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ABSTRACT

Hybrid Designs for Caches and Cores

by

Faissal Mohamad Sleiman

Chair: Thomas F. Wenisch

Processor power constraints have come to the forefront over the last decade, her-

alded by the stagnation of clock frequency scaling. High-performance core and cache

designs often utilize power-hungry techniques to increase parallelism. Conversely, the

most energy-efficient designs opt for a serial execution to avoid unnecessary over-

heads. While both of these extremes constitute one-size-fits-all approaches, a judi-

cious mix of parallel and serial execution has the potential to achieve the best of

both high-performing and energy-efficient designs. This dissertation examines such

hybrid designs for cores and caches. Firstly, we introduce a novel, hybrid out-of-

order/in-order core microarchitecture. Instructions that are steered towards in-order

execution skip register allocation, reordering and dynamic scheduling. At the same

time, these instructions can interleave on an instruction-by-instruction basis with in-

structions that continue to benefit from these conventional out-of-order mechanisms.

Secondly, this dissertation revisits a hybrid technique introduced for L1 caches, way-

prediction, in the context of last-level caches that are larger, have higher associativity,

and experience less locality.
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CHAPTER I

Introduction

When considering the design space of processor components, the highest perform-

ing cache and core designs expend an exorbitant amount of energy to accomplish a

task in parallel steps, often performing unnecessary operations in the process. On

the other hand, energy-efficient designs tend to execute the bare essential operations

required to complete a certain task, albeit in a slower, serialized fashion. Examples

of high performance designs include parallel tag-data access in the cache and out-of-

order execution in the core, while sequential tag-data caches and in-order cores form

the other extreme. Hybrid designs attempt to achieve the best of both, paralleliz-

ing when it is most likely to be beneficial, and saving energy when parallelization is

wasteful.

Our thesis spans hybrid designs for both the core and cache. The primary focus of

this thesis is a novel, hybrid core microarchitecture, which allows inflight instructions

to leverage out-of-order techniques when beneficial, while simultaneously steering

other inflight instructions through more efficient in-order hardware. This design

allows out-of-order or in-order to be selected at an instruction-by-instruction basis,

while maintaining the tight scheduling requirements of high performance cores. We

have also completed an investigation of hybrid caches, focusing mainly on last-level

on-chip caches. With successive processor generations, these caches capture more

of an application’s working set. We update existing hybrid cache designs for the

last-level cache, which poses new challenges.

1.1 Hybrid Core Design

Modern processors use a variety of microarchitectural techniques to extract appli-

cation performance. Out-of-order (OOO) execution and simultaneous multithreading
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[57] (SMT) are two such techniques, which seek to utilize superscalar execution re-

sources by increasing single-threaded instruction-level parallelism and thread-level

parallelism, respectively. Some designs seek to balance single-threaded performance

and throughput by using both OOO and SMT hardware. However, OOO and SMT

mechanisms compete to fill the same functional units using different types of par-

allelism. As such, prior work finds that the throughput of an in-order (INO) core

approaches that of an OOO core as the number of SMT threads is increased [23].

This result indicates that expensive OOO mechanisms are not always necessary and

may be an inefficient underlying microarchitecture for multi-threaded designs.

OOO hardware enables early issue of instructions that encounter false depen-

dences, for which INO cores must stall. However, for a significant fraction of in-

structions, the last-arriving input operand (true dependence) arrives after all false

dependences have resolved. Such instructions, which we call in-sequence, do not stall

in INO cores and naturally issue after all elder instructions (i.e., in program order) in

OOO cores. Conversely, we refer to instructions that naturally issue out of program

order as reordered.

In-sequence instructions gain no benefit from the OOO microarchitecture struc-

tures they occupy. In fact, these instructions can be safely executed on schedule with-

out allocating in OOO structures, including the reorder buffer, issue queue, load-store

queue, and physical register file. We find that having more SMT threads increases

the fraction of in-sequence instructions observed in a particular OOO instruction

window. Additionally, in-sequence instructions interleave at fine granularity with re-

ordered instructions. We find that groups of consecutive in-sequence or reordered

instructions average 5 to 20 instructions per group. So, existing hybrid INO/OOO

microarchitectures [35, 39], which switch at 1000-instruction (or higher) granular-

ity, cannot exploit the in-sequence phenomenon without sacrificing performance on

reordered instructions.

Instead, we propose a microarchitecture in Section 3.2 where in-sequence instruc-

tions occupy an energy-efficient FIFO queue, which we call the shelf 1, from which

instructions may issue only in sequence (reordered instructions occupy a conventional,

unordered issue queue). By shifting in-sequence instruction occupancy to the inexpen-

sive shelf, capacity in OOO structures is freed for reordered instructions. Given that,

as we show later, around half of instructions are in-sequence in a 4-thread SMT, we

aim to double the effective instruction scheduling window simply with the allocation

1We borrow the naming concept for the shelf from the Metaflow architecture [49], as our structure
is based on the principle of shelving deferred instructions.
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of FIFO queues.

This thesis makes contributions in three areas. First, we report on the correlation

between in-sequence instructions and the effectiveness of OOO hardware—in-sequence

instructions gain no benefit from OOO mechanisms. Second, we leverage that insight

to design a microarchitecture that integrates a shelf into an SMT-enabled out-of-order

core. To our knowledge, this is the first design that enables a modern dynamically

scheduled instruction window, with instruction reordering and register renaming, to

contain statically scheduled, unreordered instructions, which reuse the same registers,

chosen at instruction granularity. Finally, we describe a simple hardware steering

mechanism that determines whether instructions must be steered to the shelf based

on whether they are predicted to be in-sequence or reordered in the future schedule.

Our design achieves an 8.3% energy-delay improvement over the best baseline 4-

thread OOO core, because it is more efficient to extend an OOO instruction window

with a shelf than it is to expand conventional OOO hardware structures. We explore

the limits of our technique across a number of OOO sizes and SMT threads. For

instance, we show that a shelf is less amenable to single-threaded cores because they

encounter fewer in-sequence instructions for the same core size.

1.2 Hybrid Cache Design

Semiconductor device scaling continues to enable processor designs with ever-

larger caches. As larger working sets are captured within the chip, the importance of

intra-chip access latency has grown [15]. Server applications are particularly sensitive

to last-level cache (LLC) latency because their multi-megabyte instruction footprints

overwhelm primary instruction caches, exposing LLC latency on the fetch critical

path [16]. While tag and data accesses in large, highly-associative LLCs are often

serialized to save energy [50], parallel tag-data access (for reads) can reduce overall

access latency by 30% albeit at a 1.47x cost in per-access energy.

To bridge the performance and energy gaps between these two extremes, we

consider way prediction, where only a subset of data ways are accessed in parallel with

the tags. Way prediction has been studied extensively for L1 caches [9, 24, 31, 38,

50, 62]. In this context, it has relied primarily on one of two phenomena: temporal

locality (i.e., predict the most-recently-used way) or instruction-correlated locality

(i.e., use a PC-indexed prediction table). However, way prediction is fundamentally

harder in LLCs because associativity is greater, temporal locality is filtered by the L1

3



caches, accesses from multiple cores interleave, and instruction addresses are typically

not available.

Alternatively, researchers have advocated partial tag comparison to rule out cache

ways that surely do not contain the data [11, 28, 42, 63]. These designs compare

a few low order bits of the incoming tag to those stored in each way, and abort

accesses for any mismatches. The most recent design [63] targets small (8-32KB),

low-associativity (4-way) L1 caches, which allows it to hide a fully-associative 4-

bit partial tag comparison under the data array decoder delay. This design avoids

any impact on the cache access critical path, while achieving good energy efficiency.

The comparison is implemented with static logic as a content-addressable memory

(CAM)—a design facilitated by the small L1 size.

We follow a similar approach, however our target LLC context leads us to a

different solution. (1) We demonstrate the need for a wider partial tag comparison

of 6-8 bits in order to achieve highly accurate way prediction (over 90% accuracy) at

the LLC. (2) This wider comparison leads us to implement the CAM with dynamic

logic to minimize latency, and we assess the impact on access latency by performing

a circuit-level critical path analysis of the CAM versus decoder delays. (3) Despite a

wider partial tag comparison, some accesses still result in partial tag matches in more

than one way, which makes the way prediction inconclusive. To tightly limit energy

per access, we describe an architectural feature we call the inhibit bit to predictively

activate the most likely way under such partial tag collisions.

Integrating these components, we propose Embedded Way Prediction, an archi-

tecture and circuit design for effective way prediction in server-class LLCs. We show

that embedded way prediction achieves the full potential performance improvement

of parallel lookup, improving scientific and server application performance by up to

15.4% (6.6% average) at an energy-per-instruction overhead of 11%, as compared to

a 17.5% overhead for conventional parallel lookup (averages are geometric means).
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CHAPTER II

In-sequence Instructions

Simultaneous multithreading out-of-order cores waste a significant portion of

structural out-of-order core resources on instructions that do not need them. These

resources eliminate false ordering dependences. However, in such cores, nearly half

of instructions dynamically issue in program order after all false dependences have

resolved. These in-sequence instructions interleave with other reordered instructions

at a fine granularity within the instruction window.

2.1 Overview

We identify three types of ordering dependences that cause simple INO cores

to stall, but do not stall OOO cores. These are data, speculation and structural

dependences. Data dependences govern the order in which register reads and writes

must be performed. These comprise the well-known Read-After-Write (RAW) or

true dependence, as well as the Write-After-Write (WAW) and Write-After-Read

(WAR) false dependences. Speculation dependences involve speculative execution of

instructions, including processor speculation on control flow, such as after a branch or

excepting instruction, or on values, such as those returned by loads executed early in

memory order. Structural dependences represent resource constraints. These prevent

instructions from proceeding to the next stage, as in pipeline stalls in an INO core,

or a dispatch stall in an OOO core when the issue queue or other structure is full.

We consider an instruction to be reordered if it issues to functional units before

all three types of dependences are resolved, otherwise the instruction is in-sequence.

Consider a simple INO core that stalls at the issue stage until all dependences resolve,

such that all instructions are in-sequence. The simple INO core stalls for true and

false data dependences by issuing instructions in program order, which takes care

of WAR hazards, and with the use of a register ready bit-vector, which can detect

5



RAW and WAW dependences. Speculation dependences can be handled at the issue

stage using Smith and Pleszkun’s result shift register [53]. Structural dependences

are honored automatically by the FIFO nature of the INO core. These mechanisms

conservatively stall each instruction until it is guaranteed not to violate any ordering

dependences. As such, all instructions in the simple INO core are in-sequence.

In-sequence instructions in OOO cores are those instructions that issue according

to the same schedule (relative to other instructions) as they would have issued in

an INO core. We show that in-sequence instructions waste OOO resources using a

dependence graph model of the false ordering dependences. These instructions are

particularly abundant in SMT-enabled processors. Additionally, our observations

reveal that reordered and in-sequence instructions interleave at fine-granularity in

OOO cores. We demonstrate in this thesis a practical OOO microarchitecture where

in-sequence instructions can be selected on an instruction-by-instruction basis and

skip allocation in OOO structures, while still executing in the same schedule as a

conventional OOO core.

2.2 Modeling Ordering Dependencies

Fields, Rubin, and Bodik [17] develop a dynamic dependence-graph model for

OOO execution to analyze its critical path. We extend their model to include the false

dependences that arise in in-order cores. The extended model allows us to precisely

define in-sequence and reordered instructions and understand why OOO mechanisms

are unnecessary for in-sequence instructions. In later sections, we base the design of

our microarchitecture on the analysis of this extended model to demonstrate why our

hardware still maintains correctness.

The Fields model abstracts execution into three operations (dispatch, execute,

and commit) represented by nodes, and dependencies among operations, represented

by edges weighted by latencies. We show a small example of this model in Figure 2.1

(left). To additionally reason about false dependencies, we expand their execute node

into three: issue (I), execute (X), and writeback (W). We depict these additional

nodes in Figure 2.1 (right).

In our extended model, I corresponds to the operation of scheduling instructions

to functional units, X corresponds to the computation of instruction outputs, and W

corresponds to overwriting architectural state with the results of an instruction. At

the I node, an instruction waits for its operands (true dependences), for dispatch (the

6
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Figure 2.1: Dependence chain model for issue stage.

previous operation)1. A node (or operation) triggers after the last-arriving edge (or

dependence). Once an instruction has dispatched and its operands are available, the

I node triggers, and the instruction issues to the functional units. The X node then

triggers, incurring the latency of the functional unit in the X-W edge which represents

execution latency. Operand dependences are signified by X-I edges. Finally, the

instruction writes back in the W node.

An instruction is reordered if the last-arriving dependence at any node is a false

dependence. Such instructions benefit from OOO hardware; in an INO processor, the

instruction must stall to await the false dependence or execution may become incorrect

(e.g., architectural state required for correct recovery of a misspeculation may be

lost). Conversely, if none of the false dependences are last arriving, an instruction

is in-sequence. We will demonstrate that in-sequence instructions need not allocate

in OOO structures to safely execute as scheduled by the OOO core. Instead, we

allocate in-sequence instructions to an energy-efficient FIFO queue called the shelf,

and conservatively enforce false dependences with practical detection mechanisms.

Although we enforce these dependences, since they are not last-arriving, execution

of in-sequence instructions is not delayed. (Note that, as in-sequence instructions

are heuristically/predictively identified, our design must still check and enforce false

dependencies for the shelf to guard against cases where an instruction is incorrectly

steered).

To make our analysis of false dependencies concrete, we discuss them with respect

to a simplified OOO core depicted in Figure 2.2. The figure depicts the operations

1Note that Fields et al. represent other dependences like functional unit availability in their
model with additional latency in outgoing edges.
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Figure 2.2: Baseline microarchitecture with SMT partitioning and OOO dependence
removal.

that occur in the in-order frontend and out-of-order backend and the major structures

of the core. (Note that the operations we depict do not correspond precisely to

boundaries of pipeline stages in a typical core; for example, wakeup is often performed

as part of other stages). The operations and structures are marked with particular

false dependences they affect. Instructions proceed in program order through the

frontend until they are dispatched to the backend OOO structures. For each false

dependence, we show how it manifests as a dependence edge in our model, we discuss

how OOO structures alleviate it, and demonstrate that an in-sequence instruction

can safely issue without allocating in OOO structures.

2.2.1 Data

Data dependences govern the order in which register reads and writes must be

performed. These comprise the well-known Read-After-Write (RAW or true depen-

dences), as well as the false dependences: Write-After-Write (WAW) and Write-After-

Read (WAR). For WAW and WAR dependences, each write must wait for preceding

reads and writes to the same register to complete before it can change the value. These

constitute edges to the writeback operation of the dependent instruction, sourced at

the preceding write for WAW, and at the issue operation for any readers intervening

between the two writers (WARs). Figure 2.3a illustrates this.
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Figure 2.3: Removed dependences

OOO cores employ register renaming to remove WAW and WAR dependences

by allocating and tracking a new register for each write. This renaming mechanism

ensures there are no preceding reads and writes to the register. The rename operation

in our OOO core model carries out register renaming. We employ the mapping table

(MT) to track the most recent alias of a register, and the free list (FL) to find an

available register in the physical register file (PRF). The PRF provides enough register

entries for all the instructions we would like to simultaneously rename. An instruction

that issues in-sequence can overwrite the previous value for the register and need not

rename its destination; once WAW and WAR dependences have passed, there is no

need for the previous value. (Note, misspeculation recovery may still require the

value, which we address next.)

2.2.2 Speculation

Modern processors speculate on values, such as the next PC after a branch, or

on the early execution of memory loads. Sometime during or after their execution,

instructions that use speculative values verify whether these are correct or misspec-

ulated. Recovering from a misspeculation involves squashing the instruction stream

after the misspeculated instruction and re-executing. We say an instruction has re-

solved if it has no misspeculations and all preceding instructions are non-speculative.

Before an instruction resolves, it is speculative, and cannot overwrite an old value

because it may be needed for recovery. This requirement leads to a dependence edge

to the writeback stage, which must carry the dependence on the current instruction’s

resolution as well as older instructions. To model this correctly, we add a resolution

(R) node as in Figure 2.3b to each instruction to represent the verification operation

wherein an instruction is confirmed not to fault or misspeculate (branch outcome re-

solves, divisor is non-zero, memory translation succeeds, etc.). All instructions must

wait for the R node before writing back, and have an R-W edge. Speculative in-
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structions also have an X-R edge to signify the verification operation. R nodes are

connected in sequence with R-R edges from one instruction to the next.

OOO cores piggyback the renaming mechanism to write to a newly allocated

register even as they wait their turn to resolve. The resolution order is maintained

by a reorder buffer (ROB) which retires instructions in program order once they

have completed execution. The old value for each register is maintained until the

instruction producing the new value retires. This allows the processor to squash all

instructions younger than a certain point and recover to the old values.

In-sequence instructions happen to write their outputs only after they are non-

speculative. Therefore, they may overwrite the previous value of their destination

register in-place, without any chance of roll-back. By virtue of never needing to hold

onto the old value they also do not need to allocate in the ROB. All that is needed

is a mechanism which prevents them from overwriting a register should they need to

be squashed, which does not require the ROB.

2.2.3 Structural

Structural dependences represent resource constraints. Particularly in INO cores,

instructions must issue in program order as they cannot leap-frog. OOO cores remove

these issue-to-issue dependences (I-I edges in Figure 2.3c) by allocating associative

structures like the issue queue (IQ) and load-store queue (LSQ). These structures

involve broadcast/wakeup mechanisms to notify all entries of updates to their de-

pendences, as well as mechanisms to select instructions from any entry to execute.

The broadcast-based wakeup and associative selection remove the issue-to-issue de-

pendence from one instruction to the next. In-sequence instructions can avoid costly

associative structures and opt for FIFO structures to issue in program order.

2.3 Designing for In-sequence Instructions

Data, speculation and structural dependences are not removed in INO cores, which

must handle these by stalling to avoid correctness hazards. To facilitate dependence

tracking, INO cores issue instructions in program order and determine stall conditions

at the issue stage. In-sequence instructions are instructions that would not stall under

INO hardware. Our design aims to facilitate their execution using INO-like mech-

anisms, avoiding the more energy-intensive OOO hardware while ensuring correct,

timely execution.
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Figure 2.4: Converted dependences

Our dependence-graph models show that removed dependences do not all arrive

at the issue node. However, in our hardware design, we seek to detect and stall for all

dependences at issue. Hence, in Figure 2.4, we transform all dependences to arrive at

the issue node while conservatively ensuring that in-sequence instructions may issue

no earlier in the transformed model than in the original. Structural dependences

already arrive at the issue node. WAW and WAR edges can simply be moved to

point to the issue node, enforcing the original constraint via transitivity. We note that

WAR edges are now subsumed by structural dependence edges: an instruction that

issues in program order cannot violate a WAR dependence because older instructions

have already issued and read their operands.

To transform speculation dependences, we ensure that an instructions stalls at the

issue node until it is guaranteed to writeback after all elder speculations resolve. We

reposition the R-nodes between consecutive issue operations and calculate an edge

weight that ensures enough delay that the resolution-to-writeback ordering constraint

is enforced (i.e., the second instruction will stall if the new R-I edge is last-arriving).

The original X-R edge becomes an I-R edge and is annotated with the resolution

latency of the elder instruction (+a). The R-W edge becomes an R-I edge to the

younger instruction and is annotated with the younger instruction’s minimum execu-

tion latency (-b). The difference in latency (a-b) is the number of stall cycles needed

to ensure correctness. R-nodes still carry the R-R edges as before. Together, these

transformations replace the transitive X1 → R1 → R2 → W2 dependence chain with

a I1 → R1 → I2 → X2 → W2 dependence chain.

Our approach requires known execution and resolution latencies for all instruc-

tions. Although many instructions have variable execution latency, the time to detect

potential faults (e.g., a load instruction misses in a TLB, a floating point division by

zero) is typically short and fixed. Prior designs (e.g., [53]) have made the same

assumption.
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Figure 2.6: Weighted cumulative distribution of consecutive in-sequence and re-
ordered instruction series lengths.

2.4 Opportunity

We have shown that in-sequence instructions need not allocate in OOO structures.

By removing these instructions, we reduce pressure on these structures and allow the

designer to shrink them, reducing power while maintaining performance. A significant

fraction of instructions in OOO cores execute in-sequence, and this number increases

with number of SMT threads in a core. Figure 2.5 illustrates the extent of this effect;

as the number of threads in a 128-entry OOO instruction window is increased, the

fraction of in-sequence instructions more than doubles to more than 50% on average.

As such, we target the performance of the 128-entry instruction window, using a

64-entry one with minimal additional hardware for in-sequence instructions.

We show that in-sequence and reordered instructions interleave at fine granular-

ity. Figure 2.6 depicts the cumulative distribution of consecutive in-sequence and

reordered series lengths as seen in an OOO core, weighted by the number of instruc-
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Figure 2.7: Energy-efficiency potential of hybrid design on 4-thread SMT.

tions in the series (the series length). The plot shows the geometric mean across

benchmarks, as well as their range of behavior, for single-threaded benchmarks. We

find that 99% of in-sequence instructions occur in series with 30 instructions or fewer,

while a series of reordered instructions is bound by the ROB size (128 entries in

this case). SMT workload mixes with 2, 4 and 8 threads generally produce similar

distributions.

Figure 2.7 shows a back-of-the-envelope estimate of opportunity for energy savings

if one were to down-size OOO structures by the average fraction of in-sequence

instructions while maintaining the same performance as the original OOO design.

The in-sequence instructions are instead assumed to occupy a FIFO buffer equal in

size to the portion of the ROB that was removed. Replacing out-of-order mechanisms

with a shelf provides substantial opportunity to improve energy efficiency.

Whereas this simple estimate presupposes that individual OOO structures can

be scaled arbitrarily, in fact, many structures naturally lend themselves to imple-

mentations at power-of-two sizes. Hence, in our experimental evaluation, we instead

compare the energy-delay of practically sized OOO and OOO+Shelf microarchitec-

tures, demonstrating the improvement in pareto-optimal design points enabled by our

approach.
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CHAPTER III

Hybrid In-Order/Out-Of-Order Core

Microarchitecture

We develop a hybrid out-of-order/in-order microarchitecture, which can dispatch

instructions to efficient in-order scheduling mechanisms—using a FIFO issue queue

called the shelf—on an instruction-by-instruction basis. Instructions dispatched to

the shelf do not allocate out-of-order core resources in the reorder buffer, issue queue,

physical registers, or load-store queues.

3.1 Design Overview

OOO designs extend the OOO instruction window by provisioning reorder buffer

(ROB), issue queue (IQ), load-store queue (LSQ), and physical register file (PRF)

entries. These structures are provisioned in a balanced fashion so that no one structure

is a dominant bottleneck. Larger OOO cores thus increase the instruction window

by increasing all structures. Our main observation is that in-sequence instructions do

not need these costly structures to execute correctly on schedule. Nevertheless, the

instructions must still be buffered so as to extend the OOO instruction window. We

provide this buffering via a per-thread in-order issue queue, which we call a shelf.

A shelf is a FIFO buffer that holds instructions in between the dispatch and issue

stages much like the (fully associative) IQ. It serves to unblock the dispatch stage to

allow reordered instructions to proceed past stalled in-sequence instructions. Shelf

instructions are not allocated a new PRF or ROB entry. As such, shelf issue logic

must detect and handle false dependences by stalling. Ideally, instructions steered to

the Shelf are in-sequence instructions, which do not incur additional stalls for false

dependences. We discuss steering instructions to the shelf or IQ in Chapter IV.
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Figure 3.1: Design overview with FIFO shelf.

Figure 3.1 illustrates the shelf within our generic OOO pipeline. It depicts in-

coming instructions from the dispatch stage as steered to the shelf or to the IQ. The

steering mechanism may interleave shelf and IQ instructions on an instruction-by-

instruction basis. Once instructions have dispatched to the shelf and IQ, the mi-

croarchitecture must correctly and quickly resolve true and false dependences across

the two queues to prevent unnecessary stalls. Prior hybrid INO/OOO microarchitec-

tures [35, 39] cannot exploit such fine-grain interleaving, while our design can. As the

average series length of in-sequence or reordered is on the order of 10 instructions,

the instruction window will simultaneously contain multiple series that interdepend.

The next section focuses on the details of our mechanism.

3.2 A Hybrid Instruction Window

The FIFO shelf is designed to avoid costly associative operations like the tag

comparison in the IQ as well as store-to-load forwarding and memory order violation

detection in the LSQ. We implement the shelf as a circular buffer with head and tail

pointers, much like the ROB. All shelf instructions will block behind a stalled head

instruction even if they are ready to issue. Each instruction at the head of the shelf

will check for false and true dependences before issuing to the functional units.

Ideally, the shelf would require only mechanisms like the simple INO core to guar-

antee that instructions issue in-sequence. However, in-order issue is complicated by

the dynicamically-scheduled OOO instruction window. To detect false dependences

inexpensively, we maintain the invariant that instructions issue from the shelf in pro-
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Figure 3.2: In-order issue of shelf instructions.

gram order. The main implication of INO shelf issue is that shelf instructions must

issue after preceding IQ instructions, which we describe in Section 3.2.1. We also

modify the stalling mechanisms for speculation (Section 3.2.2) and data dependences

(Section 3.2.3). Finally, we discuss memory ordering in Section 3.2.4.

3.2.1 Issuing from the Shelf in Program Order

By virtue of the shelf being a FIFO buffer, its instructions are already ordered

with respect to each other. So, an instruction at the head of the shelf need only stall

for unissued instructions from the immediately preceding series of IQ instructions

(earlier series of IQ instructions must have already issued for the shelf instruction to

reach the head). For this reason, we designate that a new run of instructions starts

when an IQ instruction is steered immediately following a shelf instruction from the

same thread. One run consists of a series of IQ instructions followed by a series of

Shelf instructions. An instruction at the head of the shelf that issues after all IQ

instructions in the same run is guaranteed to issue in program order.

Since IQ instructions are dynamically scheduled, the first instruction to dispatch

is not necessarily the first one to issue. Additionally, consecutive instructions are

generally not allocated adjacent entries in an IQ. To track the issue order of IQ

instructions, we allocate a per-thread issue-tracking bitvector with one bit per ROB

entry, which represents whether the corresponding instruction has yet to issue (see

Figure 3.2). The bit corresponding to an instruction is cleared upon dispatch, and set

upon issue. A head pointer is maintained to track the oldest unissued IQ instruction,

similarly to how the ROB tracks the oldest instruction that has not retired. To be

eligible for issue, a shelf instruction must ensure that the head pointer has moved

past the last IQ instruction in its run. So, as an instruction is dispatched to the shelf,
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it records the ROB index of the last preceding IQ instruction (i.e., the tail pointer

of the ROB/issue-tracking bitvector for its thread). Once the head pointer advances

past this index, the shelf head is the eldest unissued instruction and can proceed to

issue in program order.

3.2.1.1 Critical Path Considerations.

In a superscalar machine, we may desire to issue a shelf instruction in the same

cycle as the last older IQ instruction. We consider the circuit-level critical path

challenges associated with same-cycle issue. An issue cycle consists of selecting a

number of ready instructions, followed by waking up their dependents to mark them

ready for the next cycle. To determine if the head of the shelf is eligible for issue, the

issue-tracking bitvector must be updated to reflect the elder IQ instructions selected

for issue this cycle. Aggressive, same-cycle issue of an IQ instruction and subsequent

shelf instructions requires this combinational logic to be placed on the critical path

of wakeup and select, which are typically already among the longest paths in OOO

processors.

Instead, we advocate a conservative design as depicted in Figure 3.2, which does

not bypass issue-tracking bitvector updates, removing these updates from the wakeup-

select critical path. Although shelf instructions cannot issue in the same cycle as

preceding IQ instructions, we confirm that this design choice sacrifices minimal per-

formance later in Section 5.2.

As the shelf extends the instruction window, it effectively competes against larger

OOO cores with longer critical paths. We evaluate various OOO sizes under the

same clock frequency to isolate microarchitectural effects; nevertheless, we assume

that small critical path overheads induced by our shelf design compare favorably to

the critical paths in larger, slower designs.

3.2.2 Handling Speculation

Instructions are considered committed, or no longer speculative, once they have

resolved their speculation and all older instructions are committed. To guarantee

correct execution, instructions must not overwrite or recycle old state until they are

committed. The ROB is the conventional OOO structure that maintains the commit

order by retiring old state in program order after each instruction writes back (which

guarantees that it has resolved speculation). Since shelf instructions do not allocate

in the ROB, they must be delayed at issue until they are guaranteed to write back
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in-sequence. This constraint allows shelf instructions to reuse the physical register

previously allocated for their destination register index. We discuss the shelf delay

mechanisms below, then discuss how to squash shelf instructions and prevent them

from writing back on a misspeculation. Finally we consider coordinating the ROB

retire order with shelf instructions.

3.2.2.1 Delaying Shelf Instructions for Speculation.

We first describe the simplest method to delay shelf instruction writeback cor-

rectly. This method is based on the result shift register proposed by Smith and

Pleszkun in the context of in-order cores with varying but deterministic instruction

execution latencies [53]. We introduce a speculation shift register (SSR) per thread,

which tracks the maximum remaining resolution cycles for any in-flight instruction.

As each speculative instruction issues, it sets the SSR to the maximum of its resolu-

tion delay and the current SSR value. Since shelf instructions issue in program order,

when the instruction at the head of the shelf is eligible for issue, the SSR will have

been updated by all older instructions. A shelf instruction can only issue once its

minimum execution delay compares less than or equal to the value in the SSR. Any

earlier and it becomes unsafe to issue the shelf head (i.e., it could overwrite the value

in its destination register, which is later needed for recovery).

Although the mechanism we have described thus far maintains precise state, it

can unnecessarily delay shelf instructions due to speculative execution of younger

reordered instructions; such younger instructions may issue early, merging their res-

olution time into the SSR. In pathological cases, the shelf head may be the eldest

incomplete instruction and yet stall indefinitely, until the issue of all younger in-

structions becomes blocked due to dependences on the shelf. (This pathology could

not arise in Smith and Pleszkun’s setting, where issue is in-order [53].) To avoid

this pathology, we provision additional SSRs. We could aggressively enforce precise

speculation stalls by provisioning a separate SSR for each run; however, the number

of in-flight runs varies greatly over the course of execution. Moreover, to support

per-run SSRs, each IQ instruction would need to track which SSR it must update.

Instead, we propose a conservative design with only two SSRs, an IQ SSR and a

shelf SSR as shown in Figure 3.3. All IQ instructions update only the IQ SSR with

their resolution time as they issue. Shelf instructions refer only to the shelf SSR to

determine if they are safe to issue. Whenever the first shelf instruction in a particular

run becomes eligible for in-order issue, the IQ SSR is first copied to the shelf SSR. At
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this moment, it is guaranteed that all elder IQ instructions have issued and updated

the SSR (as the shelf head is the eldest unissued instruction).

The IQ SSR may also include the resolution delay of younger instructions that

issued early, for which we (unnecessarily, but conservatively) enforce a delay. How-

ever, the starvation pathology described above is no longer possible, since no more IQ

instructions will affect the shelf SSR until the shelf head issues. We evaluate the per-

formance loss of our optimized design relative to the perfect SSR case in Section 5.2.

3.2.2.2 Shelf Retirement and Squashing.

Once a shelf instruction reaches the writeback stage without being squashed, there

can be no readers, writers or recoveries to the state that it will overwrite (data

dependences are handled in Section 3.2.3); the issue invariants maintained by the

shelf ensure writeback is safe. So, shelf instructions may retire out-of-order.

The shelf must also recover correctly from misspeculations by precisely squashing

all instructions younger than the misspeculating instruction. As noted previously,

when an instruction misspeculates, there can be no younger shelf instructions that

have already written back. All shelf instructions that must be squashed are either

unissued or still in flight in execution pipelines. These instructions (including the mis-

speculating instruction itself) must be prevented from writing back as they complete.

There may also be elder in-flight shelf instructions, which must not be squashed.

Hence, a misspeculating instruction must indicate precisely the index of the first

shelf instruction to be squashed. This shelf squash index can be used to filter out

younger shelf instructions as they write back.
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For misspeculating shelf instructions, identifying the shelf squash index is trivial:

it is the misspeculating instruction’s own index. For IQ instructions, we store during

dispatch the index of the first shelf instruction that is to follow: it is the index the

next shelf instruction will be assigned, indicated by the shelf tail pointer.

A consequence of this recovery design is that a shelf index may not be recycled

for use by another instruction until its first assignee writes back. In contrast, IQ

entries may be recycled immediately once the instruction occupying them issues. A

simple solution is to release shelf entries only upon writeback. However, this approach

greatly increases shelf occupancy; as our goal is to squeeze the most efficiency out

of as little hardware as possible, the increased occupancy is undesirable. We discuss

an alternative that decouples the shelf index (which cannot be reused) from the shelf

entry (which may then be used by another instruction) in Section 3.2.2.3.

Given an ordered shelf index that uniquely identifies in-flight instructions, we can

now precisely writeback and retire only shelf instructions older than the shelf squash

index, and rollback or squash younger shelf instructions once the retire pointer of the

shelf arrives at the shelf squash index.

3.2.2.3 ROB Retirement.

For IQ instructions, the ROB ensures in-order retirement with respect to other

IQ instructions, thereby facilitating precise recovery from exceptions—architectural

state modified by IQ instructions is updated in program order and non-speculatively.

However, the ROB must also coordinate with the out-of-order retirement of shelf

instructions to ensure precise state in the event of a misspeculation—ROB instruc-

tions may not retire before older shelf instructions. Absent additional checks, ROB

instructions could retire before a younger shelf instruction resolves its speculations,

or reads or writes the register that is being retired.

We guard against this mis-ordering by ensuring that ROB entries may not retire

before elder shelf instructions retire. Shelf instruction retirement is tracked in a shelf

retire bitvector, much like the completion bit associated with each ROB entry. Similar

to the head pointer of the ROB, a shelf retire pointer advances over this bitvector,

always pointing to the eldest unretired shelf index. Each ROB entry tracks the index

of the next shelf instruction to follow it in program order (recall that this is the

shelf squash index, discussed above, which we must already track for misspeculation

recovery). Once the shelf retire pointer matches or exceeds the stored shelf index, the

ROB can retire the next instruction.
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Whereas this design ensures correct ordering of ROB retirement with respect to

shelf instructions, it shares the downside noted in the discussion of misspeculation

recovery in Section 3.2.2.2: shelf indexes may not be recycled for use by a new

instruction until elder ROB entries retire. We solve this potential resource shortage

by decoupling the allocation and deallocation of the (comparatively) expensive shelf

entry from that of the shelf index (a virtual resource). We assume the size of the shelf

is a power of two, and allow the shelf index to span a range double the shelf size. The

most significant bit of the shelf index is not used when accessing shelf entries. A single

shelf tail pointer is used to allocate a shelf index and the corresponding entry (i.e.,

ignoring the most significant bit). The shelf retire pointer continues to track the last

unretired shelf index. A second reservation pointer represents the head of the shelf

index space; the tail pointer may not allocate past this pointer. The shelf reservation

pointer is updated only once the ROB no longer needs an entry, and prevents the shelf

tail from wrapping around to allocate the reserved indices. The reservation pointer

is updated by retiring ROB instructions; each sets the reservation pointer to its shelf

squash index, freeing the corresponding indices for reuse.

As such, ROB instructions check that the shelf retire pointer has retired all older

instructions. Shelf entries may be reused as soon as the corresponding shelf instruction

issues, but the wider shelf index remains reserved until it is no longer referenced by

any ROB entry.

3.2.3 Handling Data Hazards

To handle data hazards, shelf instructions must stall at issue until it is guaranteed

that data dependences are resolved, similar to the simple INO core. Once all data

dependences are resolved, in-sequence instructions from the shelf may correctly over-

write the previous value for their destination register. Our strategy, then, is to reuse

the previous physical register allocated to the logical identifier for each shelf instruc-

tion’s destination. We do not allocate new physical registers for shelf instructions,

thus reducing the occupancy of the PRF.

Both shelf and IQ instructions translate their source register identifiers in the

rename stage to pick up the physical register identifiers (PRI). They also pick up

the existing destination register translation; the shelf simply uses it as a destination

physical register, while the IQ will retire the identifier back onto the free list as it

replaces the translation with a newly allocated physical register mapping. Figure 3.4

illustrates the life cycle of a PRI. A physical register is first allocated and written by

an IQ instruction, and then overwritten by any number of shelf instructions until the
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Figure 3.4: Life-cycle of register alias.

next IQ instruction renames the corresponding logical register and eventually retires

it.

Instructions at the head of the shelf monitor a ready bitvector for their operand

readiness (or may use pipeline interlocks like INO cores). The same method can be

used to stall shelf instructions for WAW dependences. Nothing additional needs to

be done for WAR dependences as the shelf issues in program order. Complications

arise, however, when an IQ instruction waits on a true data dependence from an

instruction on the shelf; the IQ cannot distinguish the potentially multiple writes

to the same physical register by different shelf instructions, which all use the same

PRI. In other words, there is an ambiguity in RAW dependences. Shelf instructions

avoid this problem because they issue in program order. Once an instruction reaches

the head of the shelf, only the last instruction to write a source operand may be

outstanding, so there is no ambiguity. Dependent IQ instructions, on the other hand,

join a dynamic instruction window, so they observe tag broadcast for multiple shelf

writes to the same physical register. The rest of this section describes a mechanism

to uniquely identify shelf writes to the same register for the IQ.

3.2.3.1 Separation of Tag and Physical Register Index.

The problem at hand is that the PRI no longer uniquely identifies one instruction

in the OOO window, as it does in a conventional PRF-based microarchitecture.

Thus, a tag broadcast from one shelf instruction that writes a physical register might

incorrectly wake up IQ instructions that depend on a different shelf instruction. To

solve this problem while allowing shelf instructions to share a physical register, we

must decouple the two traditional roles of the PRI as a destination register and as
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Figure 3.5: Extended tag space and mapping.

a unique identifier; each instruction acquires both a PRI and a unique tag from the

rename stage. Thus an entry in the mapping table (MT) will now map an architectural

register identifier to both a PRI and a tag.

Our implementation expands the tag space in a special way given the life-cycle

of an architectural register. For IQ instructions, we retain the original tag space,

where each tag corresponds to a particular physical register. When an IQ instruction

allocates a new physical register, both its destination PRI and tag are set to that

register’s index. Shelf instructions allocate a new tag from an extended tag space

without allocating a new register, and only change the mapping for the tag. We see

that IQ instructions draw only from the original tag space, while shelf instructions

draw only from the extended tag space. We manage these two portions of the tag

space on separate free lists, one physical free list for the original tag space and one

extension free list for the extension.

At rename, IQ instructions read the current mapping for their source operands,

noting both the PRI and tag. The PRI is used to index into the PRF, and the tag

is used to check readiness and for the wakeup operation. IQ instructions also pick

up the current mapping for their destination registers, so as to retire the identifiers

from the ROB to their respective free lists. The PRI is retired to the physical free

list. If the current PRI and the tag differ, then the tag must be from the tag space

extension and is retired to the extension free list. Finally, IQ instructions allocate a

new PRI from the physical free list and set both tag and PRI mappings to it.

Shelf instructions similarly record all current mappings. At retire, they only return

the tag to the extension free list if it differs from the PRI. Shelf instructions do not

retire the PRI as the register remains in use and no new PRI is allocated. Only a

tag is allocated from the extension free list, and used to broadcast to the IQ. We
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illustrate these operations in more detail in Section 3.2.3.2 once we have described

the steering mechanism.

3.2.3.2 Rename Stage

Figure 3.6 depicts the extended rename stage. Steering is performed during de-

code, prior to rename, as steering decisions depend only on opcode and the archi-

tectural register names of operands and destinations. Depending on whether an

instruction is steered to the shelf or to the IQ, its destination register and tag will

be different. Tags from the extended tag space are offered by the extended free list

(Ext. FL) and register alias table (Ext. RAT), while conventional PRI’s are offered

by their physical counterparts. The steering decision determines which structures are

consulted to allocate a tag.

3.2.4 Memory Accesses and the LSQ

We first describe the ordering of shelf loads and stores under uniprocessor and

relaxed/weak consistency models, which include the ARM v7 memory model used

in our evaluation. Shelf loads and stores issue in program order, and thus follow all

older loads and stores in the address calculation pipeline. As such, shelf loads and

stores do not require their own load or store queue entries; instead, they record the

tail pointers of both structures at dispatch to track their relative order.

Shelf loads associatively scan older IQ stores in the store queue, all of which have

calculated their addresses and values, and younger IQ loads in the load queue, some

of which may have been reordered and issued early to memory. (IQ loads perform the

same operations as they execute). The shelf load receives the value from the youngest

scanned instruction with a matching address. In particular, it must receive a value
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from a younger matching load to avoid a memory ordering violation [47]. Loads with

no matches issue to the cache hierarchy.

Shelf stores scan younger load instructions for matching addresses to perform

store-to-load forwarding, or to squash IQ loads that have speculatively issued early.

We use a “store sets” [12] memory dependence predictor to prevent frequent squashes.

Shelf stores use their store set identifier to release dependent younger loads, just as

IQ stores do. Finally, since uniprocessors and relaxed consistency models support

coalescing store buffers and do not require ordering of stores to different addresses,

shelf stores scan for the next older matching store and immediately coalesce into its

store queue or store buffer entry. It is permissible to skip over older loads in this

case because they will have already received a value from the coalescing buffer and

taken their place in memory order (non-speculatively). Stores that find no match are

released to the cache. We assume memory barriers synchronize the pipeline at the

dispatch stage.

Stricter consistency models, like Total Store Order and Sequential Consistency,

require in-window speculation [18] to enable high performance. Amongst other con-

straints, loads are speculative until all older loads to any address have at least com-

pleted (obtained a value from memory). As a consequence, all shelf instructions,

including non-memory instructions, that follow a speculative load are speculative

and may not writeback/retire until all preceding loads become non-speculative—an

uncertain time interval (e.g., duration of a cache miss). Shelf stores additionally need

to allocate store queue entries, as strong consistency models often do not permit co-

alescing in the store buffer. Evaluating the shelf under these models is beyond the

scope of this paper. We suggest that steering mechanisms could steer those instruc-

tions to the shelf that are predicted to depend on long-latency misses, similarly to

recent latency-tolerant designs [54, 21, 22].

3.3 Related Work

Hily and Seznec [23] show that the performance of an in-order core approaches that

of an out-of-order core as the number of SMT threads increases, and argue that OOO

cores are not cost-effective for SMT designs with many threads (four in their study).

At the two extremes, OOO cores are suited to single-threaded workloads or those with

few SMT threads, while workloads with a high number of threads favor in-order cores

for efficiency. We reason that middle-range designs, which balance single-threaded

performance and throughput, require a new underlying microarchitecture. We borrow
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the name and concept for the shelf from the Metaflow architecture [49], which focused

on the principle of shelving instructions to defer their execution, thereby enabling the

out-of-order execution of other instructions. Ultimately, the Metaflow design was

an OOO core centered on the DRIS structure, a combination of the ROB, IQ and

renaming logic, used for all instructions. Our shelf physically separates in-sequence

(deferred) instructions into a more efficient structure, while reordered instructions

utilize the full capabilities of a modern OOO core.

Khubaib et al. rely on the same observations as Hily and Seznec to propose

MorphCore [29], a design wherein the core can “morph” from an OOO with a low

number of threads (two threads in their work) into an INO core with many (eight)

threads. Whereas MorphCore offers a coarse-grain switching mechanism, our design

enables the selection of OOO versus INO mechanisms on an instruction-by-instruction

basis. MorphCore and our work target different objectives: MorphCore attempts

to capture two workloads that do not often coincide, single-threaded and highly

threaded, on one core; whereas, our design highlights an area where neither INO nor

OOO cores are an efficient design point. Similar works provide a set of configurable

cores by morphing, fusing or composing standalone cores [30, 25].

Viewed from another angle, our design attempts to approach the performance

of a larger OOO instruction window through the use of in-order hardware. [52,

59] relieve the IQ by redirecting ready-before-dispatch instructions through energy-

efficient functional units. Tseng and Patt [55] utilize compiler techniques to achieve a

high performing schedule on in-order hardware, which approaches the single-threaded

performance of OOO hardware. These designs, however, do not alleviate pressure on

the ROB, LSQ and PRF. McFarlin, Tucker and Zilles [41] advocate similar designs by

showing that OOO performance can be mostly achieved with static schedules, given

the speculation support needed to permit those schedules. One such design is the

in-order Continual Flow Pipeline (iCFP) [21], which targets long-latency operations

like cache misses that block in-order cores. Miss-dependent instructions drain into a

slice buffer, including any “side” inputs, to allow independent younger instructions

to execute out-of-order. Drained instructions are re-executed from the slice buffer

once the miss returns. In contrast, we steer instructions to OOO/INO up front (one-

time execution). To enable correct out-of-order execution on iCFP, speculation is

handled via checkpointing, which may be undesirable for SMT where the aggregate

architectural state of all threads is much larger. Several other latency-tolerant designs

[22, 54, 10] similarly rely on potentially expensive checkpoints; none of these designs

leverage in-order hardware.
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The shelf effectively reduces instruction occupancy in OOO structures. Several re-

lated works target similar goals without leveraging in-sequence instructions. Whereas

there are many ways to reduce pressure on OOO structures, we note here those mech-

anisms most closely relate to our contributions. Elmoursy and Albonesi [14] reduce

pressure on the IQ via predictive SMT fetch policies. Gonzalez et al. [19] reduce pres-

sure on the PRF by decoupling tags (virtual registers) from PRIs (physical registers).

Some works leverage checkpointing to release OOO resources early [40, 13]. Adaptive

cores additionally provide the ability to disable unused structure entries [1, 48, 8].

Clustered microarchitectures divide the monolithic IQ structure across functional

unit clusters to improve cycle time and scalability. Palacharla, Jouppi and Smith

[45] advocate using FIFO queues in this manner to reduce complexity. Prior work

focuses on steering instructions to clusters so as to minimize inter-cluster forwarding

penalties and for load balancing [51, 3, 4]. Similar to our practical steering algorithm,

these designs make use of dependence chain information for steering. While we do

not cluster our execution units in this thesis, it is a possible dimension for the shelf

and the IQ to belong to different clusters.

Several works examine heterogeneous cores [35] and datapaths [39]. These works

fix a set of heterogeneous hardware resources, e.g., an OOO and an INO core, and at-

tempt to schedule threads among them. Note that threads do not simultaneously use

two heterogeneous components, but rather switch from one to the other. Numerous

works propose scheduling schemes that target specific ILP/MLP regions [58], serial-

izing bottlenecks in parallel code [27], and other indicators [34]. A number of these

works advocate fine-grained switching at hundred- or thousand-instruction granular-

ity [44, 39] but still fall short of interleaving in-sequence and reordered instructions

in the same window. Our shelf and IQ datapaths can be seen as statically provi-

sioned heterogeneous backends, however, a single-thread context is able to utilize

both simultaneously, which is a central contribution of our microarchitecture.
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CHAPTER IV

Steering

With our hybrid microarchitecture in place, a steering mechanism is required to

decide for each instruction whether it utilizes energy-intensive out-of-order hardware

for increased performance, or energy-efficient in-order hardware. In this chapter we

discuss ideal and practical steering mechanisms, and propose a predictive approach

that can react to unexpected changes in the instruction schedule using simple hardware

tables.

4.1 Overview

Instruction steering determines whether an instruction is dispatched to the IQ or

the shelf, which directly affects the instruction schedule. Whereas the microarchi-

tecture ensures correct execution under any steering policy, poor steering can result

in poor performance. If we steer all instructions to the IQ, then the shelf provides

no window size benefit. Conversely, if all instructions are steered to the shelf, the

resulting performance will match that of an in-order core.

We base our discussion of steering mechanisms on a tractable, idealized steering

algorithm. This allows us to define which decisions constitute a steering error by

analyzing the instruction schedule after the fact. We then define a practical steering

mechanism based on simple hardware components, which we show to achieve most

of the benefit of the ideal algorithm, giving up only 1.1% of performance. Our

evaluations examine steering errors and individual benchmark variations.

4.2 Ideal Steering

To guage the effectiveness of our practical instruction steering mechanism, we

contrast it with the performance achieved by an ideal steering mechanism. Unfor-
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Figure 4.1: Issue stage dependences depending on steering.

tunately, a perfect steering mechanism, which steers optimally for maximum perfor-

mance, is a global optimization requiring complete knowledge of the whole-program

critical path. Although mechanisms to predict instruction criticality have been pro-

posed [17, 51], steering compounds the optimization problem: it adds/removes false

dependence edges, which changes the very shape of the graph. Hence, even in the

context of an offline oracle, perfect steering is intractable.

Instead, we contrast our practical steering against an ideal, local steering algo-

rithm, which steers each instruction according to whether it would issue earlier from

the IQ or the shelf (breaking ties in favor of the shelf). While this determination is

made greedily without regard to future (younger) instructions, the greedy ideal steer-

ing algorithm requires precise knowledge of the future schedule. Such a mechanism

cannot be implemented in practice, since these future arrival times are not always

known at dispatch. However, in simulation, we can closely approximate this future

schedule using complete knowledge of instruction latencies, dependences, and mem-

ory addresses. For memory operations, we functionally query the cache (atomically,

instantly and not modifying state) to accurately predict memory latencies.

To formalize our ideal steering algorithm, we compare the dependence edges ar-

riving at the issue nodes of IQ and shelf instructions in Figure 4.1. Both types of

instructions have the same true dependences (
−→
TD), but have different edges from the

dispatch stage. Shelf instructions have shelf dispatch edges (
−→
SH), while IQ instruc-

tions have IQ dispatch edges (
−→
IQ). These edges carry dispatch stall cycles when their

respective backend structures become full. Shelf instructions additionally have false

dependences (
−−→
FD) arriving at the issue stage (see Section 2.3).

When an instruction is steered, for example, to the IQ, it does not stall on edges

seen only by shelf instructions. However, given the state of the pipeline, we can

measure whether these shelf-only edges would have arrived. At dispatch, an IQ

instruction can query whether the shelf was full. Once its true dependences arrive, it
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can query whether there are any remaining false dependences, which it need not stall

for. Shelf-only instructions can similarly do this for IQ-only dependences.

Shelf issue cycle︷ ︸︸ ︷
max

(
T−−→
TD
, T−−→

FD
, T−→

SH

)
≤

IQ issue cycle︷ ︸︸ ︷
max

(
T−−→
TD
, T−→

IQ

)
↔ max

(
�
��T−−→
TD
, T−−→

FD
, T−→

SH

)
≤ max

(
T−−→
TD
, T−→

IQ

)
↔ max

(
T−−→
FD
, T−→

SH

)
≤ max

(
T−−→
TD
, T−→

IQ

)
Ideal Greedy Condition (4.1)

Since all relevant dependences arrive at the issue stage, we can easily compare

whether an instruction would issue earlier from the shelf or the IQ, as in Equation 4.1.

Notice that this determination is made with no regard to future instructions. In the

case of a tie, it is always better to steer to the shelf, the only consideration made

once an instruction has determined that it does not stall itself. Equation 4.1 frames

these ideas in the Ideal Greedy Condition (IGC), where T−→
X

is the arrival time of

dependence edge
−→
X . The left-hand side of the IGC corresponds to the expected issue

cycle with the instruction steered to the Shelf, while the right-hand side corresponds

to the issue cycle if the instruction is steered to the IQ. If the condition is true, our

ideal steering algorithm steers to the shelf, otherwise it steers to the IQ.

Based on the IGC, we can now clearly define what steering decisions constitute

an error. These are categorized in Figure 4.2. It is clear that we have an incorrect

steering decision if it does not follow the IGC. In the case that the steering decision

does match the IGC, we consider the following additional source of error in practical

steering designs. A steering mechanism may prevent an instruction from dispatching

for a number of cycles as it attempts to steer to a blocked side of the core. While

this instruction stalls at dispatch, the steering mechanism may be able to obtain

new information causing it to reverse its decision to a correct one. The blocked

instruction proceeds to the correct structure so as to issue as early as possible (e.g.

true dependences arrive later than the time spent blocking). The instruction appears

to have been steered correctly, but in fact we consider this an error, which introduced

unnecessary dispatch stalls for other instructions. Thus, a steering decision is correct

if it matches the IGC condition, and allows the instruction to dispatch to the chosen

side with no unnecessary delay.

Note that, because of the complexity of the gem5 simulation model, even with

some oracle knowledge, we still steer an average of 4% of instructions incorrectly.

Though it is highly detailed, our prediction of the future schedule does not account
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Figure 4.2: Errors under Ideal Greedy Steering.

for all corner cases that arise in the simulation. So, our algorithm additionally tracks

the actual execution schedule as the simulation progresses to correct its representation

of the schedule and recover from mispredictions.

4.3 Practical Steering

At the heart of steering lies (1) the ability to predict the future execution schedule,

and (2) the ability to recover from schedule mispredictions. We describe a practi-

cal hardware solution to project instruction completion times and track dependence

chains, and show how these mechanisms can be used for steering and misprediction

recovery, with reference to Figure 4.3.

4.3.1 Schedule Prediction

For each architectural register, we maintain a prediction of its future writeback/ready

cycle in a Ready Cycle Table (RCT). RCT entries are decremented each cycle to count

down how many cycles are left until the register is predicted to be ready.

If we dispatch an instruction to the IQ, we can predict its issue cycle as the

maximum ready cycle of its source operands, and its completion cycle as the issue cycle

plus the instruction’s predicted latency. Instruction latencies are usually available

from decode. The prediction ignores structural hazards, such as issue width, and

predicts all loads to be L1 hits; the resulting schedule errors are handled via the

recovery mechanism.

If we dispatch an instruction to the shelf, it will issue after all previously dis-

patched instructions even if its operands are ready, since the shelf issues in program

order. Hence, for the shelf, we maintain an earliest-allowable issue cycle, which is

the maximum issue cycle of all previous instructions. Shelf instructions also must
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Figure 4.3: Practical steering.

stall at writeback while any preceding instruction is speculative. So, we also track

an earliest-allowable writeback cycle, which is the maxmum speculation resolution

cycle for any previous instruction. We can then predict that, if dispatched to the

shelf, an instruction will issue at the maximum of its operands’ RCT entries and the

earliest-allowable issue cycle. Its completion cycle is predicted as the maximum of its

predicted issue cycle plus the instruction latency and the earliest-allowable writeback

cycle.

With these estimates, we can then steer an instruction by comparing its predicted

completion cycle for the shelf and IQ, choosing the earlier of the two and breaking

ties in favor of the shelf. Our design exploration shows that it is sufficient to track a

range of 32 cycles using 5-bit counters per register.

4.3.2 Schedule Recovery

Our schedule prediction mechanism is approximate; most importantly, it assumes

all loads are hits. As schedule errors accumulate, steering accuracy will worsen and

performance will suffer. So, we correct schedule misprediction errors by observing the

actual execution schedule and using the observed instruction completions to correct

predictions for their dependent instructions.

Once a register’s RCT counter decrements to zero, the register is predicted to

be ready. However, if the instruction took longer than expected (e.g., an L1 miss),

the register will not be marked ready in the issue dependency checking logic. In

this circumstance, the predicted schedule for all the instruction’s dependents is also

incorrect. We correct these errors by freezing the decrement of the RCT entry for the

destinations of all these dependents. We thereby push back the predicted completion

time of the entire dependency tree by one cycle each cycle until the mispredicted

instruction ultimately completes.
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Maintaining RCT counters as we have just described requires tracking the depen-

dency information among all instructions, which is expensive. Interestingly, we find

that tracking the dependents of only a small sample of instructions is sufficient to cor-

rect the schedule; a schedule misprediction for an untracked instruction will rapidly be

detected when one if its dependents is sampled. Since most schedule mispredictions

are for loads that miss in L1, we track dependents for a sample of loads.

We use a simple bit matrix, the Parent Loads Table (PLT), to track the rela-

tionship between sampled loads and their dependents. As loads are steered, each is

assigned a column of bits in the PLT, if one is available. Rows in the table correspond

to architectural registers; a bit is set if the architectural register depends directly or

indirectly on the load. When a load is steered, it sets the bit for its assigned column

and destination register row. As further instructions are decoded, they set the row for

their destination to the superset of their operands’ parent loads (i.e., the bitwise OR

of the operands’ rows). When loads complete, they reset the bits in their assigned

column, freeing the column for reuse. We find it is sufficient to track 4 loads per

thread.

If any register’s ready cycle reaches zero while its parent loads’ bitvector is non-

zero, we simply stall the decrement operation for all other registers which share

those parents. The register’s bitvector is loaded into a special row, the stalled loads

bitvector, as shown in Figure 4.3, which is compared to all rows. Any row with a

matching bit (i.e., it is directly or indirectly dependent on a stalled load) has its RCT

counter stalled.

4.4 Alternative Steering Mechanisms

Our practical mechanism is both a predictive and reactive approach to instruction

steering. We favored this approach due to the fine-grained interleaving of in-sequence

and reordered instructions, as well as the highly non-deterministic schedules intro-

duced by SMT. We discuss alternative approaches below but choose not to pursue

them further as they provide a poor fit to our criteria.

• Making steering decisions statically without feedback at run-time. The steering

mechanism can annotate instructions in the I-cache with some history informa-

tion to guide the next decision. This static approach is geared towards machines

where instructions are pre-scheduled by the compiler or the front end, as op-

posed to the dynamically changing issue schedules introduced by SMT.
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• Targeting important scheduling events, like long-latency memory misses, simi-

larly to latency-tolerant designs [21, 22, 54, 10]. While this approach benefits

from leveraging existing techniques which have been demonstrated in the liter-

ature, events such as long-latency misses are relatively coarse-grained and do

not lend themselves to the fine-grained, instruction-by-instruction capability of

our microarchitecture.

• A history-based approach, based on the notion that OOO schedules tend to

repeat [41]. This method could use design principles from branch predictors to

learn and store information from past instruction schedules. As with the static

approach, this method is complicated by the dynamic SMT issue schedules,

requiring that the history information account for potential deviations from the

previous schedule.

Steering can additionally interact with SMT fetch and issue policies. Just as SMT

can make decisions on the thread-level, steering can prioritize one thread over another

at different intervals. High-priority threads can be selected for a number of reasons,

including fairness, performance or criticality. In our evalutaion, steering as well as

SMT fetch and issue treat all threads equally. It is beyond the scope of this thesis to

explore the interaction of steering with asymmetric SMT policies.
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CHAPTER V

Evaluation of Hybrid Core

We evaluate the shelf under both practical and idealized mechanisms and demon-

strate that it can nearly double the instruction window while respectively offering 8.3%

and 12.5% improvement in energy-delay product over the best-sized out-of-order base-

line.

5.1 Methodology

We model our design in gem5 [7] and run the SPEC CPU2006 benchmark suite

with the ARM v7 ISA using system call emulation. We have excluded only dealII of

the 29 SPEC benchmarks as it is not functional in our simulation infrastructure. For

N-thread SMT workloads, we generate 28 benchmark mixes consisting of N different

SPEC benchmarks, such that each benchmark appears in N different workloads. Using

the reference input set, we fast forward all threads for 4 billion instructions, before

warming up microarchitectural structures for 200 million instructions, and then report

on the next run of 200 million instructions (per thread) in detailed simulation.

Table 5.1 details our configuration. We assume a 2 GHz clock for all configura-

tions to focus on the microarchitectural effects of our technique. Unless otherwise

stated, our evaluation focuses on a 4-thread SMT configuration using the ICOUNT

fetch policy [56]. The ROB, load queue (LQ) and store queue (SQ) structures are

partitioned across threads, based on [33], as are the front-end pipeline buffers and the

shelf to prevent stalled threads from blocking others. We represent a core size with

the number of ROB entries, swept in powers of 2 from 32 to 256 entries. The other

OOO structures, including the IQ, LQ and SQ are proportionally scaled at half the

ROB size (16 to 128). The shelf, when present, has the same number of entries as

the ROB. We primarily contrast a system with an N-entry ROB and shelf against a

conventional OOO core with 2N ROB entries.
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Component Configuration

Core 4-thread SMT OOO @ 2.0 GHz
4-wide OOO with 8-wide fetch
6 cycles fetch-to-dispatch

ROB Variable (32, 64, 128, 256)
IQ, LQ, SQ Half of ROB
Shelf Same as ROB
L1I 32KB, 2-way, 1-cycle
L1D 32KB, 2-way, 2-cycle
L2 2MB, 8-way, 32-cycle
Memory 100ns latency

Table 5.1: System Configuration

For power and energy analysis, we use the McPAT framework [36] to model the

power breakdown of a physical register-based OOO design, incorporating changes

from [37]. We modify McPAT to incorporate the shelf, by modeling this new structure

with the same components as the ROB. Steering hardware is assumed to consist of

a RAT-sized structure in the front end. We report on the power consumption of the

core including L1 caches.

5.2 Impact of the Shelf

The shelf extends the instruction window for in-sequence instructions, improving

performance. At some point, however, additional shelf entries no longer provide the

benefits of a larger instruction window, as additional instructions steered to the shelf

begin to stall on false dependences. For additional benefit, an increase in baseline

OOO hardware resources is required to expose additional ILP. Thus, the shelf provides

some size increase or size-up for every baseline OOO to which it is added. We expect

the effectiveness of the shelf to vary with the fraction of in-sequence instructions seen

at a particular target window size and number of SMT threads.

We sample this cross-product of design points in Figure 5.1. Single-threaded

and 4-thread core configurations are shown in Figures 5.1a and 5.1b respectively.

We report performance (left), energy-efficiency (middle), and energy-delay product

(right) for each configuration. The shelf is evaluated here with idealized steering

(ideal) for both the conservative issue stage mechanisms (cons.) as well as aggressive

ones (aggr.) with no cycle penalty. The conservative mechanisms are discussed in
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Figure 5.1: Comparison of doubling OOO structures against adding a shelf.
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Figure 5.2: Potential stall cycles due to conservative mechanisms.
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Section 3.2.1.1 and Section 3.2.2.1. We also evaluate our practical steering mechanism

with conservative hardware (pract. cons.).

Size-up. We find the shelf is more effective for 4-thread cores than single-threaded

cores, as predicted by the trend in Figure 2.5. For 4-thread cores, the shelf approx-

imates the performance of doubling the OOO instruction window, but begins to fall

short as the baseline size increases. This falloff happens for two reasons: (1) the

fraction of in-sequence instructions falls with increases in OOO resources, and (2) ex-

tending the OOO window itself yields diminishing returns, given the same functional

unit pool.

Energy-Efficiency. The shelf roughly maintains the energy-efficiency of the

baseline OOO it augments—the power overhead of the shelf is roughly offset by its

performance improvement.

Energy-Delay Product. We quantify the distance between designs in terms of

energy-delay product, and focus the rest of our evaluation on the best two points:

the baseline OOO with 128 ROB entries, and our design with 64-entry ROB and

shelf. Overall, the conservative shelf design reduces the energy-delay product by

9.4% (lower is better), averaged across all workloads (geometric mean), over the best

baseline OOO size. The aggressive design reduces the energy-delay product by a

further 3.1%.

5.3 Impact of Conservative Mechanisms.

We quantify the effect of each conservative hardware configuration. Figure 5.2

shows the issue slots wasted by conservative mechanisms for single-threaded and 4-

thread cores. For every core size, a box plot depicts the distribution across workloads.

On the left, we show the slots wasted due to shelf instructions not being allowed to

issue in the same cycle as an older IQ instruction (issue-tracking bitvector update is

on the critical path). For both single-threaded and 4-thread cores, this never exceeds

one slot per 100 instructions. On the right, we show the slots wasted due to shelf

instructions stalling for the speculation of younger IQ instructions (only two SSRs as

opposed to per-run or infinite SSRs). While 4-thread cores still never exceed one slot

per 100 instructions, there are a handful of single-threaded outlier benchmarks which

go as high as 5 slots per 100 instructions. This suggests the need for more SSRs for

single-threaded benchmarks; nevertheless, the potential for speedup is bounded by

the aggressive design.
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5.4 Impact of Practical Steering

We find that our algorithm provides adequate steering with 5-bit RCT entries and

a 4-load PLT. We have modeled these structures in McPAT with a RAT-sized table.

In the 4-thread cores, our practical steering algorithm comes close to achieving

the performance of ideal steering. It only loses 1.1% in energy-delay product, which

leaves an 8.3% advantage relative to the best baseline core. Recall that ideal steering

with conservative hardware achieved a 9.4% energy-delay improvement. Thus, most

of the opportunity to improve the shelf design comes from mitigating the conservative

mechanisms of the backend (an additional 3.1%, see Section 5.2), and not from

steering.

5.5 Individual Benchmarks

On the other hand, single-threaded benchmarks suffer under practical steering.

We examine individual benchmarks in Figures 5.3 and 5.4 to uncover variability in

the shelf’s behavior. We find that a handful of single-threaded benchmarks are par-

ticularly detrimental to our practical shelf design when comparing with the idealistic

shelf. These include bwaves, GemsFDTD, lbm, leslie3d and sphinx3. These bench-

marks suffer from a relatively large fraction of instructions steered to the shelf erro-

neously. On the other hand, 4-thread benchmarks give rise to relatively stable shelf

performance characteristics, as errors in one thread are compensated by parallelism

from the others.

5.6 Steering Errors

We finally focus on the steering breakdown of practical steering mechanism relative

to that of the ideal greedy steering algorithm. We run the ideal algorithm alongside

our practical mechanism (which drives the schedule) in simulation, and record both

steering decisions. For every shelf or IQ steer of the ideal algorithm, we characterize

our practical mechanism’s decisions as hits or misses in Figure 5.5. Although 16%

of instructions are steered “incorrectly”, we find that the performance impact is

relatively small.
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5.7 Summary

Whereas OOO execution can improve performance for moderately threaded SMT

designs, the resulting hardware utilization is inefficient, as many instructions are

scheduled in-sequence. We have described a new microarchitecture that augments an

OOO core with an energy-efficient in-order scheduling mechanism, the shelf, which

allows in-sequence instructions to interleave correctly at fine granularity with re-

ordered instructions. This microarchitecture achieves 8.3% improvement in energy-

delay product, extending the performance-energy pareto frontier beyond baseline

OOO core designs.
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Figure 5.3: In-sequence instructions in Base(128).
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CHAPTER VI

Embedded Way Prediction for Last-Level Caches

This chapter investigates Embedded Way Prediction for large last-level caches

(LLCs): an architecture and circuit design to provide the latency of parallel tag-

data access at substantial energy savings. Existing way prediction approaches for

L1 caches are compromised by the high associativity and filtered temporal locality

of LLCs. We demonstrate: (1) the need for wide partial tag comparison, which

we implement with a dynamic CAM alongside the data sub-array wordline decode,

and (2) the inhibit bit, an architectural innovation to provide accurate predictions

when the partial tag comparison is inconclusive. We present circuit critical-path and

architectural power/performance studies demonstrating speedups of up to 15.4% (6.6%

average) for scientific and server applications, matching the performance of parallel

tag-data access while reducing energy overhead by 40%.

6.1 Background

Types of cache access. Latency-sensitive L1 caches typically adopt a parallel

access scheme, shown in Figure 6.1 (left), wherein all ways of both the tag and

data array are read concurrently, thus minimizing latency at the expense of energy

efficiency. Conversely, L2 or LLC designs typically perform tag accesses first, followed

by an access to the correct data way, as depicted in the sequential access scheme in

Figure 6.1 (center). Sequential access saves the energy of accessing irrelevant data

ways in larger, higher associativity caches, at the cost of latency. Way prediction,

illustrated in Figure 1 (right), attempts to offer the best of both, by only accessing a

subset of data ways in parallel with the tags.

We highlight two special cases of way prediction. The first is way filtering, where

the cache access is nominally parallel, but data ways that are known not to con-

tain the requested block are filtered out. Way filtering never incurs a performance
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overhead relative to parallel access, but may consume as much energy if filtering is

not successful. The second is single-way prediction, where at most one data way is

activated in parallel with the tags. We focus on this flavor of way prediction, as it

assures that at most two data ways will be activated per cache access, bounding LLC

access energy. In the common case that the prediction is correct, single-way predic-

tion offers the low latency of parallel access at the low energy of sequential access.

On a misprediction, the tag comparison triggers a second, sequential data access.

Partial tag matching. Although predicting the most-recently-used (MRU) way

at the L1 is known to be 85-95% accurate [9], we find it is typically only 30-60% ac-

curate at the LLC and sometimes little better than a random guess for multithreaded

scientific and server workloads (see Section 6.5.3). Instead, to quickly and efficiently

rule out ways that cannot contain the requested cache block, we advocate comparing

the low-order bits of each stored tag to the incoming address, an idea known as partial

tag matching. In the context of parallel caches, partial tag matching can implement

way filtering by inhibiting access to ways that mismatch. Prior designs using partial

tag matching in this manner have targeted L1 caches, as parallel access is not typi-

cally used in LLCs. The key challenge in such designs is engineering the partial tag

match so that it has minimal impact on the data array critical path while saving as

much energy as possible.

6.2 Related work

Our work builds on a long history of literature on way prediction, way filtering,

and partial tag comparison; the earliest work in this area dates back over 20 years [28].

Broadly, our objective is to revisit these concepts in the context of modern servers

43



because of their growing sensitivity to LLC access times. Our design accelerates LLC

tile accesses in the common case of an accurate way prediction.

Way prediction was initially proposed as a performance enhancement to prear-

range multiplexor paths at the output of cache data arrays to select the MRU way

before the tag comparison is complete [38]. Subsequent work suggested using sources

besides the replacement order, such as register or instruction addresses, to predict

which way to access first in sequential associative caches (which access cache ways in

consecutive cycles) [9]. Later work focused instead on saving energy by accessing a

single predicted way in parallel caches [24, 50], predicting wake-up for Drowsy cache

cells [31], or selective sub-array precharging [62]. In all of these designs, a key con-

straint is that the prediction must be made before the cache address is available, a

constraint relaxed in LLCs.

Partial tag matching was first suggested by Kessler and co-authors to reduce

the number of tags scanned sequentially in early set-associative caches, where tag

comparators were expensive [28]. Over the past two decades, partial tag matching

has been suggested in various forms as a means to reduce tag comparison energy

in sequential caches, most recently using a partial tag bloom filter [46]. Min and

co-authors use a partial tag match to gate sense amplification and bit line muxing

[42]. Zhang and co-authors conserve nearly all of the data array access energy by

performing the partial tag match in parallel with wordline decode, then gating word-

line activation [63]. We pursue the same approach. However, whereas their study

targets a small (8KB), low-associativity (4-way) L1, we target a comparatively mas-

sive (2MB) highly-associative (16-way) LLC tile in a multicore server, leading to a

markedly different solution.

6.3 Architectural Design

We propose Embedded Way Prediction in the context of a server-class chip-multiprocessor

with a highly-associative large tiled last-level cache similar to designs from Tilera [5].

We consider both private and shared cache organizations. Similar to [63], we per-

form partial tag matching by embedding a CAM alongside the wordline decoders of

the data SRAM sub-arrays. However, we find server workloads require a far wider

partial tag comparison of 6-8 bits (see Section 6.5.3), which necessitates a dynamic

CAM circuit to avoid timing impact. Furthermore, we target single-way prediction

as opposed to way-filtering to limit energy per access.
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6.3.1 Addressing Partial Tag Collisions

Because the partial tags are narrower than full tags, it is possible for the partial

tags to match in several ways. These partial tag collisions lead to ambiguity as

to which one among the matching ways should be predicted. To avoid the energy

overhead of multiple way accesses (only one of which can be correct), we instead

include an inhibit bit in each CAM entry that, when set, prevents that entry from

reporting a match. We orchestrate the inhibit bits such that they are set for all but

one colliding partial tag, and also use them to disable matches for invalidated lines.

A variety of policies might be used to choose which among a set of colliding

tags should remain enabled. In our design, we use our LRU replacement policy as

our guide, and clear the inhibit bit for the MRU tag within each collision set. We

explore the impact of this scheme on prediction accuracy in Section 6.5.3. Inhibit

bits could also be used for more complex schemes (e.g., using information from more

sophisticated replacement policies [26] or confidence counters) or to provide software

control over the use of embedded way prediction (e.g., to activate it only for blocks

allocated by a particular core/thread). We note that embedded way prediction has

no effect on the cache replacement algorithm or coherence protocol.

6.3.2 Maintaining Inhibit Bits

To ensure that only the MRU block within each collision set can trigger a parallel

lookup, we maintain the following invariant: each time a cache block within a set is

accessed or newly allocated (when a miss is filled), its inhibit bit is cleared, while the

inhibit bits for any other block matching the same partial tag are set. Given this, at

most two inhibit bits can change per cache access.

To avoid the need for a read port on the CAMs, the tag array stores a copy

of the inhibit bit for each way (1 bit of overhead for every 32-bit tag). Rather than

calculate and update inhibit bit state within the embedded way predictors at the data

array, we instead rely on the tag array to maintain their state, sending updates to the

CAMs when needed. We reuse the low order bits of the tag array’s tag comparator to

identify matching partial tags. With the information stored in the inhibit copies, we

can identify which way was predicted within the data arrays. We can also identify if

the prediction was correct, by checking it against the full tag comparison. At the tag

array we then set the inhibit bit for all matching partial tags, except that we clear

the inhibit bit for the hit way (if the access was a hit). The new inhibit bit state is
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driven to the data arrays along with the way select signal, and modified inhibit bits

are written into the appropriate CAM entry.

On a misprediction, the (sequential) access to the correct way within the data

arrays must override the partial tag comparison to ensure the word line is activated.

Rather than add an override input to the CAM/decoder circuits, which would impact

the critical path of one (or both), we solve this problem architecturally, by driving

the partial tag comparison and inhibit match lines with the (known) content of the

CAM. We make use of the fact that the inhibit bit already takes part in the CAM

comparison: during a way prediction we clear the comparison lines to inhibit bits so

that cleared inhibit bits can match. Now, during the sequential access, the comparison

line is set for the hit way to force a match, while the rest of the ways are disabled by

setting their inhibit bits to the opposite of their known values.

Finally we address cache replacements and invalidations that target the MRU

matching partial tag. Depending on the LRU implementation, these events make

identifying the next-most-recently-used matching partial tag ambiguous (for example,

an approximate LRU implementation). In these scenarios, we clear the inhibit bit of

an arbitrary other matching partial tag. We see in Section 6.5.3 that the potential

impact of a wrong choice in this situation is low.

6.3.3 LLC Tile Organization

Each LLC tile in our design is 2MB, 16-way set associative, and divided into 4

independently operating banks. Within a bank, tag and data pipelines are separately

scheduled, to facilitate coherence traffic that often requires only tags. Each 512KB

bank contains 512 sets of 16 ways each with 64B blocks. Within a bank, the tag and

data arrays are further sub-divided into sub-arrays to optimize the latency-area-power

trade-off. We assume a physical layout like that modeled by CACTI [43], where tag

and data sub-arrays are grouped into mats : two-by-two squares of sub-arrays that

share a common predecoder. The mats are interconnected via intra-bank H-trees,

which in turn connect to the bank-level routing. As these interconnect busses are

long and wide, they account for the majority of cache dynamic power (and, to a

lesser degree, latency) for sequential accesses.

We organize ways across mats such that each 32KB way occupies two 256x523

bit sub-arrays (512 data + 11 ECC) from the same mat. Our data arrays rely on

ECC rather than bit interleaving to provide tolerance against soft error. Otherwise,

bit interleaving would complicate partial tag matching because several data words

(with different tags) share a single wordline. Hence, the way predictor would have
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to activate the wordline if any of the corresponding tags matched, requiring an OR

function in addition to several CAM comparisons (one per interleaved word).

An arriving read that finds the data pipeline unscheduled forwards its partial

tag and set index to all data mats/ways to initiate a way prediction. This in turn

activates the CAMs and decoders for all data ways, which proceed to read out at most

one uninhibited block with a matching partial tag. In the meantime, the result from

the full tag comparison is used to confirm the prediction. On a misprediction, the

correct data way is then activated, thus incurring an extra data way access relative

to a sequential cache.

6.4 Circuit design

We study the effect of partial tag width on LLC way prediction accuracy in Sec-

tion 6.5.3, and determine the need for 6-8 bits to achieve an accuracy over 90%. The

crucial question then is to determine whether such a wide partial tag comparison can

be hidden within the wordline decoder delay and to determine the energy require-

ments of the CAMs themeselves. In this section, we perform a critical path analysis

of the partial tag comparison and wordline decoder circuits. We first describe the

physical layout of our LLC bank, and finally provide energy estimates for parallel,

sequential, and way-predicted cache accesses.

6.4.1 Data Mat Organization

Figure 6.2 shows the internal layout of a single data mat, including the additions

required to support embedded way prediction. In a conventional sequential access,

the tag arrays indicate which data way to access, and one of the sub-arrays within

a single mat returns the data. The 9 index bits, along with an enable signal, arrive

via the intra-bank H-tree at the predecoder, which comprises four 2-4 decoders, one

of which is gated by the enable, a NAND combining stage which creates a one-hot

encoding of the combined outputs of a 2-4 decoder pair, and drivers to transmit the

predecoded index to the sub-arrays. A final NAND stage combines the predecode

signals into wordlines, which are driven across the sub-arrays.

To support embedded way prediction, each data sub-array within the mat is

augmented with a 256-entry CAM. Because a CAM cell requires two horizontal

routing tracks, while modern SRAM cells have only one, we place two separately-

driven 128-entry CAM arrays (top CAM and bottom CAM) side-by-side, with each

CAM row spanning two SRAM rows. Note that the match line of one CAM must route
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Figure 6.2: Organization of a single data ”mat”.

over the other, requiring resources on an additional metal layer. When predicting,

all 4 CAMs (in each of the 16 ways) operate in parallel with the mat predecoder and

sub-array wordline decoders.

The need for wider comparison forces us to use a dynamic CAM circuit [32], rather

than using the transmission-gate XOR-NOR comparator proposed in [63]. The 10T

CAM cell performs the (mis)match operation by pulling down a precharged matchline

through an NMOS stack. Indeed, Zhang et al. considered a dynamic CAM and

rejected it because their static logic design is more energy efficient for small sub-

arrays; we reach the opposite conclusion for LLCs.

6.4.2 Critical path analysis

Our objective is to establish the limit on the number of partial tag bits that can be

compared within the timing constraint of the wordline decoder circuit for our chosen

configuration. We optimize the critical paths of the decoder and CAM circuits using

the method of logical effort, and investigate their timing using Cadence Virtuoso

Spectre targeting an industrial 65nm process. For our target technology, the SRAM

bit cell is 1.05µm by 0.46µm, and the CAM cell is 1.05µm by 0.92µm. We stop short

of analyzing a complete mat layout, as this would need to consider additional factors
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Figure 6.3: Critical path analysis.

beyond the scope of this study, including component-level energy trade-offs, reliability

under process variations, and peripheral logic unrelated to embedded way prediction.

We begin our analysis with the assumption that the mat input signals arrive

simultaneously. From there, the decoder and CAM circuits follow different critical

paths before converging at the wordline driver stack, as depicted in Figure 6.3a.

Optimizing decoder critical paths is discussed extensively in [2]. We only note here

that the critical path of a decoder is complicated by the intermediate wire load of the

predecode lines. We simplify the optimization process by following a heuristic adhered

to in CACTI and suggested in [2], namely, to set the NANDs after the predecode lines

to minimum size, thereby improving the energy-delay characteristic of the decoder.

The resulting critical path of our decoder, illustrated in Figure 6.3a (bottom) yields

a decode time of 207ps for our 65nm process.

On the other hand, our CAM operates by broadcasting each bit to be compared
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Sequential
Way-Predict

Parallel
Corr. Mispr.

Routing 0.8594 0.8594 0.8594 0.8594
H-Tree 0.5470 0.5470 0.5470 0.5470
Decoder 0.0003 0.0045 0.0047 0.0045
Subarrays 0.1016 0.1016 0.2033 0.8130
Tags 0.0119 0.0119 0.0119 0.0119
CAM - 0.2051 0.2051 -

Total 1.5203 1.7295 1.8315 2.2359

Table 6.1: Per-Access Dynamic Energy in nJ.

(along with its inverse) to all rows. Since the highly regular CAM cells are constrained

by stringent sizing and layout considerations, rearranging logic within the CAM cell

is not possible. At best, the comparison line driver can be optimized to reduce the

delay on the comparison line. Thus, as we increase the number of partial tag bits in

the CAM, the load on the NMOS stack (which cannot be sized to compensate) also

increases, while each comparison line driver continues to drive the same load.

Therefore, we see the delay of the CAM circuit degrade in Figure 6.3b with

increasing number of partial tag bits (CAMs also include one extra inhibit bit cell).

Our results show that a CAM of width 5 + 1 can be designed within the timing

constraint of the decoder. However, even for slightly wider CAM widths, which are

desirable for the embedded way prediction architecture, the CAM delay does not

exceed that of the decoder by more than 20ps. For a CAM including 7 partial tag

bits, needed for accurate way prediction at the LLC (Section 6.5.3), such an overhead

is negligible compared to the overall cache access time (several nanoseconds).

6.4.3 Energy per Cache Access

Finally, we estimate the energy per access of sequential, parallel, and way-predicted

(correct and mispredict) accesses, using estimates obtained from CACTI 6.5 and our

characterization of the embedded CAM circuit using Spectre. We resort to CACTI,

rather than using the estimates available from an SRAM compiler, because CACTI

provides a detailed energy breakdown across components of the cache bank, while the

available SRAM compiler provides only a black-box total. We require the breakdown

to accurately assess the overheads of embedded way prediction.

We configure CACTI 6.5 to target the 65nm ITRS-LOP process and constrain

CACTI’s search to generate a 2MB 4-bank cache with a physical layout conforming
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Component Configuration

Cores 16 OoO Cores @ 4.0 GHz
8-stage pipeline; 4-wide OoO
96-entry ROB, LSQ

Architecture Ultra Sparc III ISA

L1I Caches 64KB, 2-way, 64B blocks

L1D Caches 64KB, 4-way, 64B blocks, 32 MSHRs

LLC Cache Tiled, 2MB per-core private

LLC Tiles 16-way, 64B blocks
15-cycle parallel, 21-cycle sequential

Interconnect 2-D folded torus, 2-cycle router
1-cycle link latency

Directory MOESI coherence
8K entries per tile (128K total)
16-way, 4-cycle latency

System Memory 3GB, 4KB pages, 150 cycle latency

Table 6.2: System Configuration & Workloads.

to the organization described in Section 6.3.3. We report the resulting energy break-

downs in Table 6.1. We categorize the various components into inter-bank Rout-

ing, intra-bank H-Tree, data row Decoders, data Subarrays (precharge, bitlines, sense

amps, and array-internal muxing and output drivers), Tags (all sub-components), and

CAM (all CAMs within a bank). The sequential access energy breakdown is taken

directly from CACTI; the other estimates are formed by multiplying per-element en-

ergy by the number of elements activated during the given type of access. Based on

CACTI’s access time estimates, we determine a parallel access latency of 15 cycles

and a sequential access latency of 21 cycles for a 4GHz clock assumption.

Like many large caches, the energy consumption of our design is wiring-dominated,

except in the case of parallel access, where the concurrent accesses to all 16 data

ways dwarf all other components. Overall, the per-access overhead of a successful

way prediction is only 13.8%, and a misprediction is 20.5%. In contrast, a parallel

access incurs 47.1% more total energy. We use these estimates to construct the full

LLC power and energy estimates in Section 6.5.
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6.5 Evaluation

We first establish the effectiveness of our final, tuned embedded way prediction

design with 7 partial tag bits (denoted 7) relative to sequential (S), parallel (P), and

per-set MRU-way-prediction (M) baselines. We then study the sensitivity to partial

tag width, the impact of partial tag collisions, and the importance of including inhibit

bits in the design. Our designs are denoted by the number of partial tag bits, and an

additional inhibit bit is present in all cases. Finally, we examine energy and power

implications.

6.5.1 Methodology

We evaluate the architectural impact of embedded way prediction on a suite of

scientific and server applications using the Flexus full-system simulator [60]. We

configure our processor model to approximate the hardware resources of recent Intel

Xeon microarchitectures; details appear in Table 6.2. We simulate a 16-core tiled chip

multiprocessor with 32MB aggregate on-chip LLC capacity, composed of 16 per-core

2MB tiles with MOESI coherence. To study the generality of embedded way predic-

tion, we examine two baseline organizations: 1) a private organization where each

core queries and allocates blocks in its local tile, and 2) a unified shared organization

where the address space is interleaved across tiles and a block resides in one location

in the LLC for all queries and allocations from all cores. For each workload we present

results for the highest performing baseline and apply our technique to it. We measure

performance using the SimFlex multiprocessor sampling methodology [60].

In Section 6.4 we performed our circuit analysis targeting an industrial 65nm

process (the latest process technology for which a design kit is available to us), in

which a chip of this size is likely infeasible. However, we pursue these cache sizes and

core microarchitecture to match the scale of our workloads and model a near-future

server-class CMP. We configure our simulation with the cache latency and energy

results derived in Section 6.4.

We study the TPC-C v3.0 OLTP workload on IBM DB2 v8 ESE and Oracle

10g Enterprise Database Server. We also evaluate a selection of SPLASH2 [61] and

PARSEC 2.1 [6] benchmarks that are sensitive to on-chip access latency. These are

barnes, moldyn and ocean from SPLASH2, and the canneal benchmark from the

PARSEC 2.1. We found that the two OLTP workloads db2 and oracle, as well as

barnes and moldyn, favor the private organization. On the other hand, ocean and
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Figure 6.4: Percent speedup over sequential access.

canneal perform better on the shared baseline. The rest of this section presents these

workloads running under their respective baselines.

6.5.2 Impact of Embedded Way Prediction

As shown in Figure 6.4, embedded way prediction with 7 partial tag bits (denoted

7) achieves the performance potential of parallel access (P). The figure shows speedup

normalized to a sequential access baseline. The error bars indicate 95% confidence

intervals obtained by our sampling methodology, thus the apparent speedup of our

design with respect to parallel access is not statistically significant. Figure 6.5 shows

a normalized breakdown of cycles-per-instruction spent on various stall sources for a

range of designs. The graph is normalized to sequential access (S), and includes the

same three designs as Figure 6.4 (including a breakdown for the sequential baseline).

The time breakdowns are broken into (from bottom to top) busy time, stalls on store

instructions, stalls on L1D accesses, stalls for L1I misses, stalls on data accesses to

the LLC, stalls on main memory and other stall sources.

Though prior work [9, 38] has shown that predicting the MRU way (M) is effec-

tive in low-associativity L1 caches, it underperforms in the highly-associative LLC,

achieving an average 17% of the speedup potential of parallel access.

We find the two database applications are particularly sensitive to our scheme

because it accelerates the many L1I misses serviced at the LLC, with up to 15.4%

speedup for db2. The instruction footprints of these two applications (over 2MB [20])

overwhelms the small L1I cache, creating a significant performance bottleneck. Un-

like data stalls, these misses cannot usually be hidden through out-of-order execution,
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Figure 6.5: Impact on Cycles Per Instruction.

and prior work [15] indicates that adding an intermediate cache level (e.g., a 256KB

L2) is not likely to be effective, as the instruction footprint is so large (over 2MB).

Barnes and moldyn gain only modest benefits from parallel access, as their runtime is

dominated by computation (busy time). Ocean is more sensitive to LLC time. Inter-

estingly, ocean experiences a slowdown under MRU way prediction. MRU prediction

is little better than random guessing for ocean (see next sub-section) and the addi-

tional data array bandwidth pressure created by mispredictions (each misprediction

incurs two data array accesses) leads to significant queueing delays in bandwidth-

intensive execution phases. Although canneal exhibits a large fraction of LLC stalls,

these misses are largely coherence misses (i.e., accesses to dirty data), which spend

their time traversing the on-chip network rather than in an LLC tile.

6.5.3 Sensitivity to Partial Tag Width

In Figure 6.6, we examine the sensitivity of prediction accuracy to the width of

the partial tag comparison and explore the impact of the inhibit bit to reduce partial

tag collisions. The prediction is successful if it activates the correct way during a

cache hit, either because the partial tag match identifies a unique way (Predicted-

Unique), or the inhibit bit correctly discerns amongst colliding partial tags (Predicted-

Collision). When the cache access will miss, the predictor ideally should not activate

an erroneous way (NoPredict-Miss). On the other hand, mispredictions occur when

54



db2 oracle moldyn barnes canneal ocean

M 78 M 78 M 78 M 78 M 78 M 78
0

20

40

60

80

100

L
L
C
R
ea
d
A
cc
es
se
s
(%

)

Predicted-Unique

Predicted-Collision

Mispredict-Collision

NoPredict-Miss

OverPredict-Miss

Figure 6.6: Impact of partial tag matching.

collisions obscure which way to predict during a hit (Mispredict-Collision) or when

any way is predicted during a miss (OverPredict-Miss).

Naturally, as we increase partial tag width from 0 to 8 bits, the Predicted-Unique

and NoPredict-Miss fractions increase steadily towards perfect accuracy. The relative

size of the Predicted-Collision segment indicates the importance of the inhibit bit.

Broadly, the results indicate that inhibit bits are critical for accurate prediction when

the partial tag width is 4 or less, while their impact shrinks for wider partial tags.

The inhibit bit plays no role during misses.

From these results, it is clear that server applications require 6-8 partial tag bits to

maximize prediction accuracy, in contrast to the 3-4 partial tag bits recommended in

earlier studies [42, 11, 63]. We also see that MRU-based prediction (M)—equivalent

to a partial tag width of zero (0)—never achieves prediction accuracy over 65% and

can never inhibit a data array access during a cache miss.

6.5.4 Power and Energy

We turn finally to examine the power and energy impacts of embedded way pre-

diction. Figure 6.7 shows absolute LLC power, while Figure 6.8 shows normalized

LLC energy per instruction, which is equivalent to an energy-delay product. Al-

though embedded way prediction increases power by 13% on average over sequential

access, we find that its performance benefits compensate for its power costs through

savings in leakage energy, resulting in a net EPI increase of 11%. This energy effi-

ciency improvement arises because the cache leakage power is amortized over more
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instructions per unit time. Comparatively, parallel access incurs an almost doubled

power increase of 23.4%, resulting in an EPI increase of 17.5%. The dynamic power

overhead of parallel access is higher than the other designs, because it activates all

16-ways each access, whereas our design activates at most two. While a full-system

power analysis is beyond the scope of this chapter, the EPI metric is expected to

improve for high performing designs.

6.6 Summary

Server applications are growing increasingly sensitive to on-chip cache access la-

tency, as larger capacities allow larger working sets to be captured on chip. In this

chapter, we have revisited way-prediction using partial tag matching as a means to

accelerate accesses in large LLCs without abandoning the energy efficiency advan-

tages of sequential cache access. The central challenge of deploying way prediction in

highly-associative LLCs is to enable the wider partial tag comparison called for in the

server context while still overlapping the partial tag comparison with wordline decode.

To this end, we have proposed embedded way prediction, an architecture and circuit

design that embeds a dynamic CAM circuit within data sub-array decoders. We

demonstrate that embedded way prediction achieves all the potential performance of

parallel lookup, improving performance by up to 16% (7% on average) while incurring

only a 8.2% average increase in LLC energy per instruction.
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CHAPTER VII

Conclusion

High performance core and cache designs often utilize power-hungry techniques

to parallelize instruction execution and memory accesses, resulting in unnecessary

operations that waste energy. In contrast, energy-efficient designs take a minimalistic

approach, opting to execute just the necessary operations in a serial fashion. While

these designs apply their techniques to all operations in a one-size-fits-all approach,

a judicious mix of parallel and serial execution has the potential to achieve the best

of both high-performing and energy-efficient designs. This thesis examined hybrid

designs for both the core and cache.

We proposed a novel, hybrid out-of-order/in-order core, which can opt for either of

the two execution mechanisms at instruction-by-instruction granularity. We revisited

way-prediction for L1 caches, a hybrid of parallel and sequential tag-data access,

and evolve it for large, highly associative last-level caches. Both the cache and core

demonstrate the potential for hybrid designs to offer the computer architect a more

compelling performance-power trade-off.
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