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CHAPTER I

Introduction

Recurrent events are a common outcome of interest in many clinical applications,

and are often used to evaluate new treatments. Many important clinical outcomes

related not only to morbidity but also healthcare costs can occur repeatedly, and

analysis of recurrent event rates allows for the estimation of treatment effects on

these types of outcomes. Common examples of recurrent events include repeat in-

fections, myocardial infarctions, and complications related to medical procedures as

well as resource utilization outcomes like hospitalizations and medical costs. How-

ever, when treatment initiation occurs after the start of follow-up existing methods

for the analysis of recurrent events are generally inapplicable or yield treatment ef-

fect parameters with unsatisfactory interpretations. In this dissertation we propose

methodology that evaluates the effect of time-dependent treatments on multivariate

survival outcomes.

In Chapter II we consider a time-dependent treatment that is relatively rare,

and develop a two-stage method of estimating the effect of this treatment on the

recurrent event rate. Since treatment is initiated after the start of follow-up the

ideal comparison is between a subject that receives treatment at time s and the

same subject under the scenario where the treatment does not exist. Since the
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counterfactual absence-of-treatment experience is not observable in practice, our goal

is to use other “similar” subjects to mimic this counterfactual experience. We identify

these subjects by using a conditional prognostic model (i.e., conditional on previous

events and any other relevant history) to find subjects with similar pre-treatment

trajectories. Subjects that remain untreated at time s are then matched to the

subject treated at time s if their prognostic score is within a given distance from

the score of the treated subject. We then use the sequential stratification method

(Schaubel et al, 2009) to estimate the effect of treatment on the recurrent event rate

with each set of treated subjects and matched controls serving as a stratum in the

analysis. The method conditions on the history up until the time of treatment (s),

but is marginal beyond s. Note that matched subjects who are subsequently treated

are censored from stratum where they serve as controls. While this generally results

in dependent censoring, with a rare treatment, estimates remain unbiased. We seek

to identify the threshold above which the dependent censoring results in bias.

In Chapter III we extend this method in two important directions. First, treat-

ment is no longer assumed to be rare. Second, multiple treatments are available. In

particular, we consider the case where there is both a “standard” and an “experi-

mental” treatment. In this scenario all subjects begin follow-up untreated, some go

on to receive standard treatment, others go on to receive the experimental treat-

ment, and still others remain untreated. Our objective is to compare the recurrent

event rates under experimental treatment and “conventional therapy”; i.e., beginning

follow-up untreated and remaining in that state or subsequently receiving standard

treatment. In this setting, subjects serving as matched controls are censored if they

receive experimental treatment, but remain in the comparison group if they go on

to receive standard treatment. We also assume that the experimental treatment is
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more common, i.e. it exceeds the threshold determined in Chapter II that results

in bias due to dependent censoring. To account for this we use a variant of Inverse

Probability of Censoring Weighting (IPCW, Robins and Rotnitzky, 1992, Robins and

Finkelstein, 2000). We model the hazard of experimental treatment using traditional

proportional hazards methods adjusting for relevant covariates and history, and use

this to construct weights representing the hazard of experimental treatment between

time s and s + t. Sequential stratification methods are then used to determine the

effect of experimental treatment on the recurrent event rate.

In Chapter IV we return to the scenario where there is only one treatment but

remove the assumption that the treatment is rare. In this chapter we develop a

method for estimating the effect of a time-dependent treatment on correlated recur-

rent event and survival outcomes. Here we assume that there is a latent process

(unobserved random effect) related to both the recurrent and terminal events, and

that the terminal event stops all subsequent observations of the recurrent event.

Under this scenario we propose to jointly model the pre-treatment recurrent and

terminal events using a frailty model in order to estimate the treatment-free trajec-

tories for both event types as well as the subject-specific frailties. The matching of

treated subjects then proceeds using the estimated intensities and hazards as well as

the frailties. The final estimates of the treatment effect on the recurrent event rate

and terminal event hazard are estimated separately using sequential stratification

and the weighting method described in Chapter III.

The methods described above are applied to data from the Adult-to-Adult Liv-

ing Donor Liver Transplantation Cohort Study (A2ALL). A2ALL is a multicenter

NIH-funded cohort studying morbidity and mortality related to living donor liver

transplant (LDLT) for both donors and recipients. The study collected both ret-
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rospective and prospective data on potential LDLT recipients transplanted between

1998 and 2014. Data collection included demographic and clinical information related

to recipient’s liver disease and health status at donor evaluation, intraoperative in-

formation, vital status and laboratory values at specified time points post-donation,

as well as information on complications and hospitalizations. Data collection began

at the time of donor evaluation; some potential recipients went on to receive an

LDLT, some received a deceased donor transplant (DDLT), and others remained on

the waitlist.



CHAPTER II

Estimating the effect of a rare time-dependent treatment on
the recurrent event rate

2.1 Introduction

Recurrent events often serve as the basis for measuring treatment effects in ob-

servational studies. A reduction in outcomes, such as repeated myocardial infarction

or opportunistic infections, indicates that a treatment has a positive effect on mor-

bidity. Reductions in hospital admission rates among the treatment group would

imply that lower morbidity as well as reduced health care costs are associated with

(or caused by) treatment.

Methods for analyzing recurrent events have been well described in the literature.

Models have been developed that condition on the event history (Anderson and Gill,

1982) or previous number of events (Pepe and Cai, 1993). Marginal models, such as

those of Lawless and Nadeau (1995) or Lin et al. (2000), allow for an interpretation

of covariate effects on the recurrent event rate that does not require patients to have

similar event histories. Few papers to date have explored methods for using recurrent

events as an evaluation of an experimental treatment, with exceptions being Cook

et al. (2009) and Schaubel and Zhang (2010).

Treatment can be initiated after the beginning of follow-up, which occurs fre-

quently in studies without randomization. While some existing recurrent event

5
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methods can incorporate time-dependent covariates (Chen et al, 2013), these tra-

ditional methods often do not give interpretations that satisfy the research question

of interest. In the settings often of interest, treatment initiation depends on inter-

nal processes such as disease progression or the event history itself, violating the

assumption of most time-dependent recurrent event methods that time-dependent

covariates be external (Kalbfleisch and Prentice, 2002). Ideally, we would begin

follow-up of an untreated patient, and after treatment initiation we would compare

the recurrent event rate to that of the same patient had they remained untreated.

This counterfactual experience is unobservable in practice, however.

In an attempt to compare each treated subject with their unobservable counterfac-

tual treatment-free experience, this chapter will extend the sequential stratification

method described by Schaubel et al. (2009) to the recurrent event setting. For every

subject treated at time s, subjects that are eligible to receive treatment at time s but

do not are matched to the treated subject. Each treated subjects’s post-treatment

recurrent event rate is compared to the averaged matched recurrent event rate in

what can be conceptualized as a subject-level experiment. Matched subjects that

subsequently receive treatment are censored from experiments for which they serve

as controls, and begin their own experiment as the treated subject. Note that,in

every experiment, the comparison of interest begins at time s, such that recurrent

events that occur in [0, s) are not considered.

Schaubel et al (2009) proposed combining hard covariate matching and adjustment

to ensure that matched subjects were ‘similar’ to the treated subject in addition to

the requirement that they remain untreated at time s. This method was proposed in

the univariate survival setting where failure times prior to treatment are not observed

for treated subjects. However, information regarding pre-treatment recurrent event
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trajectories are available on all subjects in the setting described above. Given that

event history is a strong predictor of the recurrent event rate, we propose to leverage

this information using a two-stage modeling approach. In the first stage, we use a

conditional rate model to describe pre-treatment event trajectories for all subjects.

We then use the linear predictor from this first stage model to caliper-match as yet

untreated patients to those receiving treatment at time s. The goal is to create a

control group with an event trajectory similar to that which the treated patient would

have experienced had treatment not been available. The final model for the recurrent

event rate includes only the treatment effect and a measure of distance between the

prognostic score of the treated subject and that of the matched controls.

The method proposed is not restricted to “treatment”’ in the classical sense, and

is in fact applicable to any state change. Often this state change is in the form of

treatment such as initiation of new medication or performance of a procedure, but

this is not always the case. Diagnosis of disease or experience of a medical event such

as injury could constitute a state change for which comparing the recurrent event

rate in the presence and absence of the state change is of clinical or policy interest.

This will be discussed further in relation to the application of the method to liver

transplantation.

The remainder of this chapter proceeds as follows. In Section 2.2 we introduce

the notation and proposed models and describe the parameter estimation. Section

2.3 presents results of simulation studies to demonstrate the performance of the

treatment effect estimator in moderate sized samples. An application to living donor

liver transplant is described in Section 2.4 using data from the Adult-to-Adult Living

Donor Liver Transplantation Cohort Study (A2ALL). Some concluding remarks are

offered in Section 2.5.
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2.2 Methods

2.2.1 Notation

In the following, i represents subject (i = 1, . . . , n), Ti is treatment time, with

Ti ≥ 0, and Z∗i (t) represents the time-dependent covariate for subject i. We assume

for the purposes of this chapter that subjects treated at time Ti remain treated

for the duration of follow-up. The true number of events for subject i in [0, t] is

defined as N∗i (t) =
∫ t
0
dN∗i (u). Event and treatment times are subject to independent

right censoring by Ci, assumed to be administrative in this setting without loss of

generality. The number of observed events is given by Ni(t) =
∫ t
0
I(Ci > u) dN∗i (u).

The number of pre-treatment events in (0, t] is given by the counting process

N0
i (t) =

∫ t

0

I(Ti > u) dN∗i (u).(2.1)

If patient i receives treatment at time s; i.e., Ti = s, then the post-treatment event

counter is defined as

N?
i (t; s) = I(Ti = s)

∫ s+t

s

dN∗i (u).(2.2)

Note that it will be our convention that N(t; s) refers to the interval of length t, but

starting at time s; a single time index, as in the previously-defined N0
i (t), pertains to

the (0, t] time interval. Correspondingly, we define an event counter representing the

events that would have been experienced in the absence of treatment, also beginning

at time s,

N0
i (t; s) =

∫ s+t

s

I(Ti > u)dN∗i (u).(2.3)

Note that (2.3) is the pre-treatment event counter described in (2.1) but instead of

(0, t] the counter N0
i (t; s) tracks the patient on (s, s + t]. For a subject eligible to

receive the treatment at time s, (i.e. I(Ti ≥ s)), if Ti = s, the counting process (2.2)
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takes effect; if the treatment had not been available, process (2.3) takes effect. The

subject is untreated on (0, s) under either scenario to which (2.2) and (2.3) pertain.

Finally, we define a 0/1 process for being observed to receive treatment,

NT
i (t) =

∫ t

0

I(Ci > u)dI(Ti ≤ u).(2.4)

2.2.2 Proposed Models

As described above, the goal of this method is to compare the post-treatment

recurrent event mean to the corresponding event mean under no treatment. We

denote the mean of (2.2) by

µ?i (t; s) = E

[∫ t

0

N?
i (du; s)|Ti = s,H i(s)

]
,(2.5)

where H i(s) = {Z∗i (u), Ni(u), I(Ti > u), I(Ci > u); 0 ≤ u < s} represents the

observed pre-treatment history for subject i on [0, s).

Similarly, in the absence of treatment, the mean of (2.3) can be written as

µ0
i (t; s) = E

[∫ t

0

N0
i (du; s)|H i(s), Ti > u

]
.(2.6)

Note, both models are partly conditional (Pepe and Couper, 1997, Zheng and

Heagerty 2005, Gong and Schaubel 2013) in the sense that they condition on the

history up until time s as opposed to s + t. We do not model either (2.5) or (2.6)

directly, instead, our model of interest is given by

µ?i (t; s) = µ0
i (t; s) exp{β?},(2.7)

which can equivalently be expressed in terms of a rate function by

µ?i (dt; s) = µ0
i (dt; s) exp{β?}.(2.8)

In this model µ0
i (t; s), the treatment-free mean number of events is scaled up or down

by exp{β?} if subject i received the experimental treatment at time s. The mean
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number of post-treatment events is then compared to the mean number of treatment-

free events after time s. It is conceivable that the treatment effect could depend on

time since treatment, t, or time of treatment, s, and this model can be extended to

accommodate a time-dependent β? in the form β?(t; ·), β?(·; s) or β?(t; s). Note that

these different time-dependent forms of β? could be any parametric function of time

such as linear or log-linear; time could also be categorized to examine the functional

form of the time-dependent effect.

Since we cannot observe a patients’ pre-treatment experience once treatment is

initiated, a patient treated at time s will be compared to similar patients who did not

start treatment at follow-up time s but were eligible to do so. Similar to Schaubel et

al. (2009), we use the concept that each treatment time initiates an “experiment”,

in which the recipient of the treatment is compared to ‘similar’ treatment-eligible

candidates. Note that ‘similar’, in this context, refers to current status (i.e., at time

s) and history on [0, s). Eligibility for the comparison is defined as

ei(s) = I(Ti = s) + I(Ti > s),

i.e., at time s, patient i either received the treatment or remained untreated.

Our method of estimating β? from (2.8) involves a stratified analysis. Each treated

patient generates a stratum, which will include the index patient as well as similar

treatment-eligible patients. Here we define similar as both treatment eligible at s,

ei(s), and similar with regard to accumulated covariate and recurrent event history

on (0, s], H i(s). In order to quantify each subject’s history, we use a prognostic

score (Hansen, 2008) based on the pre-treatment event rate, modeled using a time-

dependent proportional rates model,
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dµ0
i (t) = E [dN∗i (t)|H i(t), Ti > t] = exp{αT0Zi(t)}dµ0(t),(2.9)

where the covariate Zi(t) is chosen to capture the pertinent components of the his-

tory, E[dN∗i (t)|H i(t), Ti > t] = E[dN∗i (t)|Zi(t), Ti > t]. Model (2.9) resembles the

marginal Lin et al. (2000) model, but is more accurately interpreted as the condi-

tional Andersen-Gill (1982) model, due to the explicit dependence on the prior event

history, a property avoided by Lin et al. (2000). The regression parameter α0 from

(2.9) can be computed by solving the unweighted Cox (1975) score equation. Due to

the dependence on internal covariates (Kalbfleisch and Prentice, 2002), elements of

α0 are difficult to interpret. However, the purpose of this model is matching similar

subjects on [0, s), not interpretation.

The purpose of the prognostic score is to match patients that have similar pre-

treatment event rates, the rationale being that previous event rate is the most im-

portant predictor of the current event rate. Unlike a propensity score, which uses the

treatment event rate to match subjects with similar probabilities of being treated,

the prognostic score aims to compare the effect of treatment on the event rate among

subjects that were on the same trajectory with respect to their pre-treatment event

rate. The use of prognostic scores in conjunction with, or as an alternative to,

propensity scores has been considered in several reports (Rubin and Thomas, 2000,

Stuart, Lee, and Leacy, 2013, Leacy and Stuart, 2014, Li, Schaubel, and He, 2014)

and will be discussed later. Once the prognostic scores have been estimated, caliper

matching is used to assign untreated control subjects to a subject receiving treatment

at time s. Caliper matching requires that the prognostic scores of matched subjects

be within a certain radius of the prognostic score of the index subject. Appropriate

selection of the caliper involves balancing the need for homogeneity within-stratum
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with the need to have an adequate number of matches for each index subject. The

discrepancy between prognostic scores for experimental subject j and control subject

i can be quantified through the subject-pair specific rate ratio,

ψi,j(s) =
dµ0

i (s)

dµ0
j(s)

= exp{αT0 [Zi(s)−Zj(s)]}.

Subject i is ‘similar’ on [0, s) to subject j if | logψij(s)| ≤ ε, where ε > 0 is a

pre-determined constant.

Combining the eligibility indicators and prognostic scores, patient i is included in

the stratum generated by patient j if mij(s) = 1, where

mij(s) = ei(s)I(Ti > s)ej(s)I(Tj = s)I(| log ψ̂ij(s)| ≤ ε),

with ψ̂ij(s) = exp{α̂T0 [Zi(s)−Zj(s)]}. In order to account for the residual difference

between patients i and j, we propose to adjust for log ψ̂ij(s) in the final model.

Incorporating the eligibility indicator and the prognostic score distance, the final

fitted model for the event mean for stratum j is then

µ?ij(t; s) = mij(s)µ
0
i (t; s) exp{β?I(Ti = s) + βψ log ψ̂ij(s)}.(2.10)

In (2.10), j is the stratum (generated by patient j through Tj = s) and i is the

patient within stratum. The model governs the treated patient through the indicator

I(Ti = s), which equals 1 if i = j. The vector of parameters to be estimated and the

corresponding covariates are given by

β?ψ =

 β?

βψ

 Z?
i (s) =

 I(Ti = s)

log ψ̂ij(s)

 ,(2.11)

such that model (2.10) can be re-written as µ?i (t; s) = mij(s)µ
0
i (t; s) exp{βT?ψZ?

i (s)}.

Subjects matched to the treated subject enter the experiment without receiving

any treatment, but could subsequently receive treatment. If a matched subject re-

ceives treatment after time s they are censored from all experiments in which they
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serve as controls and begin their own experiment as the index subject. This generally

results in dependent censoring since, although treatment can be considered random

given H i(s+t), the model for µ?ij(t; s) from (2.10) only conditions on H i(s), the pre-

treatment history up to time s. While this could be addressed though Inverse Prob-

ability of Censoring Weighting (IPCW, Robins and Finkelstein, 2000, Miloslavsky et

al, 2004, Smith and Schaubel, 2015), in this chapter we consider treatments that are

relatively rare, with rates small enough such that bias due to dependent censoring

is negligible. Section 3 will investigate through simulation treatment rates at which

dependent censoring needs to be addressed.

2.2.3 Parameter Estimation

In order to estimate β? we define the pertinent risk set indicator for stratum j,

Yij(t; s) = mij(s)I(Ci > s+ t){I(Ti = s) + I(Ti > s+ t)}.

If, given H i(s) matched subjects are randomly assigned to treatment after time s,

the process

mij(s)

∫ τ−s

0

Mij(du; s),(2.12)

wheremij(s) is the matching indicator described above, Mij(du; s) = Yij(u; s){Ni(du; s)−

µij(du; s)}, and τ is chosen to satisfy P (Ci ≥ τ) > 0 and often set to max{C1, . . . , Cn},

would have mean zero. As mentioned above, bias due to censoring of subsequently

treated controls is expected to be minimal in the setting of rare treatment, so we

assume the condition above holds.

Aggregating across subjects for the experiment occurring at time s produces the

set of zero mean processes,

∑n
i=1mij(s)

∫ t
0
Mij(du; s)(2.13)
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and

∑n
i=1mij(s)

∫ t
0
Z?
i (s)Mij(du; s).(2.14)

We reorganize this system to solve implicitly for the baseline mean, µ0
0(u; s) in (2.13),

then substitute into (2.14). Then, aggregating across all experiments yields the final

estimating function for β?ψ,

U(β) =
n∑
j=1

n∑
i=1

∫ τ

0

mij(s)

∫ τ−s

0

{Z?
i (s)−Z?(u; s)}Ni(du; s)dNT

j (s),(2.15)

where

Z?(u; s) =

∑n
`=1 Y`j(u; s)Z?

`(s) exp{βT?ψZ?
`(s)}∑n

`=1 Y`j(u; s) exp{βT?ψZ?
`(s)}

.(2.16)

Since U(β) from (2.15) behaves asymptotically like a zero-mean estimating function,

the solution to U(β) = 0, denoted by β̂?ψ, should yield a consistent estimator of

β?ψ.

2.2.4 Asymptotic Properties

To proceed with inference on β̂ we need to estimate the variance of β̂. To do this

we first explore the distribution of n1/2(β̂ − β) as n → ∞. Using results initially

derived by Lin et al (2000) it can be shown that

n1/2(β̂ − β) = A−1(β)n−1/2
n∑
i=1

Ui(β) + op(1),(2.17)

where

U(β) =
n∑
j=1

n∑
i=1

∫ τ

0

mij(s)

∫ τ−s

0

{Z?
i (s)−Z?(u; s)}Ni(du; s)dNT

j (s)

as above and A(β) is the limiting value of the second derivative matrix, given by

Â(β) = n−1
n∑
j=1

n∑
i=1

∫ τ

0

mij(s)

∫ τ−s

0

{Z?
i (s)−Z?(u; s)}⊗2Ni(du; s) dNT

j (s).
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Note that in order to show (2.17) above it must be shown that (2.15) has mean

zero. To do this we first rewrite the interior integral as from (2.15) as

n∑
i=1

∫ τ−s

0

{Z?
i (s)−Z?(u; s)}Mi(du; s),(2.18)

where Mi(t; s) is defined as above. Since (2.10) is not the intensity model of Anderson

and Gill (1982) but a proportional rates model similar to Lin et al (2000), the Mi(t; s)

are not martingales and therefore the martingale central limit theorem does not apply.

However, E{dMi(t; s)|Z?(u; s)} = 0 in the setting described above given

Mi(dt; s) = Yi(t; s)[Ni(dt; s)− µ0
i (dt; s) exp{βT?ψZ?

i (s)}]

and therefore (2.18) has mean zero under the assumed model. It follows that

1

n

n∑
j=1

n∑
i=1

∫ τ

0

∫ τ−s

0

{Z?
i (s)− z?(u; s)}Mi(du; s)dNT

j (u)

also has mean zero because {Z?
i (s)−z?(u; s)}Mi(du; s) and dNT

j (t) are independent

when i 6= j and when i = j dNT
j (t) = 1 is embedded in the covariate Z?

i (s).

It can be shown through empirical process theory (Shorack and Wellner, 1986,

Karatzas and Shreve, 1988, Pollard, 1990, Bilias et al 1997) that n−1/2U(β) converges

weakly to a zero mean Gaussian process under certain regularity conditions such as

those listed in Lin et al (2000). Further, by the Weak Law of Large Numbers,

the matrix Â(β) converges in probability to A(β). Then, by applying Slutsky’s

Theorem, (2.17) converges to a normal distribution with mean zero and variance

A−1(β)B(β)A−1(β), where B(β) = E[Ui(β)UT
i (β)]. The form of the variance of

(2.17) suggests the robust sandwich estimator with Â(β) as given above and B(β)

estimated by B̂(β) where

B̂(β) =
1

n

n∑
i=1

Ûi(β)⊗2
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with

Ûi(β) =
n∑
j=1

n∑
i=1

∫ τ

0

mij(s)

∫ τ−s

0

{Z?
i (s)−Z?(u; s)}M̂i(du; s)dNT

j (s).

2.2.5 Variance Estimation

The variance of β can be estimated via the robust sandwich estimator. This

was used for several reasons. First, recurrent events are clustered within subject,

and therefore observed events are not independent. Second, subjects can serve as

controls in multiple strata, i.e., the data set for the final model may include repeated

instances of a subject’s recurrent event experience. The performance of this robust

sandwich estimator will be tested through simulation.

2.3 Simulation Study

2.3.1 Simulations of Proposed Method

We conducted simulations to demonstrate the properties of the proposed estimator

in moderate sized samples. For each scenario we simulated 1000 subjects 500 times.

In addition to the observed experience, the counterfactual, treatment-free experience

was generated for each subject in order to determine target values for β?, which, given

the complex data structure, were difficult to pre-specify. Independent adjustment co-

variates Zi1 and Zi2 were generated to follow a Bernoulli(0.5) distribution. Correla-

tion between recurrent events for each subject was induced through a frailty variate,

Qi, distributed Gamma with mean 1 and variance 0.5. The frailty was capped at

2, the 90th percentile. Pre-treatment recurrent event experience was then generated

though a frailty model with rate parameter Qidµ0 exp{α1Zi1+α2Zi2}. An additional

unobserved event process related to treatment was also generated using a similar

model to ensure dependent censoring. Treatment times, T Si , were then generated to
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follow the hazard λT0 exp{δ1Zi1 + δ2Zi2 + δ3 log(Ni1(t
−) + 1) + δ4 log(Ni2(t

−) + 1)},

where Ni1(t) is the outcome of interest and Ni2(t) is the unobserved event process

also related to treatment. The recurrent event times post-treatment were generated

from rate parameter Qidµ
T
0 exp{φ1Zi1 + φ2Zi2 + φ3 log(Ni(Ti) + 1)}.

Once the data were generated, prognostic scores representing pre-treatment event

trajectories were obtained from the model dµ0
i (t) = exp{α01Zi1+α02Zi2+α03N

0
i (t−)}dµ0

0(t).

Subjects were matched if | log ψ̂ij| ≤ 0.025.

Parameters used in the simulation studies are as follows. For the pre-treatment

event rates, we set dµ0 = 3, α1 = 0.3, and α2 = −0.1 for the observed process and

dµ0 = 6, α1 = 0.3, and α2 = −0.1 for the unobserved process. For the treatment

hazard, λT0 = 0.01, δ1 = −0.2, δ2 = 0.1, δ3 = 0.2, and δ4 = 0.5. Finally, for the

post-treatment event rate, dµT0 was given values of 1, 1.5, 2, 3, 4, and 5, φ1 = 0.3,

φ2 = −0.1, and φ3 = 0.2. This resulted in values of β? of -0.265, -0.002, 0.206, 0.514,

0.751, and 0.945. In the simulated data 9.13% of the sample received treatment, and

the mean number of events was 12.4 (sd = 9.8).

Results from the simulations are shown in Table 2.1. Absolute bias ranged from

0.005 to 0.016, and coverage probabilities ranged from 0.91 to 0.94, close to the target

level of 0.95. Histograms of the difference between the estimated and target values

of β? are shown in Figure 2.1. They show a relatively normal distribution centered

at zero, supporting the claim that β? is unbiased and asymptotically normal. The

robust variance estimator performed well in this setting, with asymptotic standard

error estimates similar to their empirical counterparts. This will be discussed further

in Section 2.5.
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Table 2.1: Simulation results for proposed method estimating rare time-dependent treatment effects
on the recurrent event rate

Scenario dµ1
0 β? Estimate Bias ESE ASE CP

1 1.0 −0.265 −0.271 −0.005 0.084 0.078 0.91

2 1.5 −0.002 −0.013 −0.010 0.078 0.074 0.94

3 2.0 0.206 0.189 −0.016 0.077 0.071 0.93

4 3.0 0.514 0.506 −0.008 0.072 0.068 0.93

5 4.0 0.751 0.742 −0.009 0.071 0.066 0.92

6 5.0 0.945 0.930 −0.015 0.072 0.065 0.92

ESE=empirical standard error; ASE=asymptotic standard error;
CP=coverage probability

Figure 2.1: Histogram of parameter estimates from proposed method estimating rare time-
dependent treatment effects on the recurrent event rate with normal density
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Table 2.2: Simulation results for proposed method with increasing percent treated demonstrating
bias due to dependent censoring

Scenario % Treated β? Estimate Bias ESE ASE CP

1 9.44 −0.305 −0.262 0.043 0.118 0.108 0.89

2 24.82 −0.314 −0.276 0.038 0.073 0.071 0.91

3 36.69 −0.330 −0.280 0.050 0.066 0.062 0.87

4 56.66 −0.361 −0.292 0.069 0.062 0.057 0.74

5 68.71 −0.387 −0.300 0.086 0.066 0.057 0.62

6 85.62 −0.443 −0.305 0.138 0.075 0.062 0.42

ESE=empirical standard error; ASE=asymptotic standard error;
CP=coverage probability

2.3.2 Investigation of dependent censoring

Recall that subjects are censored from strata in which they serve as controls if they

subsequently receive treatment. Since treatment depends on, among other things,

the event history, this will result in dependent censoring in cases where treatment is

not rare. We used simulation to explore the point at which more common treatments

result in substantial bias. To do this we simulated 500 patients using a similar set

up to that of the previous section except that dµT0 was set at 1 and λT0 took on

values of 0.01, 0.05, 0.15, and 0.3. This resulted in 9.44%, 24.82% 36.69%, 56.66%,

68.71%, and 85.62% of subjects receiving treatment, respectively. Results of these

simulations are shown in Table 2.2.

As shown in Figure 2.2, increasing the proportion of subjects treated increases bias

and decreases coverage probability. At approximately one-third of subjects treated

bias is at 0.05, and this almost triples to 0.14 when 86% of subjects are treated, with

increased bias resulting in lower coverage. Bias and coverage are similar from 10-25%

treated, likely due in this case to the smaller absolute number of treated subjects.
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Figure 2.2: Bias and coverage probability with increasing percentage treated

Given this trajectory we recommend that if the proportion of treated patients is less

than 20% methods such as IPCW aimed at correcting dependent censoring are not

necessary, however, once the proportion of treated subjects exceeds 20% weighting

is necessary to correct bias.

2.4 Application to Liver Transplantation

Development of End Stage Renal Disease (ESRD) post-liver transplant leads to

increased patient morbidity and mortality, and places increased burden on heath care

resources. We will use the proposed method to evaluate effect of ESRD development

post-liver transplant on the number of days hospitalized in the Adult-to-Adult Living

Donor Liver Transplantation Cohort Study (A2ALL). In this setting the “treatment”

of interest is development of ESRD, defined as initiation of dialysis or kidney trans-
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plant post-liver transplant. As mentioned previously, the proposed method is gen-

eralizable to time-dependent state changes such as development of post-LT ESRD.

In this setting we utilize time-dependent markers of kidney function such as crea-

tinine to estimate the hopitalization trajectory from the time of transplant to the

development of ESRD, and use these to match with patients on similar trajectories

that do not develop ESRD. Comparing the rate of days hospitalized for a patient

that develops post-LT ESRD compared to the rate that would have been observed

had the patient not developed ESRD is a critical component to the estimation of the

costs of post-LT care.

A2ALL is a multi-center NIH-funded consortium composed of 12 North American

transplant centers. Potential living donor liver transplant (LDLT) recipients trans-

planted between January 1, 1998 and January 31, 2014 were enrolled. Retrospective

and prospective data collection included post-transplant vital status and laboratory

information as well as hospitalization admission and discharge information. Data

were supplemented from the Scientific Registry of Transplant Recipients (SRTR).

The SRTR data system includes data on all donors, wait-listed candidates, and

transplant recipients in the United States; these data are submitted by the members

of OPTN and have been described elsewhere. The Health Resources and Services

Administration (US Department of Health and Human Services) provides oversight

for the activities of the OPTN and SRTR contractors.

There were 55 ESRD events out of 1447 transplanted patients in A2ALL. Median

post-transplant follow-up time was 5 years, and the average number of days hospi-

talized per patient year was 14.9 for non-ESRD patients and 37.2 for ESRD patients

(median days 2.3 and 5.1, respectively). Hospitalization admissions that occurred

after discharge from the transplant hospitalization but before onset of ESRD were
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Figure 2.3: Distribution of prognostic score distance from index ESRD patient with and without
matching

used to build the prognostic model, which was adjusted for the event history as well

as other transplant and post-transplant time-dependent predictors. Results from the

prognostic model are shown in Table 2.3. Each additional day of hospitalization

history was associated with a 2% increase in the rate of future hospitalization days

(p <0.001).

Using prognostic scores derived from the model in Table 2.3, the distribution of

prognostic score distance from index patient with and without matching is shown

in Figure 2.3. Prior to matching on prognostic score the range of distance between

the index subject and matched controls spans from -7.2 to 5.4, with 98% of matched

controls within the interval [−1.5, 3.5] from the index subject. When the 55 patients

that developed ESRD post-transplant were matched to patients that had not yet de-

veloped ESRD based on prognostic score, with all control subjects within ±0.02, the



23

Table 2.3: A2ALL analysis: Prognostic model of pre-ESRD rate of days hospitalized

Parameter Rate Ratio 95% Confidence Interval p-value

Recipient age at Transplant (ref=65+)

18−40 1.00 (0.95, 1.06) 0.873

40−50 0.77 (0.73, 0.81) <.001

50−55 0.79 (0.75, 0.83) <.001

55−60 0.78 (0.74, 0.82) <.001

60−65 0.87 (0.82, 0.92) <.001

Recipient diagnosis: HCV 1.07 (1.04, 1.10) <.001

African−American (ref=all others) 0.75 (0.71, 0.79) <.001

Diabetes 0.89 (0.86, 0.92) <.001

Ln(creatinine) (time−dependent) 1.31 (1.27, 1.35) <.001

Ln(bilirubin) (time−dependent) 1.09 (1.07, 1.10) <.001

Ln(albumin) (time−dependent) 0.36 (0.34, 0.38) <.001

Donor age (ref=70+)

<18 0.64 (0.55, 0.74) <.001

18−40 0.76 (0.67, 0.87) <.001

40−50 0.78 (0.69, 0.89) <.001

50−60 1.02 (0.90, 1.16) 0.722

60−70 0.72 (0.63, 0.83) <.001

DCD (ref=non−DCD) 1.33 (1.21, 1.47) <.001

Regional (ref=Local) 1.32 (1.25, 1.40) <.001

National (ref=Local) 1.41 (1.32, 1.51) <.001

Split Liver 1.18 (1.08, 1.29) <.001

Living Donor (ref=Deceased Donor) 0.96 (0.88, 1.05) 0.397

Hospitalization History (per day) 1.02 (1.02, 1.02) <.001
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distribution of score distance is much tighter around zero. The matching resulted in

a median of 14 matches, with 6 (11%) patients that developed ESRD being excluded

due to lack of matches.

The proposed method was then used to fit a stratified model to determine the

effect of ESRD on the rate of days hospitalized (Model I) using model (2.10). The

following traditional time-dependent proportional rates models were also fitted where

ESRD status was treated as a time-dependent predictor adjusted for the same pre-

dictors in the prognostic model (Table 2.3):

µi(t) = µ0
i (t) exp{θIII(Ti ≤ t) + βTZi(t)}(2.19)

and

µi(t) = µ0
i (t) exp{θIIII(Ti ≤ t) + βTZi}.(2.20)

In the first model, model (2.19), additional time-dependent predictors thought

to be associated with the progression to ESRD were included, such as lab values

and hospitalization history, while in second model, (2.20), only baseline, i.e. at

transplant, values of these predictors were used. The results from all three models

are shown in Table 2.4. In Model I, which uses the proposed method, patients that

develop ESRD have a rate of days hospitalized that is 2.9 times higher than patients

that have not yet developed ESRD. By contrast, results from Model II give a rate that

is only 1.4 times higher for patients that have developed ESRD, but this comparison

is to patients without ESRD that have the same lab values and hospitalization history

at time t. By contrast, adjusting only for baseline values of factors associated with

the development of ESRD (Model III) estimates that patients that develop ESRD

have a days hospitalized rate 3.2 times higher than patients that do not have ESRD

at time t and were similar at transplant. This comparison demonstrates how use of
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Table 2.4: A2ALL analysis of the effect of post-LT ESRD development on the rate of days hospi-
talized: Comparison of proposed method with traditional approaches

Model Equation Parameter RR 95% CI p-value

I: Proposed Method (10) β? 2.90 (1.69, 4.97) <0.001

II: Time-dependent Adjustment Covariates (16) θII 1.44 (1.35, 1.53) <0.001

III: Baseline Adjustment Covariates (17) θIII 3.17 (3.01, 3.35) <0.001

RR=Rate Ratio; CI = Confidence Interval

the proposed method balances the opposing biases of over- and under-adjustment.

As a sensitivity analysis we also tested interactions with time since development of

ESRD and time of development of ESRD, but no significant variations in the effect

of ESRD development were found (both rate ratios ≈ 1, p = 0.23 and p = 0.68,

respectively).

2.5 Discussion

In this chapter we lay out a two-stage method for estimating the effect of time-

dependent treatments on recurrent events using an extension of the method of se-

quential stratification. The method proposed is partly conditional in the sense that

information up until treatment time, s, is used in the prognostic model, but the final

model for µ?ij(t; s) does not condition on covariates after s. A purely conditional

model (e.g. Anderson and Gill, 1982), which would include covariate information

on [s, s+ t), would tend to dampen the effect of treatment because it would require

comparison subjects to have the same history at the time of treatment. A marginal

analysis such as that of Lin et al (2000), on the other hand, would exaggerate the

effect of treatment because since treatment depends on the history, subjects that

receive treatment at time s may differ from those that do not. Our method ensures

subjects are similar up to s through conditioning, and is marginal thereafter, so that
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the post-treatment comparison averages over the treatment-free experience of the

matched controls.

The opposing biases of baseline and time-dependent adjustment in traditional

time-dependent models is demonstrated in the application to development of post-

liver transplant ESRD in the A2ALL study. While all three methods produced

significant results, the fully time-dependent model, which included a time-dependent

indicator for development of ESRD as well as time-dependent lab values and pre-

vious number of days hospitalized, all factors associated with progression of renal

failure, underestimated the effect of ESRD on the rate of days hospitalized by almost

half, while the similar model with only baseline factors associated with the develop-

ment of ESRD (i.e. at transplant values), overestimated the effect. In addition, the

comparison groups for these models are not constructed in a way that gives the de-

sired interpretation, i.e. a comparison of the event rate in the time period following

treatment in the presence and absence of treatment.

Note that the outcome chosen in the application was days hospitalized instead

of hospital admissions. Analyses of hospital admissions often ignore the fact that

patients are not at risk for hospitalization during the period in which they are in the

hospital. This can be accounted for by removing the duration of hospitalization from

the risk set, however, this step is often ignored. Modeling days hospitalized instead

of hospital admissions automatically removes this potential for error, however, in

some situations, hospital admissions may be a more relevant outcome.

As mentioned previously, it follows from the dependence of treatment initiation

on the event history that censoring of matched controls due to treatment would

constitute dependent censoring. We have shown that when the treatment is rare,

bias is not substantial, and therefore IPCW to correct for dependent censoring is not
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necessary. However, for more common treatments, bias will be induced and therefore

some sort of weighting must be done to preserve the unbiased properties of β?.

It should also be noted that while the sandwich estimator performed well in the

setting of rare treatment, issues related to the limiting value of Z?(u; s) may affect

variance estimates. In particular, the condition that Z?(u; s) converges to a constant

z?(u; s) is difficult to justify in this setting because the component of Z?
i (s) corre-

sponding to treatment will always equal 1 within stratum j due to the continuous

time scale, and as n→∞ this will not change. The performance of the asymptotic

variance estimator in this setting does not imply equivalent performance in more

complex settings, such as those described in subsequent chapters. One potential

solution to this issue is to use a discrete time scale, as is often done in practice. If

patients receive treatment within a given unit of discrete time (e.g. day, week) and

match on prognostic score, the group of treated patients could then be matched to

appropriate controls. In this setting, as n→∞, a limiting value of Z?(u; s), z?(u; s),

is a more defensible assumption. In finite samples, however, where increasing the

number of treated patients per stratum is not feasible, and the data structure is

more complex than that described in this chapter, this problem may persist. Poten-

tial solutions to this issue, including additional variance estimation procedures, are

described in Chapters III and IV.

The proposed method makes use of the prognostic score in order to match as

yet untreated patients into strata. Another viable alternative would be propensity

matching (Rosenbaum and Rubin, 1983), i.e., matching on the probability of receiv-

ing treatment. A time-dependent propensity score has been proposed by Lu (2005),

and could be used in this setting. Our goal, however, was to create a comparison

group that mirrored the treatment-free experience of a subject treated at time s. It
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was therefore necessary to ensure that the event trajectories up until s were the same

between treated and control subjects, a property that the propensity score does not

preserve. Some combination of prognostic and propensity scores could also be used.

One limitation of the proposed method is that it does not account for terminating

events that halt all further occurrences of the recurrent event. The terminal event

is often correlated with the recurrent event, and when treated as a censoring mech-

anism, can result in dependent censoring. Numerous methods for the simultaneous

modeling of recurrent and terminal events are currently available. Marginal models

of recurrent events while subjects are alive have been described by Cook and Lawless

(1997) and Ghosh and Lin (2000). Joint modeling methods where the recurrent and

terminal event processes are linked through a subject-level random effect have been

proposed by Liu et al. (2004), Ye et al. (2007), Kalbfleisch et al. (2013), and others.

Development of these methods in the setting described above is explored in Chapter

IV.



CHAPTER III

Time-dependent prognostic score matching for recurrent
event analysis with a common multi-state treatment

3.1 Introduction

Events that can occur repeatedly for the same subject are often of interest in

clinical settings. Examples include repeated hospitalizations, post-surgery compli-

cations, viral infections, or myocardial infarctions. Many methods for modeling

recurrent events have been described in the literature, including conditional models

(e.g., Andersen and Gill, 1982; Pepe and Cai, 1993) and marginal approaches (Law-

less and Nadeau, 1995; Lin et al., 2000; Pena, Strawderman and Hollander, 2001). A

comprehensive survey of methodology for recurrent events is provided by Cook and

Lawless (2007).

It may be of interest to study recurrent events as a basis for evaluating a treatment,

and a limited number of methods are available for this purpose (e.g., Cook et al.,

2009; Schaubel and Zhang, 2010). For chronic conditions, it is often the case that

treatment begins some time after the start of follow-up, such that treatment is time-

dependent. Although methods exist for analyzing recurrent events in the presence

of time-varying covariates (Chen et al., 2013), such methods were not designed for

evaluating treatments. Most recurrent event methods assume that time-dependent

elements are external (Kalbfleisch and Prentice, 2002), which essentially rules out

29
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their application to evaluate time-dependent treatments that are not randomized.

In the setting we consider in this report, treatment is time-dependent, in that

subjects typically begin follow-up untreated, with some going on to receive treat-

ment. Two forms of treatment are available, a new ‘experimental’ treatment and

the standard treatment. The conventional course for a subject is to start follow-up

untreated, then possibly receive the standard treatment. Our objective is to com-

pare the recurrent event rate for subjects receiving the experimental treatment to

that which they would have experienced under conventional therapy (which would

be a combination of ‘untreated’ and ‘standard treatment’). In Figure 3.1, we de-

pict the recurrent event experience of the same subject i under two scenarios. For

the top time line, subject i receives the experimental treatment at follow-up time

s; after time s, the event course changes in relation to what it would have been on

conventional therapy. The bottom time line pertains to the same subject, but under

a scenario where experimental treatment does not exist. The comparison of interest

is the ratio of the recurrent event rates t time units following time s. Note that

the comparison of interest begins at the time of experimental treatment initiation, s,

since the experimental treatment would clearly have no effect on subject i during the

[0, s) time interval. Ideally, we would like to compare each experimentally treated

patient with their ‘ghost’, who remains on the conventional course; naturally, we

never observe the latter if we observe the former.

Additional features of the data structure we consider are as follows. There are lon-

gitudinal measures available on each subject; i.e., time-dependent covariates. More-

over, the event history itself (e.g., up to the time of treatment) naturally provides

information on the anticipated event rate (e.g., post-treatment). Treatment is not

randomized, and generally depends on the time-varying covariates and the observed
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Figure 3.1: Recurrent event process for subject i under in the presence and absence of experimental
treatment.

recurrent event experience. Finally, the experimental treatment effect may not be

homogeneous and could be modified by the time-dependent entities.

The above-described data structure arises in the study of hospitalization rates

after living donor liver transplantion (LDLT). The standard treatment for end-stage

liver disease (ESLD) is deceased donor liver transplantation (DDLT). However, LDLT

is a relatively new treatment option for ESLD that involves using a partial graft from

a living donor in place of the traditional whole graft from a deceased donor. Our

goal is to compare hospitalization rates for a patient who receives an LDLT relative

to what that patient’s hospitalization rate would have been had they remained on

the waiting list and potentially received a DDLT.

Note that a traditional analysis (e.g., proportional rates model) featuring a time-

dependent experimental treatment indicator 0/1 would generally produce a biased

estimate of the contrast of interest (described in the preceding paragraph). This is

largely due to the comparison groups having not been constructed appropriately (i.e.,

in a manner which respects the timing of the treatment assignments across subjects).
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We illustrate this phenomenon in Section 3.4 through the data set which motivated

our work.

Since it is not possible to observe the treatment-free event process for subjects

that undergo treatment, a potential alternative is to compare those who receive

a certain time-dependent treatment at time s to other similar subjects who were

eligible to receive the treatment at time s but do not. The averaged event rates

after s of matched subjects are then compared to the post-treatment event rate of

the index subject. Methodology for this type of analysis currently exists for the

univariate survival setting (Schaubel et al., 2009). In the current report, we extend

this method to the recurrent event setting.

There are several key differences in the methods we propose in this report and

those of Schaubel et al. (2009). First, the outcome is a recurrent event and, hence,

more complex than a survival time. Second, we use a two-stage modeling approach.

The first stage features a conditional rate model intended, not for interpretation, but

to track each patient’s recurrent event history and projected prognosis. The linear

predictor from the Stage 1 model is used at Stage 2 to caliper-match each patient

receiving the experimental treatment to yet-untreated patients as opposed to the

hard matching and covariate adjustment used by Schaubel et al. (2009). The final

model for the recurrent event rate then consists only of the treatment effect and

a distance measure which accounts for any small differences in the pre-treatment

event trajectories between the experimental patient and the matched controls. The

matching we propose in this report aims to create counterfactual ‘ghosts’ to recover

the conventional therapy experience of the experimentally treated patients.

The remainder of this report is organized as follows. In Section 3.2, we introduce

the notation and describe the proposed methods, including parameter estimation
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and inference. A simulation study is presented in Section 3.3. In Section 3.4, the

proposed methods are applied to data from the Adult-to-Adult Living Donor Liver

Transplantation Cohort Study (A2ALL) to estimate the impact of LDLT on hospital

admission rates relative to conventional therapy (remaining on the wait list and

potentially receiving a DDLT). Some concluding remarks are offered in Section 3.5,

including areas of future work and work currently in progress.

3.2 Methods

3.2.1 Notation and Data Set-up

In the development that follows, i represents subject (i = 1, . . . , n). The time-

dependent covariate for subject i is denoted Z∗i (t). Subjects are generally untreated

at time 0, with treatment time given by Ti = TEi ∧ T Si , where TEi represents the

time of ‘experimental’ treatment initiation, T Si denotes time of ‘standard’ treatment

initiation and a ∧ b = min (a, b). Note that at most one of TEi and T Si occurs.

Treatment (be it experimental or standard) is assumed to be non-reversible, in the

sense that patients are considered ‘treated’ from the time of treatment initiation

forward. The true number of events for subject i in [0, t] is defined as N∗i (t) =∫ t
0
dN∗i (u). Event and treatment times are subject to independent right censoring by

Ci. The number of observed events is given by Ni(t) =
∫ t
0
I(Ci > u) dN∗i (u). Note

that right censoring is administrative in this setting.

To fix ideas, we make the distinction between ‘treatment’ and ‘therapy’. In par-

ticular:

• There are two forms of treatment: standard and experimental

• Conventional therapy involves the treatment course that all patients would need

to follow if the experimental version of the treatment did not exist. Under
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conventional therapy, patients begin follow-up untreated, with some going on to

receive the standard treatment.

Our definition of therapy as being a sequence of treatments is not standard, but

allows for convenient labeling. While untreated, a patient is actually following con-

ventional therapy, with experimental treatment being initiated at time TEi . An un-

treated patient who later receives standard treatment is also following conventional

therapy.

We define several event counting processes. The number of pre-treatment events

in (0, t] is given by

N0
i (t) =

∫ t

0

I(Ti > u) dN∗i (u).

Consider patient i at follow-up time s under two scenarios. In the first scenario,

patient i receives the experimental treatment at time s; i.e., TEi = s. The pertinent

post-experimental treatment event counter is defined as

N?
i (t; s) = I(TEi = s)

∫ s+t

s

dN∗i (u).(3.1)

Note that it will be our convention that N(t; s) refers to the interval of length t, but

starting at time s; a single time index, as in the previously-defined N0
i (t), pertains to

the (0, t] time interval. Correspondingly, we define an event counter representing the

events that would have been experienced in the absence of experimental treatment,

also beginning at time s,

NCT
i (t; s) = I(Ti ≥ s)

∫ s+t

s

I(TEi > u)dN∗i (u),(3.2)

where the superscript CT denotes ‘conventional therapy’. Parallelling N?
i (t; s), the

counter NCT
i (t; s) tracks the patient on (s, s + t]. To emphasize the correspondence

between (3.1) and (3.2), consider a subject eligible to receive the experimental treat-

ment at time s, such that I(Ti ≥ s); note that I(Ti ≥ s) = I(TEi = s) ∪ (TEi >
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s, T Si > s). Under the setting where TEi = s, the counting process (3.1) takes effect;

had the experimental therapy not been an option, process (3.2) takes effect. An

important point is that the patient is untreated on (0, s) under either scenario to

which (3.1) and (3.2) pertain.

Finally, we define a 0/1 process for being observed to receive the experimental

treatment,

NE
i (t) =

∫ t

0

I(Ci > u)dI(TEi ≤ u).(3.3)

As shown in Section 2.2, NE
i (t) is used to fit a model needed for inverse weighting.

3.2.2 Proposed Models and Estimation Methods

As described above, the goal of this method is to compare the post-experimental

treatment recurrent event mean to the corresponding event mean under conventional

therapy (CT). For a subject with TEi = s, the comparison would be on (s, s+ t] for

t > 0, such that the pertinent counting processes are given in (3.1) and (3.2). We

denote the mean of (3.1) by

µ?i (t; s) = E

[∫ t

0

N?
i (du; s)|TEi = s,H i(s)

]
,(3.4)

where H i(s) = {Z∗i (u), Ni(u), I(Ti > u), I(Ci > u); 0 ≤ u < s} represents the

observed pre-treatment history for subject i on [0, s). As we describe shortly, we

avoid explicitly modeling (3.4). Note that (3.4) represents a partly conditional model

(Pepe and Couper, 1997; Zheng and Heagerty, 2005; Gong and Schaubel, 2013) since

it conditions on the history only up to time s, not s+ t. We make this choice for the

sake of interpretation, but it is not without consequences with respect to parameter

estimation, as detailed shortly. This idea of conditioning on only part of the history

is connected to landmark analysis (van Houwelingen, 2007; van Houwelingen and

Putter, 2008; 2012).
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Having defined the post-experimental recurrent event mean in (3.4), the corre-

sponding quantity (in the absence of experimental treatment) is given by

µCTi (t; s) = E

[∫ t

0

NCT
i (du; s)|H i(s), Ti > s, TEi > u

]
,(3.5)

which, like (3.4), we avoid modeling directly. The model of chief interest is then

given by

µ?i (t; s) = µCTi (t; s) exp{β?},(3.6)

which can equivalently be expressed in terms of a rate function by

µ?i (dt; s) = µCTi (dt; s) exp{β?}.(3.7)

In this model µCTi (t; s), the experimental treatment-free mean number of events is

scaled up or down by exp{β?} if subject i received the experimental treatment at

time s. The mean number of post-experimental treatment events is then compared

to the mean number of experimental treatment-free events after time s.

More general versions of model (3.7) are possible, including

µ?i (dt; s) = µCTi (dt; s) exp{β?(t; s)},(3.8)

where β?(t; s) is a parametric function of both time of experimental treatment initi-

ation (given by s) and time since TEi = s, given by t. Model (3.8) is more flexible, in

the sense that the effect of receiving the experimental treatment, on the event rate,

can depend on the time until and time since treatment was received.

In reality, once a subject receives the experimental treatment, we can no longer

observe the subject’s experience receiving conventional therapy. Therefore, a patient

experimentally treated at time s will be compared to similar patients who did not

initiate experimental treatment at follow-up time s but were eligible to do so. Similar
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to Schaubel et al. (2009), we use the concept that each experimental treatment

time initiates an “experiment”, in which the recipient of the experimental treatment

is compared to ‘similar’ treatment-eligible candidates. Note that ‘similar’, in this

context, refers to current status (i.e., at time s) and history on [0, s). Eligibility for

the comparison is defined as

ei(s) = I(TEi = s) + I(Ti > s),

i.e., at time s, patient i either received the experimental treatment or remained

untreated.

Our method of estimating β? from (3.7) involves a stratified analysis, as will be

formalized shortly. Each experimental treatment patient generates a stratum, which

will include the index patient as well as similar treatment-eligible patients. The

most relevant definition of similar, here, is with respect to treatment-eligibility at s,

denoted by ei(s), and accumulated covariate and recurrent event history on (0, s],

represented byH i(s). In order to quantify each subject’s history, we use a prognostic

score (Hansen, 2008) based on the pre-treatment event rate, modeled using a time-

dependent proportional rates model,

dµ0
i (t) = E [dN∗i (t)|H i(t), Ti > t] = exp{αT0Zi(t)}dµ0(t),(3.9)

where the covariate Zi(t) is chosen to capture the pertinent components of the his-

tory, E[dN∗i (t)|H i(t), Ti > t] = E[dN∗i (t)|Zi(t), Ti > t]. Model (3.9) resembles the

Lin et al. (2000) model, but is more accurately interpreted as an Andersen-Gill

(1982) model, due to the explicit dependence on the prior event history, a property

avoided by Lin et al. (2000). The regression parameter α0 from (3.9) can be com-

puted by solving the unweighted Cox (1972) score equation. Due to the dependence

on internal covariates (Kalbfleisch and Prentice, 2002), elements of α0 are difficult
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to interpret. This is not a problem, in our case, since we do not care to interpret,

let alone carry out inference on α0. Note that we focus on untreated experience

since, at any time s, the patient generating the stratum (by initiating the experi-

mental treatment) and the potential matches are all necessarily untreated with either

experimental or standard treatment on [0, s).

The purpose of the prognostic score is to match patients that have similar pre-

treatment event rates, the rationale being that previous event rate is the most im-

portant predictor of the current event rate. Unlike a propensity score, which uses the

treatment event rate to match subjects with similar probabilities of being treated,

the prognostic score aims to compare the effect of treatment on the event rate among

subjects that were on the same trajectory with respect to their pre-treatment event

rate. The use of prognostic scores in conjunction with, or as a alternative to, propen-

sity scores has been considered in several reports (e.g., Rubin and Thomas, 2000;

Stuart, Lee and Leacy, 2013; Leacy and Stuart, 2014; Li, Schaubel, and He, 2014)

and will be addressed further in Section 5. Once the prognostic scores have been

estimated, caliper matching is used to assign untreated control subjects to a subject

receiving the experimental treatment at time s. Caliper matching requires that the

prognostic scores of matched subjects be within a certain radius of the prognostic

score of the index subject. Appropriate selection of the caliper involves balancing

the need for homogeneity within-stratum with the need to have an adequate number

of matches for each index subject. We propose that prior to data analysis the caliper

size be chosen such that the median number of matches is between 10 and 20. It is

important to verify that some level of balance in the event rate at time s is achieved

with the chosen caliper. Methods for checking balance in propensity matching have

been discussed by Hansen (2008) and Harder, Stuart, and Anthony (2010). This will
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be explored further in the application to living donor liver transplant described in

Section 4. The discrepancy between prognostic scores for experimental subject j and

control subject i can be quantified through the subject-pair specific rate ratio,

ψi,j(s) =
dµ0

i (s)

dµ0
j(s)

= exp{αT0 [Zi(s)−Zj(s)]}.

Subject i is considered to have a path on [0, s) sufficiently similar to subject j if

| logψij(s)| ≤ ε, where ε > 0 is a pre-determined constant.

Combining the eligibility indicators and prognostic scores, patient i is included in

the stratum generated by patient j if mij(s) = 1, where

mij(s) = ei(s)I(Ti > s)ej(s)I(TEj = s)I(| log ψ̂ij(s)| ≤ ε),

with ψ̂ij(s) = exp{α̂T0 [Zi(s)−Zj(s)]}. In order to account for the residual difference

between patients i and j, we propose to adjust for log ψ̂ij(s) in the final model.

Incorporating the eligibility indicator and the prognostic score distance, the final

fitted model for the event mean for stratum j is then

µ?ij(t; s) = mij(s)µ
CT
i (t; s) exp{β?I(TEi = s) + βψ log ψ̂ij(s)}.(3.10)

To clarify the representation in model (3.10), j is the stratum (generated by patient

j through TEj = s) and i is the patient within stratum. The model governs the

experimental patient through the indicator I(TEi = s), which equals 1 if i = j. The

vector of parameters to be estimated and the corresponding covariates are given by

β?ψ =

 β?

βψ

 Z?
i (s) =

 I(TEi = s)

log ψ̂ij(s)

 ,(3.11)

such that model (3.10) can be re-written as µ?i (t; s) = mij(s)µ
CT
i (t; s) exp{βT?ψZ?

i (s)}.

Subjects that are matched to the experimental subject enter the experiment with-

out receiving any treatment, but could subsequently receive either the experimental
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treatment or standard treatment. If a patient receives the standard treatment after

time s, follow-up in the experiment continues since the goal is to compare experi-

mental treatment to conventional therapy (i.e., beginning untreated and potentially

later receiving standard treatment). However, if a matched subject receives the ex-

perimental treatment after time s they are censored from all experiments in which

they serve as controls and begin their own experiment as the index subject. This

generally results in dependent censoring since, although dI(TEi ≤ s+ t) can be con-

sidered random given H i(s + t), the model for µ?ij(t; s) from (3.10) only conditions

on H i(s), the pre-treatment history up to time s. Since {H i(s + t); t > 0} can

affect dI(TEi ≤ s + t) and, by definition, affects Ni(t; s), the censoring of matched

controls via experimental treatment initiation constitutes dependent censoring.

We apply a variant of Inverse Probability of Censoring Weighting (IPCW; Robins

and Rotnitzky, 1992; Miloslavsky et al., 2004) to account for this dependent censoring

by modeling the censoring mechanism (experimental treatment) using the following

model,

λEi (t) = λE0 (t) exp[βTEZi(t)],

fitted through standard partial likelihood (Cox, 1975).

3.2.3 Parameter Estimation

We now describe the estimation of the parameter of interest, β?, through the

estimation of β?ψ. To begin, we define the pertinent risk set indicator for stratum j,

Yij(t; s) = mij(s)I(Ci > s+ t){I(TEi = s) + I(TEi > s+ t)}.

For now, suppose that, subsequent to being matched to an index experimental treat-

ment patient j at time s, matched controls were randomly selected to receive exper-
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imental treatment given H i(s). In this restrictive case, the following process,

mij(s)

∫ s+t

s

Yij(u; s){Ni(du; s)− µi(du; s)}(3.12)

would have mean zero.

As mentioned above, we will use IPCW to account for censoring of matched

patients who receive the experimental treatment in each experiment. IPCW involves

weighting using the inverse probability of being censored or, in this case, receiving

the experimental treatment. Since the experiment begins at time s, the weight only

accounts for the probability of receiving the experimental treatment during [s, s+ t).

Correspondingly, we define the quantity

Gi(t; s) =
Gi(s+ t)

Gi(s)
= exp

{
−
∫ s+t

s

λEi (u) du

}
,

where

Gi(t) = exp

{
−
∫ t

0

λEi (u) du

}
.

The weight function can then be defined as

Wij(t; s) = Yij(t; s)Gi(t; s)
−I(TE

i >s),

such that the index experimental treatment patient is appropriately self-weighting;

censoring after TEi can only occur independently via Ci.

Applying the weight function to (3.12) produces the zero-mean process,

mij(s)

∫ τ−s

0

Wij(u; s)Mij(du; s),(3.13)

where we define Mij(du; s) = Yij(u; s){Ni(du; s)−µij(du; s)}, with τ chosen to satisfy

P (Ci ≥ τ) > 0 and often set to max{C1, . . . , Cn}. Aggregating across subjects for

the experiment occurring at time s produces the set of zero mean processes,

∑n
i=1mij(s)

∫ t
0
Wij(u; s)Mij(du; s)(3.14)



42

and

∑n
i=1mij(s)

∫ t
0
Z?
i (s)Wij(u; s)Mij(du; s).(3.15)

We reorganize this system to solve implicitly for the baseline mean, µCT0 (u; s) in

(3.14), then substitute into (3.15). Then, aggregating across all experiments yields

the final estimating function for β?ψ,

U(β) =
n∑
j=1

n∑
i=1

∫ τ

0

mij(s)

∫ τ−s

0

{Z?
i (s)−Z?(u; s)}Ŵij(u; s)Ni(du; s)dNE

j (s),

(3.16)

where Ŵij(t; s) = Yij(t; s) exp{[Λ̂E
i (s+ t)− Λ̂E

i (s)]I(TEi > s)}, and with

Z?(u; s) =

∑n
`=1m`j(s)Ŵ`(u; s)Z?

`(s) exp{βT?ψZ?
`(s)}∑n

`=1m`j(s)Ŵ`(u; s) exp{βT?ψZ?
`(s)}

.

Since U(β) from (3.16) behaves asymptotically like a zero-mean estimating function,

the solution to U(β) = 0, denoted by β̂?ψ , should yield a consistent estimator of

β?ψ.

3.2.4 Variance Estimation, Asymptotic Properties, and Inference

Due to the complex nature of the data structure in this setting we investigated the

use of both the robust sandwich estimator and the bootstrap estimator for variance

estimation and propose the use of the bootstrap estimator (Efron, 1979). In moder-

ate sized samples approximately 100 bootstrap samples should be used. If the normal

approximation is reasonable, 100 bootstrap samples should be adequate for hypoth-

esis testing and interval estimation. If the normal approximation is in question, then

upwards of 10,000 may be necessary to estimate the 2.5th and 97.5th percentiles of

the distribution for hypothesis testing. A straightforward pre-test method for de-

termining the number of necessary bootstrap samples is described by Davidson and

MacKinnon (2000).
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3.3 Simulation Study

Simulation studies were conducted to assess the performance of the method de-

scribed above. For each subject who received the experimental treatment, the sub-

sequent (counterfactual) experience (i.e., in the absence of experimental treatment

receipt) was also generated. This counterfactual experience was not used in the mod-

eling, but was used to determine target values of β?, which are difficult to pre-specify.

First, for each subject i, a frailty variate was generated from a Gamma (1, 0.5) dis-

tribution, bounded at 2, the 90th percentile. Next, two independent Bernoulli (0.5)

variates, Zi1 and Zi2 were created. Pre-treatment recurrent event experience was

then generated though a frailty model with rate parameter γidµ0 exp{α1Zi1+α2Zi2}.

The time of standard treatment receipt, T Si , was then generated to follow the haz-

ard λS0 exp{βS1Zi1 + βS2Zi2 + βS3 log(Ni(t
−) + 1)}. The recurrent event times post-

standard treatment were generated from rate parameter γidµ
S
0 exp{δ1Zi1 + δ2Zi2}.

Thus, as mentioned in the first paragraph of this subsection, we initially gener-

ated the conventional therapy (pre-treatment plus post-standard treatment) recur-

rent event experience for all subjects. We then generated TEi from hazard function,

λE0 exp{βE1Zi1 + βE2Zi2 + βE3 log(Ni(t
−) + 1)}. The experimental treatment was

only considered to actually be received if TEi < T Si and, in such cases, the post-

experimental recurrent event experience then followed rate model γidµ
E
0 exp{φ1Zi1 +

φ2Zi2}.

For each data set generated, we modeled the hazard for TEi using the model,

λEi (t) = λE0 (t) exp{βE1Zi1 + βE2Zi2 + βE3 log(Ni(t
−) + 1)}, in order to obtain the

estimated weights for IPCW. We then modeled the pre-treatment event rate using the

model dµ0
i (t) = exp{α1Zi1 + α2Zi2 + α3N

0
i (t−)}dµ0

0(t), in order to obtain prognostic
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scores. Subjects were matched if | log ψ̂ij| ≤ 0.1, resulting in approximately 8 matches

per stratum.

Parameters used in the simulation studies are as follows. For the pre-treatment

event rate, we set dµ0 = 5, α1 = −0.3, and α2 = 0.7. For the post-standard

treatment event rate, dµS0 = 1, δ1 = −0.6, and δ2 = 0.2. For the experimental

treatment hazard, λE0 = 0.5, βE1 = −0.7, βE2 = −0.5, and βE3 = 0.3. For the

standard treatment hazard, λS0 = 0.5, βS1 = −0.8, βS2 = −0.7, and βS3 = 0.1.

Finally, for the post-experimental treatment rate, dµE0 was given values of 1, 1.5,

2.5, and 3, φ1 = −0.7, and φ2 = 0.7. This resulted in values of β? of -0.901, -0.457,

0.082, and 0.261. In the simulated data 63% of the sample received experimental

treatment, 36% received standard treatment, and 1% received no treatment. The

mean number of events was 9.46 (sd = 0.72) in the no treatment state, 18.92 (sd =

1.49) in the post-conventional treatment state, and ranged from 16.41 to 24.96 in the

post-experimental treatment state. These numbers describe the simulated data but

are not directly related to the different treatment effects tested, due to the timing of

experimental treatment. A total of n = 200 subjects were simulated 250 times, with

50 bootstrap samples used for variance estimation.

The results are shown in Table 3.1 for the estimate of the parameter for the

experimental treatment effect. Direct matching and prognostic matching gave similar

bias (range 0.022-0.029 and 0.015-0.030, respectively). However, prognostic score

matching resulted in empirical standard errors that were 9-10% lower. Adjusting for

logψij further reduces bias in the estimate of the experimental treatment effect (range

0.004-0.017 across the 4 scenarios). Figure 3.2 shows histograms of the parameter

estimates centered on their target value with normal density curves. All estimates

appear to follow a normal density centered at zero, supporting the theory that β̂? is
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Table 3.1: Results of simulation study using proposed method to estimate the effect of a time-
dependent treatment on the recurrent event rate using IPCW

Scenario β? Matching Bias ESE ASE CP

1 -0.901 Prognostic 0.030 0.130 0.158 0.980

2 -0.457 0.029 0.127 0.151 0.972

3 0.082 0.024 0.121 0.142 0.972

4 0.261 0.015 0.119 0.140 0.976

1 -0.901 Prognostic 0.017 0.129 0.158 0.976

2 -0.457 w/adjustment 0.017 0.125 0.153 0.980

3 0.082 0.012 0.120 0.144 0.984

4 0.261 0.004 0.118 0.141 0.976

1 -0.901 # of Events 0.022 0.142 0.188 0.988

2 -0.457 with Covariate 0.027 0.140 0.181 0.976

3 0.082 Adjustment 0.029 0.135 0.172 0.976

4 0.261 0.024 0.133 0.170 0.980

ESE=empirical standard error; ASE=asymptotic standard error;
CP=coverage probability

asymptotically normal with mean β?.

3.4 Application to Living Donor Liver Transplant

The Adult-to-Adult Living Donor Liver Transplantation Cohort Study (A2ALL)

is a multi-center NIH-sponsored study investigating the post-transplant morbidity

and mortality of LDLT recipients and their donors. Potential living donor trans-

plant recipients who had a donor evaluated between January 1, 1998 and August 31,

2009 were recruited at each of the 9 A2ALL centers beginning in the third quarter of

2004 and followed through August 31, 2010. These potential recipients may have ul-

timately received an LDLT, a DDLT, or neither. Clinical data, including laboratory
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Figure 3.2: Histogram of parameter estimates from proposed method to estimate the effect of a
time-dependent treatment on the recurrent event rate using IPCW with normal density

information, hospitalizations, and complications were collected based on a common

protocol, and supplemented with data from the Scientific Registry of Transplant

Recipients (SRTR). The SRTR data system includes data on all donors, wait-listed

candidates, and transplant recipients in the United States; these data are submitted

by the members of OPTN and have been described elsewhere. The Health Resources

and Services Administration (US Department of Health and Human Services) pro-

vides oversight for the activities of the OPTN and SRTR contractors. Data col-

lection for pre- and post-transplant hospitalizations included date of admission and

discharge, reason for hospitalization, and discharge diagnosis. Subjects could enroll

either before or after transplant, and information prior to enrollment was collected

via chart review.

LDLT is a technically complicated surgery. Since we essentially wish to eval-
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uate whether LDLT results in a higher post-transplant hospitalization rate than

conventional therapy, our objective is consistent with a non-inferiority test. The

comparison of interest is between LDLT recipients and their counterparts who re-

main on the waiting list and potentially receive a DDLT. The time origin was date

of first donor evaluation. This analysis includes 1467 liver transplant candidates, of

which 714 went on to receive an LDLT, 455 received a DDLT, and 298 remained

untransplanted.

The pre-treatment model for the event rate was adjusted for age, race, recipient

diagnosis, Model for End Stage Liver Disease (MELD), event history (previous num-

ber of hospital admissions), and the following characteristics measured at the time

of donor evaluation: hospitalization status, ascites, mechanical ventilation, dialysis

status, and transplant center. Subjects with | logψij(s)| ≤ 0.025 who were untrans-

planted at the time of LDLT were matched. This resulted in a median of 20 matches

(range 1-71, IQR 11-34). Of the 714 LDLTs, 692 (97%) were matched to at least one

“control” subject. The mean log ψ̂ij(s) was 0.000033 (SD = 0.014), indicating that

the index patients and their matched counterparts were very similar at the time of

matching, with respect to prognosis.

Both traditional time-dependent models and models using the proposed method

were fitted. The time-dependent model was adjusted for age, ethnicity, diagno-

sis, MELD, transplant center, diabetes and ascites at the time of donor evaluation,

and event history defined as above. In the model using the proposed method 100

bootstrap samples were generated to estimate the variance of parameter estimates.

Table 3.2 shows the results of two models, one using only a main effect for LDLT

and another using an interaction between LDLT and MELD score, each fit for both

methods mentioned above (a total of four models). In the time-dependent version
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Table 3.2: A2ALL results: Effect of LDLT on hospital admission rate

Proposed Model Time-dependent Model

Model Rate Ratio 95% CI p-value Rate Ratio p-value

1 LDLT 0.986 0.857-1.134 0.8425 1.217 <0.0001

2 LDLT MELD 6-11 1.152 0.849-1.562 0.3628 1.606 <0.0001

LDLT MELD 12-15 0.962 0.752-1.230 0.7589 1.351 <0.0001

LDLT MELD 16-19 0.915 0.696-1.202 0.5226 1.009 0.8906

LDLT MELD 20-29 0.918 0.702-1.202 0.5344 1.040 0.5483

LDLT MELD 30-40 1.150 0.136-9.702 0.8978 1.143 0.3148

CI=confidence interval

of Model 1, LDLT recipients have a significantly higher rate of hospitalizations com-

pared to the combination of waiting list patients and DDLT recipients (rate ratio

[RR] = 1.22, p <0.0001), consistent with Merion et al, 2010. However, using the pro-

posed methods, there is no difference in hospitalization rates between subjects who

receive LDLT and those receiving conventional therapy (RR = 0.986, p = 0.8245).

We also fit models with interactions between LDLT and MELD (Model 2). In the

time-dependent model lower MELD subjects receiving LDLT had significantly higher

hospitalization rates, with a rate ratio of 1.606 for subjects with MELD 6-11 and

1.351 for subjects with MELD 12-15 (p <0.0001 in both cases). Subjects receiving

LDLT in higher MELD categories did not have significantly different hospitaliza-

tion rates relative to subjects waiting for DDLT. Similar to the main effect model,

the higher hospitalization rates in low MELD subjects receiving LDLT are not seen

when the proposed method is used. Rate ratios range from 0.915-1.152 with p-values

ranging from 0.3628-0.8978.

One potential reason for the differing results between the two methods is that in
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the proposed model patients are matched on pre-transplant event rate on the day of

the index transplant, so the method compares the LDLT patient to patients with a

similar pre-transplant event history. By contrast, in the traditional time-dependent

analysis, pre- and post-transplant event rates are averaged over in both the LDLT

and non-LDLT groups; patients in the comparison group may have differing event

rates at the time a given subject receives an LDLT. To explore this further we

investigated interactions with time and LDLT using the proposed method to explore

potential differences in the rate ratios over time. Figure 3.3 shows that there is

a sharp increase in the hospitalization rate immediately after LDLT. However, the

RR declines quickly, to the point where it is significantly below 1 for a period, then

continues to rise for the remainder of follow-up. The estimated RR actually rises

above 1 (although non-significantly) towards the end of the follow-up period. The

pronounced and steady rise in the RR (after the drop to significantly below 1) is due

to the nature of the comparison groups. Specifically, as time progresses, a greater

percentage of subjects in the conventional therapy groups are DDLT (as opposed

to pre-transplant) patients. If the comparison were between experimental treatment

and pre-transplant, then it is highly likely that the RR may have stabilized.

3.5 Discussion

Despite the wide array of methods available for modeling recurrent event data,

there are relatively few such methods devoted specifically to estimating the effect of

treatment. A limited number of methods have been developed to accommodate time-

dependent covariates and informative censoring (e.g., Huang, Qin and Wang, 2010;

Zhao et al, 2012). However, such methods apply under different data structures and

assumptions. Our goal in this report was to develop methods to estimate treatment
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Figure 3.3: Time-dependent rate ratio (RR) for LDLT and 95% confidence intervals

effects in a fairly complex setting: treatment is time-dependent, different forms of

treatment are available, and the event rate in the absence of the treatment of interest

is dependently censored.

One key aspect to this type of analysis is appropriate matching of control sub-

jects to experimental subjects. In the method proposed prognostic scores were used

to match index patients to control patients within a certain radius. It should be

noted that this is slightly different than the usual prognostic score setting because

all patients are observed in the untreated state for some period of time, not only

the control patients, and thus all patients contribute to the event rate model used

to generate the prognostic scores. An alternative would be to use k-nearest neigh-

bor matching. However, this method appears to be less appropriate for two reasons.

First, while some experimental patients may have many appropriate matches, requir-

ing a pre-specified number of matches per experimental patient could result in large
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heterogeneity in some strata. Second, Abadie and Imbens (2008) have demonstrated

that the bootstrap estimator is invalid in the setting of nearest neighbor matching.

It could also be argued that propensity matching would be an appropriate matching

method for this data structure. In that scenario the goal would be to simulate a

randomized trial by matching patients with similar probabilities of receiving exper-

imental treatment. A time-dependent propensity score similar to that proposed by

Lu (2005), may be appropriate.

A limitation to the method as described is that it does not take into account

terminal events such as death. Many methods for recurrent/terminal event data

have been proposed (e.g., Ghosh and Lin, 2002; Liu, Wolfe and Huang, 2004; Huang

and Wang, 2004; Ye, Kalbfleisch and Schaubel, 2007; Kim et al., 2012, Kalbfleisch

et al., 2013) and could be applied to the method described above. Extension of

the proposed methods to incorporate terminal events is described in the following

chapter.



CHAPTER IV

Estimating time-dependent treatment effects for correlated
recurrent and terminal events

4.1 Introduction

In most clinical settings a recurrent event process can be stopped by a terminal

event such as death. Events such as hospitalizations, infections, or myocardial infarc-

tions cease to occur once a patient dies. If the recurrent event process is independent

of the terminal event then parameter estimates measuring the effects of covariates

of interest on the recurrent event rate remain unbiased. The assumption of indepen-

dence is a strong one and is not often justifiable in practice. It is more often the case

that an increase in the recurrent event rate increases the probability of the terminal

event occurring, which means that methods which treat the terminating event as

independent censoring generally lead to biased estimation.

Under the framework we consider in this chapter, recurrent events are stopped,

not censored by, the terminal event. This is in contrast to some proposed methods

which view the recurrent event process as a latent process that continues, unobserved,

after the terminal event occurs. Methods using this framework have been proposed by

Ghosh and Lin (2003) and Miloslavsky (2004), and adapt methodology for dependent

censoring to this setting. If the terminal event is something other than death, such as

study termination for medical reasons, then this framework and associated estimation

52
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methods are applicable and have reasonable interpretation. However, if death is the

terminating event, the recurrent event rate while the patient is alive is often of more

clinical interest, therefore we will use the conditional framework for the remainder

of the chapter.

Under the assumption that the terminating event stops future occurrences of the

recurrent event, several methods for modeling recurrent events have been proposed.

Ghosh and Lin (2000, 2002), Strawderman (2000), and Schaubel and Zhang (2010)

proposed models of the mean number of recurrent events, i.e., averaging over the

terminal event and pre-terminal event experience. Another method models the re-

current event rate conditional on “surviving” free of the terminal event (Liu et al,

2004, Ye et al, 2007). Cook and Lawless (1997) proposed several mean and rate

functions for recurrent events, conditional on the terminating event time. A detailed

report of recurrent event analysis methods generally is available from the same au-

thors (Cook and Lawless, 2007).

A popular approach under this framework has been to condition on a subject-

specific random effect associated with both the recurrent event process and the ter-

minal event, such as methods proposed by Lancaster and Intrator (1998), Wang, et

al. (2001), and Huang and Wang (2004). These frailty models have become a com-

mon method of evaluating recurrent event rates in the presence of terminal events,

and methods that explicitly model the latent frailty have been proposed by Liu et

al. (2004), Ye et al. (2007), and others. Multiple estimation methods for these

frailty models have been proposed. Given that the latent frailty is unobserved, Liu

et al. (2004) and Huang and Liu (2007) proposed to use the missing data problem

approach and use Expectation-Maximization (EM). Other estimation proposals in-

clude penalized partial likelihood (Rondeau et al., 2007)), non-parametric maximum
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likelihood (Zeng and Lin, 2009), and estimating equations (Kalbfleisch et al., 2013).

Many of these methods can estimate parameters for time-varying covariates, and

methods for estimating time-varying coefficients have also been proposed by Yu et

al. (2014).

Current methods for evaluating treatment effects in the setting of correlated re-

current and terminal events are limited to baseline treatments (Chen and Cook,

2004, Pan and Schaubel, 2009, Schaubel and Zhang, 2010). As previously described,

estimating treatment effects through traditional time-dependent methods yields in-

appropriate interpretations. Therefore, we propose the use of sequential stratification

methods (Schaubel et al, 2009) to estimate the effect of treatment assigned during

follow-up on both recurrent and terminal events.

In this chapter the methods of Chapter III are extended to the setting in which

recurrent events are stopped by correlated terminating events. As in Chapter II there

is only one treatment. However, the treatment is no longer assumed to be relatively

rare. The objective is to estimate the treatment effect on both the recurrent event

rate and the terminal event hazard in a way that respects the timing of treatment

and yields an appropriate interpretation.

The remainder of the chapter proceeds as follows. In Section 4.2 the notation and

proposed models are introduced along with the parameter estimation and asymptotic

properties. Section 4.3 provides results from simulation studies, and Section 4.4

describes an application to the A2ALL study. Finally, some concluding remarks are

offered in Section 4.5.
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4.2 Methods

4.2.1 Notation

Let Di and Ci denote terminal event and censoring times, respectively, where i

represents subject (i = 1, . . . , n) with time-dependent covariate Zi(t), which does

not include any parametric form of the event history. The observed time is given by

Xi = Di ∧ Ci where a ∧ b = min(a, b). Censoring in this setting is administrative

and depends, at most, on Zi(t). The counting process notation for the terminal

event time is given by ND∗
i (t) =

∫ t
0
dND∗

i (u). The terminal event is observed if

Di < Ci, i.e., ND
i (t) =

∫ t
0
I(Ci > u) dND∗

i (u). Subjects begin follow-up untreated,

and after some time some subjects may be treated at time Ti. Some subjects will

experience the terminal event prior to treatment (Di < Ti), and some may never

experience treatment at all (Ti = ∞). We also define a subject-specific random

effect, γi ∼ N(0, θ), representing underlying processes that effects both the terminal

event hazard and recurrent event intensity.

We use counting process notation to set up the recurrent events as well. For

all subjects, the true number of recurrent events is given by N∗i (t) =
∫ t
0
dN∗i (u).

The number of observed events is given by Ni(t) =
∫ t
0
I(Ci > u) dN∗i (u), where

dN∗i (t) = I(Di > t) dN∗i (t), as censoring and the terminal event preclude further

recurrent events. In the following, it will be necessary to distinguish between pre-

and post-treatment recurrent and terminal events, therefore we will use

ND0
i (t) =

∫ t

0

I(Ti > u) dND∗
i (u)(4.1)

to represent the pre-treatment terminal event for subject i and

N0
i (t) =

∫ t

0

I(Ti > u) dN∗i (u)(4.2)
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to represent pre-treatment recurrent events for subject i. After receiving treatment

at Ti = s, the respective quantities are

ND1
i (t; s) = I(Ti = s)

∫ s+t

s

dND∗
i (u)(4.3)

and

N1
i (t; s) = I(Ti = s)

∫ s+t

s

dN∗i (u)(4.4)

for terminal and recurrent events, respectively. Note here that we employ the no-

tation ND1
i (t; s) and N1

i (t; s) to denote a time interval beginning at s with length

t. ND0
i (t) and N0

i (t) are similarly defined with s = 0. Since the event processes

ND1
i (t;Ti) and N1

i (t;Ti) can only begin at treatment initiation, information in [0, Ti)

is not useful for assessment of the impact of treatment on subject i.

Lastly, we define a counting process for receiving treatment, NT
i (t) =

∫ t
0
I(Xi >

u) dNT
i (u), which will be used for inverse weighting as described below.

4.2.2 Proposed Models

As previously noted, the comparison of interest is between the treatment and

treatment-free experience for a given subject. If this were observable in practice, the

quantities of interest would be given by the terminal event hazard

dΛ1
i (t; s) = E

[
dND1

i (t; s)|Zi(s), γi
]

(4.5)

and instantaneous rate function

dR1
i (t; s) = E

[
dN1

i (t; s)|Zi(s), γi
]
,(4.6)

where, as noted above, γi is a zero mean normal variate with variance θ and Zi(s) is

free of functions of the event history. The associated counterfactual (i.e., treatment
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free) experience can be defined as

dΛ0
i (t; s) = E

[
dND0

i (t; s)|Zi(s), γi
]

(4.7)

and

dR0
i (t; s) = E

[
dN1

i (t; s)|Zi(s), γi
]

(4.8)

for the hazard and rate functions, respectively. Note that we do not model these

quantities directly, but instead define

dΛ1
i (t; s) = dΛ0

i (t; s) exp{α?}(4.9)

and

dR1
i (t; s) = dR0

i (t; s) exp{β?}.(4.10)

Here, dΛ0
i (t; s) and R0

i (t; s) are scaled up or down by exp{α?} and exp{β?}, respec-

tively, as a result of treatment at time s.

If subject i is treated at time s we will never observe their treatment-free experi-

ence on [s, s + t), therefore we propose to use prognostic matching similar to those

described in Chapters II and III to generate a set of “similar” patients untreated at

time s. Unlike previous chapters, however, we now have both recurrent and terminal

events, and must account for each, as well as their correlation, in the prognostic

model. We propose to do so using frailty models similar to those proposed by Liu et

al (2004). In particular, we assume the following frailty models for the pre-treatment

hazard and intensity functions for terminal and recurrent events, respectively,

dΛ0
i (t) = dΛ0(t) exp{δT0Zi(t) + γi}(4.11)

and

dR0
i (t) = dR0(t) exp{ξT0Zi(t) + γi},(4.12)
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where we assume γi ∼ N(0, θ) as noted above. In order to make the method feasible

in larger datasets, we use a two-stage procedure to fit models (4.11) and (4.12) in

order to speed up computation time. In the first stage we estimate ξ̂ and (γ̂1, . . . , γ̂n)

using the recurrent event data only by fitting the following piecewise constant rate

model,

r0ik(t) = r00k exp{ξT0Zi(tk) + γi},(4.13)

where the baseline rate parameters, r001, . . . , r
0
0K , are intended to closely approximate

dR0 from (4.12) and Zi(tk) is the potentially time-dependent covariate (excluding

any functions of the event history) taking the value associated with the beginning

of the interval (tk, tk+1]. This is essentially a piecewise Poisson regression model,

fitted by restricted pseudo-likelihood methods. This type of linearization method

uses a first order Taylor series with expansion around estimates of the best linear

unbiased predictors (BLUPS) of the subject-specific random effects. At the second

stage, model (4.11) is fitted using a Cox proportional hazards model with the γ̂i from

the first stage as an offset.

Following the model fitting procedure described above, each subject will then

have two prognostic scores, one for their pre-treatment terminal event hazard and

one for their pre-treatment recurrent event intensity. Caliper matching will be used

to match treated patients to as-yet-untreated patients based on their pre-treatment

trajectories. The distance between the treated patient i and a matched patient j will

be calculated as

ψDi,j(s) =
λ0i (s)

λ0j(s)
= exp{δT0 [Zi(s)−Zj(s)] + γ̂i − γ̂j}

for the terminal event hazard and

ψRi,j(s) =
dR0

i (s)

dR0
j (s)

= exp{ξT0 [Zi(s)−Zj(s)] + γ̂i − γ̂j}
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for the recurrent event intensity.

As described in more detail below, while the prognostic model used a joint frailty

set up, the final models will estimate the treatment effect on the terminal event haz-

ard and the recurrent event intensity separately. As a result matching could proceed

in several ways. Successful matching could require that both | logψDij (s)| ≤ εD and

| logψRij(s)| ≤ εR for both models, where εD and εR are predetermined constants not

necessarily equal to each other. This would imply that the matched sets are the same

in both models. Alternatively, we could match separately for terminal and recurrent

event models, i.e. requiring | logψDij (s)| ≤ εD for the former and | logψRij(s)| ≤ εR for

the latter, resulting in potentially different matched sets for the two models. Some

combination of these two matching scenarios could also be applied, and different

combinations will be explored in simulation.

We can now create an indicator function that determines whether patient j is

matched to patient i, a subject treated at time s. If we use the first prognostic score

matching method described above which results in the same matched sets being used

for both models, then mij(s) = 1 indicates a successful match where

mij(s) = I(Tj = s)I(Ti > s)I(| logψDij (s)| ≤ εD)I(| logψRij(s)| ≤ εR).

If we want to match separately for each model, then for the terminal and recurrent

event models

mD
ij (s) = I(Tj = s)I(Ti > s)I(| logψDij (s)| ≤ εD) = 1

and

mR
ij(s) = I(Tj = s)I(Ti > s)I(| logψRij(s)| ≤ εR) = 1

would indicate successful matches in the respective models. As in Chapters II and III

we will again adjust for the appropriate distance measure in each model to account
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for residual differences between treated patients and matched controls. We also

adjust for the individual frailties estimated from the pre-treatment recurrent event

experience. Our final fitted models for the terminal event hazard and recurrent event

mean can then be written as

dΛ1
ij(t; s) = mD

ij (s)dΛ0
i (t; s) exp{α?I(Ti = s) + αψ logψDij (s) + αγ γ̂i}(4.14)

and

dR1
ij(t; s) = mR

ij(s) dR
0
i (t; s) exp{β? I(Ti = s) + βψ logψRij(s) + βγ γ̂i},(4.15)

with associated parameter and covariate vectors

α?ψγ =


α?

αψ

αγ

 Z?D
i (s) =


I(Ti = s)

log ψ̂Dij (s)

γ̂i

 ,

β?ψγ =


β?

βψ

βγ

 Z?R
i (s) =


I(Ti = s)

log ψ̂Rij(s)

γ̂i

 .

Models (4.14) and (4.15) can be expressed as dΛ1
ij(t; s) = mD

ij (s)dΛ0
i (t; s) exp{α′?ψγZ?D

i (s)}

and dR1
ij(t; s) = mR

ij(s) dR
0
i (t; s) exp{β′?ψγZ?R

i (s)}.

4.2.3 Parameter Estimation

In order to proceed with estimation of α? and β? we first define risk set indicators

for the two models. Let

Y D
ij (t; s) = mD

ij (s)I(Xj ∧ Ti > s+ t)

and

Y R
ij (t; s) = mR

ij(s)I(Xj ∧ Ti > s+ t)
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indicate whether patient j is included in the risk set for stratum i. Recall that both

mD
ij (s) and mR

ij(s) require that patient j be untreated at time s. In addition, if

patient j is treated at s + t, they are censored from the strata in which they serve

as a control and begin their own stratum as the treated patient. Since treatment

likely depends on the recurrent event process, terminal event hazard, and the latent

frailty, this constitutes dependent censoring. We propose to use a variant of Inverse

Probability of Censoring Weighting (IPCW, Robins and Rotnitzky, 1992, Robins and

Finkelstein, 2000) to correct this problem. We will weight control subjects by the

inverse probability of treatment over the period [s, s+ t) as follows. We first model

the probability of treatment using a traditional proportional hazards model fitted

through standard partial likelihood (Cox, 1975) as

λTi (t) = λT0 (t) exp{β′TZH
i (t)}.

Note that this model holds under the assumption that λTi (t|H i(t)) = λTi (t|ZH
i (t)),

where H i(t) = {Zi(u), ND0
i (u), N0

i (u), I(Ti > u), I(Xi > u); 0 ≤ u < t}, the ob-

served history for subject i on [0, t). In addition, ZH
i (t) is a different covariate

vector than Zi(t) defined above, and can include the event history.

The probability of treatment on [0, t) can then be defined as

Gi(t) = exp

{
−
∫ t

0

λTi (u) du

}
.

Since we are only interested in the probability of treatment on [s, s+ t) for a given

subject we further define

Gi(t; s) =
Gi(s+ t)

Gi(s)
= exp

{
−
∫ s+t

s

λTi (u) du

}
and the associated weight functions

WD
ij (t; s) = Y D

ij (t; s)Gi(t; s)
−I(Ti>s)
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and

WR
ij (t; s) = Y R

ij (t; s)Gi(t; s)
−I(Ti>s)

for the terminal and recurrent events, respectively.

Using these weight functions it can be shown that:

E
[
mD
ij (s)W

D
ij (t; s) dMD

ij (t; s)|Z?D
i (s), γi

]
= 0

and that

E
[
mR
ij(s)W

R
ij (t; s) dMR

ij (t; s)|Z?R
i (s), γi

]
= 0

where

dMD
ij (t; s) = Y D

ij (s){ dND
i (s)− λij(s)}

and

dMR
ij (t; s) = Y R

ij (s){ dNi(s)− dRij(s)}.

These zero mean processes can be used to set up the following sets of estimating

equations:

n∑
i=1

mD
ij (s)

∫ t

0

WD
ij (u; s) dMD

ij (u; s),(4.16)

n∑
i=1

mD
ij (s)

∫ τ

0

Z?D
i (s)WD

ij (u; s) dMD
ij (u; s),(4.17)

n∑
i=1

mR
ij(s)

∫ t

0

WR
ij (u; s) dMR

ij (u; s),(4.18)

and

n∑
i=1

mR
ij(s)

∫ τ

0

Z?R
i (s)WR

ij (u; s) dMR
ij (u; s),(4.19)

where τ = max{X1, . . . , Xn}.
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The estimation proceeds by solving for dΛ0
i (u; s) and dR0

i (u; s) in (4.16) and (4.18)

respectively and substituting into (4.17) and (4.19). Summing across all experiments

gives final estimating equations for α?ψγ and β?ψγ,

UD(α) =
n∑
j=1

n∑
i=1

∫ τ

0

mD
ij (s)

∫ τ−s

0

{Z?D
i (s)−ZD

? (u; s)}ŴD
ij (u; s) dND

i (u; s) dNT
j (s)

(4.20)

and

UR(β) =
n∑
j=1

n∑
i=1

∫ τ

0

mR
ij(s)

∫ τ−s

0

{Z?R
i (s)−ZR

? (u; s)}ŴR
ij (u; s) dNi(u; s) dNT

j (s)

(4.21)

where

ŴD
ij (t; s) = Y D

ij (t; s) exp{[Λ̂T
i (s+ t)− Λ̂T

i (s)]I(Ti > s)},

ŴR
ij (t; s) = Y R

ij (t; s) exp{[Λ̂T
i (s+ t)− Λ̂T

i (s)]I(Ti > s)},

Z
D

? (u; s) =

∑n
`=1 Y

D
`j (s)ŴD

` (u; s)Z?D
` (s) exp{α′?ψZ?D

` (s)}∑n
`=1 Y

D
`j (s)ŴD

` (u; s) exp{α′?ψZ
?D
` (s)}

,

and

Z
R

? (u; s) =

∑n
`=1 Y

R
`j (s)ŴR

` (u; s)Z?R
` (s) exp{β′?ψZ?R

` (s)}∑n
`=1 Y

R
`j (s)ŴR

` (u; s) exp{β′?ψZ?R
` (s)}

.

α?ψγ and β?ψγ can then be estimated consistently by the solutions to UD(α) = 0

and UR(β) = 0, where 0 denotes a vector with all elements equal to zero.

4.2.4 Asymptotic Properties

As described in Chapter II variance estimates for α and β are challenging to

derive in this complex setting, and asymptotic estimates may underestimate the true

variance of these parameters. One option would be to use the bootstrap, similar to
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the method described in Chapter III, however, this can be computationally intensive,

especially in the setting where there are two outcomes of interest.

We propose instead a variation of a method proposed by Lin et al (2000) to

construct confidence bands for the mean function of the proportional means model.

We first impose the following regularity conditions:

(a)
[
Ni(t), Ci(t), N

T
i (t), ND

i (t),Zi(t), γi
]

are independent and identically distributed.

(b) P (Xi ≥ τ) > 0 for all i.

(c) Ni(τ) <∞ for all i.

(d) E[I(Ti ≤ τ)] > 0 for all i.

(e) Zi(t) is of bounded variation.

Similar to Chapter II, under these conditions it can be shown for the terminal

event that

n1/2(α̂−α) = A−1D (α)n−1/2
n∑
i=1

UD
i (α) + op(1),(4.22)

where

UD
i (α) =

∫ τ

0

mD
i (s)

∫ τ−s

0

{Z?D
i (s)− zD? (u; s)}dMD

i (s)dF T (s),

AD(α) = E

[∫ τ

0

mD
i (s)

∫ τ−s

0

{Z?D
i (s)− zD? (u; s)}⊗2 exp{αTZ?D

i dΛ0
i (u; s)dF T (s)

]
,

mD
i (s) is a 0/1 indicator for patient i being matched on terminal event hazard to the

index patient treated at time s and F T (s) = E[NT (s)]. Similarly, for the recurrent

event, we have

n1/2(β̂ − β) = A−1R (β)n−1/2
n∑
i=1

UR
i (β) + op(1),(4.23)
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where

UR
i (β) =

∫ τ

0

mR
i (s)

∫ τ−s

0

{Z?R
i (s)− zR? (u; s)}dMR

i (s)dF T (s),

AR(β) = E

[∫ τ

0

mR
i (s)

∫ τ−s

0

{Z?R
i (s)− zR? (u; s)}⊗2 exp{βTZ?R

i }dR0
i (u; s)dFT (s)

]
,

mR
i (s) is an indicator taking value 1 when patient i is matched in terms of recurrent

event rate to the index patient treated at time s and F T (s) is defined as above.

Using this, we can estimate the distribution of (4.22) and (4.23) by repeatedly

sampling from Â−1D (α̂)n−1/2
∑n

i=1 Û
D
i (α̂)Pi for the terminal event and

Â−1R (β̂)n−1/2
∑n

i=1 Û
R
i (β̂)Pi for the recurrent event, where Pi ∼ Exp(1). Reasons

and implications for choosing the exponential distribution are discussed further in

Section 4.5.

4.3 Simulation Study

Simulation was used to assess the performance of the proposed method in mod-

erate sized samples. True values of α? and β? were determined by generating both

observed and counterfactual data for each subject. A frailty for each subject was gen-

erated from a Normal (0, 0.5) distribution, and baseline covariates Zi1 and Zi2 were

generated from a Uniform [-1,1] distribution. Pre-treatment recurrent and terminal

events were generated from the following models:

dR0
i (t) = dR0(t) exp{β01Zi1 + β02Zi2 + γi}

and

dΛ0
i (t) = dΛ0(t) exp{α01Zi1 + α02Zi2 + γi}.

Treatment times were then generated from

λTi (t) = λT0 (t) exp{δ1Zi1 + δ2Zi2 + δ3 log(N0
i (t−) + 1)}.
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For subjects with Ti < Di, post-treatment recurrent and terminal events were gen-

erated from the following intensity and hazard:

dR1
i (t) = dR1

0(t) exp{β11Zi1 + β12Zi2 + γi}

and

dΛ1
i (t) = dΛ1

0(t) exp{α11Zi1 + α12Zi2 + γi}.

Note that for each subject with Ti < Di, we generated both treatment-free and

post-treatment recurrent and terminal event experience. However, only one of these

is observed. The generated data are combined such that subject i has a recurrent

event intensity of dR0
i (t) on [0, Ti) and a recurrent event intensity and terminal event

hazard of dR1
i (t) and dΛ1

i (t), respectively, on [Ti, Ti + t). For subjects with Ti > Di,

dR1
i (t) and dΛ1

i (t) are never observed, and only dR0
i (t) and dΛ0

i (t) are generated and

modeled for these subjects.

Once the data were generated, the hazard for treatment was modeled as λTi (t) =

λT0 (t) exp{βT1Zi1 + βT2Zi2 + βT3 log(Ni(t
−) + 1)} in order to calculate weights for

IPCW. At this stage we also fit the prognostic model using the frailty model

dR0
i (t) = dR0(t) exp{ξ01Zi1 + ξ02Zi2 + γi}

and

dΛ0
i (t) = dΛ0(t) exp{δ01Zi1 + δ02Zi2 + γ̂i}.

For the terminating event model, subjects were matched if | logψDij (s)| ≤ 0.1, and

for the recurrent event model, matching was successful if | logψRij(s)| ≤ 0.1. This

resulted in a median of 16 matches per stratum for the recurrent event model and

a median of 17 matches per stratum for the terminal event model. Parameters used

to generate are as follows: dR0 = 6, β01 = 0.3, β02 = 0.1, dΛ0 = 0.3, α01 = 0.3, α02 =
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Table 4.1: Descriptive statistics from simulations or correlated recurrent and terminal events

Scenario 1 2 3 4 5 6

% Tx 66% 66% 66% 66% 66% 66%

% Died 60% 69% 65% 53% 54% 54%

% Died Pre-Tx 87% 87% 87% 87% 87% 87%

% Died Post-Tx 46% 59% 54% 36% 39% 37%

Event Mean 11.81 10.88 12.81 10.44 11.01 11.60

0.1, λT0 = 0.25, δ1 = 0.4, δ2 = 0.2, δ3 = 0.5, β11 = 0.3, β12 = 0.1, α11 = 0.3, α12 = 0.1.

In the different scenarios dR1
0 took on values of 4, 4.5, 5, 6, 6.5, and 8, and dΛ1

0 took

on values of 0.2, 0.3, 0.4, and 0.5. Each scenario generated 400 subjects and was

simulated 500 times. Standard error estimates were generated from 100 perturbations

of the weighted score residuals, and these estimates were compared to standard errors

estimated from 50 bootstrapped samples.

Descriptive information regarding proportion treated and died and average num-

ber of events is given in Table 4.1, and simulation results are given in Table 4.2. Bias

for the frailty variance, θ, was 0.020, with empirical and asymptotic standard errors

approximately equal and coverage probability close to the desired level of 0.95, indi-

cating that the prognostic model was capturing the variance in the random effects

correctly. Most scenarios showed reasonably small bias for α?, ranging in absolute

value from 0.005 to 0.028, with bias exceeding 0.02 in only one scenario. Standard

error estimates based on the proposed method were similar to empirical standard

errors, resulting in coverage probabilities ranging from 0.966-0.982. Finally, esti-

mates of β? showed relatively small amounts of bias, ranging from 0.003 to 0.017,

with coverage probabilities ranging from 0.948 to 0.972. Similar to α?, the proposed
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Table 4.2: Simulation results for correlated recurrent and terminal events using a frailty prognostic
model

Scenario Outcome α? or β? Est Bias ESE ASE CP

1 Recurrent Event −0.019 −0.016 0.003 0.055 0.059 0.964

1 Survival 0.005 −0.013 −0.018 0.212 0.235 0.980

2 Recurrent Event 0.058 0.041 −0.017 0.053 0.060 0.966

2 Survival 0.510 0.483 −0.028 0.186 0.222 0.982

3 Recurrent Event 0.267 0.262 −0.005 0.054 0.057 0.960

3 Survival 0.289 0.264 −0.025 0.194 0.228 0.982

4 Recurrent Event −0.423 −0.413 0.010 0.059 0.062 0.966

4 Survival −0.404 −0.396 0.008 0.230 0.248 0.976

5 Recurrent Event −0.305 −0.293 0.012 0.056 0.061 0.972

5 Survival −0.402 −0.388 0.014 0.225 0.248 0.966

6 Recurrent Event −0.199 −0.185 0.014 0.057 0.060 0.948

6 Survival −0.406 −0.400 0.005 0.223 0.248 0.982

ESE=empirical standard error; ASE=asymptotic standard error;
CP=coverage probability
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Figure 4.1: Histogram of parameter estimates from proposed models of correlated recurrent and
terminal events using a frailty prognostic model with normal density
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Table 4.3: Simulation results for correlated recurrent and terminal events with bootstrapped stan-
dard errors

Scenario Outcome α? or β? Est Bias ESE ASE CP

1 Recurrent Event −0.019 −0.017 0.002 0.055 0.050 0.905

1 Survival 0.005 −0.015 −0.019 0.204 0.208 0.944

2 Recurrent Event 0.058 0.042 −0.016 0.056 0.051 0.909

2 Survival 0.510 0.474 −0.036 0.188 0.191 0.942

3 Recurrent Event 0.267 0.260 −0.007 0.052 0.049 0.922

3 Survival 0.289 0.270 −0.019 0.197 0.199 0.960

4 Recurrent Event −0.423 −0.412 0.011 0.058 0.053 0.899

4 Survival −0.404 −0.401 0.002 0.231 0.224 0.940

5 Recurrent Event −0.305 −0.294 0.011 0.053 0.052 0.922

5 Survival −0.402 −0.402 0.001 0.233 0.222 0.940

6 Recurrent Event −0.199 −0.187 0.013 0.055 0.051 0.924

6 Survival −0.406 −0.397 0.008 0.233 0.225 0.950

ESE=empirical standard error; ASE=asymptotic standard error;
CP=coverage probability

method for variance estimation produced standard error estimates of β̂? which were

similar to empirical standard errors. Histograms of the estimates of α?, β?, and θ

are shown in Figure 4.1 with normal density curves, demonstrating the normality of

these estimates centered at their true value.

Table 4.3 shows simulation results when the bootstrap method is used to obtain

standard errors instead of the proposed method. This method is more computa-

tionally intensive, and gives some underestimation of the standard errors for the

recurrent event parameter, with coverage ranging from 0.899 to 0.924. The proposed

method of variance estimation, by contrast, is slightly more conservative, in some
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cases overestimating the standard errors and giving coverage probabilities slightly

over the nominal level of 0.95.

4.4 Application to Liver Transplantation

The method described above was applied to data from the Adult-to-Adult Living

Donor Liver Transplantation Cohort Study (A2ALL), supplemented with data from

the Scientific Registry of Transplant Recipients, both of which are described in Chap-

ters II and III. Patients with ESRD have increased morbidity, as shown in Chapter

II as well as increased mortality. We will use the method proposed in this chapter

to evaluate the difference in the rate of days hospitalized and hazard of mortality

between liver transplant recipients that develop ESRD post-transplant compared to

the rate and hazard that would have occurred had they not developed ESRD.

Post-LT ESRD occurred in 55 of 1447 LT recipients in A2ALL. The post-ESRD

rate of days hospitalized was 10.6 per patient year at risk compared to 4.5 days hospi-

talized per patient year at risk pre-ESRD. Of the 55 patients that developed post-LT

ESRD 23 died, while 261 deaths occurred in the 1392 patients that did not develop

post-LT ESRD. A frailty prognostic model was fitted and included donor and recipi-

ent age, recipient race, diabetes, hepatitis C diagnosis, at transplant values of creati-

nine, bilirubin, and albumin, donation after cardiac death, local, regional, or national

share, and indicators for split liver and living donor transplant. The estimated vari-

ance of the subject-specific frailty was 3.6 (SE=0.16). Matching for the final analysis

of days hospitalized rate was successful if | log ψ̂Rij(s)|<0.05, resulting in a median of

13 matches per stratum, with 2 (3.6%) strata excluded due to inability to match.

Similarly, for the mortality model, matching was successful if | log ψ̂Dij (s)|<0.15, re-

sulting in a median of 17.5 matches per stratum and 3 (5.5%) strata excluded due
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Table 4.4: Morbidity and mortality related to ESRD development post-LT: Results from proposed
method compared to traditional models

Outcome Model HR CI p-value

Recurrent Proposed Model 2.45 1.55−3.87 <0.001

Event Traditional Baseline Model 3.17 3.01−3.35 <0.001

Traditional Time-Dependent Model 1.44 1.35−1.52 <0.001

Proposed Model 1.88 1.03−3.45 0.04

Survival Traditional Baseline Model 3.52 2.23−5.56 <0.001

Traditional Time-Dependent Model 1.65 1.00−2.72 0.05

to lack of eligible matches. Two sets of traditional time-dependent (“naive”) mod-

els were also fitted, one adjusted for baseline covariates only and one adjusting for

time-dependent covariates including the event history.

Results from the three sets of models are shown in Table 4.4. Using the proposed

method, patients developing post-LT ESRD had a days hospitalized rate 2.45 times

higher than similar patients that had not developed ESRD at the time of the index

patient. This result is similar to that given in Section 2.4, although slightly lower,

indicating a slight overestimation of the effect estimate as a result of ignoring the

correlated terminal event in Chapter II. Mortality was also higher in patients devel-

oping ESRD, with an 88% higher risk of death in these patients using the proposed

method. Similar to Chapter II, we demonstrate that the traditional baseline Cox

model overestimates the effect of ESRD development on both the rate of days hos-

pitalized and the hazard of death, while the traditional time-dependent Cox model

including the event history underestimates this effect.
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4.5 Discussion

In the above chapter we propose a method for estimating effects of a time-

dependent treatment on correlated recurrent and terminal event outcomes. The

proposed method uses a frailty prognostic model to match patients that receive

treatment at time s to those that are untreated at s with similar trajectories in their

recurrent event intensity and terminal event hazards based both on covariate effects

as well as underlying frailty. The method of sequential stratification is then used to

compare the recurrent event rate and terminal event hazard between treated patients

and a matched control group representing the treated patients’ experience had they

not received treatment at time s.

The proposed method incorporates two important aspects that reduce bias when

estimating treatment effects on the recurrent event rate in the presence of a correlated

terminal event. First, it corrects bias related to the correlated terminal event by

incorporating a latent frailty into the prognostic model. We use a model similar

to that proposed by Liu et al (2004), and include the estimated frailty in the final

recurrent and terminal event models. We fit the frailty prognostic model using

estimating equations in a similar vein to methods proposed by Kalbfleisch et al

(2013). Second, we use a partly conditional model in order to correct bias related to

over and under adjustment that often occurs in traditional recurrent event models

such as those of Anderson and Gill (1982) and Lin et al (2000). In the setting where

treatment assignments are made during the course of follow-up the proposed method

conditions on the history prior to treatment and marginalizes over the history after

treatment in order to make appropriate comparisons.

In the proposed method inference depends on estimation of the asymptotic distri-
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bution of (4.22) and (4.23) via an approximation involving repeated sampling from

an exponential distribution with unit mean and variance. In the original method

proposed by Lin et al (2000) the authors simulate from a standard normal distri-

bution to approximate the asymptotic distribution of the mean function, however,

given the underestimation of standard errors by the sandwich estimator, the heavier

tails of the exponential distribution are able to correct the underestimation more

effectively than the standard normal. With the exponential distribution we end up

with slight overestimation of standard errors, therefore an in between distribution,

such as a t-distribution with 15 degrees of freedom, could be explored. The over-

coverage could also be caused by treating the estimated frailty, γi, and the weight

function as known quantities, as is done in the proposed model, however, treating

the weight function especially as a known is commonly done in the literature.

Limitations to this method include parametric assumptions on both the prognostic

model’s baseline hazard and frailty. We propose the use of a log-normal frailty,

although other distributions could by used, such as the gamma distribution which is

a common choice. Since the underlying frailty is unobserved, it may be beneficial in

some settings to assume a non-parametric form of the frailty. An additional limitation

is the proportional hazards assumption on the parameter estimates of interest, α?

and β?. This assumption can be explored using interactions with time of treatment,

s, as well as time since treatment, t as in Chapters II and III.



CHAPTER V

Conclusions and Future Work

In the above dissertation we develop methods for estimating time-dependent treat-

ment effects on the recurrent event rate using an extension of the method of sequential

stratification developed by Schaubel et al (2009). While randomized controlled trials

are the gold-standard for determining treatment effects, in many settings they are

neither feasible nor ethical. In these cases observational studies, which often include

treatment assignment after the beginning of follow-up and treatment by indication,

are necessary for estimating treatment effects. In this setting it is important to bal-

ance conditional and marginal approaches in order to obtain unbiased estimates with

appropriate interpretations.

We first presented methodology for estimating rare treatment effects on the recur-

rent event rate. We introduced a two-stage modeling technique in order to estimate

these effects. In the first stage we fit a prognostic model on the pre-treatment ex-

perience for all subjects. Treated subjects were then matched to as-yet untreated

subjects based on prognostic scores. The final model was fitted using the method of

sequential stratification yielding a treatment effect estimate which can be interpreted

as the effect of treatment on the recurrent event rate for a subject treated at time

s compared to the rate that would have occurred after s had the subject not been

75
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treated at that time. The use of the prognostic score for matching ensures that pa-

tients are on the same recurrent event trajectory prior to the time of treatment, but

allows these trajectories to diverge post-treatment in order to allow for a potentially

differing effect of treatment on the recurrent event rate.

In the next chapter we extended the method proposed in Chapter II in two ways.

First we allowed for multiple treatment states by introducing the concept of conven-

tional therapy, in which patients begin follow-up untreated and subsequently receive

a standard treatment. These patients are contrasted with patients that receive an

experimental treatment at time s. Second, we incorporated Inverse Probability of

Censoring Weighting in order to correct informative censoring at the time of treat-

ment. As demonstrated in Chapter II, when experimental treatment exceeds 20%,

censoring of control subjects at subsequent experimental treatment initiation induces

bias when treatment is associated with the recurrent event process.

The third method proposed addressed the case when the recurrent event process

is correlated with a terminal event. In order to account for this correlation we use

a frailty prognostic model in the first stage of modeling. Similar to the previous

two chapters the prognostic models are fit on the pre-treatment experience, however,

we propose the use of a random frailty to account for the correlation between the

recurrent and terminal events. We assume in this setting that the terminal event

is also of interest and model it in addition to the recurrent events, therefore we

complete the matching based on prognostic scores twice. The method allows for

matching to depend on prognostic scores based on the pre-treatment recurrent event

process, the pre-treatment terminal event hazard, or some combination of the two

depending on what is most appropriate for the data at hand. In addition estimated

frailty values can be incorporated into the matching. The final models give treatment
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effect estimates for both the recurrent event rate and terminal event hazard with

similar interpretation as described above, and weighting is incorporated for common

treatments.

There are several areas in which the methods proposed above could be extended.

First, in the setting of common treatments we proposed the use of the bootstrap

as well as a variation of a method proposed by Lin et al (2000). In this setting the

question of convergence of Z
?

i remains unresolved, and deserves further investigation.

One potential way to address this issue would be to extend the method in order

to allow for multiple treated subjects per stratum. In the methods proposed the

continuous time axis and matching scheme necessitates a single treated subject per

stratum, however, grouping similar treated subjects could assure convergence of Z
?

i

as well as allow for more efficient estimators of the treatment effect. Finally, another

area of interest would be to extend the current methods to allow for increments in

the recurrent event counter greater than 1, for potential application to cost data.
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