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ABSTRACT

Using LASSO to Calibrate Non-probability Samples using Probability Samples

by

Kuang Tsung Chen

Chair: Professor Michael R. Elliott

Amidst declining response rates and rapidly increasing costs of probability-based

sampling, the resurgence of more cost-effective non-probability sampling has prompted

survey researchers to explore different adjustment methods for non-probability sam-

ples. The current approach attempts to create one single set of survey weights to

correct all imbalances within a non-probability sample. One scheme is to generate

estimated selection weights by combining the non-probability sample with a large

probability-sampling-based dataset with all variables related to propensity of a re-

spondent being in the non-probability sample. In practice, obtaining an appropriate

probability sample is costly, and usually there is no way to determine the correct

probability of selection for the non-probability sample, or even if all variables are

available in the non-probability data to do so. An alternative approach is to adjust

the non-probability sample so that the weighted sample totals of a set of variables,

known as calibration variables, equal to their Census benchmark totals. Although

the method does not require specialized probability-sampling-based data, the result-

ing calibrated weights can only correct the imbalance with respect to the limited

number of Census benchmark variables, which is insufficient for adjusting all errors

x



of a non-probability sample. To date, no method has shown to be effective in helping

researchers make unbiased inference from non-probability samples.

This dissertation addresses the growing demand for making proper inference from

non-probability samples. Instead of generating a single set of weights to fix all errors

in a non-probability sample, we focus on constructing weights to enable unbiased in-

ference for a specific outcome of interest. We introduce the Least Angle Shrinkage and

Selection Operator, LASSO, to the framework of model-assisted calibration. The pro-

posed method, LASSO calibration, determines the set of variables with the strongest

relation to the outcome variable, then calibrates to expected outcome in a probability

benchmark sample. The estimator of population total based on LASSO calibrated

weights can be unbiased, regardless of how samples are generated. The theoretical

framework is developed and evaluated through simulations. An application of LASSO

calibration to a large-scale internet-based non-probability sample shows the proposed

method can make more accurate and precise inference than existing methods.
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CHAPTER I

Introduction

1.1 Objective

Probability-based sampling has dominated survey research for the greater part

of the past century (Stephan, 1948; Frankel and Frankel , 1987). Given complete

measures on sampled units with known selection probabilities, randomization theory

removes selection bias by generating representative samples of the target population.

On the other hand, non-probability samples that are generated without selection

probabilities are automatically at risk for selection bias as samples can easily differ

from the target population on key statistics (Groves , 2006). Well-documented failures

in 1936 and 1948 presidential election polls highlight the potential downfalls in mak-

ing population inference from non-probability samples (Mosteller , 1949). Although

probability-sampling-based framework provides survey practitioners analytical tools

to assess and correct sampling errors, declining response rates among all traditional

data collection methods — mail, telephone, and face-to-face — are raising concerns

over the potentially high nonresponse bias of probability samples (Curtin et al., 2005;

Holbrook et al., 2007; Groves , 2011; Kohut et al., 2012; Brick and Williams , 2013).

Faced with increasing cost to conduct probability-based surveys, many researchers are

turning to cheaper and more convenient non-probability sampling methods to achieve

desired sample size. It is estimated that nearly half of all U.S. survey research spend-
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ing will be allocated to online data collection, a platform without a universal sampling

frame to conduct probability-based sampling (Terhanian and Bremer , 2012). With

non-probability sampling quickly on the rise, the demand for practical and effective

post-survey adjustment methods of non-probability samples has also increased dra-

matically.

Current approach to adjusting non-probability samples is met with limited suc-

cess, mainly because researchers attempt to generate one set of sample weights that

can work for all variables in the non-probability sample. While the one-size-fit-all is

a desirable property of sample weights in public-release surveys, the highly skewed

nature of non-probability samples makes it extremely challenging to construct a single

set of weights capable of correcting all sample imbalance. This dissertation focuses on

making proper inference from a non-probability sample for a specific outcome of in-

terest. We construct weights under the framework of model-assisted calibration (Wu

and Sitter , 2001). The framework uses a model to estimate expected total of the out-

come in the population, then calibrates the non-probability sample with respect to the

outcome variable. Unlike traditional weighting schemes, model-assisted calibration

aims to reduce root-mean-square-error for the weighted estimate of a specific outcome

rather than creating a general set of weights that applies to all variables. We employ

the Least Angle Shrinkage and Selection Operator (Tibshirani , 1996), LASSO, as the

assisting model in model-assisted calibration. LASSO performs estimation and vari-

able selection simultaneously, which can determine the set of auxiliary information

that is most strongly related to the outcome variable to improve calibration weighted

estimates for the outcome of interest. The dissertation has two main objectives:

(1) Establish the theoretical framework for LASSO calibration in constructing weights

to make inference on a population total, given auxiliary benchmark information

on the population.

(2) Extend LASSO calibration for constructing weights for non-probability samples

2



given a small auxiliary benchmark sample.

We develop and evaluate an estimator based on the LASSO calibrated weights, as

well as variance estimation methods for the estimator. We make the following as-

sumptions:

(1) There exists a model, ξ, such that the expected value of the outcome variable,

y, can be obtained given a set of covariates X and a vector of parameters β:

Eξ

[
yi
∣
∣xi,β

]
= µ(xi,β). Furthermore, the variance of yi is a function of xi or

µ(xi,β): Vξ

(
yi
∣
∣xi

)
= νiσ

2, νi = f (µ(xi,β)) or νi = f(xi).

(2) The full-range of X in the population has non-zero probability of being observed

in the non-probability sample.

Assumption (1) relates the outcome variable to the data through a superpopulation

model ξ. Together with assumption (1), assumption (2) ensures that the model

parameters can be estimated correctly in the non-probability sample because the

relationship between y andX can be fully captured in the sample. If, for example, the

outcome of interest is associated with age 65+, a sample without any respondent age

65+ would violate assumption (2). These two assumptions are the key to successful

model-assisted calibration: From the non-probability sample, we can train a model

that will accurately predict the expected values of the outcome variable. Then we

apply the trained model to a probability-based benchmark sample to recover the

distribution of Eξ

[

yk
∣
∣xk, β̂

]

in the population. Calibrating non-probability sample

yi against population total of Eξ

[

yk
∣
∣xk, β̂

]

will result in calibrated weights to give

unbiased estimate of the outcome. Note that we make no assumption about how

non-probability sample respondents participate.

Section 1.2 gives an overview of non-probability samples. Section 1.3 reviews

existing post-survey adjustment methods for non-probability samples and their lim-

itations. Sections 1.4 and 1.5 provide backgrounds of model-assisted calibration and

3



LASSO regression. Section 1.6 outlines the content for the remaining chapters in the

dissertation.

1.2 Non-probability samples

The American Association for Public Opinion Research (AAPOR) categorized

non-probability sampling into three broad categories of non-probability sampling:

(1) sample matching, (2) network sampling, and (3) convenience sampling (Couper

et al., 2013). Sample matching is a technique in which respondents are recruited to

match characteristics of a target population. A well-known sample matching method

is quota sampling, which can produce proper inference if the outcome of interest is

associated with quota categories. In 1936 election polls, the Literary Digest collected

2.3 million returned surveys from mostly middle-to-upper income respondents, and

predicted the wrong winner with a 17% of error. At the same time, based on a quota

sample of 3,000 respondents filling various income by gender quota categories, George

Gallup of the American Institute of Public Opinion accurately predicted the winner

with only a 5% of error (Squire, 1988). Quota sampling then was at the forefront

of data collection methods, but did not enjoy the same success in the 1948 election

polls. Since then, survey research has shifted to full probability-based sampling.

While sample matching can be viewed as a top-down approach, where desired

characteristics of a sample are determined a priori to data collection, network sam-

pling takes the bottom-up approach, where a sample starts with an initial set of

respondents and gradually builds up through the respondents’ social network given

certain recruitment protocols (Coleman, 1958). An early example of networking sam-

pling is multiplicity sampling (Sirken, 1970), used to enumerate households through

an initial set of household rosters and expanded to households with related members

on the rosters. Network sampling also has the potential to collect more data on rare

populations than other sampling methods (e.g., an initial H.I.V. positive respondent

4



can lead to a group of H.I.V. positive patients). It is a popular sampling technique

in qualitative sociological research, such as the studies of drug addicts and marijuana

smokers (Lindesmith, 1947; Biernacki and Waldorf , 1981). Given proper conditions

(e.g., random selection of friends in referral procedures, known number of persons

connected to a sampled person in their social network), we can draw population

inference from network samples based on the theory of respondent-driven sampling

(Heckathorn, 1997).

The last type of non-probability sampling, convenience sampling, is probably the

most prevalent type of non-probability sampling method in practice. By definition,

convenience sampling is a method where “the ease with which potential participants

can be located or recruited is the primary consideration” (Couper et al., 2013). While

survey researchers can determine the types of respondents in quota and, to a lesser

extent, network samples, there is little control over the characteristics of respondents

in convenience samples. We provide more details on the common types of convenience

samples and their potential errors in the following section.

1.2.1 Convenience Sampling

There are four common types of convenience samples in practice.

1. Snowball samples. Snowball sampling starts with a set of participants, then

asks them to suggest other people who might be willing to join the study.

The sample size grows quickly with each iteration of referrals, like a snowball

rolling down the hill. Snowball sampling, while it is sometimes considered

as a special type of network sampling, is formally categorized as convenience

sampling in this work. The main difference is that, in network sampling, there is

a selection and referral policy in place to establish the network, while snowball

sampling recruits anyone out of convenience. It is common to observe a snowball

sample of respondents with similar characteristics because they share the same

5



interests, activities, and remain in close contacts. Due to the selective nature

of snowball sampling, it is difficult to generalize the results to the population

outside of its network. Early sampling literature categorizes snowball sampling

as network sampling, or chain referral sampling (Goodman, 1961; Frank and

Snijders , 1994). We make the subtle point that if the network referral rule

is less rigorous and more out of convenience, then the resulting sample is a

snowball sample under convenience sampling.

2. Mall intercepts. As the name suggests, mall intercepts are collected at shop-

ping centers to gather responses in a short amount of time. At one point,

mall-intercept was the second most used data collection method, trailing only

telephone surveys (Nowell and Stanley , 1991). In addition to missing the cov-

erage on the population that does not have access to or go to shopping centers,

selection bias can easily occur in mall intercepts when recruiters prefer specific

types of shopping malls over others. For example, when recruiters only visit

shopping malls at more affluent neighborhoods, measurements on shoppers’ av-

erage income and spending can be much higher than those at shopping centers

in a low-income neighborhood. Although certain level of probability sampling

can be implemented (e.g., selecting shopping centers proportional to size, ap-

proaching every nth person through the door), the typical goal of mall intercepts

is to collect as many responses as possible with less emphasis (if any) on sample

representativeness.

3. River sample. River sampling places survey invitations at designated websites

to “intercept” web visitors who are willing to join the study. The method is

akin to mall intercept, except the recruitment is carried out online. People who

do not have internet access are not covered by river sampling. Since website

contents vary greatly to attract readership of different demographics, the choice
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of websites to recruit participants can greatly influence sample representation,

even more so than the choice of shopping malls in mall intercept. Even if a

website generates traffic for all types of web users, there can still be significant

selection bias because internet users tend to be younger, more educated, and

with higher income (pewinternet.org , 2015).

4. Volunteer panel. Respondents of volunteer panels actively seek and sign up

to participate in a survey or study. Taking the stochastic view of nonresponse

(Groves , 2006), we can treat each person as having a propensity to be a volun-

teer. From this perspective, the coverage error of volunteer panel is a function

of the survey instrument. People without internet access, for instance, can-

not volunteer for web surveys. A unique source of error in volunteer panel is

self-selection bias. Respondents’ purposeful intent to participate can result in

highly skewed measures relative to the general population. For example, people

with difficulty sleeping may be much more inclined to participate in a sleep be-

havior study. As a result, if sleep duration is an outcome of interest, the sample

average hours of sleep can be much shorter than the population’s. While in

clinical settings, researchers can recruit from a pool of participants with diverse

sleeping patterns, there is no such control in a volunteer sample. A special

type of volunteer panel is web volunteer panel. Respondents of web volunteer

panel join an online survey company and respond to questionnaires periodically

sent out by the survey agency. Researchers in the fields of medicine, sociol-

ogy, and psychology have already begun to conduct research with web opt-in

panels (see, for examples, Declercq, Sakala, Corry, and Applebaum, 2007; Butt,

Peipert, Webster, Chen, and Cella, 2013; Popova and Ling , 2014).

While there are many types of non-probability samples, convenience samples are

the most prevalent for the obvious reason - they can be obtained the quickest with

little cost. Unfortunately, survey researchers have the least control over the composi-
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tion of convenience samples, making post-survey adjustments of convenience samples

particularly challenging. In the following section, we review the common weighting

adjustment methods for non-probability samples in practice.

1.3 Weighting adjustments for non-probability samples

The most recent development for adjusting non-probability samples is propensity-

score weighting. Propensity-score adjustment combines the non-probability sample

with a probability sample and constructs a propensity model predicting the proba-

bility of a respondent being in the non-probability sample (Lee, 2004; Hill and Shaw ,

2013). Within the same propensity class, the non-probability sample respondents are

matched with probability-selected respondents on all known characteristics that are

used in the model. Inverse of the propensity scores serve as pseudo-selection weights

for the non-probability sample. For propensity score weights to effectively remove

sample bias of an outcome measure, the model covariates must be correlated to both

the participation propensity in the non-probability sample and the outcome variable.

Large online survey agencies that supply non-probability samples, including Harris

Interactive and Toluna, conduct expensive probability-based parallel surveys as refer-

ence samples to construct propensity models. Included in their propensity models is a

set of “webographic” variables, lifestyle or attitudinal measures that should theoret-

ically correlate with both survey measures and respondent participation propensity

(Taylor , 2000). These specialized reference surveys have small sample sizes due to

high data collection cost, which can result in highly variable propensity-score weights

that can inflate variances of the weighted analysis. Furthermore, there are mixed

findings on the effectiveness of propensity score adjustments when used as the only

weighting adjustment method. Schonlau et al. (2004) found that propensity score was

more effective at removing bias for categorical variables with two or more categories,

but not effective in other types of measures regardless of whether they were factual
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or personal. With a longitudinal dataset that allowed for more in-depth analyses of

webographic variables, Schonlau et al. (2009) concluded that propensity-score weight-

ing with webographic variables was effective in reducing bias in health measures, but

not successful for wealth-related variables. The many possibilities of a respondent to

participate in non-probability samples present challenges for constructing propensity

models. Thus it is common that propensity weights are only successful for a subset

of the variables.

To improve propensity-score weighting, Boboth et al. (2007) recommended that

sample calibration, i.e., using weights to “calibrate” samples such that the weighted

sample matches the population on key demographic statistics and internet-use, should

always accompany propensity-score adjusted weights. A simulation study by Beth-

lehem (2010) demonstrated that post-stratification, a special case of calibration,

was effective in removing selection bias, provided that: (1) the benchmark data is

sufficiently large, and (2) the outcome variable is similar for probability and non-

probability respondents within the post-stratification cells. The latter case matches

the requirements for adjustments of missing at random (MAR) in nonresponse adjust-

ment of probability samples. Through another simulation study, Valliant and Dever

(2011) suggested that such calibration alone can potentially achieve better bias reduc-

tion than propensity-score weighting. We are reminded by Valliant and Dever (2011),

however, that if the outcome variable is highly correlated with propensity to be a non-

probability sample respondent, no amount of weighting adjustment can completely

remove sample bias. This situation falls under not missing at random (NMAR), or

non-ignorable nonresponse in the probability framework. For NMAR, only models

that strongly predict missing responses under the correct missigness mechanism can

improve the analysis.

Both weighting adjustment methods in practice – propensity-score weighting, and

calibration to benchmark totals, aim to construct one set of weights such that the
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weighted distributions of key statistics in the sample match those in a probability

sample or in the population. Many non-probability samples are convenience samples

with skewed distributions on many statistics. Thus it is unlikely that one single set

of weights can achieve the goal. One major limitation in propensity-score weighting

is the quality and size of the probability-based reference sample. It is costly to

obtain a large reference sample, and small reference samples can result in unstable

propensity weights. Furthermore, there is no systematic way to determine which

variables to be included in the propensity models. In calibration weighting, we are

limited by the available information on the benchmark data, which can consist of

just basic demographics from large-scale government surveys. In that case, variables

outside of demographics likely remain skewed. Instead of addressing overall error

of the non-probability sample, we focus on improving the inferential property of a

specific outcome variable, i.e. bias and variance of a weighted estimate. We choose

an alternative approach with calibration, model-assisted calibration, that allows for

post-survey adjustment targeting specific outcome of interest. The details of model-

assisted calibration are given in the following section.

1.4 Calibration and model-assisted calibration

1.4.1 Traditional calibration

For an analytical sample sA (the sample which requires weight calibration) of

size nA drawn from sample design A, Särndal and Deville (1992) defined the term

“calibrated weights”, w
nA×1

, as the adjusted weights that are as close as possible, on

average, to the original design weights, d
nA×1

, with respect to a distance measure

g(wi, di)/qi, under the constraints that wTX =
∑

i∈sAwix
T
i = TX, where qi is a

constant independent of design weight di, T
X is a row vector of known population
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totals of auxiliary variables in X. Formally, w is the solution that minimizes:

EA

[
∑

i∈sA

g(wi, di)/qi

]

(1.4.1.1)

under the constraint:

∑

i∈sA

wix
T
i = TX (1.4.1.2)

We require that g(wi, di) be differentiable with respect to wi, strictly convex on an

interval containing di (this ensures that the local minimum of the distance function

equals the solution when first derivative is zero), and g(di, di) = 0. The expectation

in equation (1.4.1.1) is taken over sample design A. The most common distance

measure used in practice is the chi-square distance function with qi = 1: g(wi, di) =

(wi−di)
2/di. With chi-square distance, letD be the diagonal matrix of design weights,

the calibrated weights are:

w = d+DX
(
XTDX

)−1 (
TX − dTX

)T
(1.4.1.3)

The estimate of population total based on calibrated weights:

T̂ = wTy

= dTy +
(
TX − dTX

) (
XTDX

)−1
XTDy

= dTy +
(
TX − dTX

)
β̂ (1.4.1.4)

where β̂ is the weighted least square estimate of the linear regression: y = Xβ, given

weights D. Thus there is an implicitly assumed linear relationship between y and

X for traditional calibration. The calibrated weights defined in equation (1.4.1.3) do

not rely on any outcome variable. Thus the same set of weights can be applied to all
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variables in the survey. The calibrated weights correspond to generalized regression

estimator (GREG) weights, and the weighted total expressed in equation (1.4.1.4)

corresponds to the GREG estimate of total. The linear model, Eξ

[
yi
∣
∣xi,β

]
= xT

i β,

is referred to as the working model for GREG.

Calibrated weights have four attractive properties: (1) They ensure that for a

set of variables in the sample, the sample weighted totals match known population

quantities. (2) The weights correct under-coverage of the sub-groups defined by cells

in X. (3) If there are unit non-response in the data, and the missing mechanism is

missing at random (MAR) given X, i.e. respondents and non-respondents with the

same values of X have the same means, then calibrated weights can correct non-

response bias (Kott , 2006). (4) If a survey outcome variable y has a strong linear

relationship with X, then the design-based variance of weighted estimates of y, such

as varA
(∑

i∈sAwiyi
)
, is smaller than the design variance with initial design weights,

varA
(∑

i∈sAdiyi
)
.

There are also three side-effects from calibration: (1) Weighted estimates based

on calibrated weights are no longer unbiased, but they are approximately design

unbiased given large population and sample sizes and that the initial design weights

are probability-based. (2) If the relationship between y and X is non-linear, variance

of weighted estimates of y can be larger than the variance of corresponding pure-

design based estimate. (3) The chi-square distance function can lead to negative

weights, which do not make sense in many settings.

Särndal and Deville (1992) explored a set of distance measures and derived their

calibrated weights, for which some are strictly positive. This dissertation focuses on

weighted estimates rather than properties of the weights. Thus we focus on calibration

with chi-square distance with qi = 1. Throughout this dissertation, we will compare

our proposed method with estimates from traditional calibration, GREG, since it is

widely used in practice. The next section details model-assisted calibration, which
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forms the basis of our proposed method.

1.4.2 Model-assisted calibration

In model-assisted calibration (Wu and Sitter , 2001), we assume a relationship

between an outcome y with X through first two moments:

Eξ(yk|xk) = µ(xk,β), Vξ(yk|xk) = ν2
kσ

2 (1.4.2.1)

where β = (β1, . . . , βp)
T and σ are unknown superpopulation parameters, µ(xk,β) is

a known function of xk and β, νk is a known function of xk or µ(xk,β). Eξ and Vξ are

expectation and variance with respect to the model ξ. Let B be the finite population

(or census) estimate of β (i.e., the quasilikelihood estimator of β based on the entire

finite population), and µ̂i = µ(xi, B̂), where B̂ is an estimate of B based on a sample

of the finite population, the model-assisted calibration weights w minimize a distance

measure:

EA

[
∑

i∈sA

g(wi, di)/qi

]

under the constraints:

∑

i∈sA

wi = N

∑

i∈sA

wiµ̂i =
∑

k∈U
µ̂k (1.4.2.2)

The main conceptual difference between traditional calibration and model-assisted

calibration is that in model-assisted calibration, the constraints are based on two

quantities: (1) population total, and (2) population total of predicted values µ̂k.

In traditional calibration, the constraint is a vector of population totals of X (see
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equation (1.4.1.2)). Define TM =
[
N,
∑

k∈U µ̂k

]
and M = [d, (µ̂i)i∈sA], under chi-

square distance measure with qi = 1, the model-assisted calibration weights are:

w = d+DM
(
MTDM

)−1 (
TM − dTM

)T
(1.4.2.3)

The estimate for population total based on model-assisted calibrated weights are:

T̂ = (w)T y

= dTy +
(
TX − dTX

) (
XTDX

)−1
XTDy

= dTy +

(
∑

k∈U
µ̂k −

∑

i∈sA

diµ̂i

)

BMC (1.4.2.4)

where BMC is the calibration slope to satisfy the calibration constraints (different

from the model parameter estimates B̂):

BMC =

∑

i∈sAdi(µ̂i − ˆ̄µ)(yi − ȳ)
∑

i∈sAdi(µ̂i − ˆ̄µ)2

ˆ̄µ =
∑

i∈sA

diµ̂i

/∑

i∈sA

di

ȳ =
∑

i∈sA

diyi
/∑

i∈sA

di

It is important to note that when the model in equation (1.4.2.1) is linear, i.e.,

Eξ(yk|xk) = xT
kβ, then we do not need individual auxiliary xk values from the pop-

ulation. Instead, we can apply B̂ to the sum of xk in the population to calculate

the constraint in equation (1.4.2.2). Thus when only population totals are available,

model-assisted calibration is still possible under a linear model.

When the relationship between y andX is closely captured by the superpopulation

model, the resulting calibrated weights are very efficient for estimating a population

quantity of the outcome variable y (i.e., small mean squared error). Estimating B̂ re-
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quires y, thus model-assisted calibration weights depend on an outcome variable. The

weights are constructed specifically to lower the root-mean-square error of weighted

estimates of y, and rely on how well µ̂i approximates the true µi. This dissertation

employs a modern statistical model commonly used in predictive modeling as the

assisting model to capture the relationship between y and X through µ. The result-

ing calibrated weights can improve root-mean-square-error of weighted estimates of

y over traditional calibration estimates. We describe the assisting model in the next

section.

1.5 LASSO

Introduced by Tibshirani (1996), LASSO is the acronym for “least absolute shrink-

age and selection operator.” LASSO falls under the general framework of regularized

regression, where the solution path to regression coefficients is subject to additional

constraints. The early use of mathematical regularization can be found in numerical

analysis when solving for a system of equations with more unknowns than the number

of equations (Tikhonov , 1943). There is also a vast literature in image processing and

sound wavelets decoding which apply regularization techniques to filter and de-noise

signals (Donoho and Johnstone, 1994a,b; Abramovich and Benjamini , 1996; Fuchs ,

1998; Candès et al., 2006; Foucart and Rauhut , 2013). In statistics, the main ob-

jective of regularization is to prevent model over-fitting, so that the same operator

(regressors) can produce reliable estimates from different samples of the same popula-

tion (Bickel and Li , 2008). In the past decade, the amount of research on regularized

regression has grown exponentially, driven by the availability of high-dimensional

data in fields such as genetics, medicine, and marketing (see, for examples: Butler

and Denham, 2000; Li, Sung, and Liu, 2007; Goldstein and Osher , 2009; Witten

and Tibshirani , 2009; Wang and Zhu, 2010). LASSO regression, in particular, has

been widely used as a model selection technique in analyses involving hundreds or
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thousands of regressors (Wu et al., 2009; Jagannathan and Ma, 2003), as well as a

predictive model for forecasting (Kamarianakis et al., 2012; Kato and Uemura, 2012).

A wide range of applications and studies have demonstrated that LASSO regression

is effective in preventing model over-fitting because it automatically selects more ac-

curate and parsimonious models.

The capability of a model trained under a sample to make reliable estimates on

a different dataset is a key feature that we need for model-assisted calibration. In

the constraint equation of model-assisted calibration, equation (1.4.2.2), the sample

predicted values are calibrated against predicted values in the population. If the

model is prone to over-fitting in the sample, predicted values in the population would

be inaccurate, resulting in unreliable calibrated weights. Thus we employ LASSO

as our assisting model as it can simultaneously prevent model over-fitting through

variable selection and perform parameter estimation.

1.5.1 Definition and notations

Linear LASSO is a regression of yn×1 on Xn×p , where the regression coefficients

βp×1 are subject to the constraint:

p−1
∑

j=1

|βj | ≤ s (1.5.1.1)

The intercept coefficient, β0, is not part of the constraint. Mathematically, linear

LASSO regression coefficients minimize the sum of squares plus the Lagrange multi-

plier of the constraint (1.5.1.1):

β̂ = argmin
β









∑

i∈sA

(
yi − xT

i β
)2

︸ ︷︷ ︸

L

+ λn

p−1
∑

j=1

|βj|
︸ ︷︷ ︸

P









(1.5.1.2)
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The L term of equation (1.5.1.2) denotes a Loss function, and P is known as the

Penalty term. In LASSO, we try to find parameter estimates that minimize the Loss

function subject to a penalty. Therefore LASSO is also called a penalized regression

method (Fu, 1998).

Because we are restricting the absolute value of βj (instead of squared or other

powers of βj) in equation (1.5.1.1), LASSO falls under L-1 regularization. When the

penalty is
∑p−1

j=1 β
2
j instead, it is under L-2 regularization, and the β̂ is the solution to

the regularized regression known as ridge regression. The parameter λn is a penalty

parameter that optimizes a model-fitness measure (e.g., AIC, BIC), and is often

calculated by cross-validation. The subscript n emphasizes that λn depends on sample

size. When sample size is small, λn tends to be large to prevent model over-fitting

by setting coefficients to zero. When sample size is large, there is less chance of

model over-fitting, thus λn tends to 0, and β̂ resembles ordinary least square (OLS)

solutions. Since the solution of β in LASSO regression may contain zero(s), LASSO

is also used as a variable selection method. In logistic LASSO (with binary outcome

y), we try to find β that minimizes the negative log-likelihood function:

β̂ = argmin
β









∑

i∈sA

[−yix
′
iβ + ln(1 + exp(−x′iβ))]

︸ ︷︷ ︸

L

+ λn

p−1
∑

j=1

|βj|
︸ ︷︷ ︸

P









(1.5.1.3)

1.5.2 Oracle property and adaptive LASSO

Suppose the parameters in a full regression model have both zero and non-zero

components, without loss of generality, let the first p be non-zero and the last q zero:

βF =






β
(1)
(p×1)

β
(2)
(q×1)=0





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The model has the oracle property if it meets the two following criteria (Fan and Li ,

2001):� The probability of estimating 0 for zero-valued parameters tends to one:

Pr
(

β̂
(2)

= 0
)

→ 1.� The estimates of non-zero parameters are as good as if the true sub-model is

known:

√
n
(

β̂
(1) − β(1)

)

→ N (0,C)

where C = Σ(β(1)) is the covariance matrix of β(1) under linear model, and C =

I−1(β(1)) is the inverse of Fisher information matrix of β(1) under generalized linear

model. With the oracle property, a model not only “selects out” zero-valued param-

eters by setting them to 0, it also provides accurate estimates to the non-zero model

parameters.

While LASSO performs both estimation and variable selection, it has been shown

that in order for LASSO to have the oracle property, the regression design matrix has

to satisfy fairly strict conditions, called “Irrepresentable Condition” (Zhao and Yu,

2006). The condition requires that covariates corresponding to the zero components

of the regression parameters not contributing meaningfully to the estimation of the

non-zero parameters. An example of a regression matrix satisfying irrepresentable

condition is a matrix where the correlation between covariates are constant r, and

there exists a constant c > 0 such that 0 < r ≤ 1/(1 + cq), where q is the number

of zero-valued parameters. In practice, data gathered from surveys seldom have a set

of covariates with well-defined structures to satisfy irrepresentatble condition. Thus

from model consistency point view, LASSO is not practical in survey research.

Many variants of LASSO have been developed. One in particular, adaptive LASSO

(Zou, 2006), can satisfy the oracle property for both correctly specified and miss-
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specified models, even without the irrepresentable condition (Zhao and Yu, 2006).

The adaptive LASSO regression coefficients are obtained by adding a weight param-

eter, αj , to the penalty term:

β̂ = argmin
β

(
∑

i∈sA

(
yi − xT

i β
)2

+ λn

p
∑

j=1

αγ
j |βj|

)

(1.5.2.1)

Similarly for adaptive logistic LASSO:

β̂ = argmin
β

(
∑

i∈sA

[
−yi

(
xT
i β
)
+ log

(
1 + exp

(
xT
i β
))]

+ λn

p
∑

j=1

αγ
j |βj |

)

(1.5.2.2)

The role of the weight parameter, αj , is to prevent LASSO from selecting covariates

with large effect sizes in favor of lowering prediction error when the sample size

is small. Thus the weights are inversely proportional to effect sizes of regression

parameters: αj ∝ 1
/
|βj|. Common choices of αj: αj = 1

/
∣
∣
∣β̂MLE

j

∣
∣
∣, where β̂MLE

j is

the maximum likelihood estimate of βj, or αj = 1
/
∣
∣
∣β̂RIDGE

j

∣
∣
∣, where β̂RIDGE

j is the

ridge regression estimates of βj mentioned in Section 1.5.

The power of the weight parameter, γ, is a constant greater than 0 that interacts

with αj to control LASSO from selecting or excluding parameters. For example, if

we still want LASSO to favor large effect covariates when the sample size is small, we

should set γ small. If we want to de-emphasize effect sizes further, we should set γ

large. Zou (2006) has shown that the oracle property is satisfied only when:

λn

/ (√
n/(

√
n)γ
)
→ ∞ and λn

/√
n → 0

The conditions require that λn grow at least at the rate of
√
n
/
(
√
n)γ, but not faster

than
√
n. In practice, we do not observe the theoretical rate of growth of λn, unless

a large number of samples with different sample sizes are collected from the same

population. Choices of λn and γ are determined by the modeler. In R glmnet
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implementation (Friedman et al., 2010), a range of λn is determined by the following

scheme:

(1) Set γ = 0.

(2) Determine λmax
n by finding the smallest λn that sets all coefficients to 0.

(3) If sample size n is larger than the number of parameters in the regression model,

set λmin
n = 0.0001λmax

n . If sample size n is smaller than the number of parameters,

set λmin
n = 0.01λmax

n (to set parameters to 0 sooner).

(4) Generate a grid of λn, typically 100 equally spaced points between λmin
n and λmax

n .

The initial range of values of λn is determined independently of γ. With an ini-

tial range of values of λn, a modeler can use data-driven techniques, such as cross-

validation, to find λn given a γ. Choices of γ are less data-driven. Some modelers

choose one of γ = 0.1, 0.5, 1, 2. We can also perform cross-validation for each pair

of (λn, γ), given a model-fitness metric (e.g. mean-absolute-error, area under curve,

etc.).

1.6 Outline of chapters

The organization of the dissertation is as follows: Chapter II establishes the the-

oretical framework for LASSO-assisted calibration, given population auxiliary data.

We derive the estimator of population total with LASSO calibrated weights, and

asymptotic expectation and variance estimators for the total. The estimator and

variance estimates are evaluated through simulation under different types of popula-

tions and sampling schemes. The root-mean-square of the estimator is compared with

an unadjusted estimator as well as traditional calibration estimator of totals for both

continuous and binary outcome variables. In Chapter III, we extend LASSO calibra-

tion to cases where the benchmark data is a probability-based sample. We introduce
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the estimated-control LASSO calibration estimator, ECLASSO, to estimate popula-

tion totals. Asymptotic expectation and variance estimates are derived. We evaluate

ECLASSO under simulation with National Health Interview Survey 2013 data as the

population, given different levels of sample and benchmark sizes. The root-mean-

square error of ECLASSO is compared to traditional calibration estimator, GREG,

estimated-control generalized regression estimator, ECGREG, and the propensity-

score weighted estimates of total, PSCORE. In Chapter IV, we apply ECLASSO to

an actual non-probability internet-based election polling data. Given the actual elec-

tion results, we compare root-mean-square error of election forecasts by unweighted

estimate, UNWT, ECLASSO, ECGREG, and PSCORE. The final chapter, Chapter

V, provides the summary, implications, and limitations of current research, as well as

potential extensions for future research.
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CHAPTER II

Calibration with LASSO

2.1 Introduction

For many survey agencies, adjusting survey weights to known auxiliary informa-

tion is the final and most crucial step in the weight construction process. Särndal and

Deville (1992) introduced the term “calibrated weights” as the adjusted weights that

are as close as possible to the original design weights while adhering to a set of con-

straints. The constraints are known population totals for a set of auxiliary variables

in the survey. The calibrated weights ensure that the weighted sum of each auxil-

iary variable equals to its corresponding total in the population. Calibration plays

an important role in official statistics because it can generate weights such that the

weighted demographic estimates across different surveys are consistent. Examples

of large-scale surveys producing calibrated weights include Consumer Expenditure

Survey (Jayasuriya and Valiant , 1996), Canadian Labour Force Survey (Singh et al.,

2001), and Survey of Health Aging and Retirement in Europe (Börsch-Supan et al.,

2013).

In probability samples, when design weights equal to the inverse of selection prob-

abilities, weighted estimates of totals are design-unbiased for the population total.

A main objective of calibration is to correct sample undercoverage by adjusting sub-

groups of the sample to their known population totals. For large samples, the final
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calibrated weights can be applied to all variables in the survey, because they main-

tain the unbiased property of original design weights. In non-probability samples,

however, there are no selection probabilities to construct initial design weights that

can produce unbiased estimates. Thus there is no guarantee that the traditional cal-

ibrated weights can work for all variables in the non-probability sample. To make

inference from non-probability samples, one practical approach is to construct a set

of weights that can lower the root-mean-square error (RMSE) of weighted estimates

with respect to a specific outcome of interest. Model-assisted calibration provides

the framework to construct calibrated weights targeting an outcome variable, given

a model that can approximate the expected values of the outcome (Wu and Sitter ,

2001). The key to successful model-assisted calibration is a model with strong predic-

tive properties: model parameters estimated from one sample can be used to reliably

predict values in a different sample of the same population.

The Least Angle Shrinkage and Selection Operator, LASSO, is a regularized re-

gression that can perform both variable selection and parameter estimation (Tibshi-

rani , 1996). Kamarianakis et al. (2012) found success with LASSO in predicting

average traffic speed in the presence of severe multi-collinearity due to aggregated

area-level regressors. Kato and Uemura (2012) applied LASSO to predict the signal

of a star being observable in the sky, given a large set of periodic amplitude val-

ues. The non-signal amplitudes are considered as noise, and LASSO was successful

in filtering out noise to detect the true signal. In the fields of genetics and finance,

LASSO is also used in prediction modeling given hundreds or thousands of predic-

tors (Wu et al., 2009; Wang and Zhu, 2010). A wide range of applications have

demonstrated that LASSO is effective in preventing model over-fitting by automat-

ically selecting more accurate and parsimonious models. In survey research, under

traditional calibration, McConville (2011) has developed the theoretical framework

to show approximate design unbiasedness and consistency of LASSO calibration esti-
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mator of total for a continuous outcome variable, given LASSO regression parameter

estimates. More recently, McConville et al. (2015) examined the use of LASSO un-

der the model-assisted calibration framework in a simulation study that can extend

LASSO calibration to estimating totals of non-continuous outcomes, and showed em-

pirically (not theoretically) that model-assisted LASSO calibration can result in much

smaller RMSE than traditional calibration. Although model-assisted calibration with

LASSO holds great promise in constructing a set of weights that can result in small

RMSE of weighted estimates for an outcome variable in a non-probability sample,

there is no theoretical framework established for the bias and consistency properties

of model-assisted LASSO calibration estimators. The main objectives of this chapter

are:

(1) Develop the theoretical framework for model-assisted calibration with LASSO for

both continuous and binary outcome variables: derive the point estimate of total,

its asymptotic expectation, and asymptotic theoretical variance estimate.

(2) Investigate relative performances, in terms of root-mean-square-error, of LASSO

calibration to traditional calibration under different outcome types, sampling

schemes, sample sizes, and calibration variable covariance structures. The aim is

to understand the situations where LASSO calibration can work well.

The framework for non-probability-based sampling is equivalent, except we as-

sume the initial design weights are obtained under simple-random-sampling (SRS)

regardless of how the samples are formed. The theoretical framework of LASSO cal-

ibration allows for estimating population totals from a non-probability sample with

small root-mean-square-error. When the outcome of interest is binary, the LASSO

calibration estimator of the total can have large gains in RMSE relative to traditional

calibration estimator of the total, because traditional calibration assumes a linear

relationship between the outcome and calibrated auxiliary variables. Many variants
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of LASSO have been developed since LASSO’s introduction nearly two decades ago.

The adaptive LASSO (Zou, 2006), in particular, has shown to have model-consistency

properties, i.e., selecting the correct variables and providing unbiased estimates of pa-

rameters under mild conditions. Thus we employ the adaptive LASSO as the assisting

model in model-assisted calibration. To simplify naming, we refer to adaptive LASSO

simply as LASSO for the remainder of this chapter.

The organization of the chapter is as follows: Sections 2.2 and 2.3 provide the

definition and notations of calibration and LASSO regression. Section 2.4 develops

the LASSO calibration estimator of population total, its asymptotic estimator, and

asymptotic variances. Sections 2.5 and 2.6 describes the simulation and results for

evaluating the root-mean-square-error and variance estimates of T̂LASSO
y . The chapter

ends with Section 2.8 summarizing the findings.

2.2 Calibration

2.2.1 Traditional calibration

For an analytical sample sA (the sample which requires weight calibration) of size

nA drawn from sample design A with design weights d
nA×1

, and the diagonal matrix

of design weights D, calibrated weights w
nA×1

minimize a distance measure:

EA

[
∑

i∈sA

g(wi, di)/qi

]

(2.2.1.1)

under the constraint:

∑

i∈sA

wix
T
i = TX (2.2.1.2)

where g(wi, di) is a differentiable function with respect to wi, strictly convex on an

interval containing di, and g(di, di) = 0. The constant qi is independent of design
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weight di. We focus on the most common distance measure used, the chi-square

distance: g(wi, di) = (wi − di)
2/di with qi = 1. Under this distance measure:

wGREG = d+DX
(
XTDX

)−1 (
TX − dTX

)T
(2.2.1.3)

where TX is a row vector of known population totals of sample calibration variables

X. The estimate of population total of outcome y based on calibrated weights:

T̂GREG
y = wTy

= dTy +
(
TX − dTX

) (
XTDX

)−1
XTDy

= dTy +
(
TX − dTX

)
β̂ (2.2.1.4)

where β̂ =
(
XTDX

)−1
XTDy is the weighted least square estimate of the linear

regression y = Xβ, given weights D. The calibrated weights defined in equation

(2.2.1.3) do not rely on any outcome variable. Thus the same set of weights can

be applied to all variables in the survey. The weighted total expressed in equation

(2.2.1.4) corresponds to the generalized regression estimator (GREG) of total, thus

we denote the weights wGREG and the estimator T̂GREG
y . In GREG, an implicit linear

relationship is assumed. The linear model, E
[
yi
∣
∣xi,β

]
= xT

i β, is referred to as the

working model for GREG. Although T̂GREG
y is asymptotically design-unbiased for

Ty, when the relationship between y and X is non-linear, such as in the case when

y is binary, the variance of T̂GREG
y can be larger than the variance of pure-design

based estimator of total (an estimator not using auxiliary totals). Model-assisted

calibration estimators can have significant advantage over T̂GREG
y in reducing variance

of estimates of totals, because model-assisted calibration allows for non-linear models

to assist in the construction of calibrated weights. In the next section, we briefly

describe the framework for model-assisted calibration.
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2.2.2 Model-assisted calibration

In model-assisted calibration, we assume a relationship between an outcome y

and X through first two moments (Wu and Sitter , 2001):

Eξ(yk|xk) = µ(xk,β), Vξ(yk|xk) = ν2
kσ

2 (2.2.2.1)

where β = (β1, . . . , βp)
T and σ are unknown superpopulation parameters, µ(xk,β) is

a known function of xk and β, νk is a known function of xk or µ(xk,β). Eξ and Vξ are

expectation and variance with respect to the model ξ. Let B be the finite population

(or census) estimate of β (i.e., the quasilikelihood estimator of β based on the entire

finite population), and µ̂i = µ(xi, B̂). The model-assisted calibrated weights w then

minimize a distance measure:

EA

[
∑

i∈sA

g(wi, di)/qi

]

under the constraints:

∑

i∈sA

wi = N

∑

i∈sA

wiµ̂i =
N∑

k=1

µ̂k (2.2.2.2)

The main conceptual difference between traditional calibration and model-assisted

calibration is that in model-assisted calibration, the constraints are based on two

quantities: (1) population total, and (2) population total of predicted values µ̂k.

In traditional calibration, the constraint is a vector of population totals of X (see

equation (2.2.1.2)). Under chi-square distance measure with qi = 1, the model-
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assisted calibrated weights are:

wMC = d+DM
(
MTDM

)−1 (
TM − dTM

)T
(2.2.2.3)

where TM =
[

N,
∑N

k=1µ̂k

]

and M = [d, (µ̂i)i∈sA]. The estimate for the population

total based on model-assisted calibrated weights is then:

T̂MC
y =

(
wMC

)T
y

= dTy +
(
TX − dTX

) (
XTDX

)−1
XTDy

= dTy +

(
N∑

k=1

µ̂k −
∑

i∈sA

diµ̂i

)

B̂MC (2.2.2.4)

where B̂MC is the calibration slope to satisfy the calibration constraints (different

from the model parameter estimates B̂):

B̂MC =

∑

i∈sAdi(µ̂i − ˆ̄µ)(yi − ȳ)
∑

i∈sAdi(µ̂i − ˆ̄µ)2

ˆ̄µ =
∑

i∈sA

diµ̂i

/∑

i∈sA

di

ȳ =
∑

i∈sA

diyi
/∑

i∈sA

di

Unbiasedness and small variances of T̂MC
y both rely on how well the µ̂i approximates

the true expected value of yi.
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2.3 LASSO

2.3.1 Definition and parameters

The adaptive LASSO regression coefficients are obtained by solving a penalized

regression equation. For linear adaptive LASSO regression (Zou, 2006):

β̂ = argmin
β

(
∑

i∈sA

(
yi − xT

i β
)2

+ λn

p
∑

j=1

αγ
j |βj|

)

(2.3.1.1)

Similarly for logistic adaptive LASSO:

β̂ = argmin
β

(
∑

i∈sA

[
−yi

(
xT
i β
)
+ log

(
1 + exp

(
xT
i β
))]

+ λn

p
∑

j=1

αγ
j |βj |

)

(2.3.1.2)

Given λn and γ, we can calculate β̂ through some iterative procedures.

The role of the weight parameter, αj, is to prevent LASSO from selecting co-

variates with large effect sizes in favor of lowering prediction error when the sample

size is small. Thus the weights are inversely proportional to effect sizes of regression

parameters: αj ∝ 1
/
|βj |. A common choice of αj : αj = 1

/
∣
∣
∣β̂MLE

j

∣
∣
∣, where β̂MLE

j

is the maximum likelihood estimate of βj . The power of the weight parameter, γ,

is a constant greater than 0 that interacts with αj to control LASSO from select-

ing or excluding parameters. For example, if we still want LASSO to favor large

effect covariates when the sample size is small, we should set γ small. If we want to

de-emphasize effect sizes further, we should set γ large.

2.3.2 Oracle property

An important concept in measuring the performance of a model selection and

estimation method is called the “oracle property”. The optimal method selects the

correct variables and provides unbiased estimates to selected parameters. Suppose

the parameters in a full regression model have both zero and non-zero components,
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without loss of generality, let the first p be non-zero and the last q zero:

βF =






β
(1)
(p×1)

β
(2)
(q×1) = 0






A regression model has the oracle property if it satisfies the following conditions Fan

and Li (2001):� The probability of estimating 0 for zero-valued parameters tends to one:

Pr
(

β̂
(2)

= 0
)

→ 1.� The estimates of non-zero parameters are as good as if the true sub-model is

known:

√
n
(

β̂
(1) − β(1)

)

→ N (0,C)

where C = Σ(β(1)) is the covariance matrix of β(1) under linear model, and C =

I−1(β(1)) is the inverse of Fisher information matrix of β(1) under generalized linear

model. For finite-population inference, suppose ν indexes a population with size Nν ,

let B be the quasilikelihood estimates of β in population ν, and B̂ is the estimate of

B based on a sample with size nν ≤ Nν , the finite-population equivalent of the oracle

property is:

Pr
(

B̂(2) = 0
)

→ 1

√
nν

(

B̂(1) −B(1)
)

→ Nν (0,Cν)

B → β as ν → ∞

where Cν = Σ(B(1)) is the covariance matrix of B(1) under linear model, and C =

I−1(B(1)) is the inverse of Fisher information matrix of B(1) under generalized linear
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model. For convenience, we omit ν from the notations. It is assumed that N and n

are sequences of numbers, both grow to infinity as ν → ∞. We write B → β to mean

that B approaches β as both sample and population sizes grow.

Zou (2006) has shown that if:

λn

/ (√
n/(

√
n)γ
)
→ ∞ and λn

/√
n → 0

then the adaptive LASSO satisfies the oracle property. The conditions require that

λn grow at least at the rate of
√
n
/
(
√
n)γ, but not faster than

√
n. We discuss the

choice of λn and γ in the next section.

2.3.3 Determining parameter values and estimates

In practice, we do not observe the theoretical rate of growth of λn, unless we have

obtained many samples of the same population with various sample sizes. Given a

sample, the choices of λn and γ depend on the modeler. In R glmnet implementation

(Friedman et al., 2010), a range of λn is determined by the following scheme:

(1) Set γ = 0.

(2) Determine λmax
n by finding the smallest λn that sets all coefficients to 0.

(3) If sample size n is larger than the number of parameters in the regression model,

set λmin
n = 0.0001λmax

n . If sample size n is smaller than the number of parameters,

set λmin
n = 0.01λmax

n (to set parameters to 0 sooner).

(4) Generate a grid of λn, typically 100 equally spaced points between λmin
n and λmax

n .

The initial range of values of λn is determined independently of γ. Choices of γ is

less data-driven. Some modelers choose one of γ = 0.1, 0.5, 1, 2. In this chapter, we

determine (λn, γ) through cross-validation as follows:
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Step 1. Obtain αj = 1
/
∣
∣
∣β̂MLE

j

∣
∣
∣

Step 2. Determine 100 equally spaced values of λn based on R glmnet’s implemen-

tation.

Step 3. For each pair (λn, γ), λn from Step 2, and γ = 0.1, 0.5, 1, 2, split data into 5

folds. Use 4 folds to obtain β̂.

Step 4. Apply β̂ to the last fold not used to estimate β̂ and calculate a metric. For

continuous y, we calculate the mean-absolute-error (MAE),
∑

i∈sA(k)
|µ̂i − yi|.

For binary y, we calculate the area under curve (AUC) (calculated through

R glmnet :: auc function).

Step 5. Average the 5 metrics for each pair of (λn, γ), and choose the pair with the

best average metric: minimum MAE for continuous y, maximum AUC for

binary y.

The adaptive LASSO coefficient estimates are then obtained by solving (2.3.1.1) or

(2.3.1.2) given the selected (λn, γ). The R code used to perform cross-validation in

this dissertation is in Appendix A.2.

2.4 LASSO calibration

This section develops the main theoretical framework of this chapter. We derive

the analytical formula for LASSO estimator of total, its asymptotic expectation, and

asymptotic linearized variance estimates. We make the following assumptions in the

theoretical framework:

A. The samples are drawn from a single-stage sample design A, allowing for unequal

probabilities of selection. The selection probability for unit i is denoted by πA
i ,

and the joint selection probability of units i and j is denoted by πA
ij . We denote
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the design weight for unit i by dAi = 1/πA
i , the vector of design weights by dA,

and the diagonal matrix of design weights by DA.

B. Population-level auxiliary data are known, denoted by X = (xT
k ), k = 1, · · · , N .

C. A superpopulation model is assumed, as is described in section 2.3.3:

Eξ(yi|xi) = µ(xi,β)

Vξ(yi|xi) = ν2
i σ

2

D. The true superpopulation parameters are a subset of the full regression model

for LASSO: βF =






β(p×1)

β
(2)
(q×1)






E. The full-range of X in the population has non-zero probability of being observed

in the analytical sample.

2.4.1 Point estimate: T̂LASSO
y

The LASSO calibration estimate of total can be obtained following the steps:

Step 1. Obtain LASSO regression coefficients B̂ as described in section 2.3. We

use R package glmnet (Friedman et al., 2010) to obtain LASSO coefficients

for both linear and glm models, given a pair of (λn, γ) selected by cross-

validation. Linear LASSO:

B̂ = argmin
β

(
∑

i∈sA

(
yi − xT

i β
)2

+ λn

p
∑

j=1

αγ
j |βj |

)

Logistic LASSO:

B̂ = argmin
β

(
∑

i∈sA

[
−yi

(
xT
i β
)
+ log

(
1 + exp

(
xT
i β
))]

+ λn

p
∑

j=1

αγ
j |βj |

)
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Step 2. Use B̂ to calculate µ̂i = µ(xi, B̂) in the sample and the population.

Step 3. Define TM =
(

N,
∑N

k=1µ̂
)

and M =
[
dA, (µ̂i)i∈sA

]
, under chi-square dis-

tance measure with qi = 1:

wLASSO = dA +DAM
(
MTDAM

)−1 (
TM − (dA)TM

)T
(2.4.1.1)

Step 4. LASSO calibration estimator of total:

T̂LASSO
y =

(
wLASSO

)T
y

= (dA)Ty +
(
TX − (dA)TX

) (
XTDAX

)−1
XTDAy

= (dA)Ty +

(
N∑

k=1

µ̂k −
∑

i∈sA

dAi µ̂i

)

B̂MC (2.4.1.2)

where B̂MC is the calibration slope to satisfy the calibration constraints

(different from the model parameter estimates B̂):

B̂MC =

∑

i∈sAd
A
i (µ̂i − ˆ̄µ)(yi − ȳ)

∑

i∈sAd
A
i (µ̂i − ˆ̄µ)2

ˆ̄µ =
∑

i∈sA

dAi µ̂i

/∑

i∈sA

dAi

ȳ =
∑

i∈sA

dAi yi
/∑

i∈sA

dAi

2.4.2 Asymptotic estimator of total

Wu and Sitter (2001) established the conditions to derive asymptotic model-

assisted calibration estimator. We state the conditions here with slight modifica-

tion in notations to be consistent with the current research. Let β be the true

superpopulation parameter for the model defined in equation (2.2.2.1), and B be the

finite-population quasilikelihood estimator of β, the following conditions are used for
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deriving LASSO calibration asymptotic estimator of total:

(2.4.2.i) B̂ = B + Op(1/
√
n), B is the finite-population regression slope of β,

B → β.

(2.4.2.ii) For each xi, ∂µ(xi, t)/∂t is continuous in t, and maxi |∂µ(xi, t)/∂t| ≤

h(xi,β) for t in a neighborhood of β, and N−1
∑

i∈Uh(xi,β) = O(1).

(2.4.2.iii) For each xi, ∂
2µ(xi, t)/∂t∂t

T is continuous in t, andmaxj,k |∂2µ(xi, t)/∂tj∂tk| ≤

k(xi,β) for t in a neighborhood of β, and N−1
∑

i∈Uk(xi,β) = O(1).

(2.4.2.iv) The Horvitz-Thompson estimators of certain population means are asymp-

totically normally distributed.

(2.4.2.v) λn

/
(
√
n/(

√
n)γ) → ∞ and λn

/√
n → 0.

Remark II.1. The certain means in condition (2.4.2.iv) are means of first and second

derivatives of µ(xi, t) in the Taylor series expansion of µ(xi, t) evaluated at a neigh-

borhood around B, which is a vector of values if B has more than one parameter. The

condition requires that the Horvitz-Thompson estimates of the means are bounded

element-wise.

Lemma II.2. Assume the superpopulation model:

Eξ(yk|xk) = µ(xk,β), Vξ(yk|xk) = ν2
kσ

2

Let B be the finite-population quasilikelihood estimate of β, B → β. Under conditions

(2.4.2.i)-(2.4.2.vi), the model-assisted asymptotic estimator of population total is:

T̂MC
y =

∑

i∈sA

dAi (yi − µiB
MC) +

N∑

i=1

µiB
MC + op

(
N√
n

)

(2.4.2.1)
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where

µi = µ(xi,B)

BMC =

∑N

i=1(µi − µ̄)(yi − ȳ)
∑N

i=1(µi − µ̄)2

The proof for Lemma II.2 is left in Appendix A.1.1. Given Lemma II.2, we can

derive the asymptotic LASSO estimator of total: T̂LASSO
y . We later use T̂LASSO

y

to derive asymptotic expectation as well as asymptotic linearized variance estimates

LASSO calibration estimator of total.

Theorem II.3. Suppose the parameters in a full regression model have both zero

and non-zero components, without loss of generality, let the first p be non-zero and

the last q be zero: βF =






β
(1)
(p×1)

β
(2)
(q×1)




, β(1) = β and β(2) = 0(q×1), under conditions

(2.4.2.i)-(2.4.2.v), the asymptotic LASSO calibration estimator of total is:

T̂LASSO
y =

∑

i∈sA

dAi (yi − µiB
MC) +

N∑

i=1

µiB
MC + op

(
N√
n

)

(2.4.2.2)

Proof. Under condition (2.4.2.v), the adaptive LASSO regression satisfies the oracle

property through Theorems 1 and 4 in (Zou, 2006):

Pr
(
B(2) = 0

)
→ 1

√
n
(

B̂(1) −B
)

→ N (0,C)

B → β

where C = Σ(B) is the covariance matrix of B under linear model, and C = I−1(B)

is the inverse of Fisher information matrix of B(1) under generalized linear model. By

Slutsky’s theorem, the oracle property implies B̂(1) = B + Op(1/
√
n). By condition
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(2.4.2.i) and Lemma II.2:

T̂LASSO
y = T̂MC

y

= dAy +

(
∑

k∈U
µ(xk,B)−

∑

i∈sA

µ(xi,B)

)

BMC + op

(
N√
n

)

Theorem II.4. T̂LASSO
y is asymptotically model-unbiased.

Proof. Under the assumption of our theoretical framework, the superpopulation pa-

rameters are a subset of the full LASSO regression parameters, we can prove the

asymptotic unbiasedness of T̂LASSO
y by taking expectations with respect to model ξ.

First note that:

Eξ

[
BMC

]
= Eξ

[∑N

i=1(µi − µ̄)(yi − ȳ)
∑N

i=1(µi − µ̄)2

]

=

∑N

i=1(µi − µ̄)(µi − µ̄)
∑N

i=1(µi − µ̄)2
= 1

Thus

Eξ

[

T̂LASSO
y − T

]

≈ Eξ

[
∑

i∈sA

dAi (yi − µiB
MC) +

N∑

i=1

µiB
MC −

N∑

i=1

yi

]

=
∑

i∈sA

dAi (µi − µi) +
N∑

i=1

µi −
N∑

i=1

µi (since Eξ

[
BMC

]
= 1)

= 0

Thus as long as LASSO regression parameters include the superpopulation pa-

rameters, T̂LASSO
y is model-unbiased regardless of design weights. This property is

essential in non-probability samples, where there are no initial design weights to guar-

antee unbiasedness.
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2.4.3 Asymptotic design variance of T̂LASSO
y

To complete our theoretical development, we derive the linearized asymptotic

variance estimate of T̂LASSO
y by taking variance of the asymptotic LASSO estimator

of total, T̂LASSO
y :

vA(T̂
LASSO
y ) = VA

(
∑

i∈sA

dAi
(
yi − µiB

MC
)
+

N∑

i=1

µiB
MC

)

= VA

(
∑

i∈sA

dAi
(
yi − µiB

MC
)

)

(2.4.3.1)

(since A is single-stage probability-based sampling)

=
∑

i∈U

(
yi − µiB

MC

πi

)2

πi(1− πi)+

∑

i∈U

∑

j 6=i

(πij − πiπj)
(yi − µiB

MC)

πi

(yj − µjB
MC)

πj

(2.4.3.2)

Equation (2.4.3.2) is consistent with equation (3.30) derived for the variance of tra-

ditional LASSO calibration estimator of total in McConville (2011). We use sample

estimates for population quantities in (2.4.3.2):

vA(T̂
LASSO
y ) =

∑

i∈sA

(

yi − µ̂iB̂
MC

πi

)2

(1− πi)+

∑

i∈sA

∑

j 6=i

πij − πiπj

πij

(yi − µ̂iB̂
MC)

πi

(yj − µ̂jB̂
MC)

πj

(2.4.3.3)

An alternative linearized variance estimate, suggested by (Särndal et al., 1989), mul-

tiplies (yi − µ̂iB̂
MC) by g-weights, which are the ratios of calibrated weights to the

original design weights:

g = 1(nA×1) +M
(
MTDAM

)−1 (
TM − (dA)TM

)T

38



v.gA(T̂
LASSO
y ) =

∑

i∈sA




gi

(

yi − µ̂iB̂
MC
)

πi





2

(1− πi)+

∑

i∈sA

∑

j 6=i

πij − πiπj

πij

gi(yi − µ̂iB̂
MC)

πi

gj(yj − µ̂jB̂
MC)

πj

(2.4.3.4)

To simplify notations, we refer to vA(T̂
LASSO
y ) as vLASSO and v.gA(T̂

LASSO
y ) as vLASSO

g .

2.5 Simulation setup

We design a simulation to evaluate LASSO calibration estimator of total: T̂LASSO
y ,

developed in Section 2.4.1, and linearized variance estimates of T̂LASSO
y : vLASSO and

vLASSO
g , developed in section 2.4.3. Since both linearized variance estimates are based

on asymptotic LASSO calibration estimate of the total, they might not perform well

for small sample sizes. We also apply naive bootstrap variance estimates to obtain

vLASSO
boot by drawing 500 samples with replacement from each simulation sample to

obtain a bootstrap variance estimate of T̂LASSO
y .

To simulate non-probability samples, we generate samples with unequal selection

probabilities, but set design weights dA = N/n. The simulation is based on an arti-

ficial population, for which we know the true population regression coefficients. The

calibration estimator that incorporates true regression coefficients (as opposed to co-

efficient estimates based on samples) is denoted by T̂ORACLE
y . We denote T̂GREG

y

as the traditional calibration estimator of total (see equation 2.2.1.4). The goal of

the simulation is to compare bias, variance, and root-mean-square-error (RMSE) of

T̂ORACLE
y , T̂LASSO

y , T̂GREG
y , and T̂HT

y (pure design-based Horvitz-Thompson estima-

tor) under different experimental designs. We evaluate vLASSO, vLASSO
g , and vLASSO

boot

through their coverage rates. Because T̂LASSO
y performs both variable selection and

estimation, we implement backward stepwise selection to select the working model for

GREG. Although there is no theoretical justification for using stepwise variable selec-
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tion, citeskinner1997variable has shown that given two auxiliary variables, a stepwise

procedure can result in improved efficiency of GREG estimator. We are interested

in knowing the performance of each estimator under (1) populations with differ-

ent signal-to-noise-ratios (SNR), (2) independent, informative, and biased sampling

schemes, and (3) small and large sample sizes. The signal-to-noise ratio is calcu-

lated according to definitions in (Czanner et al., 2008). Let X(1) be the covariate

matrix corresponding to non-zero regression parameters β(1), and X(2) be the covari-

ate matrix corresponding to zero-valued regression parameters β(2), X =






X(1)

X(2)




,

β =






β(1)

β(2)




. For a continuous outcome,

SNR =
SSResidual(y,X(2),B(2))− SSResidual(y,X,B)

SSResidual(y,X,B)

where SSResidual is the sum of squares of residuals of the linear regression. For a

binary outcome,

SNR =
Dev(y,X(2),B(2))−Dev(y,X,B)

Dev(y,X,B)

where Dev is the deviance of the logistic regression model. We set two levels of cor-

relations (low/high) between covariates, and two levels of effect sizes (low/high) of

the covariates, resulting in 4 populations: low/low, low/high, high/low, and high-

/high correlations. We set the low/high and high/low populations to have the same

SNR in order to understand the influence of correlation and effect size on estimator’s

performance given the same SNR. Three sampling schemes are used to draw sam-

ples: simple-random-sampling without replacement, SRS, Poisson sampling with se-

lection probabilities proportional to covariates, POI(X), Poisson sampling with selec-

tion probabilities proportional to covariates and the outcome, POI(X+Y). POI(X+Y)
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sampling simulates self-selection bias of non-probability samples, where the propen-

sity of a respondent to participate in a study relates to the analysis variable. We

consider two sample sizes: 250 and 1000. Thus we have a total of 24 experimental

groups for a continuous outcome variable, and 24 experimental groups for a binary

outcome variable.

2.5.1 Population

Population outcome and covariates. We follow a common type of population

covariance structure used in LASSO-related simulations (Tibshirani , 1996; Wang and

Leng , 2008; Meier et al., 2008) – auto-decay correlation structure:

cor(Xi, Xj) = ρ|i−j|, Σρ =















1 ρ ρ2 · · · ρp

ρ 1 ρ · · · ρp−1

ρ2 ρ 1 · · · ρp−2

...
...

...
. . .

...

ρp ρp−1 ρp−2 · · · 1















We generate population covariate matrix with N = 100, 000 from a multivariate

normal distribution with mean 0(p×1) and covariance Σρ, p = 40. The continuous

outcome variable is generated by the regression model:

yi = β0 + β1xi1 + β2xi2 + · · ·+ β40xi40 +N(0, 3)

The binary outcome variable is generated by the logistic regression model:

φi = expit(β0 + β1xi1 + β2xi2 + · · ·+ β40xi40), expit(u) = (1 + exp(u))−1

yi = bernoulli(φi)
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Signal-to-Noise-Ratio parameters. We set ρ = 0.15 for low correlation popu-

lation, and ρ = 0.73 for high correlation population. For both continuous and binary

outcome variables:

Low effect-size β(1) := β12 · · ·β19, β32 · · ·β39 = 0.45

High effect-size β(1) := β12 · · ·β19, β32 · · ·β39 = 0.74

For continuous y: β0 = 1, for binary y: β0 = 0.4. The rest of βi = 0. Out of 41

regression parameters, 16 are non-zero and 25 are zero.

2.5.2 Sampling schemes

Three sampling schemes are used to generate the sample:

(1) Simple-Random-Sampling (SRS): selection probabilities = n/N .

(2) Poisson sampling with probabilities proportional to X, POI(X).







continuous y : πi ∝ 0.4 + 0.4xi5 + 0.4xi15 + 0.4xi25 + 0.4xi35

binary y : logit(πi) = 0.4 + 0.4xi5 + 0.4xi15 + 0.4xi25 + 0.4xi35

(3) Poisson sampling with probabilities proportional to X and y, POI(X + Y ).







continuous y : πi ∝ 0.4 + 0.4xi5 + 0.4xi15 + 0.4xi25 + 0.4xi35 + 0.5yi

binary y : logit(πi) ∝ 0.4 + 0.4xi5 + 0.4xi15 + 0.4xi25 + 0.4xi35 + yi

Recall that X15 and X35 have non-zero regression coefficients in generating y.

Table 2.1 summarizes the population quantities.
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Table 2.1: Simulation parameters

Population size N = 100, 000 SNR T

ρ effect binary y continuous y binary y continuous y

low (ρ = 0.15) low (β(1) = 0.4) 0.51 0.47 56,175 100,707
low (ρ = 0.15) high (β(1) = 0.74) 1.10 1.26 54,472 101,369
high (ρ = 0.73) low (β(1) = 0.4) 1.10 1.26 54,184 101,772
high (ρ = 0.73) high (β(1) = 0.74) 2.75 3.41 52,782 103,120

Sampling scheme outcome selection probability design weights

SRS binary y πi = n/N N/n
continuous y πi = n/N N/n

POI(X) binary y logit(πi) ∝ 0.4 + 0.4xi5 + 0.4xi15 + 0.4xi25 + 0.4xi35 N/n
continuous y πi ∝ 0.4 + 0.4xi5 + 0.4xi15 + 0.4xi25 + 0.4xi35 N/n

POI(X+Y) binary y logit(πi) ∝ 0.4 + 0.4xi5 + 0.4xi15 + 0.4xi25 + 0.4xi35 + yi N/n
continuous y πi ∝ 0.4 + 0.4xi5 + 0.4xi15 + 0.4xi25 + 0.4xi35 + 0.5yi N/n

small large

Sample size n 250 1,000
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2.5.3 Evaluation metrics

Point estimates and variance. We evaluate empirical bias, variance, and

RMSE for each estimator of total. Let S be the number of simulation iterations.

We define:

θ̂ = T̂HT
y , T̂GREG

y , T̂LASSO
y , T̂ORACLE

y

bias
(

θ̂
)

=
1

S

S∑

j=1

(

θ̂j − θ
)

var
(

θ̂
)

=
1

S − 1

S∑

j=1

(

θ̂j − ¯̂
θj

)2

,
¯̂
θ =

1

S

S∑

j=1

θ̂j

rmse
(

θ̂
)

=

√

bias2(θj) + var(θ̂j)

θ =

N∑

k=1

yk

Relative performance. The most relevant experimental groups to non-probability

samples are based on POI(X) and POI(X+Y). In these sampling schemes, the samples

are off-balanced because the selection favors cases with higher covariate values. In the

case of POI(X+Y), the analysis variable is part of the selection to mimic self-selection

of non-probability sample members. We compare traditional calibration estimator,

GREG, with LASSO calibration estimator under POI(X) and POI(X+Y) in terms of

bias ratio (BR) and percent-relative-rmse (relrmse):

BR =
bias

(

θ̂
)

√

var
(

θ̂
) , %relrmse = 100

rmse(T̂LASSO
y )

rmse(T̂GREG
y )

θ̂ = T̂GREG
y , T̂LASSO

y

A bias ratio with value |BR| > 0.4 indicates potential problem in coverage of confi-

dence intervals.
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Variance estimates. We evaluate the linearized variance estimates and boot-

strap variance estimates by the their 95% nominal coverage and %bias relative to

empirical variance. We use normal approximation to generate confidence intervals.

Let s index simulation number. We construct a confidence interval for each method,

v = vLASSO, vLASSO
g , vLASSO

boot :

CIs = T̂LASSO
ys ± 1.96

√
vs

Is =







1, if T ∈ CIs

0, otherwise

where Is is the indicator for whether the confidence interval covers the true population

total. The nominal 95% coverage is: 100
∑S

s=1 Is/S. We calculate %bias as:

%bias = 100
[

v − var
(

T̂LASSO
y

)]/
var

(

T̂LASSO
y

)

where var
(

T̂LASSO
y

)

is the empirical variance obtained from the simulation samples.

2.6 Simulation results

The simulation results are based on S = 1, 000 simulated samples per each exper-

imental group. Table 2.2 lists the numerical results of bias, variance, and root-mean-

square-error of each estimator under different experimental designs for estimating the

total of a continuous outcome variable. Table 2.3 lists the numerical results for es-

timating the total of a binary outcome variable. For bias and RMSE, we make the

following systematic comparisons:

(1) LASSO relative to ORACLE: to see under what situations does LASSO approach

the optimal performance, i.e., attains oracle property.

(2) Pure design-based HT estimator relative calibration-based estimators LASSO,

45



GREG: to evaluate the effectiveness of models in reducing bias and RMSE.

(3) LASSO relative to GREG under experimental groups that mimic non-probability

samples: to compare the results under POI(X) and POI(X+Y), where we rely on

working models to compensate the unavailability of initial design weights.

We follow the evaluations of bias, variance, and RMSE with comparisons of different

variance estimates of LASSO calibration estimator of total. In section 2.6.4, we

compare two asymptotic linearized variance estimates, vLASSO and vLASSO
g along with

naive-bootstrap variance estimate, vLASSO
boot in terms of coverage and bias.

2.6.1 LASSO relative to ORACLE

LASSO RMSE is closer to ORACLE RMSE as sample size increases. The gap

between LASSO and ORACLE is also smaller as signal-to-noise-ratio grows; this

is especially evident for estimating binary outcomes. It seems LASSO attains ora-

cle property sooner when estimating continuous outcomes. The performance loss of

LASSO relative to ORACLE is largely due to variance rather than bias is expected,

since LASSO has to perform model selection per sample while the ORACLE estimator

does not. Under the same SNR with sample size 250, LASSO is closer to ORACLE

when the covariates exhibit high correlations. It seems that variable effect sizes have

less impact on LASSO performance when the sample size is small. When the sample

size is 1,000, for both binary and continuous outcomes, LASSO and ORACLE have

very similar RMSEs. There is evidence that LASSO has oracle property as the sample

size grows.

2.6.2 HT relative to calibration-based estimators

Under SRS, the initial design weights are correct. This is the only type of experi-

mental group where HT produces roughly unbiased results. However, the calibration-

based estimators still outperform HT for both continuous and binary outcomes and all
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sample sizes. There is strong evidence that assisting models can reduce RMSE over

pure-design-based estimators. When the assisting-model is miss-specified, such as

GREG estimator for binary outcomes, we still observe gains in RMSE over HT. Rel-

ative to GREG, LASSO’s gain over HT is more substantial when estimating totals of

binary variables. This can be largely attributed to LASSO employing a logistic-type

model for binary outcome variables rather than a linear model. When the sampling

is informative or biased (POI(X) and POI(X+Y)), HT performs poorly because the

design weights are incorrect. Under high correlation and high effect sizes, HT bias

is as large as the true population totals for continuous variables. The results are

in-line with the theoretical development in Section 2.4.2: when the correct model is

a subset of the full regression model, model-assisted estimator of total can still be

approximately unbiased without the correct design weights. One interesting pattern

is the bias of continuous outcome under POI(X+Y) sampling – for both GREG and

LASSO, the bias is smaller for smaller sample sizes. This is likely due to additive bias

under continuous outcome when the assisting model has not completely removed the

sample bias. For estimating binary outcome totals, LASSO is effective in reducing

the bias to roughly 1% under POI(X+Y).

2.6.3 LASSO relative to GREG under POI(X) and POI(X+Y)

Evaluating LASSO estimator without correct design weights under POI(X) and

POI(X+Y) sampling schemes is at the heart of this research. POI(X) and POI(X+Y)

induce biased samples by selecting cases with larger covariate values with higher

probabilities. Under POI(X+Y), the selection also favors cases with larger outcome

values. Tables 2.4 and 2.5 list bias ratio of GREG and LASSO and percent-relative-

RMSE of LASSO to GREG. Except for continuous outcome under POI(X) sampling,

both GREG and LASSO absolute bias ratios tend to be larger under sample size

1,000 than 250, suggesting persistent bias remains in estimating population totals in
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both sampling schemes. Under POI(X) sampling, GREG and LASSO have absolute

bias ratios under 0.4 for both continuous and binary outcomes. Thus the bias may

not be significant enough to cause issues in coverage under informative sampling.

Under POI(X+Y) sampling, absolute bias ratios of GREG and LASSO are under

or close to 0.4 for the continuous outcome, but consistently greater than 0.4 for

the binary outcome. The absolute bias ratio of LASSO decreases as SNR increases,

whereas the bias ratio of GREG shows only slight improvement as SNR increases.

There is evidence that the coverage of LASSO estimator of total for a binary outcome

improves as either correlation or effect size of covariates increases. The sample bias

likely remains significant with GREG in estimating totals of binary outcomes. In

terms of RMSE, LASSO has marginal improvement over GREG for estimating totals

of continuous outcome variables. The improvement is slightly noticeable, about 3%,

when there are highly correlated predictors in the model. Under POI(X+Y) sampling,

LASSO calibration shows distinct advantage for both bias and RMSE over GREG.

The advantage grows as SNR increases. Under Low/High and High/Low population

types, the SNR is the same, thus the difference in performance between LASSO and

GREG is attributed to correlation or effect size. LASSO performs better in both

bias and RMSE in High/Low population type, suggesting that LASSO has stronger

advantage over GREG when there are highly correlated predictors in the model.

This suggests that LASSO has better variable selection capability in the presence of

multicollinearity relative to stepwise variable selection procedure used in GREG.With

high levels of correlation, LASSO improves over GREG by more than 22% in terms

of RMSE while reducing bias by roughly 50% or more. When SNR increases, the

relationship between y and X is stronger. One would expect that LASSO advantage

over GREG, in terms of using the correctly specified working model, is less evident

as SNR increases. We observe the opposite in the simulation. LASSO, under higher

SNR has improved RMSE over GREG than under lower SNR. When stepwise is able
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to select better working models under higher SNR for GREG, LASSO is able to select

more accurate models.

Figures 2.1 and 2.2 provide visual comparisons of LASSO and GREG for all ex-

perimental groups. For SRS and POI(X), both LASSO and GREG look approxi-

mately unbiased. The performances of LASSO and GREG are nearly the same when

estimating continuous outcome totals. When estimating binary outcome totals, un-

der POI(X+Y), LASSO approaches the true value as signal-to-noise-ratio increases,

while GREG remains distant from the true value. There is evidence that LASSO can

achieve better bias reduction than traditional calibration under the situations: (1)

some predictors are highly correlated, (2) samples are prone to self-selection bias, (3)

the inference is on population totals of binary outcomes.

2.6.4 Variance estimates

Tables 2.6 and 2.7 list the 95% nominal coverage and percent-bias for each of

the two linearized asymptotic variance estimators developed in this research, as well

as the naive bootstrap variance estimate of the LASSO calibration estimator. We

explore bootstrap variance estimates because the rate of convergence to asymptotic

variance may be slow.

For continuous outcome, bootstrap variances have coverages that are consistently

close to 95% under SRS and POI(X) sampling schemes for both sample sizes. Un-

der POI(X+Y) sampling scheme, the coverages are lower, 92%-93%. The linearized

variances have coverages that are sensitive to both sample size and sampling scheme.

With sample size 250, the coverages are consistently 91%-92% under SRS and POI(X),

and 90%-91% under POI(X+Y). With sample size 1,000, the linearized variances have

improved coverages: 93%-94% under SRS and POI(X), 90%-92% under POI(X+Y).

The difference in coverage of linearized variance estimates between small and large

sample sizes is expected, since the variance estimates are asymptotic and improves

49



Table 2.2: Simulation summary for continuous outcome

sampling HT GREG LASSO ORACLE

Population n scheme bias var rmse bias var rmse bias var rmse bias var rmse

250
SRS 532 546,381,441 23,381 861 424,526,197 20,622 934 427,591,058 20,699 846 358,924,754 18,964

POI(X) 12,382 524,741,577 26,039 -580 445,787,070 21,122 -356 441,273,103 21,010 -989 356,411,600 18,905
low/low POI(X+Y) 19,397 518,926,811 29,920 4,596 443,164,082 21,547 4,713 430,951,163 21,288 3,910 353,111,827 19,194

T = 100,707
1000

SRS 156 129,228,386 11,369 273 93,805,883 9,689 297 93,504,572 9,674 351 90,805,251 9,536
SNR = 0.47 POI(X) 12,634 128,995,875 16,989 -131 91,169,298 9,549 -162 91,777,156 9,581 -425 88,288,602 9,406

POI(X+Y) 19,728 128,307,969 22,749 4,912 91,348,523 10,746 4,957 90,968,340 10,749 4,473 88,219,229 10,403

250
SRS 352 849,471,957 29,148 856 414,610,415 20,380 954 416,676,767 20,435 846 358,924,754 18,964

POI(X) 21,070 818,411,393 35,529 -1,265 433,794,615 20,866 -917 432,230,564 20,810 -989 356,411,600 18,905
low/high POI(X+Y) 31,709 817,283,474 42,694 3,749 427,131,827 21,004 4,023 426,946,783 21,051 3,871 354,097,194 19,212

T = 101,369
1000

SRS 30 199,722,626 14,132 272 93,872,408 9,693 297 93,058,990 9,651 351 90,805,251 9,536
SNR = 1.26 POI(X) 21,059 199,443,370 25,356 -133 91,201,517 9,551 -211 90,416,237 9,511 -425 88,288,602 9,406

POI(X+Y) 31,684 196,263,286 34,643 4,865 90,576,516 10,688 4,825 89,406,049 10,615 4,435 87,756,620 10,364

250
SRS 62 940,500,518 30,668 960 421,417,670 20,551 1,029 399,385,645 20,011 853 359,046,433 18,968

POI(X) 50,237 894,823,134 58,469 -681 433,556,452 20,833 -1,634 402,421,619 20,127 -1,118 363,311,654 19,093
high/low POI(X+Y) 57,774 872,312,893 64,886 4,052 435,016,719 21,247 3,002 399,327,736 20,207 3,510 361,871,205 19,344

T = 101,772
1000

SRS 22 218,139,275 14,770 284 93,674,279 9,683 293 92,973,285 9,647 349 90,805,664 9,536
SNR = 1.26 POI(X) 50,594 209,736,746 52,626 -102 93,432,544 9,667 -539 91,379,357 9,574 -489 89,854,380 9,492

POI(X+Y) 58,167 209,105,092 59,937 4,670 95,183,110 10,816 4,183 92,237,356 10,475 4,164 90,079,904 10,364

250
SRS -421 1,896,806,029 43,554 849 435,725,344 20,891 1,020 406,548,977 20,189 853 359,046,433 18,968

POI(X) 83,393 1,826,143,138 93,704 -765 434,899,932 20,868 -1,541 406,073,024 20,210 -1,118 363,311,654 19,093
high/high POI(X+Y) 96,471 1,778,575,637 105,286 3,723 428,204,930 21,025 3,040 403,711,035 20,321 3,359 362,307,680 19,328

T = 103,120
1000

SRS -191 444,307,136 21,079 282 93,144,269 9,655 303 92,995,701 9,648 349 90,805,664 9,536
SNR = 3.41 POI(X) 83,577 424,227,983 86,077 -235 93,110,279 9,652 -510 91,063,458 9,556 -489 89,854,380 9,492

POI(X+Y) 96,880 422,928,909 99,039 4,372 94,084,518 10,639 4,084 91,842,347 10,417 4,019 89,819,107 10,294
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Table 2.3: Simulation summary for binary outcome

sampling HT GREG LASSO ORACLE

Population n scheme bias var rmse bias var rmse bias var rmse bias var rmse

250
SRS 7 10,166,643 3,189 10 7,151,995 2,674 45 7,041,549 2,654 77 6,104,936 2,472

POI(X) 2,582 9,955,930 4,077 181 8,022,014 2,838 122 7,756,078 2,788 24 5,914,888 2,432
low/low POI(X+Y) 4,856 9,820,367 5,780 1,980 8,134,486 3,472 1,810 7,840,279 3,334 1,529 6,036,561 2,894

T = 56,175
1000

SRS -6 2,678,458 1,637 13 1,740,499 1,319 11 1,621,735 1,274 24 1,562,244 1,250
SNR = 0.51 POI(X) 2,493 2,415,532 2,938 2 1,773,634 1,332 -32 1,708,100 1,307 -39 1,513,083 1,231

POI(X+Y) 4,741 2,315,032 4,979 1,767 1,770,841 2,212 1,643 1,704,963 2,098 1,489 1,555,240 1,942

250
SRS -20 10,841,939 3,293 21 6,074,082 2,465 87 5,385,316 2,322 72 4,399,422 2,099

POI(X) 3,022 10,206,245 4,397 134 6,138,442 2,481 83 5,775,727 2,405 31 4,105,432 2,026
low/high POI(X+Y) 5,297 9,825,517 6,155 1,556 6,215,811 2,939 1,319 5,822,126 2,750 1,081 4,165,828 2,310

T = 54,472
1000

SRS -11 2,651,591 1,628 33 1,287,543 1,135 34 1,048,220 1,024 28 1,017,130 1,009
SNR = 1.10 POI(X) 2,944 2,371,990 3,323 9 1,420,417 1,192 -60 1,234,151 1,113 -19 1,085,200 1,042

POI(X+Y) 5,184 2,292,359 5,400 1,420 1,407,244 1,850 1,100 1,224,615 1,560 1,049 1,124,686 1,492

250
SRS -23 10,297,721 3,209 38 5,769,837 2,402 98 4,915,369 2,219 96 4,085,485 2,024

POI(X) 6,614 9,641,798 7,307 271 6,160,573 2,497 -217 4,801,426 2,202 -63 4,038,766 2,011
high/low POI(X+Y) 8,618 9,327,405 9,143 1,750 6,280,660 3,057 940 4,936,623 2,413 1,020 4,241,811 2,298

T = 54,184
1000

SRS -24 2,498,438 1,581 14 1,231,678 1,110 24 997,263 999 21 950,476 975
SNR = 1.10 POI(X) 6,557 2,194,907 6,722 180 1,373,329 1,186 -223 1,091,859 1,068 -123 1,054,915 1,034

POI(X+Y) 8,536 2,128,354 8,660 1,630 1,357,195 2,003 898 1,072,196 1,371 957 1,073,504 1,410

250
SRS -121 10,171,546 3,192 -21 5,209,275 2,282 59 3,774,442 1,944 21 2,728,195 1,652

POI(X) 7,139 9,824,255 7,797 288 5,708,252 2,407 -243 3,649,966 1,926 4 2,740,594 1,655
high/high POI(X+Y) 9,114 9,379,607 9,615 1,516 5,716,313 2,831 543 3,707,496 2,001 692 2,841,778 1,822

T = 52,782
1000

SRS -55 2,540,285 1,595 -16 1,073,393 1,036 3 647,693 805 0 604,681 778
SNR = 2.75 POI(X) 7,090 2,191,534 7,243 188 1,228,264 1,124 -213 745,018 889 -30 674,859 822

POI(X+Y) 9,055 2,108,114 9,170 1,440 1,205,997 1,811 532 727,537 1,005 672 684,669 1,066
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Table 2.4: Bias ratio of LASSO and GREG under POI(X) and POI(X+Y)

POI(X) POI(X+Y)

Continuous Binary Continuous Binary

Population n GREG LASSO GREG LASSO GREG LASSO GREG LASSO

low/low 250 -0.03 -0.02 0.06 0.04 0.22 0.23 0.69 0.65

1000 -0.01 -0.02 0.00 -0.02 0.51 0.52 1.33 1.26

low/high 250 -0.06 -0.04 0.05 0.03 0.18 0.19 0.62 0.55

1000 -0.01 -0.02 0.01 -0.05 0.51 0.51 1.20 0.99

high/low 250 -0.03 -0.08 0.11 -0.10 0.19 0.15 0.70 0.42

1000 -0.01 -0.06 0.15 -0.21 0.48 0.44 1.40 0.87

high/high 250 -0.04 -0.08 0.12 -0.13 0.18 0.15 0.63 0.28

1000 -0.02 -0.05 0.17 -0.25 0.45 0.43 1.31 0.62

Table 2.5: Relative RMSE of LASSO to GREG under POI(X) and POI(X+Y)

POI(X) POI(X+Y)

Continuous Binary Continuous Binary

Population n %relrmse %relrmse %relrmse %relrmse

low/low 250 99.5% 98.2% 98.8% 96.0%

1000 100.3% 98.2% 100.0% 94.9%

low/high 250 99.7% 96.9% 100.2% 93.6%

1000 99.6% 93.3% 99.3% 84.3%

high/low 250 96.6% 88.2% 95.1% 78.9%

1000 99.0% 90.1% 96.8% 68.4%

high/high 250 96.8% 80.0% 96.7% 70.7%

1000 99.0% 79.1% 97.9% 55.5%
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Figure 2.1: Boxplot continuous outcome
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Figure 2.2: Boxplot binary outcome
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over larger samples. There is slight improvement for linearized variance coverage

as SNR increases under POI(X+Y). In terms of bias, there is evidence that bias

improves as SNR increases. With the same SNR, both linearized and bootstrap vari-

ances have smaller bias given predictors with high correlations relative to predictors

with high effect sizes. Linearized variances tend to underestimate the empirical vari-

ance, especially when the sample size is small. Overall, there is very little difference

between the two linearized variance estimates. Bootstrap variance tends to overesti-

mate the empirical variance, but the bias is generally smaller than linearized variance

estimates’.

For binary outcome, both linearized and bootstrap variance estimates are sensitive

to sample size, sampling scheme, and SNR. Bootstrap variance coverages are consis-

tently close to 95% under SRS and POI(X) for both sample sizes and all population

types, but coverages range from 75% to 94% under POI(X+Y). Under POI(X+Y),

the bootstrap variance coverages are better with sample size 250 than with sample

size 1,000, and better with high-correlation populations than with low-correlation

populations. In terms of coverage, linearized variances show a similar trend under

POI(X+Y) as bootstrap: better coverage with smaller samples than bigger sam-

ples, and better coverage with high-correlation populations than with low-correlation

populations. It is likely that sample bias persists under POI(X+Y), especially for

low-correlation populations, thus the coverage is low at larger sample sizes due to

more biases being added together. Under SRS and POI(X), linearized variance cov-

erage improves as sample size increases: from 85%-90% to 90%-94%. In terms of bias,

both bootstrap and linearized variances have smaller bias with larger sample sizes.

Under the same sample size, linearized variance estimates have larger bias as SNR

increases. The same trend is not observed in bootstrap variance estimates. Similar

to continuous outcome results, linearized variance tends to underestimate the empir-

ical variance, especially when the sample size is small. Unlike continuous outcome
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results, there is evidence that the g-weighted linearized variance estimates have bet-

ter bias-property than unweighted linearized variance estimate. Bootstrap variance

tends to overestimate the empirical variance. However, the biases are much smaller

than linearized variance estimates'.
Overall, bootstrap variances have better coverage than linearized variances, al-

though in settings with large sample sizes and low correlation between covariates,

nominal coverage is still poor. Bootstrap variance estimates also have smaller bias,

and they are almost always positive, which is more desirable than the negative bias

of linearized variance estimates. Under continuous outcome, if the sample size is

sufficiently large, linearized asymptotic variances may potentially be used. In this

simulation, the linearized variance coverages under sample size 1,000 for continuous

outcomes range from 90% to 95%, with bias generally around -5%. For all other

situations: small sample size, binary outcome type, and all correlation/effect size

combinations, we recommend bootstrap variance estimates over linearized variance

estimates where possible.
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Table 2.6: 95% nominal coverage and %bias of variance estimates for LASSO

Continuous outcome coverage %bias

Population n scheme vLASSO vLASSO
g vLASSO

boot vLASSO vLASSO
g vLASSO

boot

250
SRS 91.7% 91.8% 95.4% -22.6% -22.3% 2.9%

POI(X) 91.2% 91.2% 96.1% -25.1% -24.5% 5.7%
low/low POI(X+Y) 89.6% 89.9% 95.4% -23.5% -22.8% 7.9%

1000
SRS 93.2% 93.2% 93.8% -7.3% -7.2% -0.3%

POI(X) 94.0% 93.9% 95.5% -5.7% -5.3% 6.6%
POI(X+Y) 90.0% 90.1% 92.1% -4.9% -4.4% 7.9%

250
SRS 91.5% 91.5% 95.7% -22.6% -22.3% 6.2%

POI(X) 90.9% 91.2% 96.4% -25.4% -24.9% 8.8%
low/high POI(X+Y) 90.0% 90.2% 95.1% -24.5% -23.7% 9.9%

1000
SRS 93.4% 93.5% 94.3% -6.6% -6.5% -0.1%

POI(X) 94.1% 94.2% 95.9% -4.0% -3.5% 7.6%
POI(X+Y) 90.7% 90.7% 92.7% -2.9% -2.3% 9.6%

250
SRS 92.3% 92.2% 95.4% -17.4% -17.1% 2.0%

POI(X) 92.5% 92.6% 95.8% -17.9% -16.1% 6.4%
high/low POI(X+Y) 91.2% 91.8% 96.5% -17.4% -15.4% 7.1%

1000
SRS 93.5% 93.5% 94.4% -6.5% -6.4% -0.9%

POI(X) 94.1% 94.0% 95.4% -5.0% -3.1% 5.7%
POI(X+Y) 91.9% 92.3% 93.4% -6.0% -3.9% 5.0%

250
SRS 92.3% 92.3% 95.2% -19.6% -19.3% 2.2%

POI(X) 92.0% 92.3% 96.1% -19.6% -17.8% 7.4%
high/high POI(X+Y) 91.2% 91.8% 95.6% -19.1% -16.9% 8.3%

1000
SRS 93.4% 93.4% 94.5% -6.5% -6.4% -0.7%

POI(X) 94.0% 94.5% 95.6% -4.7% -2.8% 6.7%
POI(X+Y) 92.2% 92.4% 93.4% -5.6% -3.3% 6.1%
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Table 2.7: 95% nominal coverage and %bias of variance estimates for LASSO

Binary outcome coverage %bias

Population n scheme vLASSO vLASSO
g vLASSO

boot vLASSO vLASSO
g vLASSO

boot

250
SRS 89.8% 90.0% 95.9% -28.1% -27.8% 9.2%

POI(X) 88.1% 88.6% 96.7% -37.3% -35.3% 9.2%
low/low POI(X+Y) 79.0% 79.9% 91.2% -38.7% -35.9% 8.0%

1000
SRS 92.8% 92.8% 93.5% -11.9% -11.8% -3.5%

POI(X) 92.0% 92.8% 95.7% -17.9% -15.5% 1.0%
POI(X+Y) 68.6% 69.6% 74.6% -18.5% -14.9% 0.5%

250
SRS 86.8% 87.0% 94.9% -37.7% -37.3% 11.3%

POI(X) 85.4% 86.1% 95.5% -42.9% -41.2% 14.4%
low/high POI(X+Y) 78.7% 80.1% 92.6% -44.0% -41.3% 14.4%

1000
SRS 94.4% 94.3% 95.2% -5.5% -5.4% 5.8%

POI(X) 91.8% 92.1% 94.9% -20.5% -18.6% -1.8%
POI(X+Y) 76.8% 77.8% 82.9% -20.4% -16.9% -1.3%

250
SRS 89.2% 89.1% 94.4% -28.5% -28.1% 0.4%

POI(X) 89.0% 90.1% 95.5% -31.9% -25.3% 12.7%
high/low POI(X+Y) 85.7% 88.4% 93.8% -33.9% -25.4% 10.9%

1000
SRS 93.9% 93.9% 95.6% -6.3% -6.2% 3.5%

POI(X) 92.6% 93.4% 94.8% -16.5% -9.2% 1.9%
POI(X+Y) 83.3% 85.4% 88.1% -15.0% -5.0% 5.2%

250
SRS 82.8% 82.8% 93.8% -44.6% -44.3% -6.4%

POI(X) 83.6% 85.5% 95.1% -44.3% -39.4% 3.8%
high/high POI(X+Y) 82.9% 85.1% 93.8% -45.1% -38.4% 4.6%

1000
SRS 94.3% 94.4% 96.1% -7.8% -7.6% 6.3%

POI(X) 91.3% 92.2% 94.0% -20.0% -13.8% 0.2%
POI(X+Y) 86.3% 88.6% 91.5% -18.1% -9.2% 2.8%
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2.7 Application to National Health Interview Survey (NHIS)

2.7.1 NHIS and ACS Data

We next apply LASSO calibration to National Health Interview Survey (NHIS)

2013 to estimate the total number of adults (age 18 or older) diagnosed with cancer

in the population. National Health Interview Survey is a nationally representative

sample of non-institutionalized civilian households collected by a multi-stage area-

probability sampling. Each month, health-related data on people in selected house-

holds are obtained by face-to-face interviews. The data provides pseudo-primary-

sampling-unit (PSU), pseudo-strata, and sampling weights to allow for weighted es-

timates with complex survey design. In addition to health-related measures, NHIS

also collects family income data to supplement the core interviews.

To calibrate NHIS on a set of demographic and income-related variables, we use

the American Community Survey (ACS) 2013 micro-data as the benchmark data.

ACS samples are households selected through multi-stage area-probability sampling

from 3,143 counties of the U.S. The design of ACS is to improve estimates of small ar-

eas between the decennial census long-form samples. Around three million households

are selected each year, with measures on household types and individual demograph-

ics within the households. ACS also collects data from group-quarters, which are

excluded from this analysis. For ACS 2013, the sample size for adults is 2,317,301.

The NHIS 2013 sample size is 34,201 after removing 242 cases with missing values

on demographic variables. The weighted total number of persons is 234,810,075 in

the ACS benchmark data, and 234,950,584 in the NHIS sample. The total weighted

number of individuals between the two samples are very close. Thus the removal of

234 cases from the NHIS sample should have minimal impact on our analysis. As

ACS sample is significantly larger, we treat weighted estimates of calibration variables

from ACS as known population totals.
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2.7.2 Estimators

The outcome variable of interest is whether a person has been diagnosed with

cancer. Define the binary indicator for the outcome variable:

yi =







1 : if person i has been diagnosed with cancer

0 : otherwise

We first use the NHIS 2013 sampling weights, wNHIS, and design variables to obtain

an unbiased estimate of the population total, Ty =
∑N

i=1 yi. Then we assume that the

NHIS 2013 sample is collected from a simple-random-sampling, with initial design

weights dA = N/n, where N is the population total obtained from ACS, and n is the

sample size of NHIS. We calibrate dA by a set of demographic and income variables

with traditional calibration and LASSO calibration. Thus we generate four estimates:

(1) T̂NHIS
y =

∑

i∈sAw
NHIS
i yi: Estimate obtained with NHIS weights.

(2) T̂HTSRS
y =

∑

i∈sA(N/n)yi: Estimate obtained with weights dA = N/n.

(3) T̂GREG
y =

∑

i∈sAw
GREG
i yi: Estimate obtained by calibrating dA with GREG and

backward stepwise variable selection.

(4) T̂LASSO
y =

∑

i∈sAw
LASSO
i yi: Estimate obtained by calibrating dA with LASSO.

The variance of T̂NHIS
y is the linearized variance estimate of total, accounting for

sampling-stratum, primary-sampling-units, and survey weights in the NHIS 2013 sam-

ple. Variances of HTSRS and GREG are linearized variance estimates with weights

dA and wGREG respectively. We obtain the variance of LASSO estimator through

naive bootstrap as in the simulation study of section 2.5.
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2.7.3 Working models

Table 2.8 lists calibration variable names, labels, values, and distributions in this

analysis. The first row is the unweighted distribution of variables in the NHIS sam-

ple. The second row contains variable distributions in the NHIS sample, weighted

by wNHIS person-level weights. The third row is the distribution of variables in the

population obtained from the ACS benchmark data. Missing income category is in-

cluded as a separate category to capture the difference in missing patterns between

NHIS and ACS. Including a missing category also allows us to maintain the analytical

sample size. Relative to ACS, the unweighted NHIS sample has higher proportions of

females, widowed/divorced/separated, and fewer proportion of non-Hispanic whites.

After weighting, the NHIS distributions of gender and race are close to the bench-

mark’s, and only marital status categories show some differences. Overall, NHIS

sample composition is relatively close to the population’s. However, we can still have

substantial bias in estimating the total number of adults diagnosed with cancer due

to different distributions of variables not collected in both NHIS and ACS, such as

smoking status and other health-risk factors.

We use an unweighted linear model with backward-stepwise variable selection to

determine the working model for GREG. The final variables included in the model

for GREG are:

Age, Education, Race, Employed, Family income

For LASSO calibration, we use all variables in Table 2.8 for the LASSO regression

model. Table 2.9 lists the model parameter estimates. For GREG, the parameters

are obtained from a linear regression model, E[yi] = xT
i β̂, while LASSO parameters

61



estimates are obtained from the logistic LASSO regression as described in section 2.3:

β̂ = argmin
β

(
∑

i∈sA

[
−yi

(
xT
i β
)
+ log

(
1 + exp

(
xT
i β
))]

+ λn

p
∑

j=1

αγ
j |βj |

)

Because the number of parameters is not large, LASSO sets only one category to

0 – region[2]. For variables that are included in both models, besides the constant

intercept, the parameter estimates agree in direction and show similar trend in effect

sizes. For example, the risk for cancer increases as age increases. Age is the strongest

predictor for risk of cancer in both models. We anticipate that GREG and LASSO

calibrations to have similar impact on reducing sample bias when estimating the total

number of individuals diagnosed with cancer.

2.7.4 Results

Table 2.10 lists the estimates, standard errors (SE), and percent-deviate from the

NHIS estimate: %deviate = 100(T̂ − T̂NHIS
y )/T̂NHIS

y . We treat NHIS estimate as the

unbiased estimate because it is calculated with probability-based sampling weights

provided by NHIS. Without any weighting adjustment, HTSRS shows a significant

positive bias. GREG estimator reduces the bias from 5.94% to 1.97%, while LASSO

estimator reduces the bias to 0.88%. For population totals, 5.94% can be a substantial

error. In this analysis, if NHIS were a non-probability sample, without weighting

adjustment, we would have over-counted the number of adults with cancer by 1.18

million. With traditional calibration, the error is reduced to an over-count of 392,276.

LASSO calibration further reduces the over-count to 175,344.

As expected, the standard error of the NHIS estimate is the largest, as it properly

incorporates complex survey design. If the calibration working model correctly cap-

tures the relationship between the outcome variable and the calibration variables, we

anticipate that the calibration estimator standard errors to be smaller than HTSRS
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Table 2.8: Calibration variables

Region Age) Gender Education Race Marital status Employed Family income

(region) (agegrp) (gender) (educ2) (race) (marst) (employed) (faminc q)
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sample weights 1 2 3 4 1 2 3 4 5 6 7 1 2 0 1 2 3 4 1 2 3 4 1 2 3 0 1 0 1 2 3 9

NHIS none 16% 20% 37% 26% 19% 17% 16% 17% 15% 9% 6% 45% 55% 16% 26% 20% 29% 10% 60% 15% 17% 8% 49% 27% 24% 35% 65% 22% 20% 21% 21% 17%
NHIS person-level 18% 23% 37% 23% 21% 17% 18% 18% 14% 8% 4% 48% 52% 14% 26% 20% 30% 10% 66% 12% 15% 7% 60% 18% 22% 33% 67% 15% 17% 22% 28% 19%
ACS person-level 18% 21% 37% 23% 21% 17% 18% 18% 14% 8% 5% 52% 48% 13% 28% 23% 25% 10% 66% 12% 15% 7% 52% 20% 28% 39% 61% 19% 20% 20% 19% 22%
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Table 2.9: Working model parameter estimates

Dependent variable: cancer

GREG LASSO

region[2] 0
region[3] 0.048
region[4] −0.0780
agegrp[2] 0.010∗∗ 0.484
agegrp[3] 0.022∗∗∗ 0.985
agegrp[4] 0.077∗∗∗ 1.997
agegrp[5] 0.132∗∗∗ 2.460
agegrp[6] 0.198∗∗∗ 2.837
agegrp[7] 0.232∗∗∗ 2.984
gender[2] 0.004
educ2[1] 0.015∗∗∗ 0.121
educ2[2] 0.021∗∗∗ 0.210
educ2[3] 0.020∗∗∗ 0.211
educ2[4] 0.034∗∗∗ 0.357
race[2] −0.042∗∗∗ −0.595
race[3] −0.043∗∗∗ −0.811
race[6] −0.051∗∗∗ −0.771
marst[2] −0.017
marst[3] −0.093
employed[1] −0.034∗∗∗ −0.426
faminc q[1] 0.001 −0.055
faminc q[2] 0.005 0.004
faminc q[3] 0.001 0.005
faminc q[9] −0.014∗∗∗ −0.228
Constant 0.043∗∗∗ −3.90

Observations 34,201 34,201

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 2.10: Results for estimating total number of individuals with cancer

Estimator T̂ SE %deviate from NHIS

NHIS 19,889,327 492,263 0.00%
HTSRS 21,070,498 362,883 5.94%
GREG 20,281,603 367,900 1.97%
LASSO 20,064,671 347,586 0.88%

%deviate is the difference to NHIS estimate divide by the NHIS estimate

estimator’s. This is not the case for the GREG estimator, where the standard error is

larger than HTSRS’s. For LASSO calibration, we do observe a smaller standard error

than HTSRS’s, even with the bootstrap variance estimate that tends to overestimate.

Without using the correct design weights, LASSO calibration is able to accurately

produce an estimate of a population total while providing the smallest standard error

among the estimators in this application.

2.8 Conclusion

In this chapter, we developed the LASSO calibration estimator of population

totals, T̂LASSO
y , given population auxiliary data. We also derived the asymptotic

linearized variance estimates for T̂LASSO
y . Simulation results show that the point

estimates are approximately unbiased under simple-random sampling and informa-

tive sampling. For sample selections that are related to analysis variables, LASSO

was able to significantly reduce sample bias even without the correct design weights.

The performance of T̂LASSO
y is near the optimal of T̂ORACLE

y in terms of RMSE for

both binary and continuous outcome variables when the sample size is large. LASSO

tends to outperform stepwise-selected working models when there are high correla-

tions among the choices of covariates. For analysis with many categorical variables,

where there are natural correlations between the categories, LASSO calibration esti-

mator can perform well over traditional calibration estimators, even if the effect sizes
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are small. The improvement is even more significant when the outcome of interest

is binary. We have demonstrated theoretically and through simulations that LASSO

calibration holds great promise in making unbiased inference of population totals

from non-probability samples. Although asymptotic linearized variance estimates did

not produce very accurate nominal coverage, naive bootstrap is a viable alternative

approach. In an application to estimate population total of individuals diagnosed

with cancer, without correct design weights, the LASSO calibration estimator was

able to produce an estimate that is the closest to the estimate based on correct sur-

vey weights. LASSO calibration estimator also has the smallest standard error or all

the estimators considered, even when using bootstrap variance estimate that tends

to have positive bias. The application shows that LASSO calibration can generate

inference to the population for a specific outcome variable, and the inference is both

more accurate and precise than traditional calibration estimators.
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CHAPTER III

Calibration with LASSO to Estimated Control

3.1 Introduction

Amidst declining response rates and rapidly increasing cost of probability-based

sampling, the resurgence of more cost-effective non-probability sampling has prompted

survey researchers to explore different adjustment methods for non-probability sam-

ples. The most recent development in post-survey adjustment of non-probability

samples is propensity-score weighting (Lee, 2004; Schonlau et al., 2004). Propensity-

score weighting combines probability and non-probability samples to generate pseudo-

selection-weights for non-probability sample respondents. The method requires a

probability-sampling-based data, and all variables related to propensity of a re-

spondent being in the non-probability sample. In practice, researchers who turn

to non-probability-sampling for data collection are trying to avoid the cost to con-

duct probability-based-sampling. Usually only a small probability-based reference

sample is obtained, which can result in highly variable propensity weights when all

relevant variables are included in the propensity model (Valliant and Dever , 2011).

Even if an appropriate probability-based reference sample is collected, there is no

systematic way to determine the correct variables that can generate weights to fix all

errors of a non-probability sample (Schonlau et al., 2009). An alternative approach

is to adjust the non-probability sample so that the weighted sample totals of a set
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of variables, known as calibration variables, equal to their Census benchmark totals.

Although the method does not require specialized probability-sampling-based data,

the set of calibration variables is small due to limited Census benchmark information.

The resulting calibrated weights can only correct the imbalance with respect to the

calibration variables, which is insufficient for adjusting all errors of a non-probability

sample. The current approach to create one single set of survey weights to correct all

imbalance within a non-probability sample is not practical.

This research focuses on making generalizable inference from non-probability sam-

ples by constructing an outcome-specific set of weights designed to reduce the bias

and variance of a weighted total. We combine both approaches of propensity-score

weighting and calibration by utilizing a probability-based benchmark sample sim-

ilar to the probability-based reference sample used for propensity-score weighting.

However, unlike the propensity-score weighting adjustment, the aim is not to include

all possible variables in creating an one-size-fits-all weight to correct the imbalance

within the non-probability sample. Instead, we use an assisting model to predict

an outcome of interest, given a set of calibration variables that exists in both prob-

ability and non-probability samples. The outcome variable in the non-probability

sample is then calibrated to the predicted outcome total in the probability sample,

given the probability-sampling weights in the benchmark data. The approach falls

under the model-assisted calibration framework, and has clear advantages over the

existing methods. First, the method requires one set of calibration variables that

can predict the outcome variable well, which reduces the need for large sample sizes

of the probability-based data. From both modeling and data-collection perspective,

model-assisted calibration is much more practical than propensity-score adjustment.

Furthermore, the set of calibration variables can be much more diverse than the avail-

able Census totals, which allows for calibration to address a wider range of outcome

of interests than traditional calibration methods. Despite the promising features of
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model-assisted calibration, there are two important gaps in the framework:

(1) Limited choice of models. The effectiveness of model-assisted calibration

relies on models with strong predictive property: model parameters estimated

from one sample can be used to reliably predict values in a different sample

of the same population. Specifically, a model that prevents over-fitting can be

most successful. Currently, there is no framework established for using models

outside of traditional maximum likelihood-based models. Best-subset regression,

or traditional regressions with stepwise procedures are the most commonly used

assisting models. These methods have no theoretical justification in determining

the best set of variables for calibration.

(2) Lack of framework to account for benchmark sample uncertainties.

The current model-assisted calibration framework assumes that the benchmark

sample is larger than the analytical sample (the sample that requires weighting

adjustment). However, it is much more likely that the non-probability samples

have significantly larger sizes than the probability-based benchmark data. The

theoretical framework to incorporate uncertainties from smaller benchmark sam-

ples has not been established for model-assisted calibration. When benchmark

data is small, without accounting for the uncertainties in the benchmark, such as

induced by sample weights, inferences based on model-assisted calibrations would

have underestimated standard errors.

This chapter addresses the two missing pieces of model-assisted calibration to

enable the method as a practical post-survey adjustment tool for non-probability

samples. Specifically, we employ a widely used modern statistical model, the Least

Angle Shrinkage and Selection Operator (LASSO) (Tibshirani , 1996), to assist in

the construction of weights for a specific outcome variable. LASSO performs both

variable selection and parameter estimation, which can serve as a powerful assisting

69



model by determining the most accurate and parsimonious model. We choose one

variant of LASSO, the adaptive LASSO (Zou, 2006) as the assisting model, because

adaptive LASSO has shown to have model-consistency properties under mild con-

ditions (i.e., able to select the correct model, and provide asymptotically unbiased

parameter estimates). For the ease of notation, we use adaptive LASSO and LASSO

interchangeably. We extend LASSO calibration to estimated-control LASSO calibra-

tion (ECLASSO) for incorporating sampling uncertainties of the benchmark data into

the variance component of model-assisted calibration estimators.

The organization of the chapter is as follows. Section 3.2 provides background and

notation for traditional post-survey weighting schemes used for non-probability sam-

ples. Section 3.3 provides background and notation for model-assisted calibration.

Section 3.4 develops the main theoretical framework for this research: we formulate

the ECLASSO estimator for a population total of continuous and binary outcome

variables, T̂ECLASSO
y , derive its asymptotic expectation and derive asymptotic lin-

earized variance estimates. The theoretical framework is defined under probability-

based sampling. The non-probability-based sampling is equivalent, except we assume

the initial design weights are based on simple-random-sampling regardless of how the

samples are formed. Section 3.5 describes the simulation used to evaluate T̂ECLASSO
y

and the asymptotic linearized variance estimates. We compare ECLASSO estima-

tor with estimates from traditional weighting adjustment methods. The simulation

results are discussed in section 3.6. The chapter ends with summaries in Section 3.7.

3.2 Weighting non-probability samples

3.2.1 Propensity-score weighting

Suppose a non-probability sample and a probability-based reference sample are

available, with a common set of measures, X. The objective of propensity-score
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weighting is to estimate the conditional probability that respondent i is a non-

probability sample respondent given X:

Zi =







1, if respondent i is a non-probability sample respondent

0, otherwise

pi = Pr
(
Zi = 1

∣
∣X
)

(3.2.1.1)

The propensity-score weights are simply the inverse of propensity-scores, wPSCORE
i =

1/pi. For an outcome of interest Y , the weighted estimates of Y based on wPSCORE
i

is unbiased only when we have conditional independence between Y and Z given X:

P (Z = 1|X, Y ) = P (Z = 1|X) for almost all X and Y . In words, after controlling

for X, Y in the non-probability samples have the same distribution as the Y in

probability samples. In missing data mechanism, this falls under Missing At Random

(MAR) (Rubin, 1976): Y observed in the non-probability samples can be used to infer

the unobserved Y in probability samples after controlling for X. Thus the weights

can correctly “inflate” the non-probability sample measures to make inference on

the population. The key for propensity-score weighting is the set of X to achieve

conditional independence. In practice, it is recommended that all possible variables

to be used in X, which can be impractical if the reference sample is small. Note that if

Y itself is related to Z, we cannot achieve conditional independence, and propensity-

score weighting would fail. This situation matches Not Missing At Random (NMAR)

missing data mechanism. The most common type of model used to calculate pi is
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logistic regression:

Pr(Zi|X,β) = pi

pi = expit(Xβ), expit(u) = (1 + exp(−u))−1

In this chapter, we will refer to the logistic model used for propensity-score estimates

as the working model for propensity-score weighting. The estimator of total based on

propensity-score weights, given by:

T̂ PSCORE
y =

∑

i∈sA

wPSCORE
i yi (3.2.1.2)

where sA is the non-probability sample. The remainder of this chapter focuses on

calibration-based weighting adjustments that utilize an external probability-based

data. Calibration refers to the probability-based data as benchmark samples, while

propensity-score adjustment uses the term reference sample. For the remainder of

this chapter, we will call the probability-based external data “benchmark samples”.

3.2.2 Traditional calibration

For an analytical sample sA (the sample which requires weight calibration) of size

nA drawn from sample design A with design weights dA

nA×1
, and the diagonal matrix

of design weights DA, calibrated weights w
nA×1

minimize a distance measure:

EA

[
∑

i∈sA

g(wi, d
A
i )/qi

]

(3.2.2.1)

under the constraint:

∑

i∈sA

wix
T
i = TX (3.2.2.2)
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where g(wi, d
A
i ) is a differentiable function with respect to wi, strictly convex on an

interval containing dAi , and g(dAi , d
A
i ) = 0. The constant qi is independent of design

weight dAi . We focus on the most common distance measure used, the chi-square

distance: g(wi, d
A
i ) = (wi − dAi )

2/dAi with qi = 1. Under this distance measure:

wGREG = dA +DAX
(
XTDAX

)−1 (
TX − (dA)TX

)T
(3.2.2.3)

where TX is a row vector of known population totals ofX. The estimate of population

total of outcome y based on calibrated weights:

T̂GREG
y = wTy

= (dA)Ty +
(
TX − (dA)TX

) (
XTDAX

)−1
XTDAy

= (dA)Ty +
(
TX − (dA)TX

)
β̂ (3.2.2.4)

where β̂ = (XDAX)−1XDAy is the weighted least square estimate of the linear

regression y = Xβ, given weights DA. The calibrated weights defined in equation

(3.2.2.3) do not rely on any outcome variable. Thus the same set of weights can

be applied to all variables in the survey. The weighted total expressed in equation

(3.2.2.4) corresponds to the generalized regression estimator (GREG) of total, thus

we denote the weights wGREG and the estimator T̂GREG
y . In GREG, an implicit linear

relationship is assumed. The linear model, E
[
yi
∣
∣xi,β

]
= xT

i β, is referred to as the

working model for GREG. When the relationship between y and X is non-linear, such

as in the case when y is binary, variance of T̂GREG
y can be larger than the variance of

pure-design based estimator of total (an estimator not using auxiliary totals).

To incorporate uncertainties from benchmark totals, Dever (2008) introduced

estimated-control calibration. The framework replaces known population totals TX

in equation (3.2.2.3) by estimated totals from the benchmark T̂X (Dever and Valliant ,
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2010, 2016):

wECGREG = dA +DAX
(
XTDAX

)−1
(

T̂X − (dA)TX
)T

(3.2.2.5)

The resulting estimator of population total:

T̂ECGREG
y = wTy

= (dA)Ty +
(

T̂X − (dA)TX
) (

XTDAX
)−1

XTDAy

= (dA)Ty +
(

T̂X − (dA)TX
)

β̂ (3.2.2.6)

The estimate-control calibration estimator has the same general form as GREG, thus

we use the notation wECGREG and T̂ECGREG
y to denote weights and estimator based

on the estimated-control calibration.

One of the key assumptions in traditional calibration weighting is that the outcome

of interest within the cells defined by calibration variables have the same distribu-

tions between sample and non-sample members. From the missing data literature,

we assume that the unobserved cases in cells defined by X are missing at random.

Thus “inflating” the observed measures within the calibration cells can effectively

compensate the unobserved measures. This is similar to the assumption made for

propensity-score weighting. If MAR is violated, we would be weighting the sample

incorrectly, and the resulting weighted analysis can produce biased inference. Under

probability-based-sampling, where the collected responses are based on a random-

ized sample of the population, the outcome of interest may already be similar among

sample and non-sample members for large subgroups of the data. Thus we may not

need to have many calibration variables to correctly weight the sample to the popu-

lation. For non-probability samples, however, the participation probabilities can be

very complex (Valliant and Dever , 2011). A large number of cells are needed to sat-
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isfy the MAR assumption. For calibration, this translates to a large number of totals

to control to, which can greatly increase the risk of sparse cells that result in unstable

calibrated weights, i.e., weights that produce large variance of weighted estimates.

The problem is made worse in ECGREG, where the benchmark sample is small. Re-

searchers often eliminate or collapse variable categories in the process of constructing

calibrated weights (Liu et al., 2012), which can easily violate the MAR assumption.

An alternative calibration framework, model-assisted calibration, controls to the to-

tal of predicted outcome values instead of totals in X. Under this framework, the

impact of sparse calibration cells is reduced. The inference no longer relies heavily

on the MAR assumption. Instead, bias and variance property of weighted estimates

in model-assisted calibration rely on the model’s capability to estimate expected val-

ues of an outcome given the calibration variables. Thus model-assisted calibration

is a practical approach to calibrate non-probability samples. In the next section,

we provide background and notations of model-assisted calibration and our choice

of assisting-model in this research: Least Angle Shrinkage and Selection Operator,

LASSO (Tibshirani , 1996).

3.3 Model-assisted calibration

Similar to traditional calibration, we have an analytical sample sA with size nA,

drawn from sample design A with design weights dA

nA×1
, and the diagonal matrix of

design weights DA.

3.3.1 Background and notations

In model-assisted calibration, we assume a relationship between an outcome y

and X through first two moments:

Eξ(yk|xk) = µ(xk,β), Vξ(yk|xk) = ν2
kσ

2 (3.3.1.1)
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where β = (β1, . . . , βp)
T and σ are unknown superpopulation parameters, µ(xk,β) is

a known function of xk and β, νk is a known function of xk or µ(xk,β). Eξ and Vξ are

expectation and variance with respect to the model ξ. Let B be the finite population

parameter of β (i.e., the quasilikelihood estimator of β based on the entire finite

population), and µ̂i = µ(xi, B̂). The model-assisted calibrated weights w minimize a

distance measure:

EA

[
∑

i∈sA

g(wi, d
A
i )/qi

]

(3.3.1.2)

under the constraints:

∑

i∈sA

wi = N

∑

i∈sA

wiµ̂i =
N∑

k=1

µ̂k. (3.3.1.3)

Equations (3.3.1.2) and (3.3.1.3) are defined for single-stage sampling designs. Kennel

(2013) further extends model-assisted framework for clustered samples. The main

conceptual difference between traditional calibration and model-assisted calibration

is that in model-assisted calibration, the constraints are based on two quantities:

(1) population total, and (2) population total of predicted values µ̂k. In traditional

calibration, the constraint is a vector of population totals ofX (see equation (3.2.2.2)).

Under chi-square distance measure with qi = 1, the model-assisted calibrated weights

are:

wMC = dA +DAM
(
MTDAM

)−1 (
TM − (dA)TM

)T
(3.3.1.4)
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where TM =
[

N,
∑N

k=1µ̂
]

and M =
[
dA, (µ̂i)i∈sA

]
. The estimate for population total

based on model-assisted calibrated weights is given by:

T̂MC
y =

(
wMC

)T
y

= (dA)Ty +
(
TX − (dA)TX

) (
XTDAX

)−1
XTDAy

= (dA)Ty +

(
N∑

k=1

µ̂k −
∑

i∈sA

dAi µ̂i

)

B̂MC (3.3.1.5)

where B̂MC is the calibration slope to satisfy the calibration constraints (different

from the model parameter estimates B̂):

B̂MC =

∑

i∈sAd
A
i (µ̂i − ˆ̄µ)(yi − ȳ)

∑

i∈sAd
A
i (µ̂i − ˆ̄µ)2

ˆ̄µ =
∑

i∈sA

dAi µ̂i

/∑

i∈sA

dAi

ȳ =
∑

i∈sA

dAi yi
/∑

i∈sA

dAi .

Similar to ECGREG, to account for uncertainties in the benchmark sample, we replace

TM = (N,
∑

i∈U µ̂i) by estimates from a benchmark sample: T̂M = (
∑

i∈sBd
B
i ,
∑

i∈sB µ̂i),

where sB denotes the benchmark sample and dBi is the probability-based design

weights of the benchmark sample:

T̂ECMC
y = (dA)Ty +

(
∑

i∈sB

dBi µ̂i −
∑

i∈sA

dAi µ̂i

)

B̂MC . (3.3.1.6)

The asymptotic properties and variance of T̂ECMC
y have not been established in the

literature. For non-probability samples, it is essential that uncertainties of benchmark

samples are included in the estimation formulas, because the probability-based sam-

ples with appropriate set of calibration variables are almost certainly smaller than the

non-probability sample. Without accounting for the benchmark sample uncertainties,
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we would be making inferences with underestimated standard errors.

Wu and Sitter (2001) has shown that T̂MC
y is asymptotically design unbiased,

even when the model is miss-specified. As long as the original design weights produce

unbiased estimates, T̂MC
y is approximately unbiased when the sample size is large. Un-

der non-probability-based-sampling, there are no initial design weights to guarantee

unbiasedness of weighted estimates. Thus we rely on models that can approximate

the expected value of yi closely to compensate the lack of design weights. In the

expression for TM , we use model parameters obtained under the analytical sample

sA to make predictions of
∑N

k=1µ̂k in the population. Thus the key to successful

model-assisted calibration is the model’s ability to predict values on an independent

dataset accurately. For both practical and theoretical reasons, there has been very

little development in the use of assisting models outside of maximum-likelihood-based

models. The choices of calibration variables are typically made by substantive inter-

est, or through some stepwise procedures in traditional regression, or largely left to

the discretion of a modeler. In this research, we introduce LASSO regression into

model-assisted calibration framework to guide the selection of calibration variables in

order to accurately approximate population total of µ̂i. In the next section, we give an

overview of LASSO regression, and how to determine the LASSO tuning parameters

used for this research.

3.3.2 Assisting model - LASSO

3.3.2.1 Background and notations

The adaptive LASSO regression coefficients are obtained by solving a penalized

regression equation (Zou, 2006). For linear adaptive LASSO regression:

β̂ = argmin
β

(
∑

i∈sA

(
yi − xT

i β
)2

+ λn

p
∑

j=1

αγ
j |βj|

)

. (3.3.2.1)
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Similarly for logistic adaptive LASSO:

β̂ = argmin
β

(
∑

i∈sA

[
−yi

(
xT
i β
)
+ log

(
1 + exp

(
xT
i β
))]

+ λn

p
∑

j=1

αγ
j |βj |

)

. (3.3.2.2)

Given λn and γ, we can calculate β̂ through some iterative procedures.

The role of the weight parameter, αj, is to prevent LASSO from selecting co-

variates with large effect sizes in favor of lowering prediction error when the sample

size is small. Thus the weights are inversely proportional to effect sizes of regression

parameters: αj ∝ 1
/
|βj |. A common choice of αj : αj = 1

/ ∣∣
∣β̂MLE

j

∣
∣
∣, where β̂MLE

j

is the maximum likelihood estimate of βj . The power of the weight parameter, γ,

is a constant greater than 0 that interacts with αj to control LASSO from selecting

or excluding parameters. For example, if we still want LASSO to favor large effect

covariates when the sample size is small, we should set γ small. If we want to de-

emphasize effect sizes further, we should set γ large. λn and γ are closely related

to the model-consistency property of adaptive LASSO, known as the oracle prop-

erty. Suppose the parameters in a full regression model have both zero and non-zero

components, without loss of generality, let the first p be non-zero and the last q zero:

βF =






β
(1)
(p×1)

β
(2)
(q×1) = 0




 .

Zou (2006) has shown that if:

λn

/ (√
n/(

√
n)γ
)
→ ∞ and λn

/√
n → 0

then the adaptive LASSO satisfies the oracle property:� The probability of estimating 0 for zero-valued parameters tends to one:

Pr
(

β̂
(2)

= 0
)

→ 1.
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� The estimates of non-zero parameters are as good as if the true sub-model is

known:

√
n
(

β̂
(1) − β(1)

)

→ N (0,C)

where C = Σ(β(1)) is covariance matrix of β under linear model, and C = I−1(β(1))

is the inverse of Fisher information matrix of β under generalized linear model. For

finite-population inference, suppose ν indexes a population with size Nν . Let B be the

quasilikelihood estimates of β in population ν, and B̂ is the estimate of B based on

a sample with size nν ≤ Nν . The finite-population equivalent of the oracle property

is:

Pr
(

B̂(2) = 0
)

→ 1

√
nν

(

B̂(1) −B(1)
)

→ Nν (0,Cν)

B(1) → β(1) as ν → ∞

where Cν = Σ(B(1)) is covariance matrix of B(1) under linear model, and C =

I−1(B(1)) is the inverse of Fisher information matrix of B(1) under generalized linear

model. For convenience, we omit ν from the notations. It is assumed that N and n

are sequences of numbers, both grow to infinity as ν → ∞. We write B → β to mean

that B approaches β as both sample and population sizes grow.

For adaptive LASSO to achieve the oracle property, the conditions require that

λn grow at least at the rate of
√
n
/
(
√
n)γ, but not faster than

√
n. We discuss the

choice of λn and γ in the next section.

80



3.3.2.2 Determining parameter values and estimates

In practice, we do not observe the theoretical rate of growth of λn, unless we have

obtained many samples of the same population with various sample sizes. Given a

sample, the choices of λn and γ depend on the modeler. Thus λn and γ are also called

tuning parameters for LASSO regression. In R glmnet implementation (Friedman

et al., 2010), a range of λn is determined by the following scheme:

(1) Set γ = 0.

(2) Determine λmax
n by finding the smallest λn that sets all coefficients to 0.

(3) If sample size n is larger than the number of parameters in the regression model,

set λmin
n = 0.0001λmax

n . If sample size n is smaller than the number of parameters,

set λmin
n = 0.01λmax

n (to set parameters to 0 sooner).

(4) Generate a grid of λn, typically 100 equally spaced points between λmin
n and λmax

n .

The initial range of values of λn is determined independently of γ. Choices of γ is

less data-driven. Some modelers choose one of γ = 0.1, 0.5, 1, 2. In this chapter, we

determine (λn, γ) through cross-validation as follows:

Step 1. Obtain αj = 1
/
∣
∣
∣β̂MLE

j

∣
∣
∣.

Step 2. Determine 100 equally spaced values of λn based on R glmnet’s implemen-

tation.

Step 3. For each pair (λn, γ), λn from Step 2, and γ = 0.1, 0.5, 1, 2, split data into 5

folds. Use 4 folds to obtain β̂.

Step 4. Apply β̂ to the last fold not used to estimate β̂ and calculate a metric. For

continuous y, we calculate the mean-absolute-error (MAE),
∑

i∈sA(k)
|µ̂i − yi|.

For binary y, we calculate the area under curve (AUC) (calculated through

R glmnet :: auc function).
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Step 5. Average the 5 metrics for each pair of (λn, γ), and choose the pair with the

best average metric: minimum MAE for continuous y, maximum AUC for

binary y.

The adaptive LASSO coefficient estimates are obtained given the selected (λn, γ).

The R code used to perform cross-validation in this dissertation is in Appendix A.2.

3.4 Estimated control LASSO calibration

This section develops the main theoretical framework for our proposed method:

Estimated Control LASSO (ECLASSO) calibration. Estimated controls are bench-

mark sample estimates rather than known population quantities. We develop the

analytical formula for ECLASSO estimator of total, its asymptotic expectation, and

asymptotic linearized variance estimates. We make the following assumptions in the

theoretical framework:

A. The analytical samples, sA with size nA, are drawn from a single-stage sampling

design A, allowing for unequal probabilities of selection. The selection probability

for unit i is denoted by πA
i , and the joint selection probability of units i and j is

denoted by πA
ij. We denote the design weight for unit i by dAi = 1/πA

i , the vector

of design weights by dA, and the diagonal matrix of design weights by DA. A set

of calibration variables is denoted by XA.

B. The benchmark samples, sB with size nB, are drawn from a single-stage sampling

design B, allowing for unequal probabilities of selection. The selection probability

for unit i is denoted by πB
i , and the joint selection probability of units i and j is

denoted by πB
ij . We denote the design weight for unit i by dBi = 1/πB

i , the vector

of design weights by dB, and the diagonal matrix of design weights by DB. A

set of calibration variables is denoted by XB.
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C. A superpopulation model is assumed, as is described in section 3.3:

Eξ(yk|xk) = µ(xk,β)

Vξ(yk|xk) = ν2
kσ

2

D. The true superpopulation parameters are a subset of the full regression model

for LASSO: βF =






β(p×1)

β
(2)
(q×1)






E. The full-range of X in the population has non-zero probability of being observed

in both analytical and benchmark samples.

3.4.1 Point estimate: T̂ECLASSO
y

The ECLASSO calibration estimate of total can be obtained following the steps:

Step 1. Obtain LASSO regression coefficients B̂ as described in section 3.3.2. We

use R package glmnet (Friedman et al., 2010) to obtain LASSO coefficients

for both linear and glm models, given a pair of (λn, γ) selected by cross-

validation. For linear LASSO:

B̂ = argmin
β

(
∑

i∈sA

(
yi − xT

i β
)2

+ λn

p
∑

j=1

αγ
j |βj |

)

For logistic LASSO:

B̂ = argmin
β

(
∑

i∈sA

[
−yi

(
xT
i β
)
+ log

(
1 + exp

(
xT
i β
))]

+ λn

p
∑

j=1

αγ
j |βj |

)

Step 2. Use B̂ to calculate µ̂i = µ(xA
i , B̂) in the analytical, and µ̂i = µ(xB

i , B̂) in

the benchmark sample.

Step 3. Define T̂M =
(∑

i∈sBd
B
i ,
∑

i∈sB µ̂i

)
andM =

[
dA, (µ̂i)i∈sA

]
, under chi-square
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distance measure with qi = 1:

wLASSO = dA +DAM
(
MTDAM

)−1
(

T̂M − (dA)TM
)T

(3.4.1.1)

Step 4. ECLASSO calibration estimator of total:

T̂ECLASSO
y =

(
wECLASSO

)T
y

= (dA)Ty +

(
∑

i∈sB

dBi µ̂i − (dA)TX

)

(
XTDAX

)−1
XTDAy

= (dA)Ty +

(
∑

i∈sB

dBi µ̂i −
∑

i∈sA

dAi µ̂i

)

B̂MC (3.4.1.2)

where B̂MC is the calibration slope to satisfy the calibration constraints

(different from the model parameter estimates B̂):

B̂MC =

∑

i∈sAd
A
i (µ̂i − ˆ̄µ)(yi − ȳ)

∑

i∈sAd
A
i (µ̂i − ˆ̄µ)2

ˆ̄µ =
∑

i∈sA

dAi µ̂i

/∑

i∈sA

dAi

ȳ =
∑

i∈sA

dAi yi
/∑

i∈sA

dAi

Note that the main difference between ECLASSO calibration and the model-

assisted calibration is the use of benchmark sample weights in calculating T̂M .

3.4.2 Asymptotic estimator of total

In this section, we derive the asymptotic estimated-control model-assisted LASSO

calibration (ECLASSO) estimator of total, T̂ECLASSO
y . The asymptotic ECLASSO

estimator is later used to derive asymptotic expectation and asymptotic linearized

variance estimates of T̂ECLASSO
y . We assume that the finite-population and sample

size are sequences of numbers indexed by ν: Nν and nν . Both Nν and nν grow to
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infinity. For simplicity, ν is omitted from the suffix of N and n. We first derive the

asymptotic estimated-control model-assisted calibration (ECMC) estimator of pop-

ulation mean, then apply additional conditions to derive the asymptotic ECLASSO

estimator of population total. Unless stated otherwise, n refers to the analytical sam-

ple size. The following conditions are necessary to derive the asymptotic estimators:

(3.4.2.i) B̂ = B + Op(1/
√
n), B is the finite-population regression slope of β,

B → β.

(3.4.2.ii) For each xi, ∂µ(xi, t)/∂t is continuous in t and bounded: maxi |∂µ(xi, t)/∂t| ≤

h(xi,β) for t in a neighborhood of β, and N−1
∑

i∈Uh(xi,β) = O(1).

(3.4.2.iii) For each xi, ∂
2µ(xi, t)/∂t∂t

T is continuous in t and bounded: maxj,k |∂2µ(xi, t)/∂tj∂tk| ≤

k(xi,β) for t in a neighborhood of β, and N−1
∑

i∈Uk(xi,β) = O(1).

(3.4.2.iv) The Horvitz-Thompson estimators of certain population means are asymp-

totically normally distributed for dA.

(3.4.2.v) The Horvitz-Thompson estimators of certain population means are asymp-

totically normally distributed for dB.

(3.4.2.vi) λn

/
(
√
n/(

√
n)γ) → ∞ and λn

/√
n → 0.

Remark III.1. The mean in conditions in (3.4.2.iv) and (3.4.2.v) are the means of first

and second derivatives of µ(xi, t) in the Taylor series expansion of µ(xi, t) evaluated

at a neighborhood around B, which is a vector of values if B has more than one

parameter. The conditions require that the Horvitz-Thompson estimates of the means

are bounded element-wise.

Lemma III.2. Let sB be a probability-based benchmark sample with size nB and

design weights dB, and sA be an analytical sample with size nA and design weights
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dA, and N be a known population total derived from a sample bigger than sB and sA.

Assume the superpopulation model:

Eξ(yk|xk) = µ(xk,β), Vξ(yk|xk) = ν2
kσ

2.

Let B be the finite-population quasilikelihood estimate of β, B → β. Under con-

ditions (3.4.2.i)-(3.4.2.v), the asymptotic estimated-control calibration estimator of

population total is:

T̂ECMC
y = dAy +

(
∑

i∈sB

dBi µi −
∑

i∈sA

dAi µi

)

BMC + op

(
N√
n∗

)

n∗ = min(nA, nB)

BMC =

∑N
i=1(µi − µ̄)(yi − ȳ)
∑N

i=1(µi − µ̄)2

µ̄ = N−1
N∑

i=1

µi, ȳ = N−1
N∑

i=1

yi

Proof. We begin by deriving the asymptotic model-assisted estimator for a population

mean, ˆ̄yECMC = N−1T̂ECMC
y (see equation (3.4.2.11)). By conditions (3.4.2.ii) and

(3.4.2.iii), the second order Taylor series expansion of µ(xi, β̂) around B is:

µ(xi, β̂) = µ(xi,B) +

{
µ(xi, t)

∂t

∣
∣
∣
∣
t=B

}T

(B̂−B) + (B̂−B)T
{
∂2µ(xi, t)

∂t∂tT

∣
∣
∣
∣
t=B∗

}

(B̂−B)

(3.4.2.1)
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for B∗ ∈ (B̂,B) or (B, B̂). Let

h(xi,B) =
µ(xi, t)

∂t

∣
∣
∣
∣
t=B

k(xi,B
∗) =

∂2µ(xi, t)

∂t∂tT

∣
∣
∣
∣
t=B∗

Note that h is a vector of length m and k is a matrix of size m×m, where m is the

number of parameters in β. By conditions (3.4.2.ii) and (3.4.2.iii),

maxi |h(xi,B)| ≤ h(xi,B) (3.4.2.2)

maxk,j |k(xi,B
∗)| ≤ k(xi,B

∗) (3.4.2.3)

The population mean of (3.4.2.1) based on sample sB:

N−1
∑

i∈sB

dBi µ(xi, B̂) = N−1
∑

i∈sB

dBi µ(xi,B) +N−1

(
∑

i∈sB

dBi h(xi,B)

)T

(B̂−B)+

Op

(
1√
nB

)

Op

(
1√
nB

)

= N−1
∑

i∈sB

dBi µ(xi,B) +N−1

(
∑

i∈sB

dBi h(xi,B)

)T

(B̂−B) +Op

(
1

nB

)

(3.4.2.4)

Similarly, the population mean of (3.4.2.1) based on sample sA:

N−1
∑

i∈sA

dAi µ(xi, B̂) = N−1
∑

i∈sA

dAi µ(xi,B) +N−1

(
∑

i∈sA

dAi h(xi,B)

)T

(B̂−B) +Op

(
1

nA

)

(3.4.2.5)
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By conditions (3.4.2.i), (3.4.2.iv), (3.4.2.v), and equations (3.4.2.4) and (3.4.2.5):

N−1
∑

i∈sB

dBi µ(xi, B̂)−N−1
∑

i∈sA

dAi µ(xi, B̂)

= N−1
∑

i∈sB

dBi µ(xi,B)−N−1
∑

i∈sA

dAi µ(xi,B) +Op

(
1√
n∗

)

+Op

(
1

n∗

)

= N−1
∑

i∈sB

dBi µ(xi,B)−N−1
∑

i∈sA

dAi µ(xi,B) +Op

(
1√
n∗

)

(3.4.2.6)

where n∗ = min(nA, nB). Note that,

¯̂µ =
∑

i∈sA

dAi µ(xi, B̂)
/∑

i∈sA

dAi

=

(
∑

i∈sA

dAi

)−1
∑

i∈sA

dAi

(

µ(xi,B) + hT (xi,B)(B̂−B) + (B̂−B)Tk(xi,B
∗)(B̂−B)

)

(by conditions (3.4.2.i) and (3.4.2.iii))

=

(
∑

i∈sA

dAi

)−1
∑

i∈sA

dAi

(

µ(xi,B) + hT (xi,B)(B̂−B)
)

+Op(1/nA)

= µ̄+

(
∑

i∈sA

dAi

)−1
∑

i∈sA

dAi h
T (xi,B)(B̂−B) +Op(1/nA)

(by conditions (3.4.2.i) and (3.4.2.2))

= µ̄+Op(1/
√
nA) +Op(1/nA)

= µ̄+Op(1/
√
nA) (3.4.2.7)
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Then from (3.4.2.1) and (3.4.2.7),

N−1
∑

i∈sA

dAi (µ̂i − ˆ̄µ)

= N−1
∑

i∈sA

dAi

(

µ(xi,B) + hT (xi,B)(B̂−B) + (B̂−B)Tk(xi,B
∗)(B̂−B)− µ̂

)

= N−1
∑

i∈sA

dAi (µi − µ̄) +N−1
∑

i∈sA

hT (xi,B)(B̂−B)+

N−1
∑

i∈sA

(B̂−B)Tk(xi,B
∗)(B̂−B)− Op(1/

√
nA)

(by conditions (3.4.2.i) and (3.4.2).iii)

= N−1
∑

i∈sA

dAi (µi − µ̄) +N−1
∑

i∈sA

hT (xi,B)(B̂−B) +Op(1/nA)− Op(1/
√
nA)

(by conditions (3.4.2.i) and (3.4.2.2))

= N−1
∑

i∈sA

dAi (µi − µ̄) +Op(1/
√
nA) +Op(1/nA)− Op(1/

√
nA)

= N−1
∑

i∈sA

dAi (µi − µ̄) +Op(1/
√
nA) (3.4.2.8)

N−1
∑

i∈sA

dAi (µ̂i − ¯̂µ)2 = N−1
∑

i∈sA

dAi (µi − µ̄)2 + (Op(1/
√
nA))

2

= N−1
∑

i∈sA

dAi (µi − µ̄)2 +Op(1/nA) (3.4.2.9)

From (3.4.2.8) and (3.4.2.9) we have:

B̂MC =

∑

i∈sAd
A
i (µ̂i − ˆ̄µ)(yi − ȳ)

∑

i∈sAd
A
i (µ̂i − ˆ̄µ)2

=
N−1

∑

i∈sAd
A
i (µ̂i − ˆ̄µ)(yi − ȳ)

N−1
∑

i∈sAd
A
i (µ̂i − ˆ̄µ)2

=

∑

i∈sAd
A
i (µi − µ̄)(yi − ȳ) +Op

(
1√
nA

)

∑

i∈sAd
A
i (µi − µ̄)2 +Op

(
1
nA

)

→ BMC as nA → ∞ (3.4.2.10)
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Thus B̂MC = BMC + op(1), and we have:

ˆ̄yECMC = N−1T̂ECMC
y

= N−1dAy +

(

N−1
∑

i∈sB

dBi µ(xi, B̂)−N−1
∑

i∈sA

dAi µ(xi, B̂)

)

B̂MC

= N−1dAy +

(

N−1
∑

i∈sB

µ(xi,B)−N−1
∑

i∈sA

µ(xi,B) +Op

(
1√
n∗

))

(
BMC + op(1)

)

= N−1dAy +

(

N−1
∑

i∈sB

µ(xi,B)−N−1
∑

i∈sA

µ(xi,B)

)

BMC + op

(
1√
n∗

)

where n∗ = min(nA, nB). SinceN = Op(N), we haveN ·oP (1/
√
n∗) =Op(N)op(1/

√
n∗) =

op(N/
√
n∗). Thus,

T̂ECMC
y = N ˆ̄yECMC

= N

(

N−1dAy +

(

N−1
∑

i∈sB

dBi µ(xi,B)−N−1
∑

i∈sA

µ(xi,B)

)

BMC + op

(
1√
n∗

))

= dAy +

(
∑

i∈sB

dBi µ(xi,B)−
∑

i∈sA

µ(xi,B)

)

BMC + op

(
N√
n∗

)

(3.4.2.11)

We are now ready to derive the asymptotic ECLASSO estimator of total.

Theorem III.3. Suppose the parameters in a full regression model have both zero and

non-zero components, without loss of generality, let the first p be non-zero and the last

q be zero: βF =






β
(1)
(p×1)

β
(2)
(q×1)




, β(1) = β and β(2) = 0(q×1). Let sB be a probability-based

benchmark sample with design weights dB, and sA be an analytical sample with design

weights dA, and N be a known population total derived from a sample bigger than sB

and sA, assume the superpopulation model:

Eξ(yk|xk) = µ(xk,β), Vξ(yk|xk) = ν2
kσ

2
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Let B be the finite-population quasilikelihood estimate of β, B → β, under conditions

(3.4.2.i)-(3.4.2.vi), the asymptotic ECLASSO calibration estimator of population total

is:

T̂ECLASSO
y =

∑

i∈sA

dAi (yi − µiB
MC) +

∑

i∈sB

dBi µiB
MC + op

(
N√
n∗

)

(3.4.2.12)

where n∗ = min(nA, nB) and µi = µ(xi,B).

Proof. Under condition (3.4.2.vi), the adaptive LASSO regression satisfies the oracle

property through Theorems 1 and 4 in (Zou, 2006):

Pr
(
B(2) = 0

)
→ 1

√
n
(

B̂(1) −B
)

→ N (0,C)

B → β

where C = Σ(B) is the covariance matrix of B under linear model, and C = I−1(B)

is the inverse of Fisher information matrix of B under generalized linear model. By

Slutsky’s theorem, the oracle property implies: B̂ = B + Op(1/
√
nA). Since LASSO

regression satisfies condition (3.4.2.i), it is asymptotically equivalent to estimated-

control model-assisted calibration estimator of total. By Lemma III.2:

T̂ECLASSO
y = T̂ECMC

y

=
∑

i∈sA

dAi
(
yi − µ(xi,B)BMC

)
+
∑

i∈sB

dBi µi(xi,B)BMC + op

(
N√
n∗

)

(3.4.2.13)

With the asymptotic ECLASSO estimator of total, we can derive the asymptotic

expectation of T̂LASSO
y .
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Theorem III.4. T̂ECLASSO
y is asymptotically design and model-unbiased.

Proof. Under the assumption of our theoretical framework, the superpopulation pa-

rameters are a subset of the full LASSO regression parameters, and that the sample

design B is probability-based with design weights dB, we can prove the asymptoti-

cally design unbiasedness of T̂ECLASSO
y by taking expectations with respect to model

ξ and sample design B. First note that:

Eξ

[
BMC

]
= Eξ

[∑N

i=1(µi − µ̄)(yi − ȳ)
∑N

i=1(µi − µ̄)2

]

=

∑N

i=1(µi − µ̄)(µi − µ̄)
∑N

i=1(µi − µ̄)2
= 1

Thus

EB

[

T̂ECLASSO
y − T

]

≈ EB

[
∑

i∈sA

dAi (yi − µiB
MC) +

∑

i∈sB

dBi µiB
MC −

N∑

i=1

yi

]

= EB

[

Eξ

[
∑

i∈sA

dAi (yi − µiB
MC) +

∑

i∈sB

dBi µiB
MC −

N∑

i=1

yi

]]

(since Eξ[yi] = µi and Eξ

[
BMC

]
= 1)

= EB

[
∑

i∈sA

dAi (µi − µi) +
∑

i∈sB

dBi µi −
N∑

i=1

µi

]

(since dB is probability-sampling-based design weights)

=

N∑

i=1

µi −
N∑

i=1

µi

= 0

As long as LASSO regression parameters include the superpopulation parameters

(right set covariates are available to LASSO), and benchmark sample weights are
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probability-based, T̂ECLASSO
y is unbiased regardless of analytical design weights. This

property is essential in non-probability samples, where there are no initial design

weights to guarantee unbiasedness.

3.4.3 Asymptotic design variance of T̂ECLASSO
y

We derive the asymptotic linearized variance estimate by taking the variance of

equation (3.4.2.12) directly:

vA(T̂
ECLASSO
y ) = VA

(
∑

i∈sA

dAi
(
yi − µiB

MC
)
+
∑

i∈sB

dBi µiB
MC

)

= VA

(

EB

[
∑

i∈sA

dAi
(
yi − µiB

MC
)
+
∑

i∈sB

dBi µiB
MC

])

+

EA

[

VB

(
∑

i∈sA

dAi
(
yi − µiB

MC
)∑

i∈sB

dBi µiB
MC

)]

= VAEB + EAVB

We derive each component VAEB, EAVB separately:

VAEB = VA

(

EB

[
∑

i∈sA

dAi
(
yi − µiB

MC
)
+
∑

i∈sB

dBi µiB
MC

])

= VA

(
∑

i∈sA

dAi
(
yi − µiB

MC
)
+

N∑

i=1

µiB
MC

)

(3.4.3.1)

(since A is single-stage probability-based sampling)

=
∑

i∈U

(
yi − µiB

MC

πA
i

)2

πA
i (1− πA

i )+

∑

i∈U

∑

j 6=i

(
πA
ij − πA

i π
A
j

)
(
yi − µiB

MC
)

πA
i

(
yj − µjB

MC
)

πA
j

(3.4.3.2)
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We use sample estimates for population quantities in (3.4.3.2):

VAEB

∧

=
∑

i∈sA

(

yi − µ̂iB̂
MC

πA
i

)2

(1− πA
i )+

∑

i∈sA

∑

j 6=i

πA
ij − πA

i π
A
j

πA
ij

(

yi − µ̂iB̂
MC
)

πA
i

(

yj − µ̂jB̂
MC
)

πA
j

(3.4.3.3)

Now for the second component:

EAVB = EA

[

VB

(
∑

i∈sA

dAi
(
yi − µiB

MC
)
+
∑

i∈sB

dBi µiB
MC

)]

= EA

[

VB

(
∑

i∈sB

dBi µiB
MC

)]

(3.4.3.4)

(since sample design B is single-stage probability-based sampling)

=
∑

i∈U

(
µiB

MC

πB
i

)2

πB
i (1− πB

i )+

∑

i∈U

∑

j 6=i

(
πB
ij − πB

i π
B
j

) µiB
MC

πB
i

µjB
MC

πB
j

(3.4.3.5)

We use sample estimates for population quantities in (3.4.3.5):

EAVB

∧

=
∑

i∈sB

(

µ̂iB̂
MC

πB
i

)2

(1− πB
i )+

∑

i∈sB

∑

j 6=i

πB
ij − πB

i π
B
j

πB
ij

µ̂iB̂
MC

πB
i

µ̂jB̂
MC

πB
j

(3.4.3.6)
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Finally, the asymptotic linearized variance estimator of T̂ECLASSO
y is:

vA(T̂
ECLASSO
y ) ≈ VAEB

∧

+ EAVB

∧

=
∑

i∈sA

(

yi − µ̂iB̂
MC

πA
i

)2

(1− πA
i )+

∑

i∈sA

∑

j 6=i

πA
ij − πA

i π
A
j

πA
ij

(yi − µ̂iB̂
MC)

πA
i

(yj − µ̂jB̂
MC)

πA
j

+

∑

i∈sB

(

µ̂iB̂
MC

πB
i

)2

(1− πB
i )+

∑

i∈sB

∑

j 6=i

πB
ij − πB

i π
B
j

πB
ij

µ̂iB̂
MC

πB
i

µ̂jB̂
MC

πB
j

. (3.4.3.7)

An alternative linearized variance estimate, suggested by (Särndal et al., 1989), mul-

tiplies (yi − µ̂iB̂
MC) by g-weights, which are the ratios of calibrated weights to the

original design weights:

g = 1(nA×1) +M
(
MTDAM

)−1
(

T̂M − (dA)TM
)T

v.gA(T̂
ECLASSO
y ) =

∑

i∈sA




gi

(

yi − µ̂iB̂
MC
)

πA
i





2

(1− πA
i )+

∑

i∈sA

∑

j 6=i

πA
ij − πA

i π
A
j

πA
ij

gi(yi − µ̂iB̂
MC)

πA
i

gj(yj − µ̂jB̂
MC)

πA
j

+

∑

i∈sB




gi

(

µ̂iB̂
MC
)

πB
i





2

(1− πB
i )+

∑

i∈sB

∑

j 6=i

πB
ij − πB

i π
B
j

πB
ij

µ̂iB̂
MC

πB
i

µ̂jB̂
MC

πB
j

. (3.4.3.8)

To simplify notations, we refer to vA(T̂
ECLASSO
y ) as vECLASSO and v.gA(T̂

ECLASSO
y )

as vECLASSO
g .
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The theoretical framework is complete. We have developed the point estimate

of ECLASSO calibration estimator of total and its asymptotic linearized variance

estimates.

3.5 Simulation design

We design a simulation to evaluate ECLASSO calibration estimator of total:

T̂ECLASSO
y , developed in Section 3.4.1, and linearized variance estimates of T̂LASSO

y :

vECLASSO and vECLASSO
g , developed in section 3.4.3. Since both linearized variance

estimates are based on asymptotic LASSO calibration estimate of total, they might

not perform well for small sample sizes. We also obtain naive bootstrap variance esti-

mates, vECLASSO
boot , as follows: for each simulation sample, draw one finite-population

bootstrap of the benchmark sample, and one simple-random-sample with replacement

of the analytical sample. For each benchmark and analytical bootstrap sample, calcu-

late T̂ECLASSO
y . We repeat the process 500 times per simulation sample to obtain the

bootstrap variance estimate for the simulation sample. To simulation non-probability

samples, we draw samples from the population with unequal probabilities, but set the

design weights to 1.

3.5.1 Estimators

In addition to T̂ECLASSO
y , we will generate estimates based on traditional weighting

schemes in the simulation. The estimators that are evaluated are:

1. Pure-design based Horvitz-Thompson estimator of total, assume SRS, HT: T̂HT
y =

(N/n)
∑

i∈sAyi.

2. Traditional calibration estimator of total, GREG: T̂GREG
y (see (3.2.2.4)).

3. Traditional estimated-control calibration estimator of total, ECGREG: T̂ECGREG
y

(see (3.2.2.6)).
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4. Propensity-score weighting, PSCORE: T̂ PSCORE
y (see (3.2.1.2)).

3.5.2 Data and experimental groups

The data used as the population for this simulation is National Health Inter-

view Survey (NHIS), 2013 adults data. The NHIS 2013 adults data is merged with

NHIS 2013 family income data to obtain income-related variables. After removing

respondents with missing values on demographics, income, and health indicators, the

population size is N = 31, 914. NHIS 2013 data is particularly suitable for simulating

internet-based non-probability samples, because the survey asks respondents about

internet use (internet use), as well as whether a respondent has looked up health-

related information on the world-wide-web (internet health). We can construct a

model predicting internet use, with internet health as a predictor. The predicted

probabilities are related to both internet usage as well as interest in health-related

information online, and are used as selection probabilities to draw our simulation

samples. If the outcome of interest is associated with the general health well-being

of a respondent, our samples are prone to selection bias. We choose the outcome of

interest:

yi =







1, if respondent i does not have health insurance coverage

0, if respondent i does have health insurance coverage

The goal is to predict the total number of individuals in the population without health

insurance, T =
∑N

i=1 yi = 5, 432. Table 3.1 lists the variables that are used in the

simulation.

The main goal of the simulation is to evaluate T̂ECLASSO
y under different levels of

sample and benchmark sizes:� Analytical sample n = 250, 500, 1000
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Table 3.1: Variables used in the working models

Used in working models

Variable Name in model Categories Values

Age agegrp 18-30 0
31-40 1
41-50 2
51-60 3
61-70 4
71-80 5
81+ 6

Age 65 or older agegrp No 0
Yes 1

Gender sex Male 1
Female 2

Race/Ethnicity race non-Hispanic white 1
non-Hispanic black 2
Hispanic 3
Other 4

Education educ2 Less than HS 0
HS 1
Some college 2
Associate/bachlors 3
Post-graduate 4

Currently employed employed No 0
Yes 1

Seen health professional sathc No 0
last 12 months Yes 1

Diagnosed with cancer cancer No 0
Yes 1

Family income faminc q 1st quartile 0
2nd quartile 1
3rd quartile 2
4th quartile 3

Additional variables used in generating sample selection probabilities

Use internet internet use No 0
Yes 1

Region region Northeast 1
Midwest 2
South 3
West 4

Marital status marst Married/partnered 1
Widowed/divorced/seperated 2
Never married 3

Work at a private firm wrk private No 0
Yes 1

Looked up health internet health No 0
on internet Yes 1
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� Benchmark sample n = 250, 500, 1000, 2000, 4000, 8000, 16000

There are a total of 3× 7 = 21 experimental groups.

3.5.3 Working models

Five sets of working models are defined for the estimators:� Demographics1:

xT
i β =β0 + βregion

k[i] + βsex
k[i] + βagegrp

k[i] + βrace
k[i]� Demographics2:

xT
i β =β0 + βregion

k[i] + βsex
k[i] + βagegrp

k[i] + βrace
k[i] + βeduc2

k[i]� Trimmed:

xT
i β =β0 + βsex

k[i] + βagegrp

k[i] + βrace
k[i] + βeduc2

k[i] + βfaminc q

k[i] + βemployed

k[i]� Partial:

xT
i β =β0 + βsex

k[i] + βagegrp

k[i] + βrace
k[i] + βeduc2

k[i] + βfaminc q

k[i] + βemployed

k[i] +

βsex
k[i] × βage65

k[i] + βrace
k[i] × βage65

k[i]� Full:

xT
i β =β0 + βsex

k[i] + βagegrp

k[i] + βrace
k[i] + βeduc2

k[i] + βfaminc q

k[i] + βemployed

k[i] +

βsex
k[i] × βage65

k[i] + βrace
k[i] × βage65

k[i] + βrace
k[i] × βfaminc q

k[i]
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All variables are categorical. We denote k[i] as the category respondent i belongs

to for a given variable. For example, model coefficient for respondents age 31-40 is

denoted by βagegrp

1[i] . If respondent i is not in age group 31-40, then βagegrp

1[i] = 0. The

first value for each variable in Table 3.1 is used as the reference group. Depending on

the estimator, the β̂ is obtained differently. For GREG and ECGREG, β̂ is obtained

from a linear regression: yi = xiβ. For PSCORE, β̂ is the solution to the logistic

regression: logit(zi|xi,β) = xiβ. And for ECLASSO, β̂ is obtained through LASSO

regression described in Section 3.3.2. To see the relationship of each variable to the

binary outcome variable yi, we fit 5 logistic regressions on the population. Table 3.2

lists the logistic regression estimates from the 5 working models. Except for sex, all

variables are highly significant. The effect of sex is reduced once interaction terms

are introduced to the model, indicating that not all interaction terms are necessary.

The Trimmed and Partial working models may perform well. We expect all working

models to help reduce sample bias when the selection weights are ignored.

Models Demographics1 and Demographics2 are the working models for traditional

calibration estimators. We denote GREG1 and GREG2 to be the estimators using

Demographics1 and Demographics2 respectively. We anticipate GREG1 to perform

worse than estimators using other models, because the Demographics1 has the worst

model-fitness measure for the population. The addition of education variable to

Demographics1 improves model-fitness substantially (see Demographics2). Thus we

expect GREG2 to do better than GREG1.

Models Trim, Partial, and Full represent three levels of complexity. ECLASSO

uses the Full model in all experimental groups. There are two propensity-score esti-

mators in this simulation. First one, PSCORE1, and ECGREG use the same working

models. Because the larger models cannot be estimated in a stable manner from the

small datasets, we use the following:� When the minimum of analytical and benchmark sample size is 250, ECGREG
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and PSCORE1 use the Trimmed model.� When the minimum of analytical and benchmark sample size is 500, ECGREG

and PSCORE1 use the Partial model.� When the minimum of analytical and benchmark sample size is 1,000, ECGREG

and PSCORE1 use the Full model.

The final estimator, PSCORE2, is the propensity-score estimator that uses the

correct model, i.e., the same working model as the one that generates the samples,

described below.

3.5.4 Sample generation

To generate selection probabilities, we fit the logistic regression model on the

whole population:

E [I(internet use = 1)] = πA
i

logit(πA
i ) = β0 + βregion

k[i] + βsex
k[i] + βagegrp

k[i] + βrace
k[i] + βeduc2

k[i]

βfaminc q

k[i] + βmarst
k[i] + βsathc

k[i] + βwrk private

k[i] + βinternet health
k[i]

We use Poisson sampling with the predicted probabilities, π̂A
i , as the basis of our selec-

tion probabilities. For each analytical sample size n, the probabilities are rescaled to

generate a sample size close to n on expectation: π̂A∗
i = nπ̂A

i /
∑N

i=1 π̂
A
i . The selection

probabilities simulate a person’s propensity to be in a non-probability internet-based

sample. The same type of sample generation was used in (Valliant and Dever , 2011) to

simulate web-volunteer samples. The benchmark sample is a simple-random-sample

of the population. Table 3.3 displays two model outputs. The output on the left is

the fit to predict internet use, which generated the selection probabilities. The output

on the right is the fit of the same variables to predict the outcome of interest. Income
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Table 3.2: Working models fit on population

Dependent variable:

Demographics1 Demographics2 Trimmed Partial Full

region[2] 0.199∗∗∗ 0.164∗∗∗

region[3] 0.519∗∗∗ 0.502∗∗∗

region[4] 0.403∗∗∗ 0.404∗∗∗

employed[1] 0.258∗∗∗ 0.256∗∗∗ 0.262∗∗∗

race[2] 0.510∗∗∗ 0.325∗∗∗ 0.216∗∗∗ 0.208∗∗∗ 0.147∗

race[3] 1.272∗∗∗ 0.911∗∗∗ 0.820∗∗∗ 0.797∗∗∗ 0.632∗∗∗

race[4] 0.090 0.171∗∗∗ 0.007 −0.053 −0.331∗∗∗

age65[1] −1.954∗∗∗ −2.326∗∗∗ −2.360∗∗∗

sex[2] −0.262∗∗∗ −0.223∗∗∗ 0.018 0.015 0.018
agegrp[2] −0.100∗∗ −0.049 0.157∗∗∗ 0.158∗∗∗ 0.163∗∗∗

agegrp[3] −0.279∗∗∗ −0.251∗∗∗ 0.087 0.085 0.091∗

agegrp[4] −0.442∗∗∗ −0.491∗∗∗ −0.129∗∗ −0.133∗∗ −0.125∗∗

agegrp[5] −1.352∗∗∗ −1.447∗∗∗ −0.261∗∗∗ −0.266∗∗∗ −0.256∗∗∗

agegrp[6] −2.938∗∗∗ −3.186∗∗∗ −0.774∗∗∗ −0.759∗∗∗ −0.752∗∗∗

agegrp[7] −2.763∗∗∗ −3.103∗∗∗ −0.683∗∗∗ −0.650∗∗ −0.640∗∗

faminc q[1] −0.213∗∗∗ −0.211∗∗∗ −0.253∗∗∗

faminc q[2] −0.972∗∗∗ −0.971∗∗∗ −1.178∗∗∗

faminc q[3] −2.109∗∗∗ −2.109∗∗∗ −2.253∗∗∗

educ2[1] −0.414∗∗∗ −0.266∗∗∗ −0.262∗∗∗ −0.263∗∗∗

educ2[2] −0.833∗∗∗ −0.588∗∗∗ −0.585∗∗∗ −0.592∗∗∗

educ2[3] −1.187∗∗∗ −0.674∗∗∗ −0.672∗∗∗ −0.677∗∗∗

educ2[4] −2.053∗∗∗ −1.191∗∗∗ −1.184∗∗∗ −1.186∗∗∗

sathc[1] 2.057∗∗∗ 2.058∗∗∗ 2.059∗∗∗

cancer[1] −0.189∗∗ −0.178∗ −0.180∗

sex[2]:age65[1] 0.086 0.080
race[2]:age65[1] 0.195 0.236
race[3]:age65[1] 0.581∗∗∗ 0.649∗∗∗

race[4]:age65[1] 1.375∗∗∗ 1.455∗∗∗

race[2]:faminc q[1] −0.151
race[3]:faminc q[1] 0.151
race[4]:faminc q[1] 0.259
race[2]:faminc q[2] 0.358∗∗∗

race[3]:faminc q[2] 0.353∗∗∗

race[4]:faminc q[2] 0.669∗∗∗

race[2]:faminc q[3] 0.303
race[3]:faminc q[3] 0.269
race[4]:faminc q[3] 0.440∗

Constant −1.719∗∗∗ −0.869∗∗∗ −1.100∗∗∗ −1.088∗∗∗ −1.012∗∗∗

Observations 31,914 31,914 31,914 31,914 31,914
Log Likelihood −12,819.310 −12,319.740 −10,198.670 −10,187.870 −10,173.000
Akaike Inf. Crit. 25,666.620 24,675.490 20,441.330 20,427.730 20,415.990

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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and education are highly significant in both models with large effect sizes. We expect

weighting adjustments that control to these variables to do well. The variable that

is strongly associated with internet use, internet health, is mildly significant with

insurance coverage. Table 3.4 tabulates the total number of people without health

insurance in the population, by quintile groups of selection probabilities. The group

with highest selection probabilities also has the lowest count of total number without

insurance. Assuming SRS, the estimate of total number of people without health

insurance would be underestimating the true population total.

Table 3.5 lists the summary of simulation parameters.

3.5.5 Evaluation metrics

Point estimates and variance. We evaluate empirical bias, variance, and

RMSE for each estimator of total. Let S be the number of simulation iterations.

We define:

θ̂ = T̂HT
y , T̂GREG1

y , T̂GREG2
y , T̂ PSCORE1

y , T̂ PSCORE2
y , T̂ECLASSO

y

bias
(

θ̂
)

=
1

S

S∑

j=1

(

θ̂j − θ
)

var
(

θ̂
)

=
1

S − 1

S∑

j=1

(

θ̂j − ¯̂
θj

)2

,
¯̂
θ =

1

S

S∑

j=1

θ̂j

rmse
(

θ̂
)

=

√

bias2(θj) + var(θ̂j)

θ =
N∑

k=1

yk.

Relative performance. We compare each weighting adjustment estimator that

utilizes benchmark samples to the estimators that do not use benchmark samples.
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Table 3.3: Selection probabilities model

Sample selection variables

(internet use) (no coverage)

region[2] −0.107∗ −0.044
region[3] −0.133∗∗ 0.392∗∗∗

region[4] 0.029 0.305∗∗∗

sex[2] 0.097∗∗∗ 0.022
race[2] −0.377∗∗∗ 0.185∗∗∗

race[3] −0.786∗∗∗ 0.722∗∗∗

race[4] −0.299∗∗∗ −0.041
employed[1] 0.492∗∗∗ 0.305∗∗∗

agegrp[2] −0.641∗∗∗ 0.093∗

agegrp[3] −1.248∗∗∗ 0.008
agegrp[4] −1.743∗∗∗ −0.205∗∗∗

agegrp[5] −2.047∗∗∗ −1.152∗∗∗

agegrp[6] −2.587∗∗∗ −2.800∗∗∗

agegrp[7] −3.478∗∗∗ −2.676∗∗∗

faminc q[1] 0.478∗∗∗ −0.271∗∗∗

faminc q[2] 0.890∗∗∗ −1.062∗∗∗

faminc q[3] 1.447∗∗∗ −2.221∗∗∗

marst[2] 0.043 −0.148∗∗∗

marst[3] 0.149∗∗∗ −0.286∗∗∗

educ2[1] 0.766∗∗∗ −0.234∗∗∗

educ2[2] 1.557∗∗∗ −0.538∗∗∗

educ2[3] 1.812∗∗∗ −0.602∗∗∗

educ2[4] 2.334∗∗∗ −1.089∗∗∗

cancer[1] −0.081 −0.197∗∗

wrk private[1] −0.005 0.093∗∗

sathc[1] −0.040 2.059∗∗∗

internet health[1] 2.869∗∗∗ −0.069∗

Constant −0.125 −1.183∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 3.4: Outcome totals by selection probability quintile groups

Total uninsured average πi

1,183 0.173
1,640 0.581
1,053 0.889
1,038 0.979
518 0.995

Table 3.5: Simulation parameter summary

Population N 31,914

Population T 5,432

Number of samples 1,000

Sample n 250, 500, 1000
Benchmark n 250, 500, 1000, 2000, 4000, 8000, 16,000

Estimator working model variables

GREG1 Demographics1 Region, Age, Gender, Race

GREG2 Demographics2 Region, Age, Gender, Race, Education

ECGREG min n = 250 Trim Age, Gender, Race, Age, Age65, Education, Income, Seen health professional, Cancer status,
PSCORE1 min n = 500 Partial Age, Gender, Race, Age, Age65, Education, Income, Seen health professional, Cancer status,

Age65:Gender, Age65:Race
min n = 1,000 Full Age, Gender, Race, Age, Age65, Education, Income, Seen health professional, Cancer status,

Age65:Gender, Age65:Race, Income:Race

PSCORE2 Internet Region, Age, Gender Race, Education Employment, Income, Marital status, Cancer status,
Work private, Seen health professional, Looked up health information online

ECLASSO Full Age, Gender, Race, Age, Age65, Education, Income, Seen health professional, Cancer status,
Age65:Gender, Age65:Race, Income:Race
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We calculate percent-root-mean-square-error:

%relrmse = 100
rmse(θ̂bench)

rmse(θ̂nobench)

bench = PSCORE1, PSCORE2, ECGREG,ECLASSO

nobench = HT,GREG1, GREG2

Variance estimates. We evaluate the linearized variance estimates and boot-

strap variance estimates by their 95% nominal coverage and %bias relative to empir-

ical variance. We use normal approximation to generate confidence intervals. Let-

ting s index simulation number, we construct a confidence interval for each method,

v = vECLASSO, vECLASSO
g , vECLASSO

boot :

CIs = T̂ECLASSO
ys ± 1.96

√
vs

Is =







1, if T ∈ CIs

0, otherwise

where Is is the indicator whether the confidence interval covered the true population

total. The nominal 95% coverage is: 100
∑S

s=1 Is/S. To calculate %bias:

%bias = 100
[

v − var
(

T̂ECLASSO
y

)]/
var

(

T̂ECLASSO
y

)

where var
(

T̂ECLASSO
y

)

is the empirical variance obtained from 1,000 simulation sam-

ples. To understand how bootstrap variance estimates work with re-samplings of

benchmark samples, we also generate vPSCORE1
boot , vPSCORE2

boot , vECGREG
boot and evaluate

their 95% nominal coverage. We ignore the finite-population-correction factor in

variance calculation, because the minimum sample size between the analytical and
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benchmark sample is at most 1,000, which is only roughly 3% of the population size.

3.6 Simulation results

3.6.1 Point estimates

The simulation results are based on 1,000 simulation samples. Table 3.6 lists the

numerical summaries of each estimator under different sample and benchmark sizes.

HT, GREG1, and GREG2 estimators do not use benchmark samples. GREG1 and

GREG2 control to population totals by basic demographics, with GREG1 omitting

the education variable. As expected, assuming SRS without weighting adjustment,

HT underestimates the true population total. Without a key calibration variable,

GREG1 actually performed worse than HT with a sizable bias. When an impor-

tant control variable is included, GREG2 has one of the smallest bias and RMSE

among the estimators that are calculated in the simulation. This demonstrates that

if population-level education control totals are not available, we would not have been

able to estimate the population totals correctly without a smaller benchmark sam-

ple. In fact, we could have generated estimates that performed much worse than an

estimator without weighting adjustment.

Among the estimators that utilized benchmark samples, ECLASSO is the only es-

timator which produced unbiased estimates for all experimental groups. PSCORE1

and PSCORE2 estimators’ bias depends on both sample and benchmark sizes. For

PSCORE1 and PSCORE2, although the bias improves as benchmark size increases,

when sample size increase, the bias gets worse. One explanation is that the sample

bias persists after propensity-score weighting. Thus as sample size grows, the bias ac-

cumulates. For ECGREG, the bias remains fairly constant given different benchmark

sizes, and improves slightly as analytical sample size increases.

ECGREG and PSCORE1 use the same working models for all experimental
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groups. By comparing ECGREG and PSCORE1, there is evidence that calibration-

based method is less sensitive to smaller external data in terms of variance. For

benchmark sample size less 1,000, ECGREG has smaller variances than PSCORE1.

However, PSCORE1 consistently has lower bias than ECGREG. One might attempt

to combine both methods – generate propensity-score weights, then use the reference

sample as the benchmark sample for calibration. This method is called propensity-

score-poststratification, described in detail by (Valliant and Dever , 2011). However,

(Valliant and Dever , 2011) found propensity-score-poststratification to be the most

unreliable weighting adjustment in their simulation.

Table 3.7 lists the percentage of times each variable is selected by LASSO across

1,000 simulation samples. The higher the percentage, the more important a variable is

to predict whether a person has health insurance coverage. As sample size increases,

the proportion of times each variable selected by LASSO is fairly consistent for the

majority of the variables, except for race[3], age65[1], faminc q[2], and all categories

of educ variable where the percentage increases significantly as sample size increases.

These variable categories are likely strong predictors of health insurance coverage

that are also related to sample selection, which may explain why GREG1 performed

poorly without controlling to the education variable. Age groups 6 and 7 are seldom

selected by LASSO in all sample sizes. ECLASSO likely gains efficiency by setting

these age categories to 0. As expected, the interaction terms do not seem to be

highly important, thus ECLASSO further gains efficiencies over ECGREG under the

full model.

Figure 3.1 provides a visual display of relative RMSE of each estimator that uses

a benchmark sample to an estimator that does not. The blue colors mean better

RMSE while red colors indicate worse RMSE. When population control variables are

strongly related to both the outcome of interest and selection probabilities, we expect

the traditional calibration to perform well over estimators that utilize benchmark
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samples. This is the case for GREG2. Comparing to GREG2, ECLASSO still has

gains in RMSE when benchmark size is at least as large as the analytical sample size.

For example, when analytical sample size is 500, ECLASSO starts to have compara-

ble and smaller RMSE relative to GREG1 for benchmark sample sizes 500 or larger.

Thus ECLASSO is able to achieve the same performance as a calibration estimator

controlled to a strong population-level variable, even with small benchmark samples.

The same statement cannot be made for all other estimators that utilize a benchmark

sample. When the key control variable is missing in population, traditional calibra-

tion can perform poorly, as in the case of GREG1. Nearly all weighting adjustment

methods outperformed GREG1. ECLASSO produced smaller RMSE than GREG1,

even when the benchmark sample is just 250. At sample size 1,000, and benchmark

sample size ≥ 1,000, PSCORE1, ECGREG, and ECLASSO use the same working

models. ECLASSO out-performed all other methods given the same working model,

suggesting that ECLASSO is most effective in leveraging information from an exter-

nal benchmark sample. For the weighting adjustment method that uses the correct

working model (same model that generated the samples), PSCORE2 was not able

to remove sample bias completely. This suggests that the variables used in sample

generation may not fully explain a person’s tendency without health insurance.

3.6.2 Variance estimates

Table 3.8 lists the 95% nominal coverages and %bias for the asymptotic linearized

variance estimates and naive bootstrap estimates of the ECLASSO estimator. The

g-weighted variance estimate, vECLASS
g , have smaller bias relative to the unweighted

variance estimate, vECLASS, although both methods consistently produce negative

biases. The linearized variance estimates tend to have better bias and coverage when

both analytical and benchmark sizes are small. This can be a side-effect of adding two

biased estimates together. The bootstrap variance estimate, vECLASSO
boot , significantly
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Table 3.6: Simulation summary, target is number of uninsured in the NHIS sample “population”: T = 5, 432

HT GREG1 GREG2

sample n bias var rmse bias var rmse bias var rmse

250 -383 539,696 828 -622 520,911 953 18 701,045 837
500 -378 270,501 643 -622 248,463 797 6 316,044 562
1,000 -355 137,074 513 -602 120,871 695 25 159,396 400

PSCORE1 PSCORE2 ECGREG ECLASSO

sample n benchmark n bis var rmse bias var rmse bias var rmse bias var rmse

250 250 260 1,107,072 1,084 442 1,607,227 1,343 344 840,761 979 20 707,219 841
250 500 165 805,848 913 192 960,659 999 348 735,850 926 28 614,884 785
250 1,000 118 683,108 835 109 769,714 884 343 681,759 894 28 573,320 758
250 2,000 108 627,301 799 86 691,357 836 345 649,934 877 29 540,198 736
250 4,000 90 612,221 788 62 667,272 819 337 637,954 867 19 524,209 724
250 8,000 90 604,779 783 59 652,658 810 337 632,807 864 18 516,230 719
250 16,000 93 601,555 781 59 647,378 807 339 628,826 862 19 509,372 714

500 250 258 571,430 799 365 753,605 942 328 465,819 757 -5 437,480 661
500 500 160 413,761 663 189 466,759 709 293 390,887 690 4 333,024 577
500 1,000 104 332,284 586 116 362,946 614 276 338,838 644 -3 283,775 533
500 2,000 94 296,795 553 99 320,949 575 281 314,649 628 0 260,722 511
500 4,000 79 280,539 535 82 300,933 555 274 304,088 616 -10 248,869 499
500 8,000 75 276,327 531 76 293,225 547 271 302,006 613 -12 245,002 495
500 16,000 74 270,378 525 74 286,701 541 272 298,008 610 -14 238,418 488

1,000 250 318 386,304 698 409 487,080 809 320 287,015 624 -17 282,471 532
1,000 500 236 237,164 541 256 255,922 567 289 215,426 547 -3 195,902 443
1,000 1,000 215 193,911 490 202 195,189 486 296 194,099 531 -9 163,316 404
1,000 2,000 209 166,298 458 194 166,493 452 304 175,362 517 -2 142,976 378
1,000 4,000 193 155,752 439 180 155,601 433 299 167,887 507 -6 136,351 369
1,000 8,000 187 148,255 428 173 149,077 423 295 161,660 498 -10 128,290 358
1,000 16,000 186 141,857 420 171 142,618 415 295 156,559 494 -11 123,956 352
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Table 3.7: Percentage of times variables are selected by LASSO across 1,000 simula-
tion samples

Sample sizes

Variables 250 500 1,000

employed[1] 40% 47% 55%
sex[2] 45% 48% 53%
race[2] 36% 45% 58%
race[3] 74% 93% 99%
race[4] 25% 27% 33%
age65[1] 73% 94% 100%
agegrp[2] 42% 49% 59%
agegrp[3] 38% 39% 47%
agegrp[4] 33% 40% 47%
agegrp[5] 33% 40% 52%
agegrp[6] 3% 4% 6%
agegrp[7] 1% 1% 2%
faminc q[1] 43% 44% 47%
faminc q[2] 64% 87% 99%
faminc q[3] 98% 100% 100%
educ2[1] 41% 44% 54%
educ2[2] 33% 40% 54%
educ2[3] 52% 63% 77%
educ2[4] 42% 61% 81%
sathc[1] 99% 100% 100%
cancer[1] 19% 23% 28%
sex[2]:age65[1] 4% 7% 8%
race[2]:age65[1] 1% 1% 1%
race[3]:age65[1] 2% 2% 3%
race[4]:age65[1] 1% 1% 2%
race[2]:faminc q[1] 17% 17% 23%
race[3]:faminc q[1] 25% 29% 32%
race[4]:faminc q[1] 12% 14% 17%
race[2]:faminc q[2] 15% 16% 18%
race[3]:faminc q[2] 17% 16% 23%
race[4]:faminc q[2] 10% 11% 14%
race[2]:faminc q[3] 7% 8% 9%
race[3]:faminc q[3] 11% 11% 12%
race[4]:faminc q[3] 5% 7% 8%
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Figure 3.1: Relative Mean Square Errors

250 500 1000

PSCORE1

PSCORE2

ECGREG

ECLASSO

250 500 1000 2000 4000 8000 16000 250 500 1000 2000 4000 8000 16000 250 500 1000 2000 4000 8000 16000

Benchmark Sample Size

E
s
ti
m

a
to

r

0.50

0.75

1.00

1.25

1.50
relrmse.HT

Relative root-mean-square-error to HT (assume SRS)

relrmse.GREG1

relrmse.GREG2

The blue color indicates a better RMSE (under 1), while the red color indicates a worse RMSE (over
1). Dark red color indicates a relative RMSE greater than 1.5.

112



over-estimates the empirical variance when the benchmark sample is small. As both

analytical and benchmark sample size increase, vECLASSO
boot improves in both bias and

coverage. It does appear, however, that bootstrap variance estimates do not perform

well with small benchmark samples. When benchmark sample sizes are 250, 500, or

1,000, there is evidence of large positive bias for bootstrap variance estimates. Since

negative bias is less desirable, we would recommend bootstrap variance estimates

where possible.

Table 3.9 lists the 95% nominal coverage of bootstrap variance estimates for the es-

timators that utilize benchmark samples. With small benchmark samples, PSCORE1

and PSCORE2 have large variances, which produce over-conservative confidence in-

tervals that result in higher than expected 95% coverage rates. As benchmark sample

size increases, nominal coverage of PSCORE1 and PSCORE2 bootstrap variance

estimates get closer to 95%. This suggests that propensity-score weighting adjust-

ment method can be very sensitive to the benchmark sample sizes. ECGREG boot-

strap variance estimates seem to be sensitive to the working models. For sample

size n = 500 and benchmark sample size ≥ 500, ECGREG uses the Partial working

model, which gives lower than expected nominal coverage, around 90-91%. This can

be a combination of bias and model-complexity – ECGREG’s variances based on the

Partial working model are not large enough to compensate the bias at sample size

500. With the Full model that has more calibration cells (when sample size 1, 000 and

benchmark sample ≥ 1, 000), ECGREG nominal coverages rates increase to 96-97%.

At sample size 250, the Trimmed model may still be too complex for ECGREG, thus

the bootstrap variance estimates have high nominal coverage rates despite non-trivial

biases. Among the estimators that use benchmark samples, ECLASSO is the least

sensitive to both sample and benchmark sizes. As ECLASSO estimator is nearly un-

biased for all experimental designs, stable nominal coverage rates also indicate that

the ECLASSO consistently produces lower variances.
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Table 3.8: Variance estimates 95% nominal coverage and %bias

coverage %bias

sample n benchmark n vECLASSO vECLASSO
g vECLASSO

boot vECLASSO vECLASSO
g vECLASSO

boot

250 250 88.6% 89.9% 97.4% -27.0% -21.4% 38.2%
250 500 88.4% 90.4% 96.8% -28.2% -21.9% 28.5%
250 1,000 88.9% 90.4% 96.4% -29.6% -23.0% 20.6%
250 2,000 89.3% 90.6% 95.7% -28.8% -21.8% 19.0%
250 4,000 88.8% 90.1% 96.3% -28.5% -21.4% 18.1%
250 8,000 89.4% 90.8% 95.8% -28.3% -21.1% 17.7%
250 16,000 89.6% 91.1% 95.9% -27.8% -20.5% 18.1%

500 250 92.4% 93.0% 97.0% -11.1% -7.0% 23.6%
500 500 91.9% 92.9% 96.8% -13.5% -8.1% 21.1%
500 1,000 92.3% 93.5% 96.0% -16.2% -10.1% 17.3%
500 2,000 91.9% 93.0% 96.4% -18.5% -11.9% 14.0%
500 4,000 91.5% 93.2% 96.3% -19.7% -13.0% 12.5%
500 8,000 91.2% 92.6% 96.2% -21.1% -14.3% 10.7%
500 16,000 91.2% 92.5% 96.2% -20.2% -13.2% 12.0%

1,000 250 93.0% 93.1% 96.1% -10.9% -8.1% 22.9%
1,000 500 93.4% 94.0% 96.5% -11.9% -7.9% 21.8%
1,000 1,000 92.8% 93.5% 96.6% -18.7% -14.0% 11.5%
1,000 2,000 92.4% 93.4% 96.2% -21.0% -15.6% 8.2%
1,000 4,000 90.6% 91.8% 95.8% -24.4% -18.9% 2.8%
1,000 8,000 91.3% 92.2% 95.6% -23.6% -17.7% 3.9%
1,000 16,000 92.1% 93.2% 95.9% -22.9% -16.9% 4.6%
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Table 3.9: Bootstrap variance estimates and 95% nominal coverage

coverage

sample n benchmark n vPSCORE1
boot vPSCORE2

boot vECGREG
boot vECLASSO

boot

250 250 99.0% 99.1% 97.1% 97.4%
250 500 98.5% 98.5% 96.5% 96.8%
250 1,000 97.6% 98.4% 96.9% 96.4%
250 2,000 97.3% 97.6% 96.4% 95.7%
250 4,000 97.2% 97.3% 97.2% 96.3%
250 8,000 96.7% 97.3% 96.7% 95.8%
250 16,000 96.8% 97.0% 96.7% 95.9%

500 250 98.9% 99.0% 96.7% 97.0%
500 500 98.4% 95.8% 91.3% 96.8%
500 1,000 97.1% 98.1% 90.3% 96.0%
500 2,000 97.4% 97.9% 90.8% 96.4%
500 4,000 97.1% 97.9% 91.0% 96.3%
500 8,000 97.2% 97.6% 91.2% 96.2%
500 16,000 97.0% 97.6% 91.2% 96.2%

1,000 250 98.7% 98.9% 95.9% 96.1%
1,000 500 98.3% 98.7% 96.4% 96.5%
1,000 1,000 98.2% 98.2% 97.1% 96.6%
1,000 2,000 97.2% 97.5% 97.1% 96.2%
1,000 4,000 96.6% 96.8% 96.9% 95.8%
1,000 8,000 96.9% 97.1% 97.1% 95.6%
1,000 16,000 96.6% 97.3% 97.1% 95.9%
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3.7 Conclusion

In this chapter, we developed the full theoretical framework for ECLASSO cali-

bration. We derived the point estimate formula under chi-square-distance measure,

and proved that ECLASSO estimator of total is asymptotically design unbiased un-

der the assumptions of our theoretical framework. Asymptotic linearized variance

estimates are derived. We evaluate ECLASSO estimator of total and asymptotic

linearized estimates through a simulation with an actual data. In terms of bias and

RMSE, ECLASSO estimator uniformly outperforms traditional weighting adjustment

methods that utilize the same benchmark data. The only estimator that has compa-

rable bias and RMSE as ECLASSO estimator is the traditional calibration estimator

controlled to the key variable in the population – education. If education-level pop-

ulation totals were not available, no estimators reached similar bias and RMSE as

ECLASSO’s. For variance estimates, neither the asymptotic linearized variance esti-

mates nor bootstrap variance estimates gave satisfactory results. Linearized variance

estimates have large negative bias while bootstrap variance estimates have significant

positive bias. Compared to other estimators that use benchmark samples, however,

ECLASSO bootstrap variance nominal coverage rates are the most stable and con-

sistent across different sample and benchmark sizes.
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CHAPTER IV

Application to Online Political Poll

4.1 Introduction

One of the most prominent applications of survey research is election polling. The

time-frame to collect critical voting intention is short, typically spanning just the

last few weeks prior to the election day. Due to declining land-line phone coverage

and improved phone-screening technology, it has become a significant challenge for

election pollsters to capture voting intentions in a timely way with telephone samples

that have been the staple of probability-based polling (Holbrook et al., 2007; Kohut

et al., 2012). Recent research has shown the potential use of non-probability samples

to predict election outcomes. Wang et al. (2014) performed multi-level regression

and post-stratification on Xbox users to accurately predict the U.S. 2012 presidential

election results. Tumasjan et al. (2010) found success in analyzing the frequency of

candidates appearing in Twitter texts to estimate the support for political candidates

in the 2009 German federal election. Major polling agencies within New York Times,

CBS, and NBC have also turned to the more cost-effective non-probability sampling

to collect large samples of potential voters within a short time period.

Without a well-defined sampling frame, non-probability-based election polls can

have extremely off-balanced sample composition relative to the general voting popu-

lation. Wang et al. (2014) found, for example, that the Xbox sample consisted of 75%
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age 18-44 and over 90% male, compared to 50% age 18-44 and less than 50% male

in the 2008 presidential election exit polls. Yet by making post-survey adjustments

to match Xbox sample characteristics to the 2008 exit poll characteristics, they were

able to correctly forecast the outcome of the 2012 presidential election. In addition to

basic voter demographics, the 2008 exit poll contained political ideology, party iden-

tification, and information on the support for presidential candidate Obama, making

the exit poll a powerful benchmark data for the 2012 presidential election where

president Obama ran for re-election. For most elections, however, no such large-scale

benchmark exists. Post-survey adjustments are limited to basic demographics such as

age, gender, race, and education from large-scale government surveys. As voter inten-

tions are often associated with other factors such as religious beliefs, attitudes toward

current political agenda, and political party support (Krosnick , 1988; Esmer and Pet-

tersson, 2007; Abramowitz , 2008; Healy et al., 2010), post-survey adjustments only

to basic demographics are unlikely to remove all bias in imbalanced non-probability

samples. Although adjusting non-probability samples to small benchmark samples

with relevant variables can significantly reduce the bias, the small benchmark sample

size can also greatly increase the standard errors of weighted estimates. To date,

no research has shown whether small benchmark samples can effectively adjust non-

probability election polls for accurate and precise election forecasts. In this chap-

ter, we apply Estimated Control LASSO calibration (ECLASSO) to non-probability

internet-based U.S. election polling data to adjust the polling sample with a small

probability-based benchmark data. We aim to answer two key research questions:

(A) Can a small probability-based sample adjust a large non-probability

internet-based election polling data for accurate election forecasts?

(B) Can the forecasts be precise given the small benchmark size?

Research question (A) concerns the bias property of an estimator, while (B) relates to
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the variance property of an estimator. ECLASSO is a promising approach to answer

the research questions for two major reasons:

(1) Leveraging information from benchmark. By performing variable selection and

parameter estimation simultaneously, ECLASSO can optimally leverage informa-

tion from benchmark sample to allow for more effective bias reduction.

(2) Estimating totals of binary outcome variables. For bipartisan elections, the elec-

tion outcome of interest is binary, i.e. Democrat or Republican. ECLASSO can

result in smaller variance over traditional calibration where an implicit miss-

specified linear relationship between the outcome and control variables is as-

sumed.

4.2 Outcome of interest

For majority of the U.S., the winning political party is fairly predictable. From

1992-2012, 18 states have voted consecutively for Democratic presidential candidates

while 13 states voted consecutively for Republican candidates. For these 31 states, it

is not difficult to predict the winning political party for state-level elections. A mea-

sure of polling success thus relies on the predicted proportions of votes among the

political parties. In particular, voting spread, the difference in proportions of votes

between major political parties, has become an indicator for contentiousness of the

election as well as a measure of polling accuracy. We apply ECLASSO to predict

the voting spread in the U.S. 2014 midterm election. We wish to estimate

the proportion of Democratic votes minus the proportion of Republican

votes (SD−R) for each governor and senate race. There are totals of 36 gov-

ernor elections in 36 states, and 36 senate elections in 35 states. Since the actual

election results are published, we can compare the bias and root-mean-square error

of ECLASSO with traditional weighting adjustment methods. We provide details for
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each weighting method in the following section.

4.3 Estimation

For the outcome variable, we define a binary indicator:

yi =







1 if respondent i voted for a Democratic candidate

0 if respondent i voted for a Republican candidate

For the rest of the chapter, we refer to the internet-based polling data as the analytical

sample, denoted by sA. Let sA(r) be the sample of respondents in state r, the voting

spread in state r, SD−R(r), can be estimated by:

ŜD−R(r) =
∑

i∈sA(r)

wiyi

/ ∑

i∈sA(r)

wi −
∑

i∈sA(r)

wi (1− yi)
/ ∑

i∈sA(r)

wi

= 2
∑

i∈sA(r)

wiyi

/ ∑

i∈sA(r)

wi − 1

where wi is the weight for respondent i. We compare the weighted estimates based

on ECLASSO with unweighted estimates (UNWT), as well as estimates based on

weights from traditional weighting adjustment methods - calibration to Census-level

state demographic totals (STATEWT), propensity-score weighting (PSCORE), and

Estimated-Control Regression Estimator (ECGREG). Each weighting method con-

structs a set of weights by adjusting the initial design weights w0 based on information

obtained from an external source. In the analysis, ŜD−R(r) is calculated with five dif-

120



ferent set of weights:

wUNWT : unadjusted weight = 1
nA×1

wSTATEWT : State-level calibrated weights

wPSCORE : Propensity-score adjusted weights

wECGREG : ECGREG calibrated weights

wECLASSO : ECLASSO calibrated weights

Denote the estimated spread of each method by: Ŝmethod
D−R(r)

method = UNWT, STATEWT, PSCORE,ECGREG,ECLASSO

Calibration-based weighting adjustment (STATEWT, ECGREG, ECLASSO) refers

to the external source as benchmark data, while propensity-score weighting adjust-

ment (PSCORE) refers to the external source as reference samples. To simplify the

terminology, we refer to the external source as ”benchmark samples” in all weighting

adjustment methods.

STATEWT method adjusts to state-level demographic totals that are derived

from a sample much larger than the analytical sample, and thus is considered as

adjustments to true population quantities. PSCORE, ECGREG, and ECLASSO,

on the other hand, use the same benchmark sample that is much smaller than the

internet-based data, but shares many common variables with the analytical sample.

Due to the small benchmark sample size, it is not practical to perform weighting

adjustments within each state for PSCORE, ECGREG, and ECLASSO. Instead, we

assume that at the national-level, people with similar characteristics have the same

voting tendencies. The individual voting tendencies are modified by the type of state

the individual lives in. Similar model assumptions were made in the multi-level re-
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gression model of the Xbox election analysis by Wang et al. (2014). The assumed

relationship between voting tendencies with individual characteristics and state types

formulate the working models behind PSCORE, ECGREG, and ECLASSO, in con-

structing weights. The following section describes the weight construction process for

each method.

4.4 Weight construction

We assume that the benchmark sample sB has design weights wB
nB×1

based on proba-

bility sampling, where nB is the benchmark sample size. Furthermore, the benchmark

and analytical samples have a common set of variables. Since the analytical sample is

a non-probability internet sample, the initial design weight in the analytical sample

is w0 = 1
nA×1

, where nA is the analytical sample size. For the rest of the chapter, let

XB, XA be the design matrices with the common set of variables in the benchmark

and analytical samples, and WB = diag(wB), W0 = diag(w0) be the correspond-

ing weight matrices. The design matrix is explicitly defined for STATEWT in this

section, while variables of XA and XB in PSCORE, ECGREG, and ECLASSO are

described in detail in section 4.7.1.

4.4.1 STATEWT

For STATEWT, the benchmark sample has state-level demographic totals. We

assume that state-level totals are estimated from a large-scale survey much bigger than

the analytical sample. The analytical sample is controlled to demographic totals by

Age, Gender, Race, and Education within each state. We define the design matrix

for the analytical sample A in state r:

XA(r) =

[

1
nA(r)×1

,XAge

A(r),X
Gendr
A(r) ,XRace

A(r) ,X
Educ
A(r)

]
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The sub-matrix XAge

A(r) is a dummy matrix for different Age categories. For instance,

for Age with categories ”18-24”, ”25-29”, ”30-39”, ”40-49”, ”50-59”, ”60-75”, ”75+”,

XAge

A(r) has 6 columns, each column is a vector of (0, 1) values indicating age group

membership of the respondents, with group ”18-24” held out as the reference group.

We assume the working model:

E
[
yi(r)

∣
∣xAi(r),β(r)

]
= xT

Ai(r)β(r), V (yi) = 1

Estimates of β(r) can be obtained through weighted least-square regression:

β̂(r) =
(
XT

A(r)W0(r)XA(r)

)−1
XT

A(r)W0(r)y(r)

From the sample, estimate population totals of the covariates in the working model:

T̂XA(r) =

[

wT
0 1
nA(r)×1

,wT
0 X

Age

A(r),w
T
0X

Gender
A(r) ,wT

0 X
Race
A(r) ,w

T
0X

Educ
A(r)

]

=
[

nA(r), T̂
Age

A(r), T̂
Gender
A(r) , T̂Race

A(r) , T̂
Educ
A(r)

]

Given the state-level totals in benchmark:

TXB(r) =

[

wT
B 1
nB(r)×1

,wT
BX

Age

B(r),w
T
BX

Gender
B(r) ,wT

BX
Race
B(r) ,w

T
BX

Educ
B(r)

]

=
[

NB(r),T
Age

B(r),T
Gender
B(r) ,TRace

B(r) ,T
Educ
B(r)

]

the calibrated weights for state r:

wSTATEWT
(r) = W0(r)

(

1
nA(r)×1

+XA(r)

(
XT

A(r)W0(r)XA(r)

)−1
(

TXB(r) − T̂XA(r)

)T
)

= w0(r) +W0(r)XA(r)

(
XT

A(r)W0(r)XA(r)

)−1
(

TXB(r) − T̂XA(r)

)T

(4.4.1.1)
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The model parameters β̂ relate to the calibrated weights through estimation:

T̂ y

(r) =
(
wSTATEWT

(r)

)T
y(r)

= wT
0(r)y(r) +

(

TXB(r) − T̂XA(r)

) (
XT

A(r)W0(r)XA(r)

)−1
XT

A(r)W0(r)y(r)

= T̂ y.HT

(r) +
(

TXB(r) − T̂XA(r)

)

β̂(r)

where T̂ y.HT

(r) is the design unbiased Horvitz-Thompson estimator of total in state

r. In STATEWT weighting adjustment method, we assume the voting tendencies

are linearly related to Age, Gender, Race, and Education. The regression slopes are

different across different states. If the linear relationship holds, weighted estimates

based on wSTATEWT
(r) can have smaller variance relative to the variance of design-based

estimator T̂ y.HT

(r) .

4.4.2 PSCORE

For PSCORE, we combine the analytical and benchmark samples and estimate

the probability of a respondent being in the analytical sample to generate pseudo-

selection weights. The combined sample has design matrix:






XB

XA




, and weights:






WB 0

0 W0




. Define the outcome variable:

zi =







1 if respondent i is in the analytical sample

0 if respondent i is in the benchmark sample
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We estimate the probability of a respondent being in the non-probability sample

through logistic regression:

E
[
zi
∣
∣xi,β

]
= πi

log
(
πi

/
(1− πi)

)
= xT

i β

We compute estimates of πi by solving the weighted logistic regression score equations:

β̂ = argmin
β

(
XTW (z− expit (Xβ))

)

π̂i = expit
(

xT
i β̂
)

expit(u) = 1
/ (

1 + e−u
)

The adjusted weights based on PSCORE:

wPSCORE =
(
1
/
π̂i

)
=
(

1
/
expit

(

xT
i β̂
))

, i ∈ sA (4.4.2.1)

In PSCORE weighting adjustment method, we assume the probability of observing a

respondent in the analytical sample is fully explained by the covariates in the design

matrix X. The inverse of the estimated probabilities serve as a non-response adjust-

ment to correct the analytical sample to the target population. Because the initial

design weights of the analytical sample are 1
nA×1

, the individuals in the analytical

sample with the same values in the design matrix, i.e. xAi = xAj , receive the same

weights.
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4.4.3 ECGREG

For ECGREG, assume the working model:

E
[
yi
∣
∣xAi,β

]
= xT

Aiβ, V (yi) = 1

The calibrated weights based on ECGREG:

wECGREG = w0 +W0XA

(
XT

AW0XA

)−1
(

T̂XB − T̂XA

)T

(4.4.3.1)

where

T̂XA =

[

wT
0 1
nA×1

,wT
0XA

]

T̂XB =

[

wT
B 1
nB×1

,wT
BXB

]

ECGREG is conceptually equivalent to calibrated STATEWT, except we replace

known population totals TXB by estimates based on benchmark sample, T̂XB . In EC-

GREG weighting adjustments, we assume the outcome variable yi is linearly related

to the covariates in XA. Because the initial design weights of the analytical sample

are 1
nA×1

, individuals with the same covariate values have the same weights.

4.4.4 ECLASSO

For ECLASSO, assume the working model:

E
[
yi
∣
∣xAi,β

]
= µi, V (yi) = µi(1− µi)
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We estimate µi by finding β̂ that minimizes the weighted penalized log-likelihood:

β̂ = argmin
β

(
∑

i∈sA

w0i

[
−yi

(
xT
i β
)
+ log

(
1 + exp

(
xT
i β
))]

+ λ

p
∑

j=1

αγ
j |βj|

)

µ̂i = expit
(

xT
i β̂
)

expit(u) = 1
/ (

1 + e−u
)

where p is the number of parameters (excluding intercept) in design matrix XA, λ

is the tuning parameter, and αj is the weight parameter for a regression coefficient,

and γ is a constant greater than 0. In this analysis, αj = 1
/
∣
∣
∣β̂

glm
j

∣
∣
∣, where β̂glm

j is

the traditional logistic regression slope. We obtain λ and γ through cross-validations

that minimize the area under curve of µ̂i in sA. Initial values of λ can be obtained by

fitting each regressor separately through generalized linear models, then find a grid of

values (usually 100) between the minimum and maximum of the inverse of bi-variate

regression coefficients. For γ, we cross-validate between 4 different values: 0.1, 0.5, 1,

and 2. Small value of γ ”flattens” αj to 1, which is likely when all β̂glm
j have similar

magnitudes. For each λ and γ, β̂ is obtained through R glmnet package (Friedman

et al., 2010), version 1.9-8.

Once β̂ is obtained, we calculate µi for both the analytical and benchmark samples.

Define:

MA =

[

1
nA×1

, (µ̂i)i∈sA

]

MB =

[

1
nB×1

, (µ̂i)i∈sB

]
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The calibrated weights based on ECLASSO:

wECLASSO = W0

(

1
nA×1

+MA

(
MT

AW0MA

)−1 (
wT

BMB −wT
0MA

)T
)

= w0 +W0MA

(
MT

AW0MA

)−1 (
wT

BMB −wT
0MA

)T
(4.4.4.1)

In ECLASSO weighting adjustments, we assume the expected value of the outcome

variable yi is closely approximated by µ̂i, given the dataXA. Because the initial design

weights of the analytical sample is 1
nA×1

, individuals in the analytical sample with the

same µ̂i receive the same weights.

4.5 Variance estimates

For estimators that do not rely on a small benchmark sample, method = UNWT

and STATEWT, we can calculate variance of estimated spread D-R in state r as

follows:

var
(

Ŝmethod
D−R(r)

)

= var



2
∑

i∈sA(r)

wmethod
i yi

/ ∑

i∈sA(r)

wmethod
i − 1





= var



2
∑

i∈sA(r)

wmethod
i yi

/ ∑

i∈sA(r)

wmethod
i





= 4var




∑

i∈sA(r)

wmethod
i yi

/ ∑

i∈sA(r)

wmethod
i





= 4var
(
ˆ̄ywr
)

where var
(
ˆ̄ywr
)
is the linearized variance estimator of weighted sample mean in state

r.

For estimators that use a small benchmark sample, method = PSCORE, EC-

GREG, and ECLASSO, we use bootstrap variance estimate to incorporate the uncer-
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tainty of the benchmark data. For each bootstrap indexed by b, we draw a weighted

bootstrap sample of the benchmark sample, and a simple-random-sample with re-

placement of the analytical sample, then calculate the statistic:

Ŝmethod
D−R(r)(b) = 2

∑

i∈sA(r)(b)

wmethod
i yi

/ ∑

i∈sA(r)(b)

wmethod
i − 1

We generate 1,000 bootstrap samples, and use the distribution of Ŝmethod
D−R(r)(b) to esti-

mate the variance of Ŝmethod
D−R(r).

4.6 Data description

4.6.1 Election polling data

The online polling data is a random pull of people who have completed a Survey-

Monkey survey during the four weeks prior to the election (http://www.surveymonkey.

com). On average, 3 million unique surveys were completed per day, with a random

10% of respondents who completed the survey receiving an end-page invitation to

complete the online poll. Approximately 2-3% of respondents receiving the invita-

tion completed the poll each day (roughly 6,000 per day). Although the sample was

randomly selected among the survey takers, the pool of respondents who completed

an initial SurveyMonkey survey is non-probability-based. The election polling data

is thus considered a non-probability internet sample. The data was collected between

October 3rd and November 4th, 2014 (the election day). A total of 168,924 responses

were collected from 50 states and the District of Columbia, with 153,783 responses

from states holding either a governor or a senator race.
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4.6.2 Analytical sample

Experienced pollsters would agree that accurate election forecasts are based on

responses of those who turn out to vote (Perry , 1973, 1979). Conditional on likely

voters, there is a better chance to predict correct election winners (Bolstein, 1991;

Delavande and Manski , 2010; Gutsche et al., 2014). As part of the SurveyMonkey

2014 midterm election polling survey, respondents assess their voting chance in 7

categories: (1) already voted, (2) absolutely certain will vote, (3) very likely will

vote, (4) 50-50 chance will vote, (5) less than 50-50, (6) do not plan to vote, and (7)

other. We identify the likely voters as those who are in categories (1), (2), or (3).

The analytical sample consists of likely voters, with a total of 85,668 respondents for

36 governor races, and 85,352 respondents for 36 senate races.

4.6.3 Benchmark sample

During September and October of 2014, Pew Research Center (http://www.

pewresearch.org) selected probability samples of telephone and cellphone users to

measure political opinions, including job approval rating for the president, agreement

on recent healthcare reform policies, and likelihood to vote for the November 2014

midterm elections. The survey also includes religion and political party identification

along with other demographic variables that are also collected in the SurveyMonkey

sample.

An attractive feature of PEW political data is the availability of likely voter

weights for the 2014 midterm election. About half of the sample are identified as

likely voters based on a 10-point scale voting interest variable. Since we are calibrat-

ing likely voters of the analytical sample, September/October 2014 PEW political

survey is an ideal candidate benchmark sample that offers many possibilities for

constructing assisting models used in estimation. There are totals of 3,047 PEW

September/October likely voters for the governor race, and 2,244 likely voters for
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the senate race across all states. The PEW sample is used as benchmark sample for

PSCORE, ECGREG, and ECLASSO weighting adjustments.

4.6.4 Final sample

Some states participating in the 2014 midterm election have small benchmark

sample sizes, e.g. Hawaii n = 9, Wyoming n = 12. Calibration estimates of state-level

voting spreads may be unreliable for states with few representatives in the benchmark

(Särndal , 2007; Dever , 2008). Thus we narrow our analysis to states with sufficient

benchmark sizes. For governor elections, we estimate voting spreads for 11 states that

have at least 60 likely voters in the benchmark sample. For senate elections, we narrow

the analysis to 8 states that have at least 55 likely voters in the benchmark sample.

The final benchmark sample sizes are 1,094 for governor race and 656 for

senate race. Since this chapter focuses on binary outcomes, we further narrow the

analytical sample of the 11 governor states and 8 senate states to the likely voters

who indicated a vote for either a Democratic or Republican candidate. The final

analytical sample sizes are 33,199 for the governor race and 28,686 for the

senate race.

4.7 Variables and working models

4.7.1 Variables

We seek variables in both analytical and benchmark samples on basic demograph-

ics, religious beliefs, political attitudes, and party identification. We assume that

voting tendencies are similar for individuals with similar characteristics on these vari-

ables. In the U.S. elections, there are clear electoral divisions across the states. For

example, California and New York historically favor the Democratic Party, while

Arizona and Texas favor the Republican Party. There can be strong regional ef-
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fects that modify individual vote intentions. Thus we group states by their electoral

results of the past 4 presidential elections (2000-2012). State type: (1) voted Repub-

lican candidate all 4 times, (2) voted Republican candidate three times and Demo-

cratic candidate once, (3) voted Republican and Democratic candidate each twice,

(4) voted Republican candidate once and Democratic candidate three times, and (5)

voted Democratic candidate all 4 times. This definition of state type is consistent

with blue/purple/red state definition that has been associated with electoral divisions

(Wing and Walker , 2010; Levendusky and Pope, 2011). For working models in the

weighting adjustments, we assume that individual vote intentions are modified by

state-type regional effects.

Table 4.1 lists the distributions of demographic and political variables by state

and state type for the working models of the governor race. Table 4.2 lists the distri-

butions of demographic and political variables by state and state type for the working

models of the senate race. The analytical sample distributions are unweighted, while

the benchmark sample distributions are weighted by the likely voter weights. The

senate race has one more variable than the governor race - support for House. Since

both House of Representatives and Senate are part of Congress, the variable is more

relevant for senate elections. Variables with “Don’t Know” (DK), “Refused” (RF), or

missing values have a separate category to indicate unobserved measurement. Keep-

ing the cases with unobserved values can maintain the sample size as well as capture

the differences in missing patterns between analytical and benchmark samples. The

internet-based analytical sample tends to be younger, more educated, none-minority,

and less certain of religious beliefs. For many states, there are also much higher

proportions of people identified as Republicans in the analytical sample than in the

benchmark sample. The Democrat and Republican outcome in the analytical sample

account for over 90% of the support, except for Florida and New York in the governor

race, which have 90% and 86% majority party support respectively. As both Florida
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and New York are grouped with other states in the working models, the impact of

removing non-major party outcome from the analytical sample should be small in the

analysis.

4.7.2 Working models

In this section, we detail the variables for the design matrices of section 4.4. The

design matrices consist of main effects based on state-type, the variables in tables 4.1

and 4.2, and a set of interactions between the main effects. Note that all variables in

the analysis are categorical. Define:

Xmain =
[

XAge,XGender ,XRace,XEduc,XRelig ,XAttend,XBorn,XApproval,XParty,XStateType
]

Xhouse =
[

XHouse
]

Xinteraction =
[

XGender:Age,XGender:Race,XRace:Age,XParty:Approval,XStateType:Party,XStateType:Approval
]

The operator ‘:’ denotes interaction between two variables. Each variable in the

design matrix is a dummy matrix with columns of value (0,1) indicating a respondent’s

membership to one of the categories of the variable. One reference group of each

variable corresponding to the first category listed in tables 4.1 and 4.2 is held out of

the design matrix for that variable. To distinguish analytical and benchmark design
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Table 4.1: Governor election covariates and outcome variables, by sample type

State Type 1 Age Gender Race Education Religion Born again
Evangelical
Christian

Attend religion Approve
Obama

Party lean Outcome
(whole
state)
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AZ Analytical 974 10% 11% 17% 26% 30% 6% 47% 53% 82% 2% 9% 7% 6% 31% 28% 35% 23% 19% 15% 17% 26% 16% 22% 62% 8% 23% 10% 59% 34% 58% 8% 27% 37% 36% 41% 54%
Benchmark 64 2% 13% 22% 25% 30% 7% 53% 47% 65% 2% 25% 7% 23% 30% 26% 22% 20% 31% 16% 20% 12% 24% 48% 28% 15% 27% 9% 49% 38% 62% 0% 42% 24% 35%

GA Analytical 2,306 10% 13% 23% 27% 24% 3% 50% 50% 75% 16% 2% 8% 8% 23% 33% 37% 39% 10% 22% 10% 18% 35% 25% 40% 15% 26% 15% 44% 36% 58% 6% 31% 39% 30% 40% 53%
Benchmark 67 11% 13% 29% 22% 20% 6% 55% 45% 80% 11% 0% 9% 23% 37% 21% 19% 64% 12% 11% 7% 6% 51% 37% 11% 23% 34% 18% 25% 30% 68% 2% 42% 22% 37%

TX Analytical 2,575 12% 13% 21% 28% 22% 3% 49% 51% 75% 8% 10% 7% 7% 29% 34% 30% 33% 19% 20% 11% 17% 31% 22% 47% 13% 29% 13% 46% 30% 61% 8% 25% 42% 33% 36% 61%
Benchmark 150 11% 15% 23% 17% 25% 9% 51% 49% 65% 16% 13% 7% 27% 38% 21% 14% 53% 13% 12% 18% 5% 47% 32% 21% 23% 25% 15% 38% 34% 59% 7% 42% 29% 29%

Overall Analytical 5,855 11% 13% 21% 27% 24% 3% 49% 51% 76% 10% 7% 7% 7% 27% 33% 33% 34% 16% 20% 12% 19% 30% 23% 47% 13% 27% 13% 47% 33% 59% 7% 28% 40% 32% 38% 57%
Benchmark 281 9% 14% 24% 20% 25% 8% 52% 48% 68% 12% 12% 7% 25% 36% 22% 17% 49% 17% 12% 16% 7% 43% 37% 20% 21% 27% 14% 37% 34% 62% 4% 42% 26% 32%

State Type 3 Age Gender Race Education Religion Born again
Evangelical
Christian

Attend religion Approve
Obama

Party lean Outcome
(whole
state)

FL Analytical 2,566 10% 11% 18% 27% 29% 5% 51% 49% 79% 8% 8% 5% 8% 27% 31% 33% 26% 22% 19% 14% 19% 23% 22% 55% 11% 22% 11% 56% 37% 56% 7% 32% 39% 29% 42% 48%
Benchmark 134 10% 11% 16% 20% 36% 8% 55% 45% 76% 10% 10% 4% 28% 43% 16% 14% 47% 19% 11% 17% 7% 37% 38% 26% 13% 21% 18% 49% 44% 55% 1% 42% 41% 18%

OH Analytical 2,299 14% 12% 20% 28% 24% 3% 50% 50% 90% 5% 1% 4% 11% 26% 33% 30% 30% 24% 18% 12% 16% 24% 24% 52% 10% 26% 12% 51% 29% 64% 7% 28% 40% 31% 31% 65%
Benchmark 87 12% 14% 18% 24% 24% 8% 59% 41% 78% 13% 2% 6% 42% 25% 22% 11% 33% 27% 18% 22% 0% 32% 44% 24% 13% 30% 15% 42% 33% 63% 4% 34% 39% 27%

Overall Analytical 4,865 12% 11% 19% 28% 27% 4% 50% 50% 84% 7% 5% 5% 9% 27% 32% 32% 28% 23% 19% 13% 17% 24% 23% 54% 11% 24% 12% 53% 33% 60% 7% 30% 39% 30% 37% 56%
Benchmark 221 11% 12% 17% 22% 31% 8% 57% 43% 77% 11% 7% 5% 33% 35% 18% 13% 41% 22% 14% 19% 4% 35% 40% 25% 13% 25% 17% 46% 40% 58% 2% 39% 40% 21%

State Type 5 Age Gender Race Education Religion Born again
Evangelical
Christian

Attend religion Approve
Obama

Party lean Outcome
(whole
state)

CA Analytical 2,354 13% 11% 20% 27% 26% 4% 47% 53% 72% 5% 11% 13% 6% 25% 31% 37% 19% 21% 16% 21% 23% 16% 19% 65% 8% 19% 10% 63% 44% 48% 8% 40% 30% 31% 55% 42%
Benchmark 166 10% 12% 13% 27% 25% 13% 50% 50% 64% 4% 20% 12% 21% 37% 23% 19% 25% 21% 14% 30% 10% 24% 39% 36% 8% 20% 13% 59% 50% 47% 2% 25% 39% 36%

IL Analytical 2,955 12% 12% 20% 27% 25% 3% 48% 52% 84% 6% 4% 6% 8% 26% 32% 34% 24% 31% 15% 14% 16% 16% 23% 61% 8% 24% 13% 55% 40% 56% 3% 34% 30% 35% 41% 55%
Benchmark 78 3% 14% 21% 25% 19% 18% 53% 47% 86% 8% 4% 2% 27% 37% 21% 16% 36% 21% 10% 27% 5% 36% 31% 33% 11% 19% 14% 57% 53% 46% 1% 24% 47% 29%

MI Analytical 6,025 13% 12% 19% 26% 26% 3% 50% 50% 88% 5% 1% 6% 7% 26% 31% 35% 29% 25% 17% 15% 14% 21% 25% 55% 10% 25% 12% 53% 41% 56% 4% 30% 31% 38% 42% 56%
Benchmark 75 6% 16% 18% 21% 29% 11% 51% 49% 77% 21% 1% 1% 25% 44% 12% 19% 28% 25% 19% 25% 4% 32% 38% 31% 13% 24% 13% 49% 48% 44% 8% 19% 42% 39%

NY Analytical 1,962 12% 11% 19% 28% 27% 3% 49% 51% 80% 7% 5% 7% 9% 23% 30% 38% 15% 36% 10% 15% 23% 9% 16% 74% 6% 21% 11% 62% 41% 51% 7% 41% 28% 31% 49% 37%
Benchmark 106 16% 15% 12% 22% 25% 9% 43% 57% 69% 13% 9% 10% 25% 33% 23% 19% 28% 26% 7% 26% 12% 20% 43% 37% 10% 25% 13% 53% 53% 45% 2% 22% 46% 32%

PA Analytical 2,318 12% 11% 19% 29% 26% 3% 48% 52% 90% 4% 1% 4% 11% 25% 30% 35% 27% 27% 12% 13% 21% 15% 24% 61% 7% 25% 13% 55% 36% 53% 10% 37% 35% 28% 54% 43%
Benchmark 107 9% 10% 14% 28% 27% 12% 48% 52% 84% 12% 2% 2% 43% 29% 12% 15% 40% 22% 13% 19% 7% 30% 43% 26% 13% 26% 15% 46% 38% 53% 9% 41% 38% 21%

WI Analytical 6,865 13% 14% 22% 28% 21% 2% 52% 48% 93% 2% 1% 4% 9% 28% 33% 30% 23% 30% 17% 17% 14% 15% 25% 60% 6% 25% 15% 54% 41% 54% 5% 31% 36% 33% 46% 52%
Benchmark 60 8% 11% 28% 18% 27% 9% 54% 46% 92% 3% 0% 5% 31% 35% 20% 14% 46% 30% 9% 13% 1% 21% 64% 15% 2% 40% 26% 32% 43% 57% 1% 28% 38% 33%

Overall Analytical 22,479 13% 12% 20% 27% 24% 3% 50% 50% 87% 5% 3% 6% 8% 26% 32% 34% 24% 28% 15% 16% 17% 16% 23% 61% 8% 24% 13% 55% 41% 54% 5% 34% 32% 34% 46% 50%
Benchmark 592 9% 13% 16% 25% 25% 12% 49% 51% 76% 10% 8% 6% 28% 35% 19% 18% 32% 24% 12% 24% 7% 27% 42% 31% 10% 24% 15% 51% 48% 48% 4% 27% 41% 32%
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Table 4.2: Senate election covariates and outcome variables, by sample type

State Type 1 Age Gender Race Education Religion Born again
Evangelical
Christian

Attend religion Approve
Obama

Party lean House of
Repre-
sentative
support

Outcome
(whole
state)
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GA Analytical 3,020 12% 13% 23% 26% 23% 2% 49% 51% 74% 17% 2% 7% 8% 23% 33% 36% 31% 8% 18% 9% 33% 28% 20% 51% 14% 25% 14% 47% 35% 54% 11% 32% 39% 29% 6% 54% 40% 41% 53%
Benchmark 67 11% 13% 29% 22% 20% 6% 55% 45% 80% 11% 0% 9% 23% 37% 21% 19% 64% 12% 11% 7% 6% 51% 37% 11% 23% 34% 18% 25% 30% 68% 2% 42% 22% 37% 10% 60% 30%

MN Analytical 3,774 14% 14% 20% 28% 22% 2% 52% 48% 92% 2% 1% 5% 7% 27% 35% 31% 24% 18% 15% 12% 31% 15% 23% 62% 7% 25% 15% 54% 40% 45% 15% 38% 30% 32% 8% 44% 48% 49% 48%
Benchmark 57 6% 12% 18% 25% 21% 19% 50% 50% 83% 1% 4% 11% 34% 32% 18% 17% 43% 28% 5% 19% 5% 18% 54% 28% 9% 37% 11% 43% 34% 59% 7% 26% 25% 49% 23% 37% 40%

TX Analytical 3,273 14% 13% 21% 27% 22% 3% 49% 51% 74% 8% 11% 7% 8% 30% 33% 29% 26% 17% 17% 9% 31% 25% 18% 57% 12% 26% 12% 51% 28% 58% 14% 26% 43% 31% 6% 60% 34% 51% 46%
Benchmark 150 11% 15% 23% 17% 25% 9% 51% 49% 65% 16% 13% 7% 27% 38% 21% 14% 53% 13% 12% 18% 5% 47% 32% 21% 23% 25% 15% 38% 34% 59% 7% 42% 29% 29% 13% 47% 40%

Overall Analytical 10,067 13% 14% 21% 27% 22% 3% 50% 50% 81% 8% 5% 6% 8% 27% 34% 32% 27% 15% 16% 10% 32% 22% 21% 57% 11% 25% 13% 51% 35% 52% 13% 32% 37% 31% 7% 52% 41% 47% 49%
Benchmark 274 10% 14% 23% 20% 23% 10% 52% 48% 72% 12% 8% 8% 27% 37% 20% 16% 54% 15% 10% 15% 5% 43% 37% 20% 20% 29% 15% 36% 33% 61% 6% 39% 26% 35% 14% 48% 38%

State Type 2 Age Gender Race Education Religion Born again
Evangelical
Christian

Attend religion Approve
Obama

Party lean House of
Repre-
sentative
support

Outcome
(whole
state)

NC Analytical 8,010 12% 12% 20% 26% 27% 4% 53% 47% 83% 9% 2% 6% 8% 25% 33% 34% 32% 9% 17% 11% 31% 27% 22% 51% 14% 25% 12% 48% 39% 54% 7% 34% 35% 31% 5% 51% 44% 55% 42%
Benchmark 90 6% 11% 19% 25% 29% 10% 49% 51% 74% 17% 5% 5% 27% 32% 21% 21% 60% 11% 13% 12% 4% 50% 36% 13% 16% 28% 10% 46% 29% 64% 7% 39% 26% 35% 12% 49% 39%

State Type 3 Age Gender Race Education Religion Born again
Evangelical
Christian

Attend religion Approve
Obama

Party lean House of
Repre-
sentative
support

Outcome
(whole
state)

VA Analytical 6,875 15% 12% 19% 26% 25% 3% 49% 51% 82% 8% 2% 8% 8% 22% 30% 41% 24% 11% 12% 11% 41% 16% 21% 64% 8% 21% 10% 61% 31% 43% 26% 33% 32% 35% 7% 48% 45% 48% 44%
Benchmark 81 18% 12% 19% 18% 20% 13% 54% 46% 77% 16% 3% 3% 30% 26% 21% 24% 43% 12% 15% 25% 6% 32% 39% 29% 12% 29% 15% 43% 44% 51% 5% 33% 38% 29% 15% 40% 45%

State Type 5 Age Gender Race Education Religion Born again
Evangelical
Christian

Attend religion Approve
Obama

Party lean House of
Repre-
sentative
support

Outcome
(whole
state)

IL Analytical 4,061 14% 13% 20% 26% 24% 3% 49% 51% 83% 7% 4% 6% 9% 26% 31% 34% 18% 25% 12% 12% 33% 13% 18% 70% 8% 23% 12% 57% 42% 52% 6% 36% 29% 34% 7% 46% 46% 49% 48%
Benchmark 78 3% 14% 21% 25% 19% 18% 53% 47% 86% 8% 4% 2% 27% 37% 21% 16% 36% 21% 10% 27% 5% 36% 31% 33% 11% 19% 14% 57% 53% 46% 1% 24% 47% 29% 4% 44% 51%

MI Analytical 7,820 15% 12% 19% 26% 25% 3% 51% 49% 87% 6% 1% 6% 8% 27% 31% 34% 22% 20% 14% 13% 31% 17% 20% 64% 9% 24% 12% 54% 41% 54% 5% 33% 32% 36% 7% 47% 46% 51% 46%
Benchmark 75 6% 16% 18% 21% 29% 11% 51% 49% 77% 21% 1% 1% 25% 44% 12% 19% 28% 25% 19% 25% 4% 32% 38% 31% 13% 24% 13% 49% 48% 44% 8% 19% 42% 39% 16% 30% 54%

NJ Analytical 1,120 18% 10% 18% 27% 24% 3% 45% 55% 78% 8% 5% 9% 13% 22% 34% 31% 11% 32% 9% 11% 38% 7% 13% 80% 7% 19% 11% 64% 39% 48% 13% 38% 26% 35% 7% 44% 49% 55% 41%
Benchmark 58 7% 12% 20% 35% 20% 6% 53% 47% 78% 11% 6% 5% 15% 31% 22% 33% 13% 48% 13% 15% 11% 17% 56% 27% 7% 31% 22% 39% 47% 50% 4% 34% 32% 34% 23% 40% 38%

Overall Analytical 13,001 15% 12% 19% 26% 25% 3% 50% 50% 85% 6% 3% 6% 9% 26% 31% 34% 20% 22% 13% 12% 32% 15% 18% 67% 9% 23% 12% 56% 41% 53% 6% 34% 31% 35% 32% 37% 31% 51% 46%
Benchmark 211 5% 14% 20% 26% 23% 12% 52% 48% 80% 14% 4% 2% 23% 38% 18% 22% 27% 30% 14% 23% 6% 29% 40% 31% 11% 24% 16% 49% 49% 46% 4% 25% 41% 34% 39% 26% 35%
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matrices, we write:

XA.main = design matrix of main effects in analytical sample

XA.house = design matrix of House support variable in analytical sample

XA.interation = design matrix of interaction effects in analytical sample

XB.main = design matrix of main effects in benchmark sample

XB.house = design matrix of House support variable in benchmark sample

XB.interation = design matrix of interaction effects in benchmark sample

The full design matrices for governor election working models:

XA.governor =

[

1
nA×1

,XA.main,XA.interaction

]

XB.governor =

[

1
nB×1

,XB.main,XB.interaction

]

The full design matrices for senate election working models:

XA.senate =

[

1
nA×1

,XA.main,XA.house,XA.interaction

]

XB.senate =

[

1
nB×1

,XB.main,XB.house,XB.interaction

]

4.7.3 ECGREG adjusted weights

As an illustration, we revisit the weight construction for ECGREG and outline

the steps for obtaining weights in equation 4.4.3.1. Similar process can be carried

out for PSCORE and ECLASSO to obtain the adjusted weights for those methods.

Recall that sA is the analytical sample, with sample size nA and initial design weights

w0 = 1
nA×1

, and sB is the benchmark sample, with sample size nB and probability-
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based weights wB. For ECGREG, we assume for governor election:

E [ygovernori |xi,β] = β0 + βAge

k[i] + βGender
k[i] + βRace

k[i] + βEduc
k[i] +

βRelig

k[i] + βAttend
k[i] + βBorn

k[i] + βApproval

k[i] + βParty

k[i] + βStateType

k[i] +

βGender:Age

k[i] + βGender:Race
k[i] + βRace:Age

k[i] +

βParty:Approval

k[i] + βStateType:Party

k[i] + βStateType:Approval

k[i]

where k[i] is the category respondent i belongs to for a given variable. For example,

model coefficient for respondents age 30-39 is denoted by βAge

(30−39)[i]. Similarly, for

senate election model:

E
[
ysenatei |xi,β

]
= β0 + βAge

k[i] + βGender
k[i] + βRace

k[i] + βEduc
k[i] +

βRelig

k[i] + βAttend
k[i] + βBorn

k[i] + βApproval

k[i] + βParty

k[i] + βStateType

k[i] + βHouse
k[i]

βGender:Age

k[i] + βGender:Race
k[i] + βRace:Age

k[i] +

βParty:Approval

k[i] + βStateType:Party

k[i] + βStateType:Approval

k[i]

The only difference between senate and governor working models is the inclusion of

main effects βHouse
k[i] in the senate model. To construct weights under ECGREG, we

first obtain estimates of population totals from the analytical and benchmark samples:

T̂XA.main =
[

wT
0 X

Age
A ,wT

0 X
Gender
A ,wT

0X
Educ
A ,

wT
0X

Relig
A ,xT

0X
Born
A ,wT

0X
Attend
A ,wT

0X
Party
A ,wT

0X
StateType
A

]

T̂XA.house =
[
wT

0X
House
A

]

T̂XA.interaction =
[

wT
0 X

Gender:Age
A ,wT

0 X
Gender:Race
A ,wT

0X
Race:Age
A ,

wT
0X

Party:Approval
A ,wT

0X
StateType:Party
A ,wT

0X
StateType:Approval
A

]
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T̂XB.main =
[

wT
BX

Age
B ,wT

BX
Gender
B ,wT

BX
Educ
B ,

wT
BX

Relig
B ,xT

BX
Born
B ,wT

BX
Attend
B ,wT

BX
Party
B ,wT

BX
StateType
B

]

T̂XB.house =
[
wT

BX
House
B

]

T̂XB.interaction =
[

wT
BX

Gender:Age
B ,wT

BX
Gender:Race
B ,wT

BX
Race:Age
B ,

wT
BX

Party:Approval
B ,wT

BX
StateType:Party
B ,wT

BX
StateType:Approval
B

]

For governor race:

XA.governor =

[

1
nA×1

,XA.main,XA.interaction

]

T̂XA.governor =

[

wT
0 1
nA×1

, T̂XA.main, T̂XA.interaction

]

T̂XB.governor =

[

wT
B 1
nB×1

, T̂XB.main , T̂XB.interaction

]

wECGREG.governor = w0 +W0XA.governor

(
XT

A.governorW0XA.governor

)−1 ×
(

T̂XB.governor − T̂XA.governor

)T

For senate race:

XA.senate =

[

1
nA×1

,XA.main,XA.house,XA.interaction

]

T̂XA.senate =

[

wT
0 1
nA×1

, T̂XA.main , T̂XA.house, T̂XA.interaction

]

T̂XB.senate =

[

wT
B 1
nB×1

, T̂XB.main , T̂XB.house, T̂XB.interaction

]

wECGREG.senate = w0 +W0XA.senate

(
XT

A.senateW0XA.senate

)−1 ×
(

T̂XB.senate − T̂XA.senate

)T
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4.8 Results

Following the convention of published voting spreads, we write +%R for a pre-

dicted spread indicating higher proportion of votes for the Republican Party, and

+%D for a predicted spread indicating higher proportion of votes for the Democratic

Party.

4.8.1 Direction and error

Table 4.3 lists results for 11 governor election forecasts. UNWT, STATEWT,

PSCORE, and ECLASSO predicted the correct winning political party for all states in

the analysis. ECGREG predicted Arizona and Florida incorrectly. Without weighting

adjustments, the sample has higher Republican turn-out than Democratic turn-out,

with 10 out of 11 states biasing toward Republican candidates. STATEWT reduced

the bias for most states, while PSCORE and ECGREG may have over-adjusted to-

ward Democratic direction. ECLASSO is the only estimator that reduced unadjusted

sample bias to within 6% of true values. On average, ECLASSO also has the smallest

relative error across the states.

Table 4.4 lists results for 8 senate election forecasts. UNWT, STATEWT, and

ECLASSO predicted the correct winning political party for all states in the analysis.

PSCORE predicted North Carolina incorrectly while ECGREG predicted Georgia

and North Carolina incorrectly. Similar to the governor sample, the senate sample

has more Republican votes than the true voting spread, with 6 out of 8 states biasing

toward Republican candidates. STATEWT reduced the bias for most states, while

PSCORE, and ECGREG over-adjusted toward Democratic direction. ECLASSO is

the only estimator that reduced unadjusted sample bias to within 8% of true values.

On average, ECLASSO again has the smallest relative error across states.
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Table 4.3: U.S. 2014 midterm election governor voting spread estimates and direction

D-R estimates

State analytical n benchmark n True D-R UNWT STATEWT PSCORE ECGREG ECLASSO

Arizona 974 64 +12%R +13%R +10%R +3%R +12%D +8%R
California 2,354 166 +19%D +14%D +19%D +20%D +36%D +18%D
Florida 2,566 134 +1%R +6%R +2%R +2%R +7%D +1%R
Georgia 2,306 67 +8%R +14%R +9%R +10%R +2%R +8%R
Illinois 2,955 78 +5%R +14%R +8%R +14%R +17%R +10%R
Michigan 6,025 75 +4%R +14%R +12%R +12%R +18%R +10%R
New York 1,962 106 +13%D +13%D +18%D +18%D +38%D +17%D
Ohio 2,299 87 +31%R +35%R +35%R +31%R +35%R +31%R
Pennsylvania 2,318 107 +10%D +11%D +8%D +23%D +33%D +15%D
Texas 2,575 150 +20%R +26%R +19%R +20%R +20%R +21%R
Wisconsin 6,865 60 +6%R +6%R +17%R +2%R +1%R +1%R

Total 33,199 1,094

Direction Correct Relative Error

State UNWT STATEWT PSCORE ECGREG ECLASSO UNWT STATEWT PSCORE ECGREG ECLASSO

Arizona R - YES R - YES R - YES D - NO R - YES +1.29%R +1.63%D +8.65%D +23.51%D +3.74%D
California D - YES D - YES D - YES D - YES D - YES +4.98%R +0.50%D +1.44%D +17.44%D +0.42%R
Florida R - YES R - YES R - YES D - NO R - YES +4.69%R +0.98%R +0.50%R +8.08%D +0.02%D
Georgia R - YES R - YES R - YES R - YES R - YES +5.84%R +0.69%R +1.77%R +5.51%D +0.38%R
Illinois R - YES R - YES R - YES R - YES R - YES +9.62%R +3.86%R +9.37%R +12.89%R +5.11%R
Michigan R - YES R - YES R - YES R - YES R - YES +10.00%R +7.87%R +7.69%R +14.31%R +5.71%R
New York D - YES D - YES D - YES D - YES D - YES +0.11%R +4.83%D +4.56%D +25.16%D +4.04%D
Ohio R - YES R - YES R - YES R - YES R - YES +4.49%R +3.66%R +0.39%R +4.47%R +0.45%R
Pennsylvania D - YES D - YES D - YES D - YES D - YES +1.53%D +1.97%R +12.93%D +23.78%D +5.78%D
Texas R - YES R - YES R - YES R - YES R - YES +5.32%R +1.72%D +0.05%R +0.36%D +0.29%R
Wisconsin R - YES R - YES R - YES R - YES R - YES +0.73%R +10.79%R +3.49%D +4.60%D +4.36%D

AVERAGE +4.14%R +1.92%R +1.03%D +6.98%D +0.51%D
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Table 4.4: U.S. 2014 midterm election senate voting spread estimates and direction

D-R estimates

State analytical n benchmark n True D-R UNWT STATEWT PSCORE ECGREG ECLASSO

Georgia 2,307 67 +8%R +13%R +7%R +4%R +2%D +11%R
Illinois 2,989 78 +10%D +1%D +5%D +15%D +13%D +6%D
Michigan 5,851 75 +13%D +5%D +3%D +21%D +16%D +8%D
Minnesota 2,951 57 +10%D +6%D +1%D +12%D +6%D +10%D
New Jersey 841 58 +13%D +15%D +19%D +31%D +34%D +16%D
North Carolina 6,093 90 +2%R +5%R +7%R +1%D +15%D +3%R
Texas 2,487 150 +27%R +35%R +27%R +28%R +27%R +32%R
Virginia 5,167 81 +1%D +5%D +6%D +18%D +24%D +8%D

Total 28,686 656

Direction Correct Relative Error

State UNWT STATEWT PSCORE ECGREG ECLASSO UNWT STATEWT PSCORE ECGREG ECLASSO

Georgia R - YES R - YES R - YES D - NO R - YES +5.63%R +0.31%D +4.12%D +9.75%D +2.83%R
Illinois D - YES D - YES D - YES D - YES D - YES +9.08%R +5.51%R +4.46%D +2.43%D +4.25%R
Michigan D - YES D - YES D - YES D - YES D - YES +8.15%R +10.05%R +7.61%D +2.60%D +5.19%R
Minnesota D - YES D - YES D - YES D - YES D - YES +4.04%R +9.23%R +1.98%D +3.98%R +0.42%R
New Jersey D - YES D - YES D - YES D - YES D - YES +2.03%D +5.99%D +17.55%D +20.70%D +3.11%D
North Carolina R - YES R - YES D - NO D - NO R - YES +3.00%R +5.28%R +2.46%D +17.11%D +1.10%R
Texas R - YES R - YES R - YES R - YES R - YES +7.76%R +0.03%D +0.52%R +0.54%D +4.51%R
Virginia D - YES D - YES D - YES D - YES D - YES +4.36%D +4.73%D +17.54%D +23.06%D +7.54%D

AVERAGE +3.91%R +2.38%R +6.90%D +9.03%D +0.96%R
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4.8.2 Root-mean-square-error

Table 4.5 lists bias, standard error, and root-mean-square error of each estimator

in predicting governor election spreads. As expected, without any weighting adjust-

ments, UNWT estimates have the lowest standard error among the estimators. We

anticipate the variance of STATEWT estimates to be small, as the weights are derived

from Census-level counts rather than from a benchmark sample. However, on average,

the bias-reduction of STATEWT was not enough to offset the increased variance in

the estimates due to weighting. Thus the average RMSE of STATEWT is about the

same as UNWT’s. Both PSCORE and ECGREG have over-adjusted the sample to

produce large biases. The use of small benchmark sample also increased the variance

of PSCORE and ECGREG estimates, as both estimators have larger average RMSE

than UNWT’s. With the same benchmark sample, working model, and variance es-

timator as PSCORE and ECGREG, ECLASSO is able to produce standard errors

that are comparable to STATEWT’s, and has the lowest average RMSE across the

states.

Table ?? lists bias, standard error, and root-mean-square error of each estimator

in predicting senate election spreads. Similar to the results for governor election, on

average, the bias-reduction of STATEWT was not sufficient to offset the increased

variance in the estimates. The average RMSE of STATEWT is larger than UNWT’s.

Both PSCORE and ECGREG performed poorly with larger average bias and stan-

dard error than unadjusted estimates. With the same benchmark sample, working

model, and variance estimator as PSCORE and ECGREG, ECLASSO again is able

to produce standard errors that are comparable to STATEWT’s, and is the only

estimator with improved average RMSE over unweighted estimates.

142



Table 4.5: U.S. 2014 governor race root-mean-square-error

Bias SE RMSE

State UNWT STATEWT PSCORE ECGREG ECLASSO UNWT STATEWT PSCORE ECGREG ECLASSO UNWT STATEWT PSCORE ECGREG ECLASSO

Arizona -1.29% 1.63% 8.65% 23.51% 3.74% 3.18% 5.07% 7.04% 8.51% 4.26% 3.43% 5.33% 11.15% 25.01% 5.67%
California -4.98% 0.50% 1.44% 17.44% -0.42% 2.04% 3.07% 4.72% 9.90% 3.18% 5.38% 3.11% 4.94% 20.05% 3.20%
Florida -4.69% -0.98% -0.50% 8.08% 0.02% 1.97% 3.14% 6.17% 5.55% 3.19% 5.09% 3.29% 6.19% 9.81% 3.19%
Georgia -5.84% -0.69% -1.77% 5.51% -0.38% 2.06% 3.40% 5.69% 6.16% 3.67% 6.20% 3.47% 5.96% 8.27% 3.69%
Illinois -9.62% -3.86% -9.37% -12.89% -5.11% 1.82% 2.81% 4.42% 8.93% 2.97% 9.79% 4.77% 10.36% 15.68% 5.91%
Michigan -10.00% -7.87% -7.69% -14.31% -5.71% 1.28% 2.03% 3.32% 5.43% 2.68% 10.08% 8.12% 8.38% 15.31% 6.31%
New York -0.11% 4.83% 4.56% 25.16% 4.04% 2.24% 3.30% 5.12% 8.61% 3.06% 2.24% 5.85% 6.85% 26.60% 5.06%
Ohio -4.49% -3.66% -0.39% -4.47% -0.45% 1.95% 3.02% 5.41% 5.71% 2.96% 4.90% 4.75% 5.42% 7.25% 3.00%
Pennsylvania 1.53% -1.97% 12.93% 23.78% 5.78% 2.06% 3.30% 4.39% 8.09% 3.04% 2.57% 3.84% 13.65% 25.12% 6.53%
Texas -5.32% 1.72% -0.05% 0.36% -0.29% 1.91% 3.12% 5.47% 4.79% 3.43% 5.65% 3.56% 5.47% 4.81% 3.44%
Wisconsin -0.73% -10.79% 3.49% 4.60% 4.36% 1.20% 1.84% 3.66% 5.79% 2.94% 1.41% 10.94% 5.06% 7.39% 5.26%

AVERAGE -4.14% -1.92% 1.03% 6.98% 0.51% 1.97% 3.10% 5.04% 7.04% 3.22% 5.16% 5.19% 7.59% 15.03% 4.66%
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Table 4.6: U.S. 2014 senate race root-mean-square-error

Bias SE RMSE

State UNWT STATEWT PSCORE ECGREG ECLASSO UNWT STATEWT PSCORE ECGREG ECLASSO UNWT STATEWT PSCORE ECGREG ECLASSO

Georgia -5.63% 0.31% 4.12% 9.75% -2.83% 2.06% 3.39% 5.26% 4.89% 3.61% 5.99% 3.41% 6.68% 10.91% 4.59%
Illinois -9.08% -5.51% 4.46% 2.43% -4.25% 1.83% 2.75% 4.59% 7.19% 2.98% 9.26% 6.16% 6.40% 7.59% 5.20%
Michigan -8.15% -10.05% 7.61% 2.60% -5.19% 1.31% 2.06% 4.40% 4.46% 2.81% 8.25% 10.26% 8.79% 5.16% 5.90%
Minnesota -4.04% -9.23% 1.98% -3.98% -0.42% 1.84% 2.76% 4.35% 4.00% 3.20% 4.44% 9.63% 4.78% 5.64% 3.23%
New Jersey 2.03% 5.99% 17.55% 20.70% 3.11% 3.41% 4.79% 6.72% 9.24% 3.79% 3.97% 7.67% 18.79% 22.66% 4.90%
North Carolina -3.00% -5.28% 2.46% 17.11% -1.10% 1.28% 2.07% 5.10% 6.59% 3.23% 3.27% 5.67% 5.66% 18.33% 3.41%
Texas -7.76% 0.03% -0.52% 0.54% -4.51% 1.88% 3.16% 4.50% 4.03% 3.25% 7.99% 3.16% 4.53% 4.06% 5.56%
Virginia 4.36% 4.73% 17.54% 23.06% 7.54% 1.39% 2.13% 4.27% 5.06% 2.90% 4.57% 5.18% 18.05% 23.61% 8.08%

AVERAGE -3.91% -2.38% 6.90% 9.03% -0.96% 1.87% 2.89% 4.90% 5.68% 3.22% 5.97% 6.39% 9.21% 12.25% 5.11%
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4.8.3 Coverage

Table 4.7 lists 90% confidence intervals of each estimator in governor elections.

The UNWT confidence intervals are too narrow, covering true spreads in only 4 out

of 11 states. ECLASSO and STATEWT confidence intervals both covered 9 out of 11

true spreads (82%), close to the expected 90% coverage rate. PSCORE covered 8, and

ECGREG covered only 6. Figure 4.1 displays the boxplots of 90% confidence intervals

of each estimator across 11 states, as well as the true values in solid red horizontal

lines. ECLASSO confidence intervals are consistently around the true values. Among

weighted estimators, ECLASSO also has comparable interval width as STATEWT’s,

if not narrower.

Table 4.8 lists 90% confidence intervals of each estimator in senate elections. The

UNWT confidence intervals performed even worse than governor forecasts, covering

only 1 out of 8 true spreads. ECLASSO confidence intervals have the highest coverage

rate, with 6 out of 8 true spreads within the intervals (75%), which is the closest to

the expected 90% coverage rate among the estimators. The confidence intervals of

STATEWT covered 3, ECGREG covered 4, while PSCORE covered 5. Figure 4.2

displays the boxplots of 90% confidence intervals of each estimator across 8 states,

as well as the true values in solid red horizontal lines. Even with wide confidence

intervals, PSCORE and ECGREG still do not cover the true spread in estimates for

Virginia and New Jersey. ECGREG estimates are also largely biased for Georgia and

North Carolina. Besides estimates for Virginia, which no estimator performed well,

ECLASSO confidence intervals are consistently around the true values.
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Table 4.7: U.S. 2014 senate race 90% CI coverage

UNWT STATEWT PSCORE ECGREG ECLASSO

State D-R Truth 90% CI Covered 90% CI Covered 90% CI Covered 90% CI Covered 90% CI Covered

Arizona +12%R (+8%R +18%R) Yes (+2%R +19%R) Yes (+9%D +15%R) Yes (+1%R +25%D) No (+1%R +15%R) Yes
California +19%D (+10%D +17%D) No (+14%D +24%D) Yes (+12%D +28%D) Yes (+20%D +53%D) No (+13%D +23%D) Yes

Florida +1%R (+3%R +9%R) No (+3%D +7%R) Yes (+8%D +12%R) Yes (+2%R +16%D) Yes (+4%D +7%R) Yes
Georgia +8%R (+10%R +17%R) No (+3%R +14%R) Yes (+0%R +19%R) Yes (+8%D +12%R) Yes (+2%R +14%R) Yes
Illinois +5%R (+11%R +17%R) No (+4%R +13%R) Yes (+7%R +21%R) No (+3%R +32%R) Yes (+5%R +15%R) No

Michigan +4%R (+12%R +16%R) No (+9%R +15%R) No (+6%R +17%R) No (+10%R +27%R) No (+5%R +14%R) No
New York +13%D (+9%D +17%D) Yes (+13%D +24%D) Yes (+9%D +26%D) Yes (+24%D +52%D) No (+12%D +22%D) Yes

Ohio +31%R (+32%R +39%R) No (+30%R +40%R) Yes (+22%R +40%R) Yes (+26%R +44%R) Yes (+27%R +36%R) Yes
Pennsylvania +10%D (+8%D +15%D) Yes (+2%D +13%D) Yes (+15%D +29%D) No (+20%D +46%D) No (+10%D +20%D) Yes

Texas +20%R (+23%R +29%R) No (+13%R +24%R) Yes (+11%R +29%R) Yes (+12%R +28%R) Yes (+15%R +26%R) Yes
Wisconsin +6%R (+4%R +8%R) Yes (+13%R +20%R) No (+4%D +8%R) Yes (+8%D +11%R) Yes (+3%D +6%R) Yes
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Table 4.8: U.S. 2014 senate race 90% CI coverage

UNWT STATEWT PSCORE ECGREG ECLASSO

State D-R Truth 90% CI Covered 90% CI Covered 90% CI Covered 90% CI Covered 90% CI Covered

Georgia +8%R (+11%R +17%R) No (+2%R +13%R) Yes (+5%D +12%R) Yes (+6%R +10%D) No (+4%R +17%R) Yes
Illinois +10%D (+1%R +4%D) No (+0%D +9%D) No (+7%D +22%D) Yes (+1%D +25%D) Yes (+1%D +11%D) Yes
Michigan +13%D (+3%D +7%D) No (+0%R +7%D) No (+14%D +29%D) No (+9%D +23%D) Yes (+3%D +13%D) No
Minnesota +10%D (+4%D +9%D) No (+4%R +6%D) No (+5%D +19%D) Yes (+0%R +13%D) Yes (+5%D +15%D) Yes
New Jersey +13%D (+11%D +21%D) Yes (+11%D +27%D) Yes (+19%D +41%D) No (+18%D +49%D) No (+10%D +22%D) Yes
North Carolina +2%R (+3%R +7%R) No (+4%R +10%R) No (+7%R +9%D) Yes (+5%D +26%D) No (+2%D +8%R) Yes
Texas +27%R (+33%R +38%R) No (+22%R +32%R) Yes (+21%R +35%R) Yes (+20%R +33%R) Yes (+26%R +37%R) Yes
Virginia +1%D (+3%D +7%D) No (+2%D +9%D) No (+11%D +25%D) No (+16%D +32%D) No (+3%D +13%D) No

147



Figure 4.1: Voting spread for governor race and 90% CI
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Figure 4.2: Voting spread for senate race and 90% CI
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4.9 Discussion

Among the weighting adjustments performed in this analysis, ECLASSO is the

most successful in reducing the unweighted bias in predicting voting spreads. For both

governor and senate elections, ECLASSO reduced the overall bias from roughly 4%

to under 1%. Unlike PSCORE and ECGREG, there is little evidence of ECLASSO
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over-adjusting the bias from Republican to Democrat. The result answers the

first research question: Yes, with ECLASSO, a small probability bench-

mark sample can correct the bias in a large non-probability internet-based

election polls.

We anticipate larger variances for PSCORE, ECGREG, and ECLASSO relative

to the variances of STATEWT due to the small benchmark sample size. This is evi-

dent for PSCORE and ECGREG in both governor and senate election forecasts. For

ECLASSO, the standard errors are comparable to STATEWT’s in both races. In

election data analysis, this chapter shows that benchmark sample size of 1,000 is suf-

ficient for ECLASSO to generate estimates with similar standard errors as estimates

based on Census-level benchmark. Thus we have also addressed the second

research question: Yes, with ECLASSO, we can make precise estimates of

population quantities from a non-probability internet-based data with a

small probability-based benchmark sample.

In terms of bias, root-mean-square-error, and coverage, ECLASSO consistently

outperforms other estimators in both governor and senate election forecasts. The

working models for PSCORE, ECGREG, and ECLASSO are the same, indicating

that ECLASSO leverages the most useful information from the benchmark. How-

ever, there are several limitations with the analysis in this chapter. First, although

ECLASSO can be extended to multinomial setting, we stayed within binary out-

come framework and removed non-major party supporters from the analytical sample.

Florida and New York are two states with non-trivial proportions of non-major party

support (10% and 14%). However, ECLASSO estimates for both states have rela-

tively small biases (0.05% and 5.72% in governor race). Discarding non-major party

supporters may not have significant impact in our analysis. Another limitation is the

use of a national-level model to make state-level forecasts. Given a small benchmark

sample, the national-level model allows for more stable estimates by calibrating to
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pooled benchmark information together. The predictions are less sensitive to state

benchmark sample sizes. Thus we do not observe a clear pattern of bias and variance

as functions of state-level benchmark sample sizes. Larger state benchmark samples

would allow for calibration to be done at the state level.

4.10 Conclusion

To date, there are well over 300 independent polling organizations aiming to pre-

dict winners of various U.S. elections (Silver , 2015). Most of the polling methodology

is based on probability samples. With low response rates, however, it has become in-

creasingly difficult and costly to collect probability samples given the short time-frame

of election polling. In this chapter, we have demonstrated that post-survey adjust-

ment with non-probability sample is possible to generate accurate election forecasts.

ECLASSO is effective in leveraging information from benchmark sample, even if the

benchmark sample is small. The results support the growing literature that suggests

inference based on non-probability samples is possible with appropriate statistical

modeling.
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CHAPTER V

Conclusion

5.1 Summary

More than a decade ago, the survey research field anxiously anticipated the break-

through of a new data collection medium – internet. In one of the first in-depth

research into post-survey adjustment of web-based samples, Lee (2004) wrote:

With the advance in communication technology and the accompanying

societal and cultural changes, Web surveys are here to stay.

Indeed, web-based non-probability samples have not only proliferated the market re-

search and public opinion sectors, they have become a data collection method in

clinical and psychological studies, and among other research disciplines (Liu et al.,

2010; Casini and Scozzafava, 2014; Hamama-Raz et al., 2014). With probability-

based sampling cost continue to rise, we will see a steady, if not rapid growth in

the use of non-probability samples. Current methods in post-survey adjustments

of non-probability samples are met with multiple challenges, mainly because the ef-

fort to date focuses on constructing weights to correct all errors in a non-probability

sample. The resulting weights that are meant to enable population inference of all

variables, however, have limited success in providing unbiased inference to the pop-

ulation (Schonlau et al., 2004, 2009; Bethlehem, 2010). This dissertation addresses
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the growing demand for making unbiased inference based on non-probability sam-

ples. Under the model-assisted calibration framework, we focus on constructing a

single set of weights that specifically allow for estimates of population totals with

small root-mean-square-error. We employ a modern statistical model, Least Angle

Shrinkage and Selection Operator (LASSO), as the assisting model to perform model

selection and parameter estimation simultaneously. LASSO reduces the risk of sample

over-fitting, which is a key feature required for successful model-assisted calibration.

In chapter II, we developed LASSO calibration and derived a theoretically un-

biased estimator for population totals from non-probability samples. Simulation

demonstrated that LASSO calibration has a significant advantage over traditional cal-

ibration for estimating totals of binary outcome variables in terms of having smaller

bias and variance. The improvement over the traditional generalized regression esti-

mator, GREG, is even more pronounced when the calibration variables exhibit high

correlations, and under non-ignorable sampling. Although the asymptotic linearized

variance estimates did poorly in terms of coverage and bias, a more robust variance

estimate of LASSO calibration estimator with bootstrap re-sampling is shown to be a

viable alternative. We also applied LASSO calibration to National Health Interview

Survey (NHIS) for estimating the population total of adults diagnosed with cancer.

Without correct design weights, LASSO calibration was able to adjust unweighted

estimates to produce an estimate that is close to the correctly-weighted estimate. In

short, in chapter II, we studied and understood generally how LASSO performs under

different sampling schemes, outcome types, and calibration covariance structures. We

then extended the theoretical framework of LASSO calibration to estimated-control

LASSO calibration in chapter III, where the benchmark samples can be small. We

derived ECLASSO calibration estimator of total and its asymptotic linearized vari-

ance estimates incorporating benchmark sampling errors. Through a simulation study

with an actual dataset, the National Health Interview Survey 2013, we showed that
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ECLASSO estimator can achieve better root-mean-square-error than traditional post-

survey weighting adjustment methods, even when the benchmark sample is small. We

compared the asymptotic linearized variance estimates with boot-strap variance esti-

mates, and demonstrated again that the bootstrap variance estimate is more robust

both in terms of coverage and bias. In Chapter IV, we demonstrated the potential of

the LASSO calibration estimator in reducing the bias of an actual internet-based non-

probability election polling data. Using a phone-based probability benchmark sample

that is less than one-thirtieth of the internet-based data in size, ECLASSO calibration

was able to make accurate predictions of voting spreads for the 2014 U.S. mid-term

elections. In this application, ECLASSO uniformly outperformed traditional weight-

ing adjustment methods in average bias and root-mean-square-error. The method

and framework developed in research provide a valuable tool for the growing number

of researchers interested in analyzing non-probability samples.

5.2 Limitations

This dissertation has four key limitations. First, for the theoretical framework,

we assumed that the benchmark samples are drawn from a single-stage probability-

based-sampling design. This assumption is used to facilitate the development of lin-

earized variance estimates of predicted benchmark totals. In practice, different types

of probability-based benchmark samples can be used, many of which are multi-stage

area-probability samples. The current theoretical development does not include such

sampling designs. One can, however, easily incorporate finite-population re-sampling

methods of the benchmark sample to calculate a variance estimate for ECLASSO

calibration estimators.

Secondly, the theoretical framework assumes that the true superpopulation regres-

sion parameters are a subset of the LASSO regression estimator. In practice, no one

can be certain of what constitutes true superpopulation parameters. Thus it is not
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feasible to check whether the assumption is met. Although the applications in this

dissertation demonstrate that without knowing the true underlying model, LASSO

calibration can still produce approximately unbiased estimates, an extension of the

theoretical framework to include miss-specified models will make LASSO calibration

even more practical.

Thirdly, both linearized and bootstrap variance estimates of LASSO calibration

estimators are prone to biases. Asymptotic linearized variance estimates have the

undesirable negative bias property, while bootstrap variance estimates tend to be

positively biased. One approach to develop more robust variance estimates is to in-

corporate model variances, i.e., variances of model parameters, to develop a variance

estimate not based on asymptotic properties. For LASSO regression, this can be

challenging, since there is no known theoretical variance formula for LASSO parame-

ter estimates. Tibshirani (1996) suggested using ridge-regression parameter variance

estimates for non-zero parameters of LASSO. This may under-estimate LASSO es-

timator variance, since it does not account for variance due to variable selection.

Another possibility is to explore bias-corrected bootstrap to reduce the positive bias

observed in the simulation studies (DiCiccio and Efron, 1996).

Lastly, the research uses unweighted LASSO regression estimates, because the

focus is on non-probability samples where we do not have design weights. Survey-

weighted LASSO has been developed for linear LASSO regression (McConville, 2011).

The convergence of survey-weighted LASSO parameter estimates to true superpop-

ulation parameters remain true. The covariance component needs to be adjusted

in the oracle property to incorporate survey weights. The theoretical framework of

model-assisted calibration, however, does not rely on the covariance of LASSO pa-

rameter estimates, only on the convergence to the true superpopulation parameters

values. Thus survey-weighted LASSO is still fully applicable under probability-based

framework. In fact, R glmnet function for obtaining LASSO regression parameter
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estimates can take in survey weights (Friedman et al., 2010). Thus the simulations

in this dissertation can be repeated with survey-weighted LASSO calibration.

5.3 Future research

This dissertation has a very specific goal to establish a method capable of pro-

ducing unbiased estimated totals from non-probability samples. To accomplish the

goal, we made strong assumptions to facilitate the theoretical developments. There

are certainly many more research paths along LASSO calibration which can lead to

fruitful results. I state some here that may be of interests to other researchers.

(1) This research has shown that LASSO calibration estimator is asymptotically

model-unbiased even without using the correct design weights, regardless of how

the samples are generated when: (i) The correct model is within the full LASSO

regression model, and (ii) the full range of values of X is observed. There can still

be persistent sample bias if LASSO fails to satisfy the oracle property. Further

research on the relationship between sample generation and the rate of conver-

gence of LASSO penalty parameter, λn, can provide more insights to when the

sample bias persists if the correct design weights are not used in estimation.

(2) In calibration, a distance measure is used between calibrated weights and original

design weights. When the original design weights do not guarantee unbiased

estimates, certain distance measures may work better than others in constructing

the calibrated weights. For non-probability samples, it will be an area of interest

to see how distance measures can impact the reduction in sample bias.

(3) Many internet-based data have categorical outcomes of interest. For example,

opinion polls often attempt to find the public’s support on certain agendas: Very

likely/Likely/Unlikely, Against/Neutral/Support, etc. Extension of the theoreti-
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cal framework to include multinomial LASSO assisting models can enable LASSO

calibration on a wide range of outcome types in non-probability samples.

(4) Some researchers may wish the LASSO calibrated weights be applicable to more

than one variable. This can be impractical for inference from non-probability

samples, but is relevant for probability samples. From an operational perspective,

this can be easily achieved by predicting the expected values of multiple outcome

variables, then calibrate on a vector of predicted outcome totals. If a function of

the multiple outcome totals is of interest, an additional theoretical step to derive

the covariances between predicted outcome totals will be required.

(5) The asymptotic linearized variance estimates developed in this dissertation all are

prone to negative biases, while naive bootstraps typically have positive biases. For

ECLASSO estimator, one potential approach is to bootstrap only the analytical

sample to estimate the variance component given the benchmark sample, and

use linearized variance estimate on benchmark estimated totals. This approach

combines both linearization and re-sampling, which can possibly average out the

observed biases in the simulations.

(6) Finally, the potential of LASSO calibration in this research is demonstrated

through an internet-based non-probability sample that is not based on a web-

volunteer panel. The most complex type of error in non-probability samples is

self-selection-bias, which is more likely to be observed in web-volunteer samples.

It will be a great addition to calibration literature with an analysis of LASSO

calibration on web-volunteer samples.
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APPENDIX A

Appendix

A.1 Proofs

A.1.1 Lemma II.2

Lemma II.2. Assume the superpopulation model:

Eξ(yk|xk) = µ(xk,β), Vξ(yk|xk) = ν2
kσ

2

Let B be the finite-population quasilikelihood estimate of β, B → β, under conditions

(2.4.2.i)-(2.4.2.v), the model-assisted asymptotic estimator for a population total is:,

t̂MC
y =

∑

i∈sA

dAi (yi − µiB
MC) +

N∑

i=1

µiB
MC + op

(
N√
n

)

(A.1)

where

µi = µ(xi,B)

BMC =

∑N
i=1(µi − µ̄)(yi − ȳ)
∑N

i=1(µi − µ̄)2

158



Proof. The proof is adopted and expanded from the proof of Theorem 1 in (Wu

and Sitter , 2001), with slight modifications in notations to be consistent with the

dissertation. We begin by deriving the asymptotic model-assisted estimator for a

population mean, ˆ̄yMC = N−1T̂MC
y (see equation (2.2.2.4)). By conditions (2.4.2.ii)

and (2.4.2.iii), the second order Taylor series expansion of µ(xi, β̂) around B is:

µ(xi, β̂) = µ(xi,B) +

{
µ(xi, t)

∂t

∣
∣
∣
∣
t=B

}T

(B̂−B) + (B̂−B)T
{
∂2µ(xi, t)

∂t∂tT

∣
∣
∣
∣
t=B∗

}

(B̂−B)

(A.2)

for B∗ ∈ (B̂,B) or (B, B̂). Let

h(xi,B) =
µ(xi, t)

∂t

∣
∣
∣
∣
t=B

k(xi,B
∗) =

∂2µ(xi, t)

∂t∂tT

∣
∣
∣
∣
t=B∗

Note that h is a vector of length m and k is a matrix of size m×m, where m is the

number of parameters in β. By conditions (2.4.2.ii) and (2.4.2.iii),

maxi |h(xi,B)| ≤ h(xi,B) (A.3)

maxk,j |k(xi,B
∗)| ≤ k(xi,B

∗) (A.4)
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The population mean of (A.2) based on sample sA:

N−1
∑

i∈sA

dAi µ(xi, B̂) = N−1
∑

i∈sA

dAi µ(xi,B) +N−1

(
∑

i∈sA

dAi h(xi,B)

)T

(B̂−B)+

(B̂−B)TN−1

(
∑

i∈sA

dAi k(xi,B
∗)

)

(B̂−B)

(by conditions (2.4.2.i) and (2.4.2.iii))

= N−1
∑

i∈sA

dAi µ(xi,B) +N−1

(
∑

i∈sA

dAi h(xi,B)

)T

(B̂−B)+

Op(1/
√
n)Op(1/

√
n)

= N−1
∑

i∈sA

dAi µ(xi,B) +N−1

(
∑

i∈sA

dAi h(xi,B)

)T

(B̂−B) +Op

(
1

n

)

(A.5)

By conditions (2.4.2.i), (2.4.2.iv), and equation (A.5):

N−1
N∑

k=1

µ(xk, B̂)−N−1
∑

i∈sA

dAi µ(xi, B̂)

= N−1
N∑

k=1

µ(xi,B)−N−1
∑

i∈sA

dAi µ(xi,B) +Op

(
1√
n

)

+Op

(
1

n

)

= N−1
N∑

k=1

µ(xi,B)−N−1
∑

i∈sA

dAi µ(xi,B) +Op

(
1√
n

)

(A.6)
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Note that,

¯̂µ =
∑

i∈sA

dAi µ(xi, B̂)
/∑

i∈sA

dAi

=

(
∑

i∈sA

dAi

)−1
∑

i∈sA

dAi

(

µ(xi,B) + hT (xi,B)(B̂−B) + (B̂−B)Tk(xi,B
∗)(B̂−B)

)

(by conditions (2.4.2.i) and (2.4.2.iii))

=

(
∑

i∈sA

dAi

)−1
∑

i∈sA

dAi

(

µ(xi,B) + hT (xi,B)(B̂−B)
)

+Op(1/n)

= µ̄+

(
∑

i∈sA

dAi

)−1
∑

i∈sA

dAi h
T (xi,B)(B̂−B) +Op(1/n)

(by condition (2.4.2.i) and (A.3))

= µ̄+Op(1/
√
n) +Op(1/n)

= µ̄+Op(1/
√
n) (A.7)
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Then from (A.2) and (A.7),

N−1
∑

i∈sA

dAi (µ̂i − ˆ̄µ)

= N−1
∑

i∈sA

dAi

(

µ(xi,B) + hT (xi,B)(B̂−B) + (B̂−B)Tk(xi,B
∗)(B̂−B)− µ̂

)

= N−1
∑

i∈sA

dAi (µi − µ̄) +N−1
∑

i∈sA

hT (xi,B)(B̂−B)+

N−1
∑

i∈sA

(B̂−B)Tk(xi,B
∗)(B̂−B)− Op(1/

√
n)

(by conditions (2.4.2.i) and (2.4.2).iii)

= N−1
∑

i∈sA

dAi (µi − µ̄) +N−1
∑

i∈sA

hT (xi,B)(B̂−B) +Op(1/n)− Op(1/
√
n)

(by condition (2.4.2.i) and (A.3))

= N−1
∑

i∈sA

dAi (µi − µ̄) +Op(1/
√
n) +Op(1/n)− Op(1/

√
n)

= N−1
∑

i∈sA

dAi (µi − µ̄) +Op(1/
√
n) (A.8)

N−1
∑

i∈sA

dAi (µ̂i − ¯̂µ)2 = N−1
∑

i∈sA

dAi (µi − µ̄)2 + (Op(1/
√
n))2

= N−1
∑

i∈sA

dAi (µi − µ̄)2 +Op(1/n) (A.9)

From (A.8) and (A.9) we have:

B̂MC =

∑

i∈sAd
A
i (µ̂i − ˆ̄µ)(yi − ȳ)

∑

i∈sAd
A
i (µ̂i − ˆ̄µ)2

=
N−1

∑

i∈sAd
A
i (µ̂i − ˆ̄µ)(yi − ȳ)

N−1
∑

i∈sAd
A
i (µ̂i − ˆ̄µ)2

=

∑

i∈sAd
A
i (µi − µ̄)(yi − ȳ) +Op

(
1√
n

)

∑

i∈sAd
A
i (µi − µ̄)2 +Op

(
1
n

)

→ BMC as n → ∞ (A.10)
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Thus B̂MC = BMC + op(1), and we have:

ˆ̄yMC = N−1T̂MC
y

= N−1dAy +

(

N−1
N∑

k=1

µ(xk, B̂) +
∑

i∈sA

N−1dAi µ(xi, B̂)

)

B̂MC

= N−1dAy +

(

N−1
N∑

k=1

µ(xk,B)−N−1
∑

i∈sA

dAi µ(xi,B) +Op

(
1√
n

))

(
BMC + op(1)

)

= N−1dAy +

(

N−1
N∑

k=1

µ(xk,B)−N−1
∑

i∈sA

dAi µ(xi,B)

)

BMC + op

(
1√
n

)

Since N = Op(N), we have N · oP (1/
√
n) = Op(N)op(1/

√
n) = op(N/

√
n). Thus,

t̂MC
y = N ˆ̄yMC = N

(

N−1dAy +

(

N−1
N∑

k=1

µ(xk,B)−N−1
∑

i∈sA

µ(xi,B)

)

BMC + op

(
1√
n

))

= dAy +

(
N∑

k=1

µ(xk,B)−
∑

i∈sA

µ(xi,B)

)

BMC + op

(
N√
n

)

(A.11)

A.2 R Code

# f u n c t i o n : mycv . g lmn e t

# d e s c r i p t i o n : p e r f o r m s c r o s s − v a l i d a t i o n f o r l a s s o r e g r e s s i o n

#

# a r g s

# x : c a n d i d a t e v a r i a b l e s

# y : d e p e n d e n t v a r i a b l e

# s t a n d a r d i z e : w h e t h e r t o s t a n d a r d i z e ( s u b t r a c t mean and d i v i d e by sd ,

# FALSE i f a l l v a r i a b l e s a r e c a t e g o r i c a l )

# i n t e r c e p t : w h e t h e r t o i n c l u d e i n t e r c e p t i n mode l

# p e n a l t y . f a c t o r : p e n a l t y f a c t o r a s s o c i a t e d w i t h e a c h c a n d i d a t e v a r i a b l e

# ( d e f a u l t t o 1 )

# s e e d : s e e d u s e d t o g e n e r a t e c r o s s − v a l i d a t i o n s am p l e s

# n f o l d s : number o f c r o s s − v a l i d a t i o n g r o u p s

# a l p h a : p e n a l t y c o e f f i c i e n t , 0= b r i d g e r e g r e s s i o n , 1= l a s s o
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# f a m i l y : d i s t r i b u t i o n f a m i l y ( b i n om i a l o r g a u s s i a n s u p p o r t e d )

# f u n : f u n c t i o n t o d e t e r m i n e t h e b e s t m e t r i c

# ( max f o r AUC, min f o r rms e )

# t y p e : p r e d i c t e d v a l u e t y p e ( r e s p o n s e = p r e d i c t e d mean )

# n lambda : number o f l ambda g r i d s

# w e i g h t s : o b s e r v a t i o n w e i g h t s

# c o r e s : number o f cpu c o r e s f o r p a r a l l e l p r o c e s s i n g

# a d a p t i v e : u s e a d a p t i v e L a s s o ( d e f a u l t =FALSE)

#

# r e t u r n v a l u e : c o e f = l a s s o c o e f f i c i e n t c o r r e s p o n d i n g t o

# o p t i m a l p e n a l t y p a r am e t e r o b t a i n e d t h r o u g h c r o s s − v a l i d a t i o n

# m e t r i c s = ma t r i x o f m e t r i c s , e a c h row i s a lambda ,

# e a c h co lumn i s m e a s u r e on a t e s t s e t (# o f c o l umn = # o f CV)

# lambda = v e c t o r o f l ambda g r i d s

# b e s t . m e t r i c . i n d e x = t h e i n d e x

# ( row number i n m e t r i c s ) t h e h a s t h e b e s t a v e r a g e me a s u r e

# method = t h e method w i t h b e s t w e i g h t pow e r f o r a d a p t i v e

#

# a s s ume x d o e s n o t c o n t a i n i n t e r c e p t co l umn , and a l l v a r i a b l e s a r e

# dummy v e c t o r s ( g lmn e t d o e s n o t dummi fy v a r i a b l e s i n t e r n a l l y )

mycv . glmnet ←

function (x , y , s tandard i ze = FALSE, i n t e r c e p t = TRUE, penal ty . factor = NULL,

seed = NULL, n f o l d s = 5 , family = ”binomial ” , alpha = 1 ,

measure = ”auc” , fun = ”max” , type = ” response ” , weights = NULL,

nlambda = 100 , co r e s = 1 , adaptive = FALSE) {

p r ed i c t o r s ← colnames( x ) ;

glm . formula ← update ( formula( formula . s t r ( p r e d i c t o r s ) ) , ”y∼. ” ) ;

i f ( family == ”binomial ” ) {

y ← as . factor ( y ) ;

}

i f ( length ( penal ty . factor ) == 0) {

penal ty . factor = rep (1 , ncol ( x ) ) ;

}

i f ( i s . null (weights ) ) {

weights = rep (1 , nrow( x ) ) ;

}

i f ( ! i s . null ( seed ) ) set . seed ( seed ) ;

N = length (y ) ;
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f o l d s i z e = round (N/n f o l d s ) ;

f o l d . index ← l i s t ( ) ;

f o l d . index [ [ n f o l d s ] ] ← NULL;

index ← c ( 1 :N) ;

for ( i i n 1 : ( n f o l d s − 1)) {

i f ( i == 1) {

samp . index ← sample ( index , s i z e = f o l d s i z e , replace = FALSE) ;

} else {

samp . index ← sample ( index [−unlist ( f o l d . index ) ] , s i z e = f o l d s i z e ,

replace = FALSE) ;

}

f o l d . index [ [ i ] ] ← samp . index ;

}

f o l d . index [ [ n f o l d s ] ] = index [−unlist ( f o l d . index ) ] ;

glmnet . obj0 ← NULL;

i f ( adaptive == FALSE) {

glmnet . obj0 ← glmnet (x , y , penal ty . factor = penal ty . factor ,

family = family , alpha = alpha , s tandard i ze = standard i ze ,

i n t e r c e p t = in t e r c ep t , weights = weights , nlambda = nlambda ) ;

metr i c s0 ← matrix (rep (NA, n f o l d s * length ( glmnet . obj0$lambda ) ) ,

ncol = nf o l d s ) ;

for ( i i n 1 : n f o l d s ) {

t r a i n . index ← unlist ( f o l d . index [− i ] ) ;

t e s t . index ← f o l d . index [ [ i ] ] ;

t r a i n . glmnet ← glmnet (x [ t r a i n . index , ] , y [ t r a i n . index ] ,

penal ty . factor = penal ty . factor , family = family ,

lambda = glmnet . obj0$lambda , s tandard i ze = standard i ze ,

i n t e r c e p t = in t e r c ep t , alpha = alpha ,

weights = weights [ t r a i n . index ] , nlambda = nlambda ) ;

predict . y ← predict ( t r a i n . glmnet , x [ t e s t . index , ] , type = type ) ;

metr i c . f o l d ← rep (NA, length ( glmnet . obj0$lambda ) ) ;

for ( j i n 1 : length ( glmnet . obj0$lambda ) ) {

i f ( family == ”binomial ” ) {

metr ic . f o l d [ j ] ← glmnet : : auc (y [ t e s t . index ] , predict . y [ , j ] ,

weights [ t e s t . index ] ) ;

} else {

metr ic . f o l d [ j ] ← sum(abs ( predict . y [ , j ] − y [ t e s t . index ] ) *
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(weights [ t e s t . index ] ) ) /sum(weights [ t e s t . index ] ) ;

}

}

metr i c s0 [ , i ] ← metr ic . f o l d

}

metr ic0 .mean ← apply ( metr ics0 , 1 , mean) ;

bes t . metr i c0 = eval ( ca l l ( fun , metr ic0 .mean ) ) ;

bes t . metr i c0 . index = which( metr ic0 .mean == bes t . metr i c0 ) [ 1 ] ;

return ( l i s t ( coef = coef ( glmnet . obj0 ) [ , bes t . metr i c0 . index ] ,

metr i c s = metr ics0 , lambda = glmnet . obj0$lambda ,

bes t . metr i c . index = bes t . metr i c0 . index , method = 0))

}

# a d a p t i v e

glmnet . obj1 ← NULL

glmnet . obj2 ← NULL

glmnet . obj3 ← NULL

glmnet . obj4 ← NULL

taus ← c ( 0 . 1 , 0 . 5 , 1 , 2 ) ;

tau1 = taus [ 1 ] ;

tau2 = taus [ 2 ] ;

tau3 = taus [ 3 ] ;

tau4 = taus [ 4 ] ;

# i n i t i a l w e i g h t s , wh o l e d a t a

data . l s . f i t ← data . frame ( y=y , x ) ;

l s . f i t ← NULL;

i f ( family == ”binomial ” ) {

dsgn ← svydes i gn ( i d s=∼1 ,weights=∼weights , data=data . l s . f i t ) ;

l s . f i t ← svyglm (glm . formula , des i gn=dsgn , family=quas ib inomia l ( ) ) ;

} else {

l s . f i t ← lm(glm . formula , data = data . l s . f i t , weights = weights ) ;

}

beta . i n i t . whole ← ( coef ( l s . f i t ) ) [ −1 ] ;

# i n i t i a l w e i g h t s , e a c h f o l d

beta . l i s t ← l i s t ( ) ; beta . l i s t [ [ n f o l d s ] ] ← NULL;

for ( i i n 1 : n f o l d s ) {

t r a i n . index ← unlist ( f o l d . index [− i ] ) ;
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t e s t . index ← f o l d . index [ [ i ] ] ;

data . l s . f i t ← data . frame ( y=y [ t r a i n . index ] , x [ t r a i n . index , ] ) ;

l s . f i t ← NULL

i f ( family == ”binomial ” ) {

dsgn ← svydes i gn ( i d s=∼1 ,weights=∼weights [ t r a i n . index ] ,data=data . l s . f i t ) ;

l s . f i t ← svyglm (glm . formula , des i gn=dsgn , family=quas ib inomia l ( ) ) ;

} else {

l s . f i t ← lm(glm . formula , data = data . l s . f i t , weights = weights [ t r a i n . index ] ) ;

}

beta . l i s t [ [ i ] ] ← coef ( l s . f i t ) [ −1 ] ;

}

glmnet . ob j s ← l i s t ( ) ;

for ( i i n 1 : 4 ) {

glmnet . ob j s [ [ i ] ] ← glmnet (x , y , penal ty . factor = (1/abs (beta . i n i t . whole ) )ˆ taus [ i ] ,

family = family , alpha = alpha , s tandard i ze = standard i ze ,

i n t e r c e p t = in t e r c ep t , weights = weights , nlambda = nlambda ) ;

}

glmnet . obj1 ← glmnet . ob j s [ [ 1 ] ] ;

glmnet . obj2 ← glmnet . ob j s [ [ 2 ] ] ;

glmnet . obj3 ← glmnet . ob j s [ [ 3 ] ] ;

glmnet . obj4 ← glmnet . ob j s [ [ 4 ] ] ;

metr i c s ← l i s t ( ) ;

metr i c s [ [ 4 ] ] ← NULL;

for (k in 1 : 4 ) {

metr ic . f o l d s ← matrix ( rep (NA, n f o l d s*length ( glmnet . ob j s [ [ k ] ] $lambda ) ) ,

ncol=nf o l d s ) ;

for ( i i n 1 : n f o l d s ) {

t r a i n . index ← unlist ( f o l d . index [− i ] ) ;

t e s t . index ← f o l d . index [ [ i ] ] ;

beta . i n i t ← beta . l i s t [ [ i ] ] ;

t r a i n . glmnet ← glmnet (x [ t r a i n . index , ] , y [ t r a i n . index ] ,

penal ty . factor = (1/abs (beta . i n i t ) )ˆ taus [ k ] , family = family ,

lambda = glmnet . ob j s [ [ k ] ] $lambda , s tandard i ze = standard i ze ,

i n t e r c e p t = in t e r c ep t , alpha = alpha ,

weights = weights [ t r a i n . index ] , nlambda = nlambda ) ;

predict . y ← predict ( t r a i n . glmnet , x [ t e s t . index , ] , type = type ) ;

metr i c . f o l d ← rep (NA, length ( glmnet . ob j s [ [ k ] ] $lambda ) ) ;

grid . n ← min( length ( t r a i n . glmnet$lambda ) ,
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length ( glmnet . ob j s [ [ k ] ] $lambda ) ) ;

for ( j i n 1 : grid . n ) {

i f ( family == ”binomial ” ) {

metr ic . f o l d [ j ] ← glmnet : : auc (y [ t e s t . index ] , predict . y [ , j ] ,

weights [ t e s t . index ] ) ;

} else {

metr ic . f o l d [ j ] ← sum(abs ( predict . y [ , j ] − y [ t e s t . index ] ) *
(weights [ t e s t . index ] ) ) /sum(weights [ t e s t . index ] ) ;

}

}

metr ic . f o l d s [ , i ] ← metr ic . f o l d

}

metr i c s [ [ k ] ] ← metr ic . f o l d s ;

}

metr i c s1 ← metr i c s [ [ 1 ] ] ;

metr i c s2 ← metr i c s [ [ 2 ] ] ;

metr i c s3 ← metr i c s [ [ 3 ] ] ;

metr i c s4 ← metr i c s [ [ 4 ] ] ;

metr i c1 .mean ← apply( metr ics1 , 1 , mean, na .rm = T) ;

metr ic2 .mean ← apply( metr ics2 , 1 , mean, na .rm = T) ;

metr ic3 .mean ← apply( metr ics3 , 1 , mean, na .rm = T) ;

metr ic4 .mean ← apply( metr ics4 , 1 , mean, na .rm = T) ;

bes t . metr i c1 = eval ( ca l l ( fun , metr ic1 .mean) ) ;

bes t . metr i c2 = eval ( ca l l ( fun , metr ic2 .mean) ) ;

bes t . metr i c3 = eval ( ca l l ( fun , metr ic3 .mean) ) ;

bes t . metr i c4 = eval ( ca l l ( fun , metr ic4 .mean) ) ;

bes t . metr i c = eval ( ca l l ( fun , bes t . metr ic1 , bes t . metr ic2 ,

bes t . metr ic3 , bes t . metr i c4 ) ) ;

bes t . metr i c . method = which(c ( bes t . metr ic1 , bes t . metr ic2 ,

bes t . metr ic3 , bes t . metr i c4 ) == bes t . metr i c ) [ 1 ] ;

i f ( bes t . metr i c . method == 1) {

bes t . metr i c1 . index = which( metr ic1 .mean == bes t . metr i c1 ) [ 1 ] ;

return ( l i s t ( coef = coef ( glmnet . obj1 ) [ , bes t . metr i c1 . index ] ,

metr i c s = metr ics1 , lambda = glmnet . obj1$lambda ,

bes t . metr i c . index = bes t . metr i c1 . index , method = 1 ) ) ;

}

i f ( bes t . metr i c . method == 2) {

bes t . metr i c2 . index = which( metr ic2 .mean == bes t . metr i c2 ) [ 1 ]

return ( l i s t ( coef = coef ( glmnet . obj2 ) [ , bes t . metr i c2 . index ] ,

metr i c s = metr ics2 , lambda = glmnet . obj2$lambda ,
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bes t . metr i c . index = bes t . metr i c2 . index , method = 2 ) ) ;

}

i f ( bes t . metr i c . method == 3) {

bes t . metr i c3 . index = which( metr ic3 .mean == bes t . metr i c3 ) [ 1 ]

return ( l i s t ( coef = coef ( glmnet . obj3 ) [ , bes t . metr i c3 . index ] ,

metr i c s = metr ics3 , lambda = glmnet . obj3$lambda ,

bes t . metr i c . index = bes t . metr i c3 . index , method = 3 ) ) ;

}

bes t . metr i c4 . index = which( metr ic4 .mean == bes t . metr i c4 ) [ 1 ]

return ( l i s t ( coef = coef ( glmnet . obj4 ) [ , bes t . metr i c4 . index ] ,

metr i c s = metr ics4 , lambda = glmnet . obj4$lambda ,

bes t . metr i c . index = bes t . metr i c4 . index , method = 4 ) ) ;

}
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