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ABSTRACT

Resilient Monitoring and Control Systems: Design, Anayand Performance Evaluation

by

Maruthi T Ravichandran

Chair: Professor Semyon M. Meerkov

Critical infrastructure systems (i.e., power plants, pogeds, transportation networks,
chemical plants, etc.) and their sensor networks are vaiherto cyber-physical attacks.
Cyber attacks refer to the malicious manipulation of theseedata, while physical attacks
refer to the intentional damage of the plant componentsnbgdwersary. The goal of this
dissertation is to develop monitoring and control systedmas ére resilient to these attacks.

The monitoring system is termed resilient if it provides thast uncertain (in terms
of the minimum entropy) process variable estimates and plamdition assessment. Sim-
ilarly, the feedback control system is termed resilient iidentifies the actuators under
attack and generates the best possible control signalsr(irstof the largest probability of
maintaining the process variables in the desired range).

The resilient monitoring system (RMS) developed in thieeesh consists of five lay-
ers: Data quality acquisition, process variable assessiplant condition assessment, sen-
sor network adaptation, and decentralized knowledge fiuside techniques involved in
each of these layers are rigorously analyzed and are shoidentfy the plant condition
- normal or anomalous - in a reliable and timely manner. Theeldped RMS is applied

to a model of a power plant, and its performance is evaluateléuseveral cyber-physical



attack scenarios. The measure of resiliency is quantifiedillback-Leibler divergence
and is shown to be high in all scenarios considered.

The resilient control system (RCS) is developed based orajypooaches: Model pre-
dictive control (MPC)-based approach and synchronoustiete(SD)-based approach. In
the MPC-based approach, a control input is calculated uki@gnformation provided by
the RMS. The goal here is to steer the process variable toethieed value, while ensuring
that it always remains within a safe domain. In the SD-bagguiaach, the condition of
the sensor and actuator is assessed using the method of@yougk detection. Then, using
this assessment, the controller is modified (if possiblahabthe effects of the attacks on
the closed loop system response are eliminated. Using afions, it is shown that both
these approaches are viable for the design of RCS.

Thus, the main contribution of this research is in providing theoretical foundation
for the design of resilient monitoring and control systerppligable to a class of critical
infrastructure systems, characterized by complex intenag of continuous process vari-

ables.

Xi



CHAPTER |

Introduction

Resilient monitoring and control systems is a relativelwaeea of research. In this sec-
tion, we briefly characterize these systems and describgdals of our investigations. In

addition, the organization of this dissertation is outtirae the end of this section.

1.1 Resilient Monitoring Systems

Plant monitoring systemare wired or wireless sensor networks intended to measore pr
cess variables (e.g., temperature, pressure, flow rate}, atalyze them, and inform the
plant operator about the plant conditioasnormal or anomalous. Based on this infor-
mation, the operator or the automatic control system take®ctive actions, if needed.
When some of the sensors are captured by an attacker, fatu@ng to project mislead-
ing information (possibly, statistically unrelated to thetual values of process variables),
the identified plant conditions could be erroneous. This teayl to wrong actions on the
part of the operator/control system and, possibly, a d#sa3b prevent this situation, the
monitoring system must possess a capability of autonomadeshtifying the attacked sen-
sors and mitigating their effect (by discounting or disrelyag completely the data they
project). Although the loss of sensors may leadlégradationof plant condition assess-
ment, in a well-designed system this degradation shoulgtmpbrtional” to the severity of

the attack, i.e.graceful Plant monitoring systems that possess such a propertgfaread



to asresilient

This research is intended to develop techniques that casdxt to ensure resiliency,
analyze their properties and, on this basis, design andi&eathe performance of a re-
silient monitoring system. A specific application, in terofswhich the development is
carried out, is a simplified model of a power plant, althougimailar approach can be used
for other applications as well.

While the designed resilient monitoring system exhibitsghHevel of resiliency, it
exposed a shortcoming of the approach develep#uk time required to compute the plant
condition assessment increases exponentially with théoeuwf sensors in the sensor net-
work. (This problem was termed by Richard Bellman as ¢hese of dimensionality
Clearly, the above shortcoming may result in an unacceptaiplg assessment time in
many applications, and, thus, its reduction is a centrablpra of improving the resilient

monitoring system design. This problem is addressed inigse=dation.

1.2 Resilient Control Systems

Resilient control systems are feedback systems that niaiataacceptable level of per-
formance in the presence of attacks on the plant, sensadsacuoators. This research
addresses the design of resilient control systems baseaaapproaches, described be-
low.

The first approach involves the calculation of the resil@nitrol input, using the infor-
mation provided by the resilient monitoring system. As diésal in details in a subsequent
chapter of the dissertation, this approach is similar to dhanodel predictive contrdLl].

In the second approach, the condition of the sensors andtacsiare first assessed us-
ing the method o$ynchronous detectidg]. Then, based on this assessment, the controller
is modified (if possible) so that the effects of the attacktheclosed loop system response

are eliminated.



1.3 Organization of Dissertation

The remainder of this dissertation is organized as follolwe design, analysis, and perfor-
mance evaluation of the resilient monitoring system is diesed in Chapter Il. The issue
of combating the curse of dimensionality is addressed irp@hndll. The model predictive
control approach to resilient feedback systems is predemt&hapter IV. The synchronous
detection approach to resilient control systems is desdnb Chapter V. Finally, the con-
clusions and directions for future research are given inp@haVIl. All proofs and the

parameters involved in simulating the power plant are itetlin the Appendices.



CHAPTERIII

Resilient Monitoring Systems: Architecture, Design,

Analysis, and Performance Evaluation

2.1 Introduction

This section describes the specific scenario addressediliené monitoring systems, and

outlines the techniques developed in this work.

2.1.1 Scenario and problem addressed

Briefly, the scenario considered in this research is asviclio

* The monitored plant process variabld5, : = 1, ..., M, are characterized by prob-
ability density functions (pdf's)y, (9;), i = 1,..., M. In practice, thestatusof the
process variables is often characterized as being Normyar(Wnomalous (A). The
latter could be, for instance, Low (L) or High (H). In this eag;, (¢;) induces a ran-
dom event with the outcomes {fi.y,, Ny, Hy. }, i = 1, ..., M. With a slight abuse of
terminology, we refer to this event (and similar eventstigifwout this dissertation) as
a discrete random variabl&;, i = 1, ... M, with the probability mass function (pmf),

p[Vi], defined on the universal set, = {Ly,, Ny, Hy. },i =1, ..., M.

* The plant,G, is also characterized by its status, which is a discreteéaarvariable,

G, with the pmfp[G] defined by the pmf’s of process variables and taking values on



Y = {Ng, A}, whereNg andA denote the normal and anomalous plant statuses,
respectively. Depending on the plant, the anomalous statude further character-
ized by specific anomalies, e.g., boiler insulation damagetiine malfunctioning,
etc. In each status, plant dynamics may be different, eascribed by different

transfer functions.

Each process variabl¥;, is monitored by a sens@, (multiple sensors of a process
variable are also considered in the sequel). If a sensorderuattack, its projected
data may have a pdfiz (3;), statistically unrelated tg;, (¢;). In this situation, uti-
lizing the sensor data in order to assess the process \ariah lead to a pmfi[V;],
qualitatively different fromp[V;]. For instancep|V;] may indicate that the process

variable is Normal, while in reality it is Low or High.

The plant status assessment is based on the process easaelssmentg|V;], i =
1,..., M, and is quantified by a pmf denoted gg7], G € {Ng,As}. Since, as
indicated above, the process variable assessments mayobe@us,p(G|] may be
quite different from the actual[G] and, thus, lead to erroneous actions by the plant

operator.

In this scenario, th@ptimal resilient monitoring system must be able to identify the

status of the plant(z, in such a manner that the “distance” between the estimatdd a

the actual pmf’sp|G| andp[G], is minimized, as quantified by an appropriate measure of

distance between the two pmf’s. While this research is rtenhited to solve this problem,

here we design a plant monitoring system that degradesfgtgcender an attack (i.e.,

is resilient), and demonstrate thap#rforms favorably in comparison with a non-resilient

one(as quantified by a measure of resiliency based oKtikback-Leibler divergencfs])).



2.1.2 Contributions of this work: Techniques developed andesilient monitoring

system designed

The techniques developed in this work are as follows:

» The “trustworthiness” of a sensor is quantified by a parametferred to aslata
quality (DQ), which takes values of, 1], with 1 indicating that the sensor is totally
trustworthy and) not trustworthy at all. To identifyD(Q, we develop amctive data
quality acquisition procedutenvhereby probing signals are applied to process vari-
ables, and the level of disagreement between the antidipaie the actual response

of the sensors is used to quantify theif)’s.

» The estimates of process variables pmfg/], i = 1, ..., M, are calculated based
on the data projected by the sensors and th&)'s. SinceD() is not a statistical
guantity, classical statistics cannot be used for this @egp Therefore, we introduce
a model of theDQ'’s effect on the coupling between sensors data and process va
ables and, using this model, develop the so-cailgocedurgwhich is a modified
stochastic approximation algorithm [4]). Analyzing thi®pedure, we show that it
converges to a steady state defined by fi@’s. Specifically, if DQ = 1, it con-
verges to the actual process variable pmf/&g tends to0, the steady state of the
h-procedure converges to a uniform pmf, implying that irs fimit the sensor mea-
surements carry no information at all. For all otlief)’s, the conditional pmf of/;
given the sensor data is an affine functionaf. When multiple sensors monitor a
process variable, thBempster-Shafer rulgb] is used to combine the steady states

of the h-procedures associated with each sensor.

» The estimate of the plant status pmfii7], is calculated based on the statistical plant
model (typically given as a set of conditional pmf%$V;|G], i = 1,..., M, or a joint
conditional pmfP[V}, V5, ..., Vis|G]), the estimates of the process variables pmf’s,

p[Vil, i = 1,..., M, and theleffrey rule[6].



» The above assessments are carried out at each state oindwr setwork, where
the state is a vector dfs and0’s, with 1 indicating that the corresponding sensor is
taken into account for process variable assessmeni #rat it is not. The quality of
each state is quantified by the entropy (i.e., the level oéttamnty) of eithep[G] or
p[Vi]. The adaptation of the sensor network to the optimal stae,the state with
the smallest entropy, is carried out using the so-cab¢idnal controllers[7], which
are decision making devices that reside mostly in statesravtine penalty function

(i.e., entropy) is minimized.

* As mentioned above, the adaptation can be carried out twkagntropy of either
p|G] or p[V;]. The former, which we refer to antralized suffers from the curse of
dimensionality: the adaptation time grows exponentialihvihe number of sensors
in the network. To combat this problemgdacentralizedsystem (see, e.g., [8-12]),
with adaptation based g#(V;], could be used. In the case of a power plant, this
decentralized system is comprisedsaib-plants e.g., boiler, turbine, reheat pipe,
etc. Such a decomposition, however, impedes the derivafimfierences among the
sub-plants, which, as it turns out, are important to ensesdiency. Therefore, we
develop a decentralized system based on glanbmposition with knowledge fusion
and show that it leads to both mitigation of the curse of disr@mality and derivation

of the previously mentioned inferences.

The above techniques were introduced in our previous wdr8+19]. Using these
techniques, we design a resilient plant monitoring systensisting of the following five
layers: data quality acquisition, process variable assess adaptation, knowledge fu-
sion, and sub-plant assessment. The subsequent sectgnréoddn details each of the

developed techniques, along with its application to thegrgwant monitoring system.



2.1.3 Related literature

The literature related to the topic of this chapter can bssilied into six groups. The
first one is devoted to foundational issues, where the pnablef resilient monitoring and
control are motivated and formulated, [20—-25]. The secandgincludes publications on
control-theoretic methods for attack identification arle\ahtion, [26—31]. In these publi-
cations, the authors consider LTI systems with a given siaaee realizatiofA, B, C, D)
and disturbances interpreted as attack vectors. The pnoatkiressed is to identify the
attack and, if possible, mitigate its effect, for instartmedesigning a controller that makes
the closed-loop system invariant with respect to the distnce attack. The main difference
of the current work is that the plant may be either normal @maalous (i.e., described by
several state space realizations), and the problem ismtifgéhe true plant status, in spite
of the misleading information projected by the sensors.

The third group consists of publications on fault toleraomtcol, [32—34]. In these
works, it is assumed that a closed-loop system has multgrie@s and actuators, some
of which could be faulty due to natural or malicious causelse Typical problem here is
to determine the conditions (e.g., the number of sensorsaandtors) under which the
closed-loop system performance is maintained withoutatggion. The difference of the
current work is that, although multiple sensors may be mtesiee goal is to determine the
status of the plant and, if otherwise impossible, toleraigrddation.

The fourth group consists of research on monitoring the camaoation channels or the
sensor measurements in order to capture anomalous dataraeldt it with a possible at-
tack, [35—40]. In terms of the current work, this implies tbentification of DQ. While
the results of these publications may be useful for regildant monitoring, they do not
provide methods for process variable and plant conditisessment pursued in the current
work.

The fifth group consists of papers on identification of andgmtion against data in-

jection attacks intended to mislead state estimation dlgos, [41-47]. The emphasis of



the research here is on determining optimal positions obWmsecure” sensors, which
prevent the damage of the attack, or on utilizing game-#tenapproaches as quantitative
techniques for risk management.

The sixth group consists of publications on the analysisutfierability of the cyber-
physical system to attacks, [48-50]. In these papers, walh as graph theory and dis-
crete event systems theory are utilized to determine “valmgty points” in the system.
However, these works do not provide methods to identify taatpcondition under the
misleading information projected by the sensors.

Although the areas of robust estimation and robust stegi¢siee, e.g., [51]) may seem
related to the topic of this dissertation, they are, in tgafiot, since the data provided by
the attacked sensors could be statistically unrelatedetpithcess variable.

To summarize, the current literature does not offer any ouslof identifying the plant
status under misleading information provided by the sensbne methods to accomplish

that are developed in this dissertation.

2.1.4 Chapter outline

The remainder of this chapter is structured as follows: i8e@&.2 addresses the issue of ac-
tive data quality acquisition. In Section 2.3, the h-pragedand associated techniques for
process variable assessment are described. Section 2vbied to plant pmf assessment.
The sensor network adaptation is discussed in Section 2é&ena practical consequence
of the curse of dimensionality is quantified. An approachaimbatting the curse of dimen-
sionality based on a decentralized system with knowledg®ifuis developed in Section
2.6. The resulting five-layer monitoring system architeeig presented in Section 2.7. An
application to a power plant is discussed and investigatesitbulations in Section 2.8. Al

proofs and the parameters of the power plant model are iadludthe Appendix.



2.2 Active Data Quality Acquisition

In this section, we describe an approachix@ evaluation briefly mentioned in Subsection
2.1.2.
Consider sensd intended to monitor process variatWeand assume that the follow-

ing holds:

Assumption 1.1. (i) Process variabl®/ is quantified by a continuous random variable

V, taking values in the domairi € [Vinin, Vinax; its pdf, f(9), is unknown.

(ii) The random variablé’ induces a discrete random variabile which describes the

status ofV and takes values on
Yy = {LV,NV, HV} (2.1)
with the pmf given by

plV =Lyl = [ fp(@)do, plV = Ny] = [ fo(5) do,

m

(2.2)
plV =Hy] = [ fo(0)dv,

whereR; and R, are known and’;;, < Ry < Ry < Viaa (V'S with outcomes other
than Low, Normal, and High can be introduced similarly). c®irfi; () is unknown,

the pmf of V' is also unknown.

(iii) The d.c. gain,ay, of V with respect to its control inpulJy (e.g., fuel valve of the
boiler), depends on the statusVf i.e., whether it is Low, Normal, or High. This is

formalized by assuming thaty is a priori known piecewise constant function of the

10



expected value of (denoted agy):

;

Oé%,, if i - [Vmin7 Rl)

av = oy, if pp € [Ri, Ry) (2.3)

OZI\{,, if My S [R2, Vmax]-

In the case of other than L, N, and H anomalies, is introduced similarly. (Note
that we use here the d.c. gain, rather than the full trangfestion, in order to require
as little information about the plant as possible. Alsojaas other dependencies of
ay on iy can be considered; for instanceey could be assumed to be a piecewise

linear function ofy.; expression (2.3) is used here for simplicity.)

(iv) The data projected by sensSris quantified by a continuous random variasle

(V)

(vi)

taking values orp € [Vinin, Vmax]; its pdf, f5(3), can be evaluated using the classical

statistical methods (based on the sensor measurements).

The random variablé induces a discrete random variatsiéaking values on
Ys =%y ={Ly,Ny,Hy} (2.4)
with the pmf given by
pIS =Lv] = [ fs(3)ds, p[S =Ny] = [,” fs(5)ds 25)

plS =Hy] = fRV;‘“* fg(s) ds,

whereR; and R, are the same as in (2.2). Sinég5) may be viewed as known, the

pmf of S'is known as well.

If S is not attackedyug = puy, Whereps is the expected value . If S is under

attack,..g # iy and the pmf’s oS andV” may be qualitatively different; for instance,

11



m%Xp[S = o] may be achieved at = Ly, while max plV = o] ato = Ny. (The
[ASP7 oely

expressionug # p can be viewed as a definition of the attacker; other types of
attackers can be considered as well.)

Under Assumption 1.1, the active data quality acquisitisrcarried out as follows:
Introduce a probing signal using the control inply:. Any type of deterministic or random
probing signals could be used. Here, we use the simpleseprabrectangular pulse with

amplitudeAy, and duratiori’, applied at the time instang, i.e.,
uy (t) = Ayrect.(t — to). (2.6)

The value ofAy is selected sufficiently small so thaty, << min{[R; — Vi, [R2 —
Ri], [Vinax — R2]}. The value ofl is selected so thaf reaches a small vicinity of its steady
state defined by the probe.

If the sensor is not under attack, i.eg = 1.7, the following takes place:

/

py — ng = Avav(ug), (2.7)

wherey/; is the expected value of after the probe andy is the d.c. gain defined in (2.3).
If the sensor is attacked, (2.7) does not hold. In order totifiyethe severity of the attack,

introduce the notion gbrobing inconsistencyP1Cs) defined by:

PICs := |(uy — ng) — Avav (ug)] . (2.8)

Clearly PICs = 0 implies that the sensor is not attacked[C's > 0 indicates an attack

and its severity. Given thi®/Cs, the D(Q of sensoiS is defined as:
DQg = e FPICs), (2.9)

12



whereF'(-) is a strictly increasing function a?/Cs with '(0) = 0. Note that if 7'(P1Cs)
grows too fast, therD@ will be small even for relatively smalP/Cs’s; if it grows too
slow, DQ is relatively large even for large1Cs’s. Our numerical study, reported in [14],
indicates that a quadratic(-) provides better results for subsequent utilization thanesaf

one. Therefore, we introduce this function as

B Ine
PIC?

max,S

F(PICs) := PICE, (2.10)

wheree is a sufficiently small positive number adt! C,,,,« s is the largest value attainable
by PICs. Clearly, due to (2.9) and (2.1Q)hinD(Qs = ¢, which can be viewed as a design
parameter.

Expressions (2.1)-(2.10) characterize the acfiM@ acquisition procedure utilized in
this work. As mentioned above, numerous modifications &f pinocedure are possible by
considering different properties &f, different types of probing signals and their effect on
process variables, various definitions of probing incdesisy, etc. Specific selections may
depend on intended applications. The ones used here aneatedtby the application to a

power plant.

2.3 Process Variable pmf Assessment

In this section, we describe an approach to the evaluatigraifess variable pmf[V/].

As mentioned in Subsection 2.1.2, this pmf is evaluateddardhe sensors data and their
DQ@'s. If the D@ werel, this could be accomplished using classical statisticavéver,
these methods would lead to erroneous resultsf D@ < 1. Therefore, to carry out
this evaluation, a model of the effect &f() on the coupling betweelw and S must be
postulated and then, in the framework of this model, a nowaistical method for pmf’s
evaluation should be developed. Below, this developmecdriged out, and methods for

pmf evaluation using a single and multiple sensors areduoired.
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2.3.1 Model of V and S coupling

We introduce the notion of sensor believability as follows:

Xy -1 1
fg = ————DQg + —, 2.11
where|Xy| is the cardinality of the universal set bf. If, as indicated in (2.1)\Xy| = 3,
then
2 1
==-D —.
Bs 3 Qs + 3

The last two equations imply that whén) = 1, believability is alsdl; whenD@ = 0, be-
lievability is ‘E—lv‘ implying that every status df is equally likely. Using the believability,

introduce

Assumption 11.2. The coupling betweei andS is as follows:

PV =0|S = o|=ps,
PV =5|S = o] =%

= Ev[-1

(2.12)

whereg implies ‘noto’ ando, 5 € Xy [ |

Clearly, this implies that ifDQ = 1, thenV has the same status &swith probability
1; if DQ = 0, every status of/ is equally probable, irrespective of the statusSofThe
coupling (2.12) is used throughout this work.

2.3.2 Process variable pmf assessment using a single sensor

Consider a sens@ intended to monitor process variab¥e As indicated above, our goal

is to evaluate the pmf of, based on the sensor data, ss, ..., s,, ... (Where the subscript
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is the time index) and its data qualifyQ)s. In other words, we are interested in
plvV =o] = nh_)rrolo PV = 0lsy, S2y ..., $p; DQs], Yo € Xy (2.13)
To accomplish this, consider
pnlV = 0] = PV = 0|s1, S2, ..., $n; DQs|, Yo € Xy, (2.14)
and introduce, for convenience, the notation

he(n) :==p,|V = o], Yo € Zy.

Obviously, the limit ofh,(n), Vo € Xy, asn — oo (if it exists) is the sought pmf[V].

Define the evolution ok, (n) as follows:

ho(n+1) = hy(n) + €, [h}(Spt1) — ho(n)], he(0) = L, Vo € Xy, (2.15)

Zv|
where the set point} (s,1), is given by
Bs., if s,01 =0
h;(sn-i-l) = -5 . (216)
ﬁ? if Sn41 ;é g,
and the step,,, is either a small number,
0<ep <<, (2.17)
or a function ofn, monotonically converging to such that
0 <ep(n) <1, Zeh(n) = 00, Zei(n) < 0. (2.18)
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As it follows from (2.16), the evolution of,(n) depends on both the sensor data and
DQs (throughgs). The system of equations (2.15), (2.16) is referred to@stprocedure.

It can be viewed as a stochastic approximation algorithmvjt] a random set point.

Theorem II.1. Under Assumptions Il.1 and 1.2, the recursive proced{Zd5) (2.16)

converges to

lim hy(n) = p[S = o]DQs + 1-DGs

Vo €Sy, (2.19)

where

1. The convergence is in probability und@r17)

2. The convergence is almost sure un(zi8)

Proof. See the Appendix. [ |

Equation (2.19) implies that

1 - DQs

9V = 0] = 918 = 01DQs +

Vo € Sy (2.20)

Thus, according to the above theoremJf) is close tol, the pmf of process variable,
p[V], is close to the pmf of the senspfS]. However, if D@ is close td), the same sensor
data result irp[V] being practically uniform and independent of the sensorsueanents.
For all intermediate values dbQ), the pmfp[V/] is an affine function oD(Q).

Recursive procedure (2.15), (2.16) is the basis of procagahle assessments used

throughout this work.

2.3.3 Process variable pmf assessment using multiple serso

Assume that process varialeis monitored by two sensorS; andS,, having data qual-

ity, DQs, andDQ)s,, respectively. The goal is to evaluat@’| based on the data projected
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by both sensors, i.e.,

ﬁslvsﬂ\/ =o] = lim P[V = olst,....sli DQs,; 8%, . SQ'DQsz], Vo e Xy. (2.21)

ey Ony ey Ony
n—oo

This can be accomplished by combining the two pmf’s, evaldilaased on the h-procedure,

i.e.,pS1[V] andpS2[V], into a single pmfpS1:S2[V], using the Dempster-Shafer rule [5]:

SV =0V =0
S SV =ols% [V =0

oeXy

1351752 [V — U] , Vo € Yy. (222)

A question arises: 1$51:52[V] “better” than the constituent> [V] and p52[V] from
the point of view of the uncertainty in the process varialdgessment, i.e., entropy? Cal-
culations show that this may or may not be the case (deperaingQs, and D(Qs,).
Therefore, having the three estimatés[V/], p52[V], andpS1-52[V], we select as the final

estimatep*[V], the one with the smallest entropy, i.e.,

p*V] = argmin [I{p™ [V]}, I{p> [V}, I{p™>[V]}] (2.23)

where the entropy is th&hannon entropfb2], defined as

I{p[V]} == > plV = o]logs, p[V = o]. (2.24)

oEXYy
2.4 Plant pmf Assessment

As mentioned in Subsection 2.1.2, the plant status assesssmguantified byp[G], G €
Y. To describe a method for its evaluation, let the plant mdebiven byP[V;|G],
i=1,..,M, and letp[V;], i = 1,..., M, denote the process variable pmf’s evaluated as

described in Section 2.3. Thep|(7] can be computed using the following:
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Algorithm 11.1. (a) Assign the initial plant pmf:

- [ 43

(b) Calculate the initial joint pmf of; andG:

Vi, G] = PVi|GIpo|G], i = 1,2, ..., M.

(c) Calculate the marginal probability:

pO[‘/Z] = Z pO[‘/;7G]7 L= 1727"'7M'

GeXg

(d) Apply the Jeffrey rule [6]:

PV Gy

A‘/iaG = V;aG s 3 Ly eeey
PV G =l Gl

(e) Marginalize to obtain the plant pmf estimate:

PYIGI = Y plVi.Gl i=1,2,. M.

VieXy,

M.

(2.25)

(2.26)

(2.27)

(2.28)

(2.29)

(H If M > 1, combine the pmf’s obtained in (2.29) using the Dempstexf&irule:

M
Hﬁvi (G = 0od]
i=1

> [ - o

UGEZG i=1

plG = o¢]

y Oc EEG

(2.30)

If the plant model is given a® [V}, Vs, ..., V),|G], marginalize it to obtainP[V;|G],

18



1=1,2,..., M, and then follow steps (a)-(f) above.

Algorithm 1.1 is carried out after the h-procedure has @mged ang[V;],i = 1, ..., M,
is evaluated. To speed up the procesg|6f] evaluation, it is tempting to apply this algo-
rithm recursively, i.e., using, [V;], instead ofp[V;], at step (d). As it turns out, however,
this may lead to a paradox: the entropypfG] may tend td) asn — oo, irrespective of
the sensors data and thél)'s. This paradox can be explained by the fact that whg#;|
approaches its limit (i.e., is practically constant), tiyeamics ofp, [G| are defined not by
the sensor measurements and th#iy’s, but by the eigenvalues of the recursive version of

Algorithm 11.1, defined as follows:

Algorithm 11.2. (a) Assign the plant pmf at time as:

pn|G|, Wherep, |G| = B, %, 1} ) (2.31)

(b) Calculate the joint pmf o¥; andG:

BalVi, G = PIViIGIpa[G], n=0,1,2,.; i = 1,2,..., M. (2.32)

(c) Calculate the marginal probability:

PV =D bulVi, Gl n=0,1,2,..5 i =1,2,..., M. (2.33)

GeXg

(d) Apply the Jeffrey rule:

Psa[Vi, G] = zanm,G]pg;E[V‘_/f], n=012.;i=12.,M (234

n
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(e) Marginalize to obtain the plant pmf estimate:

PrialGl= Y puralVi, Gl n=0,1,2,.;i=1,2,..., M. (2.35)

WEEVZ.

() If M > 1, combine the pmf’s obtained in (2.35) using the Dempstexf&irule:

Hpn—H - UG

Pni1|G = 06] = .n=0,1,2,...; 0 € Xg. (2.36)

ZHpn-i—l - UG

oc 1=1

(9) Updaten ton + 1. Return to (a).
|

To investigate the performance of this algorithm, consaplantG with process vari-

ableV, monitored by sensd8. Assume that the universal sets@f V', and.S are given

by:

Y6 ={Ng,A¢}, Ly =3s = {Ny, Ay} (2.37)

Further, assume that the plant model is characterized bgathéitional pmf

1—a a
P[V|G] = , (2.38)

a l1—a

wherea < 0.5. Denote the pmf’s of the process variable and the plant attias

ﬁn[V] = [th (n>7 hAV (n)]> ﬁn[G] = [kNG (n>7 kAG (n)]> (239)

wherehy,, (n) andhy,, (n) are calculated using the h-procedure (2.15), (2.16)kandn)

andka,(n) are evaluated using Algorithm 11.2. To specify the evolatiaf iy, (n) and
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ka.(n), substitute (2.38) and (2.39) in steps (a)-(e) of this atjor to obtain

thxo(m) [ alkwe(m)],
| o) + | el el 1), (240

1—a

C(n)

]{?NG (n -+ 1) = [
with ky,(0) = 0.5 andC(n) andD(n) given by

C(n) = 1~ lkxg(n) + all — kyg ()]
D(n) = akg(n) + [1 — al[L — kng (n)].

(2.41)

Denote the steady state values/af, (n) and hy, (n), evolving according to the h-
procedure (2.15),(2.16), d&;, and iy, respectively. Then, the steady state values of

kx,(n) andka,, (n) are quantified as follows:

Theorem I1.2. The steady statéy ., of the recursior(2.40)is characterized by:
1. k3, =1,0ifhy, > 1—a

2. kX, =0,ifhY, <a;

ss

3. kX, = e Cifhg, > aandhg, <1 - a.
Proof. See the Appendix. u

This theorem exhibits the paradoxical nature of the reeardeffrey rule. Namely,
if, for instance,hy, = 0.7, i.e., p[V] = [0.7,0.3], anda = 0.4, then, according to Part
1 of Theorem 11.2,5|G] = [1,0], implying that the plant status is normal with certainty,
while the process variable status is uncertain. Similéolythe same, if 2y = 0.3, i.e.,
p[V] = [0.3,0.7], then, according to Part 2/G] = [0, 1], implying that the plant status
is anomalous, again with certainty, while the process bégiatatus is uncertain. In other
words, this theorem implies that a recursive version ofrdgffule may “create erroneous

information” rather than transfer it from one quantity, into another(.
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2.5 Sensor Network Adaptation and Measure of Resiliency

As mentioned in Subsection 2.1.2, the adaptation of seretarank to the state with mini-
mal entropy can be carried out using either the plant or tbegss variable pmf’s. In this

section, we describe the former and in Section 2.7 the latter

2.5.1 Sensor network

Consider the plan& with M process variabled/, V,, ..., V;, monitored byNg sensors,
S1,S9, ..., SN, under Assumption 1l.1. Each sensor may or may not be wilfpe the
process variable pmf’'s assessment. This induces the seeiseork state spaceX, where
each statez, is an Ng-tuple of I's and(0’s, with 1 in thei-th place indicating tha8; is
used for process variable pmf’s assessmentlathdt it is not. Thus, the cardinality of the
state space, X |, is 2"s. (A practical consequence of this exponential growthof as a
function of Ny is discussed in Subsection 2.5.4.) The process variablé amd the plant
pmf assessed in stateof the sensor network are denotegad/;|,i = 1, ..., M, andp,.[G],

x € X, respectively. The goal of the sensor network adaptatioém é®nverge to the state,

where the entropy af,[G] is minimal.

2.5.2 Adaptation using a rational controller

As mentioned in Subsection 2.1.2, the adaptation technigad in this work is based on
rational controllers introduced in [7] and further deveddpn [53, 54]. Rational controllers
are decision making devices that possess two propesigedicityandrationality. The
ergodicity property implies that each state,of the decision spacey, is visited with a
non-zero probability. The rationality property impliesthhe residence time in states with
a smaller value of thpenalty functions larger than in those with a larger one. The degree
to which this distinction takes place is referred to asléwel of rationalityand quantified

by a positive integeryV.

If the sensor network adaptation is based on the plant assespmf, . [G], the
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penalty function is selected as its entropyp. (G|} = fx(G). Various types of ratio-
nal controller dynamics can be defined to ensure rationatityergodicity. In this work, to

ensure the former, the following residence time in eaclestat X is introduced:

Tmax, if 1,(G) < 8

TLB == B N .
(725) Tmeo it L(G) > B,

(2.42)

wheres > 0 is a small number (design parameter) dpdy is the largest residence time
(also a design parameter). To ensure ergodicity, wheexpires, the controller moves to
the next state in a deterministic, round-robin manner.

Let 7, be the relative residence time in state X, i.e.,

Ty =

T
T (2.43)
T

D

zeX

Then, theaverageplant assessment pmf, to be reported to the plant operdtar edch

complete round-robin cycle, is evaluated as

PIG) =) mpa[G]. (2.44)

zeX

It can be shown that iV is sufficiently largep|G| is arbitrarily close t@*[G] at which
221)1{1 fz(G) is attained (see [7]). Note that although under the detestign round-robin
transition rule, the state with the minimal entropy couldsbcted by various other meth-
ods, we use (2.42)-(2.44) since it is equally applicableattdom transitions, which may

be necessary in other applications.

23



2.5.3 Measure of resiliency

The measure of resiliency employed in this work is based erKihllback-Leibler diver-

gence, [3], of two pmf'sp, |G| andp,[G], given by:

Pl[G = UG]

G =0l G=od’ (2.45)

D (p[G)lIp2[G)) = Y (G = oc]logys,,

ocGEXG

Let p, [G] be the true pmf of the plant/G]. As for p,[G], we consider two cases. In the
first one,p, |G| is p[G] calculated according to (2.44) and based on/#igs of the sensors.
In the secondy, |G| is the pmf of the plant assessed under the assumption that@hef
all sensors i4; we refer to such a system aen-resilientand denote the resulting pmf as

pur|G]. Then, the measure of resilienty/ R) considered in this paper is given by

D (p|G]]lpwr[G]) — D (plG1IPIG])

M= D ([CllpmlC)

(2.46)

Clearly, MR < 1, and the equality is attained wheiz] = p[G|. Thus, to test the re-
siliency of a monitoring system, one has to assumejifgt is known, evaluatg[G| and
pur[G], @and then use (2.46). This is carried out in Section 2.8 ferdéise of the power

plant.

2.5.4 Temporal properties of adaptation and curse of dimerienality

From the temporal point of view, the adaptation processistsfepochs | X| epochs
(where, as beforeX is the sensor network state space) comprisgcée at the end of each
cycle,p|G] is reported to the plant operator.

For eachz € X, the epoch consists of three periods¢) acquisition {'pg), process
variable(s) and plant pmf evaluatioi.(,;), and residence in state(7,). Assuming that
the sensor data are provided everylsec and using the procedure described in Section 2.2,

Tpe can be evaluated d@sec (if the time constant of the process variablésisc andL00
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measurements are utilized to calculate the sensor meair)g the procedures described
in Sections 2.3 and 2.4, the duration of process variablgtard assessmeri,,.;, can be
calculated assec (if the stopping rule of the h-procedureéfis(n + 1) — h,(n)| < 107%).

The maximum residence period,,.,, can be selected as desired. If it is selected to be
1sec, the duration of each epoch is less than or equididec.

As mentioned abovd,X| epochs constitute a cycle, so that the cycle duration is, at
most, 12| X |sec. Thus, the resilient monitoring system provides that@asessment pmf,
p|G], within a reporting period ...,y = 12|X|sec. If a network consists &f sensors,
Treport = (2°)12sec ~ 6min, whereas in a network df) sensorsy epo« &~ 3hr, which is
clearly unacceptable. This curse of dimensionality is tlaénndrawback of the centralized

system based of, |G| adaptation.

2.6 Decentralized System with Knowledge Fusion

This section provides a method for combatting the curse miedsionality based on the
plant decomposition with knowledge fusion. Note that while current development is
carried out in terms of a power plant, a more general chaiaat®n of this method is

provided in Chapter IIl.

2.6.1 Power plant

A simplified model of a power plant is shown in Figure 2.1, whBris the boiler, HT and
LT are the high and low pressure turbines, respectively,SRRd reheat pipe, C is the con-
denser, FP is the feedwater pump, &hgs are the sensors. For simplicity, it is assumed
that only B, HT, RP, LT may be under a physical attack or malfiom, while C and FP are
assumed to operate normally; hence, their sensors areachotiéd in Figure 2.1.

Having 8 sensors, the number of network stategi6. Thus, based on the temporal
properties discussed in Subsection 2.5.4, a report to #re pperator could be produced in

about everyp1min. To combat this drawback, a decentralized system caailtbbbsidered,
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HT valve

Fuel valve

Figure 2.1: Schematics of the power plant

where B, HT, RP, and LT are viewed as sepagatie-plantsmonitored by their respective
sensorsub-networkgi.e., B by sensor$,; andS;,, etc.). The problem with such a de-
centralized system is that inferences arising from cogpdifprocess variables that belong
to various sub-plants are neglected. In other words if, kangple, all boiler sensors are
captured by an attacker, no information about the boiletccba derived, even if all other
sensors operate normally. To alleviate this problem, weldgvanother approach based,
as it is mentioned in Subsection 2.1.2, on a decentralizetesywith knowledge fusion

and show that it leads to reliable and timely plant condiigsaessments (see Section 2.8).

2.6.2 Developing the decentralized system with knowledgadion

Assume, for simplicity, that B, HT, RP, and LT are charactedi by a single process vari-
able, e.g., its temperature, denotedas V., Vs, andVy, respectively, each monitored by
two sensors. Mutual influences of the temperature amongkutis can be represented by
a directectyclic graphshown in Figure 2.2(a). Assuming that the heat-generatipgcity

of B is large enough to maintain RP temperature independé#t @onditions (normal or

anomalous), the influence HF RP can be omitted. Similarly, under the above assump-
tion, one may ignore the influence RP B, since B is capable of maintaining its own
temperature independent of HT and RP conditions. Furthéreiheat-absorbing capacity

of C is large enough to maintain a constant water temperaituits outlet independent of
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representation representation

Figure 2.2: Influence diagrams

LT condition, the influence L~ B can also be ignored. Under these assumptions, the
cyclic graph of Figure 2.2(a) is reduced to tinee graphof Figure 2.2(b). This implies
that the power plant can be represented as four sub-planstet aszs, G, Ggrp, and
G, interrelated as shown in Figure 2.2(b). This partitioninduces a corresponding
partitioning of the sensor netwoikNN into four sub-networksSNg, SN, SNgp, and
SN\, consisting 0f S, S12}, {Sa1, S22}, {Ss1, Ss2}, and{S41, S42}, respectively. I£X;,

k € {B,HT,RP,LT}, denotes the state space of each sub-network, then the naibe
states in each of them is and, if the evaluation of each state takésec, a report to the
operator is produced in approximatel§sec (rather thadlmin, as in the centralized case).
Clearly, under this decomposition, the aforementionedntepould consist of the pmf’s of
the sub-plants, i.ep[B], p[HT], p[RP], andp[LT], rather than of a single pmfG].

Note that in this decentralized architecture, the sendemsiworks adaptation is car-
ried out based op[V;] (rather tharp|G]). This is becausg|G,|, i € {B,HT,RP, LT},
becomes available only after the knowledge fusiop[df]’s is carried out.

To implement knowledge fusion calculations, couplings agiprocess variables must
be introduced. This is accomplished based on the conditobabilitiesP[V;|V;]. While
specific matrices representing these conditional pmf'gawen in Subsection 2.8.1, below

we describe the knowledge fusion calculations used in thikw
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2.6.3 Knowledge fusion calculations

Letpg, [Vi], Pa.. [V2], P V3], @ndpg,, [Va] be the process variable pmf’s of the sub-plants,
evaluated using the techniques described in Sections 3.,2a2d 2.5. Then, fusion of this

information, leading to the sought inferences, is carrigtas follows:
Algorithm 11.3. Inferences foiV:

(a) Calculate the pmf of; based on the sensors of LT (denoteghas [V1]):

pesVil = > PViVs = oslpe,[Vs = 03], (2.47)

03€Ev3

wherepg,, [V3] is calculated as

Pag Vsl = Y PValVi = oulpa, [Vi = ou]. (2.48)

g4€XY,

(b) Calculate the pmf of; based on the sensors of RP:

PaeVi] = Y PVilVs = oy]pc..[Vs = 03], (2.49)

0’362\/3

(c) Calculate the pmf o¥; based on the sensors of HT:

PeuVi] = Y PVilVa = oolpa, Vs = 03], (2.50)

0’262\/2

(d) Calculate the pmf of; based on all sensors of the sensor network (using the Dempste
Shafer rule):

[T pelVi=al

k=B,HT,RP,LT

Y I saM=al

01€%y, k=B,HT,RP,LT

pGB,HT,RP,LT [‘/1 = 01] (251)
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(e) Finally, selecp*[V;] as the one of the five pmf’s obtained above, which has the sstall

entropy, i.e.,

p*Vi] = argmin {1 {pg,[V1]} , [ {Pa..[Vil}, I {Pa.V1]},
IH{pce Vi) T {PGa s V1] } -

(2.52)

Fusion of other process variable pmf’s is carried out siftyiléeading top*[ V5], p*[V5],

andp*[V4].

2.7 Decentralized Resilient Monitoring System for Power Rint

Turning now to the issue of computing the pmf’s of B, HT, RR] &, we introduce a five-
layer architecture shown in Figure 2.3. It consists of foargtiel sub-architectures, each
corresponding to a sub-plang;, G, Gge, andG 1, which could be under a physical
attack (or malfunction). The inputs to each sub- architectue the sensor data provided
by the sub-networkSNg, SN, SNk, andSN,;, which could be under a cyber attack.
The physical and cyber attacks might be either coordinategot The outputs of the
overall architecture are the assessed sub-plant pmf'spiid, p[HT], p|RP], p[LT].

The five layers of this architecture can be characterizedlasifs (using the sub-plant

B, as an example):
* The D@ acquisition layer remains the same as in Section 2.2.

* The process variable assessment layer consists of twa Jdre first one represents
the evaluation of,, V1] using the methods of Section 2.3. The second part eval-
uatespg,[V1] using the expression (2.44) applied to the sub-plant (ig,[Vi] =

> Tuobas[Vi], Wherer,, is the output of the adaptation layer).
€ Xp
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Gz > SNBL DQ ; bVl | | Al sl ] PBI
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Adaptation Ty
Physical Cyber
attack attack
Gy SNHT}Ja DQ PreyrlVal Po V21— 7wl [ FHT] P>
R n
Adaptation Toyr
Physical Cyber
attack attack

Ggp SNRPJ; Do I—\) Bregp [V2] Do lVal = P W]l > AlRP] P>
1 ’ |

Physical Cyber
attack attack

Gur —> SNLTJ; DQ A IR AT S A T o e G

: >

Adaptation Txpp

Adaptation Tyir

Figure 2.3: Five-layer resilient monitoring system arebitire based on decentralization
with knowledge fusion

» The sub-network adaptation layer operates as describ®édation 2.5, but using the

entropy ofp,, [V1] as the penalty function.

» The knowledge fusion layer implements the calculationscdbed in Subsection

2.6.3.

» The sub-plant assessment layer evalugiBs, p|HT], p[RP], andp[LT] using the

technique of Section 2.4.
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The measure of resiliency is evaluated using (2.46) appkgdrately to each sub-plant,

e.g.,

D (plB]llpwr[B]) — D (p|Bl[[p[B])

Mt = D ([B][pmlB))

(2.53)

The M R's for HT, RP, and LT are computed similarly, resulting in tblowing vector:
MR = [MRg, MRy, MRup, MR.]. (2.54)

Based on the calculations of Subsection 2.5.4, the assassime in each of the sub-
architectures of Figure 2.3 {42seg2? = 48sec. Note that the centralized assessment of

this plant, having sensors, would bgl2seg2® = 3072sec= 51.2min.

2.8 Performance Evaluation of Decentralized Resilient Mororing Sys-
tem with Knowledge Fusion

In this section, we apply the resilient monitoring systenfigfure 2.3 to the power plant of

Figure 2.1. While the statistics of process variables aedodrameters of the monitoring

system are specified in the Appendix, below we introduceutbegsdant anomalies (Subsec-

tion 2.8.1), describe the attack scenarios and the regudjistem performance (Subsection

2.8.2), and discuss qualitative features of the resultsioétl (Subsection 2.8.3).

2.8.1 Sub-plant anomalies and process variable coupling
2.8.1.1 Boliler

The anomaly of B is insulation fracture. Since the fract@®uits in a lower than normal

temperature, the universal setlgfis £y, := {Ly,, Ny, }.
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2.8.1.2 High pressure turbine

The anomaly of HT is also the insulation fracture. Takingiatcount the influence B
— HT, we assume thdt, takes progressively increasing values under the follovemgr
ditions: Both B and HT are damaged; only B is damaged; only silamaged; and
both B and HT operate normally. As it follows from the abouge universal set ot
is Xy, = {VLv,, Layv,, Leyv,. Nv, }, where VL stands for Very Low, antl;)y, and

L)y, indicate Low HT temperature due to B and HT damage, respagtiv

2.8.1.3 Reheat pipe

The anomaly of RP is similar to that of B and HT, i.e., the iasioin fracture. Regarding
V3, we assume that it takes increasing values under the faipaonditions: Both B and
RP are damaged; only B is damaged; only RP is damaged; andBbatid RP operate

normally. From the aboveé/; € Xy, := {VLy,, La)v,, Lyv,, Nv, }.

2.8.1.4 Low pressure turbine

Since LT operates at a low pressure, we assume that the anismat due to the fracture of
its insulation, but due to the inefficient transfer of enei@yhe output shaft, leading to the
temperature being higher than normal. Taking into accdwnthain of influences B> RP

— LT and the above assumption, takes progressively increasing values under the follow-
ing conditions: LT operates normally, while RP and B are dgeda LT malfunctions, while
RP and B are damaged; LT and RP operate normally, while B imdad) LT malfunctions
and B is damaged, while RP operates normally; LT and B op&@at@ally, while RP is
damaged; LT malfunctions and RP is damaged, while B operatesally; LT, RP, and B
operate normally; and LT malfunctions, while RP and B operairmally. As it follows
from the aboveV, € Xy, := {VLuv,, VL@, Layv,: Leyv., Maywv,, Meyv,, Nv,, Hy, },

where M stands for Medium and H for High.
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2.8.1.5 Coupling of process variables

As described in Subsection 2.6.2, the couplings of the pouariables are characterized
by the conditional pmf's[V;|V;]. Taking into account the universal sets introduced above,

these pmf’s are as follows:

05 0
1100 05 0
P[V1|Va]) = P[V1|V5] = , PIWL|Vi] = P[Ws|Vi] = ' (2.55)
0011 0 05 :
A 0 05
i ; |
A 09yy B 0442
PV V3] = Tl PVilVs] = g (2.56)
02><4 A 04><2 B

where the matriced andB are given in (2.55).

2.8.1.6 Universal sets of the sub-plants

Since each sub-plant is characterized by a single anontaytandom variablé€r;, i €
{B,HT, RP, LT}, which represents its status, has the universal set coaapoistwo out-
comes{N¢,, Ag, },i € {B,HT, RP, LT}, where, as beforé&y, andA, stand for normal

and anomalous status of the sub-pl@nt respectively.

2.8.2 Attack scenarios and the resulting monitoring systemerformance

In this section, we introduce seven cyber and cyber-phlaitack scenarios selected so
as to exhibit the main features of the resilient monitoriggtem designed herein. As it
may be expected, physical attacks on the sub-plants areld@saging for resilient mon-

itoring than cyber attacks on the sensors. NeverthelesgBustrate that every sub-plant
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status (normal or anomalous) can be identified with or witteophysical attack, we in-

clude cyber-physical attacks into consideration as well.

Scenario 1Cyber attack on the boilerAll sub-plants operate normally. All sensors mon-
itoring B are captured and project misleading informatioat the boiler is damaged. All
other sensors operate normally.

Performance:The resilient monitoring system computes the following jsmf

plGs] = [0.95,0.05], 5G] = [0.9,0.1], p[Gre] = [0.91,0.09], (2.57)

p[Gr] = [0.92,0.08],
correctly indicating that all sub-plants operate normatlith large probability. The non-
resilient monitoring system (i.e., the system witl)’s of all sensors equal td — see
Subsection 2.5.3) evaluates the pmf of BpasGs| = [0.05,0.95], erroneously indicating
that the boiler is damaged. Using (2.53) and (2.54), the oreasf resiliency under this
scenario is calculated ag R — [0.98, —, —,—] , where “-” indicates that none of the

sensors of the corresponding sub-plant are attacked.

Scenario 2:Cyber attack on the low pressure turbinéll sub-plants operate normally.
All sensors of LT are under attack, reporting that it is matfiloning. All other sensors
operate normally.

Performance The resilient monitoring system computes the following jsmf

ﬁ[GB] - [0'9570'05]7 ﬁ[GHT] = [0'970'1]7 p[GRF’] = [0‘91’0'09]’ (2.58)

ﬁ[GLT] - [049,051],

implying that, while the status of B, HT, and RP is ascertdioerrectly, the status of LT is
undetermined (i.e., either normal or anomalous with alregsial probabilities). The non-

resilient monitoring system evaluates the pmf of LTpa$G\1] = [0.09,0.91], erroneously
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indicating that LT is malfunctioning. The measure of resity in this case iSIR =
[—,—,—,0.7]. Note, however, that if only one sensor of LT was capturee sthtus of all

sub-plants would be assessed correctly with the pmf's

plGe] = [0.95,0.05], p[Gyur] = [0.9,0.1], p[Gre] = [0.91,0.09],
p|Gir] = [0.91,0.09].

Scenario 3Coordinated cyber-physical attack on the reheat pip® is under attack, re-
sulting in insulation fracture. All other sub-plants ogeraormally. Since RP is attacked,
the temperature of LT i81(;)y,. All sensors of RP are captured, forcing them to indicate
that RP is normal. All other sensors are not attacked.

PerformanceThe pmf’s of B, HT, RP, and LT are computed as follows:

]j[GB] - [0'9570'05]7 ﬁ[GHT] = [0'970'1]7 p[GRF’] = [0‘12’0'88]’ (2_59)

ﬁ[GLT] - [092,008],
correctly identifying the status of all sub-plants. The fresilient monitoring system eval-
uates the pmf of RP gs,[Grs| = [0.91,0.09], i.e., erroneously. The measure of resiliency
is ME = [—,—,0.95, —]. Note that if the attack was not coordinated, e.g., physittatck

on RP and cyber attack, say, on LT, the status of LT would betemohined, i.e.,

plGs] =10.95,0.05], p[Gur] = [0.9,0.1], p[Gre] = [0.12,0.88],
plGir] = [0.49, 0.51].

Scenario 4Coordinated cyber-physical attack on the high pressurbihe: HT is under
attack, resulting in fracture of its insulation, with beingL,y,. All other sub-plants
operate normally. All sensors of HT are captured, forcirgnitio indicate that its status is

normal. All other sensors are not attacked.
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PerformanceThe pmf’s of the sub-plants are computed as follows:

plGs] = [0.95,0.05], p[Gur] = [0.51,0.49], p[Gre] = [0.91,0.09], (2.60)

p[GLT] - [092, 008],
correctly identifying the status of B, RP, and LT, while tlo&tHT is undetermined. The
non-resilient monitoring system evaluates the pmf of Hp,a8~,.;] = [0.9,0.1], i.e., erro-
neously indicating that HT is normal. The measure of rexﬂjdsm = [—,0.69, —, —].
If only one sensor of HT was captured, the status of all saloislwould be ascertained

correctly with the pmf’s

PlGa] = [0.95,0.05], p[Gir] = [0.11,0.89], p[Grel = [0.91,0.09],
plGir] = [0.92,0.08].

If the attack was not coordinated, e.g., a physical attackiorand a cyber attack on all

sensors of B, the resulting performance would be

lGs] = [0.95,0.05], p[Gyr] = [0.1,0.9], p[Gre] = [0.91,0.09],
plG7] = [0.92,0.08],

indicating that all sub-plants are assessed correctly.

Scenario 5Coordinated cyber-physical attack on the boiler and lowsgtge turbine:B
and LT are under attack, resulting in insulation damage @fdhmer and malfunctioning
of the latter, withV; beingLy, andV; beingL,)v,. All other sub-plants operate normally,
with V; being L)y, and V3 beingL)y,. All sensors of B and LT are captured, forcing

them to indicate that their status is normal. All other sessoe not attacked.
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PerformanceThe pmf’s of the sub-plants are computed as follows:

plGs] = [0.05,0.95], p[Gur] = [0.9,0.1], p[Gre] = [0.91,0.09], (2.61)

ﬁ[GLT] - [051,049],
correctly identifying the status of B, HT, and RP, while thatgs of LT is undetermined.
The non-resilient monitoring system evaluates the pmfB afd LT ag,,,[Gs] = [0.95, 0.05]
andp,,[G\r] = [0.92,0.08], erroneously assessing them as normal. The measure of re-
siliency iSME = [0.98, —, —,0.72]. If only one sensor of LT was captured, the status of

all sub-plants would be ascertained correctly with the gmf’

H[Gs] = [0.05,0.95], p[Gu] = [0.9,0.1], F[Gee] = [0.91,0.00],
FlGu] = [0.1,0.9].

Note also that if the attack was not coordinated, e.g., gayaitack on LT and cyber attack

on all sensors of B, the resulting performance would be

ﬁ[GB] - [0957005]7 ﬁ[GHT] = [09701]7 p[GRP] = [091,009],
plGir] = [0.09,0.91],

indicating that all sub-plants are assessed correctly.

Scenario 6:Coordinated cyber-physical attack on the boiler, rehegtepiand low pres-
sure turbine:B, RP, and LT are under attack, with, V5, andV, beingLy,, VLy,, and

VL9)v,, respectively. The remaining sub-plant, HT, operates adiymAll sensors that
monitor B, RP, and LT are captured, forcing them to indicat their status is normal.

The sensors of HT are not attacked.
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PerformanceThe pmf’s of the sub-plants are computed as follows:

plGe] = [0.05,0.95], p[Gur] = [0.9,0.1], p[Gire| = [0.51,0.49], (2.62)

p[GLT] - [05,05],
correctly identifying the status of B and HT, while the st RP and LT is undetermined.
The non-resilient monitoring system evaluates the pmf’'8oRP, and LT a,,[Gs| =
[0.95,0.05], pn:[Gre] = [0.9,0.1], andp,,,[G\r] = [0.92,0.08], erroneously assessing them
as normal. The measure of resiliencyZKR = [0.98,—,0.7,0.72]. If only one sensor of

LT was captured, the status of all sub-plants would be asicexd correctly with the pmf’s

p|Gs] = [0.05,0.95], p[G ] = [0.9,0.1], p[Gre] = [0.12,0.88],
p[GLT] - [0.09, 0.91].

If the attack was not coordinated, e.g., physical attack bramd all sensors of B and RP

being captured, the status of all sub-plants would be asdessrectly with the pmf’s

p|Gs] = [0.95,0.05], p[G ] = [0.9,0.1], p[Gre] = [0.91,0.09],
p[GLT] - [0.09, 0.91].

Scenario 7:Coordinated cyber-physical attack on all sub-plan®tl sub-plants are at-
tacked, resulting in their anomalous operation. All sessoe captured, forcing them to
indicate that their status is normal.

Performance:The status of all sub-plants is undetermined with the pméisg close
to [0.5,0.5]. The non-resilient monitoring system evaluates erronlgdbat all sub-plants
are normal. The measure of resiliency\@ =[0.76,0.7,0.7,0.72]. If one sensor of HT

was not captured, the pmf’s of the sub-plants would be

p|Gs] = [0.05,0.95], p[Gwr] = [0.1,0.9], p[Gre] = [0.5,0.5],
ﬁ[GLT] = [0'57 0'5]7
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i.e., B and HT are assessed correctly, while RP and LT aretemdined. If one sensor of

HT and one sensor of LT were not captured, the pmf’s of the@abts would be

pGe] = [0.05,0.95], plGir] = [0.1,0.9], p[Gre] = [0.12,0.88],
plGr] = [0.09,0.91],

i.e., all are assessed correctly.

2.8.3 Discussion

The above results lead to the following conclusions:

» Under all attack scenarios considerdae resilient monitoring system provides no

erroneous assessmelfés insinuated by the attacker).

» Asevidenced by Scenarios 1eyper attacks on HT and LT are more dangerous than
those on B and R his is due to the structure of the conditional probabiiistrices
(2.55), which permit inferences from HT and LT to B and RP, fioitvice-versa. In
other words, cyber-attacking the terminal nodes of thelgcd-igure 2.2(b) is more

dangerous than attacking the initial and/or intermediagso

» As evidenced from Scenarios 3 anctdprdinated cyber-physical attacks may not be
more dangerous than non-coordinated onél®re important is not the coordination,

but the nature of a cyber attaekinvolving or not the terminal nodes of the graph.

 As follows from Scenario 7, theinimum number of non-attacked sensors necessary
and sufficient to correctly assess all sub-plant2:isone for HT and one for LT
If these sensors were made “known-secure”, the plant assessvould never be

compromised.

 In all cases considerethe measure of system resiliency is quite hifgmm 0.69
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(when some sub-plants status remains undetermined) te tbais (when all sub-

plants status is assessed with certainty).
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CHAPTER Il

Combating Curse of Dimensionality in Resilient
Monitoring Systems: Conditions for Lossless

Decomposition

3.1 Introduction

As described in Chapter Il, the adaptation of the sensoror&tean be carried out either in
a centralized or decentralized manner. The former, whigpdied in our previous work
[17], suffers from the curse of dimensionality, namely, #ssessment time of the plant

condition,T},, behaves as
T, = k2Ns~ (3.1)

where the pre-exponential factar, depends on the assessment algorithms involved, and
Nsn is the number of sensors in the network. This implies that éve is relatively small,
say,x = 1sec,T, is 17min if Ngn = 10 and12 days if Ngny = 20. Clearly, such a long
assessment time may be unacceptable in most applicationaddress this shortcoming,

the decentralized system was introduced in Section 2.7reirhthe development was car-
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ried out in terms of a power plant application. While the iesg decentralized resilient
monitoring system was shown to provide both timely and bddiassessments, a rigorous
analysis of the developed approach was not provided. Thierduchapter is devoted to this
issue.

The decentralized system is based on a decomposition oéttssnetwork into sub-
networks, each monitoring a small subset of plant procegahlas. In the sequel, we
assume that each of these subnetworks monitors a singleggeariable, although the
case of subnetworks monitoring a group of process variatdede considered similarly.
Thus, if a plant has\/ process variables (e.g., temperatures, pressures, flew, r&iic.),
the sensor network§N, is decoupled intd/ subnetworksSNy, ..., SN,,, leading to the

assessment time in each subnetwork given by

To; = /‘szNSNi ) (3.2)

where Ngy;, is the number of sensors monitoring the process variabléherefore, even
if the pre-exponential factor is somewhat increased @.£> «, Vi), the assessment time
would decrease substantially Nsn, << Ngn, Vi. For instance, iftNgn, < 2, Vi, and
r; = 1.5sec,Vi, the process variable assessment time is lessobe) irrespective aVgy.

In other words, the assessment of each process variablé beutarried out sufficiently
rapidly, and the resulting information could be used fonpleondition assessment practi-
cally instantaneously (based on the algorithm providedhagger I1).

Clearly, this decomposition may reduce the quality of pssoceriable and plant condi-
tion assessment. For example, if all sensors monitoringegss variable are attacked, no
assessment of its state would be made. To avoid this deficiacemploy the so-called
decentralized inference calculatio(a, as it is termed in Chapter Il, knowledge fusion cal-
culations), whereby mutual influences of process variadnesaken into account. In terms

of the power plant, this implies that even if all boiler serssare attacked, the sensors of the
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other components may be used to infer information about dlilerbstatus. The question
arises: Under which conditions this decomposition leadwtmformation losses, as com-
pared with thecentralized inference calculationgilized in [17]? The main contribution
of this chapter is in providing an answer to this question.

The outline of this chapter is as follows: Section 3.2 introgs the model considered
and formalizes the problem addressed. In Section 3.3, gwitims used in the central-
ized and the decentralized process variable assessmeiiissaribed. Section 3.4 provides
a sufficient condition under which the decentralized infieeecalculations lead to no infor-
mation losses as compared with the centralized ones. ¥imalSection 3.5, a sufficient

condition for lossless decentralization is derived.

3.2 Model and Problem Formulation

Consider the plan& with process variable¥;, i = 1,..., M, each viewed as a random
variable,V;, with the universal setly, = {Ny,, Ay, 1, ..., Ay, n,—1}, WhereNy, stands for
Normal andAy; ; for an anomaly of typé (induced either by a physical attack or mal-
function), andn; is the cardinality of¥,,. The coupling among the process variables is
characterized by a set of conditional probabilitiés;|V;], i # j,4,j =1, ..., M.

The plantG is monitored by the sensor netwdR comprised ofVgn sensors, which
could be either under a cyber-physical attack or malfunctibhe SIN can be viewed as
a set of subnetworksSN;, i« = 1, ..., M, each monitoring the process variablfe and
consisting of Ngn, sensors, so th@:ﬁ1 Nsn, = Nsn. Since the state spacg,, of SN
consists of vectors comprised b6 and0’s, the cardinality ofX is 2¥s~. Similarly, the
state space &N, is Y; with the cardinality2’Vs~:, i = 1, ..., M. Clearly, X can be viewed

as the Cartesian product Bf’s,

X =Y xYyx Yy, (3.3)
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and each state € X can be viewed as the ordered concatenation of the sjates’, i.e.,

€r = (y17y27 7yM)

(3.4)

Given this model, the centralized and the decentralizegkassents of process variables

Vi,i=1,..., M, can be symbolically represented as follows:

Centralized:

optimization overX .

{PylVil @ by, [Vi], Vi # i} = pa[Vi] ;
Decentralized:

optimization overy;

The notations involved in these expressions are:

Centralized:

statey; € Y.

yj € Yj.

{Dy: Vil @ Dy [Vi], Vi # i} = Dz g,y Vil

Symbol® denotes the Dempster-Shafer combination of the pmf’s vraahl

(3.5)

(3.6)

Dy:[Vi] is the probability mass function (pmf) df;, estimated wheiSIN; is in the

py,[Vi] is the centralized inferred pmf df, calculated wherSIN; is in the state

* p.[Vi] is the pmf ofV, estimated wheS8N is in the stater = (y1, y2, ..., yn) € X.

* p,+[Vi] is the centralized optimal pmf df;, estimated wheSN is in the stater; €

X, resulting in the smallest entropy pf[V;].

Decentralized:
* py,[Vi] is the same as in the centralized case.
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* py:[Vi] is the decentralized optimal pmf 6f, estimated whei$N; is in the state

y € Y;, resulting in the smallest entropy pf [V;].

* Dy [Vi] is the decentralized inferred pmf &f, estimated whelSN,, j = 1,..., M,

Jj #1,isinits statey; € Y}, resulting in the smallest entropy of [V;].

......

isin the statdy;, v, ..., v3,) € X.

While the calculations involved in evaluating these pmfis described in Section 3.3,
below we comment on the main differences between the ca®dahnd the decentralized
process variable assessments:

(o) The centralized system uses all the pmfig|V;] andp,,[Vi], Vj # i, in order to
evaluater;, whereas the decentralized one uses only the locally opgimés, p,-[V;] and
py: [Vi], to evaluateyy, 3, ..., y3,). The latter may lead to information losses, which is a
drawback of the decentralization.

(6) The centralized system carries out the optimizatioX jrwhereas the decentralized
oneinY;, i = 1,..., M. The latter leads to a reduction of the process variablesassnt
time, which is the advantage of the decentralization.

The main problem addressed in this chapter is as followsivBarsufficient condition

under which the decentralization leads to no loss of infaimnaformalized as

and, consequently,
Dly; yssees yh)[vi] = por[Vi], Vi. (3.8)

A solution of this problem is given in Sections 3.4 and 3.5.itAsrns out, the sought

conditions depend on the properties of the process var@aleling, P[V;|V;], i # j,
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1,7 = 1,..., M, and on the monotonicity property of the Dempster-Shafertmoation rule

applied to the set of pmf'g, [Vi],i,5 = 1,..., M.

3.3 Centralized and Decentralized Process Variable Assasent Pro-

cedures

Although the techniques utilized here are the same as int€h#pthey are briefly de-

scribed below for the sake of clarity.

3.3.1 Centralized case

Assessment gf,, [V;]: If the statey; € Y; has a single non-zero element, the evaluation
of p,,[V;] is carried out based on the data reported by this sensorsddta quality DQ).
The sensor’s data anB() are the inputs to the h-procedure, the steady state of which

provides the sought pmf:

1-DQ

Py Vi = 0] =p[S; = 0]DQ + , 0 €Yy, i=1,2,...,. M, (3.9

whereSs; is the random variable characterizing the sensor gat&;= o], 0 € Xy, isits
pmf; Xy is the universal set of;; and|>y,] is the cardinality oBly,. As it follows from

(3.9),p,,[Vi] = p[Si], (i.e.,S; faithfully representd) if DQ = 1 andp,,[Vi] = (i.e.,

IE 1
Dy:[Vi] is uniform and, thus$; carries no information abouf) if D@ = 0.

If ; has more than one non-zero element, for each of them the prwéisated using
(3.9) and then the Dempster-Shafer rule is used to combesethmf’'s. For instance, if

has two non-zero components, resultingjm [Vi] andp,, »[V;], the combined pmf is

DPyi1 [V—U]pyl Vi = o]
Z PyalVi = olpy, 2[Vi = o]

O'EEV

Py, [Vz = ‘7] :ﬁyi,l;yiﬂ[vi = ‘7] = , 0€Xy,. (3.10)
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Wheny; has more than two non-zero components, say 2 non-zero components, the

pmf p,,[V;] is computed similarly, i.e.,

k
H ﬁyuj [‘/Z = U]
j=1

Z Hﬁyuj[‘/; = U]

O'EEVL. j=1

Dy, Vi=o]=

Lo ESy, i=1,2, ..M. (3.11)

Assessment gf, [V; = o]: If SN is in the statgy; € Y] leading top,, [V}], the induced

pmfp,.[Vi], j # i, is calculated using the total probability formula,

by Vil = Y PVilV; = alp,[V; = 0], 0 € S, y; €Y), i # J, (3.12)
O'EEV].
whereP[V;|V}], i # j, is the process variable coupling introduced in Section 3.2
Assessment g, [V;]: If eachSN;, j = 1,..., M, is in the state;; € Y}, the overall
network,SN, is in the stater = (yi, 2, ..., yar) and, thereforep, [V;] can be calculated by

combiningp,, [Vi] andp,, [Vi], i # j, using the Dempster-Shafer rule:

ﬁx[vl = U] = ﬁ(y17y2 ~~~~~ yM)[Vi = U] = , 0 € ZVi' (3.13)

Assessment o, [Vi]: This is carried out using the method of rational contraller
where one controller is assignedto ed¢h = 1, 2, ..., M, with the decision space beidg
and the penalty function being the entropypofV;], z € X,i =1,2,..., M. These rational
controllers were introduced in [17], and shown to perfornil wneall cyber-physical attack
scenarios considered. The application of this method tesulhe identification of}, thus

leading top,«[V;].
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3.3.2 Decentralized case

Assessment of,, [V;]: This assessment is carried out in the same manner as in the
centralized case.

Assessment af,-[V;]: Here, a rational controller is associated with each swiordt
SN;, 7 = 1,2,..., M, i.e., it operates in the decision spadewith the penalty function
being the entropy of,, [Vi], y; € Y;. As aresult, the statg’, corresponding to the smallest
entropy ofp,,[V;], is identified.

Assessment of,- [Vi]: This is carried out using the above pmf [V;] and the process

variable coupling”[V;|V}], i # j, by applying the total probability formula:

Vil = Y PV =olpy;:[V; = 0], 0 €5y, y; €Y, i # . (3.14)

O’GEvj

Assessment Qf,: ;s )[Vi]: This is carried out using the pmffs; [Vi] andp,. [Vi],

2500y y;u

1 # 7, by applying the Dempster-Shafer combination rule:

M
Hﬁy;f Vi = 0]
N =1 .
Pl sV = 0] = d L, o€y, i=1,2,...,M. (3.15)

3.3.3 Assessment entropy

As described above, the assessmentg,ofl;] andp,:[Vi], i = 1,..., M, are based on
selecting a pmf with the smallest entropy. In Chapter Il,.$hannon entropy, [55], defined
by

I{p[V]} == > plV = o]logs, p[V = o], (3.16)

oEXYy
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has been used for this purpose. It turns out, however, tedRémyi-2 entropy [56],

Hy{p[V]} = —logs.,,, (Z {plvV = U]}2> ; (3.17)

oEXYy

is more appropriate for the problem at hand. The reason isabkat is shown in [57], the
Renyi-2 entropy is more effective in quantifying the soledl*guesswork” G17), which

is defined as the expected number of trials necessary to ¢uessitcome of a random
variable. Since the assessments in both the centralizethanmtcentralized cases are con-
ceptually related ta-1/, and since the Renyi-2 entropy has been shown to be effentave
number of random signal processing problems, [58—60], thent chapter useS,{p[V]}

in both the centralized and the decentralized processhlarggssessment procedures.

3.4 Condition for Lossless Decentralized Inference Assaagnt

In this section, we derive a sufficient condition under whichloss of information takes
place due to the decentralized inference calculation apaoed with the centralized one.

Represent the conditional prifV;|V}], i # j, as a set of column-vectors:
_ oM () (nj) 1) (2) () ni ;o4

wheren; is the cardinality ofly,. Recall that the components of tpe,;;’s, are on|0, 1]

and their sum id. Introduce:

Assumption lll.1. (a) The2-norm of all the columns of matri®[V;|V}], i # j, are the

same, i.e.,
1 2 n; . .
1Py Il = [Py [l = -+ = [PV |2, i # J. (3.19)
Vi IV Vi
(b) The inner products of every pair of columns of mathii/;|V;], i # j, are the same,
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(1) @ N _ @ B3\ _ _ =) () e,
<pVZ-|V]->pV,L-\Vj> = <pvi\vj>pvi|vj> == <pvi\ij ,pvifvj), L . (3.20)

While this assumption seems quite formal, its practicallicagion is as follows:

Lemma IIl.1. Under Assumption Ill.1, if the pmf'g,[V;] and p,,,[V;], I # m, I,m €
Y;, have equal information about the process variable then the inferred pmf'g;[V;]
andp,,[Vi], Il # m, ,m € Y}, i # j, calculated according t¢3.12) also have equal

information about/;. In other words,
Ho{pi[Vi]} = Ho{pw[V)]} = Ho{pi[Vil} = Ho{pwlVil}, L #m €Y, i # j. (3.21)

Proof. See the Appendix. [ |
Thus, Assumption Ill.1 guarantees that the quality of iratlpmf’s remain the same,

if the original pmf’s are equally informative. This propgtéads to

Theorem 1ll.1. Under Assumption Ill.1, the optimal decentralized infelrmnfpy; Vi,
calculated according3.14) has the same information as the most informative cenadliz

inferred pmf, calculated according {8.12) i.e.,
Ha{py; [V} = min Ha{p,, V). (3.22)

Proof. See the Appendix. [ |
Thus, this theorem provides a sufficient condition undercwhhe decentralized in-

ferred pmf (which requires the pmf evaluated at ogilye Y;) does not lead to information

losses as compared with the centralized inferred pmf assggs (which require the pmf's

evaluation at all stateg, € V).
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3.5 Condition for Lossless Overall Decentralized Assessmie

As mentioned before, the decentralized optimal pmf of al tlis are evaluated at the
sensor network states;, vs, ..., y1,) € X. Regarding the centralized system, the optimal
pmf of V; is evaluated at the sensor network stgte= X. Given this situation, a question
arises: Under what conditions are the decentralized anddghtalized optimal states the
same, i.e.z; = (y7,v5,...,y3,), Vi? This question is addressed below.

Recall that the calculation of - .- . y*M)[Vi] is based on the Dempster-Shafer (D-S)
combination rule (3.15). This rule is known to be, in genenain-monotonic [61] in the
sense that D-S combination of two pmf’s, s@yjV'] andp.[V], may have larger entropy
than either of the constituent pmf's. This issue has beeaesiiyated in [13], where it
has been shown that this does not take place (i.e., the D-®ination rule is, in fact,
monotonic) if the constituent pmf’s are sufficiently “clé4e each other. As it turns out, a
condition for the overall lossless decentralization delsean the monotonicity property of

D-S rule. Specifically, introduce:
Assumption lIl.2. The Dempster-Shafer combination rule is monotonic on thefganf’s

{py,[Vi]},i,5 =1,2,..., M, in the sense that

If HQ{ﬁyJ[‘/Z]} S HQ{ﬁQJ [‘/Z]}v y]vgj € )/}7 v]v
thenH?{ﬁ(yl,yz ~~~~~ yM)[V;]} < H2{13(Z717z72 ..... ?W)[vi]}a Vi.

(3.23)

This assumption implies the monotonicity mentioned abasestated by:

Lemma lll.2. Under Assumption 111.2,

H2{ﬁ(y1,y2 ~~~~~ yM)[V;]} < min {HQ{ﬁyl [VZ]}v H2{ﬁyz [VZ]}> e HQ{ﬁyM [‘/Z]}} , Vi (324)

Proof. See the Appendix. [ |
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Now, consider the following theorem:

Theorem I11.2. Under Assumptions Ill.1 and I11.2, the centralized optiratdtex is the
same for alli, i.e.,z; = x*, and, moreoverg* coincides with the decentralized optimal

state(y;, vs, ..., y3,)- Therefore,

Ho{piyr s i Vs = Ho{poe [Vi]}, i = 1,2, ., M. (3.25)

Proof. See the Appendix. [ |
Note that although this theorem is not constructive (sinssunption Ill.2 cannot be
verified in a decentralized manner), it nevertheless spsctionditions for a lossless de-

centralization.
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CHAPTER IV

Resilient Control Systems: Model Predictive Control

Approach

4.1 Introduction

The resilient control system is intended to calculate ptantrol inputs based on the plant
(or sub-plant) model and the process variable pnjf%;], i = 1, ..., M, provided by the
resilient monitoring system (see Chapter Il). Here, thescibje of the control design is
to steer the process variable to the desired value in thdysstate, while ensuring that it
remains in a safe domain in the transients. If the above pwiéli® of zero entropy, clas-
sical control techniques could be applied. However, wherstmsors are under attack, the
entropy is non-zero, and new control techniques are negesthis is because the feed-
back system to be developed can be neither output-basedaterspace-based, but must
be “pmf of the output-based” control.

The approach developed here can be briefly described asfollet U, ;. be the con-
trol input, which maintains the process variable in the si@ain irrespective of the plant
status, and/y.s be the control input, which is necessary to ensure that thegss variable

would take the desired value if the process variable pmf lead entropy. Then the re-
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silient control input/,., is defined a#/;os = AUges + (1 — A)Usage, Where) < A < lisa
weighting factoywhich is selected based on an optimization procedure.ifgeky, when
the entropy ofp[V;] is small, the inpul/y is suitable for resilient control, and, therefore,
the A is selected to be close 1o However, when the entropy ¢fV;] is large, thd/y.s may
steer the process variable outside the safe domain, ance héeA is selected to be close
to 0. The above mentioned optimization procedure for calaudptl is similar to those of
model predictive control, [1], but is based on the procesmkie pmf, rather than on the
process variable itself.

Although the current chapter presents just the initialltegn resilient control systems,
we believe that they form a foundation for extensions andréutievelopments in this area

of control research.

4.2 Results To-Date in Resilient Controller Design

The architecture of the resilient control system is showRigure 4.1, which combines the
resilient monitoring system architecture of Figure 2.3wiite pmf-based contral/. ;.

The design of this controller is based on the following: Assuhat a sub-plar@ (for
the sake of brevity we omit its subscript) is described by3H&O system

X,(n+1) = A;x,(n)+ ByUes(n), x, €RY, Upes € R, n=0,1, ...,
(4.1)

V(n) = C,x,(n), Ve R, n=0,1,..., 0 € {Ly,Ny,Hy},

where the paif A,, B,}, 0 € {Ly,Ny,Hy}, is controllable, and the eigenvalues4f,
o € {Ly,Ny,Hy}, are in the interior of the unit circle on the complex planefibe the

resilient control input as follows:

Ures(n) = A(n)Uges(n) + [1 — A(n)]Usate(n), m = 0,1, ..., (4.2)

whereUs,e.(n), Uges(n), andA(n) are to be determined. This is accomplished below.
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Figure 4.1: Proposed architecture of resilient controtesys

4.2.1 Calculation ofUg.

The value ofU,, is selected as an open-loop control input to ensure thattéaelyg state
of the process variable is within the safe doma@if},,,, Viuax|, irrespective of its status. To
formalize this, introduce the d.c. gain,, 0 € {Ly, Ny, Hy}, of the above state space

system in the status, o € {Ly, Ny, Hy}, as

Qg = Ca[] - AU]_1B0'7 (S {LV7NV7HV}7 (43)

and denote the minimum and maximum values of these d.c. gains

Omin = min {og,,, any, 0y o Omax = max {og,,, any,, o, - (4.4)

Introduce the following assumption:

Assumption IV.1. The minimum and maximum values of the d.c. gains of the pces
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variable are such that

C]{I‘Ila.X Vmax

(4.5)

;
Q'min Vmin

whereV,;, andV,,., characterize the safe domain of the process variable.

Now, consider the following lemma:

Lemma IV.1. Under Assumption IV.1, the value of the inplQt;. can be selected as any

constant in the interval

Vmin Vmax:| . (46)

Usafc c |i )

Qmin Omax

Proof. See the Appendix. [ |
Thus, the above lemma implies that undgy;. the steady state value of the process
variable is in the safe domain, i.€.t.t; € [Vinin, Vinax), Yo € {Ly, Ny, Hy }.
In a typical feedback control system, the sensor measuitsroan be used to determine
the initial conditionx(0), of the plant; for instance, this may be accomplished byziri
an observer. Then, based on the outputs of the observertm@lcioput can be calculated
such that the resulting closed-loop system satisfies betlstéady state and the transient
performance specifications. However, in the current sdnathe sensor measurements
may be compromised, and, therefore, the use of an obseryenohde appropriate. Thus,
we consider the following scenario: Assume that at time- 0, the sub-plant is in the
steady state under the inplit,s., i.e.,

XO’(O) - [[ - AJ]_lBUUsafea (S {LV7NV7HV}7 (47)

V(O) = CCTXCT(O)7 o c {LV7 NV7 HV}7
where, due to Lemma V.1, we ha\ié(o) € [Vinin, Vmax|, irrespective of the status €
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{Ly, Ny, Hy}. Here, the problem is to determine the specifithat takes place at = 0,
and, based on this information, compute an “appropriatetrobinput so that the control
objectives are met, i.e., the process variable takes theedaslue in the steady state, while
remaining in the safe domain in the transients. The firstqfattis problem is solved using
the resilient monitoring system, which is assumed to prtfte estimate of the pmf of
the process variablg[V (0) = o], o0 € {Ly, Ny, Hy}, attimen = 0. (Here, the resilient
monitoring system may be viewed as the “observer”.) Thersgpart of the above problem

is addressed below.

4.2.2 Calculation of Uy,

To defineUyg., introduce the two-degree of freedom control ldWy,, which steers the
process variable to the desired vallig,, if the actual status of the process variable were

o.

Ua(n) = _Kl,aﬁa,Uo (n) + KZ,J‘/desa n = 07 17 27 —y O € {LV7 Nv, HV}v (48)

wherex, ;;, € R?, 0 € {Ly, Ny, Hy }, is the “predicted” state vector of the sub-plant under
the inputU,, o € {Ly, Ny, Hy}, i.e.,

)A(o,Ug(n + 1) = AU)ACU7UJ(TZ) + BOUO(H), n = 0, 1, e, O E {Lv, Nv, Hv}, (4 9)

X0, (0) = %,(0), 0 € {Ly, Ny, Hy }.
As it may be observed from this equation, the initial coritix, ;;, (0), for the prediction
is the same as the initial state vector of the plapt)) (defined in (4.7)). In the control law
(4.8), theK;, € R is a row vector of feedback gains, selected so that the eidiges
of (A, — B, K, ) are within the unit circle, and th&, , € R is a scalar, selected so that
the d.c. gain of the closed loop transfer functiéf,,C, [z — (A, — BC,KL(,)]_1 B, Is

1. Clearly, if the actual status 6f is o, the inputlU, (n) would steer the process variable to
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Vies- HOwever, since the status bfis unknown, the application of the incorrdét to the
plant may lead to a disaster. For example, assumelthatthe temperature of the boiler
andU is the opening of the fuel valve. In this system, the inpyt may correspond to
increasing of the fuel valve opening, while the inplits, or Uy,, may correspond to main-
taining or closing, respectively, of the fuel valve openifiterefore, if the temperature is
actually High, but the sensor projects Low (due to an attaakexplosion may occur if the
fuel valve opening is further increased (Whép, is applied). Thus, to alleviate this prob-
lem, we synthesize the control input based on the estimatédzyl’ (0)], of the process
variable.

Specifically, defind/y.; as the expected value bf, with respect to the above pmf, i.e.,

Uges(n) = p[V(0) = Ly|UL, (n) + p[V(0) = Ny ]Ux,, (n)

3>

(4.10)

In the above control law, we utilize the pmfl/(0)], rather than the pm#[V'(n)], for all
timen, since it is assumed that the dynamics of the attacker is rslogrer than that of the
closed loop system, implying that the sengup, which is involved in the)[V'] evaluation
(see Chapter Il for details), remains the same. Furthernasr@ may be observed from
(4.10), if the entropy of[V(0)] is close to0, the inputUa.(n) is suitable for resilient
control; however, if the entropy qi[V/(0)] is close tol, the inputUga.s(n) may steer the
process variable outside the safe domain. To overcomeribiidgm, we define the resilient
control input as mentioned in (4.2), i.€l(n) = A(n)Uges(n) + [1 — A(n)]Usate, Where
0< A(n)<1,n=0,1,2,...,Iis the weighting factor, which reduces the aggressiveoiess

Uqes(n). The calculation of this weighting factor is described next

4.2.3 Calculation ofA

The goal here is to selegt such that'/,., steers the process variableifg, in the steady

state, while ensuring that the process variable remaifig,if, Vinax| during the transients.
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To accomplish this, we predict the future values of the slalpipstates and the outputs,

under the input,, i.e.,

XoUo (N + 1) = AXo v, (0) + Z Afr_kBaUreS(n +k—1),

k=1

X, Ures (0) = x,(0), (4.11)

Vo'yUres (n + Z) = CU}A(0'7Ures (n + Z)?
n=201,..,1=12, .., Np, o c {Lv, Ny, Hv},

whereV,, is the duration period of the prediction, and, as beforejrtigl condition for
the predictionx, (0), is defined in (4.7). (The above expression is obtained asdlution
of the discrete-time LTI system (4.1).) As described beltve predicted values of the
process variabldf/U,Ures, are involved in the previously mentioned optimizationgadure,
which is used to computd.

Based on the definition (4.2), this weighting factdican be considered as a parameter

of the inputl,, i.e.,
Uses(n) = Uyes(n; A(n)), n=0,1,.... (4.12)

Similarly, based on the prediction model (4.11), thean also be considered as a parameter

of the predicted process variable, i.e.,

~ A

VU,Ums<n + 1) = VO’UYCS(H + 1; A(n)), n = 0, 1, ey O - {Lv, Nv, Hv} (413)

Clearly, if these predicted valu€g, ;... (n+1; A(n)), V,.u,.. (n4+2; A(n+1)), ..., Voo, (n+
Ny; A(n+ N, — 1)), are required to approach and eventually track the desakes W .,
the weightsA(n), A(n+1), ..., A(n + N, — 1) must be selected appropriately. To accom-

plish this, introduce the following optimization problemhich, as mentioned before, is
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based on the ideas of model predictive control:

minimize . Z > %Wg [Vo,Urcs(nJri;A(nJri—1))—Vdos]27

A(n),A(n+1),...,A(n+Np 21 o=Ly Ny Hy

. . (4.14)
subject to Vinin < Vo (n+4;An+1i— 1)) < Viax,

n=0,1,...,1=1, ...,Np, o€ {Lv,Nv,Hv},

WhereVO,Um is computed using (4.11). TH&,’s, involved in the above penalty function,

are selected as
PV (0) = o]\ ™
Wo - , O S {LV7 NV7HV}7 (415)

whereey, < 1 andNy, > 1 are design parameters. My, is selected to be large, thé,
is smallifp[V (0) = o] is small (i.e.p[V (0) = o] < ew), andW, is large ifp[V (0) = o] is
large (i.e.p[V (0) = o] > ew). The duration periody,, of the prediction must be selected
so that it is not too small, which makes the controller resgooscillatory, nor too large,
which increases the computational complexity of the sotuaf (4.14).

We assume that the solution of the above problem, (4.1%assilble for all timez (this
is termed as recursive or persistent feasibility, [62]) ve®i the solutionA*(n), A*(n +
1),..., A*(n+N,—1), we utilize onlyA*(n) to computd/,s(n), while A*(n+1), ..., A*(n+
N, — 1) are discarded (as it is usual in model predictive controipaly, this U,.(n) is
applied to the plant.

Since the actual states of the sub-plant cannot be obseitvedtopping rule of the

above optimization procedure is selected as follows:
[XoUes (0 + 1) = Xo 1,0 (1) || < €stop, Vo € {Ly, Ny, Hy }, (4.16)

whereeg,, << 1 can be chosen as desired.

Given the control design described here, it may be impottectiaracterize the stability
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of the closed loop system and the steady state value of tleegsovariable (if it exists).
Assuming that this steady state exists, one of the possiéns w0 characterize the efficacy
of the resilient controller may be to evaluate the pmf of thecpss variable in the steady
state, denoted a§jV], and determine under what conditions this pmf takes theeirg
probability in the Normal status. While, in the current wattkese issues are not addressed
for the case of dynamic plants, below we consider the cas&at€ plants, and provide a
sufficient condition under which[Vy], indeed, takes the largest probability in the Normal

status.

4.2.4 Characterization ofp[V] properties

Consider the static sub-plant

l'g(n) = OngreS(n), Ty € R, n = 0, 1, S {Lv, Nv, Hv},
Uros (O) = Usafc 5 (4 . 17)
Vin) = z,(n), n=0,1, o € {Ly,Ny, Hy},

where, as before, the process variabiléakes values in the interv@l,in, Vinax), With the
sub-intervalg Vi, R1), [R1, Rs), and Ry, Vinax) specifying the Low, Normal, and High
domains, respectively. Denote the actual gain of the sabt@lsa,.. € {aL,, an,,an, },

and define the sub-interval.; as

(

[Vmim Rl)a if V(n) S [Vmina R1)7

Iact(f/(n)) = [Ri,Ry), ifV(n)€[Ry,Ry), 7=01 (4.18)

[R27 Vmax]a if V(n) S [R27 Vmax]a

\
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Assume that one sensor monitors the process variable, tiinet lsensor measurements be

represented by. Further, assume that the model of the attacker is as follows

S(n) =k,V(n)+d,, n=0,1, (4.19)

wherek, andd, are the gain and the bias, respectively, of the attackeredas the data
guality acquisition procedure, described in Chapter kaih be shown that the sendot)

is a function of the abovk, andd,, i.e.,
DQ = DQ(kaada)' (420)

Introduce the following assumption:

Assumption IV.2. The attacker gain and bias are such that

kaUsafeaact + da € Iact <‘~/(0)> . (421)

The implication of this assumption is as follows:

Lemma IV.2. Under Assumption V.2, the actual and the estimated pmf¥ at time

n = 0 take the maximum probability at the same status.

Proof. See the Appendix. [ |
The inputlU, is calculated as described in Subsections 4.2.1-4.2.&rigl¢he value
of this input at timen = 1, i.e., U,«(1), defines the pmf o¥ at timen = 1, i.e.,p[V/(1)].
(Note that since the plant is static, the process variabitetise steady state at= 1. This
implies that the pmp[V| is the same as the pmfV/(1)].) Thus, to characterizg]V,|, we
have to computg[V/'(1)], and determine if it takes the maximum probability in the idal

status. To accomplish that, introduce the following deifinit
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Definition IV.1. The pmfp[V/(1)] is said to be theorrect permutatiorof the pmfp[V/(0)]
if:

(i) both the pmf’s are comprised of the same probabilities;

(i) the pmfp[V (1)] takes the largest probability in the Normal status, irretipe of the
pmf p[V(0)].

[
Since the sub-plant is considered to be static, select trarder/V,, involved in the
optimization problem (4.14), als Further, for simplicity, assume that the parametgr,

also involved in (4.14), is selected asThen,

Theorem IV.1. Under Assumption V.2, the plant inplt.s results in the pmp[V(1)],

which is the correct permutation of the pfi/(0)], if

aLy, tany, tamy, H[3cact —ar,, —any, —any, | DQ(ka,da)
kavdesaact aiv+O‘I2\IV+Q%IV+[3a§ct_a%V_al%lv_alziv}DQ(kavda) + da S [Rla R?) (422)

Proof. See the Appendix. [ |
This theorem implies that #, andd, are bounded, as characterized by the expressions
(4.21) and (4.22), then the resilient control input, indemtsures that the process variable

takes the Normal status with the maximum probability.

4.3 Example

While the previous section provided sufficient conditioossthe efficacy of the developed
controller for static systems, in this section, we offer aareple showing that the resilient
control system works for dynamic systems as well.

Assume that the sub-plant (4.1) is a first order systemgi.e. 1. Further, assume that
the parameters involved in the sub-plant, the processhltariand the resilient controller

are as follows:
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* Sub-plant parameters:

— ALV = 0.9, BLV = 0.1, CLV =1,
— ANV = 0.5, BNV = 0.75, CNV =1;

— Ay, =0.67, By, =1, Cy, = 1.
» Process variable parameters:

~ Vinin = 1, Vi = 200, Ry = 220, Ry = 400,

— Vies = 100.

 Resilient controller parameters:

- Usafc = 50:
— KLLV = 1.34, K27LV = 3, Kl,NV = —4, KZ,NV = —0.134, Kl,HV = 0,
Ko, = 0.07;

— ew = 0.01, Ny = 10, N, = 5.

Assume that the sub-plantis in the steady state if the fatigwtopping rule is satisfied:

|"'i'0'7Ures (n _I_ 1) - i'0'7Ures (n)| < ]‘0_47 \VIO- € {LV7 NV? HV}? (423)

and let N, denote the time at which the above takes place. (Note thalf@cenarios
considered below)N, is determined to be less th@lsec.) As before, assume that the

attacker model is characterized by

S(n) =koV(n) +dy, n=0,1,.... (4.24)

We evaluate the performance of the resilient controllereundne attack scenarios,

described in Tables 4.1 and 4.2. In these tables, the quafitis the average value of
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A*(n), evaluated during the transients, i.e.,

Ngs—1
> At(n), (4.25)

n=0

1
NSS

Z:

and the quantitie,, d,, DQ, p[V(0)], andp[V] are the same as before. Theis in-
troduced to characterize the aggressivene$§Qfin each of the scenarios considered. In
Scenarios 1 - 6, the value df is fixed at10, and the performance is evaluated for various
values ofk,, whereas in Scenarios 7 - 9, the valuépfs fixed at0.9, and the performance

is evaluated for various values @f. In all these scenarios, we assume that the actual sub-
plant status is Low.

As it may be observed from the above tables, the correct gation of the pmf's,
p[Vss) andp[V (0)], takes place in Scenarios 1,2,3,7, and 8. Clearly, in theseasios, the
attacker’s modifications of the sensor measurements ativedl small, and, therefore, the
resultingp[V(0)] contains a sufficient amount of information about the stafute pro-
cess variable (sincB(Q is close or equal td). This information is utilized by the resilient
controller to steer the process variable into the Normala@an(see Figure 4.2, where the
trajectories ofi’ and A* are illustrated for Scenario 3). Regarding Scenarios 44h6
9, it may be observed that the pmp§l/,s] andp[V (0)] are the same. Here, the attacker’s
modifications of the sensor measurements are relativejg Javhich results ip[V/(0)] not
containing a sufficient amount of information about theustaif the process variable (since
DQ is relatively small). Thus, in these scenarios, the redilgntrol input is not aggres-
sive, which ensures that the process variable is maintam#ét same domain, i.e., Low
(see Figure 4.3, where the trajectoriedoénd A* are illustrated for Scenario 5).

Thus, the results obtained here indicate that the modeligiiezl control-based ap-
proach to resilient feedback systems can be viewed as atfateolution of the resilient

control problem, and should be explored in more detailséftiture.
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Table 4.1: Performance of the resilient controller for Soers 1 - 6 ((, = 10)

Scenario| k, | DQ PV (0)] P[Vas] A
1 111 1,0,0] 0,1,0] 1
2 1095097 | [0.97,0.015,0.015] | [0.015,0.97,0.015] | 0.11
3 0.90 | 0.85 [0.9,0.05,0.05] [0.05,0.9,0.05] 0.12
4 1085|070 [0.8,0.1,0.] 0.8,0.1,01] | 0.14
5 058007 [0.38,0.31,031] | [0.38,0.31,0.31] |0.06
6 |0.50]0.02]| [0.34,0.33,033 | [0.34,0.33,0.33] | 0

Table 4.2: Performance of the resilient controller for Soes 7 - 9 £, = 0.9)

Scenario| d, | DQ p[V(0)] P[Vas) A
7 151 0.85 | [0.9,0.05,0.05] [0.05,0.9,0.05] | 0.12
8 20 | 0.85 | [0.9,0.05,0.05] [0.05,0.9,0.05] | 0.12
9 20 | =~ ~ [1/3,1/3,1/3] | = [1/3,1/3,1/3] 0
Trajectory of the process variable
300 T T T T T
250 Vma);
I e
E or Vdes |
> 100
T Vmini
0 ———————————————————————————————————————————
-50 | | | | | | | | |
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Figure 4.2: Trajectories df and A* for Scenario 3
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Trajectory of the process variable
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Figure 4.3: Trajectories df and A* for Scenario 5
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CHAPTER YV

Actuator/Sensor Health Monitoring and Control Using

Synchronous Detection

5.1 Introduction

In Chapter IV, a resilient plant control input is synthesizising the information provided
by the resilient monitoring system. In the current chapterconsider a different approach,
namely, the “nominal” feedback controller is modified basadhe health assessment of
the sensors and actuators (which are assumed to be unds) atfes mentioned before,
this health assessment is carried out using the methegrmhronous detectiomvhich is
widely applied in communication systems [2].

Resilient feedback systems, considered in this chapterfemdback control systems
that are capable of identifying and mitigating maliciouseks on their sensors and actua-
tors, wherein the attacks are intended to force the plapLotd deviate substantially from
the reference signal. In the absence of appropriate ideatin and mitigation strategies,
attacks may lead to unwanted consequences, such as damageplant. For example,
consider the drive system of a Uranium gas enrichment d¢egéj which typically con-

sists of a three-phase AC induction motor, a controller,asgeed sensor [63—67]. Since
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this system operates in a closed-loop configuration, ankatta the sensor that forces it to
project a ‘low’ speed may lead to the actual motor speed tptangerously high values.

We assume that the attacker’s actions can be categorizeti@sd:
» Type 1 attack: The DC gain/s of the sensor or/and actuatmeisnodified,;
» Type 2 attack: A constantinputis projected as an output@sensor or/and actuator;

» Type 3 attack: A combination of the above two takes plaag, ¢he DC gain of the

actuator is modified, while a constant input is projectechasoutput of the sensor.

To illustrate these types of attacks, consider the nommath{attacked) feedback control
system shown in Fig. 5.1, whereili(s), A(s), P(s), and S(s) represent the transfer
functions of the controller, actuator, plant, and sensspectively, and, is the DC gain

of the sensor, i.e.5y = lim,_,.5(s). For this system, a Type 1 attack on the sensor is

K

4
P
v
o
Y

S

F 3
F 3

1
5

Figure 5.1: Nominal system

depicted in Fig. 5.2, while a Type 2 attack on the actuatoness in Fig. 5.3.

Given the above model of the attacker, our goal is to devisdesfies to identify

K

¥
Vs
¥

P

Y

Ll e

n—{Sa:
-

Figure 5.2: Type 1 attack on the sensor, liens .o S.(s) # So

—
= Attacker
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Attacker — — — €,

: S e

Figure 5.3: Type 2 attack on the actuator (attacker progectsnstant input,,)

malicious attacks on the control system and ensure thatdfiects are mitigated as quickly
as possible.
The development of the identification and mitigation praged is carried out under

the following assumption:

Assumption V.1. a) The controller, plant, nominal actuator, and nominasseare open-
loop asymptotically stable, i.e., the poles of the tranffexctions K (s), P(s), A(s),

andS(s) lie in the open left half plane.
b) The attacked actuator and the attacked sensor are opprgymptotically stable.

c) The nominal and the attacked closed-loop systems arepstioally stable.

|
Under Assumption V.1, and as illustrated in Fig. 5.4, therapph to the identification

of attacks comprises of:
» Adding a sinusoidal signal to the reference,;

» Multiplying the outputs of the actuator and tlg%g blocks by the same sinusoidal

signal;
» Computing the moving average of the signals resulting ftioenprevious step.

Under the above procedure, the outputs of the moving avdilag&s, z; andz,, are ana-

lyzed from the point of view of their consistency with the noal values. As explained in
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Figure 5.4: Identification of attacks using synchronougcléin

details in Section 5.2, attacks on the sensor and the acleathbtoz; andz, taking steady
state values that differ from their nominal ones, which gisse to the identification of the
attacker’s actions.

Regarding the mitigation of attacks, this is based on thateef the identification pro-
cedure. Specifically, in the case of Type 1 attacks, the D@sgaii the controller and the
Sio block are appropriately modified to ensure that the plantuilis close to the reference
signal, whereas in the case of Type 2 or Type 3 attacks, opemaitthe closed loop system

is discontinued. These procedures are explained in datafisction 5.3.
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Note that if the attacker modifies the gains of the sensor la@@dctuator such that the
closed loop system is unstable, then the signakndz, do not attain the steady state. In
this situation, as before, the operation of the closed lgspes is discontinued.

The remainder of this chapter is organized as follows: Astioead previously, the at-
tack identification and mitigation procedures are desdribeSections 5.2 and 5.3, respec-
tively. Timing issues are analyzed in Section 5.4. Finalyexample of the application of

the developed procedures is presented in Section 5.5.
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r4+asinwt 4 d Y
K » A = >
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Figure 5.5: Identification of attacks using synchronougd@&n— Simplified case
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5.2 Attack Identification

The development of the techniques in this and the subse®eetibns is carried out in
terms of the feedback control system shown in Fig. 5.5. Thet{d dynamics are assumed

to be characterized by the stable first order transfer fancti

P(s) = : (5.1)

whered is the DC gain and is the time constant. Further, the controller, sensor, atwta
ator are assumed to be static, with their gains denoted,as and A, respectively. Note

that these assumptions are made in order to simplify theeptagon of the material, and
that the techniques developed here can be extended to mopecosystems (e.g., higher
order plants, controllers with dynamics, etc.).

Given the above, the nominal steady state values of thelsignand z, can be com-

puted as
KA(l + KAd + w?t%)] o?
_ @ 2
“Lss { w22 + (1 + KAd)? } 2’ (5-2)
and
[ KAd(1+ KAd) 7 ao?
“2ss = Lﬂr? + (1 + KAd)J 27 (5:3)

respectively. These values are used below to ascertainaftaok has indeed taken place

or not.

5.2.1 Identification of Type 1 attack

Assume that both the sensor and the actuator are under a Bitzek, i.e., the gainS and

A are modified as, > 0 and A, > 0, respectively. Given this scenario, the steady state
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values ofz; andz, can be computed as

 [KA(14K A8 40?7?) | 2
Zl,ssa — w27—2+(1+KAadS—S“)2 2
(5.4)
[ KA. (14K Ad52) ] e
Z2;ssa — I w272+(1+KAad%)2 5 -

Using the above equations, the following expression$faand A, are obtained:

4z2,ssa— 0% +1/ (422,55a—0%)? =823 s5a(1+w?T2) (222,55a— %)
Se =05 :
4Zl,ssad

(5.5)
Aa — 221,ssa

Kla?—229 sal ©

These expressions are utilized in Section 5.3 to mitigaeffects of Type 1 attacks.

5.2.2 Identification of Type 2 attack

Assuming that a Type 2 attack takes place on the sensom ic®nstant input;,, is pro-

jected by the attacker, the steady state values ahdz, can be computed as
Oé2
ZLssa — KA?, Z2’ssa - 0 (5.6)
Similarly, under a Type 2 attack on the actuator, we have

Z1,ssa = <2,ssa — 0. (5-7)

The above expression also applies for the case of simul@niBge 2 attacks on both the

sensor and the actuator.
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5.2.3 Identification of Type 3 attack

Assume that a Type 1 attack takes place on the actuator, aiype 2 attack takes place

on the sensor. In this scenario,

2

(6%
Z1,ss8a — KA(l?a 22 ssa — 0. (5-8)

Suppose that a Type 2 attack takes place on the actuatoe @hype 1 attack takes

place on the sensor. Then,

Z1,ssa — <2,ssa — 0. (5.9)

Clearly, under attack, the steady state values otthare different from the nominal
ones. These results are summarized in Table 5.1.

Table 5.1: Steady state valueszpfandz, under various scenarios

[ ScenarigSignal | Z1ss | Za.ss |
Norminal B ZEr P E TR
system

KAo (14K AqdS2 40,272 2 KAudSa (1+KAudSe 2
Type 1 attack { w2r(2+(1+KAidSSa)2 )J % { w2T2+S(1(+KAadSSa§2)J %
onS andA
Type 2 attack orf KAY 0
Type 2 attack om 0 0
Type 2 attack 0 0
onS andA
Type 3 attack: KA,% 0
Type 2 attack orb and
Type 1 attack om
Type 3 attack: 0 0
Type 1 attack orb and
Type 2 attack oA
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5.3 Attack Mitigation

5.3.1 Mitigation of Type 1 attack

As described in Section 5.2, under a simultaneous Type ¢katta both the sensor and the
actuator, the steady state values of the signa#ndz, can be used to calculate the values
of the gainsS, and A,. These, in turn, are utilized to compensate for the effeCth®

attack by modifying the controllek” as K - and the; block as3- (see Fig. 5.6).

i Sin ot
L ——— x
+ Plant
r+asinwt 4+ KA d v
A a1 = A = e
- i a s+ 1
1
5 Saf
o sinwt —Y
_. ><
- 2T
M T w

3

Figure 5.6: Mitigation of Type 1 attack on the sensor and ttaator
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5.3.2 Mitigation of Type 2 or Type 3 attack

In the case of either Type 2 or Type 3 attack, itis clear thafeledback loop is disconnected
by the attacker. Therefore, this leaves us with no alteradiut to discontinue operation
of the control system. Normal operation may resume afteattaeked component/s is/are

either repaired or replaced.

5.4 Timing Issues

In some applications, there may exist a ‘critical’ time digm, 7,., beyond which it is un-
desirable for the plant output to be substantially difféfesm the reference. Obviously, it
is necessary that the time required to complete the ideatiibic and mitigation procedures
be less thaT,.. Below, we examine the duration of the former under the veritypes of
attacks.

In the case of a Type 1 attack, the transient response of $iieeng control system can

be partitioned into the following three time intervals:

» Time required for the plant output to go close to the newdstestate value, after the

attack takes place;

» Time required to calculate the new steady state values ahd z,, after the above

takes place;

» Time required for the plant output to go close to the refeeesignal, after the iden-

tification and mitigation procedures are applied.

We assume that the duration of the first time intervaliswherer is the time constant
of the plant transfer function. As for the second time in&rits duration isl’, whereT'
is the time period of the sinusoidal oscillations. Finallse assume, as before, that the

duration of the third time interval i87. Thus, the time /iy, required to identify and
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mitigate a Type 1 attack is

Tigm = 67 + T. (5.10)

Clearly, from the above expression, it is advantageousdaos#i” as small as possible.
However, as explained below, an arbitrarily smialor arbitrarily largev) makes it difficult
to detect the attack.

Assume that a Type 1 attack takes place on the sensor. DefjrendA ., as

Azl = |Zl,ss_ Zl,ssa|7 Az2 = |227ss_ 2’27ssa|a (5-11)

and consider, for example, the plot &f, versuswr, shown in Fig. 5.7. As seen in this
figure, it is not desirable to selegtlarge for plants with large, since the value of\,,
would be small, hence making it difficult to distinguish betm the nominal and attacked

scenarios. The underlying reason for this phenomenon ighbalant filters out the high
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Figure 5.7:A., vs.wt under a Type 1 attack on the sensor
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frequency sinusoidal signal. Thus, there exists a tradeziffeen the choice of frequency
of the sinusoidal signal and the difficulty of identifyingethttack.
Under a Type 2 attack, since operation of the feedback cosystem is discontinued

after the identification procedure is completéf,, is given by

Tigm = 37+ T. (5.12)

The above expression applies to the case of a Type 3 attacklas w
To summarize this section, we note that the identificatioth itigation procedures

developed in this work are effective’ifym < T..

5.5 Example: Application to Uranium Enrichment Centrifuge Con-

trol System

Consider a three-phase induction motor, whose transfetibmbetween the input voltage

and the rotational speed is given by (see [64]):

157
C4s+ 17

P(s) (5.13)

Assume that this motor is operated in the closed-loop cordtgan of Fig. 5.5, with the
parameters specified in Table 5.2. Further, assume thatzankett conducts a Type 1 attack
on the sensor, with the parameters of the attack providedhie™.3. Given these data, the

nominal steady state valuesgfandz, can be computed as

Zl,SS: 52, Z2,SS: 311 (5.14)

Similarly, the steady state valuesgfandz, under the attack can be calculated as

Zl,SS(l - 203, Z2,SS(1 - 307 (5.15)

79



The trajectories of the plant output, are illustrated in Fig. 5.8. As seen in this figure,
y deviates from the reference signalafter the attack takes place at timme- 15sec. As
described in Section 5.4, the time required /iy reach the new steady statgis= 12sec.
Further, a duration of' = 0.06sec is required to calculate the new steady state values of

Table 5.2: Parameters of the control system

Gains of controller, actuator, and sensorf K =20, A=2,5=1
Value of reference signal r =528
Amplitude and frequency of sinusoidal signal « = 25, w = 100

Table 5.3: Parameters of the attack

Attacked DC gain of sensarS, = 0.5
Time of attack 15sec

200

1800~ B
1600~ b
— y = 1100 rad/sec
g 1400~ i
£
©
© 1200~ b
> y =r = 528rad/sec
S 1000 b
i)
>
S 800" 1
c
8
o 600 b
400r T
200 T
Time of attack
| | | | | | |
0 5 10 15 20 25 30 35

Time (sec)

Figure 5.8: Trajectory of the plant outpuyt,

thez’s and identify the attack. Thus, the attack is identifietat15+ 37+ 7 = 27.06sec.
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The application of the mitigation procedure at 27.06sec causegto begin approach-

ing the reference signal. Finally, after a furthi@sec, normal operation of the plant is

achieved (at = 39.06sec).

The zoomed trajectories of andz,, in the vicinity oft = 15sec, are illustrated in Fig.

5.9. The trends of these trajectories can be explained agabo

‘ z, =203
5001 z,=52 \ _
- N\
O, .
_5007 | | | | | | | ]
14.2 14.4 14.6 14.8 15 15.2 15.4 15.6 15.8 16
Time (sec)
350, ‘ ‘
Z,= 31\ z,= 307
N 300+ i
250 | | | | | | | |
14.2 14.4 14.6 14.8 15 15.2 15.4 15.6 15.8 16
Time (sec)

Figure 5.9: Zoomed trajectories of andz,, shown in the vicinity ot = 15sec
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CHAPTER VI

Conclusions and Future Research

6.1 Summary of Results Obtained To-Date

This work designs, analyzes, and evaluates the performainassilient monitoring and
control systems. A brief summary of the key results obtatoediate are as follows:

The development of the resilient monitoring system (RMSgasried out based on
the following five techniques: Data quality acquisitionppess variable assessment, plant
condition evaluation, sensor network adaptation, andrieslized assessments with infer-
ences, a.k.a., knowledge fusion. Each of these technigaemalyzed rigorously, and are
used to design a five-layer RMS architecture. The performafche resulting RMS is
evaluated using a power plant application.

The development of the resilient control system (RCS) is@awout using two differ-
ent approaches: The model predictive control (MPC) -bappdoach and the synchronous
detection (SD) -based approach. Initial investigations these approaches show that both
of them may be viable for the design of RCS.

Numerous research problems, however, remain open. Theudneed below:
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6.2 Problems in Resilient Monitoring Systems

* Problems related to data quality acquisition:

— Investigating efficacy of the probe-based data quality sdiipn technique for
attackers other than those modifying the expected valuen$® measure-

ments.

— Improving temporal properties adb@ acquisition. As shown in Chapter II,
DQ is acquired in abouisec. It would be desirable to achieve this an order
of magnitude faster. A potential approach is inferring from the transient,

rather than the steady state, response of a process vaonahkeprobe.

— Introducing and investigating other than probe-baBétlacquisition techniques.
Perhaps, this could be accomplished by considering inberdragrams of pro-
cess variables and continually monitoring the level oftisatisfaction in the

data provided by the sensors.

— Investigating the possibility of assignirg() based on a reputation fusion mech-
anism. Reference [68] introduced a framework for assigairiggputation” to
each senso8;, based on the Dempster-Shafer combination of the individua
reputations assigned ®, by several neighboring sensors. Is there a way to
integrate the probe-based technique within the above frame& If so, would
the resultingD(@ of the sensor be more representative of its actual condition

attacked or operating normally?
» Problems related to process variable assessment:

— Introducing and investigating different than (2.12) maeda# coupling between
the sensor data and process variables. Similarly, inastigdifferent (as com-
pared with the believability (2.11)) effects éf() on process variable assess-

ment.
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— In the current work, the sensor data an@’s are utilized to assess the process
variable pmf’s (i.e., h-procedure (2.15), (2.16)) undex #ssumption that the
state of the sensor network remains constant. Are therecogent techniques
to accomplish this when the state of the sensor network isstationary? If so,

the temporal properties of the RMS could be improved sulisign
* Problems related to sensor network adaptation:

— Utilizing other than (2.42) rational controllers. The gbalre is to devise ra-
tional controllers with faster adaptation rates (see [7gkghvarious types of

rational controllers are introduced and analyzed).

— Introducing and analyzing other than entropy-based pghaittions. Perhaps,
there exists a penalty function that would lead to lower wagety in process

variable assessment than the entropy.

— Investigating a possibility of associating a rational colér with each sensor
of the sensor network. Although this would lead to a noni@tatry adaptation
environment, it would result, if convergent, in a substnitinprovement of

adaptation rates.
* Problems related to decentralized assessments with mfese

— Deriving necessary and sufficient conditions for the oplityaf decentralized
inferences. At present, only sufficient conditions for tpémality are available
(see Chapter Ill). Do there exist both necessary and sufticenditions that

guarantee the optimality of decentralized inferences?

— Characterizing the monotonicity of the Dempster-Shafentwioation rule. The
conditions for lossless decentralization (derived in Gaapl) involve the as-
sumption that the Dempster-Shafer rule is monotonic onehefgrocess vari-

able pmf’s. However, no constructive methods are curreatjilable to verify
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if this assumption holds. Developing such methods to veh&/monotonicity

is an important problem.
* Problem related to plant assessment:

— Investigating a possibility of recursive plant assessmBatause recursive ap-
plication of the Jeffrey rule may lead to paradoxical res#ee Chapter II),
in the current work we apply this rule non-recursively, whgtows down the
plant pmf assessment. So, modifying this rule or developingw one, which

would permit a recursive application, is an important peotl

6.3 Problems in Resilient Control Systems

These problems are divided into two categories: Problemasegtto the MPC-based ap-

proach and problems related to the SD-based approach. Téégtad below:

Problems related to MPC-based approach:

 Evaluating the controller from the point of view of statjland performance (e.g.,
reference tracking and disturbance rejection). Is theecldsop system stable? Is
the RCS effective at rejecting disturbances? These arertangoquestions to be

addressed.

» Extending the theory to more complex plants, e.g., MIMOnda At present, the
theory is under development for SISO plants. Extending #heldpment to more

complex plants is an important problem.

» Application of the approach developed to the power pland@ehoonsidered in Chap-

ter Il.

Problems related to SD-based approach:
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» Application of the developed techniques to models of pgwants and power grids.

Solutions of these problems will enable designing effectgsilient monitoring and
control systems for critical infrastructures (e.g., chemhplants, power systems and power
grids, computer networks, civil engineering objects) aathplex individual plants (e.qg.,

aircraft and space structures).
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APPENDIX A

Proofs of Theorems Stated in Chapter Il

A.1 Proof of Theorem Il.1, Part 1

The proof consists of the following five steps:

Step 1 Calculate the expected value of the set pairts,, 1), 0 € Xy:

Since the sensor measurements are stationary, the expatiedfh} (s,1), 0 € Xy,

is independent ofy € N, and can be denoted d{h*(s,.1)} = pt’,

guantity is calculated from (2.16) in the following manner:

1-p

uﬁi*Zﬁs~p[S=0]+7_sl{1—p[S=U]}, o€y

|Zv|

Then, from (2.11),

Step 2 Evaluatelim E {h,(n)}, o € Zy:
n—oo

o€ Xy. This

(A.1)

(A.2)

First, using (2.15), expreds,(n), ¢ € Xy, in terms of the initial condition., (0),
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o € ¥y, and the sequence of set point$(s,), n = 1,2,...,n,0 € Ly, as follows:
ho(n) = (1 — e)"ho(0) + & » (1 —€)""hi(s:), 0 € Sy, (A.3)
=1

where0 < ¢, << 1 is the step of the h-procedure. Next, take the expected wdlheth

sides of (A.3) to obtain

E{h,(n)} = (1—e€,)"h,(0) +ug*eh2(1 — )", o e Xy,

— (1= ) hy(0) (A-4)

+/~LZ*€h (1 +1—€,+ (1 — Eh)2 + ...+ (1 — Eh)n_l) , 0 € Y.

Using the fact that;, < 1, it can be shown that the limit of (A.4) as— oo is given by

lim E{h,(n)} = ug*ehﬁ, o€ Xy,

n—00 (A.5)
= MZ-*7 OIS EV.
Step 3 Evaluatelim E {hZ(n)}, o € Sy:
n—oo
Using (A.3), we obtain
n 2
{hy(n)}y* = <(1 —€,)"hs(0) + €, Z(l - eh)"_ih;(si)> , 0 € Xy,
i=1
n 2
= (1—¢e,)*h2(0) + € (Z(l — eh)"_ih;(s,-)> (A.6)
i=1

n

+2(1 = €n)"enho(0) D (1 =€) "hi(s:), 0 € Sy

i=1

Taking the expected value of both sides of (A.6), and apglyire limit asn — oo, we

obtain

n—oo

lim E{hZ(n)} = 7}1_}120 ek { <Z(1 — eh)”—ih:(si)> } , 0 € Xy. (A.7)



Further, (A.7) can be rewritten as
. eio 1l — (1 =€)
lim E{h2(n)} = lim {ei[ug — (ul )2]<—6h)2
Pl - (1 - ew}, .

wherev”’, o € Sy, denotes the second momentfs,), o € Sy, i.e.,v?" = E {[hi(s,)]*},

o

Vn, o € Y. The limitin (A.8) is evaluated as

2

JLIEOE {hg(”)} = vy - (MZ)Q]l_(fi}_E,)z + () )?, o € By (A.9)
. 2 n . - n
Slncel_(l_eh)2 = g2 ande,, is sufficiently small, we havg_—gh ~ 0. Therefore,

lim E{h2(n)} ~ (ul)? o€ Sy. (A.10)

g
n—oo

Step 4 Evaluatelim £ { (h,(n) — )"}, o € Sy
n—oo

This quantity can be expressed #m E {h2(n) — (u2')*}, o € Zy, which, from
n—oo

(A.10), is close to zero. Therefore,

n—oo

lim E{(hg(n) - Mg*)Q} ~0, o€y (A.11)

Step 5 Use Chebyshev’s inequality to obtain the desired result:
From Chebyshev’s inequality,

E{ (ho(n) = ul')"
lim P (|ho(n) — pl'| > a) < lim {( ) } Va >0, 0 € Sy. (A.12)

n—00 n—oo Oé2

From (A.11), we can conclude that the right hand side of (Nid2lose to zero. Therefore,
lim P (|hs(n) —pl'| > a) ~ 0,Va > 0, 0 € Ey. Moreover, if the recursive state,

n—oo

h,(n), o € Xy, is expressed as,(n; ¢,), o € Xy, Wheree, is treated as a parameter, the
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following can be concluded using the steps described above:

lim lim P (}h n;ep) — ,uZ} > a) =0, Va>0, 0 € Xy. (A.13)

ep,—0n—o0

This completes the proof of Part 1 of Theorem I1.1. |

A.2 Proof of Theorem II.1, Part 2

The proof is based on the following three lemmas:

Lemma A.1. Consider the recursive proceduf2.15) (2.16), (2.18) Then,

0 < lim hy(n) <1, 0 € Xy. (A.14)

n— oo

Proof. As it follows from (2.15),

hy(n) = )+ Zwl si), 0 € Xy,
n n—1 (A.15)
wo(n) = [ = en(i — 1], wi(n) ==en(i — 1) [ —en(j)], i =1,2,...,m

i=1 Jj=t

Thus,h,(n) > 0, Vn andVo. Also, it can be shown that, due to (2.18),

E wi(n) =1, lim wy(n) = 0. (A.16)
- n—00
Therefore,
lim h,(n) = lim wy(n) + lim E w;(n i), 0 € Yy,
n—00 n—o00 n—>oo
(A.17)

_ *
- ,}LH;OZ% i <n1£202wl n. 7 €2y,

where the last inequality is due to (2.16). Finally, in viei{4.16), this inequality becomes
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limy, 00 ho(n) < lim,,oo[l —wp(n)] = 1,0 € Zy. [ |

Lemma A.2. Under the assumptions of Theorem 1.1, the expected valtledet point,
h:(sn), 0 € ¥y, n € N, is given by

1—DQs

Bty 5:)] = 718 = 71DQs + 1~

, 0€ Xy, neN. (A.18)

Proof. Follows directly from (2.16). [ |

Thus, according to this lemma, the expected valuk¢,,) is independent of. € N,
and can be denoted &8h(s,,)] = pn:, 0 € Ly

To formulate the next lemma, introduce the function

F (ho(n)) = % 12 (s0s1) — ho(n)?, o € S (A.19)

Lemma A.3. The unique minimum df [f (h,(n))], o € Xy, is attained at

arg min F [f (he(n))] = pnz, o € Xy (A.20)

Proof. Clearly, £ [f (h,(n))] is differentiable and convex ifa, (n) and, therefore, its unique

minimum is attained at

)
h, (n)

E[f (hs(n))] =0, 0 € Sy. (A.21)
Due to (A.19), this expression becomes(n) — yu,: = 0, implying that for any fixed
n € N, the solution of the minimization problem g™ (n) = .+, o € Sy ]

Proof of Theorem II.1, Part 2The proof is based on showing that for langethe
recursive procedure (2.15), (2.16), (2.18) solves thesafi@ntioned minimization problem,

and, thereforel,, (n) converges tqu,:, o € Xy, almost surely.
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Since f (h,(n)), o € Xy, is continuously differentiable and convex, there exists a

scalar) < v < 1 such that

flho(n+1)) = f(ha(n)) +[ho(n +1) = ho(n)] 545

[ho(nt1)—ho(n)]®> _&%f
+ 2 OhZ(n)

ho(n)=ho(n) (A.22)

, 0 € Zv.
ho (n)=he (n)+7[he (n+1)=ho (n)]

From (A.19) and (2.15), (2.16), we obtain

Fho(n 1) = Fho(m) = euln) [5205]
’ o Oho(n) (A.23)
+ B WY (sn41) = ho(n)], 0 € Dy,
Using the summation of both sides of (A.23), we obtain:
n—1 8 2
Flh) = 1000) = Sl | 5:05]
wt oy, "0 g (A.24)
30 )~ ho(?, o e
n=0

Now, consider the limit of (A.24) as — oo. Sinceh,(n) is bounded for all (see
Lemma A.1), the left hand side of the above equation is a fputive number. Due to the
same reason, the teri (s,..1) — h,(n)]? is bounded for alk, implying that there exists

a positiveK’, such thath (s,.1) — h,(n)]* < K, Vn. Thus,

lim f(ho(n)) < f(ho(0)) — Ji%i%(") [aha{m}
) s 4 (A.25)

n—1
K 1 2
—i—gnll_{rolo goeh(n), o€ Xy.
n—=

Observe that sinc®_ " €/ (n) < oo, the last term in the right hand side of (A.25) is

bounded. Now, supposg% does not go td) asn tends tooo. Then the expression
2

> pen(n) [#{n)} is unbounded (due td"° je,(n) = oo) and the right hand side

of (A.25) becomes-co. This is a contradiction, since the left hand side is positnd
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bounded. Therefor% — 0 asn — oo almost surely (a.s.).

From the above arguments; [#{n)] — 0 asn — oo. Furthermore, due to the
linearity of expectation%(n) [f(hy(n))] — 0 asn — oo, implying that the condition
(A.21) is satisfied. Therefore, from Lemma A.3, it is cleaatthm,, , iy (1) = s, 0 €
Yy, a.s. Finally, using Lemma A.2, we conclude that, .., h,(n) = p[S = o]DQs +
1=DGs 5 e 3, a.s. [ ]

[Zv|

A.3 Proof of Theorem II.2

Sinceh, (n) is convergent a.s., for everythere existsi(¢), such thatP [|hx, (n) — b3 |
<¢€ > 1—¢ ¥Yn > ng(e). Therefore, for sufficiently large, equation (2.40) can be

rewritten as

kn(n+1) = F (kn,(n)) + O(e), (A.26)
where
o ah3y [1—a][1-h%, ]
F k() = | amrmaigm) T [1—a}kNG<n>+au—VkNG(n>1] g (),

and O(e) represents terms of order Omitting these terms, equation (A.26) is approxi-

mated as

It can be shown that the system (A.27) has three equilibria,

SS

Ty ;a“. (A.28)

Ko, =1, kG, =0, k5T =

Based on the perturbation theory ([69]), fersufficiently small, stability properties of
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(A.27) are the same as (A.26). To analyze stability, comside Jacobians of'(-) at

each equilibrium:

oOF _ [1-a*+[2a-1]A%

— Vv J—
Al T Okn . all—a] ’ A2 o
G kNG
1—al]
3 O |iges Ry 1AT, ]

a? +[1—2a]h?\?v
all—al ’

oF
Okn

Jex*
Ng

(A.29)

Supposéiy,, > 1 —a. Sincel < a < 0.5, we haved; < 1, A; > 1, andA3 > 1,

implying thatky . is asymptotically stable, whilky?, andk{* are not. Thereforeiy,, (n)

converges locally téy, . asn — oo, which proves Part 1 of the theorem. Parts 2 and 3 can

be proved similarly.
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APPENDIX B

Parameters of Simulations Reported in Chapter Il

B.1 Parameters of power plant and monitoring system

This subsection provides parameters of the power plant adtaring system that have
been used in simulations reported in Subsection 2.8.2. tliatehese parameters are se-
lected for illustration purposes and do not reflect the ptatsnature of the quantities in-
volved.

B.1.1 Sub-plants, process variables, and sensors
B.1.1.1 Statistical models of the sub-plants

As mentioned in Subsection 2.8.1, these models are definedrmjitional probabilities of
process variables given the status of a sub-pign¢ {N¢,, Ag,}, ¢ € {B,HT,RP,LT}.
Accordingly, we quantify these models as follows:

» Boiler: P[V; = Ny,|Gg = Ng,] = P[Vi = Lv,|Gs = Ag,] = 0.95; all other

components of this pmf afe05.

* High pressure turbine?[V; € {L1yv,, Nv, }|Gur = Ng,,,] = 0.90,
PV, € {VLy,, Loy, }|Gur = Ag,,] = 0.90; all other components arel.
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* Reheat pipeP (Vs € {L)v,, Ny, }|Gre = Ne,,| = 0.88,
P[‘/3 c {VLV37L(2)V3}|GRP == AGRP] = 091! P[‘/é S {VLV37L(2)V3}‘GRP =
Na..] = 0.12, andP[V5 € {Lyv,, Nv, }|Gre = Ag,.] = 0.09.

* Low pressure turbineP[V; € {VLxyv,, Layv,, Mayv,, Nv, }Gir = Ne, ] = 0.91,
PV, € {VL@v,, Loy, Moy, Hv, } G = Ag,| = 0.92,
PV, € {VLov,, Loy, M@yv,, Hv, } |G = Ne, ] = 0.09, and
PV, € {VLuv,, Lay,: Mayv,, Ny, }Gir = Ag, ] = 0.08.

B.1.1.2 Models of process variables and sensors

The domains of the process variables and their d.c. gairspaafied in Table B.1.

Without loss of generality, we assume that the processhlasand the sensor measure-

Table B.1: Domains and d.c. gains of process variables

Process variablesDomains| Values ofR’s (see (2.2)) d.c. gains (see (2.3))
Vi [5,100] Ry =50 oy, =20 =22,
L
~ _ _ _ O[V2_05a\/2_06
Vs [5,25] | Ry =10, Ry = 15, R3 = 20 av2 —0.7,aY — 08,
- _ Lay _
v [5,100] | Ry = 20, Ry = 40, Ry = 50 O‘Vﬁ@) 06, a v 0.72,
ay, = 0.9, ozv3 =1.2.
Ry =3, Ry =6, WD =04, oy @ =0.42,
~ _ _ (1) _ (2)
V;l [01720] R3—9, R4—11, Oél\\//[4 046 Oé\1</[2 —048
Rs =13, Rg = 15, av4(1) =0.53, ay,” = 0.56,
R; =17. ay, = 0.6, ozv4—0.63.

ments are Gaussian random variables,~ A (py,, 0, ) and S;; ~ N(,ugij,(fgij),

i =1,2,3,4, j = 1,2, where the expected valugs;, andugij, are specified in Tables
B.2 and B.3, respectively, for all attack scenarios coneidé Section 2.8. Regarding the
standard deviations df, andS;;, we assume that they are small enough so that the realiza-
tions of these random variables outside of the domains givéable B.1 may be ignored.

Specifically, they are selected as = og, =0.01,i=1,2, 3,4,7=1,2.
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Table B.2: Expected values of process variables

Attack scenarid py. | pg, | By | By,
1 80 | 23 | 75 | 16
2 80 | 23 | 75 | 16
3 80 | 23 | 44 | 12.1
4 80 | 18 | 76 | 16
5 30 | 12 | 23 | 10
6 30 | 12 | 15 5
7 20| 7 | 10 b}

Table B.3: Expected values of sensor measurements

Attack scenarig

H3yy | M8y, | BSy | KSyy | B8y | BSsy | K5y | HSy,
1 31 | 30 | 22 | 24 | 74 | 741|158 | 16.1
2 8L | 79 | 22 | 24 | 74 | 741|192 |19.1
3 8L | 79 | 22 | 24 | 74 | 741|122 | 121
4 81 79 | 022 | 24 | 74 |741]16.1|16.2
5 81 79 1121122 23 | 24 |16.1 | 16.2
6 81 79 1121122 76 | 75 |16.1 | 16.2
7 81 79 | 23 | 22 76 | 75 |16.1]16.2
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B.1.2 Parameters of monitoring system
B.1.2.1 Data quality assessment layer

» The amplitudes of the probing signals (2.6) are selectédllasvs: Ay, =2, Ay, =
0.6, AAV3 = 0.7, andAV4 =0.3.

» The parametet, involved in (2.10), is selected a92.

* The PIC,. In (2.10) for the sensors of B, HT, RP, and LT ar¢, 0.06, 0.08, 0.03,

respectively.

B.1.2.2 Process variables assessment layer

» The step size of the h-procedure (2.15) is selecteg as0.01.

* The stopping rule is defined B, (n + 1) — h,(n)| < 107,

B.1.2.3 Adaptation layer

The parameters involved in (2.42) are selected as follows:
* The level of rationality of the rational controller is seled asV = 2.
» The maximum residence time is selected gs. = 1sec.

* The parametes is chosen a8.04.
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APPENDIX C

Proofs of Lemmas and Theorems Stated in Chapter Il

C.1 Proof of Lemmalll.1

The proof of Lemma lIl.1 requires the following notationetlz;, j = 1,2, ..., M, be the

cardinality of¥y,, j = 1,2,..., M, i.e.,
n; =Yyl j=1,2,..., M. (C.1)

Further, let the pmp,.[V;], y; € Y}, j = 1,2,..., M, be represented as the column vector
qyv, €ERY, j=1,2,..,M,ie,

~ . 1 2 (nj) .
Py; [‘/j] =y, v; = [q()\/J7qg(/J?\/J7 e 7Qyj7]Vj]T7 yj € Y}v J = 1727 "'7M7 (C2)

Yj»

1 2 n; 1 2 n;
where0 < qz(/j?‘/j’qz(/j?vj"“’qz(/jf‘)/j = 1 andq;j?vj + qz(/j?Vj Tt qz(/J]‘)/J =Ly €Y

Jj=1,2,..., M. The inferred pmfp, [Vi], y; € Y;, i # j, i,5 = 1,2,..., M, is computed,

as before, using the total probability formula, i.e.,

ﬁyj[‘/z] = Z P[V;H/; = U]ﬁyj[‘/j = 0]7 yj € Y}) 27&]7 ihj=1,2,..,M, (C3)

O'EEV].
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and can be similarly represented as the column vegfor, € R", i # j, i,j =

1,2,..., M:

A 1 2 uz . . ..
pyj [‘/Z] - qyj, . [Q;J?quz(lj?VW T 7q3§j7x)/'i]—r7 Y; € }/}7 1 # 1 )= 1727 "'7M7 (C4)

1 2 n; n; . L
where( < qéj?w,qéj?w,...,q;j")/i < 1andqy Vi +q§])v +. —l—q( ) =1,i#7j i,j =

1,2,.., M.
As assumed in Assumption l11.1, the 2-norms of the columrik@matrix”[V;|V;|, i #
J, 1,5 =1,2,..., M, are equal. Let the value of these 2-norms be denotédas , i # j,

ij=1,2,.....,M,ie.,

Kvyy, = Py Il = [P0y o =+ = [PVH, 2 i # 4, ij = 1,2,.., M. (C.5)

Similarly, as assumed in Assumption 1ll.1, the angles betwall pairs of columns of
PVi|Vi],i # 7, i,j = 1,2,..., M, are equal. Let the value of these angles be denoted as
QVZ\V]l 7 7A j, ’L,j = 1,2, cieny M, i.e.,

() (n;—1)

Pyl Py Py Py )

cos By, = % — ... V'?@ iy, i i,j=1,2...M, (C.6)
ViV ViV

whereKy,v.,i # j, i,j = 1,2, ..., M, isthe same as in (C.5).
Introduce the following lemma, which is used to prove Lemiha.:l

Lemma C.1. Under Assumption I11.1,

||qyJ7 K\2/|V |:(1—COSHV|V)||qyJ7V||2+COSQV‘Vj| Z%j) 27]:17277M(C7)

Proof of Lemma C.1Expression (C.3) can be re-written as

1 1 2 n
Ay, v; = q;j?vjp(vjvj +qy, p(V)W + . +q§j& p(VW, i#J, ,j=12,..,M, (C.8)
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where, as before, they,v,’s, i # j, i,j = 1,2,..., M, are the columns oP[V;|V}],i #

J, 4,j = 1,2,..,M. Using the above equation, computa,, v;||3, i # j, i,j =
1,2,..,M, as
2 _ . (125) 12|~ (1)
laty,.vill2 gy v PIPY I N3 4 - + [y PPy I3
1 2 1
+2¢\ 02, <p(v)|vj,p(v)|v]> (C.9)
(ni=1) (nj) s (nj=1) _(nj) \ - _, -
+- "‘2(]ij 4y;v, <pVi|Vj 7pvz.|vj>al7éj-
Substitute (C.5) and (C.6) in the right hand side of (C.9)db g
2 2 2
q 55 Vi K v 11d 55V
|| Y5, Vill2 VZIVJH Y V||2 (C.10)

(@ .
+K‘2/i|Vj Ccos 9\/2.|Vj [2q?§j?‘/jq?§j?‘/j 4+t qu(/JJV )q?(h ) ]

From the definition oty v, y; € Y;, 7 =1,2,..., M (see (C.2)), we know th@ﬁ?vj +

q;f?‘/j + 4 q;’;”f&j =1,y; €Y;,7=1,2,..., M. Square both sides of this expression to

get

() (n;) D) (n;=1) _(n)
lay, v )2+ a0+ 20, v a, o+ 20, gy, =1 = 1,2, M

(2

(n=1) (ny) (C.11)
= Nl + 20y, v, Gy, o 200 =1 =12, M.

Clearly, from the second row of (C.11), we ha?/@%/j qg?vj + QqZ(:JV )q§]& =
1 —lay,v, 113 y; € Yj,j = 1,2,..., M. Substitute this expression in the right hand side
K2

of (C.10) to get|/q,, v, Vv, [(1 - cos@wvj)quj,VjH% + COS@VHVJ Y € Y #

j, 1,5 =1,2,..., M. This completes the proof of this lemma. [ |
Proof of Lemma Ill.1:As assumed in the statement of the lemma, let the pqf’s,,

y; €Y;,7=1,2,..., M, have the same entropy, i.e.,

Hg{qijvj}zc, Y; GY}, j:1,2,...,M, 0<c< 1, (012)
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where, as before, the entropy is defined as

H2{qyj,Vj} = _lognJ(qup‘/JH%)? yj € Y}? ] = 1727 7M (C13)

The above equation can be re-written as

1
—§H2{Qyj,vj}

||qyj7Vj||2 = nj , Yj € Y}) ] = 1727 7M (C14)

Further, taking into account (C.12), we have

||Qyj7Vj||2 = nj 57 Y € Y}? ] = 1727 "'7M7 0 S (& S 17 (C15)

which implies that the 2-norms of the pmig, v, y; € Y}, j = 1,2,..., M, are also the
same.

As before, the inferred pmf'g,, v, y; € Y, @ # j, 4,5 = 1,2,..., M, are computed
using the above pmfs,, v, y; € Y;, j = 1,2,..., M, and the total probability formula
(see (C.3)). As aresult of Lemma C.1, the square of the 2-mdrayy, v;, y; € Y, i # J,

1,7 =1,2,..., M, can be expressed as

lay,.v; 5= K‘Z/”Vj [(1- cos Oy, v, )n; © + cos Ovv,], v €Y, i # J. (C.16)
Clearly, the right hand side of the above equation is a cohstad can be denoted as

dij = K\z/in/j [(1 — cos By, v, )n; © + cos@wvj] L iF# G, 4,7 =1,2,..., M. (C.17)

As in (C.13), the entropy odiy, v;, y; € Y, i # j, i,j = 1,2,..., M, can be computed

as
HZ{qyj,Vi} = —lOgnZ(d”), yj € Y}vl 7é ]727] - 1727 "'7M7 (C18)
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whered,;, i # j,1,5 = 1,2,...,M, is defined in (C.17). Clearly, the entropies of the

inferred pmf’s are the same. This completes the proof oflémsna. [ |

C.2 Proof of Theorem Ill.1

As assumed in Section 3.2, the stgtec Y, j = 1,2,..., M, represents the state of
the sensor subnetwol®N;, j = 1,2,..., M, where the entropy of the pmf df;, j =

1,2,..., M, is minimized, i.e.,
Ho{ay: v} < Hofay, v} v # 5 yy € Y5, 5 =12, M. (C.19)
Due to the definition of the entropy (C.13), the above expoasmplies
lay:villz > llay, v ll2, 43 #v5, v €Y, 7 =1,2,..., M. (C.20)

Based on Lemma C.1, the square of the 2-norm of the inferref Ay, 1 #+ 7,

1,7 =1,2,..., M, can be expressed as

||qy;yi 2= K‘Z/Z_Wj [(1 — CoS 6’ij)||qy;,vj||§ + COS@V,L.WJ.] L1 ] (C.21)

Further, due to (C.20), the above equation can be re-wiisehe following inequality:

lay: vill3 > Ky, [(1 = cosByyv)llay, v, |13 + cosbvy, ], v #yj, i #5. (C.22)

However, the right hand side of (C.22) equids, v, 5, v; € Y, i # j, i, = 1,2, ..., M

(see Lemma C.1). Thus,

lay: villz > llay,vill2, v; #yj v €Y5, i # 5, 4,5 =1,2,..., M. (C.23)
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Due to the definition of the entropy (C.13), the above exmmesimpliesHQ{qy;,Vi} <
Hylay, v}, y; # 5, y; € Yy, i # J, i,j = 1,2,..., M. This completes the proof of this

theorem. [ |

C.3 Proof of Lemma lll.2

Consider the pmf'®, [Vi], y; € Y}, 4,5 = 1,2,..., M. It can be shown that the entropy of

these pmf’s takes values in
O§H2{ﬁyj[‘/z]} S 17 yj E}/;u Zaj:17277M7 (C24)

where the maximum value df,{-} is attained at the uniform pmf,

11 171"
punif[%]:[——"' —} )

) ) )

and the minimum value off,{-} is attained at the pmf§, 0,0, ...,0]", [0,1,0,...,0] T, ...,

0,0, ...,0,1]T. Thus, we have
0 S H2{ZA)?J][‘/Z]} S H2{punif[‘/;]}a Y; € }/}7 7’7.] = 1727 7M (C26)

Now, consider the following system of inequalities:

H2{ﬁy1 [VZ]} < HZ{ﬁyl [VZ]}v
H2{ﬁy2 [Vz]} < H2{punif[vi]}>
H2{ﬁy3 [VZ]} < H2{punif[vi]}> (C-27)

Ho{py, Vil} < Ho{punit[Vil},

where the first of these inequalities is trivially satisfiehile the remaining are due to

(C.26). As before, the pmf's,, [Vi], by, [Vil, ---, Py, [Vi], involved in the left hand side of
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(C.27), can be combined using the Dempster-Shafer rule(@&&8)) to obtain the pmf
Diyrysrpnn) Vi) Further, it can be shown that the Dempster-Shafer conmibmat the
pmf’s p,, [Vi], punit[Vi]s punit[Vi].---» punit[Vi], involved in the right hand side of (C.27), results

in the pmfp,, [V;]. Clearly, due to Assumption 1.2, the above arguments ympl

H2{ﬁ(y1,y27---7y1\4)[‘/;]} < HQ{f)yl [VZ]} (C-28)

Similarly, it can be shown that

IN

HQ{ﬁ(th ----- yM)[Vi]} H2{ﬁy2 [VZ]}v

HQ{p(yhyQ ..... yM)[V;]} < HQ{ﬁyg[‘/;]}u (C.29)

IN

H2{13(y1,y27---7y1\4)[‘/;]} H2{]§yM [VZ]}

This completes the proof of this lemma. |

C.4 Proof of Theorem 1.2

Recall that the centralized optimal statec X, = 1,2, ..., M, is the unique minimizer of
the penalty functiort/{p.[V;]},i = 1,2, ..., M,z € X (herex is viewed as the argument
of the penalty function). Regarding the decentralizedroagtistate(y;, v;, ..., yi,) € X,
consider the following statements:

As assumed in Section 3.2, the pm#is [V;], i = 1,2, ..., M, satisfy the relation
Ho{py: [Vil} < Ho{py,[Vi]}, yi €Y, i =1,2,..., M, (C.30)

where the equality is attained gt = vy, i« = 1,2,..., M. Further, as shown in Theorem

l.1, the pmf’spy; \Vil, i # 4, 4,5 = 1,2, ..., M, satisfy the relation

HQ{ZA)y; [‘/z]} S H2{ﬁyj[‘/i]}7 y] c }/}7 { # j? Zaj = 1727 "'7M7 (C31)
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where, as before, the equality is attainegat y;, j # i,4,5 = 1,2, ..., M. Clearly, due

to Assumption I11.2, the above inequalities imply

H2{ﬁ(yf7y§‘ ----- yfy[)[‘/l]} S H2{ﬁ(y1,y2 ~~~~~ Z/M)[V;]}v yj S Y}a 7’7.] = 1727 s M. (C32)

Equation (C.32) indicates that the penalty functids{p.[Vi]}, i = 1,2,.... M, z €
X, is minimized at the decentralized optimal stég, v;, ...,y3,) € X. Furthermore,
due to the assumption of uniqueness of the solution of thismization problem, the

decentralized optimal state must be the same as the ceattalne, i.e.,

(Y, Yny s Ung) = 5y 1= 1,2, ..., M. (C.33)

This completes the proof of this theorem. [ |
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APPENDIX D

Proofs of Lemmas and Theorem Stated in Chapter IV

D.1 Proof of LemmalV.1

The selection ot/ is based on the solution of the following system of ineqiesit

V

Usafoamin = Vmim

(D.1)
Usafeamax S Vmax .

In other words, we requir€/,, to satisfy the relation$/,,;. > Xm%n and Uy < %
Clearly, a solution to the above system of inequalitiestexdse to Assumption (4.5), and,
therefore, thd/,,;. is selected as any number ﬁ%@—“, V—} . This completes the proof of

n ~ ®max

this lemma. u

D.2 Proof of LemmalV.2

From the model (4.17), we know that

V(O) - aactUsafey (D2)
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where, as beforey,.; is the actual gain of the process variable. Based on the dB@/)e
the actual status of the process variable at time 0, denoted as,. o, can be computed

as

Lv, if ‘7(0) S [Vmim R1)7

Oact,0 = § Ny, if ‘7(0) S [Rlu R?)u (D3)

Hy, if V(0) € [Ra, Vinax)-

p[V(O) = Uact,O] = 17
p[V(O) = U] = 07 o 7é Uact,Oa o c {LV7 NV; HV}

(D.4)

Due to Assumption (4.19), we hav&0) = k,V(0) + d,. Substitute (D.2) in this

expression to get

S(0) = kaUsateQact + da- (D.5)
Due to Assumption (4.21), the above equation implies
$(0) € L (V(0)) (D.6)
wherel, is, as before, defined in (4.18). Clearly, the g (0)] is:

p[S(0) = ducto] = 1,
p[S<0) = U] = 07 g # Oact,0, O c {LV7NV7HV}-

(D.7)

The pmfp[V(0)] is evaluated using the steady state of the h-procedurd)(22

1-DQ
3

plV(0) = o] = DQp[S(0) = o] + , 0 € {Ly,Ny,Hy }. (D.8)
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Using (D.7), the above expression can be re-written as

ﬁ[V(O)ZUact,O] - %7

ﬁ[V(O) = O'] = 1_562, o 75 Tact,0, 0 € {Lv,Nv,Hv}.

(D.9)

Clearly, sinceD() takes values betwedénand1, the above pmf takes the maximum proba-

bility in the statusr,.. o. This completes the proof of this lemma. [ |

D.3 Proof of Theorem IV.1
Select the input#/,, o0 € {Ly, Ny, Hy }, as

o ‘/des

o

Uo , 0 € {LV7 NV7HV}' (D].O)

Introduce the following lemma, which is used to prove Theoi¥.1:

Lemma D.1. The solution of the constrained minimization probl@hi4)is given by

> WoDg|Vie — E,]

AF(1) = TR , (D.11)
> w,D:
o=Ly Ny Hy
whereD, and £, are defined as
DO’ = aa[Udes - Usafe]a EO' = aUUsafea (S {LV7 NV7 HV} (D12)
Proof. The predicted value of the process variable can be expressed
Vot (1; A(1)) = A1) D, + E,, 0 € {Ly, Ny, Hy}, (D.13)
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whereD, andE, are the same as in (D.12). The constrained minimizationlenol4.14)

can be re-written as

. 1 - 2
maximize > —Wo [Vo,um(l,ﬂ(l))—‘@es] ;

o=Ly,Ny,Hy

subjectto Vi, < VU,Urcs(l; A1) < Viax, 0 € {Ly, Ny, Hy }, (D.14)

0< A1) <1,

Substitute (D.13) in the above constrained maximizatiosbl@m, and express its La-

grangian as
L = -1 > W,[D,AQ1)+ E, — Vae]”
o=Lvy ,Ny,Hy
+ Z ,ul,o[vmax - DO'A<1> - Eo] (D15)
o=Ly ,Ny ,Hy
+ D tae Vi + Do AQL) + B+ [l — A()] + paA(1),
o=Ly,Ny Hy

wherey; ,, 0 € {Ly, Ny, Hy }, po 5, 0 € {Ly, Ny, Hy }, us, andy, are the Lagrange mul-
tipliers. Apply the Karush-Kuhn-Tucker (KKT) conditiong(Q] to solve for the candidate

optima,A*(1), ui ,, o € {Lv,Nv, Hy }, p5 ., o € {Ly, Ny, Hy }, p3, andpg:

— Z WUDU [DUA*(].) + Ea - Vdes] - Z MT,UDU
o=Ly ,Ny ,Hy o=Ly ,Ny,Hy
S D =0,
o=Ly , Ny ,Hy
/.Lio.[—Vmax + DO.A*(l) -+ EU] = 0, (S {Lv, Nv, HV}7 (D16)

M;,U[Vmin - DUA*(l) - EU] = 07 GBS {LV7NV7HV}7
b A1)~ 1] = 0, A (1) =0,
/”Lio‘ 2> 07 :uz,o > 07 oc {LV7NV7HV}7

ps =0, py > 0.
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The solution of the above system of equations and inegesisigiven by

Z WoDo [V:ics - Ecr]
A*(l) _ o=Lv,Nv,Hy

> w,D: ’

o=Ly Ny ,Hy (D.17)
MT,U = #z,a = 07 QS {va Nv,Hv},

p3 = py = 0.

Clearly, the abovel*(1) satisfies the KKT conditions. Furthermore, it can be shown
that the constrained minimization problem (4.14) is convékus, based on these argu-
ments, it can be concluded that the unique solution of (4sl4hdeed,A*(1). This com-

pletes the proof of this lemma. [ |

Proof of Theorem IV.1.Based on Lemma D.1, the inpUt., at timen = 1 can be

computed as

(D.18)

Z W,a?2 .

o=Ly ,Ny,Hy

Recall that the value of the process variable and the sensasumement at time = 1 are

V<1) = aactUros(1>7 (Dlg)

and

S(1) = koaetUses (1) + da, (D.20)
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respectively, wheré/,.¢(1) is the same as in (D.18). Substitute (D.18) in the right haahel s
of (D.20) to get

Z W,

& o=Ly,Ny ,Hy

S<1) = kaaac vdos
' Z W,a?2

o=Ly,Ny,Hy

+d,. (D.21)

Using the definition o#V/,, (see (4.15)), rewrite the above equation as

> BV(0) =ola,
S(1) = katrae Vies | ety +d,. (D.22)
> BV(0) =0olal
o=Ly Ny, Hy

Recall thatp[V'(0)], involved in the right hand side of (D.22), is evaluated in9P Thus,

re-express (D.22) as

o _ aLy, tany, tamy, +[3dact —ar,, —any, —any, | DQ(ka,da)
S(1) = KaVaesOtaer | 2 5oz S oz o, —a? - —af,. —af, IDQRuds) | T da- (D-23)

Clearly, due to Assumption (4.22), we ha¥él) ¢ Ry, R2). Therefore, the pmp[S(1)]

is:

plS(1)=Ny] = 1, (D.24)
pIS(1) =Lyl = p[S(1) =Hy]=0.
Using (D.24), the pmp[V/(1)] can be computed as before:
- _ _142DQ
p[V(l) - NV] - 3 (D25)
V() =Ly] = V(1) =Hy] =<

As it may be observed from (D.9) and (D.25), the pmi[§(0)] andp[V (1)] are cor-

rectly permuted. This completes the proof of this theorem. [ |
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