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CHAPTER I

Introduction

An arc on an algebraic variety X is a bit of a curve on X. The arcs on X have

a parameter space, called the arc scheme of X. The study of the variety X through

understanding its arcs began with Nash’s 1968 preprint [26], and has attracted special

interest since Kontsevich’s 1995 lecture at Orsay, in which he introduced a theory

of integration on spaces of arcs, called motivic integration, and the successes it

generated.

Our study here concerns the development of the theory of arcs in the context

of logarithmic algebraic geometry. Log geometry is a subject with many inroads:

sometimes it is used as an algebraic analogue of manifolds with boundary, sometimes

it is used to study controlled degenerations on varieties, sometimes it brings to a given

variety an analogue of the combinatorial structure of a toric variety. Kazuya Kato

[19] showed how this geometric theory can be founded by equipping a variety X

with a monoid sheaf M, called a log structure. In geometric cases, often the log

structure is essentially merely the multiplicative semigroup of monomials in some

chosen regular functions on X. The category of log schemes consists of such pairs,

a scheme X together with the log structureM, and the log algebro-geometer works

in this context. As there are log curves – ordinary curves C with additional log
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structure at some of their points – so there are log arcs as well.

There is for each log scheme a log arc scheme as well, which parametrises its log

arcs. We develop this theory here, building on prior work on log jet schemes [11], [16].

A classical fact about (ordinary) arc schemes is that the arc scheme of an irreducible

variety X, over a field of characteristic zero, is irreducible itself. This is a theorem

of Kolchin [21]. This means that an arc on the singular locus of X can be deformed

into the smooth locus of X; or put the other way, an arc on the singular locus of X is

a limit of arcs in the smooth locus of X. For log arcs, such a deformation determines

not only a limiting arc but some data about the “trajectory” of the deformation as

well. For combinatorially reasonable irreducible log varieties, we show that the log

arc scheme is irreducible: all the log arcs are such limits. Specifically, we establish

the following result.

Theorem I.1. (III.44) Let k be a field of characteristic zero. Let (X,M) be a fine

log scheme over (Spec k, k∗), with X irreducible of finite type, and let J∞(X,M) be

its log arc scheme. Let Xj be the rank j stratum of (X,M) and let r be the minimum

rank of M on X. Then J∞(X,M) is irreducible if and only if codimX Xj = j − r

for all non-empty Xj.

What else in the study of arc schemes carries over to an analogue in the study

of log arc schemes? Certainly it would be attractive to have a theory of log motivic

integration as well, meaning a theory of integration on log arc schemes. For such

a theory one needs to provide certain ingredients: some kind of measure on log arc

schemes, functions to integrate, values for these to take on. From these, to get any

work from the theory, the recipe must supply a comparison result between log motivic

integrals, as Kontsevich’s key change-of-variables formula compares motivic integrals

on a variety with motivic integrals on a proper birational model. Steps toward such
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a theory we offer in Chapter IV.

1.0.1 Logarithmic algebraic geometry

A log structure on an algebraic variety X is “a magic by which a degenerate

scheme begins to behave as being non-degenerate,” writes Kato [18]. Toric varieties

XΣ, for example, are smooth objects in the category of log schemes – they are “log

smooth” – and enjoy good regularity properties under maps XΣ → XΣ′ that come

from morphisms of their fans Σ→ Σ′ – which are “log scheme morphisms.”

In the generality introduced by Kato [19], a log scheme is an algebraic variety

X together with a sheaf of monoids M on X and a morphism M → OX to the

multiplicative monoid of the structure sheaf OX which induces an isomorphism on

unitsM∗ → O∗X . The sheafM is called a log structure on X and the pair (X,M) is

called a log scheme. An important classical example is whenM is locally generated

as a monoid by local equations for the components of a chosen normal crossing divisor

D on X. Sometimes one thinks of D as a “boundary” or “divisor at infinity” for the

space X −D ⊆ X.

For Kato and those who followed, this was the road to fruitful applications in arith-

metic, including the construction of log crystalline cohomology [14] and Mochizuki’s

proof of Grothendieck’s conjecture on anabelian geometry for curves over number

fields [24]. Here if X → SpecV is a scheme over a discrete valuation ring V with

semistable reduction, which just means that the fibre of X over the closed point

of SpecV is a normal crossing divisor, one can treat it with the formalism of log

geometry.

For others, as it will largely be for us, log geometry remained a more geometric

theory, with X to be a variety over a field k. One then studies the geometry of X

when it is paired with an appropriate log structure M, or the geometry of an open
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subset U ⊂ X of a complete variety X with log structure along the complement

“at infinity” X − U (which now is not required to be a normal crossing divisor

in general). For example, the moduli space of stable curves, a compactification of

the moduli space of smooth curves, arises this way by considering curves X, not

necessarily smooth, with fine saturated log structure at their singular points. Toric

varieties as compactifications of algebraic tori may also be viewed in this way.

Spherical varieties, which generalise toric varieties by replacing the torus with an

algebraic group G, also naturally have such a description. Recently in [5] the arc

spaces of spherical varieties were investigated; see Remark IV.57. It may be quite

interesting to study these log geometrically as well.

1.0.2 Motivic integration

Motivic integration is a proven technique for extracting information about an

algebraic variety X from its arc scheme J∞(X). Kontsevich [22] introduced this

theory of integration by analogy with certain p-adic integrals used by Batyrev [1],

strengthening and generalising Batyrev’s result to work over any algebraically closed

field k. The key property that motivic integrals enjoy is the so-called change-of-

variables formula for proper birational maps Y → X of varieties over k, which

relates an integral on X to an integral on Y involving the pullback of the integrand

on X and the relative canonical class KY/X of the morphism.

Kontsevich’s original application was to show that birational smooth Calabi-Yau

varieties have the same Deligne-Hodge polynomial, and hence the same Hodge num-

bers. This only required constructing the motivic integral on smooth varieties X.

Denef and Loeser [8] undertook the task of making precise Kontsevich’s proposed

theory, at the same time showing how to define motivic integrals for singular va-

rieties, which present significant additional technical difficulties, especially in the
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construction of the motivic volume on a suitable algebra of subsets of J∞(X). Nu-

merous further applications have followed. Among others, we might mention further

work of Batyrev on stringy Hodge numbers [3] and Reid’s conjecture on the McKay

correspondence [2], further work of Denef and Loeser on Igusa zeta functions [9], and

Mustaţǎ’s work on some birational invariants by relation to jet schemes [25]. For

more on the development and use of the technique, we refer to [23], [7].

1.0.3 Terminology

In this note we are often concerned with terms and concepts (jets and arcs,

smoothness and étaleness, and so forth) which appear in both the usual setting

of the category of schemes and in the setting of the category of log schemes. Wher-

ever a term is used in the log scheme sense we will indicate this by including “log” in

its name (so, log jets and log arcs, log smoothness and log étaleness, and so forth).

Sometimes when a term is used in its usual scheme-theoretic sense we will emphasise

the distinction by calling it “ordinary” (so, ordinary jets and ordinary arcs, and so

forth).



CHAPTER II

Monoids and logarithmic algebraic geometry

We give an exposition, essentially self-contained, of some elements of log geometry.

A log scheme, after Kato [19], is a pair (X,M) whereM is a sheaf of monoids with

a multiplicative map M → OX which restricts to an isomorphism M∗ → O∗X on

units.

In practice, the log structure M is often specified by way of a map P → OX

from a finitely generated monoid P , which then generates M in a categorical sense

by sheafifying and adding in units. For example, a toric variety is a log scheme in a

natural way, with log structure locally generated by cones in the lattice of characters

of the torus. This gives a combinatorial interpretation to the data of a log structure.

Such a map P → OX is called a chart for the log structure it generates, and in many

cases it reflects or controls the behaviour of the map M→OX .

Our first task then will be to recall some of the basic language and behaviour

of monoids. Later we extract some information about the geometry of log schemes

from them. Especially important to us is the view of a fine log scheme (X,M) as

being stratified by locally closed subsets on whichM “does not vary.” In the case of

a toric variety, the stratification consists of the torus-invariant orbits, understanding

of which of course contributes greatly to understanding the geometry of the toric

6
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variety. In general the strata are determined from the quotient M/O∗X , which is a

sheaf of finitely generated monoids and another important object. In good cases,

but not quite all cases, this sheafM/O∗X gives charts for the log structureM in the

sense above at every point. This means that there is a section M/O∗X →M of the

projection. In these cases such a chart gives an additional measure of control on the

log structure.

2.1 Monoids

By a monoid we mean always a commutative semigroup with an identity element.

Most often we will write the monoid operation multiplicatively, but sometimes addi-

tive notation will be apt. In particular we will use the natural numbers (N,+) under

addition, where N = {0, 1, 2, ...}, to stand for the free monoid on one generator.

When the generator is specified to be some element x of a ring R, we write by abuse

of notation Nx = {1, x, x2, ...} to stand for the set of powers of x.

2.1.1 Monoid algebras

To a multiplicative monoid P we associate the monoid algebra k[P ], which by

definition is the quotient of the polynomial ring on the set P by the relations between

monomials in the variables which hold of them in the monoid P (and by identifying

the neutral elements 1 ∈ P and 1 ∈ k). Equivalently, one may take construct k[P ]

as the quotient of the polynomial ring on a set of generators of the monoid P by

the relations which hold among the monomials in these generators. Thus k[P ] is a

quotient of a polynomial ring by a pure binomial ideal; we also sometimes say that

it is a quotient given by monomial relations. Conversely such a presentation

R = k[{xi}i∈I ]/J
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with a pure binomial ideal J determines a monoid P , generated by the symbols xi,

for which R = k[P ].

By abuse of terminology we also call the affine scheme Spec k[P ] a monoid algebra,

(partly to avoid conflation with the notion of “monoidal space” which has been used

by other authors to refer to something different).

2.1.2 Basic notions and properties

A map P → Q of monoids induces a k-algebra map k[P ]→ k[Q].

A monoid P is finitely generated if there is a surjection Nr → P for some integer

r ≥ 0. Equivalently, all the elements of P may be written as monomials in some

finite generating set of elements of P . Such a description gives Spec k[P ] as a closed

subscheme of affine space Ar = Spec k[Nr].

A monoid P has a group completion P gp, that is, a group P gp with a map P → P gp

with the universal property that a monoid morphism P → G to any group G factors

through P gp. One may construct P gp as the set of fractions pq−1 with p, q ∈ P ,

where pq−1 = rs−1 in P gp if there is t ∈ P such that tps = trq.

A monoid P is called integral if whenever an equation pq = pr holds in P one has

q = r. Equivalently, P is integral if and only if the map P → P gp is an inclusion.

This gives also an inclusion k[P ] → k[P gp]. If in addition P gp is torsion-free then

k[P gp] is a domain, according to a classical result for group rings, so that k[P ] is then

also a domain. (But P being integral, or integral and torsion-free, is not sufficient

for k[P ] being a domain in general; see for instance Example II.3 below.)

A monoid both integral and finitely generated is called fine.

An integral monoid P is called saturated if whenever some power gn lies in P ,

where g ∈ P gp and n ≥ 1, one has g ∈ P also.

To a monoid P there is associated a universal integral monoid P int, which may be
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realised as the image of P → P gp. This in turn has a universal saturation P sat ⊆ P gp,

consisting of all the elements of P gp for which some positive power lies in P int.

When X = Spec k[P ] is the algebra of a specified monoid P , we write for conve-

nience Xgp = Spec k[P gp] for the monoid algebra of P gp. If P is fine, then Xgp is

a dense open subset of X, consisting of a finite union of tori, one for each torsion

element of P gp, each having dimension rankP gp.

Sometimes we wish to view P gp/(torsion) as a lattice inside a rational vector

space PQ = P gp ⊗Z Q. If P is finitely generated then the image of P → PQ is a

(possibly nonsaturated) rational polyhedral cone.

Example II.1. A rational cone in an integer lattice is a fine, saturated, torsion-free

monoid. Conversely, if P is a fine saturated torsion-free monoid, then furthermore

P gp is torsion-free, for the saturation of any submonoid of P gp includes all the torsion

elements of P gp. Then P gp is free and P is a rational cone in P gp. The monoid algebra

Spec k[P ] is a (normal) affine toric variety.

Example II.2. The subset P = N − {1} = {0, 2, 3, 4, ....} of the natural numbers

under addition is a monoid. Writing this multiplicatively as powers of a variable t,

its monoid algebra is

k[P ] = k[t2, t3] ' k[x, y]/(x3 − y2),

the co-ordinate ring of a cuspidal plane cubic curve. The inclusion P ⊆ N gives

P gp ⊆ Ngp = Z. In fact P gp = Z, for example because 1 = 3 − 2 is a difference

of elements of P (in other words, because P gp is a subgroup of Z containing 2, 3).

We see that P is integral and finitely generated, so is fine, but is not saturated. Its

saturation is N, and the natural map k[P ]→ k[P sat] = k[t] is the normalisation map

of the cuspidal curve.
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Example II.3. Let Q be generated by two elements x, y subject to the single relation

x2 = y2. Then Q is integral and torsion-free. The spectrum of the monoid algebra

k[Q] = k[x, y]/(x2 − y2) consists of two lines meeting at the point x = y = 0. One

has

Qgp ' (Z/2Z)ω × Zx

by identifying the generator y with ω · x, and

Qsat = (Z/2Z)ω × Nx ⊆ Qgp.

So k[Qsat] = k[x, ω]/(ω2 − 1). The map Spec k[Qsat]→ Spec k[Q] glues the two lines

of Spec k[Qsat] with ω = ±1 together at x = 0, while Spec k[Qgp] → Spec k[Q] just

includes the complement of the node of Spec k[Q].

2.1.3 Ideals, faces, and quotients

An ideal I of P is a submonoid of P closed under multiplication by elements of

the monoid, IP ⊆ I. An ideal I is called prime if whenever pq ∈ I one of p, q lies in

I. Equivalently, an ideal I is prime if the complementary set P − I is a submonoid

of P (in fact, a face of P : see below).

For an ideal I of P , there is a quotient monoid P → P/I which may be realised

as the set P − I together with a “zero element,” corresponding to the subset I. If a

product of elements in P − I lies in I then in P/I the product is zero (i.e., it is the

class of I). If I is prime then this does not happen, and P/I may be realised as the

monoid P − I together with a zero element, (where zero times P − I is zero).

A face F of a monoid P is a submonoid of P such that whenever p, q ∈ P have

pq ∈ F , then in fact both p, q lie in F . The complementary set P − F of a face F

is a prime ideal of P , and vice versa. The group P ∗ of invertible elements of P is a

face of P , in fact the minimum face of P .
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A monoid P with P ∗ = 1 is called sharp. A monoid P has a universal map to a

sharp monoid, namely to the quotient P/P ∗. By this we mean the set of cosets of

P ∗ in P with the induced monoid operation. This is a different kind of quotient of P

than those by ideals of P . When F is a face of a fine monoid P , we will write P/F

for the sharp quotient

F−1P/(F−1P )∗,

where F−1P ⊆ P gp is the smallest monoid containing both P and the inverses of the

elements of F .

Example II.4. The usual group quotient Z/2Z is a monoid of two elements, as is

the monoid quotient N/{1, 2, ...}, but they are not the same monoid: the latter has a

non-trivial idempotent 1 + 1 = 1. One might write it instead as the set {0,∞}, with

∞ being the additive version of what the zero element is for multiplicative monoids.

Put another way, Z/2Z and N/{1, 2, ...} have operation tables

+ 0 1

0 0 1

1 1 0

and

+ 0 ∞

0 0 ∞

∞ ∞ ∞

respectively, and these are not isomorphic.

Example II.5. View the monoid N2 as the set of integer lattice points

N2 = {(a, b) such that a, b ≥ 0}

of the first quadrant of the plane. Any point p ∈ N2 generates an ideal p + N2, a

translated cone in the plane. The ideals of N2 are unions of such cones (which may

then be realised as finite unions of such cones). Equivalently, an ideal of N2 is the

set of points above a descending staircase in the first quadrant.
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The monoid N2 has three prime ideals, being the sets

(1, 0) + N2 = {(a, b) such that a 6= 0}

and

(0, 1) + N2 = {(a, b) such that b 6= 0}

and their union

(
(1, 0) + N2

)
∪
(
(0, 1) + N2

)
= {(a, b) such that (a, b) 6= 0}.

The complements of these are the three proper faces of N2, namely the two copies of

N where one co-ordinate or another is zero, and the origin {(0, 0)}.

Example II.6. A field k, considered as a multiplicative monoid, has unit group

k∗, and the quotient monoid k/k∗ is the (sharp) two-element multiplicative monoid

{0, 1}. Here there is an asymmetry between the two points of k/k∗ in that the unit

group acts freely on the orbit k∗ ⊆ k of 1 ∈ k but trivially on the orbit {0} ⊆ k.

2.2 Log schemes

A log scheme, as introduced by Kato [19], will be a scheme X together with some

combinatorial data encoded in a sheaf of monoidsM on X. Any scheme may become

a log scheme in many different ways, including trivially, so in complete generality

M does not provide much control. There are various conditions on the pair (X,M)

one may ask for to provide some. For example one commonly works in the category

of log schemes with fine and saturated log structure, which can avoid many possible

pathologies in bothM and X. Fine and saturated log smooth varieties are modelled

in a strong sense on toric varieties [20]. Like toric varieties they are normal and

Cohen-Macaulay. But the general local model for a log scheme is just of an arbitrary



13

map X → Spec k[P ] of a scheme X to a monoid algebra, where the map on structure

sheaves is induced by a monoid morphism P → (OX , ·) that “generates” the log

structure on X.

2.2.1 Log structures and charts

A log scheme over k is a pair (X,MX), where X is a scheme over k and MX

is a sheaf of monoids on X with a monoid morphism αX : MX → OX to the

multiplicative monoid (OX , ·) that induces an isomorphism M∗
X = α−1

X O∗X → O∗X

on units. The sheaf MX is called a log structure on X. The map αX need not be

injective, although in many examples MX will be a subsheaf of OX . The category

of log structures on X has an initial object, which is O∗X (as a sub-monoid sheaf of

OX), also called the trivial log structure on X, and a final object, which is OX , since

by definition a log structure sheaf M on X comes with maps α−1 : O∗X → M and

α :M→OX .

Any sheaf of monoids PX on X with a monoid morphism α : PX → OX (this

much data is called a pre-log structure) generates an associated log structure P a
X ,

which may be realised as the fibred sum (in the category of sheaves of monoids) of

the diagram

PX

O∗X α−1O∗Xoo

OO

In particular if one specifies a monoid P and a map P → OX(X) one obtains a

log structure on X generated by P , namely, that associated to the constant sheaf P

determines. A monoid P is called a chart for the log structure it generates.

A log structure on X is called coherent if it has, Zariski-locally, charts by finitely

generated monoids. Likewise the log scheme (X,MX) is called fine or saturated if it
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has, Zariski-locally, charts by fine or saturated monoids. A map P →MX(U) over

an open set U ⊆ X is a chart if and only if it induces isomorphisms P a
x →MX,x at

stalks for x ∈ U . In any case, a map P → OX(U) determines a map U → Spec k[P ]

to the monoid algebra of P . Sometimes this map to Spec k[P ], rather than from the

monoid P , is called a chart on U .

Example II.7. A monoid algebra k[P ] naturally gives a log scheme, with the log

structure given by the chart P . We call this the standard structure of Spec k[P ] as a

log scheme.

Example II.8. One of the principal motivating examples for logarithmic geometry

arises from a scheme X together with a (Cartier) normal crossing divisor D on X.

This is realised in Kato’s formalism of log structure sheaves as follows. For a point

x ∈ X letD1, ..., Dr be the prime components ofD passing through x and take a chart

Nr near x, with the standard generators of Nr mapping to local equations for the

components Di. Since the choice of equations is not canonical these charts typically

will not glue together by themselves, hence one expands them as monoids to include

the units near x. Now various constructions one makes from the log structure, like

the sheaf of log differentials, are interpreted as objects with logarithmic (i.e., order

one) poles along D. The dual objects, like the sheaf of log tangent vectors (and, we

shall see, log jets in general) are thereby interpreted as objects with zeroes of order

one along D.

More generally, let U be an open set in X, and takeM to be the subsheaf of OX

of functions invertible on U . That is, for V ⊆ X open put

M(V ) = {f ∈ OX(V ) such that f |U ∈ OX(U ∩ V )∗}.

This is a monoid sheaf under multiplication, and is a log structure on X. When
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X−U is a normal crossing divisor D, thisM is the same log structure as constructed

above. In general, thisM is the pushforward (see Section 2.2.2 below) of the trivial

log structure on U along the inclusion U → X.

Example II.9. The affine plane X = Spec k[N2] = Spec k[x, y] with its standard

log structure M, generated as a submonoid sheaf of OX by the monomials x and y

together with O∗X , is a special case of the last two examples.

One may go from the chart P = N2 to the associated log structureM as follows.

On the open subset U = Spec k[x, y]x of X the monomial x is a unit, so that in

the fibred sum of P and OX(U)∗ the element x ∈ P is identified with the unit

x ∈ OX(U)∗. Consequently on U the monoid M is generated just by the monomial

y together with O∗X . Likewise on the open set V = Spec k[x, y]y the log structureM

is generated by x. On U ∩ V = Spec k[x, y]xy the log structure is trivial, M|U∩V =

O∗U∩V .

Example II.10. Consider the affine line Spec k[x] with log structureM given by a

chart N → k[x] taking the generator of N to the polynomial x(x − 1). That is, the

chart is given by the inclusion of algebras k[x(x − 1)] → k[x]. The global sections

of M are not just the monoid sum k[x]∗ ⊕ N. In fact, thinking of M as a subsheaf

of OX , both x and x − 1 are global sections. For example, away from x = 0 the

function x is a unit, so is a section of M, while away from x = 1 the function

x = (x− 1)−1 · x(x− 1)

is a unit (x − 1)−1 times a section x(x − 1), so is a section of M. So x is a global

section of M; and similar for x− 1.

In this example one has two global charts, by Nx(x−1) and by N2 = Nx⊕N(x−1),

whose (abstract) group completions have different rank. The latter is closer to the



16

global structure of M, in the sense that M(X) ' N2 ⊕ k[x]∗, while the former is

closer to the local structure ofM at the points x = 0, 1, in the sense that the induced

map

Nx(x− 1)→Mp/O∗X,p

is an isomorphism at these two points p.

Remark II.11. A chart P → MX of a fine log scheme (X,MX) which induces an

isomorphism P →MX,x/O∗X,x is called good at x. Good charts do not always exist.

The next proposition gives some simple cases where they do.

Proposition II.12. Let (X,M) be a fine log scheme, x a point of X, and P =

Mx/O∗X,x. Then:

(1) If P gp is torsion-free there is a chart P →M near x.

(2) If X is normal near x then there is a chart P →M near x.

(3) If char k = 0, or char k = p and P has no p-torsion, then there is a chart

P → h∗M in an étale neighbourhood h : V → X of x, where h∗M is the log

structure on V generated by M.

Proof. By ([31], II.2.3.6) there is an isomorphism

M(U)/OX(U)∗ →Mx/O∗X,x

in some neighbourhood U of x. So P would be made into a chart by a section of

the monoid morphismM(U)→M(U)/OX(U)∗. To study this map we consider the

induced map on group completions,

M(U) //

��

M(U)/OX(U)∗

��
M(U)gp // (M(U)/OX(U)∗)gp.
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SinceM(U) andM(U)/OX(U)∗ are integral monoids, the vertical arrows are injec-

tions, and a splitting of the bottom arrow splits the top arrow by restriction.

Now in case (1) it is assumed that P gp = (M(U)/OX(U)∗)gp is free abelian, so a

splitting of the bottom arrow exists in this case.

Otherwise, P gp has some torsion part, and the problem becomes to determine

that torsion elements of P gp come from torsion elements ofM(U)gp. Let fg−1 ∈ P gp

be a torsion element, with f, g ∈M(U) and fn = ugn for some u ∈ OX(U)∗. If X is

normal on U , then u = (α(f)/α(g))n has an nth root v = α(f)/α(g) in OX(U). Then

fn = (vg)n inM(U), so f(vg)−1 is torsion inM(U)gp. Choosing a decomposition of

the torsion part of P gp as a sum of cyclic groups and lifting generators fg−1 for each

now gives (2). Finally, we have at the same time (3), with the morphism U → X

given by extracting the roots v = u1/n near x.

Example II.13. Let X = Spec k[x, y, z, w]/(x2z − y2w) with its standard structure

as a monoid algebra. On the open subset zw 6= 0, there are not Zariski-local good

charts along the locus x = 0, y = 0. The obstruction is that z/w = (x/y)2 is a unit

here but x/y is not a regular function.

2.2.2 The category of log schemes

A morphism of log schemes (X,MX) → (Y,MY ) is a morphism of schemes

f : X → Y with a morphism of sheaves of monoids MY → f∗MX compatible

with OY → f∗OX ; that is, making a commutative diagram

MY
//

��

f∗MX

��
OY //f∗OX

Given a map of schemes f : X → Y and a (pre-)log structure MY on Y , there is

a pullback log structureMX = f ∗MY on X, which is the log structure associated to
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the set-theoretic pullback f−1MY with the monoid map f−1MY → f−1OY → OX .

Given instead a (pre-)log structure MX on X there is a pushforward log structure

MY on Y . Writing still f∗ for the usual set-theoretic pushforward of sheaves, this

is the log structure associated to the fibre product (in the category of sheaves of

monoids on Y ) of the diagram

f∗MX

��
O∗Y //f∗O∗X

In either case, there is an induced map of log schemes (X,MX) → (Y,MY ).

Pullback and pushforward are functorial, and they are adjoint functors in the usual

way. Formation of the associated log structure from a chart or other pre-log structure

commutes with pullback.

A map of log schemes f : (X,MX) → (Y,MY ) such that MX ' f ∗MY is

called strict. A monoid P mapping to OY is a chart on Y if and only if the map

Y → Spec k[P ] is strict. Since strictness is preserved by composition, if (X,MX)→

(Y,MY ) is strict then P pulls back to a chart on X by X → Y → Spec k[P ].

If (X,MX) and (Y,MY ) are log schemes over a base (S,MS), they have a fibre

product log scheme

(X ×S Y, (MX ⊕MS
MY )a)

with underlying ordinary scheme X ×S Y and log structure generated by the fibred

sum of the diagram

MX

MY MS

OO

oo

of sheaves of monoids on X ×S Y , where we have written just MX , etc. for the

pullbacks of MX , etc. to X ×S Y .
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2.2.3 Stratification of fine log schemes

Let (X,M) be a fine log scheme. At any point x of X there is a stalkMx of the

log structure sheaf, which is a monoid in the natural way. Consider the group

Mgp
x /O∗X,x = (Mx/O∗X,x)gp.

This is a finitely-generated abelian group, as one may see by taking a finitely-

generated chart of M near x. Its rank we call the rank of M at x.

The rank ofM is an upper-semicontinuous function on X. Consequently there is

a (finite) stratification of X by locally closed subsets Xj on whichM has rank j. In

this stratification, if Z is a component of Xj and Z ′ is a component of Xk such that

the closure Z meets Z ′, then Z ′ is contained in Z, and j ≤ k.

If X is irreducible, there is some minimum rank r of M on X, and Xr is open

and dense in X. The complement

X −Xr =
⋃

j≥r+1

Xj

is a divisor on X, which we might call the locus Z(M) of the log structure on X.

We have r > 0 only if some elements of M map to the nilradical of OX .

For elaboration, see ([31], II.2.3).

Example II.14. In the notation of Example II.9, the rank zero stratum of the affine

plane X with its standard structure is the complement U ∩ V of the co-ordinate

axes. On U − V the rank of M is one, since the quotients Mgp
p /O∗X,p at each point

p ∈ U−V are copies of Z, generated by the monomial y. Likewise on V −U the rank

of M is one. These punctured lines together form the rank one stratum of (X,M).

At the origin o, which is the single point of X − (U ∪ V ), one has Mgp
o /O∗X,o ' Z2,

generated by the image of the standard chart N2. So the origin is the rank two

stratum of (X,M).
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Example II.15. We might instead give the plane X = Spec k[x, y] a non-standard

log structure M′ ⊆ OX generated by the monomial xy. That is, the log structure

is given by the chart k[xy] → k[x, y]. The difference from the standard structure

M is at the origin, where now the log structure M′ has rank one. So it is the two

co-ordinate axes together, including the origin of the plane, which are the rank one

locus of (X,M′). In particular this stratum is singular as a subscheme of X.

Example II.16. Consider the affine cone X = Spec k[x, y, z, w]/(xw − yz) over the

quadric surface, with (non-standard) chart given by the projection

f : Spec k[x, y, z, w]/(xw − yz)→ Spec k[x, y]

to the plane. The rank zero stratum of X is the inverse image of the rank zero

stratum xy 6= 0 of the plane, and the inverse image of the rank one stratum (x =

0, y 6= 0) ∪ (x 6= 0, y = 0) of the plane is a line bundle consisting of two components

Z,Z ′ of the rank one stratum X1 of X. Over the origin (x, y) = (0, 0) the fibre

f−1(0) of f is the plane Spec k[z, w]. The lines zw = 0, which are the closure of the

components Z,Z ′, are the rank two stratum X2. The complement of X2 in f−1(0) is

another component Z ′′ of X1, for on the locus zw 6= 0 in X the monomials x and y

are related by units.

2.2.4 Cospecialisation

A point x of a fine log scheme (X,M) which is in the closure of every component

of every stratum is called a central point for the log scheme. When there is such, the

stratum to which x belongs consists of central points. A monoid algebra Spec k[P ]

has a central point, namely the point corresponding to its maximal ideal P − P ∗.

Remark II.17. A point x always has a neighbourhood of which it is a central point:

delete the closures Z̄ of components of strata of X such that x 6∈ Z̄. This notion can
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simplify the local picture of the stratification of X, and appears in some basic local

results. For example, the restriction map M(U)/O(U)∗ →Mx/O∗X,x is an isomor-

phism if x is a central point of U , as we recalled in the proof of Proposition II.12.

Suppose X has a central stratum, with generic point x. Let ξ be the generic point

of a stratum of X. Then x lies in the closure of ξ, and there is a cospecialisation

map on stalks of the sheaf M

Mx →Mξ

which induces a surjection

P =Mx/O∗X,x → Q =Mξ/O∗X,ξ

modulo units of fine monoids. (See ([31], II.2.3.2).) In particular, there is a face

F ⊆ P , consisting of the images of elements of Mx that map to units under

Mx → OX,x → OX,ξ

which maps to the identity class in Q. Then Q = P/F . Recall this means that the

map P → Q then factors as

P → F−1P → Q

where P → F−1P is an inclusion inside P gp and F−1P → Q is the quotient of F−1P

by its unit group.

Suppose there are sections P,Q → M, that is, P,Q are made into good charts

(in the sense of Remark II.11), compatibly with the map P → Q. This amounts to

assigning values in O∗X,ξ for the elements of F . Conversely a chart P →Mx sending

F into O∗X,ξ induces a chart Q→Mξ.

Example II.18. This discussion generalises the situation in Example II.9. The chart

N2 = Nx⊕Ny is good at the origin of A2 = Spec k[x, y], and Nx is good on the open
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set y 6= 0. The maps

Nx⊕ Ny → Nx⊕ Zy → Nx

on charts take y to the identity 1 ∈ Nx. Different source charts Nx ⊕ Nu−1y (with

their obvious maps to k[x, y]) with the same quotient specialise y to different values

u.

2.2.5 Closed log subschemes

In the category of ordinary schemes, Z becomes a closed subscheme of X through

a map i : Z → X of schemes for which i∗OX → OZ surjects.

In the category of log schemes, one takes the following definition. A log scheme

(Z,MZ) becomes a closed log subscheme of (X,MX) through a map i : (Z,MZ)→

(X,MX) if i : Z → X makes Z a closed subscheme of X in the ordinary sense,

and the map on log structures i∗MX → MZ surjects. Geometrically this second

condition means that the locus of the log structure on Z becomes a closed subscheme

of the locus of the log structure on X. There is a largest such locus on Z, namely the

restriction of the locus on X. This is the case that i∗MX →MZ is an isomorphism;

that is, that the morphism of log schemes i is strict. Following Kato [19], we will say

that the closed log subscheme i : (Z,MZ) → (X,MX) is a closed embedding if i is

strict.



CHAPTER III

Logarithmic jets and arcs

We develop the theory of the log arc scheme J∞(X,M), of a log scheme (X,M)

over a field (Spec k, k∗). This builds upon the existing theory of log jet schemes

Jm(X,M).

The ordinary jet schemes Jm(X) parametrise the infinitesimally thickened points

Spec k[t]/(tm+1)→ X

of X, while the ordinary arc scheme J∞(X) parametrises the formal curves at points

of X. If an arc

Spec kJtK→ X

is a bit of a curve on X, then the m-jets are like sketches of bits of curves up to

mth order derivatives, possessing specified velocity, acceleration, etc., but not their

derivatives of all orders. An interpretation of the log jet schemes Jm(X,M) as

analogous parameter spaces in the category of log schemes was given by Karu and

Staal [16].

Log jet bundles were studied by Noguchi [30] in the normal crossing case, before

Kato’s formalism for log structures appeared, and work has continued in this con-

text, e.g. in [10]. The suggestion to found a general theory of log jet schemes using

23
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Kato’s log structures was offered by Vojta [33]. Taking up this proposal, the exis-

tence of the log jet schemes Jm(X,M), with (X,M) a log scheme over an arbitrary

base log scheme, was proved by his student Dutter [11], who constructed their co-

ordinate algebras by developing the theory of log Hasse-Schmidt differentials. This

was patterned after Vojta’s presentation [33] of ordinary jet schemes Jm(X) through

ordinary Hasse-Schmidt differentials. These differentials give co-ordinates on, and

explicit equations for, jet schemes. Looking at the strata of a fine log scheme gives

another important computational approach to log jet schemes.

We also elaborate on the theory of log smooth and log étale maps as they per-

tain to log jet scehemes. These morphisms were studied first by Kato [19]. Like

their counterparts for ordinary schemes, these maps behave well with respect to our

infinitesimal objects. The fundamental result on log smooth and log étale maps is

Kato’s Theorem III.18 characterising when a map of monoids induces a log smooth

or log étale map on monoid algebras. As the log geometry category has more smooth

objects than the ordinary category of schemes, so does it have more smooth or étale

morphisms, whose degeneracies as maps of ordinary schemes will be controlled by

the maps on log structures. For example, an equivariant blowup of a toric variety

is a log étale morphism. The general characterisation Corollary III.21 of log smooth

and log étale maps on log schemes follows from this study of maps of their charts,

that is, of monoid algebras.

We end this chapter with an application to log arc schemes. For ordinary arc

schemes there is a classical result of Kolchin [21] that the arc scheme of an irreducible

variety X over a field of characteristic zero is irreducible. For the log arc scheme of a

fine log scheme (X,M), (still in characteristic zero), an irreducibility result cannot

be expected without a non-degeneracy condition on the stratification of X, in view
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of our prior calculations. We introduce such a condition under the name dimensional

regularity, which is an “expected rank” condition on the strata of (X,M):

Definition III.1. (Definition III.47) Let Xj be the rank j stratum of an irreducible

fine log scheme (X,M). We say that (X,M) is dimensionally regular if codimXj +j

is constant, for all j for which Xj is nonempty.

We then show that this is necessary and sufficient:

Theorem III.2. (Theorem III.44) Let (X,M) be a fine log scheme, with X ir-

reducible. Then J∞(X,M) is irreducible if and only if (X,M) is dimensionally

regular.

The proof uses Kolchin’s theorem for ordinary arc schemes to deform a log arc

on (X,M) into general position in its stratum. Then we can deform it into the next

strata level, and repeat until it is in the minimum rank locus of (X,M).

3.1 Log jets and log differentials

We begin with the functorial characterisation of log jet schemes and follow with

their concrete realisation in terms of log Hasse-Schmidt differentials.

3.1.1 Ordinary jets and arcs

Let

jm = Spec kJtK/(tm+1),

for m ≥ 0. An ordinary k-valued m-jet on X is a map jm → X. That is, if X is

given over k by some equations f1, ..., fr = 0 in variables x1, ..., xs, then an m-jet on

X is an assignment of truncated series x1(t), ..., xs(t), defined up to order tm, with

co-efficients in k, to the variables such that the equations fj(x1(t), ..., xs(t)) = 0 are
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satisfied up to order tm. If we think of xi(t) as being given through its co-efficients

xi(t) = ai,0 + ai,1t+ ai,2t
2 + ...+ ai,mt

m

then these equations for the xi turn on substitution into equations for the co-efficients

ai,d. The m-jets then have as parameter space the quotient of

k[ai,d : 1 ≤ i ≤ s, 0 ≤ d ≤ m]

given by these equations. This quotient is the Hasse-Schmidt algebra of the affine

scheme X [33], and its spectrum is the scheme Jm(X) of m-jets of X.

More generally, an ordinary S-valued m-jet on X is a map S ×k jm → X. The

functor

S 7→ Hom(S ×k jm, X)

is representable, and we write Jm(X) for the (ordinary) jet scheme that represents

it. There are natural maps Jm(X) → Jn(X) for m ≥ n induced by the truncation

kJtK/(tm+1)→ kJtK/(tn+1).

An ordinary k-valued arc on X is a map

j∞ = Spec kJtK→ X

and an ordinary S-valued arc on X is a map S ×k j∞ → X. Concretely, such a

map has co-ordinates like as an m-jet does, but now the series xi(t) involved are not

truncated to any order. There is again a scheme of such maps, denoted J∞(X). It

is the projective limit of the spaces Jm(X) with their truncation maps.

For a detailed construction of these schemes and some of their basic machinery,

one might see [12].
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3.1.2 Log jets and arcs

Now let us give jm its trivial log structure, which as a sheaf is just a copy

kJtK/(tm+1)∗ = {a0 + a1t+ · · · amtm mod tm+1 such that a0 6= 0}

of the units in kJtK/(tm+1) at the sole point of jm. Let S be a scheme, made into a

log scheme through its final log structure OS. Recall from Section 2.2.2 that there

is a product log scheme of S and jm in the category of log schemes over (Spec k, k∗),

whose underlying ordinary scheme is S×k jm and whose log structure is the pushout

OS ⊕k∗ O∗jm → OS×kjm ' OS[t]/(tm+1)

of the respective log structures fibred over k∗. An S-valued log m-jet on (X,MX) is

then a map of log schemes

(S ×k jm,OS ⊕k∗ O∗jm)→ (X,MX).

The functor

S 7→ Homlog(S ×k jm, X)

(where we have left the log structures out of the notation on the right side) is repre-

sentable, and we write Jm(X,MX) for the log jet scheme that represents it. Again

there are truncation maps Jm(X,MX)→ Jn(X,MX) where m ≥ n.

Replacing everywhere jm by j∞ = Spec kJtK, one has the definition of an S-valued

log arc. The space of such is denoted J∞(X,MX), and it is the projective limit of

the schemes Jm(X,MX) with their truncation maps.

Example III.3. It is worth writing down explicitly the data of a k-valued log jet on

a log scheme (X,M). Working locally near the image of Spec kJtK/(tm+1) → X, we

may take X = SpecA with a chart P . Note that although with S = Spec k we have
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S×k jm = jm as schemes, the specified log structure on Spec k×k jm comes from the

product as log schemes; in fact it is the sum

k ⊕k∗ kJtK/(tm+1)∗
mult→ Ojm = kJtK/(tm+1)

of multiplicative monoids fibred over the units k∗, with log structure map given by

taking products in Ojm . (In particular, the log structure on Spec k ×k jm is not any

of the “obvious” choices, is not integral, and does not inject into Ojm .)

This log structure may be described, by shifting multiplicative constants to the

left factor, as the (non-fibred) product

k × (kJtK/(tm+1))∗/k∗ ' k × (1 + tkJtK/(tm+1))

of k and the principal units of kJtK/(tm+1), with the map to Ojm being just the

multiplication map

k × (1 + tkJtK/(tm+1))→ kJtK/(tm+1).

We note that the image of this multiplication map consists only of the units of

kJtK/(tm+1) together with zero.

Altogether, a map of log schemes

Spec k ×k jm → (SpecA,P a)

is equivalent to a commutative diagram

(3.1)

k × (1 + tkJtK/(tm+1))

mult
��

Poo

��
kJtK/(tm+1) A.oo

Here the bottom row is the map of the underlying ordinary jet and the top row is

the map on log structures. We will have occasion to refer to this diagram a number

of times.
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Example III.4. There is a similar description to Example III.3 for S-valued log m-

jets when S = SpecB is an affine scheme. Namely, such a log jet on the log scheme

(SpecA,P a) is equivalent to a commutative diagram

(3.2)

B∗ ⊕B∗ BJtK/(tm+1)∗

mult
��

Poo

��
BJtK/(tm+1) A.oo

The monoid top left is the global sections of the log structure on the product log

scheme SpecB ×k jm. The appearance of the unit group BJtK/(tm+1)∗ in place of

kJtK/(tm+1)∗ is due to the presence of the units on SpecB×k jm in the log structure.

See also [11], Definition 3.6 and following.

Remark III.5. One might also ask after (S,MS)-valued log m-jets (or arcs), with

different log structuresMS on S than OS. For given m, this functor on the category

of log schemes over (Spec k, k∗) is representable, say by log schemes (Ym,MYm).

Here the underlying scheme Ym is just the scheme Jm(X,MX) described above,

considering only the structure OS on S, because S 7→ (S,OS) is right adjoint to

the forgetful functor from log schemes to schemes (because (S,OS) is initial in the

category of log schemes underlain by S).

Further, the log structure MYm one obtains on Jm(X,MX) from this construc-

tion in the category of log schemes is just that pulled back from X via the map

Jm(X,MX) → X. Indeed, any map f : (Z,MZ) → (X,MX) factors through

(Z, f ∗MX), so a log S-jet γ on (X,MX) factors through (S ×k jm, γ∗MX), hence

an S-point of Jm(X,MX) factors through (S, (γπm)∗MX). It is for this reason, that

the log structure on Jm(X,MX) in this sense introduces no new information, that

we generally study Jm(X,MX) as an ordinary scheme and not a log scheme.



30

3.1.3 Log Hasse-Schmidt differentials.

The existence of log jet schemes relative to arbitrary morphisms (X,MX) →

(Y,MY ) was proven in [11] by construction in terms of log Hasse-Schmidt differen-

tials. This was modelled on the construction in [33] of ordinary jet schemes in terms

of ordinary Hasse-Schmidt differentials. For each m ≥ 0, one constructs locally the

mth (log) Hasse-Schmidt algebra, the spectrum of which is the scheme of (log) m-jets.

Locally, for X = SpecA affine, one has the log Hasse-Schmidt algebra HSmX (M),

relative to the base log scheme (Spec k, k∗), as follows. Start with the polynomial

ring over A on symbols dif and ∂jp, for every f ∈ A, p ∈ M(X), and 1 ≤ i, j ≤ m.

It is convenient to introduce notation d0f = f for every f ∈ A and ∂0p = 1 for every

p ∈M(X). Then take the quotient by the relations

(1) di(f + g) = dif + dig for f, g ∈ A,

(2) dic = 0 for c ∈ k and i ≥ 1,

(3) diα(p) = α(p)∂ip for p ∈M(X), and

(4) the ordinary and “logarithmic” Leibniz rules

dk(fg) =
∑

0≤i,j≤k
i+j=k

difdjg

for f, g ∈ A and

∂k(pq) =
∑

0≤i,j≤k
i+j=k

∂ip∂jq

for p, q ∈M(X).

Note that in the logarithmic Leibniz rule the terms ∂kp and ∂kq appear on the

right side with co-efficients 1 = ∂0q = ∂0p. In particular the case k = 1 asserts that

∂1(pq) = ∂1p+ ∂1q.
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One thinks of di as like a divided differential
1

i!
di, and ∂1 as the logarithmic differential

d log, where

d log f =
df

f
.

For i ≥ 2, the differential ∂i is not repeated logarithmic differentiation, but rather

the differential

∂ip =
diα(p)

α(p)

with a pole along the locus α(p) = 0.

One sees, using the ordinary and “logarthmic” quotient rules, that this construc-

tion localises properly, so that the spectra of the locally constructed mth log Hasse-

Schmidt algebras on some (X,M) glue to a global object, which is the space of log

m-jets.

Example III.6. Continuing Example III.3, in terms of the k-valued log jets on

(X,M), the connection between the points HSmX (M)→ k of the log Hasse-Schmidt

algebra and morphisms

P → k × 1 + tkJtK/(tm+1)

is that in the latter the first component corresponds to values for the elements α(p) =

d0α(p), and the co-efficients of the series in the second component correspond to

values for ∂ip.

Remark III.7. One sees easily from the description by Hasse-Schmidt algebras that

the truncation maps Jm(X,M)→ Jn(X,M) are affine morphisms: for locally on X

they just correspond to the maps HSnX(M) → HSmX (M) induced by identifying a

symbol dif or ∂jp in HSnX(M) with the same in HSmX (M). The existence of the log

arc scheme J∞(X,M), given the existence of the log jet schemes Jm(X,M), is then

immediate.
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Remark III.8. As above, one has

∂1

(∏
p
ej
j

)
=
∑

ej∂1pj.

For k ≥ 2 one does not have the same identity, but may still write

∂k

(∏
p
ej
j

)
=
∑

ej∂ipj +Gk

for some universal polynomial Gk in the lower-order differentials ∂ipj with i < k and

the exponents ej.

Remark III.9. In general one may not replace M(X) by an arbitrary chart for M

in the construction of HSmX (M). For instance, in Example II.10 when m = 1 the

chart N2 gives both log differentials ∂1x and ∂1(x− 1), while the chart N gives only

their sum ∂1(x(x− 1)) = ∂1x+ ∂1(x− 1). However, charts will do for computing the

Hasse-Schmidt algebra locally on X.

Remark III.10. So far we have preferred multiplicative notation for our monoids,

since in many cases we think of them just as sub-monoid sheaves of (OX , ·). The

log derivative ∂ = ∂1 gives an isomorphism from an integral monoid written multi-

plicatively to the same monoid written additively. Where we interpret the monoid

written multiplicatively in terms of monomials, this interprets the monoid written

additively as a monoid of first-order log differentials.

3.1.4 Log jets on strata

Every log jet on (X,M) has an underlying ordinary jet, obtained by “forgetting”

the map on log structures. That is, there is a natural map

Jm(X,M)→ Jm(X)

of schemes over X. It is also the map induced on log jet spaces by the canonical log

scheme morphism (X,M) → (X,O∗X). Typically this map is neither surjective nor
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injective: not every ordinary jet underlies a log jet, and those that do may become

log jets in more than one way.

With some minor hypotheses on a fine log scheme (X,M), there is a simple

abstract description of the natural map Jm(X,M) → Jm(X) in terms of the strat-

ification of X introduced in Section 2.2.3; namely, on each stratum it is an affine

bundle map. To see this, let us study the log jets on (X,M) extending a given

ordinary jet γ. For convenience of notation let us suppose that γ is k-valued, i.e.

that it gives a jet at a closed point x of X. But really the following discussion makes

sense for the generic point ξ of the stratum to which x belongs, replacing k with the

residue field of ξ.

Example III.11. Here is the gist of the following in terms of a “good-enough” chart

on X. Suppose (X,M) = (SpecA,P a) is affine, and γ : jm → X is a jet at the point

x of X. Considering a log jet underlain by γ, according to (3.1) the map on log

structures is a monoid morphism

φ : P → k × 1 + tJkK/(tm+1).

The first component of this map is evaluation at the point x. There is a prime ideal

I of P which maps to non-units under φ, that is, to elements with first component

zero. These then map to zero in kJtK/tm+1. We see that the underlying ordinary

jet γ lies generically in the locus α(I) ⊆ A. This is the condition γ must satisfy to

underlie a log jet.

Let F = P − I be the complementary face of the prime ideal I. These are the

elements which map to units. Suppose now that the projection P gp → P gp/F to the

quotient generated by F in P gp admits a section. For example, if P is a good chart

at x, then F = {1} and this is trivial. Then the second component of the morphism
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φ is uniquely determined by an arbitrary group morphism

P gp/F → 1 + tJkK/(tm+1).

Note that the source group P gp/F has rank equal to the rank of the log structure at

x. This computes the fibre of the map Jm(X,M)→ Jm(X) at x.

So, we consider the maps of log schemes jm → X with given underlying ordinary

jet γ : jm → X. The map on log structure sheaves is a monoid morphism

φ :Mx → k × (kJtK/(tm+1))∗/k∗

with the following properties. First, on composition with the multiplication to

kJtK/(tm+1), the non-units of Mx map to zero, because the image of the multi-

plication map consists only of units and zero. So φ annihilates the maximal proper

ideal Mx −M∗
x of Mx on composition with the map to kJtK/(tm+1). In particular,

the underlying ordinary jet γ lies in the locus α(Mx −M∗
x) = 0 in X. Second,

the map φ is O∗X,x-equivariant, where O∗X,x acts on the second factor of the target

through γ.

Let us write φ = α × β as a product of two monoid morphisms. Note that α is

the evaluation map at x. For as α sends Mx −M∗
x to zero and agrees with

γ :M∗
x = O∗X,x → k = OX,x/mx,

it factors through the map OX → OX,x/mx. In particular, this α is compatible with

the log structure morphism αX,x :Mx → OX,x.

We are interested then in characterising the possible monoid morphisms

β :Mx → (kJtK/(tm+1))∗/k∗ ' 1 + tJkK/(tm+1)

which are O∗X,x-equivariant. Since the target of β is a group it is the same to replace

Mx byMgp
x . Assume either that k has characteristic zero, or that k has characteristic
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p > 0 and Mgp
x /O∗X,x has no p-torsion. Then the torsion part T of Mgp

x /O∗X,x has

order relatively prime to the order of the torsion part of 1 + tJkK/(tm+1), so a map

β :Mgp
x /O∗X,x → 1 + tJkK/(tm+1)

factors through the quotient by T , hence uniquely determines a map β given a chosen

splitting of Mgp
x → (Mgp

x /O∗X,x)/T . Therefore the possible β are parametrised by

affine space Amj, where j = rankMgp
x /O∗X,x is the rank of M at x.

Proposition III.12. ([16] 3.2) Let (X,M) be a fine log scheme and, for m ≥ 0

or m = ∞, write Jm(X,M)j for the space of log m-jets or log arcs over the rank j

stratum Xj. Then:

(1) If char k = 0 or char k = p and Mgp/O∗X has no p-torsion on Xj, the natural

map Jm(X,M)j → Jm(Xj) is an affine bundle map with fibre Amj.

(2) The natural map J∞(X,M)j → J∞(Xj) is an affine bundle map with fibre the

space of maps Zj → 1 + tkJtK.

Proof. The above discussion, which is the case m ≥ 0, applies with the usual nota-

tional changes to the case m =∞. In this case 1 + tkJtK has no torsion, independent

of the characteristic of k, so we do not need an additional hypothesis in (2).

Corollary III.13. Assume the notation and hypotheses of Proposition III.12(1).

Then

dim Jm(X,M)j = dim Jm(Xj) +mj,

and, writing dim Jm(X,M)smj for the log m-jets over the smooth locus of Xj,

dim Jm(X,M)smj = (m+ 1)(j + dimXj)− j.
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Remark III.14. In the case where char k = p and Mgp
x /O∗X,x has a p-power-torsion

subgroup Tp, there is in addition to the map

β̃ : (Mgp
x /O∗X,x)/T → 1 + tJkK/(tm+1)

some data to a log m-jet given by a map Tp → 1 + tkJtK/(tm+1). When m is large

enough compared to n the truncation map Jm(X,M)j → Jn(X,M)j has in its image

only log n-jets corresponding to the trivial map on Tp, because under the map

1 + tkJtK/(tm+1)→ 1 + tkJtK/(tn+1)

if m−n ≥ p an element not 1 has its torsion order decreased. This gives an alternate

explanation of Proposition III.12(2) in the case of positive characteristic.

Example III.15. Here is an illustration of this in terms of differentials in a simple

case. Let (X,M) be the affine line Spec k[x] with its standard structure, generated

by x. Both J1(X,M) and J1(X) are trivial A1-bundles over X. The former we may

give co-ordinates d0x = x and ∂1x, and the latter, d0x and d1x = d0x · ∂1x. In other

words, the map J1(X,MX)→ J1(X) here is one chart

k[d0x, d1x] = k[d0x, d0x · ∂1x] ↪→ k[d0x, ∂1x]

of the blowup of an affine plane, at the zero jet in J1(X). All of the log jets at

x = 0 map to the zero jet in J1(X), and otherwise their co-ordinate ∂1x is an

arbitrary element of k. An ordinary jet at x = 0 which is non-zero (that is, does not

generically lie in the stratum x = 0) underlies no log jet.

3.2 Log smooth and étale maps

The notions of unramified, smooth, and étale maps in the log scheme category

may be defined by infinitesimal lifting properties in the same way as in the ordinary
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scheme-theoretic sense. That is, (X,MX) → (Y,MY ) is log unramified, resp. log

smooth, resp. log étale if whenever one has a diagram

(T ′,MT ′) //

��

(X,MX)

��
(T,MT ) //

88

(Y,MY )

where (T ′,MT ′) → (T,MT ) is an infinitesimal thickening, locally on T there is at

most one, resp. at least one, resp. exactly one lift (T,MT ) → (X,MX) making

a commutative diagram. Many basic properties of differentials on log schemes will

then follow formally in the usual way; see for example [19] or [31].

Remark III.16. What one must supply to make this work precisely is to say what “in-

finitesimal thickening” means in the log scheme category. Certainly i : (T ′,MT ′)→

(T,MT ) should be underlain by an infinitesimal thickening, so that I = ker(OT →

OT ′) is nilpotent, and i should be a strict morphism, so that it is a closed embedding

in the log scheme sense.

However, with only this much still much degeneracy is possible in the log struc-

tures MT ,MT ′ . Following ([31], IV.2.1.1) we also require that the subgroup

1 + I = ker(O∗T → O∗T ′) ⊆ O∗T

act freely on MT . The significance of this technical condition is in the details, but

among its implications are: (1) that i is an exact morphism, meaning that a map to

MT is determined by its composite maps to MT ′ and Mgp
T , (2) that 1 + I injects

into Mgp
T , and is the kernel of the induced map Mgp

T → M
gp
T ′ , and (3) that 1 + I

behaves like a kernel of the map MT →MT ′ in that if t1, t2 ∈ MT have the same

image in MT ′ then t1 = ut2 in MT for some u ∈ 1 + I. For these facts see ([31],

IV.2.1.2). None of these very mild consequences are automatic of a strict morphism

underlain by an ordinary infinitesimal thickening: many pathologies are possible in
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the category of monoids. But, crucially, they will allow us to have the important

Theorem III.18 characterising when maps of monoid algebras are log étale or log

smooth.

One observation is that the log smooth or log étale maps which are also smooth

or étale in the ordinary sense are the strict ones:

Proposition III.17. ([19] 3.8) Let f : (X,MX)→ (Y,MY ) be a morphism of fine

log schemes whose underlying map X → Y is smooth, resp. étale. Then f is log

smooth, resp. log étale if and only if f is strict (i.e., f ∗MY 'MX).

Proof. In an infinitesimal lifting situation one has a lift, resp. unique lift, of the

underlying map on schemes, and therefore a lift, resp. unique lift as log schemes if

and only if there is a map, resp. a unique map, on log structures compatible with

the underlying map of schemes. This happens if and only if f is strict.

Here is the important characterisation of when a map of monoid algebras is log

smooth or étale.

Theorem III.18. ([19] 3.4; [31] IV.3.1.9) Let φ : Q→ P be a morphism of finitely

generated monoids, f : Spec k[P ] → Spec k[Q] its induced map on monoid algebras,

and φgp : Qgp → P gp its induced map on group completions. Then:

(1) f is log étale if and only if φgp has finite kernel and cokernel, of orders prime to

p if char k = p > 0. In particular, if φgp is an isomorphism then f is log étale.

(2) f is log smooth if and only if φgp has finite kernel, and the kernel and the torsion

subgroup of the cokernel have orders prime to p if char k = p > 0. In particular,

when char k = 0, if φgp injects then f is log smooth.
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Proof. We fill out the proof sketch of ([19], 3.4), wherein Kato works only étale-

locally. To conclude the argument in the more difficult Zariski-local case, see ([31],

IV.3.1.9).

Let an infinitesimal lifting diagram be given. We may assume that I2 = 0. A

map (T,MT ) → (X,MX) = (Spec k[P ], P a) is completely determined by the map

P → MT . Since (T ′,MT ′) → (T,MT ) is exact, such a P → MT is equivalent

to the given map P → MT ′ together with a map P → Mgp
T lifting Q → Mgp

T ′ .

Since the targets of these last are groups, it is the same to replace P,Q by their

group completions. Hence the infinitesimal lifting problem is equivalent to the lifting

problem for the diagram

MT ′ P gpoo

MT

OO

Qgp

OO

oo

of monoids.

First, kerφgp maps to ker(MT →MT ′) = 1 + I in MT . But 1 + I = 1 + I/I2

does not have torsion elements if char k = 0, or torsion elements of order prime to

char k = p, so actually the finite group kerφgp maps to 1 ∈MT . We get an induced

map from Imφgp ⊆ P gp to MT .

Second, choose a minimal generating set p1, ..., pr ∈ P gp for the finite abelian

group cokerφgp and lift their images in MT ′ to some elements tj in MT . If pj has

finite order ej, so that p
ej
j = qj ∈ Imφgp, then t

ej
j = ujq

ej
j for some unit uj ∈ 1 + I.

Hence we get our required lift P gp →MT by taking pj to vjqj if O∗T has a eth
j root vj

of uj, (and lifting pj arbitrarily in the case it does not have finite order). Under the

hypothesis on cokerφgp, this can be arranged by passing to an étale neighbourhood

in T . The conclusions follow.
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Example III.19. The monoid algebra Spec k[P ] with its standard structure is log

smooth over k if the torsion part of P gp is annihilated on tensoring with k. In

particular, in characteristic zero every monoid algebra is log smooth over k.

Example III.20. The normalisation map of the plane cuspidal cubic with its stan-

dard structure as a monoid algebra (see Example II.2) is log étale, because the

saturation map P sat → P of an integral monoid induces an isomorphism on their

group completions. More generally, every log scheme (X,MX) has a universal map

from a saturated log scheme (Xsat,MXsat), and this is log étale ([31] IV.3.1.12).

Corollary III.21. ([19] 3.5, [31] IV.3.1.14) Let f : (X,MX) → (Y,MY ) be a

map of log schemes, with finitely generated charts P,Q on X, Y such that the map

MY → f∗MX on log structures is induced by some φ : Q→ P . Then

(1) f is log étale if φgp has finite kernel and cokernel, of orders primes to p if

char k = p > 0, and the map X → Y ×Spec k[Q] Spec k[P ] is étale in the ordinary

sense.

(2) f is log smooth if φgp has finite kernel, and the kernel and the torsion subgroup

of the cokernel have orders prime to p if char k = p > 0, and the map X →

Y ×Spec k[Q] Spec k[P ] is smooth in the ordinary sense.

Proof. Follows from Theorem III.18, the formal fact that log smoothness and log

étaleness is preserved by base change, and the fact that X → Y ×Spec k[Q] Spec k[P ]

is strict (with Proposition III.17).

Remark III.22. In fact, there is a converse to the criterion Corollary III.21: if f

is log smooth or log étale, then there exists a chart Q → P for f satisfying the

given conditions. In this case, in (2) one can even take a chart Q → P such that

X → Y ×Spec k[Q] Spec k[P ] is étale. For one may enlarge a given chart P by units
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u, u−1 ∈ O∗X , thickening Spec k[P ] by a factor (A1)∗, until X → Y ×Spec k[Q] Spec k[P ]

is smooth of relative dimension zero.

Remark III.23. ([20] 11.6, [29] 2.6) For fine saturated log smooth schemes, the log

structure is necessarily the pushforward of the trivial structure on its rank zero

stratum.

3.2.1 Log arcs and log étale maps

Having introduced log jet and log arc schemes, our special interest in log étale

maps arises from the following proposition, which is a formal analogue of the same

fact for ordinary étale maps and ordinary jet and arc spaces.

Proposition III.24. Let f : (X,MX)→ (Y,MY ) be a log étale map of log schemes.

Then the induced maps fm : Jm(X,MX)→ Jm(Y,MY ) for m ≥ 0 or m =∞ make

the diagram

Jm(X,MX) //

��

Jm(Y,MY )

��
X // Y

a fibre square.

Proof. For m ≥ 0 this follows from the functorial characterisation of log jet spaces

and the definition of log étale maps. More precisely, an S-point of X ×Y Jm(Y,MY )

is naturally a diagram of log schemes

S ×k j0
//

��

X

��
S ×k jm // Y

(where we have omitted the log structures from the notation) because of the natural

correspondences

Hom(S,X) = Hom(S, J0(X,MX)) = Homlog(S ×k j0, X)
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and

Hom(S, Jm(Y,MY )) = Homlog(S ×k jm, Y ).

Now S ×k jm → S ×k j0 is a log thickening, by Proposition III.25 following. So

if X → Y is log étale then such diagrams biject naturally with log scheme lifts

S ×k jm → X, which are the same things as S-points of Jm(X,MX).

Given this, the assertion of the proposition in the case m =∞ follows on taking

the projective limit of the maps on log jet spaces.

Proposition III.25. For all 0 ≤ n ≤ m the truncation maps

πmn : (S ×k jn,OS ⊕k∗ O∗jn)→ (S ×k jm,OS ⊕k∗ O∗jm)

are log infinitesimal thickenings.

Proof. Obviously the underlying morphism S ×k jn → S ×k jm is an infinitesimal

thickening in the usual sense. Next, πmn is strict if OS ⊕k∗ O∗jm as a monoid sheaf on

S ×k jn generates the log structure OS ⊕k∗ O∗jn . This is true because the sheaf O∗jm

on jn generates the trivial structure O∗jn .

One sees easily that the group 1 + tn+1kJtK/(tm+1) acts freely on the log structure

OS⊕k∗kJtK/(tm+1)∗, because it does on (kJtK/(tm+1))/k∗ ' 1+tkJtK/(tm+1), satisfying

the further condition of Remark III.16.

Example III.26. Consider one chart f : Spec k[x, y]→ Spec k[x, xy] of the blowup

of the plane at the origin, with their standard log structures. The map f is log étale,

by Theorem III.18. For the map f is the monoid algebra morphism induced by the

inclusion

φ : Nx⊕ Nxy → Nx⊕ Ny

of monoids, and φgp is an isomorphism (it is a unimodular linear transformation on

Zx⊕Zy). Of course, the map of schemes underlying f is far from étale at the origin.
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According to Proposition III.24, the induced maps fm on log m-jet spaces are

base changes of f . That is, along the exceptional divisor E = (x = 0) ⊆ Spec k[x, y]

the map fm is just an A1-bundle. So fm gives an isomorphism from the log jets at

any point of E to the log jets at the origin of Spec k[x, xy]!

We can describe this isomorphism in co-ordinates. At the point y = 0 on E, a

k-valued log jet γ is a pair of principal series x(t), y(t) ∈ 1 + tkJtK/(tm+1), and the

image fmγ is the pair x(t), xy(t) = x(t)y(t). Away from y = 0, a k-valued log jet γ

on E is a principal series x(t) and a series

y(t) = d0y + d1yt+ d2yt
2 + ... = (d0y)(1 + ∂1yt+ ∂2yt

2 + ...)

with d0y 6= 0, and the image fmγ is the pair

x(t), x(t)y(t)/(d0y),

or x(t), x(t)y(t) mod k∗, of principal series. In any case the series x(t) is a unit of

kJtK/(tm+1), so that the data of fmγ conversely determine γ, by associating the pair

x(t), xy(t)/x(t) to a given jet x(t), xy(t). In additive notation, this is the more famil-

iar statement that, for a group (G,+), the map (x, y)→ (x, x+y) is an automorphism

of G2.

This behaviour is very different from that of the maps f induces on ordinary jets

[23], where the jets γ on E break into piecewise Ae-bundles over jets at the origin of

Spec k[x, xy] according to the contact order e = ordt x(t) of γ with E.

Several times so far in calculating with log jet or arc schemes we have replaced

a monoid P with its group completion P gp. The following lemma gives a precise

sense in which the log jets or arcs of a fine log scheme typically depend only on the

group completion of the log structure. According to Proposition III.17, the map f



44

appearing in it is not a log étale map (it is étale in the ordinary sense but not strict),

although the hypothesis on φgp is the same as in Theorem III.18(1).

Lemma III.27. Let φ : M → M′ be a map of fine log structures on X, with f :

(X,M′) → (X,M) the corresponding map of log schemes. (That is, the underlying

map on schemes is the identity on X.) Assume that the induced map

φgpx :Mgp
x →M′gp

x

at some point x has finite kernel and cokernel, of orders prime to p if char k = p.

Then near x, for m ≥ 0 or m =∞ the maps

fm : Jm(X,M)→ Jm(X,M′)

are isomorphisms.

Proof. The map φgpx has the same kernel and cokernel as the group completion of the

map

φx : P =Mx/O∗X,x → Q =M′
x/O∗X,x,

since φx is an isomorphism on the units O∗X,x at the stalks of the two log structure

sheaves. So by hypotheses we have a map P → Q such that the induced map

P gp⊗Z k → Qgp⊗Z k is an isomorphism. In particular the map P gp⊗Z k → Qgp⊗Z k

is given by an integer matrix invertible over k.

It follows that the log Hasse-Schmidt algebras HSmX (M) and HSmX (M′) calculated

from P and from Q are equal. For as the first-order log differential ∂1 is a monoid

morphism from P or Q to P gp ⊗Z k or Qgp ⊗Z k, we see that we get the same first

log Hasse-Schmidt algebra HS1
X(M) = HS1

X(M′). In view of Remark III.8, we

then have HSmX (M) = HSmX (M′) for m ≥ 1 by induction, because the map on log

differentials ∂mP → ∂mQ is given, up to a polynomial in lower-order differentials, by

the same matrix as the map on lattices ∂1P → ∂1Q inside P gp⊗k Z→ Qgp⊗k Z.
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3.2.2 Log blowups

Let P be a fine saturated monoid, Spec k[P ] its monoid algebra. (We could also

work over Z instead of a field k.) Let I be an ideal of P . It generates an ideal (I) of

k[P ], and the blowup

BlI(P ) = Proj⊕n(I)n

has a covering by affine open sets

Spec k[P 〈q−1I〉],

for q ∈ I running over a generating set, where P 〈S〉 denotes the saturation of the

monoid generated by P and a fractional ideal S ⊆ P gp inside P gp. Each chart comes

with a dominant map

Spec k[P 〈q−1I〉]→ Spec k[P ]

induced by P ↪→ P 〈q−1I〉. This morphism is not strict: the standard log structure

on the source is generated by the chart P 〈q−1I〉 and not just P . Hence the standard

log structure on BlI(P ) is not that pulled back from P .

Since the ideal I becomes principal in P 〈q−1I〉, generated by q, we see that these

affine charts construct the log blowup in the sense of the universal fine saturated log

scheme wherein I becomes principal.

The notion of log blowups was introduced by Kato in his unpublished paper [18].

See also [17] for an exposition on which ours is based.

Example III.28. Let P = N2 have monoid algebra Spec k[x, y] with its standard

structure. Its blowup at the maximal ideal (x, y) of P is covered by two charts,

namely those given by the fractional ideals (x, yx−1) and (y, xy−1). We get the usual

toric blowup of the origin with standard structures.
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Remark III.29. Spec k[P 〈(pq)−1I〉] is an open subset of Spec k[P 〈q−1I〉] if both p, q ∈

I, since then P 〈(pq)−1I〉 is generated by P, p−1, q−1. This explains how the affine

charts glue, as well as why it’s enough to consider only generators of I in our affine

cover.

Remark III.30. Suppose that p ∈ P − P ∗ becomes a unit in P 〈q−1I〉, i.e. that

p−1 ∈ P 〈q−1I〉. This means that some power p−n lies in the (possibly unsaturated)

monoid generated by P, q−1I. So p−n = p1q
−1q1 for some p1 ∈ P, q1 ∈ I. This means

that q = pnp1q1 in P . Since p 6∈ P ∗, we see that q is properly divisble as an element

of I (by an element of P ).

It follows that BlI(P ) is covered by maximal charts Spec k[P 〈q−1I〉] where q ranges

over indivisible elements of I as an ideal (meaning that q is not properly divisible in

P by an element of I), and further that

P 〈q−1I〉∗ ∩ P = P ∗.

Example III.31. If P is not saturated, the monoids P 〈q−1I〉 for q irreducible in I

need not be maximal. For example, let P = {0, 2, 3, ...} ⊆ N. The log blowup at its

maximal ideal I = {2, 3, ...} ⊆ P corresponds to the normalisation map Spec k[t]→

Spec k[t2, t3] = Spec k[P ]. Here the chart P 〈t−2I〉 is the whole blowup, and P 〈t−3I〉

is the open subset Spec k[t, t−1].

Example III.32. It is possible to have P ∗ = 1 and still have P 〈q−1I〉 not sharp. For

example, let P be generated by monomials y, xy, x2y, let I = P − 1 be its maximal

ideal. Then q2 = y · xy2, so 1 = q−1y · q−1xy2. So both q−1y = x−1 and q−1xy2 = x

are units in P 〈q−1I〉.

Remark III.33. The blowup we have defined stays inside the category of fine satu-

rated log schemes. There is also a notion of unsaturated blowup. Compare Proposi-
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tion III.36.

Remark III.34. Let us consider how strata behave under a blowup chart

Y = Spec k[P 〈q−1I〉]→ X = Spec k[P ].

Recall that the strata components of a fine sharp monoid algebra Spec k[Q] biject

with the faces of the monoid Q. Under this bijection a face F of Q corresponds to

the stratum component of Spec k[Q] on which F is invertible. This correspondence

is inclusion-preserving in the sense that if one has a containment of faces then the

closures of the corresponding strata components have the same containment.

For a face F of P , let the extension F e of F in P 〈q−1I〉 denote the smallest face

(not necessarily proper) in P 〈q−1I〉 which contains it. We say that F appears in

P 〈q−1I〉 if F, F e have the same dimension; equivalently, if F is not contained in the

relative interior of a face of P 〈q−1I〉 of larger dimension. We say that a face F ′ of

P 〈q−1I〉 is a new face if it is not the extension of a face of P ; equivalently, if F ′ ∩ P

has smaller dimension than F ′.

With this terminology we have the following description of the strata of the log

blowup chart Y → X. The stratum component Z in X corresponding to F is in

the image of the blowup chart Y → X if F appears in P 〈q−1I〉, and not if not.

In the case that it does, the extension F e is the face of P 〈q−1I〉 corresponding to

smallest stratum of the fibre over Z. If F ′ is a new face of P 〈q−1I〉 containing F e,

then the stratum component Z ′ in Y corresponding to F ′ is part of the exceptional

locus of the map Y → X, and maps to Z ⊆ X. (Faces containing F e which are

not new correspond to the transforms of strata components in X which contain Z

in their closure.) In particular, in a log blowup strata map generically onto strata,

and furthermore the fiber over Z in Y is constant; for this description depends only
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on the face F corresponding to Z, and not to any point x ∈ Z.

For a fine saturated log scheme (X,M) one constructs the blowup of X along an

ideal sheaf I ⊆ M as follows. Take local charts U → Spec k[P ] and blow up the

preimage I of I in P . Then fibre U over this, U ×Spec k[P ] BlI(P ). Local universality

for blowups of monoid algebras implies that the resulting pieces glue together to a

log scheme BlI(X,M), with a standard structure given by the chart morphisms to

the pieces BlI(P ).

Unlike ordinary blowups for ordinary schemes:

Proposition III.35. Log blowups are log étale.

Proof. Log blowups are modelled locally on chart morphisms that induce isomor-

phisms on groups, which are log étale by Theorem III.18.

We note a few basic facts about log blowups to place them in some context.

Proposition III.36. ([29] 4.3) Let (X,M) be fine saturated log regular, I a coherent

ideal of M. The log blowup (X̃, M̃) → (X,M) is underlain by a map of schemes

that factors as X̃ → Z → X, where Z → X is the blowup along IOX and X̃ → Z is

normalisation.

Proof. We note that the proof in the reference uses Kato’s characterisation of log

regularity in terms of the vanishing of certain Tor groups ([20] 6.1.iii).

Proposition III.37. ([17], 3.8) The log blowup BlI(X,M)→ X is universal among

fine saturated log schemes over X for which the ideal I ofM is locally principal.

This universality means that log blowups of fine saturated log schemes behave

like their ordinary counterparts, despite the normalisation step in Proposition III.36.

One gets formally many similar results. For example, given two ideals I, I ′ of M,
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the blowup along I and then along (the pullback of) I ′ and the blowup along I ′ and

then I are equal. In fact, both are equal to the blowup along the ideal generated by

I, I ′ together in M ([17], 3.10).

The next proposition characterises, in view of Theorem III.18, the log étale maps

on monoid algebras which are log blowups.

Proposition III.38. ([17], 3.12) For a map Q → P of fine saturated monoids

inducing an isomorphism Qgp → P gp, the morphism Spec k[P ] → Spec k[Q] is an

open subset of a log blowup.

Proof. Let P be generated in P gp = Qgp by Q and fractions aib
−1 with ai, b ∈ Q.

The required blowup is along the ideal generated by ai’s and b.

3.3 Log arcs for monoid algebras

The log jet and log arc spaces of a monoid algebra Spec k[P ] are simple to describe,

because a map of log schemes S ×k jm → Spec k[P ] is completely determined by the

map on log structures P → OS ⊕k∗ O∗jm . The map to the first factor (defined up to

scaling by k∗) is the evaluation map of an S-point of Spec k[P ], and the map to the

second factor (defined up to scaling by k∗) is typically parametrised by affine space.

Proposition III.39. Let P be a monoid, not necessarily finitely generated or inte-

gral, X = Spec k[P ] its monoid algebra, with the standard log structure M generated

by P , and P gp the group completion of P . Then:

(1) For m ≥ 0 or m =∞, the k-rational points of Jm(X,M) are the trivial bundle

over X with fiber the space of maps P gp → 1 + tkJtK/(tm+1).

(2) Assume m = ∞, or else m ≥ 0 and either char k = 0 or char k = p and P is

p-power-saturated, (that is, if f ∈ P gp has fp ∈ P int then in fact f ∈ P int). If
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P gp has finite rank, the fiber of Jm(X,M)→ X is irreducible, hence Jm(X,M)

is irreducible if X is.

Proof. The data of a k-valued log jet or arc on X consists of a diagram

k × (1 + tkJtK/(tm+1))

��

P

��

α×βoo

kJtK/(tm+1) k[P ]oo

Such a diagram is completely determined by the top arrow α × β. Now α : P → k

is a point of X and β is a map P → 1 + tkJtK/(tm+1), equivalently a map

β : P gp → 1 + tkJtK/(tm+1).

So Jm(X,M) is the bundle of such maps β. This gives the claim (1).

For the second, the maps β factor through the quotient of P gp by its torsion in

every case except when char k = p, m ≥ 0, and P gp has p-torsion. But the presence

of p-torsion in this case is what is ruled out by the saturation assumption on P . So

the maps β are just from a free group, and the claim follows.

Remark III.40. That the log jet spaces are locally affine bundles over Spec k[P ]

when char k = 0 or char k = p and P gp has no p-torsion, as follows from Proposi-

tion III.39(1), is another expression of the fact that Spec k[P ] is log smooth over k

with these hypotheses (Example III.19).

Remark III.41. Here is an interpretation of the triviality of the bundle

J∞(X,M)→ X = Spec k[P ]

over the monoid algebra X. The canonical forgetful map J∞(X,M) → J∞(X)

induces a map

T (J∞(X,M))→ T (J∞(X))
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on their corresponding total tangent spaces. Concretely, a k-point of T (J∞(X,M))

is a collection of principal series

plog(s, t) = 1 +
∑
n≥1

(∂0,np+ ∂1,np s)t
n

and values d0p = d0,0p+ d1,0p s satisfying some conditions (the series plog(0, t) define

a log arc on X, etc.), and the map to T (J∞(X)) multiplies these to give series

p(s, t) =
∑
n≥0

d0,0p∂0,np t
n + (d0,0p∂1,np+ d1,0p∂0,np)st

n.

Here the series

p(0, t) =
∑

d0,0p∂0,n t
n

give an ordinary arc on X at the point p = d0,0p, and the co-efficient series

∑
(d0,0p∂1,np+ d1,0p∂0,np)st

n

of s gives a tangent direction in T (J∞(X)) at that arc. What we wish to observe is

that if d0,0p = 0, that is, if the arc (log or ordinary) lies in a stratum with p = 0, then

the co-efficient of s does not depend on the numbers ∂1,np, but only the numbers ∂0,np

and the scaling factor d1,0p. In other words, it depends only on the log arc plog(0, t)

and not on the tangent direction normal to p = 0 for plog(0, t). Geometrically this

means that the map

T (J∞(X,M))→ T (J∞(X))

factors through piecewise morphisms (on strata)

J∞(X,M)→ T (J∞(X)).

This interprets a log arc (plog(t)) alone as specifying an ordinary arc inside a stratum

Xj of X together with a deformation of that arc into the rank zero stratum Xgp of

X (where all d0,0p 6= 0).
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Remark III.42. Continuing the last Remark, it may be interesting to further study

the natural map J∞(X,M) → J∞(X) through its induced maps on (ordinary) jet

or arc schemes, particularly the map

J∞(J∞(X,M))→ J∞(J∞(X)).

This expectation is based in part on the above picture of the map J∞(X,M) →

J∞(X) as a kind of blowup, and the usefulness of motivic integration and arc schemes

in general for proper birational maps of varieties. For another part, the “wedge

scheme” J∞,∞(X) = J∞(J∞(X)) of X is less well understood than the arc scheme

J∞(X) of X, especially in regard of its behaviour under proper birational maps, but

when (X ′,M′)→ (X,M) is log étale the induced map

J∞(J∞(X ′,M′))→ J∞(J∞(X,M))

should be simpler to analyse.

In the case that the monoid P is finitely generated, but Spec k[P ] has a non-

standard log structure generated by only a subset of its elements, in general the

fibers of its log jet and log arc spaces will vary.

Proposition III.43. Let P be a fine monoid, X = Spec k[P ] its monoid algebra

over a perfect field k. Let B = {x1, ..., xr, z1, ..., zs} be a generating set for P , and

let the (typically non-standard) log structure M on X be generated by the elements

x1, ..., xr. Assume that X is irreducible and that the open set U = (z1z2 · · · zs 6= 0)

meets every component of every stratum Xj of X. Then J∞(X,M) is irreducible.

Proof. By hypothesis, U ∩Xj is dense in Xj for each j. By Kolchin’s theorem, the

ordinary arcs on Xj ∩ U are then dense in the ordinary arc space of Xj. In view of

Proposition III.12, it is now enough to show that the log arcs over U are irreducible.
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But after deleting the locus z1z2 · · · zs = 0 what remains is isomorphic to X with its

standard structure as a monoid algebra, so this follows from the last proposition.

This situation can occur for example when Spec k[P ] is given a non-standard log

structure arising from a face F of P generated by elements x1, ..., xr ∈ F .

3.4 Irreducibility over fine log schemes

As an illustration of the theory we have been developing, we consider the question

of irreducibility for log arc schemes. For ordinary arc schemes in characteristic zero, a

theorem of Kolchin in differential algebra [21] gives the answer: the arc scheme J∞(X)

of an irreducible variety X is irreducible. The theorem Kolchin proved concerns the

prime ideals of differential algebras; for a modern algebro-geometric retelling of this

see [13]. But for the special case of the arc scheme of a variety there are simpler proofs.

Essentially, to show that every arc on X is a limit of arcs on the smooth locus of X,

one begins by deforming a given arc into general position in a proper closed subset,

perhaps the singular locus of X, and then uses some strong result in characteristic

zero, like resolution of singularities (as in [12]), or Zariski’s uniformisation theorem

that a valuation ring is an inductive limit of formally smooth algebras (as in [27]),

to see that it then deforms all the way into the smooth locus of X.

The irreducibility theorem for arc schemes contrasts the behaviour of jet schemes,

where the singular locus of the base scheme X frequently gives rise to “extra” irre-

ducible components in the jet scheme Jm(X). Given a fine log scheme (X,M) there

is an additional elementary way to find “extra” components in the log jet scheme

Jm(X,M): if the rank of the log structureM is too large along some stratum of X

compared to the codimension of the stratum then the log jet scheme Jm(X,M) is

thickened by an affine bundle along that stratum. There is no obstruction to lifting
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the bundle to higher order, so this carries over to the log arc scheme J∞(X,M),

which then has the same “extra” component. What we show is that avoiding this

situation is sufficient: when the log structure M has the expected rank everywhere

for its stratification, if X is irreducible then so is J∞(X,M).

Theorem III.44. Let k be a field of characteristic zero. Let (X,M) be a fine log

scheme over (Spec k, k∗), with X irreducible of finite type, and let J∞(X,M) be its log

arc scheme. Let Xj be the rank j stratum of (X,M) and let r be the minimum rank of

M on X. Then J∞(X,M) is irreducible if and only if codimX Xj = j−r for all non-

empty Xj (that is, (X,M) is dimensionally regular in the sense of Definition III.47).

Our proof does not parallel any of the proofs we mentioned of Kolchin’s theorem

for arc schemes, but instead makes use of the irreducibility theorem for ordinary arcs

on the strata of (X,M).

Below we introduce first our condition of dimensional regularity and give it some

context in log geometry. It is automatic, for example, when a fine saturated log

scheme (X,M) is log smooth, but is much weaker than this; it is just a combinatorial

condition on the the stratification of X by the rank of M (see Proposition III.49).

We then prove Theorem III.44. The plan is to show that the closure of the space of

log arcs at one level of the stratification includes the log arcs on the smooth locus of

the next level down, and then use Kolchin’s theorem for ordinary arc schemes to see

that the log arcs on the smooth locus of each stratum are dense in the log arc space

of the whole stratum.

Remark III.45. We stated Kolchin’s theorem and our Theorem III.44 for an irre-

ducible scheme X. Another version of these is the statement that the irreducible

components of the arc space J∞(X) = J∞(X,O∗X) or log arc space J∞(X,M) biject

with the irreducible components ofX through the projection maps π : J∞(X, ·)→ X,
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assuming each component of X is separately dimensionally regular. This statement

with X allowed reducible implies a fortiori Theorem III.44, but the two are in fact

equivalent (and we will pass between them as convenient). The reason for this is

that an arc, ordinary or log, on X is contained inside some irreducible component Z

of X. That is to say, a map Spec kJtK→ X factors through an inclusion i : Z → X,

because Spec kJtK is integral. It follows that the preimage π−1Z of Z is simply J∞(Z)

or J∞(Z, i∗M). (This does not occur with jets in place of arcs.)

The same observation shows that an arc, ordinary or log, on X factors through

the reduced structure Xred of X, so that it makes no difference whether we assume

X to be reduced or not. (Again for jets it certainly makes a difference.)

Remark III.46. Arc schemes have been studied in positive characteristic as well (see

for example [27]). In Section 3.4.4 we briefly consider how much of our argument

for Theorem III.44 carries over to perfect fields of positive characteristic. There

the condition of dimensional regularity is not sufficient for the log arc scheme to be

irreducible, even when the underlying variety is smooth. We do not attempt to give

a necessary and sufficient condition in this case.

Of course, since every ordinary arc scheme is also a log arc scheme (for the triv-

ial log structure), the counterexamples to Kolchin’s theorem over fields of positive

characteristic apply also to the irreducibility theorem for log arc schemes.

3.4.1 Dimensional regularity

The following condition will appear in our discussion of reducibility and irre-

ducibility for log arc spaces. Recall that the strata Xj of a fine log scheme (X,M)

were introduced in Section 2.2.3.

Definition III.47. We call a fine log scheme (X,M) of pure dimension dimension-
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ally regular if there is a number r, necessarily r ≥ 0, such that for all non-empty

strata Xj of X one has codimX Xj = j − r. The number r is then the smallest j

such that Xj is non-empty.

A toric variety X with its standard structure, for example, is dimensionally regu-

lar, with r = 0: the strata components of X are its torus orbits, and the rank of each

orbit is the orbit’s codimension in X. On the other hand, if say the log structureM

on a variety X comes from a reduced divisor D with n > dimX components passing

through a single point x, so that the rank of M at x is n while the rank of M at

a general point of X is zero, then (X,M) will not be dimensionally regular; see for

instance Example III.53, wherein D is three lines in the affine plane X all meeting

at a point.

Remark III.48. If X is reducible, there is an induced log structure on any component

i : Z → X by pulling backM to Z. Now if X is connected and has pure dimension,

then (X,M) is dimensionally regular if and only if (Z, i∗M) is dimensionally regular

for each component Z of X.

Assume for now that X is integral. The sheaf I of sections of M that map to

zero in OX forms a sheaf of prime ideals of M. The map M→OX factors through

the quotient M/I, which may be identified with the monoid M− I together with

a zero element corresponding to the class I. Now Xr is open and dense in X, where

r is the minimum rank of M on X, and M− I has rank zero on Xr. So if X is

dimensionally regular the number r is just the height of the zero ideal I (in the sense

of the height of prime ideals of a monoid, i.e., the codimension of the complementary

face M−I) at every point.

So when X is integral there would not any loss from our point of view in just

asking for r = 0, in other words working withM−I rather thanM, since according
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to (the proof of) Proposition III.12 the difference is just the multiplication of the

log jet spaces Jm(X,M) everywhere by affine factors Amr. On the other hand it is

convenient to allow r > 0 in general, because of the easy induction it allows. For

example:

Proposition III.49. Let (X,M) be a fine log scheme, let r be the minimum rank

of M on X, and let Z(M) = ∪j>rXj 6= ∅ be the locus in X where the log structure

has rank greater than r. Then the following are equivalent:

(1) (X,M) is dimensionally regular;

(2) (Z(M), i∗M) is dimensionally regular and Xr+1 is non-empty;

(3) (Z(M), i∗M) is dimensionally regular and Z(M) is the closure of Xr+1;

(4) the set of indices j for which the strata Xj are non-empty is an interval [a, b] in

N, and for all a ≤ j ≤ ` ≤ b the stratum X` is contained in the closure of Xj.

Proof. The rank of i∗M on Z(M) is the same as the rank of M on Z(M) as a

subset of X. Since Z(M) is not empty, it has (pure) codimension one, and X is

dimensionally regular with minimum rank r if and only if Z(M) is dimensionally

regular with minimum rank r+1 along all its strata components of codimension one.

This gives the equivalence of (1) with (2) and (3). The characterisation (4) follows

from the equivalence of (1) and (3) by induction.

In addition to the conditions here, which are essentially in terms of the combina-

torial relationships of the strata, we give another, more geometric characterisation

in Proposition III.54.
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3.4.2 Dimensional regularity in log geometry

Before proceeding we briefly place our condition of dimensional regularity in con-

text. Essentially the same condition appears in ([16], 2.5), and for essentially the

same reason as it appears here, namely, to control the size of the log jet schemes

on strata. Thinking of log geometry in general, previously we noted that a toric

variety with its standard log structure is dimensionally regular, with r = 0, because

the strata of a toric variety are its torus orbits and the rank along each orbit is the

orbit’s codimension.

More than this, after ([20], 2.1) one may define the strata of (X,MX) locally

scheme-theoretically at point x by taking the ideal I(MX , x) generated by the ele-

ments of α(MX,x) which vanish at x. Then one says that (X,MX) is log regular if

it is dimensionally regular with constant r = 0 and the strata, so defined scheme-

theoretically, are regular.

If (X,M) is a fine saturated log smooth scheme then it is log regular. Kato

showed that over a perfect field the converse holds.

Proposition III.50. ([20] 8.3) Let (X,MX) be a fine and saturated scheme over

(Spec k, k∗), where k is a perfect field. Then X is log smooth if and only if it is log

regular.

This obviously subsumes the fact that toric varieties are dimensionally regular.

Dimensional regularity, however, is a much weaker condition than log smoothness.

Example III.51. Let X be the affine plane with non-standard log structure given

by the chart k[xy] → k[x, y] (see Example II.15). Then X1 = Spec k[x, y]/(xy) is

singular. So X is not log smooth. But it is dimensionally regular.

Example III.52. Consider the affine line X = Spec k[t] with log structure given by
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the map k[x, y] → k[t] which takes both generators x, y to t. This is the induced

structure on the diagonal x = y of the plane Spec k[x, y]. The rank of the log

structure on X is zero away from the origin but jumps to two at t = 0, so this log

scheme is not dimensionally regular.

Example III.53. Take Spec k[x, y] with log structure generated by x, y, and x− y.

So the log structure is supported on the three lines x = 0, y = 0, x = y, on which it

has rank one, except at the origin, where it has rank three. Similar to the previous

example, this can be realised as the induced structure on the plane z = x − y in

Spec k[x, y, z] with its standard structure.

Proposition III.54. Let (X,M) be an irreducible fine log scheme with a sharp chart

P near a point x. For each irreducible component Z of the stratification of X which

contains x, choose units u1, ..., udimZ ∈ OX,x which are algebraically independent in

the residue field OX,Z/mZ of OX,Z. Let Q = P ⊕ NdimZ be the chart P expanded to

include these units. This Q is also a chart for (X,M) over a neighbourhood U of x

over which u1, ..., udimZ are defined.

Then X is dimensionally regular near x of minimum rank r = 0 if and only if

the chart morphisms U → Spec k[Q] for the various components Z through x are

dominant.

Proof. Let j be the rank of M along Z, and let x1, ..., xj ∈ mZ be the images of

generators in P for the log structure on Z.

If j > codimX Z then the elements u1, ..., udimZ , x1, ..., xj ∈ OX,Z number more

than the transcendence degree dimX of the fraction field of OX,Z over k, so satisfy

a polynomial equation G = 0 with coefficients in k. The image of U → Spec k[Q] is

then contained in the proper locus G = 0.
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On the other hand if j ≤ codimX Z then there is no such polynomial equation

G = 0 over k. For supposing there were, let d be the smallest number such that

every term of G lies in md
Z , and consider the equation G = 0 modulo md+1

Z . Writing

the monomials in x1, ..., xj that appear in G modulo md+1
Z in terms of a basis of

md
Z/m

d+1
Z over the residue field OX,Z/mZ , we obtain a polynomial with co-efficients

in OX,Z/mZ satisfied by the units u1, ..., udimZ , contrary to assumption.

3.4.3 The irreducibility theorem for log arc schemes

The necessity of dimensional regularity in Theorem III.44 is a straight-forward

consequence of Proposition III.12. Recall that for a fine log scheme (X,M) we write

Jm(X,M)j and J∞(X,M)j for the log m-jets and log arcs over the stratum Xj.

Proposition III.55. Let (X,M) be a fine log scheme with X irreducible. If (X,M)

is not dimensionally regular then J∞(X,M) is reducible.

Proof. We may assume that X is reduced. Let r be the minimum rank of M on X

and let j > r be such that Xj has codimension less than j − r.

Write Jm(X,M)sm` for the log m-jets of X over the smooth locus of a stratum

X`. According to Corollary III.13, for m large enough we have

dim Jm(X,M)smj > dim Jm(X,M)smr .

Let Cm ⊆ Jm(X,M) be the image of J∞(X,M) under the natural projection. It

is the constructible subset of log m-jets which extend to log arcs. If J∞(X,M) is

irreducible then so is Cm (as a topological space), and further Cm has Jm(X,M)smr

as a dense subset. But Cm also contains Jm(X,M)smj , a contradiction.

We turn to establishing the converse implication. We will make use of the following

observation:
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Proposition III.56. Let Xj be a stratum of a fine log scheme (X,M). The irre-

ducible components of J∞(X,M)j biject with the irreducible components of Xj, and

the log arcs over the smooth locus Xsm
j of Xj are dense in J∞(X,M)j.

Proof. This follows from Kolchin’s theorem for the ordinary jets on the stratum Xj,

together with the characterisation of the natural map J∞(X,M)j → J∞(Xj) as a

bundle map.

Perhaps tendentiously, this suggests the strategy of describing the components

of J∞(X,M) by comparing the arcs on one level of the stratification with the arcs

on the smooth locus of the next. The simplest situation (apart from the base case

X = Xr, where the result is just Kolchin’s theorem) is in the following lemma. It

will be the inductive step of our argument.

Lemma III.57. Let (X,M) be a fine log scheme with X irreducible and such that

X = Xr ∪ Xs for some s > r, (with Xr, Xs non-empty). Then J∞(X,M) is irre-

ducible if and only if s = r + 1.

Proof. The necessity of the condition s = r+1 is a special case of Proposition III.55.

We consider the converse implication. We may assume that X is reduced.

We may replace X by an open subset which meets Xs and does not meet the

singular loci of Xr and Xs, and thereby assume first that the singular locus of X lies

inside Xs and second that Xs is smooth. For by Proposition III.56 the arcs over this

open subset are dense in J∞(X,M). We may further replace the sheaf M by the

complementary face of its zero ideal, and hence assume that r = 0 and s = 1.

By assumption, either X is smooth or it is singular along X1. Consider the

normalisation X̃ → X, with log structure M̃ pulled back from X. This is an isomor-

phism over the smooth locus X0, and after deleting from X a (positive-codimension)
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subset of X1 we may assume that X̃, which was non-singular in codimension one,

is in fact smooth, and that the normalisation is unramified, hence étale, over X1.

In particular, the map J∞(X̃,M̃) → J∞(X,M) surjects. Thus in any case we are

reduced to the situation where X is smooth.

Now letM′ be the log structure on X generated by local equations for the divisor

X1. Near a component Z of X1 with generic point ξ this has a chart OX,ξ/O∗X,ξ ' N

and the local valuation maps

Mξ →Mξ/O∗X,ξ → OX,ξ/O∗X,ξ

determine a morphism M → M′ of log structures on X. Lemma III.27 applies to

this morphism, and we may replace M by M′.

In particular we now are reduced to having (X,M) fine, saturated, and log regular.

According to Proposition III.50 this means that X is log smooth, which as one may

expect is sufficient for the conclusion we seek for abstract reasons. However, a short

calculation finishes the argument in any case. For now locally near Z ⊆ X1 there is

the chart X → Spec k[x], where x is a local equation for Z, a smooth morphism. So

there is locally an étale map from X to some affine space Y = Spec k[x, z1, ..., zs] over

Spec k[x], with log structure generated by x. By Proposition III.43, or else by an

easy direct computation, the log arc (and log jet) spaces of Y with this log structure

are irreducible, and the log arcs over the complement of the hyperplane x = 0 are

dense. An étale map of schemes which is strict is log étale, so the induced map on

log arc spaces is also étale. According to the follow lemma, the claim follows.

Lemma III.58. Let f : (X,MX) → (Y,MY ) be a log étale map of log schemes,

fm : Jm(X,MX) → Jm(Y,MY ) the induced map on log jet or log arc spaces for

m ∈ N or m =∞. Then:
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(1) If f is étale (in the ordinary sense) then so is each fm.

(2) If X and Y are irreducible, and f is étale and surjective, then Jm(X,MX) is

irreducible if and only if Jm(Y,MY ) is.

Proof. (1) follows from Proposition III.24, which says that fm is a base change of

f . In (2), the base changes fm are likewise étale and surjective. It’s immediate that

Jm(Y,MY ) is irreducible if Jm(X,MX) is. Conversely if Jm(X,MX) is reducible

then it has a component Z lying over some proper closed subset X1 ⊆ X. The image

of an open subset U of Z is then open in Jm(Y,MY ) and lying over the proper

closed subset Y1 = ¯f(X1) ⊆ Y . But if Jm(Y,MY ) is irreducible it has no open

subsets contained in the fibre over Y1. So Jm(Y,MY ) is reducible.

We are ready to argue for Theorem III.44. We re-state the Theorem now.

Proposition III.59. Let (X,M) be a fine log scheme with X irreducible. Then

J∞(X,M) is irreducible if and only if (X,M) is dimensionally regular.

Proof. After Proposition III.55 it remains to show that if (X,M) is dimensionally

regular then J∞(X,M) is irreducible.

Let r be the minimum rank ofM on X. By Lemma III.57 applied to the compo-

nents of

Xr ∪Xr+1 = X − ∪j>r+1Xj,

the log arcs J∞(X,M)r are dense in J∞(X,M)r+1. Since ∪j>r+1Xj is contained in

the closure of Xr+1, by Proposition III.49, by induction J∞(X,M)r+1 is dense in

∪j≥r+2J∞(X,M)j. Therefore the irreducible J∞(X,M)r is dense in J∞(X,M). So

J∞(X,M) is irreducible.
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3.4.4 Remarks on positive characteristic.

Let us consider briefly the case where k has char k = p > 0. For ordinary arc

schemes, given an irreducible variety X with non-smooth locus Y ⊆ X, the scheme

J∞(X)−J∞(Y ) is irreducible ([27], 3.15). In other words, if J∞(X) is reducible, it is

because there are arcs lying generically in the non-smooth locus of X which are not

limits of arcs on the smooth locus of X. This can occur over any field k of positive

characteristic.

Considering fine log schemes, we easily see that the conditions of Theorem III.44

are no longer sufficient even when the underlying variety is smooth in the ordinary

sense:

Example III.60. Let X = Spec k[x] with log structure M generated by xp. Away

from x = 0 the k-valued log arcs are the ordinary arcs x(t) = d0x + d1xt + ... with

d0x 6= 0, which then have

x(t)p = (d0x)p + (d1x)ptp + ... = (d0x)p(1 + (∂1x)ptp + ...).

The limits of these at x = 0 are log arcs, underlain by the zero ordinary arc, in which

only powers of tp appear in the principal series xp(t). But a log arc at the origin

corresponds to an arbitrary principal series xp(t) = 1 + ∂1(xp)t+ .... So the log arcs

over the locus x 6= 0 are not dense in J∞(X,M).

Remark III.61. Here is one way to look at this example. There is the map

g : (Spec k[x], x)→ (Spec k[x], xp)

to X from the affine line with its standard structure. This is modelled on the map

pN→ N on charts, whose corresponding map on monoid algebras is the inseparable

map Spec k[x] → Spec k[xp]. Now the induced map pZ → Z on group completions
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does not become an isomorphism on tensoring with k. So although g is an isomor-

phism away from the origin x = 0, it does not induce a surjection of log arc spaces

at the origin.

Aside from this obstruction, our proof of Theorem III.44 fails in general in positive

characteristic at the normalisation step in Lemma III.57. Again the issue is of having

log structure on a locus that gives rise to an inseparable map.

Of course one may give a sufficient criterion just by assuming the conclusions

these steps were meant to obtain. So let (X,M) be a fine log scheme over a perfect

field k with char k = p. Assume

(1) (X,M) is dimensionally regular of minimum rank r,

(2) for each j ≥ r, the arc scheme J∞(Xj) is irreducible,

(3) for each j ≥ r, for each generic point ξ of the scheme Xj in the codimension

one locus Xj+1 = Xj − Xj+2, the local ring OXj ,ξ is regular and the valuation

map

φ :Mξ/O∗X,ξ − I → OXj ,ξ/O
∗
Xj ,ξ
' N

(where I is the zero ideal of Mξ/O∗X,ξ) is such that φgp ⊗ k is an isomorphism;

that is, Mgp
ξ /O∗X,ξ − I has rank one as an abelian group and no p-torsion part,

and the image of φ is not contained in the submonoid pN of multiples of p.

Then J∞(X,M) is irreducible if X is. That a log smooth scheme, whose log arc

scheme is necessarily irreducible, need not satisfy (3) illustrates that this criterion is

not necessary.

Example III.62. Nor is condition (2) here necessary in general. Consider the affine

space X = Spec k[x, y, z] over a field of characteristic p with log structure M given
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by the inclusion

k[xp − yzp]→ k[x, y, z].

That is, X has log structure along the locus X1 given by the equation xp − yzp = 0.

It is observed in ([28], Rmq. 1) that J∞(X1) is reducible, because in X1 along the

nonsmooth locus z = 0 there are arcs with d1y 6= 0, but on the open set z 6= 0 every

arc has d1y = 0.

Now let x(t), y(t), z(t) be any arc in J∞(X1). That is, x(t)p−y(t)z(t)p = 0. The log

arcs J∞(X,M)1 are pairs consisting of these ordinary arcs together with arbitrary

principal series f(t) ∈ 1 + tkJtK. Given such data, we may choose deformations

xs(t), ys(t), zs(t), giving an ordinary arc in X0 for any s 6= 0 and specialising to the

given arc in X1 at s = 0, such that the principal series defined by

fs(t) =
xs(t)

p − ys(t)zs(t)p

xs(0)p − ys(0)zs(0)p

for s 6= 0 is a deformation of the series f0(t) = f(t). Then when s is specialised

to zero the deformation arc in J∞(X0) has limit the chosen log arc in J∞(X,M)1.

Since J∞(X0) is irreducible it follows therefore that J∞(X,M) is irreducible.
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Integration on log arc schemes

We develop a motivic integral on log arc schemes J∞(X,M). Our approach will be

to construct integrals and make calculations in a way that is modelled on analogous

calculations for motivic integration on ordinary arc schemes J∞(X).

We work over a field k of characteristic zero. Recall that if (X,M) is a fine

log scheme with a good chart P at a stratum component Z there is locally an

isomorphism

J∞(X,M)Z ' J∞(Z)× Hom(P, 1 + tkJtK)

describing the log arcs on Z. Since log motivic integration should restrict to ordinary

motivic integration in trivialising cases, what will happen with J∞(Z) here should

just be induced by the ordinary theory. From this point of view, it is the second

factor Hom(P, 1+ tkJtK) that we need to study. This is the first task we will take up.

The analogy here begins with the basic case of ordinary motivic integration on the

power series ring kJtK (which geometrically is the space of arcs on the affine line), or

p-adic integration on the complete ring Zp of p-adic integers – and now to log motivic

integration on the group Λ = 1 + tkJtK. Once we have a measure µ on Hom(P,Λ)

we may define a log motivic integral on the stratum component Z by∫
J∞(X,M)Z

φZ dµ =

∫
J∞(Z)×Hom(P,Λ)

φZ dµ,

67
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integrating a suitable function φZ defined on J∞(X,M)Z against the product mea-

sure on J∞(Z) × Hom(P,Λ). Summing such pieces over the strata of (X,M) gives

our log motivic integral on (X,M).

There is also a geometric interpretation of the group Hom(P, 1 + tkJtK) in terms

of the chart morphism X → Spec k[P ]. As we shall see, in characteristic zero there

is an isomorphism

(1 + tkJtK, ·) ' (tkJtK,+)

of Λ and the additive group of the maximal ideal of kJtK. Now morphisms P → tkJtK

may be viewed as ordinary arcs on the log tangent space T (P ) to Spec k[P ].

There is one more thing which a theory of integration must provide to deserve the

name, which is a way to compare various integrals, for example under certain mor-

phisms (Y,N )→ (X,M), which amount to the calculation of integrals by parametri-

sations. For ordinary motivic integration the fundamental result is the change-of-

variables formula for a proper birational morphism Y → X, which encodes how

the measure on the arc spaces J∞(Y ), J∞(X) changes under such a map. Such a

comparison formula is the basis for applying the integration method in practice.

In the log case it is less obvious what the “admissible” morphisms (Y,N ) →

(X,M) should be that are to have a transformation formula. For one thing, most

proper birational maps Y → X do not behave very well with respect to the strata of

log schemes; even the blowup of the affine plane at a rank one point (which has the

non-standard structure on A2 of Example II.15) introduces over the point’s stratum

the projection map Spec k[x, y]/(xy) → Spec k[x] with an exceptional line x = 0.

This projection induces a map on arc schemes which, from the point of view of

motivic integration, is rather pathological. For example, the arcs at the points of the

exceptional locus x = 0 with y 6= 0 all map to the zero arc on Spec k[x], which is a
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set of measure zero.

Log blowups, which are the log geometric version of equivariant blowups of toric

varieties, do not have such pathology. On the contrary, they are all log étale, even,

and induce very simple behaviour on maps of log arc schemes. Despite this they have

some good utility. For example, W. Niziol [29] showed that fine saturated log smooth

schemes have resolution of singularities (of the underlying ordinary scheme) by log

blowups, generalising the fact that toric varieties have resolution of singularities by

equivariant blowups. See also [17] for a “flattening” theorem for morphisms of fine

saturated log smooth schemes using log blowups.

For the log blowup π : (Y,N ) → (X,M) along an ideal I ⊆ M, we have the

transformation rule:

Theorem IV.1. (Theorem IV.25) Let ξ be the generic point of a stratum Z = Xξ

of X, and E the locus of Y mapping to Xξ. Then∫
J∞(X,M)ξ

φ dµ =
[Z]

[E]

∑
η∈E

λd(η)

∫
J∞(Y,N )η

π∗φ dµ,

where the sum η ∈ E ranges over the generic points of strata of Y contained in E,

and d(η) = rank ξ − rank η.

The quantity λ which appears in this statement is the measure of Λ = Hom(N,Λ);

see Section 4.2.1 for more on this. Note that, in contrast to the transformation rule

for proper birational maps for ordinary motivic integrals, no Jacobian factor appears

in this formula. The reason is that a log blowup π : Y → X induces isomorphisms

of the log arc spaces at y ∈ Y and x = π(y) ∈ X that preserve measure up to factors

of the normalisation λ.

Another task is to try to compare some ordinary integrals with log integrals, or,

more generally, to compare log integrals under maps (X,M′) → (X,M) that only
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change the log structure. We shall see that log motivic integrals on varieties which

are both smooth and log smooth essentially are ordinary integrals. So applying

Niziol’s resolution algorithm will give a comparison theorem for integrals on fine

saturated log smooth schemes, in terms of the combinatorics of the resolution. We

study another approach based on characterising suitable ordinary integrals in terms

of data less extensive than that of a full resolution. For toric varieties X, this turns

out to mean passing to the Nash modification X ′ → X [6].

4.1 Ordinary motivic integration

Let us briefly recall how to construct motivic integrals on ordinary (not log) arc

schemes. For a quite readable introduction to this circle of ideas at more length, we

might suggest [4].

Recall that the jet scheme Jm(X) of X, for m ≥ 0, parametrises maps

Spec kJtK/(tm+1)→ X.

There are canonical maps Jm(X) → Jn(X) for m ≥ n corresponding to truncation

of series, and the arc scheme J∞(X) of X, which parametrises maps

Spec kJtK→ X,

is the projective limit of the jet schemes Jm(X) with respect to the truncation maps.

When X is smooth of dimension d, one defines a “measure” µ, called the motivic

volume, on the jet schemes of X by setting

µ(Z) = [Z]L−md

for Z ⊆ Jm(X) locally closed. Here [Z] is the class of Z in the Grothendieck ring of

varieties

K0(var/k)
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and L = [A1] is the class of the affine line. Thus µ takes values in the localisation

V = K0(var/k)[L−1]

of the Grothendieck ring where L is inverted. The normalisation factor L−md makes

the definition of µ compatible with the truncation maps, which are just affine bundle

maps when X is smooth. Hence we get a motivic volume function µ = µX on the

arc scheme J∞(X), at least for subsets of J∞(X) which are fibres of a projection

to some Jm(X). When X is not smooth, Denef and Loeser [8] showed how to

construct a suitable µ on J∞(X). This construction presents significant further

technical difficulties which we will not discuss here.

Now consider a function φ : J∞(X) → K0(var/k) which takes on only countably

many values. A typical example may be to consider a function

φY (γ) = L−ordY (γ)

defined using the contact order ordY (γ) of an arc γ with a fixed closed subscheme

Y ⊆ X. In any case one defines the integral of φ by the formula∫
J∞(X)

φ dµ =
∑

v∈K0(var/k)

v · µ({γ such that φ(γ) = v})

if the level sets appearing on the right side of this equation are measurable. In the

example φ = φY , the expression on the right side is a series in L−1 with coefficients in

K0(var/k). This makes sense in the completion V of V wherein a sequence (vj) ⊆ V

converges to zero if lim dim vj = −∞. It is in this ring V where at last the motivic

integral itself takes values.

The fundamental change-of-variables formula for a proper birational map Y → X

is the formula ∫
J∞(X)

φ dµ =

∫
J∞(Y )

φ · φKY/X dµ,
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which captures how the induced map J∞(Y )→ J∞(X) behaves with respect to the

measures on the two arc schemes. In fact, the factor

φKY/X = L− ordKY/X

is the contact order function of the divisor KY/X of the Jacobian of the morphism

Y → X, (hence the formula’s name). See [8], [23] for more on this. This formula

allows one to compare integrals on X with integrals on, say, a resolution of singluar-

ities of X, or a log resolution of a pair (X,Z), where calculations may be much more

tractable.

All this we would like to have an analogue in the log scheme category.

4.2 The group Λ = 1 + tkJtK

Let k be a field of characteristic zero. We consider the group Λ = Λ(k) = 1+tkJtK

of principal series in one variable over k under multiplication. Abstractly, Λ is

isomorphic to the direct product
∏

i(k,+) of countably many copies of the additive

group of k. A realisation of this is given by an isomorphism to the additive group of

the ideal tkJtK through the logarithmic series. That is, the series

log(1 + s) = s− 1

2
s2 +

1

3
s3 ∓ ...

defines a map

log : 1 + tkJtK→ tkJtK

with inverse

exp : tkJtK→ 1 + tkJtK

given by

exp(s) = 1 + s+
1

2
s2 +

1

6
s3 + ....
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These series converge t-adically on the given domains. For a series x(t) = 1 +∑
j≥1 ajt

j, we might refer to the co-efficients bi in log x(t) =
∑

i≥1 bit
i as its “loga-

rithmic co-ordinates,” and refer to them as the co-ordinates (b1, b2, ...) of x(t) in the

direct product of countably many copies of (k,+). One has

x(t) = exp(
∑

bit
i) = exp(b1t) · exp(b2t

2) · ...

with the product on the right side converging t-adically. Since

exp(bit
i) = 1 + bit

i +
b2
i

2
t2i...

starts in degree ti (after the initial term 1), we see that the first m logarithmic co-

ordinates b1, ..., bm determine and are determined by the first m co-efficients a1, ..., am

of x(t). In other words, we have the same isomorphism modulo tm+1.

Remark IV.2. If we write a monoid P multiplicatively with elements p as the monoid

(P, ·), let us write it additively with elements ∂p = d log p (and identity 0 = ∂(1)) as

the monoid (∂P,+). The logarithm induces an isomorphism

Hom(P,Λ) ' Hom(∂P, tkJtK),

where the left side involves monoids under multiplication and the right side involves

monoids under addition.

Let k[P ] be the monoid algebra of P and let T (P ) be the log tangent space to

Spec k[P ] at its origin. The origin of Spec k[P ] is the point corresponding to the

maximal ideal P − P ∗, and the log tangent space there is the affine space with co-

ordinates ∂p = ∂1p for p ∈ P − P ∗ modulo relations
∑
ai∂pi =

∑
bj∂pj, where∏

paii =
∏
p
bj
j in P written multiplicatively. In other words, the log tangent space

T (P ) is the k-algebra on the set ∂P with the same (additive) relations. Now an

element of Hom(∂P, tkJtK) is nothing other than an ordinary arc on T (P ) whose
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closed point lies at the origin 0 ∈ T (P ) (as all the series in tkJtK have constant term

zero).

Let us write J∞(T (P ))0 for this set of arcs, the fiber over the origin of T (P ) of

the projection J∞(T (P ))→ T (P ). What we have said altogether is that the log arc

space J∞(X,M) decomposes over a stratum component Z with a good chart P as

a product

J∞(X,M)Z ' J∞(Z)× J∞(T (P ))0.

As both factors in this product have motivic volume functions on them, this suggests

that we can integrate functions piecewise on strata by integrating with respect to

the product measure.

Remark IV.3. There is an additional algebraic interpretation of the logarithm map

through Witt vectors, as follows. Write a series x(t) ∈ 1 + tkJtK as

x(t) =
∏
i≥1

1− αiti.

The product here converges t-adically. The numbers αi are determined by the series

x(t) and may be computed successively by considering the equality modulo ti+1.

There is an isomorphism

(W (k),+)→ (1 + tkJtK, ·)

with the additive group of the Witt ring over k by identifying x(t) with the sequence

α = (αj). Now the Witt polynomials wn(α) which give the operations on the ring

W (k) have the generating series

−t d log x(t) =
∑
n≥1

wn(α)tn.

See [32] for a survey on Witt vectors, and ([32], 3.4) for this last formula in particular.
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4.2.1 Measure on Λ

As integration over ordinary arc schemes gives a motivic volume to the ring kJtK,

being the set of ordinary arcs on the affine line, and its ideals, with values in the

localised Grothendieck ring

V = K0(var/k)[L−1],

so do we wish to give a motivic volume on the group Λ = 1 + tkJtK. One option is

simply to pull back the usual measure through the logarithm Λ→ tkJtK. Geometri-

cally this just corresponds to working with the log tangent space interpretation for

log arcs of Remark IV.2. For concreteness, we will use this definition.

Definition IV.4. Our measure µ on Λ is the pullback of the motivic volume on

tkJtK through the isomorphism log : Λ → tkJtK, renormalised to have total volume

µ(Λ) = λ an indeterminate λ. In other words, for A ⊆ Λ, we set µ(A) = λµ(logA),

if the set logA = {log x : x ∈ A} is measureable.

So, our measure takes values

µ : Λ→ V [λ]

in a polynomial ring over V . Geometrically, Λ = Hom(N, 1 + tkJtK) is the space of

log arcs at the origin of the line Spec k[N] with its standard log structure, and this

means that this point on Spec k[N] has volume λ.

As another justification for this definition, let us describe an alternate, more

näıve approach to constructing a measure on Λ, which we shall see is just another

description of the same µ. Start with a tautological normalisation µ(Λ) = λ, and

beyond this ask for µ to be homogeneous with respect to the group structure of Λ.

For us this means in particular
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(1) for u ∈ Λ and A ⊆ Λ a measureable set, µ(uA) = µ(A); and

(2) if a finite subgroup G ' (k,+)m of Λ acts on Λ, then a coset of G has measure

L−mµ(Λ) = L−mλ.

Of course, µ should be finitely additive on disjoint measureable sets of Λ as well.

Let us compute the motivic volumes of some important subsets of Λ as a conse-

quence of these requirements.

Example IV.5. For e ≥ 1 the sets

Λ≥e = {1 + aet
e + ae+1t

e+1 + ... : aj ∈ k}

have measure

µ(Λ≥e) = L−e+1λ.

This is because Λ≥e is a coset of the action of

G = {exp(a1t) exp(a2t
2) · · · exp(ae−1t

e−1) : a1, ..., ae−1 ∈ k}.

In other words, the set Λ≥e just corresponds to the subgroup {(0, ..., 0, be, be+1, ...)}

of series having logarithmic co-ordinates zero before index e, and this is a coset of

G = {(a1, ..., ae−1, 0, ...)} ⊆ tkJtK. More generally, the same is true if we replace Λ≥e

by any set of principal series whose terms in degrees 1, ..., e−1 are specified, and left

arbitrary after, since this is a translate uΛ≥e by an element u ∈ Λ whose first e− 1

co-efficients are the specified values.

In terms of the logarithm isomorphism, this means that we have assigned the

ideals of tkJtK and their cosets the “correct” values. It follows that the usual basic

measureable sets constructed from these sets also are given measures compatible with

the usual motivic volume on tkJtK.
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Example IV.6. The set

Λe = {1 + aet
e + ... : ae 6= 0}

is the set difference Λ≥e − Λ≥e+1, so has measure

µ(Λe) = L−e(L− 1)λ.

Multiplying by u ∈ Λ, we see that a translate uΛe, being a set of series whose

co-efficients in degree up to e − 1 are specified and whose co-efficient in degree e

avoids any given value, likewise has measure L−e(L− 1)λ. One way to intrepret this

calculation is to say that principle (2) above is also compatible with action by factors

(k∗, ·) of the multiplicative group of k, each one scaling measure by a factor L− 1.

Example IV.7. The intersection of two translates uΛe ∩ vΛe whose co-efficients in

degree e avoid specified, distinct values a, b ∈ k respectively has measure

µ(uΛe ∩ vΛe) = L−e(L− 2)λ.

For the union uΛe ∪ vΛe is just a set wΛ≥e, so that uΛe ∩ vΛe has measure

µ(uΛe) + µ(vΛe)− µ(uΛe ∪ vΛe) = (2L−e(L− 1)− L−eL)λ = L−e(L− 2)λ.

We record some of the equivalent guises of our measure µ on Λ.

Proposition IV.8. Let P be a fine monoid, and r be the rank of P gp. Then:

(1) There is a canonical measure on Hom(P,Λ) = Hom(P gp,Λ), which may be given

by choosing a basis of P gp and pulling back the product measure on Λr through

the induced isomorphism Hom(P gp,Λ) ' Hom(Zr,Λ) = Λr. In other words, the

measure induced on Hom(P gp,Λ) by choosing a basis of P gp does not depend on

the choice of basis.
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(2) Pullback of sets through Hom(P gp,Λ)
∼→ J∞(T (P ))0 multiplies measure by λr.

(3) Pullback of sets through Hom(P, kJtK∗)→ Hom(P, kJtK∗/k∗) ' Hom(P,Λ) mul-

tiplies measure by (L− 1)rλ−r.

(4) The nth power automorphisms x(t) 7→ x(t)n on Λ preserve measure.

Proof. Since µ is translation invariant on Λ, an automorphism Λr → Λr given by

the action of an invertible integer matrix preserves measure. For example, for maps

given by elementary matrices like (x, y) 7→ (x, xy) we have seen this before. This

gives (1).

Claim (2) is the assertion that the exponential tkJtK → Λ multiplies measure by

λ. This can be checked modulo tm+1. Likewise (3) is the statement that our measure

on Λ agrees with the ordinary measure induced by inclusion 1 + tkJtK ⊆ kJtK∗ ⊆ kJtK

up to a factor of λ.

Finally, one way to see (4) is that after taking logarithms the automorphism on

tkJtK is multiplication by n, which preserves measure.

4.2.2 A valuation function on Λ

A theory of integration needs functions to integrate. The basic example in ordi-

nary motivic integration is to attach a valuation φ : J∞(X)→ N ∪ {∞} to the arcs

on a variety X and try to integrate L−φ. For example, φ(γ) could be the contact

order ordY (γ) of an arc γ with a fixed closed subscheme Y of X. If Y is defined by

the ideal I, this means that ordY (γ) is the t-adic valuation in kJtK of γ∗I. In other

words, the contact order is given by the vanishing of co-efficients in the equations

defining Y in X on evaluation at the arc γ.

For a series x(t) = 1 + aet
e + ... with ae 6= 0, we set

val(x) = e.
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In other words, val(x) is the t-adic valuation of log x(t). We also write

|x| = L− val(x).

The sets Λe are the level sets val(x) = e and the sets Λ≥e are the sets val(x) ≥ e. We

note that val(xy) = min(val(x), val(y)) if val(x) 6= val(y), or if val(x) = val(y) = e

and ∂e(xy) = ∂ex + ∂ey 6= 0. On the other hand if val(x) = val(y) = e and

∂ex+ ∂ey = 0 then val(xy) > val(x), val(y).

The function val(x) measures agreement of x with the unit series 1. If we can

interpret the map P → Λ as giving the data of a deformation for some arcs, then this

means measuring the agreement with a given deformation. A translate u · val(x) =

val(u−1x) measures agreement with a series u ∈ Λ instead. If we integrate each of

val and u · val against a translation-invariant measure µ the result is the same, since

one integral is a change-of-coordinates of the other. In the context of integrating

over log arc spaces J∞(X,M) with a good chart P ' Mx/O∗X,x at a point x, this

means that the integral over morphisms Hom(P,Λ) at a point will be the same for

any section P →Mx. That is:

Proposition IV.9. Let Z be a stratum of (X,M) which has a good chart P . Then

the integral ∫
J∞(X,M)Z

φ dµ =

∫
J∞(Z)×Hom(P,Λ)

φ dµ

of a function φ on P does not depend on the choice of the chart morphism P →

MX,Z.

This justifies our use of good charts to define and compute integrals on fine log

schemes. We note that although the valuation of a series p(t) under a map P → Λ

for p ∈ P depends on the chart morphism, the valuation of a log arc Mx → Λ

(underlain by a given ordinary arc) does not.
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Remark IV.10. Continuing from Remark IV.2, when P → Q is a cospecialisation

map, there is a corresponding closed embedding T (Q)→ T (P ) of log tangent spaces

induced by the same map ∂P → ∂Q. If P → Q is the quotient by a face F , then T (Q)

is included in T (P ) as the locus ∂F = 0. In this embedding, T (Q) passes through

the origin of T (P ). So the map ∂P → ∂Q induces on the one hand an inclusion

J∞(T (Q))0 → J∞(T (P ))0 and on the other a restriction of closed subschemes of

T (P ) that pass through the origin to T (Q). Both maps are determined by the

equations ∂F = 0. What results is that an integrand on one stratum of X naturally

cospecialises to an integrand on any stratum containing it.

Remark IV.11. Continuing from Remark IV.3, we see that for x(t) =
∏

i≥1 1−αiti the

quantity val(x) is also the minimum index n for which wn(α) 6= 0. More generally,

the ring kN has a map

kN → P(N)

to the power set of N, taking a vector (βn) to its set of non-zero indices,

β 7→ {n such that βn 6= 0}.

This even is a monoid morphism

(kN, ·)→ (P(N),∩)

from the multiplicative monoid of kN (which models a convolution operation on

series) to the power set of N with the intersection operation. The map val is then

composition with the map

P(N)→ N

sending a non-empty subset S to its minimum element. The composite kN → N is

not a monoid morphism, though. (Rather, the “complementary” structure (P(N),∪)
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has a monoid morphism to (N ∪ {∞},min), with the convention that the empty set

has minimum ∞.)

Obviously this produces some other functions one could imagine integrating, by

taking other maps from P(N). The geometric significance of these, if any, is not

clear.

4.2.3 Integration on Λ

We perform a few simple calculations to illustrate integration over groups

Hom(P,Λ) ' ΛrankP gp

as we have developed so far, and to provide some examples for future reference. Here

our integrands arise from the functions |p| = L− val p(t) for p ∈ P mapping to series

p(t) ∈ Λ.

Example IV.12. Consider the affine line X = Spec k[x] with its standard log struc-

ture (that is, (X,M) = (Spec k[N],Na)). We compute
∫

Λ
L− val(x) dµ, which is the

contribution of the origin of X to the integral of the divisor x = 0 over J∞(X,M).

The sets Λe for e ≥ 1 partition Λ, and L− val(x) = L−e on Λe. So,∫
Λ

L− val(x) dµ = λ
∑
e≥1

L−eL−e(L− 1) = (L− 1)λ
∑
e≥1

L−2e =
(L− 1)L−2

1− L−2
λ =

1

L + 1
λ.

We get the same result as for integrating the same divisor x = 0 on the ordinary arc

scheme J∞(X), essentially because val(x) = ordt(log x), except that the appearance

of λ remembers that the origin of X as a log scheme has rank one.

Example IV.13. Consider the affine plane with log structure along one line, say

X = Spec k[x, y] with log structure generated by x. We consider∫
Λ×tkJtK

L− val(x)dµ,
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which is the contribution of one point on the line x = 0 to the integral of the divisor

x = 0 over J∞(X,M). Since tkJtK has volume 1, and the integrand is constant on

this factor, we get the same result as above,
1

L + 1
λ.

Example IV.14. Consider the affine plane X = Spec k[x, y] with its standard log

structure. We consider ∫
Λ2

L− val(xy) dµ,

the contribution of the origin of X to the integral of the divisor xy = 0 over

J∞(X,M).

There are easy ways to compute this integral and less-easy ways. One easy way

is with a suitable change of co-ordinates on the multiplicative group Λ2, say from

(x, y) to (u,w) = (x, xy). Then∫
Λ2

L− val(xy) dµ =

∫
Λ2

L− val(w) dµ =
1

L + 1
λ2,

because like in the previous example the integrand L− val(w) is constant on one factor

of the domain Λ2. Note that the “blowup formula” (x, y) → (x, xy) on an algebra

k[x, y] is merely an invertible linear transformation on the group Λx× Λy.

Another “easy” way, given prior knowledge of some basic ordinary motivic inte-

grals, is to use the compatibility of the integral with the logarithm map on Λ to write

this as an integral on A2 = T (N2) = Spec k[∂x, ∂y]. We have∫
Λ2

|xy| dµ = λ2

∫
J∞(A2)0

|∂x+ ∂y| dµ = λ2

∫
J∞(A2)0

L− ord(∂x+∂y) dµ.

The integral in the latter expression we recognise as the contribution of a point on

a line to the integral of that line on A2, and one can apply a well-known formula

for integrating normal crossing divisors ([4], 2.6) to compute this ordinary motivic

integral. Note that the co-ordinates (u,w) on Λ2 correspond to co-ordinates ∂u = ∂x

and ∂w = ∂x+ ∂y on A2.
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A rather more involved way is to decompose Λ2 into cells where val(x), val(y) are

specified quantities, try to compute the integral on each of these, and sum these

contributions up. The difficulty, compared to the previous examples, is that val(xy)

is not determined by just val(x) and val(y). That is, val(xy) is not constant on some

of these cells, so those will have to be decomposed further. For practice, perhaps,

and to make the distinction from integrating a divisor xy = 0 on the ordinary arc

scheme J∞(X), we record this calculation following.

We compute the contribution from the following subsets of Λ2:

(1) {(x, y) ∈ Λ2 : val(x) 6= val(y)}. Suppose first that val(x) = e < val(y). So,

x ∈ Λe and y ∈ Λ≥e+1, and val(xy) = e. We get a contribution of

λ2
∑
e≥1

L−eL−e(L− 1)L−e = λ2(L− 1)
∑
e≥1

L−3e =
L− 1

L3 − 1
λ2.

We get the same calculation in the case that val(y) = e < val(x), for another

contribution of
L− 1

L3 − 1
λ2. So we get

2(L− 1)

L3 − 1
λ2 altogether from integrating

over this subset of Λ2.

(2) {(x, y) ∈ Λ2 : val(x) = val(y) = val(xy)}. Let val(x) = val(y) = e ≥ 1. Given

x(t), this means that the series y(t) avoids two values for its co-efficient of te,

namely ∂ey 6= 0,−∂ex. So for given e we integrate |xy| = L−e on a set of

measure L−e(L− 1)L−e(L− 2)λ2. We get a contribution

λ2
∑
e≥1

L−eL−e(L− 1)L−e(L− 2) = (L− 1)(L− 2)λ2
∑
e≥1

L−3e

=
(L− 1)(L− 2)

L3 − 1
λ2

to the integral from these terms.

(3) {(x, y) ∈ Λ2 : val(x) = val(y) < val(xy)}. Let val(x) = val(y) = e ≥ 1

and suppose, given x(t), that y(t) agrees with x−1(t) for exactly j ≥ 1 places
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starting at the co-efficient of te; so, y(t) agrees with x−1(t) up to and including

the term te+j−1, and ∂e+jy 6= −∂e+jx. Given e and j, the set of such x, y has

measure L−e(L−1)L−e−j(L−1)λ2. With this notation, we have val(xy) = e+j.

Altogether we get a contribution

λ2
∑
e≥1

∑
j≥1

L−e−jL−2e−j(L− 1)2 = (L− 1)2λ2
∑
e≥1

L−3e
∑
j≥1

L−2j

=
(L− 1)2

(L2 − 1)(L3 − 1)
λ2

from this case.

Taken together, we have computed∫
Λ2

L− val(xy) dµ =

(
2(L− 1) + (L− 2)(L− 1)

(L3 − 1)
+

(L− 1)2

(L2 − 1)(L3 − 1)

)
λ2

=
(L2 + L + 1)(L− 1)

(L + 1)(L3 − 1)
λ2

=
1

L + 1
λ2,

as we found before.

Remark IV.15. We get the same result with xy replaced by any xayb, with (a, b) ∈

Z2 − {(0, 0)}. For any non-zero (a, b) where a, b have no common factor extends to

an integral basis of Z2, while if they have a common factor d, the map z 7→ zd is a

measure-preserving automorphism of Λ. Hence a change of co-ordinates computes∫
Λ2

|xayb| dµ =

∫
Λ2

L− val(xayb) dµ =
1

L + 1
λ2.

Note that when a, b 6= 0 this is not the same as integrating

|xa||yb| = L− val(xa)−val(yb),

and neither of these is the same as integrating

|x|a|y|b = L−a val(x)−b val(y).
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That is, the value | · | = L− val(·) is not multiplicative on Λ, because val : Λ → N is

not a homomorphism. In terms of integration on the log tangent space T (N2), these

three integrands correspond respectively to

|a∂x+ b∂y|, |a∂x||b∂y|, and |∂x+ ∂y|a+b,

which are distinct in general. This is because ∂ : P → ∂P is a morphism:

val(xy) = val(∂xy) = val(∂x+ ∂y),

because of the compatibility of the valuation map with the logarithm Λ→ tkJtK.

Remark IV.16. After Example IV.14 we should consider the integral∫
J∞(X,M)0

|x||y||xy| dµ

on X = Spec k[x, y]. Now the “easy way” does not avail: there is no basis u, v of Λ2

with respect to which the integrand is constant on the sets of fixed valu, val v. The

reason is that after taking logarithms we have the integral on T (N2) = Spec k[∂x, ∂y]∫
J∞(A2)0

|∂x||∂y||∂x+ ∂y)| dµ.

Let us write x, y again for co-ordinates on T (N2) in place of ∂x, ∂y to have this

ordinary motivic integral in more standard notation. The integrand here does not

define a normal crossing divisor: ordx(t) and ord y(t) do not determine ord(x+y)(t).

Computationally this may be handled as follows, which is nothing but the “less-

easy” way of Example IV.14 repeated in different terms. If ordx(t) < ord y(t), we

may write y(t) = x(t)z(t) for some series z(t) ∈ tkJtK. Now ord(x+ y)(t) = ord x(t),

and integration with these variables x, z should handle this case. The complication

is only that the multiplication map

kJtK2 → kJtK2
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sending (x, z) 7→ (x, xz) = (x, y) does not preserve measure, so the integral with

respect to x, z should be adjusted to account for this. The case ord y(t) < ordx(t)

is obviously the same, letting say x(t) = y(t)w(t). In the remaining case ordx(t) =

ord y(t) either substitution will do. Say if y(t) = x(t)z(t) with z(t) ∈ kJtK∗ then

ord(x + y)(t) is ordx(t) = ord y(t) if z(0) 6= −1 or ord x(t) + ord(z(t) − z(0)) if

z(0) = −1. Geometrically what we have described are two charts y = xz, x = yw of

the blowup of A2 at the origin. The cases ordx 6= ord y correspond to the geometric

points x, z = 0 and y, w = 0 of the exceptional divisor E. The case ordx = ord y

corresponds to the rest of E, with the special case z(0) = −1 being where E meets the

proper transform of the line x+ y = 0. In other words, this co-ordinate substitution

has replaced our original divisor with one with normal crossings, at the computational

cost of introducing the Jacobian of the multiplication (x, z) 7→ (x, xz). This is the

meaning and strength of Kontsevich’s change-of-variables formula in this example.

But what of the log motivic integral? Returning to the old notation, the changes

of variables ∂y = ∂x·∂z and ∂x = ∂y ·∂w give the blowup of T (N2). The importation

into the log scheme category is not the blowup y = xz, x = yw of Spec k[x, y] at the

origin. That does not induce a blowup on log tangent spaces: it is only a co-ordinate

change on Λ2, with trivial Jacobian. Instead we would want a map P → Q of

monoids such that the map Spec k[Q]→ Spec k[P ] gives T (Q)→ T (P ) as part of a

blowup of affine space. But this is not possible: the map on log tangent spaces is

just the map P → Q written additively as ∂P → ∂Q, so is a linear transformation.

Example IV.17. Consider the plane Spec k[x, y] with non-standard log structure

given by the chart k[xy] → k[x, y], as in Example II.15. Integration of a monomial

in x, y at the origin is integration over two disjoint (up to measure zero sets) copies

of Λ× tkJtK, one for each component of the arc space of the rank one stratum xy = 0
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at the origin. So if we integrate |xy|, say, then at the origin we get a contribution

2λ

L + 1
.

4.3 Integration

Here is our log motivic integral:

Definition IV.18. Using the piecewise splitting

J∞(X,M)ξ ' J∞(Xξ)× Hom(P gp,Λ)

for a fine log scheme (X,M) with ξ the generic point of a stratum component and

P a good chart at ξ, we consider integrals∫
J∞(X,M)

φ dµ =
∑
ξ

∫
J∞(Xξ)×Hom(P,Λ)

φ|ξ dµ

with respect to the product measure on J∞(X,M)ξ, for chosen integrands φ|ξ on

each stratum.

Example IV.19. For a fine log scheme (X,M) with smooth strata Xj of rank j,

the motivic volume of J∞(X,M) is

µ(X,M) =

∫
J∞(X,M)

1 dµ =
∑
j

[Xj]λ
j.

If we evaluate at λ = 1 we get the ordinary motivic volume µ(X) = [X] =
∑

j[Xj].

Otherwise in general the grade by λ remembers the rank of the log structure on the

strata of X.

Remark IV.20. This motivic volume respects taking disjoint unions, and also respects

taking products of fine log schemes, because the strata of (X,M) × (Y,N ) are the

products Xj × Y` along which M⊕N has rank j + `. More generally, one has the

formula ∫
J∞(X,M)

φX dµ

∫
J∞(Y,N )

φY dµ =

∫
J∞(X×Y,M⊕N )

φXφY dµ
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for the same reason.

Example IV.21. For X = Spec k[x, y] with its standard log structure M, we com-

pute a few integrals using our calculations in Section 4.2.3. First, this log scheme

has motivic volume

µ(X,M) =

∫
J∞(X,M)

1 dµ = λ2 + 2(L− 1)λ+ 1.

One way to make sense of this is that the affine line Y = Spec k[N] has volume

λ+ (L− 1), and Spec k[N2] = Spec k[N]× Spec k[N] as log schemes.

Let us try another, say, ∫
J∞(X,M)

|x| dµ.

We compute the contributions on strata and sum. On the rank zero stratum (A1−0)2

we are integrating the value of a unit x over (kJtK∗)2, i.e. as an ordinary motivic

integral. We have |x| = 1, so we get a contribution (L− 1)2.

On the stratum component with generic point (x), according to Example IV.13

we get a contribution
1

L + 1
λ from each point. This stratum component is a torus

A1− 0, so from it we get
L− 1

L + 1
λ. From the other rank one component, with generic

point (y), we get (L− 1)λ: we are integrating the value of a unit over Λ× kJtK∗.

Finally, the rank two component, the origin, contributes
1

L + 1
λ2, like as in Ex-

ample IV.12. Altogether we have found∫
J∞(X,M)

|x| dµ =
1

L + 1
λ2 + (L− 1)(1 +

1

L + 1
)λ+ (L− 1)2.

More, we get the same result on integrating |xa| or, symmetrically, |yb| instead for

any a, b 6= 0, (but not the same on integrating |x|a ≥ 2).

In the same way, except recalling Example IV.14 to compute the contribution of
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the origin, we find∫
J∞(X,M)

|xy| dµ =
1

L + 1
λ2 +

2(L− 1)

L + 1
λ+ (L− 1)2.

Note that on the rank one strata here the monomial xy is a unit times a (non-unit)

element of the log structure, so that the calculation of Example IV.13 still applies

after a co-ordinate change on Λ×kJtK∗. Put another way, the monoid Nxy is a chart

on these strata, and we are computing with it.

Like before, ∫
J∞(X,M)

|xayb| dµ =
1

L + 1
λ2 +

2(L− 1)

L + 1
λ+ (L− 1)2

if a, b > 0.

4.3.1 Integration for strict étale maps

A strict étale morphism f : (Y,N ) → (X,M) is log étale, preserves the rank

of M under pullback, and induces isomorphisms Jm(Y,M)y → Jm(X,M)f(y), for

m ≥ 0 or m =∞, of log jet or log arc spaces at points. Therefore:

Proposition IV.22. Let f : (Y,N ) → (X,M) be a strict étale morphism. Let

A ⊆ J∞(X,M) be measureable and let f ∗A be its inverse image in J∞(Y,N ). Then∫
f∗A

f ∗(φ) dµ = deg f

∫
A

φ dµ

for any integrand φ on A.

We note two useful consequences of this fact.

Remark IV.23. For a fine log scheme (X,M) in this Chapter, typically we suppose

we have a good chart P at any chosen point x. Recall that this means that the

composite

P →Mx →Mx/O∗X,x
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is an isomorphism; in other words, the chart P is given by a section

Mx/O∗X,x →Mx.

This assumption costs little, for according to Proposition II.12 a fine log scheme in

characteristic zero has good charts étale locally. That is, in general there is a strict

étale morphism f : U → X near x such that the chart P on (X,M) pulls back to

a good chart on U near a point y with f(y) = x. Now Proposition IV.22 lets us

compute integrals on X by passing to the étale neighbourhoods U .

Remark IV.24. Recall from Corollary III.21 and following that if (X,M) is log

smooth then it has, locally on X, a strict étale morphism X → Spec k[P ] to a

monoid algebra. Consequently Proposition IV.22 essentially reduces the calculation

of log integrals on log smooth varieties to their calculation on monoid algebras.

4.3.2 Integration for log blowups of monoid algebras

Our main result for log motivic integrals is the following transformation rule for

integrals under a log blowup.

Theorem IV.25. Let π : P → Q be a log blowup, and φ an integrand on X =

Spec k[P ]. Let ξ be the generic point of a stratum Z = Xξ of X, and E the locus of

Y = Spec k[Q] mapping to Xξ. Then∫
J∞(X,M)ξ

φ dµ =
[Z]

[E]

∑
η∈E

λd(η)

∫
J∞(Y,N )η

π∗φ dµ,

where the sum η ∈ E ranges over the generic points of strata of Y contained in E

and d(η) = rank ξ − rank η.

Proof. A log blowup induces isomorphisms J∞(Y,N )y → J∞(X,M)x on log arc

spaces at points y mapping to x. Pullback of sets along this map multiplies measures
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by λ−d(η). So, integration along the fibre E ′ of the blowup over ξ contributes

[E ′]

∫
J∞(X,M)x

φ dµ =
[E]

[Z]

∫
J∞(X,M)x

φ dµ.

Summing over strata, the claim follows.

See also Remark III.34 describing the strata appearing in a log blowup of monoid

algebras.

Example IV.26. Consider the blowup of X = Spec k[x, y] with its standard log

structure at the ideal I = (x, y). From Example IV.13, we have∫
J∞(X,M)0

|y| dµ =
1

L + 1
λ2.

One chart of this blowup is the map Y = Spec k[x,w]→ Spec k[x, y] with w = x−1y.

Here Spec k[x,w] has its standard structure, generated by x,w at its origin and by

x at the other points of the exceptional divisor x = 0. The integrand |y| pulls back

to |xw|. Now Example IV.14 says that∫
J∞(Y,N )0

|xw| dµ =
1

L + 1
λ2,

and likewise for the point of the exceptional divisor E ⊆ BlI(N2) not in this chart.

Finally, Example IV.13 shows, after the co-ordinate substitution x, y = xw on Λ ×

kJtK∗, that ∫
J∞(Y,N )(0,c)

|xw| dµ =
1

L + 1
λ,

for a point (x,w) = (0, c) on the exceptional divisor with c 6= 0.

In other words, every point on E contributes
1

L + 1
λ2, if we re-weigh the rank

one points of E with an extra factor of λ. Adding these up, and then dividing by

the class [E] = L + 1 of the exceptional divisor, we get
1

L + 1
λ2 again. This is the

claim of the transformation formula in this case.
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Remark IV.27. Let Y = Spec k[Q]→ X = Spec k[P ] be log étale. If φgp : P gp → Qgp

is an isomorphism, then Y → X factors as an open immersion into a log blowup

of X, according to Proposition III.38. If kerφgp 6= 0, then the map Y → X is not

dominant. The case cokerφgp 6= 0 corresponds to ramified (in the ordinary sense)

covers.

4.4 Ordinary arcs on monoid algebras

We study ordinary integration on monoid algebras Spec k[P ]. The main result,

also introducing some of our notation, can be summarised as follows.

Theorem IV.28. There is a canonical decomposition of the space of arcs

J∗∞(P ) ⊆ J∞(Spec k[P ])

of a monoid algebra Spec k[P ] which lie generically in no stratum (of positive rank)

of Spec k[P ] into cells

Jv∞(P ), for v ∈ Hom(P,N).

Furthermore, there exists a function φP on Hom(P,N), conewise linear on some

subdivision ΣP of the cone Hom(P,N), such that the cells’ measure is given by

µ(Jv∞(P )) = [Spec k[P gp]]L−φP (v)

for all v ∈ Hom(P,N). In fact, φP (v) is given by the minimum

φP (v) = min{v(p1) + v(p2) + ...v(pd) : p1, p2, ..., pd ∈ P is a rational basis for PQ}

of v(p1 + p2...+ pd) over bases p1, p2, ..., pd ∈ P of PQ = P gp ⊗Z Q.

Remark IV.29. The dual monoid Hom(P,N) = Hom(P sat,N) is a (saturated) poly-

hedral cone in Hom(P gp,Z) = Hom(P gp/(torsion),Z).
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Remark IV.30. The decomposition Jv∞(P ) for arcs on a toric variety was given by

Ishii [15]. The motivic classes µ(Jv∞(P )) were calculated in [6] in terms of the Newton

polyhedra of “logarithmic Jacobian ideals” of P . Our approach in Section 4.4.2 below

is essentially the same.

Corollary IV.31. Let F : J∗∞(P )→ V be an integrand on Spec k[P ] for which F (γ)

depends only on the cell Jv∞(P ) to which γ belongs. We then write the integrand also

as F : Hom(P,N)→ V. Then∫
J∞(P )

F (γ) dµ =
∑

v∈Hom(P,N)

F (v)µ(Jv∞(P )) = [Spec k[P gp]]
∑

v∈Hom(P,N)

F (v)L−φP (v).

Proof. Note that the complement of J∗∞(P ) in J∞(P ) has measure zero, since it

consists of arcs generically contained in proper strata of Spec k[P ]. This explains

the domain of F and of the integral. The formula then follows from the above

Theorem IV.28 and the definition of the motivic integral.

This means that one may compute the integral of any such F as the given formal

sum, given knowledge of the function φP , which encodes the relevant information

about the motivic volume on Spec k[P ].

In this subsection we describe the decomposition of the arc scheme of Spec k[P ].

In those following we compute the motivic volumes µ(Jv∞(P )), and discuss some

simple integrals on monoid algebras.

Let P be a fine monoid. The set of arcs

J∞(P ) = Hom(k[P ], kJtK)

on Spec k[P ] bijects naturally with the set of monoid morphisms

Hom(P, (kJtK, ·))
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from P to the multiplicative monoid of power series, by the universal property of

monoid algebras. In particular, it has a natural monoid structure itself, given by

multiplication of series. Concretely, this is the observation that if two maps γ1 =

(x1(t)), γ2 = (x2(t)) satisfy some monomial relations then so does the product γ1γ2,

(and conversely, if the series xi(t) are non-zero). Viewing the monoid (kJtK, ·) as the

zero element together with the product

(kJtK×, ·) ' N× kJtK∗ ' N× k∗ × Λ

through the decomposition

x(t) = te(ae + ae+1t+ ...) = te · ae · (1 +
ae+1

ae
t+ ...)

where ae 6= 0, we obtain the following description of the ordinary arcs of X =

Spec k[P ]. They are first stratified by the prime ideal I ⊆ P which maps to zero in

kJtK. The ideal I ⊆ k[P ] defines the stratum of X in which the arc generically lies.

We are interested in the set J∗∞(P ) of arcs with I = P −P ∗, that generically lie in no

proper stratum of Spec k[P ]. (One can study the arcs which generically lie in proper

strata by passing to the quotients P/F , where F = P − I is the complementary face

of I, and considering J∗∞(P/F ).)

In terms of the above decomposition of kJtK, this is the set

J∗∞(P ) ' Hom(P,N)×Xgp × Hom(P,Λ),

where Xgp = Spec k[P gp] is the rank zero stratum of X. (So Xgp is a disjoint union

of tori of dimension rankP gp.) We grade J∗∞(P ) by v ∈ Hom(P,N), writing

Jv∞(P ) = v ×Xgp × Hom(P,Λ)

for such v. These are the arcs where x(t) has order v(x). That is, these arcs are



95

given by equations

x(t) = x0t
v(x)(1 + ∂1x t+ ...),

for x ∈ P , with the x0 6= 0 the co-ordinates of a point in Xgp. They have a

multiplication

Jv∞(P )× Jv′∞(P )→ Jv+v′

∞ (P )

as subsets of J∞(X). Obviously the fibre of this map is just the set Xgp×Hom(P,Λ)

of ordinary arcs on Xgp over any point of the target. This grading and multiplication

descend to

Jvm(P )× Jv′m(P )→ Jv+v′

m (P ),

where

Jvm(P ) = πmJ
v
∞(P ) ⊆ Jm(Spec k[P ]),

but the fibres of the product maps on jets are harder to determine, even when one of

v, v′ is zero and the multiplication is just the action by the jets of Xgp. The Jvm(P )

have additional structure as well. For example, let δ = min(v+v′) ≤ min(v)+min(v′),

with minima taken over P − P ∗ = P − 1. Then there is a well-defined, surjective

multiplication map

Jvm−δ(P )× Jv′m−δ(P )→ Jv+v′

m (P ),

which in general still has a nontrivial fibre.

This illustrates the difficulty in computing the motivic volume of the cells Jv∞(P ),

for it is the images Jvm(P ) under the projection πm : J∞(P )→ Jm(P ) that determine

the classes µ(Jv∞(P )). Indeed,

µ(Jv∞(P )) = lim
m→∞

[πmJ
v
∞(P )]L−md = lim

m→∞
[Jvm(P )]L−md,

where d = rank(P gp), according to [8].
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4.4.1 Support functions

As an illustration, we consider the case where v is zero on a non-trivial face F of

P .

In general, a map v ∈ Hom(P,N) determines a face F of P mapping to the

identity 0 ∈ N (which is the minimal face of N). Here F ⊆ P is the dual to the face

of Hom(P,N) in whose relative interior v lies, and the closed point (not the generic

point) of the arcs Jv∞(P ) lies in the stratum of X determined by F . Let us call v

a support function for the face F of P . For fixed F , the set of such is naturally

Hom(P/F,N).

The simplest case is when a face F has codimension one, that is, when the quotient

P/F has rank one. Since the target N is saturated, the support functions of facets

F are then just maps N → N, although if P is not saturated then the image v(P )

may not be a saturated submonoid of N.

Proposition IV.32. Let v be a support function of a facet F ⊆ P . Then

µ(Jv∞(P )) = [Xgp]L−minx∈P−F v(x).

Proof. An arc γ in Jv∞(P ) is determined by a point of Xgp together with an element

of Hom(P,Λ). This in turn is determined by a monoid morphism in Hom(F,Λ) and

the series x(t) ∈ kJtK× for a chosen x ∈ P −F . Any single x will do in characteristic

zero, since it completes a basis of F gp to a Q-basis of P gp and we can take nth roots

in Λ. But the series x(t) are determined by v(x), their leading co-efficients x0, and

the image

γ ∈ Hom(N,Λ) = Hom(P/F,Λ),

by taking a splitting P/F → P . That is, there is a series, call it z(t) ∈ Λ, correspond-

ing to the image γ(1) ∈ Λ, such that for any x ∈ P −F we have x(t) = x0t
v(x)z(t)v(x).
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Modulo tm+1, then, for m large enough (depending only on v), we have the follow-

ing description of the image πmJ
v
∞(P ) in Jm(X). A truncated arc corresponds to a

point of Xgp, an arbitrary map in Hom(F gp,Λ/tm+1) ' (Λ/tm+1)rankP gp−1, and series

x(t) = x0t
v(x)z(t)

v(x)
. This last part modulo tm+1 is determined by the truncation of

z(t) up to the power tm−v(x), hence all these series at once are determined by the

truncation of z(t) up to the power tm − minx∈P−F v(x). Obviously different such

truncated series z(t) give different m-jets. Hence we have computed the class

[πmJ
v
∞(P )] = [Xgp]Am(rankP gp−1)+m−minx∈P−F v(x).

The motivic volume of Jv∞(P ) is the limit of the normalised classes

lim [πmJ
v
∞(P )]L−m dimX ,

where dimX = rankP gp. So µ(Jv∞(P )) = [Xgp]L−minx∈P−F v(x), as claimed.

More generally, for any face F of P , the same argument, with the single series

z(t) replaced by a rational basis for (P/F )gp, shows the following.

Proposition IV.33. If v is a support function of a face F of P , not necessarily a

facet, then

µ(Jv∞(P )) =
[Spec k[P gp]]

[Spec k[(P/F )gp]
µ(Jv∞(P/F )).

Example IV.34. Let P be a non-singular simplicial cone of dimension d. Its dual

cone Hom(P,N) is also non-singular and simplicial, say with a generating set v1, ..., vd,

which is a basis of Hom(P gp,Z), the dual basis to x1, ..., xd ∈ P . The function vj is

a support functions for the facet Fj of P generated by the xi with i 6= j, and the

minimum value of vj on P − Fj is one (for example, attained at the point xj ∈ P ).
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In fact, for v =
∑
ajvj ∈ Hom(P,N), we have

µ(Jv∞(P )) = Td
∏

L−aj = TdL−
∑
aj ,

where T = L− 1 is the class of the torus A1−{0}, although we have not yet proven

this.

Example IV.35. For X = k[t2, t3] and v(tn) = n, the minimum of v on P −

F = {t2, t3, ...} is two. So µ(Jv∞(P )) = TL−2. More, the motivic volume of the

cuspidal singularity is the sum of the classes µ(Jev∞ (P )) = TL−2e for e ≥ 1, which is

T/(L2 − 1) = 1/(L + 1).

Remark IV.36. It is not the case that every v ∈ Hom(P,N) is a sum of support

functions (for example, consider Hom(P,N) a singular simplicial cone). Nor is

µ(Jv∞(P ))/[Xgp] additive on all of Hom(P,N) in general.

4.4.2 Min sequences

We finish the calculation of the motivic volumes µ(Jv∞(P )). Recall that our claim

is that there is a function φP on Hom(P,N), continuous and conewise linear on some

subdivision ΣP of Hom(P,N), such that

µ(Jv∞(P )) = [Xgp]L−φP (v)

for all v ∈ Hom(P,N). This φP will be given in terms of combinatorial or convex

geometric data of P . It suffices to show that

[πmJ
v
∞(P )] = [Jvm(P )] = [Xgp]Lmd−φP (v)

for m large enough, depending on v, and some constant φP (v) depending only on v

(and not m).
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The determination of the jets Jvm(P ), and hence their motivic classes [Jvm(P )] ∈

K0(var/k), is more complicated than that of the arcs Jv∞(P ), because m-jets corre-

spond to maps

P → (kJtK/(tm+1), ·)

rather than maps P → (kJtK, ·), and (kJtK/(tm+1), ·) has a more complicated structure

than (kJtK, ·). Namely, it is graded by N/(m+1) = {0, 1, 2, ...,m,∞}, with the grade

n ≤ m piece isomorphic to k∗ × Λ/(tm−n+1), where we write

Λ/(tm−n+1) = (1 + tkJtK/(tm−n+1), ·).

This isomorphism is given by writing a truncated series x(t) mod tm+1 as

tna0(1 + a1t+ ...+ am−nt
m−n).

The grade∞ piece is the zero element, which formally agrees with this if we take the

notational convention that t∞ = 0. As a result, when describing the possible maps

P → (kJtK/(tm+1), ·)

we will need to keep track of which graded piece of the target various elements of P

map to.

Let us call a set of elements p1, ..., pd ∈ P a Q-basis of P if the images of p1, ..., pd

are a basis for the rational vector space PQ = P gp⊗ZQ, and a Z-basis of P if further

they generate the lattice P gp/(torsion) ⊆ PQ.

Proposition IV.37. 1. There is a surjection

Hom(P,N/(m+ 1))×Xgp × Hom(P,Λ/(tm+1))→ J∗m(P )

of monoids, given by multiplication, with the identification

N/(m+ 1) = {0, 1, ...,m,∞} = {1, t, ..., tm, 0}.
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2. Let char k = 0. Let p1, ..., pd be a Q-basis of P , and let v ∈ Hom(P,N). Then

the above map induces a surjection

Xgp ×
∏

1≤j≤d

Λ/(tm−v(pj)+1)→ Jvm(P ).

Proof. The first claim is a restatement of the previous discussion. For the second, a

map P → Λ/(tm+1) is determined by the images of the elements pj, which are series

pj in the grade v(pj) piece of Λ/(tm+1). That is, the choice of Q-basis followed by

truncation of series gives a morphism

Hom(P,Λ/(tm+1))→
∏
j

Λ/(tm+1)→
∏
j

Λ/(tm−v(pj)+1)

which gives a factorisation of the surjection

v ×Xgp × Hom(P,Λ/(tm+1))→ Jvm(P ).

In particular, it follows that if our function φP exists, then

φP (v) ≤
∑
j

v(pj)

for any Q-basis p1, ..., pd of P . Our claim is that in fact φP (v) is the minimum over

Q-bases of P of such sums. To establish this we will construct, given v ∈ Hom(P,N),

a Q-basis s1, ..., sd of P with minimum sum and show that Jvm(P ) is a torsor under

the induced action by Xgp ×
∏

j Λ/(tm−v(sj)+1).

In fact, a suitable basis can be chosen greedily. For v ∈ Hom(P,N) we construct

a min sequence s = (s1, ..., sd) ∈ P d for v on P as follows. First we write s0 = 1,

the identity of P . Obviously v(s0) = 0. Inductively, for 1 ≤ j ≤ d in succession we

take sj to minimise v on P − Lj, where Lj is the linear subspace of PQ generated

by the elements s0, s1, ..., sj−1. Sometimes sj is not uniquely determined, because v
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may be simultaneously minimised at more than one point of P − Lj. In any case,

the elements of a min sequence s are in linearly general position in PQ, so form a

Q-basis of P .

If s = (s1, ..., sd) is a min sequence for some v ∈ Hom(P,N), we call it a min

sequence of P . If further v(sj) > 0 for j ≥ 1 we call s a non-degenerate min

sequence of P . If v is a support function of a non-trivial face F of P then a min

sequence for v is equivalent to a choice of a Q-basis of F followed by a min sequence

for P/F .

Remark IV.38. We make some basic observations about min sequences.

1. A non-degenerate min sequence consists of irreducible elements of P . For sup-

pose sj is reducible with j minimal, sj = pq for some p, q ∈ P − P ∗. If

v witnesses that s is non-degenerate, then as v(sj) = v(p) + v(q) we have

1 ≤ v(p), v(q) < v(sj). Since p, q were not chosen in the construction in place

of sj, they must both be in Lj. But then so is sj, a contradiction.

2. In particular, a fine monoid P has finitely many non-degenerate min sequences.

3. A non-degenerate min sequence need not lie in a face of the convex hull of

the irreducible elements of P in PQ, but may contain interior elements of this

polytope.

4. A support function v still has a non-degenerate min sequence. Start with a

Q-basis of F which has minimum volume in F gp and extend to a min sequence

s of P using the ordering induced by v. Now a perturbation v′ of v into the

interior of Hom(P,N) ⊗Z Q has min sequence s′, where the beginning segment

of s′ is some ordering of the chosen Q-basis of F , and thereafter s, s′ agree.

Then s′ is non-degenerate, and is also a min sequence for v. This observation
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amounts to noting that the conewise linear function φP on Hom(P,N) we will

give is continuous at the boundary of Hom(P,N).

Remark IV.39. If s = (s1, ..., sd) is a min sequence for v, then v(s1), ..., v(sd) is

the smallest sequence in dominance order of values of v on d linearly independent

elements of P . That is, if p1, ..., pd is another Q-basis of P , then

v(s1) + ...+ v(sk) ≤ v(p1) + ...+ v(pk)

for all 1 ≤ k ≤ d. For suppose p1, ..., pd is a counterexample with k ≥ 2 minimum.

Thus

v(s1) + ...+ v(sk−1) ≤ v(p1) + ...+ v(pk−1),

but

v(s1) + ...+ v(sk−1) + v(sk) > v(p1) + ...+ v(pk−1) + v(pk).

In particular, v(pk) < v(sk). Since pk was not chosen in the construction of s, it must

lie in the linear span of s1, ..., sk−1. Note now that if q1, ..., qk is any permutation of the

elements p1, ..., pk, then the ordered basis q1, ..., qk, pk+1, ..., pd also gives a minimal

counterexample. In particular, all of p1, ..., pk lie in the linear span of s1, ..., sk−1.

This contradicts that p1, ..., pk are linearly independent in PQ. One might compare

([6], 5.1).

To emphasise the convex geometry of P , let us consider the polytope ∆(s) ⊆ PQ

which is the convex hull of the elements of a min sequence s, or ∆0(s) the convex

hull of ∆(s) and s0 = 1. We also consider the point ps =
∑

p∈s p, the far corner of a

parallelotope of which ∆0(s) is one half. Note that if s is non-degenerate then ∆0(s)

has no points of P in its interior, (as such a point p would be in linearly general

position with respect to any d − 1 elements of s and would have v(p) < v(sj) for

some j, contradicting the construction). In particular, if P is saturated then ∆0(s)
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has no points of P gp in its interior, so s actually gives a Z-basis of P gp, (because

every element of P has a translate which is a lattice point in a fundamental domain

for P gp/(s1, ..., sd).)

We are ready to prove our claim:

Theorem IV.40. Let

φP (v) = v(ps) =
∑
j

v(sj),

with s = (s1, ..., sd) a min sequence for v. Then Jvm(P ) is a torsor for Xgp ×∏
j Λ/(tm−v(sj)+1). In particular, µ(Jv∞(P )) = [Xgp]L−φP (v).

Proof. We need to show that, for γ ∈ Jvm(P ), the multiplication map

γ ×Xgp ×
∏

1≤j≤d

Λ/(tm−v(sj)+1)→ Jvm(P )

after Proposition IV.37 injects. If there is a non-trivial relation among the series

s1(t), ..., sj(t), with j taken minimal, then there is a relation of their principal trun-

cated series modulo tm−v(sj)+1, because v(s1), ..., v(sj) is a nondecreasing sequence.

But the submonoid Pj generated by s1, ..., sj has rank j, with Q-basis s1, ..., sj, and

the group Hom(Pj,Λ/(t
m−v(pj)+1)) is free, a contradiction.

Remark IV.41. It follows that a min sequence s for v does minimise the sum
∑

j sj(v)

over Q-bases of P , and that this minimum value is φP (v). In particular, we have

φP (v) = mins v(ps), with minimum taken over all the min sequences of P , or just

over all the non-degenerate min sequences of P . Such a minimum, over a finite

set of linear functions, is continuous and conewise linear on the subdivision ΣP of

Hom(P,N) which is the normal fan in Hom(P,N) of the polytope ∆P in PQ generated

by the “evaluation points” ps, for various min sequences s. This ΣP is the Nash

modification of P [6].
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This construction of φP also shows that if v, v′ have min sequences s, s′ which are

permutations of each other then φP (v)+φP (v′) = φP (v+v′). That is, φP is linear on

cones corresponding to unordered min sequences. To see this, we only need re-order

the factors Λ/(t
m−v(ps′

j
)+1

) to agree with the Λ/(tm−v(psj )+1) and observe that then

the multiplication map

Jvm(P )× Jv′m(P )→ Jv+v′

m (P )

has constant fibre Xgp, and hence

µ(Jv∞(P ))µ(Jv
′

∞(P )) = [Xgp]µ(Jv+v′

∞ (P )).

Consequently, in general the subdivision ΣP of Hom(P,N) is coarser than the subdi-

vision into cones of constant (ordered) min sequences, because the evaluation points

ps are unchanged by permutation of the elements of s.

Example IV.42. Let P = 〈y, xy, x2y〉 be generated by monomials y, xy, x2y. Then

the dual cone Hom(P,N) has rays generated by e,−e + 2f , where e, f is the dual

basis to x, y. The non-degenerate min sequences of P are (y, xy) and (x2y, xy), which

have evaluation points xy2 and x3y2. These are equal on the ray x = 0 of Hom(P,N).

This ray consists of those v ∈ Hom(P,N) for which v(y) = v(xy) = v(x2y), so that v

takes its minimum on P −{1} at all these points simultaneously. Two of the choices

of ordered min sequences for v give min sequences for different perturbations of v

away from the ray x = 0.

We get φP (ae + bf) = min(a + 2b, 3a + 2b), conewise linear on the subdivision

by the ray x = 0. In particular, this gives the correct weights to the points on

the boundary of Hom(P,N), which correspond to the support functions of proper

faces of P . Note that the primitive point f on the ray x = 0 has φP (f) = 2, and

not φP = 1, like the primitive points on the other rays. (If P is saturated then
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the primitive codimension one support functions always have φP = 1, according to

Proposition IV.32).

Example IV.43. Similarly to the last example, taking Q = 〈y, xy, x2y, x3y〉 we have

φQ(ae+bf) = min(5a+2b, a+2b), conewise linear after subdividing at the ray x = 0.

The primitive point f of this ray still has φQ(f) = 2.

Example IV.44. Let us consider the case of the quadric cone,

P = 〈x, y, z, w : xw = yz〉.

For example, we can realise P by identifying variables x, y, z, w as vectors

(1, 0, 0), (0, 1, 0), (1, 0, 1), (0, 1, 1)

in N3. The non-degenerate min sequences (which now have length 3) are two of

x, y, z, w (but not x,w or y, z) followed by xw = yz. Hence φP will be conewise

linear on a star subdivision of Hom(P,N). In the example, the cone Hom(P,N) ⊆

(N3)∗ has rays generated by (1, 0, 0), (0, 1, 0), (0, 0, 1), and (1, 1,−1). The “middle”

point v = (1, 1, 0), which generates the star subdivision ΣP of Hom(P,N), takes its

minimum on P − {1} simultaneously on the four points x, y, z, w.

In terms of the multiplication of jets, it has an isomorphism γ × J
(0,0,0)
m−1 (P ) →

J
(1,1,0)
m (P ) for any γ ∈ Jvm(P ), for example the jet x(t) = y(t) = z(t) = w(t) = t. This

map gives an alternate explanation of the exceptional value φP (v) = 3 (compared to

φP = 1 at the primitive points of the rays of Hom(P,N)).

In terms of the variables x, y, z, w, here is how this sort of calculation plays out.

Take for example u = (2, 1,−1). Then u(x) = 2, u(y) = 1, u(z) = 1, u(w) = 0.

We parametrise the possible m-jets by Xgp times three principal series, with m

coefficients for w, m − 1 for y, and m − 1 for z. The series x(t) is then determined
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by x = yzw−1. We get 3m− 2 parameters, giving φP (u) = 2 after the normalisation

by the factor L−3m. For u′ = (1, 1, 1) = (0, 0, 1) + v, say, we have u′(x) = 1, u′(y) =

1, u′(z) = 2, u′(w) = 2. We get 3m− 4 parameters by choosing series for x, y, z, say.

Now we cannot write w = yzx−1, but it is the case that the principal series part

of w, which we might denote w/(w0t
2), is determined by w/t2 = (y/t)(z/t2)(x/t)−1,

with the same notational convention, modulo tm−2. So we find φP (u′) = 4.

We note that here the function φP is not conewise linear on an arbitrary resolution

of Hom(P,N) (that is, an arbitrary subdivision into nonsingular simplicial cones).

For example, Hom(P,N) has a “small” resolution by adding in either of the two-

dimension cones generated by (1, 0, 0), (0, 1, 0) or (0, 0, 1), (1, 1,−1). Instead φP is

only conewise linear after subdividing at their intersection, generated by v = (1, 1, 0).

Remark IV.45. The polytopes ∆(s), and the subdivision of Hom(P,N), depend on P

and not just P sat. The subdivisions ΣP and ΣP sat need not be comparable, essentially

because the irreducible elements of P and P sat need not bear much relation. For

example, let P sat = 〈y, xy, x2y〉, with P consisting of the elements xayb ∈ P with

a+b ≥ n for some fixed n, say n = 3. Here Hom(P,N) is the saturated cone generated

by vectors (−1, 2) and (1, 0). Now P sat and P both have two non-degenerate min

sequences, namely (y, xy) and (x2y, xy) for P sat, and (yn, xyn−1) and (xayb, xa−1yb+1),

with a+ b = n and a maximal, for P . We see that ΣP sat is obtained by subdividing

Hom(P,N) by the ray through (0, 1), while ΣP is obtained by subdividing by the ray

through (1, 1) instead.

Remark IV.46. The subdivsion ΣP of Hom(P,N) need not be nonsingular, or even

simplicial, even if P is saturated. The same holds for the refinement of this subdivi-

sion into cones corresponding to the different ordered min sequences of P .

For example, consider P = 〈x, y, z, x2y3z−1〉 ⊆ Z3. Then P is the union of two
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simplicial cones 〈x, y, z〉 and 〈x, y, x2y3z−1〉, so is saturated, with exactly the four

irreducible elements x, y, z, x2y3z−1. Let us consider the ordered or unordered min

sequence (x, y, z). Let (a, b, c) be co-ordinates on Hom(P,N)gp corresponding to

x, y, z. The cone corresponding to the ordered min sequence (x, y, z) is given by

inequalities

0 ≤ a ≤ b ≤ c ≤ 2a+ 3b− c

or, equivalently, by inequalities

0 ≤ a ≤ b ≤ c, 0 ≤ 2a+ 3b− 2c.

The cone for the unordered min sequence, which is the largest cone on which

φP (a, b, c) = a+ b+ c,

is given by inequalities

0 ≤ a, b, c ≤ 2a+ 3b− c.

In this case one sees easily that the relations a, b ≤ 2a + 3b − c are implied by

c ≤ 2a+ 3b− c, so that the cone is also given by the inequalities

0 ≤ a, b, c, 2a+ 3b− 2c.

Now neither of these cones is simplicial. The point is that the plane 2a+ 3b− 2c = 0

in each case meets two faces of the simplicial cone given by the other inequalities

a, b, c ≥ 0 in the relative interior of two of its facets, so that the part 0 ≤ 2a+3b−2c

of it has four facets. In particular these cones are not simplicial, as claimed.

Remark IV.47. Even in dimension 2, the subdivision ΣP need not be a resolution.

For example, consider P the saturated cone generated by y, x5y−1. There are 2

unordered non-degenerate min sequences on P , but one subdivision is not enough to

resolve Hom(P,N) = 〈(1, 0), (1, 5)〉.
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4.4.3 Ordinary integration on monoid algebras.

We consider integrands F (γ) on J∗∞(P ), with values in V = K0(var/k)[L−1], which

are invariant under the action of the arcs J∞(Xgp). That is, F is constant on the

orbits of this action, and hence the value F (γ) depends only on the v ∈ Hom(P,N)

for which v ∈ Jv∞(P ). Sometimes we will speak instead of integrating functions F (v)

on Hom(P,N).

Recall from Theorem IV.40 that µ(Jv∞(P )) = [Xgp]L−φP (v), with φP conewise

linear on a subdivision ΣP of Hom(P,N). We then have the formula∫
J∗∞(P )

F (γ) dµ =
∑

v∈Hom(P,N)

F (v)µ(Jv∞(P )) = [Xgp]
∑

v∈Hom(P,N)

F (v)L−φP (v),

whenever the sum on the right converges in V .

A special case of interest is when F (v) = L−p(v) with p ∈ P , or sometimes p ∈ P gp,

a linear function on Hom(P,N). The sum converges if p lies in the interior of P ,

so that F (v) > 0 for any v 6= 0, and for some other choices of p as well, due

to the presence of the factor L−φP (v). The study of these sums generalises to the

consideration of functions F (v) conewise linear on some subdivision Σ of Hom(P,N).

Now if σ ∈ Σ is a maximal cone of Σ in general the element p ∈ P or P gp for which

F (v) = Lp(v) on σ need not lie in σ∗, but instead (σ∗)gp = P gp.

Altogether, these integrals appear as sums of the form
∑

v∈Hom(P,N) L−φ(v) for φ

conewise linear on some subdivision of Hom(P,N) on which both F, φP are conewise

linear. Separating this sum by cones σ of this subdivision, we are left to consider

sums of form ∑
v∈σ

L−p(v)

for p ∈ P gp = (σ∗)gp linear on σ. Consequently, we think of the theory of motivic

integration for equivariant integrands on X = Spec k[P ] as equivalent to the theory
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of certain formal sums on Hom(P,N).

The following observation relates integrals for unsaturated monoids to integrals for

their saturation. Note that φP (v) ≥ φP sat(v) for any v ∈ Hom(P,N) = Hom(P sat,N),

since the construction of φP by min sequences takes minima over smaller sets.

Proposition IV.48. Let A ⊆ Hom(P,N) and an integrand F (v) on A be given.

Then ∫
A

F (v)L−φP+φPsat dµP sat =

∫
A

F (v) dµP .

Proof. Both integrals equal ∑
v∈A

F (v)L−φP .

Thus it is essentially sufficient to develop motivic integration on saturated monoids

in order to understand integration on general fine monoids P .

Example IV.49. Let σ = Hom(P,N) ' Nd be nonsingular, with primitive elements

v1, ..., vd on its rays, and let x1, ..., xd ∈ σ∗ = P be the dual basis. Writing v =
∑
ajvj

and p =
∑
bjxj, we have a sum

∑
(aj)∈Nd

L−p(
∑
ajvj) =

∑
(aj)∈Nd

L−
∑
ajbj =

∏
j

∑
aj∈N

Lajbj .

This sum converges if each bj > 0, that is, if p lies in the interior of σ∗, to

∏
j

Lbj
1− Lbj

.

Example IV.50. Let σ be a (possibly singular) simplicial cone, with primitive

elements v1, ..., vd on its rays. Let τ ⊆ σ be the cone generated by the vj. Then σ

is a finite union of translates of τ , by the points t1, ..., tn of σ in the fundamental
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parallelogram spanned by the vj. Indeed, σgp/τ gp is finite of this order, and t1, ..., tn

is a system of coset representatives. Let p ∈ (σ∗)gp have p(vj) = bj, p(ti) = ci. Then

∑
v∈σ

L−p(v) =

( ∑
1≤i≤n

L−ci
)∏

j

Lbj
1− Lbj

,

as we may see by re-writing the sum over v ∈ σ as a sum over cosets ti + τ for

1 ≤ i ≤ n, and using the previous example to compute the sum for τ .

Example IV.51. Other explicit calculations are possible. For example, let σ be

generated by vectors (−1, 2), (0, 1), and (1, 0). This is the cone Hom(P,N) of Exam-

ple IV.42. The function φ = φP giving the weights for the measure on σ takes values

φ(−1, 2) = φ(1, 0) = 1, φ(0, 1) = 2 and is conewise linear on the subdivision of σ by

the ray through (0, 1). Let us compute S =
∑

v∈σ L−φ(v). Decompose σ into its inte-

rior (0, 1) +σ and the two rays N(−1, 2) and N(1, 0), and the origin (0, 0). Summing

L−φ(v) over these four parts gives contributions L−2S,L/(1 − L),L/(1 − L), and 1.

(For the first of these we have used that the point (0, 1) lies in both the maximal

cones on which φ is linear.) That is,

S = L−2S +
2L

1− L
+ 1 = L−2S +

1 + L
1− L

,

so that

S =
1 + L

(1− L)(1− L−2)
=

L2

(L− 1)2
= T−2L2.

Multiplying by T2 gives the motivic volume L2 of the toric variety Xσ. Actually,

every point of Xσ has measure 1. For example, the torus-invariant point of Xσ has

measure

T2
∑
v∈σint

L−φ(v) = T2
∑

v∈(0,1)+σ

L−φ(v) = T−2L−φ(0,1)S = 1.

The calculation of the previous example does not apply to this one directly because

φ is not linear on all of σ (it has φ(0, 2) = 4). The sense of this calculation is that in
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general if v is an irreducible element of σ then v+ σ is a finite union of translates of

faces of σ, allowing one to compute the sums by induction on dimension.

Example IV.52. If a simplicial subdivision Σ of σ is given, a sum
∑

v∈σ F (v) over

the points of σ can be computed in terms of sums over the cones of Σ. If F is

conewise linear on Σ then these are all of elementary type, as in Example IV.49.

Looking in the opposite direction, one can try to put σ inside a larger simplicial

cone τ on which
∑

v∈τ F (v) still converges, then subdivide the region between σ and

τ as a fan T , and compute
∑

σ F (v) =
∑

τ F (v) −
∑

T F (v). Here is an example

of this type. Write co-ordinates on N3 as triples (a, b, c), let F (v) = L−φ(v) for a

linear functional φ on N3 strictly positive away from the origin, and let σ be the

cone a, b, c, b + c − a ≥ 0. Its complement in N3 is the simplicial cone τ ′ given by

b, c ≥ 0, b+ c ≤ a. Then

∑
v∈σ

F (v) =
∑
v∈N3

F (v)−
∑
v∈τ ′

F (v) +
∑
v∈σ∩τ ′

F (v),

and the three sums on the right side of this equation are of elementary type. We will

see that this type of construction, with σ inside a nonsingular cone τ can interpret

the sum
∑

v∈σF (v) as a certain log motivic integral on Xσ.

4.5 Integration on monoid algebras

We describe here a simple type of log integrand which leads to a comparison

with the formal sums over cones that we considered previously in studying ordinary

motivic integrals on monoid algebras. Subsequently we will describe how the two

may be related.

Remark IV.53. Recall from Proposition III.39 that the log arc scheme on (X,M) is

a trivial affine bundle (of infinite dimension). More, we see easily from the proof that
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the isomorphism of the log arcs J∞(X,M)x at point x ∈ Xj in the rank j stratum

Xj with a point y ∈ X` respects the measure µ after scaling by a factor λ`−j. In

view of this, generally it is more convenient to study log integrals at a single point

of X, which (when P is sharp) we may suppose is the central point 0 of X.

Let x1, ..., xd ∈ P gp be a basis for PQ and consider an integral∫
J∞(X,M)0

|x1|a1 · |x2|a2 · · · |xd|ad dµ

for some a1, ..., ad ≥ 0. Recall that this equals the integral∫
T (P )

|(∂x1)a1(∂x2)a2 · · · (∂xd)ad | dµ

on the log tangent space T (P ) ' Ad to X at the origin. The integrand is equivariant

on T (P ) with the log structure induced by P ' ∂P , which is the standard structure

on Ad ' Spec k[Nd], so corresponds to a lattice sum on Hom(Nd,N) ' Nd.

Here is another way to view this integral. Consider the monoid Nd with genera-

tors labelled valx1, valx2, ... valxd. We think of valxj ≥ 1 as giving the order of a

principal series xj(t) in some log arc, in the sense of Section 4.2.2. Now let φ be the

linear function on Nd with φ(valxj) = aj + 1. Then

(4.1)

∫
J∞(X,M)0

|x1|a1|x2|a2 · · · |xd|ad dµ = Tdλd
∑

(e1,...,ed)∈Nd>0

L−φ(e1,...,ed).

This follows simply on decomposing the group

Hom(P,Λ) = Λx1 × Λx2 × · · · × Λxd ' Λd

into sets

Λe1 × Λe2 × · · · × Λed

where Λe ⊆ Λ is the set of series {1 + cet
e + ... : ce 6= 0} with valuation e. According

to Example IV.6, we have µ(Λe) = L−eTλ, so that

µ(Λe1 × Λe2 × · · · × Λed) = TdλdL−(e1+e2+...+ed).
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Since the integrand |x1|a1|x2|a2 · · · |xd|ad takes value L−(a1e1+a2e2+...+aded) on this set,

Equation 4.1 follows immediately from the definition of φ.

4.5.1 Ordinary integrals as log integrals

We describe a kind of transformation rule for ordinary integrals on monoid alge-

bras X = Spec k[P ]. Ultimately this gives a comparison to log integrals on a certain

affine bundle X ′ → X over X.

Let P be a fine monoid, Hom(P,N) its dual. Let v1, ..., vn be the irreducible

elements of Hom(P,N), and consider the map (Nn)∗ → Hom(P,N) taking standard

generators e∗1, ..., e
∗
n on (Nn)∗ to these points. This induces a surjection (Zn)∗ →

Hom(P,N)gp = Hom(P,Z) on group completions. Dual to this is an inclusion P gp →

Zn. Write K∗,K for the kernel and cokernel of these respective maps. We have dual

exact sequences

(4.2) 0→ K∗ → (Zn)∗ → Hom(P,N)gp → 0,

(4.3) 0← K ← Zn ← P gp ← 0.

For w ∈ (Nn)∗, consider the coset w + K∗ ⊆ (Zn)∗. Write ∆(w) for its intersection

(w +K∗) ∩ (Nn)∗ with the first orthant. Obviously ∆(w) and ∆(u) are congruent if

w, u map to the same point in Hom(P,N), and the number of such points u ∈ (Nn)∗

is the number #∆(w) of lattice points in ∆(w). Considering a general ∆(w) as a

subset of K∗, it determines an ample line bundle on a toric variety XK, whose fan is

the normal fan in K of such ∆(w).

Remark IV.54. There is a related construction, say with Hom(P,N) simplicial, taking

generators of (Nd)∗ to the primitive points v1, ..., vd on the rays of Hom(P,N). In

general the corresponding sequences (4.2), (4.3) are only exact after tensoring with
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Q. This is because this map (Nd)∗ → Hom(P,N) has non-trivial, finite cokernel

if Hom(P,N) is singular. After Example IV.50, though, from the point of view of

integration having such a cokernel only amounts to multiplication by a constant. So

in such a case one might work with this map instead. The toric variety XK is then

the Gale dual of X = Spec k[P ].

Let an integral
∑

v∈Hom(P,N) F (v) on Hom(P,N) be given. Pulling back along the

map (Nn)∗ → Hom(P,N) gives on the one hand

∑
v∈Hom(P,N)

F (v) =
∑

w∈(Nn)∗

1

#∆(w)
F (w),

or, put the other way,

∑
v∈Hom(P,N)

#∆(v)F (v) =
∑

w∈(Nn)∗

F (w),

where by ∆(v) we mean any of the polytopes ∆(w) where w ∈ (Nn)∗ maps to v.

Example IV.55. Let Q = Hom(P,N) be generated by elements v1, v2, v3, v4 with

v1 + v4 = v2 + v3, and consider an integral
∑

v∈Q F (v) for some F . We have the

surjection π : N4 → Q taking standard generators of N4 to these elements. Then

∑
v∈Q

F (v) =
∑
u∈N4

1

#∆(u)
F (πu),

where ∆(u) = (u+kerπ)∩N4 counts the number of points of π−1πu. In co-ordinates

u = (a, b, c, d) on N4, we have

#∆(u) = 1 + min(b, c) + min(a, d).

Suppose for instance that F (πu) = L−φ(a,b,c,d) with φ(a, b, c, d) = a + b + c + d,

say. (This is the smallest linear function φ on N4 for which the formal sum above

converges.) Splitting the domain N4 into cones according to which of its co-ordinates
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are larger, we get contributions like

S =
∑

a≥d,b≥c

1

1 + c+ d
L−(a+b+c+d),

and so forth. We can evaluate this sum explicitly by standard manipulations with

formal series. For fixed c, d we have in this sum the term

S(c, d) =
1

1 + c+ d
L−c−d

(∑
a≥d

L−a
)(∑

b≥c

L−b
)

=
1

1 + c+ d

L2

T2
L−2(c+d).

To sum these pieces over c, d ≥ 0, consider the formal series identity

d

dz
z
∑
c,d≥0

1

1 + c+ d
zc+d =

∑
c,d≥0

zc+d =
1

(1− x)2
.

Re-arranging this gives

∑
c,d≥0

1

1 + c+ d
zc+d =

1

z(1− z)
,

so that on letting z = L−2 we find

S =
∑
c,d≥0

S(c, d) =
L2

T2

L4

L2(1− L2)
=

L4

T3[P1]
.

The rationality of this expression (in L) is not an accident: the sum comes from

an integral on Q which must have a rational form. (For example it is computable

by taking a toric resolution of singularities; in other words, by taking a simplicial

subdivision of Hom(P,N).) This rationality is not automatic from the form of the

sum
∑

w∈(Nn)∗

1

#∆(w)
L−φ(w), but says something about the polynomials ∆(w) and the

integrand L−φ(w). It might be interesting to know what this rationality means for

the numbers #∆(w).

Remark IV.56. Here is one way to interpret this construction. Choose a nonsingular

simplicial cone σ∗ in Hom(P,N)gp containing Hom(P,N), equivalently a nonsingular

simplicial cone σ in P gp lying inside P sat. Summation on σ∗ may be interpreted
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as giving a log integral on X by viewing σ∗ ' ⊕jN val(xj), where the xj are the

generators of the dual cone σ in P gp. But, given an integral on X, we only have an

integrand defined on the cone Hom(P,N) ⊆ σ∗. This cone, in these co-ordinates, is

defined by some inequalities in the symbols valxj. Unfortunately such a subset does

not have a good (better) interpretation in terms of the structure of Hom(P,Λ). To

try to correct this, we take an injective map P → Q for some monoid Q – in this

case, Q = Nn – for which the cone Hom(P,N) pulls back to a “better” subset of

Hom(Q,N) – in this case, the whole monoid of valuations Nn of a given basis of Qgp.

If F (v) = L−φ(v) with φ linear on Hom(P,N), we can view these as integrals on

(Nn)∗ ⊆ (Zn)∗. In other words, they are integrals on affine space An: let x1, ..., xn be

the dual basis in Nn, and consider the integrand
∏
|xj|φ(xj)−1 on Spec k[Nn]. These

sums have the shape of the log integral on An we saw in Section 4.5, with a scalar

factor
1

#∆(w)
included in the one case. Consequently we can interpret these sums

as log integrals on An, up to scaling factors.

Now the map P → Nn gives a log smooth map An → X = Spec k[P ], because

the corresponding map on group completions has no kernel. (Recall Theorem III.18

characterising log smooth or étale morphisms on monoid algebras.) Further, the

map An → X factors as a log étale map to affine space X ′ = X × An−dimX over

X. We can give an explicit such factorisation: start with a Q-basis of P and add in

standard generators of Nn to get a Q-basis of Nn. Let P ′ ⊆ Nn be generated by this

Q-basis. The inclusion P → P ′ induces an affine bundle map X ′ = Spec k[P ′]→ X,

and the inclusion P ′ → Nn induces an open chart An → X ′ of a log blowup, by

Proposition III.38. The log integrand on An is given in terms of the variables

x1, ..., xn ∈ Zn = (Nn)gp = (P ′)gp,
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so it makes sense as an integrand on X ′ as well. Theorem IV.25 applies in this case,

transforming our log integral into a log integral on X ′.

Remark IV.57. The map An → X we constructed above appears in a similar role in

the interesting recent preprint [5]. There the authors compute an arithmetic invariant

which they define of the toric variety X, now over a finite field k, the “intersection

complex function,” as what in our language we might call an l-adic integral on X.

Specifically, they view this function as a formal series

ICX =
∑

v∈Hom(P,N)

mv v ∈ QlJHom(P,N)K

over Ql with a variable for each element of the cocharacter cone Hom(P,N) of X.

They show that this series is the pushforward of the sum

∑
w∈Nn

w ∈ ZJNnK

on An, and hence that the co-efficient mv is nothing other than what we previously

called #∆(v). Thus these co-efficients track the number of decompositions of v into

combinations of irreducible elements of Hom(P,N).

Their larger interest consists in working with certain spherical varieties X, which

are analogues of toric varieties with the torus T d replaced by an algebraic group

G, say. In other words, there is a dense open embedding G → X such that the

multiplication G× G → G induces a multiplication X ×X → X. Thus the variety

X becomes an algebraic monoid. For example, one might have X the space of n× n

matrices with G = GLn embedded as the matrices with non-zero determinant. In

general X is not commutative, because usually G is not. The authors prove some

results in this setting analogous to the toric case. For example, they show that the

arc space of X generically has a “finite-dimensional model,” which in the toric case

corresponds to the fact that every arc is, up to the action of the arcs on the torus
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T d, represented by an actual toric morphism A1 → X. It might be very interesting

to try to analyse this situation from the log geometric viewpoint.
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[24] S. Mochizuki, The profinite Grothendieck conjecture for closed hyperbolic curves over number
fields, J. Math. Sci. Univ. Tokyo 3 (1996), 571-627.
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