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ABSTRACT

The substitution of a nonresponding unit with one not originally selected in the sample is
a commonly used method for dealing with unit nonresponse. Although frequently used in prac-
tice, substitution is largely neglected in the survey sampling literature. To date, few studies have
attempted to develop a formal framework for describing and evaluating substitution methods,
and little research has been done to improve estimates obtained through the use of substitution as
a nonresponse adjustment procedure. This dissertation presents the results from three research
studies conducted to enhance our understanding of substitution methods and develop new proce-

dures to improve them.

The first study investigates substitution methods in stratified two-stage cluster sampling
with nonresponse at the primary sampling unit (PSU) level. A simulation study is presented to
evaluate the error properties of substitution procedures compared to other standard nonresponse
adjustments. The results show that the use of a matching procedure in the selection of substitutes
produces estimates with similar error properties to standard nonresponse-weighted estimates, but
the substitution methods have the advantage of producing more accurate standard errors than

strata collapsing strategies used in the presence of PSU nonresponse in stratified cluster sam-

pling.

The second study extends an existing multiple imputation method proposed by Rubin and
Zanutto (2002) that adjusts differences between nonrespondents and their substitutes on observa-
ble covariates to a more economically viable alternative. A new calibration approach is also pro-
posed to perform such adjustments. Simulation results show that the multiple imputation exten-
sion performs as well as its predecessor, with the advantage of lower survey costs. Moreover, the
proposed calibration procedure produces more precise estimates than the imputation methods

with the same level of bias reduction, yielding estimates with smaller mean squared error.

xii



The third study develops a novel procedure to accommodate nonignorable nonresponse in
the substitution selection itself. The approach uses pattern-mixture models following Little and
Andridge (2011) and Little (1994), and introduces a parameter that can be used in sensitivity
analysis to assess assumptions about the nonresponse mechanism. Simulation studies show that
the proposed approach can provide practitioners with useful information to evaluate the risk of

nonresponse bias.
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CHAPTER |

Introduction

Nonresponse occurs when a sampled unit fails to provide either part (item nonresponse)
or all (unit nonresponse) of the information requested in a survey. This may be due to noncon-
tact, refusal, inability to understand the request, or other reasons. This source of error has been
increasingly studied in statistics and survey methodology, both theoretically and empirically, es-
pecially as response rates have fallen dramatically in recent decades (De Leeuw and De Heer,
2002; Rand, 2006, Bethlehem et al., 2011). On the other hand, the relationship between response
rates and nonresponse error has been called into question by several studies (Keeter, et al., 2000;
Merkle and Edelman, 2002; Curtin, Presser and Singer, 2005; Keeter, et al., 2006; Groves and
Peytcheva, 2008), highlighting the importance of a careful exploration of all existing methods of

handling nonresponse.

In the survey statistics literature, most of the methods for dealing with nonresponse have
focused on post-data collection nonresponse analysis and adjustments, such as weighting, impu-
tation and statistical modeling (Little and Rubin, 2002). Although post-survey adjustments are
flexible and relatively inexpensive, methods for dealing with missing data, particularly unit non-
response, in the survey design and field stages may present unique opportunities to minimize
nonresponse error. As Benjamin King once said, “There is only one real cure for nonresponse
and that is getting the response” (Frankel and King, 1996). In practice, however, with finite re-
sources and time, nonresponse cannot be entirely eliminated. But some actions and interventions
during the data collection stage could potentially mitigate the impact of nonresponse on final es-

timates.

To that end, a more formal and explicit framework to evaluate and minimize survey er-
rors during the data collection stage of a survey has been proposed: responsive survey designs
(Groves and Heeringa, 2006). In this approach, design feature indicators that influence both the

1



survey costs and the errors of estimates are identified and monitored in an initial, pre-data collec-
tion, phase. In later phases of data collection, these design features may be modified based on the
cost-error trade-offs. Finally, data from the different phases are combined to form a single survey

estimate.

One of the most traditional examples of responsive design is the use of two-phase sam-
pling for nonresponse (Hansen and Hurwitz, 1946). After an initial phase of data collection, in
which all sampled cases are attempted to be contacted with the initial survey protocol, the second
phase (usually called the nonresponse follow-up survey) involves contacting a probability-based
subsample of nonrespondents, and subjecting this subsample to a more expensive and (theoreti-
cally) more effective data collection protocol. The final estimates are computed by weighting the
subsampled cases by the product of the inverse of their second phase selection probability and
their first-phase design-weight. If the second phase is completely successful, that is, if the full
subsample of nonrespondents selected for the second phase is observed, then these final statistics
are unbiased estimates for their population parameters. In practice, however, some level of non-
response almost always remains. In such cases, there are some instances in which the inclusion

of second-phase respondents may actually increase nonresponse bias.

Another approach to dealing with unit nonresponse at the fieldwork stage of a survey is
substitution. This method consists of replacing nonresponding sampled units with new units
which were not originally selected in the sample. Terms like “reserve” or “replacement” are also
used to indicate substituted units. However, these terms are avoided here, especially because the
latter, in particular, has another specific meaning in sampling (as in sampling with or without
replacement). Most survey methodology and sampling textbooks either ignore (e.g., Cochran,
1977; Séarndal et al., 1992; Groves et al., 2009) or present only a brief discussion of substitution
(e.g., Kish, 1965; Lessler and Kalsbeek, 1992; Lohr, 1999; Little and Rubin, 2002). In general,
the literature tends to criticize substitution and recommends avoiding its use, despite the lack of
conclusive evidence suggesting it performs worse than competing alternatives, such as weighting

or imputation. For example, Kish (1965, page 558) states:



“Although substitution is often proposed naively as a solution, it generally is of
little help and may actually make matters worse. (...) Entirely distinct from size
control is the use of substitutes for reducing the bias of nonresponse. For this
purpose substitutes are useless when they merely replace nonresponses with

more elements that resemble the responses already in the sample.”

Although Cochran (1977) does not present any discussion of substitution, in its earlier
edition (Cochran, 1953, page 302) he presents a similar point-of-view as Kish:

“The ‘substitution’ method does positive harm if the samplers are deluded into

thinking that the non-response problem has been adequately dealt with.”

Another example can be found on Deming (1953, page 744):

“Substitution does not help: it is only equivalent to building up the size of the

initial sample, leaving bias of nonresponse undiminished.”

Among other criticisms, there is an argument that substitution disrupts the selection prob-
abilities of the sample design, making it no longer a probability sample. However, substitution
can be seen as a form of imputation for unit nonresponse and, as Little and Rubin (2002, page
60) put:

“The tendency to treat the resulting sample as complete should be resisted, since
the substituted units are respondents and hence may differ systematically from
nonrespondents. Hence at the analysis stage, substituted values should be regard-

ed as imputed values of a particular type.”

Though the idea of treating substituted values as a type of imputed values is not further
developed in the book, Rubin and Zanutto (2002) propose a method to do just that. It is true,
however, that most applications of substitution in surveys do not treat substitutes’ data as imput-

ed values. Related to this notion of substitution as an imputation method, substitution parallels



hot-deck imputation (see Andridge and L.ittle, 2010, for a recent review on the topic), with the
difference that the latter draws the donors for the nonresponding cases from the respondent pool,

while the former selects the substitutes from the unsampled units in the population.

Despite the criticism, substitution has been extensively used in many important probabil-
ity sample surveys. This is true for survey in academic settings (Sirken, 1985; Vehovar, 1999;
Bachman et al., 2011), surveys conducted by private companies, such as Westat (Walksberg,
1985), official statistics in some developing countries, and government surveys in Europe
(Vehovar, 1999; Silva et al., 2000; Eltetd, 2004)1. There are several reasons why substitution is

used by many of these studies:

(1) Control of the sample size: When successfully implemented, that is, if most or every
nonrespondent is replaced by a responding substitute, then the number of responding units will
be the same or nearly the same as the target sample size. This could also be achieved by other
means, such as inflating the sample size according to an expected response rate or the use of
supplement sample (Kish, 1965). However, these methods in general will not produce an exact
sample size for a particular realization of the survey. There is not a strong statistical reason for
requiring an exact sample size, other than that estimates may be more precise if compared with
an approach that does not take nonresponse into account. Nonetheless, many practitioners and
survey clients demand a precise target sample size, sometimes even including this requirement in
surveys contracts. Further, there is a certain aesthetic motivation behind this reason, in which

laymen may view the observed sample size as an important measure of survey quality.

(2) Reduction of nonresponse bias: Although a main criticism of substitution is that it does not
necessarily eliminate nonresponse bias, if compared to the naive alternative of not using any
nonresponse adjustments, substitution may provide some bias reductions under certain condi-
tions. The first study of this dissertation seeks to investigate what such conditions are and the
effectiveness of different methods of substitution. Obviously, such bias reduction could also be

achieved with alternative nonresponse adjustment methods, such as weighting and imputation,

! Recently, however, some European governments have discontinued the use of substitution in their
surveys (Vehovar, 1999; Pickery and Carton, 2008).

4



with less effort and cost. However, an important goal of this study is to assess differences in the

effectiveness of a variety of nonresponse bias reduction techniques.

(3) Sample design structure: Related to sample size control, the main idea here is that nonre-
sponse disrupts the design structure of complex samples, such as stratification and clustering,
which might cause problems in the analysis, especially for the estimation of sampling variance.
This becomes an important problem in designs that select few units per stratum or cluster. For
example, deep stratification is a very common design, where two clusters per stratum are select-
ed, maximizing the potential gains of stratification while still enabling sampling variance estima-
tion. If some strata end up with one or no responding clusters, one would have to rely on strata
collapsing procedures or other modeling approaches to estimate sampling variance, potentially
biasing these estimates. If substitution is successfully implemented, the sample design structure
is maintained and standard variance estimation procedure could be employed. However, as
Vehovar (1999) pointed out, these two approaches would need to be compared in terms of mean
square error of the sampling variance estimate. Thus, this comparison is also one of the objec-

tives of the first study of this dissertation.

(4) Cluster nonresponse: In many applications of substitution, the nonresponding units are clus-
ters, such as schools in a two-stage cluster sample of students, in which schools are selected in
the first stage, and students are sampled within selected schools in the second stage. A
nonresponding cluster automatically excludes multiple elements of the sample that belong to that
cluster (elements that would potentially participate in the survey if requested). Smith (2007)
states that many surveys rely on substitution in this case because the clusters are not the units of
substantive analysis of those studies, but function only as a technical element of the sampling

process, and, therefore, should not be a reason to eliminate the target elements of interest.

(5) Final refusal: Although nonresponse follow-up is considered one of the gold standard ap-
proaches to investigate and minimize nonresponse bias, it is often not completely successful; that
is, it is not possible to get the full cooperation of all nonrespondents selected for a second phase.
There are many reasons for that, but one of the most common is that once a unit selected in the

sample (whether it is a person or institution) gives a definitive, final refusal, many survey organ-



izations would not continue attempting to get the cooperation of such cases. This is particularly
true for institutions where strategies such as the use of incentives is either not used or not al-
lowed. In those situations, substitution might be seem as an alternative to get responses from
cases similar to these nonrespondents that are not in the sample already, although a sub-sample

of nonrespondents would be still preferable.

Although extensively used, there are only a handful of studies that have examined substi-
tution from a theoretical perspective (Nathan, 1980; Zanutto, 1998; Vehovar, 1999; Rubin and
Zanutto, 2002; Thompson and Wu, 2008) and a few empirical studies, many of which were con-
ducted before the 1990s (Durbin and Stuart, 1954; Cohen, 1955; Sirken, 1975; William and Fol-
som, 1977; Biemer, Chapman and Roman, 1985; Vives et al., 2009, David et al., 2012; David et
al., 2014, Baldissera et al., 2014).

Because of the prevalent use of substitution for handling unit nonresponse in probability
samples, but ambiguous evidence of its efficacy and skepticism from researchers’ perspective,
the primary objectives of the studies in this dissertation are to increase our understanding of this
method, and to improve it by relaxing some of its assumptions and extending it to more general

Cases.

This dissertation continues by reviewing the limited existing literature on substitution in
Chapter Il. Then, in Chapter Il1, an investigation of the impact of primary sampling unit nonre-
sponse on estimates of a finite population mean is conducted, followed by a comparison between
different substitution methods and nonresponse weighting adjustments in terms of the perfor-
mance of their point and sampling variance estimates through a large scale simulation study. In
some instances, nonrespondents and their corresponding substitutes may differ on some observed
auxiliary variables. If these covariates are related to the survey variables, such differences might
cause bias in the survey estimates. In Chapter 1V, a calibration approach to adjust for these dif-
ferences is proposed, evaluated and compared to other methods previously developed in the liter-
ature through a simulation study. Another important understudied topic in the nonresponse litera-
ture, particularly in terms of substitution, is related to methods for dealing with missing not at

random (MNAR) mechanisms. In Chapter V, a substitution selection method using pattern-



mixture model is proposed to accommodate this missing mechanism, also allowing sensitivity
analysis through the use of multiple substitutes. The performance of this method is evaluated and
compared to other standard alternatives through a simulation study. Finally, Chapter V1 presents

a general discussion of the results of these three studies.
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CHAPTER II

Literature Review

Substitution is commonly known as the replacement of a nonresponding sampled unit by
a new unit not originally included in the sample during the data collection stage. This strategy for
dealing with unit nonresponse has been widely criticized over the years (Deming, 1953; Kish,
1965). However, as stated by Chapman (1983) and Vehovar (1994), no conclusive theoretical or
empirical evidence had either rejected or justified this practice. A recent search in the statistics
and survey research literature showed that this remains true, with few additional contributions
since these earlier accounts. Still, the majority of survey methodology and sampling textbooks
either do not recommend this option, especially in probability samples, or fail to mention it as a
possible method of dealing with nonresponse. Nonetheless, substitution continues to be used in
many studies (Stebe, 1995; Verma, 1992; Vehovar, 1995; Mazzeo et al., 1995; Silva et al., 2000;
Eltets, 2004, Demarest et al., 2007; Bachman et al., 2011; Van der Hayden et al., 2013;
Baldissera et al., 2014; David et al., 2014).

Like weighting for nonresponse — one the most common methods in surveys for dealing
with unit nonresponse — substitution can be seen as a form of imputation. For example, in
weighting-class nonresponse-adjustments (Oh and Scheuren, 1983) the nonresponse weights ef-
fectively take the average values of the survey variables of respondents in weighting classes to
impute those variables of the nonrespondents in the same classes. With unit substitution, the
nonrespondents are directly and fully imputed by their respective substitutes. Therefore, as
pointed out by Chapman (1983), one of the major criticisms aimed at substitution — namely, that
it only replaces nonrespondents by elements whose values resemble responses already in the
sample — should also be applied to weighting and imputation-based nonresponse adjustment
techniques. Hence, to determine whether substitution is an adequate method of dealing with non-
response, these methods should be compared in terms of statistical properties (bias and precision)

and operational efficiency under the same survey conditions and assumptions.

12



2.1 Types of Substitution

Chapman (2003) mentioned that substitution may be seen as an inferior method for deal-
ing with unit nonresponse because it has been misused in the past. Much of this is likely due to
differences in implementation. In fact, substitution is a vague term, as it may be implemented in
various ways. To deal with this issue, Vehovar (2003) suggested a taxonomy for different kinds

of substitutions, which was further refined by Lynn (2004).

Formerly, two basic types of substitution procedures had been widely recognized in the
literature: the selection of a random substitute and the selection of a specially designated (and,
thus, purposively selected) substitute, also denominated as a non-random or purposive substitute.
In the former, as the term suggests, a substitute is selected on a probability selection basis to re-
place each nonrespondent. Although it is usually not explicitly stated, it seems reasonable to as-
sume that the selection mechanism of the substitute follows that of the original sample selection.
That is, if the originally sampled unit was selected with probability proportional to size, for ex-
ample, so is its substitute. This typology on random substitution was further extended by Lynn
(2004). More specifically, he distinguished two different methods of random substitution: simple
random and stratified random. While in the former the substitute is randomly selected from the
entire pool of nonsampled units remaining in the sampling frame, the latter forms or uses pre-

defined strata and randomly replaces a nonrespondent with a unit in the same stratum.

Alternatively, in the non-random substitution method, the case that most closely matches
the nonrespondent in terms of auxiliary variables available for all units in the population is se-
lected. These auxiliary variables are usually from the sampling frame, or based on subjective in-
formation available from experts on the subject of the study. Selection of substitutes by inter-
viewers in the field is another example of non-random substitution. However, such procedure is
strongly discouraged even among proponents of substitution, especially if no constraints are put

on when and how interviewers should substitute.

The method of selecting a substitute is, however, only one dimension of the types of sub-
stitution procedures considered by Vehovar (2003) and Lynn (2004). Another important aspect is
whether the interviewer could or should influence the substitution procedure. Lynn (2004) breaks

13



this down into two further dimensions: whether the decision to substitute and whether the actual
selection is made by the interviewer. When the decision or the selection is not left to the inter-
viewer, it is usually done by the survey management or administrators conducting the survey. In
some surveys the substitutes are selected with the original sample, but left as “reserves” to be

used if needed, as in Silva et al. (2000), for example.

As noted above, the influence of the interviewer, either on the decision or selection, has
an important impact on survey quality. Furthermore, it is one of the main reasons for the criti-
cisms aimed at the method, as pointed out by Vehovar (1994, 1999, 2003), Chapman (2003) and
Lynn (2004). Briefly, when interviewers influence substitution, it may reduce the effort made to
contact, get cooperation and responses from the original sampled cases. This could mean that,

instead of actually solving the nonresponse problem, it can actually make it worse.

Therefore, it is generally recommended that interviewers should not influence the substi-
tution procedure. It is also important to have a strict control over the field work to maintain a
high level of effort to obtain the original sample, in order to avoid early respondent/cooperator
effects (Vehovar, 1994). As observed by Chapman (1983) and Chapman and Roman (1985a,b),
these recommendations are already embedded in RDD telephone surveys. There, the interviewer
does not affect the substitution procedure, since there the interviewer typically does not know if
the case being contacted is an original sampled unit or a substitute.

Another distinction made by Vehovar (2003) is the use of the substitution procedures in
either probability or nonprobability sample surveys. The latter has not received much attention in
the survey methodology literature, but it may be an important factor influencing the perception
of the method over the years. This is especially true when substitution is confounded with quota
sampling, a very popular nonprobability sampling method in market research. Although quota

sampling uses substitutions, substitution is also used in non-quota samples.

Finally, as pointed out by Smith (2007), a substitution can be made at different levels of
the sampling selection. That is, the substitute may be a primary or secondary sampling unit —

such as a school, establishment or area segment — or the unit selected in the last stage of a multi-
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stage sample, which could be a student, employee, household or adult. Although not generally
recommended, substitution at the first or second stage of sample selection is widely used in prac-
tice. Smith (2007) raises a point that might explain such discrepancy. Since these units are not
generally target for substantive analysis of these studies, but rather serve only as a component for

the sample selection, they should not be a reason to eliminate the final target study units.

2.2 Theoretical Research

As mentioned before, few theoretical studies have been conducted to investigate the
properties of the substitution procedure. Chapman (1983) states that a possible reason for this is
that, to conduct such a study, one would have to resort for a modeling approach and the models

required for that would either be too complex to formulate or too simple to be of any usefulness.

This might have been true at that time, when the current missing data theory was still be-
ginning to be developed. However, nowadays, many tools and powerful models are available in
that literature. Nonetheless, theoretical work relating to substitution remains extremely scarce,
limited and sparse. Actually, only four studies (Nathan, 1980; Vehovar, 1999; Rubin and
Zanutto, 2002; Thompson and Wu, 2008) were found that tackle the problem in a more theoreti-
cal statistical perspective. Furthermore, two of them (Nathan, 1980; Rubin and Zanutto, 2002)
deal with a somewhat different substitution approach that is not common in practice. Vehovar
(1999) is a more comprehensive investigation of the substitution method, in which both bias and

variance components of an estimator of the mean are studied under some specific settings.

As noted above, substitution, just like weighting for nonresponse, is a particular case of
imputation. It shares, therefore, both its strengths and weaknesses. Hence, as pointed out by
Chapman (1983), the investigation of the substitution properties should consist of comparing it
with these competing alternatives. This has been limitedly done in the theoretical research pre-

sented in this section and in some of the empirical studies covered in the next section.

The substitution procedure reviewed by Nathan (1980) is somewhat different from what
is usually used in practice, but quite similar to the strict random substitution: units are selected

with equal probability until a fixed pre-defined number of respondents is achieved. Therefore, all
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nonrespondents would be sequentially substituted until the desired sample size is obtained. No
further details are given, though, on how this would proceed in a real setting. It is worth noting
that in this case the total number of contacts is a random variable. The alternative procedure that
is used to make the comparison is more often done in practice: a fixed number of initial contacts
is selected as a simple random sample, with no use of substitutions and, hence, the number of
respondents is left as a random variable. Although further details are not given about this proce-
dure in practice, it is expected that one would inflate the initial sample size based on the expected
response rate in order to ultimately obtain a number of interviews closer to the desired target.

Nathan (1980) compares both proposed methods, conditional on a given level of desired
accuracy, in terms of (1) the (expected) number of initial contacts and the (expected) number of
respondents, (2) the expected costs, and (3) the variability of the costs. Interestingly, he conclud-
ed that both methods lead to approximately the same (expected) number of initial contacts, the
same (expected) number of respondents and the same expected costs to attain a given level of
accuracy. However, in terms of cost variability, when the ratio of the unit cost per initial contact
and the additional cost per respondent is no larger than the response probability, the proposed
substitution method is preferred. This is because it would give tighter budgetary control, that is, a

smaller cost variation. Otherwise, the alternative method is recommended.

This study also makes very evident a property of using substitution in practice: it is al-
most guaranteed that the target sample size will be achieved, while only inflating the number of
initial contacts will most likely always lead to an observed sample size that is different from the
expected one. Although this might not be an important characteristic for a survey design from a

statistical point of view, it seems to be a relevant one for practitioners and survey clients.

While most of the applications of substitution simply replace the nonresponding unit by
its substitute, Rubin and Zanutto (2002) propose a different approach to the problem: multiply
impute the nonresponding unit using its substitute data with an adjustment to take into account
possible differences in their auxiliary variables. Assuming that both the nonrespondent’s and the

substitute’s survey variable follows the same model, Y = g, + B,Z + 5, X +¢&, where X isa

matching covariate used for substitution and Z is a modelling covariate used for statistical model-
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ling, Rubin and Zanutto suggest substituting the nonrespondent with another unit with the same

value on X (matching substitution) and multiply imputing the survey variable of the

nonrespondent unit using the fact that y, = y; +0¢+ﬂ1(zi —zf)+gi', where y, and y; are the

nonrespondent and its substitute survey variable for the i case and z, and z° are the

nonrespondent and its substitute auxiliary variable (not used for the matching substitution) for
the i case. The idea is that the variable X , used for the matching substitution, would be difficult
to use in a nonresponse adjustment, because it would involve too many parameters, such as ad-
dress. On the other hand, the variable Z would not be available or used for matching, but it is
observed for both substitutes and nonrespondents. This allows for systematic differences be-

tween them to be taken into account through modeling. To estimate the coefficients « and S

Rubin and Zanutto propose selecting substitutes for some of the respondents. After the survey

variables for the nonrespondent are imputed, all substitutes are discarded.

Although Rubin and Zanutto show in a variety of simulation studies that this method,
named as MMM (Matching, Modeling and Multiple imputation), performs better than all other
competing alternatives (nonresponse weighting adjustments, multiple imputation using only re-
spondent data and traditional substitution), to date, it is not known to have been used in survey
practice (Chiu et al., 2005, applied the MMM method in a different context, in which “substi-
tutes” were data aggregates from geographical census units, such as blocks or census tracts). This
is probably because of the additional cost associated with collecting substitutes for respondents

and not using their data in computing the final estimates.

Vehovar (1999) studies the sample mean under a random substitution procedure in two
parts. First, the bias of the estimator is studied in a very general setting, in terms of both sample
design and nonresponse mechanism (that is, no particular restriction is given for these two fea-
tures). Then, the sampling variance property is investigated under a rather restricted scenario: in
a two-stage cluster sample where it is assumed that the nonresponse mechanism is missing com-
pletely at random (MCAR) at the level where the substitution and the alternative adjustment pro-
cedures are performed. Furthermore, the study restricts itself to comparing the substitution pro-
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cedure to a weighting alternative, but the author states that the extension to an imputation method

would be straightforward and lead to very similar results.

Using a deterministic approach, Vehovar (1999) shows that the bias incurred to the sam-
ple mean using the substitution method, called gross substitution bias, is the sum of two compo-

nents. First, the well known nonresponse bias expression of the unadjusted respondent mean . :
B(Y,)=M (Y, -Y,), where M is the population nonresponse rate, Y, and Y, are the population
means of respondents and nonrespondents, respectively. The second component, named net sub-
stitution bias, is given by MM, (Y, —Y,, ), where M, is the proportion of elements among all
initial respondents that would respond if included in the initial sample, but not if they were se-
lected as substitutes (called secondary nonrespondents), whileY,, and Y, denote the population

means of secondary nonrespondents and secondary respondents (elements that would respond if

selected either originally in the sample or as a substitute).

It is also argued, but without a formal proof, that both bias components generally have the
same sign and, therefore, the net substitution bias typically enlarges the initial nonresponse bias.
However, because of the product MM, this additional bias is generally small. Nonetheless,
without a strict control of the field work, not only will this component increase, but so will the
initial nonresponse bias component, which can result in a dramatic increase of the gross substitu-
tion bias. This reinforces the argument made before on the importance of strict field work super-

vision when adopting such procedure.

Another very important result given in Vehovar (1999), without proof, is that

Var (Vg5 ) ~Var(y), when assuming that E (Y, )=Y . That is, the sampling variance of the

sample mean under the substitution procedure is approximately the same as the variance of the
sample mean when there is no nonresponse, as long as the sample mean is an unbiased estimator

for both cases.
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Under the restricted setting mentioned above, Vehovar (1999) shows that the increase in

the variance of the sample mean due to using the alternative approach of attaching a nonresponse

*

weighting adjustment, w, =b, /b over the substitution approach is directly related to

VIF =b, E(l/b:i ) Here, b, is the actual sample size in the i"" cluster — fixed and equal to the final

size for the substitution method, and b}; is the actual number of respondents in the i cluster,

which is a random variable for the weighting approach. The overall increase in the sampling var-

iance is also a function of the proportion of the within variance component.

Therefore, the gains in precision associated with using the substitution method depend on
the number of units taken by cluster, the response rate, and the intracluster correlation. Through
the investigation of several possible values for each of these factors, Vehovar concludes that the
gains in precision by using substitution instead of weighting adjustments are usually small, but
there are rare scenarios in which they can be relatively large, reaching as high as a 20% increase
in precision. This would happen when all the aforementioned factors are small. Hence, his con-
clusion is that, other than those extreme cases, the gains in using the substitution method are too
small to justify the possible extension of the field period — and the cost increase associated with
it — that would be necessary for implementation.

Despite the distinction between random and non-random substitution, it is not clear how
substitutes would be selected in the former case. It is reasonable to assume that they would be
selected with the same methods that the original cases were. However, this can still create prob-
lems in the selection, especially when the substitution is used at the primary sampling unit level,
which is usually selected with probability proportional to size. This problem has been studied
only by Thompson and Wu (2008), using a Monte-Carlo simulation approach. Hence, the meth-
od of substitute selection also deserves further investigation to guide practitioners that rely on

this alternative in their studies.

2.3 Empirical Studies
Most of the research of substitution’s impact on survey estimates comes from empirical

studies. Chapman (1983) gave a comprehensive review of four important investigations: Durbin
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and Stuart (1954), Cohen (1955), Sirken (1975) and William and Folsom (1977). Each study
conducted research using a different type of substitution and only one (Durbin and Stuart, 1954)
compared the procedure with a competing alternative. Furthermore, as Chapman (1983) pointed
out, none of these studies were carried out under ideal conditions, where efforts to get coopera-
tion of initial nonrespondents would continue even after substitutions have been completed and
data collection would stop only when all or most originally sampled cases are persuaded to par-

ticipate (or, alternatively, administrative records would be used).

Although they used different approaches and methodologies, all four studies indicated
that nonresponse bias was not completely eliminated with the substitution procedure. But, as
Chapman (1983) noted, this does not invalidate the use of the method, since none of the compet-
ing methods are able to completely remove nonresponse bias either. At most, one can say that

substitution does not underperform alternative procedures dealing with nonresponse error.

Smith (2007) also reported the results of eleven empirical studies on substitution, but
without giving any specific references. The author stated that their reports were either only short
summaries or rather limited and that none of them used an ‘optimal substitution’, a term used
with a similar meaning of what Chapman (1983) referred as ‘ideal conditions’, mentioned above.
Smith (2007) also noted that the substitution literature is dated: all the eleven empirical studies
were conducted before the 1990s, and half before the 1980s.

Both Chapman (1983) and Smith (2007) concluded that more empirical research is need-
ed; particularly that which comparing the alternative competitors with substitution under optimal
circumstances, that is, with a strict field supervision, full-efforts to obtain both original and sub-
stitute cases and using random — preferably stratified random — substitution. Also, both authors
agree that an important question to be answered is which of the two approaches performs better
in reducing nonresponse bias: stratified random substitution or imputing nonrespondents by a

mix of respondents in the same weighting cell.

Another empirical study conducted by Chapman and Roman (1985), under more ideal

conditions, in a RDD telephone survey, compared the performance of a stratified random substi-
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tution procedure to an equal-cost sample relying solely on nonresponse weighting adjustment.
They concluded that both methods perform almost equally well in terms of bias and sampling
variance, with the substitution approach proving slightly more advantageous in terms of the lat-
ter. However, they strongly recommended only using the substitution procedure for nonresponse
in RDD surveys, where there is a very strict control over the field operations when dealing with

the substitutes, to avoid potential early cooperator biases.

Three recent studies compared the performance of substitution to weighting adjustments
methods in health surveys and found mixed results. Although observing a large difference for
one of the study’s variables (smoking), Vives et al. (2009) concluded that the substitution proce-
dure produces comparable results to a weighting adjustment based on response propensity.
Baldissera et al. (2014) reached the same conclusion on a surveillance system survey. On the
other hand, Van der Hayden et al. (2013) found that using only post-stratification had a larger
impact on most of the estimates than using only substitution, under the same set of covariates.
However, they concluded that using both strategies together might be more efficient than using
only one of them alone (although substitution did not seem to make much of a difference once

stratification was used).

David et al. (2012) looked at the cost of using substitution compared to an “usual prac-
tice” alternative that used repeated contacts, reminder letters and financial incentives (five prizes
of $1,000, in a raffle) to gain the cooperation of nonrespondents and to minimize attrition in a
longitudinal survey. In their study, they used random substitution on the second wave of the sur-
vey with the goal of achieving a desired sample size. By running cost-effectiveness analysis us-
ing the costs (including postage, telephone, courier and interview costs) and response propensi-
ties as input, and Monte Carlo simulations to evaluate the sensitivity of their results, they con-
cluded that substitution was a more cost-effective strategy, with a smaller average cost per com-
pleted interview. Later, David et al. (2014) analyzed if there were any differences in the out-
comes of the same survey between the substitution and the “usual practice” procedures. Compar-
ing early respondents of both procedures (as a proxy for the substitutes) to early and late re-

spondents of the “usual practice” strategy, they did not find many differences between the two
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groups, leading to the conclusion that, for their study, substitution would produce comparable

results to the usual practice, but with a larger sample size and at a lower relative cost.

Dorsett (2010) also attempted to use substitution in a longitudinal study. However, in-
stead of using random substitution as in David et al. (2012), he tried using propensity score
matching to find substitutes that match the scores of dropouts to adjust for nonignorable attrition.
Despite trying several approaches, he was not completely successful in solving the

nonignorability issue.

Although there is some limited research examining the issue of substitution of
nonresponding units in probability samples, the empirical results are mostly inconclusive,
providing no definite guidelines for survey practitioners on when and how to properly use substi-
tution. Moreover, problems like the use of substitution for cluster nonresponse or how to adapt
the procedure to a missing not at random mechanism have not been fully addressed in the litera-

ture. The work presented in this dissertation takes a step towards filling some of these gaps.
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CHAPTER |11

Substitution of Nonresponding Primary Sampling Units in Probability Samples

Summary

Nonresponse occurs when a sampled unit fails to provide either part (item nonresponse) or all
(unit nonresponse) of the information requested in a survey. The nonresponse literature has em-
phasized study of nonresponse arising at an element level, that is, the nonrespondent is the ulti-
mate unit in the sampling process. However, in some multi-stage samples nonresponse occurs at
earlier stages of the sampling process, such as in surveys of institutions like schools or estab-
lishments. In stratified multi-stage samples with few primary sampling units (PSUSs) per stratum
the risk is increased that if PSUs do not respond some strata will have only one or no responding
PSUs, a problem for sampling variance estimation. A common strategy is to form pseudo strata
with at least two PSUs each by collapsing strata with one or no PSUs, but sampling variability
may be over-estimated. An alternative approach is to select substitute PSUs from units not origi-
nally selected in the sample. Vehovar (1999) observes that substitution for PSU-level nonre-
sponse maintains the sample design structure allowing sampling variance estimation using the

original stratification and cluster sampling design.

There are many different ways PSU-level substitution for nonresponse can be implemented. This
study evaluates the impact on the survey estimates when various forms of substitution are used to
compensate for nonresponse at the PSU-level of a two-stage cluster sample. Twelve methods are
examined and compared in a simulation study to evaluate under which scenarios these substitu-
tion procedures are justified and compares substitution to alternative strategies such as sample
size inflation, weighting, and strata collapsing. The bias and sampling variances are compared

across substitution and non-substitution methods for handling PSU-level nonresponse.
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3.1 Introduction

Nonresponse occurs when a sampled unit fails to provide either part (item nonresponse)
or all (unit nonresponse) of the information requested in a survey. Nonresponse may be due to
noncontact, refusal, an inability to understand a survey request for information, or other reasons.
This source of potential error in survey estimates has been increasingly studied in statistics and
survey methodology, both theoretically and empirically, especially as response rates have fallen
dramatically in recent decades (De Leeuw and De Heer, 2002; Rand, 2006, Bethlehem et al.,
2011). On the other hand, the relationship between response rates and nonresponse error has
been called into question by several studies (Keeter, et al., 2000; Merkle and Edelman, 2002;
Curtin, Presser and Singer, 2005; Keeter, et al., 2006; Groves and Peytcheva, 2008), highlighting

the importance of a careful exploration of all existing methods for dealing with nonresponse.

In the survey statistics literature, most of the methods for dealing with nonresponse have
focused on post-data collection adjustments such as weighting, imputation, and statistical model-
ing (Little and Rubin, 2002). Although post-survey adjustments are flexible and relatively inex-
pensive methods for dealing with missing data, survey data collection presents unique opportuni-
ties to minimize nonresponse error. As Benjamin King once said, “There is only one real cure for
nonresponse and that is getting the response” (Frankel and King, 1996). In practice, however,
with finite resources and time, nonresponse cannot be eliminated entirely. But some actions and
interventions during the data collection stage could potentially mitigate the impact of nonre-

sponse on final estimates.

An approach to dealing with unit nonresponse during survey data collection is substitu-
tion. This method consists of replacing nonresponding sampled units with new units which were
not originally selected in the sample. Terms like “reserve” or “replacement” are also used to in-
dicate substituted units. As indicated by Vehovar (1999), most survey methodology and sam-
pling textbooks either ignore (e.g., Cochran, 1977; Sérndal et al., 1992; Groves et al., 2009) or
present only a brief discussion of substitution (e.g., Kish, 1965; Lessler and Kalsbeek, 1992;
Lohr, 1999; Little and Rubin, 2002).
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As pointed out by Lynn (2004), the literature, in general, tends to criticize substitution on
two grounds. First, some forms of substitution involve interviewer decision making about when a
substitute is to be used. Interviewers are given the flexibility to decide that a substitute is needed
for a nonresponding unit. Second, some forms of substitution also allow the interviewer to
choose the substituting unit, or a convenient unit is chosen as a substitute. There is compelling
evidence that interviewer decision making about substitution is faulty and can lead to substantial
bias in survey estimates (Chapman, 1983; Chapman, 2003; Chapman and Roman, 1985; Lessler
and Kalsbeek, 1992; Lohr, 1999; Moser and Kalton, 1972; Vehovar, 1993). Much of the critical
literature recommends avoiding the use of interviewer controlled or implemented substitution.

These interviewer choice methods are not considered in this study.

Instead, the focus here is on forms of substitution in which the determination of when to
substitute and which units to use as substitutes is controlled by survey investigators. The survey
investigators reserve the right to decide or specify when a substitute is needed, and they select
substitutes carefully, and not conveniently, to have similar characteristics to the nonresponding
units. The choice of substitute units often involves matching on observable characteristics or a

stochastic selection.

It is in these latter forms of substitution that there is a lack of conclusive evidence sug-
gesting it performs worse than competing alternatives such as weighting or imputation. There
have been a handful of theoretical studies on substitution (Nathan, 1980; Zanutto, 1998;
Vehovar, 1999; Rubin and Zanutto, 2002; Thompson and Wu, 2008) and some empirical investi-
gation of actual implementation (Durbin and Stuart, 1954; Cohen, 1955; Sirken, 1975; William
and Folsom, 1977; Biemer, Chapman and Roman, 1985; Vives et al., 2009, David et al., 2012;
David et al., 2014, Baldissera et al., 2014). There is still concern about this kind of more deliber-
ate and controlled substitution as a procedure for dealing with nonresponse, in part because these

prior studies have not generated the kind of conclusive results that have been sought.

The limited existing research on substitution focuses mainly on its use at the element lev-
el. For example, Vehovar (1999) examines in a two-stage cluster sample nonresponse and substi-

tution occurring only at the second stage of the sampling process.
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But many surveys use substitution as a remedy for nonresponse of entire clusters, as pri-
mary sampling units (PSUs) in two-stage sampling. This is particularly true in school-based sur-
veys that sample schools as first stage units and students in the second stage within selected re-
sponding schools. For instance, the sample design guideline of the Programme for International
Student Assessment (PISA) suggests substituting non-cooperating schools if the initial school
response rate falls between 65% to 85% (PISA, 2012). The National Assessment of Educational
Progress (NAEP) resorts to substitution for nonresponding schools, particularly for private
schools that are not obliged to comply with study requests for testing students. The University of
Michigan’s Monitoring the Future survey substitutes for non-cooperating schools (Bachman et

al, 2011). This usage of substitutes at the PSU-level has not yet been examined in the literature.

Further, nonresponse at the cluster level is another area for which there is a paucity of re-
search. Studies that look at nonresponse in cluster sampling usually assume that there is at least
one respondent in every cluster in the sample (Vehovar, 1999; Yuan and Little, 2006; Skinner
and D’Arrigo, 2011). Such an assumption might be reasonable in some household surveys,
where the clusters are typically cities, counties, census tracts or city blocks. When it occurs, the
rate of nonresponding clusters is typically not high. However, the fact that the nonresponding
PSUs are often either in high-income neighborhoods, such as gated communities, or dangerous
areas, such as in slums or drug trafficking zones, might raise concerns about nonresponse bias.
Nonresponding PSUs are even more common in surveys that use institutions to get access to the
target population, such as school-based surveys targeting students. The number of nonresponding
schools can be moderate to high, compromising the participation of all students in those schools
and, thus, resulting in many clusters with no respondents. The nonresponse in these cases is usu-

ally the result of a lack of cooperation by school authorities.

This study focus on two-stage cluster sampling. It is assumed that some of the PSUs are
nonrespondents and none of the corresponding secondary units respond, but in responding PSUs
all secondary units respond. Although this may seem to be a strong assumption, in school-based
surveys, for example, student response rates tend to be very high, particularly compared to

household or individual response rates in household surveys.
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Two sets of findings are presented. First, to demonstrate the importance of PSU nonre-
sponse and to evaluate which parameters of the population and sample design have an impact on
the nonresponse bias, theoretical results for the unadjusted respondent mean are given. Then, the
results of a simulation study are presented to assess the performance of different substitution

procedures compared to alternative nonresponse weighting-adjustment methods.

3.2 Bias of Unadjusted Respondent Mean Under PSU Nonresponse
3.2.1 Equal-sized Clusters
For the sake of simplicity, it is first analyzed the case in which the population consists of
A
A clusters of equal size, B, so that the overall population size is N = Z B=AB.LetY,, bethe
a=1

value of a survey variables Y for the g element in " the cluster, for ¢ =1,..., A; S =1,...,B.

The objective is to estimate the finite population mean:

A
2.2 Yep

Y_=a:1

z |-

For that purpose, a two-stage cluster sample is selected. At the first stage, a sample of a

PSUs of the A clusters is selected with equal probability, but in only a, is it possible to obtain a
subsample of elements, due to nonresponse. At the second stage, b secondary sampling units

(SSUs) of the B elements are selected in the o™ responding cluster. It is assumed that all select-
ed SSUs respond to the survey. Because this design is a fixed size equal probability sample, if
there were no nonresponse, the usual estimator for the population mean would be the sample

mean:

a

b
D Vap
a=1 p-1

y=til

ab

With nonresponse, a naive approach would discard the nonresponding PSUs and use this
same estimator using only the respondent data, that is, an unadjusted respondent mean:
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Denoting r, and 1 ,,the PSU cluster response indicator and the SSU sample indicator for

the S sampled element in the o™ selected cluster, respectively:

. 1, if the a"cluster is included in the sample and responds
“ 10, otherwise

and

_ |1 if the B element in the a"cluster is included in the sample
7 0, otherwise

Then the estimator can be re-written as

Under the given sample design, assuming that the cluster selection and response mecha-

nisms are independent, the expected values of r, and 1, are, respectively, E(ra):% p, and

E(I/ﬂa ) :%, where p,_ is the response propensity for cluster « . In order to derive the bias of

this respondent mean, first, notice that this is a ratio estimator and hence, the Taylor Series ex-
pansion can be used to find its approximated expected value (Wolter, 2007). Let

RTITAAR S



to approximate

Ay 1 /0 Y, (o Y 116 o Y o _
v, =9(%.Y,)= g(Yl,Y2)+Z(Y1—Yl)—ﬁ(Y2—YZ):E+%(Y1—Y)—?(Y -p)

Now, assuming that the first and second stage sample selections and the cluster nonresponse are
independent,

a_b S
7 R E(ra)E<|ﬂ|a)ya/5’ &S Kpa Byaﬂ ZpaYa
E — — — o=l
( 1) ;; ab ;; ab A and
A A a A
~ ZE(ra) ZZ Pe zpa
E( ):a:1 — o=l —a=l :ﬁ’
2 a a A

Therefore, the bias of the respondent mean in this case is given by
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Bias(y,)=E(Y )—Y_ilazl _izA:V -
r r A E Aa:l a
11& - 11& - -
— 223V (p =) ===S(Y. =Y )(p. - p)=
A Ye(P=P) Aﬁ;( .~Y)(p,-P)
=%Cova(Y,p)

where Cov, (Y, p) is the covariance of the survey variable, Y , and the response propensity, p,

with the subscript a to denote that this covariance is being evaluated at the cluster level.

This is similar to the bias expression for nonresponding elements in Bethlehem (1988).

The expression for the bias of y, can be further expanded as

Bias(V,)ﬁ%Cova (Y.p)=

=%Corra (Y. p)o.(Y)o.(p)=

:%Corra (Y, p)o.( p)J@[H p(B-1)]

where Corr, (Y, p) is the correlation of the survey variable, Y , and the response propensity, p ;

o,(Y) and o, (p) are the standard deviations of the survey variable and response propensity,

respectively; and p is the intra-cluster correlation of the survey variable. Again, the subscript a

denotes that these statistics are being evaluated at the cluster level.

The nonresponse bias in this case also depends upon the degree of homogeneity due to
clustering. This is an intuitive result, since here all elements in a nonresponding cluster are miss-
ing, even though some, if not all, of these elements would respond to the survey, if requested.
Hence, survey outcomes with high intra-cluster correlation will tend to have a higher bias com-

pared to outcomes with lower within-cluster homogeneity.

33



3.2.2 Unequal-sized Clusters

Consider the case in which the population consists of A unequal-sized clusters, with B,

A
elements in the o™ cluster, so that the population size is N = Z B, . In this case, the finite popu-

a=1

lation mean is given by

Once again it is assumed that a two-stage cluster sample is selected. At the first stage, a

sample of a PSUs of the A clusters is selected with probability proportional to size (PPS), B,

but only a, of them comply. At the second stage, b SSUs of the B, elements are selected in the

a™ responding cluster. Just as the previous case, it is assumed that all selected SSUs respond to

the survey. Because this particular design (PPS two-stage cluster sample) is a fixed size equal
probability sample, if there were no nonresponse, the usual estimator for the population mean
would also be the sample mean:

As previously, under the presence of nonresponse, a naive approach would be to discard

the nonresponding PSUs and use an unadjusted respondent mean:

> i i 3 r"’lmayaﬁ
yaﬁ ab
v _ a=lp=l _ a=lp-1
yr - a b - A
r Z r,
a=1
a

where r, and 1, are the same as before.
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Under a PPS selection, and assuming that the cluster selection and response mechanisms
are independent and that the SSUs are selected with equal probability within the PSUs, the ex-

pected values of r, and 1,, are, respectively, E(r,)=a AB“ p, and E(I ﬂla):Bl.

> a

a

a=1

Let

A

a

rl

y /Y. YA by a’ Bladq =
A AR ) R

to approximate

A
~ >BY, />B,p
Y, Y o ala
g(VoYo) =g =—="% “
2 p Z Ba Z Ba
a=1 a=1
Assuming that the first and second stage sample selections and the cluster nonresponse are inde-
pendent,
B, b
a, P, Bi yaﬂ A _ A B
S E(R)E (g ) Yoy & & ;Ba ) ;BapaYa ;BapaYa
E(l):;ﬁzl ab :;; ab - ZA:B - N
a=1 “
and
A B
A Z a A “ pa A
o 2E(n) 7t XB, 2B,

E( 2):a= a = a:; :a=1A =P,

2B,

a=1
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using Taylor Series approximation, the expected value of the respondent mean in this case is ap-

proximately

Bias(y,)=E(Y,)-Y =
1&BpY, 1&.o 1 &, -
= = alPo o = BY = BY — =
NE NS
1 &, o -
=—>B,(Y, -V -p
N5 2 o (Yo =Y)(p.-P)

This is of a similar form of the bias expression of the equal-sized clusters case, but with
the covariance weighted by the cluster sizes, which implies that larger clusters might have a larg-

er impact on the nonresponse bias.

3.3 Simulation Study
Despite being extensively used in practice, the statistical properties of the various types

of substitution methods are still not well understood, particularly the substitution of clusters,
such as PSUs, in complex survey design settings, involving stratification, clustering, multiple
stages, and unequal selection probabilities. Furthermore, a comparison of the performance of
these substitution procedures to other nonresponse adjustment methods is needed to guide practi-
tioners about the implications of using each one of these methods in different populations and

contexts.

More specifically, it would be helpful to know: (1) which methods lead to unbiased esti-
mates; (2) what methods produce the most precise estimates; and (3) which methods lead to the

smallest mean squared error for the estimates of the population parameters. It would be im-
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portant to evaluate these properties of the different method for dealing with nonresponse under a
range of values for important population and survey design features that can impact nonresponse.
Moreover, the sampling variance estimates of these methods should also be evaluated for a more
complete portrait of their statistical inference properties.

For these purposes, a series of simulations were carried out, each selecting 5,000 strati-
fied two-stage cluster samples of size n = 1,500 (a = 100 clusters and b = 15 elements per clus-
ter) from populations of approximately N = 400,000 elements composed of A = 2,000 clusters of

unequal size.

The simulation process involved the generation of a population of clusters, the generation
of a population of elements within each cluster, the selection of a sample of PSUs and elements
within sample PSUs, the application of a missing data mechanism to the sample to obtain the re-
sponding unit sample, the selection of substitute PSUs for nonresponding PSUs, and the calcula-

tion of various estimates from each sample, including bias and variance.

In these simulations, the objective was to estimate the finite population mean of a survey
variable Y. An auxiliary variable, X, at the cluster level was assumed to be observed for all clus-

ters, respondents or nonrespondents. The simulations were conducted with:

e Three levels of correlation between Y and X: low (Corr, (Y, X ) =0.01), medium

(Corr, (Y, X)=0.30) and high (Corr, (Y, X ) =0.70) (as before, the subscript a denotes
that the correlations are at the cluster-level);

e Three levels of intra-cluster correlation for the Y survey variable: low ( o =0.01), medi-
um (o =0.20) and high (o =0.50);

e Three cluster-level response propensity means (cluster response rate): low (p =0.50),
medium (p=0.75) and high (p=0.90), and;

e Two missing mechanisms: missing at random conditional on the variable X (MAR) and

missing not at random (MNAR).
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Thus, there were 3 x 3 x 3 x 2 = 54 different simulation settings, derived from the combi-
nations of correlation, intra-cluster correlation, response rate, and missing data mechanisms ex-
amined. First, nine populations were generated corresponding to the combinations of correlation
and intraclass correlation given above. Then, for each of these nine populations, six nonresponse
scenarios were considered, the combinations of the three response rate levels with the MAR and

MNAR nonresponse mechanisms.

Finite Populations Generation

The parameters of the nine finite stratified and clustered populations, derived from the
combination of the three (X, Y) correlation and the three intra-cluster correlations, are summa-
rized in Table 3.1.

Because of the stratified, clustered nature of these populations, the values of the survey

variable Y were hierarchically generated in two steps. First, the cluster means Y, were generated

from a multivariate normal distribution together with other three cluster variables:

= X, which denotes a cluster variables to be used in matching substitutions and nonre-

sponse adjustments;

= W,_, which was used to stratify the clusters, and,;

= U,_, which assisted in the generation of the cluster sizes, B, .

Once the clusters characteristics were generated, the survey outcome values of the B el-

ements in each of the clusters were drawn from a normal distribution with mean Y_ . The two-

step algorithm that implemented this population generation is given below with more details of

this process:

1. Atthe cluster level, A = 2,000 vectors of cluster characteristics were generated inde-

pendently under the following multivariate normal distribution:
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Y, 100 (oy, Ow Ow Oy

X 100

“|~N, | Ox 40000 2000
W, 100 |, O 400 0

U, 5 o, O 0 1

To simulate cluster sizes similar to ones that might be found in school-based surveys, the

size of each cluster was generated from the variable U as B, = (exp(Ua )—‘ +b, ¢ =1,...,2000.

To avoid undersized clusters that would complicate sample selection, an additional b units were
added to the cluster sizes. Some cluster sizes were trimmed to prevent oversized units (Kish,
1965) with sizes so large they would be selected with certainty, or multiple times, in the subse-
quent probability proportionate to size selection of clusters.

Stratification of clusters was based on the variable W . Clusters were sorted by the value
of W and divided into H =50 strata of approximately equal size. The subscript h is added in

the notation hereafter to denote cluster stratum.

The covariances oy,, and o, were set so that the correlations between Y and W and
between Y and U were both 0.2 (the correlation between Y and the cluster sizes, B, was ap-

proximately 0.1) in all populations. The covariance o, was set accordingly to the variance GYZB

so that the correlation between Y and X at the cluster level assumes the three different levels

mentioned before: low (Corr, (Y, X )=0.01), medium (Corr, (Y, X )=0.30) and high (

Corr, (Y, X) =0.70). Below, the way in which the values of oy were set is discussed.

2. The survey variable for the B, elements within the " cluster in the h™ stratum was

generated independently following

Yip ~N(Yoo00, ), h=1,..,50;2 =1,..,1000; B =1....,B,,
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The between- and within-cluster variability of the Y variable, (GYZB ;JYZW ) , were set to
(4;396), (80;320) and (200;200)so that o ~ 400 and the intra-cluster correlation, computed

as p=oy /(UYZW + 0oy, ) , takes approximately the three different levels: low ( p = 0.01), medium

(,,=0.20) and high ( o =0.50), respectively.

Table 3.1: Population parameters used in simulations

Population P Corr, (Y X ) UYZB UYZW Oy
1 0.01 0.01 4 396 0.40
2 0.01 0.30 4 396 12.00
31001 | 0.70 | . 4 | 396 | 28.00
4 0.20 0.01 80 320 1.79
5 0.20 0.30 80 320 53.67
6|02 | 070 | 80 | 320 | 12522
7 0.50 0.01 200 200 2.83
8 0.50 0.30 200 200 84.85
9 0.50 0.70 200 200 197.99

Sample Design
Each simulation selected a stratified two-stage cluster sample from each of the cluster

populations. A first-stage sample of a, =2 PSUs were selected with a random systematic-PPS
procedure from each stratum h =1, ..., 50, using the cluster sizes, B,, as measures of size. A

second-stage sample of b =15 SSUs were selected with simple random sampling without re-
placement within each sampled PSU. This is a design that maximizes the benefits of stratifica-
tion to the point where design-based sampling variance estimation is still possible. Because the
strata were approximately the same size, design weights were used to adjust for some minor dif-

ferences in the selection probabilities across elements in different strata.

Some of the methods evaluated in this study inflated the selected sample size to compen-
sate for nonresponse to obtain the target sample size. Because the missing mechanism operated

at the cluster level, only the first-stage sample size were inflated in each stratum according to the

overall cluster response propensity mean. In particular, instead of selecting a, clusters in the h"
stratum, a, =a, /P, Where p= Z::l p,/A were selected to compensate for PSU level nonre-
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sponse. For example, for an overall cluster response propensity p=0.75, a, =2/0.75=2.67 ~3

PSUs were selected in each stratum. This approach assumes a prior estimate of the response pro-

pensity. In practice, response rates of previous studies are used as estimates for this quantity.

Nonresponse mechanism

The nonresponse mechanism was then applied to the selected clusters. Because the inter-
est here is in nonresponse at the cluster-level, all the elements within respondent clusters were
considered to be respondents. Two nonresponse mechanisms were used in this study: missing at
random (MAR), in which the nonresponse depends only on the variable X , and missing not at
random (MNAR), in which the nonresponse also depends on the survey variable Y . For each

mechanism, three cluster response propensity levels were used: low (p =0.50), medium (p =

0.75) and high (p=0.90).

The response propensities, p,, , were computed for each cluster in the population accord-

ing to the following model:
logit ( Py, ) =By + BiXpe + BoYne h =1,...,50;x =1,..., 2000

The model’s coefficients were set according to the missing mechanism and cluster response pro-

pensity means as summarized in Table 3.2.

Table 3.2: Nonresponse mechanism model coefficients

P Bo B1 B2

0.50 -1.25 0.0125 0
MAR 0.75 -0.15 0.0125 0

41



For each sampled cluster a random variable u,, ~ Uniform(o,l) was independently gen-

erated. The cluster was treated as a nonrespondent, that is, none of its elements were observed, if

Uy, < Py, ; Otherwise the cluster was considered a responding PSU and a sub-sample of b = 15

elements was selected. This same missing mechanism was applied to units selected to substitute
nonresponding PSUs. That is, there was also nonresponse among substitutes and its mechanism
was assumed to be the same that operates on the original sample. In practice, this latter assump-
tion is only true if the substitutes receive the same survey protocol as the originally selected

units.

Nonresponse adjustment methods evaluated in this simulation study
The methods used to compensate for nonresponding PSUs compared in this simulation
study, are summarized in Table 3.3. The objective is to estimate the finite population mean

Y = ziNzlYi/N . Design-weights were used in all estimates. With the sample design used in the

simulations, the design-weights are given by?

» 1
dhaﬁ = Mhop = (”ha X”mha) =

1 -1
oD x| S| AR hg s0a=1..a:p=1,15
a:]_Bha Bha Bha

a=1

As previously mentioned, most of the proposed methods in the literature to adjust and
compensate for nonresponse assume that the missingness occurs at the element level. However,
many of the element level compensation methods can also be applied to clusters. For the purpos-
es of this study, the substitution methods are compared to two very common alternative solu-
tions: the unadjusted respondent mean and the nonresponse-adjusted weighted mean. In order to
achieve, on average, the target sample size and have comparable sample sizes for methods rely-
ing on substitution, both of these approaches used a number of PSUs inflated by the average

cluster response propensity.

? For the methods that used an inflated sample size, a, is substituted by a; = ah/ﬁ
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Table 3.3: Methods to compensate for missing PSUs investigated in the simulation study
Abbreviation Method Substitution ~ Nonresponse

iterations weighting?
ISS Inflated Sample Size - No
ISS.W Inflated Sample Size - Yes
MSubl Matching Substitution 1 No
MSub3 Matching Substitution 3 No
MSub7 Matching Substitution 7 No
RSubl Random Substitution 1 No
RSub3 Random Substitution 3 No
RSub7 Random Substitution 7 No
MSub1l.W Matching Substitution 1 Yes
MSub3.W Matching Substitution 3 Yes
MSub7.W Matching Substitution 7 Yes
RSubl.W Random Substitution 1 Yes
RSub3.W Random Substitution 3 Yes
RSub7.W Random Substitution 7 Yes

Unadjusted respondent mean with inflated sample size (1SS)

The unadjusted respondent mean, or inflated sample size estimate (ISS), is the naive
complete-case analysis estimator without any adjustment for nonresponse. Although this method
is usually not recommended in practice, it is used here as a baseline point to evaluate the magni-
tude of nonresponse bias reduction when the other methods are used. In this case, the estimate
for the population mean of the survey variable Y uses only the data of the elements selected
within the responding PSUs. Weights in the ISS method include only the design weights, with no

further weighting or imputation-adjustments:

Nonresponse adjusted weighted mean with inflated sample size (ISS.W)
The nonresponse adjusted weighted mean, or the inflated sample size weighted mean

(ISS.W) is used as a benchmark for the substitution methods, as it is the most commonly used
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alternative, particularly with regard to element-level nonresponse weighted approach (here
adapted for cluster-level nonresponse). In this approach, the responding PSUs are weighted by

the inverse of their predicted response propensity, p,,, which is estimated using the selected

sample with the following logistic regression model:
Iogit( fjha) = :Bo +ﬂlxha + ﬁZBha

This is the correct response model under MAR, but it is misspecified under MNAR. Both
the cluster sizes and stratification indicator were initially included in the model to take into ac-
count all the design variables, as suggested by Little and Vartivarian (2003). The stratification
indicator was dropped from the model because, in preliminary simulations, it led to extreme
weights in some situations without any further reduction in bias. However, this may be due to the
simulation design; if the stratification effect was stronger, the bias reduction could depend on the
inclusion or exclusion of the stratification indicator in the model. Future studies should investi-

gate this further.

With these estimated response propensities for the responding PSUs, the population mean
was then estimated by:

Substitution methods
Substitution can be implemented in a variety of forms. This study investigates two fea-
tures of substitution: the selection method of the substitute and the number of substitution itera-

tions to be used. Each one of them is described next.

First, there are different ways a substitute can be selected to replace a nonresponding unit.

In this study two of these forms were evaluated:
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Matching Substitution (MSub): the substituted unit is the closest match to the
nonresponding unit in terms of the auxiliary variables observed for all units in the popula-
tion, such as frame variables. There are several matching procedures studied in the litera-
ture (Rosenbaum, 1995). However, a very simple matching rule based on the auxiliary
variable X and stratification was used: the substitute was the most similar non-selected
unit (and not used in the substitution of any other case) to the nonresponding PSU in
terms of X within the same stratum. This is equivalent to selecting the unit within the
same stratum with the smallest Euclidean distance from the nonrespondent in terms of the

auxiliary variable X . This study does not focus on evaluating other matching methods.

Random Substitution (RSub): a randomly selected unit among those that were not orig-
inally sampled (nor used in the substitution of any other unit) within the same stratum
was selected as the substitute the nonresponding PSU. There are different ways of ran-
domly selecting a substitute. Since the original selection of PSUs was done with random
systematic-PPS, the substitutes were also selected using this selection procedure. As done
in many school-based surveys that use substitution, the selection of the substitutes was
conducted during the selection of the original sample. This was implemented by breaking
the sampling interval of the systematic selection as many times as needed, according to
the number of substitution iterations (see below). Then the PSU that would be the next
unit to be selected in the same “zone” (Kish, 1965) of the nonresponding PSU using the

new sampling interval is chosen as a substitute.

Another feature of substitution investigated in this study is the number of substitution it-

erations to be used. As mentioned before, it is possible that the substitute selected to replace a
nonresponding unit may be a nonrespondent as well. Then, one can stop with no observation for
the designated cluster, keep substituting until a responding unit is found, or keep substituting
until a predetermined number of substitution iterations is reached. To study this aspect of substi-
tution, up to one, three, and seven substitution iterations were examined for both MSub and
RSub methods. These levels of substitution iteration were chosen to yield response rates approx-

imately equivalent to inflated sample sizes for 90%, 75% and 50% response rates, respectively.
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The combination of the substitution selection method and the number of iterations results
in a total of six substitution methods (see Table 3.3 above). No further nonresponse adjustments
were used to compensate for nonresponse in these substitution methods. The estimate of the
population mean under the six substitution methods is similar to the unadjusted respondent

mean:

where a’ is the number of responding PSUs after all substitution iterations.

Because some nonresponse may remain after all iterations are completed, every substitu-
tion method had a corresponding nonresponse weighting-adjusted estimator similar to that used
in the nonresponse-adjusted weighted mean ISS.W -- MSub1.W, MSub3.W, MSub7.W,
RSubl.W, RSub3.W, and RSub7.W. The cluster response propensities were estimated according
to the same logistic regression model for ISS.W, but estimates were computed using data from
the responding and all nonresponding units including nonresponding substitutes. The estimator

for the population mean of these methods is

Properties evaluated
Three empirical measures were used to compare the different methods. Using 3 to de-

note the general estimator of the population mean for method m, the empirical measures comput-

ed for each method were
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v.) E(V,)-Y '
1. The empirical relative bias, RelBias(Y,,)= Iai_( n) = ( '\"7) = 50\?0 ;
2
500y  —E(V
2. The empirical sampling variance, Var(Vm)z Z [ym‘k (ym )] where

e 5000

(v _5000 ym’k. d
(y”‘)_zsooo’an

k=1

5000 (ym =Y )2
3. The empirical root mean square error, RMSE (¥, )= ZW
k=1

with m = 1SS, ISS.W, MSub1, MSub3, MSub7, RSubl, RSub3, RSub7, MSub1.W, MSub3.W,
MSub7.W, RSubl1.W, RSubl.W, RSub3.W, RSub7.W

A potential advantage of substitution over nonresponse weighting adjustment with inflat-
ed sample size is that substitution tends to preserve the original sample structure (Vehovar,
1999). This is especially important in designs with few units selected per stratum, such as the
sample design used in this simulation that selected two PSUs per stratum. If substitution is not
used in cases like this, some strata could potentially end up with no, or only one, observed units
due to nonresponse, even when an inflated sample size is used. In this situation, strata may be
collapsed to allow for design-based sampling variance estimation (Hansen et al., 1953; Wolter,

2007), which leads to overestimates of sampling variability.

To evaluate the potential benefit of substitution over collapsing strata, the following em-

pirical measures of the sampling variance estimator var(Vm) were compared across the methods:

Bias (var(¥,,)) _
Var(,)

1. The empirical relative bias, RelBias| var(¥,,)]=
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5000 Var(ym) _50205: [mek — E(Vm )]2

_E[var(y,)]-Var(v,) & 5000 & 5000
Var(Vm) 5000 I:Vm,k —E(Vm )]2
2 5000

5000 [var (mek ) -E [Var (Vm )]]2

2. The empirical sampling variance, Var| var(y,,)]=>" 5000
k=1

5000 V2
where E[ var(y,)]= ; VaSrO(Oy(r)n) ; and

3. The empirical root mean square error,

2
[V B
— — 2 Var(ym)_z[ k5000 }
5000 I:Var ( V. ) —Var ( V. )] 5000 k=1

RMSE[var(y, )] = -
SE[ var(v,)] \/; 5000 kZ; 5000

with m = 1SS, ISS.W, MSub1, MSub3, MSub7, RSubl, RSub3, RSub7, MSub1.W, MSub3.W,
MSub7.W, RSubl1.W, RSubl1.W, RSub3.W, RSub7.W

The variances of all methods were estimated using Taylor Series approximation. Strata
with no or one responding PSUs were collapsed with the closest strata until there are at least two
PSUs in the collapsed stratum. In some instances of the substitution method, particularly meth-
ods which rely on only one iteration of substitution, some strata may be empty or may contain

only a single PSU. In these cases, strata were also collapsed to estimate sampling variability.

3.4 Results

In this section the results of the estimators evaluated on this simulation study are shown.
First, the properties of the point estimates for the population mean in terms of their empirical rel-
ative bias, sampling variance and RMSE are presented. Then, the results of the sampling vari-

ance estimates of these estimators are shown with respect of these same measures.
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3.4.1 Properties of the Population Mean Estimates
Empirical Relative Bias

Tables 3.4 and 3.5 present the empirical relative bias for the estimates of the population
mean under the different methods for each simulation on this study under the MAR and MNAR

missing mechanisms, respectively.

As would be expected, as the response rate decreases, the nonresponse bias of the ISS in-
creases, and as the correlation between the auxiliary variable X (which drives the nonresponse
mechanism) and the survey variable Y increases, this bias increases. These simulation results
also confirm what was found in the bias expression of the unadjusted respondent mean under
PSU nonresponse: as the intra-cluster correlation increases, the nonresponse bias also increases.
In general, the nonresponse weighting adjustment on ISS.W almost completely eliminates bias
under the MAR mechanism, since the model is correctly specified. But there is still substantial
remaining bias under the MNAR mechanism, especially for moderate to high intra-cluster corre-

lations and low to moderate response rates.

There is an interesting difference between the matching and random selection substitution
methods relative to the number of iterations. As the number of substitution iterations increases,
the empirical (absolute) relative bias of the matching substitution methods (MSub) decreases and
approaches that of the ISS.W. This is evident for the MNAR mechanism, in which this pattern is
identified in most of the cases and the relative bias of the MSub7 is very close to that of the
ISS.W. Although this same general pattern is not as clear for MAR, the average empirical abso-
lute relative bias of the MSub across all the simulation settings tends to get closer to that of the
ISS.W. Also, for MAR, the bias of the MSub?7 is, on average, larger than of the ISS.W.

In contrast, for the random substitution methods (RSub), not only does its empirical rela-
tive bias remain almost constant across iterations, but it also is very close to the relative bias of
the ISS. This difference between MSub and RSub is explained by the fact that while the former
seeks to select substitutes that resemble as closely as possible the nonresponding PSUs in terms

of the auxiliary variable X, the latter only draws a random PSU that, despite being in the same
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stratum as the nonrespondent, may still be quite different from it. The matching selection of the
substitution performs a similar role to the nonresponse weighting-adjustments in reducing bias.
Hence, if X is associated with Y, it would be expected that the matching substitutes would be,
on average, more similar to the nonrespondents than the random substitutes. This is confirmed by
the fact that as this correlation between X and Y increases, the absolute relative bias of the

MSub decreases, whereas the relative bias of the RSub increases.

The results from the nonresponse weighting-adjusted substitution methods reveal another
difference between the two substitution selection approaches. While for RSub.W the nonre-
sponse weighting adjustment substantially diminishes the relative bias to levels comparable that
of the ISS.W, this same adjustment procedure tends to increase the absolute relative bias in the
MSub.W. This latter phenomenon seems to be particularly true for a MAR mechanism, where it
occurs consistently across the levels of response rate, intra-cluster correlation, and correlation
between X and Y . This happens because the matching substitution already is a nonresponse
adjustment; imposing another adjustment on top of that, through weighting, disrupts the adjust-
ments made in the first place. This finding is corroborated by the fact that the increase in bias
from an unadjusted to a weighting-adjusted approach tends to be larger for RSub7.W and to in-
crease as the correlation between X and Y increases. On the other hand, for MNAR this phe-
nomenon is less evident, and in some cases the nonresponse adjustments seems to actually re-
duce the bias in MSub.W.

Empirical Variance

The results for the empirical variance, presented in Tables 3.6 and 3.7 show that for
stronger correlations between X and Y, such as Corr, (Y, X )=0.70, the sampling variance of
the ISS.W tends to be smaller than that of ISS , as predicted from the results of Little and
Vartivarian (2005). This is particularly true for moderate to higher levels of intra-cluster correla-
tion (o =0.20 and p =0.50), under both missing mechanisms across the different response rate
levels. A similar pattern is observed for the MSub7, RSub7.W and MSub7.W, but not for corre-
sponding methods using a smaller number of iterations. Also, since RSub7 does not use the aux-
iliary variable X for the selection of substitutes nor for weighting adjustments, it does not have
the same gains in precision found in the other three methods.
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For both nonresponse mechanisms, across the levels of the three parameters manipulated
in this simulation study, the variance of both RSubl and MSub1 tend to be higher than the ISS
and ISS.W. This is expected, since their sample size is smaller, due to remaining nonresponse
after the substitution. That is, if there were nonrespondents among the substitutes, no further at-
tempt was made to continue substituting the nonrespondents on these methods. This difference in
the sampling variance tends to decrease as the number of iterations (and therefore, the observed
sample size) increases to the point that the variances of both RSub7 and MSub7 are very close
that of the ISS and ISS.W.

In general, the variances of RSub and MSub are very close to the corresponding sampling

variances for RSub.W and MSub.W. The only exceptions occur for high levels of intra-cluster

correlation (o =0.50) and high correlations between Y and X (Corr, (Y, X)=0.70) when

RSub.W tends to produce smaller sampling variances compared to the corresponding RSub. This
occurs since these are cases in which gains in precision with nonresponse weighting-adjustments
are expected. For these same situations, the opposite effect is observed for MSub.W. The
MSub.W sampling variances are larger than the corresponding MSub sampling variances, similar
to what happens for bias. This confirms that making further adjustments on estimates relying on
matching substitution using the same set of covariates might have a negative effect on the prop-

erties of the final estimates.

Empirical RMSE

When both bias and variance are taken into account through the RMSE, the patterns iden-
tified for the bias and variance are repeated (see Tables 3.8 and 3.9). The RMSE of ISS.W is, in
general, smaller than that of ISS. This occurs particularly as the correlation between Y and X
and the intra-cluster correlation increase, and as the response rate decreases, under both missing

mechanisms.

For the MNAR mechanism, it is clear that MSub1l has a larger RMSE than ISS.W, but as
the number of iterations increase up to seven in MSub7, for example, the RMSE approaches and
becomes very close that of 1SS.W. On the other hand, the RMSE of RSub tends to be slightly

larger than that of ISS, approaching it as the number of substitution iterations increases. The only
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exception is for a high response rate ( p = 0.90 ), when the RMSE of the RSub is very close to,
and sometimes slightly smaller than, that of ISS. For the MAR mechanism, the pattern for RSub

is similar, but for MSub is not as clear. First, for a high response rate (p =0.90 ) MSub seems to

have a smaller RMSE than that of ISS.W, especially as the number of substitution iterations in-

creases. However, for low and moderate response rates (p =0.50and p =0.75), the ISS.W per-

forms better than the MSub, even when the number of substitution iterations is high (MSub7),
although the gap on the RMSE between these two approaches gets smaller as the number of sub-

stitution iterations increases.

As a result of the disruption on the adjustment of the matching substitution caused by the
nonresponse weighting-adjustment on the same variables used to match the substitutes to the
nonrespondents, as found in the previous sections, the accuracy of the MSub.W tends to be
worse than that of the MSub, in particular for substitutions up to seven iterations. On the other
hand, the RSub.W estimates have a smaller RMSE than their corresponding estimates without
the nonresponse weighting adjustment and the improvements tend to be the same, regardless of

the number of substitution iterations.

3.4.2 Properties of the Sampling Variance Estimates
Empirical Relative Bias

Tables 3.10 and 3.11 show the empirical relative bias of the estimates of the sampling
variance of the different estimators for the population mean under MAR and MNAR mecha-

nisms, respectively.

Most of the estimates tend to overestimate the sampling variability due to the fact that
strata collapsing was used in every alternative when necessary, that is, when strata had no or one
responding cluster. Bias in sampling variance increases with the intra-cluster correlation of the
survey variable at the same degree across all methods and parameters investigated in this study.
On the other hand, there seems to be no relationship between the bias of the sampling variance
estimates and the other parameters used in these simulations, such as the correlation between the

auxiliary covariate and the survey variable, the response rate, or the missing data mechanism.
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Compared to the sampling variance estimates obtained by the nonresponse weighting ad-
justment method (ISS.W) with collapsing, those obtained by the substitution methods tend to be
less biased. Curiously, the sampling variance estimates obtained by the unadjusted respondent
mean (ISS) were slightly less biased than the ones provided by the nonresponse weighted-
adjusted mean. Although increasing the number of substitution iterations would tend to produce
a sample with a smaller number of strata with none or one responding cluster, this does not seem
to be a factor on the bias of the sampling variance estimates. Moreover, there was not much dif-
ference in the sampling variance estimates produced by the substitution method with or without a

further nonresponse weighting adjustment.

Empirical Variance

The empirical variances of the sampling variance estimates for the MAR and MNAR
mechanisms are shown in Tables 3.12 and 3.13, respectively. In general, as the intra-cluster cor-
relation of the survey variable increases the sampling variance of these estimates is smaller, but
the variances do not seem to be related with the correlation between the auxiliary and survey var-

iables, the response rate, nor the missing data mechanism.

There was also not much difference between the different methods evaluated in this study
in terms of the variances of their sampling variance estimates across the different simulation pa-
rameters. However, as the number of substitution iterations increases, the variability of these
sampling variance estimates decreases. This is to be expected, since the sample size increases as
a function of the number of substitution iterations. Further, nonresponse weighting adjustment on
these substitution methods slightly increases the variability of their sampling variance estimates,
which is also an expected result, since weighting can increase sampling variability, and presum-

ably the variance of the sampling variance.

Empirical RMSE

Since there are not many differences between the methods in terms of the empirical vari-
ances of the sampling variance estimates, the difference in the results of the empirical RMSE of
these sampling variance estimates are mostly due to what was found in their empirical bias.

Therefore, as can be seen in Tables 3.14 and 3.15 for MAR and MNAR nonresponse mecha-
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-nisms, respectively, the RMSE of the sampling variance estimates is an increasing function of
the intra-cluster correlation of the survey variable, but there is no relationship with the correla-
tion between the survey and auxiliary variables, response rate or the missing mechanism. The use
of nonresponse weighting tends to create sampling variance estimates that are less accurate than
the corresponding estimates of the unadjusted respondent mean. Overall, substituting
nonrespondents lead to more accurate sampling variance estimates than using a strata collapsing
technique. Additionally, increasing the number of substitution iterations also improves the accu-
racy of the sampling variance estimates, as expected. Finally, there are no differences between
random and matching substitution in terms of the RMSE of their sampling variance estimates.
However, the use of nonresponse weighting on top of the substitution tends to create slightly less

accurate sampling variance estimates.

3.5 Discussion

The results of the simulations presented here show some interesting patterns that can
provide some useful guidelines to survey practitioners about the use of substitution procedures
for nonresponding PSUs. It is important to emphasize, however, that the results of this limited set
of simulations should not be readily generalized to broader settings that were not covered here.
Such limitations are further discussed below. The conclusions presented here are limited to the

conditions stipulated by the simulation design.

No substitution procedure outperforms the nonresponse weighting- adjustment method
with an inflated sample size, both in terms of bias reduction or gains in precision. On the other
hand, matching substitution seems to perform just as well as a nonresponse-weighting adjust-
ment, when both are compared under the same conditions, which includes having the same set of
variables available before and after the data collection. Therefore, while there is no evidence to
discredit the use of the kind of substitution examined here when a matching procedure is imple-
mented, there is no reason to prefer this method over a post-data collection adjustment, in terms
of nonresponse bias reductions, if the same set of covariates is used for matching or nonresponse
adjustment. Moreover, using an inflated sample size approach instead of substitution heavily de-
pends on having a good estimate of the response rate — in this case, the PSU response rate. If this

estimate is severely under or over-estimated, the desired number of units will not be obtained.
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The same conclusion does not apply to random substitution. In fact, the unadjusted esti-
mates produced by this procedure have properties that resemble the unadjusted respondent mean
with no substitution, which, as shown before, can be subject to substantial bias. However, ran-
dom substitution can be greatly improved with a nonresponse weighting adjustment. Even if ran-
dom substitution is fully successful, that is, a substitute is found for every nonrespondent, it is
important to employ additional nonresponse adjustments to reduce the bias of the survey esti-

mates.

The standard nonresponse weighting adjustment had the opposite effect on the matching
substitution estimates, at least when the variables used for the nonresponse weighting adjustment
are the same as those used to match the nonrespondents to their substitutes. Both bias and sam-
pling variance tend to increase when a weighting-adjustment is added to matching substitution.
When relying on matched substitutions, even when some nonresponse remains in the sample,
applying a post-data collection nonresponse adjustment using the same variables used for the
matching procedure is not recommended. If a nonresponse adjustment is applied, different auxil-
iary variables or different methods, such as calibration, should be used to compensate for nonre-

sponse.

If a nonresponse weighting adjustment with the same set of covariates used in the match-
ing procedure is employed, it is important to consider which units to include in the nonresponse
model estimation procedures and how to treat them. In this instance, simulation results (not
shown here) suggest that including only the originally selected units (respondents and
nonrespondents) and the final respondent substitutes, leaving aside substitute units that turned
out to be nonrespondents, can bring bias reductions and gains in precision. An alternative ap-
proach is to use only the originally selected units on the nonresponse adjustment model estima-
tion treating the response status of the nonresponding units that were substituted as of their cor-
responding substitutes and then apply the weights of the nonrespondents to the responding sub-
stitutes. Although such procedure was not tested in the simulations presented on this study, it is

expected to perform similarly to the method described above.
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Another important component in the comparison of the methods evaluated in this study is
sampling variance estimation. In designs with deep stratification, in which there are as many
strata as possible and with the minimum number of units per stratum to still allow for design-
based sampling variance estimation, some of the strata might end up with zero or one responding
unit(s) after nonresponse. There different techniques to deal with this problem. Among those,
collapsing strata is most commonly used in practice, where strata with one or no responding units
are collapsed with other strata so to form new strata with a minimum number of units for stand-
ard design-based variance estimation. A disadvantage of such technique is that it tends to overes-

timate the sampling variance.

Vehovar (1999) pointed out that one of the strengths of using substitution of
nonrespondents is its potential to preserve the original sample design after nonresponse occurs.
Substitution can fill in the gaps due to nonresponse making it no longer necessary to collapse
strata or use other model-based techniques for sampling variance estimation. Moreover, Vehovar
(1999) emphasized the need for a comparison between strata collapsing and substitution for
sampling variance estimation. The simulation results showed that substitution leads to less biased

and more accurate estimates for the sampling variance than strata collapsing.

The general results presented in this study show that substitution can be a valid alterna-
tive for the nonresponse problem. Its performance is similar to other standard nonresponse ap-
proaches, especially when a matching procedure is used or when further adjustments are made.
Substitution can be a particularly valuable tool in samples with few units per stratum or cluster,
in which nonresponse might disrupt the design to a point that standard design-based sampling
variance estimation is not possible. In such situations substitution actually proved to be slightly

more superior to strata collapsing in samples that do not use substitution, for instance.

As mentioned before, these conclusions are limited to the assumptions and conditions set
in this simulation study. Some of these limitations are unlikely to change the conclusions in more
general cases, while others may differ if the conditions are different. Next, these limitations are

described in details.
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First, the sample design used in these simulations was very specific, focusing on few
clusters per stratum selected with probability proportional to size. In fact, the minimum number
of units per stratum were selected while still enabling design-based sampling variance estima-
tion. While this deep stratification is commonly used in many surveys, many others select more
than a few units per stratum. This condition was set in this simulation to test the performance of
the substitution method compared to strata collapsing when some strata have one or no respond-
ing units. When a larger number of units are selected per stratum, the likelihood of this situation
and, therefore, the differences between these two methods are expected to diminish, although this
must be confirmed in future studies. Moreover, with a large sampling fraction it may be more
difficult to find good matched substitutes, since there could be fewer units with similar character-

istics from the nonrespondents to be selected from the unasampled population.

Also, the simulations used nearly equal probability sample design and, despite base
weighting, it was an approximately self-weighting design. In practice, most surveys used an une-
qual probability sample design, to oversample certain sub-populations and, thus, has a larger de-
parture from a self-weighting design, relying more on the design-weights. The conclusions of
this study are unlikely to change in these types of designs, but more investigations are needed to
confirm this hypothesis. Finally, the stratification effects and correlation between the survey var-
iable and the cluster sizes were not varied in this study. Some of the results in this study could
differ under other size stratification effects or associations of the cluster sizes with the survey
variables, particularly given some of the limitations associated with the nonresponse mechanism

described below.

Second, the nonresponse mechanism used in this simulation was limited in terms of the
variables and the degree of association with the survey and auxiliary variable. For simplicity, the
two variables used in the design, the stratification indicators and the cluster sizes, were not in-
cluded in the model that generated the missing mechanism. If these variables were included,
some of the results could potentially change, particularly the estimation of the response propensi-
ty in which the stratification indicators were not included. Moreover, the matching substitution
method may have different results based on whether the cluster sizes are included or not among

the matching covariates.

69



Third, and also related to the nonresponse mechanism, the results of these simulations are
based on an assumption that the mechanism for the original selected units is the same as for sub-
stitute units. This assumption might be reasonable when substitution is conducted in a more rig-
orous environment, with substitution selections carefully made by the office rather than the in-
terviewers. It probably also would require a strict survey protocol that emphasizes obtaining as
high a level as possible of cooperation of the originally selected units. When such conditions do
not apply, the nonresponse mechanism of the substitutes may differ from the original sample
and, depending on how different these mechanisms are from those that apply to originally select-
ed units, nonresponse bias could actually increase rather than decrease. Therefore, the results ob-
tained here should not be readily extended to all situations in which substitution is used, and
more research is needed to address situations in which the nonresponse mechanism may differ

between original sampled units and substitutes.

Lastly, this simulation only examined the situation in which there is only one covariate
available for matching the substitutes to the nonrespondents. In most applications, multiple co-
variates are usually available. An evaluation of different methods for the matching procedure
should be explored, such as using a multidimensional distance measure or propensity score
matching. The results may differ depending on the method used and on the association of the
matching covariates with the survey variables. Moreover, only a normally distributed variable
was considered in these simulations. Future studies should investigate how these methods per-

form with both continuous variables with other stochastic distributions and categorical variables.

Despite extensive use in practice, substitution of nonrespondents has been a neglected
and understudied problem in survey sampling. Further research on this topic may yield bias and
sampling variance reductions that merit wider use of substitution to compensate for survey non-
response. For example, a matching procedure might leave differences between nonrespondents
and their substitutes on observed variables that could not be used in the matching. Rubin and
Zanutto (2002) proposed an imputation method that adjusts for such differences, although their
technique might produce increased survey cost and sampling variability in settings like simulated

in this study. Alternative methods to calibrate respondent and substitute differences suitable for
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the two-stage sampling examined here may keep survey costs or sampling variability at levels

equivalent to other nonresponse adjustment methods.

Survey cost was largely ignored in this study, for the sake of simplicity. But it is an im-
portant factor to be considered in future research. While substitution attempts to fill in the gaps
left in the sample due to nonresponse, this procedure increases costs as additional units are se-
lected and targeted to substitute the nonrespondents. Original sample size must be smaller to
have resources to select and recruit substitute units. Inflating the sample size, on the other hand,
might suffer from an incorrect estimate of the response rate, particularly if it is under-estimated,
in which case more units may be selected than necessary leading to larger costs or lower re-
sponse rates. A more complete portrait of the nonresponse problem should consider trade-offs
between survey errors and survey costs in the use of substitution and inflated sample size meth-

ods.

Nonresponse also occurs at other stages of sample selection in multistage sampling. The
use of substitution for other sampling units needs research attention. This study looked specifi-
cally at the problem of nonresponding PSUs, a fairly common problem establishment and school
surveys, in particular. The approach of this study could be extended to nonresponse among se-

cond stage units and other similar situations readily.

Finally, the approaches examined here ignored the contributions that might be made us-
ing imputation methods as an alternative or a complement to substitution. While weighting might
be a preferred procedure for many survey practitioners for adjusting unit nonresponse, imputa-
tion has proven valuable at an element-level, and could be extended to dealing with PSU level

nonresponse as well.
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CHAPTER IV

Imputation and Calibration Adjustment Methods to Improve Substitution

Summary

Substitution, in which a nonresponding unit in a survey is replaced by another unit not originally
selected in the sample, is a widely used strategy to deal with nonresponse in many surveys in
practice. However, little research has been conducted about this often criticized or neglected pro-
cedure in the survey statistics literature. Rubin and Zanutto (2002) proposed the only method to
date that attempts to improve this methodology by reducing nonresponse bias caused by differ-
ences between nonrespondents and their corresponding substitutes. However, their method re-
quires the selection of substitutes for a sub-sample of the respondents for estimation purposes,
which leads to additional costs to the survey operation. This paper presents two new methods to
enhance substitution for nonrespondents. First, a modification is suggested that eliminates the
selection of the additional sample of substitutes from non-sampled units by selecting substitutes
from among responding units, therefore making the method more cost-effective. Second, differ-
ences between nonrespondents and substitutes are adjusted using a calibration procedure. This
latter methodology eliminates the need to collect additional substitutes from non-sampled units
for some of the respondents, and increases the precision of the estimates through calibration.
These methods are evaluated and compared through two simulation studies under a variety of

settings.

4.1 Introduction

Substitution is a survey procedure for compensating for nonresponse among sample units
by selecting a replacement unit from the population for each nonresponding unit. Nonresponse
bias reduction is a main driver for using substitution to replace nonresponding units. Such reduc-

tions will only be achieved if nonrespondents and substitutes are similar on survey variables.
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However, substitutes are respondents and may differ systematically from the
nonresponding units they replace. Such differences might be related to one or more of three dif-

ferent types of variables.

First, there are variables that are observed for both nonrespondents and their substitutes.
These variables could be used in survey estimation in statistical models to adjust estimates to ac-
count for nonrespondent-substitute differences. For example, in household surveys there may be
demographic variables available for households or persons that could be used to adjust the values
of other variables to account for nonrespondent-substitute differences. In an establishment sur-
vey, the size of an organization might be used to increase or decrease the contribution of a substi-
tute if the substitute size is smaller or larger than the unit it replaces. The differences between
nonrespondents and their substitutes with respect to this type of variables may be adjusted
through a variety of statistical methods (Little and Rubin, 2002) that assume nonresponse is

missing at random (MAR).

A second type of variable is the set of variables that are directly or indirectly observed for
all units in the population, but their inclusion in a statistical model would be difficult or imprac-
tical. These are what might be called higher dimensional attributes, such as geographic location
(an address or a zip code) which is difficult to use in models because of its high dimensionality.
Alternatively, there may be a large number of categorical variables for which all or most of their
interactions are needed to explain the outcome variables. Typically, this higher dimensional rela-
tionship between nonrespondent and substitute could be taken into account through matching
(Rubin, 1973). That is, the selection of a substitute for a nonrespondent could be based on a
measure of distance between that nonrespondent and the unsampled units on these variables.

Finally, differences between nonrespondents and their substitutes might be explained by
unobserved variables or even, in the worst-case scenario, by the survey variables themselves. In
this case the nonresponse is nonignorable and statistical adjustments must rely on untestable as-
sumptions. Although it is an important problem in survey statistics, this non-ignorable missing

data situation is outside the scope of this paper and will not be further considered here.
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Rubin and Zanutto (2002) propose a method they call “matching, modeling, and multiple
imputation” (MMM) to adjust for differences between nonrespondents and their substitutes.
MMM assumes MAR, and thus uses the first two types of variables described above. Rubin and
Zanutto show their proposed method reduces nonresponse bias, even though it requires substitu-
tion for all nonrespondents and for a sub-sample of the respondents. This additional sample se-
lection imposes additional costs that many practitioners are not willing or able to incur. Further,
the substitutes for respondents are discarded from the dataset after having been used in the ad-
justment process (a multiple imputation procedure). Another potential disadvantage of the MMM
method is that it introduces added variability to the estimates through the imputation process.
Rubin and Zanutto (2002) demonstrate that under a variety of circumstances, the estimates ob-
tained from the MMM have much larger variability than existing alternatives, such as weighting
or other standard forms of substitution. Survey designers have been reluctant to use such a meth-
od without clear evidence that the added costs leads to substantial reduction in bias or increases

in precision®.

In this paper, modifications to the MMM method that eliminate the need for selecting and
collecting data for a sample of substitutes for respondents but still successfully reduces nonre-
sponse bias are proposed. One selects substitutes from among existing sample respondents, and
uses those in a method similar to the MMM method. Another uses calibration to adjust for dif-
ferences between substitutes and nonrespondents on auxiliary variables not used in the matching
substitution. This latter method could lead to estimates with a smaller sampling variances com-
pared to those obtained under the MMM method. The performance of these methods is evaluated

through the use of simulations.

In the next section, the MMM method is presented before the alternative methods (substi-
tution by sample respondents and calibration) are examined. The paper concludes with a descrip-

tion of the design and the results from two simulation studies and summary remarks.

* Chiu et al. (2005) illustrates an application of the MMM method in a different context, in which the
“substitutes” were data aggregates from geographical census units, such as blocks or census tracts.
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4.2 Matching, Modeling, and Multiple Imputation
Rubin and Zanutto (2002) distinguish between two types of variables that can potentially
explain differences between nonrespondents and corresponding substitutes, matching and model-

ing covariates.

Matching covariates, denoted by X, are available for every unit in the population, typi-
cally variables available from the sampling frame materials. These covariates are used to match
nonrespondents to unsampled units to serve as their substitutes. Such variables would typically
not be used in models for nonresponse adjustments, because their use would require too many
parameters or an arbitrary categorization to a smaller number of classes. Address or geographic
location might be considered as the basis for matching nonresponding and substitute cases
where, for example, a substitute is selected for a nonresponding unit from the same block, or
school, or other unit from the same geographic location. Geographic location though is difficult
to be used in a statistical model, such as including a sequential identification as a predictor. Be-
cause nonrespondents and substitutes are matched on these variables, they will potentially share
the same values of other variables that cannot be directly observed, and therefore, are not availa-

ble for analysis. Chiu et al. (2005) call these variables “contextual variables”.

Modeling covariates, denoted by Z , are variables typically available only for
nonrespondents and their substitutes collected during data collection, such as paradata (Couper,
1998) in a cross-sectional survey or, in longitudinal surveys, data from previous waves for cur-
rent-wave nonrespondents. Because nonrespondents and their corresponding substitutes usually
cannot be matched by these variables, there might be some differences between them with re-
spect to these covariates. For this reason, Rubin and Zanutto suggest modeling these differences
and using the results of these models for multiple imputation of the nonrespondents using the

substitutes’ data.

The interest is in estimating a population parameter associated with a survey variable Y ,
such as a mean, median, or an association with other variables. For this purpose, a probability

sample s of size n from a finite population U = {1 i,...N} is selected. The set of respondents

and nonrespondents are denoted by r and m, respectively (see Figure 4.1). In a matching substi-
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tution procedure, substitutes for each nonrespondent in m are selected according to a matching
variable X by finding the non-sampled case with the closest proximity to the nonrespondent.
Denote the set of matched substitutes by g, where each one of its units has a one-to-one corre-
spondence to a unit in the nonrespondent set m . For simplicity, it is assumed throughout this
study that the matching substitution procedure is fully successful, that is, a responding substitute
is successfully obtained for every nonrespondent. This assumption can be relaxed for some of the

methods presented below.

Figure 4.1: Matching substitution procedure (shaded area indicates available data)
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To adjust for potential differences between nonrespondents and their corresponding sub-

stitutes Rubin and Zanutto proposed the following model for the survey variable Y :
V. =a+ pz, + BX +& (1)

with & ~ N (0, o’ ) i e 5. Further, they argue that since substitutes are also part of the same pop-

ulation of the originally selected units, their survey variable should also follow the same distribu-

tion:
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Y =a+ B+ f,X +¢& (2)

where y°, z°, and X° denote, respectively, the y., z,, and x values for the substitute of the i"
nonrespondentand & ~ N (0,02), i e m. Since substitutes are matched to the nonrespondents on

the matching variables, that is, x; = X, , the difference between them in terms of the survey vari-

able is
yi—yf:ﬂl(zi—zf)+gi', iem ©)

However, this model cannot be fit because the survey variable is unobserved for

nonrespondents. Rubin and Zanutto suggested selecting substitutes from the non-sampled units

for a sub-sample of the respondents, say *, to then fit the following model:
yi_yiszﬂo-i-ﬂl(zi_zis)—i_gili ier’ (4)

where the intercept g, is included to minimize possible misspecification bias. An important as-
sumption is that the same relationship of the difference in the survey variables between

nonrespondents and their substitutes in m also holds for respondents and their substitutes in .
To weaken this assumption, the respondents selected for this sub-sample should be similar to the
nonrespondents in terms of the modeling covariates, Z , and, if possible the matching covariates,
X.

Rubin and Zanutto then propose multiply imputing the nonrespondent’s survey variable

values based on draws from

yi~N(yf+ﬂ0+ﬂl(zi—zf),az),iem (5)
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using flat prior distributions on the model parameters(ﬂo,ﬂl, 02) . After imputation, the substi-

tute’s data from nonrespondents in m and the sub-sample of respondents in»* are discarded. An
estimate for the population mean of the survey variable and its standard error are computed using
Rubin’s combining rule (Rubin, 1987) across the multiply imputed data sets. For the detailed al-

gorithm on how to implement this method, see Zanutto (1998, pages 131-132).

4.3 A Modification to the MMM Method
A clear disadvantage of MMM is that it requires the selection of substitutes for a sub-
sample of the respondents which is then discarded after model estimation and multiple imputa-

tion. Zanutto (1998) tests the performance of the MMM method using different sub-sample sizes

of respondents n” =kn,_ , where n_is the number of nonrespondents in the sample. She evaluates
the performance of MMM in a simulation study using k =0.1,0.3,0.5,0.8 and n" = n,, where

the n_ is number of respondents. She finds that for every sub-sample size n’, the amount of bias
reduction on the estimates of the population mean of the survey variable, Y , is roughly the same.

But as n” increases, the sampling variance of the estimate decreases. Zanutto concludes that fu-
ture research should investigate the trade-offs between bias and precision of the survey estimates
and the cost associated with selecting substitutes for respondents, with possible guidelines for the

choice of sub-sample size.

A modification to the MMM method would eliminate additional costs associated with se-
lecting substitutes for a sub-sample of the respondents. Because substitutes of the sub-sample of
the respondents are also respondents, instead of drawing these substitutes from the non-sampled
population, the modified procedure proposes to select them from the pool of the remaining re-
spondents on the sample, a procedure similar to hot-deck imputation or flexible matching proce-
dures (Kalton and Kasprzyk, 1986). The difference between a hot-deck imputation and such a
substitution procedure is that the former uses the donor values to replace the missing data of the
nonrespondents, where the latter only uses the substitutes for the sub-set of respondents to allow

for the estimation of model (4).
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This modified method first selects substitutes matched on X for the nonrespondents
from the non-sampled population. A sub-sample of respondents who are similar to the
nonrespondents in terms of the modeling covariates Z are selected, and matched substitutes for
these cases found among the remaining respondents. Then the following model would be esti-

mated:
yi_yis:ﬂ0+ﬂl(zi_zis)+8il’ ler” ©)

The subsequent imputation of missing values for nonrespondents follows Rubin and Zanutto
(2002).

This modification would produce estimates of the population of the survey variable with
a larger sampling variance compared to Rubin and Zanutto’s MMM, since the substitutes for the
sub-sample of respondents in this modified approach are drawn from existing pool of respond-
ents. Thus, no additional information is being added to the sample. Also, depending on the sam-
ple size, the nature of the matching covariates, and the response rate, it may not be possible to
find different substitutes for every unit in the sub-sample of respondents. For example, if the
matching covariate is a cluster indicator, the cluster sample size is small and the response rate is
low, the size of the sub-sample of respondents to be substituted might be larger than the number
of remaining respondents in the cluster. In such situations, selecting these substitutes with re-
placement from the pool of remaining respondents can be used without consequences to the non-
response bias reduction. The sampling variance, however, might be higher than it would be if the

selection was made without replacement.

An important advantage of this modification over Rubin and Zanutto’s original method is
that under MAR the same bias reduction can be achieved at a lower cost, since it eliminates the
need to collect extra data from substitutes for the respondent sub-sample out of the pool of non-

sampled units.
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4.4 A New Approach Using Calibration

Rubin and Zanutto (2002) propose modeling to adjust for differences between the
nonrespondents and their substitutes on the modeling variables and then multiply imputing the
nonrespondent’s survey variables. As mentioned before, this method has two disadvantages: (1)
it requires the selection of substitutes for a sub-sample of respondents (which the modification
proposed above is designed to overcome), and (2) it increases the sampling variability through
the imputation procedure. Further, after the imputation of the nonrespondents’ data, the substi-
tutes’ data are discarded and not used in the estimation of the population mean of the survey var-
iable. On one hand, this might be justifiable on the basis that, if included in the inference, such
substitutes would modify the probability sample design by adding extra cases in the unobserved
data “blocks” (Rubin and Zanutto, 2002). On the other, it seems like a waste of data to discard
these substitutes. A new approach to adjust for differences between nonrespondents and their
matched substitutes with a modeling variable that attempts to overcome these problems and im-

prove the use of substitution in probability samples is proposed here.

As before, let s be a probability sample from a finite population U ={1,...,i,...N}, in

which units are selected with known inclusion probabilities 7; = P(i € s), so that design weights

can be computed as d, = 7Zi_l, with D = (dl, s JA dn)' . The set of respondents and

nonrespondents are denoted by r and m, respectively. The nonrespondents in m are substituted

according to a matching variable X . The set of matched substitutes is denoted by g and each

one of its units has a one-to-one correspondence to a unit in the nonrespondents set m.

In imputation, the design-weights d, of the subject are attributed to the imputed data.

Since substitution can be considered as a form of imputation, where missing data for the
nonresponding unit is replaced by data from the substitute, the design-weights of the
nonrespondents can also be assigned to their corresponding substitutes. Alternatively, these de-
sign-weights can be computed as if the substitutes were the originally selected units. Simulation
results (not shown here) suggest that in terms of bias both approaches lead to similar perfor-
mances. Throughout this study, the former alternative for computing design-weights of the sub-

stitutes is used.

84



To adjust the matched substitutes according to a variable Z , observed for both

nonrespondents and their substitutes, a calibration approach (Deville and S&rndal, 1992) is pro-
posed. The objective is to find for the substitutes a new set of weights W =(w,,w,,...,w, )' that

minimizes a distance measure G, (W, D) under the following restriction:

>wz =3 dz, (7)

ieq iem

such that the calibrated-weighted total for the variable zZ over the substitutes will be the same as
the design-weighted total over the nonresponding units. While Rubin and Zanutto call Z a mod-

eling covariate, it is denoted here as a calibration covariate.

Once the calibrated weights for the substitutes are found, the combined set of responding

and matched substitute units s™ =(r,q) is used to estimate the finite population mean for a vari-

able Y as

WY,
Yeamsi = S =
QW

ies

(8)

where W, =d, forier and W, =w, for ieq.

The calibration restriction given above can be further extended to:

zwizizzdizi’ 9)

ier ies
ieq

that is, the total for the calibration covariate Z over the set of all respondents, including both the

originally selected units and the nonrespondents’ substitutes, is calibrated to the design-weighted
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total over all units (respondents and nonrespondents) selected in the original sample s. This re-
striction is more general in the sense that it can also be used when the substitution is not fully
successful (when it is not possible to find a responding matching substitute for every

nonrespondent). In this case, only the responding substitutes in g would be used in the left-hand

side of the calibration restriction above.

Unlike Rubin and Zanutto’s MMM method, this calibration approach does not require the
selection of substitutes for respondents, either from the unsampled population or from the pool of
respondents in the sample, thus avoiding any additional operational costs. Further, it does not
discard the substitute data prior to the estimation of the population parameters. Instead, it uses
them, along with a calibration-weighting adjustment, to account for possible differences in the

calibration variable Z between nonrespondents and their substitutes.

4.5 Simulation Studies
4.5.1 Simulation Design

A series of simulations were conducted to evaluate and compare the performance of the
methods discussed previously to other commonly used nonresponse adjustment procedures. The-

se simulations were performed under two different contexts:

e Simulation Study 1: Populations containing variables with hidden clustering effects in-
duced by a matching covariate, and

e Simulation Study 2: Explicitly clustered populations.

In both studies, the objective was to estimate the finite population mean Y in a set of

K =5,000 repeated samples. All simulations and analysis were conducted in R (R Core Team,

2014) and the calibration adjustments were performed using the survey package (Lumley,
2012; Lumley, 2004).

Simulation Study 1 followed a setting similar to the one designed by Rubin and Zanutto
(2002). Simple random samples of size n =500 were drawn from three different artificial finite

populations of size N =10,000, with each sample generated according to the survey variable
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and nonresponse mechanism models in Table 4.1. The matching covariate X was a dichotomous
variable that induced a hidden clustering effect in the following way: x, =0, for i =1+100c,...,
75+100c, and then x, =1, for i =76+100c,...,100+100c , with ¢=0,...,99. That is, the popu-

lation consisted of 100 sequences of 75 units with X =0, followed by 25 units with X =1. This
covariate was indirectly used in the substitution process by matching nonrespondents to substi-

tutes on their index number, as units with close index numbers likely had the same value on X .

Variable Z was the modeling/calibration covariate, while U was an unobserved covari-

ate that cannot be used for matching or modeling/calibration (i.e., U generated a missing not at

random nonresponse mechanism). In this study, both Z and U were independent N (0,1) ran-

dom variables. The probability of response is denoted by p and for the all populations the non-

response mechanism model gives a response rate of approximately 70%.

Table 4.1: Populations for Simulation Study 1.
Population Survey variable model  Nonresponse mechanism model

0.95

3 te = +0.05
1 AR P 1+exp(-1.25+7 +X)
0.95
=7 +& = +0.05
2 Yimata Py exp(—0.95+7;)
0.95
3 Y, =7, +5X +U +& P, +0.05

T1t exp(—1.35+7z + X +U;)

Each population corresponds to situations of different performance for the methods stud-
ied here. Population 1 is a situation in which the survey variable and the response propensity
both depend on matching variable X and modeling/calibration covariate Z . Methods that com-
pensate for both variables are expected to have less bias than methods that do not. For instance,
the MMM method is expected to have smaller bias because it accounts for both matching and
modeling/calibration values in estimation. On the other hand, a standard nonresponse propensity

weighting adjustment that only uses Z as a predictor is expected to have larger bias.
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Population 2 represents the scenario where both the survey variable and the response
propensity depend solely on the modeling/calibration covariate Z . For this reason, methods that
use only this variable in adjustments, such a nonresponse propensity weighted-mean, are ex-
pected to perform just as well as methods that also adjust for the matching covariate, like the
MMM. However, a matching substitution without any further adjustment to account for Z is

expected to produce biased estimates.

Population 3 corresponds to a non-ignorable nonresponse situation, in which the survey
outcomes and the response propensity depend on an unobserved variable U . In this case, none
of the methods studied here are well suited to adjustment and estimates are expected to have
some degree of bias. However, because the matching covariate X and modeling/calibration co-
variate Z also explain the survey variable and the response propensity, methods that adjust for
both of them will tend to lead to smaller biased estimates than methods that do not.

Simulation Study 2 was motivated by studies conducted by Yuan and Little (2006) and
Skinner and D’Arrigo (2011), and involves a more complex structure where the clustering was
explicit. Four artificial finite population of size N = 40,000, each consisting of A= 400 equal
size clusters of B =100elements each, were generated using the models for the survey variable

Y (at the cluster- and element-level) and the nonresponse mechanism given in Table 4.2.

Table 4.2: Populations for Simulation Study 2.

_ Survey variable model Survey variable model Nonresponse mechanism
Population
(cluster level) (element level) model
exp(l+u.
4 Vi =q Y =5Z; +vit¢; P = M
1+exp(1+u;)
5 v, =, Yii = 52ij +V +¢; = exp(O.Szij U )
' l+exp (0.52” +Uu, )
exp(1+u;)
6 vV, =o; + 5Ui yij = 5Zij +V;+ 8ij pij = m
7 v, =a, +5U, Y =5Z; +vitg; eXp(O'SZU’ +ui)

ij

B 1+exp (0.52” + U )
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The modeling/calibration covariate is z; ~ N (2,1), for clusters i =1,.., A and elements

within clusters j=1,..,B. Z was generated using the R package truncnorm (Trautmann et al,

2014), and truncated below by 0 and above by 4. The random variables «;, u; and ¢; are inde-

pendent N (0,1), for i=1,.,Aand j=1.,B.

Therefore, each population represents a different clustering structure. While Populations
4 and 5 have a lower intra-cluster correlation (as defined by Kish, 1965) of about 4%, Popula-
tions 6 and 7 present a stronger clustering effect, with a intra-cluster correlation of approximately
48%. Since the cluster indicator is used as the matching covariate X in this second simulation
study, it is expected that methods that solely rely on matching substitution will not to perform as
well in population 4 and 5 than they would perform in populations 6 and 7. Moreover, methods
that do not use matching substitution should present some substantial bias in these latter two

populations.

Each population in this simulation study also corresponded to a different missing mecha-
nism. Population 4 is missing completely at random (MCAR). Since the response propensities in
Population 5 depend only on the fully-observed covariate Z , the data are missing at random
(MAR). Populations 6 and 7 correspond to different types of cluster-specific non-ignorable non-
response (CSNI), another form of missing mechanism proposed by Yuan and Little (2006) for
cluster sampling settings. As described by these authors, CSNI occurs when the response pro-
pensities of the elements in a cluster sample depend on the cluster means. Although the cluster
membership is fully observed for nonrespondents, the missingness is not MAR, because the clus-
ter means are in fact unobserved random effects in this type of setting.

The sample design of Simulation Study 2 was a two-stage cluster sample of size
n=1,200 with simple random sampling at both stages of a =60 clusters and b =20 elements
within sampled clusters. In this case, the nonresponse occurs at the element-level, and, as in the
first simulation study, the overall response rate was approximately 70%. The matching covariate

in this set of simulations is the cluster indicator. Therefore, in most cases there were multiple
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candidates of substitutes for the nonrespondents, so that within a cluster the substitutes were ran-

domly selected.

In both simulation studies, seven nonresponse adjustment methods were compared. All
the methods used a target sample size of n=1,200 and ultimately, on average, this same sample
size is used for the estimation of the population mean Y . However, the MMM methods use data

from an additional of 30% of the number of nonrespondents (an average of n" = 0.3(1— ﬁ) n=

=0.3(1-0.7)1200 =108 in these simulations) to allow estimation of their multiple imputation

models. The initial sample size could be adjusted to account for these additional units, but, be-
cause they are not ultimately used for the estimation of the population mean, the target sample
size was kept the same to be comparable with the other adjustment methods. Although the first
method described below is very rarely used in practice -- as it will be most likely biased under
the presence of nonresponse -- it is included here as a baseline measure of the amount of nonre-
sponse bias the other adjustment methods are able to reduce. Further, a sample mean assuming
complete response is used to estimate the sampling variance under ideal conditions. Each of the

seven methods is described below.

1. Inflated sample size (ISS): This is the unadjusted respondent mean where the sample

size is inflated by the expected response rate, p. That is, a sample of size n'=n/p in
Simulation Study 1 and b'=b/p in Simulation Study 2 is selected and the mean of the

respondents is used as an estimate of the population mean. The known value of the re-

sponse rate p is used in these simulations.

2. 1SS adjusted by nonresponse propensity Weight (ISS.W): Similar to the previous

method, the sample size is inflated by the expected response rate, p. The respondents are
then weighted by the inverse of their predicted response propensities , p,, estimated using

the modeling/calibration covariate, Z , as predictor of the response indicator in the fol-

lowing logistic regression model:
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logit(f,)=4, + Bz, ies

3. Matching Substitution (MSub): An initial sample of size n is selected. Each
nonrespondent is substituted by a unit from the pool of unsampled units that is the closest
to the nonrespondents in terms of the matching covariate (index number in the Simulation
Study 1 and cluster indicator in Simulation Study 2). If the substituted unit turns out to be
a nonrespondent as well, the next closest unsampled unit is selected as the substitute, re-
peating this process until a responding substitute is chosen. If there is more than one unit
that can be used as a substitute for a given nonrespondent, the substitute is randomly se-
lected from among these units. No further adjustments are done to take into account pos-

sible differences in the modeling/calibration covariates.

4. Matching Substitution adjusted by nonresponse propensity Weight (MSub.W): Fol-
lowing MSub, with respondents (original selected and substitutes units) weighted by the
inverse of their predicted response propensities, p., estimated using the model-
ing/calibration covariate, Z , as predictor of the response indicator in the following lo-

gistic regression model.
logit(P,)= 4, + Bz, i esUq

Notice that such model is estimated using the data from all the respondents and

nonrespondents in the original sample s and substitute set q. Therefore, these predicted

response propensities account for both the original and substitute nonresponse.

5. Matching, Modeling and Multiple Imputation (MMM): The method proposed by Ru-
bin and Zanutto (2002). Similar to MSub and MSub.W, an initial sample of size n is se-
lected and a substitute for every nonrespondent is chosen by matching on the matching
covariate (index number in the first simulation study and cluster indicator in the second
study). Following Rubin and Zanutto’s simulation study, substitutes are also selected

from the pool of unsampled units for a sub-sample of n” =0.3n_ respondents, where n_
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is the number of nonrespondents. Then, M =10 multiple imputations sets for the missing

data are created using the method described in section 2.

6. Modified Matching, Modeling and Multiple Imputation (MMM.M): The modifica-
tion of Rubin and Zanutto’s MMM method proposed in section 4.3. It follows the same

steps of MMM, but instead of selecting substitutes for the sub-sample of n" = 0.3n, re-

spondents from the pool of unsampled units, these substitutes are selected from the pool
of the remaining respondents (without replacement). Again, M =10 multiple imputa-

tions were used.

7. Calibrated Matching Substitution (MSub.C): The approach proposed in section 4.4 us-
ing for the calibration a chi-square distance measure G, (W,D)=(w; —d, )2/2di , one of

the most often used distance measure in calibration applications (Deville and Sarndal,
1992; Sérndal, 2007).

For each of the seven methods, an estimate of the population mean is computed from
each of 5,000 repeated samples. The seven methods were compared using the following

measures:

1. Relative change of the empirical bias of the estimate of Y compared to the unadjusted

respondent mean using an inflated sample size (method ISS):

5000 VISS v _ 5000 7 ‘ _
Loy - ey
Bias(V,ss ) — Bias(¥V,,) (kz; 5000 J (; 5000 j
RB,, =100x S/ =100x o (10)
Blas(y,ss) (Z Yiss k _Y—j

£ 5000

where ¥ denotes the estimate of Y for method m = ISS.W, MSub, MSub.W, MMM,

MMM.M, & MSub.C.
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2. Relative change in the empirical sampling variance of the estimate of Y compared to the

empirical variance of the complete response (CR) estimate Y., = Zinzl Y; /n :

20 o ~E(T)]" | [€2[ Vors~E(Ver)]

N (o ~ 5000 = 5000
RV, =100x var(v) Yar(yCR) =100 . (1)
Var(yCR) SOZOS:I:VCR,k _E(VCR )]
- 5000
_ 5000 mG . _
where E(y,)=)_ 2000 and y_ denotes the estimate of Y for method m = ISS, ISS.W,
k=1

MSub, MSub.W, MMM, MMM.M, & MSub.C.

3. Empirical root mean square error:

5000 (ym ) _Y_)2
RMSE = —_
" kZ; 5000 (12)

where ¥ denotes the estimate of Y for the method m = ISS, ISS.W, MSub, MSub.W,
MMM, MMM.M, & MSub.C.

It is worth noticing that each of these measures has different reference points. RB_ uses

the unadjusted respondent mean of the ISS method as a baseline, since this approach is most
likely to produce the largest bias across all the studied methods when the missing mechanism is
not MCAR. RV sets the sampling variance of the complete response mean as a benchmark, be-
cause, under the presence of nonresponse, it will be the smallest value that could be obtained
among the evaluated approaches on this study. Finally, to measure the total error each one of the

methods can incur, the RMSE, measure the deviation of their estimates to the true population

parameter Y they are attempting to estimate.
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4.5.2 Simulation Results
Simulation Study 1

Table 4.3 summarizes the results for Population 1. The missing data mechanism in Table
4.1 for Population 1 leads to respondents with smaller values on the survey variable Y , because

respondents are more likely to have units with the matching covariate x =0 and smaller values

on the modeling/calibration covariate Z . Therefore, the unadjusted respondent mean of the ISS
method is severely biased, underestimating the population mean by about 37%, with the nonre-
sponse bias dominating the RMSE of this estimation method. The bias in ISS.W is much smaller
than that in ISS, but still substantial, underestimating the population mean by 21%. This is be-
cause the response propensities used to make the nonresponse adjustment in this method are es-
timated using only the modeling/calibration covariate Z , while the matching covariate X,

which explains both the nonresponse mechanism and the survey variable Y , is not used.

The matching substitution method MSub takes into account X and ignores variable Z .
Since substitutes are respondents, they tend to have smaller values on Z , and consequently on
Y , which is not adjusted by using only a matching substitution based on X . Also because both
matching and modeling/calibration variables have the same association level with the survey var-
iable and the nonresponse mechanism, the bias on this method is similar to ISS.W. Furthermore,
both methods have virtually the same sampling variance and RMSE. Obviously, if the matching
or the modeling/calibration covariate had a larger predictive power to explain either the survey
outcome or the nonresponse mechanism, one method would lead to estimates with smaller bias

and sampling variance than the other.

MSub.W takes into account both X and Z in the nonresponse adjustment. Although the
bias is largely reduced, it is still not completely eliminated. MMM produces an essentially unbi-
ased estimate for the population mean in this population (the empirical absolute relative bias in
this simulation was under 2%). However, MMM is more costly because data on an additional
108 units, on average, are needed for the matches to the sub-sample of respondents. Despite the
larger cost, the MMM sampling variance is about 58% larger than the complete response sam-

pling variance. This variance can be reduced by increasing the size of the sub-sample of re-
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spondents to have substitutes selected, as discussed by Zanutto (1999) and Rubin and Zanutto
(2002), increasing survey costs by additional data collection. Such a trade-off between bias and
variance can be better compared through the RMSE. Despite producing an unbiased estimate, the
sampling variance of MMM is much larger than the sampling variance of MSub.W; their RMSE

are almost equivalent.

The MMM.M method also leads to essentially an unbiased estimate of the population
mean without the additional cost of data collection for substitutes for a sub-sample of the re-
spondents. Unsurprisingly, the MMM.M sampling variance is even larger than MMM’s since the
substitutes for the sub-sample needed in MMM.M is obtained from the pool of remaining re-

spondents and, therefore, no new information is added to the sample.

Not only the calibrated matching substitution MSub.C decreases the bias as much as the
two MMM methods, but it produces estimates with much smaller sampling variance. As a result,
MSub.C has sampling variance and RMSE smaller than any of the other methods considered for
population. Moreover, MSub.C does not require the collection of additional data for its estima-

tion.

Table 4.3: Simulation 1, Population 1: RB, RV, and RMSE by Method

Method (m)  RBn (%) RVy ()2  RMSEn
(x 100)
1SS 0* 17.2 474
ISS.W 43.8 -13.9 28.0
MSub 45.1 7.0 27.6
MSub.W 81.7 35 14.0
MMM 95.8 57.8 14.3
MMM.M 92.4 135.0 17.7
MSub.C 88.5 18.4 13.4
CR 99.9 0* 11.3

! Compared to bias in ISS.
i Compared to the CR sampling variance.
Zero by definition

Respondents in Population 2 tend to have smaller values of Z and, therefore, smaller
values of Y (see Table 4.1).Therefore, again, 1SS underestimates the population mean by about

44%. Since the matching covariate X is not associated with either the survey outcome or the
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nonresponse mechanism, the nonresponse adjustment in ISS.W completely eliminates the nonre-
sponse bias by adjusting respondent data according to estimated response propensities using Z
(see Table 4.4). The matching substitution MSub, on the other hand, does not reduce the nonre-
sponse bias at all since the responding substitutes have smaller values of Z , which are not ad-
justed in MSub. MSub.W substantially improves the method, although not quite as effectively as
the weights in ISS.W. Both MMM and MMM.M lead to unbiased estimates and similar sampling
variances. The calibrated matching substitution MSub.C completely removes the nonresponse
bias, but it does not lead to the smallest RMSE among the methods studied here, which is ob-
tained by the ISS.W method. The difference between these two methods is due their sampling

variance, with ISS.W giving slightly more precise estimates than the MSub.C.

Table 4.4: Simulation 1, Population 2: RB, RV, and RMSE by Method

Ay 0\2 RMSE,
Method (m) RBm (%) RVm (%) (x 100)
ISS 0* -3.5 245
ISS.W 98.6 -1.3 6.0
MSub 1.0 -2.3 24.3
MSub.W 85.2 -2.0 6.9
MMM 98.9 46.7 9.9
MMM.M 98.7 37.3 9.3
MSub.C 99.2 3.4 6.5
CR 99.4 0* 6.2

' Compared to bias in ISS.
® Compared to the CR sampling variance.
Zero by definition

None of the methods studied here are suitable to handle the nonresponse mechanism in
Population 3. The difference between respondents and nonrespondents is not only explained by
the matching and modeling/calibration covariates, but also by an unobserved variable U . Table
4.5 confirms that none of these methods completely eliminate the nonresponse bias. Aside from
that, however, the patterns of the results in Population 3 are very similar to the results in Popula-
tion 1. First, the methods that adjust for both Z and X covariates — MSub.W, MMM, MMM.M
and MSub.C - tend to be more successful in decreasing the nonresponse bias. Only adjusting for
one of these covariates, as in ISS.W and MSub, leads to a smaller (though still substantial) bias,

compared to the ISS baseline, with both approaches having an empirical absolute relative bias of
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about 20% in this simulation. The sampling variance of MMM.M method is again much larger
than the original Rubin and Zanutto method. However, unlike the results in Population 1,
MSub.C produced an estimate for the population mean with a bias equivalent to either of the
MMM methods. Moreover, the MSub.C was again the method with the smallest RMSE among

the procedures evaluated on these simulations, with the MMM also performing very well.

Table 4.5: Simulation 1, Population 3: RB, RV, and RMSE by Method

) ,  RMSEp
Method (m)  RBn (%) RVn (%) 5 100)
1SS 0* 21.6 62.5
ISS.W 26.3 -19.1 46.7
MSub 29.0 -14.1 45.2
MSub.W 51.1 125 32.2
MMM 58.9 82.2 29.9
MMM.M 58.0 152.8 31.8
MSub.C 56.2 6.6 29.7
CR 99.9 0* 12.2

! Compared to bias in ISS.
i Compared to the CR sampling variance.
Zero by definition

Simulation Study 2

Tables 4.6, 4.7, 4.8 and 4.9 show the results for four populations studied in Simulation 2.
These are explicitly clustered populations with a two-stage cluster sample design, in which the
matching substitution is performed using cluster indicators seeking to adjust the clustering effect

on the nonresponse.

The nonresponse mechanism in Population 4 is MCAR. Thus, the unadjusted respondent
mean in ISS is an unbiased estimator of the population mean. All the other methods also produce
unbiased estimates for the population mean in this population. For this reason, the relative bias
reduction result is not shown on Table 4.6. The effect of the modeling/calibration covariate zZ
over the survey outcome is much larger than the clustering effect (since the intra-cluster correla-
tion of the survey variable in this population is approximately zero), which might explain why
the sampling variance of ISS.W and MSub.W is smaller than the other methods, especially com-

pared to the MMM methods that intrinsically have larger sampling variance due to the imputa-
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tion variability. Hence, overall, ISS.W is the method with the best performance under this popu-

lation, but the difference relative to the other methods is quite small.

Table 4.6: Simulation 2, Population 4: RV and RMSE by Method

RMSE,
Method (m) ~ RVm (%)"  ( 100)

ISS 1.9 17.9
ISS.W -12.0 16.6
MSub 8.4 18.4
MSub.W -6.6 17.1
MMM 8.2 18.4
MMM.M 6.2 18.2
MSub.C 0.8 17.7
CR 0* 17.7

1 Compared to the CR sampling variance.
Zero by definition

In Population 5, methods that adjust the respondents by the modeling/calibration covari-
ate Z, like ISS.W, MMM, MMM.M, and MSub.C, completely remove the nonresponse bias
present in the unadjusted respondent mean in ISS. However, the nonresponse adjustment in
MSub.W is not as effective in reducing bias as the others. Similar to previous results in the
Simulation Study 1, the calibration matching substitution led to smaller sampling variances, and
thus also smaller RMSE, than the MMM methods. Interestingly, just as in Simulation 1 Popula-
tion 2, MMM.M produced a slightly smaller sampling variance than the MMM, because in these
two populations both the survey variable and the nonresponse mechanism are explained only by
the modeling/calibration covariate and not by the matching variable. This suggests not collecting
additional information for substitutes of the sub-sample of respondents might not decrease the
efficiency of the MMM.M, both in terms of bias reduction and sampling variance, when the
matching covariate is not an important explanatory factor for Y and nonresponse. As in Simula-
tion 2 Population 4, the nonresponse weighted-adjusted mean ISS.W led to the smallest RMSE

due to the smaller sampling variance produced by this method.
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Table 4.7: Simulation 2, Population 5: RV and RMSE by Method

. > RMSE,
Method (m)  RBp, (%) RV (%) % 100)
1SS 0* 5.7 53.4
ISS.W 98.8 115 16.6
MSub -16.4 12.1 61.3
MSub.W 63.0 5.8 25.3
MMM 99.2 8.8 18.4
MMM.M 99.3 7.0 18.3
MSub.C 99.1 15 17.8
CR 99.3 0* 17.7

' Compared to bias in ISS.
® Compared to the CR sampling variance.
Zero by definition

With the CSNI missing mechanism in Population 6, in which the nonresponse was caused
solely by the clustering effect, it is not surprising that the nonresponse adjustment using the
modeling/calibration variable Z in ISS.W is totally ineffective in reducing the nonresponse bias
(see Table 4.8). On the other hand, the matching substitution methods are essentially equally
effective in bias reduction. The sampling variances of these methods are all very similar, such
that no method clearly outperforms the others in terms of RMSE.

Table 4.8: Simulation 2, Population 3: RB, RV and RMSE by Method
Method (m)  RBy, (%) RVi (%) RMSEn

(x 100)
ISS 0* -19.4 143.0
ISS.W -0.2 -20.4 143.1
MSub 99.6 0.6 60.3
MSub.W 99.7 -0.7 59.9
MMM 99.6 0.8 60.4
MMM.M 99.5 0.5 60.3
MSub.C 99.7 -0.2 60.1
CR 99.6 0* 60.2

' Compared to bias in ISS.
® Compared to the CR sampling variance.
Zero by definition

Population 7 presents the most complex structure in the simulation. Both the CSNI non-

response mechanism and the survey outcome are explained by the clustering effect and the mod-
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eling/calibration covariate Z . For this reason, procedures that adjust only by one of these varia-
bles, such as ISS.W or MSub, fail to completely eliminate the nonresponse bias, although they
do reduce it to some extent (see Table 4.9). The matching substitution MSub followed by nonre-
sponse adjusted MSub.W are more successful, but also don’t completely remove the nonresponse
bias. The two MMM procedures and the calibrated matching substitution MSub.C are the only
methods to produce essentially unbiased estimates for the population mean in this population.
Overall, in terms of sampling variance and RMSE, the three of them also perform very similarly,

with a slight advantage of the MSub.C method due its smaller sampling variance.

Table 4.9: Simulation 2, Population 7: RB, RV, and RMSE by Method

o\l 0L)2 RMSE,
Method (m) RBy, (%) RVn (%) (x 100)
ISS 0* -27.3 187.5
ISS.W 25.6 -20.7 144.5
MSub 67.7 -11.1 81.3
MSub.W 87.8 -1.2 62.0
MMM 99.7 1.1 60.5
MMM.M 99.7 0.6 60.4
MSub.C 97.4 -0.8 60.1
CR 99.7 0* 60.2

' Compared to bias in ISS.
® Compared to the CR sampling variance.
Zero by definition

4.6 Discussion

In general, the results of Simulation Study 1 show that the calibrated matching substitu-
tion is a strong candidate to adjust for potential differences between nonrespondents and their
substitutes on variables that cannot be used in the matching procedure when the nonresponse is
caused by hidden clustering. Although the calibrated matching substitution method led to a
slightly smaller reduction of bias compared to the MMM methods in two of the three populations
evaluated, it also produced a more precise estimate of the population mean, such that, overall, its
RMSE was substantially smaller than most of the other alternatives across the three populations.

Further, the MMM.M method proved to be a viable alternative to Rubin and Zanutto’s
original method, achieving similar levels of bias reduction. Despite producing estimates with a
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larger sampling variance, this modified MMM does not require additional units to be collected
for estimation purposes, which would incur in extra data collection costs for the survey opera-
tion. The trade-off of sample size between these two methods is the key motivation for the de-
velopment of MMM.M. The cost savings could purchase additional sample selection and data
collection, reducing the MMM.M sampling variances further. Of course, such cost savings de-
pend on how large a sub-sample of the respondents would be selected to be substituted in the
MMM method. Zanutto (1998) gives a brief discussion about this choice, concluding that it is
another trade-off problem between sampling variance and survey costs. That is, the larger this
sub-sample is, the smaller the sampling variance will be, at a cost of larger survey costs. This can
indicate that the losses in precision in MMM.M may actually be compensated for when com-
pared to certain sizes for the sub-sample of respondents to be substituted in MMM. Moreover,
for a fixed total survey cost, MMM.M may actually yield estimates with smaller sampling vari-
ances than MMM. More research on these cost trade-offs should be addressed in future studies of
these MMM methods.

In Simulation Study 2 the calibrated matching substitution MSub.C did not provide as fa-
vorable results as in Simulation Study 1, though it performed just as well as the alternatives. In
particular, it continued to achieve the same levels of bias reduction as the MMM methods and
still led to smaller sampling variances, but to a lesser degree among these populations. Interest-
ingly, the MMM.M not only kept the same levels of bias reduction, but it also presented a slight-
ly smaller sampling variance than the original method proposed by Rubin and Zanutto. This dif-
ference, however, is so small that it may be due to simulation error. Nonetheless, the MMM.M

method remains the more affordable alternative to MMM for bias reduction.

Although unit nonresponse has received a lot of attention in recent decades in the survey
community, through numerous studies and research on weighting, imputation and field method
to increase rates, substitution has been mostly neglected by the field and often considered an ille-
gitimate method for dealing with this problem. While substitution may not necessarily reduce
nonresponse bias, under certain conditions, it can perform just as well as any other statistical ad-

justment that uses the same information.
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This paper presented two alternatives for the MMM method that avoid collecting addi-
tional substitutes beyond those for the nonrespondents. First, a minor modification of Rubin and
Zanutto’s method was suggested, in which substitutes for the sub-sample of respondents are se-
lected from the pool of existing respondents. Because substitutes are also respondents, this modi-
fication was hypothesized to have the same bias reductions properties than the original proce-
dure. However, because these substitutes for the sub-sample of respondents are already part of

the sample, losses in precision were expected compared to Rubin and Zanutto’s method.

The simulation studies confirmed both expectations. The bias reductions were virtually
the same for these two methods across all simulations and in most scenarios the sampling vari-
ance of MMM.M was larger than MMM’s. In the second simulation study, however, the two
methods led to estimates with very similar levels of variability, indicating that there are situa-
tions in which the losses in precision on the modified version of the method are not substantial.
Therefore, if the extra cost associated with the selection of additional substitutes for the sub-
sample of respondents is prohibitive, the proposed modified version of the MMM method can be

considered for the same levels of nonresponse bias reduction, but with some loss in precision.

The calibrated matching substitution was proposed as an attempt to overcome the two
major disadvantages of the MMM methods: (i) the cost of the additional substitutes for the sub-
sample of respondents and (ii) the inflation of the sampling variance due to the multiple imputa-
tion variability. While the MMM.M method solved the first problem, it may lead to inflation of
the sampling variance, as discussed above. As the simulation results showed, using calibration to
adjust for differences between nonrespondents and their substitutes not only reduces the nonre-
sponse bias to levels comparable to the MMM methods, but manage to keep the sampling vari-
ance to similar levels of a complete response estimate (or at least did not lead to substantial in-

creases).

This new proposed method also has some disadvantages compared to the MMM meth-
ods. First, it may not always reduce nonresponse bias to the same extent as the MMM method, as
can be observed by the results of the simulation on Population 1 in Table 4.3. This is due to the

fact that the adjustment between the nonrespondents and their substitutes in terms of the model-
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ing or calibration covariates happens at the aggregate level, that is, for the totals in the sample,
whereas in the MMM method this adjustment is much finer since it occurs at the element level.
Nonetheless, the simulations showed that in general, these small differences in bias reduction
between these two methods are countered by the gains in precision given by the calibration pro-
cedure, making the calibrated matching substitution overall a more accurate method than the
MMM methods.

An important advantage of MMM methods over calibrated matching substitution is mod-
el flexibility. In general, the calibration procedure generates a set of weights based in a single
model that is used for the estimation of every survey statistic. Although, in theory, different sets
of weights could be computed assuming different models for each survey variable, this would be
impractical for most surveys, which require the estimation not only of descriptive single-variable
statistics, but also multiple variable estimates, such as regression or correlation coefficients. In
that sense, the MMM methods are much more flexible, because they allow different models for
the imputation of each variable in the survey. In this paper, this feature was not very evident be-
cause the simulation studies were evaluating only a single-variable population mean, but this is
an important practical component, as most of surveys are multi-purpose and multi-variable. On
the other hand, having a single set of weights that can be applied to every survey statistic is more

convenient than having to model every single variable in a survey.

Although variance estimation was not discussed in this paper, it is another important
problem that should be addressed in future research. Under a MAR mechanism, the standard er-
ror of an estimate that uses substitutes for nonrespondents is approximately the same as a com-
plete response sampling variance estimate (Vehovar, 1999). Therefore, standard techniques for
sampling variance estimation can be applied for the substitution methods reviewed in this study.
For the MMM method, since it relies on imputation, proper variance estimates can be obtained
by multiple imputation using Rubin’s combining rule, as suggested by Rubin and Zanutto
(2002). The variance of the calibrated matching substitution should adequately take into account
the calibration procedure, which might not be as straightforward as the multiple imputation ap-
proach. One alternative is to use the GREG sampling variance estimate approximation (Deville

and Séarndal, 1992) usually used for sampling variance estimation of calibrated estimates. Anoth-
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er alternative is to use repeated replication methods such as jackknife or bootstrap. The proper-
ties of these methods for sampling variance estimation of the proposed calibrated matching sub-

stitution should also be studied in future research, particularly when the data is MNAR.

Throughout the simulations conducted in this paper, it was assumed that the substitution
procedure of the nonrespondents for all the methods evaluated was fully successful. That is, for
every nonrespondent, it was possible to find a responding unit to substitute it. In practice, how-
ever, it is very likely that no responding units are found to substitute for some of the
nonrespondents, even after multiple attempts with different substitute candidates. The calibration
matching substitution can still be applied in this case using restriction (9) without making any
modifications. The MMM methods, on the other hand, would need to be altered to take into ac-
count the nonrespondents for which there were no responding substitutes available, which could
potentially make the procedure more complicated. The properties of these methods under these

conditions should also be topic of future research.

Finally, this paper considered the case in which there is only one matching covariate and
one (quantitative) modeling/calibration covariate. The methods proposed here can be readily ex-
tended to situations with multiple variables for matching and modeling (or calibration), either
quantitative or qualitative (categorical). The general results observed on the simulations conduct-
ed in this study are not likely to change significantly, but it would be important to conduct fur-
ther research on these methods under these more general circumstances. Furthermore, future
evaluations of these methods should also analyze other, more complex, estimators, such as the

median and regression coefficients.
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CHAPTER V

A Substitution Procedure for Missing Not at Random Mechanism

Summary

Although commonly used in many surveys as a strategy to deal with unit nonresponse, substitu-
tion is frequently criticized and has received very little attention by survey researchers. In fact,
there is evidence to suggest that the performance of substitution as a strategy to mitigate nonre-
sponse is comparable to other adjustment methods, such as weighting or imputation (Vehovar,
1999; Rubin and Zanutto, 2002). However, as with many other nonresponse adjustment methods,
research on and applications of this method has been limited to ignorable nonresponse mecha-
nisms. This paper presents a new substitution procedure that incorporates a nonignorable nonre-
sponse mechanism in the selection of the substitutes of the nonresponding units through the use
of pattern-mixture models. This method can be employed to perform sensitivity analysis of a
range of missingness models using additional real data of the substitutes, as opposed to other
methods that use predicted values under a model or data from hot-deck donors already present in
the responding sample. This new methodology is evaluated and compared to other nonresponse

adjustment methods through a simulation study.

5.1 Introduction

Nonresponse occurs when a sampled unit fails to provide either part (item nonresponse)
or all (unit nonresponse) of the information requested in a survey. This may be due to noncon-
tact, refusal, or other reasons, such as an inability to understand the request. Nonresponse can
lead to bias in survey estimates, and as a result, this source of error, with regards to unit nonre-
sponse in particular, has been increasingly studied in statistics and survey methodology. The
study has become more intense as response rates have declined in recent decades (de Leeuw and
de Heer, 2002; Rand, 2006, Bethlehem et al., 2011). While the size of the error is related to the
level of nonresponse, the relationship between response rates and nonresponse error has been

called into question by several studies (Keeter, et al., 2000; Merkle and Edelman, 2002; Curtin,
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Presser and Singer, 2005; Keeter, et al., 2006; Groves and Peytcheva, 2008), highlighting the

importance of a careful exploration of all existing methods for dealing with nonresponse.

Research has also examined alternative methods for compensating for nonresponse and
the capacity of those methods to reduce error associated with it. Substitution is a widely used ap-
proach to dealing with unit nonresponse at the fieldwork stage of a survey. This method consists
of replacing nonresponding sampled units with replacement units not originally selected in the
sample. Despite its popularity among practitioners, most survey methodology and sampling text-
books either ignore (e.g., Cochran, 1977; Sarndal et al., 1992; Groves et al., 2009) or present on-
ly a brief discussion of substitution (e.g., Kish, 1965; Lessler and Kalsbeek, 1992; Lohr, 1999;
Little and Rubin, 2002). The literature, in general, tends to criticize substitution and recommends
avoiding its use, although no conclusive evidence suggesting it performs worse than competing
alternatives, such as weighting or imputation, has been found. In fact, some studies have demon-
strated that, under certain conditions, substitution performs just as well as other nonresponse ad-

justment procedures (Vehovar, 1999; Rubin and Zanutto, 2002).

One limitation of substitution methods used in practice is that they assume that nonre-
sponse is ignorable (Rubin, 1987), operating by a missing data mechanism that is either missing
completely at random (MCAR) or missing at random (MAR). Under these mechanisms, the dis-
tribution of missingness depends only on a set of variables observed for respondents,
nonrespondents, and their substitutes. These variables are usually used either to find a substitute
—as in a matching substitution — or in post-data collection nonresponse adjustments, such as

weighting or imputation.

Rubin and Zanutto (2002) proposed a method that attempts to adjust for nonignorable
nonresponse through the use of matched substitutes with multiple imputation. However, their
method is only successful in addressing the nonignorability problem if the variables used for se-
lecting the substitutes incorporate unobserved characteristics — through hidden clustering or con-
textual effects — that are related to both the survey variables and the nonresponse mechanism. If
there are other unobserved variables that explain the differences between nonrespondents and

their substitutes, their method is unable to completely eliminate nonresponse bias. This is the
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case when nonresponse is missing not at random (MNAR). An extreme example occurs when

missingness depends on the survey variables themselves.

Nonignorable nonresponse poses a challenging problem for survey statisticians because it
assumes that missingness depends on unobserved variables and, therefore, requires strong and
untestable assumptions. Nonetheless, there have been methods proposed to assess the impact of
nonresponse in this kind of situation through sensitivity analysis with pattern-mixture models
(Little, 1993; Little and Rubin, 2002; Andridge and Little, 2011). This paper proposes adapting
the pattern mixture hot-deck imputation procedure developed by Sullivan and Andridge (2015)
to substitution by using pattern-mixture models (PMM) to assist in the selection of substitutes.
Obtaining the most accurate estimates for population parameters is an important objective for
every nonresponse adjustment method. However, due to the nonignorable nature of the missing
mechanism assumed here, a primary concern of this method is the detection of the risk of nonre-
sponse bias through sensitivity analysis. This method can also be used in nonresponse follow-up,
particularly when there are persistent nonrespondents or nonresponse in longitudinal surveys.

The performance of the proposed method is evaluated through a simulation study.

5.2 Pattern-Mixture Model

Let X be a fully observed auxiliary variable and Y Dbe a survey variable not observed for
nonrespondents, in which the missingness distribution is given by the indicator variable M
(M =1,if Y ismissingand M =0if Y is observed). Little (1994) proposes the following biva-

riate normal pattern-mixture model for the joint distribution of Y, X and M :

(m) (m) (m) [ (m) _(m)
,Uy ny pyx ny O
) [ (m)} (m) [ (m) im0
'UX pyx O-yy Gxx Gxx

b) M ~Bernoulli(z), 7=Pr(M =1)

Little (1994) notes that from the eleven parameters ¢(m) :( §m>,y§m>,a§;‘),a§3),p§2”),

m=0,1, and 7 of this model, only eight are identified from the data:
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o = (42, 1,02 02, 12, 2,9, 7)

This is because the data do not provide any information about some of the parameters of
the conditional distribution of Y given X for nonrespondents (M =1). Only the parameters of
the respondent distribution (M =0) and those of the marginal distribution of X of the

nonrespondents are identified and readily estimable.

While this model is under-identified, under certain restrictions on these parameters, and
under assumptions about the missing data mechanism, this model can become identified. For ex-
ample, the assumption that the nonresponse mechanism is MAR implies that the distribution of
Y given X isthe same for respondents and nonrespondents, identifying the remaining three pa-

rameters in the model.

Little (1994) proposes a more general restriction, in which the missingness of Y given

(X ,Y) depends only on a linear combination of Y and X . More specifically, he proposes as-

suming that, for some function f,
P(M=1]Y,X)=f (X +Y).

Under the assumption that (X ,Y) is independent of M | X + AY , the parameters of the pattern-

mixture model are identified.

Since the data do not provide any information about the parameter A, Little (1994) sug-
gests evaluating the estimates of the substantive parameters of interest over a range of different
plausible values for A4 to assess the sensitivity of inferences to the missing mechanism assump-
tions. For example, if 1 =0, the missing mechanism is MAR. On the other hand, if 2=, all

the missingness will depend on the Y variable, an “extreme” case of MNAR.
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Andridge and Little (2011) use 2 ={0,1,o0} to perform a sensitivity analysis of model

performance. They suggest using the intermediate case of A =1, in which the auxiliary variable
X and the survey outcome Y have the same weight in explaining the nonresponse mechanism,

because in this case the standardized bias of the respondent mean of Y is equal to the standard-

ized bias of the respondent mean of X , that is, E(VR -, )/\/a =E (X — 4 )/\/JTX regard-

less of the estimated correlation between X and Y .

If more than one fully observed auxiliary variable is available, say a set of variables

Z= (Zl, Z,,..., Zp)' , is available, Andridge and Little (2011) suggest using a proxy pattern-

mixture model to account for the nonresponse mechanism. This method consists of creating a
“proxy” variable X by first regressing Y on Z using the respondent data and then taking X to
be the predicted values of Y under this model based on Z , available for both respondents and
nonrespondents. The bivariate normal pattern-mixture model proposed by Little (1994) can then
be employed using the proxy variable X . Moreover, to improve interpretability, Andridge and

Little (2011) suggest rescaling the proxy variable X on the distribution of the missingness of Y

given (X,Y) to have the same variance of Y , thatis, P(M =1]Y,X)= f(x1/a§3>/a§§> +/’LY) :

Sullivan and Andridge (2015) proposed adapting the proxy pattern-mixture model to hot-
deck imputation, which they called proxy pattern-mixture (PPM) hot-deck, to accommodate
nonignorable missing data to this imputation procedure, extending the work by Siddique and
Belin (2008) of hot-deck imputation to nonignorable nonresponse. The premise of this method
rests on the computation of predictions for nonrespondents’ outcome variable and a bootstrap
sample of respondents based on a pattern-mixture model conditional to a value of 4. The pre-
dicted values for Y are used to calculate distances between donors on the bootstrap sample of
respondents to nonrespondents and select donors for the nonrespondents based on probabilities
inversely proportional to the k™ power of those distances (they use k =3 in their simulations
and application). This process is repeated D times as in a multiple imputation procedure. The
method also employs different values of A4 in the model, allowing the subsequent multiply im-

puted values to incorporate sensitivity to nonignorable nonresponse.
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5.3 Pattern-Mixture Model Substitution

Substitution is somewhat similar to hot-deck imputation. While hot-deck imputation se-
lects donors for nonrespondents from among respondents already in the sample, substitution
seeks donors from among the unsampled units in the population. This suggests that Sullivan and
Andridge’s method can be used to accommodate a nonignorable nonresponse mechanism in sub-

stitution for nonresponse.

Hence, the objective of this study is to adapt the PPM hot-deck method proposed by Sul-
livan and Andridge (2015) to a substitution procedure that can accommodate a variety of as-
sumptions about the nonresponse mechanism, encompassing MAR and different degrees of
MNAR. This procedure will be called pattern-mixture model (PMM) substitution hereafter. As in
the matched substitution method proposed by Rubin and Zanutto (2002), it is assumed there is at
least one auxiliary variable X observed for all the units in the population. In the survey sam-
pling literature, such an auxiliary variable is sometimes referred to as a frame variable. If there is
a vector of auxiliary variables, Z , they can be reduced to a single “proxy” variable using the
method proposed by Andridge and Little (2011). These types of variables are not usually availa-
ble for units like households or individuals in multistage surveys, but they are fairly common for
primary and secondary sampling units such as enumeration areas, counties, census tracts, estab-

lishments.

While in most applications substitutes are selected for nonrespondents during the field-
work stage of the survey, a different approach is proposed here. It is assumed that at some point
during data collection, before the selection of the substitutes, the data on the survey variable Y
for the respondents are available to fit a pattern-mixture model, conditional on a value for the
parameter A . Under this model, predicted values for the nonrespondents and the unsampled
units in the population are computed and substitutes are selected based on some measure of dis-
tance of these predictions. Compared to the standard use of substitution, this approach has the
advantage of incorporating a nonignorable nonresponse adjustment through a matching substitu-
tion on the predictive values under the PMM. Such adjustment is based on the association of the

auxiliary variable X and the survey outcome Y among the respondents, and the differences be-
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tween respondents and nonrespondents on X . Below, the implementation of this procedure is
described in detail.

For simplicity, assume that a simple random sample of size n is drawn from a finite pop-
ulation of size N, and r units are respondents. The survey variable Y is observed only for the-

Se r units.
For a given value of the parameter A :

1. Compute the predicted values for the n—r nonresponding units in the sample and the
N —n unsampled units in the population based on the pattern-mixture model and parame-

ter restriction given above. Sullivan and Andridge (2015) use the conditional expected

value E [Y | X, M = m] for these predicted values. Under this approach, the predictive

value for the i™ nonrespondent on the sample is

5 © 5. 50 )
P XX S A S _
* O B ﬂi(o) 1=y | | (% = %Xe)
S S, 1+Ap S

where Y, is the respondent sample mean of Y, X, and X, are the respondent and
nonrespondent sample means of X, s(y(y’) and sig) are the respondent sample variances of

Y and X, sg) is the nonrespondent sample variance of X , and ,13(0) is the sample corre-

lation between Y and X among the respondents. These are all maximum likelihood es-
timates of the pattern-mixture model parameter under the identifying restriction proposed

by Little (1994) that P(M =1]Y, X )= f (X +AY), for some function f .
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Since the units to be used as substitutes of the nonrespondents will ultimately be respond-
ents, the predicted values under the pattern-mixture model for the unsampled units are

computed assuming they are respondents as

I = Vot PO /5 (% %)

Compute the distance between predicted values for Y for a given nonrespondent j and all

the non- sampled units. Any distance measure could be used, but here the absolute differ-

ence Dgf) = ‘92’” - 9&0)‘ ,k=N-n+1,..,N,is used. If there is more than one survey vari-

able, say Y =(¥,,Y,,....Y, ) , a multidimensional distance measure such as the

Mahalanobis distance can be used.

Select the unsampled unit k with the smallest distance D, as a substitute for

nonrespondent j. In most applications, substitutes will be selected without replacement.
That is, the selected unit for the j™ nonrespondent would be removed from the pool of
unsampled units, but this is not a necessary step if units are allowed to substitute for more

than one nonrespondent. Repeat steps 2 and 3 for all nonrespondents.

This process is implemented for a given value of A, which allows sensitivity to different

degrees of nonignorability. For most applications, only one substitute for each nonrespondent

would be selected. The performance of the method would be conditional on the validity of the

nonresponse assumption represented in A .

Alternatively, this process could be repeated for different values of 4,say 4 ={0,1,},

as suggested by Andridge and Little (2011) and Sullivan and Andridge (2015) — and determining

whether there are large differences in terms of which units would be selected as substitutes for

the nonrespondents in each case. If the exact same units are designated as substitutes for each

nonrespondent for any of the values of 1, a single substitute per nonrespondent would be select-

ed. If, however, for each value of A there is a different substitute for each nonrespondent, multi-
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ple substitutes could be selected, and a sensitivity analysis conducted across different missing
mechanism assumptions. Obviously, from a practical point of view, there is a trade-off between
the ability to perform a sensitivity analysis and survey costs associated with the selection of mul-
tiple substitutes per nonrespondent. This trade-off is briefly discussed in the conclusions to this

paper below.

5.4 Simulation Design

A simulation study was conducted to evaluate the performance of the proposed PMM
substitution under different population structures and missing mechanisms. The bias, variance,
and mean square error properties of the proposed method are examined and compared to other

standard approaches to nonresponse adjustments in survey sampling.

Artificial finite populations of size N =10,000 were generated according to the follow-

ing bivariate normal distribution:

(G, ) e

Five levels of correlation between Y and X, p, ={0,0.2,0.4,0.6,0.8}, were used to generate

five populations. These correlation levels were chosen to evaluate the performance of the pro-
posed method under different situations. With a null correlation the auxiliary variable will not
provide any assistance to the adjustment, whereas as the correlation increases the adjustment
through substitution will be more influential. In practice, correlations as high as 0.8 are not very
common between survey outcomes and auxiliary variables in surveys, especially with unit non-
response. The expected highest correlations would be of the order of 0.20 to 0.40, but these
stronger correlations were included to allow investigation of the potential larger impact of PMM

substitution.

For each population, K =5,000 simple random samples of size n =500 were selected.

For each replication, every unit in the population was assigned as a respondent (m, =0) or a
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nonrespondent (m, =1) according to the missing data mechanism generated using the following

logistic regression model:
logit (Pr(m; =0)[X,,)= By + BX% + B, i=L..,n

where the value of the coefficients {,, 4, 8,} are shown in Table 5.1. Three different nonre-

sponse mechanisms were investigated based on the choice of the coefficients. The missing at

random or MAR mechanism sets £, =0. The two not missing at random or MNAR mecha-
nisms set f, = 0. Each missing data mechanism was examined at two response rates, 50% and
75%, determined by the choice of the intercept ;. The values of the slope coefficients, 4 and
B, were selected so that the odds of the unit be a respondent are approximately 22% higher by a

one unit increase in the predictors.

For the two MNAR mechanisms, different values of 2 were used. For a MNAR mecha-
nism in which the nonresponse is explained by both the outcome and auxiliary variables, 4 =1,

and when the nonignorable nonresponse is explained only by the survey variable Y, 1 =o.

For simplicity, the same missing mechanism was employed for both the units originally
drawn in the sample and for units selected to be substitutes. This implies that that the same sur-
vey protocol is applied throughout the fieldwork. While this might not hold true in some instanc-

es, it is not feasible to simulate a more general condition without making further assumptions.

Table 5.1. Coefficients of the nonresponse mechanism models
Corre-

Missing ; Response
mechanism Model sporlzdlng rate Po P P2
S T R0% <02 02 0
_______ MAR D0 % 09 02 0
50% 0.4 02 0.2
______ MNAR vl 1 7w 07 02 02
50% 02 0 0.2
MNAR [Y] @ 75% 0.9 0 0.2

116



This simulation setting also tested how sensitive the proposed PMM substitution method
is to violations of the distributional assumptions of the pattern-mixture model. The selection
model used here implies that the marginal joint distribution Y and X is normal, whereas the pat-

tern-mixture model assumes conditional normality, given the missing indicator M . Therefore,
the correlation between Y and X for the entire sample, p,,, might not have been the same from
the corresponding correlations for respondents ( ,052)) and nonrespondents ( p&)) under the pat-

tern-mixture model. However, because in these simulations the missing mechanism is a linear

function of Y and X, these correlations will be the same, as in Andridge and Little (2011).

For each of the 30 combinations of p,, and the nonresponse mechanism, K = 5,000 sim-

ple random samples of size n = 500 were selected. The inferential objective was to estimate the
N
finite population mean of a survey variable, Y = z Y; /N , using an auxiliary variable X ob-
i=1
served for all the units in the populations. As previously suggested, the proposed PMM substitu-

tion method was applied with 2 ={0,1,c0}. The PPM substitution method was evaluated in terms

of the following empirical measures:

5000

- . - H \/ VvV Y yk Y ;

1. Th | bias, B =E(Y)=Y = g
e empirical bias, Bias(y)=E(Y) kZ:; 5000

5000 [yk —-E (V)T

2. The empirical sampling variance, Var(y)=>" where
=i 5000
E _ 5000 ymk d
= = an
(y”‘) kZ:; 5000

_ —\2

.. Ei (yk -Y )

3. The empirical root mean square error, RMSE(V) = ZW
k=1

The PPM substitution was employed to obtain an estimated mean for each sample. The
properties of the PMM substitution mean were compared on the empirical criteria to the follow-

ing alternative methods:
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1. The Inflated Sample Size mean (ISS) is the unadjusted respondent mean where the

sample size is inflated by the expected response rate (17 ). That is, a sample of size
n'= n/(l—;r) is selected and the mean of the respondents is used as an estimate of the

population mean. Here the known value of the response rate (1—;:) is used in the simu-

lations even though in practice this average response rate is estimated beforehand, usually

based on previous surveys of a similar target population.

2. The Inflated Sample Size mean adjusted by nonresponse propensity Weight (ISS.W)
is similar to the ISS where the sample size is inflated by the expected response rate,

(1-7), but the respondents are then weighted by the inverse of their predicted response

propensities using the auxiliary variable covariate, X , as a predictor of the missing indi-
cator M in a logistic regression model.

3. The Matching Substitution (MSub) mean is based on an initial sample of size n where
each nonrespondent is substituted with a unit selected from the pool of non-sampled
units, chosen by matching each nonrespondent with the unsampled unit to which it is
closest in terms of the auxiliary variable X . If the substitute unit turns out to be a
nonrespondent, the next closest unsampled unit is selected as the substitute, and this pro-
cess is repeated until a responding substitute is chosen. If there is more than one unit that
can be used as a substitute for a given nonrespondent, the substitute is randomly selected
among these units. No further adjustments are done to take into account for possible re-

maining differences in the auxiliary variable X .

4. The Matching Substitution with nonresponse propensity Weighted (MSub.W) mean
is similar to MSub, but the values of Y for originally selected and substituted units that
respond are weighted by the inverse of their predicted response propensities using the

auxiliary variable X as predictor of the missing indicator M in a logistic regression
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model. This model is estimated using the data from all respondents and all

nonrespondents (originally selected and substitutes units).

The ISS method assumes that the missing mechanism is MCAR, while the ISS.W, MSub,
and MSub.W methods assume a MAR mechanism. Therefore, none of them are expected to per-
form well under a MNAR mechanism, but they serve as a basis of comparison for the MAR case
and as a baseline for the level of improvement that can be expected from the proposed method
under a nonignorable nonresponse mechanism. With only a single auxiliary variable, MSub is
exactly the same as using the PMM substitution with 4 =0. For the sake of completeness, the

results of these two methods are shown separately.

As mentioned previously, if there is more than one auxiliary variable available, the proxy
pattern-mixture model approach suggested by Andridge and Little (2011) can be employed for
the PMM matching substitution and a distance measure, such as the Mahalanobis distance, can
be used for the traditional matching substitution. In this case, the PMM matching substitution
and MSub will not necessarily lead to exactly the same results when A =0, but they will likely

be very close.

5.5 Results

Figures 5.1 and 5.2 present the empirical expected values of the population mean esti-
mates across the 5,000 simulation replications for ISS, ISS.W, MSub, MSub.W, and the PMM
substitution method for a 50% and 75% response rate, respectively. The horizontal red line cor-
responds to the true population mean and can be used as a basis for evaluation of the estimates’
bias. Empirical sampling variances for the estimates of these methods are shown in Figures 5.3
and 5.4, and the empirical root mean square errors are displayed in Figures 5.5 and 5.6. In these
these figures the horizontal red line corresponds to the sampling variance or root mean square
error of a population mean estimated under complete response. While not actually observed in

practice, it serves as a benchmark for the methods evaluated in this study.

The patterns of the results under a 50% response rate are essentially the same as those
under a 75% response rate; the only difference between these two response rates is in terms of
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magnitude. For example, when a method led to biased estimates, the bias was larger under a 50%
response rate, as would be expected. In addition, due to larger sample sizes, in general, the sam-
pling variances of the estimates under 75% response rate were smaller. This indicates that the
response rate does not change the properties of the methods investigated here other than their
magnitude. Therefore, the subsequent discussion of these results will not differentiate between

the response rates.

Missingness model [X]

Under a MAR mechanism, in which the missingness mechanism depends solely on the
auxiliary variable X , respondents are different from nonrespondents in terms of this covariate.
In these simulations, respondents tend to have larger values of X and, because of the positive
association with the survey outcome, they also tend to have larger values of Y . Therefore, the

respondent mean of the inflated sample size method (ISS) produces estimates with a positive bias

for all correlation levels except p,, =0, when the bias is null as can be seen in Figures 5.1 and

5.2. Also, as would be expected, this bias increases as the correlation strengthens.

Regardless of the strength of the correlation between the outcome and the predictor, this
bias is essentially eliminated for methods that adjust the respondents using the auxiliary variable
X --1SS.W and MSub. Curiously, further nonresponse adjustments on the sample that already
used a matching substitution on the same variable in MSub.W produces estimates which are no

longer unbiased.

As mentioned previously, the PPM substitution with 4 =0 is equivalent to MSub and,
therefore, also produces unbiased estimates under the MAR mechanism. As the pattern-mixture

model is misspecified for other values of A, it is not surprising that the PMM substitution pro-

duces biased estimates of the population mean. The exception is when p,, =0, where the esti-

mate that uses A =1 leads to an essentially unbiased estimate. Similarly, when p,, =0 and

A =00 is used in the model, the PMM substitution method generates slight overestimates of the

population mean.
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Figures 5.3 and 5.4 show that under the MAR nonresponse mechanism ISS, ISS.W,

MSub, and MSub.W methods produced empirical sampling variances very close to the complete

response sampling variance. The exception is for high correlations between X and Y (p,, =0.6

and p,, =0.8), when the nonresponse weighted-adjusted mean actually showed a slight gain in

precision.

The PMM matching substitution with 2 =0 also led to an empirical sampling variance

very similar to the complete response sampling variance. The sampling variances of this method

using A =1 were also in general similar to the complete response case, except for p,, =0.2 and

Py = 0.4, when they were slightly larger. On the other hand, the PMM substitution using 4 = oo,

produced estimates with much more variability than all the other methods for intermediate corre-

lations ( p,, =0.2,0.4,0.6 ). This result demonstrates that the instability of the pattern-mixture

model estimates when A is set to infinity observed by Andridge and Little (2011) carries over to
the PMM substitution method.

As a consequence of the bias and variance properties described above, under MAR, the
methods that led to the smallest RMSE across all the correlations were the ISS.W, MSub, and the
PMM substitution with 4 =0 (see Figures 5.5 and 5.6). The first two methods are expected to
work well under a MAR mechanism. Since the PMM substitution with 4 =0 employs the cor-
rect model for the missing mechanism, it also provides good results, with unbiased estimates and

sampling variances similar to a complete response case.

On the other hand, as a result of model misspecification in this missing mechanism, using
the PMM with 4 =1 and A = oo leads to a larger RMSE, especially for non-zero correlations. As-
suming a stronger nonignorable missing mechanism, with A = oo when the missingness is actual-
ly ignorable, clearly leads to larger bias and sampling variance. Therefore, PMM substitution
with A = oo should only be used when there are compelling reasons to believe that nonresponse is

driven entirely by the missing variable itself.
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Empirical Expected WValue

Empirical Expected WValue

Figure 5.1: Empirical expected values of population mean estimates over 5000 simulation replications with a
50% response rate. Red horizontal line denotes the true population mean.
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Figure 5.2: Empirical expected values of population mean estimates over 5000 simulation replications with a
75% response rate. Red horizontal line denotes the true population mean.
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Empirical Sampling Variance

Empirical Sampling Variance

Figure 5.3: Empirical sampling variances of population mean estimates over 5000 simulation replications with
a 50% response rate. Red horizontal line denotes sampling variance under complete response.
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Figure 5.4: Empirical sampling variances of population mean estimates over 5000 simulation replications with
a 75% response rate. Red horizontal line denotes sampling variance under complete response.
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Figure 5.5: Empirical root mean square errors of population mean estimates over 5000 simulation replications

with a 50% response rate. Red horizontal line denotes root mean square error under complete response.
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Figure 5.6: Empirical root mean square errors of population mean estimates over 5000 simulation replications
with a 75% response rate. Red horizontal line denotes root mean square error under complete response.
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Missingness model [X+Y]

When nonresponse depends on both the auxiliary variable X and the survey variable Y ,
it is expected that a pattern-mixture model with 4 =1 would produce unbiased estimates for the
population mean, whereas other approaches that do not take into account the nonignorability fea-

ture of this mechanism would perform poorly. As Figures 5.1 and 5.2 show, this is true across all

correlations, except p,, =0, where all methods led to equally biased estimates, illustrating again

the importance of having good predictors of the survey outcome for nonresponse adjustments.
For all the other correlations, the PMM substitution with 4 =1 produces essentially unbiased
estimates, while the estimates of the other approaches have substantial bias. Although the PMM
substitution method with 1 =00 does account for a nonignorable nonresponse, it employs a
misspecified model in which the nonignorability is much stronger than actually it is. Thus the
mean under this PMM substitution substantially underestimates the true population mean when

the correlation between X and Y is not zero.

Figures 5.3 and 5.4 show that the sampling variances of estimates under the [ X +Y ]

missingness model were quite similar to those observed under the MAR mechanism. That is, the
ISS, ISS.W, MSub, and MSub.W methods lead to estimates with variability similar to the com-
plete response case. The PMM substitution methods for 4 =1 and A =o0 provide estimates with
slightly larger sampling variance for intermediate levels of correlation. This is evidence that the
missing mechanism does not have much impact on the overall behavior of sampling variability,

other than their magnitudes essentially dictated by the response rate.

Overall, for the [ X +Y ] missingness model, the PMM substitution assuming 4 =1 was

the method that led to the smallest RMSE (Figures 5.5 and 5.6). This is particularly true for the

intermediate correlations ( p,, =0.2,0.4,0.6). For the zero and highest level of correlation, all

tested methods led to estimates with similar levels of error, with the PMM substitution assuming

A =00 giving slightly worse results. In fact, for the [X +Y] missingness model, assuming such a

strong nonignorable nonresponse produced estimates with higher RMSE than when it was as-

sumed that the missing mechanism was ignorable (1 =0).
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Missingness model [Y]

The nonresponse mechanism induced by this model corresponds to the extreme case in
which missingness depends solely on the survey outcome itself. It can generally pose a difficult
challenge for standard nonresponse adjustments, since the auxiliary variables usually used in the-

se types of methods are not directly related to nonresponse.

As can be noted in Figures 5.1 and 5.2, standard approaches such as ISS.W, MSub, and
MSub.W produce estimates with substantial bias across all levels of correlation. The PMM sub-

stitution assuming 4 =0 and A =1 also leads to biased estimates for the [Y] missingness mod-

el. The correctly specified model in this case would assume A =0, yet, only for moderate to

high correlations ( p,, = 0.4, 0.6,0.8) the PMM substitution under A = co provides unbiased es-

timates for the population mean. For small correlations, this method performs just as well as the
others in terms of bias, with a slight advantage when p,, =0.2. However, with the exception of
ISS, all tested methods reduce bias as the correlation between X and Y increases, reinforcing

the importance of using good predictors for nonresponse adjustments, regardless of the missing

mechanism.

Despite being the most appropriate model for this missing mechanism and leading to un-
biased estimates, setting A to infinity in the PMM substitution method in this case produces the
least stable estimates, just as in the other missingness models (Figures 5.3 and 5.4). Although the
general pattern in the variability of the estimates across the methods is essentially the same as the
other two cases previously analyzed, the difference in the variability of the estimates of the PMM

substitution method with 4 =00 and the estimates of the other approaches is much larger, espe-

cially for the moderate levels of correlation ( p,, =0.2,0.4,0.6).

The variance inflation of PMM substitution with 2 =00 is so large that it cancels the bias

reductions obtained by this method. The RMSE of its estimates are not the smallest for any of the
correlations analyzed in this study. In fact, for two of the correlations ( p,, =0.2 and p,, =0.4),
PMM substitution setting 4 =oo presented the largest RMSE (Figures 5.5 and 5.6). Overall,

PMM substitution with 4 =1 performs slightly better across most levels of correlation under this
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MNAR nonresponse mechanism. However, this is mostly due to the sampling variability of the

estimates, since this approach also produces substantially biased estimates.

5.6 Discussion

PMM substitution performed well when A corresponds to the underlying missing mech-
anism. Not only was it the only method that led to unbiased estimates across most missing mech-
anisms and correlations, but it also gave the most accurate estimates for almost all scenarios. The

only exceptions, as described above, occurred when (1) there was no association between the

survey variable Y and the auxiliary covariate X , and (2) for the missingness model [Y] :

Exception (1) , in general, is challenging for any nonresponse adjustment given that hav-
ing good predictors of the outcome variable is a key factor for reducing nonresponse bias and
sampling variance (Little and Vartivarian, 2005). Exception (2), on the other hand, presents an
interesting bias/variance trade-off, in which adopting the appropriate model (i.e., using A =o0)

leads to unbiased estimates with large variability, whereas using a model that does not reflect

exactly the true missing mechanism (setting A to one when missingness model is [Y]) generates

biased estimates, but with smaller variances. When taking both bias and variance into account,
the latter approach does give more accurate estimates. However, since ultimately the interest
here is to identify and minimize nonresponse bias, using the appropriate model at the cost of less
stable estimates would usually be preferred over the alternative. Moreover, as will be discussed,
the PMM substitution approach can be implemented for a sensitivity analysis using different val-
ues of A, each of which produces estimates that together portray the impact of nonresponse in a

more complete manner.

Although substitution of nonrespondents is a commonly used approach to mitigate unit
nonresponse in many surveys, it has been largely neglected by the survey statistics and method-
ology literature, with few investigations to understand and improve the method. All substitution
methods available until now assume a MCAR or MAR mechanism. Nonignorable nonresponse is
problem that has never been directly tackled by any of these substitution methods. Although Ru-
bin and Zanutto (2002) did provide an imputation method that uses substitutes for one type of

nonignorable nonresponse, their approach only applies when the variables that cause the nonre-
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sponse mechanism to be ignorable are indirectly observed, making it closer in reality to an ignor-
able nonresponse problem. Moreover, when selecting substitutes for nonrespondents, substitution
methods do not take into account the survey variables observed for the respondents, a valuable

approach for minimizing nonresponse bias when missingness is not ignorable

Pattern-mixture models have been suggested and used to analyze MNAR data when fully
observed auxiliary data are available. The applications of such models so far, however, have
been restricted to the data analysis, mostly for sensitivity analysis. This paper presented a new
application of pattern-mixture modeling, applying it to assist the selection of substitutes for re-
placing nonrespondents. By doing so, this method incorporates a wider variety of missingness
assumptions, ranging from a MAR to different degrees of MNAR mechanisms, into the sample
selection process. This enables the possibility of performing sensitivity analysis using real addi-
tional data, as opposed to predicted values under a model or values already observed in the sam-
ple (such as from hot-deck donors), by selecting substitutes under different assumptions about

the missing mechanism.

Another feature of the proposed PMM substitution method not present in some standard
nonresponse adjustments, such as weighting or the standard substitution methods, is that it also
takes into account the information of both the auxiliary variables -- assumed to be available for
every unit in the population, such as frame variables -- and the survey outcomes, available from
the respondents. This is particularly important since nonresponse error is variable and statistic
dependent, and therefore its adjustments should consider the information on the outcome varia-

bles and their relationship with the auxiliary covariates.

The simulation results showed that the proposed method tends to eliminate nonresponse
bias when the missing mechanism matches the value that the 4 parameter is set to on the pat-
tern-mixture model and the correlation between the survey and auxiliary variables is at least

moderate. Moreover, when these conditions hold, PMM substitution presented the smallest

RMSE, with the exception of the [Y] missing model, in which assuming A =1 led to more accu-

rate estimates than using A =, the correct value for A under the nonresponse model. This puz-

zling finding is explained by the high instability of the estimates when using a pattern-mixture
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model with 4 =0 . Since a primary objective of this method is to detect bias through sensitivity
analysis, such variance inflation is not a primary concern, although it should be considered when

choosing an approach for nonresponse adjustments.

In practice, the value of A that matches the nonresponse mechanism is rarely known and
the respondent data do not provide any information about this parameter. Therefore, it is not pos-
sible to choose one single value for A to eliminate nonresponse bias. However, expert
knowledge on the substantive variables and their interaction with nonresponse may provide
guidance on the nature of the missing mechanism, allowing researchers to make educated guess-
es about the values of 4 more suitable to nonresponse adjustment. Moreover, as suggested
above, PMM substitution method can be used as a tool to detect potential nonresponse problems
through a sensitivity analysis. To do so, previous studies have suggested using different values
for A to compute the population estimates and evaluate how much they change according to

each value. Andridge and Little (2011) and Sullivan and Andridge (2015), for example, recom-
mended using A ={0,1,0}.

However, implementing this sensitivity analysis in PMM substitution may pose an opera-
tional challenge, since different values of A can lead to different substitutes for a given
nonrespondent. One could select multiple substitutes for each nonrespondent, one for each value
of A, but this would impact survey costs. This would not be a problem if the substitutes selected
for the nonrespondents are all the same for different values of 4. But in this case the sensitivity
analysis should not provide any additional insights, given that estimates would be roughly equal
if the same cases are selected as substitutes over different missingness assumptions. The ability
to perform such sensitivity analysis in the PMM substitution and the costs associated with it rais-
es a trade-off between nonresponse bias and survey costs. There might be a point that the PMM
substitution could lead to reductions in the RMSE large enough to justify the added costs of se-
lecting multiple substitutes per nonrespondent. While this type of investigation is beyond the

scope of this study, it merits further investigations, which is left for future research.

One approach to using PMM substitution for sensitivity investigation is to select sub-

samples of nonrespondents using different values for A parameter for each sub-sample. For ex-
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ample, for A = {O,l,oo} nonrespondents would be randomly allocated, controlling for the auxilia-

ry variables, to three sub-samples corresponding to each value of 4. Once substitutes for each
sub-sample are collected, estimates of the population parameters would be computed separately
for each sub-sample, but also using data from the original respondents. If the correlation between
the survey variable and the auxiliary covariate is at least moderate, large differences across the
estimates of the sub-samples might be an indication of nonresponse bias. In this case, a more
substantive understanding of the relationship between the survey variable and the missing mech-
anism would be necessary to decide which estimate is more plausible. On the other hand, small
differences between the estimates would indicate that there may not be problems of nonresponse
bias with that survey variable, unless the correlations between the survey outcomes and the aux-
iliary variables are low. When that is the case, there is not much that sensitivity analysis, or in
fact any nonresponse adjustment, can do to assess nonresponse bias. This reinforces the im-

portant role of strong predictors of the survey variables in such adjustments.

Another operational challenge of the PMM substitution method is associated with the re-
quirement of having to have respondent data before the selection of the substitutes. This may
prove operationally inconvenient, as it would make prompt action for nonresponse through sub-
stitution at early stages of the fieldwork impossible, potentially extending the data collection pe-
riod. On the other hand, using respondent data with pattern-mixture models enables substitute
selection to be performed in a more informed fashion, taking all of the available information up
to that moment into account in this process, as mentioned before. Also, waiting a period of time
during data collection before selecting substitutes would allow more time for extra efforts to get
the cooperation of late respondents, that otherwise might be prematurely substituted, a concern
raised by Vehovar (1994) and Chapman and Roman (1985a, 1985b). Moreover, other than a
standard application of substitution, this could be implemented as an alternative to deal with per-
sistent nonrespondents or refusals after a nonresponse follow-up, for example, or to handle attri-
tion in longitudinal surveys, in which there are data for the survey outcomes from previous

waves.

This paper illustrated the use of the proposed method using one single auxiliary variable.

As described previously, if more than one covariate is available, this same procedure can be em-
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ployed, but using a “proxy” auxiliary variable which can combine the auxiliary covariates
through a principal component analysis or linear predictors, as suggested by Andridge and Little
(2011). Also, the PMM substitution method proposed here initially assumed only one normally
distributed survey outcome. Surveys contain multiple outcome variables of different types, each
of which may have a different relationship with the auxiliary variables and the missing mecha-
nism. An advantage of PMM substitution is that unlike other substitution and some nonresponse
adjustments, it takes this variable-statistic dependent nature of nonresponse bias into account. It
also means that, if implemented variable-by-variable, some of the nonrespondents might be as-
signed for different substitutes because for each survey outcome, even under the same value of
the A parameter. Clearly applying PMM substitution for each variable separately would not be
feasible in practice. To accommodate multiple survey variables, practitioners may compute the
predicted values under the pattern-mixture model for each variable separately and then use a
multidimensional distance measure, such as a Euclidean or Mahalanobis distance, to select the
substitutes. While this will probably not be the optimum for any combination of the individual
survey outcomes, it might be an acceptable compromise to detect patterns of nonresponse bias
across all or most of the survey variables. Moreover, extensions for other types of survey out-
comes, such as binary variables, for example, could be developed, as has been done for the
proxy-pattern mixture models (Andridge and Little, 2009) and the PPM hot-deck (Sullivan,
2014).

For simplicity, in this study, the PMM substitution was proposed and evaluated through
simulation studies under a simple random sample design. This method, however, can be extend-
ed to more complex sample designs, involving stratification, clustering and unequal selection
probabilities. Also, it was assumed that the same missing mechanism operates over original se-
lections and substitutes. This may not hold true in many applications. For instance, it is often the
case that there is less time to spend to obtain the responses of the substitutes than of the original-
ly selected units. Even if all the other survey protocols are the same, the substitutes will likely
have a smaller response propensity than the original units and, therefore, a different nonresponse
mechanism. Therefore, more investigations extending the results of the simulations of this study
to more general nonresponse mechanisms are needed. Such extensions on the sample design and

missing mechanism assumptions should be developed in future studies.
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A challenging problem for PMM substitution, and for substitution procedures in general,
is variance estimation. While under an MAR mechanism this can be accomplished using stand-
ard variance estimation techniques, as it would under complete response, there has not been al-
most no research on how to estimate sampling variance using substitute data when the missing
mechanism is nonignorable. The approach of Rubin and Zanutto (2002) uses substitutes to mul-
tiply impute the nonrespondent missing data and then, using Rubin’s combining rule, estimate
sampling variance using multiple imputation. Since substitutes can be selected under a
nonignorable missing mechanism using PPM substitution, multiple imputation would account for
adjustments in terms of differences between respondents and nonrespondents due to the MNAR
nonresponse mechanism. The properties of sampling variances using these or any other approach
should be addressed in future research.

Finally, it could be argued that the same results obtained by the PMM substitution can be
achieved using the PPM hot-deck imputation method proposed by Sullivan and Andridge (2014)
with no additional costs attributed to the substitutes. Although this statement may generally be
true, the proposed substitution procedure might be preferred over PPM hot-deck when there are
not enough potential donors on the covariate space related to missingness, which is particularly
important in the case of nonignorable missing data. With substitution, the pool of “donors”, or
substitutes in this case, is much larger, given that the sampling fraction is small in most applica-

tions, even within strata, and therefore the number of unsampled units, N —n, is very large.
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CHAPTER VI

Discussion

Despite its widespread use in survey practice, substitution remains an understudied topic
in the survey statistics and methodology literatures, and is frequently viewed with skepticism in
these fields. This dissertation sought to investigate the characteristics of this method and develop
new approaches to improve the estimates obtained with its use. The results presented in Chapters
111 to V have important practical implications for surveys that use substitution as a solution to
unit nonresponse. In this concluding chapter, these results are synthesized along with their prac-

tical implications and directions for future research.

6.1 Summary of Study Results

Substitution is frequently used in establishment surveys as a remedy for unit nonre-
sponse, particularly in school-based surveys where students are the target population. In many of
these cases, nonresponse occurs at the cluster-level, such as schools in the example given above.
The few existing studies on the use of substitution examine only element-level nonresponse.
Moreover, there has not been much research done about nonresponse at the cluster-level in mul-
ti-stage cluster samples. The study conducted in Chapter 111 investigated both of these problems.
More specifically, it studied the problem of nonresponding Primary Sampling Units (PSU) in

probability-based two-stage cluster samples.

The derivation of the nonresponse bias due to PSU nonresponse of an unadjusted re-
spondent mean in a two-stage equal-sized cluster sample provided a new and interesting result:
such bias is an increasing monotonic function of the intra-cluster correlation coefficient, as

shown by the expression below:

Bias(yr)ﬁ:Cova (v, p):tCorra (v, p)o-a(p)\/azéY)[1+p(B—1)] ,
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where Corr, (Y, p) is the correlation between the survey variable, Y , and the response propensi-

ty, p; o, (Y) and o, ( p) are the standard deviations of the survey variable and response pro-

pensity, respectively; o is the intra-cluster correlation of the survey variable (the subscript a

denotes that these statistics are being evaluated at the cluster level), and B is the cluster size.
This means that survey variables with larger intra-cluster homogeneity are more susceptible to

cluster nonresponse bias. A similar result was found for unequal-sized cluster populations.

These results illustrate the importance of examining cluster nonresponse and its differ-
ence comparatively to element nonresponse. Therefore, further investigations on methods deal-
ing with this problem are needed. The simulation studies conducted in Chapter 111 evaluated a
few of such methods. Particularly, these studies investigated the properties of substitution and

nonresponse weighting methods for the estimation of a finite population mean.

An important general result was that the performance of the substitution methods depends
on how it is implemented; the results demonstrated that the selection of the substitutes is one of
the most important factors. If substitutes are randomly selected, its properties are similar to the
naive unadjusted respondent mean. This is true even if the substitutes are randomly selected
within the same stratum of their corresponding nonrespondents — a procedure known as stratified
random substitution (Lynn, 2004). On the other hand, if substitutes are selected by a matching
procedure — that is, the unit with the smallest distance for a given set of measures to the
nonrespondent is selected as its substitute — the performance of the substitution methods is al-
most equivalent to a standard nonresponse propensity weighting adjustment (Cassel, Sarndal and
Wretman, 1983; Groves et al, 2002), as long as the variables used in the matching procedure are
the same as the ones used in the estimation of the nonresponse propensity.

The intuition behind these results is that by randomly selecting a unit to substitute a
nonrespondent, on average, the substitutes will be more similar to the responding units in the
sample than the nonrespondents. This will not necessarily decrease the level of bias, just as an

unadjusted respondent mean with an inflated (by an unexpected response rate) sample size will
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not lead to a bias reduction. On the other hand, if substitutes are matched to nonrespondents, then
they are expected to be more like them and, to the extent that the matching covariates are related
to the survey variables, there will be some bias reduction, as is seen when nonresponse weighting
adjustments are used. Also, as expected from results by Little and Vartivarian (2005), the strong-
er the association between the matching and survey variables, the larger the bias reductions are in
both matching substitution and nonresponse weighting adjustment methods. This is also an im-
portant result because it shows that any criticism about such substitution methods in terms of the
statistical properties should also be directed toward other commonly used techniques, such as

nonresponse weighting.

A second factor that impacts the performance of the substitution methods is the number
of substitution iterations used. This number represents the number of times a substitution is at-
tempted to be made (before a responding unit is finally selected or the substitution procedure is
terminated) if a selected substitute for an original nonresponding unit turns out to be a
nonrespondent as well. This is an overlooked featured in previous studies of substitution, but it is
directly related to the degree of this method’s success. As would be expected, as the number of
substitution iterations increases, the more likely all nonrespondents will be successfully substi-
tuted, which consequently results in a reduction of nonresponse bias. Obviously, as the number
of substitution iterations increases, the number of responding units also increases and, therefore,
the sampling variance decreases. Hence, increasing the number of substitution iterations has pos-

itive impacts on survey estimates both in terms of bias and sampling variability.

Another important contribution from the study in Chapter I11 is related to sampling vari-
ance estimation. Many surveys use as many strata as possible while still enabling design-based
sampling variance estimation, which is known as deep stratification (Kish, 1965). In stratified
multi-stage samples, this technique tends to create to designs with two PSUs per stratum. In such
cases, it is very common that, after nonresponse, some strata end up with only one or no respond-
ing PSUs, thus prohibiting design-based sampling variance estimation. VVehovar (1999) pointed
out that one of the potential advantages of using substitution is its avoidance of such situations.
However, he also mentioned that a comparison with strata collapsing, a commonly used tech-

nique to deal with this problem, would be needed to evaluate the real efficiency of the substitu-
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tion method for that purpose. This comparison was conducted in the simulation studies of Chap-
ter 111. In general, the sampling variance estimates of the substitution methods were less biased

and more accurate than those of the strata collapsing technique.

Therefore, the general results of Chapter 111 show that substitution is a valid alternative
for dealing with PSU nonresponse, as long as a matching procedure is implemented and the sub-
stitution is carried out a sufficient number of iterations to ensure the substitution of as many
nonrespondents as possible. Another necessary condition for the successful use of substitution is
that the variables used in the matching procedure are correlated with the survey variables. When
these conditions are met, substitution provides the same levels of bias reduction as other standard
methods, such as nonresponse weighting adjustments. Further, it can produce less biased and
more accurate sampling variance estimates, using a standard Taylor Series approximation meth-
od, compared to strata collapsing, when the sample (without substitution) turns out to have strata

with no or one PSU after nonresponse.

In some instances, however, it is not possible to match nonrespondents and substitutes on
some important variables that can explain the survey outcomes, either because they are not readi-
ly available for every unit in the population or because they can only be measured during data
collection, such as paradata. Therefore, there might be some systematic differences between
nonrespondents and their corresponding substitutes that are not taken into account in the match-
ing procedure. These differences, consequently, might diminish the potential bias reductions
generally provided by the substitution procedure. With that in mind, Rubin and Zanutto (2002)
proposed a method to take these differences into account by modeling them and multiply imput-
ing the nonrespondents using a procedure they named Matching, Modeling and Multiple Imputa-
tion (MMM).

Rubin and Zanutto’s method succeeded in taking into account differences between
nonrespondents and their substitutes on auxiliary covariates (modeling or calibration covariates)
observed only for these two subsets and, consequently decreasing nonresponse bias. However, it
also translated into larger survey costs, due to the need to also select substitutes for a sub-sample

of the respondents to estimate the imputation model, and an increase in the sampling variances of
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the survey estimates, due to the imputation procedure. To overcome these two problems, Chapter
IV presented a modification to Rubin and Zanutto’s method, as well as a new method to adjust

for differences between nonrespondents and substitutes using a calibration procedure.

In the modified version of Rubin and Zanutto’s MMM method proposed in Chapter 1V,
instead of selecting substitutes for a sub-sample of respondents from the unsampled population
to estimate the imputation model, they were selected from among the remaining set of respond-
ents, in a manner similar to a hot-deck imputation procedure. By doing so, it is no longer neces-
sary to select additional units into the sample, thus avoiding an increase in the survey costs, and
at the same time still producing estimates with the same bias reduction levels observed in the
original method. A disadvantage, however, of this variant of the MMM method is that it can fur-
ther increase the sampling variance, as, contrary to Rubin and Zanutto’s procedure, there is no
new information coming into the sample. A set of simulation studies confirmed these results:
while the levels of bias reduction of the alternative version of MMM were equivalent to its origi-
nal version, it also produced slightly less precise estimates. However, in some situations, such
losses in precision were not observed, particularly when the modeling covariates are more

strongly correlated to the survey variables than the covariates used in the matching procedure.

The new method introduced in Chapter IV proposed using a calibration weighting proce-
dure (Deville and Sarndal, 1992) to take into account differences between nonrespondents and
their substitutes. This method rests on the calibration of the substitutes to the nonrespondents in
terms of the modeling (or calibration) covariates. That is, to create a new set of weights that
make the sample total of the substitutes on these covariates to match the corresponding sample
totals of the nonrespondents. Similar to the modified version of Rubin and Zanutto’s MMM
method, this calibrated matching substitution procedure does not require the selection of addi-
tional substitutes for a sub-sample of the respondents, and therefore, does not produce an in-
crease in the survey costs aside from the selection of the substitutes for the nonrespondents.
Moreover, because this adjustment relies on a calibration procedure, instead of data imputation,
it is expected that the estimates produced by this methods would be more precise than Rubin and

Zanutto’s MMM (either the original or modified version).
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The results of the simulation studies conducted in Chapter IV consistently confirm this
hypothesis. In some cases, the bias reductions of the calibrated matching substitution method are
not as high as the ones found in the MMM methods. This is due to the fact that the adjustments
conducted in the calibration procedure are performed at the aggregate-level (i.e., sample totals),
whereas in the imputation procedure they are done at the element-level, making a finer adjust-
ment. Such differences, however, were not substantial in most of the cases in the simulation stud-

ies.

These results show that there are multiple methods to improve the quality of survey esti-
mates using substitution procedures to deal with unit nonresponse, provided certain conditions
are met. First, the covariates used both in the matching and modeling/calibration procedures
must be associated with the survey outcomes. Second, and possibly most important, the data
should be Missing At Random (MAR), as in many of other nonresponse adjustment methods
(Little and Rubin, 2002). This means that the missing mechanism should depend only on fully
observed variables, such as the matching and modeling/calibration covariates. However, in
many applications, it is important to evaluate what the consequences would be in case the miss-

ing data is non-ignorable.

While there have been a few methods proposed in the literature to analyze Missing Not
At Random (MNAR) data, there has not been so far much research done using substitution
methods in this area. Although Rubin and Zanutto (2002) developed a method that can address
some forms of non-ignorable nonresponse, a substitution procedure that can handle a more gen-
eral form of non-ignorability still lacks in the survey sampling literature. For this reason, Chapter
V proposed the use of Pattern-Mixture Models (PMM) to assist in the selection of substitutes.
The idea was motivated by the Proxy Pattern-Mixture Hot Deck imputation method, developed
by Sullivan and Andridge (2015), in which they use a normal PMM (Little, 1994) to predict the
outcomes of respondents and nonrespondents, and then, based on a distance measure of these
predicted values and under an assumed missing mechanism, they find responding donors to im-

pute the missing data of the nonrespondents.
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The PMM substitution method proposed in Chapter V follows a similar structure. First, a
PMM is fitted and used to predict the survey outcome for nonrespondents and unsampled units in
the population, using auxiliary information available for every unit, such as frame data, under an
assumed missing mechanism (designated by the A parameter in the PMM). Then, for each
nonrespondent, substitutes are selected from the unsampled population based on a distance
measure on the predicted survey outcomes. This method has the advantage of offering a more
flexible way to select substitutes, without having to rely on a MAR assumption. On the other
hand, such selections are made under some assumptions about the missing mechanism. Results
from a simulation study conducted in Chapter V showed that if the missing mechanism is cor-
rectly specified, the PMM substitution lead to the less biased estimates compared to a nonre-
sponse weighting approach or a standard matching substitution method. However, if the
missingness model is incorrectly specified, this method does not perform very well. Moreover,
under a strong non-ignorable missing mechanism (i.e., when A =), the estimates produced by
this proposed methods are quite unstable, as previous research of other estimation techniques that

also use PMM have shown.

Since the true missing mechanism in most, if not all, practical cases is unknown and the
observed data do not provide any information about the A parameter in the PMM, the use of the
PMM substitution using a single value for this parameter may prove difficult. However, as sug-
gested in other applications (Little, 1994; Andridge and Little, 2011,Sullivan and Andridge,
2015), the PMM can be used for sensitivity analysis, to evaluate how the estimates change ac-

cording to different missing mechanism assumptions. For instance, Andridge and Little (2011)

suggested using A = {0,1, oo} for that purpose, since these values can portray a wide range of

possible missing mechanisms. The data are assumed to be MAR if 1 =0.When A =1, the mod-
el suggests the (unobserved) survey variable and the (observed) auxiliary variables have the

same weight in explaining the missing mechanism. Assuming A = oo is the most extreme case of
non-ignorable nonresponse, in which the missingness depends solely on the (unobserved) survey

variable.

For the PMM substitution, this sensitivity analysis may be performed by selecting multi-

ple substitutes for the nonrespondents, in which each of them would be selected under a given

142



value of the A parameter in the PMM. Different survey estimates would be then obtained using
each set of substitutes. Unfortunately, this approach would lead to a substantial increase in sur-
vey costs if all nonrespondent were substituted multiple times. A more affordable alternative

would be to select a sub-sample of the nonrespondents for each value assigned for the A pa-

rameter. For instance, if 2={0,1,«}, the nonrespondents would be randomly partitioned into

three balanced sub-samples in terms of the auxiliary variables and for each sub-sample a value
for the A parameter would be used. With this approach it would be possible to perform sensitivi-
ty analysis computing different estimates using each set of substitutes separately, while keeping

the survey costs similar to a standard substitution method.

Like other survey sampling techniques, the PMM substitution method was developed us-
ing only one single survey variable. However, this methodology can be readily adapted to a mul-
tivariate setting by predicting each of the survey variables separately using the PMM and then
selecting the substitutes using a multidimensional distance measure, such as a Mahalanobis dis-
tance. Also, if more than one auxiliary covariate is available for every unit in the population,
they can be summarized in a single “proxy” auxiliary variable through principal component

analysis or linear predictors, as suggested by Andridge and Little (2011), for example.

In summary, the studies performed in this dissertation show that substitution can be a
useful method to address unit nonresponse, particularly for cluster nonresponse and when there
are auxiliary information available for all units in the population that may not be viable to use in
statistical modeling, due to high-dimensionality issues, for instance. The methods proposed here
still deserve more theoretical and empirical investigation and they can be further developed. The

next section describes some problems in substitution that should be addressed in future research.

6.2 Future Research

Substitution is a much neglected topic in the survey sampling and methodology literature,
but hopefully the studies performed in this dissertation will motivate further research in this area.
There are still many areas in need for further research and development. Some of them are de-
scribed here.
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Previous studies on substitution investigated its use when nonresponse occurs at the ele-
ment-level. However, as pointed out in Chapter 111, many of the applications of substitution are
done when there is cluster nonresponse. In fact, nonresponse at these higher-level stages of the
sampling process is another understudied topic in the survey sampling and missing data literature
and, therefore, deserves further investigation into other possible methods to deal with it. The
study in Chapter I11 examined the use of different substitution methods at the Primary Sampling
Unit (PSU) level in a two-stage cluster sampling, compared to other standard approaches, such as
an unadjusted respondent mean and a nonresponse weighting adjustment procedure. While this is
a very common setting for this problem and can possibly be extended to other situations, nonre-
sponse at other sampling stages in more general multi-stage designs should be addressed in fu-
ture studies. Moreover, Chapter I11 assumed nonresponse only at the PSU-level and complete
response at the element-level. In most surveys, nonresponse will occur at multiple stages of the
sampling process. The impact on survey estimates of nonresponse on multiple stages of the sam-
pling process and the performance of different adjustment methods remains a problem that needs

further attention in future research.

Although the simulation studies in Chapter 111 showed consistent patterns across differ-
ent parameters and clearly depicted what should be expected from the performance of the meth-
ods evaluated in those studies, further analytical developments are needed. Particularly, it would
be important to derive the nonresponse bias of statistics computed under the substitution proce-
dure over a more general missing mechanism assumption. In this study, the nonresponse mecha-
nism that operates over the substitutes is assumed to be the same as the originally selected units.
In many applications, this might not be true. For instance, it is often the case that there is less
time to spend to obtain the responses of the substitute units than of the originally selected units.
Even if all the other survey protocols are the same, the substitutes will likely have a smaller re-
sponse propensity than the original units and, therefore, a different nonresponse mechanism.
Vehovar (1999) provided a nonresponse bias expression for a respondent mean under a substitu-
tion procedure using a deterministic nonresponse approach. While that expression can provide
important insights on how different nonresponse mechanisms over the original and substitute

units might impact bias, an expression derived under a stochastic nonresponse approach may
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prove more useful for practical purposes, such as further nonresponse adjustments and respon-

sive designs.

Also related to missing mechanism assumptions, the simulation studies in Chapter IV and
V assumed the substitution procedure to be fully successful, that is, after enough iterations of the
substitution process, every nonrespondent is substituted by a responding unit. In practice, how-
ever, there are always some units that cannot be substituted, mostly due to cost and/or time re-
strictions of data collection. An extension of the calibrated substitution presented in Chapter 1V,
where all the respondents (original and substitute units) are calibrated to the entire original sam-
ple (respondents and nonrespondents), can be used to address this problem. For the PPM substi-
tution method proposed in Chapter V, other adjustment methods, such as imputation or model-
ing, may be employed to make further adjustments in the sample if the substitution procedure is
not successful in some of the cases. The performance of such extensions should be evaluated in

future studies.

Another prominent area that could be very useful for practitioners is how to fit the substi-
tution procedure into a more general responsive design framework. As stated in the introduction
of this dissertation, substitution may be seem as a form of responsive design, since it is a pro-
active reaction to nonresponse during the data collection process. It was only more recently that a
responsive design framework was formally developed by Groves and Heeringa (2006). There-
fore, being able to fit substitution into that framework can provide some further guidance to prac-
titioners on how to apply this method more properly to their surveys. Moreover, other aspects of
responsive design may be applied to the substitution method, such as identifying cases that may
pose a nonresponse bias risk if they are substituted or not. In another type of application, a simi-
lar procedure was suggested by Peytchev et al. (2010).

Although in Chapter 111 the properties of the sampling variance estimates of the mean un-
der the substitution procedure were investigated and compared to strata collapsing technique,
sampling variance estimation was not the focus of the studies in this dissertation. Moreover,
there have not been any studies that looked at this problem in the substitution literature. Since

under a MAR assumption the standard error of the sample mean that uses substitution is approx-
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imately the same as a complete response standard error estimate, standard techniques, such as
Taylor Series approximation, can be used. However, variance estimation of substitute estimates

under non-ignorable nonresponse is still an open problem that deserves further investigations.

The adjustment methods investigated in Chapter IV assumed a linear relationship be-
tween the survey outcome and the auxiliary covariates used for matching and modeling or cali-
bration. While it has been shown that this assumption is not necessary for the matching proce-
dure in substitution to be successful (Zanutto, 1998), the model and/or calibration adjustments
for the differences between nonrespondents and their substitutes in covariates not used in match-

ing need developments for non-linear relationships.

All the simulation studies in this dissertation used a normally distributed survey outcome.
While the general pattern of the results obtained here should follow for other types of variables,
it is important to confirm this expectation with further simulations or analytical derivation of the
properties investigated here. Empirical studies using the methods proposed in Chapter IV and V
should be also conducted to investigate their properties in real settings. Also related to distribu-
tional assumptions, the PPM substitution method developed in Chapter V assumes a Gaussian
model. Although this method is robust for other forms of continuous variables (Sullivan and

Adridge, 2015), extensions of this method for binary and categorical data are needed.

Finally, the studies in this dissertation and previous research on substitution have empha-
sized the properties of linear statistics, such as estimates for population means or proportions.
This is an important first step for the understanding of the performance of the substitution meth-
ods, but other types of statistics (e.g., quantiles and regression coefficients) need to be addressed
in future studies of these methods. Moreover, the methods proposed in this dissertation assumed
a single survey variable and one auxiliary covariate. While these methods can be extended to
multivariate settings, further investigations of their properties in such applications should be
conducted.
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