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ABSTRACT

Strategic Network Planning Under Uncertainty with Two-Stage Stochastic Integer
Programming

by

Zhihao Chen

Chair: Siqian Shen

This thesis proposes three risk-averse models: a chance-constrained approach to net-

work design problems (NDPs), a distributionally robust approach to NDPs, and a car-

sharing model to maximize profitability. These two-stage models are applied under

demand uncertainty – the first stage makes strategic design decisions for the network,

namely arc capacities and supply volume, and the second stage utilizes risk-averse

approaches to ensure high levels of demand satisfaction while minimizing costs –

network design costs, commodity flow costs, and potential penalty costs for not sat-

isfying all units of demanded commodity.

The first model optimizes the probabilistic network design problem (PNDP),

where we maintain quality of service (QoS) through chance constraints. The second-

stage problem differentiates the corresponding QoS for demand satisfaction, and pri-

oritizes for customers and/or commodities. We consider PNDP variants that have

either continuous or binary arc decision variables (in the first stage) according to dif-

ferent applications. Each probabilistic model is reformulated as a mixed-integer lin-

xi



ear program (MILP), and we develop polynomial-time algorithms for special cases

with single-row chance constraints. The PNDP is benchmarked against stochastic

programming models that either enforce meeting all demands or penalize any unmet

demand via a linear penalty function. We compare different models and approaches

by testing randomly generated network instances and the Sioux-Falls network. The

numerical results suggest potential cost savings in arc capacity design and commod-

ity flow for customized QoS parameters and also showed a huge improvement in

computation efficiency when using the polynomial-time algorithm over the MILP

formulation.

The second model proposes a distributionally robust NDP (DR-NDP) with a

marginal moment-based ambiguity set, to obtain arc capacity solutions that optimize

the worst-case total cost over all candidate distributions. By approximating poly-

nomials with piecewise-linear functions, we estimate the optimal value of DR-NDP

with an MILP, optimized via a cutting-plane algorithm that iteratively generates valid

cuts for the approximate problem. We compare the performance of DR-NDP solution

against those of a benchmark sample average approximation-based model, testing on

grid networks of various sizes and a network based on major roads in the United

States. Our results show the robustness of DR-NDP solutions and how they respond

to varying demand levels in the observed realizations, highlighting potential niche

uses of DR-NDP in data-scarce contexts.

The third model is formulated as a two-stage stochastic integer programming

model with the aim of allocating a carsharing fleet to service zones with contracted

parking lots under demand uncertainty. The first-stage problem determines the al-

location of shared car fleet to pre-designated zones, and the number of contracted

parking lots to rent or free-float permits to obtain in these zones. In the second stage,

we solve a stochastic minimum cost flow problem on a spatial-temporal network,

which considers random demand of one-way and round-trip rentals, as well as ad-

xii



hoc vehicle relocation, to optimize total profits less any penalties from unsatisfied

demand. We minimize the expected penalty cost of unserved customers to encourage

higher QoS, and also consider a risk-averse variant of the second-stage model that

penalizes the conditional value-at-risk of unsatisfied demand. To solve both mod-

els, we develop a branch-and-cut algorithm with mixed-integer rounding-enhanced

Benders cuts. We provide insights of stochastic carsharing system management by

testing instances generated from real data reported by Zipcar in the Boston area. We

find that profitability and QoS decrease with increased proportions of one-way rental

demand, and the QoS can be significantly improved by lowering relocation costs.

xiii



CHAPTER 1

Introduction

We propose three novel models in the area of network design and flow optimization un-
der demand uncertainty. Each model is a two-stage model in which the first stage makes
strategic, long-term decisions on the design of the network (e.g. arc capacities, node sup-
plies). These strategic decisions are intended to be risk-averse, such that lower costs and
higher quality of service (QoS) may be achieved in the second stage. The second stage
is a minimum cost flow problem that maintains high QoS through penalties in the objec-
tive or chance constraints, depending on the model used. The first two models address a
network design problem that determines arc capacities in the first stage, and apply a chance-
constrained and a distributionally robust approach in the second stage. The third model is
an application to carsharing systems, that determines the initial allocation of the fleet in the
first stage, and maximizes operational profit in the second stage, using a spatial-temporal
network to determine revenues and costs and a conditional value-at-risk (CVaR) penalty in
the objective to maintain high QoS.

1.1 Network Design Problems

Network design problems (NDPs) refer to an important class of problems that frequently
arise in the modern connected world. Their applications include traffic planning, energy
distribution, telecommunication, and supply chain management, all of which are essential
to our daily lives (see Section 1.3 for more detailed examples). In this thesis, we focus
on NDPs under demand uncertainty, and aim to optimally determine the arc capacities of
a given network to satisfy demand realizations through ad-hoc flows. Chapters 2 and 3
propose risk-averse models to solving the NDP – Chapter 2 proposes a chance-constrained
model to limit the probability of demand loss, while Chapter 3 proposes a distributionally
robust model that optimizes the worst-case objective value over a set of candidate distribu-
tions.
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The types of design variables for arcs fall into two broad categories: (i) continuous
variables, for which the value of the variable equals to the capacity allocated to the arc,
and (ii) 0–1 binary variables, which indicate whether the arc is built or not with a fixed,
predetermined capacity. The former type, which is used in both Chapters 2 and 3, can
be used in NDPs in which there can more flexibility in the capacity of arcs built. The
latter type, addressed only in Chapter 2, is more likely to be employed if there are prior
restrictions on arc capacity, and the arcs need only be selected. Regardless of the type of
design variable used, constructing an arc incurs a cost (per-unit cost for continuous, fixed
cost for binary), and the arcs are designed in the first stage of the NDP.

In the second stage, the amount of commodity flow on the arcs is determined. Flow
values are typically recourse decisions made after demand is realized, with the exception of
the probabilistic NDP (PNDP, see Chapter 2), in which flow is determined before demand is
realized. Flow are always continuous and incur a cost per unit of flow. QoS is an important
concept in this research, and is measured by the amount of demand that is satisfied. To
ensure a high QoS level, any unmet demand is proportionally penalized in the objective
function, to discourage not satisfying demand to save (arc construction and flow) cost. This,
again, is with the exception of the PNDP, which ensures QoS by limiting the probability
of demand not being met. Overall, the aim of the NDP is to minimize the total cost of arc
construction, commodity flow, and penalty on unmet demand.

1.2 Previous Work on NDPs

NDPs are commonly used in network planning and operation problems, so it is unsurpris-
ing that there is much literature studying its theory and applications. In generic network
planning contexts, Magnanti and Wong (1984) described a unifying framework for deter-
ministic single and multi-commodity NDPs, and provided specializations of the framework
to solving specific problems such as facility location and traffic network design problems.
These specific classes of NDPs are also studied in depth in the literature, for example, fa-
cility location design in Daskin (2011), road network design in Yang and H. Bell (1998),
and telecommunications and computer network design in Pióro and Medhi (2004).

Parameter uncertainty in networks is a major concern in the study of NDPs. This is
especially so when studying real-world applications, since the practical design of networks
is usually in anticipation of future uncertain needs and circumstances. Lium et al. (2009)
studied demand uncertainty in stochastic NDPs comprehensively, focusing particularly on
applications to service network design. Network design under demand uncertainty has
also been studied in other applications, such as in supply-chain network design (Santoso
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et al., 2005; Tsiakis et al., 2001; MirHassani et al., 2000), in transportation network design
(Ukkusuri and Patil, 2009; Patil and Ukkusuri, 2007) and in emergency response (Chang
et al., 2007; Sheu, 2007; Oh and Haghani, 1997).

The literature on stochastic NDPs typically assume fully known distributional informa-
tion on the demand uncertainty, allowing the formulation of large-scale stochastic programs
with a finitely large number of realizations. The L-shaped method (Laporte and Louveaux,
1993) is usually used to derive cuts to iteratively optimize such large-scale stochastic pro-
grams. Patil and Ukkusuri (2007) applied the L-shaped method to transportation NDPs,
although Crainic et al. (2011) more recently proposed a scenario decomposition meta-
heuristic for similar problems. However, the L-shaped method requires sufficiently many
realizations to accurately represent the underlying distribution, and may not produce mean-
ingful results if realizations cannot be easily or cheaply generated from the true distribution.

In cases where more conservative NDP solutions are needed, or where the demand
distribution is not fully known, robust optimization is often used to solve NDPs. Robust
optimization utilizes bounds on the uncertain parameters to construct an uncertainty set,
and optimize the worst-case objective value for any parameter realization in the uncer-
tainty set. Since only the bounds of the uncertainty are required for robust optimization,
it is well-suited to conservatively solve problems without full information on the distri-
bution of uncertainty. Ukkusuri et al. (2007) robustly designed a transportation network
under discrete demand uncertainty. Similarly, Mudchanatongsuk et al. (2008) proposed a
robust transportation NDP under demand and transportation cost uncertainty, representing
the uncertainty in both cases with box-shaped, polyhedral and ellipsoidal uncertainty sets.
In supply chain network design, Pishvaee et al. (2011) applied robust optimization to min-
imize the cost of the supply chain network under box-shaped uncertainty sets for demand,
returns, and transportation costs.

1.3 Applications of Risk-Averse NDP Models

Similar to robust NDPs, the chance-constrained PNDP and distributionally robust NDP
(DR-NDP) models that are proposed in Chapters 2 and 3 seek conservative solutions to
the NDP. These models are risk-averse – they aim to achieve high QoS levels through high
demand satisfaction, often at the expense of constructing more arc capacity to ensure suffi-
cient commodity can be flowed from supply to demand nodes. Due to the risk-aversion of
these two proposed models, this research specifically targets NDP applications in which
high QoS solutions are of importance to the network planner, or in which there is in-
sufficient data to accurately determine the true underlying distribution for a meaningful

3



risk-neutral solution. The following are several examples of such applications.

• Humanitarian relief supply network design: When providing humanitarian relief
immediately after the occurrence of disaster, the effects of the disaster may have yet
to be determined. Demand for aid is unknown and little prior data is likely to be
known due to the rare occurrence of disaster, yet high QoS must still be maintained
to provide aid to as many people in the affected region as possible.

• Telecommunications network design: Telecommunications companies frequently
have to expand their networks in response to the increased need for connectivity in
modern society. As the network expansion in response to insufficient capacity, data
on the true demand (not restricted by the current capacity) in the network cannot be
gathered from past usage data. To obtain this data, companies might instead survey
their customers on their usage habits. Since this data is costly, companies may opt to
obtain only a small amount of such data and employ risk-averse models to maintain
high QoS to its customers.

• Supply chain network for new consumer products: Releasing new products, or
pushing out products to new regions requires careful planning of the supply network
for the products. Due to the youth of the product, data regarding consumer demand
is likely to be uncertain and scarce. A risk-averse model could ensure products are
launched with relatively high levels of customer satisfaction at the cost of a higher
expense on constructing the supply chain network.

Apart from the two models proposed in Chapters 2 and 3, a third risk-averse approach
can be taken – penalizing the CVaR of unmet demand in the objective function. This
approach is applied to a carsharing system in Chapter 4, to maximize profitability and
QoS.

1.4 Carsharing

High vehicle ownership costs and increased awareness of climate change due to pollution
has resulted in a greater desire for cheaper yet more environmentally friendly ways to
move people. In particular, the latter reason, together with frequent traffic congestion in
large cities, have prompted many governments to explore other transportation options to
alleviate environmental and traffic concerns. Public transportation has traditionally been
a common alternative to private vehicle ownership. However, public transport is far from
being a perfect replacement due to its limited accessibly, fixed schedules, and the fact that
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users have to share a common space, posing problems to individuals with needs that may
inconvenience their fellow riders.

In recent years, carsharing has become a popular means of alternative transportation,
serving as a middle ground between public transport and private ownership. Carsharing
companies provide car rental services to customers on a short term basis, as opposed to
long term rentals provided by typical car rental companies. The popularity of carsharing
can be attributed to users benefiting from private use of vehicles without having to shoulder
the costs or responsibilities associated with car ownership. Carsharing also provides other
benefits by reducing vehicle ownership in cities, namely reduced traffic congestion and re-
duced total vehicle miles traveled. Furthermore, fewer vehicle miles traveled means lower
fuel consumption, and consequently lower vehicle emissions (Fan et al., 2008). In North
America, studies suggest that carsharing has reduced vehicle mileage by 44% on average
per carsharing user, with each carsharing vehicle replacing between 6 to as many as 23 ve-
hicles (Shaheen and Cohen, 2007). The benefit of carsharing is further expanded by the use
of electric vehicles – advances in electric vehicle charging technology will lower carsharing
fleet sizes and operational costs, and bring greater reduction in CO2 emissions (He et al.,
2015). Hence, it is not surprising that almost 1,000 cities worldwide have adopted carshar-
ing, with over 1,337,000 individuals sharing almost 20,000 vehicles through carsharing
programs in the United States alone as of July 2014 (Carsharing, 2009).

To carsharing companies, optimally locating their vehicle fleet in response to demand
is important to their profitability and QoS. As more carsharing companies begin to offer
one-way rentals in addition to traditional round-trip rentals, such as Zipcar through its
ONE>WAY beta program, the problem of optimal fleet allocation and ad-hoc relocation
of vehicles becomes increasingly complex. We address the aforementioned operational
concerns in Chapter 4, with the aim of providing a mechanism to determine the impact of
one-way rentals on the profitability and QoS of carsharing systems.

1.5 Contributions of Research

The main contributions of this research are the three aforementioned models – the PNDP,
the DR-NDP, and the carsharing model. Chapter 2 formulates PNDPs with various forms
of chance constraints to satisfy different needs for the QoS levels. The PNDPs generalize
the chance-constrained models in recent transportation research literature that analyze the
NDP under various transportation settings. We reformulate and solve the PNDPs as mixed-
integer linear programs. For special cases of the PNDP, we develop an algorithm that
reformulates them in polynomial time to a deterministic linear program, which can be
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solved far quicker than the MILP formulation.
Chapter 3 formulates the DR-NDP as a novel approach to solving NDPs. The majority

of the literature on NDPs focuses on problems with fully known distributional informa-
tion; when distributional information is sparse, robust optimization is used instead. The
DR-NDP provides a means to solve NDPs that is less conservative than using robust opti-
mization, yet is robust enough for its solutions to be less sensitive to the distribution of the
observations, when compared to using a risk-neutral stochastic optimization approach. We
reformulate the DR-NDP as an approximate MILP and develop a cutting-plane algorithm
to solve the MILP.

Chapter 4 models a carsharing system as a spatial-temporal network that can approxi-
mate the profitability and QoS provided to customers through a minimum cost flow prob-
lem. Strategic decisions can be made with this framework – we focus on the decisions of
purchasing parking lots and free-float permits together with car fleet allocation in zones.
We integrate both one-way and round-trip rentals, and reservation-based and free-floating
carsharing decisions into a generalized model, which has not been done in carsharing liter-
ature. We also develop a branch-and-cut algorithm strengthened by mixed-integer rounding
(MIR) to solve the carsharing model, which shows promising computational performance
when implemented in parallel computing.
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CHAPTER 2

Probabilistic Network Design

2.1 Introductory Remarks

In this chapter, (related to the work published in Shen and Chen, 2013), we study PNDPs
under demand uncertainty and with multi-commodity flows, which can be interpreted as
shipments of multiple products, or other types of heterogeneous flows involved in a wide
class of applications. The flow variables obey balance constraints and knapsack constraints
that limit the summation of all flows within a shared capacity on every arc (e.g. Ahuja et al.,
1993). Instead of an expectation-based stochastic programming approach, we use proba-
bilistic constraints, or chance constraints (Charnes et al., 1958), to differentiate demand
satisfaction rates of shipping multiple commodities to different nodes. This chapter formu-
lates four types of chance-constrained models to allow the flexibility in differentiating QoS
levels with respect to commodity and node-wise demand.

Recent literature has used chance-constrained programming to analyze NDP variants
under diverse settings (e.g. Chen et al., 2011). To name a few, Waller and Ziliaskopoulos
(2001) formulate a chance-constrained model for studying continuous NDPs with traffic
dynamics and random time-dependent demands. Lo and Tung (2003) study the tradeoff
between the maximum flow in a network and the extent of satisfying chance constraints of
the probabilistic user equilibrium, given that link capacities are subject to stochastic degra-
dations. Chen and Yang (2004) account for both spatial equity and demand uncertainty,
and formulate the equity constraint as a chance constraint. Chen et al. (2007) develop a
“alpha reliable NDP model” which is a variant of the chance-constrained NDP to optimize
network design decisions under demand uncertainty with different risk aversion levels.

Following the order of PNDP variants discussed in this chapter, we determine both
flow variables and continuous capacity expansion variables of existing links at the upper
level, and evaluate demand satisfaction rates at the lower level. The aim is to minimize the
total cost of capacity expansion and flow assignment subject to various forms of chance
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constraints for bounding the demand losses. We justify this approach by the application
of supply chain design, where a flow scheduler needs to be decided before knowing the
uncertainty and cannot be easily adjusted in different scenarios. For instance, due to high
contracting fees and the ease of maintaining a relationship with a stable set of suppliers
and customers, the scheduler may prefer a fixed shipping schedule regardless of actual
daily demand when the demand fluctuation is not significant. In some emergency response
applications, reaction time for changing the delivery plan may be too short so that fixed
flows are more favorable.

We formulate benchmark risk-neutral stochastic network design problems (SNDPs) by
letting flows be recourse variables, whose values are determined after knowing the de-
mand. The modification results in the flexibility of having different flow decisions in each
scenario, but enforces a hard constraint on the flow decisions. We consider two types of
SNDPs, one does not penalize unmet demand, the other adds a penalty cost proportional to
unmet demand. The latter is typically used in the existing literature and will provide bench-
marks in our numerical results. Furthermore, we consider PNDPs and SNDPs with binary
design variables, representing the addition of new links, and provide the corresponding
variants under this assumption.

We transform all probabilistic models into equivalent MILP formulations under the
assumption of finitely distributed random demand. For some special cases of the PNDP,
we present alternative polynomial-time algorithms. We demonstrate the relationship of
PNDP variants via their risk parameters such as the reliability levels associated with various
chance constraints. For large-scale PNDP/SNDP models, we describe a general Benders
decomposition approach to improve the computational efficiency. In our results, we present
managerial insights by computing on randomly generated network instances and the Sioux-
Falls network.

The remainder of the chapter is organized as follows. Section 2.2 assumes continu-
ous network design variables and formulates various PNDPs with fixed flow variables and
SNDPs with recourse flow variables. Section 2.3 describes NDP formulations with discrete
network design variables. Section 2.4 develops solution methodologies, and demonstrates
polynomial-time algorithms for special cases of the PNDP with single-row chance con-
straints. Two sets of numerical examples are given in Section 2.5: the first consists of
randomized instances to test various PNDP formulations and their algorithms; the second
simulates a practical setting with the commonly used Sioux Falls network, in which we
compare PNDPs with SNDPs. Section 2.6 concludes the chapter and describes future re-
search directions.
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2.2 NDPs with Continuous Capacity Design Variables

We begin with the assumption that all upper-level decision variables are continuous, corre-
sponding to the case where we can smoothly increase the capacity of existing links. This
section describes the two cases where the multi-commodity flow variables are fixed before
and decided after realizing the demand uncertainty.

2.2.1 Notation and Assumptions

We formulate the NDPs on a directed connected graph G(N,A), where N is the set of
nodes and A ⊂ N ×N denotes the set of arcs. The set of commodities are denoted by |W |,
with the sets of supply nodes Sw and demand nodes Dw for each commodity w ∈ W . The
supply siw > 0 for each i ∈ Sw, w ∈ W is deterministic; the demand diw ≥ 0 for each
i ∈ Dw, w ∈ W is random, with all diw jointly distributed such that the demand vector
d = [diw : i ∈ Dw, w ∈ W ]T follows a known joint discrete distribution. The set of |K|
realizations of d is denoted by {dk}k∈K , with pk being the probability of realizing scenario
k ∈ K. When the first-stage design variables are continuous, we denote the arc capacity
variables by xij ∈ R+, and each unit of arc capacity incurs a cost of cij > 0 for all arcs
(i, j) ∈ A.

We name the models in this chapter in the form “Problem-Capacity-Constraint,”
where the types of Problem are either “PNDP” (flow fixed at the upper level) or “SNDP”
(flow recourse available at the lower level), and the types of Capacity are either “-cont”
(continuous values of capacity decisions at existing links) or “-bin” (binary decisions of
adding new links). We refer to “-joint,” “-nc,” “-c,” and “-n” as the types of Constraint
for PNDPs, representing the cases where the chance constraints are formulated with respect
to the overall joint, node-commodity-wise, commodity-wise, and node-wise probabilis-
tic restrictions of unsatisfied demand, respectively; it also refers to “-wop” and “-wp” as
the types of Constraint for SNDPs, representing the models with penalty and without
penalty in the objective, respectively.

2.2.2 Fixed Flow Variables at the Upper Level

We first analyze PNDP-cont and give its four variations, where the flow decisions are
fixed before the realization of demands. The variations are determined by the manner in
which the uncertain demand constraints are joined by the chance constraints: by joining
all of them (-joint), node-commodity-wise (-nc), commodity-wise (-c), and node-wise (-n).
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We first focus on the joint case, then present the remaining variants as multiple chance-
constrained models.

2.2.2.1 Joint Chance Constraints

This variant involves a joint chance constraint for measuring demand satisfaction of all
commodities at all nodes. The aim is to minimize the total cost of capacity design and
network flows, while the probability of no demand loss of every commodity at every node
is bounded from below by a given reliability level 1 − ε. The joint chance constraint is
given by

P

 ∑
j:(j,i)∈A

yjiw −
∑

j:(i,j)∈A

yijw ≥ diw, ∀i ∈ Dw, w ∈ W

 ≥ 1− ε, (2.1)

where yijw ∈ R+ is the variable determining the amount of commodityw ∈ W to flow from
node i to node j. The notation P(·) denotes the probability of uncertain event · occurring
under the given distribution for d. The expression

∑
j:(j,i)∈A yjiw−

∑
j:(i,j)∈A yijw represents

the overall amount of commodity w received at demand node i, which must be at least the
demand diw for all i ∈ Dw and w ∈ W with probability 1− ε.

By assuming discretely distributed demand, we transform all chance-constrained mod-
els in this chapter as equivalent MILP formulations. Define binary variables zk indicating
whether constraint (2.1) is violated in scenario k, such that zk = 1 if it is, and zk = 0

otherwise for all k ∈ K. Then we have

[PNDP-cont-joint]:

min
x,y,z

∑
(i,j)∈A

cijxij +
∑
w∈W

∑
(i,j)∈A

aijwyijw (2.2)

s.t.
∑
w∈W

yijw ≤ xij ∀(i, j) ∈ A (2.3)∑
j:(i,j)∈A

yijw −
∑

j:(j,i)∈A

yjiw ≤ siw ∀i ∈ Sw, w ∈W (2.4)

∑
j:(i,j)∈A

yijw −
∑

j:(j,i)∈A

yjiw = 0 ∀i ∈ N\(Sw ∪Dw), w ∈W (2.5)

−
∑

j:(i,j)∈A

yijw +
∑

j:(j,i)∈A

yjiw − dkiw +Mkzk ≥ 0 ∀i ∈ Dw, w ∈W, k ∈ K (2.6)

∑
k∈K

pkzk ≤ ε, (2.7)

x ≥ 0, y ≥ 0, z ∈ {0, 1}|K|, (2.8)
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where aijw > 0 is the unit cost of flow of commodity w ∈ W on arc (i, j) ∈ A, and
Mk > 0 is an arbitrarily large positive number. Constraint (2.3) ensures that the total
flow of commodities at arc (i, j) does not exceed allocated capacities, for all (i, j) ∈ A;
(2.4) and (2.5) impose commodity-wise flow balances at supply and transshipment nodes,
respectively; (2.6) enforces zk = 1 for some scenario k ∈ K, if at least one commodity at
one demand node has a positive demand loss in that scenario. Constraints (2.6) and (2.7)
together yield a deterministic equivalence of the joint chance constraint (2.1).

For convenience of comparison with different models, we rewrite (2.6) as− ∑
j:(i,j)∈A

yijw +
∑

j:(j,i)∈A

yjiw − dkiw, ∀i ∈ Dw, w ∈ W

+Mkzk ≥ 0 ∀k ∈ K, (2.9)

emphasizing that each row−
∑

j:(i,j)∈A yijw+
∑

j:(j,i)∈A yjiw−dkiw, w ∈ W, i ∈ Dw shares
a common binary variable zk with a big-M coefficient, for all scenarios k ∈ K. Constraint
(2.7) guarantees that the probability of violation is no more than ε. By having an integer
capacity cost vector c, flow cost vector a, supply vector s, demand vector realizations dk

for all k ∈ K, and large number vector M , there exists an optimal solution having integer
capacity vector x and flow vector y.

2.2.2.2 Multiple Chance Constraints

In the remaining three variants of PNDP-cont, the joint chance constraint (2.1) is split into
multiple smaller-scale chance constraints. In the first variant PNDP-cont-nc, one single-
row chance constraint is imposed for each commodity w and each demand node i ∈ Dw

with an individual risk tolerance εiw, giving

P

 ∑
j:(j,i)∈A

yjiw −
∑

j:(i,j)∈A

yijw ≥ diw

 ≥ 1− εiw, ∀i ∈ Dw, w ∈ W. (2.10)

We motivate the study of (2.10) as follows. First, it allows the customization of risk tol-
erances for different node-commodity pairs, rather than assume homogeneous demand-
satisfaction guarantees everywhere. In other words, we allow the differentiation of the
importance of products and customers by appropriately choosing εiw for each combination
of commodityw and node i. Second, a decision maker can vary values of εiw, ∀w ∈ W, i ∈
Dw, and derive corresponding optimal risk-and-cost tradeoffs – this value-varying process
can be implemented via sensitivity analysis. Alternatively, by treating all εiw as decision
variables within certain preferable ranges, we can consider x, y, and ε as decision variables,
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and seek solutions that simultaneously trade off between risk and cost.
According to similar motivations, the other two variants involve

• A joint chance constraint for each commodity with risk tolerance εw (PNDP-cont-c):

P

 ∑
j:(j,i)∈A

yjiw −
∑

j:(i,j)∈A

yijw ≥ diw, ∀i ∈ Dw

 ≥ 1− εw, ∀w ∈ W. (2.11)

• A joint chance constraint for each node with risk tolerance εi (PNDP-cont-n):

P

 ∑
j:(j,i)∈A

yjiw −
∑

j:(i,j)∈A

yijw ≥ diw, ∀w ∈ W

 ≥ 1− εi, ∀i ∈ Dw. (2.12)

Constraints (2.11) and (2.12) differentiate risk perceptions with respect to commodities and
demand nodes, respectively. The corresponding models involve multiple joint chance con-
straints. By assuming a discrete joint demand distribution, we reformulate each model vari-
ant as an equivalent MILP, with binary variables indicating violation status of the chance
constraints in each scenario. Analogously to the construction of PNDP-cont-joint, the re-
formulation procedures yield

[PNDP-cont-nc]:

min
x,y,z

∑
(i,j)∈A

cijxij +
∑
w∈W

∑
(i,j)∈A

aijwyijw

s.t. (2.3)–(2.5)

−
∑

j:(i,j)∈A

yijw +
∑

j:(j,i)∈A

yjiw − dkiw +Mk
iwz

k
iw ≥ 0 ∀i ∈ Dw, w ∈W, k ∈ K (2.13)

∑
k∈K

pkzkiw ≤ εiw ∀w ∈W, i ∈ Dw (2.14)

x ≥ 0, y ≥ 0, ziw ∈ {0, 1}|K|, ∀w ∈W, i ∈ Dw, (2.15)

where Mk
iw > 0 is an arbitrary large positive number for each commodity w and node i ∈

Dw, and the binary variable zkiw takes the value 1 if there exists a demand loss of commodity
w at demand node i in scenario k, and 0 otherwise, for all i ∈ Dw, w ∈ W,k ∈ K.

By defining binary variables

• zkw: = 1 if there exists a demand loss of commodity w on at least one demand node
i ∈ Dw, and = 0 otherwise, for all scenarios k ∈ K, and
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• zki : = 1 if there exists at least one commodity demand loss at node i, and = 0

otherwise, for all scenarios k ∈ K,

and their corresponding big-M coefficients Mk
w and Mk

i , we can formulate the other two
PNDP-cont models as:

[PNDP-cont-c]:

min
x,y,z

∑
(i,j)∈A

cijxij +
∑
w∈W

∑
(i,j)∈A

aijwyijw

s.t. (2.3)–(2.5)− ∑
j:(i,j)∈A

yijw +
∑

j:(j,i)∈A

yjiw − dkiw, ∀i ∈ Dw

+Mk
wz

k
w ≥ 0 ∀w ∈W, k ∈ K

(2.16)∑
k∈K

pkzkw ≤ εw ∀w ∈W (2.17)

x ≥ 0, y ≥ 0, zw ∈ {0, 1}|K|, ∀w ∈W, (2.18)

and,

[PNDP-cont-n]:

min
x,y,z

∑
(i,j)∈A

cijxij +
∑
w∈W

∑
(i,j)∈A

aijwyijw

s.t. (2.3)–(2.5)− ∑
j:(i,j)∈A

yijw +
∑

j:(j,i)∈A

yjiw − dkiw, ∀w ∈W

+Mk
i z

k
i ≥ 0 ∀i ∈

⋃
w∈W

Dw, k ∈ K

(2.19)∑
k∈K

pkzki ≤ εi ∀i ∈ ∪w∈WDw (2.20)

x ≥ 0, y ≥ 0, zi ∈ {0, 1}|K|, ∀i ∈
⋃
w∈W

Dw. (2.21)

Remark 2.1. PNDP-cont-c and PNDP-cont-n can be viewed as hybrid versions of PNDP-
cont-joint and PNDP-cont-nc. PNDP-cont-joint measures unsatisfied demands simultane-
ously and homogeneously for all commodities and nodes, being more conservative than
PNDP-cont-nc if subject to the same magnitude of risk tolerances. A scenario in PNDP-
cont-joint is considered as “failed” when there exists one location with demand shortage
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for one product. PNDP-cont-nc “frees” the feasible region to some extent (we also need to
compare specific values of ε and εiw, for each i and w to draw a more precise statement),
and separates probabilistic measures for satisfying each individual diw. If a decision maker
is only interested in evaluating the chance of positive demand loss for every commodity,
or for every demand location, we formulate PNDP-cont-c and PNDP-cont-n, respectively.
Both models are more conservative than PNDP-cont-nc, and less conservative than PNDP-
cont-joint in general. �

We describe in Section 2.4 the methodological details for optimizing the four MILP
models and algorithms in polynomial time for optimizing special cases of PNDP-cont in
different forms.

2.2.3 Recourse Flow Variables at the Lower Level

Here we consider the case where capacity design decisions are still continuous, but flow
decisions are made after the realization of demands, or in other words, SNDP-cont. We
present two variations of SNDP-cont, one which does not impose a penalty, and the other
which imposes a penalty on unmet demand in any of the possible scenarios.

2.2.3.1 Without Penalty on Unmet Demand

We first highlight the differences between the formulations of SNDP-cont and those of
its PNDP-cont counterparts. As flow decisions are made after demand realization, each
scenario k ∈ K has a flow decision variable ykijw, as opposed to a common flow decision
variable yijw across all scenarios in the fixed flow case. Furthermore, since the demands are
already known when the flow decision is to be made, the formulation no longer requires the
binary variable z to indicate whether the flow is feasible in a particular scenario – the flow
vector yk must now satisfy the constraints with the demand realization dk, for each sce-
nario k. In addition, the objective value considers the expected cost of the flow decisions,
weighted by the probability of each scenario occurring, as there are now multiple flow costs
associated with the demand realization in each scenario. We can write this expectation ex-
plicitly as the sum of the flow costs in each scenario weighted by the probability of the
scenario occurring.

The following shows the full formulation of the SNDP-cont-wop problem, which holds
many similarities to the PNDP-cont-nc problem. We note here that the demand constraints
are always node-commodity-wise constraints (no joint constraints), unlike in the PNDP-
cont case, where demand constraints could be joined in various ways.
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[SNDP-cont-wop]:

min
x,y

∑
(i,j)∈A

cijxij +
∑
k∈K

pk

∑
w∈W

∑
(i,j)∈A

aijwy
k
ijw

 (2.22)

s.t.
∑
w∈W

ykijw ≤ xij ∀(i, j) ∈ A, k ∈ K (2.23)∑
j:(i,j)∈A

ykijw −
∑

j:(j,i)∈A

ykjiw ≤ siw ∀i ∈ Sw, w ∈ W, k ∈ K (2.24)

∑
j:(i,j)∈A

ykijw −
∑

j:(j,i)∈A

ykjiw = 0 ∀i ∈ N\Sw ∪Dw, w ∈ W, k ∈ K (2.25)

−
∑

j:(i,j)∈A

ykijw +
∑

j:(j,i)∈A

ykjiw ≥ dkiw ∀i ∈ Dw, w ∈ W, k ∈ K (2.26)

x ≥ 0, yk ≥ 0, ∀k ∈ K (2.27)

2.2.3.2 With penalty on unmet demand

Here we present the formulation of SNDP which penalizes unfulfilled demands. A variable
tkiw ∈ R+ is introduced for every i ∈ Dw, w ∈ W,k ∈ K, to represent the amount of
demand for commodityw at demand node i that is not fulfilled in scenario k by the solution.
This unmet demand is penalized per unit by Giw, a parameter for the model which varies
according to how strictly a demand constraint should be followed. We illustrate the use of
the penalty term Giwt

k
iw in the formulation of SNDP-cont-wp below.

[SNDP-cont-wp]:

min
x,y,t

∑
(i,j)∈A

cijxij +
∑
k∈K

pk
∑
w∈W

 ∑
(i,j)∈A

aijwy
k
ijw +

∑
i∈Dw

Giwt
k
iw

 (2.28)

s.t. (2.23), (2.24), (2.25)

−
∑

j:(i,j)∈A

ykijw +
∑

j:(j,i)∈A

ykjiw + tkiw ≥ dkiw ∀i ∈ Dw, w ∈ W, k ∈ K (2.29)

x ≥ 0, yk ≥ 0, tk ≥ 0, ∀k ∈ K (2.30)

We compute the unmet demand tkiw in scenario k ∈ K of commodity w ∈ W at demand
node i ∈ Dw according to (2.29), and penalize positive demand losses at a unit cost Giw in
the objective function (2.28). The model is typically used to formulate cost-based NDPs.
We later use SNDP-cont-wp as a benchmark against which we compare our PNDP-cont
reformulations in Section 2.5.
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2.3 NDPs with Binary Design Variables

Sometimes, decisions need to be made on whether to build a link, instead of on the capacity
of existing links in the network. In this section, we consider such problems by focusing on
NDPs with binary capacity design variables, denoted by βij for all (i, j) ∈ A. If βij = 1 we
add the link (i, j) with a fixed capacity uij > 0 and incur a cost of qij > 0 in the objective;
otherwise arc (i, j) is not constructed and does not exist in the network. We modify the
previous formulations with fixed flow variables according to this new definition.

2.3.1 Fixed Flow Variables at the Upper Level

We modify the variants of PNDP-cont to reflect the restriction of capacity design variable
to binary variables only. Here use PNDP-cont-joint as an example – the other models can
be reformulated in the same manner. The aim is to minimize both arc construction cost and
flow cost, subject to a certain probability guarantee for satisfying the overall demand. To
modify PNDP-cont-joint to PNDP-bin-joint, we replace cijxij in the objective by qijβij to
reflect the fixed cost of building arc (i, j), and replace constraint (2.3) with

∑
w∈W yijw ≤

uijβij to reflect the fixed capacity allocated to arc (i, j) if it is built, for all (i, j) ∈ A. All
other constraints are kept the same in all MILP models involving binary capacity design
variables.

[PNDP-bin-joint]:

min
β,y,z

∑
(i,j)∈A

qijβij +
∑
w∈W

∑
(i,j)∈A

aijwyijw (2.31)

s.t.
∑
w∈W

yijw ≤ uijβij ∀(i, j) ∈ A (2.32)

(2.4)–(2.8)

β ∈ {0, 1}|A|, y ≥ 0, z ∈ {0, 1}|K| (2.33)

2.3.2 Recourse Flow Variables at the Lower Level

The formulations of SNDP-bin are again very similar to that of their SNDP-cont counter-
parts. The only differences are that qijβij replaces cijxij in the objective function, and that
the recourse flow variables are bounded above by uijβij instead of xij . Here we present the
formulation of SNDP-bin-wp as an example for comparison with SNDP-cont-wp.
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[SNDP-bin-wp]:

min
β,y,t

∑
(i,j)∈A

qijβij +
∑
k∈K

pk

∑
w∈W

∑
(i,j)∈A

aijwy
k
ijw +

∑
i∈Dw

Giwt
k
iw

 (2.34)

s.t.
∑
w∈W

ykijw ≤ uijβij ∀(i, j) ∈ A, k ∈ K (2.35)

(2.24)–(2.25) ; (2.29)

β ∈ {0, 1}|A|, yk ≥ 0, tk ≥ 0, ∀(i, j) ∈ A, k ∈ K (2.36)

2.3.3 Comparison of PNDP/SNDP-bin with PNDP/SNDP-cont

When comparing the PNDP/SNDP-bin formulations with their associated PNDP/SNDP-
cont formulations, it can be seen that their only difference is in the network design decision
variables. However, having binary variables makes PNDP/SNDP-bin formulations MILP,
which are much harder to solve compared to the linear programs of the PNDP/SNDP-cont.

Binary variables are easy to branch on, allowing us to use a branch-and-bound approach
for optimizing PNDP/SNDP-bin. Furthermore, only β contains binary variables, so by
using a Benders decomposition approach, we isolate the binary variables in the master
problem, and solve the subproblem as a linear program. More algorithmic details of solving
PNDP/SNDP-bin formulations are presented in Appendix A.

2.4 Algorithms for Optimizing NDPs

We first derive valid inequalities for solving PNDP-cont-joint, and then describe how to
solve PNDP-cont-nc as well as special cases of PNDP-cont-c/n in polynomial time. We
discuss the relationship between joint chance constraints and single-row chance constraints,
which can be used to derive valid bounds in the branch-and-bound scheme. Finally, we de-
scribe a Benders decomposition algorithm to optimize the benchmark SNDP formulations.

2.4.1 Valid Inequalities for Optimizing MILP Reformulations of PNDPs

We first propose valid inequalities that can be generated to strengthen PNDP-cont-joint,
which can be considered to be a more general case of its -nc/-c/-n variants. The concepts
of partial orders and induced cover sets are given as follows based on (2.1) in PNDP-
cont-joint. We refer the readers to Ruszczyński (2002) for general definitions of the two
concepts.
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Definition 2.1. Given any feasible y, a partial order � defined on scenarios K satisfies

a � b

⇔ daiw +
∑

j:(i,j)∈A

yijw −
∑

j:(j,i)∈A

yjiw ≤ dbiw +
∑

j:(i,j)∈A

yijw −
∑

j:(j,i)∈A

yjiw, ∀i ∈ Dw, w ∈W.

�

Moreover, given that the node-arc incidence matrix is deterministic, and the uncertainty
only exists in d, there exists a partial order � defined on scenarios a, b ∈ K, satisfying

a � b ⇔ daiw ≤ dbiw, ∀w ∈ W, i ∈ Dw.

For PNDP-cont-joint, there exists an optimal solution (x̂, ŷ, ẑ), in which

a � b ⇒ ẑa ≤ ẑb ∀a, b ∈ K, a 6= b.

This indicates that if the chance constraint is violated in scenario a, then it will necessarily
be violated in scenario b (i.e. za = 1⇒ zb = 1). For all scenarios k ∈ K, define the set

Lk := {k′ ∈ K : k � k′},

as the collection of scenarios in which the chance constraint will be violated if it is violated
in scenario k.

Definition 2.2. A set C ⊆ K is called an induced cover if

P

{⋃
k∈C

Lk

}
> ε. (2.37)

An induced cover set C is minimal if for every k′ ∈ C,

P

{⋃
k∈C

Lk \ {k′}

}
≤ ε. (2.38)

�

For any induced cover set C, there exists an inequality of the form∑
k∈C

zk ≤ |C| − 1, (2.39)
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which is valid to PNDP-cont-joint (see Nemhauser and Wolsey, 1988; Wolsey, 1998). To
search for induced cover sets of constraint (2.1) based on Definition 2.2, one can apply
MILP techniques as well as heuristics. Adding (2.39) to PNDP-cont-joint will potentially
improve computational performance by tightening the formulation. However, for large
scale problems when |K| is large, the number of possible induced cover sets can be ex-
ponential. Similar to (2.39), one can derive cover inequalities for both PNDP-cont-c and
PNDP-cont-n, by identifying the induced cover sets associated with each joint chance con-
straint in (2.11) and (2.12), respectively.

2.4.2 Polynomial Time Algorithms for PNDP-cont-nc/c/n

In this section, we explore polynomial-time algorithms for special cases of PNDPs with the
presence of single-row chance constraints.

2.4.2.1 A Polynomial-Time Algorithm for PNDP-cont-nc

As an alternative to solving PNDP-cont-nc as an MILP, we transform the constraints of
PNDP-cont-nc into deterministic constraints without binary variables ziw, resulting in a
reformulation that is equivalent to solving multiple commodity-wise minimum-cost flow
subproblems with revised arc costs. Note that each chance constraint in (2.10) only has a
single row. According to Definition 2.1, we analogously define partial orders�iw for every
combination of i and w as follows.

Definition 2.3. Given any feasible y, and any i ∈ Dw and w ∈ W , a partial order �iw
defined on scenarios K satisfies

a �iw b ⇔ daiw +
∑

j:(i,j)∈A

yijw −
∑

j:(j,i)∈A

yjiw ≤ dbiw +
∑

j:(i,j)∈A

yijw −
∑

j:(j,i)∈A

yjiw,

�

Similarly, define the set

Lkiw := {k′ ∈ K : k �iw k′}, ∀k ∈ K, ∀w ∈ W, i ∈ Dw,

as the collection of scenarios in which the demand of commodity w at node i cannot be
satisfied if there is demand lost in scenario k ∈ K. Let P(Lkiw) :=

∑
k′∈Lkiw

pk
′ , indicating

the minimal violation probability of the (i, w)th chance constraint, given that it has been
violated in scenario k. The goal, for all w ∈ W and i ∈ Dw, is to identify threshold values

19



of the violation probability, such that it yields the same optimal solution by assigning εiw
any values from the same interval between neighboring thresholds.

For two consecutive scenarios k′ and k in a partial order �iw, suppose that dk′iw < dkiw.
Given some flow solution y, suppose that

−
∑

j:(i,j)∈A

yijw +
∑

j:(j,i)∈A

yjiw < dkiw (2.40)

and −
∑

j:(i,j)∈A

yijw +
∑

j:(j,i)∈A

yjiw ≥ dk
′

iw. (2.41)

Then, the probability of −
∑

j:(i,j)∈A yijw +
∑

j:(j,i)∈A yjiw < diw must be P(Lkiw). The
definitions are demonstrated on a small example as follows.

Example 2.1. We focus on one dimension of the demand vector d, and assume that diw is
a random scalar from the realizations {dkiw}k∈K = {1, 4, 6, 7, 10, 11}, corresponding to the
numbered scenariosK = {1, 2, 3, 4, 5, 6} and probabilities 0.1, 0.1, 0.2, 0.3, 0.2, and 0.1,
respectively. According to Definition 2.3, the current order is already a partial order �iw,
and we obtain

L1
iw = {1, 2, 3, 4, 5, 6}, L2

iw = {2, 3, 4, 5, 6}, L3
iw = {3, 4, 5, 6},

L4
iw = {4, 5, 6}, L5

iw = {5, 6}, L6
iw = {6}.

If −
∑

j:(i,j)∈A yijw +
∑

j:(j,i)∈A yjiw < d1
iw = 1, then the chance constraint is violated

in all scenarios, and P(L1
iw) = 1. Similarly, we have P(L2

iw) = 0.9, P(L3
iw) = 0.8,

P(L4
iw) = 0.6, P(L5

iw) = 0.3, P(L6
iw) = 0.1. �

For all combinations of i and w, we sort all scenarios, yielding an ordered setO(i, w) =

{k1, . . . , k|K|} such that dk1iw ≤ dk2iw ≤ · · · ≤ d
k|K|
iw . Note that the order of scenarios

k1, . . . , k|K| in each O(i, w) may be different for different i and w by considering inde-
pendent chance constraints for individual (i, w)-pairs. For notational brevity, we denote
K = {1, . . . , |K|} as the reassembled set of scenarios in O(i, w), which may contain dif-
ferent specific scenario sequences for different pairs of i and w. Therefore, for all w ∈ W
and i ∈ Dw, a partial order �iw is given by

L1
iw ⊇ L2

iw ⊇ · · · ⊇ L
|K|
iw , and thus 1 = P(L1

iw) ≥ P(L2
iw) ≥ · · · ≥ P(L

|K|
iw ) ≥ 0.

Moreover, we denote P(L
|K|+1
iw ) = 0, combine identical values of dkiw, ∀k ∈ K, and

associate each new scenario with a cumulative probability. This pre-processing procedure
may decrease the number of scenarios |K|. We continue to use K = {1, . . . , |K|}, but now
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assume that each scenario k ∈ K has a unique dkiw, ∀w, i, and pk > 0. Thus,

L1
iw ⊃ L2

iw ⊃ · · · ⊃ L
|K|
iw , and 1 = P(L1

iw) > P(L2
iw) > · · · > P(L

|K|
iw ) > P(L

|K|+1
iw ) = 0.

We now establish the equivalence of a single-row chance constraint and a deterministic
constraint.

Theorem 2.1. If εiw ∈ [0, 1), the (i, w)th chance constraint (2.10) is equivalent to the
deterministic constraint ∑

j:(j,i)∈A

yjiw −
∑

j:(i,j)∈A

yijw ≥ dk̂iw, (2.42)

where scenario k̂ ∈ {1, . . . , |K|} is such that P(Lk̂iw) > εiw ≥ P(Lk̂+1
iw ). If εiw = 1, the

chance constraint (2.10) is relaxed. �

Proof. Given any εiw ∈ [0, 1), we haveP(Lk̂iw) > εiw ≥ P(Lk̂+1
iw ) for some k̂ ∈ {1, . . . , |K|}

due to the pre-processing procedure, which results in a strict ordering of scenarios and
P(Lkiw) ∈ [0, 1) for all k ∈ {1, . . . , |K|}.

Suppose chance constraint (2.10) holds true, so the maximum chance constraint viola-
tion probability is εiw. If we assume that constraint (2.42)is violated, then the minimum
chance constraint violation probability is P(Lk̂iw) > εiw by the definition of P(Lkiw). This
is a contradiction, so constraint (2.42) must hold true.

Now suppose constraint (2.42) holds true. Since scenarios are strictly ordered, we have∑
j:(j,i)∈A yjiw−

∑
j:(i,j)∈A yijw ≥ dkiw for all k ∈ {k̂, k̂−1, . . . , 1}. The strict ordering also

implies that K\Lk̂+1
iw = {k̂, k̂ − 1, . . . , 1}. Hence, the chance constraint is satisfied with

probability ∑
k∈{k̂,k̂−1,...,1}

pk =
∑

k∈K\Lk̂+1
iw

pk = 1−
∑

k∈Lk̂+1
iw

pk = 1− P(Lk̂+1
iw ) ≥ 1− εiw.

Therefore, chance constraint (2.10) is equivalent to the deterministic constraint (2.42).
When εiw = 1, the chance constraint is satisfied by any feasible y due to the non-negativity
of any probability value. This completes the proof. �

We can compare εiw with adjacent values ofP(Lkiw) andP(Lk+1
iw ), for all k = 1, . . . , |K|,

and allocate εiw to an appropriate interval. By applying Theorem 2.1, we transform the
chance constraint into a deterministic constraint. As all chance constraints for every com-
bination of w and i are independently stated, we repeat the procedures for each w ∈ W and
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i ∈ Dw, and solve PNDP-cont-nc as a deterministic formulation. Algorithm 2.1 describes
this procedure in greater detail.

Algorithm 2.1 Polynomial-time algorithm for optimizing PNDP-cont-nc
1: for w ∈ W do
2: for i ∈ Dw do
3: Sort dkiw in an ascending order, combine identical values, and re-arrange the sce-

nario number.
4: Set {1, . . . , |K|}iw as the new partial order of the (i, w)th constraint (2.10)
5: for k ∈ {1, . . . , |K|}iw do
6: Define

Lkiw := {k, k + 1, . . . , |K|} and P(Lkiw) :=

|K|∑
k′=k

pk
′
.

7: end for
8: Identify k̂ ∈ {1, . . . , |K|} such that P(Lk̂iw) > εiw ≥ P(Lk̂+1

iw ).
9: Replace (i, w)th chance constraint (2.10) with deterministic constraint (2.42).

10: end for
11: end for
12: Solve PNDP-cont-nc as

min

 ∑
(i,j)∈A

cijxij +
∑
w∈W

∑
(i,j)∈A

aijwyijw : (2.3)–(2.5),(2.42)

 .

13: return Optimal solution (x∗, y∗).

2.4.2.2 Complexity Analysis of Algorithm

In Algorithm 2.1, the transformation steps before Step 12 are polynomial in |K|. Thus, the
algorithmic complexity is mainly determined by

min
x,y

 ∑
(i,j)∈A

cijxij +
∑
w∈W

∑
(i,j)∈A

aijwyijw : (2.3)–(2.5), (2.42)

 ,

which is equivalent of solving |W | minimum cost flow problems for all commodities, by
using (cij + aijw) as a revised arc cost for every arc (i, j) with respect to commodity w, for
all w ∈ W . The arguments are given as follows. By assumption, let cij ≥ 0, ∀(i, j) ∈ A
and aijw ≥ 0, ∀(i, j) ∈ A, w ∈ W . Multiplying constraints (2.3) by cij gives∑

w∈W

cijyijw ≤ cijxij, ∀(i, j) ∈ A. (2.43)
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We add up the above terms over all arcs (i, j) ∈ A, and also add
∑

w∈W
∑

(i,j)∈A aijwyijw

to both sides, yielding∑
w∈W

∑
(i,j)∈A

(cij + aijw)yijw ≤
∑

(i,j)∈A

cijxij +
∑
w∈W

∑
(i,j)∈A

aijwyijw. (2.44)

Due to the minimizing nature of the objective, the original problem is then equivalent to

min
y

∑
w∈W

∑
(i,j)∈A

(cij + aijw)yijw : (2.4),(2.5), (2.42)

 ,

which only involves variables y. PNDP-cont-nc is then equivalent of solving |W | mini-
mum cost flow problems with revised arc costs, each of which involves commodity-based
constraints (2.4), (2.5), and (2.42). The overall computational complexity is linear in the
complexity of algorithms used for sorting and for solving minimum-cost flow problems.

2.4.2.3 Algorithm demonstration

We demonstrate our approaches on an example of PNDP-cont-nc which contains three
single-row chance constraints, and is formulated on a network depicted in Figure 2.1. Three
commodities are shipped from nodes 0, 1, and 2, respectively, all to demand node 4, with
supply capacities given as s01 = s12 = s23 = 10. Demand (d41, d42, d43) is jointly realized
from a set

{dk}k∈K = {(3, 1, 10), (4, 3, 9), (5, 5, 8), (6, 7, 7), (7, 8, 6), (8, 6, 5), (9, 4, 4), (10, 2, 3)}

with an equal probability of 1/8 for each realization. The costs are c01 = c02 = c24 = 1,
c34 = c13 = c32 = 2, and for commodities w = 1, 2, 3, aijw = 0.5, 0.2, 0.3 respectively on
all arcs (i, j) ∈ A. The risk levels for unsatisfied demand for commodities 1, 2, and 3 are
mandated as ε1 = 0.2, ε2 = 0.4, and ε3 = 0.3, respectively.

Figure 2.1: Network topology for PNDP-cont-nc example
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Different from previously presented Algorithm 2.1, here we directly compute all values
of Lkw based on the definition, without the pre-sorting steps. For commodities 1, 2, and 3,

L1
1 = {1, 2, . . . , 8}, L2

1 = {2, . . . , 8}, . . . , L7
1 = {7, 8}, L8

1 = {8},

L1
2 = {1, 2, . . . , 8}, L2

2 = {2, . . . , 7}, L3
2 = {3, . . . , 6}, L4

2 = {4, 5},

L5
2 = {5}, L6

2 = {6, 5, 4}, L7
2 = {7, . . . , 3}, L8

2 = {8, . . . , 2},

L1
3 = {1}, L2

3 = {1, 2}, . . . , L8
3 = {1, . . . , 8}.

where Lkw are abbreviations of Lkiw since i = 4 is the only demand node, for all w. The
associated probability thresholds are P(Lkw) = 0.125|Lkw| for all sets Lkw. We examine
all scenarios in ascending order of P(Lkw), (i.e. in increasing cardinality of Lkw, for all
w = 1, 2, 3). Subsequently, we allocate ε1, ε2, and ε3 in the following intervals

P(L7
1) = 0.25 > ε1 = 0.2 ≥ P(L8

1) = 0.125 ⇒ k̂1 = 7 for commodity 1,

P(L3
2) = 0.5 > ε2 = 0.4 ≥ P(L6

2) = 0.375 ⇒ k̂2 = 3 for commodity 2,

P(L3
3) = 0.375 > ε3 = 0.3 ≥ P(L2

3) = 0.25 ⇒ k̂3 = 3 for commodity 3,

which allows the transformation of the three chance constraints into the following deter-
ministic inequalities.

y241 + y341 ≥ d7
41 = 9

y242 + y342 ≥ d3
42 = 5

y243 + y343 ≥ d3
43 = 8.

Alternatively, one can formulate the problem by defining binary variables zk4w taking value
1 if the wth chance constraint violates scenario k at the demand node 4. According to
Definition 2.2, {L7

1}, {L3
2}, and {L3

3} are minimal cover sets for each commodity-based
chance constraint, respectively. Generating the corresponding cover inequalities will lead
to the same solution:

z7
41 ≤ 0⇒ d41 ≥ d7

41 = 9, z3
42 ≤ 0⇒ d42 ≥ d3

42 = 5, and z3
43 ≤ 0⇒ d43 ≥ d3

43 = 8,

The original problem is then equivalent to solving three shortest path problems, which aim
to transport deterministic demands (i.e. 9, 5, 8 units of commodities 1, 2, and 3, respec-
tively) from a single supply node to demand node 4, with (cij+aijw) being the flow cost for
all (i, j) ∈ A for commodity w. Given that paths 0–2–4, 1–3–4, and 2–4 are the shortest
paths, an optimal solution is x∗02 = 9, x∗24 = 9 + 8 = 17, x∗13 = x∗34 = 5, yielding the
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minimum cost of 61.4.

2.4.2.4 Polynomial time algorithms for special cases of PNDP-cont-c/n

The following discussion of special cases and the development of algorithms can be ap-
plied to both PNDP-cont-c and PNDP-cont-c/n. Using PNDP-cont-c as an example, when
|Dw| = 1 for all w ∈ W , we then have a single-row chance constraint for every commod-
ity w. The special case corresponds to real-world applications in which only one demand
node exists for each commodity, who can be satisfied by one or multiple suppliers. Recall
that with single-row chance constraints, we can reformulate PNDP-cont-c as a determinis-
tic problem via the enumeration of violation risk thresholds, for all commodities w ∈ W .

We apply similar approaches as Algorithm 2.1 by considering one demand node iw for
each commodity w, and revise the for-loop from Step 3 through Step 6 as follows. With
respect to each w ∈ W , we identify scenario k̂, such that P(Lk̂w) > εw ≥ P(Lk̂+1

w ), and
replace the chance constraint (2.11) with∑

j:(j,i)∈A

yjiww −
∑

j:(i,j)∈A

yiwjw ≥ dk̂iww ∀w ∈ W. (2.45)

PNDP-cont-c is then equivalent to solving

min
x,y

 ∑
(i,j)∈A

cijxij +
∑
w∈W

∑
(i,j)∈A

aijwyijw : (2.3)–(2.5),(2.45)

 ,

which is further equivalent to

min
y

∑
w∈W

∑
(i,j)∈A

(cij + aijw)yijw : (2.4), (2.5),(2.45)

 . (2.46)

Moreover, the algorithm employs the shortest-path algorithm rather than solveW minimum
cost flow problems, because of the single-demand-node assumption for each commodity.
The following elaborates on the special cases of “one supply, one demand” and “multiple
supplies, one demand”.

Case I: |Sw| = |Dw| = 1, ∀w: The algorithm seeks a shortest paths for each supply and
demand node pair, and solves W shortest-path problems, by setting arc cost as (cij + aijw)

for all (i, j) ∈ A and w ∈ W . Dijkstra’s algorithm finds each shortest path in O(|N |2) time
by noting that all revised costs are nonnegative. For every commodity w, dk̂iww units of flow
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are transported on arcs of the corresponding path, yielding the optimal objective value of
Formulation (2.46) as ∑

w∈W

dk̂iww

 ∑
(i,j)∈Sw

(cij + aijw)

,
where Sw is a shortest path identified for commodity w.

Case II: |Sw| > 1 and |Dw| = 1, ∀w: When having multiple suppliers, we first compute
the shortest paths from each supplier in Sw to the demand node iw, and start from the
“cheapest” supplier to flow as much as its capacity allows. We greedily repeat the “capacity-
saturating” procedure for each ordered supply node, until dk̂iww units of required demand
are all satisfied. The details are given in Algorithm 2.2.

Algorithm 2.2 Greedy Algorithm to Solve Problem (2.46) in Case II
1: for w ∈ W do
2: for j ∈ Sw do
3: Use Dijkstra’s algorithm to find a shortest path from node j to the singleton de-

mand node iw, denoted as S(j, iw).
4: end for
5: Order all supply nodes in Sw such that the shortest distances are ordered `S(1,iw) ≤

`S(2,iw) ≤ · · · ≤ `S(|Sw|,iw).
6: Denote ew as the current unsatisfied demand and set ew = dk̂iww.
7: Denote m as the supplier number under examination and set m = 1.
8: while ew > 0 do
9: if sm ≥ ew then

10: Flow ew on the shortest path S(m, iw).
11: ew ← 0
12: else
13: Flow sm on the shortest path S(m, iw).
14: ew ← ew − sm
15: m← m+ 1
16: end if
17: end while
18: end for
19: return Optimal y∗w as flows on shortest paths, optimal x∗ij =

∑
w∈W y∗ijw, ∀(i, j) ∈ A.

2.4.3 Relationship Between the PNDP-cont Models

Among all general PNDP-cont models we have discussed so far, only PNDP-cont-nc can be
quickly solved by Algorithm 2.1. For PNDP-cont-joint, PNDP-cont-c, and PNDP-cont-n,
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we need to solve a deterministic MILP model (involving binary z). The cover inequalities
can be used to potentially improve computational efficacy. Next we describe how to use
optimal solutions of specially designed PNDP-cont-nc for computing upper bounds of the
objectives of the other models. These bounds can be incorporated into branch-and-bound
nodes, together with lower bounds obtained by solving linear programming relaxations of
the original MILP models.

Consider PNDP-cont-joint, which contains a joint chance constraint with a risk toler-
ance ε. Assume that demand distributions are independent among all w ∈ W and i ∈ Dw.
Let Eiw represent the event of no demand loss at node i ∈ Dw for commodity w ∈ W , so∑

j:(j,i)∈A yjiw −
∑

j:(i,j)∈A yijw ≥ diw. We have

P(Eiw, ∀w ∈ W, i ∈ Dw) =
∏

w∈W, i∈Dw

P(Eiw). (2.47)

Given risk tolerances εiw for all combinations of i and w, let (x∗, y∗) be an optimal solution
to PNDP-cont-nc. Note that∏

w∈W, i∈Dw

P(Eiw(x∗, y∗)) ≥
∏

w∈W, i∈Dw

(1− εiw) ≥ 1−
∑

w∈W, i∈Dw

εiw, (2.48)

where the last inequality is due to εiw ∈ [0, 1) for all i and w. Based on (2.47) and (2.48),
(x∗, y∗) is a feasible solution to PNDP-cont-joint by letting ε =

∑
w∈W, i∈Dw εiw. As a re-

sult, for PNDP-cont-joint with ε, one can design εiw in PNDP-cont-nc with
∑

w∈W, i∈Dw εiw =

ε, to ensure the aforementioned relationship holds. We then solve the designed PNDP-cont-
nc in polynomial time to obtain a feasible solution to PNDP-cont-joint, which also yields
an upper bound for the optimal objective. Tighter bounds can be generated by varying
εiw, ∀i and w, while making sure

∑
w∈W, i∈Dw εiw ≥ ε.

Similarly, each joint chance constraint in PNDP-cont-c and PNDP-cont-n can be ap-
proximated by a series of single-row chance constraints in PNDP-cont-nc, while respec-
tively ensuring

εw =
∑
i∈Dw

εiw, and εi =
∑
w∈W

εiw. (2.49)

An optimal solution to PNDP-cont-nc is then feasible to PNDP-cont-c and PNDP-cont-n,
and provides a valid upper bound for the corresponding optimal objective values.

For computing the benchmark SNDPs described in this chapter, we employ a decompo-
sition algorithm, which follows standard Benders procedures. We demonstrate the details
of decomposition and cutting-plane generation in Appendix A. The approach is alternative
to solving the MILPs via off-the-shelf solvers, and can be also generalized for solving the
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deterministic MILP reformulations of the PNDP-bin-nc.

2.5 Computational Results

We test our models and algorithms on two sets of numerical instances based on randomly
generated networks and the Sioux-Falls network, respectively. Section 2.5.1 focuses on
the comparison between joint and single-row chance constraints, as well as comparison of
different algorithms for solving PNDP-cont, by testing moderate-size network instances.
Section 2.5.2 computes representative models of PNDP and SNDP on instances of a real-
world network. We aim to derive managerial insights of implementing various continu-
ous/discrete PNDP and SNDP formulations under different demand/supply situations.

2.5.1 Randomly Generated Networks

2.5.1.1 Experimental Setup

Here we generate random network instances that have sizes of |N | = 20 and 30, with a den-
sity (defined as |A|

|N |×|N | ) being approximately 25%. Each instance has three commodities.
We test |K| = 50, 100, 200 scenarios, and let |Sw| = 4 and |Dw| = 2 for all commodities
w = 1, 2, 3. We test the four PNDP-cont models with fixed flow variables. The aim is to
compare QoS results yielded by different models and demonstrate the efficacy of imple-
menting Algorithm 2.1 compared with directly solving the MILP models.

For all arcs (i, j), we assign cij an integer obtained from rounding up a random number
generated from a uniform distribution over the interval (0, 8]. For all arcs (i, j) ∈ A, we
randomly generate aijw from uniform distributions over the intervals [0.1, 0.3], [0.1, 0.4],
and [0.2, 0.4] for w =1, 2, and 3, respectively. For every scenario k ∈ K, we first generate
a random number from 1, . . . , |K|. The probability pk is then computed by dividing the
random number by the sum of all random numbers generated for each scenario, such that∑

k∈K p
k = 1 is enforced. We randomly select nodes in N to be supply nodes in Sw or

demand nodes in Dw for all w ∈ W . Finally, for w = 1, 2, 3 we generate the amounts of
supply/demand from uniform distributions depicted in Table 2.1. The designated distribu-
tions also guarantee that

∑
i∈Sw siw ≥

∑
j∈Dw djw, ∀w ∈ W . Thus, given any possible

data realizations from Table 2.1, we always have feasible solutions.
All models and algorithms use CPLEX 12.3 via ILOG Concert Technology with C++,

and computations are performed on a HP Workstation z400 Windows 7 machine with In-
tel(R) Xeon(R) CPU E31230 3.20 GHz, and 8GB memory. The CPU time is reported in
seconds.
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Table 2.1: Distributions for generating supply/demand at corresponding locations

Commodity Supply 1, 2 Supply 3, 4 Demand 1, 2

w = 1 U(20,30) U(40,50) U(50,60)

w = 2 U(10,15) U(20,25) U(25,30)

w = 3 U(5,7) U(10,12) U(12,15)

2.5.1.2 Results Summary

We test models of PNDP-cont-joint/nc to demonstrate the relationship between joint and
single-row chance constraints. For the single-row chance constraints for w = 1, 2, 3, we
assume two cases having homogeneous (denoted by “-ho”) and heterogeneous (denoted by
“-he”) risk tolerances among different chance constraints. Corresponding to each case of
ε, the homogeneous case uses ε11 = ε12 = ε21 = ε22 = ε31 = ε32 = ε/6 when |Dw| = 2.
When |Dw| = 1, ∀w = 1, 2, 3, the heterogeneous case uses ε11 = ε12 = 1/12, ε21 = ε22 =

1/6, and ε31 = ε32 = 1/4. The later setting follows an intuition that we aim to guarantee
higher QoS levels for satisfying demands with higher variations (as indicated in Table 1).
For each combination, we test fifteen instances and compute the averages to report.

Table 2.2 and Table 2.3 respectively report the CPU time and optimal objective values
of the three PNDP MILP models tested. We use ε = 0.03, 0.06, 0.15, and 0.3, indicated
in Column ε, which guarantee the probability of no demand loss for any commodity at any
node being no less than 97%, 94%, 85%, and 70%, respectively.

Table 2.2: CPU time of the PNDP chance-constrained models (in seconds)

ε
PNDP-cont-joint PNDP-cont-nc-ho PNDP-cont-nc-he

|K| = 50 |K| = 100 |K| = 200 |K| = 50 |K| = 100 |K| = 200 |K| = 50 |K| = 100 |K| = 200

|N | = 20 0.03 0.049 0.189 0.767 0.022 0.079 0.168 0.024 0.045 0.164
0.06 0.170 0.395 3.207 0.022 0.127 0.472 0.019 0.069 0.472
0.15 0.507 2.218 41.311 0.061 0.455 3.381 0.082 0.371 2.951
0.3 1.179 7.046 1589.000 0.258 0.483 5.567 0.209 0.539 5.139

|N | = 30 0.03 0.048 0.250 0.873 0.028 0.123 0.266 0.029 0.076 0.212
0.06 0.256 0.509 3.875 0.028 0.161 0.672 0.028 0.127 0.428
0.15 0.595 2.646 91.265 0.045 0.567 4.947 0.144 0.446 4.096
0.3 1.738 8.929 739.115 0.452 0.640 7.728 0.334 0.831 7.929

For PNDP-cont-nc, we solve all instances with Algorithm 2.1 and the MILP approach,
and depict the CPU time comparison in Figure 2.2. The CPU time of the MILP approach
on the heterogeneous 200-scenario instances is used as the benchmark, being the pair of
approach and instances requiring the most CPU time. The CPU time of the other cases is
then compared as a percentage of this benchmark.
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Table 2.3: Optimal objective values of the PNDP chance-constrained models

ε
PNDP-cont-joint PNDP-cont-nc-ho PNDP-cont-nc-he

|K| = 50 |K| = 100 |K| = 200 |K| = 50 |K| = 100 |K| = 200 |K| = 50 |K| = 100 |K| = 200

|N | = 20 0.03 781.93 766.87 868.07 781.93 766.87 868.07 781.93 766.87 868.07
0.06 763.20 748.20 850.89 781.93 757.65 861.64 763.20 748.20 850.89
0.15 674.73 659.81 761.93 724.65 691.79 784.59 674.73 659.81 761.93
0.3 663.94 648.84 750.92 717.99 684.55 779.52 663.94 648.84 750.92

|N | = 30 0.03 682.07 692.80 650.47 682.07 693.13 650.47 682.07 692.80 650.47
0.06 664.53 679.40 636.60 682.07 690.27 643.71 664.53 679.40 636.60
0.15 574.60 586.74 545.13 664.32 619.01 571.46 574.60 586.74 545.13
0.3 564.17 579.68 536.05 663.91 617.63 565.69 564.17 579.68 536.05
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Figure 2.2: Percentage comparison of CPU time taken by Algorithm 2.1 and the MILP
approach

We list our observations based on the computational results as follows.

• The optimal objective values decrease as we increase ε (i.e. by allowing more unmet
demands and lower QoS levels). Also, PNDP-cont-nc is less sensitive to changes in
ε compared to PNDP-cont-joint. This is because the risk is divided and distributed
into several chance constraints, and thus the same change in ε will result in relatively
smaller changes in εi for each constraint i.

• As described in Section 2.4.3, optimal solutions to PNDP-cont-nc will serve as fea-
sible solutions to PNDP-cont-joint when ε ≤

∑
w∈W,i∈Dw εiw. Such (upper) bounds

in general become tighter when ε is small. (In particular, when ε = 0.03, optimal
solutions to PNDP-cont-nc are also optimal to PNDP-cont-joint.) The bounds get
much worse after we lower the QoS level from 94% to 85% (i.e. increasing ε from
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0.06 to 0.15). The heterogeneous risk setting in general yields better bounds than the
homogeneous case, indicating the importance and necessity of differentiating risk
tolerances (or QoS levels) for different customers and commodities. In general, all
bounds become tighter in both tables when |K| increases.

• For all MILP models tested, the CPU time dramatically increases as we increase ε
(i.e. when allowing higher probabilities of violating chance constraints). We have
much longer computational time spent on solving the MILPs compared with Algo-
rithm 2.1, which also dramatically increases as we increase |K|.

• Solving the MILP model of PNDP-cont-nc is significantly faster than solving the
MILP model of PNDP-cont-joint. In particular, the CPU time taken by Algorithm 2.1
is almost the same for all instances, regardless of changes to (i) the number of scenar-
ios |K|, (ii) the sum of risk tolerances ε, and (iii) homogeneous or heterogeneous risk
settings. This is consistent with the observation that the complexity of Algorithm 2.1
is not determined by the number of scenarios but by the complexity of solving |W |
minimum-cost-flow problems.

2.5.2 Sioux-Falls Network

2.5.2.1 Experimental Setup

In this experiment, we use the Sioux Falls road network (LeBlanc et al., 1975), as shown
in Figure 2.3, which is widely used in transportation literature. This network consists of
24 nodes and 76 links. We continue to use three commodities and |K| = 100 scenarios in
instances created based on this network. The aim in this experiment is to glean managerial
insights through the use and comparison of PNDP and SNDP models on an instance that is
closer to a real-world instance.

We simulate a high inflow instance, where commodities flow into the network exclu-
sively from the outer nodes of the network, with higher mean demands for nodes that are
more centralized in the network. We select nodes 1, 2, 12, 13, 18, and 20 as the supply
nodes (bold nodes in Figure 2.3), as these are the most likely entry points into Sioux Falls,
and select the inner nodes 4, 5, 8–11, 14–17, 19, 22, and 23 as the demand nodes (shaded
nodes), as these are the more populated areas in Sioux Falls.

For all arcs (i, j), the travel distances cij between nodes are indicated on the arcs in
Figure 2.3. For simplicity, the arcs are symmetric, i.e. (j, i) always exists and is always
equal in length to (i, j), for all (i, j) ∈ A. For each arc (i, j) and commodity w ∈ W , we

31



1

8

4 5 63

2

15 19

17

18

7

12 11 10 16

9

20

23 22

14

13 24 21

6

6
 

4

4

4

2

2

4

4

4
55

10

2 2

3

3
2 2

3

3

4

4

8 2 2

2

10

5

5

6

6

4 4

44

5

5

3

3

4

4

3 3

2 2

3

6 6

2

4 4

4 4

3 6

5

5
22

8

44

634

4

3 3

3

5 5

5 5

6 6

Figure 2.3: Sioux Falls road network

assign aijw as 0.2, 0.25, and 0.3 for w = 1, 2, 3 respectively. For each scenario k ∈ K, we
generate the probability pk by following the same method in Section 2.5.1.

Denote the mean demands for commodityw at node j by d̄jw. We set the mean demands
at node 10 (the center) to be d̄10,1 = 1000, d̄10,2 = 3000, and d̄10,3 = 7000, and set the mean
demands at the other demand nodes j to be d̄jw = (1 − λn)d̄10,w, ∀w = 1, 2, 3, where n
is the minimum number of links of a path from node 10 to node j and λ is the average
rate of decay of demand from the center. Finally, we sample the realizations dkjw from the
distribution U(0, 2d̄jw), w = 1, 2, 3.

For each of the two instances, the supply for each commodity at each supply node is
then generated randomly, while ensuring that

∑
i∈Sw siw ≥

∑
j∈Dw d

k
jw, ∀w ∈ W, k ∈ K,

so that we will always have feasible solutions in every scenario.
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2.5.2.2 Results Summary

We analyze the sensitivity of optimal objective values to the parameters ε and G for dif-
ferent values of λ. The models of PNDP-joint, PNDP-nc, and SNDP-wp are used in this
comparison. Here, we used the homogenous versions of PNDP-nc (i.e. εiw = ε/39 for each
i ∈ Dw, w ∈ W ) and SNDP-wp (i.e. Giw = G for some fixed constant G for each i ∈ Dw,
w ∈ W ).

For the PNDP-joint and PNDP-nc cases, we used ε from 0 to 0.15, in intervals of 0.03.
For the SNDP-wp case, we used G from 20 to 40, in intervals of 4. For each of these values
of ε or G, the optimal values of each model was found and taken as a percentage of the
optimal value of the most restricted instance of each model, i.e. ε = 0 for both PNDP
models, and G = 40 for the SNDP-wp model. Figure 2.4 illustrates the comparison of the
three models for different levels of demand decay.

We list our observations based on the computational results as follows.

• The optimal values of PNDP-joint and PNDP-nc have a fairly linear relationship with
ε. This is in contrast with the curved graph of the SNDP-wp model; this is to be ex-
pected. As G increases, the dominant term in the bi-objective function changes from
the real cost of the solution to the virtual penalty cost incurred by unmet demand.

• The above point reveals the rather ambiguous nature of the penalty value G - without
first experimenting with several values of G, one cannot determine a suitable value
of G for which the objective function weighs the actual and virtual costs in a manner
that is reasonable to the decision maker. PNDP models in general mitigate the ambi-
guity of solution reliability, and provide a decision maker with confidence levels on
the QoS that (s)he can place in the solution, which an SNDP model cannot usually
achieve.

• The optimal objectives of PNDP-cont-nc serve relatively good upper bounds for the
optimal objectives of PNDP-cont-joint, and become tighter when (i) |K| increases,
and/or (ii) in the heterogeneous risk setting. This might be of interest to some de-
cision makers, who try to satisfy certain QoS levels by prioritizing their customer
demands and requiring higher QoS levels for demands with higher variations. In-
stead of computing a time-consuming MILP of PNDP-cont-joint with a joint chance
constraint, one can solve PNDP-cont-nc as a variant with multiple single-row chance
constraints. This approximation in general might provide very tight bounds and high
quality solutions based on all numerical results.
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(a) λ = 0: even distribution of demand among demand nodes.
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(b) λ = 0.2: moderate decay of demand from node 10.
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(c) λ = 1: all demand at node 10 only.

Figure 2.4: Comparisons of the objective values of SNDP-wp, PNDP-joint, and PNDP-nc
for varying values of ε and G

34



2.6 Concluding Remarks

In this chapter, we analyzed model variants and solution approaches of the probabilistic net-
work capacity design problem with multicommodity flows. We first examined PNDP-cont-
joint with a joint chance constraint that guarantees certain probability of no-demand losses
at all nodes for all commodities. The problem was reformulated as an MILP by defining bi-
nary variables associated with each scenario. We then formulated three model variants that
distribute risks into multiple chance constraints, namely, PNDP-cont-nc, PNDP-cont-c, and
PNDP-cont-n. In addition to MILP reformulations, we discussed polynomial algorithms
for solving PNDP-cont-nc by identifying risk thresholds of every single-row chance con-
straint. The modified approach then transformed the problem, and solved several shortest-
path problems to attain optimality. Similar approaches were developed for solving special
cases of PNDP-cont-c and PNDP-cont-n. We formulated benchmark stochastic program-
ming models by either enforcing to meet all demand or penalizing unmet demand via a
linear cost function, and tested different models and approaches on randomly generated
network instances and an instance given by the Sioux-Falls network. Our results show that
differentiating QoS levels for different commodities and/or customers (by using models
with multiple chance constraints) can result in cost savings in network capacity design and
transportation, as well as can yield better solution bounds (with much shorter computational
times needed) for models having joint chance constraints (via unified QoS levels).
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CHAPTER 3

Distributionally Robust Network Design

3.1 Introductory Remarks

In Chapter 2 we assumed that the distribution of demand was fully captured with known
discrete realizations. This is a reasonable assumption to make in most cases when the
problem has many historical data points that can be used to accurately construct the demand
distribution. However, for NDPs applied to newly implemented networks, or for NDPs in
which obtaining data is expensive (e.g. via manual survey/census) historical data may be
scarce. In such cases, the data may be insufficient to apply a chance-constrained or even a
stochastic optimization model, as the small number of observed realizations is less likely
to accurately capture the true demand distribution and is more sensitive to the occurrence
of rare outlying realizations. Similarly, traditional robust optimization (see Bertsimas and
Sim, 2003, 2004) is often sensitive to outliers – since it is computed solely with the single
worst-case realization, it may lead to overly conservative solutions.

When the demand distribution is not fully known, robust optimization is often used
to solve NDPs. Robust optimization utilizes bounds on the uncertain parameters to con-
struct an uncertainty set, and optimize the worst-case objective value for any parameter
realization in the uncertainty set. Since only the bounds of the uncertainty are required for
robust optimization, it is well-suited to conservatively solve problems without full infor-
mation on the distribution of uncertainty. We refer the reader to Ben-Tal and Nemirovski
(1998) and Bertsimas and Sim (2004) for the methodology of robust optimization in generic
convex optimization problems and linear programs respectively. Ukkusuri et al. (2007) ro-
bustly designed a transportation network under discrete demand uncertainty. Similarly,
Mudchanatongsuk et al. (2008) proposed a robust transportation NDP under demand and
transportation cost uncertainty, representing the uncertainty in both cases with box-shaped,
polyhedral and ellipsoidal uncertainty sets. In supply chain network design, Pishvaee et al.
(2011) applied robust optimization to minimize the cost of the supply chain network under
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box-shaped uncertainty sets for demand, returns, and transportation costs.
More recently, data-driven distributionally robust optimization has been used to tackle

optimization problems under distributional uncertainty (e.g. Calafiore and El Ghaoui, 2006;
Goh and Sim, 2010). In contrast with robust optimization, which plans against the worst-
case realization, distributionally robust optimization plans against the worst-case distribu-
tion. This worst-case distribution is selected from an ambiguity set of feasible candidate
distributions, which is typically constructed based on the uncertainty structure. We use a
moment-based ambiguity set (Delage and Ye, 2010) in this study, which comprises dis-
tributions which have moments equal to those of the small set of observations. Since a
moment-based ambiguity set is constructed using only the moments of the observations, a
benefit of using such an ambiguity set is that solution time of the problem is unaffected by
the number of observations, yet all observations are implicitly used when computing the
moments, as opposed to robust optimization, which uses a single worst-case realization.

To the best of our knowledge, the use of distributionally robust optimization to solve
NDPs is a novel approach. The majority of the literature on NDPs focuses on problems
with fully known distributional information or sufficient historical observations to approxi-
mate the distribution; when distributional information is sparse, robust optimization is used
instead. Solving NDPs via distributionally robust optimization is less conservative than
using robust optimization, yet is robust enough to be less sensitive to the distribution of the
observations, when compared to using a risk-neutral stochastic optimization approach.

We approximate DR-NDP under a marginal moment-based ambiguity set with an op-
timization problem that contains an embedded MILP in its constraints. While the expres-
sions in the optimization problem are linear, it cannot be solved directly due to the embed-
ded problem. We develop a cutting-plane algorithm that iteratively generates cuts with the
embedded optimization problem, to obtain approximate solutions to DR-NDP. Through
our results, we will show that the solutions obtained via this algorithm are less sensitive
to the distribution of observations than those obtained via an expectation-based stochastic
optimization model.

This chapter is organized as follows. Section 3.2 describes a generic NDP and the for-
mulation of the marginal moment-based ambiguity set for DR-NDP. Section 3.3 reformu-
lates DR-NDP under the marginal moment-based ambiguity set as an approximate problem,
which is utilized in Section 3.4 to develop a cutting-plane algorithm to obtain approximate
solutions to DR-NDP. Section 3.5 details the solution performance of DR-NDP relative to
a benchmark expectation-based stochastic NDP formulation, and Section 3.6 concludes the
chapter and describes future research directions.
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3.2 Problem formulation

The setup of DR-NDP is similar to that of PNDP, albeit with only a single commodity. We
are given a networkG(N,A) with directed arcs (i, j) ∈ A of undetermined capacity, where
i, j ∈ N , with the aim of minimizing the total cost of arc capacity allocation, commodity
flow and penalties due to unmet demand. The network has disjoint sets of supply nodes
S ⊂ N and demand nodesD ⊂ N . Each supply node i ∈ S has deterministic supply si > 0

while each demand node i ∈ D has uncertain demand di ≥ 0. The demands are assumed to
be jointly distributed and, while the true distribution of the demand vector d is not known,
we are given a set of |K| previously observed realizations of d, denoted by {dk}k∈K . We
assume d has a boxed-shaped support Ξ, given by Ξ := {d ∈ R|D|+ : di ≤ di ≤ di}, where
d, d ∈ R|D|+ denote the vector of simple lower and upper bounds of d, respectively. The use
of a box-shaped support is analogous to the use of a box-shaped uncertainty set (Soyster,
1973) in robust optimization.

3.2.1 Formulation of the NDP Under Demand Uncertainty

The NDP aims to determine the optimal capacities on the arcs in the network that minimizes
overall cost. The cost is determined in the two stages of the NDP. The first stage determines
the capacity xij ∈ R+ on each arc (i, j) ∈ A in the network. Each unit of capacity allocated
to arc (i, j) incurs a cost of cij > 0 for all (i, j) ∈ A. We refer to the total capacity planning
cost in the first stage as the capacity cost, which is incurred before demand is realized.
Since the capacity on any arc never exceeds the maximum total demand, we impose an
explicit feasibility constraint x ∈ X on the vector of capacity variables x, where

X :=

{
x ∈ R|A|+ : 0 ≤ xij ≤

∑
i∈D

di, ∀(i, j) ∈ A

}
.

In specific NDP contexts, X can include other linear constraints. For example, budget
constraints may be present in supply chain NDP contexts, limiting the total capacity or
capacity cost of the network. In transportation NDPs, roads may be required to always
be two-way, necessitating a constraint xij = xji for all arcs (i, j), (j, i) ∈ A. As these
constraints are specific to the context of the problem, they are not the focus of this study
and we exclude them from our discussion.

In the second stage, we optimize the flows on the network to minimize the second-stage

cost of the first-stage decisions. Given a first-stage capacity vector x and a demand vector
d, the second-stage cost g(x, d) is given by a capacitated minimum cost flow that penalizes
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any unmet demand due to insufficient arc capacity. In other words, we formulate g(x, d)

by

g(x, d) := min
y,t

∑
(i,j)∈A

aijyij +
∑
i∈D

Giti (3.1)

s.t. yij ≤ xij ∀(i, j) ∈ A (3.2)∑
(i,j)∈A

yij −
∑

(j,i)∈A

yji ≤ si ∀i ∈ S (3.3)

∑
(i,j)∈A

yij −
∑

(j,i)∈A

yji = 0 ∀i ∈ N\(S ∪D) (3.4)

∑
(i,j)∈A

yij −
∑

(j,i)∈A

yji − ti ≤ −di ∀i ∈ D (3.5)

y, t ≥ 0, (3.6)

where y ∈ R|A|+ denotes the vector of flows yij on each arc (i, j) ∈ A and t ∈ R|D|+ denotes
the vector of unmet demand ti at each demand node i ∈ D. Each unit of flow on arc (i, j)

incurs a flow cost of aij > 0, and each unit of unmet demand at demand node i ∈ D incurs
a penalty cost of Gi > 0 in the objective function. Constraint (3.2) restricts the capacities
on the arcs, while constraints (3.3)–(3.5) balance the flows on the network. Constraint (3.5)
also determines the amount of unmet demand at each demand nodes.

Under ideal circumstances, if the distribution F of the demand vector d is known, then
a risk-neutral formulation of NDP is given by

min
x∈X

 ∑
(i,j)∈A

cijxij + EF [g(x, d)]

 , (3.7)

where EF is the expectation taken under the distribution F . However, F is rarely known
in practical applications of the NDP – distribution information on d is often limited to the
previously observed realizations of d. If data is scarce, the observed realizations will not
be sufficient to determine F with reasonable accuracy. Here, we use distributionally robust
optimization to tackle such NDPs with scarce data, using the marginal moments of the
scarce data to construct ambiguity sets for DR-NDP.
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3.2.2 Formulation of DR-NDP with a Marginal Moment-based Ambi-
guity Set

Traditional robust optimization seeks the worst-case realization of d. Such an approach
may be too robust if the observed set contains an extremely bad but very rare realization.
Distributionally robust optimization instead seeks the worst-case distribution F of d for
which the expected second-stage cost EF [g(x, d)] is maximized. We first establish an am-

biguity set, denoted byM, of candidate distributions from which the worst-case F is found.
The DR-NDP is then formulated as follows:

min
x∈X

 ∑
(i,j)∈A

cijxij + max
F∈M

{
EF
[
g(x, d)

]} . (3.8)

The solutions to DR-NDP depend on the ambiguity setM, since the solutions have to
be robust with respect to distributions in this set. Similarly, the reformulation methodology
of DR-NDP depends on the type of ambiguity set used. We use an ambiguity set based on
the marginal first and second moments of the observed realizations of the random parameter
d. We construct the ambiguity set with the marginal mean and variance vectors µ ∈ R|D|+

and σ2 ∈ R|D|+ of the observed realizations, given by

µi :=
1

|K|
∑
k∈K

dki ∀i ∈ D

σ2
i :=

1

|K|
∑
k∈K

(
dki − µi

)2 ∀i ∈ D.

This ambiguity set considers only distributions whose marginal means and variances match
µi and σ2

i respectively, for each i ∈ D. Explicitly, this marginal moment-based ambiguity

set is defined by

M0(Ξ, µ, σ) :={F :∫
Ξ

dF (d) = 1 (3.9)∫
Ξ

di dF (d) = µi ∀i ∈ D (3.10)∫
Ξ

d2
i dF (d) = µ2

i + σ2
i ∀i ∈ D}. (3.11)

Constraint (3.9) ensures M0 only contains valid distributions over Ξ, while constraint
(3.10) restricts these distributions to have marginal means and variances equal to those
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of the observed realizations. Note that the solution time of DR-NDP using this set is unaf-
fected by the size of the set of observations – since the ambiguity set is constructed from
only µ and σ2, only pre-processing time is affected by the size of the set.

3.3 Reformulation of DR-NDP as an Approximate Prob-
lem

We develop methodologies for reformulating and eventually solving the DR-NDP model
(3.8) using a marginal moment-based ambiguity set. We begin by dualizing the second-
stage maximization problem

max
F∈M

{
EF
[
g(x, d)

]}
(3.12)

to obtain a minimization problem that can be optimized together with the first-stage arc
capacity design problem, which also has a minimization objective. This section details this
dualization and a subsequent approximation of the objective function to estimate the value
of DR-NDP under a marginal moment-based ambiguity set.

3.3.1 Dualizing the Second-stage Problem

IfM =M0(Ξ, µ, σ), then the second-stage problem written explicitly is

max
F

{∫
Ξ

g(x, d) dF (d) : (3.9)–(3.11)
}
, (3.13)

a linear program maximizing over all distributions F inM0(Ξ, µ, σ), with the expectation
of g(x, d) over this distribution as the objective function.

We denote the dual variables corresponding to the constraints (3.9), (3.10) and (3.11)
by z ∈ R, r ∈ R|D| and v ∈ R|D|, respectively. Taking the dual of the second-stage problem
then yields

min
z,r,v

z +
∑
i∈D

µiri +
∑
i∈D

(
µ2
i + σ2

i

)
vi (3.14)

s.t. z +
∑
i∈D

diri +
∑
i∈D

d2
i vi ≥ g(x, d) ∀d ∈ Ξ. (3.15)

Next, we replace (3.12) with (3.14)–(3.15) in DR-NDP (3.8), and merge the minimiza-
tion objective of the dualized second-stage problem with the minimization objective of the
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first-stage arc capacity design problem to obtain the reformulation of DR-NDP (3.8) under
the moment-based ambiguity setM0(Ξ, µ, σ):

min
x,z,r,v

z +
∑
i∈D

µiri +
∑
i∈D

(
µ2
i + σ2

i

)
vi +

∑
(i,j)∈A

cijxij : x ∈ X, (3.15)

 . (3.16)

However, this formulation still remains intractable as constraint (3.15) is a semi-infinite
constraint (i.e. a constraint that must be fulfilled over the infinite set Ξ). We reformulate
this constraint as a tractable one in the next section.

3.3.2 Approximating the Semi-infinite Constraint

Since constraint (3.15) must be satisfied for all d ∈ Ξ, it must also be satisfied for the
worst-case d. We move all terms containing d to the right-hand side (RHS) of constraint
(3.15) and reformulate it as

z ≥ max
d∈Ξ

{
g(x, d)−

∑
i∈D

diri −
∑
i∈D

d2
i vi

}
. (3.17)

The RHS of constraint (3.17) now has a minimization problem g(x, d) within the maxi-
mization over d ∈ Ξ. We obtain the dual maximization problem of g(x, d) to merge with
the maximization over d ∈ Ξ.

Lemma 3.1. For fixed r, v and x feasible to problem (3.16), the value of

max
d∈Ξ

{
g(x, d)−

∑
i∈D

diri −
∑
i∈D

d2
i vi

}
(3.18)

is equal to that of

max
d∈Ξ,(θ,π)∈P

∑
i∈D

diπi −
∑
i∈S

siπi −
∑

(i,j)∈A

xijθij −
∑
i∈D

diri −
∑
i∈D

d2
i vi

 (3.19)

where P is the feasible region given by

P :={(θ, π) :

πj − πi − θij ≤ aij ∀(i, j) ∈ A (3.20)

θij ≥ 0 ∀(i, j) ∈ A (3.21)
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πi ≥ 0 ∀i ∈ S (3.22)

0 ≤ πi ≤ Gi ∀i ∈ D}. (3.23)

�

Proof. We begin by taking the dual of g(x, d). By denoting the dual variables correspond-
ing to constraints (3.2), (3.3), (3.4), and (3.5) of the capacitated minimum cost flow problem
g(x, d) by θ ∈ R|A|+ , πi for i ∈ S, πi for i ∈ N\(S ∪D), and πi for i ∈ D, respectively, we
can write g(x, d) in its dual form:

g(x, d) = max
θ,π

∑
i∈D

diπi −
∑
i∈S

siπi −
∑

(i,j)∈A

xijθij : (3.20)–(3.23)

 . (3.24)

Substituting the dual (3.24) into (3.18) yields

max
d∈Ξ

 max
(θ,π)∈P

∑
i∈D

diπi −
∑
i∈S

siπi −
∑

(i,j)∈A

xijθij

−∑
i∈D

diri −
∑
i∈D

d2
i vi

 . (3.25)

We merge the maximization over (θ, π) ∈ P with the maximization over d ∈ Ξ to complete
the reformulation. �

Problem (3.19) still cannot be solved directly as it contains bilinear terms diπi in its
objective, with both di and πi being continuous for all i ∈ D. Since πi is bounded below
and above (due to duality), we aim to rewrite di in terms of binary variables to reformulate
the bilinear terms. Consequently, the following lemma further reformulates problem (3.19)
by leveraging the fact that d has a box-shaped support.

Lemma 3.2. For fixed r, v and x feasible to problem (3.16), the value of problem (3.19) is
equal to that of

max
(θ,π)∈P

∑
i∈D

(
max

di≤di≤di

{
diπi − diri − d2

i vi

})
−
∑
i∈S

siπi −
∑

(i,j)∈A

xijθij

 . (3.26)

�

Proof. Due to the simple feasible region of d, we separate the maximizations over (θ, π) ∈
P and d ∈ Ξ in the objective. The order of maximization is swapped from that in (3.25),
so that the terms in d can be grouped then separated by the index i ∈ D. Note that the
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swapping of maximization order does not change the problem as the final solution in both
cases maximizes over both feasible regions P and Ξ.

max
(θ,π)∈P

max
d∈Ξ

{∑
i∈D

diπi −
∑
i∈D

diri −
∑
i∈D

d2
i vi

}
−
∑
i∈S

siπi −
∑

(i,j)∈A

xijθij

 . (3.27)

We observe that the maximization over d ∈ Ξ is separable by the indices i ∈ D since the
box-shaped support Ξ is defined by independent simple lower and upper bounds on each
dimension. We separate this maximization problem into the |D| maximization problems
given in (3.26), each over a simple interval, to complete the reformulation. �

Theorem 3.2. For fixed r, v and x feasible to problem (3.16), the value of problem (3.18)
is equal to that of problem (3.26). �

Proof. This is a direct consequence of Lemmas 3.1 and 3.2. �

Through Lemma 3.2, we first consider each maximization problem

max
di≤di≤di

{
diπi − diri − d2

i vi

}
(3.28)

for all i ∈ D separately. Although obtaining the analytic solution of (3.28) in terms of
πi, ri and vi is trivial, the analytic solution is not useful in generating cuts in our subse-
quent cutting-plane algorithm. Instead, we approximate the objective function of (3.28)
as a piecewise-linear function with Ni intervals, and maximize over the piecewise-linear
function. Since the maximum over the piecewise-linear function lies on exactly one of the
Ni+1 interval endpoints, the problem simplifies to finding the maximum ofNi+1 different
values.

We define intervals of equal length such that

d̂in = di +
n

Ni

(
di − di

)
, ∀n = 0, 1, . . . , Ni,

is the nth endpoint for each i ∈ D. Given these endpoints, we approximate problem
(3.28) as the largest value obtained when substituting di with one of the endpoints in
{d̂in}n=0,1,...,Ni , or, in other words,

max
n∈{0,1,...,Ni}

{
d̂inπi − d̂inri − d̂2

invi

}
(3.29)

We define binary variables ρin ∈ {0, 1}, for each n = 0, 1, . . . , Ni, such that ρin = 1
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if the nth endpoint d̂in yields the maximum for problem (3.29), and ρin = 0 otherwise, for
each i ∈ D. Each set {ρin}n=0,1,...,Ni , for all i ∈ D, is a Specially Ordered Set of Type 1
(SOS1), containing binary variables that sum to one, such that

Ni∑
n=0

ρin = 1 (3.30)

ρin ∈ {0, 1}, ∀n = 0, 1, . . . , Ni (3.31)

for all i ∈ D, to ensure that exactly one endpoint is selected to maximize problem (3.29).
Subsequently problem (3.29), can be written equivalently as

max
ρi

{
Ni∑
n=0

ρin

(
d̂inπi − d̂inri − d̂2

invi

)
: (3.30)–(3.31)

}
(3.32)

for all i ∈ D, where ρi ∈ RNi denotes the vector of ρin for n = 0, 1, . . . , Ni. Then, the
objective takes the value d̂inπi− d̂inri− d̂2

invi if ρin = 1 (and the remaining SOS1 variables
in the same set are zero), or, equivalently, when d̂in maximizes problem (3.29).

Since ρin is binary and (3.23) gives us the bounds 0 ≤ πi ≤ Gi, we can subsequently
reformulate the bilinear terms ρinπi with McCormick inequalities (McCormick, 1976). The
following McCormick inequalities introduce the auxiliary variable λin, for which the equiv-
alence relation λin ≡ ρinπi holds for all n = 0, 1, . . . , Ni, i ∈ D.

λin − πi −Giρin ≥ −Gi ∀n = 0, 1, . . . , Ni, i ∈ D (3.33)

λin − πi ≤ 0 ∀n = 0, 1, . . . , Ni, i ∈ D (3.34)

λin −Giρin ≤ 0 ∀n = 0, 1, . . . , Ni, i ∈ D (3.35)

λin ≥ 0 ∀n = 0, 1, . . . , Ni, i ∈ D. (3.36)

When ρin = 1, constraints (3.33) and (3.34) bound λin below and above by πi, and when
ρin = 0, constraints (3.35) and (3.36) bound λin below and above by 0. This results in the
desired equivalence relation of λin ≡ ρinπi.

Using the approximation of (3.28) with (3.32) and the above linear reformulation of
bilinear terms via McCormick inequalities, we approximate the value of problem (3.18),
and consequently problem (3.26), with the problem

h(x, r, v) := max
θ,π,ρ,λ

f(x, r, v, θ, π, ρ, λ) (3.37)

s.t. (3.20)–(3.23),(3.33)–(3.36)
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Ni∑
n=0

ρin = 1 ∀i ∈ D (3.38)

ρin ∈ {0, 1} ∀n = 0, 1, . . . , Ni, i ∈ D, (3.39)

where

f(x, r, v, θ, π, ρ, λ) :=
∑
i∈D

Ni∑
n=0

(
d̂inλin −

(
d̂inriρin + d̂2

invi

)
ρin

)
−
∑
i∈S

siπi −
∑

(i,j)∈A

xijθij .

(3.40)

Therefore, we approximate the value of DR-NDP (3.16) under the marginal moment-based
distributional set with the problem

APPROX : min
x,z,r,v

z +
∑
i∈D

µiri +
∑
i∈D

(
µ2
i + σ2

i

)
vi +

∑
(i,j)∈A

cijxij (3.41)

s.t. z ≥ h(x, r, v) (3.42)

x ∈ X. (3.43)

APPROX, while having only linear expressions and both binary and continuous vari-
ables, is not a mixed-integer linear problem due to constraint (3.42) having a maximiza-
tion problem on the RHS. Using the embedded maximization problem h(x, r, v) as a cut-
generating subproblem, we develop a cutting-plane algorithm to solve DR-NDP. We de-
scribe this algorithm in further detail in Section 3.4.

Note that by approximating (3.26) with h(x, r, v), we have replaced |D| continuous
variables with

∑
i∈DNi binary variables and

∑
i∈DNi continuous variables, and have also

introduced 4
∑

i∈DNi + |D| new constraints to the formulation. Although the binary vari-
ables comprise |D| sets of SOS1 variables, the introduction of a large number of binary
variables will negatively impact computational efficiency. While having a larger Ni for
each i ∈ D gives better approximations, the accuracy of the approximation will come
at a cost of greater computational time, so some care should be taken to ensure that the
appropriate number of intervals is used in the piecewise approximation.

3.4 Cutting-plane Algorithm

We describe a cutting-plane algorithm that iteratively passes solutions to the maximization
problem h(x, r, v) and generates a cut for z, r, v and x should the current solution not be
feasible to h(x, r, v).To perform this cutting-plane algorithm, constraint (3.42) is relaxed,
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with its maximization RHS solved as a cut-generating subproblem. However, APPROX
without (3.42) is unbounded since z, ri and vi are not bounded below. We use a trivial lower
bound of 0 on the objective function to ensure a bounded problem in the first iteration.

With this lower bound, the master problem at its M th iteration is given by

MASTER : min
x,z,r,v

z +
∑
i∈D

µiri +
∑
i∈D

(
µ2
i + σ2

i

)
vi +

∑
(i,j)∈A

cijxij (3.44)

s.t. z +
∑
i∈D

µiri +
∑
i∈D

(
µ2
i + σ2

i

)
vi +

∑
(i,j)∈A

cijxij ≥ 0 (3.45)

z ≥ f(x, r, v, θm, πm, ρm, λm) ∀m = 1, . . . ,M (3.46)

x ∈ X, (3.47)

where constraint (3.45) enforces a trivial lower bound of 0 and constraint (3.46) is the set
of cuts generated by the algorithm. The number of generated cuts is denoted by M , and the
solution of the subproblem in the mth iteration is denoted by (θm, πm, ρm, λm).

These cuts are iterative generated by passing the current solution generated by MAS-
TER with its current set of cuts to the subproblem, which checks if the solution is feasible
with respect to constraint (3.42). This is checked by solving the subproblem given by
h(x, r, v). Should the current solution be infeasible with respect to constraint (3.42), the
algorithm generates a cut to remove the current solution. The cutting-plane algorithm for
DR-NDP is described in Algorithm 3.3.

Algorithm 3.3 Cutting-plane algorithm for solving DR-NDP
1: for i ∈ D do
2: Select a number of piecewise intervals Ni.
3: end for
4: Select a non-negative tolerance value ε.
5: Initialize iteration counter M = 0.
6: repeat
7: M ←M + 1
8: Solve MASTER and denote optimal solution by (xM , zM , rM , vM).
9: Solve h(xM , rM , vM) via branch-and-bound with each node solved via the simplex

algorithm, and denote optimal solution by (θM , πM , ρM , λM).
10: if zM < (1− ε)f(xM , rM , vM , θM , πM , ρM , λM) then
11: Add w ≥ f(x, r, v, θM , πM , ρM , λM) to MASTER as the M th cut.
12: end if
13: until No cuts were added to MASTER
14: return Optimal solution for APPROX: (xM , zM , rM , vM).

It is important to note that the cutting-plane algorithm only terminates if the subproblem
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h(x, r, v) is solved via branch-and-bound with each node solved via the simplex algorithm.

Theorem 3.3. Algorithm 3.3 converges to a solution optimal to APPROX in a finite num-
ber of iterations. �

Proof. We first note that h(x, r, v) has a feasible region independent of r, v and x. Further-
more, the feasible region at each node of the branch-and-bound algorithm when solving for
h(x, r, v) is polyhedral. Since each node is solved via the simplex algorithm, the optimal
solution obtained for each node is necessarily an extreme point solution. Consequently,
each generated cut necessarily corresponds to some extreme point of the feasible region of
some branch-and-bound node.

MASTER generates solutions that satisfy all previously generated cuts, and a new cut
is generated only if the new cut is violated by the current solution, so each cut corresponds
to a unique extreme point. Furthermore, there are a finite number of binary variables ρin
to branch on and the polyhedral feasible region of each branch-and-bound node must have
a finite number of extreme points. Hence, Algorithm 3.3 will terminate within a finite
number of cuts, by generating at most one cut for each possible extreme point. �

3.5 Computational Results

We describe computational results from using distributionally robust optimization to solve
NDPs. In particular, we focus on illustrating the relative insensitivity of the solutions, ob-
tained with DR-NDP, to changes in input observed realizations. We describe a benchmark
sample average approximation (SAA, see Kleywegt et al., 2002; Shapiro and Homem-de-
Mello, 2000)-based model, given by Problem (3.48), which we compare against DR-NDP.
The setup of the grid networks and the models that we used in our computations are dis-
cussed in Section 3.5.2, together with a description of the NOBEL-US network as repre-
sentative a real-world network. The comparison of the sensitivity of these solutions against
those obtained with the SAA-based model will the main focus of our analysis, which is
covered in Section 3.5.3. The full set of results for our computations can be found in Ap-
pendix B. We implement all the algorithms in Java using Gurobi 6.0.3. The results below
are obtained by using a Dell Alienware X51, with an Intel Core i7-3770 dual-core CPU @
3.4GHz each and 8GB RAM.

3.5.1 Benchmark SAA-based Model

We use a benchmark model based on SAA, which generates realizations of the uncertain
parameter, typically through Monte Carlo sampling, and solves the optimization problem
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risk-neutrally with the true distribution approximated by the generated realizations under a
discrete uniform distribution. Our benchmark model generates additional demand realiza-
tions using the marginal moment information of the initial small set of observed realiza-
tions, together with an assumption on the family of distributions that the marginal distribu-
tions of demand belong to. The parameters of the assumed marginal distributions are then
computed to have first and second moments equal to those of the observed realizations.

For example, suppose we are given an initial set of observations with marginal means
and variances equal to µi and σ2

i for all i ∈ D. If we assume that marginal distributions of
the observations are uniform, then we generate an additional demand vector realization dω

by sampling the demands dωi for each demand node i ∈ D from the uniform distribution
with lower bound µi −

√
3σi and upper bound µi +

√
3σi (so that the marginal uniform

distributions have equal means and variances with the observations). Alternatively, if we
assume that the marginal distributions of the sample are gamma, then we sample each dωi
instead from the gamma distribution with shape µ2

i /σ
2
i and scale σ2

i /µi for each i ∈ D. We
denote the |Ω| generated demand vectors by {dω}ω∈Ω.

Following SAA, we assume that the realizations are sampled with equal probability 1
|Ω| ,

and solve the problem

min
x∈X

 ∑
(i,j)∈A

cijxij +
1

|Ω|
∑
ω∈Ω

g (x, dω)

 . (3.48)

Problem (3.48) converges to

min
x∈X

 ∑
(i,j)∈A

cijxij + EF0

[
g (x, dω)

] ,

as |Ω| → ∞, where EF0 is the expectation taken over the assumed distribution. Hence,
this benchmark aims to give risk-neutral solutions under the assumption that the demand
distribution has marginal mean and variance vectors matching µ and σ2 respectively, and
belongs to the distribution family assumed in the approach. In our computations, we will
only assume gamma and uniform marginal distributions when generating additional real-
izations.

3.5.2 Experimental Setup

We use square grid networks for the majority of our computational results, with sizes rang-
ing from 3x3 up to 7x7. As shown in the 3x3 network in Figure 3.1, arcs are present both
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ways between adjacent nodes. However, it should be noted that while the arcs are present,
whether they have non-zero capacity still depends on the solution given by the model.

Figure 3.1: Example 3x3 grid network

To avoid bias caused by network topology, we also use the NOBEL-US network (Or-
lowski et al., 2010), shown in Figure 3.2, as a representative real-world network. As seen
in the figure, it is based on major road connections in the United States of America. For the
purposes of our experiments, connections in the NOBEL-US network are two-way (just as
with the grid networks), giving a total of 14 nodes and 42 arcs.

Figure 3.2: NOBEL-US network

We allocate three supply and three demand nodes to each network, regardless of net-
work size, and locate these six nodes randomly in the network such that the supply and de-
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mand nodes do not overlap. Each supply node is given a deterministic supply of 20 units.
The demand nodes have uncertain demand, with independent distributions. We generate
10,000 demand realization vectors as the “true” distribution of demand. For convenience,
we will refer to these 10,000 demand realizations as the reference set. The three compo-
nents of each realization vector are independently sampled from a gamma distribution with
shape 4 and scale 5 (resulting in a “true” mean of 20 and variance of 100 for each demand
node). We cap the demand realizations at 50 – if a generated demand realization exceeds
50, we discard the value and generate a new realization. The same reference set is used for
models applied to the same network.

We sample the arc capacity costs and arc flow costs independently from 10U , and sam-
ple the unmet demand penalty at each demand node independently from 2.5|N |2U , where
|N | is the number of nodes in the network and U is a uniform random variable from 0 to
5. It should be noted that the demand penalty increases with the number of nodes in the
network to compensate for the increased cost of supplying to demand nodes, as the number
of supply nodes and demand nodes remains unchanged for different sized networks.

To set up DR-NDP, we set di = 0 and di = 50 for all i ∈ D, the values of which
correspond to the lower bound the gamma distribution and the hard upper cap that we
imposed when generating the reference set. We chose to use Ni = 25 intervals for each
i ∈ D, giving us the cut points of 0, 2, . . . , 50 for the piecewise approximation of the
quadratic objective in (3.28). In the algorithm, we used a tolerance value of ε = 0.02 for all
our experimental runs. For the SAA-based model, we assumed either a uniform or gamma
distribution (see Section 3.5.1 for distribution parameter values), and generated 50 and
1,000 realizations in separate models, giving four different models for the benchmark. In
our results, these four models are labeled “uniform50”, “uniform1000”, “gamma50” and
“gamma1000”, with the prefix indicating the assumed distribution family and the suffix
indicating the number of generated realizations.

We draw 20 realizations from the reference set as our initial small set of observations,
and run DR-NDP and the four benchmark models on the 20 observations. For each refer-
ence set, we draw three sets of 20 observations. The first normal observed demand set is
drawn such that each marginal mean of the observations in the set deviates no more than
7.5% from that of the reference set. The second very low observed demand set comprises
the 20 realizations in the reference set with the lowest total demand. The third low ob-
served demand set is drawn such that difference between the total marginal means of the
set and that of the very low demand set is at most 70% of the difference between the total
true marginal means and that of the very low demand set. We did not sample high demand
cases, as it would be likely that all models would perform well by planning for more de-
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mand than what is actually realized. For ease of reading, the results for the three set are
ordered by “normal”, “low”, then “very low” demand in our results.

Finally, to evaluate the performance of the x solutions generated by each of the five
models, we solve the capacitated minimum cost flow problem (3.1)–(3.6), with capacities
as given by x, for each of the 10,000 demand vectors in the reference set. The results are
then averaged to obtain their expected values (e.g. expected flow cost, expected penalty
cost).

3.5.3 Analysis of Results

We give an analysis of the computational results when using grid networks. In our results,
we look at three main components of the results: capacity cost, flow cost, and penalty cost.
Readers are reminded that the flow cost and penalty cost as computed by the models and
by using the capacity solution x with the reference set (see Section 3.5.2) are different, and
we refer to the latter case by expected flow cost and penalty cost.

3.5.3.1 General Observations on Solution Performance

Table 3.1 gives the expected cost components and expected total cost for each observed
demand level and model used on the 3x3 grid network, which we use as a representative
network for our observations on solution performance.

Table 3.1: Cost components in objective of 3x3 grid network

Demand Model Capacity cost E[Flow cost] E[Penalty cost] E[Total cost]
normal drndp 4,730.17 2,474.93 3,361.01 10,566.12
normal gamma50 5,040.10 2,505.70 2,795.68 10,341.48
normal gamma1000 4,775.20 2,570.70 2,945.14 10,291.03
normal uniform50 4,998.70 2,593.56 2,806.04 10,398.31
normal uniform1000 4,999.90 2,578.93 2,752.63 10,331.47
low drndp 4,030.68 2,226.96 4,993.53 11,251.18
low gamma50 4,560.20 2,306.21 4,723.42 11,589.83
low gamma1000 4,181.10 2,320.49 4,547.73 11,049.32
low uniform50 4,311.30 2,381.18 4,321.74 11,014.22
low uniform1000 4,443.10 2,406.43 4,001.44 10,850.97
very low drndp 1,645.20 1,277.19 14,511.62 17,434.01
very low gamma50 1,497.90 1,154.45 16,455.75 19,108.10
very low gamma1000 1,597.00 1,180.39 15,626.80 18,404.20
very low uniform50 1,527.10 1,117.44 16,583.06 19,227.60
very low uniform1000 1,580.20 1,149.79 15,963.94 18,693.93

52



In Table 3.1, we observe that capacity cost is closely related to the total mean demand
of the observations. Regardless of the model used, the lower the total mean demand of the
observations, the less capacity will be planned for the network, and the lower the capacity
cost will be. Capacity cost and expected penalty are also closely related quantities – when
capacity cost is high, expected penalty is low. This is evident in the much higher expected
penalty cost corresponding to the lower capacity cost for the very low demand set. This is
an expected relationship, since a lower capacity cost implies less capacity on the network
to flow commodities, resulting in less demand being satisfied and more unmet demand.
This is also supported by the low flow cost for the very low demand set, implying less
commodity flowing on average when compared to the solutions when using observations
with normal and low total mean demand.

Note that while the performance of the solutions when using 50 generated realizations is
different from that when using 1,000 generated realizations, they are fairly similar, but with
arbitrary relationship with one another (either could be larger than the other). Hence, in our
subsequent tables, we will only show the results for “gamma1000” and “uniform1000”,
which are presumably a better representation of the results for the SAA-based model due
to a more accurate representation of the assumed distribution. However, it should be noted
that solving 1,000 generated realizations will be slower than solving with 50 generated
realizations (see Section 3.5.3.5).

3.5.3.2 Sensitivity to Observed Demand Level

Table 3.2 gives the expected cost components and expected total cost for each observed
demand level and model used on the 5x5 and 7x7 grid networks, which we will use in
conjunction with Table 3.1 to illustrate the main benefit of using DR-NDP: insensitivity of
solution performance to the initial set of observed realizations.

Unsurprisingly, assuming a gamma distribution results in the lowest expected total cost
for the normal demand set. This is because the assumed distribution in this case most
closely resembles the true distribution, giving the best quality solutions. This remains true
even when the total mean demand of the observations is low.

However, this may not be the case when the observations have very low demand. In
some networks, DR-NDP has lower expected total cost than the SAA-based model under a
gamma assumption. This supports our claim that DR-NDP produces conservative solutions
that safeguard against cases where the set of observations is not representative of the true
distribution.

Furthermore, DR-NDP is relatively insensitive to the total mean demand of the initial
observations. This is most evident when comparing the expected total cost of the solutions.
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Table 3.2: Cost components in objective of 5x5 and 7x7 grid network

Network Demand Model Capacity cost E[Flow cost] E[Penalty cost] E[Total cost]
Grid 5x5 normal drndp 6,193.99 4,236.08 21,005.01 31,435.07
Grid 5x5 normal gamma1000 6,971.70 4,353.00 16,247.94 27,572.64
Grid 5x5 normal uniform1000 6,255.70 4,292.96 17,464.34 28,013.00
Grid 5x5 low drndp 5,527.98 4,171.82 21,070.91 30,770.71
Grid 5x5 low gamma1000 5,904.40 4,259.00 17,990.02 28,153.42
Grid 5x5 low uniform1000 5,173.40 4,176.68 21,642.24 30,992.32
Grid 5x5 very low drndp 4,694.49 4,061.02 26,147.14 34,902.65
Grid 5x5 very low gamma1000 3,835.00 3,973.93 34,504.50 42,313.44
Grid 5x5 very low uniform1000 2,935.80 3,513.28 62,653.05 69,102.13
Grid 7x7 normal drndp 4,915.98 2,235.85 85,559.51 92,711.34
Grid 7x7 normal gamma1000 7,644.40 2,452.86 57,062.42 67,159.69
Grid 7x7 normal uniform1000 5,589.90 2,383.54 61,701.22 69,674.66
Grid 7x7 low drndp 4,713.25 2,160.79 85,383.54 92,257.57
Grid 7x7 low gamma1000 5,434.40 2,401.82 61,170.01 69,006.22
Grid 7x7 low uniform1000 4,312.20 2,233.40 80,840.05 87,385.65
Grid 7x7 very low drndp 4,716.65 2,269.03 79,744.76 86,730.43
Grid 7x7 very low gamma1000 5,328.50 2,509.00 72,035.93 79,873.43
Grid 7x7 very low uniform1000 3,650.50 2,276.27 127,896.90 133,823.67

Figure 3.3 gives the expected total cost of the solution for each model as a percentage of
that of the same model when using a set of observations with normal demand.

For the 7x7 grid network, DR-NDP gives an expected total cost of 92, 7111.34 with
a normal level of demand and gives an expected total cost of 86, 730.43 with a very low
level of demand, a change of only 6%. In contrast, “gamma1000” has a change of 19%

in the same comparison. For the 5x5 grid network, DR-NDP has a change of 11%, while
“gamma1000” has a change of 53%; for the 3x3 grid network, DR-NDP has a change
of 65%, while “gamma1000” has a change of 79%. The decrease in the percentages as
network size increases further suggests that the sensitivity of the expected total cost is
affected by the size of the network.

It should be noted that while the biggest component in the total cost is the penalty cost,
that the expected total cost for the solutions of DR-NDP is relatively insensitive to the total
mean demand of the observations is not solely because the expected penalty cost is rela-
tively insensitive. Even though expected flow cost is generally the same for all observed
demand levels and models for the same network, capacity cost does also appear less sen-
sitive to the total demand, and contributes to the overall stability of the expected total cost
(to a lesser degree than the expected penalty cost).
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Figure 3.3: Relative expected total costs for different observed total mean demand levels

3.5.3.3 Comparison of Real-world Network and Grid Network

We compare a real-world network, the NOBEL-US network described in Section 3.5.2,
against a grid network of similar size to determine if a less structured network topology
gives the same results. We use a 4x4 grid network, with 16 nodes and 48 arcs, for com-
parison with NOBEL-US, which has 14 nodes and 42 arcs. The expected cost components
and expected total cost for each of the observed demand levels and models used these two
networks are given in Table 3.3.

When comparing the two networks, there is a striking difference between the penalty
costs, resulting in a fairly large difference in the expected total costs. Despite the 4x4 grid
network being slightly larger than NOBEL-US, the expected total costs for NOBEL-US
with a normal and low observed level of demand is approximately 30% more than those for
the 4x4 grid network. Importantly, the expected total costs for NOBEL-US for all models
are less sensitive to the observed demand level, with DR-NDP being the least sensitive of
the models. This suggests that DR-NDP may be more suited to solve networks with less
structured topologies.
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Table 3.3: Cost components in objective of NOBEL-US and 4x4 grid network

Network Demand Model Capacity cost E[Flow cost] E[Penalty cost] E[Total cost]
NOBEL-US normal drndp 3,484.15 2,047.28 24,641.67 30,173.10
NOBEL-US normal gamma1000 5,172.70 2,402.14 16,175.56 23,750.40
NOBEL-US normal uniform1000 5,300.80 2,386.56 16,150.45 23,837.81
NOBEL-US low drndp 3,380.12 2,054.57 25,142.06 30,576.75
NOBEL-US low gamma1000 4,606.20 2,337.80 17,629.49 24,573.50
NOBEL-US low uniform1000 4,365.20 2,241.08 19,161.49 25,767.77
NOBEL-US very low drndp 3,094.48 1,973.34 28,889.95 33,957.78
NOBEL-US very low gamma1000 2,698.80 1,766.28 41,131.60 45,596.68
NOBEL-US very low uniform1000 2,247.50 1,556.56 52,296.97 56,101.04
Grid 4x4 normal drndp 3,325.40 3,022.78 13,043.65 19,391.84
Grid 4x4 normal gamma1000 3,987.20 3,052.59 9,678.73 16,718.53
Grid 4x4 normal uniform1000 3,954.40 3,025.63 10,335.57 17,315.59
Grid 4x4 low drndp 3,190.53 2,985.49 13,412.88 19,588.89
Grid 4x4 low gamma1000 3,603.40 2,982.62 11,286.14 17,872.15
Grid 4x4 low uniform1000 3,357.70 2,906.60 13,860.95 20,125.25
Grid 4x4 very low drndp 1,876.82 2,174.60 30,767.12 34,818.54
Grid 4x4 very low gamma1000 1,591.60 1,567.57 39,838.19 42,997.37
Grid 4x4 very low uniform1000 1,406.70 1,513.28 44,215.69 47,135.66

3.5.3.4 Arc Capacity Allocations

Here, we compare the first-stage capacity solution vectors x for DR-NDP and “gamma1000”,
the latter of which we use as a representative model for the SAA-based model. We use the
NOBEL-US network, with a very low level of observed demand. For convenience, we use
numeric labels for the nodes in the network as follows:

1. Seattle
2. Palo Alto
3. San Diego
4. Salt Lake City
5. Boulder

6. Lincoln
7. Houston
8. Urbana-Champaign
9. Atlanta

10. Ann Arbor

11. Pittsburgh
12. Washington
13. Ithaca
14. Princeton
15. filler

Figure 3.4 illustrates the solutions given by DR-NDP and “gamma1000”, with the for-
mer at the top of the figure and the latter at the bottom. The supply nodes are 4, 9 and 14
(shaded in gray), while the demand nodes are 1, 12 and 13 (circled in bold), with mean
observed demand 9.0, 8.5 and 8.3 respectively, lower than the “true” mean demand of 20

at each node (see Section 3.5.2). The allocated arc capacities are given by the numbers on
the arcs. Arcs with zero capacity are not shown.

When comparing the two solutions, it is apparent that “gamma1000” will perform
worse in terms of demand satisfaction as only a maximum of 19 + 10 + 17 + 3 = 49
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Figure 3.4: Capacity solutions obtained for NOBEL-US for very low total mean observed
demand
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units of commodity can be supplied with its solution. This is less than the true total
mean demand of 60, as the solution was planned for a much lower total mean demand
of 9.0 + 8.5 + 8.3 = 25.8.

In contrast, DR-NDP produces a more conservative solution, with greater capacity pro-
vided on arcs leading out of the supply nodes and into the demand nodes. All 20.0 + 1.9 +

18.1 + 20.0 = 60 units of commodity can supplied if required, although the maximum
demand that can be satisfied at each demand node is not necessarily equal to its true mean.
In particular, nodes 1, 12 and 13 can receive up to 21.1, 20.9 and 18.1 units of commod-
ity respectively. Also of note in the solutions is that the capacities given by DR-NDP can
have fractional parts, as opposed to the integer capacities that are always given by using the
SAA-based models.
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Figure 3.5: Capacity solutions obtained for 4x4 grid for very low total mean observed
demand

We perform the same comparison on the 4x4 grid network, with the arc allocations
shown in Figure 3.5. For this network, nodes 13, 14 and 15 are the supply nodes, while
nodes 10, 11 and 12 are the demand nodes with respective mean demands of 7.9, 9.4 and
8.75. The maximum amount of commodity that can be supplied for DR-NDP is 16.2 +

8.2 + 21.5 = 45.9 and the maximum demand that can be satisfied is also 45.9. Similar
to NOBEL-US, these values for DR-NDP are higher than those for “gamma1000”, which
supplies a maximum of 40 units of commodity (note that it is not 16 + 10 + 16 = 42

as node 13 is unable to supply any commodity) and satisfies a maximum of 42 units of
demand, resulting in a better performance for DR-NDP than “gamma1000” in the case of
very low demand.
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The solutions for DR-NDP and “gamma1000” are similar, both in the placement of
arcs (with positive capacity) and in the capacity allocated to the arcs. In contrast, the
solutions for the two models for NOBEL-US are almost entirely different in placement,
and with very different allocated capacities. This is because the structured topology of a
grid network allows less variation in flow paths from supply to demand nodes, resulting in
similar solutions regardless of the model used. This is also consistent with our earlier claim
that solutions are generally more sensitive to demand levels in less structured networks, and
using DR-NDP may reduce this sensitivity.

3.5.3.5 Solution Time

We compare the solution times for varying demand levels and network sizes. Table 3.4
describes the growth of solution times for each of the five models as the size of the network
increases from a 3x3 grid to a 7x7 grid and for the NOBEL-US network. The reader
should be aware that there is a minor overhead for generating realizations and reading
them in for the SAA-based model, approximately 8 milliseconds for 50 realizations and 90
milliseconds for 1,000 realizations, which we did not include in our results.

Table 3.4 shows an increase in solution times for all five models as network size in-
creases. Generating 50 realizations offers a vast improvement in solution time over gener-
ating 1,000 realizations, typically taking approximately 1%-2% of the time. The DR-NDP
takes significantly longer than any of the benchmark models, for all grid network sizes from
3x3 to 7x7. However, the growth of the solution time for DR-NDP appears to be slower
compared to that of the benchmarks. This indicates that the solution time difference could
be smaller for much larger networks. Topological structure also does not seem to be a large
factor in solution times, with the 4x4 grid network having slightly longer solve times than
NOBEL-US – this difference can be attributed to the 4x4 grid network being slightly larger.

3.6 Concluding Remarks

We proposed a novel approach to solving NDPs under demand uncertainty. Utilizing dis-
tributionally robust techniques, DR-NDP aims to conservatively solve NDPs with scarce
distributional data, yet ensure that solutions are not overly conservative (as in the case of
robust optimization). We approximated DR-NDP as an optimization problem with an em-
bedded problem in its constraints, and developed a cutting-plane algorithm that leverages
the structure of the approximate reformulation to iteratively generate cuts.

Our results showed that the solutions generated by DR-NDP were conservative, and,
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Table 3.4: Solution times (in milliseconds)

Demand
Network Model normal low very low
Grid 3x3 drndp 62,280 42,800 7,424
Grid 3x3 gamma50 15 15 10
Grid 3x3 gamma1000 2,181 1,895 1,325
Grid 3x3 uniform50 20 10 10
Grid 3x3 uniform1000 1,665 1,431 1,395
NOBEL-US drndp 110,928 103,113 71,919
NOBEL-US gamma50 25 20 10
NOBEL-US gamma1000 4,566 2,605 1,240
NOBEL-US uniform50 36 25 15
NOBEL-US uniform1000 4,571 3,870 860
Grid 4x4 drndp 144,597 115,689 43,233
Grid 4x4 gamma50 27 25 10
Grid 4x4 gamma1000 6,236 4,421 845
Grid 4x4 uniform50 40 35 10
Grid 4x4 uniform1000 5,796 5,731 1,200
Grid 5x5 drndp 185,190 294,715 185,899
Grid 5x5 gamma50 80 65 35
Grid 5x5 gamma1000 11,642 9,747 4,720
Grid 5x5 uniform50 120 75 30
Grid 5x5 uniform1000 15,167 13,602 3,956
Grid 6x6 drndp 531,350 463,441 462,732
Grid 6x6 gamma50 240 125 95
Grid 6x6 gamma1000 42,977 20,859 11,607
Grid 6x6 uniform50 255 170 65
Grid 6x6 uniform1000 36,025 40,061 14,237
Grid 7x7 drndp 453,094 507,749 467,700
Grid 7x7 gamma50 585 330 290
Grid 7x7 gamma1000 45,573 26,434 18,098
Grid 7x7 uniform50 701 360 275
Grid 7x7 uniform1000 114,202 36,295 96,905

60



crucially, were insensitive to the observed level of demand. However, the conservativeness
of the solutions comes at a high computational cost. Even though the growth of solution
time with network size appears to be slow, this suggests that DR-NDP is more suited for
niche uses, in which data is scarce, but yet the network planner can ill afford to have too
much unmet demand due to “bad” data.

Given the niche uses of DR-NDP, it will be instructive to apply DR-NDP to real-world
problems. A possible application that could fit this specific use is humanitarian relief supply
network design. The data scarcity due to the unknown reach of the disaster, and the need for
high demand satisfaction to aid as many people as possible, make such a problem a possible
candidate for future application. In addition to discovering if DR-NDP is suitable for such
specific types of problems, studying DR-NDP with real-world problems will give much
insight into the performance of DR-NDP with networks with less structured topologies.
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CHAPTER 4

Optimizing Profitability and QoS of Carsharing
Systems

4.1 Introductory Remarks

This chapter applies a network design framework to carsharing systems. This framework
utilizes a spatial-temporal network to approximate the movement of vehicles in a carsharing
fleet. The first stage of the model determines the allocation of shared car fleet to pre-
designated zones, and the number of contracted parking lots to rent or free-float permits to
obtain in these zones. The second stage solves a stochastic minimum cost flow problem on
the spatial-temporal network, which integrates one-way and round-trip rentals, as well as
ad-hoc vehicle relocation into the same model, to optimize total profits less any penalties
from unsatisfied demand. Additionally, we consider a risk-averse variant of the second-
stage model that penalizes the CVaR of unsatisfied demand.

4.1.1 Problem Description

We consider allocating a carsharing fleet in a region serviced by a carsharing company to
satisfy uncertain travel demand. The region is discretized into smaller zones, with parking
costs different from zone to zone. To regulate carsharing companies, city governments issue
parking lot contracts and free-float parking permits for shared cars. Parking lot contracts
grant companies exclusivity to lots, and are typically used by reservation-based carshar-
ing systems, for which the carsharing company takes into account parking capacity when
accepting rental demand. On the other hand, we consider an alternative as purchasing
free-float parking permits, which are often used by free-floating carsharing systems, whose
vehicles can be parked at any available city parking lot. Note that contracted parking lots
can also be applicable for free-floating based customers, while the free-float parking per-
mits may not be realistic for reservation-based systems, since it is hard to appoint customers
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who made the reservations to parked shared cars in an online fashion. For the problem of
interest, we are tasked to allocate a homogeneous fleet of cars to the zones at the start of
a planning horizon, and to determine the number of parking lots to purchase in each zone
(for reservation-based and/or free-floating systems) or the number of free-float permits to
purchase overall (for free-floating systems).

The above are the “here-and-now” decisions in the first stage, and afterwards customer
demand for one-way and round rentals is realized in the second stage. Cars are unavailable
while being used by customers, and should the demand for vehicles in a zone exceed the
number of cars available for use at that zone, any excess demand is immediately lost (we
assume that any excess demand is not carried over to the next period). During the plan-
ning horizon, we may relocate the vehicles as a recourse action, but similar to rented cars,
customers will be unable to use cars that are being relocated. We aim to find the optimal
first-stage decisions to maximize the expected profit less the costs associated with the QoS
in the second-stage.

4.1.2 Methodology Overview

We formulate a two-stage stochastic optimization problem. Given the first-stage decisions
as the number of parking lots or free-float permits to purchase and the initial assignment of
the cars, we model the movement of cars from zone to zone in the second stage as flows on
a spatial-temporal network, with each node in the network representing the state of a zone
at a point in time during the planning horizon.

We point out three advantages of using such a model. Firstly, vehicle movement can be
easily represented. Since each zone is replicated by the number of periods in the planning
horizon, it is straightforward to represent vehicle movement as flows that are conserved be-
tween the spatial-temporal nodes, and to keep track of the overall status of the vehicles (e.g.
whether they are in use or, if available, where they are located). Secondly, the second-stage
problem for each demand scenario is a minimum cost flow problem, which is a well-solved
problem (Ahuja et al., 1993). Finally, the actual topology of the road network connect-
ing the zones is of secondary importance to this model, as only the travel times between
each pair of zones is required to construct the network. This means the construction of
the spatial-temporal network can be driven entirely by past customer usage data, through
analysis of typical travel times between zones – the positioning of the zones relative to
one another would not matter to the spatial-temporal network. Furthermore, the travel time
between a pair of nodes is more accurate with a higher historical demand of travel between
them. Hence, a less accurate travel time would unlikely be used in the optimization simply
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because there will be lower demand of travel between the particular pair of nodes.
To manage QoS, we penalize unserved customers via two different models. Firstly, we

formulate a risk-neutral model that penalizes the expected number of unserved customers.
Secondly, we formulate a risk-averse model that penalizes the conditional value-at-risk of
the number of unserved customers. Regardless of the model used, the objective aims to
achieve the optimal balance between high profit and high QoS (by keeping the number of
unserved customers low).

However, a spatial-temporal network constructed for the above carsharing problem con-
sists of a large number of nodes and arcs, as a result of the large number of locations of a
real-world problem, the large number of periods in the planning horizon due to the need
for finer time period granularity, or both. Consequently, there will be a large number of
variables in the second-stage problem. We use the Benders decomposition approach (cf.
Benders, 1962; Van Slyke and Wets, 1969) to generate cuts as needed to a relaxed master
problem. Moreover, since the first-stage decision variables are integers, the Benders cuts
are generally weak because of the weaker master problem where the integer constraints are
relaxed. We further generalize a branch-and-cut procedure with mixed-integer rounding
(MIR) developed in Bodur and Luedtke (2014). In this procedure, pairs of Benders cuts are
used to derive stronger cuts via MIR.

4.1.3 Literature Review

The use of carsharing as a means of transportation has increased tremendously. Shaheen
et al. (1998) and Shaheen and Cohen (2007) provide an excellent review of the history and
recent rapid growth of the carsharing industry. Katzev (2003) explores the early adoption
processes of several carsharing systems, and also evaluates the effects of carsharing on
commuter mobility behavior and the environment. Benefits to the latter is an oft-quoted
reason for the increased popularity of carsharing. Zhou (2015) considers a network design
problem for urban transportation systems with one-way carsharing rentals, and formulates
integer programming models for designing carsharing systems with an aim of minimizing
the total traveling time and reducing congestion and emissions.

Given fixed carsharing systems and transport networks, how to relocate and redistribute
cars during operation is a major consideration for satisfying customer demand. Optimizing
the relocations can be a complex process as the current fleet distribution and current demand
spread must both be taken into consideration. Weikl and Bogenberger (2013) summarize
and categorize several strategies used by carsharing companies to relocate their fleet, with
examples from real-life carsharing systems. In addition to vehicle redistribution, Pfrommer
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et al. (2014) and Febbraro et al. (2012) also suggest real-time price incentives as a means
to shape demand to reduce the need for excessive vehicle relocations.

Representing vehicle movement in a spatial-temporal network has previously been used
by Kek et al. (2009) to determine a set of nearly optimal manpower and operating pa-
rameters to satisfy given relocation needs, by de Almeida Correia and Antunes (2012) to
optimize the placement of zones in a network, and by Fan (2014) to optimize the allo-
cation of vehicles to zones in one-way carsharing systems. However, there has been no
attempt to integrate one-way with round-trip rentals in the same model, or to consider
both reservation-based and free-floating carsharing systems in a generalized model. Fur-
thermore, the difficulty of handling a large spatial-temporal network was not addressed
in the above literature, for which we propose an effective branch-and-cut algorithm with
strengthened valid inequalities, which shows promising computational performance when
being implemented in parallel computing.

4.1.4 Main Contributions

Many papers on the redistribution of a carsharing fleet focus on the operational consid-
erations of the system, aiming to find relocation solutions that satisfy the rental needs in
time. In this chapter, we focus on a more strategic problem of purchasing parking lots and
free-float permits together with car fleet allocation in zones. We are interested in the prof-
itability and the QoS under demand uncertainty, and also explore the use of a risk-averse
measure CVaR to quantify QoS, which is not found in related literature.

We apply our models to the carsharing fleet allocation problem with real-world data.
Our numerical results show that the proportion of one-way trips can significant impact on
the profitability and the QoS. As this proportion increases, the net profit decreases drasti-
cally. Its impact on the QoS, on the other hand, shows a non-monotone pattern. Presence
of a small proportion of one-way trips can actually help lowering the number of unfulfilled
demand. However, as this proportion further increases, the number of unfulfilled demand
will increase. The detriments of one-way rentals are mainly from the loss of rental hours
and the need for vehicle relocation. Carsharing companies have been trying to remedy
revenue loss by charging higher rates for one-way trips. Similarly, we study the effect of
lower vehicle relocation cost, which is approximately equivalent to increasing the pricing
of both one-way and round-trip rentals (barring significant idling or maintenance costs).
We find that lower relocation cost has different impacts on profitability and QoS. While it
only results in slightly higher profits, it can significantly improve the QoS by eliminating
most of unfulfilled demand. These results provide valuable insights and recommendations
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to city governments who often rely on and sponsor carsharing programs as a means to solve
their public transportation problems.

4.1.5 Structure of Chapter

The remainder of this chapter is organized as follows. Section 4.2 describes the construc-
tion of the spatial-temporal network and provides the two-stage optimization models, while
Section 4.3 presents an efficient method for solving these models using a branch-and-cut
algorithm with MIR-enhanced Benders cuts. Section 4.4 provides the insights drawn from
applying the models on real-world data and evaluates the computational efficiency of the
proposed algorithm. Section 4.5 briefly describes some extensions to proposed carsharing
model, and Section 4.6 presents conclusions and future research directions.

4.2 Problem Formulation

Given a budget of S cars to place in a set of zones, I , we maximize profit and QoS over
T time periods. We denote the number of parking lots to purchase in zone i by wi and the
initial number of cars to place in zone i by xi. Each parking lot purchased in zone i ∈ I
incurs a one-time cost of clot

i and each free-float permit purchased incurs a one-time cost of
cffp. Any additional costs of allocating a car to zone i is captured by cloc

i . We denote the
demand for one-way rentals from zone i to zone j starting at period t by done

ijt , and denote
the demand for round-trip rentals from zone i starting at period t and ending at period s by
dtwo
its . We also denote the time taken to travel from zone i to zone j by `ij .

As carsharing companies typically use a time-based payment scheme, we assume that
cost and revenue parameters for rentals are independent of zones but dependent on the
amount of time a car is used. The revenue generated comes solely from customers using
vehicles, while costs incurred by the company include the cost of relocating vehicles (to
potentially satisfy demand elsewhere), the cost of maintenance due to wear and tear from
car usage, and the cost of vehicles idling (such as opportunity costs and depreciation costs).
We denote the revenue per period per car from one-way rentals by rone ≥ 0 and that from
round-trip rentals by rtwo ≥ 0, while the relocation cost per period per car is denoted by
crel ≥ 0. When a car is in use, whether during one-way rentals, round-trip rentals, or
relocation, it incurs a maintenance cost of cmnt ≥ 0 per period; when it is not in use, it
incurs an idle cost of cidle ≥ 0 per period.
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4.2.1 Construction of the Spatial-Temporal Network

To model the movement of vehicles from zone to zone over the planning horizon, we con-
struct a spatial-temporal network G(N,A), with each node nit ∈ N representing a zone
i ∈ I at period t ∈ {0, 1, 2, . . . , T}. The arcs in this network are directed and represent a
spatial-temporal movement of vehicles from one zone to another from an earlier period to
a later one. There are four types of arcs in the network:

• One-way arcs (nit, nj,t+`ij) ∈ Aone for each done
ijt > 0, with capacity done

ijt and cost
−(rone − cmnt)`ij per unit flow. Flows on these arcs represent vehicles being rented
one-way from zone i to zone j starting from period t.

• Round-trip arcs (nit, nis) ∈ Atwo for each dtwo
its > 0, with capacity dtwo

its and cost
−(rtwo − cmnt)(s − t) per unit flow. Flows on these arcs represent vehicles being
rented round-trip from zone i starting from period t and ending in period s.

• Relocation arcs (nit, nj,t+`ij) ∈ Arel for all pairs of zones i and j and periods 0 ≤ t ≤
T − `ij , with infinite capacity and cost (crel + cmnt)`ij per unit flow. Flows on these
arcs represent vehicles being relocated from zone i to zone j starting from period t.

• Idle arcs (nit, ni,t+1) ∈ Aidle for each zone i and period 0 ≤ t ≤ T − 1, with capacity
wi and cost cidle per unit flow. Flows on these arcs represent vehicles that are idling
at zone i from period t to t+ 1.

The set A is the union of the four types of arcs described above, i.e. A = Aone ∪ Atwo ∪
Arel ∪ Aidle. For convenience, we use arc-based notation subsequently. We denote the unit
cost of flow and the capacity of arc a by fa and ua, respectively, while δ+(nit) and δ−(nit)

denote the sets of arcs for which nit is their supply or demand node, respectively. The unit
flow costs and capacities of each type of arcs are summarized in Table 4.1. In particular, it
should be noted that the capacities of idle arcs depend on the vector w ∈ Z|I|+ of parking lot
purchases wi with i ∈ I , which we will define formally in Section 4.2.2.

Table 4.1: Unit flow costs and capacities for each arc type

Type of arc Cost per unit flow fa Capacity ua
One-way arc (nit, nj,t+`ij) −(rone − cmnt)`ij done

ijt

Round-trip arc (nit, nis) −(rtwo − cmnt)(s− t) dtwo
its

Relocation arc (nit, nj,t+`ij) (crel + cmnt)`ij +∞
Idle arc (nit, ni,t+1) cidle wi
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We illustrate the construction of a spatial-temporal network with the following exam-
ple. Consider two zones labeled A and B that require two periods of time to travel be-
tween them. Figure 4.1 shows the corresponding spatial-temporal network over periods
t = 0, . . . , 3. Included in the spatial-temporal network is a one-way arc corresponding to a
demand of four cars to travel from A to B starting at period 0 (note that the ending period
is automatically two periods after), and a round-trip arc corresponding to a demand of two
cars picked up at and returned to zone B, starting in period 1 and ending in period 3. The
numbers on the two arcs denote the respective capacities.

Figure 4.1: Spatial-temporal network example for a two-zone, three-period instance

4.2.2 A Two-Stage Stochastic Integer Programming Formulation

We employ two-stage stochastic optimization to model the above problem. In the following
formulation, w ∈ Z|I|+ denotes the vector of wi’s, x ∈ Z|I|+ denotes the vector of xi’s and
u ∈ Z|A|+ denotes the vector of ua’s.

min
w,x

∑
i∈I

(
clot
i wi+

(
cffp + cloc

i

)
xi

)
+Q(w, x) (4.1)

s.t. (w, x) ∈ X ={w ∈ Z|I|+ , x ∈ Z|I|+ : (4.2)

xi ≤ wi ∀i ∈ I∑
i∈I

xi ≤ S}.

The setX requires that the number of cars xi initially deployed to zone i does not exceed the
number of parking lotswi and that the total number of cars does not exceed the given budget
of S cars. We minimize the cost of purchasing parking lots, the cost of purchasing free-
float permits and any additional cost of allocating cars to their initial zones. The function
Q(w, x) returns the optimal cost of the second-stage problem given decisions w and x from
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the first stage.
The capacities ua of the one-way and round-trip arcs in Table 4.1 are random due to the

random demand. Given a joint distribution of one-way and round-trip rentals, we employ
Monte Carlo sampling to generate a finite number of scenarios. We index the scenarios by
k ∈ K, and denote the vector of capacities of the arcs in scenario k by uk = [uka, a ∈
Aone ∪ Atwo]T, and the probability of occurrence of scenario k by pk. The second stage
optimizes flows in the spatial-temporal network given that the supply level at each node ni0
is xi and the capacity on each arc a is ua partially determined by wi, ∀i ∈ I . We define the
feasible region of shared car movement as

Y (w, x, u) :={y ∈ R|A|+ :

∑
a∈δ+(nit)

ya −
∑

a∈δ−(nit)

ya =


xi if t = 0

0 if t = 1, . . . , T − 1

−xi if t = T

∀i ∈ I (4.3)

ya ≤ ua ∀a ∈ Aone ∪Atwo (4.4)

ya ≤ wi ∀i ∈ I, a = (nit, ni,t+1) ∈ Aidle}, (4.5)

where (4.3) is the flow balance constraint, and (4.4)–(4.5) are the capacity constraints. The
flow balance constraints for the spatial-temporal nodes in the last period require that the
final allocation of cars be the same as the initial allocation, for the purpose of operating the
carsharing system every T periods with the same initial deployment of cars.

In this chapter, we use two different stochastic optimization models for the second-
stage problem. Both models minimize the expected cost of flow in the spatial-temporal
network plus a measure of the random penalty incurred from unserved customers, so the
second-stage value function Q(w, x) in both models is of the form

Q(w, x) = min
y1,...,y|K|

∑
k∈K

pk
∑
a∈A

fay
k
a + g(y1, . . . , y|K|) (4.6)

s.t. yk ∈ Y (w, x, uk) ∀k ∈ K. (4.7)

The first term
∑

k∈K p
k
∑

a∈A fay
k
a in the objective denotes the expected flow cost while the

second term g(y1, . . . , y|K|) denotes the penalty incurred in all the scenarios. We employ
risk-neutral and risk-averse approaches for maintaining a desired QoS level – we describe
the related function g in further detail in Sections 4.2.3 and 4.2.4, respectively.
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4.2.3 A Risk-Neutral Model: Minimizing the Expected Penalty

We first propose a risk-neutral model that minimizes the expected penalty of unserved
customers, equal to unused capacities on the one-way and round-trip arcs. We impose
penalty Ga ≥ 0 for each unit of unused capacities on arcs a ∈ Aone ∪ Atwo, and mini-
mize EP

[∑
a∈Aone∪Atwo GaHa(w, x)

]
, where Ha(w, x) denotes the unused capacity on arc

a given decisions w and x, and the expectation EP is taken with respect to the probability
distribution P of the uncertain demand. As a result, we specify the second-stage problem
Q(w, x) in the risk-neutral model as

Qe(w, x) =
∑
k∈K

pk
∑

a∈Aone∪Atwo

Gau
k
a+

min
y

{∑
k∈K

pk

( ∑
a∈Aone∪Atwo

(fa −Ga)y
k
a +

∑
a∈Arel∪Aidle

fay
k
a

)
:

yk ∈ Y (w, x, uk), k ∈ K

}

with Qe(w, x) denoting the second-stage value function with expected penalty.

4.2.4 A Risk-Averse Model: Minimizing the Penalized CVaR

Conditional value-at-risk (CVaR) is a risk measure employed to cope with loss distribu-
tions. It is also known as mean excess loss or mean shortfall for continuously distributed
random variables. Its value is dependent on the value-at-risk (VaR) of the same random
variable. Given 0 < ε < 1, we define the (1− ε)-VaR (the VaR at confidence level 1− ε of
the number of unserved customers

∑
a∈Aone∪Atwo Ha(w, x)) as

VaR1−ε

( ∑
a∈Aone∪Atwo

Ha(w, x)

)
= min

{
v : P

( ∑
a∈Aone∪Atwo

Ha(w, x) ≤ v

)
≥ 1− ε

}
.

In other words, when ranking all scenarios k ∈ K by the number of unserved customers,
the (1− ε)-VaR is the best value of the 100ε% worst scenarios. It is important to note that
in our model, higher values of unserved customers are worse (typically, lower values are
worse when computing VaR and CVaR). Then the (1 − ε)-CVaR is the expected number
of unserved customers given that the number exceeds the (1− ε)-VaR, or equivalently the
average value of the 100ε% worst scenarios.

We propose a risk-averse model, and impose a penalty G0 on the (1 − ε)-CVaR of
unserved customers, with ε being a given risk parameter. Such a model is appropriate
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when a company accepts that not providing service to a small number of customers is
inevitable but wants to ensure a relatively high QoS on average in the worst-case scenarios.
Employing the well-known expectation-based reformulation of CVaR in Rockafellar and
Uryasev (2000), we reformulate

G0CVaR1−ε

( ∑
a∈Aone∪Atwo

Ha(w, x)

)
= G0 min

v≥0

{
v +

1

ε
EP

[( ∑
a∈Aone∪Atwo

Ha(w, x)− v

)+]}
,

(4.8)

where the non-negative variable v denotes VaR1−ε
(∑

a∈Aone∪Atwo Ha(w, x)
)
. We incorpo-

rate (4.8) to replace g(y1, . . . , y|K|) in the second-stage problem Q(w, x), yielding

Qc(w, x) = min
y,z,v≥0

∑
k∈K

pk
∑
a∈A

fay
k
a +G0

(
v +

1

ε

∑
k∈K

pkzk

)
(4.9)

s.t. yk ∈ Y (w, x, uk), zk ≥ 0 ∀k ∈ K (4.10)

zk ≥
∑

a∈Aone∪Atwo

(uka − yka)− v ∀k ∈ K, (4.11)

with Qc(w, x) denoting the risk-averse second-stage value function based on the CVaR
measure.

4.3 Solution Approaches

Solving the carsharing model directly can be problematic in both models as there areO(|I|)
integer variables wi and xi and O(|A||K|) continuous variables yka , with |A| potentially be-
ing very large should there be a large number of zones or periods (due to a fine granularity
of definition). To solve the large mixed-integer linear program more efficiently, we use a
branch-and-cut algorithm with cuts enhanced by mixed-integer rounding (MIR) first pro-
posed by Bodur and Luedtke (2014).

In this algorithm, the basic procedure is a branch-and-cut algorithm that branches on the
integer variables and solves individual nodes via Benders decomposition; the Benders cuts
at each node are added to the master problems of subsequent nodes. However, the Benders
cuts may be weak due to the relaxed integer constraints in the first-stage. Consequently,
the branch-and-cut algorithm may branch many times before termination. This motivates
us to employ the proposed procedure, which applies MIR to pairs of previously generated
Benders cuts to obtain stronger valid cuts.

We present our solution algorithm in two parts. Section 4.3.1 decomposes the prob-
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lem to solve with a branch-and-cut algorithm and Section 4.3.2 gives improvements to the
algorithm using MIR.

4.3.1 Benders Decomposition

Benders decomposition (Benders, 1962; Van Slyke and Wets, 1969) is a well-known algo-
rithm often used for decomposing stochastic optimization problems with discrete scenarios
into smaller problems corresponding to each scenario. To optimize formulation (4.2) for
Q(w, x) = Qe(w, x) in the risk-neutral model, we formulate a master problem, consist-
ing of the variables not indexed by k, and |K| subproblems, consisting of the remaining
variables separated by k. Each subproblem corresponds to the spatial-temporal network
resulting from each scenario in K. The Benders approach iteratively generates cuts from
each subproblem and adds them to the master problem. In the risk-neutral model, the vari-
ables in the master problem are the first-stage variables w, x and auxiliary variables qk ∈ R
for k ∈ K, denoting the values of the subproblems at optimality. The master problem is
thus given by

MP-Stoch : min
(w,x)∈X̃,q1,...,q|K|

{∑
i∈I

(
clot
i wi +

(
cffp + cloc

i

)
xi

)
+
∑
k∈K

pkqk :

LkStoch(q
k, w, x) ≥ 0 ∀k ∈ K

}
,

where X̃ representsX with its integer constraints relaxed and LkStoch(q
k, w, x) ≥ 0 is the set

of cuts generated by SP-Stochk(w, x), the kth subproblem of the decomposed risk-neutral
model. We formulate the subproblems as the duals of the primal Qe(w, x), separated by
k ∈ K:

SP-Stochk(w, x) : max
π,λ

∑
i∈I

xi(πi0 − πiT ) +
∑

a∈Aone∪Atwo

ukaλa +
∑
i∈I

wi

 ∑
a=(nit,ni,t+1)∈Aidle

λa


s.t. πit − πj,t+`ij + λa ≤ fa −Ga ∀a = (nit, nj,t+`ij ) ∈ A

one

πit − πis + λa ≤ fa −Ga ∀a = (nit, nis) ∈ Atwo

πit − πj,t+`ij ≤ fa ∀a = (nit, nj,t+`ij ) ∈ A
rel

πit − πi,t+1 + λa ≤ fa ∀a = (nit, ni,t+1) ∈ Aidle

λa ≤ 0 ∀a ∈ Aone ∪Atwo ∪Aidle,

where πit and λa are the dual variables associated with the flow balance constraints (4.3)
and the capacity constraints (4.4)–(4.5), respectively. Note that the subproblems for each
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scenario differ not only by their objective function, but by their constraints as well, as the
arcs in the spatial-temporal network depend on the volume of demand in the scenario.

Similarly, the risk-averse model with Q(w, x) = Qc(w, x) in model 4.2 can be de-
composed into a master problem and |K| subproblems. The master problem consists of
w, x and qk, k = 1, . . . , |K|, as in the risk-neutral model, and a scalar variable v as the
(1− ε)-VaR of unserved customers:

MP-CVaR : min
(w,x)∈X̃,v≥0,q1,...,q|K|

{∑
k∈K

pkqk +G0v : LkCVaR(qk, w, x, v) ≥ 0 ∀k ∈ K

}

where and LkCVaR(qk, w, x, v) ≥ 0 is the set of cuts generated by SP-CVaRk(w, x, v), the
kth subproblem of the decomposed CVaR model, defined below.

We formulate each subproblem k as the dual of Qc(w, x), separated by k ∈ K:

SP-CVaRk(w, x, v) : max
η,κ,θ

∑
i∈I

xi(ηi0 − ηiT ) +
∑

a∈Aone∪Atwo

(ukaκa + (uka − v)θ)

+
∑
i∈I

wi

 ∑
a=(nit,ni,t+1)∈Aidle

κa


s.t. ηit − ηj,t+`ij + κa + θ ≤ fa ∀a = (nit, nj,t+`ij ) ∈ A

one

ηit − ηis + κa + θ ≤ fa ∀a = (nit, nis) ∈ Atwo

ηit − ηj,t+`ij ≤ fa ∀a = (nit, nj,t+`ij ) ∈ A
rel

ηit − ηi,t+1 + κa ≤ fa ∀a = (nit, ni,t+1) ∈ Aidle

κa ≤ 0 ∀a ∈ Aone ∪Atwo ∪Aidle

0 ≤ θ ≤ G0

ε
,

where ηit, κa and θ are the dual variables associated with the flow balance constraints (4.3),
the capacity constraints (4.4)–(4.5), and the CVaR constraint (4.11), respectively.

At each iteration of the Benders decomposition algorithm, we optimize a relaxed master
problem MP-Stoch or MP-CVaR, to obtain optimal solutions (x̂, ŵ, q̂k) or (x̂, ŵ, q̂k, v̂).
We pass the solutions to the respective subproblems, and optimize SP-Stochk(ŵ, x̂) or SP-
CVaRk(ŵ, x̂, v̂). If the optimal objective value of the subproblem corresponding to scenario
k is greater than the optimal value of qk given by the master problem, an optimality cut is
generated to the master problem to remove this solution. For an optimal dual solution (π̂, λ̂)

to SP-Stochk(ŵ, x̂) for scenario k in the risk-neutral model, the Benders optimality cut is
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of the form

qk −
∑
i∈I

 ∑
a=(nit,ni,t+1)∈Aidle

λ̂a

wi −
∑
i∈I

(π̂i0 − π̂iT )xi −
∑

a∈Aone∪Atwo

λ̂au
k
a ≥ 0. (4.12)

For an optimal dual solution (η̂, κ̂, θ̂) to SP-CVaRk(ŵ, x̂, v̂) for scenario k in the risk-averse
model, the Benders cut is of the form

qk −
∑
i∈I

 ∑
a=(nit,ni,t+1)∈Aidle

κ̂a

wi −
∑
i∈I

(η̂i0 − η̂iT )xi + θ̂v −
∑

a∈Aone∪Atwo

(κ̂a + θ̂)uka ≥ 0.

(4.13)

Feasibility cuts will not be required in either model, because the subproblems are always
feasible when x and w are feasible for the relaxed master problem. Indeed, for any feasible
x and w, having the vehicles idle until the last period (i.e. ya = xi for all arcs a =

(nit, ni,t+1) ∈ Aidle and ya = 0 for all other arcs a ∈ Aone ∪Atwo ∪Arel) is always a feasible
solution to the primal problem.

4.3.2 MIR Procedure

Mixed-integer rounding (MIR) is a procedure used to remove non-integer extreme point
solutions from the linear relaxation of a mixed-integer program. We present a generic form
of the MIR inequality with a non-negative real variable and multiple non-negative integer
variables.

Proposition 4.1. (Wolsey, 1998) Let U := {(x, y) ∈ R+ × Zm+ : x +
∑m

i=1 αiyi − δ ≥ 0}
and let ∆ > 0. If frac (∆δ) > 0, then the cut

x+
m∑
i=1

min {d∆αie frac (∆δ) , frac (∆αi) + b∆αic frac (∆δ)}
∆

yi −
d∆δe frac (∆δ)

∆
≥ 0

is valid for U . �

The function frac (b) is defined as frac (b) := b − bbc, the fractional part of a scalar b.
Note that in Proposition 4.1, the variables x and y are generically defined and are unrelated
to the x and y given in our formulations. Bodur and Luedtke (2014) extend Proposition 4.1
for a set defined by two inequalities. Following their idea, consequently, one can generate
a different valid cut from two valid Benders cuts. We describe this result below in Theorem
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4.4 with nomenclature relevant to our risk-neutral model and its corresponding Benders
cuts.

Theorem 4.4. Let

qk −
∑
i∈I

 ∑
a=(nit,ni,t+1)∈Aidle

λ̂ja

wi −
∑
i∈I

π̂ji0xi −
∑

a∈Aone∪Atwo

λ̂jau
k
a ≥ 0, j = 1, 2

be any pair of Benders cuts valid for the set of cuts LkStoch(q
k, w, x) ≥ 0 and let ∆ > 0.

Define

αi := −
∑

a=(nit,ni,t+1)∈Aidle

(
λ̂2
a − λ̂1

a

)
,

βi := −
(
π̂2
i0 − π̂1

i0

)
,

δ :=
∑

a∈Aone∪Atwo

(
λ̂2
au

k
a − λ̂1

au
k
a

)
.

If frac (∆δ) > 0, then the cut

qk +
∑
i∈I

min {d∆αie frac (∆δ) , frac (∆αi) + b∆αic frac (∆δ)}
∆

−
∑

a=(nit,ni,t+1)∈Aidle

λ̂1
a

wi

+
∑
i∈I

(
min {d∆βie frac (∆δ) , frac (∆βi) + b∆βic frac (∆δ)}

∆
− π̂1

i0

)
xi

−

(
d∆δe frac (∆δ)

∆
+

∑
a∈Aone∪Atwo

λ̂1
au

k
a

)
≥ 0 (4.14)

is valid for LkStoch(q
k, w, x) ≥ 0. �

Proof. Let (qk, w, x) be an arbitrary solution satisfying the set of cuts LkStoch(q
k, w, x) ≥ 0

and define

q′ := qk −
∑
i∈I

 ∑
a=(nit,ni,t+1)∈Aidle

λ̂1
a

wi −
∑
i∈I

π̂1
i0xi −

∑
a∈Aone∪Atwo

λ̂1
au

k
a.

Then q′ ≥ 0 and

q′ ≥ q′ −

qk −∑
i∈I

 ∑
a=(nit,ni,t+1)∈Aidle

λ̂2
a

wi −
∑
i∈I

π̂2
i0xi −

∑
a∈Aone∪Atwo

λ̂2
au

k
a


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= δ −
∑
i∈I

αiwi −
∑
i∈I

βixi.

That is,

(q′, w, x) ∈ U :=

{
(q′, w, x) ∈ R+ × Z|I|+ × Z|I|+ : q′ +

∑
i∈I

αiwi +
∑
i∈I

βixi − δ ≥ 0

}
.

By applying Proposition 4.1, we obtain the cut

q′ +
∑
i∈I

min {d∆αie frac (∆δ) , frac (∆αi) + b∆αic frac (∆δ)}
∆

wi

+
∑
i∈I

min {d∆βie frac (∆δ) , frac (∆βi) + b∆βic frac (∆δ)}
∆

xi

− d∆δe frac (∆δ)

∆
≥ 0 (4.15)

valid forU . Finally, we substitute the expression q′ to obtain (4.14), valid forLkStoch(q
k, w, x)

≥ 0. �

We can directly apply Theorem 4.4 to pairs of Benders cuts (4.12) generated by SP-
Stochk(w, x) to generate new valid cuts. We call the process of generating a cut obtained
via MIR on a pair of Benders cuts the MIR procedure. Similar procedures are employed
in Bodur and Luedtke (2014) for optimizing a two-stage call center staffing problem under
uncertain number of incoming calls.

On the other hand, cuts generated by SP-CVaRk(w, x, v) do not follow the form given
in Theorem 4.4. We develop the following theorem to generate MIR cuts from pairs of
Benders cuts (4.13) for the risk-averse CVaR-based model.

Theorem 4.5. Let

qk −
∑
i∈I

 ∑
a=(nit,ni,t+1)∈Aidle

κ̂ja

wi −
∑
i∈I

η̂ji0xi + θ̂jv −
∑

a∈Aone∪Atwo

(κ̂ja + θ̂j)uka ≥ 0, j = 1, 2

(4.16)

be any pair of Benders cuts valid for the set of cuts LkCVaR(qk, w, x, v) ≥ 0 and let ∆ > 0.
Define

αi := −
∑

a=(nit,ni,t+1)∈Aidle

(
κ̂2
a − κ̂1

a

)
,

βi := −
(
η̂2
i0 − η̂1

i0

)
,
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δ :=
∑

a∈Aone∪Atwo

((
κ̂2
a + θ̂2

)
uka −

(
κ̂1
a + θ̂1

)
uka

)
.

If frac (∆δ) > 0 and θ̂2 ≥ θ̂1, then the cut

qk + θ2v +
∑
i∈I

min {d∆αie frac (∆δ) , frac (∆αi) + b∆αic frac (∆δ)}
∆

−
∑

a=(nit,ni,t+1)∈Aidle

κ̂1a

wi

+
∑
i∈I

(
min {d∆βie frac (∆δ) , frac (∆βi) + b∆βic frac (∆δ)}

∆
− η̂1i0

)
xi

−

(
d∆δe frac (∆δ)

∆
+

∑
a∈Aone∪Atwo

(
κ̂1a + θ̂1

)
uka

)
≥ 0 (4.17)

is valid for LkCVaR(qk, w, x, v) ≥ 0. �

Proof. Let (qk, w, x, v) be an arbitrary solution satisfying the set of cutsLkCVaR(qk, w, x, v) ≥
0 and define

q′ := qk −
∑
i∈I

 ∑
a=(nit,ni,t+1)∈Aidle

κ̂1
a

wi −
∑
i∈I

η̂1
i0xi + θ̂2v −

∑
a∈Aone∪Atwo

(
κ̂1
a + θ̂1

)
uka.

Then

q′ =

qk −∑
i∈I

 ∑
a=(nit,ni,t+1)∈Aidle

κ̂1a

wi −
∑
i∈I

η̂1i0xi + θ̂1v −
∑

a∈Aone∪Atwo

(
κ̂1a + θ̂1

)
uka

+
(
θ̂2 − θ̂1

)
v

≥ 0

and

q′ ≥ q′ −

qk −∑
i∈I

 ∑
a=(nit,ni,t+1)∈Aidle

κ̂2
a

wi −
∑
i∈I

η̂2
i0xi + θ̂2v −

∑
a∈Aone∪Atwo

(
κ̂2
a + θ̂2

)
uka


= δ −

∑
i∈I

αiwi −
∑
i∈I

βixi.

That is,

(q′, w, x) ∈ U :=

{
(q′, w, x) ∈ R+ × Z|I|+ × Z|I|+ : q′ +

∑
i∈I

αiwi +
∑
i∈I

βixi − δ ≥ 0

}
.

By applying Proposition 4.1, we obtain the cut (4.15) valid for U . Finally, we substitute
the expression q′ to obtain (4.17), which is valid for LkCVaR(qk, w, x, v) ≥ 0. �

Theorem 4.5 is similar to Theorem 4.4, but further requires that θ̂2 − θ̂1 ≥ 0. However,
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this condition can be satisfied with any pair of Benders cuts (4.13), as the indices 1 and 2

used in the theorem can be swapped without loss of generality. We include in Appendix
C the implementation of the branch-and-cut algorithm with MIR-enhanced Benders cuts,
generalized for both risk-neutral and risk-averse models.

4.4 Computational Results

We apply the two-stage stochastic integer programming formulation to optimize the alloca-
tion of fleet and parking space in carsharing systems with real-world data. In particular, we
focus on the effects of different penetrations of one-way rentals on both reserved-parking
and free-floating carsharing systems. Section 4.4.2 analyzes how the ratio of one-way
to round-trip demand affects profitability and QoS. In Section 4.4.3, we vary parameter
settings in the risk-neutral and risk-averse models, and analyze the effects of lowering relo-
cation costs on the metrics of profitability, QoS, and denied rentals. Section 4.4.4 demon-
strates the efficacy of decomposition algorithms and the MIR procedure for enhancing the
Benders cuts.

4.4.1 Design of Experiments

4.4.1.1 Data Generation

We use Zipcar rental data collected from the Boston-Cambridge area in Massachusetts
in our computations. There are a total of 62 days of data, taken from Oct 1 to Dec 1,
2014, which contain the information of the starting and ending times of the rentals and the
zipcodes of the origin and destination zones of the rentals. Figure 4.2 illustrates how we
divide the Boston-Cambridge area into nine zones.

First, according to the demand’s traveling pattern, we divide the Boston-Cambridge
area into nine zones. We pre-process the rental data as follows. The rentals are labeled
as one-way or round-trip rentals, depending on whether they had different or the same
starting and ending zones, respectively. One-way rentals are further categorized by their
origin and destination zones and the hour in which the rental started. Round-trip rentals
are categorized by their origin (which is also their destination) zone and the hours in which
the rental started and ended. One-way rentals are aggregated by their (origin, destination,

starting hour) triplet, while round-trip rentals are aggregated by their (origin, starting hour,

ending hour) triplet, for each day, resulting in 62 data points for each of the aforementioned
triplets.
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Figure 4.2: Division of Boston-Cambridge area into nine zones

We use the Monte Carlo sampling to generate random instances by sampling the num-
ber of rentals for each triplet by following Gamma distributions with means and variances
equal to the empirical values obtained from the Zipcar data. We conduct hypothesis test of
the Gamma distribution because hourly demand for each triplet is non-negative and gener-
ally seen to have higher frequencies of small values. We compute the scale and shape pa-
rameters of the assumed Gamma distribution for each triplet from the means and variances
obtained from each set of 62 data points. Figure 4.3 compares the probability densities
of the observed data and the assumed Gamma distribution (computed from the mean and
variance of the observations) for two representative types of triplets, which have higher
frequencies of low demand and of high demand values, respectively. The assumed Gamma
distribution follows the observed distribution closely in both cases.

In our experiments, we target a mean total demand of 1000 rentals. As the experiments
require that we use different proportions of one-way versus round-trip rentals, the means
and variances are scaled accordingly.
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Figure 4.3: Comparison of observed distributions and assumed Gamma distributions

4.4.1.2 Computational Setup

For each mix of one-way and round-trip demand, we use a training sample of 100 scenarios
to compute the optimal first-stage decisions w and x. We use three models to compute the
first-stage solutions w and x for both systems, namely the risk-neutral model (which we
refer to as Stoch), the CVaR model with ε = 0.1 (CVaR-0.1), and the CVaR model with
ε = 0.05 (CVaR-0.05). The performance of the first-stage solutions is evaluated using a
test sample of 1000 scenarios with the same mix of one-way and round-trip rentals. The
model used in this evaluation is (4.6)–(4.7) with the penalty term g(y1, . . . , y|K|) = 0.

In our numerical experiments, we vary one-way proportion from 0% to 100%, in 20%
increments. The granularity of time used is one hour per period, and the experiments are
run with T = 24 periods. As we do not have data on the fleet size of Zipcar in Boston,
we run trial experiments with fleet sizes of 100, 200 and 300 to observe their effect on
the results. In the trial experiments, a fleet size of 300 results in almost all demand being
satisfied regardless of the other parameters, and consequently perfect or almost-perfect QoS
for all experiments. On the other hand, a fleet size of 100 results in trends similar to a fleet
size of 200, albeit with smaller absolute values. Consequently, we set S = 200 to observe
more significant changes when varying other parameters, yet with the fleet not too large as
to result in consistently perfect QoS.
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For the reserved-parking-based system, we set the parking lot cost clot
i = $9.6 per hour

in zones i = 1, 2, 5, 6, 9, clot
i = $7.4 per hour in other zones, and the free-float permit cost

cffp = $0. For the free-floating system, free-float permit cost is set as cffp = $9.6 per hour,
and clot

i = $0 for all zones i. Following the studies by Chesto (2015), these costs are based
on annual parking lot reservation costs of $3,500 per lot in Boston downtown and $2,700
outside of downtown, and annual free-float permit costs of $3,500 per car, divided by 365
days.

We use revenue parameters rtwo = $7.75 per hour and rone = $12 per hour based on
Zipcar’s Boston rental rates for round-trip and one-way in its ONE>WAY program (see
Zipcar, 2015). Relocation cost is crel = $22 per hour, based on the average annual wage of
$46,481.52 in the U.S. in 2014 (see Social Security Administration, 2015), divided by 52
weeks and 40 hours. Maintenance cmnt and idling costs cidle are assumed to be negligible
and set to zero. Finally, Ga = −10fa for all arcs a ∈ Aone ∪ Atwo in Stoch and G0 =

1
|Aone∪Atwo|

∑
a∈Aone∪Atwo Ga in both CVaR-0.1 and CVaR-0.05. That is, the penalty on

each arc is ten times the per unit net revenue of flow and the CVaR penalty factor is the
average penalty over all rental arcs.

We implement all the algorithms in Java using Gurobi 6.0.3. The results below are
obtained by using a Dell Alienware X51, with an Intel Core i7-3770 dual-core CPU @
3.4GHz each and 8GB RAM.

4.4.2 Effect of Demand Type Mix

A primary factor affecting the profit and QoS levels of a carsharing service is the mix of
one-way and round-trip demand. Volatile pricing of rentals often negatively impacts cus-
tomer experience, but customer demand, and consequently the ratio of one-way to round-
trip rentals, is volatile and changes from day to day. Hence, it is important to understand
the impact that this ratio has on a carsharing service. In our first set of experimental results,
we evaluate the effects of the mix of one-way and round-trip rentals on carsharing systems
with reserved parking lots or free-float parking permits.

4.4.2.1 Demand Concentration versus Vehicle Allocation

First, we compare the average total number of rentals demanded in each zone against the
first-stage vehicle allocation obtained through the models. Figure 4.4 shows the relative
concentration of demand starting in each zone and the relative allocation of vehicles ob-
tained by solving Stoch when the proportion of one-way rentals is 40%. A deeper shade
represents a higher demand concentration in Figure 4.4(a) and a larger number of vehicles
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allocated in Figure 4.4(b).

(a) Demand concentration (b) Vehicle allocation

Figure 4.4: Visual comparison of demand concentration (by starting zone) versus vehicle
allocation

The data indicates that more demand starts from the zones to the north of the Boston-
Cambridge area than from the southern zones. Meanwhile, we observe more vehicles al-
located to the northern zones. Also, the allocation of vehicles does not match the demand
concentrations directly, as the optimal allocation of vehicles also depends on the ending
zones of the one-way demand. This validates the realism of our results, and the non-
triviality of the problem of allocating a carsharing fleet to initial zones.

4.4.2.2 Profitability

The profitability of the first-stage solutions comprises the following main components:
the setup cost of purchasing parking lots or free-float permits, the expected revenue from
one-way and round-trip rentals, and the expected cost of relocating cars. Recall that main-
tenance and idling costs are zero in our experimental setup. Table 4.2 shows these compo-
nents for each proportion of one-way rentals and each system under the three models used.
The last column presents the expected total profit.

In Table 4.2, across the three models and the two systems, the profitability decreases as
the proportion of one-way rentals increases. The main contributing factor for this decrease
is the decrease in overall revenue. When all rentals are one-way, the revenue gained is only
half of that when all rentals are round-trip. This is because one-way rentals are generally
shorter in duration (as mentioned in Section 4.4.1.1, they are assumed to be one hour long)
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Table 4.2: Profitability metrics of solutions

One-way Carsharing Model Setup Revenue from Revenue from Relocation Profit
proportion system cost one-way round-trip costs

0%

Reserved
Parking

Stoch 1,887 0 16,862 7 14,967
CVaR-0.1 1,887 0 16,861 6 14,968
CVaR-0.05 1,887 0 16,861 6 14,968

Free Float
Stoch 1,920 0 16,864 7 14,936
CVaR-0.1 1,920 0 16,864 7 14,937
CVaR-0.05 1,920 0 16,864 7 14,937

20%

Reserved
Parking

Stoch 1,861 1,187 14,386 108 13,604
CVaR-0.1 1,869 1,169 14,423 100 13,622
CVaR-0.05 1,869 1,167 14,423 99 13,622

Free Float
Stoch 1,920 1,177 14,399 101 13,556
CVaR-0.1 1,920 1,166 14,425 97 13,574
CVaR-0.05 1,920 1,164 14,430 98 13,577

40%

Reserved
Parking

Stoch 1,822 3,026 11,213 246 12,172
CVaR-0.1 1,836 3,013 11,277 213 12,239
CVaR-0.05 1,841 3,021 11,294 222 12,252

Free Float
Stoch 1,920 3,008 11,205 205 12,088
CVaR-0.1 1,920 3,016 11,274 194 12,177
CVaR-0.05 1,920 3,021 11,291 199 12,193

60%

Reserved
Parking

Stoch 1,770 4,804 7,475 333 10,176
CVaR-0.1 1,801 4,841 7,505 343 10,203
CVaR-0.05 1,805 4,810 7,511 316 10,200

Free Float
Stoch 1,920 4,765 7,485 278 10,053
CVaR-0.1 1,920 4,800 7,514 287 10,107
CVaR-0.05 1,920 4,801 7,518 286 10,114

80%

Reserved
Parking

Stoch 1,682 6,625 3,572 454 8,061
CVaR-0.1 1,725 6,583 3,574 417 8,015
CVaR-0.05 1,725 6,573 3,575 409 8,014

Free Float
Stoch 1,872 6,601 3,574 411 7,891
CVaR-0.1 1,920 6,570 3,578 383 7,845
CVaR-0.05 1,920 6,564 3,578 378 7,844

100%

Reserved
Parking

Stoch 1,496 8,359 0 549 6,315
CVaR-0.1 1,535 8,297 0 495 6,267
CVaR-0.05 1,537 8,357 0 544 6,276

Free Float
Stoch 1,670 8,299 0 462 6,166
CVaR-0.1 1,718 8,302 0 463 6,120
CVaR-0.05 1,718 8,308 0 469 6,121
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as compared to round-trip rentals, which could be several hours long. The cost differential
between one-way and round-trip rentals appears to be ineffective in bridging the revenue
gap between the two. The additional burden of relocation costs for one-way rentals further
suppresses profits. Even though setup cost decreases as one-way proportion increases, this
decrease is not sufficient to offset the loss in revenue and increase in relocation cost. The
results explain why careshare companies have less incentive to popularize one-way rentals,
although they could attract more customers for the more flexible rental form.

The three models show minor differences in their profitability for both systems. The
CVaR models have slightly higher setup costs but lower relocation costs compared to the
risk-neutral model. Revenue from round-trip rentals is also higher for the CVaR models.
Revenue from one-way rentals does not appear to have a direct relationship with the type
of model used. This can be attributed to the risk-averse CVaR model being more likely
to avoid a higher second-stage cost by incurring more costs in the first stage. Overall,
the profitability of solutions from using a risk-neutral model is lower than those obtained
from using a CVaR model for smaller proportions of one-way rental demand (up to 60%),
with the difference in profitability being greatest at 40% demand being one-way. This
relationship is reversed for higher proportions of one-way demand of 80% and 100%.

When comparing the two types of carsharing systems, we see that reserved-parking-
based systems had consistently higher profit than free-floating systems. This may be due
to the similar cost per parking lot and cost per free-floating permit in downtown zones and
lower parking lot costs than permit costs in other zones. Figure 4.5 shows the observed
probability density functions of the profits, using a risk-neutral model when the proportion
of one-way rentals is 80%. Both probability densities show some positive skewness, likely
due to the underlying Gamma distribution of demand. The profit of a reserved-parking-
based system has lower density for values below 7,250 and higher density for values above
7,250 when compared to the profit of a free-floating system.

4.4.2.3 QoS Performance

We evaluate the QoS of the solutions given by the models using the expected number of
demanded rentals unfulfilled, the expected proportion of unfulfilled rentals out of the total
demand, and the expected number of unfulfilled vehicle hours. All three metrics are given
in Table 4.3, together with the expected total number of vehicle-hours spent idling.

Under both systems and using any of the three models, the expected number of unful-
filled rentals increases as the proportion of one-way rentals increases, as does the expected
proportion of unfulfilled rentals or the expected number of unfulfilled vehicle hours. This
further supports our earlier claim that the price differential between one-way and round-
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Table 4.3: QoS metrics of solutions

One-way Carsharing Model Unfulfilled rentals Idle
proportion system Number As proportion In vehicle-hours vehicle-hours

0%

Reserved
Parking

Stoch 146.2 14.6% 290.4 2,423.3
CVaR-0.1 145.9 14.6% 290.4 2,423.4
CVaR-0.05 145.9 14.6% 290.4 2,423.4

Free Float
Stoch 147.1 14.7% 290.7 2,423.5
CVaR-0.1 147.0 14.7% 290.8 2,423.7
CVaR-0.05 147.0 14.7% 290.8 2,423.7

20%

Reserved
Parking

Stoch 123.9 13.0% 166.4 2,633.8
CVaR-0.1 123.7 12.9% 164.0 2,631.8
CVaR-0.05 123.3 12.9% 163.5 2,631.2

Free Float
Stoch 123.1 12.9% 167.3 2,634.0
CVaR-0.1 122.9 12.9% 164.0 2,631.6
CVaR-0.05 122.9 12.9% 164.1 2,631.8

40%

Reserved
Parking

Stoch 135.8 14.1% 144.4 2,883.1
CVaR-0.1 129.9 13.5% 134.7 2,874.5
CVaR-0.05 127.9 13.3% 132.2 2,871.5

Free Float
Stoch 134.3 14.0% 141.9 2,876.5
CVaR-0.1 129.8 13.5% 134.8 2,872.6
CVaR-0.05 127.8 13.3% 131.8 2,868.8

60%

Reserved
Parking

Stoch 177.7 18.5% 178.6 3,209.3
CVaR-0.1 171.8 17.9% 172.0 3,201.7
CVaR-0.05 171.2 17.8% 171.3 3,201.2

Free Float
Stoch 175.8 18.3% 176.7 3,201.9
CVaR-0.1 169.4 17.6% 169.6 3,193.8
CVaR-0.05 171.4 17.8% 171.5 3,198.4

80%

Reserved
Parking

Stoch 224.4 23.4% 224.5 3,432.7
CVaR-0.1 226.5 23.6% 226.5 3,552.6
CVaR-0.05 226.9 23.7% 226.9 3,553.4

Free Float
Stoch 222.6 23.2% 222.7 3,426.6
CVaR-0.1 225.8 23.5% 225.9 3,548.5
CVaR-0.05 226.5 23.6% 226.6 3,550.0

100%

Reserved
Parking

Stoch 283.7 29.1% 283.7 3,264.2
CVaR-0.1 283.4 29.1% 283.4 3,378.8
CVaR-0.05 282.9 29.0% 282.9 3,377.7

Free Float
Stoch 278.6 28.6% 278.6 3,250.5
CVaR-0.1 283.8 29.1% 283.8 3,376.1
CVaR-0.05 278.8 28.6% 278.8 3,366.1
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Figure 4.5: Observed probability density of profit

trip rentals is insufficient for the former to be as profitable as the latter. This can also be
seen from the fact that the expected number of vehicle hours spent idling increases as the
proportion of one-way rentals increases, indicating that with higher one-way proportions,
the carsharing company would rather have vehicles idle than satisfying all demand.

However, our results do indicate that a small amount of one-way demand may be ben-
eficial to the improvement of QoS, as the lowest proportion of unfulfilled rentals occurs
when the proportion of demand for one-way rentals is 20%. This may be due to one-way
rentals being able to provide a limited amount of desirable relocation of vehicles to re-
spond to changes in demand patterns during the demand horizon, as opposed to a static
configuration of the car fleet when all demand is round-trip.

There are very small differences between the number of unfulfilled rentals under a
reserved-parking-based system and a free-floating system. The values never differ by more
than 2.5 in our results, and most differ by no more than 1.5. When comparing between the
three models, there are also minor differences, with the differences being more pronounced
for moderate proportions of one-way rentals. There is no clear advantage, in terms of QoS,
of using the CVaR model over the risk-neutral model. This may be surprising, given that
the CVaR model is risk-averse. However, the CVaR model focuses on the worst 100ε%
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scenarios, and thus may not have better QoS on average.
For clarity, we include Figure 4.6 to illustrate how VaR and CVaR are computed. The

figure shows the observed probability density functions of the proportions of rentals unful-
filled by the solutions given by Stoch and CVaR-0.05 when the proportion of one-way
rentals is 40%. The vertical thresholds indicate the 0.9-VaR (i.e. the VaR when ε = 0.1) for
each of the two curves. These thresholds are such that the area under the curve to the right
of the threshold is 0.1. In the case of Stoch, this area is indicated by the blue and green
shaded areas; in the case of CVaR-0.05, this area is indicated by the orange and greed
shaded areas. The 0.9-CVaR (i.e. the CVaR when ε = 0.1) of the curve is the expected
value of the curve to the right of the 0.9-VaR.

Figure 4.6: Observed distribution of proportion of demanded rentals unfulfilled

4.4.2.4 Denied Rentals

A denied rental is one that is not fulfilled even though there is a car available for use in
that zone at that time. Such a phenomenon is unlikely to happen in a free-floating system
as the company cannot prevent customers from renting cars if they are available. Hence,
denied rentals can be used to measure how realistically the model approximates a free-
floating system. However, in a reserved-parking-based system, customers could potentially
be blocked from using a car that is available, if doing so might result in greater overall
profitability. Denied rentals, in this case, provide another measure of QoS.
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Table 4.4 gives the expected proportion of rentals denied and several percentile values
of this proportion. The proportion of rentals denied increases with the proportion of one-

Table 4.4: Distribution of proportion of rentals denied when crel = 22

One-way Carsharing Model Mean Percentile
proportion system 25% 50% 75% 90% 95% 99%

0%

Reserved
Parking

Stoch 0.24% 0.10% 0.20% 0.33% 0.52% 0.64% 0.91%
CVaR-0.1 0.25% 0.10% 0.20% 0.37% 0.53% 0.70% 1.01%
CVaR-0.05 0.25% 0.10% 0.20% 0.37% 0.53% 0.70% 1.01%

Free Float
Stoch 0.25% 0.10% 0.20% 0.32% 0.51% 0.70% 1.03%
CVaR-0.1 0.25% 0.10% 0.20% 0.33% 0.52% 0.69% 1.01%
CVaR-0.05 0.25% 0.10% 0.20% 0.33% 0.52% 0.69% 1.01%

20%

Reserved
Parking

Stoch 3.52% 2.94% 3.48% 4.05% 4.62% 4.96% 5.58%
CVaR-0.1 3.20% 2.66% 3.17% 3.67% 4.17% 4.48% 5.10%
CVaR-0.05 3.25% 2.74% 3.22% 3.77% 4.22% 4.61% 5.13%

Free Float
Stoch 3.69% 3.13% 3.66% 4.18% 4.74% 5.15% 5.73%
CVaR-0.1 3.32% 2.81% 3.28% 3.79% 4.24% 4.58% 5.38%
CVaR-0.05 3.23% 2.70% 3.18% 3.71% 4.21% 4.51% 5.12%

40%

Reserved
Parking

Stoch 7.67% 6.73% 7.61% 8.63% 9.48% 9.99% 10.80%
CVaR-0.1 7.41% 6.46% 7.44% 8.30% 9.17% 9.74% 10.55%
CVaR-0.05 6.87% 5.88% 6.90% 7.73% 8.57% 9.06% 10.01%

Free Float
Stoch 10.12% 9.16% 10.24% 11.16% 11.90% 12.27% 13.07%
CVaR-0.1 8.28% 7.30% 8.27% 9.28% 10.09% 10.64% 11.30%
CVaR-0.05 7.83% 6.88% 7.78% 8.83% 9.71% 10.23% 11.08%

60%

Reserved
Parking

Stoch 11.64% 10.43% 11.65% 12.88% 13.89% 14.42% 15.47%
CVaR-0.1 10.98% 9.74% 10.99% 12.23% 13.39% 14.05% 14.89%
CVaR-0.05 11.78% 10.42% 11.81% 13.10% 14.16% 14.96% 16.56%

Free Float
Stoch 16.40% 15.37% 16.50% 17.46% 18.32% 18.82% 19.47%
CVaR-0.1 13.70% 12.50% 13.78% 14.81% 15.84% 16.44% 17.82%
CVaR-0.05 13.75% 12.69% 13.76% 14.91% 15.91% 16.40% 17.63%

80%

Reserved
Parking

Stoch 15.30% 13.78% 15.34% 16.99% 18.19% 19.06% 20.40%
CVaR-0.1 16.58% 15.09% 16.61% 18.15% 19.46% 20.36% 21.39%
CVaR-0.05 17.10% 15.61% 17.16% 18.60% 19.96% 20.81% 22.25%

Free Float
Stoch 17.16% 15.71% 17.26% 18.67% 19.83% 20.52% 21.82%
CVaR-0.1 18.15% 16.58% 18.13% 19.77% 20.93% 21.81% 22.96%
CVaR-0.05 21.90% 20.77% 21.99% 23.04% 23.95% 24.57% 25.76%

100%

Reserved
Parking

Stoch 19.71% 18.05% 19.72% 21.42% 22.93% 23.75% 25.03%
CVaR-0.1 21.52% 19.73% 21.57% 23.40% 24.95% 25.91% 27.62%
CVaR-0.05 19.95% 18.08% 20.08% 21.77% 23.49% 24.33% 25.98%

Free Float
Stoch 26.84% 25.48% 27.00% 28.31% 29.47% 30.12% 31.04%
CVaR-0.1 23.12% 21.30% 23.27% 24.92% 26.42% 27.23% 28.97%
CVaR-0.05 22.70% 21.07% 22.81% 24.24% 25.70% 26.79% 28.91%

way demand. For low proportions of one-way demand, the expected proportion of denied
rentals is quite low, at approximately 3% with 20% of demand being one-way and at 7%-
10% with 40% of demand being one-way. However, at 60% and higher one-way demand,
the proportion of rentals denied can be quite high, reaching up to 26% when all demand is
one-way. This suggests that reserved-parking-based and free-floating carsharing systems
will cope with high proportions of one-way demand in different ways – while the former
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can continue using the model without much repercussion, the latter cannot as it diverges
from reality for high one-way demand.

4.4.3 Effect of Lowering Relocation Cost

Our results indicate that under the given cost parameters, high demand for one-way rentals
can be detrimental to both profitability and QoS, and also decreases the model’s ability
to realistically approximate customer behavior when used for free-floating carsharing sys-
tems. However, this can be remedied by a reduction in relocation costs relative to the
revenue from shared car rentals. Firstly, this can be a potential subsidy scheme to encour-
age carsharing by increasing QoS. This is especially relevant for cities with high demand
for one-way rentals relative to round-trip rentals. Secondly, the cost of relocation can be
offset by higher pricing of rentals. This may not be desirable for customers, but is still a
viable option should the carsharing company face high one-way rental demand. In the fol-
lowing results, we used the same parameters as in Section 4.4.1, but set a lower relocation
cost of crel = 10. (The previous crel = 22 set according to the average annual wage in the
U.S. in 2014.)

4.4.3.1 Profitability

Table 4.5 describes the profitability metrics with lower relocation costs. Total relocation
costs are higher, indicating much more relocation occurring. However, revenue from one-
way rentals is significantly higher, and can offset the additional relocation costs. Revenue
from round-trip rentals is unchanged. Overall, lower relocation cost results in slightly
improved profitability for high demand of one-way rentals.

4.4.3.2 QoS Performance

Table 4.6 describes the QoS metrics with lower relocation costs. There is a drastic improve-
ment in the QoS for higher proportions of one-way rentals; when all rentals are one-way,
there are almost no unfulfilled rentals. This indicates that the higher the proportion of
one-way demand, the greater the impact lower relocation costs has on the QoS.

4.4.3.3 Denied Rentals

Table 4.7 shows the proportion of denied rentals with lower relocation costs. There is a
significant improvement in the number of denied rentals, indicating increased reliability
of the solutions given by the model. The number of denied rentals appears to decrease as
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Table 4.5: Profitability metrics of solutions with lower relocation costs (crel = 10)

One-way Carsharing Model Setup Revenue from Revenue from Relocation Profit
proportion system cost one-way round-trip costs

60%

Reserved
Parking

Stoch 1,749 6,761 7,491 1,986 10,517
CVaR-0.1 1,767 6,710 7,503 1,919 10,528
CVaR-0.05 1,765 6,711 7,503 1,921 10,527

Free Float
Stoch 1,920 6,748 7,499 1,936 10,391
CVaR-0.1 1,920 6,653 7,514 1,834 10,413
CVaR-0.05 1,920 6,627 7,516 1,810 10,413

80%

Reserved
Parking

Stoch 1,635 9,282 3,570 2,696 8,521
CVaR-0.1 1,679 9,284 3,573 2,694 8,484
CVaR-0.05 1,679 9,284 3,573 2,694 8,484

Free Float
Stoch 1,862 9,277 3,576 2,640 8,350
CVaR-0.1 1,920 9,281 3,578 2,641 8,298
CVaR-0.05 1,920 9,281 3,578 2,641 8,298

100%

Reserved
Parking

Stoch 1,418 11,700 0 3,389 6,894
CVaR-0.1 1,447 11,702 0 3,391 6,864
CVaR-0.05 1,447 11,702 0 3,391 6,864

Free Float
Stoch 1,670 11,697 0 3,294 6,733
CVaR-0.1 1,718 11,701 0 3,296 6,687
CVaR-0.05 1,718 11,701 0 3,296 6,687

Table 4.6: QoS metrics of solutions with lower relocation costs (crel = 10)

One-way Carsharing Model Unfulfilled rentals Idle
proportion system Number As proportion In vehicle-hours vehicle-hours

60%

Reserved
Parking

Stoch 11.5 1.2% 11.5 2,871.4
CVaR-0.1 14.2 1.5% 14.2 2,880.8
CVaR-0.05 14.2 1.5% 14.2 2,880.6

Free Float
Stoch 11.6 1.2% 11.6 2,876.5
CVaR-0.1 17.6 1.8% 17.6 2,892.6
CVaR-0.05 19.4 2.0% 19.4 2,896.9

80%

Reserved
Parking

Stoch 1.5 0.2% 1.5 2,981.3
CVaR-0.1 1.0 0.1% 1.0 3,096.0
CVaR-0.05 1.0 0.1% 1.0 3,096.0

Free Float
Stoch 1.3 0.1% 1.3 2,963.6
CVaR-0.1 0.6 0.1% 0.6 3,100.8
CVaR-0.05 0.6 0.1% 0.6 3,100.8

100%

Reserved
Parking

Stoch 0.2 0.0% 0.2 2,711.1
CVaR-0.1 0.0 0.0% 0.0 2,802.7
CVaR-0.05 0.0 0.0% 0.0 2,802.7

Free Float
Stoch 0.5 0.0% 0.5 2,697.9
CVaR-0.1 0.1 0.0% 0.1 2,812.3
CVaR-0.05 0.1 0.0% 0.1 2,812.3
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the proportion of one-way demand increases – at 100% one-way rentals, the proportion
of denied rentals is almost zero, with even the 99th percentile being less than 0.5%, a vast
improvement from over 20% when relocation costs were higher.

Table 4.7: Distribution of proportion of rentals denied with lower relocation costs (crel =
10)

One-way Carsharing Model Mean Percentile
proportion system 95% 99%

60%

Reserved
Parking

Stoch 0.08% 0.42% 0.82%
CVaR-0.1 0.13% 0.62% 1.00%
CVaR-0.05 0.13% 0.62% 1.11%

Free Float
Stoch 0.13% 0.72% 1.20%
CVaR-0.1 0.16% 0.77% 1.19%
CVaR-0.05 0.16% 0.86% 1.27%

80%

Reserved
Parking

Stoch 0.00% 0.00% 0.21%
CVaR-0.1 0.00% 0.00% 0.00%
CVaR-0.05 0.00% 0.00% 0.00%

Free Float
Stoch 0.01% 0.10% 0.41%
CVaR-0.1 0.01% 0.00% 0.22%
CVaR-0.05 0.01% 0.00% 0.31%

100%

Reserved
Parking

Stoch 0.01% 0.00% 0.21%
CVaR-0.1 0.00% 0.00% 0.00%
CVaR-0.05 0.00% 0.00% 0.00%

Free Float
Stoch 0.01% 0.00% 0.40%
CVaR-0.1 0.01% 0.00% 0.20%
CVaR-0.05 0.01% 0.00% 0.20%

4.4.4 Computational Efficiency of MIR Procedure

In this section, we evaluate the computational efficiency of the proposed MIR procedure
for varying numbers of scenarios, which is equal to the number of subproblems in the
branch-and-cut algorithm. We generate samples with 100, 200, 500 and 1000 scenarios
from the Boston-Cambridge Zipcar data (following the method in Section 4.4.1.1). Five
samples are generated for each problem size, to obtain the average computational times.
The samples are generated with a 40% proportion of one-way demand. The parameters
used are identical to those described in Section 4.4.1.2. Finally, we use the values of 1

and 1/|α2
i − α1

i | for all i ∈ I for the scaling parameter ∆ when generating MIR-enhanced
Benders cuts when solving the risk-neutral and risk-averse models, respectively, where α1

i

and α2
i are coefficients of x in the pair of cuts used.
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We compare the computational times of six different approaches to solving the prob-
lem, three with the risk-neutral model (prefixed with Stoch) and the other three with the
CVaR-0.05 model (prefixed with CVaR). For each model, we either solve directly (no
suffix), solve via branch-and-cut without MIR cuts (suffixed with -Branch), or solve via
branch-and-cut with MIR cuts (suffixed with -MIR). We again implement all the algo-
rithms in Java with Gurobi 6.0.3, and do not allow pre-solve nor automatically generated
cuts in Gurobi when solving the models directly.

Table 4.8 compares the computation time for each problem size, averaged over the five
samples for each problem size. All times in Table 4.8 are reported in milliseconds. The
computation times are decomposed into several components. The column “MP solve time”
gives the total solution time in the case of solving directly (no suffix). For -Branch
and -MIR, this column gives the total time spent solving of the master problem (MP)
and updating the flow balance constants according to the current first-stage solution. The
next column, relevant only to the -Branch and -MIR solution methods gives the average
solution time for each subproblem (SP). In other words, this is the total amount of time
spent solving the subproblems divided by the number of scenarios. Series and parallel solve
times are the expected solve times if the subproblems are solved in series or in parallel,
respectively. The last column gives the number of iterations required to converge on the
solution, also only relevant to -Branch and -MIR.

Our results show that -Branch and -MIR are generally quicker than solving directly
if their subproblems are computed in parallel. As the number of scenarios increases, the
gap in parallel solve time becomes even more significant. Furthermore, both the average
solve time per subproblem and the number of iterations does not change significantly as
the number of scenarios increased, approximately 30–40 with all scenario sizes. The CVaR
models generally take longer to solve than their Stoch counterparts. This is likely due
simply to the fact that the CVaR model has more constraints than the risk-neutral model.

Finally, when comparing -Branch against -MIR, we observe that -MIR usually re-
sults in shorter master problem solve times for Stoch, but longer master problem solve
times for CVaR. It also yields shorter solution time with parallel computing. While there
is insufficient evidence to definitively show that using the MIR cuts solves the problem
quicker than the traditional Benders cuts in our computation, it should be noted that the
scaling parameter ∆ was not, in fact, tuned for this algorithm, and that other values of ∆

may result in better performance with MIR cuts.
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Table 4.8: Computational time (in milliseconds) comparison between models for different
problem sizes

# scenarios Model MP Avg solve time Series Parallel # iterations
(subproblems) solve time per SP solve time solve time

100

Stoch 4,251 - 4,251 4,251 -
Stoch-Branch 181 78 9,311 259 31
Stoch-MIR 173 75 8,953 248 30
CVaR 5,646 - 5,646 5,646 -
CVaR-Branch 198 168 18,530 366 30
CVaR-MIR 261 169 18,472 430 28

200

Stoch 13,436 - 13,436 13,436 -
Stoch-Branch 602 80 19,703 682 32
Stoch-MIR 659 82 20,338 741 34
CVaR 19,537 - 19,537 19,537 -
CVaR-Branch 516 166 36,417 682 28
CVaR-MIR 476 177 38,554 653 27

500

Stoch 65,231 - 65,231 65,231 -
Stoch-Branch 2,839 76 48,933 2,915 29
Stoch-MIR 2,284 78 49,251 2,363 28
CVaR 67,312 - 67,312 67,312 -
CVaR-Branch 2,173 156 84,758 2,328 22
CVaR-MIR 3,371 189 104,970 3,560 29

1,000

Stoch 236,207 - 236,207 236,207 -
Stoch-Branch 18,529 252 291,389 18,781 39
Stoch-MIR 16,015 126 160,272 16,141 37
CVaR 190,072 - 190,072 190,072 -
CVaR-Branch 16,812 222 254,038 17,034 30
CVaR-MIR 17,416 307 343,550 17,723 39
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4.5 Extensions and Future Research

We briefly describe two extensions to the carsharing model. The first is a potential improve-
ment to the current spatial-temporal network, which may capture customer behavior more
accurately. The second is an example extension illustrating the versatility of the model for
making generic strategic decisions in the first stage. As these extensions have not been
fully developed or tested, future research will test the benefits and viability of applying
them to the carsharing model. In a separate paper, Chang et al. (2016) describes a third ex-
tension that utilizes this carsharing model to study the effect of carsharing fleet composition
(e.g. gasoline, electric, hybrid) on carbon emissions and, consequently, the environmental
sustainability of carsharing systems.

4.5.1 Parking Capacity and Waiting Arcs

This extension includes a representation a typical situation faced by customers (or employ-
ees who are relocating vehicles), in which customers are forced to wait to park their cars
as there is insufficient parking capacity in the zone. This is more common in large cities,
which are usually target markets for carsharing companies due to the greater inconvenience
and cost of owning a vehicle.

For this extension, we start with the spatial-temporal network as constructed in Section
4.2.1. Each spatial-temporal node nit is divided into two nodes – the first “in” node nin

it

denotes the state of zone immediately before vehicles park, and the second “out” node nout
it

denotes the state of the zone immediately after vehicles park in zone i in period t. This
is illustrated visually in Figure 4.7, which represents the same spatial-temporal network
in Figure 4.1. In Figure 4.7, each ellipse represents the original spatial-temporal node in
Figure 4.1, with the white and black circles representing the “in” and “out” nodes of the
original node, respectively. Note that the arcs on this spatial-temporal network are similar
to those in the original network, except one-way, round-trip, relocation and idle arcs now
connect black nodes of their original start node to white nodes of their original end nodes.
That is, all arcs that were previously denoted (nit, njs) are now denoted (nout

it , n
in
js).

Subsequently, two additional types of spatial-temporal arcs are appended to the net-
work.

• Parking capacity arcs (nin
it, n

out
it ) for each zone i and period 0 ≤ t ≤ T , with capacity

wi and zero flow cost.

• Waiting arcs (nin
it, n

in
i,t+1) for each zone i and period 0 ≤ t ≤ T − 1, with infinite

capacity and cost cwait > cidle per unit flow.
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Figure 4.7: Example spatial-temporal network with split nodes

Parking capacity arcs limit the number of cars entering a zone in any one period, while
waiting arcs allow any cars that cannot be parked (due to insufficient capacity) to wait
until the next period to attempt to park again. Each period that a car waits (i.e. each
failed parking attempt) incurs a penalty on customer satisfaction. Figure 4.8 illustrates the
previous network in Figure 4.7 with parking capacity and waiting arcs appended.

Figure 4.8: Extended spatial-temporal network

This spatial-temporal network remains compatible with the original carsharing model
proposed in this chapter. With the appropriate definition of costs for waiting (e.g. cwait >

cidle), this extension allows a more accurate approximation of customer behavior, particu-
larly in cities with limited parking. Additionally, the number of waiting customers can be
used as a measure of QoS and can be penalized accordingly, to encourage the purchase of
more parking lots.

However, such a model is more suitable for a finer granularity of time, as it may not
be desirable to impose a long minimum wait time (e.g. one hour, for a granularity of time
of one hour). The finer granularity of time may render the formulation computationally
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intractable due to the larger network from increasing the number of periods to represent the
same horizon, in addition to the already enlarged network due to the reformulation from
this extension.

4.5.2 Study of One-way and Round-trip Pricing

The carsharing model is very versatile in its use as a strategic decision making tool. This
extension applies the same second-stage problem, but determines the pricing levels for one-
way and round-trip rentals in the first stage. In other words, rone and rtwo are the decision
variables. For ease of illustration, we only consider revenue from one-way and round-
trip rentals and relocation costs in the objective function – other costs can be added to the
objective as with the original model.

To optimize rone and rtwo, we assume that we are given several candidate values for each
of them, namely rone

1 , . . . , rone
m1

and rtwo
1 , . . . , rtwo

m2
. We justify this assumption by a general

preference of pricing rentals at rounded values (e.g. pricing at $8.40 as opposed to pricing
at $8.37), and by the fact that the minimum denomination of the price is necessarily one
cent. We introduce binary variables xone

1 , . . . , xone
m1

and xtwo
1 , . . . , xtwo

m2
such that xone

m takes
the value 1 if the price rone

m is used and 0 otherwise, and xtwo
m takes the value 1 if the price

rtwo
m is used and 0 otherwise. Each of the sets {xone

m }m=1,...,m1 and {xtwo
m }m=1,...,m2 are sets

of SOS1 variables (i.e. the variables in the sets sum to one), so exactly one price each is
selected for one-way and round-trip rentals.

Under these assumptions, the optimization problem we intend to solve is

min
xone,xtwo,y1,...,y|K|

∑
k∈K

pk

(
−

(
m1∑
m=1

rone
m xone

m

)( ∑
a∈Aone

lay
k
a

)
−

(
m2∑
m=1

rtwo
m xtwo

m

)( ∑
a∈Atwo

lay
k
a

)

+ crel
∑
a∈Arel

lay
k
a

)
+ g(y1, . . . , y|K|) (4.18)

s.t.
m1∑
m=1

xone
m = 1 (4.19)

m2∑
m=1

xtwo
m = 1 (4.20)

xone ∈ {0, 1}m1 (4.21)

xtwo ∈ {0, 1}m2 (4.22)

yk ∈ Y (w, x, uk) ∀k ∈ K, (4.23)

where la is the number of periods that arc a travels over (i.e. la = s − t for all arcs a =
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(nit, njs) ∈ A). Constraints (4.19) and (4.20) ensure that exactly one pricing level each is
selected for one-way and round-trip rentals, respectively. It should be noted that this model
as it is currently stated will trivially set the pricing at the highest possible for maximum
profit. However, this could be remedied if the QoS term (g(y1, . . . , y|K|)) penalizes the
objective inversely proportional to price as a result of customer dissatisfaction with price,
in addition to other QoS penalties.

This formulation contains bilinear terms xone
m yka and xtwo

m yka in the objective. To lin-
earize the objective, we introduce vectors of auxiliary variables zone and ztwo, for which
the equivalence relations zone,k

ma ≡ xone
m ykm for all m = 1, . . . ,m1 and ztwo,k

ma ≡ xtwo
m ykm for

all m = 1, . . . ,m2 hold for all a ∈ A and k ∈ K. Then using the capacity bounds of
0 ≤ yka ≤ fa, we can reformulate the problem with McCormick inequalities (see Section
3.32), yielding

min
xone,xtwo,y1,...,y|K|,zone,ztwo

∑
k∈K

pk

(
−
∑
a∈Aone

m1∑
m=1

rone
m laz

one,k
ma −

∑
a∈Atwo

m1∑
m=1

rtwo
m laz

two,k
ma

+ crel
∑
a∈Arel

lay
k
a

)
+ g(y1, . . . , y|K|) (4.24)

s.t. (4.19)–(4.23)

zone,k
ma ≥ yka + fa (1− xone

m ) ∀a ∈ Aone, k ∈ K,m = 1, . . . ,m1

(4.25)

zone,k
ma ≤ yka ∀a ∈ Aone, k ∈ K,m = 1, . . . ,m1 (4.26)

zone,k
ma ≤ fax

one
m ∀a ∈ Aone, k ∈ K,m = 1, . . . ,m1 (4.27)

zone ≥ 0 (4.28)

ztwo,k
ma ≥ yka + fa (1− xtwo

m ) ∀a ∈ Atwo, k ∈ K,m = 1, . . . ,m2

(4.29)

ztwo,k
ma ≤ yka ∀a ∈ Atwo, k ∈ K,m = 1, . . . ,m2 (4.30)

ztwo,k
ma ≤ fax

two
m ∀a ∈ Atwo, k ∈ K,m = 1, . . . ,m2 (4.31)

ztwo ≥ 0 (4.32)

where constraints (4.25)–(4.28) and (4.29)–(4.32) are the McCormick inequalities that es-
tablish the relations zone,k

ma ≡ xone
m ykm and ztwo,k

ma ≡ xtwo
m ykm respectively.

As a further extension of this pricing determination model, we can modify the model to
optimize the pricing levels for different times of the day as well. This can be achieved fairly
trivially by further indexing each xone

m and xtwo
m by time period t as well. In other words,
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we can replace xone
m (similarly, xtwo

m ) with the variables xone
mt (correspondingly, xtwo

mt ), which
take value 1 if the price rone

m (correspondingly, rtwo
m ) is selected for use in time period t and

0 otherwise, for all t = 0, . . . , T − 1. Similar to the above model, the sets {xone
mt}m=1,...,m1

and {xtwo
mt }m=1,...,m1 are also sets of SOS1 variables for all t = 0, . . . , T − 1.

4.6 Concluding Remarks

We proposed a two-stage stochastic integer programming model and related cutting-plane
approaches for optimizing strategic vehicle allocation and parking design for carsharing
systems under uncertain one-way and round-trip demand. Representing a carsharing sys-
tem as a spatial-temporal network is convenient as the network is simple to characterize.
The resulting problem of optimizing the movement of cars is also a convenient minimum
cost flow problem, given the first-stage allocation of cars and parking lots/permits. Our
results from using the model on the Boston-Cambridge Zipcar data indicated decreased
profitability and QoS with higher proportions of one-way demand, corroborating the reluc-
tance of carsharing companies in servicing one-way demand.

However, our model also indicated that with a reduction of relocation costs relative
to revenue from rentals, carsharing companies could potentially enjoy increased profits
and QoS. Hence, in cities with heavy one-way demand, city governments can increase
the quality of carsharing service by reducing the cost burden of carsharing companies, by
targeting relocation costs specifically through subsidies and grants. Companies themselves
could consider decreasing relocation costs relative to their revenue by increasing the pricing
of their rental gradually, to mitigate averse customer reactions to the increased prices.

Our comparisons between the risk-neutral and risk-averse model showed small but ex-
pected differences between using a risk-neutral stochastic approach and a more risk-averse
CVaR approach. More importantly, the proportion of one-way rentals plays a large role in
determining profits and QoS, provided the pricing per unit time of one-way and round-trip
do not result in customers trivially favoring one over the other. This can be attributed to the
facts that one-way rentals are generally shorter and are hence more sensitive to pricing, and
that one-way rentals may unbalance the allocation of vehicles at each zone, consequently
incurring relocation costs to rebalance the allocation.

Our proposed approach of solving via branch-and-cut with MIR cuts resulted in quicker
solution times than using only branch-and-cut. Furthermore, solving the subproblems in
parallel will always be beneficial when the number of scenarios becomes too large to be
stored in memory and solving the problem directly becomes impossible.

Through the modification of the spatial-temporal network or first-stage problem, this

98



model can serve as a tool for studying other types of carsharing problems. Section 4.5
detailed two extensions to the current model, one of which can be used to study the effect
of pricing on the profitability and QoS provided to carsharing customers. Of further interest
are also the studies of the environmental and consumer impact of renting out different types
of vehicles, such as cars, minivans and trucks, to serve heterogeneous customer needs.
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CHAPTER 5

Conclusions

In this thesis, we proposed three main models for network optimization under demand un-
certainty. The first model, PNDP, utilizes chance constraints to limit the probability of
demand loss. Depending on the application of the PNDP, the chance constraint can join the
flow balance constraints on the demand nodes in four ways, joining all constraints, joining
the constraints by node or by commodity, or not joining the constraints in any way, each re-
sulting in its own variant of PNDP. For the last variant, PNDP-cont-nc, or in special cases of
PNDP-cont-n and PNDP-cont-c, we developed a polynomial-time algorithm, which solved
the PNDP far more efficiently than the generic MILP reformulation.

PNDP-cont-joint was compared against PNDP-cont-nc in computational tests on ran-
dom networks. The results showed that customizing QoS levels for different commodity-
node pairs could result in cost savings, as opposed to having a single QoS level in joint
chance constraints. The PNDP was also benchmarked against the SNDP to solve an NDP
on the Sioux Falls network; it was found that PNDP solutions were less sensitive to input
QoS parameters than SNDP, and the relationship between the performance of the solutions
and the input QoS parameters also indicated a lesser need to tune the parameters for PNDP
than for SNDP.

The second model, DR-NDP, approached NDPs with distributionally robust optimiza-
tion, with the aim of tackling NDPs in which historical data is scarce. The proposed am-
biguity set is marginal moment-based – its input parameters (mean and variance vectors)
can be efficiently computed even for a large number of data points, and the efficiency of
solving DR-NDP is independent of the size of the data. Yet, DR-NDP is more conservative
than solving NDPs via traditional stochastic optimization means, and also uses more of the
input data than traditional robust optimization.

We approximated the DR-NDP as a mixed-integer program, with an MILP embedded
within an optimization problem. Using this approximate model, we developed a cutting-
plane algorithm to obtain approximate solutions to DR-NDP. Testing on grid networks

100



with randomly generated demands showed that the solutions computed by DR-NDP had
the desired traits of robustness and insensitivity to the observed level of demand in the
small data set. However, price of this robustness is computational cost, with DR-NDP
solving slower than an SAA-based model. Hence, it was proposed that DR-NDP be further
tested with specific real-world applications in which high QoS is desired, yet demand data
is scarce (e.g. humanitarian aid).

Finally, the third chapter proposes a carsharing framework that integrates the ability
to optimize one-way and round-trip rentals, and optimize the strategic decisions in one
model. Although the proposed model only optimizes the purchasing of parking and free-
float permits in the first-stage problem, it is versatile enough to optimize other strategic
decisions (e.g. the pricing of rentals, briefly described in the extensions for the model)
without change to the spatial-temporal network in the second stage.

A risk-neutral and a risk-averse CVaR penalty approach were used in two separate mod-
els to manage QoS of the carsharing company. We reformulated both models as MILPs and
presented a branch-and-cut algorithm with a MIR procedure to solve them. In addition to
the advantage of being able to solve the carsharing model efficiently via parallel comput-
ing, the branch-and-cut algorithm was also shown to be more efficient with MIR cuts than
without.

Our computational results on Zipcar data in the Boston-Cambridge area gave much
insight to how carsharing companies might mitigate the decreased profitability and QoS
brought by one-way rentals. We proposed a reduction of relocation costs relative to revenue
(via government subsidies or increasing rental pricing) as a means to reduce the impact of
one-way rentals. Through our results, we also found that the proportion of one-way trips
plays an important role in determining profits and QoS, implying a greater need for the
reduction of relocation costs in cities with high one-way demand.

The three models proposed have provided different risk-averse approaches to solving
NDPs. Through this thesis, we have shown the effectiveness of these risk-averse models in
obtaining conservative solutions to the NDP. Even though the DR-NDP may have limited
situations in which it can be applied, the PNDP and carsharing model have potential to
be customized to solve a larger variety of problems. In particular, the carsharing model
can be easily yet extensively modified both in its first-stage strategic decisions and in its
second-stage approximation of customer behavior. With the great potential to specialize
the carsharing model to make a wide variety of strategic decisions, it is this writer’s hope
that this research can be further expanded to solve other stochastic problems in network
design.
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APPENDIX A

Benders Decomposition Approach for all SNDPs
(Chapter 1)

We note that SNDPs require that their flow variables for each scenario be optimal for that
particular scenario, but also require the capacity design to be common across all scenarios.
This nature of SNDPs lends itself nicely to a Benders decomposition approach when we
optimize SNDPs. We use SNDP-bin-wp to illustrate the use of Benders decomposition as
it is the most complex of the four SNDP variants. However, this approach can be used for
all variants of SNDP.

Let the capacity design variables β be the first-stage variables, and the recourse flow
variables yk and variables representing unmet demand tk be second-stage variables. In the
master problem [MP], we optimize the objective over relaxed constraints on β and on θ,
the lower bounds on the subproblem in each scenario. At each iteration, [MP] is solved to
obtain a trial solution (β, θ), which is passed to the subproblems described later. Initially,
the feasibility and optimality cut sets L1(β) ≥ 0 and L2(β, θ) ≥ 0 have no cuts.

[MP]:

min
∑

(i,j)∈A

qijβij +
∑
k∈K

pkθk (A.1)

s.t. L1(β) ≥ 0 (A.2)

L2(β, θ1, . . . , θ|K|) ≥ 0 (A.3)

βij ∈ {0, 1} ∀(i, j) ∈ A (A.4)

We denote the subproblems by [SP(k, β)]. For each scenario k, the trial solution ob-
tained from [MP] is used as a parameter to obtain an optimal (yk, tk) through [SP(k, β)].
A feasibility or optimality cut is generated depending on whether [SP(k, β)] is infeasible,
or has an optimal value that is greater than θk, and the cut is appended to the appropriate
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cut set. (Problem [SP(k, β)] is never unbounded since its optimal value is non-negative.)
If the optimal value for [SP(k, β)] is at most θk, then the solution on hand is declared to be
optimal for SNDP-bin-wp.

We note that while [SP(k, β)] is not required in the algorithm to generate cuts, we
provide its formulation for the sake of completeness.

[SP(k, β)]:

min
∑
w∈W

 ∑
(i,j)∈A

aijwy
k
ijw +

∑
i∈Dw

Giwt
k
iw

 (A.5)

s.t.
∑
w∈W

ykijw ≤ uijβij ∀(i, j) ∈ A (A.6)∑
j:(i,j)∈A

ykijw −
∑

j:(j,i)∈A

ykjiw ≤ siw ∀i ∈ Sw, w ∈ W (A.7)

∑
j:(i,j)∈A

ykijw −
∑

j:(j,i)∈A

ykjiw = 0 ∀i ∈ N\(Sw ∪Dw), w ∈ W (A.8)

−
∑

j:(i,j)∈A

ykijw +
∑

j:(j,i)∈A

ykjiw + tkiw ≥ dkiw ∀i ∈ Dw, w ∈ W (A.9)

yk ≥ 0, tk ≥ 0 (A.10)

To determine whether [SP(k, β)] is feasible, we determine whether the dual [D-SP(k, β)]
of the subproblem is unbounded.

[D-SP(k, β)]:

max
∑

(i,j)∈A

(uijβij)µ
k
ij +

∑
w∈W

(∑
i∈Sw

swπ
k
iw −

∑
i∈Dw

dkiwπ
k
iw

)
(A.11)

s.t. µkij + πkiw − πkjw ≤ aijw ∀(i, j) ∈ A, w ∈ W (A.12)

µkij ≤ 0 ∀(i, j) ∈ A (A.13)

πkiw ≤ 0 ∀i ∈ Sw, w ∈ W (A.14)

πkiw ≤ viw ∀i ∈ Dw, w ∈ W (A.15)

where µkij and πkiw are the dual variables associated with the constraints (A.6) and (A.7)–
(A.9) respectively. In other words, we determine if there exists an unbounded dual direc-
tion. To do this, we solve the separation problem [S-SP(k, β)].
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[S-SP(k, β)]:

max
∑

(i,j)∈A

(uijβij)µ
k
ij +

∑
w∈W

(∑
i∈Sw

swπ
k
iw −

∑
i∈Dw

dkiwπ
k
iw

)
s.t. µkij + πkiw − πkjw ≤ 0 ∀(i, j) ∈ A, w ∈ W

µkij ≤ 0 ∀(i, j) ∈ A

πkiw ≤ 0 ∀i ∈ Sw ∪Dw, w ∈ W

Its feasible region consists of vectors that, when added to feasible solutions of [D-SP(k, β)],
does not change their feasibility in [D-SP(k, β)]. If its objective function is positive, then
an unbounded dual direction exists, and the optimal solution in this case would be an un-
bounded dual direction of [D-SP(k, β)]. Algorithm A.1 describes the algorithm in greater
detail.

Remark A.2. It can be observed that Algorithm A.1 can easily be modified to solve the
other three variants of SNDP by removing the penalty term in the case without penalty, or
by changing the binary design variables to continuous design variables. For either modifica-
tion (or both together), the second stage is still a linear program, so Benders decomposition
remains a viable algorithm to solve the problem.

The Benders approach can also be applied to optimize PNDP-bin-nc. As mentioned in
Section 2.3.3, replacing the continuous variables x with the binary variables β increases
the difficulty of the problem. To reduce the difficulty in solving PNDP-bin-nc, we can de-
compose the problem instead of solving the MILP directly, again with the network design
variables as the first-stage variables and the flow variables as the second-stage variables,
resulting in a linear program in the second stage. The above methodology can then be
applied appropriately, with careful consideration to the fact that there is only one subprob-
lem when decomposing PNDP-bin-nc, instead of the |K| subproblems when decomposing
SNDP-bin-wp in Algorithm A.1. �

Remark A.3. It is also important to note that [SP(k, β)] is, in fact, always feasible, because
there always exists the feasible solution of having zero flow and all demands unsatisfied.
This is also true of the subproblems of SNDP-cont-wp. However, the feasibility check is
included in Algorithm A.1 to illustrate a more general Benders approach that can be applied
to the other problems mentioned in Remark A.2. �
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Algorithm A.1 Generalized Benders decomposition algorithm for SNDP-bin-wp
1: Initialize iteration number m = 0
2: Initialize [MP] without any cuts in L1(β) ≥ 0 and L2(β, θ) ≥ 0.
3: Solve [MP] and obtain an optimal solution (βm, θm). If there are no cuts in L2(β, θ) ≥

0, let θmk = −∞ for all k ∈ K.
4: repeat
5: Increment m by 1.
6: for all k ∈ K do
7: Feasibility check:
8: Solve [S-SP(k, βm)].
9: if the optimal value of [S-SP(k, βm)] is positive then

10: Let (µkm, πkm) be the optimal solution of [S-SP(k, βm)], and generate

∑
(i,j)∈A

(uijµ
km
ij )βij +

∑
w∈W

(∑
i∈Sw

swπ
km
iw −

∑
i∈Dw

dkiwπ
km
iw

)
≤ 0

into the cut set L1(β) ≥ 0 in [MP].
11: else
12: Optimality check:
13: Solve [D-SP(k, βm)].
14: if the optimal value of [D-SP(k, βm)] > θmk then
15: Let (µkm, πkm) be the optimal solution of [D-SP(k, βm)], and generate

∑
(i,j)∈A

(uijµ
km
ij )βij +

∑
w∈W

(∑
i∈Sw

swπ
km
iw −

∑
i∈Dw

dkiwπ
km
iw

)
≤ θk

into the cut set L2(β, θ) ≥ 0 in [MP].
16: end if
17: end if
18: end for
19: until No cuts were added in iteration m.
20: return Optimal solution (βm, θm).
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APPENDIX B

Computational Results for DR-NDP
Performance Analysis (Chapter 2)

This appendix fully describes all the computational results that were discussed in Section
3.5. In the table, the results for six different networks are listed, namely the NOBEL-US
network, and the 3x3 to 7x7 grid networks. For each observed demand level and model
type, the table lists the solve time, the number of cuts (relevant only to DR-NDP), the
capacity cost of the solution computed by the model, the optimal value and second stage
values as computed by the model, and the expected second stage, flow cost, penalty cost
and total cost values from computing the performance of the solution with the reference
set. Note that the quantities in the table have the relation

E[Total cost]

= Capacity cost + E[2nd stage cost]

= Capacity cost + E[Flow cost] + E[Penalty cost].
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APPENDIX C

Branch-and-Cut Algorithm with MIR Procedure
(Chapter 3)

We outline the branch-and-cut algorithm with MIR below in pseudo-code. Algorithms C.1
and C.2 describe the algorithms for the risk-neutral model and CVaR model, respectively.
Both algorithms are similar, with differences mainly in the master problem and subprob-
lem formulations and the form of the Benders cuts added. For ease of referencing the
coefficients in the cuts, we define α, β, and γ as the coefficients of variables w, x and v,
respectively, and −δ as the constant in the cut. In other words, the cuts for the risk-neutral
model are of the form

qk +
∑
i∈I

αiwi +
∑
i∈I

βixi − δ ≥ 0

while the cuts for the risk-averse CVaR model are of the form

qk +
∑
i∈I

αiwi +
∑
i∈I

βixi + γv − δ ≥ 0.

There are two main parts to the algorithm. The outer algorithm is a regular branch-and-
cut algorithm that branches on fractional xi’s and adds cuts generated from the subprob-
lems. The inner algorithm (lines 14–37 in both algorithms) is a Benders decomposition
algorithm with an additional MIR procedure that pairs Benders cuts to generate additional
valid cuts. The most violated cut is generated to the master problem, while the remaining
cuts are stored for subsequent pairings with the MIR procedure.
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Algorithm C.1 Branch-and-cut algorithm with MIR for risk-neutral model
1: Initialize MP-Stoch with no cuts
2: Initialize sol:=null
3: Initialize optval:= 0
4: for k ∈ K do
5: Initialize cutlistk

6: Add cut qk ≥ 0 to cutlistk

7: Add cut qk ≥ 0 to LkStoch ≥ 0

8: end for
9: Initialize S := {0}
10: Initialize s := 0
11: Define Problem0 as MP-Stoch
12: while S 6= ∅ do
13: Define s := min{s : s ∈ S}
14: repeat
15: Solve Problems to obtain optimal solution (q̃, w̃, x̃) and objective õbj
16: for k ∈ K do
17: Solve SP-Stochk(w̃, x̃) to obtain optimal dual solution (π̂, λ̂) and optimal objective q̂k

18: if q̂k > q̃k then
19: Define cutA as cut (4.12)
20: Add cutA to cutlistk

21: for cutB ∈ cutlistk do
22: ∆← 1
23: Apply Theorem 4.4 to cutA and cutB to generate cutC0
24: Add cutC0 to cutlistk

25: for i ∈ I do
26: ∆← 1

|αB
i−α

A
i|

, where αA and αB are coefficients of w in cutA and cutB respectively

27: Apply Theorem 4.4 to cutA and cutB to generate cutCi
28: Add cutCi to cutlistk

29: ∆← 1
|βBi−β

A
i |

, where βA and βB are coefficients of x in cutA and cutB respectively

30: Apply Theorem 4.4 to cutA and cutB to generate cutDi
31: Add cutDi to cutlistk

32: end for
33: end for
34: Among cutA and cutCi and cutDi ∀i ∈ I , add to LkStoch ≥ 0 the cut with the smallest

δ − (q̃k +
∑
i∈I αiw̃i +

∑
i∈I βix̃i)

1 +
∑
i∈I(αi)2 +

∑
i∈I(βi)2

35: end if
36: end for
37: until No cut is added
38: if õbj<optval then
39: if ∃i : x̃i − bx̃ic 6= 0 then
40: Define i := min{i : x̃i − bx̃ic 6= 0}
41: Define Problems+1 as Problems̃ with additional constraint xi ≤

⌊
x̃i
⌋

42: Define Problems+2 as Problems̃ with additional constraint xi ≥
⌈
x̃i
⌉

43: S ← S ∪ {s+ 1, s+ 2}
44: s← s+ 2
45: else if ∃i : w̃i − bw̃ic 6= 0 then
46: Define i := min{i : w̃i − bw̃ic 6= 0}
47: Define Problems+1 as Problems̃ with additional constraint wi ≤

⌊
w̃i
⌋

48: Define Problems+2 as Problems̃ with additional constraint wi ≥
⌈
w̃i
⌉

49: S ← S ∪ {s+ 1, s+ 2}
50: s← s+ 2
51: else
52: optval←õbj

53: sol←(q̃, x̃, w̃)
54: end if
55: end if
56: S ← S\{s}
57: end while
58: optval is optimal objective function value and sol is optimal solution
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Algorithm C.2 Branch-and-cut algorithm with MIR for CVaR model
1: Initialize MP-CVaR with no cuts
2: Initialize sol:=null
3: Initialize optval:= 0
4: for k ∈ K do
5: Initialize cutlistk

6: Add cut qk ≥ 0 to cutlistk

7: Add cut qk ≥ 0 to LkCVaR ≥ 0

8: end for
9: Initialize S := {0}
10: Initialize s := 0
11: Define Problem0 as MP-CVaR
12: while S 6= ∅ do
13: Define s := min{s : s ∈ S}
14: repeat
15: Solve Problems to obtain optimal solution (q̃, w̃, x̃, ṽ) and objective õbj
16: for k ∈ K do
17: Solve SP-CVaRk(w̃, x̃, ṽ) to obtain optimal dual solution (π̂, λ̂, θ̂) and optimal objective q̂k

18: if q̂k > q̃k then
19: Define cutA as cut (4.13)
20: Add cutA to cutlistk

21: for cutB ∈ cutlistk do
22: ∆← 1
23: Apply Theorem 4.4 to cutA and cutB to generate cutC0
24: Add cutC0 to cutlistk

25: for i ∈ I do
26: ∆← 1

|αB
i−α

A
i|

, where αA and αB are coefficients of w in cutA and cutB respectively

27: Apply Theorem 4.4 to cutA and cutB to generate cutCi
28: Add cutCi to cutlistk

29: ∆← 1
|βBi−β

A
i |

, where βA and βB are coefficients of x in cutA and cutB respectively

30: Apply Theorem 4.4 to cutA and cutB to generate cutDi
31: Add cutDi to cutlistk

32: end for
33: end for
34: Among cutA and cutCi and cutDi ∀i ∈ I , add to LkCVaR ≥ 0 the cut with the smallest

δ − (q̃k +
∑
i∈I αiw̃i +

∑
i∈I βix̃i + γṽ)

1 +
∑
i∈I(αi)2 +

∑
i∈I(βi)2 + γ2

35: end if
36: end for
37: until No cut is added
38: if õbj<optval then
39: if ∃i : x̃i − bx̃ic 6= 0 then
40: Define i := min{i : x̃i − bx̃ic 6= 0}
41: Define Problems+1 as Problems̃ with additional constraint xi ≤

⌊
x̃i
⌋

42: Define Problems+2 as Problems̃ with additional constraint xi ≥
⌈
x̃i
⌉

43: S ← S ∪ {s+ 1, s+ 2}
44: s← s+ 2
45: else if ∃i : w̃i − bw̃ic 6= 0 then
46: Define i := min{i : w̃i − bw̃ic 6= 0}
47: Define Problems+1 as Problems̃ with additional constraint wi ≤

⌊
w̃i
⌋

48: Define Problems+2 as Problems̃ with additional constraint wi ≥
⌈
w̃i
⌉

49: S ← S ∪ {s+ 1, s+ 2}
50: s← s+ 2
51: else
52: optval←õbj

53: sol←(q̃, w̃, x̃, ṽ)
54: end if
55: end if
56: S ← S\{s}
57: end while
58: optval is optimal objective function value and sol is optimal solution
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