg, the denominator of ωg, are correctly specified, and furthermore,

Ê(U g) will be
√
n consistent if π̂g converges at a rate of n1/4 or faster. It implies that

our IPW estimator can perform well as long as the adherence probability estimated

from model (2.3) is not exceedingly variable. To ensure this, we follow Gray (1992)

to use fixed knot splines with a modest number of knots and use penalized partial

likelihood to estimate the parameters of model (2.3). To maximize the penalized log-

partial likelihood, the smoothing parameters for the penalty terms are solved for by

first specifying degrees of freedom for the spline smoothers (Buja et al., 1989; Gray ,

1992). We choose the optimal degrees of freedom according to the corrected Akaike

information criteria (AIC) of Hurvich et al. (Hurvich et al., 1998). For the baseline

hazard, we use the Breslow estimator (Breslow , 1972, 1974), which converges at a
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rate of n1/2 (Tsiatis , 1981).

2.4 Simulations

We conduct simulation studies to evaluate the performance of the proposed method

given access to the simulated counterfactual data. For each patient under each defined

regime, we simulate the counterfactual biomarkers and utility functions, and calculate

the real causal outcome using these data. The proposed method is applied to each

simulation scenario and then compared to the truth and several competing methods.

Our estimation is based on 500 replicates each with sample size N = 500.

2.4.1 Simulation Settings

For simplicity, we simulate one biomarker X that is linearly increasing before treat-

ment initiation over the study period [0, T ∗ = 120]. For patient i at visiting time

t (before treatment initiation), we generate the biomarker observation from Xi(t) =

β0i + β1it + εti, where patient-specific intercept β0i and slope β1i are independently

drawn from N(2.5, 0.52) and N(0.07, 0.022), respectively, and measurement error

εti ∼ N(0, 0.12). We also simulate a binary baseline covariate Zi with success rate of

0.5. We define the DTR g to be initiating treatment when X falls into an interval

[τ, τ + 0.5) and basically, a patient fails to follow the regime g if he or she starts

treatment with X < τ (too early) or X ≥ τ (too late). We consider ten regimes

g1, g2, . . . , g10 with τ1 = 5.0, τ2 = 5.5, . . . , τ10 = 9.5, respectively. Given Xi(t), we

calculate the counterfactual treatment initiation time S
gj
i (j = 1, 2, . . . , 10) had the

subject followed gj. We randomly assigned one of the ten regimes to each subject as

the true underlying DTR, which is not observed. The observed adherence depends

on the biomarker trajectory up to the time of treatment initiation. The observed
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decision period for patient i with underlying DTR g is T gi = min {Sgi , T ∗}. Appar-

ently, whether or not a patient is administratively censoring is jointly determined by

T ∗, X and g. An administratively censored patient may be compatible with multiple

regimes. For example, a patient with X increasing from 4.0 at baseline to 6.2 at T ∗

without treatment is compatible with regimes that have τ > 6.2, i.e., g4, . . . , g10.

In the ideal case, we need all patients’ biomarkers fully observed throughout the study

to apply the survival model (2.3). However, in practice, we oftentimes only observe

X at a limited number of clinical visits. Moreover, patients with worse conditions

tend to have more clinical visits. To investigate how this can affect our selection of

the optimal DTR, we create two biomarker scenarios:

• In Scenario 1, we have access to biomarker observations at each event time (i.e.,

the time one or more patients fail to follow g) for patients at risk (i.e., adherent

to g and untreated before).

• In Scenario 2, patient i has X observed at enrollment and Ti (i.e., time of

treatment initiation or end of study), and the number of visits in-between follows

binomial(d0.1Tie, ρi), where d·e means taking the smallest integer not less than

· and ρi = 1/[1+exp(1−0.3β0i−10β1i+0.2Zi)]. The time of each visit between

enrollment and Ti is uniformly sampled from (0, Ti).

Scenario 1 provides the whole biomarker history needed for the estimation of the

adherence model (2.3) (e.g., the case of mobile medicine). Scenario 2 is to mimic a

more common situation with longitudinal biomarker measurements at random clinical

visits. We let ρ depend on X and Z in a way that subjects with larger X and

smaller Z are expected to have more clinical visits. We extrapolate the values of X

between visits for model (2.3). For example, one can fit a linear mixed model for the

trajectories using polynomial terms for t and make patient-specific predictions for
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X. However, in the case of informative observation times, further adjustments may

be necessary to correct for bias (Sun et al., 2005, 2007). Another simpler method is

to conduct patient-specific extrapolation without borrowing information from other

subjects. In our simulations, we use linear extrapolation to estimate the biomarker

value at a given event time for each patient still adherent to g.

Our utility function applies to both treated and administratively censored patients.

Specifically, for subject i following g with threshold τ , we have

U g
i =

 70β1i + ei if administratively censored

0.5τ + 70β1i · φ(τ) + ei if treated

where ei ∼ N(0, 0.12). Note that the utility function depends on both the slope of the

biomarker trajectory and the DTR. We consider two utility functions with different

φ(τ): U1 with φ(τ) = 0.6 + 0.3cos(0.8τ − 2), which is minimized at τ = 6.0, and

U2 with φ(τ) = 0.6 + 0.3cos(0.8τ − 3.6), which is minimized at τ = 8.0, as shown in

Figure 2.1. These two functions correspond to two situations where treatments are

more effective at earlier and later stages of disease, respectively. Furthermore, in our

simulation setting, all DTRs have a similar number of treated compatible patients

(∼ 50). However, regimes with smaller thresholds have a much lower percentage of

administrative censoring among their compatible patients (range: ∼ 5% for τ1 to

∼ 60% for τ10), and thus we are also able to investigate how various percentages of

censoring would affect the detection of the optimal regime. We use U1 and U2 in

both biomarker scenarios.

For comparison, we consider the unweighted method, simply averaging the observed

utility of all patients compatible with the regime of interest, as well as the weighted

method with weights from two types of pooled logistic regression (Robins et al., 2000;

Hernán et al., 2001). The first type uses polynomial terms up to a degree of 3 for
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Figure 2.1: Counterfactual mean utility for the 10 regimes in simulations with various
thresholds τ given utility function U1 (left) or U2 (right). Each point in
the plots is calculated from 1000 Monte Carlo samples.

X, denoted as PPL, while the second one applies generalized additive model (GAM)

with smoothing splines for X, denoted as NPL. Since time to failure of adherence

is continuous, we discretize the period into five intervals by quintiles of event time

and apply logistic regression within each interval. We use the biomarker observations

in each interval as the one at event time for a patient who fails in that interval, or

the one linearly extrapolated at the center of that interval for a patients who is still

adherent.

2.4.2 Simulation Results

Table 2.1 summarizes the performance of all methods in evaluating the ten regimes in

biomarker Scenario 1, in term of estimated counterfactual mean utility function Ê(U g)

and the percentage of replicates selecting g as the optimal DTR (opt%). Generally,

the weighted methods are far superior to the unweighted one. With U1 where the
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optimal DTR has τ = 6, all weighted methods have very accurate selection of the

optimal regime (> 95%) and our proposed method is only slightly better. The two

pooled logistic methods are almost identical in selection of gopt and NPL has slightly

smaller bias and variance in Ê(U g). Comparing the results with the utility function

U1 to those with U2, all methods have worse performance. PPL has the largest drop

in opt% (from 95.2% to 67.6%) and a wide range of mis-selected regimes. NPL, as

a more flexible method than PPL, still has an acceptable performance with 77% of

the time selecting the correct optimal DTR and only three different regimes selected.

Our proposed method maintains very satisfactory performance with opt% of 94.4%,

and much smaller bias and variance in Ê(U g). From Scenario 1, we can see that our

proposed method can well handle the increased bias due to administrative censoring.

In Table 2.2, we present the results for biomarker Scenario 2, where we extrapo-

late the biomarker observations from longitudinal visits. Compared to Scenario 1,

all weighted methods have worse performance with the biomarker trajectories only

partially observed. Given more uncertainty in the biomarker extrapolation, the bias

and variance in Ê(U g) increases and thus more mis-selection has occurred. Note that

results from the full adherent (counterfactual) and the unweighted methods are the

same as in Table 2.1 since we use the same simulated samples. In terms of opt%, PPL

drops over 20% with U1 from Scenario 1 to Scenario 2, and has only 60.2% correctness

with U2 in Scenario 2. NPL is still slightly better than PPL. Our proposed method

works much better than the other methods, with about 20% higher chance to select

gopt, smaller bias and variance, and fewer mis-selected regimes. From Scenario 1 to

Scenario 2, it only drops less than 10% in opt% and has over 80% correctness with U2

in Scenario 2, which is the most noisy situation. Through the two biomarker scenarios

each combined with two different utility functions, we can see that the performance

of the proposed method is robust.
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Ê

(U
g
)

(e
m

p
ir

ic
al

S
D

in
p
ar

en
th

es
es

)
an

d
p

er
ce

n
ta

ge
of

re
p
li
ca

te
s

se
le

ct
in

g
g

as
th

e
op

ti
m

al
D

T
R

(o
p
t%

)
fo

r
re

gi
m

es
in

b
io

m
ar

ke
r

S
ce

n
ar

io
2

of
C

h
ap

te
r

II
.

R
eg
im

e
F
u
ll
A
d
h
er
en
t

U
n
w
ei
g
h
te
d

P
P
L
1

N
P
L
2

P
ro
p
o
se
d
M
et
h
o
d

Ê
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2.5 Application to Diabetes Example

In this section, we applied the proposed method to Eli Lilly’s diabetes electronic

medical record (EMR) database from Humedica. We considered patients with only

type 2 diabetes, without diagnosis of type 1 or gestational diabetes, and our data

was recorded from January 1, 2005 to December 31, 2010. All patients had baseline

age and body mass index (BMI) measured at their first clinical visit, and during the

follow-up period, their HbA1c level, use of oral anti-diabetic drugs, hospitalizations

and comorbidities were recorded at several random visits (range of visiting times: 4 ∼

68). HbA1c is the primary biomarker tested for diabetes management and research,

as well as for initiating insulin therapy (Hayward et al., 1997). Our goal is to use

DTRs to identify the best timing to initiate insulin therapy based on patients’ HbA1c

levels.

We defined viable DTRs as initiating insulin therapy when a patient’s HbA1c level is

observed to be in an interval [τ, τ + 0.5), similar to the definition in simulations. In

other words, a patient fails to follow a given DTR if he or she starts insulin therapy

with HbA1c measurement < τ during the same clinical visit or does not start with

HbA1c measurement ≥ τ + 0.5. We considered the threshold τ from 5.5 to 8.5% with

an increment of 0.5%. To be included in our analysis, each patient must have at least

two clinical visits before insulin treatment and baseline HbA1c level lower than 10%,

resulting in a cohort of 1220 patients. The patients are mostly seniors with obesity

(BMI > 30). Table 2.3 compares patients with HbA1c < 6.5% and those with HbA1c

≥ 6.5% at treatment initiation. The two groups are very similar in all aspects except

HbA1c. The group with lower HbA1c at treatment initiation also has lower HbA1c at

enrollment and at the end of study. However, its average HbA1c increases from 6.3 to

6.8% while in the other group, the average HbA1c decreases from 7.8 to 7.7%. Given

the variables available in our data, we defined a utility function for each patient as
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Table 2.3: Summary statistics (mean ± SD) for patients with HbA1c < 6.5% at initi-
ation of insulin therapy and those with HbA1c ≥ 6.5%

Variable
HbA1c at Initiation of Insulin Therapy

< 6.5% (n = 162) ≥ 6.5% (n = 1058)

Age (yrs) 63.5 ± 8.6 63.0 ± 8.4
BMI 34.6 ± 6.7 34.7 ± 7.5

Anti-diabetic drugs before insulin (frequency) 0.6 ± 0.9 0.7 ± 1.1
New complications at end of study (type) 4.1 ± 2.4 4.0 ± 2.3

Hospitalizations at end of study (frequency) 1.5 ± 5.6 1.4 ± 3.8
HbA1c at baseline (%) 6.3 ± 0.7 7.8 ± 1.0

HbA1c at end of study (%) 6.8 ± 1.1 7.7 ± 1.4

the sum of two relative levels. The first one is relative HbA1c level calculated as the

mean HbA1c level during follow-up divided by the diagnosis threshold of 6.5%. The

second one is relative morbidity level calculated as the total number of new diseases

developed during follow-up divided by four which is the median in this database. With

this utility function, we aim to find the optimal DTR that controls both glycemic level

and comorbidities that come either as side effects of insulin therapy or from diabetes

progression. We applied the survival model (2.3) to estimate the weights. As in

simulation Scenario 2, we used linear extrapolation to estimate the biomarker value

at the event time for patients at risk. We used cubic B-splines for time-varying HbA1c

observations and linear terms for all other covariates.

Figure 2.2 presents the estimated counterfactual mean utility for each of the regimes

of interest. The number of compatible patients ranges from 32 to 251 for different

regimes. The regime with HbA1c threshold of 6.0% has the minimal estimated coun-

terfactual mean utility and thus is identified as gopt by our proposed method. It means

that initiation of insulin treatment for diabetic patients with HbA1c level of 6 ∼ 6.5%

may lead to the best overall control of diabetes severity and related comorbidities.

However, this result might be sensitive to the choice of the utility function.
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Figure 2.2: The estimated counterfactual mean utility for dynamic treatment regimes
with various HbA1c thresholds to initiate insulin therapy for the diabetes
example.
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2.6 Discussion

In this article, we address the challenge of estimating the optimal DTR for treatment

initiation given continuous random decision points based on patients’ up-to-date clin-

ical records. Our proposed method successfully fills the gap in DTR literature where

most existing studies have only considered several fixed stages of treatment decisions.

Compared to existing methods, the proposed method has multiple strengths. First of

all, it makes minimal model assumptions and is more robust to model misspecifica-

tion. Our assumption is primarily made on estimating πg through adherence model

(2.3), and the use of splines allows much flexibility on how the risk of failure to fol-

low a specific regime depends on time-varying biomarkers. In contrast, the pooled

logistic regression requires assumptions about the treatment models at every stage,

and Q- and A-learning methods both require assumptions about the structure on

the outcome and treatment models at every stage, resulting in high susceptibility

to model misspecification. Furthermore, with one adherence model (2.3) for each

DTR g regardless of the number of decision points, our method is more stable, com-

pared to pooled logistic regression, and more computationally feasible, compared to

Q- and A-learning methods. As the number of stages increase, the weights derived

from pooled logistic regression may become very unstable if, for example, there are

very few events at a certain stage, leading to both bias and imprecision (Robins and

Hernán, 2009). Q- and A-learning methods use backward recursive fitting procedure

(Bather , 2000), and as the number of stages increases, the computational burden may

increase dramatically.

The proposed method can be used for many types of DTRs with multiple random

decision points, not limited to the problem of treatment initiation. The key is to

prespecify a class of meaningful candidate DTRs and build an appropriate model to

estimate the probability of adherence to each DTR. For a time to failure of adherence
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model like model (2.3), there should be enough biomarker observations at different

decision points and the time to failure of adherence should be a continuous random

variable. In order to assess adherence, the treatment decision rules should be clearly

defined and consistent throughout the study period.

Several improvements and extensions can be explored in future studies given the re-

strictions in our method. First, more flexible methods can be considered for robust

weight estimation, for example, the random survival forest (Ishwaran et al., 2008).

Bou-Hamad et al. (2011) has extended the method to allow for time-varying covari-

ates. However, a more flexible method may have a lower convergence rate and one

should proceed carefully considering the sample size. Second, we have only considered

a limited number of well defined DTRs. In practice, there could be a larger or even

infinite number of candidate regimes. For example, if we treat the HbA1c thresholds

as continuous, we will have an infinite number of regimes. Furthermore, if we have

many variables that may affect treatment decisions, we may also end up with a large

number of DTRs that deal with various scenarios. Then with a limited sample size,

it is impossible to find enough compatible patients for each regime to make inference

separately. A feasible solution is to fit a nonsaturated marginal structural model for

the utility conditional on the variables that define the DTRs (Robins , 2000; Hernán

et al., 2001). One may also apply classification or machine learning methods to select

a subset or some combinations of variables for regime definition so as to reduce the

number of DTRs of interest. Third, joint modeling of a multivariate utility function

(e.g., toxicity, efficacy and management cost) may be of interest for future research. A

univariate utility function is easier for comparison of various DTRs, but its definition

may be arbitrary. However, with a multivariate utility function, one needs to search

over a multi-dimensional plane to find the optimal DTR that achieves the best joint

payoff, which can be computationally complex.
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CHAPTER III

Adaptive Contrast Weighted Learning for

Multi-Stage Multi-Treatment Decision-Making

3.1 Introduction

Individualized treatment strategies (ITS) are decision rules that dictate treatment

prescriptions based on a patient’s specific characteristics (e.g., demographics, clinical

outcomes and genetic makeup). Given the increasingly popular theme of personalized

medicine, many clinical and intervention scientists have now become interested in the

development of ITS. Treatment individualization is important due to the fact that

many diseases, such as cancer and diabetes, have complex causes by the interplay

among genetic, physiological and environmental factors that vary from person to

person. The effectiveness of a given treatment is usually determined not only by a

patient’s current disease status but also by his/her past treatment and disease history

and perhaps other concurrent medical conditions. Moreover, due to the progressive

nature of many chronic diseases, treatment adaptation over time is also crucial to

optimize treatment effects.

Dynamic treatment regimes (DTRs) (Robins , 1986, 1997, 2004; Murphy , 2003) mathe-

matically generalize personalized medicine to a time-varying treatment setting. They
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are sequential decision rules that focus simultaneously on treatment individualization

and adaptation over time. Identifying the optimal DTRs offers an effective vehicle

for personalized management of diseases, and helps physicians tailor the treatment

strategies dynamically and individually based on clinical evidence, which provides a

key foundation for better chronic care (Wagner et al., 2001). However, it is challeng-

ing to identify optimal DTRs in a multi-stage treatment setting due to the complex

relationships between the alternating sequences of time-varying treatments and clini-

cal outcomes. Recent research on estimating optimal DTRs has focused on sequential

multiple assignment randomized trials (SMARTs) (Murphy , 2005), which are desir-

able for causal inference, as well as longitudinal observational studies (Murphy , 2003;

Robins , 2004), which are the more common source of data. The observational data

may restrict the set of DTRs that can be assessed due to possible violation of key

causal assumptions and thus require careful thoughts and formulations in order to

make valid inference (Robins and Hernán, 2009). Diverse statistical methods have

been developed including marginal structural models with inverse probability weight-

ing (IPW) (Robins , 2000; Hernán et al., 2001; Wang et al., 2012), G-estimation of

structural nested mean models (Robins , 1986, 1989, 1997), generalized by Murphy

(2003) and Robins (2004), targeted maximum likelihood estimation (van der Laan

and Rubin, 2006), and likelihood-based approaches (Thall et al., 2007). However, sus-

ceptibility to model misspecification remains as a major limitation of many methods

in this field due to the inherent difficulty of modeling high-dimensional information

in a time-varying setting.

Machine learning methods have become popular alternative approaches on estimat-

ing optimal DTRs. The commonly employed methods include Q-learning (Watkins

and Dayan, 1992; Sutton and Barto, 1998) and A-learning (Murphy , 2003; Schulte

et al., 2014), both of which use backward induction (Bather , 2000) to first optimize

the treatment at the last stage and then sequentially optimize the treatment at each
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of the earlier stages. Q- and A- learning are both indirect approaches as they rely on

maximizing or minimizing an objective function to infer the optimal DTRs and thus

emphasize prediction accuracy of the clinical response model instead of directly opti-

mizing the decision rule (Zhao et al., 2012). Zhang et al. (2012a) propose a framework

to transform the problem of estimating the optimal treatment regime into a weighted

classification problem, and then directly estimate the optimal regime. Their proposed

method is robust and efficient due to a combination of semiparametric regression esti-

mators and nonparametric classification methods. However, their approach is limited

to a single decision point with binary treatment options. For multi-stage decisions,

Zhao et al. (2015) propose outcome weighted learning (OWL) to convert the optimal

DTR problem into an either sequential or simultaneous classification problem. OWL

utilizes existing machine learning techniques, such as support vector machines (SVM)

(Cortes and Vapnik , 1995), to directly estimate the optimal DTR, which is flexible

without the specification of outcome regression models. However, it is also not as

efficient as model-based approaches if the models can be well approximated. As re-

viewed by Zhou et al. (2015), OWL is susceptible to trying to retain the actually

observed treatments and is also unstable in general since its estimated individual-

ized treatment rule is affected by a simple shift of the outcome. Moreover, OWL

is susceptible to the misspecification of propensity score models since it is based on

IPW. To our knowledge, few research attempts exist that deal with more than two

discrete treatment options at each stage and estimate the optimal DTR in a robust

and efficient way.

In this article, we develop a dynamic statistical learning method, adaptive contrast

weighted learning (ACWL), to directly estimate the optimal DTR through a sequence

of weighted classification for multi-stage multi-treatment decision-making in observa-

tional studies. The algorithm is implemented recursively using backward induction.

Our method has multiple strengths and novelties compared to existing methods. First
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of all, it can handle more than two treatments at each stage. Extending from two

treatment options to more than two is nontrivial since one must account for multiple

treatment comparisons without sacrificing too much on efficiency, especially when the

number of treatment options is large. We achieve this by using contrasts with the

adaptation of treatment effect ordering for each patient at each stage. The proposed

adaptive contrasts stand for the minimum or maximum expected loss in the outcome

given any sub-optimal treatment for each patient, and simplify the problem of opti-

mization with multiple treatment comparisons to a weighted classification problem

at each stage. Second, ACWL is robust and efficient by combining semiparametric

regression estimators with machine learning methods. Following Zhang et al. (2012a),

we employ the doubly robust augmented inverse probability weighted (AIPW) esti-

mator (Robins et al., 1994; Scharfstein et al., 1999) to estimate the treatment effect

ordering and adaptive contrasts at each stage. Last but not least, ACWL can be

easily implemented using existing regression and classification methods, and is also

flexible given the capability of incorporating various modeling and machine learning

techniques.

The remainder of this paper is organized as follows. In Section 3.2, we formalize

the problem of estimating the optimal DTR in a multi-stage multi-treatment setting

using the counterfactual framework and transform it to a sequence of weighted classi-

fication using adaptive contrasts. The performance of our proposed method in various

scenarios is evaluated by simulation studies in Section 3.3. We further illustrate our

method in Section 3.4 using esophageal cancer data. Finally, we conclude with some

discussions and suggestions for future research in Section 3.5.
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3.2 Adaptive Contrast Weighted Learning (ACWL)

3.2.1 Notation

Consider a clinical trial or observational study with n subjects from a population

of interest and T treatment stages. For brevity, we suppress the patient index i

(i = 1, . . . , n) in the following text when no confusion exists. For j = 1, . . . , T , let Aj

denote the multi-categorical treatment indicator at the jth stage with observed value

aj ∈ Aj = {1, . . . , Kj} (Kj ≥ 2). Let Xj denote the vector of patient characteristics

history just prior to treatment assignment Aj, containing both baseline and time-

varying covariates, and XT+1 denote the entire characteristics history up to the end

of stage T . Let Rj be the clinical outcome following Aj, also known as rewards, which

depends on the precedent covariate history Xj and treatment history A1, . . . , Aj, and

is also a part of the covariate history Xj+1. We consider the overall outcome of

interest to be Y = f(R1, . . . , RT ), where f(·) is a prespecified function (e.g., sum),

and assume that Y is bounded and preferable with larger values.

A DTR g = (g1, . . . , gT ) is a set of rules for personalized treatment decisions at all

T stages, where gj is a map from the domain of covariate and treatment history

Hj = (A1, . . . , Aj−1,X
>
j )> to the domain of treatment assignment Aj, and we set

A0 = ∅. The optimal DTR is the one that maximizes the expectation of Y if used to

assign treatments to all patients in the population of interest.

3.2.2 ACWL with T = 1

To facilitate the presentation of our method, we start with optimizing the treatment

regime for a single stage and K(≥ 2) treatment options. The method is essentially

the same for optimizing the regime for the last stage in a multi-stage decision prob-
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lem. We suppress the stage index in this section for brevity. To define and identify

the optimal treatment regime, we consider the counterfactual framework for causal

inference (Robins , 1986). Let Y ∗(a), a = 1, . . . , K, denote the counterfactual outcome

had a subject received treatment a. We make the following three assumptions in or-

der to estimate E{Y ∗(a)}. First, we assume that the observed outcome is the same

as the counterfactual outcome under the treatment a patient is actually given, i.e.,

Y =
∑K

a=1 Y
∗(a)I(A = a), where I(·) is the indicator function that takes the value 1

if · is true and 0 otherwise. This is referred to as the consistency assumption, which

also implies that there is no interference between subjects. Second, we make the

no unmeasured confounding assumption (NUCA); treatment A is randomly assigned

with probability possibly dependent on H, i.e., {Y ∗(1), . . . , Y ∗(K)} |= A|H, where |=

denotes statistical independence. Third, we assume that with probability one, the

propensity score πa(H) = Pr(A = a|H) is bounded away from zero, which is known

as the positivity assumption.

We define the counterfactual outcome for a patient following regime g as

Y ∗(g) =
K∑
a=1

Y ∗(a)I{g(H) = a},

and thus conditioning on H, we have

E{Y ∗(g)} = EH

[
K∑
a=1

E {Y ∗(a)|H} I{g(H) = a}

]
,

where EH(·) denotes expectation with respect to the marginal joint distribution of

H. Under NUCA, we can further show that

E{Y ∗(g)} = EH

[
K∑
a=1

E{Y ∗(a)|A = a,H}I{g(H) = a}

]
,
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and given the consistency assumption, we have

E{Y ∗(g)} = EH

[
K∑
a=1

E(Y |A = a,H)I{g(H) = a}

]
.

The positivity assumption assures the identifiability of E(Y |A = a,H).

The optimal regime, gopt, is the one that maximizes the expected counterfactual

outcome among the class of all potential regimes, G. If we denote the conditional

mean E(Y |A = a,H) as µa(H), we have

gopt = argmax
g∈G

EH

[
K∑
a=1

µa(H)I{g(H) = a}

]
.

Let µ(1)(H) ≤ . . . ≤ µ(K)(H) denote the order statistics of µ1(H), . . . , µK(H), and la

denote the treatment effect order with µ(a)(H) = µla(H). Note that la depends on

H. Therefore, we get

gopt = argmax
g∈G

EH

[
K∑
a=1

µ(a)(H)I{g(H) = la(H)}

]
.

By subtracting µ(K)(H) and reversing the sign, we have

gopt = argmin
g∈G

EH

[
K−1∑
a=1

{µ(K)(H)− µ(a)(H)}I{g(H) = la(H)}

]
. (3.1)

According to (3.1), gopt minimizes the expected loss in the outcome due to sub-optimal

treatments in the entire population of interest. It would classify as many patients as

possible to their corresponding treatment lK (i.e., letting I{g(H) = la(H)} = 0, a =

1, . . . , K−1) while putting more emphasis on patients with larger contrasts (i.e., larger

values of µ(K)(H)−µ(a)(H)) if misclassification is inevitable. Ideally, for each patient,

we would utilize all K − 1 contrasts as weights to conduct treatment classification,
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which, however, is challenging in practice. Meanwhile, given the inequality

0 ≤ µ(K)(H)− µ(K−1)(H) ≤ µ(K)(H)− µ(a)(H) ≤ µ(K)(H)− µ(1)(H),

it is easy to show

EH

[
K−1∑
a=1

{µ(K)(H)− µ(a)(H)}I{g(H) = la(H)}

]
≥ EH

[
K−1∑
a=1

{C1(H)I{g(H) = la(H)}

]

= EH [C1(H)I{g(H) 6= lK(H)}]

and

EH

[
K−1∑
a=1

{µ(K)(H)− µ(a)(H)}I{g(H) = la(H)}

]
≤ EH

[
K−1∑
a=1

{C2(H)I{g(H) = la(H)}

]

= EH [C2(H)I{g(H) 6= lK(H)}] ,

where C1(H) = µ(K)(H) − µ(K−1)(H) and C2(H) = µ(K)(H) − µ(1)(H). These two

contrasts indicate the minimum and maximum expected losses in the outcome, re-

spectively, if a subject does not receive the optimal treatment, and thus are adaptive

to each patient’s own treatment effect ordering.

In the best (least conservative) case where sub-optimal treatments only lead to min-

imal expected losses in the outcome, gopt is equal to

argmin
g∈G

EH [C1(H)I{g(H) 6= lK(H)}] , (3.2)

while in the worst (most conservative) case where sub-optimal treatments all lead to

maximal expected losses in the outcome, gopt is equal to

argmin
g∈G

EH [C2(H)I{g(H) 6= lK(H)}] . (3.3)
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We propose to estimate gopt via (3.2) and (3.3) for the following reasons. By using

the adaptive contrasts C1(H) and C2(H), (3.2) and (3.3) minimize, respectively, the

lower and the upper bounds of the expected loss in the outcome due to sub-optimal

treatments in the entire population of interest. Note that both the lower and the

upper bounds of the expected loss have a limiting value of zero that can be reached

with perfect classification, implying that (3.2) and (3.3) tend to gopt as the expected

loss goes to zero. Even when the classification is far from perfect, by minimizing the

expected weighted misclassification error, (3.2) and (3.3) tend to classify as many

patients as possible to their optimal treatment lK with more focus on subjects with

larger contrasts, which is consistent with gopt. Therefore, we expect (3.2) and (3.3) to

yield an optimal treatment regime similar, if not identical, to gopt. Moreover, using

the adaptive contrasts C1(H) and C2(H) simplifies the problem of optimization with

multiple treatment comparisons to a weighted classification problem that many exist-

ing statistical learning methods can handle, for example, classification and regression

tree (CART) (Breiman et al., 1984) and SVM. These classification methods aim to

reduce the difference between the true and the estimated classes by minimizing an

objective function, which is the expected weighted misclassification error in our case.

The key to identifying the optimal treatment regime lies in the estimation of µA(H)

and lA(H). Wang et al. (2016) show that given root-n consistent estimators µ̂k(H), k =

1, . . . , K, the corresponding orders l̂k(H) are also consistent. An intuitive approach is

to posit a parametric regression model for µA(H) = E(Y |A,H) to get the regression

estimator µ̂RGA (H), and then we can obtain ĝopt(H) = l̂RGK (H) directly from µ̂RGA (H).

Alternatively, instead of using solely the regression model to infer gopt, we could use

it as the working model to estimate treatment effect ordering and adaptive contrasts,

and then solve the weighted classification problems (3.2) and (3.3). However, both

methods are susceptible to the misspecification of µA(H) by using µ̂RGA (H). If sample

size is sufficiently large, one may estimate µA(H) using nonparametric methods, for
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example, random forest (Breiman, 2001). To balance robustness and efficiency, we

propose to apply the AIPW estimator (Robins et al., 1994; Scharfstein et al., 1999).

The K treatment options can be regarded as K arbitrary missing data patterns as

in Rotnitzky et al. (1998). Given the estimated propensity score π̂a(H), the AIPW

estimator µ̂AIPWa for E{Y ∗(a)} is calculated by solving

Pn
{
I(A = a)

π̂a(H)
[Y − E{Y ∗(a)}] + U(H)

}
= 0

with the augmentation term

U(H) =
∑
k 6=a

{
I(A = k)− I(A = a)

π̂a(H)
π̂k(H)

}
φk(H).

Here φk(H) is an arbitrary function for treatment k, which could potentially improve

the efficiency of the AIPW estimator and meanwhile does not affect the consistency

of the AIPW estimator as long as the model for πa(H) is correctly specified. To

incorporate the doubly robust property, we propose to set φk(H) = µ̂a(H)−E{Y ∗(a)}

for all k 6= a, and then it is straightforward to show that

µ̂AIPWa = Pn
[
I(A = a)

π̂a(H)
Y +

{
1− I(A = a)

π̂a(H)

}
µ̂a(H)

]
.

Notice E{Y ∗(a)} = EH{µa(H)} under the foregoing casual assumptions and thus we

define

µ̂AIPWa (H) =
I(A = a)

π̂a(H)
Y +

{
1− I(A = a)

π̂a(H)

}
µ̂a(H). (3.4)

Pn{µ̂AIPWa (H)} converges to µa if either the model for πa(H) or the model for µa(H) is

correctly specified, and thus the method is doubly robust. To apply the weighted clas-

sification problems (3.2) and (3.3), we obtain the working orders l̂AIPWa (H) by sorting

µ̂AIPW1 (H), . . . , µ̂AIPWK (H) and calculate the AIPW adaptive contrasts ĈAIPW
1 (H) =

µ̂AIPW(K) (H)− µ̂AIPW(K−1) (H) and ĈAIPW
2 (H) = µ̂AIPW(K) (H)− µ̂AIPW(1) (H).
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For continuous outcomes, a simple and oftentimes reasonable µ̂a(H) can be obtained

as the regression estimator µ̂RGa (H) from a parametric linear model with coefficients

dependent on treatment:

E(Y |A,H) =
K∑
a=1

(β>a Ha)I(A = a), (3.5)

where Ha, a = 1, . . . , K, are (potentially treatment dependent) summaries of the

history H with the addition of a constant, or intercept, term, and βa is a parameter

vector for Ha under treatment a. For binary and count outcomes, it is straightforward

to extend the method by using generalized linear models. For survival outcomes

with non-informative censoring, one may use an accelerated failure time model to

predict survival time for all patients. Survival outcomes with more complex censoring

issues are beyond the scope of this study. The propensity score can be estimated via

multinomial logistic regression (Menard , 2002). A working model could include all

variables in H as linear main effect terms. Summary variables or interaction terms

may also be included based on scientific knowledge.

3.2.3 ACWL with T > 1

The method proposed in Section 3.2.2 can be generalized to a multi-stage situation by

estimating the treatment effect ordering and adaptive contrasts and applying weighted

classification at each stage. Based on the idea of backward induction, we develop the

following dynamic statistical learning procedure of ACWL.

For stage T , the assumptions and the way to derive the method are the same as

in Section 3.2.2, except that we redefine the counterfactual outcome for a patient
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following regime gT as

Y ∗(A1, . . . , AT−1, gT ) =

KT∑
aT=1

Y ∗(A1, . . . , AT−1, aT )I{gT (HT ) = aT},

where Y ∗(A1, . . . , AT−1, aT ) is the counterfactual outcome for a patient treated with

aT conditional on previous treatments (A1, . . . , AT−1). Let µT,aT (HT ) denote E(Y |AT =

aT ,HT ), we have

goptT = arg max
gT∈GT

EHT

[
KT∑
aT=1

µT,aT (HT )I{gT (HT ) = aT}

]
.

For stage j, T − 1 ≥ j ≥ 1, we combined the method in Section 3.2.2 with machine

learning methods to conduct backward induction. Following Moodie et al. (2012),

the stage-specific pseudo-outcome POj for estimating treatment effect ordering and

adaptive contrasts is a predicted counterfactual outcome under optimal treatments

at all future stages, also known as the ”optimal benefit-to-go” in Murphy (2005).

Specifically, we have

POj = E
{
Y ∗(A1, . . . , Aj, g

opt
j+1, . . . , g

opt
T )
}
,

or in a recursive form,

POj = E{POj+1|Aj+1 = goptj+1(Hj+1),Hj+1}

and we set POT = Y . For aj = 1, . . . , Kj, let µj,aj(Hj) denote the conditional mean

E[POj|Aj = aj,Hj], and we have POj = µj+1,goptj+1
(Hj+1). We replace Y with POj

to apply the method in Section 3.2.2 at stage j. Specifically, let PO∗j (aj) denote

the counterfactual pseudo-outcome for a patient with treatment aj at stage j. We

have the consistency assumption as POj =
∑Kj

aj=1 PO
∗
j (aj)I(Aj = aj), NUCA as
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{PO∗j (1), . . . , PO∗j (Kj)} |= Hj and the positivity assumption as πaj(Hj) = Pr(Aj =

aj|Hj) being bounded away from zero. With these three assumptions, we identify

the optimal regime directly following Section 3.2.2 and get goptj among all potential

regimes Gj as

goptj = arg max
gj∈Gj

EHj

 Kj∑
aj=1

µj,aj(Hj)I{gj(Hj) = aj}

 ,
or equivalently,

goptj = arg min
gj∈Gj

EHj

Kj−1∑
aj=1

{µj,(K)(Hj)− µj,(a)(Hj)}I{gj(Hj) = laj(Hj)}

 , (3.6)

where µj,(1)(Hj) ≤ . . . ≤ µj,(K)(Hj) denote the treatment effect ordering and the

order laj(Hj) means µj,(aj)(Hj) = µj,laj (Hj).

Again, the optimization problem (3.6) is complicated by the multiple treatment com-

parisons. Therefore, we incorporate the adaptive contrasts as in Section 3.2.2 for each

stage. Specifically, the adaptive contrasts are Cj,1(Hj) = µj,(K)(Hj) − µj,(K−1)(Hj)

and Cj,2(Hj) = µj,(K)(Hj)−µj,(1)(Hj), which indicate respectively, the minimum and

the maximum expected losses in the pseudo-outcome, if a patient does not receive the

optimal treatment at stage j. Via the adaptive contrasts, we transform the problem of

optimization with multiple treatment comparisons to a simpler weighted classification

problem.

We start the estimation with stage T and conduct backward induction. Our ACWL

algorithm starting with stage j = T is carried out as follows:

Step 1: Fit regression model (3.5) with pseudo-outcome POj to obtain regression-

based conditional mean estimator µ̂RGj,aj(Hj).
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Step 2: Fit the propensity score model to obtain π̂j,aj(Hj).

Step 3: Calculate AIPW-based conditional mean estimator µ̂AIPWj,aj
(Hj) using µ̂RGj,aj(Hj)

and π̂j,aj(Hj) as in (3.4).

Step 4: Calculate the AIPW-based working orders l̂AIPWj,aj
(Hj) and adaptive con-

trasts ĈAIPW
j,1 (Hj) and ĈAIPW

j,2 (Hj) using µ̂AIPWj,aj
(Hj).

Step 5: Take l̂AIPWj,K (Hj) as the class label, and ĈAIPW
j,1 (Hj) and ĈAIPW

j,2 (Hj) as

the weights to solve problems (3.2) and (3.3) using existing classification

techniques.

Step 6: If j > 1, set j = j − 1 and repeat steps 1 to 6. If j = 1, stop.

When the outcome is cumulative (e.g., the sum of longitudinally observed values

or a single continuous final outcome), we modify the pseudo-outcomes to reduce

accumulated bias from the conditional mean models, following Huang et al. (2015).

For stage j, T − 1 ≥ j ≥ 1, instead of using only the model-based values under

optimal future treatments, i.e., µj+1,goptj+1
(Hj+1), we use the actual observed outcomes

plus the expected future loss due to sub-optimal treatments. Specifically, the modified

pseudo-outcome is

PO
′

j = PO
′

j+1 + µj+1,goptj+1
(Hj+1)− µj+1,aj+1

(Hj+1),

where aj+1 is the treatment that a patient actually received at stage j + 1, and

µj+1,goptj+1
(Hj+1)− µj+1,aj+1

(Hj+1) is the expected loss due to sub-optimal treatments

at stage j + 1 for a given patient, which is zero if goptj+1(Hj+1) = aj+1 and positive

otherwise. Again we set PO′T = Y . This modification leads to more robustness

against model misspecification and is less likely to accumulate bias from stage to

stage during backward induction (Huang et al., 2015).
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3.3 Simulation Studies

We conduct simulation studies to evaluate the performance of our proposed method

in two aspects. First, we need to evaluate whether ĝopt estimated through weighted

classification with adaptive contrasts is close enough to the truth in numerical stud-

ies. Second, we aim to show the robustness of our methods with different levels of

model misspecification. To achieve this, we purposely set all regression models µ to

be misspecified, as is the case for most real data applications, and let the propen-

sity model π be either correctly (e.g., randomized trials) or incorrectly (e.g., most

observational studies) specified. We consider a single-stage scenario as in Section

3.2.2 and a multi-stage scenario as in Section 3.2.3, each with 500 replications. For

both scenarios, we generate five baseline covariates X1, . . . , X5 according to N(0, 1),

and set the expected counterfactual outcome under the optimal treatment regime,

i.e., E{Y ∗(gopt)}, to be 8. We use CART to minimize the weighted misclassification

error, which is implemented by the R package rpart.

3.3.1 Scenario 1: T = 1 and K = 5

In Scenario 1, we consider a single stage with five treatment options and sample size of

1000. We generate treatment A from Multinomial(π0/πs, π1/πs, π2/πs, π3/πs, π4/πs),

with π0 = 1, π1 = exp(0.5 − 0.5X1), π2 = exp(0.5X1 + 0.2), π3 = exp(0.5X5 + 0.1),

π4 = exp(0.5X5− 0.1), and πs =
∑4

m=0 πm. We set A to take values in {0, . . . , 4} and

generate outcomes as

Y = exp[2.06 + 0.2X3 − |X1 +X2|ϕ{A, gopt(H)}] + ε,
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with ϕ{A, gopt(H)} taking the form of ϕ(1) = 3I{A 6= gopt(H)} or ϕ(2) = {A −

gopt(H)}2, gopt(H) = I(X1 > −1){1 + I(X2 > −0.4) + I(X2 > 0.4) + I(X2 > 1)} and

ε ∼ N(0, 1).

The function ϕ{A, gopt(H)} indicates the penalty if a patient does not receive the

optimal treatment. Given ϕ(1), misclassification to any of the four sub-optimal treat-

ments leads to the same expected loss in the outcome for a given patient, which

means that all K − 1 contrasts in (3.1) are actually the same for that patient. In

this case, (3.2) and (3.3) are both identical to gopt and we expect them to have good

performances. With ϕ(2), we consider a more common situation where the differences

among treatments vary, and misclassification to a treatment closer to the optimal one

leads to a smaller expected loss in the outcome. In this case, the K − 1 contrasts are

not all the same and therefore, (3.2) and (3.3) are not identical to gopt. Simulation

studies under ϕ(1) and ϕ(2) investigate the performance of ACWL and see how close

(3.2) and (3.3) are tending to gopt. Under each form of ϕ{A, gopt(H)}, we further

assess the robustness of our method. By using linear regression, we have a misspeci-

fied conditional mean model. For the propensity score, we consider both a correctly

specified model log(πd/π0) = β0d + β1dX1 + β2dX5, d = 1, . . . , 4, and an incorrectly

specified one log(πd/π0) = β0d.

We apply the proposed ACWL algorithm to each simulated dataset and denote the

methods using the two adaptive contrasts as ACWL-C1 and ACWL-C2, respectively.

For comparison, we use the regression-based conditional mean models directly to infer

the optimal DTRs and we denote this method as RG. We also use the contrasts and

orders estimated from the conditional mean models to apply weighted classification

(3.2) and (3.3), and denote these two methods as RG-C1 and RG-C2. Furthermore,

we apply the OWL method by Zhao et al. (2012) with CART.

Table 3.1 summarizes the performances of all methods considered in Scenario 1, in
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Table 3.1: Simulation results for Scenario 1 in Chapter III with a single stage and five
treatment options. π is the propensity score model. ϕ(1) and ϕ(2) indicate
equal and varying penalties for misclassification. opt% shows the empirical
mean and standard deviation (SD) of the percentage of subjects correctly
classified to their optimal treatments. Ê{Y ∗(ĝopt)} shows the empirical
mean and SD of the expected counterfactual outcome obtained using the
true outcome model and the estimated optimal regime. E{Y ∗(gopt)} = 8,
500 replications, and n = 1000.

π Method
ϕ(1) ϕ(2)

opt% Ê{Y ∗(ĝopt)} opt% Ê{Y ∗(ĝopt)}

-
RG 58.1 (2.6) 5.39 (0.17) 59.5 (3.8) 5.99 (0.25)

RG-C1 55.1 (4.1) 5.20 (0.29) 58.2 (6.0) 6.00 (0.37)
RG-C2 55.7 (3.8) 5.24 (0.29) 58.4 (5.7) 6.00 (0.34)

Correct
OWL 83.2 (9.2) 6.92 (0.60) 74.6 (11.6) 6.80 (0.56)

ACWL-C1 94.2 (3.5) 7.69 (0.21) 88.7 (5.5) 7.60 (0.22)
ACWL-C2 90.4 (6.1) 7.38 (0.40) 86.4 (8.4) 7.36 (0.38)

Incorrect
OWL 60.0 (13.8) 5.57 (0.89) 52.0 (11.0) 5.89 (0.65)

ACWL-C1 92.5 (4.1) 7.60 (0.23) 84.2 (6.7) 7.47 (0.24)
ACWL-C2 90.2 (6.0) 7.37 (0.38) 85.6 (8.2) 7.35 (0.36)

terms of the percentage of subjects correctly classified to their optimal treatments,

denoted as opt%, and the expected counterfactual outcome obtained using the true

outcome model and the estimated optimal regime, denoted as Ê{Y ∗(ĝopt)}. opt%

shows how likely the estimated optimal regime is to assign a new patient to his or

her real optimal treatment and Ê{Y ∗(ĝopt)} shows how much the entire population

of interest will benefit from following ĝopt. The regression-based methods RG, RG-C1

and RG-C2 have relatively poor performances since the conditional mean model is

misspecified. They classify 55 ∼ 59% patients to their optimal treatments, resulting

in a Ê{Y ∗(ĝopt)} much smaller than the true value of 8. OWL has relatively good

performance only when the propensity score model is correctly specified, as expected,

and it is the least efficient among all methods considered with large empirical standard

deviations (SDs) for both opt% and Ê{Y ∗(ĝopt)}. Our proposed method classifies over

84% patients to their optimal treatments in all cases and achieves Ê{Y ∗(ĝopt)} close
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to 8. ACWL is highly robust against model misspecification with only slight decrease

in performance from using a correctly specified propensity score model to using an

incorrectly specified one. Under ϕ(1) when all K−1 contrasts are the same, both (3.2)

and (3.3) are equal to gopt and thus yield satisfactory opt% and Ê{Y ∗(ĝopt)}. From

ϕ(1) to ϕ(2), the regression-based methods show improved Ê{Y ∗(ĝopt)} despite similar

opt%, indicating higher sensitivity to subjects with larger contrasts given varying

expected losses due to sub-optimal treatments. Although K − 1 contrasts are not

all the same under ϕ(2), ACWL-C1 and ACWL-C2 show very slight deterioration in

opt% and Ê{Y ∗(ĝopt)}, compared to the results under ϕ(1), and are still much better

than the other methods. These results confirm the feasibility of estimating gopt via

ACWL with adaptive AIPW contrasts.

3.3.2 Scenario 2: T = 2 and K1 = K2 = 3

In this section, we generate data under a two-stage DTR with three treatment options

at each stage. We consider the outcome of interest as the sum of the rewards from

each stage, i.e., Y = R1 + R2, and set ϕ to be the form as ϕ(2) in Scenario 1. We

evaluate the performance of our proposed method given a misspecified conditional

mean model through linear regression, while allowing the propensity score models to

be either correctly or incorrectly specified. Furthermore, since we apply CART for

classification, we consider both a tree-type underlying optimal DTR and a non-tree-

type one. We consider sample sizes of 500 and 1000.

Treatment variables are set to take values in {0, 1, 2} at each stage. For stage 1, we

generate A1 from Multinomial(π10, π11, π12), with π10 = 1/{1 + exp(0.5 − 0.5X3) +

exp(0.5X4)}, π11 = exp(0.5− 0.5X3)/{1 + exp(0.5− 0.5X3) + exp(0.5X4)} and π12 =
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1− π10 − π11. We generate stage 1 reward as

R1 = exp[1.5− |1.5X1 + 2|{A1 − gopt1 (H1)}2] + ε1,

with tree-type gopt1 (H1) = I(X1 > −1){I(X2 > −0.5)+I(X2 > 0.5)} or non-tree-type

gopt1 (H1) = I(X1 > −0.5){1 + I(X1 −X2 > 0)}, and ε1 ∼ N(0, 1).

For stage 2, we have treatment A2 ∼ Multinomial(π20, π21, π22), with π20 = 1/{1 +

exp(0.2R1−1)+exp(0.5X4)}, π21 = exp(0.2R1−1)/{1+exp(0.2R1−1)+exp(0.5X4)}

and π22 = 1− π20 − π21. We generate stage 2 reward as

R2 = exp[1.26− |1.5X3 − 2|{A2 − gopt2 (H2)}2] + ε2,

with tree-type gopt2 (H2) = I(X3 > −1){I(R1 > 0.5) + I(R1 > 3)} or non-tree-type

gopt2 (H2) = I(X3 > 0) + I(X3 +R1 > 2.5), and ε2 ∼ N(0, 1).

We apply the proposed ACWL algorithm with the modified pseudo-outcome to each

simulated dataset. For comparison, we use the regression-based conditional mean

models directly to infer the optimal DTR, which is Q-learning. We also apply the

backward OWL (BOWL) method by Zhao et al. (2015) with CART. As BOWL

does not involve outcome regression models, only subjects whose observed treatments

are optimal at stage 2 can be used for identifying the optimal regime at stage 1,

resulting in a significantly reduced sample size. Therefore, we also consider BOWL

combined with Q-learning, denoted as BOWL-Q. Basically, at stage 1, we use the

conditional mean model from Q-learning to predict the pseudo-outcome for patients

whose observed treatments are not optimal at stage 2 and then apply OWL using all

subjects to identify the optimal regime.

Results for Scenario 2 are shown in Table 3.2. The regression-based conditional mean
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models explain about 34% of the total variance at stage 2 and 20% of the total

variance at stage 1. Q-learning is relatively stable with different sample sizes while

all classification-based methods show clear improvement with an increased sample

size. The two OWL methods are the least efficient with large empirical SDs. BOWL-

Q has higher opt% and Ê{Y ∗(ĝopt)} but also larger variability than BOWL, implying

a bias and variance trade-off by incorporating misspecified but informative regression

models. Similarly as in Scenario 1, ACWL has the best performance among all

methods considered with average opt% over 80% and Ê{Y ∗(ĝopt)} closest to 8 in all

cases. ACWL is also very robust against misspecification of the propensity score

model while BOWL and BOWL-Q have significant deterioration in performance with

a misspecified propensity score model. From a tree-type underlying optimal DTR

to a non-tree-type one, all CART-based methods show worse performance. For our

proposed method, opt% decreases by approximately 10% and Ê{Y ∗(ĝopt)} drops 0.3 ∼

0.6, yet still much better than all the other methods. Figures 3.1 and 3.2 further shows

how the methods perform in predicting the optimal treatments for new subjects with

correctly specified propensity score models, sample size of 1000 and the underlying

optimal DTR being tree-type and non-tree-type, respectively. We only present the

results from ACWL-C2 given the similarity between ACWL-C1 and ACWL-C2. In

Figure 3.1, ACWL leads to clear differentiation of the three regions, which matches

the true underlying DTR, while in Figure 3.2, there are more misclassified cases near

the borders, likely due to the use of CART for the non-tree-type underlying DTR.

In both figures, ACWL shows superior performances compared to Q-learning and

BOWL.

Notably, in both single-stage and multi-stage scenarios, ACWL is robust and efficient

compared to the other methods, even with misspecified models for both outcome and

propensity score. This may be due to the following reasons. First, the treatment

effect ordering and adaptive contrasts are constructed using the doubly robust AIPW
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estimator. Second, we utilize the flexible weighted classification, instead of using the

orders and contrasts directly, to estimate the optimal DTR, which further improves

robustness. Comparing ACWL-C1 and ACWL-C2, we do not have a clear conclusion

on which one is better. We suggest implementing both and choosing the optimal DTR

by taking the common part or by incorporating background knowledge. Additional

simulation studies can be found in the Appendix A, which lead to a similar conclusion.

ACWL becomes less efficient with more treatment options or more stages but still

performs much better than the other competing methods.

3.4 Application to the Esophageal Cancer Example

As a further illustration, we apply ACWL to the esophageal cancer data collected

by MD Anderson Cancer Center from 1998 to 2012. At baseline, we have n =

1170 patients with about 90% at overall cancer stage II or III (Byrd et al., 2010).

The general disease management strategy is chemotherapy or chemoradiation therapy

(CRT) followed by surgery (Lloyd and Chang , 2014).

Figure 3.3 shows the two-stage disease management before surgery in our observa-

tional data. At baseline, all patients had records of basic characteristics and disease

status, including a total 11 covariates, denoted by X1 = (X1,1, . . . , X1,11)
>. At treat-

ment stage 1, about 40% of the patients received induction chemotherapy (ICT),

denoted by A1 with YES for treated and NO for untreated. Tumor response was

measured right before treatment stage 2, denoted as X2, which is an intermediate

variable. X2 takes values from 0 to 5 with 0 being progression and 5 being complete

response, compared to baseline tumor measures. At stage 2, all patients received CRT

with one of three radiation modalities: 3D conformal radiotherapy (3DCRT, 39% of

the total patients), intensity-modulated radiation therapy (IMRT, 45%) and proton
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therapy (PT, 16%). We use A2 to denote the stage 2 treatment variable. After CRT,

tumor response and development of new lesions were measured within three months

(before surgery), denoted as R3,1 (same scale as X2) and R3,2 (0 for development of

new lesions and 1 for none), respectively. We focus on these two stages to estimate

the optimal DTR to decide whether a patient should receive ICT at stage 1 and what

radiation modality should be used for CRT at stage 2. We define a single outcome

Y = R3,1 + 2R3,2 to measure the effectiveness of the two-stage treatments, and side

effects (e.g., nausea, anorexia and fatigue) are not included in the evaluation be-

cause most of them would go away shortly after CRT. Missing data is imputed using

IVEware (Raghunathan et al., 2002).

We apply the ACWL algorithm to the data described as above. Specifically, the

covariate and treatment history just prior to stage 2 treatment is H2 = (X1, A1, X2)

and the number of treatment options at stage 2 is K2 = 3. We fit a linear regression

model for µ2,A2(H2) as in (3.5) using Y as the outcome and all variables in H2 as

predictors that interact with A2. For the propensity score, we fit a multinomial logistic

regression model including main effects of all variables in H2. We use CART with

pruning for weighted classification. We repeat the same procedure for stage 1 except

that we have H1 = (X1,1, . . . , X1,11), K1 = 2 and P̂O
′

1 = Y + µ̂2,ĝopt2
(H2)− µ̂2,a2(H2).

We find very similar results using ACWL-C1 and ACWL-C2, and thus combine the

results by using variables that both methods identify as important (CART variable

importance ≥ 15). For stage 1, the most important variables are tumor length (mm,

continuous) and overall clinical stage (I/II vs. III/IV). For stage 2, the most important

variables are stage 1 treatment A1, intermediate tumor response X2 and baseline

tumor differentiation (well/moderate vs. poor). The estimated optimal DTR ĝopt =
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c(ĝopt1 , ĝopt2 ) is

ĝopt1 (H1) =

 YES if tumor length ≥ 36mm or stage = III/IV

NO otherwise

and

ĝopt2 (H2) =


PT if A1 = NO and tumor differentiation = poor

IMRT if A1 = YES and intermediate tumor response < 4

3DCRT otherwise

As suggested by the estimated optimal DTR, ICT is recommended at stage 1 for

patients with larger tumor or worse clinical stage, which is consistent with clinical

findings that the addition of ICT is appropriate for advanced disease with high risk

for local or distant failure (Haddad et al., 2013). Some studies have shown that ICT is

beneficial overall for both tumor control and prolonging survival (Jin et al., 2004) but

there have not been randomized trials or studies focusing on subgroups of patients.

At stage 2, our result suggests that patients who do not use ICT and have poor

tumor differentiation should use PT in CRT, patients with ICT and minor or worse

tumor response after ICT should use IMRT and all other patients should use 3DCRT.

Currently, there has not been any large trial comparing the three radiation modalities.

Some studies have shown that PT and IMRT are more efficient at targeting the tumors

and less toxic than 3DCRT (Lloyd and Chang , 2014), which may explain why our

result suggests PT or IMRT for patients with worse conditions.
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3.5 Discussion

We have proposed a robust and efficient method ACWL to estimate the optimal DTR,

which can effectively handle multiple treatment options at each stage. The adaptive

contrasts we develop at each stage simplify the problem of optimization with multiple

treatment comparisons to a dynamic weighted learning procedure, and our simula-

tions studies show that this simplification leads to excellent numerical performances.

Our method combines robust semiparametric regression estimators with flexible ma-

chine learning methods. With regression models at each stage, one can predict the

future outcomes under optimal treatments for patients whose assigned treatments are

not all optimal at future stages, thus improving efficiency if the regression models are

well approximated. The doubly robust AIPW estimator and nonparametric classifi-

cation method that we utilize help improve the robustness of ACWL against model

misspecification. Therefore, our proposed method is capable of dealing with obser-

vational data. Moreover, the dynamic ACWL algorithm can be easily implemented

with existing regression and classification methods.

Several improvements and extensions can be explored in future studies. Generalizing

the ACWL method to handle informatively censored data is clinically meaningful as

many studies focus on prolonging patients’ survival. Goldberg and Kosorok (2012) has

developed a method within the Q-learning framework by using inverse-probability-

of-censoring weighting (IPCW). With ACWL, one may combine the probability of

treatment with the probability of censoring in the AIPW estimator. Due to the

flexibility in the ACWL algorithm, many other machine learning methods can be

considered, for both the classification part (e.g., SVM or other tree-based learning

methods) and the backward induction part (e.g., A-learning). Moreover, with high

dimensional data, one can incorporate variable selection at each stage for the con-

ditional mean models. In addition, it may be of great practical interest to explore
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generalization of ACWL with continuous treatment options, such as radiation dose.
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CHAPTER IV

Tree-based Reinforcement Learning for Estimating

Optimal Dynamic Treatment Regimes

4.1 Introduction

Nowadays personalized medicine has become a popular concept in health care. Many

clinical and intervention scientists are working on treatment optimization to account

for patients’ heterogeneity in response to treatments as well as the progressive na-

ture of many chronic diseases and conditions. Dynamic treatment regimes (DTRs)

(Robins , 1986, 1997, 2004; Murphy , 2003; Chakraborty and Murhpy , 2014), as se-

quential treatment decision rules, mathematically generalize personalized medicine

to focus simultaneously on treatment individualization and adaptation over time.

The identification of optimal DTRs offers an effective vehicle for personalized man-

agement of diseases, and helps physicians tailor the treatment strategies dynamically

and individually based on clinical evidence, providing a key foundation for better

health care (Wagner et al., 2001). However, it is challenging to identify optimal

DTRs in a multi-stage treatment setting due to the complex relationships between

the alternating sequences of time-varying treatments and clinical outcomes. Diverse

statistical methods have been developed including marginal structural models with
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inverse probability weighting (IPW) (Robins , 2000; Hernán et al., 2001; Wang et al.,

2012), G-estimation of structural nested mean models (Robins , 1986, 1989, 1997)

and its generalizations (Murphy , 2003; Robins , 2004), targeted maximum likelihood

estimators (van der Laan and Rubin, 2006), and likelihood-based approaches (Thall

et al., 2007).

Machine learning methods have become popular alternative approaches for estimating

optimal DTRs. In particular, the problem of multi-stage decision-making has strong

resemblance to reinforcement learning (RL), which is a branch of machine learning

(Chakraborty and Moodie, 2013). Unlike supervised learning (SL) (e.g., regression and

classification), the desired output value or the optimal decision, known as label, is not

observed in RL, and the learning agent has to keep interacting with the environment

to learn the best policy for decision-making. In the observational data with dynamic

decisions, each patient only receives one treatment at a stage, which may not be the

optimal decision, and such data are usually expensive and perhaps time-consuming

to obtain. Therefore, one oftentimes has to apply parametric or semiparametric

methods and pool over subject-level data to estimate the optimal DTR. This type

of RL that works with one sample of data is called batch-mode RL (Ernst et al.,

2005), which is typical in a medical setting. Commonly employed batch-mode RL

methods include Q-learning (Watkins and Dayan, 1992; Sutton and Barto, 1998) and

A-learning (Murphy , 2003; Schulte et al., 2014), both of which use backward induction

(Bather , 2000). Q- and A-learning rely on maximizing or minimizing an objective

function to indirectly infer the optimal DTRs and thus emphasize prediction accuracy

of the clinical response model instead of directly optimizing the decision rule (Zhao

et al., 2012). In addition to RL methods, Zhao et al. (2015) propose outcome weighted

learning (OWL) to convert the optimal DTR problem into an either sequential or

simultaneous classification problem, and then apply SL methods such as support

vector machines (SVM) (Cortes and Vapnik , 1995). However, OWL is susceptible
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to trying to retain the actually observed treatments and its estimated individualized

treatment rule is affected by a simple shift of the outcome (Zhou et al., 2015). OWL is

also susceptible to the misspecification of propensity score models since it is based on

IPW. Moreover, most existing methods, including A-learning and OWL, are limited

to binary treatment options. To deal with multi-stage multi-treatment decisions in

a robust way, Tao and Wang (2016) propose adaptive contrast weighted learning

(ACWL) which combines doubly robust augmented IPW (AIPW) estimators with

classification algorithms. ACWL is another example of converting batch-mode RL

into SL. Unlike OWL which uses the observed treatment as label, ACWL identifies

label according to the treatment effect ordering estimated by AIPW. Nonetheless, the

conversion from batch-mode RL to SL may induce additional uncertainty through

the identification of label. ACWL also avoids the challenging multiple treatment

comparisons by utilizing adaptive contrasts, which may not the most efficient way

despite superior performances to all other existing methods.

In this paper, we aim to develop a batch-mode RL method without the hassle of

conversion to SL and to directly handle the problem of optimization with multiple

treatment comparisons. As an example for a single-stage decision problem, Laber and

Zhao (2015) propose a novel tree-based method, which we denote as LZ, to directly

estimate optimal treatment regimes in a multi-treatment setting. Typically, a deci-

sion tree is a SL method that uses tree-like graphs or models to map observations

about an item to conclusions about the item’s target value, for example, the classi-

fication and regression tree (CART) algorithm by Breiman et al. (1984). LZ fits the

batch-mode RL task into a decision tree with a purity measure that is unsupervised,

and meanwhile maintains the advantages of a decision tree, such as simplicity for

understanding and interpretation, and capability of handling various types of data

(e.g., continuous or categorical) without distributional assumptions. However, similar

to OWL, LZ is also susceptible to propensity model misspecification.
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ACWL and LZ have inspired us to develop a tree-based RL (T-RL) algorithm that

enjoys the advantages of both existing methods. In summary, T-RL has the following

strengths. 1) Through the use of decision trees, T-RL is capable of handling multi-

nomial or ordinal treatments. T-RL incorporates multiple treatment comparisons

directly, while ACWL relies on the simplification by adaptive contrasts that indi-

cate the minimum or maximum expected loss in the outcome given any sub-optimal

treatment. Moreover, T-RL maintains the nature of RL without the extra step of

conversion to SL as in ACWL. Therefore, we expect T-RL to perform better than

ACWL given a tree-type underlying DTR. 2) We replace the IPW estimators in LZ

with AIPW estimators. Similar to ACWL, we expect T-RL to be robust and efficient

by combining robust semiparametric regression estimators with nonparametric ma-

chine learning methods. 3) T-RL works for multiple fixed treatment stages by using

backward induction, as opposed to a single stage in LZ.

The remainder of this paper is organized as follows. In Section 4.2, we formalize the

problem of estimating the optimal DTR in a multi-stage multi-treatment setting using

the counterfactual framework, derive purity measures for decision trees at multiple

stages and describes the recursive tree growing process. The performance of our

proposed method in various scenarios is evaluated by simulation studies in Section

4.3. We further illustrate our method in Section 4.4 using a case study to identify

dynamic substance abuse treatment regimes for adolescents. Finally, we conclude

with some discussions and suggestions for future research in Section 4.5.
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4.2 Tree-based Reinforcement Learning (T-RL)

4.2.1 Dynamic Treatment Regimes (DTRs)

Consider a multi-stage decision problem with T decision stages and Kj (Kj ≥ 2)

treatment options at the jth (j = 1, . . . , T ) stage. Data could come from either a

randomized trial or an observational study. Let Aj denote the multi-categorical or

ordinal treatment indicator with observed value aj ∈ Aj = {1, . . . , Kj}. Let Xj

denote the vector of patient characteristics history just prior to treatment assignment

Aj, and XT+1 denote the entire characteristics history up to the end of stage T . Let

Rj be the reward following Aj, which depends on the precedent covariate history Xj

and treatment history A1, . . . , Aj, and is also a part of the covariate history Xj+1.

We consider the overall outcome of interest as Y = f(R1, . . . , RT ), where f(·) is a

prespecified function (e.g., sum), and we assume that Y is bounded and preferable

with larger values. The observed data are {(A1i, . . . , AT i,X
>
T+1,i, Yi)}ni=1, assumed

to be independent and identically distributed for n subjects from a population of

interest. For brevity, we suppress the subject index i in the following text when no

confusion exists.

A DTR is a sequence of individualized treatment rules, g = (g1, . . . , gT ), where gj is

a map from the domain of covariate and treatment history Hj = (A1, . . . , Aj−1,X
>
j )>

to the domain of treatment assignment Aj, and we set A0 = ∅. To define and iden-

tify the optimal DTR, we consider the counterfactual framework for causal inference

(Robins , 1986). At stage T , let Y ∗(A1, . . . , AT−1, aT ), or Y ∗(aT ) for brevity, denote

the counterfactual outcome for a patient treated with aT ∈ AT conditional on pre-

vious treatments (A1, . . . , AT−1), and define Y ∗(gT ) as the counterfactual outcome
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under regime gT , i.e.,

Y ∗(gT ) =

KT∑
aT=1

Y ∗(aT )I{gT (HT ) = aT}.

The performance of gT is measured by the counterfactual mean outcome E{Y ∗(gT )},

and the optimal regime, goptT , satisfies E{Y ∗(goptT )} ≥ E{Y ∗(gT )} for all gT ∈ GT ,

where GT is the class of all potential regimes. To connect the counterfactual outcomes

with the observed data, we make the following three standard assumptions (Murphy

et al., 2001; Robins and Hernán, 2009; Orellana et al., 2010a).

Assumption 1 Consistency. The observed outcome is the same as the counterfactual

outcome under the treatment a patient is actually given, i.e., Y =∑KT

aT=1 Y
∗(aT )I(AT = aT ), where I(·) is the indicator function that

takes the value 1 if · is true and 0 otherwise. It also implies that there

is no interference between subjects.

Assumption 2 No unmeasured confounding. Treatment AT is randomly assigned with

probability possibly dependent on HT , i.e.,

{Y ∗(1), . . . , Y ∗(KT )} |= AT |HT ,

where |= denotes statistical independence.

Assumption 3 Positivity. There exists constants 0 < c0 < c1 < 1 such that, with

probability 1, the propensity score πaT (HT ) = Pr(AT = aT |HT ) ∈

(c0, c1).

Following the derivation in Tao and Wang (2016) under the three assumptions, we
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have

E{Y ∗T (gT )} = EHT

[
KT∑
aT=1

E(Y |AT = aT ,HT )I{gT (HT ) = aT}

]
,

where EHT
(·) denotes expectation with respect to the marginal joint distribution of

HT . If we denote the conditional mean E(Y |AT = aT ,HT ) as µT,aT (HT ), we have

goptT = arg max
gT∈GT

EHT

[
KT∑
aT=1

µT,aT (HT )I{gT (HT ) = aT}

]
. (4.1)

At stage j, T − 1 ≥ j ≥ 1, goptj can be expressed in terms of the observed data

via backward induction (Bather , 2000). Following Murphy (2005) and Moodie et al.

(2012), we define a stage-specific pseudo-outcome POj for estimating goptj , which is a

predicted counterfactual outcome under optimal treatments at all future stages, also

known as the value function. Specifically, we have

POj = E
{
Y ∗(A1, . . . , Aj, g

opt
j+1, . . . , g

opt
T )
}
,

or in a recursive form,

POj = E{POj+1|Aj+1 = goptj+1(Hj+1),Hj+1}

and we set POT = Y .

For aj = 1, . . . , Kj, let µj,aj(Hj) denote the conditional mean E[POj|Aj = aj,Hj],

and we have POj = µj+1,goptj+1
(Hj+1). Let PO∗j (aj) denote the counterfactual pseudo-

outcome for a patient with treatment aj at stage j. For the three assumptions, we

have positivity as POj =
∑Kj

aj=1 PO
∗
j (aj)I(Aj = aj), no unmeasured confounding

as {PO∗j (1), . . . , PO∗j (Kj)} |= Hj and positivity as πaj(Hj) = Pr(Aj = aj|Hj) being

bounded away from zero. Under these three assumptions, the optimization problem
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at stage j, among all potential regimes Gj, can be written as

goptj = arg max
gj∈Gj

EHj

 Kj∑
aj=1

µj,aj(Hj)I{gj(Hj) = aj}

 . (4.2)

4.2.2 Purity Measures for Decision Trees at Multiple Stages

We propose to use a tree-based method to solve (4.1) and (4.2). Typically, a CART

tree is a binary decision tree constructed by splitting a parent node into two child

nodes repeatedly, starting with the root node which contains the entire learning sam-

ples. The basic idea of tree growing is to choose a split among all possible splits

at each node so that the resulting child nodes are the purest. Thus the purity or

impurity measure is crucial to the tree growing. Traditional classification and re-

gression trees are supervised learning methods, with the goal of inferring a function

that describes the relationship between the outcome and covariates. The outcome,

also known as label, is the observed truth and can be used directly to measure pu-

rity. Commonly used impurity measures include Gini index and information index for

categorical outcomes, and least squares deviation for continuous outcomes (Breiman

et al., 1984).

However, the estimation target of a DTR problem, which is the optimal treatment for

a patient with characteristics Hj at stage j, i.e., goptj (Hj), j = 1, . . . , T , is not directly

observed. Information about goptj (Hj) can only be inferred indirectly through the

observed treatments and outcomes. Using the causal framework and the foregoing

three assumptions, we can pool over all subject-level data to estimate the expected

counterfactual outcomes given all possible treatments. With the overall goal of max-

imizing the counterfactual mean outcome in the entire population of interest, the

selected split at each node should also improve the counterfactual mean outcome,
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which can serve as a measure of purity in DTR trees. Figure 4.1 shows a decision tree

for a single-stage optimal treatment rule with A = {0, 1, 2}. Let Ωm,m = 1, 2, . . . ,

denote the nodes which are regions defined by the covariate space following all prece-

dent binary splits, with the root node Ω1 = Rp. We number the rectangular region

Ωm,m ≥ 2, so that its parent node is Ωdm/2e, where d·e means taking the smallest

integer not less than ·. Figure 4.1 shows the chosen covariate and best split at each

node, as well as the expected counterfactual outcome after assigning a single optimal

treatment to that node. The splits are selected to increase the counterfactual mean

outcome. At the root node, if we select a single treatment for all subjects, treat-

ment 1 is the most beneficial overall, yielding a counterfactual mean outcome of 0.7.

Splitting via X1 and X2, the optimal regime gopt is to assign treatment 2 to region

Ω3 = {X1 > 0}, treatment 0 to region Ω4 = {X1 ≤ 0, X2 ≤ 0.5}, and treatment 1 to

region Ω5 = {X1 ≤ 0, X2 > 0.5}. We can see that this tree is fundamentally different

from a CART tree as it does not attempt to describe the relationship between the

outcome and covariates or the rule for the assignment of the observed treatments,

and instead it describes the rule by which treatments should be assigned to future

subjects in order to maximize purity.

Laber and Zhao (2015) propose a measure of node purity based on the IPW estimator

of the counterfactual mean outcome (Zhang et al., 2012a; Zhao et al., 2012),

E{Y ∗(g)} = EH

[
I(A = g(H))

πA(H)
Y

]
,

for a single-stage (T = 1) decision problem. They assume that the propensity score

πA(H) is known, and propose a purity measure PLZ(Ω, ω) as

maxa1,a2∈A Pn
[
{Y−m̂(H)}I{A=gω,a1,a2 (H)}

πA(H)
I(H ∈ Ω)

] (
Pn
[
I{A=gω,a1,a2 (H)}

πA(H)
I(H ∈ Ω)

])−1
,
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where Pn is the empirical expectation operator, m̂(H) = maxa∈A µ̂a(H), Ω denotes

the node to be split, ω and ωc is a partition of Ω, and for a given partition ω and

ωc, gω,a1,a2 denotes the decision rule that assigns treatment a1 to subjects in ω and

treatment a2 to subjects in ωc. However, in an observational study where πA(H) is

unknown, PLZ(Ω, ω) is subject to misspecification of the propensity model.

To improve robustness, we propose to use an AIPW estimator for the counterfactual

mean outcome as in Tao and Wang (2016). By regarding the K treatment options

as K arbitrary missing data patterns (Rotnitzky et al., 1998), the AIPW estimator

for E{Y ∗(a)} is Pn{µ̂AIPWa (H)}, with

µ̂AIPWa (H) =
I(A = a)

π̂a(H)
Y +

{
1− I(A = a)

π̂a(H)

}
µ̂a(H). (4.3)

Lemma 1 (Double Robustness). Pn{µ̂AIPWa (H)} is a consistent estimator of E{Y ∗(a)}

if either the propensity model πa(H) or the conditional mean model µa(H) is correctly

specified.

In our multi-stage setting, for stage T , given estimated conditional mean µ̂AIPWT,aT
(HT )

and estimated propensity score π̂T,AT
(HT ), the proposed estimator for (4.1) is

ĝoptT = arg max
gT∈GT

Pn

[
KT∑
aT=1

µ̂AIPWT,aT
(HT )I{gT (HT ) = aT}

]

= arg max
gT∈GT

Pn
[
I(AT = gT (HT ))

π̂T,AT
(HT )

Y +

{
1− I(AT = gT (HT ))

π̂T,AT
(HT )

}
µ̂T,gT (HT )

]
.

For stage j (T − 1 ≤ j ≤ 1), the proposed estimator for (4.2) is

ĝoptj = arg max
gj∈Gj

Pn
[
I(Aj = gj(Hj))

π̂j,Aj
(Hj)

P̂Oj +

{
1− I(Aj = gj(Hj))

π̂j,Aj
(Hj)

}
µ̂j,gj(Hj)

]
,

where π̂j,Aj
(Hj) is the estimated propensity score, µ̂AIPWj,aj

(Hj) is the estimated con-

ditional mean, and P̂Oj = µ̂j+1,ĝoptj+1
(Hj+1) is the estimated pseudo-outcome.
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Similar to the derivation in Laber and Zhao (2015), for a given partition ω and ωc of

node Ω, let gj,ω,a1,a2 denote the decision rule that assigns treatment a1 to subjects in

ω and treatment a2 to subjects in ωc at stage j (T ≤ j ≤ 1), and we define the purity

measure as

Pj(Ω, ω) = max
a1,a2∈Aj

Pn

 Kj∑
aj=1

µ̂AIPWj,aj
(Hj)I{gj,ω,a1,a2(Hj) = aj}I(Hj ∈ Ω)

 .
We can see that Pj(Ω, ω) evaluates the performance of the best decision rule which

assigns a single treatment for each of the two arms under partition.

4.2.3 Recursive Partitioning

As we have mentioned, the purity measures for our T-RL are different from the

ones in supervised decision trees. However, after defining Pj(Ω, ω), j = 1, . . . , T , the

recursive partitioning to grow the tree is similar. Each split depends on the value

of only one covariate. A nominal covariate with C categories has 2C−1 − 1 possible

splits and an ordinal or continuous covariate with L different values has L− 1 unique

splits. Therefore, at a given node Ω, a possible split ω indicates either a subset of

categories for a nominal covariate or values no larger than a threshold for an ordinal

or continuous covariate. The best split ωopt is chosen to maximize the improvement in

the purity, Pj(Ω, ω)−Pj(Ω), where Pj(Ω) means to assign a single best treatment to

all subjects in Ω without splitting. It is straightforward to see that Pj(Ω, ω) ≥ Pj(Ω).

In order to control overfitting as well as to make meaningful splitting, a positive

constant λ is given to represent a threshold for practical significance and another

positive integer n0 is given as the minimal node size which is dictated by problem-

specific considerations. Under these conditions, we first evaluate the following three

Stopping Rules for node Ω.
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Rule 1. If the node size is less than 2n0, the node will not be split.

Rule 2. If all possible splits of a node result in a child node with size smaller than

n0, the node will not be split.

Rule 3. If the current tree depth reaches the user-specified maximum depth, the tree

growing process will stop.

If none of the foregoing Stopping Rules are met, we compute the best split by

ω̂opt = argmax
ω

[Pj(Ω, ω) : min{nPnI(Hj ∈ ω), nPnI(Hj ∈ ωc)} ≥ n0] .

Before deciding whether or not to spliti Ω into ω and ωc, we evaluate the following

Stopping Rule 4.

Rule 4. If the maximum purity improvement Pj(Ω, ω̂opt)− Pj(Ω) is less than λ, the

node will not be split.

We split Ω into ω and ωc if none of the four stopping rules apply.

When there is no clear scientific guidance on λ to indicate practical significance, one

approach is to choose a relatively small positive value to build a complete tree and then

prune the tree back in order to minimize a measure of cost for the tree. Following the

CART algorithm, the cost is a measure of the total impurity of the tree with a penalty

term on the number of terminal nodes, and the complexity parameter for the penalty

term can be tuned by cross-validation (CV) (Breiman et al., 1984). Alternatively,

we propose to select λ directly by CV, similar to the method by Laber and Zhao

(2015). As a direct measure of purity is not available in RL, we again incorporate the

idea of maximizing the counterfactual mean outcome and use a 10-fold CV estimator

of the counterfactual mean outcome. Theoretically, CV can be conducted at each
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stage separately and one can use a potentially different λ for each stage. To reduce

modeling uncertainty in the pseudo-outcomes and also simplify the process, we carry

out CV only at stage T using the overall outcome Y directly. Specifically, we use nine

subsamples as training data to estimate the function of µT,aT (·) with µ̂AIPWT,aT
(HT ) and

goptT (·) using T-RL for a given λ, and then plug in HT of the remaining subsample

to get µ̂AIPW,CVT,aT
(HT ) and ĝopt,CV,λT (HT ). We repeat the process ten times with each

subsample being the test data once. Then the CV-based counterfactual mean outcome

under λ is

Ê{Y ∗(ĝopt,CV,λT )} = Pn

[
KT∑
aT=1

µ̂AIPW,CVT,aT
(HT )I{ĝopt,CV,λT (HT ) = aT}

]
,

and the best value for λ is λ̂ = argmaxλ Ê{Y ∗(ĝopt,CV,λT )}. As the scale of the outcome

affects the scale of Pj(Ω, ω)−Pj(Ω), we search over a sequence of candidate λ’s as a

sequence of percentages of PT (Ω1), i.e., the estimated counterfactual mean outcome

under a single best treatment for all subjects (Ω1 is the root node).

4.2.4 Implementation of T-RL

The AIPW estimator µ̂AIPWj,aj
(Hj), j = 1, . . . , T, aj = 1, . . . , Kj, consists of three parts

to be estimated, the pesudo-outcome POj, the propensity score πj,aj(Hj) and the

conditional mean model µj,aj(Hj).

We start the estimation with stage T and conduct backward induction. At stage

T , we use the outcome Y directly, i.e., POT = Y . For stage j, T − 1 ≥ j ≥ 1,

given a cumulative outcome (e.g., the sum of longitudinally observed values or a

single continuous final outcome), we use a modified version of pseudo-outcomes to

reduce accumulated bias from the conditional mean models (Huang et al., 2015).

Instead of using only the model-based values under optimal future treatments, i.e.,
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µj+1,goptj+1
(Hj+1), we use the actual observed outcomes plus the expected future loss

due to sub-optimal treatments, which means

PO
′

j = PO
′

j+1 + µj+1,goptj+1
(Hj+1)− µj+1,aj+1

(Hj+1),

where aj+1 is the treatment that a patient actually received at stage j + 1, and

µj+1,goptj+1
(Hj+1)− µj+1,aj+1

(Hj+1) is the expected loss due to sub-optimal treatments

at stage j + 1 for a given patient, which is zero if goptj+1(Hj+1) = aj+1 and positive

otherwise. Given PO′T = Y , it is easy to see that

PO
′

j = Y +
T∑

t=j+1

{µt,goptt
(Ht)− µt,at(Ht)}.

This modification leads to more robustness against model misspecification and is

less likely to accumulate bias from stage to stage during backward induction (Huang

et al., 2015). In our simulations, we estimate PO
′
j by using random forests-based

conditional mean estimates (Breiman, 2001).

The propensity score πj,aj(Hj) can be estimated via multinomial logistic regression

(Menard , 2002). A working model could include linear main effect terms for all

variables in Hj. Summary variables or interaction terms may also be included based

on scientific knowledge.

The conditional mean estimate µ̂j,aj(Hj) in the augmentation term of µ̂AIPWj,aj
(Hj) can

be obtained from a parametric regression model. For continuous outcomes, a simple

and oftentimes reasonable example is the parametric linear model with coefficients

dependent on treatment:

E(P̂O
′

j|Aj,Hj) =

Kj∑
aj=1

(β>ajHj)I(Aj = aj), (4.4)
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where βa is a parameter vector for Hj under treatment aj. For binary and count out-

comes, it is straightforward to extend the method by using generalized linear models.

For survival outcomes with non-informative censoring, one may use an accelerated

failure time model to predict survival time for all patients. Survival outcomes with

more complex censoring issues are beyond the scope of the current study.

The T-RL algorithm starting with stage j = T is carried out as follows:

S tep 1. Obtain AIPW estimates µ̂AIPWj,aj
(Hj), aj = 1, . . . , Kj, using full data.

S tep 2. At root node Ωj,m,m = 1, set values for λ and n0.

S tep 3. At node Ωj,m, evaluate the four Stopping Rules. If any of the Stopping Rules

is satisfied, assign a single best treatment argmaxaj∈Aj
Pn[µ̂AIPWj,aj

(Hj)I(Hj ∈

Ωj,m)] to all subject in Ωj,m. Otherwise, split Ωj,m into child nodes Ωj,2m and

Ωj,2m+1 by ω̂opt.

S tep 4. Set m = m+ 1 and repeat Step 3 until all nodes are terminal.

S tep 5. If j > 1, set j = j − 1 and repeat steps 1 to 4. If j = 1, stop.

Similar to the CART algorithm, T-RL is greedy as it chooses splits only at the

current node for purity improvement, which may not lead to a global maximum.

One way to potentially enhance the performance is lookahead (Murthy and Salzberg ,

1995). We test this in our simulation by fixed-depth lookahead: evaluating the purity

improvement after splitting the parent node as well as its two child nodes, comparing

the total purity improvement via up to four nodes to the improvement with no split

at the parent node, and finally deciding whether or not to split the parent node. We

denote this method as T-RL-LH.
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4.3 Simulation Studies

We conduct simulation studies to investigate finite sample performance of our pro-

posed method. We set all regression models µ to be misspecified, which is the case for

most real data applications, while allowing the specification of the propensity model

π be either correct (e.g., randomized trials) or incorrect (e.g., most observational

studies). We consider first a single-stage scenario so as to facilitate the comparison

with existing methods, particularly Laber and Zhao (2015), and then a multi-stage

scenario. For each scenario, we consider sample sizes of either 500 or 1000 for the

training datasets and 1000 for the test datasets, and repeat the simulation 500 times.

We use the training datasets to estimate the optimal regime and then predict the opti-

mal treatments in the test datasets, where the underlying truth is known. We denote

the percentage of subjects correctly classified to their optimal treatments as opt%.

We also use the true outcome model and the estimated optimal regime in the test

datasets to estimate the counterfactual mean outcome, denoted as Ê{Y ∗(ĝopt)}. For

both scenarios, we generate five baseline covariates X1, . . . , X5 according to N(0, 1),

and for Scenario 1, we further consider a setting with additional covariatesX6, . . . , X20

simulated independently from N(0, 1).

4.3.1 Scenario 1: T = 1 and K = 3

In Scenario 1, we consider a single stage with three treatment options and sample size

of 500. Treatment variables are set to take values in {0, 1, 2}, and we generate A from

Multinomial(π0, π1, π2), with π0 = 1/{1+exp(0.5X1+0.5X4)+exp(−0.5X1+0.5X5)},

π1 = exp(0.5X1 + 0.5X4)/{1 + exp(0.5X1 + 0.5X4) + exp(−0.5X1 + 0.5X5)} and
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π2 = 1− π0 − π1. The underlying optimal regime is

gopt(H) =


0 X1 ≤ 0, X2 ≤ 0.5

2 X1 > 0, X3 ≤ 0.5

1 otherwise

For the outcomes, we first consider equal penalties for sub-optimal treatments through

outcome generating model (a), which is

Y = 2 +X4 +X5 +
2∑

a=0

[
I(A = a){2I(gopt = a)− 1}

]
+ ε.

Then we consider varying penalties for sub-optimal treatments through outcome gen-

erating model (b), which is

Y = 0.79+X4+X5+2I(A = 0){2I(gopt = 0)−1}+1.5I(A = 2){2I(gopt = 2)−1}+ε.

In both outcome models, we have ε ∼ N(0, 1) and E{Y ∗(gopt)} = 2.

In the application of the proposed T-RL algorithm, we consider both a correctly

specified model log(πd/π0) = β0d+β1dX1+β2dX4+β3dX5, d = 1, 2, and an incorrectly

specified one log(πd/π0) = β0d. We also apply T-RL-LH to Scenario 1 as mentioned in

Section 4.2.4. For comparison, we use both the regression-based and random forests-

based conditional mean models to infer the optimal regimes, which we denote as RG

and RF, respectively. We also apply the tree-based method LZ by Laber and Zhao

(2015). Furthermore, we apply the OWL method by Zhao et al. (2012), and the

ACWL algorithm by Tao and Wang (2016), denoted as ACWL-C1 and ACWL-C2,

where C1 and C2 indicate respectively the minimum and maximum expected loss in

the outcome given any sub-optimal treatment for each patient. Given outcome model

(a), all sub-optimal treatments have the same expected loss in the outcome and we
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Table 4.1: Simulation results for Scenario 1 in Chapter IV with a single stage, three
treatment options and five baseline covariates. π is the propensity score
model. (a) and (b) indicate equal and varying penalties for treatment mis-
classification in the generative outcome model. opt% shows the empirical
mean and standard deviation (SD) of the percentage of subjects correctly
classified to their optimal treatments. Ê{Y ∗(ĝopt)} shows the empirical
mean and SD of the expected counterfactual outcome obtained using the
true outcome model and the estimated optimal regime. E{Y ∗(gopt)} = 2,
500 replications, and n = 500.

π Method
(a) (b)

opt% Ê{Y ∗(ĝopt)} opt% Ê{Y ∗(ĝopt)}

-
RG 74.2 (2.3) 1.49 (0.07) 68.8 (4.0) 1.42 (0.09)
RF 75.3 (4.5) 1.51 (0.11) 81.1 (4.5) 1.69 (0.10)

Correct

OWL 44.3 (7.6) 0.89 (0.16) 47.1 (8.1) 0.89 (0.21)
LZ 91.5 (7.5) 1.83 (0.16) 89.4 (9.5) 1.81 (0.18)

ACWL-C1 93.7 (4.1) 1.87 (0.10) 89.1 (5.3) 1.80 (0.11)
ACWL-C2 94.7 (3.3) 1.89 (0.09) 87.8 (5.5) 1.79 (0.11)

T-RL 97.2 (3.3) 1.95 (0.08) 95.1 (5.6) 1.92 (0.11)
T-RL-LH 97.5 (3.1) 1.96 (0.08) 96.1 (4.0) 1.94 (0.08)

Incorrect

OWL 33.5 (6.0) 0.67 (0.13) 36.7 (5.7) 0.64 (0.19)
LZ 87.8 (12.0) 1.75 (0.25) 81.8 (14.7) 1.68 (0.27)

ACWL-C1 92.1 (4.7) 1.84 (0.10) 87.9 (5.6) 1.79 (0.11)
ACWL-C2 94.7 (3.4) 1.89 (0.09) 86.5 (6.1) 1.78 (0.12)

T-RL 97.9 (1.8) 1.96 (0.06) 92.9 (7.2) 1.89 (0.13)
T-RL-LH 98.3 (1.6) 1.97 (0.06) 93.7 (6.2) 1.91 (0.10)

expect ACWL to perform similarly well as T-RL. However, given outcome model

(b) when the sub-optimal treatments have different expected losses in the outcome,

we expect T-RL to perform better as it incorporates multiple treatment comparison.

Both OWL and ACWL are implemented using the R package rpart for classification.

Table 4.1 summarizes the performances of all methods considered in Scenario 1 with

five baseline covariates. T-RL-LH has the best performance among all the methods

considered, classifying over 93% of subjects to their optimal treatments. However,

lookahead has led to significant increase in computational time compared to T-RL,

while the improvement is only moderate with ≤ 1% more subjects being correctly

77



Figure 4.2: Density plots for the estimated counterfactual mean outcome in Scenario
1 of Chapter IV with varying penalties for misclassification in the gen-
erative outcome model (500 replications, n = 500). The four panels
are under correctly or incorrectly specified propensity model and five or
twenty baseline covariates.
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Table 4.2: Simulation results for Scenario 1 in Chapter IV with a single stage, three
treatment options and twenty baseline covariates. π is the propensity score
model. (a) and (b) indicate equal and varying penalties for treatment mis-
classification in the generative outcome model. opt% shows the empirical
mean and standard deviation (SD) of the percentage of subjects correctly
classified to their optimal treatments. Ê{Y ∗(ĝopt)} shows the empirical
mean and SD of the expected counterfactual outcome obtained using the
true outcome model and the estimated optimal regime. E{Y ∗(gopt)} = 2,
500 replications, and n = 500.

π Method
(a) (b)

opt% Ê{Y ∗(ĝopt)} opt% Ê{Y ∗(ĝopt)}

-
RG 66.7 (2.8) 1.34 (0.08) 63.5 (3.4) 1.30 (0.09)
RF 51.6 (5.7) 1.03 (0.13) 62.7 (5.8) 1.37 (0.12)

Correct

OWL 36.3 (4.2) 0.73 (0.10) 38.4 (5.4) 0.63 (0.17)
LZ 88.6 (9.4) 1.77 (0.20) 85.5 (0.11) 1.74 (0.21)

ACWL-C1 89.6 (5.0) 1.79 (0.11) 83.7 (6.0) 1.70 (0.13)
ACWL-C2 90.7 (4.6) 1.82 (0.11) 82.5 (6.2) 1.70 (0.13)

T-RL 96.3 (4.1) 1.93 (0.10) 91.9 (6.7) 1.86 (0.13)
T-RL-LH 96.8 (3.9) 1.94 (0.09) 92.8 (5.4) 1.89 (0.10)

Incorrect

OWL 32.6 (4.0) 0.65 (0.10) 34.5 (4.3) 0.56 (0.15)
LZ 85.9 (12.6) 1.72 (0.26) 78.4 (15.4) 1.62 (0.30)

ACWL-C1 87.8 (5.5) 1.76 (0.12) 82.6 (6.3) 1.70 (0.13)
ACWL-C2 90.8 (4.3) 1.82 (0.10) 81.7 (6.3) 1.70 (0.13)

T-RL 97.4 (2.4) 1.95 (0.07) 90.7 (7.7) 1.85 (0.14)
T-RL-LH 97.9 (2.0) 1.96 (0.07) 92.0 (6.5) 1.87 (0.11)
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classified. T-RL also has an estimated counterfactual mean outcome very close to the

true value 2. As expected, ACWL-C1 and ACWL-C2 have performances comparable

to T-RL under outcome model (a) with equal penalties for treatment misclassification,

and the performance discrepancy gets larger under outcome model (b) with varying

penalties, due to the approximation by adaptive contrasts C1 and C2. Similar results

can be found in the Appendix B. LZ, using an IPW-based decision tree, works well

only when the propensity score model is correctly specified and is less efficient than

T-RL with larger empirical standard deviations (SDs). In contrast, T-RL-LH, T-RL,

ACWL-C1 and ACWL-C2 are all highly robust to model misclassification, thanks to

the combination of doubly robust AIPW estimators and flexible machine learning

methods. OWL performs far worse than all other competing methods likely due to

the low percentage of truly optimal treatments in the observed treatments, the shift

in the outcome, which was intended to ensure positive weights, and its moderate

efficiency.

After the inclusion of more noise covariates in Table 4.1, all methods have worse

performances compared to Table 4.2, with RF suffering the most. T-RL and T-

RL-LH have the slightest decreases in opt% and Ê{Y ∗(ĝopt)}, showing satisfactory

stability against noise interference. Thanks to the built-in variable selection feature

of decision trees, LZ and ACWL with CART are also relatively stable. Figure 4.2

shows the density plots for Ê{Y ∗(ĝopt)} under outcome model (b), with each panel

showing correctly or incorrectly specified propensity model and five or twenty baseline

covariates. LZ is the least efficient method with the density plots more spread out.

T-RL has the least density in lower values of Ê{Y ∗(ĝopt)} and the highest density in

higher values.
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4.3.2 Scenario 2: T = 2 and K1 = K2 = 3

In Scenario 2, we generate data under a two-stage DTR with three treatment options

at each stage and consider sample sizes of 500 and 1000. The outcome of interest is

the sum of the rewards from each stage, i.e., Y = R1 +R2. Furthermore, we consider

both a tree-type underlying optimal DTR and a non-tree-type one.

Treatment variables are set to take values in {0, 1, 2} at each stage. For stage 1, we

generate A1 from the same model as A in Scenario 1, and generate stage 1 reward as

R1 = exp[1.5 + 0.3X4 − |1.5X1 − 2|{A1 − gopt1 (H1)}2] + ε1,

with tree-type gopt1 (H1) = I(X1 > −1){I(X2 > −0.5)+I(X2 > 0.5)} or non-tree-type

gopt1 (H1) = I(X1 > −0.5){1 + I(X1 +X2 > 0)}, and ε1 ∼ N(0, 1).

For stage 2, we have treatment A2 ∼ Multinomial(π20, π21, π22), with π20 = 1/{1 +

exp(0.2R1 − 0.5) + exp(0.5X2)}, π21 = exp(0.2R1 − 0.5)/{1 + exp(0.2R1 − 0.5) +

exp(0.5X2)} and π22 = 1− π20 − π21. We generate stage 2 reward as

R2 = exp[1.18 + 0.2X2 − |1.5X3 + 2|{A2 − gopt2 (H2)}2] + ε2,

with tree-type gopt2 (H2) = I(X3 > −1){I(R1 > 0) + I(R1 > 2)} or non-tree-type

gopt2 (H2) = I(X3 > −0.5){1 + I(X3 +R1 > 2)}, and ε2 ∼ N(0, 1).

We apply the proposed T-RL algorithm with the modified pseudo-outcomes. For

comparison, we use the regression-based conditional mean models directly to infer the

optimal regimes, which is Q-learning. We also apply the backward OWL (BOWL)

method by Zhao et al. (2015) and the ACWL algorithm, both of which are imple-

mented using the R package rpart for classification. In this scenario, we attempt to see
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how sample size and tree- or non-tree-type underlying DTRs affect the performances

of various methods.

Results for Scenario 2 are shown in Table 4.3. ACWL and T-RL both work much

better than Q-learning and BOWL in all settings. Given a tree-type underlying

DTR, T-RL has the best performance among all methods considered with average

opt% over 90% and Ê{Y ∗(ĝopt)} closest to the truth 8. The results are a bit more

complex when the underlying DTR is non-tree-type. The tree-based methods of

ACWL with CART and T-RL both have tree-type misspecification and thus show

less satisfactory performances. However, ACWL seems more robust to tree-type

misspecification with ACWL-C2 showing larger opt% and Ê{Y ∗(ĝopt)} in all settings

except when sample size is 500 and π is misspecified, in which case T-RL’s stronger

robustness to propensity score misspecification dominates. With non-rectangular

boundaries in a non-tree-type DTR, a split may not improve the counterfactual mean

estimates at the current node but may achieve such a goal in the future nodes. T-RL,

with a purity measure based on E{Y ∗(g)}, will terminate the splitting as soon as the

best split of the current node fails to improve the counterfactual mean outcome. In

contrast, the misclassification error-based impurity measure in CART may continue

the recursive partitioning as the best split may still reduce misclassification error

without improving the counterfactual mean outcome at the current node. In other

words, T-RL may be more myopic when it comes to non-tree-type DTRs. Additional

simulation results can be found in the Appendix B, which leads to similar conclusions.

4.4 Illustrative Data Example

As a further illustration, we apply T-RL to the data of 2870 adolescents entering

community-based substance abuse treatment programs, which are pooled from sev-
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eral adolescent treatment studies funded by the Center for Substance Abuse Treat-

ment (CSAT) of the Substance Abuse and Mental Health Services Administration

(SAMHSA). The measurements on individual characteristics and functioning are col-

lected at baseline and at the end of 3 and 6 months. We use subscript values t = 0, 1, 2

to denote baseline, Month 3, and Month 6 respectively.

Substance abuse treatments were given twice, first during 0 ∼ 3 months, denoted as

A1 and second during 3 ∼ 6 months, denoted as A2. At both stages, patients were

either not treated, or given one of the two types of treatments: non-residential treat-

ment (outpatient only, more freedom to return to patients’ own living and work envi-

ronments after intervention) and residential treatment (i.e., inpatient rehab) (Marlatt

and Donovan, 2005). We denote the three treatment options as 0, 1 and 2, respec-

tively. At stage 1, 93% of the subjects received treatment, either residential (56%), or

non-residential (27%), while at stage 2, only 28% and 13% were treated residentially

or non-residentially. The baseline covariate vector that determines the assignment

of A1 is denoted as X1 and the covariate history just before assigning A2 is denoted

as X1 (including X0). The detailed list of variables can be found in Almirall et al.

(2012). The outcome of interest is the Substance Frequency Scale (SFS) collected

during 6 ∼ 9 months (mean and SD: 0.09 and 0.13), with higher values indicating

increased frequency of substance use in terms of days used, days staying high most

of the day, and days causing problems. We take Y = −1 × SFS so that higher val-

ues are more desired, making it consistent with our foregoing notation and method

derivation. Missing data is imputed using IVEware (Raghunathan et al., 2002).

We apply the T-RL algorithm to the data described above. Specifically, the covariate

and treatment history just prior to stage 2 treatment is H2 = (X>1 , A1)
> and the

number of treatment options at stage 2 is K2 = 3. We fit a linear regression model for

µ2,A2(H2) similar to (3.5) using Y as the outcome and all variables in H2 as predictors
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that interact with A2. For the propensity score, we fit a multinomial logistic regression

model including main effects of all variables in H2. We set the minimal node size

to be 50 and maximum tree depth to be 5, and use a 10-fold CV to select λ, the

minimum purity improvement for splitting. We repeat the same procedure for stage

1 except that we have H1 = X0, K1 = 3 and P̂O
′

1 = Y + µ̂2,ĝopt2
(H2)− µ̂2,a2(H2).

At stage 2, the variables that construct the tree are yearly substance dependence

scale measured at the end of Month 3 (sdsy3, median (range): 3 (0−7)), age (median

(range): 16 (12−25) years), and yearly substance problem scale measured at baseline

(spsy0, median (range): 8 (0−16)). For 1st stage treatment, the variables involved in

the tree building are emotional problem scale measured at baseline (eps7p0, median

(range): 0.22 (0− 1)), drug crime scale measured at baseline (dcs0, median (range):

0 (0− 5)), and environmental risk scale measured at baseline (ers0, median (range):

35 (0 − 77)). All these scale variables have higher values indicating more risk or

problems. The estimated optimal DTR ĝopt = c(ĝopt1 , ĝopt2 ) is

ĝopt2 (H1) =

 residential if sdsy3 > 0, or sdsy3 = 0 & age < 16 & spsy0 > 5

non-residential otherwise

and

ĝopt1 (H2) =


no treatment if eps7p0 ≤ 0.286 & ers0 ≤ 46

non-residential if eps7p0 ≥ 0.286 & dcs0 ≤ 2

residential otherwise.

According to the estimated optimal DTR, all patients should be treated at stage 2.

Patients with higher yearly substance dependence as well as those with no yearly sub-

stance dependence but younger age and more yearly substance problems should go

with residential treatment, i.e., receiving treatment in rehab facilities. In contrast, pa-

tients with older age or fewer yearly substance problems should receive the outpatient
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treatment. At stage 1, patients with fewer emotional problems and lower environmen-

tal risk do not need to be treated, while those with more emotional problems but lower

drug crime scale should go with outpatient treatment only. The majority of patients

at both stages would benefit the most from residential treatment. In our data, about

70% of the patients at stage 1 have the estimated optimal treatment to be residential

treatment and the number goes up to 85% at stage 2. Residential treatment is gen-

erally more intensive and patients are in a safe and structured environment, which

may explain why patients with more substance, emotional or environmental prob-

lems would benefit more from this type of treatment. Existing studies have found a

moderate level of evidence for the effectiveness of residential treatment for substance

use disorders (Reif et al., 2014). Outpatient programs allow patients to return to

their own environments after treatment and require a greater amount of diligence.

Patients are provided with a strong support network of non-using peers and sponsors

and can automatically apply the lessons learned from outpatient treatment programs

to their daily experiences (Gifford , 2015). Therefore, more self-disciplined patients

with fewer existing problems and less environmental risk would likely benefit more

from this type of treatment.

4.5 Discussion

We have developed T-RL, which utilizes a sequence of decision trees with backward

induction, to handle multi-stage multi-treatment decision-making. The decision trees

are unsupervised and thus maintain the nature of batch-model RL. T-RL enjoys

the advantages of typical tree-based methods as being straightforward to understand

and interpret, and capable of handling various types of data without distributional

assumptions. T-RL can also handle multinomial or ordinal treatments by incorporat-

ing multiple treatment comparisons directly in the purity measure for node splitting,
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and thus works better than ACWL when the underlying optimal DTR is tree-type.

Moreover, T-RL maintains the robust and efficient property of ACWL by virtue of

the combination of robust semiparametric regression estimators with flexible machine

learning methods, which is superior to IPW-based methods such as LZ. However,

when the true optimal DTR is non-tree-type, ACWL has slightly more robust per-

formances.

Several improvements and extensions can be explored in future studies. As shown

by the simulation, the fixed-depth lookahead is costly and only brings moderate im-

provement. Alternatively, one can use embedded models to select splitting variables

which also enjoys the lookahead feature (Zhu et al., 2015), or consider other variants

of lookahead methods (Elomaa and Malinen, 2003; Esmeir and Markovitch, 2004).

The method by Zhu et al. (2015) enables progressively muting noise variables as one

goes further down a tree, which facilitates the modeling in high-dimensional sparse

settings, and it also incorporates linear combination splitting rules, which may im-

prove the identification of non-tree-type optimal DTRs. Furthermore, it is of great

importance to explore how to handle continuous treatment options in the proposed

T-RL framework. One way is to follow LZ to use a kernel smoother in the purity

measure, which may suffer from the difficulty in selecting the optimal bandwidth. A

simpler approach is to discretize the continuous treatments by certain quantiles and

consider it as ordinal treatments, which may improve estimation stability and is also

of practical interest as medical practitioners tend to prescribe treatments by several

fixed levels instead of a continuous fashion.
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CHAPTER V

Summary and Future Work

In this dissertation, we have explored statistical methods for the identification of

optimal DTRs using observational data when complexities arise in either decision

stages or treatment options. We employ classical semiparametric regression methods

as well as a combination of semiparametric regression and machine learning methods

to achieve flexibilities and robustness in estimation.

The framework for continuous or multiple random decision points proposed in Chapter

II is an importation addition to the research on multi-stage and continuous decision-

making. It is capable of handling the more practical cases where different subjects

may have different treatment schedules. It may have greater potential with the rise

of mobile health when more frequent biomarker measurements are available and more

timely decisions need to be made. Chapters III and IV address another important

problem of having more than two treatment options in multi-stage decision-making.

The methodological novelty lies in the combination of semiparametric regression with

machine learning, which yields robust and efficient estimates of optimal DTRs. The

use of machine learning also relaxes the assumptions about the structure of candidate

DTRs and allows the consideration of a large number of covariates. The method

ACWL in Chapter III is able to incorporate existing regression and classification

methods to handle both tree-type and non-tree-type optimal DTRs while the method
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T-RL in Chapter IV focuses more on tree-type ones.

For future research on continuous or multiple random decision points, an important

direction is to enhance the estimation of the weights, i.e., the inverse probability of

adherence to a given DTR, for example, using the random survival forest (Ishwaran

et al., 2008; Bou-Hamad et al., 2011). Furthermore, with either little background

knowledge about the structure of candidate DTRs or a larger number of variables

that may affect treatment decisions, one may apply a more exploratory approach

first with only several fixed decision points discretized from the continuous decision

trajectory, for example, using Q- or A-learning with variable selection (Lu et al., 2013).

In addition, instead of prespecifying a somewhat arbitrary univariate utility function,

one may explore with a multivariate utility function, which requires searching over a

multi-dimensional plane to find the optimal DTR that achieves the best joint payoff.

Computational complexity and interpretability may be challenging in this case.

An important generalization of both ACWL and T-RL is to explore continuous treat-

ment options such as radiation doses. An example is to use a kernel smoother to

consider treatment options within a given bandwidth as in Laber and Zhao (2015).

For the tree-based method in Chapter IV, another important improvement would be

to reduce its greediness by lookahead while keeping the computational cost low, for

example, the method by Zhu et al. (2015). We have mostly considered batch-model

RL, where the sample of data has been fully collected. It is the most common case

in medical studies. However, in the field of mobile health, subjects now have medical

data that can keep updating. Therefore, it is of interest to extend our methods to be

applied to this type of data.
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APPENDIX A

Supplementary Materials for Chapter III

Additional Simulation 1

This simulation follows Scenario 1 in Chapter III but with treatment assignment fully

random. Specifically, we have

A ∼Multinomial(0.2, 0.2, 0.2, 0.2, 0.2),

and

Y = exp[2.06 + 0.2X3 − |X1 +X2|ϕ{A, gopt(H)}] + ε,

with ϕ{A, gopt(H)} taking the form of ϕ(2) = {A− gopt(H)}2,

gopt(H) = I(X1 > −1){1 + I(X2 > −0.4) + I(X2 > 0.4) + I(X2 > 1)}

and ε ∼ N(0, 1).

The results are shown in Table A.1.
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Table A.1: Additional simulation results for Scenario 1 in Chapter III with ϕ(2) and
fully randomized treatment assignments. E{Y ∗(gopt)} = 8, 500 replications,
n = 1000.

π Method
ϕ(2)

opt% Ê{Y ∗(ĝopt)}

Correct
OWL 75.8 (11.1) 6.91 (0.60)

ACWL-C1 89.2 (6.1) 7.63 (0.34)
ACWL-C2 87.9 (7.5) 7.39 (0.42)

Additional Simulation 2

This simulation follows Scenario 2 in in Chapter III but with the treatment models de-

pendent on X1 and X2, so that the treatment models and the optimal treatment mod-

els are more related than Scenario 2. Specifically, we haveA1 ∼ Multinomial(π10, π11, π12),

with π10 = 1/{1 + exp(0.5 − 0.5X1) + exp(0.5X2)}, π11 = exp(0.5 − 0.5X1)/{1 +

exp(0.5−0.5X1)+exp(0.5X2)}, and π12 = 1−π10−π11, andA2 ∼ Multinomial(π20, π21, π22),

with π20 = 1/{1+exp(0.2R1−1)+exp(0.5X2)}, π21 = exp(0.2R1−1)/{1+exp(0.2R1−

1) + exp(0.5X2)}, and π22 = 1− π20 − π21.

The outcome models are

R1 = exp[1.5− |1.5X1 + 2|{A1 − gopt1 (H1)}2] + ε1,

with gopt1 (H1) = I(X1 > −1){I(X2 > −0.5) + I(X2 > 0.5)} and ε1 ∼ N(0, 1), and

R2 = exp[1.26− |1.5X3 − 2|{A2 − gopt2 (H2)}2] + ε2,

with gopt2 (H2) = I(X3 > −1){I(R1 > 0.5) + I(R1 > 3)} and ε2 ∼ N(0, 1).

The results are shown in Table A.2.
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Table A.2: Additional simulation results based on Scenario 2 in Chapter III, with
treatment assignment models more related to optimal treatment models.
E{Y ∗(gopt)} = 8, 500 replications, n = 1000.

π Method
Tree-type DTR

opt% Ê{Y ∗(ĝopt)}

- Q-learning 54.6 (2.9) 6.10 (0.24)

Correct

BOWL 40.3 (8.2) 4.80 (0.53)
BOWL-Q 66.0 (10.1) 6.57 (0.53)
ACWL-C1 92.5 (3.2) 7.50 (0.13)
ACWL-C2 92.7 (3.3) 7.54 (0.12)

Incorrect

BOWL 33.1 (7.9) 4.85 (0.48)
BOWL-Q 41.4 (9.9) 5.48 (0.58)
ACWL-C1 91.6 (3.5) 7.48 (0.12)
ACWL-C2 90.9 (3.3) 7.47 (0.11)

Additional Simulation 3

This simulation is for a more complex scenario with 2 stages and 5 treatment options

at each stage. Specifically, we have

A1 ∼Multinomial(π10/π1s, π11/π1s, π12/π1s, π13/π1s, π14/π1s),

with π10 = 1, π11 = exp(0.4 − 0.5X3), π12 = exp(0.5X4), π13 = exp(0.5X3 − 0.4),

π14 = exp(−0.5X4), and π1s =
∑4

m=0 π1m, and

A2 ∼Multinomial(π20/π2s, π21/π2s, π22/π2s, π23/π2s, π24/π2s),

with π20 = 1, π21 = exp(−0.2R1), π22 = exp(0.5X3 − 0.4), π23 = exp(−0.5X3),

π24 = exp(0.2R1 − 1), and π2s =
∑4

m=0 π2m.
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Table A.3: Additional simulation results for two stages and five treatment options at
each stage. E{Y ∗(gopt)} = 8, 500 replications, n = 1000.

π Method
Tree-type DTR

opt% Ê{Y ∗(ĝopt)}

- Q-learning 31.7 (3.8) 4.83 (0.32)

Correct

BOWL 15.7 (4.5) 3.53 (0.47)
BOWL-Q 34.0 (11.3) 4.90 (0.73)
ACWL-C1 68.7 (8.7) 6.64 (0.47)
ACWL-C2 67.9 (8.7) 6.66 (0.43)

Incorrect

BOWL 9.8 (3.9) 3.04 (0.43)
BOWL-Q 12.8 (5.9) 3.35 (0.52)
ACWL-C1 59.8 (9.9) 6.11 (0.60)
ACWL-C2 63.6 (9.2) 6.40 (0.50)

The outcome models are

R1 = exp[1.5− |X1 +X3|{A1 − gopt1 (H1)}2] + ε1,

with gopt1 (H1) = I(X1 > −1){1 + I(X4 > −0.4) + I(X4 > 0.4) + I(X4 > 1)} and

ε1 ∼ N(0, 1), and

R2 = exp[1.26− |1.5X3 − 2|{A2 − gopt2 (H2)}2] + ε2,

with gopt2 (H2) = I(R1 > 0){1 + I(X3 > −0.4) + I(X3 > 0.4) + I(X3 > 1)} and

ε2 ∼ N(0, 1).

The results are shown in Table A.3.
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APPENDIX B

Supplementary Materials for Chapter IV

Proof of Lemma 1

By the law of large numbers, Pn{µ̂AIPWa (H)} estimates

E

[
I(A = a)

πa(H)
Y +

{
1− I(A = a)

πa(H)

}
µa(H)

]
, (B.1)

which is equal to

E

[
I(A = a)

πa(H)
Y ∗(a) +

{
1− I(A = a)

πa(H)

}
µa(H)

]
=EH

[
Pr(A = a|H)

πa(H)
E{Y ∗(a)|H}+

{
1− Pr(A = a|H)

πa(H)

}
µa(H)

]
,

under the foregoing causal assumptions.

If the postulated propensity score model πa(H) is correct, i.e., πa(H) = Pr(A = a|H),

then (B.1) = EH [E{Y ∗(a)|H}] = E{Y ∗(a)}.

If the conditional mean model µa(H) is correctly specified, then under the foregoing
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causal assumptions, E{Y ∗(a)|H} = E{Y ∗(a)|A = a,H} = E(Y |A = a,H) = µa(H).

Therefore,

(1) = EH

{
Pr(A = a|H)

πa(H)
[E{Y ∗(a)|H} − µa(H)] + µa(H)

}
= EH{µa(H)}

= E{Y ∗(a)}.

Additional Simulation 1

This simulation follows Scenario 1 in Chapter III. Specifically, we have treatment A

from Multinomial(π0/πs, π1/πs, π2/πs, π3/πs, π4/πs), with π0 = 1, π1 = exp(0.5 −

0.5X1), π2 = exp(0.5X1 + 0.2), π3 = exp(0.5X5 + 0.1), π4 = exp(0.5X5 − 0.1), and

πs =
∑4

m=0 πm. We set A to take values in {0, . . . , 4} and generate outcomes as

Y = exp[2.06 + 0.2X3 − |X1 +X2|ϕ{A, gopt(H)}] + ε,

with ϕ{A, gopt(H)} taking the form of ϕ(1) = 3I{A 6= gopt(H)} or ϕ(2) = {A −

gopt(H)}2, gopt(H) = I(X1 > −1){1 + I(X2 > −0.4) + I(X2 > 0.4) + I(X2 > 1)} and

ε ∼ N(0, 1).

The results are shown in Table B.1.
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Table B.1: Simulation results for a single stage and five treatment options. π is the
propensity score model. ϕ(1) and ϕ(2) indicate equal and varying penalties
for misclassification. opt% shows the empirical mean and standard devia-
tion (SD) of the percentage of subjects correctly classified to their optimal
treatments. Ê{Y ∗(ĝopt)} shows the empirical mean and SD of the expected
counterfactual outcome obtained using the true outcome model and the
estimated optimal regime. E{Y ∗(gopt)} = 8, 500 replications, n = 1000.

π Method
ϕ(1) ϕ(2)

opt% Ê{Y ∗(ĝopt)} opt% Ê{Y ∗(ĝopt)}

Correct
ACWL-C1 94.2 (3.5) 7.69 (0.21) 88.7 (5.5) 7.60 (0.22)
ACWL-C2 90.4 (6.1) 7.38 (0.40) 86.4 (8.4) 7.36 (0.38)

T-RL 95.2 (3.1) 7.74 (0.20) 92.9 (3.7) 7.72 (0.18)

Incorrect
ACWL-C1 92.5 (4.1) 7.60 (0.23) 84.2 (6.7) 7.47 (0.24)
ACWL-C2 90.2 (6.0) 7.37 (0.38) 85.6 (8.2) 7.35 (0.36)

T-RL 95.2 (2.8) 7.74 (0.17) 91.0 (4.3) 7.68 (0.16)

Additional Simulation 2

This simulation follows Scenario 1 in Chapter IV with five baseline covariates, the

same treatment model and the same optimal treatment model but different outcome

model. The outcome model indicates arbitrary penalties for misclassification, which

is

Y = exp[1.5+0.3X4−|1.5X1−1|I(A 6= gopt){4I(A = 0)+I(A = 1)+2I(A = 2)}]+ε,

with ε ∼ N(0, 1).

The results are shown in Table B.2.

97



Table B.2: Additional simulation results based on Scenario 1 in Chapter IV with five
baseline covariates and outcome model indicating arbitrary penalties for
misclassification. E{Y ∗(gopt)} = 4.69, 500 replications, n = 500.

π Method
Tree-type

opt% Ê{Y ∗(ĝopt)}

- RG 69.7 (3.3) 3.71 (0.11)

Correct

OWL 63.3 (10.1) 3.54 (0.37)
LZ 95.2 (6.5) 4.54 (0.19)

ACWL-C1 90.6 (4.7) 4.49 (0.12)
ACWL-C2 90.4 (5.3) 4.47 (0.13)

T-RL 96.0 (5.1) 4.58 (0.14)

Incorrect

OWL 48.6 (8.0) 3.05 (0.34)
LZ 84.4 (17.9) 4.24 (0.51)

ACWL-C1 88.2 (4.1) 4.46 (0.12)
ACWL-C2 88.5 (4.9) 4.46 (0.13)

T-RL 96.0 (7.8) 4.58 (0.21)

Additional Simulation 3

This simulation follows Scenario 1 in Chapter IV with five baseline covariates, the

same treatment model and the same outcome model (b) (i.e., varying penalties for

treatment misclassification) but different optimal treatment model, which has a non-

tree-type

gopt(H) = I(X1 > 0) + I(X1 +X2 > 0).

The results are shown in Table B.3.
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Table B.3: Additional simulation results based on Scenario 1 in Chapter IV with five
baseline covariates, outcome model (b) and non-tree-type optimal treatment
regime. E{Y ∗(gopt)} = 2, 500 replications, n = 500.

π Method
Non-tree-type

opt% Ê{Y ∗(ĝopt)}

- RG 75.5 (3.5) 1.67 (0.09)

Correct

OWL 46.4 (7.6) 0.98 (0.21)
LZ 78.6 (6.9) 1.72 (0.13)

ACWL-C1 81.5 (4.7) 1.76 (0.11)
ACWL-C2 83.0 (4.8) 1.81 (0.10)

T-RL 82.1 (4.3) 1.79 (0.10)

Incorrect

OWL 35.1 (5.7) 0.71 (0.19)
LZ 75.2 (9.5) 1.67 (0.51)

ACWL-C1 81.4 (4.9) 1.77 (0.11)
ACWL-C2 82.0 (5.1) 1.80 (0.10)

T-RL 81.1 (4.9) 1.78 (0.10)
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