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ABSTRACT

Resilient Monitoring and Control Systems: Design, Analysis, and Performance Evaluation

by

Maruthi T Ravichandran

Chair: Professor Semyon M. Meerkov

Critical infrastructure systems (i.e., power plants, power grids, transportation networks,

chemical plants, etc.) and their sensor networks are vulnerable to cyber-physical attacks.

Cyber attacks refer to the malicious manipulation of the sensor data, while physical attacks

refer to the intentional damage of the plant components, by an adversary. The goal of this

dissertation is to develop monitoring and control systems that are resilient to these attacks.

The monitoring system is termed resilient if it provides theleast uncertain (in terms

of the minimum entropy) process variable estimates and plant condition assessment. Sim-

ilarly, the feedback control system is termed resilient if it identifies the actuators under

attack and generates the best possible control signals (in terms of the largest probability of

maintaining the process variables in the desired range).

The resilient monitoring system (RMS) developed in this research consists of five lay-

ers: Data quality acquisition, process variable assessment, plant condition assessment, sen-

sor network adaptation, and decentralized knowledge fusion. The techniques involved in

each of these layers are rigorously analyzed and are shown toidentify the plant condition

- normal or anomalous - in a reliable and timely manner. The developed RMS is applied

to a model of a power plant, and its performance is evaluated under several cyber-physical

x



attack scenarios. The measure of resiliency is quantified using Kullback-Leibler divergence

and is shown to be high in all scenarios considered.

The resilient control system (RCS) is developed based on twoapproaches: Model pre-

dictive control (MPC)-based approach and synchronous detection (SD)-based approach. In

the MPC-based approach, a control input is calculated usingthe information provided by

the RMS. The goal here is to steer the process variable to the desired value, while ensuring

that it always remains within a safe domain. In the SD-based approach, the condition of

the sensor and actuator is assessed using the method of synchronous detection. Then, using

this assessment, the controller is modified (if possible) sothat the effects of the attacks on

the closed loop system response are eliminated. Using simulations, it is shown that both

these approaches are viable for the design of RCS.

Thus, the main contribution of this research is in providingthe theoretical foundation

for the design of resilient monitoring and control systems applicable to a class of critical

infrastructure systems, characterized by complex interactions of continuous process vari-

ables.
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CHAPTER I

Introduction

Resilient monitoring and control systems is a relatively new area of research. In this sec-

tion, we briefly characterize these systems and describe thegoals of our investigations. In

addition, the organization of this dissertation is outlined at the end of this section.

1.1 Resilient Monitoring Systems

Plant monitoring systemsare wired or wireless sensor networks intended to measure pro-

cess variables (e.g., temperature, pressure, flow rates, etc.), analyze them, and inform the

plant operator about the plant conditions− normal or anomalous. Based on this infor-

mation, the operator or the automatic control system takes corrective actions, if needed.

When some of the sensors are captured by an attacker, forcingthem to project mislead-

ing information (possibly, statistically unrelated to theactual values of process variables),

the identified plant conditions could be erroneous. This maylead to wrong actions on the

part of the operator/control system and, possibly, a disaster. To prevent this situation, the

monitoring system must possess a capability of autonomously identifying the attacked sen-

sors and mitigating their effect (by discounting or disregarding completely the data they

project). Although the loss of sensors may lead todegradationof plant condition assess-

ment, in a well-designed system this degradation should be “proportional” to the severity of

the attack, i.e.,graceful. Plant monitoring systems that possess such a property are referred

1



to asresilient.

This research is intended to develop techniques that can be used to ensure resiliency,

analyze their properties and, on this basis, design and evaluate the performance of a re-

silient monitoring system. A specific application, in termsof which the development is

carried out, is a simplified model of a power plant, although asimilar approach can be used

for other applications as well.

While the designed resilient monitoring system exhibits a high level of resiliency, it

exposed a shortcoming of the approach developed− the time required to compute the plant

condition assessment increases exponentially with the number of sensors in the sensor net-

work. (This problem was termed by Richard Bellman as thecurse of dimensionality.)

Clearly, the above shortcoming may result in an unacceptably long assessment time in

many applications, and, thus, its reduction is a central problem of improving the resilient

monitoring system design. This problem is addressed in the dissertation.

1.2 Resilient Control Systems

Resilient control systems are feedback systems that maintain an acceptable level of per-

formance in the presence of attacks on the plant, sensors, and actuators. This research

addresses the design of resilient control systems based on two approaches, described be-

low.

The first approach involves the calculation of the resilientcontrol input, using the infor-

mation provided by the resilient monitoring system. As described in details in a subsequent

chapter of the dissertation, this approach is similar to that of model predictive control[1].

In the second approach, the condition of the sensors and actuators are first assessed us-

ing the method ofsynchronous detection[2]. Then, based on this assessment, the controller

is modified (if possible) so that the effects of the attacks onthe closed loop system response

are eliminated.

2



1.3 Organization of Dissertation

The remainder of this dissertation is organized as follows:The design, analysis, and perfor-

mance evaluation of the resilient monitoring system is described in Chapter II. The issue

of combating the curse of dimensionality is addressed in Chapter III. The model predictive

control approach to resilient feedback systems is presented in Chapter IV. The synchronous

detection approach to resilient control systems is described in Chapter V. Finally, the con-

clusions and directions for future research are given in Chapter VI. All proofs and the

parameters involved in simulating the power plant are included in the Appendices.

3



CHAPTER II

Resilient Monitoring Systems: Architecture, Design,

Analysis, and Performance Evaluation

2.1 Introduction

This section describes the specific scenario addressed in resilient monitoring systems, and

outlines the techniques developed in this work.

2.1.1 Scenario and problem addressed

Briefly, the scenario considered in this research is as follows:

• The monitored plant process variables,Vi, i = 1, ...,M , are characterized by prob-

ability density functions (pdf’s)fṼi
(ṽi), i = 1, ...,M . In practice, thestatusof the

process variables is often characterized as being Normal (N) or Anomalous (A). The

latter could be, for instance, Low (L) or High (H). In this case,fṼi
(ṽi) induces a ran-

dom event with the outcomes in{LVi
,NVi

,HVi
}, i = 1, ...,M . With a slight abuse of

terminology, we refer to this event (and similar events throughout this dissertation) as

a discrete random variable,Vi, i = 1, ...M , with the probability mass function (pmf),

p[Vi], defined on the universal setΣVi
= {LVi

,NVi
,HVi

}, i = 1, ...,M .

• The plant,G, is also characterized by its status, which is a discrete random variable,

G, with the pmfp[G] defined by the pmf’s of process variables and taking values on

4



ΣG = {NG,AG}, whereNG andAG denote the normal and anomalous plant statuses,

respectively. Depending on the plant, the anomalous statuscan be further character-

ized by specific anomalies, e.g., boiler insulation damaged, turbine malfunctioning,

etc. In each status, plant dynamics may be different, e.g., described by different

transfer functions.

• Each process variable,Vi, is monitored by a sensor,Si (multiple sensors of a process

variable are also considered in the sequel). If a sensor is under attack, its projected

data may have a pdf,fS̃i
(s̃i), statistically unrelated tofṼi

(ṽi). In this situation, uti-

lizing the sensor data in order to assess the process variable may lead to a pmf,̂p[Vi],

qualitatively different fromp[Vi]. For instance,̂p[Vi] may indicate that the process

variable is Normal, while in reality it is Low or High.

• The plant status assessment is based on the process variable assessments,p̂[Vi], i =

1, ...,M , and is quantified by a pmf denoted asp̂[G], G ∈ {NG,AG}. Since, as

indicated above, the process variable assessments may be erroneous,p̂[G] may be

quite different from the actualp[G] and, thus, lead to erroneous actions by the plant

operator.

In this scenario, theoptimal resilient monitoring system must be able to identify the

status of the plant,G, in such a manner that the “distance” between the estimated and

the actual pmf’s,̂p[G] andp[G], is minimized, as quantified by an appropriate measure of

distance between the two pmf’s. While this research is not intended to solve this problem,

here we design a plant monitoring system that degrades gracefully under an attack (i.e.,

is resilient), and demonstrate that itperforms favorably in comparison with a non-resilient

one(as quantified by a measure of resiliency based on theKullback-Leibler divergence[3]).

5



2.1.2 Contributions of this work: Techniques developed andresilient monitoring

system designed

The techniques developed in this work are as follows:

• The “trustworthiness” of a sensor is quantified by a parameter referred to asdata

quality (DQ), which takes values on[0, 1], with 1 indicating that the sensor is totally

trustworthy and0 not trustworthy at all. To identifyDQ, we develop anactive data

quality acquisition procedure, whereby probing signals are applied to process vari-

ables, and the level of disagreement between the anticipated and the actual response

of the sensors is used to quantify theirDQ’s.

• The estimates of process variables pmf’s,p̂[Vi], i = 1, ...,M , are calculated based

on the data projected by the sensors and theirDQ’s. SinceDQ is not a statistical

quantity, classical statistics cannot be used for this purpose. Therefore, we introduce

a model of theDQ’s effect on the coupling between sensors data and process vari-

ables and, using this model, develop the so-calledh-procedure(which is a modified

stochastic approximation algorithm [4]). Analyzing this procedure, we show that it

converges to a steady state defined by theDQ’s. Specifically, ifDQ = 1, it con-

verges to the actual process variable pmf; asDQ tends to0, the steady state of the

h-procedure converges to a uniform pmf, implying that in this limit the sensor mea-

surements carry no information at all. For all otherDQ’s, the conditional pmf ofVi

given the sensor data is an affine function ofDQ. When multiple sensors monitor a

process variable, theDempster-Shafer rule[5] is used to combine the steady states

of the h-procedures associated with each sensor.

• The estimate of the plant status pmf,p̂[G], is calculated based on the statistical plant

model (typically given as a set of conditional pmf’sP [Vi|G], i = 1, ...,M , or a joint

conditional pmfP [V1, V2, ..., VM |G]), the estimates of the process variables pmf’s,

p̂[Vi], i = 1, ...,M , and theJeffrey rule[6].

6



• The above assessments are carried out at each state of the sensor network, where

the state is a vector of1’s and0’s, with 1 indicating that the corresponding sensor is

taken into account for process variable assessment and0 that it is not. The quality of

each state is quantified by the entropy (i.e., the level of uncertainty) of either̂p[G] or

p̂[Vi]. The adaptation of the sensor network to the optimal state, i.e., the state with

the smallest entropy, is carried out using the so-calledrational controllers[7], which

are decision making devices that reside mostly in states, where the penalty function

(i.e., entropy) is minimized.

• As mentioned above, the adaptation can be carried out usingthe entropy of either

p̂[G] or p̂[Vi]. The former, which we refer to ascentralized, suffers from the curse of

dimensionality: the adaptation time grows exponentially with the number of sensors

in the network. To combat this problem, adecentralizedsystem (see, e.g., [8–12]),

with adaptation based on̂p[Vi], could be used. In the case of a power plant, this

decentralized system is comprised ofsub-plants, e.g., boiler, turbine, reheat pipe,

etc. Such a decomposition, however, impedes the derivationof inferences among the

sub-plants, which, as it turns out, are important to ensure resiliency. Therefore, we

develop a decentralized system based on plantdecomposition with knowledge fusion

and show that it leads to both mitigation of the curse of dimensionality and derivation

of the previously mentioned inferences.

The above techniques were introduced in our previous work, [13–19]. Using these

techniques, we design a resilient plant monitoring system consisting of the following five

layers: data quality acquisition, process variable assessment, adaptation, knowledge fu-

sion, and sub-plant assessment. The subsequent sections describe in details each of the

developed techniques, along with its application to the power plant monitoring system.

7



2.1.3 Related literature

The literature related to the topic of this chapter can be classified into six groups. The

first one is devoted to foundational issues, where the problems of resilient monitoring and

control are motivated and formulated, [20–25]. The second group includes publications on

control-theoretic methods for attack identification and alleviation, [26–31]. In these publi-

cations, the authors consider LTI systems with a given statespace realization(A,B,C,D)

and disturbances interpreted as attack vectors. The problem addressed is to identify the

attack and, if possible, mitigate its effect, for instance,by designing a controller that makes

the closed-loop system invariant with respect to the disturbance attack. The main difference

of the current work is that the plant may be either normal or anomalous (i.e., described by

several state space realizations), and the problem is to identify the true plant status, in spite

of the misleading information projected by the sensors.

The third group consists of publications on fault tolerant control, [32–34]. In these

works, it is assumed that a closed-loop system has multiple sensors and actuators, some

of which could be faulty due to natural or malicious causes. The typical problem here is

to determine the conditions (e.g., the number of sensors andactuators) under which the

closed-loop system performance is maintained without degradation. The difference of the

current work is that, although multiple sensors may be present, the goal is to determine the

status of the plant and, if otherwise impossible, tolerate degradation.

The fourth group consists of research on monitoring the communication channels or the

sensor measurements in order to capture anomalous data and correlate it with a possible at-

tack, [35–40]. In terms of the current work, this implies theidentification ofDQ. While

the results of these publications may be useful for resilient plant monitoring, they do not

provide methods for process variable and plant condition assessment pursued in the current

work.

The fifth group consists of papers on identification of and protection against data in-

jection attacks intended to mislead state estimation algorithms, [41–47]. The emphasis of

8



the research here is on determining optimal positions of “known-secure” sensors, which

prevent the damage of the attack, or on utilizing game-theoretic approaches as quantitative

techniques for risk management.

The sixth group consists of publications on the analysis of vulnerability of the cyber-

physical system to attacks, [48–50]. In these papers, toolssuch as graph theory and dis-

crete event systems theory are utilized to determine “vulnerability points” in the system.

However, these works do not provide methods to identify the plant condition under the

misleading information projected by the sensors.

Although the areas of robust estimation and robust statistics (see, e.g., [51]) may seem

related to the topic of this dissertation, they are, in reality, not, since the data provided by

the attacked sensors could be statistically unrelated to the process variable.

To summarize, the current literature does not offer any methods of identifying the plant

status under misleading information provided by the sensors. The methods to accomplish

that are developed in this dissertation.

2.1.4 Chapter outline

The remainder of this chapter is structured as follows: Section 2.2 addresses the issue of ac-

tive data quality acquisition. In Section 2.3, the h-procedure and associated techniques for

process variable assessment are described. Section 2.4 is devoted to plant pmf assessment.

The sensor network adaptation is discussed in Section 2.5, where a practical consequence

of the curse of dimensionality is quantified. An approach to combatting the curse of dimen-

sionality based on a decentralized system with knowledge fusion is developed in Section

2.6. The resulting five-layer monitoring system architecture is presented in Section 2.7. An

application to a power plant is discussed and investigated by simulations in Section 2.8. All

proofs and the parameters of the power plant model are included in the Appendix.
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2.2 Active Data Quality Acquisition

In this section, we describe an approach toDQ evaluation briefly mentioned in Subsection

2.1.2.

Consider sensorS intended to monitor process variableV and assume that the follow-

ing holds:

Assumption II.1. (i) Process variableV is quantified by a continuous random variable

Ṽ , taking values in the domaiñV ∈ [Vmin, Vmax]; its pdf,fṼ (ṽ), is unknown.

(ii) The random variablẽV induces a discrete random variableV , which describes the

status ofV and takes values on

ΣV = {LV ,NV ,HV } (2.1)

with the pmf given by

p[V = LV ] =
∫ R1

Vmin
fṼ (ṽ) dṽ, p[V = NV ] =

∫ R2

R1
fṼ (ṽ) dṽ,

p[V = HV ] =
∫ Vmax

R2
fṼ (ṽ) dṽ,

(2.2)

whereR1 andR2 are known andVmin < R1 < R2 < Vmax (V ’s with outcomes other

than Low, Normal, and High can be introduced similarly). SincefṼ (ṽ) is unknown,

the pmf ofV is also unknown.

(iii) The d.c. gain,αV, of V with respect to its control input,UV (e.g., fuel valve of the

boiler), depends on the status ofV, i.e., whether it is Low, Normal, or High. This is

formalized by assuming thatαV is a priori known piecewise constant function of the
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expected value of̃V (denoted asµṼ ):

αV =







αL
V, if µṼ ∈ [Vmin, R1)

αN
V, if µṼ ∈ [R1, R2)

αH
V, if µṼ ∈ [R2, Vmax].

(2.3)

In the case of other than L, N, and H anomalies,αV is introduced similarly. (Note

that we use here the d.c. gain, rather than the full transfer function, in order to require

as little information about the plant as possible. Also, various other dependencies of

αV on µṼ can be considered; for instance,αV could be assumed to be a piecewise

linear function ofµṼ ; expression (2.3) is used here for simplicity.)

(iv) The data projected by sensorS is quantified by a continuous random variableS̃,

taking values oñS ∈ [Vmin, Vmax]; its pdf,fS̃(s̃), can be evaluated using the classical

statistical methods (based on the sensor measurements).

(v) The random variablẽS induces a discrete random variableS taking values on

ΣS = ΣV = {LV ,NV ,HV } (2.4)

with the pmf given by

p[S = LV ] =
∫ R1

Vmin
fS̃(s̃) ds̃, p[S = NV ] =

∫ R2

R1
fS̃(s̃) ds̃,

p[S = HV ] =
∫ Vmax

R2
fS̃(s̃) ds̃,

(2.5)

whereR1 andR2 are the same as in (2.2). SincefS̃(s̃) may be viewed as known, the

pmf of S is known as well.

(vi) If S is not attacked,µS̃ = µṼ , whereµS̃ is the expected value of̃S. If S is under

attack,µS̃ 6= µṼ and the pmf’s ofS andV may be qualitatively different; for instance,
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max
σ∈ΣS

p[S = σ] may be achieved atσ = LV , while max
σ∈ΣV

p[V = σ] at σ = NV . (The

expressionµS̃ 6= µṼ can be viewed as a definition of the attacker; other types of

attackers can be considered as well.)

�

Under Assumption II.1, the active data quality acquisitionis carried out as follows:

Introduce a probing signal using the control inputUV. Any type of deterministic or random

probing signals could be used. Here, we use the simplest probe− a rectangular pulse with

amplitudeAV and durationT , applied at the time instantt0, i.e.,

uV(t) = AVrectT (t− t0). (2.6)

The value ofAV is selected sufficiently small so thatAV << min{[R1 − Vmin], [R2 −

R1], [Vmax−R2]}. The value ofT is selected so that̃V reaches a small vicinity of its steady

state defined by the probe.

If the sensor is not under attack, i.e.,µS̃ = µṼ , the following takes place:

µ′
S̃
− µS̃ = AVαV(µS̃), (2.7)

whereµ′
S̃

is the expected value of̃S after the probe andαV is the d.c. gain defined in (2.3).

If the sensor is attacked, (2.7) does not hold. In order to quantify the severity of the attack,

introduce the notion ofprobing inconsistency(PICS) defined by:

PICS :=
∣
∣(µ′

S̃
− µS̃)− AVαV (µS̃)

∣
∣ . (2.8)

ClearlyPICS = 0 implies that the sensor is not attacked;PICS > 0 indicates an attack

and its severity. Given thisPICS, theDQ of sensorS is defined as:

DQS = e−F (PICS), (2.9)
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whereF (·) is a strictly increasing function ofPICS with F (0) = 0. Note that ifF (PICS)

grows too fast, thenDQ will be small even for relatively smallPICS’s; if it grows too

slow,DQ is relatively large even for largePICS’s. Our numerical study, reported in [14],

indicates that a quadraticF (·) provides better results for subsequent utilization than a linear

one. Therefore, we introduce this function as

F (PICS) := − ln ǫ

P IC2
max,S

PIC2
S, (2.10)

whereǫ is a sufficiently small positive number andPICmax,S is the largest value attainable

byPICS. Clearly, due to (2.9) and (2.10),minDQS = ǫ, which can be viewed as a design

parameter.

Expressions (2.1)-(2.10) characterize the activeDQ acquisition procedure utilized in

this work. As mentioned above, numerous modifications of this procedure are possible by

considering different properties ofV , different types of probing signals and their effect on

process variables, various definitions of probing inconsistency, etc. Specific selections may

depend on intended applications. The ones used here are motivated by the application to a

power plant.

2.3 Process Variable pmf Assessment

In this section, we describe an approach to the evaluation ofprocess variable pmf,̂p[V ].

As mentioned in Subsection 2.1.2, this pmf is evaluated based on the sensors data and their

DQ’s. If the DQ were1, this could be accomplished using classical statistics. However,

these methods would lead to erroneous results if0 ≤ DQ < 1. Therefore, to carry out

this evaluation, a model of the effect ofDQ on the coupling betweenV andS must be

postulated and then, in the framework of this model, a novel statistical method for pmf’s

evaluation should be developed. Below, this development iscarried out, and methods for

pmf evaluation using a single and multiple sensors are introduced.
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2.3.1 Model of V and S coupling

We introduce the notion of sensor believability as follows:

βS =
|ΣV | − 1

|ΣV |
DQS +

1

|ΣV |
, (2.11)

where|ΣV | is the cardinality of the universal set ofV . If, as indicated in (2.1),|ΣV | = 3,

then

βS =
2

3
DQS +

1

3
.

The last two equations imply that whenDQ = 1, believability is also1; whenDQ = 0, be-

lievability is 1
|ΣV |

, implying that every status ofV is equally likely. Using the believability,

introduce

Assumption II.2. The coupling betweenV andS is as follows:

P [V = σ|S = σ] = βS,

P [V = σ̄|S = σ] = 1−βS

|ΣV |−1
,

(2.12)

whereσ̄ implies ‘notσ’ andσ, σ̄ ∈ ΣV . �

Clearly, this implies that ifDQ = 1, thenV has the same status asS with probability

1; if DQ = 0, every status ofV is equally probable, irrespective of the status ofS. The

coupling (2.12) is used throughout this work.

2.3.2 Process variable pmf assessment using a single sensor

Consider a sensorS intended to monitor process variableV. As indicated above, our goal

is to evaluate the pmf ofV , based on the sensor data,s1, s2, ..., sn, ... (where the subscript
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is the time index) and its data qualityDQS. In other words, we are interested in

p̂[V = σ] = lim
n→∞

P [V = σ|s1, s2, ..., sn;DQS], ∀σ ∈ ΣV . (2.13)

To accomplish this, consider

p̂n[V = σ] = P [V = σ|s1, s2, ..., sn;DQS], ∀σ ∈ ΣV , (2.14)

and introduce, for convenience, the notation

hσ(n) := p̂n[V = σ], ∀σ ∈ ΣV .

Obviously, the limit ofhσ(n), ∀σ ∈ ΣV , asn → ∞ (if it exists) is the sought pmf,̂p[V ].

Define the evolution ofhσ(n) as follows:

hσ(n+ 1) = hσ(n) + ǫh [h
∗
σ(sn+1)− hσ(n)] , hσ(0) =

1

|ΣV |
, ∀σ ∈ ΣV , (2.15)

where the set point,h∗
σ(sn+1), is given by

h∗
σ(sn+1) =







βS, if sn+1 = σ

1−βS

|ΣV |−1
, if sn+1 6= σ,

(2.16)

and the step,ǫh, is either a small number,

0 < ǫh << 1, (2.17)

or a function ofn, monotonically converging to0 such that

0 < ǫh(n) ≤ 1,

∞∑

n=0

ǫh(n) = ∞,

∞∑

n=0

ǫ2h(n) < ∞. (2.18)
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As it follows from (2.16), the evolution ofhσ(n) depends on both the sensor data and

DQS (throughβS). The system of equations (2.15), (2.16) is referred to as the h-procedure.

It can be viewed as a stochastic approximation algorithm [4]with a random set point.

Theorem II.1. Under Assumptions II.1 and II.2, the recursive procedure(2.15), (2.16)

converges to

lim
n→∞

hσ(n) = p[S = σ]DQS +
1−DQS

|ΣV |
, ∀σ ∈ ΣV , (2.19)

where

1. The convergence is in probability under(2.17);

2. The convergence is almost sure under(2.18).

Proof. See the Appendix. �

Equation (2.19) implies that

p̂[V = σ] = p[S = σ]DQS +
1−DQS

|ΣV |
, ∀σ ∈ ΣV . (2.20)

Thus, according to the above theorem, ifDQ is close to1, the pmf of process variable,

p̂[V ], is close to the pmf of the sensor,p[S]. However, ifDQ is close to0, the same sensor

data result in̂p[V ] being practically uniform and independent of the sensor measurements.

For all intermediate values ofDQ, the pmfp̂[V ] is an affine function ofDQ.

Recursive procedure (2.15), (2.16) is the basis of process variable assessments used

throughout this work.

2.3.3 Process variable pmf assessment using multiple sensors

Assume that process variableV is monitored by two sensors,S1 andS2, having data qual-

ity, DQS1 andDQS2 , respectively. The goal is to evaluatep̂[V ] based on the data projected
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by both sensors, i.e.,

p̂S1,S2 [V = σ] = lim
n→∞

P [V = σ|s11, ..., s1n;DQS1 ; s
2
1, ..., s

2
n;DQS2], ∀σ ∈ ΣV . (2.21)

This can be accomplished by combining the two pmf’s, evaluated based on the h-procedure,

i.e., p̂S1[V ] andp̂S2 [V ], into a single pmf,̂pS1,S2 [V ], using the Dempster-Shafer rule [5]:

p̂S1,S2 [V = σ] =
p̂S1 [V = σ]p̂S2 [V = σ]

∑

σ∈ΣV

p̂S1 [V = σ]p̂S2 [V = σ]
, ∀σ ∈ ΣV . (2.22)

A question arises: IŝpS1,S2[V ] “better” than the constituent̂pS1 [V ] and p̂S2[V ] from

the point of view of the uncertainty in the process variable assessment, i.e., entropy? Cal-

culations show that this may or may not be the case (dependingon DQS1 andDQS2).

Therefore, having the three estimatesp̂S1 [V ], p̂S2 [V ], andp̂S1,S2[V ], we select as the final

estimate,̂p∗[V ], the one with the smallest entropy, i.e.,

p̂∗[V ] = argmin
[
I{p̂S1 [V ]}, I{p̂S2[V ]}, I{p̂S1,S2 [V ]}

]
, (2.23)

where the entropy is theShannon entropy[52], defined as

I{p[V ]} = −
∑

σ∈ΣV

p[V = σ] log|ΣV | p[V = σ]. (2.24)

2.4 Plant pmf Assessment

As mentioned in Subsection 2.1.2, the plant status assessment is quantified bŷp[G], G ∈

ΣG. To describe a method for its evaluation, let the plant modelbe given byP [Vi|G],

i = 1, ...,M , and letp̂[Vi], i = 1, ...,M , denote the process variable pmf’s evaluated as

described in Section 2.3. Then,p̂[G] can be computed using the following:
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Algorithm II.1. (a) Assign the initial plant pmf:

p0[G] =

[
1

3
,
1

3
,
1

3

]

. (2.25)

(b) Calculate the initial joint pmf ofVi andG:

p0[Vi, G] = P [Vi|G]p0[G], i = 1, 2, ...,M. (2.26)

(c) Calculate the marginal probability:

p0[Vi] =
∑

G∈ΣG

p0[Vi, G], i = 1, 2, ...,M. (2.27)

(d) Apply the Jeffrey rule [6]:

p̂[Vi, G] = p0[Vi, G]
p̂[Vi]

p0[Vi]
, i = 1, 2, ...,M. (2.28)

(e) Marginalize to obtain the plant pmf estimate:

p̂Vi[G] =
∑

Vi∈ΣVi

p̂[Vi, G], i = 1, 2, ..,M. (2.29)

(f) If M > 1, combine the pmf’s obtained in (2.29) using the Dempster-Shafer rule:

p̂[G = σG] =

M∏

i=1

p̂Vi[G = σG]

∑

σG∈ΣG

M∏

i=1

p̂Vi[G = σG]

, σG ∈ ΣG. (2.30)

�

If the plant model is given asP [V1, V2, ..., VM |G], marginalize it to obtainP [Vi|G],
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i = 1, 2, ...,M , and then follow steps (a)-(f) above.

Algorithm II.1 is carried out after the h-procedure has converged and̂p[Vi], i = 1, ...,M ,

is evaluated. To speed up the process ofp̂[G] evaluation, it is tempting to apply this algo-

rithm recursively, i.e., usinĝpn[Vi], instead ofp̂[Vi], at step (d). As it turns out, however,

this may lead to a paradox: the entropy ofp̂n[G] may tend to0 asn → ∞, irrespective of

the sensors data and theirDQ’s. This paradox can be explained by the fact that whenp̂n[Vi]

approaches its limit (i.e., is practically constant), the dynamics ofp̂n[G] are defined not by

the sensor measurements and theirDQ’s, but by the eigenvalues of the recursive version of

Algorithm II.1, defined as follows:

Algorithm II.2. (a) Assign the plant pmf at timen as:

p̂n[G], wherep̂0[G] =

[
1

3
,
1

3
,
1

3

]

. (2.31)

(b) Calculate the joint pmf ofVi andG:

p̂n[Vi, G] = P [Vi|G]p̂n[G], n = 0, 1, 2, ...; i = 1, 2, ...,M. (2.32)

(c) Calculate the marginal probability:

p̂Gn [Vi] =
∑

G∈ΣG

p̂n[Vi, G], n = 0, 1, 2, ...; i = 1, 2, ...,M. (2.33)

(d) Apply the Jeffrey rule:

p̂n+1[Vi, G] = p̂n[Vi, G]
p̂n+1[Vi]

p̂Gn [Vi]
, n = 0, 1, 2, ...; i = 1, 2, ...,M. (2.34)
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(e) Marginalize to obtain the plant pmf estimate:

p̂Vi

n+1[G] =
∑

Vi∈ΣVi

p̂n+1[Vi, G], n = 0, 1, 2, ...; i = 1, 2, ...,M. (2.35)

(f) If M > 1, combine the pmf’s obtained in (2.35) using the Dempster-Shafer rule:

p̂n+1[G = σG] =

M∏

i=1

p̂Vi

n+1[G = σG]

∑

σG

M∏

i=1

p̂Vi

n+1[G = σG]

, n = 0, 1, 2, ...; σG ∈ ΣG. (2.36)

(g) Updaten to n+ 1. Return to (a).

�

To investigate the performance of this algorithm, considera plantG with process vari-

ableV, monitored by sensorS. Assume that the universal sets ofG, V , andS are given

by:

ΣG = {NG,AG}, ΣV = ΣS = {NV ,AV }. (2.37)

Further, assume that the plant model is characterized by theconditional pmf

P [V |G] =






1− a a

a 1− a




 , (2.38)

wherea < 0.5. Denote the pmf’s of the process variable and the plant at timen as

p̂n[V ] = [hNV
(n), hAV

(n)], p̂n[G] = [kNG
(n), kAG

(n)], (2.39)

wherehNV
(n) andhAV

(n) are calculated using the h-procedure (2.15), (2.16) andkNG
(n)

andkAG
(n) are evaluated using Algorithm II.2. To specify the evolution of kNG

(n) and
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kAG
(n), substitute (2.38) and (2.39) in steps (a)-(e) of this algorithm to obtain

kNG
(n+ 1) =

[
1− a

C(n)

]

kNG
(n) +

[
akNG

(n)

D(n)
− [1− a]kNG

(n)

C(n)

]

hNV
(n + 1), (2.40)

with kNG
(0) = 0.5 andC(n) andD(n) given by

C(n) := [1− a]kNG
(n) + a[1− kNG

(n)],

D(n) := akNG
(n) + [1− a][1 − kNG

(n)].
(2.41)

Denote the steady state values ofhNV
(n) andhAV

(n), evolving according to the h-

procedure (2.15),(2.16), ashss
NV

andhss
AV

, respectively. Then, the steady state values of

kNG
(n) andkAG

(n) are quantified as follows:

Theorem II.2. The steady state,kss
NG

, of the recursion(2.40)is characterized by:

1. kss
NG

= 1, if hss
NV

> 1− a;

2. kss
NG

= 0, if hss
NV

< a;

3. kss
NG

=
hss
NV

−a

1−2a
, if hss

NV
> a andhss

NV
< 1− a.

Proof. See the Appendix. �

This theorem exhibits the paradoxical nature of the recursive Jeffrey rule. Namely,

if, for instance,hss
NV

= 0.7, i.e., p̂[V ] = [0.7, 0.3], anda = 0.4, then, according to Part

1 of Theorem II.2,p̂[G] = [1, 0], implying that the plant status is normal with certainty,

while the process variable status is uncertain. Similarly,for the samea, if hss
NV

= 0.3, i.e.,

p̂[V ] = [0.3, 0.7], then, according to Part 2,̂p[G] = [0, 1], implying that the plant status

is anomalous, again with certainty, while the process variable status is uncertain. In other

words, this theorem implies that a recursive version of Jeffrey rule may “create erroneous

information” rather than transfer it from one quantity,Vi, into another,G.

21



2.5 Sensor Network Adaptation and Measure of Resiliency

As mentioned in Subsection 2.1.2, the adaptation of sensor network to the state with mini-

mal entropy can be carried out using either the plant or the process variable pmf’s. In this

section, we describe the former and in Section 2.7 the latter.

2.5.1 Sensor network

Consider the plantG with M process variables,V1,V2, ...,VM , monitored byNS sensors,

S1,S2, ...,SNS
, under Assumption II.1. Each sensor may or may not be utilized for the

process variable pmf’s assessment. This induces the sensornetwork state space,X, where

each state,x, is anNS-tuple of 1’s and0’s, with 1 in the i-th place indicating thatSi is

used for process variable pmf’s assessment and0 that it is not. Thus, the cardinality of the

state space,|X|, is 2NS . (A practical consequence of this exponential growth of|X| as a

function ofNS is discussed in Subsection 2.5.4.) The process variable pmf’s and the plant

pmf assessed in statex of the sensor network are denoted asp̂x[Vi], i = 1, ...,M , andp̂x[G],

x ∈ X, respectively. The goal of the sensor network adaptation isto converge to the state,

where the entropy of̂px[G] is minimal.

2.5.2 Adaptation using a rational controller

As mentioned in Subsection 2.1.2, the adaptation techniqueused in this work is based on

rational controllers introduced in [7] and further developed in [53, 54]. Rational controllers

are decision making devices that possess two properties:ergodicityandrationality. The

ergodicity property implies that each state,x, of the decision space,X, is visited with a

non-zero probability. The rationality property implies that the residence time in states with

a smaller value of thepenalty functionis larger than in those with a larger one. The degree

to which this distinction takes place is referred to as thelevel of rationalityand quantified

by a positive integer,N .

If the sensor network adaptation is based on the plant assessment pmf, p̂x[G], the
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penalty function is selected as its entropy,I{p̂x[G]} := Îx(G). Various types of ratio-

nal controller dynamics can be defined to ensure rationalityand ergodicity. In this work, to

ensure the former, the following residence time in each statex ∈ X is introduced:

Tx =







Tmax, if Îx(G) ≤ β
(

β

Îx(G)

)N

Tmax, if Îx(G) > β,
(2.42)

whereβ > 0 is a small number (design parameter) andTmax is the largest residence time

(also a design parameter). To ensure ergodicity, whenTx expires, the controller moves to

the next state in a deterministic, round-robin manner.

Let τx be the relative residence time in statex ∈ X, i.e.,

τx =
Tx

∑

x∈X

Tx

. (2.43)

Then, theaverageplant assessment pmf, to be reported to the plant operator after each

complete round-robin cycle, is evaluated as

p̄[G] =
∑

x∈X

τxp̂x[G]. (2.44)

It can be shown that ifN is sufficiently large,̄p[G] is arbitrarily close top∗[G] at which

min
x∈X

Îx(G) is attained (see [7]). Note that although under the deterministic, round-robin

transition rule, the state with the minimal entropy could beselected by various other meth-

ods, we use (2.42)-(2.44) since it is equally applicable to random transitions, which may

be necessary in other applications.
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2.5.3 Measure of resiliency

The measure of resiliency employed in this work is based on the Kullback-Leibler diver-

gence, [3], of two pmf’s,p1[G] andp2[G], given by:

D (p1[G]||p2[G]) =
∑

σG∈ΣG

p1 [G = σG] log|ΣG|

p1[G = σG]

p2[G = σG]
. (2.45)

Let p1[G] be the true pmf of the plant,p[G]. As forp2[G], we consider two cases. In the

first one,p2[G] is p̄[G] calculated according to (2.44) and based on theDQ’s of the sensors.

In the second,p2[G] is the pmf of the plant assessed under the assumption that theDQ of

all sensors is1; we refer to such a system asnon-resilientand denote the resulting pmf as

pnr[G]. Then, the measure of resiliency(MR) considered in this paper is given by

MR =
D (p[G]||pnr[G])−D (p[G]||p̄[G])

D (p[G]||pnr[G])
. (2.46)

Clearly,MR ≤ 1, and the equality is attained when̄p[G] = p[G]. Thus, to test the re-

siliency of a monitoring system, one has to assume thatp[G] is known, evaluatēp[G] and

pnr[G], and then use (2.46). This is carried out in Section 2.8 for the case of the power

plant.

2.5.4 Temporal properties of adaptation and curse of dimensionality

From the temporal point of view, the adaptation process consists of epochs; |X| epochs

(where, as before,X is the sensor network state space) comprise acycle; at the end of each

cycle,p̄[G] is reported to the plant operator.

For eachx ∈ X, the epoch consists of three periods:DQ acquisition (TDQ), process

variable(s) and plant pmf evaluation (Teval), and residence in statex (Tx). Assuming that

the sensor data are provided every0.01sec and using the procedure described in Section 2.2,

TDQ can be evaluated as5sec (if the time constant of the process variable is1sec and100
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measurements are utilized to calculate the sensor mean). Using the procedures described

in Sections 2.3 and 2.4, the duration of process variable andplant assessment,Teval, can be

calculated as6sec (if the stopping rule of the h-procedure is|hσ(n+ 1)− hσ(n)| < 10−4).

The maximum residence period,Tmax, can be selected as desired. If it is selected to be

1sec, the duration of each epoch is less than or equal to12sec.

As mentioned above,|X| epochs constitute a cycle, so that the cycle duration is, at

most,12|X|sec. Thus, the resilient monitoring system provides the plant assessment pmf,

p̄[G], within a reporting periodTreport = 12|X|sec. If a network consists of5 sensors,

Treport = (25)12sec ≈ 6min, whereas in a network of10 sensors,Treport ≈ 3hr, which is

clearly unacceptable. This curse of dimensionality is the main drawback of the centralized

system based on̂px[G] adaptation.

2.6 Decentralized System with Knowledge Fusion

This section provides a method for combatting the curse of dimensionality based on the

plant decomposition with knowledge fusion. Note that whilethe current development is

carried out in terms of a power plant, a more general characterization of this method is

provided in Chapter III.

2.6.1 Power plant

A simplified model of a power plant is shown in Figure 2.1, where B is the boiler, HT and

LT are the high and low pressure turbines, respectively, RP is the reheat pipe, C is the con-

denser, FP is the feedwater pump, andSij ’s are the sensors. For simplicity, it is assumed

that only B, HT, RP, LT may be under a physical attack or malfunction, while C and FP are

assumed to operate normally; hence, their sensors are not included in Figure 2.1.

Having 8 sensors, the number of network states is256. Thus, based on the temporal

properties discussed in Subsection 2.5.4, a report to the plant operator could be produced in

about every51min. To combat this drawback, a decentralized system could be considered,
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Figure 2.1: Schematics of the power plant

where B, HT, RP, and LT are viewed as separatesub-plantsmonitored by their respective

sensorsub-networks(i.e., B by sensorsS11 andS12, etc.). The problem with such a de-

centralized system is that inferences arising from coupling of process variables that belong

to various sub-plants are neglected. In other words if, for example, all boiler sensors are

captured by an attacker, no information about the boiler could be derived, even if all other

sensors operate normally. To alleviate this problem, we develop another approach− based,

as it is mentioned in Subsection 2.1.2, on a decentralized system with knowledge fusion

and show that it leads to reliable and timely plant conditionassessments (see Section 2.8).

2.6.2 Developing the decentralized system with knowledge fusion

Assume, for simplicity, that B, HT, RP, and LT are characterized by a single process vari-

able, e.g., its temperature, denoted asV1, V2, V3, andV4, respectively, each monitored by

two sensors. Mutual influences of the temperature among sub-plants can be represented by

a directedcyclic graphshown in Figure 2.2(a). Assuming that the heat-generating capacity

of B is large enough to maintain RP temperature independent of HT conditions (normal or

anomalous), the influence HT→ RP can be omitted. Similarly, under the above assump-

tion, one may ignore the influence RP→ B, since B is capable of maintaining its own

temperature independent of HT and RP conditions. Further, if the heat-absorbing capacity

of C is large enough to maintain a constant water temperatureat its outlet independent of
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(a) Cyclic graph
representation

(b) Tree graph
representation

Figure 2.2: Influence diagrams

LT condition, the influence LT→ B can also be ignored. Under these assumptions, the

cyclic graph of Figure 2.2(a) is reduced to thetree graphof Figure 2.2(b). This implies

that the power plant can be represented as four sub-plants, denoted asGB, GHT, GRP, and

GLT , interrelated as shown in Figure 2.2(b). This partitioninginduces a corresponding

partitioning of the sensor networkSN into four sub-networks,SNB, SNHT, SNRP, and

SNLT , consisting of{S11,S12}, {S21,S22}, {S31,S32}, and{S41,S42}, respectively. IfXk,

k ∈ {B,HT,RP,LT}, denotes the state space of each sub-network, then the number of

states in each of them is4, and, if the evaluation of each state takes12sec, a report to the

operator is produced in approximately48sec (rather than51min, as in the centralized case).

Clearly, under this decomposition, the aforementioned report would consist of the pmf’s of

the sub-plants, i.e.,̄p[B], p̄[HT], p̄[RP], andp̄[LT], rather than of a single pmf̄p[G].

Note that in this decentralized architecture, the sensor sub-networks adaptation is car-

ried out based on̂p[Vi] (rather than̂p[G]). This is becausêp[Gi], i ∈ {B,HT,RP,LT},

becomes available only after the knowledge fusion ofp̂[Vi]’s is carried out.

To implement knowledge fusion calculations, couplings among process variables must

be introduced. This is accomplished based on the conditional probabilitiesP [Vi|Vj]. While

specific matrices representing these conditional pmf’s aregiven in Subsection 2.8.1, below

we describe the knowledge fusion calculations used in this work.

27



2.6.3 Knowledge fusion calculations

Let p̄GB
[V1], p̄GHT

[V2], p̄GRP
[V3], andp̄GLT

[V4] be the process variable pmf’s of the sub-plants,

evaluated using the techniques described in Sections 2.2, 2.3, and 2.5. Then, fusion of this

information, leading to the sought inferences, is carried out as follows:

Algorithm II.3. Inferences forV1:

(a) Calculate the pmf ofV1 based on the sensors of LT (denoted asp̄GLT
[V1]):

p̄GLT
[V1] =

∑

σ3∈ΣV3

P [V1|V3 = σ3]p̄GLT
[V3 = σ3], (2.47)

wherep̄GLT
[V3] is calculated as

p̄GLT
[V3] =

∑

σ4∈ΣV4

P [V3|V4 = σ4]p̄GLT
[V4 = σ4]. (2.48)

(b) Calculate the pmf ofV1 based on the sensors of RP:

p̄GRP
[V1] =

∑

σ3∈ΣV3

P [V1|V3 = σ3]p̄GRP
[V3 = σ3]. (2.49)

(c) Calculate the pmf ofV1 based on the sensors of HT:

p̄GHT
[V1] =

∑

σ2∈ΣV2

P [V1|V2 = σ2]p̄GHT
[V2 = σ2]. (2.50)

(d) Calculate the pmf ofV1 based on all sensors of the sensor network (using the Dempster-

Shafer rule):

p̄GB,HT,RP,LT
[V1 = σ1] =

∏

k=B,HT,RP,LT

p̄Gk
[V1 = σ1]

∑

σ1∈ΣV1

∏

k=B,HT,RP,LT

p̄Gk
[V1 = σ1]

. (2.51)
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(e) Finally, select̄p∗[V1] as the one of the five pmf’s obtained above, which has the smallest

entropy, i.e.,

p̄∗[V1] = argmin {I {p̄GB
[V1]} , I {p̄GHT

[V1]} , I {p̄GRP
[V1]} ,

I {p̄GLT
[V1]} , I

{
p̄GB,HT,RP,LT

[V1]
}}

.
(2.52)

�

Fusion of other process variable pmf’s is carried out similarly, leading top̄∗[V2], p̄∗[V3],

andp̄∗[V4].

2.7 Decentralized Resilient Monitoring System for Power Plant

Turning now to the issue of computing the pmf’s of B, HT, RP, and LT, we introduce a five-

layer architecture shown in Figure 2.3. It consists of four parallel sub-architectures, each

corresponding to a sub-plant,GB, GHT, GRP, andGLT , which could be under a physical

attack (or malfunction). The inputs to each sub- architecture are the sensor data provided

by the sub-networksSNB, SNHT, SNRP, andSNLT, which could be under a cyber attack.

The physical and cyber attacks might be either coordinated or not. The outputs of the

overall architecture are the assessed sub-plant pmf’s, i.e., p̄[B], p̄[HT], p̄[RP], p̄[LT].

The five layers of this architecture can be characterized as follows (using the sub-plant

B, as an example):

• TheDQ acquisition layer remains the same as in Section 2.2.

• The process variable assessment layer consists of two parts. The first one represents

the evaluation of̂pxB
[V1] using the methods of Section 2.3. The second part eval-

uatesp̄GB
[V1] using the expression (2.44) applied to the sub-plant (i.e.,p̄GB

[V1] =
∑

xB∈XB

τxB
p̂xB

[V1], whereτxB
is the output of the adaptation layer).
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Figure 2.3: Five-layer resilient monitoring system architecture based on decentralization
with knowledge fusion

• The sub-network adaptation layer operates as described inSection 2.5, but using the

entropy ofp̂xB
[V1] as the penalty function.

• The knowledge fusion layer implements the calculations described in Subsection

2.6.3.

• The sub-plant assessment layer evaluatesp̄[B], p̄[HT], p̄[RP], and p̄[LT] using the

technique of Section 2.4.
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The measure of resiliency is evaluated using (2.46) appliedseparately to each sub-plant,

e.g.,

MRB =
D (p[B]||pnr[B])−D (p[B]||p̄[B])

D (p[B]||pnr[B])
. (2.53)

TheMR’s for HT, RP, and LT are computed similarly, resulting in thefollowing vector:

#     »

MR = [MRB, MRHT, MRRP, MRLT ] . (2.54)

Based on the calculations of Subsection 2.5.4, the assessment time in each of the sub-

architectures of Figure 2.3 is(12sec)22 = 48sec. Note that the centralized assessment of

this plant, having8 sensors, would be(12sec)28 = 3072sec= 51.2min.

2.8 Performance Evaluation of Decentralized Resilient Monitoring Sys-

tem with Knowledge Fusion

In this section, we apply the resilient monitoring system ofFigure 2.3 to the power plant of

Figure 2.1. While the statistics of process variables and the parameters of the monitoring

system are specified in the Appendix, below we introduce the sub-plant anomalies (Subsec-

tion 2.8.1), describe the attack scenarios and the resulting system performance (Subsection

2.8.2), and discuss qualitative features of the results obtained (Subsection 2.8.3).

2.8.1 Sub-plant anomalies and process variable coupling

2.8.1.1 Boiler

The anomaly of B is insulation fracture. Since the fracture results in a lower than normal

temperature, the universal set ofV1 isΣV1 := {LV1,NV1}.
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2.8.1.2 High pressure turbine

The anomaly of HT is also the insulation fracture. Taking into account the influence B

→ HT, we assume thatV2 takes progressively increasing values under the followingcon-

ditions: Both B and HT are damaged; only B is damaged; only HT is damaged; and

both B and HT operate normally. As it follows from the above, the universal set ofV2

is ΣV2 := {VLV2,L(1)V2
, L(2)V2

,NV2}, where VL stands for Very Low, andL(1)V2
and

L(2)V2
indicate Low HT temperature due to B and HT damage, respectively.

2.8.1.3 Reheat pipe

The anomaly of RP is similar to that of B and HT, i.e., the insulation fracture. Regarding

V3, we assume that it takes increasing values under the following conditions: Both B and

RP are damaged; only B is damaged; only RP is damaged; and bothB and RP operate

normally. From the above,V3 ∈ ΣV3 := {VLV3,L(1)V3
,L(2)V3

,NV3}.

2.8.1.4 Low pressure turbine

Since LT operates at a low pressure, we assume that the anomaly is not due to the fracture of

its insulation, but due to the inefficient transfer of energyto the output shaft, leading to the

temperature being higher than normal. Taking into account the chain of influences B→ RP

→ LT and the above assumption,V4 takes progressively increasing values under the follow-

ing conditions: LT operates normally, while RP and B are damaged; LT malfunctions, while

RP and B are damaged; LT and RP operate normally, while B is damaged; LT malfunctions

and B is damaged, while RP operates normally; LT and B operatenormally, while RP is

damaged; LT malfunctions and RP is damaged, while B operatesnormally; LT, RP, and B

operate normally; and LT malfunctions, while RP and B operate normally. As it follows

from the above,V4 ∈ ΣV4 := {VL(1)V4 ,VL(2)V4 ,L(1)V4 ,L(2)V4 ,M(1)V4 ,M(2)V4 ,NV4 ,HV4},

where M stands for Medium and H for High.
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2.8.1.5 Coupling of process variables

As described in Subsection 2.6.2, the couplings of the process variables are characterized

by the conditional pmf’sP [Vi|Vj]. Taking into account the universal sets introduced above,

these pmf’s are as follows:

P [V1|V2] = P [V1|V3] =






1 1 0 0

0 0 1 1






︸ ︷︷ ︸

A

, P [V2|V1] = P [V3|V1] =












0.5 0

0.5 0

0 0.5

0 0.5












︸ ︷︷ ︸

B

,
(2.55)

P [V3|V4] =






A 02×4

02×4 A




 , P [V4|V3] =






B 04×2

04×2 B




 , (2.56)

where the matricesA andB are given in (2.55).

2.8.1.6 Universal sets of the sub-plants

Since each sub-plant is characterized by a single anomaly, the random variableGi, i ∈

{B,HT,RP,LT}, which represents its status, has the universal set comprised of two out-

comes,{NGi
,AGi

}, i ∈ {B,HT, RP,LT}, where, as before,NGi
andAGi

stand for normal

and anomalous status of the sub-plantGi, respectively.

2.8.2 Attack scenarios and the resulting monitoring systemperformance

In this section, we introduce seven cyber and cyber-physical attack scenarios selected so

as to exhibit the main features of the resilient monitoring system designed herein. As it

may be expected, physical attacks on the sub-plants are lessdamaging for resilient mon-

itoring than cyber attacks on the sensors. Nevertheless, toillustrate that every sub-plant

33



status (normal or anomalous) can be identified with or without a physical attack, we in-

clude cyber-physical attacks into consideration as well.

Scenario 1:Cyber attack on the boiler:All sub-plants operate normally. All sensors mon-

itoring B are captured and project misleading information that the boiler is damaged. All

other sensors operate normally.

Performance:The resilient monitoring system computes the following pmf’s:

p̄[GB] = [0.95, 0.05], p̄[GHT] = [0.9, 0.1], p̄[GRP] = [0.91, 0.09],

p̄[GLT] = [0.92, 0.08],
(2.57)

correctly indicating that all sub-plants operate normallywith large probability. The non-

resilient monitoring system (i.e., the system withDQ’s of all sensors equal to1 − see

Subsection 2.5.3) evaluates the pmf of B aspnr[GB] = [0.05, 0.95], erroneously indicating

that the boiler is damaged. Using (2.53) and (2.54), the measure of resiliency under this

scenario is calculated as
#     »

MR = [0.98,−,−,−] , where “−” indicates that none of the

sensors of the corresponding sub-plant are attacked.

Scenario 2:Cyber attack on the low pressure turbine:All sub-plants operate normally.

All sensors of LT are under attack, reporting that it is malfunctioning. All other sensors

operate normally.

Performance:The resilient monitoring system computes the following pmf’s:

p̄[GB] = [0.95, 0.05], p̄[GHT] = [0.9, 0.1], p̄[GRP] = [0.91, 0.09],

p̄[GLT] = [0.49, 0.51],
(2.58)

implying that, while the status of B, HT, and RP is ascertained correctly, the status of LT is

undetermined (i.e., either normal or anomalous with almostequal probabilities). The non-

resilient monitoring system evaluates the pmf of LT aspnr[GLT ] = [0.09, 0.91], erroneously
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indicating that LT is malfunctioning. The measure of resiliency in this case is
#     »

MR =

[−,−,−, 0.7]. Note, however, that if only one sensor of LT was captured, the status of all

sub-plants would be assessed correctly with the pmf’s

p̄[GB] = [0.95, 0.05], p̄[GHT] = [0.9, 0.1], p̄[GRP] = [0.91, 0.09],

p̄[GLT] = [0.91, 0.09].

Scenario 3:Coordinated cyber-physical attack on the reheat pipe:RP is under attack, re-

sulting in insulation fracture. All other sub-plants operate normally. Since RP is attacked,

the temperature of LT isM(1)V4
. All sensors of RP are captured, forcing them to indicate

that RP is normal. All other sensors are not attacked.

Performance:The pmf’s of B, HT, RP, and LT are computed as follows:

p̄[GB] = [0.95, 0.05], p̄[GHT] = [0.9, 0.1], p̄[GRP] = [0.12, 0.88],

p̄[GLT] = [0.92, 0.08],
(2.59)

correctly identifying the status of all sub-plants. The non-resilient monitoring system eval-

uates the pmf of RP aspnr[GRP] = [0.91, 0.09], i.e., erroneously. The measure of resiliency

is
#     »

MR = [−,−, 0.95,−]. Note that if the attack was not coordinated, e.g., physicalattack

on RP and cyber attack, say, on LT, the status of LT would be undetermined, i.e.,

p̄[GB] = [0.95, 0.05], p̄[GHT] = [0.9, 0.1], p̄[GRP] = [0.12, 0.88],

p̄[GLT] = [0.49, 0.51].

Scenario 4:Coordinated cyber-physical attack on the high pressure turbine: HT is under

attack, resulting in fracture of its insulation, withV2 beingL(2)V2
. All other sub-plants

operate normally. All sensors of HT are captured, forcing them to indicate that its status is

normal. All other sensors are not attacked.
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Performance:The pmf’s of the sub-plants are computed as follows:

p̄[GB] = [0.95, 0.05], p̄[GHT] = [0.51, 0.49], p̄[GRP] = [0.91, 0.09],

p̄[GLT ] = [0.92, 0.08],
(2.60)

correctly identifying the status of B, RP, and LT, while thatof HT is undetermined. The

non-resilient monitoring system evaluates the pmf of HT aspnr[GHT] = [0.9, 0.1], i.e., erro-

neously indicating that HT is normal. The measure of resiliency is
#     »

MR = [−, 0.69,−,−].

If only one sensor of HT was captured, the status of all sub-plants would be ascertained

correctly with the pmf’s

p̄[GB] = [0.95, 0.05], p̄[GHT] = [0.11, 0.89], p̄[GRP] = [0.91, 0.09],

p̄[GLT ] = [0.92, 0.08].

If the attack was not coordinated, e.g., a physical attack onHT and a cyber attack on all

sensors of B, the resulting performance would be

p̄[GB] = [0.95, 0.05], p̄[GHT] = [0.1, 0.9], p̄[GRP] = [0.91, 0.09],

p̄[GLT] = [0.92, 0.08],

indicating that all sub-plants are assessed correctly.

Scenario 5:Coordinated cyber-physical attack on the boiler and low pressure turbine:B

and LT are under attack, resulting in insulation damage of the former and malfunctioning

of the latter, withV1 beingLV1 andV4 beingL(2)V4 . All other sub-plants operate normally,

with V2 beingL(1)V2 andV3 beingL(1)V3 . All sensors of B and LT are captured, forcing

them to indicate that their status is normal. All other sensors are not attacked.
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Performance:The pmf’s of the sub-plants are computed as follows:

p̄[GB] = [0.05, 0.95], p̄[GHT] = [0.9, 0.1], p̄[GRP] = [0.91, 0.09],

p̄[GLT] = [0.51, 0.49],
(2.61)

correctly identifying the status of B, HT, and RP, while the status of LT is undetermined.

The non-resilient monitoring system evaluates the pmf’s ofB and LT aspnr[GB] = [0.95, 0.05]

andpnr[GLT ] = [0.92, 0.08], erroneously assessing them as normal. The measure of re-

siliency is
#     »

MR = [0.98,−,−, 0.72]. If only one sensor of LT was captured, the status of

all sub-plants would be ascertained correctly with the pmf’s

p̄[GB] = [0.05, 0.95], p̄[GHT] = [0.9, 0.1], p̄[GRP] = [0.91, 0.09],

p̄[GLT] = [0.1, 0.9].

Note also that if the attack was not coordinated, e.g., physical attack on LT and cyber attack

on all sensors of B, the resulting performance would be

p̄[GB] = [0.95, 0.05], p̄[GHT] = [0.9, 0.1], p̄[GRP] = [0.91, 0.09],

p̄[GLT] = [0.09, 0.91],

indicating that all sub-plants are assessed correctly.

Scenario 6:Coordinated cyber-physical attack on the boiler, reheat pipe, and low pres-

sure turbine:B, RP, and LT are under attack, withV1, V3, andV4 beingLV1, VLV3 , and

VL(2)V4 , respectively. The remaining sub-plant, HT, operates normally. All sensors that

monitor B, RP, and LT are captured, forcing them to indicate that their status is normal.

The sensors of HT are not attacked.
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Performance:The pmf’s of the sub-plants are computed as follows:

p̄[GB] = [0.05, 0.95], p̄[GHT] = [0.9, 0.1], p̄[GRP] = [0.51, 0.49],

p̄[GLT ] = [0.5, 0.5],
(2.62)

correctly identifying the status of B and HT, while the status of RP and LT is undetermined.

The non-resilient monitoring system evaluates the pmf’s ofB, RP, and LT aspnr[GB] =

[0.95, 0.05], pnr[GRP] = [0.9, 0.1], andpnr[GLT ] = [0.92, 0.08], erroneously assessing them

as normal. The measure of resiliency is
#     »

MR = [0.98,−, 0.7, 0.72]. If only one sensor of

LT was captured, the status of all sub-plants would be ascertained correctly with the pmf’s

p̄[GB] = [0.05, 0.95], p̄[GHT] = [0.9, 0.1], p̄[GRP] = [0.12, 0.88],

p̄[GLT ] = [0.09, 0.91].

If the attack was not coordinated, e.g., physical attack on LT and all sensors of B and RP

being captured, the status of all sub-plants would be assessed correctly with the pmf’s

p̄[GB] = [0.95, 0.05], p̄[GHT] = [0.9, 0.1], p̄[GRP] = [0.91, 0.09],

p̄[GLT ] = [0.09, 0.91].

Scenario 7:Coordinated cyber-physical attack on all sub-plants:All sub-plants are at-

tacked, resulting in their anomalous operation. All sensors are captured, forcing them to

indicate that their status is normal.

Performance:The status of all sub-plants is undetermined with the pmf’s being close

to [0.5, 0.5]. The non-resilient monitoring system evaluates erroneously that all sub-plants

are normal. The measure of resiliency is
#     »

MR = [0.76, 0.7, 0.7, 0.72]. If one sensor of HT

was not captured, the pmf’s of the sub-plants would be

p̄[GB] = [0.05, 0.95], p̄[GHT] = [0.1, 0.9], p̄[GRP] = [0.5, 0.5],

p̄[GLT ] = [0.5, 0.5],
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i.e., B and HT are assessed correctly, while RP and LT are undetermined. If one sensor of

HT and one sensor of LT were not captured, the pmf’s of the sub-plants would be

p̄[GB] = [0.05, 0.95], p̄[GHT] = [0.1, 0.9], p̄[GRP] = [0.12, 0.88],

p̄[GLT ] = [0.09, 0.91],

i.e., all are assessed correctly.

2.8.3 Discussion

The above results lead to the following conclusions:

• Under all attack scenarios considered,the resilient monitoring system provides no

erroneous assessments(as insinuated by the attacker).

• As evidenced by Scenarios 1-4,cyber attacks on HT and LT are more dangerous than

those on B and RP. This is due to the structure of the conditional probabilitymatrices

(2.55), which permit inferences from HT and LT to B and RP, butnot vice-versa. In

other words, cyber-attacking the terminal nodes of the graph of Figure 2.2(b) is more

dangerous than attacking the initial and/or intermediate ones.

• As evidenced from Scenarios 3 and 4,coordinated cyber-physical attacks may not be

more dangerous than non-coordinated ones. More important is not the coordination,

but the nature of a cyber attack− involving or not the terminal nodes of the graph.

• As follows from Scenario 7, theminimum number of non-attacked sensors necessary

and sufficient to correctly assess all sub-plants is2: one for HT and one for LT.

If these sensors were made “known-secure”, the plant assessment would never be

compromised.

• In all cases considered,the measure of system resiliency is quite high:from 0.69
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(when some sub-plants status remains undetermined) to close to 1 (when all sub-

plants status is assessed with certainty).
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CHAPTER III

Combating Curse of Dimensionality in Resilient

Monitoring Systems: Conditions for Lossless

Decomposition

3.1 Introduction

As described in Chapter II, the adaptation of the sensor network can be carried out either in

a centralized or decentralized manner. The former, which isapplied in our previous work

[17], suffers from the curse of dimensionality, namely, theassessment time of the plant

condition,Ta, behaves as

Ta = κ2NSN , (3.1)

where the pre-exponential factor,κ, depends on the assessment algorithms involved, and

NSN is the number of sensors in the network. This implies that even if κ is relatively small,

say,κ = 1sec,Ta is 17min if NSN = 10 and12 days ifNSN = 20. Clearly, such a long

assessment time may be unacceptable in most applications. To address this shortcoming,

the decentralized system was introduced in Section 2.7, wherein the development was car-
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ried out in terms of a power plant application. While the resulting decentralized resilient

monitoring system was shown to provide both timely and reliable assessments, a rigorous

analysis of the developed approach was not provided. The current chapter is devoted to this

issue.

The decentralized system is based on a decomposition of the sensor network into sub-

networks, each monitoring a small subset of plant process variables. In the sequel, we

assume that each of these subnetworks monitors a single process variable, although the

case of subnetworks monitoring a group of process variablescan be considered similarly.

Thus, if a plant hasM process variables (e.g., temperatures, pressures, flow rates, etc.),

the sensor network,SN, is decoupled intoM subnetworks,SN1, ...,SNM , leading to the

assessment time in each subnetwork given by

Ta,i = κi2
NSNi , (3.2)

whereNSNi
is the number of sensors monitoring the process variablei. Therefore, even

if the pre-exponential factor is somewhat increased (i.e.,κi > κ, ∀i), the assessment time

would decrease substantially ifNSNi
<< NSN, ∀i. For instance, ifNSNi

≤ 2, ∀i, and

κi = 1.5sec,∀i, the process variable assessment time is less than6sec, irrespective ofNSN.

In other words, the assessment of each process variable could be carried out sufficiently

rapidly, and the resulting information could be used for plant condition assessment practi-

cally instantaneously (based on the algorithm provided in Chapter II).

Clearly, this decomposition may reduce the quality of process variable and plant condi-

tion assessment. For example, if all sensors monitoring a process variable are attacked, no

assessment of its state would be made. To avoid this deficiency, we employ the so-called

decentralized inference calculations(or, as it is termed in Chapter II, knowledge fusion cal-

culations), whereby mutual influences of process variablesare taken into account. In terms

of the power plant, this implies that even if all boiler sensors are attacked, the sensors of the
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other components may be used to infer information about the boiler status. The question

arises: Under which conditions this decomposition leads tono information losses, as com-

pared with thecentralized inference calculationsutilized in [17]? The main contribution

of this chapter is in providing an answer to this question.

The outline of this chapter is as follows: Section 3.2 introduces the model considered

and formalizes the problem addressed. In Section 3.3, the algorithms used in the central-

ized and the decentralized process variable assessments are described. Section 3.4 provides

a sufficient condition under which the decentralized inference calculations lead to no infor-

mation losses as compared with the centralized ones. Finally, in Section 3.5, a sufficient

condition for lossless decentralization is derived.

3.2 Model and Problem Formulation

Consider the plantG with process variablesVi, i = 1, ...,M , each viewed as a random

variable,Vi, with the universal setΣVi
= {NVi

,AVi,1, ...,AVi,ni−1}, whereNVi
stands for

Normal andAVi,l for an anomaly of typel (induced either by a physical attack or mal-

function), andni is the cardinality ofΣVi
. The coupling among the process variables is

characterized by a set of conditional probabilitiesP [Vi|Vj], i 6= j, i, j = 1, ...,M .

The plantG is monitored by the sensor networkSN comprised ofNSN sensors, which

could be either under a cyber-physical attack or malfunction. TheSN can be viewed as

a set of subnetworks,SNi, i = 1, ...,M , each monitoring the process variableVi and

consisting ofNSNi
sensors, so that

∑M
i=1NSNi

= NSN. Since the state space,X, of SN

consists of vectors comprised of1’s and0’s, the cardinality ofX is 2NSN. Similarly, the

state space ofSNi is Yi with the cardinality2NSNi , i = 1, ...,M . Clearly,X can be viewed

as the Cartesian product ofYi’s,

X = Y1 × Y2 × · · ·YM , (3.3)
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and each statex ∈ X can be viewed as the ordered concatenation of the statesyi ∈ Yi, i.e.,

x = (y1, y2, ..., yM). (3.4)

Given this model, the centralized and the decentralized assessments of process variables

Vi, i = 1, ...,M , can be symbolically represented as follows:

Centralized:

{
p̂yi[Vi]⊗ p̂yj [Vi], ∀j 6= i

}
⇒ p̂x[Vi]

optimization overX
==========⇒ p̂x∗

i
[Vi]. (3.5)

Decentralized:

p̂yi[Vi]
optimization overYi
==========⇒

{
p̂y∗i [Vi]⊗ p̂y∗j [Vi], ∀j 6= i

}
⇒ p̂(y∗1 ,y∗2 ,...,y∗M)[Vi]. (3.6)

The notations involved in these expressions are:

Centralized:

• p̂yi[Vi] is the probability mass function (pmf) ofVi, estimated whenSNi is in the

stateyi ∈ Yi.

• p̂yj [Vi] is the centralized inferred pmf ofVi, calculated whenSNj is in the state

yj ∈ Yj.

• Symbol⊗ denotes the Dempster-Shafer combination of the pmf’s involved.

• p̂x[Vi] is the pmf ofVi, estimated whenSN is in the statex = (y1, y2, ..., yM) ∈ X.

• p̂x∗

i
[Vi] is the centralized optimal pmf ofVi, estimated whenSN is in the statex∗

i ∈

X, resulting in the smallest entropy ofp̂x[Vi].

Decentralized:

• p̂yi[Vi] is the same as in the centralized case.
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• p̂y∗i [Vi] is the decentralized optimal pmf ofVi, estimated whenSNi is in the state

y∗i ∈ Yi, resulting in the smallest entropy ofp̂yi[Vi].

• p̂y∗j [Vi] is the decentralized inferred pmf ofVi, estimated whenSNj , j = 1, ...,M ,

j 6= i, is in its statey∗j ∈ Yj, resulting in the smallest entropy ofp̂yj [Vj].

• Finally, p̂(y∗1 ,y∗2 ,...,y∗M)[Vi] is the decentralized optimal pmf ofVi, estimated whenSN

is in the state(y∗1, y
∗
2, ..., y

∗
M) ∈ X.

While the calculations involved in evaluating these pmf’s are described in Section 3.3,

below we comment on the main differences between the centralized and the decentralized

process variable assessments:

(α) The centralized system uses all the pmf’s,p̂yi[Vi] and p̂yj [Vi], ∀j 6= i, in order to

evaluatex∗
i , whereas the decentralized one uses only the locally optimal pmf’s, p̂y∗i [Vi] and

p̂y∗j [Vi], to evaluate(y∗1, y
∗
2, ..., y

∗
M). The latter may lead to information losses, which is a

drawback of the decentralization.

(β) The centralized system carries out the optimization inX, whereas the decentralized

one inYi, i = 1, ...,M . The latter leads to a reduction of the process variable assessment

time, which is the advantage of the decentralization.

The main problem addressed in this chapter is as follows: Derive a sufficient condition

under which the decentralization leads to no loss of information, formalized as

x∗
i = (y∗1, y

∗
2, ..., y

∗
M), ∀i, (3.7)

and, consequently,

p̂(y∗1 ,y∗2 ,...,y∗M)[Vi] = p̂x∗

i
[Vi], ∀i. (3.8)

A solution of this problem is given in Sections 3.4 and 3.5. Asit turns out, the sought

conditions depend on the properties of the process variablecoupling,P [Vi|Vj], i 6= j,

45



i, j = 1, ...,M , and on the monotonicity property of the Dempster-Shafer combination rule

applied to the set of pmf’ŝpyj [Vi], i, j = 1, ...,M .

3.3 Centralized and Decentralized Process Variable Assessment Pro-

cedures

Although the techniques utilized here are the same as in Chapter II, they are briefly de-

scribed below for the sake of clarity.

3.3.1 Centralized case

Assessment of̂pyi [Vi]: If the stateyi ∈ Yi has a single non-zero element, the evaluation

of p̂yi [Vi] is carried out based on the data reported by this sensor and its data quality (DQ).

The sensor’s data andDQ are the inputs to the h-procedure, the steady state of which

provides the sought pmf:

p̂yi [Vi = σ] = p[Si = σ]DQ+
1−DQ

|ΣVi
| , σ ∈ ΣVi

, i = 1, 2, ...,M, (3.9)

whereSi is the random variable characterizing the sensor data;p[Si = σ], σ ∈ ΣVi
, is its

pmf; ΣVi
is the universal set ofVi; and|ΣVi

| is the cardinality ofΣVi
. As it follows from

(3.9), p̂yi[Vi] = p[Si], (i.e.,Si faithfully representsVi) if DQ = 1 andp̂yi[Vi] =
1

|ΣVi
|

(i.e.,

p̂yi[Vi] is uniform and, thus,Si carries no information aboutVi) if DQ = 0.

If yi has more than one non-zero element, for each of them the pmf isevaluated using

(3.9) and then the Dempster-Shafer rule is used to combine these pmf’s. For instance, ifyi

has two non-zero components, resulting inp̂yi,1[Vi] andp̂yi,2[Vi], the combined pmf is

p̂yi [Vi = σ] = p̂yi,1;yi,2[Vi = σ] =
p̂yi,1[Vi = σ]p̂yi,2[Vi = σ]

∑

σ∈ΣVi

p̂yi,1[Vi = σ]p̂yi,2[Vi = σ]
, σ ∈ ΣVi

. (3.10)
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Whenyi has more than two non-zero components, sayk > 2 non-zero components, the

pmf p̂yi [Vi] is computed similarly, i.e.,

p̂yi [Vi = σ] =

k∏

j=1

p̂yi,j[Vi = σ]

∑

σ∈ΣVi

k∏

j=1

p̂yi,j[Vi = σ]

, σ ∈ ΣVi
, i = 1, 2, ...,M. (3.11)

Assessment of̂pyj [Vi = σ]: If SNj is in the stateyj ∈ Yj leading top̂yj [Vj], the induced

pmf p̂yj [Vi], j 6= i, is calculated using the total probability formula,

p̂yj [Vi] =
∑

σ∈ΣVj

P [Vi|Vj = σ]p̂yj [Vj = σ], σ ∈ ΣVj
, yj ∈ Yj, i 6= j, (3.12)

whereP [Vi|Vj], i 6= j, is the process variable coupling introduced in Section 3.2.

Assessment of̂px[Vi]: If eachSNj , j = 1, ...,M , is in the stateyj ∈ Yj, the overall

network,SN, is in the statex = (y1, y2, ..., yM) and, therefore,̂px[Vi] can be calculated by

combiningp̂yi[Vi] andp̂yj [Vi], i 6= j, using the Dempster-Shafer rule:

p̂x[Vi = σ] = p̂(y1,y2,...,yM)[Vi = σ] =

M∏

j=1

p̂yj [Vi = σ]

∑

σ∈ΣVi

M∏

j=1

p̂yj [Vi = σ]

, σ ∈ ΣVi
. (3.13)

Assessment of̂px∗

i
[Vi]: This is carried out using the method of rational controllers,

where one controller is assigned to eachVi, i = 1, 2, ...,M , with the decision space beingX

and the penalty function being the entropy ofp̂x[Vi], x ∈ X, i = 1, 2, ...,M . These rational

controllers were introduced in [17], and shown to perform well in all cyber-physical attack

scenarios considered. The application of this method results in the identification ofx∗
i , thus

leading top̂x∗

i
[Vi].
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3.3.2 Decentralized case

Assessment of̂pyi [Vi]: This assessment is carried out in the same manner as in the

centralized case.

Assessment of̂py∗i [Vi]: Here, a rational controller is associated with each subnetwork

SNi, i = 1, 2, ...,M , i.e., it operates in the decision spaceYi with the penalty function

being the entropy of̂pyi[Vi], yi ∈ Yi. As a result, the statey∗i , corresponding to the smallest

entropy ofp̂yi [Vi], is identified.

Assessment of̂py∗j [Vi]: This is carried out using the above pmfp̂y∗j [Vj ] and the process

variable couplingP [Vi|Vj ], i 6= j, by applying the total probability formula:

p̂y∗j [Vi] =
∑

σ∈ΣVj

P [Vi|Vj = σ]p̂y∗j [Vj = σ], σ ∈ ΣVj
, y∗j ∈ Yj, i 6= j. (3.14)

Assessment of̂p(y∗1 ,y∗2 ,...,y∗M)[Vi]: This is carried out using the pmf’ŝpy∗i [Vi] andp̂y∗j [Vi],

i 6= j, by applying the Dempster-Shafer combination rule:

p̂(y∗1 ,y∗2 ,...,y∗M)[Vi = σ] =

M∏

j=1

p̂y∗j [Vi = σ]

∑

σ∈ΣVi

M∏

j=1

p̂y∗j [Vi = σ]

, σ ∈ ΣVi
, i = 1, 2, ...,M. (3.15)

3.3.3 Assessment entropy

As described above, the assessments ofp̂x∗

i
[Vi] and p̂y∗i [Vi], i = 1, ...,M , are based on

selecting a pmf with the smallest entropy. In Chapter II, theShannon entropy, [55], defined

by

I{p[V ]} = −
∑

σ∈ΣV

p[V = σ] log|ΣV | p[V = σ], (3.16)
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has been used for this purpose. It turns out, however, that the Renyi-2 entropy [56],

H2{p[V ]} = − log|ΣV |

(
∑

σ∈ΣV

{p[V = σ]}2
)

, (3.17)

is more appropriate for the problem at hand. The reason is that, as it is shown in [57], the

Renyi-2 entropy is more effective in quantifying the so-called “guesswork” (GW ), which

is defined as the expected number of trials necessary to guessthe outcome of a random

variable. Since the assessments in both the centralized andthe decentralized cases are con-

ceptually related toGW , and since the Renyi-2 entropy has been shown to be effectivein a

number of random signal processing problems, [58–60], the current chapter usesH2{p[V ]}

in both the centralized and the decentralized process variable assessment procedures.

3.4 Condition for Lossless Decentralized Inference Assessment

In this section, we derive a sufficient condition under whichno loss of information takes

place due to the decentralized inference calculation as compared with the centralized one.

Represent the conditional pmfP [Vi|Vj ], i 6= j, as a set of column-vectors:

P [Vi|Vj] =
[

p
(1)
Vi|Vj

p
(2)
Vi|Vj

· · · p(nj)

Vi|Vj

]

, p
(1)
Vi|Vj

,p
(2)
Vi|Vj

, ...,p
(nj)

Vi|Vj
∈ R

ni, i 6= j, (3.18)

whereni is the cardinality ofΣVi
. Recall that the components of thepVi|Vj

’s, are on[0, 1]

and their sum is1. Introduce:

Assumption III.1. (a) The2-norm of all the columns of matrixP [Vi|Vj], i 6= j, are the

same, i.e.,

‖p(1)
Vi|Vj

‖2 = ‖p(2)
Vi|Vj

‖2 = · · · = ‖p(nj)

Vi|Vj
‖2, i 6= j. (3.19)

(b) The inner products of every pair of columns of matrixP [Vi|Vj], i 6= j, are the same,
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i.e.,

〈p(1)
Vi|Vj

,p
(2)
Vi|Vj

〉 = 〈p(1)
Vi|Vj

,p
(3)
Vi|Vj

〉 = · · · = 〈p(nj−1)

Vi|Vj
,p

(nj)

Vi|Vj
〉, i 6= j. (3.20)

�

While this assumption seems quite formal, its practical implication is as follows:

Lemma III.1. Under Assumption III.1, if the pmf’ŝpl[Vj ] and p̂m[Vj], l 6= m, l, m ∈

Yj, have equal information about the process variableVj, then the inferred pmf’ŝpl[Vi]

and p̂m[Vi], l 6= m, l, m ∈ Yj, i 6= j, calculated according to(3.12), also have equal

information aboutVi. In other words,

H2{p̂l[Vj ]} = H2{p̂m[Vj ]} =⇒ H2{p̂l[Vi]} = H2{p̂m[Vi]}, l 6= m ∈ Yj, i 6= j. (3.21)

Proof. See the Appendix. �

Thus, Assumption III.1 guarantees that the quality of induced pmf’s remain the same,

if the original pmf’s are equally informative. This property leads to

Theorem III.1. Under Assumption III.1, the optimal decentralized inferred pmf p̂y∗j [Vi],

calculated according(3.14), has the same information as the most informative centralized

inferred pmf, calculated according to(3.12), i.e.,

H2{p̂y∗j [Vi]} = min
yj∈Yj

H2{p̂yj [Vi]}. (3.22)

Proof. See the Appendix. �

Thus, this theorem provides a sufficient condition under which the decentralized in-

ferred pmf (which requires the pmf evaluated at onlyy∗j ∈ Yj) does not lead to information

losses as compared with the centralized inferred pmf assessments (which require the pmf’s

evaluation at all statesyj ∈ Yj).
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3.5 Condition for Lossless Overall Decentralized Assessment

As mentioned before, the decentralized optimal pmf of all the Vi’s are evaluated at the

sensor network state(y∗1, y
∗
2, ..., y

∗
M) ∈ X. Regarding the centralized system, the optimal

pmf of Vi is evaluated at the sensor network statex∗
i ∈ X. Given this situation, a question

arises: Under what conditions are the decentralized and thecentralized optimal states the

same, i.e.,x∗
i = (y∗1, y

∗
2, ..., y

∗
M), ∀i? This question is addressed below.

Recall that the calculation of̂p(y∗1 ,y∗2 ,...,y∗M)[Vi] is based on the Dempster-Shafer (D-S)

combination rule (3.15). This rule is known to be, in general, non-monotonic [61] in the

sense that D-S combination of two pmf’s, say,p̂1[V ] and p̂2[V ], may have larger entropy

than either of the constituent pmf’s. This issue has been investigated in [13], where it

has been shown that this does not take place (i.e., the D-S combination rule is, in fact,

monotonic) if the constituent pmf’s are sufficiently “close” to each other. As it turns out, a

condition for the overall lossless decentralization depends on the monotonicity property of

D-S rule. Specifically, introduce:

Assumption III.2. The Dempster-Shafer combination rule is monotonic on the set of pmf’s
{
p̂yj [Vi]

}
, i, j = 1, 2, ...,M , in the sense that

if H2{p̂yj [Vi]} ≤ H2{p̂ȳj [Vi]}, yj, ȳj ∈ Yj, ∀j,

thenH2{p̂(y1,y2,...,yM)[Vi]} ≤ H2{p̂(ȳ1,ȳ2,...,ȳM)[Vi]}, ∀i.
(3.23)

�

This assumption implies the monotonicity mentioned above,as stated by:

Lemma III.2. Under Assumption III.2,

H2{p̂(y1,y2,...,yM)[Vi]} ≤ min {H2{p̂y1[Vi]}, H2{p̂y2 [Vi]}, ..., H2{p̂yM [Vi]}} , ∀i. (3.24)

Proof. See the Appendix. �
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Now, consider the following theorem:

Theorem III.2. Under Assumptions III.1 and III.2, the centralized optimalstatex∗
i is the

same for alli, i.e.,x∗
i = x∗, and, moreover,x∗ coincides with the decentralized optimal

state(y∗1, y
∗
2, ..., y

∗
M). Therefore,

H2{p̂(y∗1 ,y∗2 ,...,y∗M)[Vi]} = H2{p̂x∗ [Vi]}, i = 1, 2, ...,M. (3.25)

Proof. See the Appendix. �

Note that although this theorem is not constructive (since Assumption III.2 cannot be

verified in a decentralized manner), it nevertheless specifies conditions for a lossless de-

centralization.
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CHAPTER IV

Resilient Control Systems: Model Predictive Control

Approach

4.1 Introduction

The resilient control system is intended to calculate plantcontrol inputs based on the plant

(or sub-plant) model and the process variable pmf’s,p̂[Vi], i = 1, ...,M , provided by the

resilient monitoring system (see Chapter II). Here, the objective of the control design is

to steer the process variable to the desired value in the steady state, while ensuring that it

remains in a safe domain in the transients. If the above pmf’swere of zero entropy, clas-

sical control techniques could be applied. However, when the sensors are under attack, the

entropy is non-zero, and new control techniques are necessary. This is because the feed-

back system to be developed can be neither output-based nor state space-based, but must

be “pmf of the output-based” control.

The approach developed here can be briefly described as follows: LetUsafe be the con-

trol input, which maintains the process variable in the safedomain irrespective of the plant

status, andUdes be the control input, which is necessary to ensure that the process variable

would take the desired value if the process variable pmf had zero entropy. Then the re-
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silient control input,Ures, is defined asUres = ∆Udes+(1−∆)Usafe, where0 ≤ ∆ ≤ 1 is a

weighting factor, which is selected based on an optimization procedure. Specifically, when

the entropy of̂p[Vi] is small, the inputUdes is suitable for resilient control, and, therefore,

the∆ is selected to be close to1. However, when the entropy of̂p[Vi] is large, theUdes may

steer the process variable outside the safe domain, and, hence, the∆ is selected to be close

to 0. The above mentioned optimization procedure for calculating∆ is similar to those of

model predictive control, [1], but is based on the process variable pmf, rather than on the

process variable itself.

Although the current chapter presents just the initial results on resilient control systems,

we believe that they form a foundation for extensions and future developments in this area

of control research.

4.2 Results To-Date in Resilient Controller Design

The architecture of the resilient control system is shown inFigure 4.1, which combines the

resilient monitoring system architecture of Figure 2.3 with the pmf-based control,Ures,i.

The design of this controller is based on the following: Assume that a sub-plantG (for

the sake of brevity we omit its subscript) is described by theSISO system

xσ(n+ 1) = Aσxσ(n) +BσUres(n), xσ ∈ R
q, Ures ∈ R, n = 0, 1, ...,

Ṽ (n) = Cσxσ(n), Ṽ ∈ R, n = 0, 1, ..., σ ∈ {LV ,NV ,HV },
(4.1)

where the pair{Aσ, Bσ}, σ ∈ {LV ,NV ,HV }, is controllable, and the eigenvalues ofAσ,

σ ∈ {LV ,NV ,HV }, are in the interior of the unit circle on the complex plane. Define the

resilient control input as follows:

Ures(n) = ∆(n)Udes(n) + [1−∆(n)]Usafe(n), n = 0, 1, ..., (4.2)

whereUsafe(n), Udes(n), and∆(n) are to be determined. This is accomplished below.
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Figure 4.1: Proposed architecture of resilient control system

4.2.1 Calculation ofUsafe

The value ofUsafe is selected as an open-loop control input to ensure that the steady state

of the process variable is within the safe domain,[Vmin, Vmax], irrespective of its status. To

formalize this, introduce the d.c. gain,ασ, σ ∈ {LV ,NV ,HV }, of the above state space

system in the statusσ, σ ∈ {LV ,NV ,HV }, as

ασ = Cσ[I − Aσ]
−1Bσ, σ ∈ {LV ,NV ,HV }, (4.3)

and denote the minimum and maximum values of these d.c. gainsas

αmin = min {αLV
, αNV

, αHV
} , αmax = max {αLV

, αNV
, αHV

} . (4.4)

Introduce the following assumption:

Assumption IV.1. The minimum and maximum values of the d.c. gains of the process
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variable are such that

αmax

αmin
<

Vmax

Vmin
, (4.5)

whereVmin andVmax characterize the safe domain of the process variable.

�

Now, consider the following lemma:

Lemma IV.1. Under Assumption IV.1, the value of the inputUsafe can be selected as any

constant in the interval

Usafe ∈
[
Vmin

αmin
,
Vmax

αmax

]

. (4.6)

Proof. See the Appendix. �

Thus, the above lemma implies that underUsafe the steady state value of the process

variable is in the safe domain, i.e.,Usafeασ ∈ [Vmin, Vmax], ∀σ ∈ {LV ,NV ,HV }.

In a typical feedback control system, the sensor measurements can be used to determine

the initial condition,x(0), of the plant; for instance, this may be accomplished by utilizing

an observer. Then, based on the outputs of the observer, a control input can be calculated

such that the resulting closed-loop system satisfies both the steady state and the transient

performance specifications. However, in the current situation, the sensor measurements

may be compromised, and, therefore, the use of an observer may not be appropriate. Thus,

we consider the following scenario: Assume that at timen = 0, the sub-plant is in the

steady state under the inputUsafe, i.e.,

xσ(0) = [I −Aσ]
−1BσUsafe, σ ∈ {LV ,NV ,HV },

Ṽ (0) = Cσxσ(0), σ ∈ {LV ,NV ,HV },
(4.7)

where, due to Lemma IV.1, we havẽV (0) ∈ [Vmin, Vmax], irrespective of the statusσ ∈
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{LV ,NV ,HV }. Here, the problem is to determine the specificσ that takes place atn = 0,

and, based on this information, compute an “appropriate” control input so that the control

objectives are met, i.e., the process variable takes the desired value in the steady state, while

remaining in the safe domain in the transients. The first partof this problem is solved using

the resilient monitoring system, which is assumed to provide the estimate of the pmf of

the process variable,̂p[V (0) = σ], σ ∈ {LV ,NV ,HV }, at timen = 0. (Here, the resilient

monitoring system may be viewed as the “observer”.) The second part of the above problem

is addressed below.

4.2.2 Calculation ofUdes

To defineUdes, introduce the two-degree of freedom control law,Uσ, which steers the

process variable to the desired value,Vdes, if the actual status of the process variable were

σ:

Uσ(n) = −K1,σx̂σ,Uσ
(n) +K2,σVdes, n = 0, 1, 2, ..., σ ∈ {LV ,NV ,HV }, (4.8)

wherex̂σ,Uσ
∈ R

q, σ ∈ {LV ,NV ,HV }, is the “predicted” state vector of the sub-plant under

the inputUσ, σ ∈ {LV ,NV ,HV }, i.e.,

x̂σ,Uσ
(n+ 1) = Aσx̂σ,Uσ

(n) +BσUσ(n), n = 0, 1, ..., σ ∈ {LV ,NV ,HV },

x̂σ,Uσ
(0) = xσ(0), σ ∈ {LV ,NV ,HV }.

(4.9)

As it may be observed from this equation, the initial condition, x̂σ,Uσ
(0), for the prediction

is the same as the initial state vector of the plant,xσ(0) (defined in (4.7)). In the control law

(4.8), theK1,σ ∈ R
1×q is a row vector of feedback gains, selected so that the eigenvalues

of (Aσ − BσK1,σ) are within the unit circle, and theK2,σ ∈ R is a scalar, selected so that

the d.c. gain of the closed loop transfer function,K2,σCσ [zI − (Aσ −BσK1,σ)]
−1Bσ, is

1. Clearly, if the actual status ofV is σ, the inputUσ(n) would steer the process variable to
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Vdes. However, since the status ofV is unknown, the application of the incorrectUσ to the

plant may lead to a disaster. For example, assume thatV is the temperature of the boiler

andU is the opening of the fuel valve. In this system, the inputULV
may correspond to

increasing of the fuel valve opening, while the inputsUNV
orUHV

may correspond to main-

taining or closing, respectively, of the fuel valve opening. Therefore, if the temperature is

actually High, but the sensor projects Low (due to an attack), an explosion may occur if the

fuel valve opening is further increased (whenULV
is applied). Thus, to alleviate this prob-

lem, we synthesize the control input based on the estimated pmf, p̂[V (0)], of the process

variable.

Specifically, defineUdes as the expected value ofUσ with respect to the above pmf, i.e.,

Udes(n) = p̂[V (0) = LV ]ULV
(n) + p̂[V (0) = NV ]UNV

(n)

+p̂[V (0) = HV ]UHV
(n), n = 0, 1, ....

(4.10)

In the above control law, we utilize the pmfp̂[V (0)], rather than the pmf̂p[V (n)], for all

timen, since it is assumed that the dynamics of the attacker is muchslower than that of the

closed loop system, implying that the sensorDQ, which is involved in thêp[V ] evaluation

(see Chapter II for details), remains the same. Furthermore, as it may be observed from

(4.10), if the entropy of̂p[V (0)] is close to0, the inputUdes(n) is suitable for resilient

control; however, if the entropy of̂p[V (0)] is close to1, the inputUdes(n) may steer the

process variable outside the safe domain. To overcome this problem, we define the resilient

control input as mentioned in (4.2), i.e.,Ures(n) = ∆(n)Udes(n) + [1 −∆(n)]Usafe, where

0 ≤ ∆(n) ≤ 1, n = 0, 1, 2, ..., is the weighting factor, which reduces the aggressivenessof

Udes(n). The calculation of this weighting factor is described next.

4.2.3 Calculation of∆

The goal here is to select∆ such thatUres steers the process variable toVdes in the steady

state, while ensuring that the process variable remains in[Vmin, Vmax] during the transients.
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To accomplish this, we predict the future values of the sub-plant states and the outputs,

under the inputUres, i.e.,

x̂σ,Ures(n+ i) = Ai
σx̂σ,Ures(n) +

i∑

k=1

Ai−k
σ BσUres(n + k − 1),

x̂σ,Ures(0) = xσ(0),

V̂σ,Ures(n+ i) = Cσx̂σ,Ures(n + i),

n = 0, 1, ..., i = 1, 2, ..., Np, σ ∈ {LV ,NV ,HV },

(4.11)

whereNp is the duration period of the prediction, and, as before, theinitial condition for

the prediction,xσ(0), is defined in (4.7). (The above expression is obtained as thesolution

of the discrete-time LTI system (4.1).) As described below,the predicted values of the

process variable,̂Vσ,Ures , are involved in the previously mentioned optimization procedure,

which is used to compute∆.

Based on the definition (4.2), this weighting factor∆ can be considered as a parameter

of the inputUres, i.e.,

Ures(n) = Ures(n;∆(n)), n = 0, 1, .... (4.12)

Similarly, based on the prediction model (4.11), the∆ can also be considered as a parameter

of the predicted process variable, i.e.,

V̂σ,Ures(n+ 1) = V̂σ,Ures(n+ 1;∆(n)), n = 0, 1, ..., σ ∈ {LV ,NV ,HV }. (4.13)

Clearly, if these predicted values,V̂σ,Ures(n+1;∆(n)), V̂σ,Ures(n+2;∆(n+1)), ..., V̂σ,Ures(n+

Np;∆(n+Np − 1)), are required to approach and eventually track the desired value,Vdes,

the weights∆(n),∆(n+ 1), ...,∆(n+Np − 1) must be selected appropriately. To accom-

plish this, introduce the following optimization problem,which, as mentioned before, is
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based on the ideas of model predictive control:

minimize
∆(n),∆(n+1),...,∆(n+Np−1)

Np∑

i=1

∑

σ=LV ,NV ,HV

1

2
Wσ

[

V̂σ,Ures(n+ i;∆(n+ i− 1))− Vdes

]2

,

subject to Vmin ≤ V̂σ,Ures(n+ i;∆(n+ i− 1)) ≤ Vmax,

n = 0, 1, ..., i = 1, ..., Np, σ ∈ {LV ,NV ,HV },

(4.14)

whereV̂σ,Ures is computed using (4.11). TheWσ ’s, involved in the above penalty function,

are selected as

Wσ =

(
p̂[V (0) = σ]

ǫW

)NW

, σ ∈ {LV ,NV ,HV }, (4.15)

whereǫW < 1 andNW ≥ 1 are design parameters. IfNW is selected to be large, thenWσ

is small if p̂[V (0) = σ] is small (i.e.,̂p[V (0) = σ] < ǫW ), andWσ is large ifp̂[V (0) = σ] is

large (i.e.,̂p[V (0) = σ] > ǫW ). The duration period,Np, of the prediction must be selected

so that it is not too small, which makes the controller response oscillatory, nor too large,

which increases the computational complexity of the solution of (4.14).

We assume that the solution of the above problem, (4.14), is feasible for all timen (this

is termed as recursive or persistent feasibility, [62]). Given the solution∆∗(n),∆∗(n +

1), ...,∆∗(n+Np−1), we utilize only∆∗(n) to computeUres(n), while∆∗(n+1), ...,∆∗(n+

Np − 1) are discarded (as it is usual in model predictive control). Finally, thisUres(n) is

applied to the plant.

Since the actual states of the sub-plant cannot be observed,the stopping rule of the

above optimization procedure is selected as follows:

‖x̂σ,Ures(n + 1)− x̂σ,Ures(n)‖ < ǫstop, ∀σ ∈ {LV ,NV ,HV }, (4.16)

whereǫstop << 1 can be chosen as desired.

Given the control design described here, it may be importantto characterize the stability
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of the closed loop system and the steady state value of the process variable (if it exists).

Assuming that this steady state exists, one of the possible ways to characterize the efficacy

of the resilient controller may be to evaluate the pmf of the process variable in the steady

state, denoted aŝp[Vss], and determine under what conditions this pmf takes the largest

probability in the Normal status. While, in the current work, these issues are not addressed

for the case of dynamic plants, below we consider the case of static plants, and provide a

sufficient condition under whicĥp[Vss], indeed, takes the largest probability in the Normal

status.

4.2.4 Characterization ofp̂[Vss] properties

Consider the static sub-plant

xσ(n) = ασUres(n), xσ ∈ R, n = 0, 1, σ ∈ {LV ,NV ,HV },

Ures(0) = Usafe,

Ṽ (n) = xσ(n), n = 0, 1, σ ∈ {LV ,NV ,HV },

(4.17)

where, as before, the process variableṼ takes values in the interval[Vmin, Vmax], with the

sub-intervals[Vmin, R1), [R1, R2), and[R2, Vmax) specifying the Low, Normal, and High

domains, respectively. Denote the actual gain of the sub-plant asαact ∈ {αLV
, αNV

, αHV
},

and define the sub-intervalIact as

Iact

(

Ṽ (n)
)

:=







[Vmin, R1), if Ṽ (n) ∈ [Vmin, R1),

[R1, R2), if Ṽ (n) ∈ [R1, R2),

[R2, Vmax], if Ṽ (n) ∈ [R2, Vmax],

n = 0, 1. (4.18)
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Assume that one sensor monitors the process variable, and let the sensor measurements be

represented bỹS. Further, assume that the model of the attacker is as follows:

S̃(n) = kaṼ (n) + da, n = 0, 1, (4.19)

whereka andda are the gain and the bias, respectively, of the attacker. Based on the data

quality acquisition procedure, described in Chapter II, itcan be shown that the sensorDQ

is a function of the aboveka andda, i.e.,

DQ = DQ(ka, da). (4.20)

Introduce the following assumption:

Assumption IV.2. The attacker gain and bias are such that

kaUsafeαact + da ∈ Iact

(

Ṽ (0)
)

. (4.21)

�

The implication of this assumption is as follows:

Lemma IV.2. Under Assumption IV.2, the actual and the estimated pmf’s ofV at time

n = 0 take the maximum probability at the same status.

Proof. See the Appendix. �

The inputUres is calculated as described in Subsections 4.2.1-4.2.3. Clearly, the value

of this input at timen = 1, i.e.,Ures(1), defines the pmf ofV at timen = 1, i.e.,p[V (1)].

(Note that since the plant is static, the process variable isin the steady state atn = 1. This

implies that the pmfp[Vss] is the same as the pmfp[V (1)].) Thus, to characterizep[Vss], we

have to computêp[V (1)], and determine if it takes the maximum probability in the Normal

status. To accomplish that, introduce the following definition:
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Definition IV.1. The pmfp̂[V (1)] is said to be thecorrect permutationof the pmfp̂[V (0)]

if:

(i) both the pmf’s are comprised of the same probabilities;

(ii) the pmf p̂[V (1)] takes the largest probability in the Normal status, irrespective of the

pmf p̂[V (0)].

�

Since the sub-plant is considered to be static, select the parameterNp, involved in the

optimization problem (4.14), as1. Further, for simplicity, assume that the parameterNW ,

also involved in (4.14), is selected as1. Then,

Theorem IV.1. Under Assumption IV.2, the plant inputUres results in the pmf̂p[V (1)],

which is the correct permutation of the pmfp̂[V (0)], if

kaVdesαact

[
αLV

+αNV
+αHV

+[3αact−αLV
−αNV

−αHV
]DQ(ka,da)

α2
LV

+α2
NV

+α2
HV

+[3α2
act−α2

LV
−α2

NV
−α2

HV
]DQ(ka,da)

]

+ da ∈ [R1, R2). (4.22)

Proof. See the Appendix. �

This theorem implies that ifka andda are bounded, as characterized by the expressions

(4.21) and (4.22), then the resilient control input, indeed, ensures that the process variable

takes the Normal status with the maximum probability.

4.3 Example

While the previous section provided sufficient conditions for the efficacy of the developed

controller for static systems, in this section, we offer an example showing that the resilient

control system works for dynamic systems as well.

Assume that the sub-plant (4.1) is a first order system, i.e.,q = 1. Further, assume that

the parameters involved in the sub-plant, the process variable, and the resilient controller

are as follows:
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• Sub-plant parameters:

– ALV
= 0.9, BLV

= 0.1, CLV
= 1;

– ANV
= 0.5, BNV

= 0.75, CNV
= 1;

– AHV
= 0.67, BHV

= 1, CHV
= 1.

• Process variable parameters:

– Vmin = 1, Vmax = 200, R1 =
200
3

, R2 =
400
3

;

– Vdes = 100.

• Resilient controller parameters:

– Usafe = 50;

– K1,LV
= 1.34, K2,LV

= 3, K1,NV
= −4, K2,NV

= −0.134, K1,HV
= 6,

K2,HV
= 0.07;

– ǫW = 0.01, NW = 10, Np = 5.

Assume that the sub-plant is in the steady state if the following stopping rule is satisfied:

|x̂σ,Ures(n+ 1)− x̂σ,Ures(n)| < 10−4, ∀σ ∈ {LV ,NV ,HV }, (4.23)

and letNss denote the time at which the above takes place. (Note that forall scenarios

considered below,Nss is determined to be less than50sec.) As before, assume that the

attacker model is characterized by

S̃(n) = kaṼ (n) + da, n = 0, 1, .... (4.24)

We evaluate the performance of the resilient controller under nine attack scenarios,

described in Tables 4.1 and 4.2. In these tables, the quantity ∆ is the average value of
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∆
∗(n), evaluated during the transients, i.e.,

∆ =
1

Nss

Nss−1∑

n=0

∆
∗(n), (4.25)

and the quantitieska, da, DQ, p̂[V (0)], and p̂[Vss] are the same as before. The∆ is in-

troduced to characterize the aggressiveness ofUres in each of the scenarios considered. In

Scenarios 1 - 6, the value ofda is fixed at10, and the performance is evaluated for various

values ofka, whereas in Scenarios 7 - 9, the value ofka is fixed at0.9, and the performance

is evaluated for various values ofda. In all these scenarios, we assume that the actual sub-

plant status is Low.

As it may be observed from the above tables, the correct permutation of the pmf’s,

p̂[Vss] andp̂[V (0)], takes place in Scenarios 1,2,3,7, and 8. Clearly, in these scenarios, the

attacker’s modifications of the sensor measurements are relatively small, and, therefore, the

resultingp̂[V (0)] contains a sufficient amount of information about the statusof the pro-

cess variable (sinceDQ is close or equal to1). This information is utilized by the resilient

controller to steer the process variable into the Normal domain (see Figure 4.2, where the

trajectories ofṼ and∆∗ are illustrated for Scenario 3). Regarding Scenarios 4,5,6, and

9, it may be observed that the pmf’ŝp[Vss] andp̂[V (0)] are the same. Here, the attacker’s

modifications of the sensor measurements are relatively large, which results in̂p[V (0)] not

containing a sufficient amount of information about the status of the process variable (since

DQ is relatively small). Thus, in these scenarios, the resilient control input is not aggres-

sive, which ensures that the process variable is maintainedin the same domain, i.e., Low

(see Figure 4.3, where the trajectories ofṼ and∆∗ are illustrated for Scenario 5).

Thus, the results obtained here indicate that the model predictive control-based ap-

proach to resilient feedback systems can be viewed as a potential solution of the resilient

control problem, and should be explored in more details in the future.
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Table 4.1: Performance of the resilient controller for Scenarios 1 - 6 (da = 10)

Scenario ka DQ p̂[V (0)] p̂[Vss] ∆

1 1 1 [1, 0, 0] [0, 1, 0] 1
2 0.95 0.97 [0.97, 0.015, 0.015] [0.015, 0.97, 0.015] 0.11
3 0.90 0.85 [0.9, 0.05, 0.05] [0.05, 0.9, 0.05] 0.12
4 0.85 0.70 [0.8, 0.1, 0.1] [0.8, 0.1, 0.1] 0.14
5 0.58 0.07 [0.38, 0.31, 0.31] [0.38, 0.31, 0.31] 0.06
6 0.50 0.02 [0.34, 0.33, 0.33] [0.34, 0.33, 0.33] 0

Table 4.2: Performance of the resilient controller for Scenarios 7 - 9 (ka = 0.9)

Scenario da DQ p̂[V (0)] p̂[Vss] ∆

7 15 0.85 [0.9, 0.05, 0.05] [0.05, 0.9, 0.05] 0.12
8 20 0.85 [0.9, 0.05, 0.05] [0.05, 0.9, 0.05] 0.12
9 25 ≈ 0 ≈ [1/3, 1/3, 1/3] ≈ [1/3, 1/3, 1/3] 0
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Figure 4.2: Trajectories of̃V and∆∗ for Scenario 3
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Ṽ
(n

)

Trajectory of the process variable

 

 

0 5 10 15 20 25 30 35 40 45 50

0

0.2

0.4

0.6

0.8

1

n

∆
∗
(n

)

Trajectory of ∆∗

Vmax

Vdes

Vmin

Figure 4.3: Trajectories of̃V and∆∗ for Scenario 5

67



CHAPTER V

Actuator/Sensor Health Monitoring and Control Using

Synchronous Detection

5.1 Introduction

In Chapter IV, a resilient plant control input is synthesized using the information provided

by the resilient monitoring system. In the current chapter,we consider a different approach,

namely, the “nominal” feedback controller is modified basedon the health assessment of

the sensors and actuators (which are assumed to be under attack). As mentioned before,

this health assessment is carried out using the method ofsynchronous detection, which is

widely applied in communication systems [2].

Resilient feedback systems, considered in this chapter, are feedback control systems

that are capable of identifying and mitigating malicious attacks on their sensors and actua-

tors, wherein the attacks are intended to force the plant output to deviate substantially from

the reference signal. In the absence of appropriate identification and mitigation strategies,

attacks may lead to unwanted consequences, such as damage tothe plant. For example,

consider the drive system of a Uranium gas enrichment centrifuge, which typically con-

sists of a three-phase AC induction motor, a controller, anda speed sensor [63–67]. Since

68



this system operates in a closed-loop configuration, an attack on the sensor that forces it to

project a ‘low’ speed may lead to the actual motor speed taking dangerously high values.

We assume that the attacker’s actions can be categorized as follows:

• Type 1 attack: The DC gain/s of the sensor or/and actuator is/are modified;

• Type 2 attack: A constant input is projected as an output of the sensor or/and actuator;

• Type 3 attack: A combination of the above two takes place, e.g., the DC gain of the

actuator is modified, while a constant input is projected as the output of the sensor.

To illustrate these types of attacks, consider the nominal (non-attacked) feedback control

system shown in Fig. 5.1, whereinK(s), A(s), P (s), andS(s) represent the transfer

functions of the controller, actuator, plant, and sensor, respectively, andS0 is the DC gain

of the sensor, i.e.,S0 = lims→0 S(s). For this system, a Type 1 attack on the sensor is

Figure 5.1: Nominal system

depicted in Fig. 5.2, while a Type 2 attack on the actuator is shown in Fig. 5.3.

Given the above model of the attacker, our goal is to devise strategies to identify

Figure 5.2: Type 1 attack on the sensor, i.e.,lims→0 Sa(s) 6= S0
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Figure 5.3: Type 2 attack on the actuator (attacker projectsa constant input,ca)

malicious attacks on the control system and ensure that their effects are mitigated as quickly

as possible.

The development of the identification and mitigation procedures is carried out under

the following assumption:

Assumption V.1. a) The controller, plant, nominal actuator, and nominal sensor are open-

loop asymptotically stable, i.e., the poles of the transferfunctionsK(s), P (s), A(s),

andS(s) lie in the open left half plane.

b) The attacked actuator and the attacked sensor are open-loop asymptotically stable.

c) The nominal and the attacked closed-loop systems are asymptotically stable.

�

Under Assumption V.1, and as illustrated in Fig. 5.4, the approach to the identification

of attacks comprises of:

• Adding a sinusoidal signal to the reference;

• Multiplying the outputs of the actuator and the1
S0

blocks by the same sinusoidal

signal;

• Computing the moving average of the signals resulting fromthe previous step.

Under the above procedure, the outputs of the moving averageblocks,z1 andz2, are ana-

lyzed from the point of view of their consistency with the nominal values. As explained in
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Figure 5.4: Identification of attacks using synchronous detection

details in Section 5.2, attacks on the sensor and the actuator lead toz1 andz2 taking steady

state values that differ from their nominal ones, which gives rise to the identification of the

attacker’s actions.

Regarding the mitigation of attacks, this is based on the results of the identification pro-

cedure. Specifically, in the case of Type 1 attacks, the DC gains of the controller and the

1
S0

block are appropriately modified to ensure that the plant output is close to the reference

signal, whereas in the case of Type 2 or Type 3 attacks, operation of the closed loop system

is discontinued. These procedures are explained in detailsin Section 5.3.
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Note that if the attacker modifies the gains of the sensor and the actuator such that the

closed loop system is unstable, then the signalsz1 andz2 do not attain the steady state. In

this situation, as before, the operation of the closed loop system is discontinued.

The remainder of this chapter is organized as follows: As mentioned previously, the at-

tack identification and mitigation procedures are described in Sections 5.2 and 5.3, respec-

tively. Timing issues are analyzed in Section 5.4. Finally,an example of the application of

the developed procedures is presented in Section 5.5.

Figure 5.5: Identification of attacks using synchronous detection− Simplified case
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5.2 Attack Identification

The development of the techniques in this and the subsequentsections is carried out in

terms of the feedback control system shown in Fig. 5.5. The plant’s dynamics are assumed

to be characterized by the stable first order transfer function,

P (s) =
d

τs + 1
, (5.1)

whered is the DC gain andτ is the time constant. Further, the controller, sensor, and actu-

ator are assumed to be static, with their gains denoted asK, S, andA, respectively. Note

that these assumptions are made in order to simplify the presentation of the material, and

that the techniques developed here can be extended to more complex systems (e.g., higher

order plants, controllers with dynamics, etc.).

Given the above, the nominal steady state values of the signals z1 andz2 can be com-

puted as

z1,ss=

[
KA(1 +KAd + ω2τ 2)

ω2τ 2 + (1 +KAd)2

]
α2

2
, (5.2)

and

z2,ss =

[
KAd(1 +KAd)

ω2τ 2 + (1 +KAd)2

]
α2

2
, (5.3)

respectively. These values are used below to ascertain if anattack has indeed taken place

or not.

5.2.1 Identification of Type 1 attack

Assume that both the sensor and the actuator are under a Type 1attack, i.e., the gainsS and

A are modified asSa > 0 andAa > 0, respectively. Given this scenario, the steady state
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values ofz1 andz2 can be computed as

z1,ss,a =

[
KAa(1+KAad

Sa
S

+ω2τ2)
ω2τ2+(1+KAad

Sa
S )

2

]

α2

2
,

z2,ss,a =

[
KAad

Sa
S (1+KAad

Sa
S )

ω2τ2+(1+KAad
Sa
S )

2

]

α2

2
.

(5.4)

Using the above equations, the following expressions forSa andAa are obtained:

Sa = S

[
4z2,ss,a−α2+

√
(4z2,ss,a−α2)2−8z2,ss,a(1+ω2τ2)(2z2,ss,a−α2)

4z1,ss,ad

]

,

Aa =
2z1,ss,a

K[α2−2z2,ss,a]
.

(5.5)

These expressions are utilized in Section 5.3 to mitigate the effects of Type 1 attacks.

5.2.2 Identification of Type 2 attack

Assuming that a Type 2 attack takes place on the sensor, i.e.,a constant input,ca, is pro-

jected by the attacker, the steady state values ofz1 andz2 can be computed as

z1,ss,a = KA
α2

2
, z2,ss,a = 0. (5.6)

Similarly, under a Type 2 attack on the actuator, we have

z1,ss,a = z2,ss,a = 0. (5.7)

The above expression also applies for the case of simultaneous Type 2 attacks on both the

sensor and the actuator.
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5.2.3 Identification of Type 3 attack

Assume that a Type 1 attack takes place on the actuator, whilea Type 2 attack takes place

on the sensor. In this scenario,

z1,ss,a = KAa

α2

2
, z2,ss,a = 0. (5.8)

Suppose that a Type 2 attack takes place on the actuator, while a Type 1 attack takes

place on the sensor. Then,

z1,ss,a = z2,ss,a = 0. (5.9)

Clearly, under attack, the steady state values of thez’s are different from the nominal

ones. These results are summarized in Table 5.1.

Table 5.1: Steady state values ofz1 andz2 under various scenarios

Scenario\Signal z1,ss z2,ss

Nominal
[
KA(1+KAd+ω2τ2)
ω2τ2+(1+KAd)2

]
α2

2

[
KAd(1+KAd)

ω2τ2+(1+KAd)2

]
α2

2

system

Type 1 attack

[
KAa(1+KAad

Sa
S

+ω2τ2)
ω2τ2+(1+KAad

Sa
S )

2

]

α2

2

[
KAad

Sa
S (1+KAad

Sa
S )

ω2τ2+(1+KAad
Sa
S )

2

]

α2

2

onS andA
Type 2 attack onS KAα2

2
0

Type 2 attack onA 0 0
Type 2 attack 0 0
onS andA

Type 3 attack: KAa
α2

2
0

Type 2 attack onS and
Type 1 attack onA

Type 3 attack: 0 0
Type 1 attack onS and

Type 2 attack onA
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5.3 Attack Mitigation

5.3.1 Mitigation of Type 1 attack

As described in Section 5.2, under a simultaneous Type 1 attack on both the sensor and the

actuator, the steady state values of the signalsz1 andz2 can be used to calculate the values

of the gainsSa andAa. These, in turn, are utilized to compensate for the effects of the

attack by modifying the controllerK asK A
Aa

and the1
S

block as 1
Sa

(see Fig. 5.6).

Figure 5.6: Mitigation of Type 1 attack on the sensor and the actuator
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5.3.2 Mitigation of Type 2 or Type 3 attack

In the case of either Type 2 or Type 3 attack, it is clear that the feedback loop is disconnected

by the attacker. Therefore, this leaves us with no alternative but to discontinue operation

of the control system. Normal operation may resume after theattacked component/s is/are

either repaired or replaced.

5.4 Timing Issues

In some applications, there may exist a ‘critical’ time duration, Tc, beyond which it is un-

desirable for the plant output to be substantially different from the reference. Obviously, it

is necessary that the time required to complete the identification and mitigation procedures

be less thanTc. Below, we examine the duration of the former under the various types of

attacks.

In the case of a Type 1 attack, the transient response of the resilient control system can

be partitioned into the following three time intervals:

• Time required for the plant output to go close to the new steady state value, after the

attack takes place;

• Time required to calculate the new steady state values ofz1 andz2, after the above

takes place;

• Time required for the plant output to go close to the reference signal, after the iden-

tification and mitigation procedures are applied.

We assume that the duration of the first time interval is3τ , whereτ is the time constant

of the plant transfer function. As for the second time interval, its duration isT , whereT

is the time period of the sinusoidal oscillations. Finally,we assume, as before, that the

duration of the third time interval is3τ . Thus, the time,Tidm, required to identify and
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mitigate a Type 1 attack is

Tidm = 6τ + T. (5.10)

Clearly, from the above expression, it is advantageous to chooseT as small as possible.

However, as explained below, an arbitrarily smallT (or arbitrarily largeω) makes it difficult

to detect the attack.

Assume that a Type 1 attack takes place on the sensor. Define∆z1 and∆z2 as

∆z1 := |z1,ss− z1,ss,a|, ∆z2 := |z2,ss− z2,ss,a|, (5.11)

and consider, for example, the plot of∆z2 versusωτ , shown in Fig. 5.7. As seen in this

figure, it is not desirable to selectω large for plants with largeτ , since the value of∆z2

would be small, hence making it difficult to distinguish between the nominal and attacked

scenarios. The underlying reason for this phenomenon is that the plant filters out the high
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Figure 5.7:∆z2 vs.ωτ under a Type 1 attack on the sensor
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frequency sinusoidal signal. Thus, there exists a tradeoffbetween the choice of frequency

of the sinusoidal signal and the difficulty of identifying the attack.

Under a Type 2 attack, since operation of the feedback control system is discontinued

after the identification procedure is completed,Tidm is given by

Tidm = 3τ + T. (5.12)

The above expression applies to the case of a Type 3 attack as well.

To summarize this section, we note that the identification and mitigation procedures

developed in this work are effective ifTidm < Tc.

5.5 Example: Application to Uranium Enrichment Centrifuge Con-

trol System

Consider a three-phase induction motor, whose transfer function between the input voltage

and the rotational speed is given by (see [64]):

P (s) =
157

4s+ 1
. (5.13)

Assume that this motor is operated in the closed-loop configuration of Fig. 5.5, with the

parameters specified in Table 5.2. Further, assume that an attacker conducts a Type 1 attack

on the sensor, with the parameters of the attack provided in Table 5.3. Given these data, the

nominal steady state values ofz1 andz2 can be computed as

z1,ss= 52, z2,ss= 311. (5.14)

Similarly, the steady state values ofz1 andz2 under the attack can be calculated as

z1,ss,a = 203, z2,ss,a = 307. (5.15)
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The trajectories of the plant output,y, are illustrated in Fig. 5.8. As seen in this figure,

y deviates from the reference signal,r, after the attack takes place at timet = 15sec. As

described in Section 5.4, the time required byy to reach the new steady state is3τ = 12sec.

Further, a duration ofT = 0.06sec is required to calculate the new steady state values of

Table 5.2: Parameters of the control system

Gains of controller, actuator, and sensor K = 20, A = 2, S = 1
Value of reference signal r = 528

Amplitude and frequency of sinusoidal signal α = 25, ω = 100

Table 5.3: Parameters of the attack

Attacked DC gain of sensorSa = 0.5
Time of attack 15sec
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Figure 5.8: Trajectory of the plant output,y

thez’s and identify the attack. Thus, the attack is identified att = 15+3τ +T = 27.06sec.

80



The application of the mitigation procedure att = 27.06sec causesy to begin approach-

ing the reference signal. Finally, after a further12sec, normal operation of the plant is

achieved (att = 39.06sec).

The zoomed trajectories ofz1 andz2, in the vicinity oft = 15sec, are illustrated in Fig.

5.9. The trends of these trajectories can be explained as above.
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Figure 5.9: Zoomed trajectories ofz1 andz2, shown in the vicinity oft = 15sec
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CHAPTER VI

Conclusions and Future Research

6.1 Summary of Results Obtained To-Date

This work designs, analyzes, and evaluates the performanceof resilient monitoring and

control systems. A brief summary of the key results obtainedto-date are as follows:

The development of the resilient monitoring system (RMS) iscarried out based on

the following five techniques: Data quality acquisition, process variable assessment, plant

condition evaluation, sensor network adaptation, and decentralized assessments with infer-

ences, a.k.a., knowledge fusion. Each of these techniques are analyzed rigorously, and are

used to design a five-layer RMS architecture. The performance of the resulting RMS is

evaluated using a power plant application.

The development of the resilient control system (RCS) is carried out using two differ-

ent approaches: The model predictive control (MPC) -based approach and the synchronous

detection (SD) -based approach. Initial investigations into these approaches show that both

of them may be viable for the design of RCS.

Numerous research problems, however, remain open. They areoutlined below:
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6.2 Problems in Resilient Monitoring Systems

• Problems related to data quality acquisition:

– Investigating efficacy of the probe-based data quality acquisition technique for

attackers other than those modifying the expected value of sensor measure-

ments.

– Improving temporal properties ofDQ acquisition. As shown in Chapter II,

DQ is acquired in about5sec. It would be desirable to achieve this an order

of magnitude faster. A potential approach is inferringDQ from the transient,

rather than the steady state, response of a process variableto the probe.

– Introducing and investigating other than probe-basedDQ acquisition techniques.

Perhaps, this could be accomplished by considering inference diagrams of pro-

cess variables and continually monitoring the level of their satisfaction in the

data provided by the sensors.

– Investigating the possibility of assigningDQ based on a reputation fusion mech-

anism. Reference [68] introduced a framework for assigninga “reputation” to

each sensorSi, based on the Dempster-Shafer combination of the individual

reputations assigned toSi by several neighboring sensors. Is there a way to

integrate the probe-based technique within the above framework? If so, would

the resultingDQ of the sensor be more representative of its actual condition−

attacked or operating normally?

• Problems related to process variable assessment:

– Introducing and investigating different than (2.12) models of coupling between

the sensor data and process variables. Similarly, investigating different (as com-

pared with the believability (2.11)) effects ofDQ on process variable assess-

ment.
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– In the current work, the sensor data andDQ’s are utilized to assess the process

variable pmf’s (i.e., h-procedure (2.15), (2.16)) under the assumption that the

state of the sensor network remains constant. Are there convergent techniques

to accomplish this when the state of the sensor network is non-stationary? If so,

the temporal properties of the RMS could be improved substantially.

• Problems related to sensor network adaptation:

– Utilizing other than (2.42) rational controllers. The goalhere is to devise ra-

tional controllers with faster adaptation rates (see [7] where various types of

rational controllers are introduced and analyzed).

– Introducing and analyzing other than entropy-based penalty functions. Perhaps,

there exists a penalty function that would lead to lower uncertainty in process

variable assessment than the entropy.

– Investigating a possibility of associating a rational controller with each sensor

of the sensor network. Although this would lead to a non-stationary adaptation

environment, it would result, if convergent, in a substantial improvement of

adaptation rates.

• Problems related to decentralized assessments with inferences:

– Deriving necessary and sufficient conditions for the optimality of decentralized

inferences. At present, only sufficient conditions for the optimality are available

(see Chapter III). Do there exist both necessary and sufficient conditions that

guarantee the optimality of decentralized inferences?

– Characterizing the monotonicity of the Dempster-Shafer combination rule. The

conditions for lossless decentralization (derived in Chapter III) involve the as-

sumption that the Dempster-Shafer rule is monotonic on the set of process vari-

able pmf’s. However, no constructive methods are currentlyavailable to verify
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if this assumption holds. Developing such methods to verifythe monotonicity

is an important problem.

• Problem related to plant assessment:

– Investigating a possibility of recursive plant assessment. Because recursive ap-

plication of the Jeffrey rule may lead to paradoxical results (see Chapter II),

in the current work we apply this rule non-recursively, which slows down the

plant pmf assessment. So, modifying this rule or developinga new one, which

would permit a recursive application, is an important problem.

6.3 Problems in Resilient Control Systems

These problems are divided into two categories: Problems related to the MPC-based ap-

proach and problems related to the SD-based approach. They are listed below:

Problems related to MPC-based approach:

• Evaluating the controller from the point of view of stability and performance (e.g.,

reference tracking and disturbance rejection). Is the closed loop system stable? Is

the RCS effective at rejecting disturbances? These are important questions to be

addressed.

• Extending the theory to more complex plants, e.g., MIMO plants. At present, the

theory is under development for SISO plants. Extending the development to more

complex plants is an important problem.

• Application of the approach developed to the power plant model considered in Chap-

ter II.

Problems related to SD-based approach:
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• Application of the developed techniques to models of powerplants and power grids.

Solutions of these problems will enable designing effective resilient monitoring and

control systems for critical infrastructures (e.g., chemical plants, power systems and power

grids, computer networks, civil engineering objects) and complex individual plants (e.g.,

aircraft and space structures).
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APPENDIX A

Proofs of Theorems Stated in Chapter II

A.1 Proof of Theorem II.1, Part 1

The proof consists of the following five steps:

Step 1: Calculate the expected value of the set pointh∗
σ(sn+1), σ ∈ ΣV :

Since the sensor measurements are stationary, the expectedvalue ofh∗
σ(sn+1), σ ∈ ΣV ,

is independent ofn ∈ N, and can be denoted asE {h∗
σ(sn+1)} = µh∗

σ , σ ∈ ΣV . This

quantity is calculated from (2.16) in the following manner:

µh∗

σ = βS · p[S = σ] +
1− βS

|ΣV | − 1
{1− p[S = σ]} , σ ∈ ΣV . (A.1)

Then, from (2.11),

µh∗

σ = DQS · p[S = σ] +
1−DQS

|ΣV |
, σ ∈ ΣV . (A.2)

Step 2: Evaluate lim
n→∞

E {hσ(n)}, σ ∈ ΣV :

First, using (2.15), expresshσ(n), σ ∈ ΣV , in terms of the initial condition,hσ(0),
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σ ∈ ΣV , and the sequence of set points,h∗
σ(sn), n = 1, 2, ..., n, σ ∈ ΣV , as follows:

hσ(n) = (1− ǫh)
nhσ(0) + ǫh

n∑

i=1

(1− ǫh)
n−ih∗

σ(si), σ ∈ ΣV , (A.3)

where0 < ǫh << 1 is the step of the h-procedure. Next, take the expected valueof both

sides of (A.3) to obtain

E {hσ(n)} = (1− ǫh)
nhσ(0) + µh∗

σ ǫh

n∑

i=1

(1− ǫh)
n−i, σ ∈ ΣV ,

= (1− ǫh)
nhσ(0)

+µh∗

σ ǫh (1 + 1− ǫh + (1− ǫh)
2 + ...+ (1− ǫh)

n−1) , σ ∈ ΣV .

(A.4)

Using the fact thatǫh < 1, it can be shown that the limit of (A.4) asn → ∞ is given by

lim
n→∞

E {hσ(n)} = µh∗

σ ǫh
1

1−(1−ǫh)
, σ ∈ ΣV ,

= µh∗

σ , σ ∈ ΣV .
(A.5)

Step 3: Evaluate lim
n→∞

E
{
h2
σ(n)

}
, σ ∈ ΣV :

Using (A.3), we obtain

{hσ(n)}2 =

(

(1− ǫh)
nhσ(0) + ǫh

n∑

i=1

(1− ǫh)
n−ih∗

σ(si)

)2

, σ ∈ ΣV ,

= (1− ǫh)
2nh2

σ(0) + ǫ2h

(
n∑

i=1

(1− ǫh)
n−ih∗

σ(si)

)2

+2(1− ǫh)
nǫhhσ(0)

n∑

i=1

(1− ǫh)
n−ih∗

σ(si), σ ∈ ΣV .

(A.6)

Taking the expected value of both sides of (A.6), and applying the limit asn → ∞, we

obtain

lim
n→∞

E
{
h2
σ(n)

}
= lim

n→∞
ǫ2hE







(
n∑

i=1

(1− ǫh)
n−ih∗

σ(si)

)2





, σ ∈ ΣV . (A.7)
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Further, (A.7) can be rewritten as

lim
n→∞

E
{
h2
σ(n)

}
= lim

n→∞

{

ǫ2h[v
h∗

σ − (µh∗

σ )2]
1− (1− ǫh)

2n

1− (1− ǫh)2

+(µh∗

σ )2[1− (1− ǫh)
n]2
}

, σ ∈ ΣV ,
(A.8)

wherevh
∗

σ , σ ∈ ΣV , denotes the second moment ofh∗
σ(sn), σ ∈ ΣV , i.e.,vh

∗

σ := E
{
[h∗

σ(sn)]
2},

∀n, σ ∈ ΣV . The limit in (A.8) is evaluated as

lim
n→∞

E
{
h2
σ(n)

}
= [vh

∗

σ − (µh∗

σ )2]
ǫ2
h

1−(1−ǫh)2
+ (µh∗

σ )2, σ ∈ ΣV . (A.9)

Since ǫ2
h

1−(1−ǫh)2
= ǫh

2−ǫh
andǫh is sufficiently small, we haveǫh

2−ǫh
≈ 0. Therefore,

lim
n→∞

E
{
h2
σ(n)

}
≈ (µh∗

σ )2, σ ∈ ΣV . (A.10)

Step 4: Evaluate lim
n→∞

E
{(

hσ(n)− µh∗

σ

)2
}

, σ ∈ ΣV :

This quantity can be expressed aslim
n→∞

E
{
h2
σ(n)− (µh∗

σ )2
}

, σ ∈ ΣV , which, from

(A.10), is close to zero. Therefore,

lim
n→∞

E
{(

hσ(n)− µh∗

σ

)2
}

≈ 0, σ ∈ ΣV . (A.11)

Step 5: Use Chebyshev’s inequality to obtain the desired result:

From Chebyshev’s inequality,

lim
n→∞

P
(∣
∣hσ(n)− µh∗

σ

∣
∣ > α

)
< lim

n→∞

E
{(

hσ(n)− µh∗

σ

)2
}

α2
, ∀α > 0, σ ∈ ΣV . (A.12)

From (A.11), we can conclude that the right hand side of (A.12) is close to zero. Therefore,

lim
n→∞

P
(∣
∣hσ(n)− µh∗

σ

∣
∣ > α

)
≈ 0, ∀α > 0, σ ∈ ΣV . Moreover, if the recursive state,

hσ(n), σ ∈ ΣV , is expressed ashσ(n; ǫh), σ ∈ ΣV , whereǫh is treated as a parameter, the
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following can be concluded using the steps described above:

lim
ǫh→0

lim
n→∞

P
(∣
∣hσ(n; ǫh)− µh∗

σ

∣
∣ > α

)
= 0, ∀α > 0, σ ∈ ΣV . (A.13)

This completes the proof of Part 1 of Theorem II.1. �

A.2 Proof of Theorem II.1, Part 2

The proof is based on the following three lemmas:

Lemma A.1. Consider the recursive procedure(2.15), (2.16), (2.18). Then,

0 ≤ lim
n→∞

hσ(n) ≤ 1, σ ∈ ΣV . (A.14)

Proof. As it follows from (2.15),

hσ(n) = w0(n)hσ(0) +
n∑

i=1

wi(n)h
∗
σ(si), σ ∈ ΣV ,

w0(n) :=

n∏

i=1

[1− ǫh(i− 1)], wi(n) := ǫh(i− 1)

n−1∏

j=i

[1− ǫh(j)], i = 1, 2, ..., n.

(A.15)

Thus,hσ(n) ≥ 0, ∀n and∀σ. Also, it can be shown that, due to (2.18),

n∑

i=0

wi(n) = 1, lim
n→∞

w0(n) = 0. (A.16)

Therefore,

lim
n→∞

hσ(n) = lim
n→∞

w0(n)hσ(0) + lim
n→∞

n∑

i=1

wi(n)h
∗
σ(si), σ ∈ ΣV ,

= lim
n→∞

n∑

i=1

wi(n)h
∗
σ(si) ≤ lim

n→∞

n∑

i=1

wi(n), σ ∈ ΣV ,

(A.17)

where the last inequality is due to (2.16). Finally, in view of (A.16), this inequality becomes
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limn→∞ hσ(n) ≤ limn→∞[1− w0(n)] = 1, σ ∈ ΣV . �

Lemma A.2. Under the assumptions of Theorem II.1, the expected value ofthe set point,

h∗
σ(sn), σ ∈ ΣV , n ∈ N, is given by

E[h∗
σ(sn)] = p[S = σ]DQS +

1−DQS

|ΣV |
, σ ∈ ΣV , n ∈ N. (A.18)

Proof. Follows directly from (2.16). �

Thus, according to this lemma, the expected value ofh∗
σ(sn) is independent ofn ∈ N,

and can be denoted asE[h∗
σ(sn)] = µh∗

σ
, σ ∈ ΣV .

To formulate the next lemma, introduce the function

f (hσ(n)) :=
1

2
[h∗

σ(sn+1)− hσ(n)]
2 , σ ∈ ΣV . (A.19)

Lemma A.3. The unique minimum ofE [f (hσ(n))], σ ∈ ΣV , is attained at

arg min
hσ(n)

E [f (hσ(n))] = µh∗

σ
, σ ∈ ΣV . (A.20)

Proof. Clearly,E [f (hσ(n))] is differentiable and convex inhσ(n) and, therefore, its unique

minimum is attained at

∂

∂hσ(n)
E [f (hσ(n))] = 0, σ ∈ ΣV . (A.21)

Due to (A.19), this expression becomeshσ(n) − µh∗

σ
= 0, implying that for any fixed

n ∈ N, the solution of the minimization problem ishmin
σ (n) = µh∗

σ
, σ ∈ ΣV . �

Proof of Theorem II.1, Part 2:The proof is based on showing that for largen, the

recursive procedure (2.15), (2.16), (2.18) solves the aforementioned minimization problem,

and, therefore,hσ(n) converges toµh∗

σ
, σ ∈ ΣV , almost surely.

92



Sincef (hσ(n)), σ ∈ ΣV , is continuously differentiable and convex, there exists a

scalar0 ≤ γ ≤ 1 such that

f (hσ(n+ 1)) = f (hσ(n)) + [hσ(n + 1)− hσ(n)]
∂f

∂hσ(n)

∣
∣
∣
hσ(n)=hσ(n)

+ [hσ(n+1)−hσ(n)]2

2
∂2f

∂h2
σ(n)

∣
∣
∣
hσ(n)=hσ(n)+γ[hσ(n+1)−hσ(n)]

, σ ∈ ΣV .
(A.22)

From (A.19) and (2.15), (2.16), we obtain

f (hσ(n+ 1)) = f (hσ(n))− ǫh(n)
[

∂f

∂hσ(n)

]2

+
ǫ2
h
(n)

2
[h∗

σ(sn+1)− hσ(n)]
2, σ ∈ ΣV .

(A.23)

Using the summation of both sides of (A.23), we obtain:

f (hσ(n)) = f (hσ(0))−
n−1∑

n=0

ǫh(n)

[
∂f

∂hσ(n)

]2

+

n−1∑

n=0

ǫ2h(n)

2
[h∗

σ(sn+1)− hσ(n)]
2, σ ∈ ΣV .

(A.24)

Now, consider the limit of (A.24) asn → ∞. Sincehσ(n) is bounded for alln (see

Lemma A.1), the left hand side of the above equation is a finitepositive number. Due to the

same reason, the term[h∗
σ(sn+1)− hσ(n)]

2 is bounded for alln, implying that there exists

a positiveK, such that[h∗
σ(sn+1)− hσ(n)]

2 ≤ K, ∀n. Thus,

lim
n→∞

f (hσ(n)) ≤ f (hσ(0))− lim
n→∞

n−1∑

n=0

ǫh(n)

[
∂f

∂hσ(n)

]2

+K
2

lim
n→∞

n−1∑

n=0

ǫ2h(n), σ ∈ ΣV .

(A.25)

Observe that since
∑∞

n=0 ǫ
2
h(n) < ∞, the last term in the right hand side of (A.25) is

bounded. Now, suppose∂f

∂hσ(n)
does not go to0 asn tends to∞. Then the expression

∑∞
n=0 ǫh(n)

[
∂f

∂hσ(n)

]2

is unbounded (due to
∑∞

n=0 ǫh(n) = ∞) and the right hand side

of (A.25) becomes−∞. This is a contradiction, since the left hand side is positive and
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bounded. Therefore, ∂f
∂hσ(n)

→ 0 asn → ∞ almost surely (a.s.).

From the above arguments,E
[

∂f

∂hσ(n)

]

→ 0 asn → ∞. Furthermore, due to the

linearity of expectation, ∂
∂hσ(n)

E[f(hσ(n))] → 0 asn → ∞, implying that the condition

(A.21) is satisfied. Therefore, from Lemma A.3, it is clear that limn→∞ hσ(n) = µh∗

σ
, σ ∈

ΣV , a.s. Finally, using Lemma A.2, we conclude thatlimn→∞ hσ(n) = p[S = σ]DQS +

1−DQS

|ΣV |
, σ ∈ ΣV , a.s. �

A.3 Proof of Theorem II.2

Sincehσ(n) is convergent a.s., for everyǫ, there existsn0(ǫ), such thatP
[
|hNV

(n)− hss
NV

|

< ǫ] > 1 − ǫ, ∀n > n0(ǫ). Therefore, for sufficiently largen, equation (2.40) can be

rewritten as

kNG
(n+ 1) = F (kNG

(n)) +O(ǫ), (A.26)

where

F (kNG
(n)) :=

[
ahss

NV

akNG
(n)+[1−a][1−kNG

(n)]
+

[1−a][1−hss
NV

]

[1−a]kNG
(n)+a[1−kNG

(n)]

]

kNG
(n),

andO(ǫ) represents terms of orderǫ. Omitting these terms, equation (A.26) is approxi-

mated as

kNG
(n + 1) = F (kNG

(n)) . (A.27)

It can be shown that the system (A.27) has three equilibria,

k∗
NG

= 1, k∗∗
NG

= 0, k∗∗∗
NG

=
hss
NV

− a

1− 2a
. (A.28)

Based on the perturbation theory ([69]), forǫ sufficiently small, stability properties of
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(A.27) are the same as (A.26). To analyze stability, consider the Jacobians ofF (·) at

each equilibrium:

A1 = ∂F
∂kNG

∣
∣
∣
k∗NG

=
[1−a]2+[2a−1]hss

NV

a[1−a]
, A2 =

∂F
∂kNG

∣
∣
∣
k∗∗NG

=
a2+[1−2a]hss

NV

a[1−a]
,

A3 = ∂F
∂kNG

∣
∣
∣
k∗∗∗NG

= a[1−a]
hss
NV

[1−hss
NV

]
.

(A.29)

Supposehss
NV

> 1 − a. Since0 < a < 0.5, we haveA1 < 1, A2 > 1, andA3 > 1,

implying thatk∗
NG

is asymptotically stable, whilek∗∗
NG

andk∗∗∗
NG

are not. Therefore,kNG
(n)

converges locally tok∗
NG

asn → ∞, which proves Part 1 of the theorem. Parts 2 and 3 can

be proved similarly. �
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APPENDIX B

Parameters of Simulations Reported in Chapter II

B.1 Parameters of power plant and monitoring system

This subsection provides parameters of the power plant and monitoring system that have

been used in simulations reported in Subsection 2.8.2. Notethat these parameters are se-

lected for illustration purposes and do not reflect the physical nature of the quantities in-

volved.

B.1.1 Sub-plants, process variables, and sensors

B.1.1.1 Statistical models of the sub-plants

As mentioned in Subsection 2.8.1, these models are defined byconditional probabilities of

process variables given the status of a sub-plantGi ∈ {NGi
,AGi

}, i ∈ {B,HT,RP,LT}.

Accordingly, we quantify these models as follows:

• Boiler: P [V1 = NV1 |GB = NGB
] = P [V1 = LV1 |GB = AGB

] = 0.95; all other

components of this pmf are0.05.

• High pressure turbine:P [V2 ∈ {L(1)V2 ,NV2}|GHT = NGHT
] = 0.90,

P [V2 ∈ {VLV2 ,L(2)V2
}|GHT = AGHT

] = 0.90; all other components are0.1.
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• Reheat pipe:P [V3 ∈ {L(1)V3 ,NV3}|GRP = NGRP
] = 0.88,

P [V3 ∈ {VLV3 ,L(2)V3}|GRP = AGRP
] = 0.91, P [V3 ∈ {VLV3 ,L(2)V3}|GRP =

NGRP
] = 0.12, andP [V3 ∈ {L(1)V3

,NV3}|GRP = AGRP
] = 0.09.

• Low pressure turbine:P [V4 ∈ {VL(1)V4
,L(1)V4

,M(1)V4
,NV4}|GLT = NGLT

] = 0.91,

P [V4 ∈ {VL(2)V4 , L(2)V4 ,M(2)V4 ,HV4}|GLT = AGLT
] = 0.92,

P [V4 ∈ {VL(2)V4 ,L(2)V4 ,M(2)V4 ,HV4} |GLT = NGLT
] = 0.09, and

P [V4 ∈ {VL(1)V4
,L(1)V4

,M(1)V4
,NV4}|GLT = AGLT

] = 0.08.

B.1.1.2 Models of process variables and sensors

The domains of the process variables and their d.c. gains arespecified in Table B.1.

Without loss of generality, we assume that the process variables and the sensor measure-

Table B.1: Domains and d.c. gains of process variables

Process variablesDomains Values ofR’s (see (2.2)) d.c. gains (see (2.3))
Ṽ1 [5, 100] R1 = 50 αL

V1
= 2, αN

V1
= 2.2.

Ṽ2 [5, 25] R1 = 10, R2 = 15, R3 = 20
αVL

V2
= 0.5, αL1

V2
= 0.6,

αL2
V2

= 0.7, αN
V2

= 0.8.

Ṽ3 [5, 100] R1 = 20, R2 = 40, R3 = 50
αVL

V3
= 0.6, α

L(1)

V3
= 0.72,

α
L(2)

V3
= 0.9, αN

V3
= 1.2.

Ṽ4 [0.1, 20]

R1 = 3, R2 = 6, α
VL(1)

V4
= 0.4, α

VL(2)

V4
= 0.42,

R3 = 9, R4 = 11, α
L(1)

V4
= 0.46, α

L(2)

V4
= 0.48,

R5 = 13, R6 = 15, α
M(1)

V4
= 0.53, α

M(2)

V4
= 0.56,

R7 = 17. αN
V4

= 0.6, αH
V4

= 0.63.

ments are Gaussian random variables,Ṽi ∼ N
(
µṼi

, σṼi

)
and S̃ij ∼ N

(

µS̃ij
, σS̃ij

)

,

i = 1, 2, 3, 4, j = 1, 2, where the expected values,µṼi
andµS̃ij

, are specified in Tables

B.2 and B.3, respectively, for all attack scenarios considered in Section 2.8. Regarding the

standard deviations of̃Vi andS̃ij , we assume that they are small enough so that the realiza-

tions of these random variables outside of the domains givenin Table B.1 may be ignored.

Specifically, they are selected asσṼi
= σS̃ij

= 0.01, i = 1, 2, 3, 4, j = 1, 2.
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Table B.2: Expected values of process variables

Attack scenario µṼ1
µṼ2

µṼ3
µṼ4

1 80 23 75 16
2 80 23 75 16
3 80 23 44 12.1
4 80 18 76 16
5 30 12 23 10
6 30 12 15 5
7 20 7 10 5

Table B.3: Expected values of sensor measurements

Attack scenario µS̃11
µS̃12

µS̃21
µS̃22

µS̃31
µS̃32

µS̃41
µS̃42

1 31 30 22 24 74 74.1 15.8 16.1
2 81 79 22 24 74 74.1 19.2 19.1
3 81 79 22 24 74 74.1 12.2 12.1
4 81 79 22 24 74 74.1 16.1 16.2
5 81 79 12.1 12.2 23 24 16.1 16.2
6 81 79 12.1 12.2 76 75 16.1 16.2
7 81 79 23 22 76 75 16.1 16.2
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B.1.2 Parameters of monitoring system

B.1.2.1 Data quality assessment layer

• The amplitudes of the probing signals (2.6) are selected asfollows: AV1 = 2,AV2 =

0.6, AV3 = 0.7, andAV4 = 0.3.

• The parameterǫ, involved in (2.10), is selected as0.02.

• ThePICmax in (2.10) for the sensors of B, HT, RP, and LT are0.4, 0.06, 0.08, 0.03,

respectively.

B.1.2.2 Process variables assessment layer

• The step size of the h-procedure (2.15) is selected asǫh = 0.01.

• The stopping rule is defined by|hσ(n + 1)− hσ(n)| < 10−4.

B.1.2.3 Adaptation layer

The parameters involved in (2.42) are selected as follows:

• The level of rationality of the rational controller is selected asN = 2.

• The maximum residence time is selected asTmax = 1sec.

• The parameterβ is chosen as0.04.
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APPENDIX C

Proofs of Lemmas and Theorems Stated in Chapter III

C.1 Proof of Lemma III.1

The proof of Lemma III.1 requires the following notations: Letnj , j = 1, 2, ...,M , be the

cardinality ofΣVj
, j = 1, 2, ...,M , i.e.,

nj := |ΣVj
|, j = 1, 2, ...,M. (C.1)

Further, let the pmf̂pyj [Vj ], yj ∈ Yj, j = 1, 2, ...,M , be represented as the column vector

qyj ,Vj
∈ R

nj , j = 1, 2, ...,M , i.e.,

p̂yj [Vj ] = qyj ,Vj
:= [q

(1)
yj ,Vj

, q
(2)
yj ,Vj

, · · · , q(nj)
yj ,Vj

]⊤, yj ∈ Yj, j = 1, 2, ...,M, (C.2)

where0 ≤ q
(1)
yj ,Vj

, q
(2)
yj ,Vj

, ..., q
(nj)
yj ,Vj

≤ 1 and q
(1)
yj ,Vj

+ q
(2)
yj ,Vj

+ ... + q
(nj)
yj ,Vj

= 1, yj ∈ Yj,

j = 1, 2, ...,M . The inferred pmf,̂pyj [Vi], yj ∈ Yj , i 6= j, i, j = 1, 2, ...,M , is computed,

as before, using the total probability formula, i.e.,

p̂yj [Vi] =
∑

σ∈ΣVj

P [Vi|Vj = σ]p̂yj [Vj = σ], yj ∈ Yj, i 6= j, i, j = 1, 2, ...,M, (C.3)

100



and can be similarly represented as the column vectorqyj ,Vi
∈ R

ni, i 6= j, i, j =

1, 2, ...,M :

p̂yj [Vi] = qyj ,Vi
:= [q

(1)
yj ,Vi

, q
(2)
yj ,Vi

, · · · , q(ni)
yj ,Vi

]⊤, yj ∈ Yj, i 6= j, i, j = 1, 2, ...,M, (C.4)

where0 ≤ q
(1)
yj ,Vi

, q
(2)
yj ,Vi

, ..., q
(ni)
yj ,Vi

≤ 1 andq(1)yj ,Vi
+ q

(2)
yj ,Vi

+ ... + q
(ni)
yj ,Vi

= 1, i 6= j, i, j =

1, 2, ...,M .

As assumed in Assumption III.1, the 2-norms of the columns ofthe matrixP [Vi|Vj], i 6=

j, i, j = 1, 2, ...,M , are equal. Let the value of these 2-norms be denoted asKVi|Vj
, i 6= j,

i, j = 1, 2, ....,M , i.e.,

KVi|Vj
:= ‖p(1)

Vi|Vj
‖2 = ‖p(2)

Vi|Vj
‖2 = · · · = ‖p(nj)

Vi|Vj
‖2, i 6= j, i, j = 1, 2, ...,M. (C.5)

Similarly, as assumed in Assumption III.1, the angles between all pairs of columns of

P [Vi|Vj], i 6= j, i, j = 1, 2, ...,M , are equal. Let the value of these angles be denoted as

θVi|Vj
, i 6= j, i, j = 1, 2, ....,M , i.e.,

cos θVi|Vj
:=

〈p(1)
Vi|Vj

,p
(2)
Vi|Vj

〉
K2

Vi|Vj

= · · · =
〈p(nj)

Vi|Vj
,p

(nj−1)

Vi|Vj
〉

K2
Vi|Vj

, i 6= j, i, j = 1, 2, ...,M, (C.6)

whereKVi|Vj
, i 6= j, i, j = 1, 2, ...,M , is the same as in (C.5).

Introduce the following lemma, which is used to prove Lemma III.1:

Lemma C.1. Under Assumption III.1,

‖qyj ,Vi
‖22 = K2

Vi|Vj

[
(1− cos θVi|Vj

)‖qyj ,Vj
‖22 + cos θVi|Vj

]
, i 6= j, i, j = 1, 2, ...,M.(C.7)

Proof of Lemma C.1:Expression (C.3) can be re-written as

qyj ,Vi
= q

(1)
yj ,Vj

p
(1)
Vi|Vj

+ q
(2)
yj ,Vj

p
(2)
Vi|Vj

+ ... + q
(nj)
yj ,Vj

p
(nj)

Vi|Vj
, i 6= j, i, j = 1, 2, ...,M, (C.8)
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where, as before, thepVi|Vj
’s, i 6= j, i, j = 1, 2, ...,M , are the columns ofP [Vi|Vj], i 6=

j, i, j = 1, 2, ...,M . Using the above equation, compute‖qyj ,Vi
‖22, i 6= j, i, j =

1, 2, ...,M , as

‖qyj ,Vi
‖22 = [q

(1)
yj ,Vj

]2‖p(1)
Vi|Vj

‖22 + · · ·+ [q
(nj)
yj ,Vj

]2‖p(nj)

Vi|Vj
‖22

+2q
(1)
yj ,Vj

q
(2)
yj ,Vj

〈p(1)
Vi|Vj

,p
(2)
Vi|Vj

〉

+ · · ·+ 2q
(nj−1)
yj ,Vj

q
(nj)
yj ,Vj

〈p(nj−1)

Vi|Vj
,p

(nj)

Vi|Vj
〉, i 6= j.

(C.9)

Substitute (C.5) and (C.6) in the right hand side of (C.9) to get:

‖qyj ,Vi
‖22 = K2

Vi|Vj
‖qyj ,Vj

‖22
+K2

Vi|Vj
cos θVi|Vj

[2q
(1)
yj ,Vj

q
(2)
yj ,Vj

+ · · ·+ 2q
(nj−1)
yj ,Vj

q
(nj)
yj ,Vj

].
(C.10)

From the definition ofqyj ,Vj
, yj ∈ Yj, j = 1, 2, ...,M (see (C.2)), we know thatq(1)yj ,Vj

+

q
(2)
yj ,Vj

+ · · · + q
(nj)
yj ,Vj

= 1, yj ∈ Yj, j = 1, 2, ...,M . Square both sides of this expression to

get

[q
(1)
yj ,Vj

]2 + · · ·+ [q
(nj)
yj ,Vj

]2 + 2q
(1)
yj ,Vj

q
(2)
yj ,Vj

+ · · ·+ 2q
(nj−1)
yj ,Vj

q
(nj)
yj ,Vj

= 1, j = 1, 2, ...,M,

=⇒ ‖qyj ,Vj
‖22 + 2q

(1)
yj ,Vj

q
(2)
yj ,Vj

+ · · ·+ 2q
(nj−1)
yj ,Vj

q
(nj)
yj ,Vj

= 1, j = 1, 2, ...,M.
(C.11)

Clearly, from the second row of (C.11), we have2q(1)yj ,Vj
q
(2)
yj ,Vj

+ · · · + 2q
(nj−1)
yj ,Vj

q
(nj)
yj ,Vj

=

1 − ‖qyj ,Vj
‖22, yj ∈ Yj , j = 1, 2, ...,M . Substitute this expression in the right hand side

of (C.10) to get‖qyj ,Vi
‖22 = K2

Vi|Vj

[
(1− cos θVi|Vj

)‖qyj ,Vj
‖22 + cos θVi|Vj

]
, yj ∈ Yj, i 6=

j, i, j = 1, 2, ...,M . This completes the proof of this lemma. �

Proof of Lemma III.1:As assumed in the statement of the lemma, let the pmf’sqyj ,Vj
,

yj ∈ Yj, j = 1, 2, ...,M , have the same entropy, i.e.,

H2{qyj ,Vj
} = c, yj ∈ Yj, j = 1, 2, ...,M, 0 ≤ c ≤ 1, (C.12)
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where, as before, the entropy is defined as

H2{qyj ,Vj
} = − lognj

(‖qyj ,Vj
‖22), yj ∈ Yj, j = 1, 2, ...,M. (C.13)

The above equation can be re-written as

‖qyj ,Vj
‖2 = n

− 1
2
H2{qyj,Vj

}

j , yj ∈ Yj, j = 1, 2, ...,M. (C.14)

Further, taking into account (C.12), we have

‖qyj ,Vj
‖2 = n

− c
2

j , yj ∈ Yj, j = 1, 2, ...,M, 0 ≤ c ≤ 1, (C.15)

which implies that the 2-norms of the pmf’sqyj ,Vj
, yj ∈ Yj, j = 1, 2, ...,M , are also the

same.

As before, the inferred pmf’sqyj ,Vi
, yj ∈ Yj, i 6= j, i, j = 1, 2, ...,M , are computed

using the above pmf’sqyj ,Vj
, yj ∈ Yj, j = 1, 2, ...,M , and the total probability formula

(see (C.3)). As a result of Lemma C.1, the square of the 2-normof qyj ,Vi
, yj ∈ Yj , i 6= j,

i, j = 1, 2, ...,M , can be expressed as

‖qyj ,Vi
‖22 = K2

Vi|Vj

[
(1− cos θVi|Vj

)n−c
j + cos θVi|Vj

]
, yj ∈ Yj, i 6= j. (C.16)

Clearly, the right hand side of the above equation is a constant, and can be denoted as

dij := K2
Vi|Vj

[
(1− cos θVi|Vj

)n−c
j + cos θVi|Vj

]
, i 6= j, i, j = 1, 2, ...,M. (C.17)

As in (C.13), the entropy ofqyj ,Vi
, yj ∈ Yj, i 6= j, i, j = 1, 2, ...,M , can be computed

as

H2{qyj ,Vi
} = − logni

(dij), yj ∈ Yj, i 6= j, i, j = 1, 2, ...,M, (C.18)
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wheredij, i 6= j, i, j = 1, 2, ...,M , is defined in (C.17). Clearly, the entropies of the

inferred pmf’s are the same. This completes the proof of thislemma. �

C.2 Proof of Theorem III.1

As assumed in Section 3.2, the statey∗j ∈ Yj, j = 1, 2, ...,M , represents the state of

the sensor subnetworkSNj , j = 1, 2, ...,M , where the entropy of the pmf ofVj , j =

1, 2, ...,M , is minimized, i.e.,

H2{qy∗j ,Vj
} < H2{qyj ,Vj

}, yj 6= y∗j , yj ∈ Yj, j = 1, 2, ...,M. (C.19)

Due to the definition of the entropy (C.13), the above expression implies

‖qy∗j ,Vj
‖2 > ‖qyj ,Vj

‖2, yj 6= y∗j , yj ∈ Yj, j = 1, 2, ...,M. (C.20)

Based on Lemma C.1, the square of the 2-norm of the inferred pmf, qy∗j ,Vi
, i 6= j,

i, j = 1, 2, ...,M , can be expressed as

‖qy∗j ,Vi
‖22 = K2

Vi|Vj

[

(1− cos θVi|Vj
)‖qy∗j ,Vj

‖22 + cos θVi|Vj

]

, i 6= j. (C.21)

Further, due to (C.20), the above equation can be re-writtenas the following inequality:

‖qy∗j ,Vi
‖22 > K2

Vi|Vj

[
(1− cos θVi|Vj

)‖qyj ,Vj
‖22 + cos θVi|Vj

]
, yj 6= y∗j , i 6= j. (C.22)

However, the right hand side of (C.22) equals‖qyj ,Vi
‖22, yj ∈ Yj, i 6= j, i, j = 1, 2, ...,M

(see Lemma C.1). Thus,

‖qy∗j ,Vi
‖2 > ‖qyj ,Vi

‖2, yj 6= y∗j , yj ∈ Yj, i 6= j, i, j = 1, 2, ...,M. (C.23)
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Due to the definition of the entropy (C.13), the above expression impliesH2{qy∗j ,Vi
} <

H2{qyj ,Vi
}, yj 6= y∗j , yj ∈ Yj, i 6= j, i, j = 1, 2, ...,M . This completes the proof of this

theorem. �

C.3 Proof of Lemma III.2

Consider the pmf’ŝpyj [Vi], yj ∈ Yj, i, j = 1, 2, ...,M . It can be shown that the entropy of

these pmf’s takes values in

0 ≤ H2{p̂yj [Vi]} ≤ 1, yj ∈ Yj , i, j = 1, 2, ...,M, (C.24)

where the maximum value ofH2{·} is attained at the uniform pmf,

punif[Vi] =

[
1

ni

,
1

ni

, · · · , 1
ni

]⊤

, i = 1, 2, ....,M, (C.25)

and the minimum value ofH2{·} is attained at the pmf’s[1, 0, 0, ..., 0]⊤, [0, 1, 0, ..., 0]⊤, ...,

[0, 0, ..., 0, 1]⊤. Thus, we have

0 ≤ H2{p̂yj [Vi]} ≤ H2{punif[Vi]}, yj ∈ Yj, i, j = 1, 2, ...,M. (C.26)

Now, consider the following system of inequalities:

H2{p̂y1[Vi]} ≤ H2{p̂y1[Vi]},

H2{p̂y2[Vi]} ≤ H2{punif[Vi]},

H2{p̂y3[Vi]} ≤ H2{punif[Vi]},
...

H2{p̂yM [Vi]} ≤ H2{punif[Vi]},

(C.27)

where the first of these inequalities is trivially satisfied,while the remaining are due to

(C.26). As before, the pmf’ŝpy1 [Vi], p̂y2[Vi], ..., p̂yM [Vi], involved in the left hand side of
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(C.27), can be combined using the Dempster-Shafer rule (see(3.13)) to obtain the pmf

p̂(y1,y2,...,yM)[Vi]. Further, it can be shown that the Dempster-Shafer combination of the

pmf’s p̂y1[Vi], punif[Vi], punif[Vi],..., punif[Vi], involved in the right hand side of (C.27), results

in the pmfp̂y1 [Vi]. Clearly, due to Assumption III.2, the above arguments imply

H2{p̂(y1,y2,...,yM)[Vi]} ≤ H2{p̂y1 [Vi]}. (C.28)

Similarly, it can be shown that

H2{p̂(y1,y2,...,yM)[Vi]} ≤ H2{p̂y2 [Vi]},

H2{p̂(y1,y2,...,yM)[Vi]} ≤ H2{p̂y3 [Vi]},
...

H2{p̂(y1,y2,...,yM)[Vi]} ≤ H2{p̂yM [Vi]}.

(C.29)

This completes the proof of this lemma. �

C.4 Proof of Theorem III.2

Recall that the centralized optimal statex∗
i ∈ X, i = 1, 2, ...,M , is the unique minimizer of

the penalty functionH2{p̂x[Vi]}, i = 1, 2, ...,M , x ∈ X (herex is viewed as the argument

of the penalty function). Regarding the decentralized optimal state(y∗1, y
∗
2, ..., y

∗
M) ∈ X,

consider the following statements:

As assumed in Section 3.2, the pmf’sp̂y∗i [Vi], i = 1, 2, ...,M , satisfy the relation

H2{p̂y∗i [Vi]} ≤ H2{p̂yi[Vi]}, yi ∈ Yi, i = 1, 2, ...,M, (C.30)

where the equality is attained atyi = y∗i , i = 1, 2, ...,M . Further, as shown in Theorem

III.1, the pmf’sp̂y∗j [Vi], i 6= j, i, j = 1, 2, ...,M , satisfy the relation

H2{p̂y∗j [Vi]} ≤ H2{p̂yj [Vi]}, yj ∈ Yj, i 6= j, i, j = 1, 2, ...,M, (C.31)
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where, as before, the equality is attained atyj = y∗j , j 6= i, i, j = 1, 2, ...,M . Clearly, due

to Assumption III.2, the above inequalities imply

H2{p̂(y∗1 ,y∗2 ,...,y∗M)[Vi]} ≤ H2{p̂(y1,y2,...,yM)[Vi]}, yj ∈ Yj, i, j = 1, 2, ...,M. (C.32)

Equation (C.32) indicates that the penalty functionH2{p̂x[Vi]}, i = 1, 2, ...,M , x ∈

X, is minimized at the decentralized optimal state(y∗1, y
∗
2, ..., y

∗
M) ∈ X. Furthermore,

due to the assumption of uniqueness of the solution of this minimization problem, the

decentralized optimal state must be the same as the centralized one, i.e.,

(y∗1, y
∗
2, ..., y

∗
M) = x∗

i , i = 1, 2, ...,M. (C.33)

This completes the proof of this theorem. �
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APPENDIX D

Proofs of Lemmas and Theorem Stated in Chapter IV

D.1 Proof of Lemma IV.1

The selection ofUsafe is based on the solution of the following system of inequalities:

Usafeαmin ≥ Vmin,

Usafeαmax ≤ Vmax.
(D.1)

In other words, we requireUsafe to satisfy the relationsUsafe ≥ Vmin

αmin
andUsafe ≤ Vmax

αmax
.

Clearly, a solution to the above system of inequalities exists due to Assumption (4.5), and,

therefore, theUsafe is selected as any number in
[
Vmin

αmin
, Vmax

αmax

]

. This completes the proof of

this lemma. �

D.2 Proof of Lemma IV.2

From the model (4.17), we know that

Ṽ (0) = αactUsafe, (D.2)
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where, as before,αact is the actual gain of the process variable. Based on the aboveṼ (0),

the actual status of the process variable at timen = 0, denoted asσact,0, can be computed

as

σact,0 =







LV , if Ṽ (0) ∈ [Vmin, R1),

NV , if Ṽ (0) ∈ [R1, R2),

HV , if Ṽ (0) ∈ [R2, Vmax].

(D.3)

Thus, the pmfp[V (0)] is evaluated as

p[V (0) = σact,0] = 1,

p[V (0) = σ] = 0, σ 6= σact,0, σ ∈ {LV ,NV ,HV }.
(D.4)

Due to Assumption (4.19), we havẽS(0) = kaṼ (0) + da. Substitute (D.2) in this

expression to get

S̃(0) = kaUsafeαact + da. (D.5)

Due to Assumption (4.21), the above equation implies

S̃(0) ∈ Iact

(

Ṽ (0)
)

, (D.6)

whereIact is, as before, defined in (4.18). Clearly, the pmfp[S(0)] is:

p[S(0) = σact,0] = 1,

p[S(0) = σ] = 0, σ 6= σact,0, σ ∈ {LV ,NV ,HV }.
(D.7)

The pmfp̂[V (0)] is evaluated using the steady state of the h-procedure, (2.20), as

p̂[V (0) = σ] = DQp[S(0) = σ] +
1−DQ

3
, σ ∈ {LV ,NV ,HV }. (D.8)
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Using (D.7), the above expression can be re-written as

p̂[V (0) = σact,0] = 1+2DQ

3
,

p̂[V (0) = σ] = 1−DQ

3
, σ 6= σact,0, σ ∈ {LV ,NV ,HV }.

(D.9)

Clearly, sinceDQ takes values between0 and1, the above pmf takes the maximum proba-

bility in the statusσact,0. This completes the proof of this lemma. �

D.3 Proof of Theorem IV.1

Select the inputsUσ, σ ∈ {LV ,NV ,HV }, as

Uσ =
Vdes

ασ

, σ ∈ {LV ,NV ,HV }. (D.10)

Introduce the following lemma, which is used to prove Theorem IV.1:

Lemma D.1. The solution of the constrained minimization problem(4.14)is given by

∆
∗(1) =

∑

σ=LV ,NV ,HV

WσDσ[Vdes − Eσ]

∑

σ=LV ,NV ,HV

WσD
2
σ

, (D.11)

whereDσ andEσ are defined as

Dσ := ασ[Udes − Usafe], Eσ := ασUsafe, σ ∈ {LV ,NV ,HV }. (D.12)

Proof. The predicted value of the process variable can be expressedas

V̂σ,Ures(1;∆(1)) = ∆(1)Dσ + Eσ, σ ∈ {LV ,NV ,HV }, (D.13)
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whereDσ andEσ are the same as in (D.12). The constrained minimization problem (4.14)

can be re-written as

maximize
∆(1)

∑

σ=LV ,NV ,HV

−1

2
Wσ

[

V̂σ,Ures(1;∆(1))− Vdes

]2

,

subject to Vmin ≤ V̂σ,Ures(1;∆(1)) ≤ Vmax, σ ∈ {LV ,NV ,HV },

0 ≤ ∆(1) ≤ 1.

(D.14)

Substitute (D.13) in the above constrained maximization problem, and express its La-

grangian as

L = −1
2

∑

σ=LV ,NV ,HV

Wσ [Dσ∆(1) + Eσ − Vdes]
2

+
∑

σ=LV ,NV ,HV

µ1,σ[Vmax −Dσ∆(1)− Eσ]

+
∑

σ=LV ,NV ,HV

µ2,σ[−Vmin +Dσ∆(1) + Eσ] + µ3[1−∆(1)] + µ4∆(1),

(D.15)

whereµ1,σ, σ ∈ {LV ,NV ,HV }, µ2,σ, σ ∈ {LV ,NV ,HV }, µ3, andµ4 are the Lagrange mul-

tipliers. Apply the Karush-Kuhn-Tucker (KKT) conditions [70] to solve for the candidate

optima,∆∗(1), µ∗
1,σ, σ ∈ {LV ,NV ,HV }, µ∗

2,σ, σ ∈ {LV ,NV ,HV }, µ∗
3, andµ∗

4:

−
∑

σ=LV ,NV ,HV

WσDσ [Dσ∆
∗(1) + Eσ − Vdes]−

∑

σ=LV ,NV ,HV

µ∗
1,σDσ

+
∑

σ=LV ,NV ,HV

µ∗
2,σDσ − µ∗

3 + µ∗
4 = 0,

µ∗
1,σ[−Vmax +Dσ∆

∗(1) + Eσ] = 0, σ ∈ {LV ,NV ,HV },

µ∗
2,σ[Vmin −Dσ∆

∗(1)− Eσ] = 0, σ ∈ {LV ,NV ,HV },

µ∗
3[∆

∗(1)− 1] = 0, µ∗
4∆

∗(1) = 0,

µ∗
1,σ ≥ 0, µ∗

2,σ ≥ 0, σ ∈ {LV ,NV ,HV },

µ∗
3 ≥ 0, µ∗

4 ≥ 0.

(D.16)
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The solution of the above system of equations and inequalities is given by

∆
∗(1) =

∑

σ=LV ,NV ,HV

WσDσ[Vdes −Eσ]

∑

σ=LV ,NV ,HV

WσD
2
σ

,

µ∗
1,σ = µ∗

2,σ = 0, σ ∈ {LV ,NV ,HV },

µ∗
3 = µ∗

4 = 0.

(D.17)

Clearly, the above∆∗(1) satisfies the KKT conditions. Furthermore, it can be shown

that the constrained minimization problem (4.14) is convex. Thus, based on these argu-

ments, it can be concluded that the unique solution of (4.14)is, indeed,∆∗(1). This com-

pletes the proof of this lemma. �

Proof of Theorem IV.1:Based on Lemma D.1, the inputUres at timen = 1 can be

computed as

Ures(1) = Vdes

∑

σ=LV ,NV ,HV

Wσασ

∑

σ=LV ,NV ,HV

Wσα
2
σ

. (D.18)

Recall that the value of the process variable and the sensor measurement at timen = 1 are

Ṽ (1) = αactUres(1), (D.19)

and

S̃(1) = kaαactUres(1) + da, (D.20)
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respectively, whereUres(1) is the same as in (D.18). Substitute (D.18) in the right hand side

of (D.20) to get

S̃(1) = kaαactVdes







∑

σ=LV ,NV ,HV

Wσασ

∑

σ=LV ,NV ,HV

Wσα
2
σ






+ da. (D.21)

Using the definition ofWσ (see (4.15)), rewrite the above equation as

S̃(1) = kaαactVdes







∑

σ=LV ,NV ,HV

p̂[V (0) = σ]ασ

∑

σ=LV ,NV ,HV

p̂[V (0) = σ]α2
σ






+ da. (D.22)

Recall thatp̂[V (0)], involved in the right hand side of (D.22), is evaluated in (D.9). Thus,

re-express (D.22) as

S̃(1) = kaVdesαact

[
αLV

+αNV
+αHV

+[3αact−αLV
−αNV

−αHV
]DQ(ka,da)

α2
LV

+α2
NV

+α2
HV

+[3α2
act−α2

LV
−α2

NV
−α2

HV
]DQ(ka,da)

]

+ da. (D.23)

Clearly, due to Assumption (4.22), we haveS̃(1) ∈ [R1, R2). Therefore, the pmfp[S(1)]

is:

p[S(1) = NV ] = 1,

p[S(1) = LV ] = p[S(1) = HV ] = 0.
(D.24)

Using (D.24), the pmf̂p[V (1)] can be computed as before:

p̂[V (1) = NV ] = 1+2DQ

3
,

p̂[V (1) = LV ] = p̂[V (1) = HV ] =
1−DQ

3
.

(D.25)

As it may be observed from (D.9) and (D.25), the pmf’sp̂[V (0)] andp̂[V (1)] are cor-

rectly permuted. This completes the proof of this theorem. �
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