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ABSTRACT 

Prostaglandin E2 (PGE2) is a pro-inflammatory mediator in the colon, and high levels of 

PGE2 increase the risk of colon cancer. PGE2 production can be inhibited by the use of non-

steroidal anti-inflammatory drugs, but these agents have unacceptable side effects for long-term 

use in a cancer prevention setting. Dietary approaches for prevention therefore are an attractive, 

non-toxic alternative. In particular, the Mediterranean diet may be ideal, and it appears to have 

preventive and anti-inflammatory effects. The central hypothesis of this thesis research was that 

adherence to a Mediterranean dietary intervention would favorably affect the expression of the 

enzymes that degrade and synthesize PGE2. The study recruited 120 subjects at increased risk of 

colon cancer, and they were randomized to a Mediterranean or a Healthy Eating diet. Dietary 

data, blood and colon tissue biopsies were collected at baseline and after six months. At baseline, 

there were strong, positive, associations of colon PGE2 concentrations with cyclooxgenase-1 

expression and with saturated fatty acid concentrations in the colon biopsies. Study subjects 

showed excellent adherence to the dietary interventions. This was reflected in serum nutrient 

biomarkers but change in colon tissue nutrient biomarkers was modest. Surprisingly, the 

Mediterranean diet intervention showed no significant effects on colon PGE2, but a prostaglandin 

formed from omega-3 fatty acids, PGE3, was increased in the Mediterranean arm, as was 

cytoplasmic prostaglandin E synthase 3. This indicates that dietary intervention in healthy 

persons may work to increase preventive compounds such as PGE3 without affecting PGE2. In 

addition, the results indicated that cyclooxygenase (COX)-1, and not the inducible COX-2, was a 

major determinant of colon PGE2.  Since neither of the interventions changed COX-1 expression  
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nor saturated fatty acid concentrations in the colon, further research should investigate the 

biological factors that contribute to inter-individual variability in these two significant 

determinants of colonic PGE2. 
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CHAPTER 1 

Introduction 

1.1 Colorectal Cancer: Overview 

Colorectal cancer is the third most common cancer and has the fourth highest mortality 

rate world-wide. It accounts for 9% of all cancer-related deaths with more than one million new 

cases reported globally each year. Incidence rates of CRC are lowest in Africa, Middle East and 

the Mediterranean region. In comparison, the highest rates occur in developed countries such as 

Australia/New Zealand, Western Europe, and the USA (Table1.1) [1]. An individual’s chance of 

developing CRC in his/her lifetime is 1 in 20, on average, in Western industrialized countries [2].  

In the United States, CRC is the third most commonly diagnosed cancer and the third 

leading cause of cancer death in both men and women. The American Cancer Society estimates 

that approximately 132,700 new cases will be diagnosed with CRC, and 49,700 deaths will be 

expected by the end of 2015 [3, 4]. All these together make CRC a major public health concern 

globally, especially in the developed countries including USA. 

Colorectal cancer (CRC) is the term given to the development of cancer within the large 

intestine, more specifically, the colon and rectum. Cancer develops less often in the small 

intestine. CRC is normally found in the inner lining of the large intestine. In its later stages, CRC 

can grow inside the walls of the colon or rectum and may even penetrate into the bloodstream 

and lymph vessels, which can metastasize to other organs of the body such as the liver and lungs.   

Colorectal cancer (CRC) is the term given to the development of cancer in the colon and 

rectum. Cancer develops less often in the small intestine. CRC is normally found in the inner 
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lining of the large intestine. In its later stages, CRC can grow inside the walls of the colon or 

rectum and may even penetrate into the bloodstream and lymph vessels. It can then metastasize 

to other organs of the body such as the liver and lungs. 

Colorectal cancer is thought to develop through a multi-step process over a decade or 

more, with increased epithelial cell proliferation leading to the development of aberrant crypts, 

benign polyps, adenomas, and finally, invasive cancer. Approximately 96% of colorectal cancers 

originate from adenocarcinomas [5]. CRC is a heterogeneous and complex disease with at least 

three major forms: hereditary, colitis-associated CRC, and sporadic forms. The hereditary form 

of colorectal cancer is caused by inherited mutations in genes and accounts for approximately 2–

7% of all CRC cases. Colitis is a chronic inflammatory state of the inner lining of the colon, 

which affects individuals at considerably younger ages than CRC and results in approximately 

15% of all cases. Sporadic form of CRC represents about 60-70 of all cases, and many of these 

may be associated with environmental and dietary risk factors [6-8].  

1.2 Colorectal Cancer Risk Factors 

 There are many risk factors that are known to contribute to CRC risk. The most 

prominent risk factors include: 1) being 50 years or older, 2) having a personal or family history 

of CRC and 3) carrying a genetic predisposition such as familial adenomatous polyposis (FAP) 

or hereditary nonpolyposis colorectal cancer (HNPCC).  

Other important contributing risk factors are behavioral such as lack of regular exercise, 

obesity, alcohol consumption and smoking[9]. Several dietary factors also are linked to 

colorectal cancer risk. For example, Western diets, which are rich in saturated fats, refined sugars 

and low in fruits, vegetables and fiber, are associated with increased risk of colorectal cancer 

[10]. In fact, it is estimated that diet could be responsible for 30-50% of worldwide incidence of 

http://ghr.nlm.nih.gov/condition/familial-adenomatous-polyposis
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CRC cases [11]. Because of this, it is important to identify dietary interventions that can prevent 

or reduce the chance of developing colorectal cancer. 

 

1.3 Prostaglandin E2 Enzymatic Pathway Biomarkers for Colorectal Cancer Prevention 

Prostaglandin E2 (PGE2), a pro-inflammatory mediator, is a well-established biomarker 

for determining the risk for both colon and rectal cancer development. It plays a significant role 

in colonic crypt cellular expansion, as well as the consequent formation of adenoma [12, 13]. 

PGE2 is formed from arachidonic acid (AA), an essential fatty acid, via action of the 

cyclooxygenases, namely constitutive COX-1 and inducible COX-2 in the colonic mucosa. 

 Increased levels of PGE2 in the colon tissues are strongly linked to colon cancer 

progression [14]. In normal tissue, COX-2 expression is highly regulated and the level is very 

low, which poses challenges in its measurement [14, 15]. On the other hand, cyclooxygenase-1 

(COX-1), which is responsible for the basal production of PGE2, may have an active role in early 

stage of colon cancer development among people with risk factors [15]. For example, 

experimental animal studies demonstrated that COX-1 is involved in intestinal polyp formation 

[16, 17]. Additionally, inhibition of COX-1 by the selective blocker mofezolac was found to 

suppress colonic aberrant crypt foci formation, suggesting COX-1 may play an important role in 

early stages of colon cancer [17, 18]. Clinical studies have found it possible to reduce the number 

of intestinal polyps in familial adenomatous polyposis patients by inhibiting COX-1 and COX-2 

with use of NSAIDS [19].This inhibition appears to be more effective than using selective 

inhibitor drugs such as Celecoxib, to suppress COX-2 only [20, 21]. Recent findings from a 

clinical trial showed that protein levels of COX-1 in colon of subjects at high risk of colon 

cancer were two times higher compared with COX-1 in colon of a normal risk group [22]. All 
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these findings strongly suggest that the possible effects of COX-1 in PGE2 formation and 

involvement in colon cancer progression, especially for individuals at high risk or with early 

lesions.  

In addition to cyclooxygenases there are other enzymes involved in the PGE2 metabolic 

pathway that may play a role in colon cancer development and progression. Such enzymes also 

may be promising targets for colon cancer prevention [23]. [23]. For example, the prostaglandin 

E synthases (PTGES) work together with the cyclooxygenases to form PGE2 from arachidonic 

acid [24].There is three forms of PTGES. Cytosolic PTGES (cPTGES) is constitutively 

expressed and complexes with COX-1.  Microsomal PTGES-1 (mPTGES) is induced by pro-

inflammatory stimuli, is constitutively expressed, and co-localizes with both COX-2 and COX-1 

[25]. Additionally, in Min mouse models, deletion of mPTGES-1 inhibited intestinal 

carcinogenesis in one study but not in another [26, 27].  

Another important enzyme involved in the PGE2 pathway is 15- Prostaglandin 

dehydrogenase (15-PGDH). 15-PGDH is a rate-limiting enzyme responsible for prostaglandin E 

2 degradation [28]. Deletion of 15-PGDH was found to be associated with increased expression 

of COX-2, increased PGE2 and tumor development [28, 29]. Other findings also suggest that this 

enzyme may play a critical role in cellular transformation by degrading PGE2 [28, 30]. It is 

therefore important to consider all the major enzymes in the PGE2 pathway along with 

cyclooxygenases.  

In addition to the important role of PGE2 synthetic and degradation pathways in colon 

cancer, PGE2 exerts its action through four receptors EP 1-4. These EP receptors are also 

recognized as a potential target for colon cancer prevention and treatment [31]. For example, 

EP4 has been proposed as a safer alternative target in the chemoprevention of CRC instead of 
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COX-2 inhibition [32]. In the normal colon, expression of EP2 and EP4 is much higher than that 

of EP1 and EP3[33]. In addition, EP2 has been implicated in colon carcinogenesis in 

experimental models and EP4 appears to have a role in intestinal permeability [34, 35]. We 

therefore focused this study on EP2 and EP4. Targeting both the PGE2 enzymatic as well as 

downstream pathway will allow us to better understand the association between PGE2 formation 

and its metabolic pathway in the normal colon. It will also allow us to evaluate if these are 

suitable targets for dietary prevention.   

 

1.4 Strategies for the Prevention of Colorectal Cancer 

1.4.1 Non-steroidal Anti-inflammatory Drugs (NSAIDs) for the Prevention of Colorectal 

Cancer  

Several pharmacological prevention strategies for colorectal cancer target the 

prostaglandin signaling pathway, specifically to block the formation of PGE2. One established 

pharmacological approach is the use of non-steroidal anti-inflammatory drugs (NSAIDs), which 

have been demonstrated to decrease the risk of developing colon cancer by 40-50% [36, 37]. 

Despite the protective effect of NSAIDs in CRC prevention, their prolonged use is unfortunately 

associated with development of gastrointestinal bleeding and ulcers [37-39]. This is likely due to 

the inhibition of COX-1, which is normally responsible for maintaining the integrity of the 

gastric mucosa [40]. Removal of these anti-inflammatory inhibitors after prolonged use, 

however, caused polyps to reoccur [41, 42]. In order to overcome the gastrointestinal adverse 

effects of NSAIDs, selective COX-2 inhibitors were developed. Unfortunately, data from clinical 

trials demonstrated an increased cardiovascular risk associated with these drugs, limiting their 

therapeutic value [43]. Therefore, there is a need for the development of more suitable 
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prevention strategies that have fewer or no side effects. This also makes a dietary approach a 

safer option for targeting the PGE2 metabolic pathway. 

 

1.4.2 Mediterranean Diet and Colorectal Cancer Prevention 

Dietary patterns around the world are associated with cultural traditions and regional 

availability of food resources. Industrialized nations tend to follow some variation of a the so-

called Western diet, which is characterized by high intakes of fat, red meat, refined grains, and 

sugar, and a low intake of fruits, vegetables and whole grains. The Western dietary practices 

have been shown to increase the risk of colorectal cancer (CRC) [44]. In contrast, the traditional 

Mediterranean diet includes lower intakes of red meat, refined grains, and sugar, and higher 

intakes of olive oil, fish, fruits, and vegetables.  

Interestingly, despite the fact that both diets are high in fat, the Mediterranean diet has 

been demonstrated to have a preventive effect on the risk of colorectal cancer [45].  This may be 

due to the fact that the type of fat, namely olive oil, consumed in a Mediterranean diet is different 

from that in a Western diet. Olive oil is rich in mono unsaturated fatty acids (MUFA) and 

relatively low in both saturated fatty acids (SFA) and omega-6 polyunsaturated fatty acids 

(PUFA). The beneficial effects of MUFA on colorectal cancer have, however, been difficult to 

assess. Prospective studies have not yielded evidence of prevention with dietary MUFA, but 

case-control studies and studies of tissue fatty acids have shown preventive effects of higher 

MUFA [46-49]. These discrepancies could be due to the fact that there are many different dietary 

sources of MUFA, including red meat. Fish, another component of the Mediterranean diet, is a 

good source for omega-3 fatty acids.  



 

7 
 

A recent meta-analysis of fish consumption and colorectal cancer risk in humans 

indicated that fish consumption had protective effects [50].  Other aspects of the Mediterranean 

dietary pattern may be important as well, as are higher intakes of fruits, vegetable and grains. 

Case-control studies of the Mediterranean diet showed that relatively high intakes of fruit, 

vegetables, and whole grains are preventive and decrease colorectal cancer risk [51, 52]. 

Moreover, in the European Prospective Investigation into Cancer and Nutrition (EPIC) study, 

recurrence of adenomatous polyps was decreased in subjects who followed a Mediterranean 

dietary pattern [53].  

A randomized trial designed to determine the effectiveness of early detection of cancer 

found that adherence to a Mediterranean dietary pattern was associated with reduced risk of 

colorectal adenoma in men [54]. Furthermore, increased blood carotenoids levels, a marker of 

fruit and vegetable consumption, provided protection against adenomatous polyps [55-57]. These 

findings highlight the multi-pronged role that the Mediterranean diet can have on colon cancer 

prevention.  

 

1.5 Effects of the Mediterranean Diet on the Prostaglandin E2 Enzymatic Pathway 

A unique aspect of the Mediterranean diet is that it is rich in omega-3 (fish oil) and 

omega-9 (olive oil) fatty acids, while low in omega-6 (corn oil) fatty acids. The omega-6 fatty 

acid, arachidonic acid, is a substrate for production of eicosanoids including PGE2. Following a 

Mediterranean dietary pattern should help to lower the omega-6: omega-3ratios. For example, 

when dietary omega-6 fatty acid intakes were low, colon tissue levels of 20:5 (omega-3) or 20:3 

(omega-9) were much higher after omega-3 or omega-9 fatty acid supplementation, as opposed 

to when omega-6 fatty acid intakes are high [58, 59]. In addition to providing dietary omega-9 
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fatty acids, olive oil, unlike corn oil, contains many phenolic compounds with antioxidant and 

anti-inflammatory properties that together with oleic acid (18:1, n-9) can suppress COX-2 [60-

62].  

A study in mice showed that increased dietary olive oil decreased COX-2 protein levels 

in the colon of mice with colitis [63]. Oleocanthal from olive oil was shown to inhibit both COX-

1 and COX-2 [64]. Supplementation with flaxseed, which contains high levels of omega-3fatty 

acids reduced colon tumor development and COX-2 expression relative to dietary 

supplementation with omega-6 rich corn meal [65, 66]. Finally, plentiful phytochemicals with 

antioxidant properties in plant foods would be expected to affect eicosanoids since oxidative 

stress induces COX-2 [67, 68]. This makes a Mediterranean dietary pattern approach attractive 

for prevention and for targeting the PGE2 pathway (Figure 1.2).  

 

1.6 Study Description  

The Healthy Eating for Colon Cancer Prevention Study is a randomized clinical trial 

conducted at the University of Michigan, Ann Arbor, MI Institutional Review Board 

(HUM00007622). Subjects at increased risk of colon cancer enrolled in this trial between July 

2007 and November 2010. Increased risk was defined as having one first degree relative or two 

second degree relatives with adenomatous polyps or colon cancer, or having a personal history of 

early stage colon cancer. Dietary, demographic and anthropometric data as well as serum and 

tissue samples were obtained and used for this thesis research.  

A dietary eligibility criterion was designed to exclude persons already following a 

Mediterranean diet or a low-fat diet. Eligible subjects were randomized to either a Healthy 

Eating based on the U.S. Healthy People 2010 recommendations [69]  or a  modified 
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Mediterranean diet for 6 months (Figure 1). Information on recruitments, eligibility and dietary 

assessment as well as the interventions were discussed in details and published in [70, 71].  

Briefly, dietary assessments were done using written records and 24-hour recalls, which were 

collected at baseline, 3 and 6 months. A study questionnaire captured demographic 

characteristics, such as employment, education, physical activity, medication use, colon cancer 

risk factors and other demographic characteristics at baseline.  A health update questionnaire was 

used at 3 and 6 months to capture changes in medication use, and health.  The dietary counseling 

used Bandura’s social cognitive theory to address self-efficacy, self- monitoring, social support, 

goal setting and developing problem solving strategies. Subjects were asked to track food group 

exchanges consumed from each targeted food category, and this differed in each diet arm (Figure 

1.3). 

Blood samples were obtained at baseline and six months. Plasma was used for analysis of 

high sensitivity C-reactive protein (CRP) using a latex immunoturbimeteric assay. Serum fatty 

acids were extracted and measured using gas chromatography with mass spectral detection. 

Carotenoids were extracted and measured using measured by high pressure liquid 

chromatography with visible detection as described previously [72]. 

Eight colon biopsies were collected from each individual at baseline and at six months 

using flexible sigmoidoscopy procedure without prior preparation of the bowels. Five of these 

biopsies were used for analysis of fatty acids, carotenoids, prostaglandins, other eicosanoids and 

quantifications of gene expression at each time point. Two biopsies were fixed in formalin and 

slides were prepared for immunohistochemistry to quantify the protein levels of enzymes and 

receptors in the PGE2 pathway. The fixed tissues were also used for Ki-67 staining to quantify 

the epithelial cell proliferation. 
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1.7 Research Objectives  

Colon cancer remains a leading cause of cancer deaths worldwide, especially among 

developed countries including the U.S. [2, 3]. This makes it important to identify prevention 

strategies for this disease. A diet-based approach should offer an advantage over 

pharmacological approaches since it can alleviate toxicity concerns. The goals of this proposal 

was to develop a better understanding of the effects of diet on formation of PGE2 in the colon of 

high risk individuals since colon PGE2 is a biomarker of CRC risk.   

The effects of a Mediterranean diet on the eicosanoid pathway remains largely unknown. 

The relationships between expression of individual enzymes in the PGE2 pathway and PGE2 

levels is also not well described, especially in humans. The objective of this dissertation research 

was to evaluate these pathways in persons at increased colon cancer risk before and after dietary 

change. We hypothesized that adherence to a Mediterranean dietary intervention will be 

associated with reduction in PGE2 production by modulating the expression of the enzymes that 

degrade and synthesize PGE2 in the normal colon tissue. The specific aims were: 

1) Aim 1, presented in Chapter 2, was to assess the effects of a Mediterranean 

intervention on dietary changes over six months. These assessments included a) analysis of food 

and nutrient intakes from food records and unannounced 24 hour recalls at baseline, three, six 

months; b) ability to comply with food group goals  after six months of intervention; and c) 

serum and colon tissue levels of key nutrients biomarkers.  

2) Aim 2, presented in Chapter 3, was to evaluate factors that affect PGE2 concentrations 

and expression of key enzymes and receptors involved in its pathway before dietary intervention 

at study entry. This included considerations of demographic factors, such as gender, obesity, use 
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of non-steroidal anti-inflammatory drugs, and physical activity as well as substrate availability, 

namely colon tissue fatty acid concentrations.  

3) Aim 3, presented in Chapter 4, was to evaluate whether the Mediterranean dietary 

intervention changed PGE2 concentrations and gene expression of enzymes and receptors 

involved in its pathway. To achieve this aim, we examined changes in gene expression by diet 

arm assignment over six months in the entire study group and in subgroups defined by use of 

non-steroidal anti-inflammatory medications, and overweight status. We also evaluated the 

relationships between changes in gene expression and changes in colon tissue fatty acids after six 

months. This included validating RNA expression results with semi-quantitative 

immunohistochemical analysis. In Chapter 5, a summary of the major findings and implications 

of this research is given
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Table 1.1: Epidemiology of colorectal cancer worldwide: Data from GLOBOCAN 2012 [1] 

Parameter Males Females All Persons 

Incidence     

Number of new cases 746,298 614,304 1,360,602 

Number of new cases per 100,000 population 21.0 17.6 19.3 

Proportion of all newly diagnosed cancers  10.0% 9.2% 9.7% 

Rank among all newly diagnosed cancers  3rd 2nd 3rd 

Mortality     

Number of deaths 373,639 320,294 693,933 

Number of deaths per 100,000 population 10.5 9.2 9.8 

Proportion of all cancer-related deaths  8.0% 9.0% 8.5% 

Rank among all cancer-related deaths  4th 3rd 4th 
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Figure 1.1: Recruitment and Retention of Subjects 
The figure shows subject flow in the study according to CONSORT criteria. Three individuals were 

removed from study either due to initiation of supplement use (fish oils, high level thiamine) or diet 

change (increased sodium intake recommended by a physician). 
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Figure 1. 2: Potential Mechanisms by which the Mediterranean Diet could Affect Formation of 

Prostaglandin E2 (PGE2) 
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A) 
 

 
 

B) 

 
 

Figure 1. 3: Checklists for Tracking Food Group Exchanges 
Different tracking forms were used by the two diet arms: A) Healthy Eating Diet, and B) Mediterranean 

diet
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CHAPTER 2 

Evaluations of Changes in Diet, Serum and Colon Tissue Biomarkers during Six Months of 

Dietary Intervention  

Text reused, modified/ edited or added from a published article: E. Sidahmed, M. L. Cornellier, 

J. Ren, L. M. Askew, Y. Li, N. Talaat, M. S. Rapai, M. T. Ruffin, D. K. Turgeon, D. Brenner, A. 

Sen, and Z. Djuric, 2013. Development of exchange list for Mediterranean and Healthy 

Eating Diets: implementation in an intervention Journal of Human Nutrition and Dietetics 

27,413-425. Permission for reuse was approved by John Wiley and Sons and Copyright 

Clearance Center.  

Text is also reused, modified/ edited or added from a published article: Ananda Sen, Jianwei 

Ren, Mack T. Ruffin, D. Kim Turgeon, Dean E. Brenner, ElKhansa Sidahmed, Rapai, Maria L. 

Cornellier, and Zora Djuric, 2013 Relationships between Serum and Colon Concentrations of 

Carotenoids and Fatty Acids in a Randomized Dietary Intervention Trial. Cancer 

Prevention Research, November 1, 2013 6:1212-1221. Permission for reuse by authors of 

articles published in AACR journals are permitted to use their article or parts of their article in 

the following ways without requesting permission from the AACR.  
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2.1 Abstract 

Mediterranean diets appear to have preventive properties but intervention studies have not been 

done with cancer endpoints.  Since cancer has a long timeline for development, studies with 

biomarker endpoints might be important to evaluate preventive potential. The objective of this 

study was to develop exchange list diets for Mediterranean and Healthy Eating goals, and to 

evaluate adherence to dietary goals, dietary intakes and serum and colon tissue biomarkers of 

dietary intakes in study subjects.  This study recruited 120 persons at increased risk of colon 

cancer. Subjects were randomized to a Mediterranean versus a Healthy Eating diet for six 

months. Dietary adherence was similar in both diet arms with 82-88% of goals being met at 6 

months, but subjects took more time to achieve the Mediterranean goals than the Healthy Eating 

goals. The relatively modest fruit and vegetable goals in the Healthy Eating arm were exceeded, 

resulting in fruit and vegetable intakes of about 8 servings per day in each arm after six months. 

A significant (P<0.05) weight loss and a decrease in serum C-reactive protein concentrations was 

observed in the overweight/obese subgroup of subjects in the Mediterranean arm. Increases in 

dietary intakes of fruit and vegetables were reflected in the blood carotenoid levels in both diet 

groups. The Healthy Eating arm increased serum lutein, β-, and α-carotene significantly (P < 

0.05). In the Mediterranean arm, the significant increases were in serum lutein, β-cryptoxanthin, 

β-carotene. Serum monounsaturated fatty acids and omega-3 fatty acids were increased only in 

the Mediterranean arm. In colon tissue, there were few changes noted indicating that metabolic 

factors may limit changes in the colon over 6 months of intervention. In conclusion, notable 

dietary changes appear to have minimal effects on colon nutrient concentrations, at least over six 

months of intervention.  Whether or not changes in circulating concentrations of these nutrients 

can affect colon biology remains to be determined. 
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In conclusion, the Healthy People 2010 goals resulted in a higher consumption of fruits and 

vegetables, which reflected an increase in serum and colon tissue carotenoids; these carotenoids 

may protect against colon cancer. 

2.2 Introduction  

Research into discerning the health effects of specific dietary patterns is challenged by 

the availability of methods to elicit defined dietary changes. A large number of studies have 

designed interventions using group, school or worksite based approaches or electronic media, but 

these have generally resulted in very modest increases in fruit and vegetable intakes [73-76]. 

Studies that have utilized intensive one-on-one counseling combined with self-monitoring have 

generally shown larger dietary changes, and this includes two cancer prevention research studies 

that targeted increases in fruit, vegetable and fiber intakes combined with decreases in total fat 

[77, 78]. None of these intervention studies used an exchange list approach for improving diet 

quality.  

The Exchange Lists for Meal Planning booklet was first developed by the American 

Dietetic Association and the American Diabetes Association as a tool for diabetic meal planning 

[79-81].  The exchange lists have been modified for use in other countries, but there has been 

surprisingly little research done to evaluate their effectiveness [80, 82-85]. Only a handful of 

studies have modified the exchange lists to achieve low-fat diets and/or diets that target increased 

variety of fruits and vegetable [72, 86, 87]. The exchange list approach is potentially a method to 

achieve the USDA dietary recommendations [88], but this has not been tested.  The exchange list 

approach was used in this study to design two different diets that might be useful for colon 

cancer prevention.  
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Diet appears to plays a role in modulating risk of many cancers, and colon cancer is 

among the cancers for which diet has the biggest impact [89]. One observational study of a large 

screening cohort found that persons who consumed diets with relatively more features of either 

the Mediterranean diet, the USDA Food Guide recommendations or the  Dietary Approaches to 

Stop Hypertension (DASH) Eating Plan, all were preventive of colorectal adenomas in men, but 

only the USDA Food Guide pattern was preventive in women [54].   

Although research on USDA-recommended diet has been more limited, extensive 

international research on Mediterranean diets has indicated its’ cancer prevention potential [90-

92]. Prior to the 1950’s, risk of colorectal cancer was low in Greece, but the incidence has 

increased with the westernization of the diet and incidence is higher among Greek immigrants to 

the U.S. and Australia [90, 93-95]. In the U.S., rates of colon cancer are among the highest in the 

world [96].  All the major components of the traditional Greek diet appear to be protective for 

colorectal cancer, including olive oil, fish, legumes, whole grains, and fruits and vegetables [51]. 

In comparison to the American diet, the Mediterranean diet has higher intakes of omega-3 and 

omega-9 fatty acids and lower intakes of omega-6 polyunsaturated fats [97]. The Mediterranean 

diet also contains much higher intakes of plant-based foods and monounsaturated fats (MUFA), 

and lower red meat intake [97].  

In most of the Mediterranean diet intervention studies that have been done, the population 

being studied was living in southern Europe and a high MUFA food was provided. This is 

exemplified in two of the larger studies that were done with disease endpoints [98, 99]. There has 

been relatively few intervention studies reported using a Mediterranean diet in American 

populations [100]. Well-designed intervention studies can isolate and identify the effects of diet 
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versus that of other lifestyle factors on health endpoints. Initial studies began to develop an 

exchange-list approach to elicit multiple dietary changes consistent with Mediterranean intakes 

[101]. This approach was further expanded in the present study to include goals for dark green 

herbs (e.g. parsley, basil) and omega-3 fats obtained from fish and flax seeds to more fully 

mimic Greek-Mediterranean dietary intakes.  In addition, an exchange list was devised to target 

Healthy People 2010 recommendations for fruits, vegetables, whole grains and saturated fats 

[102]. With an exchange list, foods are classified into categories, and there are daily goals for 

consuming foods from each category. Any food within a category, in the specified serving size, 

can be used (or exchanged) to meet the daily intake goal for that category. Such an approach 

offers an individual flexibility in food choices for meeting dietary goals. Serum and colon tissue 

nutrients markers can be used to assess if subject adherence meet the dietary goals of an 

intervention. 

 In the Polyp Prevention Trial, the intervention diet that targeted decreased fat intakes and 

increased intakes of fiber, fruits and vegetables had no effect on polyp recurrence, and the 

increase in plasma carotenoids was modest [6]. Subjects with excellent adherence, however, did 

have decreased polyp recurrence, had relatively higher carotenoids levels and they also exhibited 

better dietary intakes at baseline [34]. Additionally, relatively higher concentrations of α-

carotene and vitamin A at baseline or averaged over time, were protective that study [35]. 

Similar findings have been observed in the Women’s Health Initiative: women with higher 

serum β-carotene concentrations averaged over time had lower risk of colon cancer [36]. These 

results indicate that long-term exposures to fruits and vegetables may be necessary for 

prevention and that blood concentrations are important to evaluate.  
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Blood concentrations can reflect carotenoid absorption and metabolism, in addition to 

dietary exposures. Moreover, although serum concentrations of carotenoids have been shown to 

be useful markers of fruit and vegetables intakes, there is relatively much less information 

available on colon concentrations of carotenoids. In addition, it was important to evaluate the 

effects of dietary change on fatty acids concentrations. Increased omega-3 or fish oil fatty acids 

and conversely decreased omega-6 fatty acids have been associated with decreased colon cancer 

in experimental models and humans [39, 40]. Increased fruits, vegetables, and omega-3 fats and 

decreased omega-6 fats could work together to suppress colonic inflammation via fatty acid 

substrate competition for cyclooxygenase enzymes and inhibition of cyclooxygenases by 

phytochemicals from plant-based foods [41].  

 The purpose of this research was to develop intervention methods that would result in 

adherence to a modified Mediterranean diet or a standard Healthy Eating. Adherence to the 

dietary goals was evaluated by food records and recalls. Additionally, serum and colon tissue 

fatty acids and carotenoids were measured as a more objective indicator of dietary fat, fruit and 

vegetable intakes.   

2.3 Methods 

Participants and Eligibility 

The Healthy Eating for Colon Cancer Prevention Study was approved by the University 

of Michigan Institutional Review Board (HUM00007622). The study was listed on the 

ClinicalTrials.gov website maintained by the National Institutes of Health (registration number 

NCT00475722).  A total of 120 subjects were recruited as previously described [70]. There were 
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61 participants in the Healthy Eating arm and 59 in the Mediterranean Diet arm, in the Ann 

Arbor, MI and surrounding areas from July 2007 to November 2010 [70].  

The overall objective of the Healthy Eating for Colon Cancer Prevention study was to 

design and evaluate implementation of novel exchange list diets that could be used in a 

biomarker study for individuals at high risk of colon cancer. The study collected blood and colon 

biopsy samples for investigation of cancer biomarker endpoints such as prostaglandins, epithelial 

proliferation and epithelial nuclear morphology. In a prevention study, one would target 

individuals at increased risk and it was therefore important to test the intervention in a high risk 

population.  

Subjects at increased risk of colon cancer were eligible for the study. Eligibility was 

defined as having one first-degree or two second-degree relatives with colon cancer or a personal 

history of adenomatous polyps or early stage colon cancer in the past if they were at least two 

years post cancer treatment. Other inclusion criteria included good, general health, being at least 

21 years old, body mass index (BMI) at least 18.5 and less than 35 kg/m2. It was felt that it 

would be inappropriate to prescribe a diet that seeks to maintain current body weight in persons 

with class II obesity and higher. Exclusion criteria included being on a medically prescribed diet, 

which would require extensive counseling to correct nutritional deficiencies or taking 

supplements or medications. Some factors may interfere with intervention effects, such as taking 

supplemental vitamins and minerals. The limit for eligibility was above 250% of the 

Recommended Daily Allowance since most common multi-vitamin supplements are below this 

level.; for this reason, those who already met high consumption of these nutrients were excluded 
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from the study. The study also excluded those who consumed high doses of other supplements 

with potential antioxidant function such as glucosamine and chondroitin. 

Dietary eligibility criteria were designed to exclude persons already following a 

Mediterranean diet or a low-fat diet. Eligible diets were at least 23% calories from total fat with 

no more than 48% of fat as MUFA. Fruit and vegetable intakes to meet eligibility criteria were 

below two-thirds of the 2005 USDA recommended servings/day [70]. This was enumerated 

excluding white potatoes after the first serving and iceberg lettuce. These vegetables can be 

consumed in large quantities, but since they are low in carotenoids, subjects were not excluded 

from participation if intakes of fruits and vegetable were too high because consumption of these 

two foods.  

Eligible participants were stratified into categories based on gender, body mass index 

(less than 25 versus at or above 25 kg/m2), regular use of non-steroidal anti-inflammatory drugs 

(yes/no), and colon cancer risk status (prior colon cancer, prior adenoma or a positive family 

history of colon cancer) prior to randomization to a Healthy Eating or Mediterranean diet for 6 

months.  Stratification was important to assure equal representation of participants with these 

characteristics in the two study arms. The full details of recruitment and retention to the Healthy 

Eating Study have been published elsewhere [70]. 

Dietary Assessment  

Dietary eligibility for recruitment to the study was assessed using two days of written 

records and one un-announced 24-hour recall. Subjects were given written and verbal 

instructions on how to maintain a complete food record with sufficient detail for analysis. If 
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details were missing, staff called the subject to verify details of foods eaten. The ability to 

provide a complete and plausible food record was part of the eligibility determination. Dietary 

recalls and food records also were collected at baseline, 3 and 6 months. Food records were 

completed by subjects on a Sunday and Monday, and subjects were called for an un-

unannounced 24-hour recall on one further weekday.  All the dietary recalls were conducted 

using the 5-pass method [103]. The recalls were done by trained staff but not by the study 

dietitian since it were felt that this would maximize objectivity in data collection.  An additional 

24-hour recall was obtained at the first study visit, and all four days were averaged to obtain an 

estimate of baseline diet.  

The same assessments were repeated at six months. At three months, two days of written 

records and one un-announced 24-hour recall were analyzed before the visit to give each 

participant feedback on their progress. Mean nutrient intakes from the in-person recalls were 

similar to those calculated for the average of the three other days [70].  It should be noted that an 

average of at least three days is generally required for accurate estimation of energy intake, but 

even a single recall can provide estimates of energy, fat and fruit/vegetable servings that were not 

significantly different from that of four days of food records [104, 105].  

For 5% of the 406 records completed, one to two days of data was missing due to 

inability to obtain a recall or due to failure to collect a written record. The food records and 

recalls were analyzed using the Nutrition Data System for Research (NDSR) software (version 

2010, Nutrition Coordinating Center, University of Minnesota). Records entered with previous 

versions of the software (2007-2009) were re-analyzed with the 2010 nutrient database at study 

completion. Double entry of a random sample of 30 records was done for quality control and 
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these revealed average differences of 10% or less for intakes of energy, vitamin E, vitamin C, 

calcium, percent of calories from fat, total carotenoids, and whole grain servings. 

Questionnaires and Anthropometric Assessments 

A study questionnaire designed for this study captured demographic characteristics of 

subjects. A Health-Update Questionnaire was used at 3 and 6 months to capture changes in 

medication use, health and physical activity levels. Physical activity was assessed using a 

validated questionnaire and metabolic equivalents (MET) were calculated [106]. This 

questionnaire asked respondents about time spent walking at various speeds and performing 

mild, moderate and strenuous activities.  

Self-efficacy for making dietary changes was assessed in all subjects at baseline and 3 

months using seven behaviors targeted by both interventions, and answers were given on a 

Likert-type 5-point scale [107]. The seven items asked about confidence to find a way to eat a 

variety of fruits and vegetables, finding way to meet fat goals, finding time to buy needed foods, 

finding time to prepare foods, finding ways to stick to goals when others around you make it 

difficult, controlling the home environment, and meeting goals when eating out.  Internal 

consistency of the scale was good with an overall Cronbach alpha of 0.85. 

Anthropometric measures were obtained at baseline, 3 and 6 months by trained staff of 

the Michigan Clinical Research Unit using a written protocol.  Body weight was measured in 

light clothing, without shoes and rounded to the nearest quarter pound with a Scale-Tronix model 

5005 Stand on Scale (White Plains, NY). Height was measured to the nearest 0.1 cm with a 

stadiometer and BMI was calculated as kg/m². Waist and hip circumference was measured to the 
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nearest 0.1 cm. Blood pressure was measured using a sphygmomanometer by auscultation of the 

upper arm. All measures at baseline and 6 months were obtained in the morning after an 

overnight fast but the 3-month visits were scheduled at the subject’s convenience.   

Dietary Interventions 

The Mediterranean and Healthy Eating interventions were delivered using individualized 

counseling with a registered dietitian. The schedule for counseling was weekly for the first 

month, biweekly for the next two months and monthly for the last three months. The counseling 

at baseline and 3-months was done face to face, and the remained of the scheduled counseling 

was done by telephone calls that were structured to last about 20 minutes.  All individual diet 

goals were based to maintain energy intake reported at baseline.  

At the baseline visit, subjects were presented with exchange booklets written by study 

staff that listed foods in categories together with serving sizes, and their own individual goals 

were written in the booklet. The booklet information was also provided in an abbreviated form 

on a single, laminated page. Other printed materials provided were for buying fruits and 

vegetables, estimating portion sizes, and reading food labels. Subjects randomized to the 

Mediterranean diet treatment arm received study recipes, sample menus for seven days and flax 

recipes from the Flax Council of Canada. Subjects in the Mediterranean arm were asked to keep 

food diaries until they became adept at meeting exchange goals, as determined by the dietitian 

from review of self-monitoring records, after which they could use a checklist format to track 

exchanges consumed from each targeted food category. Subjects in the Healthy Eating diet arm 

received only checklists from the start. These checklists were available both in printed format 
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and as excel files. Each group received a bimonthly newsletter written for that diet arm with 

news of the study progress, and information on seasonal foods and recipes. 

  The dietary counseling used Bandura’s social cognitive theory that addresses self-

efficacy, self- monitoring, social support, goal setting and developing problem solving strategies 

[108]. At every counseling session after baseline, a review of dietary intakes in the previous 

period was the main subject of discussion between the dietitians and the study participant, and 

this formed the basis for short-term goal setting. If a participant’s intake of any vitamin or 

mineral was <67% of Dietary Reference Intake values, however, they were given a list of foods 

that are rich in that nutrient to correct the deficiency.   

Study participants were requested to keep self-monitoring records for 5-7 days before 

each counseling call and to mail them to the dietitian. The counseling session at by which a 

participant achieved all of their food exchange goals was recorded by the dietitian using a review 

of each participant’s self-monitoring logs. The number of goals met was also recorded at six 

months.     

Dietary Goals 

The goals for the Healthy Eating diet were based on the U.S. Healthy People 2010 

recommendations [102].The specific dietary goals are shown in Table 2.1.The saturated fat goal 

was given in grams per day, based on baseline energy intake, and subjects enumerated grams of 

saturated fat in the foods that they consumed on the tracker. Reducing saturated fat intake 

resulted in a small decrease in total fat intake by study participants, and participants therefore 

were able to reduce total fat intake to less than 30% of calories without additional counseling for 
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maintaining total fat intake to below 30% of calories. A food list of high salt foods that 

participants should avoid was provided, but subjects were not asked to track sodium intake.   

The number of goals was greater in the Mediterranean arm (Table 2.1). The ‘fat’ goal 

was to maintain 30% of calories from fat while reducing PUFA and SFA intakes by about 50% 

and 30%, respectively, and increasing MUFA intake by about 50%. Subjects in this group were 

asked to consume foods high in omega 3 fatty acids at least twice a week. The ‘whole grain’ goal 

was the same as in the Healthy Eating treatment arm. ‘Fruit and vegetable’ goals were for 

consumption of at least 7-9 FDA servings per day, depending on energy intake, and to include 

culinary herbs and allium vegetables, as shown in Table 2.1. 

Blood Sample Assays 

Blood samples were obtained at baseline and six months following after an overnight 

fast. Measures of high sensitivity C-reactive protein (CRP), were measured using a latex 

immunoturbidimetric assay (laboratory analysis and all assays were done by the Michigan 

Diabetes Research and Training Center Core Chemistry Laboratory). 

 Total serum fatty acids were extracted with Folch reagent and measured as fatty acid 

methyl ester by gas chromatography with mass spectral detection. Carotenoids were extracted 

with hexane and measured by high pressure liquid chromatography [72]. There was not enough 

blood for carotenoid analysis from one overweight/obese subject in the Healthy Eating arm at 

baseline. Colon mucosal biopsies were obtained circumferentially 15–25 cm above the anal 

sphincter by flexible sigmoidoscopy without any prior preparation of the bowels. Six biopsies 

were frozen in liquid nitrogen within 5 seconds of incision and stored at −70°C until analysis. 
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Colon samples were analyzed for carotenoids and fatty acids in a similar way as serum 

except that a colon tissue homogenate was prepared first. A total of 4 frozen biopsies were 

homogenized together, using pulverization under liquid nitrogen, a technique described 

previously [109]. A portion of the homogenate that was equivalent to one biopsy (150μl) was 

used for carotenoid analysis and an equal portion was used for fatty acid analysis. Samples were 

diluted with 50μl PBS prior to extraction. There was one tissue sample missing at 6 months from 

an overweight/obese complete in the Mediterranean arm that refused flexible sigmoidoscopy. 

Statistical Analyses 

Alcohol intake was calculated from the study questionnaire using USDA values for 

standard sizes of wine (15.4 g/glass), beer (13.9 g/beer) and spirits (15.9 g/drink). All analyses 

were done in SPSS version 18 (PASW Statistics, IBM Corporation, Chicago, IL, USA). Various 

aspects of dietary counseling were compared across the two dietary treatment arms using two-

sample t-test or Fisher’s exact test depending on whether the variable of interest was continuous 

or categorical (Table 2.2). Linear regression was used to evaluate predictors of the percentage of 

goals met at the end of the trial (Table 2.3).  

To evaluate changes over time in the dietary intakes, serum analytes and tissue nutrients, 

regression analyses were carried out under a linear mixed models framework. The linear mixed 

model regression analysis with an intent-to-treat analysis was used, which provides valid results 

in presence of drop-outs and incorporates all available data at every given time point. Separate 

models were used for each of the nutrients as outcome, with a 3-level variable time (baseline, 3 

months, and 6 months) as the primary within-subject factor and diet group assignment as the 

primary between-subject factor. The variable of interest was the group*time interaction that 
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indicates any difference in the pattern of change over time across groups. Regression models 

were controlled for covariates that can affect dietary intakes including age, gender, and BMI.  To 

isolate the effect of diet quality, energy intake was used as a time-dependent covariate for 

nutrient intakes. Residuals were checked for normality of the distribution and the outcome was 

appropriately transformed as needed prior to the final model fit (as indicated in the footnote of 

Table 2.4) on which the inference is based. Clustering within subjects was incorporated by 

means of an unstructured variance-covariance matrix. Models also were constructed using the 

data stratified by baseline weight status (normal or overweight/obese). In order to evaluate and 

compare average changes over time in fatty acids, carotenoids, and other nutrients found in 

serum across two groups, linear mixed regression models were also used with time, diet group 

assignment and the group-by- time interaction as the primary predictors. The models were 

controlled for baseline age, BMI and smoking as non-time-dependent covariates. Age was 

slightly higher in the Mediterranean group than the Healthy group (means of 55 versus 50, 

respectively).  

The prevalence of baseline smoking status was slightly different in the two study arms 

(11% in the Healthy arm versus 17% in the Mediterranean arm), although the difference was not 

statistically significant at 5% level (p = 0.06 based on Fisher’s exact test). Since smoking status 

may potentially affect the fatty acid and carotenoid concentrations, it was used as a covariate in 

the regression models BMI did not differ appreciably between the two groups at baseline, but it 

is known to affect carotenoid concentrations [110]. Further, the samples were analyzed in several 

analytical batches in the laboratory, which was a potential source of variation, and so batch was 

used as an additional covariate. SFA was square root transformed. Log transformation was used 

for all other variables except for MUFA, which required no transformation.  
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Similar models were used for concentrations of fatty acids and carotenoids obtained from 

colon tissue samples. Apart from baseline age, BMI, and smoking status, the regression models 

were controlled for variation across laboratory analysis batches. All outcomes required a natural 

logarithmic transformation with the exception of SFA, which required a square transformation 

for analysis, and MUFA, which required no transformation. 

2.4 Results 

Study subjects 

Recruitment and retention of subjects to this study was described previously [70].  

Briefly, 59 subjects were randomized to the Mediterranean arm of the study and 60 subjects to 

the Healthy Eating arm. Most of the subjects were Caucasian (88%), mean age was 53 years and 

most were female (72%). Only one subject had a personal history of colon cancer and the rest of 

the subjects either had a strong family history of colon cancer (64%) or a previous adenoma 

(27%) or  both (9%) [70]. None of these characteristics differed significantly between the two 

diet arms [70]. There were 93 participants of the original 120 who completed the whole 6 months 

of study participation (46 in the Healthy Eating arm and 47 in the Mediterranean arm).   

Counseling adherence 

Measures of adherence and dietary goal achievement are shown in Table 2.2. Subjects in 

both arms received a similar number of contacts over six months of study, as shown in Table 2.2. 

Adherence with the recordkeeping requirements were similar in both arms, with an average of 

80% of the requested records being returned. The period that elapsed before the counseling 

session at which subjects were able to achieve all of their dietary goals, however, differed 
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significantly by study arm (Table 2.2). The time required to meet goals was, on average, 48 days 

in the Healthy arm and 82 days in the Mediterranean arm.  

At the 6-month time point, the food records and 24-hour recalls were used to assess the 

number of dietary goals met for each participant. The percent of goals met at 6 months in each 

arm was good, at about 80% in each arm, but the number of subjects meeting all goals at 6 

months was considered by the team to be low, especially in the Mediterranean arm. This could 

be due in part to the fact that the omega-3 food group goal was for a weekly, not a daily, intake, 

making it difficult to discern goal- meeting from four days of diet data. There also was some 

deterioration of dietary intakes of target nutrients in the Mediterranean arm from 3 to 6 months. 

Since dietary goals were just being met by 2½ months, on average, better adherence to this diet 

might require a greater frequency of counseling contacts or more time for subjects to become 

adept at it. 

Subjects of normal weight did not differ from subjects who were overweight or obese 

with regard to session number at which goals were reached, number of calls or minutes of 

counseling time (not shown). The percent of dietary goals met at 6 months was, however, greater 

for the 33 normal weight subjects (90% goal met, SD 13) versus the 60 overweight or obese 

subjects (82% goals met, SD 24%, p=0.036 by a two-sample t-test). Recordkeeping was also 

slightly greater in the normal weight versus overweight or obese subjects (86% versus 78%, 

respectively, p= 0.082). There were no significant differences by gender in counseling 

adherence, although the session number at which goals were reached in the Mediterranean arm 

was borderline different for men (5.9 sessions) versus women (7.3 sessions, p = 0.053 

determined by the two-sample t-test).   
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A brief scale was used to measure self-efficacy for making dietary changes (see 

Methods). This scale was devised to measure the seven behaviors targeted by both interventions, 

and this revealed no significant differences in mean scores by diet arm (Table 2.2).  In addition, 

there were no significant differences from baseline to 3 months in either diet arm, as determined 

from paired t-tests (not shown). Although self-efficacy for making dietary changes did not 

change appreciably over time, it was a significant predictor of reaching dietary goals in a linear 

regression model. Self-efficacy at baseline and record-keeping percentage over 6 months were 

significant predictors of goal attainment at six months (Table 2.3). Diet arm assignment, number 

of counseling calls, length of time spent on telephone counseling, gender, education, current 

smoking status, age, marital status, baseline intake of fruits and vegetables, baseline BMI, and 

baseline obesity were not significant predictors of meeting dietary goals at 6 months.  

Food and nutrient intakes over time 

Changes in nutrient intakes were evaluated using mixed linear regression models 

consistent with intention to treat principles (Table 2.4). Variables that exhibited significant fixed 

effects of diet group assignment and group*time interaction are annotated in Table 2.4. 

Significant fixed effects of BMI status (normal weight or overweight/obese) were evident for 

saturated fat, trans fats, carotenoids, fiber and calcium. Significant fixed effects of gender were 

evident for energy, saturated fat, omega-6 PUFA and fiber. There was a significant group*time 

interaction for several dietary variables. Energy was significantly decreased from baseline in 

only the Healthy Eating group and carbohydrate intakes were significantly increased only in the 

Mediterranean group. MUFA intake decreased in the Healthy Eating group and increased in the 

Mediterranean group. Trans fats, total fruit and vegetable servings, glycemic load and sodium all 
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changed in the same direction in both arms, but the pattern of change in the Mediterranean group 

was different over time, which resulted in a significant interaction effect (Table 2.4).    

Subjects in the Healthy Eating arm reported a reduction in total energy, percent of energy 

from fat and saturated fat intake over 6 months of intervention that was maintained quite well 

from 3 to 6 months. In the Mediterranean arm, there was some deterioration of diet in the last 

three months of study. It is interesting to note that MUFA intakes decreased in the Healthy 

Eating arm and increased in the Mediterranean arm. Intakes of omega-6 and omega-3 fatty acids 

also differed by diet arm, with significant interaction effects being present in each case. Although 

trans fats were not targeted by the intervention, there was a significant decrease in the 

Mediterranean arm only.  

Both diet groups reported increased intakes of whole grains and fiber, and a decrease in 

red meat intake. Glycemic load decreased significantly in both diet arms. Carbohydrate intake 

increased in the Healthy Eating arm significantly over time in the mixed regression model, 

although this was not reflected in the simple means of all available data shown in Table 2.4. The 

Mediterranean arm was unique in the significant decrease in sodium and the increase in calcium, 

even though these were not specifically targeted by the intervention. Sodium intake was not 

decreased in the Healthy Eating arm.   

The goal for consuming five servings of fruits and vegetables per day in the Healthy 

Eating arm was surpassed resulting in statistically similar fruit and vegetable intakes in the two 

study arms (7.6 vs. 8.2 servings/day in the Healthy and Mediterranean arms, respectively, at six 

months). The significant group* time interaction indicated that total fruit and vegetable intake 

changed over time differently in the two study arms, perhaps due to the decrease in the 



 

35 
 

Mediterranean arm from 3 to 6 months. The somewhat higher total fruits and vegetable intakes in 

the Mediterranean arm were mainly due to vegetable intakes (not shown).  

Variety of fruit and vegetable intakes was scored and assessed by adding one point for 

each different type of fruit or vegetable that was consumed in a quantity that was at least half of 

a serving/day. The variables included in the variety count were six kinds of fruit intake (citrus, 

citrus juice, other fruits, other fruit juice, avocado, and fried fruit) and eight different kinds of 

vegetable intake (deep green, deep yellow, tomato, white potato, other starchy vegetables, other 

vegetables, fried vegetables not including potatoes, and vegetable juice). Variety of fruit and 

vegetables intakes appeared to be similar between diet arms as well, but enumeration of allium 

vegetables and herb intakes was not available in the NDSR program. Increases in dark green and 

yellow vegetables were similar between the two arms and significant in each case, but citrus 

intake increased significantly only in the Mediterranean arm (data not shown). Tomato intakes 

did not differ significantly over time, although there was a trend for a decrease in the Healthy 

Eating arm and an increase in the Mediterranean arm (not shown).   

 

Changes in anthropometric variables and blood markers of health risks 

There was little change in anthropometric variables. There was a small mean weight loss 

in both arms, 0.92 and 1.58 kg in the Healthy Eating and Mediterranean arms, respectively, but 

this was not statistically significant. In stratified analyses, there was a significant weight loss in 

overweight/obese subjects randomized to the Mediterranean arm, p<0.05 (Figure 1.1). Mean hip 

circumference decreased in the Mediterranean arm from 41.1 to 40.0 inches. Diastolic blood 

pressure decreased significantly in the Healthy Eating arm (from 76 to 72 mm mercury). 
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There were no significant effects of either intervention on blood lipids, growth hormone 

or measures related to insulin status. In stratified analyses, HDL decreased and LDL did not 

change significantly Figure 1.1.  C-reactive protein, however, decreased at 6 months in 

overweight/obese subjects randomized to the Mediterranean arm (Figure 1.1). 

 

Changes in serum markers of dietary intakes 

Serum fatty acids and carotenoids were measured since they can be useful biomarkers of 

changes in dietary intakes of fat, fruits and vegetables. With regard to the major classes of fatty 

acids, there were no significant changes in serum concentrations of saturated fatty acids, but 

concentrations of MUFA, omega-3 PUFA and the ratio of omega-3:omega-6 PUFA changed 

significantly in the expected directions in the Mediterranean arm (Table 2.5). 

For total serum carotenoids, changes were similar in both diet arms, but the increase in 

total carotenoids was significant only in the Healthy arm. Specific fruit and vegetable goals in 

the Healthy arm were for 5 servings per day and including at least one carotenoid-rich dark 

orange or green vegetable. Increases in lutein were significant in both arms of the study, β and α-

carotene increased significantly only in the Healthy arm, and β-cryptoxanthin increased 

significantly only in the Mediterranean arm. The fruit and vegetable goals in the Mediterranean 

arm were to consume at least one serving from each of seven categories of fruits and vegetables 

(18). There were no statistically significant changes in lycopene or zeaxanthin concentrations in 

either arm. Changes that approached statistical significance with p < 0.10 were in β-

cryptoxanthin in the Healthy arm and in β and α-carotene in the Mediterranean arm. 

 

Changes in fatty acids and carotenoids in the colon 
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Changes in carotenoids and fatty acids in the colon biopsy tissue were in the same 

direction as in blood, but the changes were smaller and fewer differences were statistically 

significant (Table 2.6). Interestingly, concentrations of omega-3 fatty acids increased in the 

Healthy arm, but the change was small. Significant increases in several carotenoids were also 

found in the Healthy arm only (Table 2.3). Changes in the Mediterranean arm that approached 

significance with p < 0.10 were for omega-3PUFA, omega-3/omega-6 ratio, β-cryptoxanthin and 

α-carotene. 

2.5 Discussion  

Dietary interventions that target the entire eating pattern as a whole have good potential 

for prevention of many cancers and can deliver a combination of preventive compounds. This 

may be important since interventions with single food components have not had consistently 

beneficial results [111-114]. In the present study, exchange lists were derived to target either 

Healthy Eating or Mediterranean patterns. Goal attainment was reasonably good for participants 

on both diets and large dietary changes were observed in both study arms. However, it did take 

individuals more time to meet the dietary goals in the Mediterranean versus the Healthy arm, 

perhaps because the Mediterranean diet had more goals and therefore required larger changes 

from baseline (Table 2.2).  Predictors of adherence to dietary goals were record-keeping and 

baseline self-efficacy for making dietary changes (Table 2.3). It therefore may be important to 

increase counseling efforts directed at self-efficacy and record-keeping to improve adherence. 

Adherence is always a concern in clinical trials. In the Polyp Prevention Trial, for example, there 

was no significant effect of a low-fat, high fiber intervention overall, but the subset of subjects 

with excellent adherence did have a lower polyp recurrence rate [115].  
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 The study presented here yielded several unexpected results. The Mediterranean 

intervention resulted in an increase in calcium, which is encouraging since a recent 

supplementation trial has indicated a cancer preventive potential for calcium [116]. In the 

Mediterranean diet, primary calcium sources were derived from low-fat dairy, such as cheese, 

yogurt, and milk. The Mediterranean diet also showed decreases in both trans fats and sodium 

(Table 2. 4). These decreases could result from lower use of ready-made, food products, many of 

which have a dietary fat content that is not consistent with the Mediterranean goals. One of the 

other interesting results was that the higher goals for fruit and vegetable intakes in a greater 

variety in the Mediterranean diet arm did not result in significantly higher intakes than the more 

modest goals fruit and vegetable goals in the Healthy arm (Table 2.4). This indicates that the 

exchange list goals derived in this study for fruit and vegetable consumption that are consistent 

with Healthy People 2010 goals might be sufficient to increase both quantity and variety of 

intakes.  

Given the similarity between the two diets arms in fruit and vegetable intakes, the major 

difference between the two interventions was found in dietary fat intakes. The Mediterranean 

intervention uniquely increased mean dietary intakes of both MUFA and omega-3 fats, with 

decreases in omega-6 fats. This is potentially important since prostaglandin E2 (PGE2) is formed 

from arachidonic acid (omega-6 fatty acid) via cyclooxygenase -2 (COX-2), which is induced by 

high omega-6 fatty acid diets [117]. PGE2 is strongly and positively associated with colon cancer 

risk [118]. In contrast, omega-3 and omega-9 fatty acids, the main types of fats found in 

Mediterranean diet, have protective effects and have been associated with decreased PGE2 levels 

and COX-2 expression [119-121]. The Mediterranean intervention also achieved relatively large 



 

39 
 

increases in dietary MUFA, possibly due to consumption of olive oil, a main component of the 

Mediterranean diet [122, 123].   

The other important difference between the two interventions was a significant weight 

loss in overweight or obese subjects randomized to the Mediterranean diet. This was achieved 

despite the facts that the dietary counseling was designed to maintain baseline weight and mean 

reported energy intakes did not change significantly in the Mediterranean study arm (Table 2.4). 

The reasons for the observed weight loss with the Mediterranean diet are not clear. One of the 

factors might be related to increased post prandial oxidation of MUFA versus SFA, which would 

favor weight loss in the Mediterranean versus the Healthy diet [124, 125]. Other Mediterranean 

interventions were typically done with individuals who had cardiovascular or diabetes risks, and 

counseling for energy restriction was provided for individuals who were not of normal weight, 

such as the study of Esposito et al. [122, 126].  In the Medi-Ravage study, energy restriction was 

not used and there was a slight, non-significant weight loss [127]. The weight loss in the 

overweight and obese group was associated with a significant decrease in C-reactive protein in 

the Mediterranean arm, although we cannot determine if this was due to weight loss or to the 

change in dietary composition (Figure 2.1).  

We also used biomarkers of dietary intakes to evaluate the effects of the two 

interventions.  Counseling for the Healthy Eating diet, namely 2 servings per day of fruit and 3 

servings per day of vegetables, with at least one being dark green or orange, was sufficient to 

increase concentrations of several serum and colon carotenoids (Table 2.5). The Mediterranean 

group with goals for consuming at least 7 servings per day of fruits and vegetables in 7 different 

categories did not display relatively larger increases in serum carotenoids. One could speculate 
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that subjects in the Healthy arm met their goals with a variety of foods to increase palatability, 

resulting in a broad spectrum of carotenoid intakes in the Healthy Eating arm. The only serum 

carotenoid that was increased significantly in the Mediterranean arm, but not the Healthy arm, 

was β-cryptoxanthin, which is found mainly in fruits. Whether or not other phytochemicals are 

increased by a Mediterranean diet needs to be investigated. This would include flavonoids such 

as quercetin, which is high in onions and apples, and phenolic compounds from [128, 129].  

The Mediterranean diet also was distinctive in increasing serum concentrations of MUFA 

and omega-3 fatty acids, but this may reflect recent diet since phospholipids were not isolated. 

Changes in micronutrients were smaller in the colon than in the serum, and the only significant 

changes were noted in the Healthy Eating arm (Table 2.6). This could be due to: 1) the short time 

frame of the intervention since tissue stores may require more time to reach equilibrium than 

blood, 2) errors inherent in dietary assessment, especially when only 4 days are used at each time 

point, and 3) to the role of metabolic factors. Most dietary nutrients are absorbed in the small 

intestine, and colonic exposures to nutrients, therefore are likely to occur at the basolateral, not 

luminal, side via the systemic circulation. This is especially true for the distal colon that was 

sampled in this study.  

It was disappointing that colon carotenoids were not changed to a larger extent. In 

experimental models, many individual carotenoids have been shown to be protective of colon 

cancer including lutein and lycopene [130, 131]. A pooled analysis of 11 cohort studies indicated 

that of the dietary carotenoids, only lutein and zeaxanthin, which were measured together in 

foods, displayed weak protective effects for colorectal or colon cancer (2). Colon lutein or 

lycopene concentrations, however, were not significantly increased after six months of either 
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intervention (Table 2.6). Lycopene in both serum and adipose tissue has been previously found 

to be poorly related to dietary intakes, and supplementation may be a more feasible method to 

increase concentrations of lycopene [132, 133].  

Changes in dietary fats and serum fatty acids were also not reflected in the colon. This is 

potentially important since fatty acid availability is a key determinant of the types of 

prostaglandins and other eicosanoids that are produced in cells [134]. There were few significant 

changes in colon fatty acids other than a slight increase in omega-3 PUFA in the Healthy arm. 

This indicates the possible importance of metabolic processes in regulating tissue fatty acids 

concentrations, and these may be genetically determined. 

A limitation of this study is that subjects recruited for the study were largely well-

educated and Caucasian, limiting generalizability of the results. Another limitation of the study is 

that persons at increased colon cancer risk might be more motivated than the general population 

to adhere to dietary recommendations. On the other hand, intensive interventions such as this 

may be most appropriate in such populations with defined cancer risk. Strengths of the study 

include the randomized design and novel intervention methods with good participant adherence. 

Weaknesses include the fairly short time frame of intervention (6 months) and a reliance on self-

reporting for dietary assessments.  

 In conclusion, this study implemented two different exchange-list dietary intervention 

strategies in persons at increased risk of colon cancer. The intervention that was based on 

Healthy People 2010 goals resulted in similar increases in quantity and variety of fruits and 

vegetables as the more elaborate Mediterranean intervention, indicating that more modest goals 

for fruit and vegetables could be adequate to increase consumption. Whether or not other 
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phytochemicals are affected to a relatively greater extent with Mediterranean diets remains to be 

established. 

The Mediterranean diet arm did not have weight loss goals, but it resulted in a significant 

weight loss and a decrease in serum C-reactive protein in the subjects who were overweight or 

obese at baseline. Given the difficulty in achieving and maintaining weight loss, the present 

results indicate that the Mediterranean exchange list approach should be more fully explored in 

studies of weight loss and weight loss maintenance.   

Lastly, the Mediterranean intervention was unique in increasing intakes of MUFA and 

omega-3 fatty acids, but this did not affect colon levels of fatty acids over six months of study. 

These results point to the possible role of metabolic factors and genetic variability in regulating 

colon tissue nutrient and fatty acids, which may impact PGE2
 concentrations. It also highlights 

the importance of understanding the effect of inter-individual variability in PGE2 concentrations. 
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Table 2.1: Dietary Goals Tracked on Self-monitoring Forms  
 

Diet Arm Dietary Goal Method of Enumeration 

Healthy Eatinga Saturated Fat < 10% of calories Saturated Fat grams per day 

 Fruit two servings per dayb 

 Vegetables  two servings per day  

 Dark green or orange vegetable one serving per day  

 Whole grains  at least three servings per day  

Mediterraneanc High MUFA foods 7-10 exchanges per day (5 g per exchange) 

 High omega-3 food twice a week, 3 ounce serving size (with limits on fish with  higher mercury) 

 Dark green vegetable one to two servings per day  

 Orange and yellow vegetable one to two servings per day  

 Red vegetable one to two servings per day  

 Other vegetable one to two servings per day  

 Dark green culinary herbs one serving per day,1 TB fresh or 1 tsp. dried  

 Allium vegetables use liberally at least once a day 

 Fruit one serving per day Vitamin C Fruit and one serving per day Other Fruit 

 Whole grains at least three servings per day  

a The exchange book for the Healthy Eating diet included a list of sodium content of various types of foods, but sodium intake was not tracked.   
b For both diets, one serving for fruits and vegetables was defined as 1 medium, 1 cup fresh, 2 cups leafy greens, ½ cup canned or cooked, ½ cup 

juice or ¼ cup dried. For grains, serving sizes were 1 ounce (12 chips or 6 crackers), 1 slice bread, ½ cup cooked grain, ¾ cup dry cereal, or 3 cups 

popcorn. 
c The exchange book for the Mediterranean diet included lists of foods high in omega-6 fats to either avoid, limit to twice a week or limit to twice a 

day and a high MUFA list. The total fruit and vegetable goal was 7-9 servings/day, depending on baseline energy intake, and variety was defined 

by use of five exchange groups for vegetables and two exchange groups for fruit.
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Table 2.2: Adherence with Dietary Counseling for Subjects who Completed 6 Months of Studya  

 

Variable 
Healthy 

Eating (n=46) 

Mediterranean 

(n=47) 

P-

valuea 

Number of counseling Calls 10.3, 0.6 10.6, 1.0 0.106 

Total minutes counseling  212, 67 245, 45 0.008 

Number of sessions to meet goalsc 5.2, 1.8 6.9, 2.2  <0.001 

Record-Keepingd 81%, 22% 80%, 22% 0.883 

Self-Efficacy score at baseline 31, 4 31, 3 0.802 

Self-Efficacy score at 3 months 31, 3 31, 3 0.399 

Percent of goals met at 6 months 88%, 23% 82%, 18% 0.159 

Participants meeting > 70% of goals at six months, 

number and percent 

41, 89% 40, 85% 0.759 

Participants meeting 100% of goals at six  months, 

number and percent 

31, 67% 15, 32%e 0.001 

a Data shown is mean and SD, or number and percent for subjects who completed 6 months.
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Table 2.3: Predictors of Dietary Goal  

 

Predictor of Dietary 

Goal Attainment 
Betaa P-value 

Record-keeping 0.476 <0.001 

Self-efficacy at baseline 0.342 <0.001 

aThe model was controlled for diet arm assignment, gender, baseline age and baseline BMI 

status (normal weight or not), all of which were not significant predictors of goal attainment.  

The two factors showed accounted for 37% of   the variance in goal attainment (p < 0.001). 
a Data shown is mean and SD, or number and percent for subjects who completed 6 months. 
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Table 2.4: Dietary Intakes over Time in the Two Study Arms   
 

 Healthy Eating Mediterranean 

Nutrient or Food Baseline 

(n=61) 

3 months 

(n=49) 

6 months 

(n=47) 

Baseline 

(n=59) 

3 months 

(n=50) 

6 months 

(n=47) 

Energy (kcal per day)a 2144, 649  1828, 509b 1899, 454b 2001, 574  2087, 665  2030, 657  

Total fat, (% of energy)a,c 35, 6 27, 6b 28, 7b 35, 6 36, 6 33, 6 

Total Protein, (g per day) 84, 24 77, 24 81, 22 77, 22 84, 29 83, 24 

Carbohydrate, (g per daya,c) 261, 83 260, 69b 265, 71b 247, 81 256, 93 261, 96 

Saturated fat, (g per day) 30, 13 18, 10b 18, 7b 26, 9 19, 9b 19, 8.5b 

MUFA, (g per day)a,c 32, 12 22, 10b 24, 10b 30, 12 46, 16b 39, 18b 

Omega-6 PUFA, (g per day)c,d 15, 6 12, 5 13, 2 16.0, 7.6 13.2, 6.7b 11.8, 4.7b 

Omega-3 PUFA, (g per day)c,d 1.8, 0.8 1.7, 1.1 1.8, 0.8 1.9, 1.1 2.9, 2.4b 2.4, 1.7 

Long chain omega-3 fats, (g per day) 0.13, 0.20 0.26, 0.52 0.24, 0.32 0.15, 0.26 0.41, 0.57 0.35, 0.43 

Trans fats, (g per day)a,c 3.6, 2.0 2.3, 1.6b 2.1, 1.4b 3.6, 2.7 1.5, 1.4b 1.9, 1.9b 

Fruit and veg., (servings per day)a 4.55, 1.84 7.64, 3.17b 7.60, 3.43b 4.47, 1.72 9.42, 3.12b 8.20, 3.32b 

Total Carotenoids, (mg per day) 11.0, 6.0 22.3, 13.5b 19.2, 8.6b 11.2, 6.4 25.5, 13.4b 22.1, 13.3b 

Variety fruit and (servings per day) 3.2, 1.2 4.5, 1.8b 4.4, 1.8b 3.4, 1.5 5.3, 1.4b 4.9, 1.7b 

Whole grains, (servings per day) 1.8, 1.b 3.3, 1.7b 3.4, 1.6b 1.9, 1.7 3.4, 1.8b 3.4, 2.1b 

Fiber, g per day 22, 8 29, 11b 30, 10b 22, 8 36, 16b 33, 13b 

Red meat, (servings per day) 1.9, 1.6 1.4, 1.5 1.0, 1.2b 1.5, 1.3 1.2, 1.6 0.9, 1.1b 

Legumes, (servings per day) 0.25, 0.38 0.16, 0.27 0.30, 0.44 0.20, 0.27 0.35, 0.49 0.41, 0.55 

Glycemic Loada,c 200, 69 188, 54b 189, 58  190, 73 168, 82b 179, 79b 

Sodium, (g per day)a,c 3.48, 1.17  3.05, 1.19  3.04, 0.98  3.30, 1.13 2.77, 1.39b 3.06, 1.12b 

Calcium, (mg per day) 934, 340 921, 376 978, 387 843, 36 1041, 403b 1026, 331b 
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Data shown is raw mean and SD for all available data. 

a A significant group*time interaction was present for indicated variables from mixed linear regression models using variables transformed to 

achieve normality, as described in methods.  Covariates in the analyses were energy intake (except in the case of energy and percent fat), gender, 

baseline BMI status (normal weight or not) and baseline age. One subject in the Healthy arm who completed food records for the 6 month visit did 

not attend the 6 month study visit.  The transformations used before analysis were log for saturated fat, PUFA, fiber, sodium, calcium, legumes 

and glycemic load; square root for whole grain servings, fruit and vegetable servings, and total carotenoids; fourth root for MUFA, and long chain 

omega-3 fats; and the reciprocal square root for energy. 
b Significantly different than baseline for that diet arm.  
c A significant fixed effect of group was present in the model. 
d The omega-6 PUFA intake was the sum of 18:2 and 20:4.The omega-3 PUFA intake was the NDS output variable “omega-3 fatty acids” which is 

the sum of 18:3, 18:4, 20:5, 22:6, and 22:5. 
e Significantly different than 3 months for that diet arm. 
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Table 2.5: Serum Concentrations of Nutrient Biomarkers by Diet Arm. Data shown is raw mean and SD for all available data at each time 

point 

 

Serum Nutrient Healthy Eating Mediterranean 

Baseline  

(n = 61) 

6 Months  

(n = 47) 

Baseline  

(n = 59) 

6 Months  

(n = 47) 

SFA (%) 34, 5 34, 5 34, 5 33. 5 

MUFA (%)a 24, 6 24, 5 24, 5 27, 4b 

Omega-6 PUFA (%) 36, 7 36, 7 37, 7 34, 6b 

Omega-3 PUFA (%) 3.8, 1.2 4.1, 1.5 3.7, 1.5 4.2, 1.4b 

Omega-3/Omega-6 fatty acid ratio 0.11, 0.04 0.12, 0.05 0.11, 0.07 0.13, 0.05b 

Total carotenoids (pg per mL) 959, 508 1240, 873b 1033, 807 1154, 746 

Lutein (pg per mL) 170, 84 200, 85b 174, 104 219, 152b 

Zeaxanthin (pg per mL) 40, 22 46, 21 40, 19 47, 44 

β-Cryptoxanthin (pg/mL) 79, 51 115, 106 88, 74 118, 114b 

β-Carotene (pg per mL) 229, 227 382, 507b 303, 472 367, 436b 

α-Carotene (pg per mL) 78, 70 164, 244b 97, 136 110, 86 

Lycopene (pg per mL) 363, 262 333, 236 331, 271 294, 168 

a A significant group by time interaction was present at p < 0.05. Significance testing is based on the model for transformed outcome, with 

transformations as described in methods. 
b Significantly different than baseline for that diet arm, p < 0.05. All models had analysis batch, baseline age, BMI, and smoking status as 

covariates. 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4021591/table/T2/#TFN7
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4021591/table/T2/#TFN8
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4021591/table/T2/#TFN8
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4021591/table/T2/#TFN8
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4021591/table/T2/#TFN8
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4021591/table/T2/#TFN8
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4021591/table/T2/#TFN8
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4021591/table/T2/#TFN8
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4021591/table/T2/#TFN8
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4021591/table/T2/#TFN8
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4021591/table/T2/#TFN8
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4021591/table/T2/#TFN8
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Table 2.6: Colon Tissue Concentrations of Nutrients by Diet Arm. Data shown is mean and SD for all available data 
 

Nutrient Level Healthy Eating Mediterranean 

Baseline 

(n = 61) 

6 Months 

(n = 47) 

Baseline 

(n = 59) 

6 Months 

(n = 47) 

SFA (%) 32, 5 32, 4 32, 4 32, 4 

MUFA (%) 31, 4 31, 4 32, 5 33, 5 

Omega-6 PUFA (%) 32, 7 31, 5 31, 5 31, 5 

Omega-3 PUFA (%) 4.8, 2.4 5.1, 2.32 4.4, 2.3 4.6, 2.2 

Omega-3/Omega-6 ratio 0.16, 0.10 0.17, 0.082 0.15, 0.08 0.16, 0.08 

Total carotenoids 17, 15 29, 502 17, 19 21, 19 

Lutein (pg per ml) 8.1, 7.7 14.7, 34.3 8.0, 8.1 10.7, 11.4 

Zeaxanthin (pg per ml) 0.79, 0.83 1.03, 1.46 0.74, 0.73 0.83, 0.61 

β-Cryptoxanthin (pg per ml) 0.93, 0.68 1.42, 1.482 1.01, 0.84 1.32, 1.14 

β-Carotene (pg per ml)a 2.2, 2.9 3.8, 4.72 2.8, 6.8 3.2, 4.1 

α-Carotene (pg per ml)a 1.1, 1.7 2.9, 4.22 1.3, 1.7 1.9, 2.1 

Lycopene (pg per ml) 3.5, 5.2 4.9, 11.2 3.3, 3.9 3.0, 3.5 

 aSignificant group-by-time interaction was present from mixed linear regression models, after transformation of variables to achieve normality, as 

described in Methods. 
a Significant different than baseline for that diet arm, p < 0.05. All models included analysis batch, baseline age, BMI, and smoking status as 

covariates. 
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Figure 2.1: Changes in Select Parameters for the Healthy Eating and Mediterranean study 

arms 

The data shown is mean and SE for:  A. body weight, B. C-reactive protein, C. triglycerides and D. low 

density lipoprotein (LDL), given as change from baseline to 6 months in subjects who were either normal 

weight or overweight/obese at baseline.  *Mixed models regression indicated that the decrease in body 

weight and C-reactive protein in the Mediterranean arm for overweight/obese subjects (starred) was 

statistically significant after controlling for baseline age and gender (p<0.05).  
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CHAPTER 3 

Relationships of Prostaglandin E2 (PGE2) with Fatty Acid Concentrations and Gene 

Expression in Colon of Individuals at Increased Risk of Colon Cancer 

3.1 Abstract 

  It is important to better understand inter-individual differences in colonic PGE2 

concentrations since PGE2 is closely associated with colon cancer risk. This can be done by 

evaluating the influence of substrate availability (fatty acids), medication use, baseline 

demographics and colon cancer risk factors on PGE2 concentrations and expression of enzymes 

and receptors in its pathway.  

In order to evaluate the effects of these factors on the PGE2 pathway, colon biopsies were 

obtained from 120 individuals at high risk for colon cancer. PGE2 concentrations in the colon 

tissue were measured using reverse-phase liquid chromatography with tandem mass spectral 

detection (LC-MS/MS). Fatty acids were measured using gas chromatography.  Quantitative 

Real Time PCR (QrtPCR) was used to measure mRNA expression of genes in the PGE2 

pathway: PTGS1 and 2, PTGES-1 and 3, HPGD and PGE2 receptors 2 and 4. Correlations, t-test 

and regressions models were used to determine the associations between these factors and PGE2 

concentrations. The most highly expressed genes were HPGD and PTGS1. PTGS1 expression 

was significantly and positively associated with PGE2 but not the other enzymes. There was no 

association of PGE2 with demographic factors, or substrate fatty acids (arachidionic acid or 

eicosapentaneoic acid). Use of non-steroidal anti-inflammatory agents decreased colon PGE2 
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concentrations and expression of PTGS2 but not expression of PTGS1.  Saturated fatty acid 

concentrations were positively associated with PGE2 concentrations. In multivariate linear 

regression models, both SFA and PTGS1 were significant positive predictors of PGE2 after 

controlling for non-steroidal anti-inflammatory drugs uses, gender, age, and smoking status. 

These results demonstrate the potentially important role of PTGS1 as a biomarker for colon 

cancer prevention. It also highlights the significant effect of both PTGS1 expression and 

saturated fatty acid concentrations along with PTGS2 in regulating PGE2 concentrations in 

healthy individuals at high risk for colon cancer. 

3.2 Introduction 

Colorectal cancer is a term used collectively to denote colon and rectal cancer (CRC). In 

the United States, CRC is the third most common type of cancer and the third leading cause of 

death in both men and women [135].The American Cancer Society estimates that approximately 

132,700 new cases will be diagnosed with CRC, and 49,700 deaths will be expected by the end 

of 2015 [4]. About 60-70% of colon cancer cases are sporadic, i.e. not due to known genetic 

factors, and this potentially points to an important role of modifiable risk factors in the 

prevention of colon cancer [136-138].These factors include dietary behaviors and lifestyle 

choices, such as lack of regular physical activity, obesity, alcohol consumption and smoking 

[139-142].  

Prostaglandin E2 (PGE2) is a pro-inflammatory mediator and is strongly associated with 

colon cancer risk and development [143, 144]. PGE2 is synthesized in a stepwise manner by 

initial release of the fatty acid arachidonic acid (AA) from the cell membrane phospholipids by 

phospholipase A2. This is followed by metabolism of AA by constitutive COX-1 and inducible 
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COX-2, to form an unstable endoperoxide intermediate, prostaglandin H2 (PGH2) and 

isomerization of PGH2 to PGE2 via prostaglandin E synthases (PGES) (Figure 3.1). There are 

three forms of PGES: cytosolic PGES (cPGES) and microsomal PGES-1 and 2 (mPGES1 and 2). 

Both cPGES and mPGES-2 are constitutively expressed and believed to be associated with 

COX-1 [145], while mPGES-2 co-localizes with COX-2 [146]. In contrast, mPGES-1 is induced 

by pro-inflammatory stimuli and is found to be overexpressed in colon cancer [24, 147, 148]. 

The synthesized PGE2 can be catabolized by 15-prostaglandin dehydrogenase (15-PGDH) or can 

exert its actions in autocrine and paracrine manner by binding to its receptors in the cell 

membrane (PTGER 1-4), as shown in Figure 3.1.   

It is well established that inducible COX-2 plays a critical role in colon cancer 

development by increasing PGE2 concentrations [149, 150]. Interestingly, animal studies also 

indicate the important role that constitutive expression of COX-1 plays in colon cancer 

development [151, 152]. Additionally, several epidemiological and experimental studies have 

indicated that NSAIDs inhibit both COX-1 and COX-2 [153]. In colon tumors, microsomal-

prostaglandin E-synthase (mPGES-1) and COX-2 are overexpressed [148]. In contrast, 15-

PGDH, an enzyme that degrades PGE2, is shown to be down-regulated during tumorigenesis 

[28]. The PGE2 receptors (PTGER) are also a potential target for colon cancer prevention and 

treatment[31].  

In addition to the role of the enzymatic pathway on PGE2,  growing research points to the 

effects of dietary fatty acids in controlling PGE2 levels. For example, higher intakes of dietary 

omega-6 fatty acid increase arachidonic acid (AA omega-6, substrate fatty acid) levels in colon 

tissue [154]. On the other hand, intake of eicosapentaneoic acid (EPA n-3), increases the ratio of 
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EPA to AA, which in turn decreases PGE2 levels due to the inhibition of COX-1 activity by EPA 

[155]. Similarly, intake of monounsaturated fatty acids (MUFA n-9, non-substrate fatty acids) 

may decrease PGE2 levels by reduction of COX-2 expression during tumor genesis [121]. In 

contrast, formation of PGE2, COX-2 expression and inflammation were found to be enhanced by 

saturated fatty acids (SFA)  through activation of toll-like receptors [156]. 

The aim of the present study was to better understand inter-individual differences in 

colon PGE2 concentrations by evaluating the factors that affect expression of genes in the PGE2 

pathway.   

3.3 Methods 

Study Participants, Eligibility and Design  

Individuals at increased risk of colon cancer were eligible for the Healthy Eating for 

Colon Cancer Prevention Study. The study was approved by the University of Michigan 

Institutional Review Board (HUM00007622) and information on the recruitments, eligibility 

criteria, dietary assessment and intervention were described previously in detail [70, 71]. All 

subjects were given a written informed consent to participate in the study. In brief, the study 

recruited 120 individuals with a strong family history of colon cancer, or a personal history of 

adenomatous polyps or early stage colon cancer. Other inclusion criteria included being in good 

general health, being at least 21 years old, and having a body mass index (BMI) of ≥ 18.5 and < 

35 kg/m2. Eligible subjects were randomized to one of two dietary interventions, a Healthy 

Eating diet or a Mediterranean diet, for 6 months. The data shown here is focused on baseline 

measures made in this study. A dietary recalls and two days of food records were collected prior 



 

55 
 

to baseline. An additional 24-hour recall was obtained at the study visit to obtain an average 

estimate of baseline diet. A study questionnaire captured medical history and behavioral factors 

such as age, gender, education, physical activity, and medication use as well as colon cancer risk 

factors (Table 3.1).   

Medication use 

Medications that were commonly used by study participants were evaluated for effects on 

the biomarkers quantified in colon biopsies.  The most prevent medication was regular use of 

NSAIDs for cardiovascular disease prevention by 24 subjects which was aspirin with a dose of 

81 mg/day or 325 mg every other day. Cholesterol medications were used by 19 subjects and this 

included Crestor, Ezetimibe, Lipitor, Lovastatin, Mevacor ,Simvastatin, Vytorin, and Welchol. 

Lastly, blood pressure medications were used by 21subjects and these included Acebutolol, 

Atenolol, Hydrochlorothiazide, Losartan, Lisinopril and Metoprolol or combinations. Occasional 

use of other medications was not analyzed. 

Flexible Sigmoidoscopy and Tissue Collection  

Colon tissue biopsies were collected by flexible sigmoidoscopy. This was done without 

prior preparation of the bowels. Six biopsies were immediately flash frozen in liquid nitrogen 

within 30-50 seconds after removal from the subject and then stored at −70°C for further 

biomarkers analysis.  

RNA Extraction and Reverse Transcription (cDNA Synthesis) 
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A frozen colonic biopsy specimen, approximately 5 mg, was pulverized to a fine powder 

using a liquid-nitrogen-cooled mortar. RNA was extracted from the tissue powder using the 

TRIzol method for extraction, according to the manufacturer’s protocol (Invitrogen, cat. no. 

15596-026). Briefly, 1mL of TRIzol was added to each sample prior to homogenize on ice by 

using an Ultrasonic Processor (Misonix, Farmingdale, NJ). Isopropanol 100% (0.5 mL) was used 

for RNA precipitation in the presence of 50 μl of glycogen for each 1mL of TRIzol homogenate. 

The RNA pellet was washed three times with 75% ethanol, and resuspended in 20µl 

RNAse free water after drying. The concentration and purity of RNA were determined using 

ND-1000 Spectrophotometer (NanoDrop, Wilmington, DE, USA); all samples used had a ratio 

of 260/280 and value greater than 1.7. The RNA was diluted to achieve 1ug RNA/9.9ul RNase 

free water. The Reverse Transcription System was used to synthesize the cDNA following the 

manufacturer protocol (Promega, cat. no. A3500). The samples were in the thermal cycler (BIO-

RAD, cat. T100), for 1 minute at 25°C, 1.5 hours at 42°C, 5 seconds at 95°C, and then left at 4°C 

until cool.   

Quantitative Real-Time PCR (RT-qPCR)  

Real-Time PCR was performed by using TaqMan® Environmental Master Mix 2.0 (Life 

Tech, cat #4398044). A 26 µl PCR reaction was prepared using 5µl of cDNA (RT product), a 

1.25 µl gene specific primer, and a 13.5 µl primer mixture from Life Tech TaqMan® Gene 

Expression Assays. A mixture of cDNA from the sample pool was used to construct the standard 

curve. All samples and standard curves were run in duplicate in the real-time PCR reactions. The 

primers and probes used for real time PCR were purchased from Applied Biosystems (Foster 

City, CA, USA). The primers used were as follows: COX-1 (PTGS1), Hs00377726_ml), COX-2 
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(PTGS2, Hs00153133_m1), mPGES1 (PTGES1, Hs01115610_ml), cPGES (PTGES3, 

Hs00832847_gH), 15 HPGD (HPGD, Hs00168359_ml), EP2 (PTGER2, Hs04183523_m1), and 

EP4 (PTGER4, Hs00168761_m1). The cytokeratin 20 Krt20, a marker of colonic epithelial cell 

mass, was used as an internal control for normalization (Hs00300643_m1) [157]. The real-time 

PCR thermal conditions were: 50°C 2 min, 95°C 10 min followed by 40 cycles of 95°C 15 sec 

and 60°C 1 min.  The mean efficiency for the PCR standard curve for each primer was: PTGS1 

(95%), PTGS2 (90.4%), PTGES (105%), PTGES3 (97.2%), HPGD (99%), PTGER2 (93%), 

PTGER4 (94%), and Krt20 (94%). For quantification, the standard curve method was used, and 

the average amount of each target mRNA expression and Krt20 mRNA expression was 

established from the standard curve.  The target gene expression was then normalized by the 

Krt20 expression.  

PGE2 and Fatty Acids Quantification 

The method used to quantify PGE2 was reverse-phase liquid chromatography with 

tandem mass spectral detection (LC-MS-MS), as previously established for rodent tissues [109]. 

In brief, tissue homogenates were prepared from two frozen colon biopsies, which were about 5 

mg of tissue each. Ether was used for extraction of PGE2 prior to LC-MS-MS analysis. The 

analysis was performed using deuterated internal standards (Cayman Chemical, Ann Arbor, MI) 

and a Luna Phenyl-Hexyl analytical column (2 x 150 mm, 3 μm particle size, Phenomenex, 

Torrance, CA). Since deuterated compound was not available for PGE3, PGE2-d4 was used for 

quantifying PGE3. A small portion of the homogenate was also used for analysis of total protein 

by the Bradford assay. The PGE2 values were expressed as nanogram (ng) of PGE2 per milligram 

(mg) of protein. 
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The fatty acid measures of colon homogenates were performed using GC-MS analysis , 

as previously published [158]. In brief, frozen colon tissue biopsy weighing approximately 5mg 

was pulverized and added to a tube of 150 μl of ice-cold phosphate buffered saline containing 

0.1% BHT and 1mM EDTA for sonication by an Ultrasonic Processor and processed twice 30 

seconds. One ml of chloroform and methanol with a ratio of 1:1 was used for total lipid 

extraction and fatty, acid methyl esters were prepared with METH-PREP II derivatization 

reagent prior to GC-MS analysis (Alltech, Deerfield, IL) [158]. 

Statistical Analysis  

All statistical analyses were conducted using IBM SPSS software version 22 (PASW 

Statistics, IBM Corporation, Armonk, New York). All variables were checked for normality of 

the distribution before analyses and transformed as needed. Natural log transformation was used 

for normalizing gene expression of enzymes and receptors in the PGE2 pathway, and the square 

root was used for concentrations of PGE2 and arachidonic acid. Descriptive statistics were used 

to present the subject characteristics. To evaluate the effects of the baseline factors on PGE2, 

two-sample t-tests and partial correlations were used. Spearman correlation coefficients were 

used to determine the associations between PGE2, gene expression and colon tissue. Generalized 

linear model regression (GLM) models were used to determine the predictors of colon PGE2 

concentrations.  Although known risk factors for colon cancer of age, gender and smoking status 

did not show significant effect on colon PGE2 concentrations, they were nonetheless entered as 

covariates in the models. 

3.4 Results 
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Effect of the Demographic Factors on PGE2 and Its Pathway 

The characteristics of the enrolled study participants are shown in Table 3.1. 

Demographic factors such as age gender, alcohol intake, obesity and physical activity did not 

show significant associations with PGE2 or gene expression of enzymes and receptors in its 

pathway (Table 3.2). However, medication use showed significant effects on PGE2 

concentrations and gene expression (Table 3.3). NSAIDs use (in 24 subjects), significantly 

reduced both PGE2 concentrations and PTGS2 gene expression. The significant effects of regular 

medication use (given for medication users and nonusers, respectively) for NSAIDs on 

concentrations of PGE2 were (11 vs. 20 ng/mg protein) and PTGS2 (0.16 vs. 0.23); for 

cholesterol medications on PTGES1 (0.11 vs. 0.19, n=19 users); and for blood pressure 

medication on PTGS2 (0.16 vs. 0.22, n=21 users) and on PTGR2 (0.2 5 vs 0.31).  

Some individuals were taking more than one of these medications. To determine the 

effect of specific types of medication use, subgroup analysis was conducted excluding 

individuals using more than one type of medication (Table 3.4). For NSAIDs users, after 

excluding subjects with cholesterol and blood pressure medication users (n=11), the significant 

difference in PGE2 remained. However, the significant effect of NSAIDs use on PTGS2 

disappeared, though the mean for users stayed lower vs non users (0.19 vs. 0.26) in users and 

nonusers, respectively). For seven cholesterol medications users, after excluding subjects taking 

NSAIDs and blood pressure medications, the difference in PTGES1 remained significant (0.11 

vs. 0.20 in users and nonusers, respectively). For the 11 individuals who used blood pressure 

medication, after excluding those subjects taking NSAIDs and cholesterol medications , the 

effect on PTGS2 (0.16 vs. 0.27, in users and nonusers, respectively) was almost significant 
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(p=0.06), whereas the difference in PTGR2 (0.27 vs 0.38 in users and nonusers, respectively) 

was no longer significant. 

Gene expression of enzymes and receptors in the PGE2 Pathway  

 Gene expression of the enzymes and receptors involved in the PGE2 pathway are shown 

in Figure 3. 2.  The highest relative mean mRNA expression in colon biopsies was 1.31 for 

HPGD and 1.12 for PTGS1 (1.12).  PTGS1 expression was almost five-fold higher in 

comparison to PTGS2 levels (0.2), which appear to have a very low expression.  PTGES3 

mRNA expression (0.5) was almost two-fold higher than PTGES1 expression (0.17). Lastly, 

among the PGE2 receptors, PTGER4 was expressed almost three fold higher in comparison to 

PTGER2 (0.90 vs. 0.34). 

Associations of PGE2 Concentrations with Gene Expression  

Table 3.5 shows the Spearman correlation coefficients between PGE2 concentrations and 

relative mRNA expression of enzymes and receptors. Correlations were significant at the p< 0.01 

level. PGE2 was significantly correlated with PTGS1 (ρ=0.27). PTGS1 was significantly 

correlated with PTGS2 (ρ=0.50), as well as the synthase enzyme PTGES1 (ρ=0.58) but not with 

the degradation enzyme HPGD. PTGS1 was also correlated with the PGE2 receptors PTGER2 

(ρ=0.28) and PTGER4 (ρ=0.51). Although PTGS2 was not found to be associated with PGE2, it 

showed significant association with PTGES1 (ρ=0.61), HPGD (0.36), PTGER2 (ρ=0.58) and 

PTGER4 (ρ=0.48). For the synthase enzymes, PTGES1 was also significantly correlated with 

HPGD (ρ=0.34), PTGER2 (ρ=0.53) and PTGER4 (ρ=0.45). However expression of PTGES3 

was not associated with expression of any enzymes and receptors. HPGD was significantly 
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correlated with PTGER2 (ρ=0.53) and PTGER4 (ρ=0.30). Finally, PTGER2 was significantly 

correlated with PTGER4 (ρ=0.51). 

Associations of PGE2 Concentrations, Gene Expression of Enzymes and Receptors and 

Colon Tissue Fatty Acids  

To understand the relationships between PGE2, gene expression and colon tissue fatty 

acids, Spearman correlations were conducted (Table.3.6). Initial correlations were explored 

between colonic PGE2 pathway and dietary intakes to determine if there were any relationships 

between the two. None of the correlations were significant with p < 0.05 (data not shown). Next, 

correlations with colon nutrient concentrations with gene expression were explored (Table 3.6). 

There were significant positive associations between PGE2 and colon tissue saturated fatty acids 

(ρ=0.31). For gene expression, there were significant positive associations between PTGS1 and 

EPA (ρ=0.24). For PTGS2 there was a negative association with monounsaturated fatty acids 

MUFA (ρ=0.28), and PTGS2 tended to positively associate with AA. PTGER4 had a significant 

positive association with AA (ρ=0.44) and EPA (ρ=0.39), whereas it showed a negative 

significant association with MUFA (ρ=0.38).  

Predictors of PGE2 levels in Linear Regression Models 

Finally, linear regression models were utilized to determine if effects of colon fatty acids 

on gene expression are significant after controlling for NSAIDs use, age, smoking status and 

gender (Table 3.7a). Interestingly, SFA and PTGS1 were both significant in the model as 

predictors for PGE2, and both remained significant predictors of PGE2 in the final model. The 
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beta coefficients for females were higher than for males, and current smoking predicted higher 

PGE2 as did higher tissue SFA and higher PTGS1 (Table 3.7 b).   

3.5 Discussion 

Epidemiological and clinical studies have emphasized the importance of surrogate end 

point biomarkers in understanding colon cancer development and prevention. Hence, 

identification of the factors that affect these markers is important, especially for those among 

those at high risk for the disease [159, 160]. Although PGE2 has been well-recognized as a 

biomarker of colon cancer risk, few studies have been investigated expression of genes in its 

synthesis, degradation and signaling pathways [19, 161]. Furthermore, to our knowledge, no 

studies have been undertaken to look at the associations between gene expression and colon 

tissue fatty acids among individuals at high risk for colon cancer. This study provided us with the 

ideal opportunity to investigate these associations.  

In Figure 3.1, the mean level of mRNA expression of 15 PGDH (HPGD) and COX-1 

(gene name PTGS1) were high, as could be expected for normal colon tissue. PTGS1 is 

constitutively produced [162, 163]. In contrast, PTGS2 and PTGES1 (microsomal prostaglandin 

E synthase) had the lowest mean levels of mRNA expression among those quantified. Both 

PTGS2 and PTGES1 enzymes are known to be overexpressed during carcinogenesis, and in 

normal tissue expression may be quite low [14, 164]. 

It is interesting to note the inter-individual variability of gene expression that was found 

among subjects, especially for 15 PGDH. This finding is supported by recent data showing that  

expression of 15-PGDH gene expression varied 4.4 fold between individuals but remained stable 
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within the colon of the individual, regardless of colon location [157, 165]. This variability on 

theses biomarkers among subjects at high risk for colon cancer highlights the potential to further 

categorize individuals with regard to risk based on these biomarkers levels. For example, a recent 

publication on the relationship between 15-PGDH expression levels and aspirin treatment found 

that higher expression of 15-PGDH levels in normal colon tissue were a potential predictor in 

determining the efficacy of aspirin treatment for colon cancer prevention [166].  

Next, we evaluated the impact of demographic factors on PGE2 concentrations and 

expression of genes in its pathway. Age, gender, alcohol consumption, smoking status, obesity, 

and physical activity as well as history for colon cancer did not significantly impact on PGE2 and 

gene expression (Tables 3.2 and 3.3). However, medication use did influence expression of 

genes in the PGE2 pathway.  NSAIDs are known to lower colon cancer risk by decreasing PGE2 

levels via inhibition of the cyclooxygenase activity of both prostaglandin endoperoxide H 

synthase-1 and 2  [12, 19, 167]. In this study NSAID use was found to reduce PTGS2 but not 

PTGS1 mRNA expression levels (Table 3.4). PTGS-2 must be contributing at least somewhat to 

PGE2 in the normal colon since NSAID use did significantly decrease PGE2  concentrations 

[168].  

Cholesterol medication use was significantly associated with reduced mRNA expression 

of PTGES1 (Table 3.4). The significant reduction in PTGES1 by cholesterol medication use is 

consistent with published data that suggest statins as a potential pharmacological approach for 

prevention [169]. PTGES1 is the synthase that is known to associate with PTGS2. Previous 

research also has indicated that combination use of NSAIDs  with cholesterol medications may 

be useful for CRC prevention and treatment [170]. A significant effect of blood pressure 
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medication on lowering PTGS1 was also found in this study, but there is no published data 

showing associations of blood pressure medications with CRC risk.  

Although the influence of cholesterol and NSAID medication use on gene expression 

indicates a role for the PTGS2 pathway in  colon PGE2, colon PGE2  was correlated with 

expression of PTGS1 (COX-1) but not PTGS2 (COX-2), as shown in Table 3.5.  This could be 

due to the higher level of PTGS1 versus PTGS2 expression level.  Therefore, PTGS1 may be 

seen as a potential target marker for colon cancer prevention among high risk individuals. These 

results also agree with previous findings of a ginger prevention trial.  In that trial, it was found 

that protein levels of PTGS1 in colon of subjects at high risk of colon cancer were two-fold  

higher in comparison to colon PTGS1 in the normal  with no risk group [22]. This ginger trial 

did not quantify PTGS2 protein expression since the low expression of this enzyme makes it 

hard to measure in healthy colon tissue [15].     

In addition to demonstrating a positive association between PGE2 and PTGS1, our data in 

Table 3.5 also show that PTGS1 has a strong positive association with PTGES1 but no 

association with PTGES3. PTGES3 is known to be constitutively expressed in normal 

individuals and is thought to work with PTGS1 to produce basal PGE2 [145]. Therefore, the lack 

of linear correlation between PTGS1 and PTGES3 may be due to the fact that the study subjects 

were at high risk for colon cancer or that other regulatory mechanisms exist. Such individuals 

may differ versus healthy individuals with low risk. 

Other significant findings were that HPGD showed a strong positive association with 

PGE2 receptors (PTGER2 and 4) and synthases enzymes (PTGs2 and PTGES1) but not PTGS1. 

It can be speculated that HPGD expression may work to counteract the effects of increases in 
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synthetic pathways in normal colon. HPGD could be induced to degrade the high level of PGE2 

caused by increased expression of synthetic enzymes.  

Finally, we found that the colon tissue monounsaturated fatty acids (MUFA) tended to 

have a non-significant negative association with PGE2 and to have a significant negative 

association with PTGS2 (often referred to as COX-2 activity). A reduction in PGE2 and PTGS22 

levels may be responsible for the previously observed anti-inflammatory effects of MUFA found 

in olive oil [63]. In contrast to the relationship of high MUFA with lower PGE2 concentrations, 

saturated fatty acids (SFA) showed a positive relationship with PGE2 concentration (Table 3.6). 

High dietary intake of SFA has been suggested to increase colon cancer risk [171].  

Alternatively, SFA non-substrate fatty acids may allosterically stimulate the cyclooxygenase 

activity of PTGS2 [172, 173]. The effects of both PTGS1 and SFA on increasing PGE2 

concentrations were further confirmed in linear regression analysis (Tables 3.7 A and B). These 

results are consistent with the known pro-inflammatory effects of SFA via activation of toll-like 

receptors (TLR) that in turn set off an inflammatory cascade [172, 174].  COX-2 expression is 

known to be induced by activation of TLR, although some reports indicate that COX-1 can be 

induced as well [175, 176]. Saturated fatty acids also may increase the production of PGE2: 

although non-substrate saturated fatty acids slightly inhibit COX-1 they stimulate COX-2 [172].   

In summary, the findings of this study point to evidence of significant positive 

associations between COX-1 expression, colon SFA and PGE2. There was, however, a role for 

PTGS2 discerned from the effects of NSAID use despite low PTGS2 expression levels in normal 

colon tissue. These results suggest that PTGS1 and PTGS2, as well as SFA are potential targets 

for colon cancer prevention among individuals at high risk for colon cancer. This is consistent 
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with previous research in humans at high risk for colon cancer [22] but differs from in vivo data 

on chemically induced colon carcinogenesis, which suggested that only PTGS2 may be a 

prevention target. The metabolic or dietary differences that determine saturated fatty acid 

concentrations in colon, together with PTGS1 and COX-2 expression and/or activity, appear 

important in regulation of colon PGE2 concentrations and therefore colon cancer risk.  



 

67 
 

 
 

 

 

Figure 3.1: Schematic Showing PGE2 Metabolism and its Signaling Pathway 
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Table 3.1:  Characteristics of 114 Study Participants a 

 

Characteristics  

Demographic Factors  

Age, Years 53 ,12 

Female, Gender 81, 71% 

Healthy Eating Diet, Group 57, 50% 

Caucasian, Race 99, 87% 

Behavioral Factors  

Alcohol Consumption, g/day 6.3, 8.5  

Current Smokers 12, 10% 

Physical Activity, METs per dayb 19.1 ,13.9 

Anthropometrics Measurements  

Body Mass Index, kg per m² 27, 4  

Waist to Hip Ratio  0.9, 0.1  

Medical History  

History of Adenomas 5, 4.4 

Family History of Colon Cancer 86,75.4 

Both Risk Factors 11, 10% 

Medication Use  

Regular NSAIDs Users 24, 21% 

Cholesterol Medication 19, 16.7% 

Blood Pressure Medication 21, 18.4% 

Dietary Intakes  

Energy, kcal per day 2085, 624  

Omega-6 Polyunsaturated fat, g per day 38, 7  

Omega-3 Polyunsaturated fat, g per day 4, 1.2  

Monounsaturated fat, g per day 31, 13  

Saturated fat, g per day 28.4, 11.5 
a Data is shown in mean, SD, or in number and percentage. 
b Metabolic equivalents per day. 

 



 

69 
 

 
Figure 3.2: Normalized mRNA Expression of Enzymes and Receptors in the PGE2 Pathway 

for all Study Participants. Data shown is mean, SD, minimum and maximum 
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Table 3.2: Partial Correlation Coefficients between Demographic Factors with Colon PGE2 Concentrations and with mRNA Expression 

Levels of Enzymes and Receptors in the PGE2 Pathway 

 

Variable PGE2 HPGD PTGS1 PTGS2 PTGES1 PTGES3 PTGER2 PTGER4 

Age (years)a -0.128 0.091 0.149 0.042 0.039 -0.145 0.206 0.108 

Alcohol Intakeb  (g/day) -0.088 -0.027 -0.130 -0.075 -0.101 0.081 -0.040 -0.055 

Physical Activityc  (MET/day) -0.029 0.086 0.049 -0.007 0.207 0.133 0.161 0.080 

a Control variables for age were  Body Mass Index, Gender, and use of NSAIDs, cholesterol medications and blood pressure medications  use. 
b Control variables for alcohol Intake were gender, age and body mass index NSAID regular use, cholesterol medications, blood pressure 

medications and arthritis. 
c Control variables for physical activity were: gender, age, body mass index, arthritis, and use of NSAID , cholesterol medications, and blood 

pressure medications. MET is a metabolic equivalent per day.   
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Table 3.3:  PGE2 Concentrations and Relative Expression of Enzymes and Receptors in PGE2 Pathway in High Risk Individuals. Data are 

given as mean, SD 

 

 Demographic Factors N PGE2 PTGS1 PTGS2 PTGES1 PTGES3 HPGD PTGER2 PTGER4 

Gender 

Female 

Male 

 

82 

33 

 

19, 13 

15, 14 

 

1.4, 1.0 

1.4, 1.0 

 

1.1, 0.7 

1.2, 0.7 

 

0.2, 0.16 

0.2, 0.14 

 

0.44, 0.44 

0.51, 0.53 

 

0.19, 0.15 

0.15, 0.1 

 

0.34, 0.31 

0.36, 0.26 

 

0.9, 0.6 

1.0, 0.7 

Smoking Status  

Yes 

No 

Past 

 

13 

72 

30 

 

21, 12 

16, 12 

19, 14 

 

1.1, 0.9 

1.2, 0.7 

1.1, 0.6 

 

0.2, 0.11 

0.22, 0.18 

0.2, 0.13 

 

0.15, 0.1 

0.19, 0.14 

0.15, 0.13 

 

0.7, 0.6 

0.4, 0.4 

0.5, 0.5 

 

1.3, 0.7 

1.3, 0.9 

1.7, 1.1 

 

0.19, 0.15 

0.36, 0.31 

0.38, 0.3 

 

0.8, 0.6 

0.9, 0.6 

0.9, 0.6 

BMI 

<25 kg/m2 

≥25 kg/m2 

 

39 

76 

 

19, 11 

17, 14 

 

1.1, 0.7 

1.15, 0.7 

 

0.2, 0.15 

0.22, 0.15 

 

0.19, 0.14 

0.17, 0.13 

 

0.46, 0.46 

0.47, 0.47 

 

1.4, 1.04 

1.4, 1.0 

 

0.38, 0.33 

0.32, 0.28 

 

0.9, 0.1 

0.7, 0.1 

NSAID Users 

Yes 

No 

 

24 

91 

 

11, 9a  

20, 14 

 

1.1, 0.7 

1.1, 0.7 

 

0.16, 0.1 

0.23, 0.2 

 

0.15, 0.12 

0.18, 0.14 

 

0.6, 0.7 

0.42, 0.38 

 

1.7, 1.4 

1.3, 0.9 

 

0.34, 0.32 

0.34, 0.3 

 

0.9, 0.5 

0.9, 0.1 

Cholesterol Medications 

Yes 

No 

 

19 

96 

 

17, 15 

18, 13 

 

1.03, 0.6 

1.14, 0.7 

 

0.16, 0.15 

0.22, 0.16 

 

0.11, 0.1 

0.19, 0.14 

 

0.4, 0.5 

0.5, 0.5 

 

1.3, 0.8 

1.4, 1.1 

 

0.28, 0.31 

0.35, 0.30 

 

0.83, 0.7 

0.91, 0.61 

Blood Pressure 

Medications 

Yes 

No 

 

21 

94 

 

14, 11 

19, 14 

 

0.9, 0.6 

1.2, 0.7 

 

0.16, 0.11 

0.22, 0.17 

 

0.16, 0.12 

0.18, 0.14 

 

0.6, 0.6 

0.44, 0.44 

 

1.6, 1.2 

1.4, 0.9 

 

0.25, 0.21 

0.31, 0.31 

 

0.78, 0.62 

0.92, 0.61 

 
a Bolded pairs differ significantly (p<0.05) from the 2-sample t-test 
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Table 3.4: PGE2 Concentrations and Normalized mRNA Expression of Enzymes and Receptors in the PGE2 Pathway by Medication Use 

Data are given as mean, SD 

 

Colon 

Markers 
Aspirina Cholesterol Medicationsb Blood Pressure Medicationsc 

 Yes= 11     No= 71 Yes= 8       No= 71 Yes= 21        No= 94 

PGE2 11, 8 20, 14d 23, 17 20, 14 15, 11 20, 14 

PTGS1 1.3,0.7 1.2, 0.7 1.0, 0.5 1.2, 0.7 0.8, 0.45 1.2, 0.7 d 

PTGS2 0.19,0.1 0.27, 0.28 .18, 0.2 0.27, 0.28 0.17, 0.04 0.27, 0.28 

PTGES1 0.19,0.15 0.2, 0.17 0.11, 0.1 0.2, 0.17d 0.19, 0.05 0.21 0.17 

PTGES3 0.65,0.7 0.52, 0.6 0.3, 0.3 0.5, 0.6 0.51, 0.38 0.53, 0.61 

HPGD 1.8, 1.4 1.4, 1.05 1.2, 0.7 1.4, 1.1 1.3, 0.7 1.4, 1.1 

PTGER2 0.5, 0.4 0.38, 0.39 0.5, 0.4 0.38, 0.4 0.27, 0.25 0.38, 0.39d 

PTGER4 1.0, .5 1.1, 1.1 0.9, 0.9 1.1, 1.1 0.82, 0.7 1.01, 1.1 

a Regular use of aspirin was defined as 81 mg/day or 325 mg every other day.  
b Cholesterol medications were Rosuvastatin, Ezetimibe, Atorvastatin, Lovastatin and Simvastatin.  
c Blood pressure medications were Acebutolol, Atenolol, Hydrochlorothiazide, Losartan, Lisinopril and Metoprolol or combinations. 
d Significantly different between users and non-users of medications with at p<0.05. 
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Table 3.5: Spearman Correlation Coefficients of PGE2 Concentrations with Normalized mRNA Expression Levels of Enzymes and 

Receptors in the PGE2 Pathway 

 

Colon 

Markers 
PGE2 PTGS1 PTGS  PTGES1 PTGES3 HPGD PTGER2 

PTGS1  0.27**  1.00      

PTGS2  0.16  0.50**   1.00     

PTGES1  0.12  0.58**   0.61**   1.00    

PTGES3  0.04  0.08   0.02  -0.17   1.00   

HPGD  0.11  0.18  0.36**   0.34**   0.02 1.00  

PTGER2  0.04  0.28**  0.58**   0.53**  -0.01 0.53** 1.00 

PTGER4  0.17  0.51**  0.48**   0.45**   0.08 0.30** 0.51** 

** Correlation is significant at the p<0.01 level (2-tailed). 
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Table 3.6: Spearman Correlation Coefficients of Colon Tissue Fatty Acid Concentrations with Colon PGE2 Concentrations and with 

Normalized mRNA Expression of Enzymes and Receptors Levels in the PGE2 Pathway 

 

Colon 

Markers 
PGE2 PTGS1 PTGS2 PTGES1 PTGES3 HPGD PTGER2 PTGER4 

AA 0.10 0.15 0.21 0.18 0.08 0.17 0.22  0.44** 

EPA 0.19 0.24** 0.05 0.16 0.06 0.20* 0.03  0.39** 

MUFA -0.11 -0.18 -0.28** -0.17 0.07 -0.15 -0.23 -0.38** 

SFA 0.30** 0.11 -0.02 0.03 0.06 0.03 0.01  0.10 

** Bolded and starred coefficients are significant at the p< 0.01 level (2-tailed). 
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Table 3.7.: Predictors of Colon PGE2 Concentrations in Linear Regression Models 

 

Model 
 Adjusted 

 R Square 
AIC 

P-value 

for F Change 

NSAID use + Age+ Smoking status + Gender  0.104 440.446 0.002 

NSAID use + Age+ Smoking status + Gender + PTGS1 expressiona  0.181 425.739 0.000 

NSAID use + Age+ Smoking status + Gender + Colon SFA  0.163 433.788 0.000 

NSAID use + Age+ Smoking status + Gender +  Colon SFA + PTGS1 

expression 
 0.230 419.737 0.000 

a Bolded predictors were significant in the linear regression model 
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Table 3.8. Beta Coefficients for Predictors of Colon PGE2 in the Final Linear Regression Model 

 

Predictors β Coefficients  STD. Error P-value 

NSAID user -0.68  1.387 0.060 

Gender/ Female 0.64  0.310 0.033 

Age -0.02  0.012 0.109 

Current smoker 0.88  0.438 0.044 

PTGS1 0.65  0.198 0.001 

Tissue SFA 0.10  0.034 0.004 
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CHAPTER 4 

Effects of a Mediterranean Diet Intervention on the Prostaglandin E2 (PGE2) Pathway in 

Colon Tissue of Individuals at High Risk for Colon Cancer  

4.1 Abstract 

Prostaglandin E2 (PGE2) is a pro inflammatory mediator that is well known to increase 

risk of colon cancer. PGE2 production can be decreased by the use of non-steroidal anti-

inflammatory drugs (NSAIDs). Unfortunately, the prolonged use of NSAIDs show unacceptable 

side effects, which makes it necessary to look for safer chemoprevention strategies such as diet. 

The Mediterranean diet has been shown to have systemic anti-inflammatory effects. In this 

study, dietary data and colon mucosal biopsy samples from a dietary intervention trial were used 

to evaluate the preventive effects of a Mediterranean diet versus the Healthy Eating diet in the 

colon. After six months of intervention, PGE2 did not show a significant change in either diet 

arm. PTGES3 did show a significant increase both diet arms and PGE3 showed a significant 

increase in the Mediterranean diet arm only. Additionally, we evaluated correlations between 

changes in tissue fatty acids with changes in gene expression. Change in arachidonic acid (AA) 

concentration in the colon showed a significant, strong positive association with changes in 

PTGES1 Interestingly, change in colon MUFA showed a significant negative association with 

change in PTGES1 in the Mediterranean diet arm, while showing negative association with 

PTGES3 in the Healthy Eating arm. Finally, we confirmed the relationships between RNA gene 

expression protein expressions by immunohistochemical analysis using quantitative image 
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analysis. These results indicate that the dietary intervention had little effect on PGE2 and gene 

expression of enzymes in the pro-inflammatory pathway.  

4.2 Introduction 

Prostaglandin E2 (PGE2) is a pro-inflammatory mediator that is strongly associated with 

colon cancer risk [143, 144]. It is well established that non-steroidal anti-inflammatory drugs 

(NSAIDs) reduce the colon cancer risk via inhibition of PGE2 formation and inhibition of both 

cyclooxygenases enzymes, COX-1and 2 [12, 19, 167]. However, prolonged NSAID use may 

lead to long-term gastrointestinal side effects, such as bleeding and ulcer development, as well as 

an increase in cardiovascular risks [177, 178]. Therefore, alternative and safer chemoprevention 

strategies need to be investigated, especially among subjects at high risk for colon cancer.  

Epidemiological studies have indicated that diet could be useful in the prevention of 30-

50% of colorectal cancer [11]. A number of epidemiological studies have yielded information to 

identify what types of diets might be preventive. A Western diet, which is consumed in the more 

developed countries, is generally associated with increased risk of colon cancer [179, 180]. This 

type of diet is characterized by high intakes of fat, red meat, refined grains and sugar. In contrast, 

the traditional Mediterranean diet includes high intakes of fruits, vegetables, fish and whole 

grains. Although the traditional Mediterranean diet is also high in fat, this type of fat is derived 

from olive oil and fish. Both monounsaturated fat and omega-3 fats have been associated with 

lower risk of chronic diseases, such as cardiovascular disease and most types of cancers, 

including colon cancer [90, 181].  
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One important mechanism by which a Mediterranean diet can prevent colon cancer is via 

modulation of eicosanoids synthesis, particularly PGE2 formation [150]. The mechanisms behind 

prevention by the Mediterranean diet include a decrease in omega-6 and an increase in omega-3 

fatty acids, which is expected to lower PGE2 and COX-2 expression [109, 119, 182]. The effects 

of a Mediterranean diet  may also due to the antioxidant effects of higher intakes of fruits, 

vegetables, and olive oil that will reduce COX expression [183].  

In this study, we compared the effect of the Mediterranean diet to a Healthy Eating diet 

recommended by the U.S. Department of Agriculture (USDA) on colonic prostaglandin 

pathways. The Healthy Eating diet encouraged increased intakes of fruits, vegetables and whole 

grains and a decreased saturated fat intake. The Mediterranean diet had a higher content of 

mono-unsaturated fatty acids (MUFA) and n3 fatty acids combined with lower total poly-

unsaturated fatty acids (PUFA) [90]. The objective of this study was to investigate the potential 

benefits of a Mediterranean diet on risk of colon cancer via regulation of key enzymes in the 

PGE2 pathway. Changes in dietary intakes, colon tissue fatty acid and prostaglandin 

concentrations, and gene expression of enzymes that regulate PGE2, were quantified. These 

included RNA expression of prostaglandin H synthase (PTGS) -1 and -2, microsomal-

prostaglandin E-synthase (mPGES-1), and 15-hydroxyprostaglandin dehydrogenase (15-PGDH), 

which degrades PGE2. In addition, we evaluated the PGE2 receptors PTGER2 and 4. Gene 

expression was verified by quantitative immunohistochemical analysis of proteins.  Finally, we 

established the relationships between gene expressions in the colon with concentrations of PGE2. 

4.3 Methods 

Study Participants, Design and Dietary Intervention 
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The Healthy Eating Study was a randomized dietary intervention trial that was approved 

by the University of Michigan Institutional Review Board (HUM00007622). The study recruited 

120 individuals at high risk for colon cancer, and individuals were randomized into Healthy 

Eating or Mediterranean Diet arms for six months. Detailed information on the recruitments, 

eligibility criteria, dietary assessment and intervention were previously described [70, 71].  

Dietary eligibility was assessed using two days of written records and one unannounced 

24-hour recall. Dietary recall and food records were collected at baseline, 3 and 6 months. An 

additional 24-hour recall was obtained at the first study visit, and all four days were averaged to 

obtain an estimate of baseline diet and the same assessments were done at six months using the 

Nutrition Data System for Research software (NDSR), version 2010.  

The Healthy Eating study implemented individualized counseling with a registered 

dietitian to help subjects achieve study goals using Bandura’s social cognitive theory. The theory 

focuses on social support, goal setting, self-efficacy, self-monitoring and constructing strategies 

for problem solving [108].  

Both the Healthy Eating and Mediterranean diet arms were designed to increase the 

intakes of fruit, vegetable and whole grain; however, goals for fat intake differed in each diet 

arm. The Healthy Eating diet, which was based on the U.S. Healthy People 2010 

recommendations [102], limited saturated fat (SFA) intake to 10% of  an individuals’ total 

energy intake while the Mediterranean diet goals sought to decrease PUFA intake by 50%. The 

Mediterranean group also were asked to consume foods high in omega-3 fatty acids, such as fish, 

at least twice a week and increase monounsaturated fat intake from plant sources by 50% [71].  
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Colon Biopsies Collection and Processing 

A flexible sigmoidoscopy procedure without prior preparation of the bowels was 

performed at baseline and at six months to obtain colon tissue biopsies. Eight mucosal tissue 

biopsy specimens from each individual were collected in the distal sigmoid colonic mucosa at 

each time point. Of these, six biopsies were immediately placed in liquid nitrogen exactly 20 

seconds after removal from the individual. Biopsies were stored at -70°C until biomarkers 

analysis and genes expression could be quantified. The other two biopsies were submerged in 

ice-cold, phosphate-buffered saline (pH 7.4) and fixed in formalin (10% formaliomega-90% 

phosphate buffered saline pH 7.4). Biopsies were kept for 18-24 hours in formalin before being 

transferred to 70% ethanol. Biopsies were kept in 70% ethanol for no more than one week before 

embedding in paraffin.   

RNA Extraction, cDNA Synthesis and qrt PCR 

One biopsy of approximately 5 mg tissue from each participant at each time point was 

used for RNA extraction. The tissue was soaked in 100 µL of RNAlater-ice stored overnight at -

20oC. On the second day, the tissue was removed from the -20oC freezer. A liquid-nitrogen-

cooled mortar was used to pulverize the tissue biopsies into a fine powder. The fine tissue 

powder was then added to a tube with 1 ml TRIzol for RNA extraction following the 

manufacturers’ protocol (Invitrogen, cat. no. 15596-026). The biopsy tissue was homogenized on 

ice using an Ultrasonic Processor (Misonix, Farmingdale, NJ). The tissue homogenate was 

placed in a sterile 1.5 ml tube containing isopropanol 100% (0.5 mL) and 50 μl of glycogen for 

RNA precipitation. 
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After the RNA was precipitated, the pellet was washed three times with 75% ethanol, 

dried, and then resuspended in 20µl RNAse free water. RNA concentration and purity were 

determined using ND-1000 Spectrophotometer (NanoDrop, Wilmington, DE, USA). cDNA 

constructs were made for samples that showed a ratio of 260/280 of  greater than 1.7. Samples 

were diluted as follows: one µg RNA diluted in 9.9 µl RNase free water. cDNA was synthesized 

using the Reverse Transcription System following the manufacturer protocol (Promega, cat. no. 

A3500). The cDNA samples were placed in a thermal cycler (BIO-RAD, cat. T100), for 1 

minute at 25°C, 1.5 hours at 42°C, 5 seconds at 95°C, and left at 4°C until cool.   

A TaqMan® Environmental Master Mix 2.0 (Life Tech, cat #4398044) was used for Real 

Time PCR quantification. 5 µl of cDNA were added to 21 µl PCR reactions to make the PCR 

reaction mix (1.25 µl gene specific primers, 13.5 µl primer mixtures from Life Tech TaqMan® 

Gene Expression Assays, and 6.25 µl of RNA free water). The standard curve was constructed 

from a mixture of cDNA from the sample pool. All samples at two time point baseline, six 

month and standard curves were run in each PCR plate in duplicate. Primers and probes from 

Applied Biosystems (Foster City, CA, USA) were used for PCR as follows: COX-1 (PTGS1), 

Hs00377726_ml), COX-2 (PTGS2, Hs00153133_m1), mPGES1 (PTGES1, Hs01115610_ml), 

cPGES (PTGES3, Hs00832847_gH), 15 HPGD (HPGD, Hs00168359_ml), EP2 (PTGER2, 

Hs04183523_m1), and EP4 (PTGER4, Hs00168761_m1). The internal control for normalization 

was cytokeratin 20 Krt20, a known marker of colonic epithelial cell mass (Hs00300643_m1) 

[157]. Real-time PCR thermal conditions were as follows: 50°C for 2 minute, 95°C for 10 

minute followed by 40 cycles of 95°C for 15 seconds and 60°C for1 minute.  The mean 

efficiencies of the PCR standard curves calculated for each primer were as follows: PTGS1 

(95%), PTGS2 (90.4%), PTGES (105%), PTGES3 (97.2%), HPGD (99%), PTGER2 (93%), 
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PTGER4 (94%), and Krt20 (94%). The standard curve method for quantification was used to 

calculate the average amount of each target mRNA expression to Krt20 mRNA expression from 

the standard curve.  

Reverse-phase liquid chromatography with tandem mass spectral detection (LC-MS-MS) 

was used to quantify PGE2 and PGE3 as previously described [109]. In short, tissue homogenates 

were prepared from two frozen colon biopsies. Eicosanoids were extracted with ether prior to 

LC-MS-MS analysis. Deuterated internal standards (Cayman Chemical, Ann Arbor, MI) and a 

Luna Phenyl-Hexyl analytical column (2 x 150 mm, 3 μm particle size, Phenomenex, Torrance, 

CA) were used. Because deuterated internal standard was not available for PGE3, both were 

quantified using PGE2-d4. Protein content of the homogenate was determined by the Bradford 

assay. Eicosanoids were expressed as nanogram (ng) of PGE2 or PGE3 per milligram (mg) of 

protein. 

GC-MS analysis was used to measure fatty acids from colon homogenates as previously 

published[158]. Pulverized colon tissue corresponding to one 5 mg biopsy was added to a tube 

containing 150 μl of ice-cold phosphate buffered saline with 0.1% BHT and 1mM EDTA. Tubes 

were placed in an ultrasonic processor for two intervals of 30 seconds. A ratio of 1:1 chloroform 

and methanol was used for extraction of lipids. Prior to GC-MS analysis, methyl esters were 

prepared with METH-PREP II derivatization reagent (Alltech, Deerfield, IL) [158]. 

Tissue MicroArray (TMA) 

Formalin-fixed, paraffin-embedded tissue blocks (FFPE) of colon biopsy specimens that 

remained from the study were used to construct  a tissue microarray  using the methodology of 

Nocito et al. [184]. Each sample was represented by a single 1 mm diameter core and 32 slides 
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were made from each TMA. The first and last slides were stained with hematoxylin and eosin 

(H&E).  

Immunohistochemistry Staining and Protein Quantification  

Immunohistochemical (IHC) staining was conducted using slides that had the largest 

number of full-length crypts, as predicted from the H&E stained slides. The IHC was done for 

the enzymes and receptors that showed higher RNA expression. The PTGS2 protein is known to 

be expressed in normal colon tissue in very low or undetectable levels. The enzymes selected for 

IHC quantification were HPGD (n=46), PTGS1 (n=43), PTGES3 (n=24), PTGER2 (n=32) and 

PTGER4 (n=35). The sample size for each of the antibodies varied depending on the availability 

of sections with full-length colon crypts suitable for quantification. A total of 32 slides were cut 

from a tissue micro-array (TMA) created from all available colon tissues. The first and last (1 

and 32) slides were stained with H&E to visualize crypts. Immunohistochemical staining for 

protein of interest was done sequentially using two slides per antibody (one from each side of the 

TMA).   IHC staining was performed on a DAKO Autostainer (DAKO, Carpinteria, CA) using 

DAKO LSAB+ or Envision+ as detailed in Table 4.1 and diaminobenzidine (DAB) as the 

chromogen. De-paraffinized TMA sections were labeled with antibodies listed in Table 4.1 at 

ambient temperature. Microwave epitope retrieval was used prior to staining. Appropriate 

negative (no primary antibody) and positive controls (tumor tissue) were stained in parallel with 

each set of antibodies studied. A light counterstain with H&E was used.  

The slides were imaged in a microscope with a high resolution Leica Biosystems scanner 

to generate whole-slide digital scans of all TMA slide.  Images were transferred to files for 

quantification of staining with Aperio ePathology image analysis software (Leica Biosystems). 
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Although some tissue samples did not show full-length crypts due the direction of cutting or 

amount of tissue available, those slides were still quantified for the whole tissue reading. For 

each tissue sample, the whole tissue, the mucosal layer, and the submucosa under the epithelium, 

using a thickness equivalent to the thickness of the mucosa, were quantified for positive and 

negative staining. Aperio Image analysis algorithms based on color partitions and intensity of 

positive staining were used to quantity the proteins of interest. The percentage of the total 

positive staining for all three areas of the tissue was analyzed for each gene.  

Statistical Analysis  

After completing quality control checks for all data saved in excel files, the data were 

transferred into SPSS files. All statistical analyses were conducted using IBM SPSS software 

version 22 (PASW Statistics, IBM Corporation, Armonk, New York). All variables were 

checked for normality of the distribution before analyses, and data were transformed as needed. 

Descriptive statistics were used to evaluate subject characteristics. For making comparisons of 

interest between treatment arms, two-sample t-tests were used for continuous variables, and chi-

square tests were used for categorical variables.  

To calculate changes over 6 months in PGE2, PGE3 and RNA expression of genes in the 

PGE2 pathway using intention to treat principles, linear regression analyses with a random 

intercept (mixed models ) were used. Time, diet group, and the group-by-time interaction were 

the primary predictors in the mixed models controlling for covariates that can affect gene 

expression including select baseline variables (age, regular use of non-steroidal anti-

inflammatory drugs or NSAIDs, BMI) and percent of dietary goals met. The same statistical 

analyses were carried out for subgroups defined by NSAID use and overweight/obese status at 
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baseline. To determine the relationships between changes in PGE2, PGE3 and expression of 

genes in PGE2 pathway with changes in colon tissue fatty acids over the six months, Spearman 

correlations coefficients were determined.  Spearman correlations were also used to evaluate the 

relationships between RNA expression and protein expression of the enzymes and receptors in 

the PGE2 pathway.  

4.4 Results 

Characteristics of Subjects 

The characteristics of subjects who had tissue biopsies available for RNA quantification 

are shown in Table 4.2. There were no significant difference in baseline characteristics between 

subjects in the Mediterranean diet and the Healthy Eating diet groups except that the mean age in 

the Mediterranean diet arm (55 years) was significantly different from the mean age in the 

Healthy Eating diet (50 years). Tobacco smoking also was higher in the Mediterranean versus 

Healthy Eating (9 versus 3 percent), but this was not significantly different between the two 

dietary groups. However, the detrimental effects of tobacco use on the colon may have negated 

some of the benefits of this intervention. 

Changes in Prostaglandin Levels and Gene Expression over Six Months 

Changes in PGE2, PGE3 and gene expression were evaluated to determine the effect of 

the dietary intervention over six months (Table 4.3). After adjusting for age, regular use of non-

steroidal anti-inflammatory drugs or NSAIDs, BMI using linear regression analyses with a 

random intercept (mixed models effects), changes in PGE2 did not show significant difference in 

either dietary arms. However, PGE3 levels showed a significant increase in the Mediterranean 
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diet arm from baseline to 6 months. PTGES3 was the only biomarkers in the PGE2 pathway that 

showed significant increase in RNA expression in both dietary arms over the 6-month period, 

and it was increased. 

NSAID use showed significant effects on PGE2 and PTGS2 gene expression at baseline 

as shown in Chapter 3 (Table 3.4).NSAID use was therefore used as a covariate in mixed effects 

models that evaluated  changes in PGE2 over time (p=0.002 for the NSAID effect) (Table 4.3). 

Therefore, a subgroup analysis for non-NSAID users was conducted to evaluate the effect of the 

dietary intervention. The results for non-NSAID users were essentially the same as for the entire 

study group. There was an increase in PGE3 in the Mediterranean diet group, and an increase in 

PTGES3 in both dietary groups (Table 4.4). BMI also was a significant covariate in the mixed 

models for change in PGE3 (p=0.016). In order to evaluate the effects of BMI weight status, a 

subgroup analysis for normal weight versus overweight/obese subjects was also conducted. The 

results in the subgroups were the same as in the whole study group (Table 4.5). 

 

Associations between Changes in Prostaglandin Levels and Gene Expression with Changes 

in Colon Tissue Fatty Acids 

We also evaluated relationships between changes in PGE2, PGE3 and expression of genes 

in the PGE2 pathway with changes in colon tissue fatty acids over the six months. In the 

Mediterranean diet arm, colon tissue arachidonic acid (AA) concentration showed a significant 

and strong positive association with PTGES1 (ρ=0.43, p<0.01). Also, AA tended to associate 

positively with PTGS2 ((ρ=0.28, p=0.06). EPA was negatively associated with PTGER4 (ρ=-

0.37, p<0.05), while SFA tended to have positive association with PTGS2 (ρ=0.27, p=0.07). 

Interestingly, decrease in MUFA showed a significant negative association with increase in 
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PTGES1 in the Mediterranean diet arm, and decrease in MUFA tended to have negative 

association with increase in PTGE3 in the Healthy Eating arm. Also, in the Healthy Eating arm, 

increased AA was associated with an increase in PTGS1, while a decrease in SFA was associated 

with an increase in PGE3 (Table 4.6). 

 

Associations between RNA Gene Expression and Protein Levels 

In the final part of this study, we aimed to confirm and validate the RNA gene expression 

results performed by the qrtPCR analysis.  First, we quantified protein expression in the whole 

colon tissue on each slide utilizing quantitative image analysis of slides for which IHC was done 

to show expression of proteins of interest. HPGD (n=46) showed the highest mean protein level 

followed by PTGS1 (n=43), PTGES3 (n=24), PTGER4 (n=35), and PTGER2 (n=32), 

respectively (Figure 4.1). These results matched the RNA gene expression quantification data 

(Figure 3.2). 

We also calculated the association between RNA expression of each gene with its 

corresponding protein levels in whole tissue in the surface mucosa (epithelium) and the sub 

mucosal regions, using a depth equivalent to the epithelial layer. The HPGD gene showed 

significant association with whole tissue, mucosa and submucosa, with the highest association 

being found with staining in the mucosal region. This likely may be due to the fact that HPGD is 

highly expressed in the outer mucosa. PTGS1 expression showed significant associations with 

protein expression all three areas, with the strongest association being found in the submucosa. 

In contrast, PTGES3 RNA expression showed a strong positive association with whole tissue 

protein expression, but not when evaluated in the sub regions. RNA expression of both PGE2 

receptors: PTGER2 and 4, showed significant associations with their protein expression in all 
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areas of the colon tissue. However, RNA expression of PTGER2 had stronger associations with 

protein expression in the submucosa than PTGER4, as shown in Table 4.7 and Figure 4.2 (A-J). 

4.5 Discussion 

Epidemiological and observational studies have indicated that a Mediterranean diet 

increases longevity and lowers the risk for most chronic diseases, including colon cancer and 

other cancers [185, 186]. However, little research has been conducted to understand the 

mechanisms by which this diet can have a positive effect on lowering colon cancer risk. One 

hypothesis is that the fat intake component of the Mediterranean diet may affect the PGE2 

metabolic pathway.  PGE2 is an inflammatory mediator strongly associated with colon cancer 

risk [187]. 

In this study, we had the opportunity to evaluate the effect of a Healthy Eating diet based 

on recommendation of the U.S. Department of Agriculture (USDA), versus a Mediterranean diet 

over a 6 month period on colon biomarkers with a focus on pathways. The major difference 

between the two diets was in fat intake.   

Although recent literature reviews have emphasized the benefits of components of the 

Mediterranean diet in decreasing the risk for colon cancer [123], this study found that there was 

little change in the prostaglandin E2 pathway in the normal colon tissue of individuals at 

increased risk of colon cancer. Based on the study hypothesis, it was expected that the 

Mediterranean diet would decrease the genes involved in PGE2 synthesis (prostaglandin H and E 

synthases) and increase the gene involved in PGE2 degradation (PG dehydrogenase). However, 

in linear mixed models adjusting for age, regular use of non-steroidal anti-inflammatory drugs or 

NSAIDs, BMI, the only change in the Mediterranean diet arm was an increase in PGE3. PGE3 is 
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derived from eicosapentanoic acid (EPA), omega-3 fatty acids found mainly in fish oil [155, 

188]. PGE3 is a less inflammatory than PGE2.  In lung cancer cells, PGE3 inhibited tumor cell 

proliferation and antagonized the effect of PGE2 [189]. Also, PGE3 derived from EPA shows 

differential effects through its ability to diminish colonic stem cell expansion and self-replication 

relative to PGE2 derived from AA, which promotes colon tumorigenesis [190].  

PTGES3 (cPGES3) was the only gene in the PGE2 metabolic pathway that changed 

significantly in both dietary arms after six months, and its expression was induced. Cytoplasmic 

prostaglandin E synthase 3 (cPGES3) is a constitutively expressed enzyme, which has a 

synergistic relationship with PTGS-1, to produce PGE2 from arachidonic acid. Although PGE2 is 

a critical molecule in colon tumorigenesis, PGE2 also appears important for normal colon tissue 

homeostasis and maintenance [15, 145].  In the immune system, PGE2 generally works to 

dampen inflammation, but such an effect could allow a tumor to evade immune surveillance. 

This makes it difficult to evaluate the effects of changes in PGE2 production on colon 

tumorigenesis and it may be important to develop methods to study cell-specific PGE2 

production. In addition, stress-induced responses might be more important than basal levels of 

PGE2 with spikes in PGE2 resulting in biological changes leading to carcinogenesis.   

There may be several possible reasons for the unexpected lack of change in PGE2 with 

dietary intervention.  It may be difficult to rectify the effects of a diet that is followed for a 

decades before an intervention is instituted.  It is therefore possible that the six months 

intervention timeframe was not long enough to make a significant impact on the biomarker 

measured if biological changes have already taken place. Colon epithelial cells have a limited 

lifetime of less than a week, but nutrient partition into adipose stores and may take many months 

to equilibrate after dietary change. Since most individuals required 2-3 months to make all the 
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requested changes, they were only following the intervention diets for 3-4 months. Another 

potential reason could be due to the role of metabolic and genetic factors in controlling PGE2 

levels, and perhaps diet will have limited impact relative to those.  In the normal state, PGE2 has 

an important role in tissue repair and it may not be beneficial to reduce the basal level of PGE2 

beyond a threshold level [15].    

In our previous findings in Chapter 3, at baseline we found positive relationships between 

colon PGE2 concentration, PTGS1 gene expression and saturated fatty acids (SFA) 

concentrations in colon tissue. We also found that some of the genes in the PGE2 pathway were   

associated with colon fatty acid concentrations, including a negative association between PTGS2 

and MUFA. Here we evaluated these relationships after dietary intervention. Our results showed 

there was a significant positive association between changes in arachidonic acid levels and 

changes in PTGES1 gene expressions in the Mediterranean arm. In addition, we found there 

were significant negative associations between changes in PGE3 with changes in SFA in the 

Healthy Eating diet group, and there was also a negative association between changes in 

PTGER4 with changes in EPA in the Mediterranean arm (Table 4.6). Changes in MUFA, a non-

substrate fatty acid for cyclooxygenases that is consumed at high levels in the Mediterranean 

diet, showed a negative and significant association with changes in PTGES1 in the 

Mediterranean diet arm, and significant positive association with changes in PTGES3 in the 

Healthy Eating arm. Both PTGES enzymes (1 and 3) are responsible for producing PGE2; 

however, PTGES1 is an inducible enzyme that works with COX-2 to produce PGE2 during colon 

cancer progression [191].   

Although the changes in the two enzymes were negatively associated with changes in 

MUFA, the main dietary source of MUFA in both diet arms were different. MUFA sources in the 
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Mediterranean diet derived primarily from olive oil and may have anti-inflammatory effects, 

while the MUFA sources in the Healthy Eating diet may derive from meat and dairy, which may 

have pro-inflammatory effects on PGE2 pathway. Whether diet source of MUFA from olive oil 

(vegetable) or from red meat (animal) exerts different health effects is not known, and further 

research is needed to investigate such associations. These results highlight the importance of 

substrate and non- substrate fatty acid availability in the colon tissue for influencing PGE2 

production. 

Finally, we confirmed the association between RNA expression and the expression of the 

corresponding proteins using immunohistochemical (IHC) staining. This was important to 

address since not all mRNA may be transcribed to its protein [192, 193]. The correlations of 

relative mRNA expression and positive staining by IHC were all statistically significant when 

quantifying protein in the whole tissue (Table 4.7). This is understandable since it was evident 

that each enzyme was expressed in different regions of the colonic mucosa. Evaluation of gene 

expression, however, could not be done in specific cell types.  In addition, the IHC staining was 

dependent on the nature of the tissue section obtained with regard to presence of full-length 

crypts. This is a limitation of this study.  Another limitation of this study was that only 114 of 

212 tissue samples were available for immunohistochemistry.  

Strengths of the study are the randomized design and excellent adherence to dietary 

goals, as reported previously [71].  Although the Mediterranean diet without calorie restriction 

has been shown to prevent diabetes among subjects with high risk for cardiovascular disease 

[194-196] no intervention studies have been completed for evaluating cancer risk. The studies 

that have been done with Mediterranean diets and cancer risk were focused on the 
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epidemiological associations. The present study is the only study where colon tissue from 

humans was available for analysis of biomarker of colon cancer risk before and after dietary 

change. 

In summary, the study results showed that both the Healthy Eating and Mediterranean 

dietary interventions had little effect on PGE2 concentrations and the expression of genes in its 

pathway, with the possible exception of PTGES3, which increased with both diets. In the 

Mediterranean dietary arm, we found that PGE3 was significantly increased in the colon tissue, 

which is encouraging since PGE3 does appear to have anti-inflammatory effects and may prevent 

colonic tumorigenesis. There was limited evidence that changes in colon fatty acids could affect 

the prostaglandin pathway, but changes in colon fatty acids in this study were small. These 

results indicate that other factors not related to overall diet quality may govern inter-individual 

differences in colon fatty acids and the PGE2 pathway.  
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Table 4.1: Antibodies and Experimental Conditions for Immunohistochemical (IHC) Staining 

 

Antibody 

Name 
Manufacturer 

Catalog 

Number 
Species Concentration 

Incubation 

time 

(minutes) 

Epitope 

retrieval 
Detection 

Positive? 

Control 

Tissue 

PTGS1 
Abcam, 

 Cambridge, MA 
Ab-109025 Rabbit 1:500 60  HIER pH6a LSAB+c Skin 

PTGES3 
Novus, 

 Littleton, CO 

NBP2-

19998 
Rabbit 1:500 30  HIER pH6b Env+d Gastrointest

inal cancer 

HPGD 
Santa Cruz Biotechnologies, 

Dallas, TX 
SC-48908 Goat 1:50 60  HIER pH6 LSAB+ Cerebellum 

PTGER2 
R&D systems, 

Minneapolis, MN 
MAB6656 Mouse 1:100 30 HIER pH9 Env+ 

Gastrointest

inal cancer 

PTGER4 
Cayman Chemicals,  

Ann Arbor MI 
101775 Rabbit 1:500 60 HIER pH6 LSAB+ Kidney 

a Heat-induced epitope retrieval (HIER) in 10 mM Citrate buffer at pH 6. 
b HIER in10 mM Tris HCl/1 mM EDTA at pH 9. 
c Liquid streptavidin biotin plus horseradish peroxidase (LSAB+). 
d Envision plus horseradish peroxidase (Env+).



 

95 
 

Table 4.2: Characteristics of the Study Participants in Each Study Arma 

 

Characteristics Healthy Eating Diet 

n=57 
Mediterranean Diet 

n=57 

Age, yearsb 50, 14 (range 22–72) 55, 10 (30–82) 

Female gender 39, 68.4% 42, 73.7% 

Caucasian race 51, 89.5% 48, 84.2% 

Married/committed 39, 68.4% 38, 66.7% 

College graduate 45, 78.9% 44, 77.2% 

BMI, kg/m2 27, 4 (range 19–34) 27, 4 (range 18–35) 

Physical activity 21, 15 (range 1–68) 18, 13 (range 0–55) 

Tobacco usersc 3, 5.3% 9, 15.8% 

Alcohol consumption g/day 7, 10 (range 0–46) 6, 7 (range 0–30) 

Regular aspirin user 12, 21.1% 12, 21.1% 

Cholesterol medication use 6, 10.5% 13, 22.8% 

Blood Pressure medication use 7, 12.3% 14, 24.6% 

Family history of colon cancer 40, 70.2% 36, 63.2% 

History of adenomas 11, 19.3% 13, 22.8% 

Both risk factors 6, 10.5% 8, 14.0% 

a Data are given as mean and SD or number and percent 
b Significantly different between the two groups. 
c Tobacco user were marginally significant different p=0.06. 
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Table 4.3: Concentrations of Prostaglandins and Relative Expression of Genes in Colonic Mucosa 

over Time 

 

Markers Healthy Eating Diet Mediterranean Diet 

 Baseline 

n=57 

Six months 

n=45 

Baseline 

n= 56 

Six months 

n=45 

PGE2 17,15 17,15 19,13 19, 16 

PGE3 1.2,1.2 1.5,1.7 1.3,1.1 1.8,1.7b 

PTGS1 1.1,0.7 1.3,0.9 1.1,0.7 1.2,0.9 

PTGS2 0.2,0.2 0.3,0.3 0.2,0.2 0.2,0.2 

PTGES1 0.2,0.2 0.2,0.2 0.17,0.12 0.23,0.23 

PTGES3 0.7,1.0 0.9,1.2b 0.5,0.7 0.7,1.0b 

HPGD 1.4,1.0 1.3,1.0 1.5,1.0 1.5,1.1 

PTGER2 0.4,0.31 0.4,0.5 0.3,0.3 0.4,0.5 

PTGER4 0.9,0.8 1.1,0.9 0.9,0.7 1.2,0.7 
aData shown is for study participants for whom tissue biopsies for RNA quantification were available. 
b Significantly different than baseline for that diet group, p < 0.05.  Data shown is mean and SD  
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Table 4.4: Concentrations of Prostaglandins and Relative Expression of Genes in Colonic Mucosa 

over Time for non-users of NSAIDs 

 

Markers Healthy Eating Diet Mediterranean Diet 

 Baseline  

n=45 

Six months 

 n=34 

Baseline 

 n= 44 

Six months 

 n=36 

PGE2 20,15 20,314 21,14 21,16 

PGE3 1.2,0.92 1.5, 1.6 1.4, 1.2 2.1, 2.00a 

PTGS1 1.2,0.7 1.3, 0.93 1.02, 0.63 1.2, 0.94 

PTGS2 0.22, 0.17 0.27, 0.30 0.22, 0.17 0.23, 0.19 

PTGES1 0.21, 0.19 0.18, 0.018 0.17, 0.13 0.19, 0.13 

PTGES3 0.7, 1.1 0.95, 1.3a 0.5, 0.7 0.75, 1.0a 

HPGD 1.3, 0.7 1.4, 1.0 1.3, 0.79 1.3, 0.7 

PTGER2 0.34, 0.29 0.47, 0.57 0.35, 0.29 0.39, 0.44 

PTGER4 0.97, 0.84 1.14, 1.0 091, 0.68 1.17, 0.74 

a Significantly different than baseline for that diet group from mixed models, p < 0.05.  Data shown is 

actual mean and SD. 
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Table 4.5: Concentrations of Prostaglandins and Relative Expression of Genes in Colonic Mucosa 

over Time by Body Weight Status. Data shown is mean and SD 

 

Normal Weight Individuals 

 

Markers 

                Healthy Eating Diet Mediterranean Diet 

Baseline 

n=20 

Six months 

n=16 

Baseline 

n=18 

Six months 

n=17 

PGE2 17,10 15,14 21,13 20,13 

PGE3 1.4,1.0 2.0,2.2 2.0,1.5 2.6,2.5 a 

PTGS1 1.2,0.7 1.1,0.7 1.0,0.7 1.1,1.1 

PTGS2 0.19,0.15 0.23,0.13 0.21,0.17 0.2,0.13 

PTGES1 0.19,0.14 0.18,0.18 0.19,0.15 0.19,0.15 

PTGES3 0.63,0.77 0.83,0.83 a 0.32,0.51 0.90,1.32 a 

HPGD 1.40,0.85 1.5,1.30 1.40,1.10 1.50,1.01 

PTGER2 0.37,0.30 0.49,0.73 0.38,0.38 0.38,0.49 

PTGER4 0.76,0.55 0.91,0.73 1.0,0.7 1.2,0.9 

Overweight or Obese Individuals 

 

Markers 

      Healthy Eating Diet 
 

Mediterranean Diet 

Baseline 

n=18 

Six months 

n=16 

Baseline 

n=18 

Six months 

n=17 

PGE2 18,16 18,14 18,13 19,17 

PGE3 1.1,1.3 1.2,1.3 0.9,0.6 1.4,1.0 a 

PTGS1 1.1,0.7 1.2,0.9 1.2,0.7 1.3,0.95 

PTGS2 0.22,0.16 0.25,0.3 0.22,0.17 0.24,0.19 

PTGES1 0.2,0.19 0.15,0.17 0.16,0.11 0.24,0.26 

PTGES3 0.7,1.1 0.95,1.4 a 0.5,0.7 0.7,0.7 a 

HPGD 1.3,1.0 1.2,0.7 1.5,0.9 1.6,1.1 

PTGER2 0.34,0.32 0.37,0.35 0.31,0.24 0.43,0.45 

PTGER4 1.1,0.9 1.1,0.95 0.9,0.64 1.2,0.64 

a Significantly different than baseline for that diet group, p < 0.05.  
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Table 4.6: Spearman Correlations Coefficients of Changes in Colon Tissue Fatty Acids with Changes in Prostaglandins and Gene 

Expression. Change was calculated as the percent changeover 6 months of dietary intervention 

 
Healthy 

Eating 
Mediterranean 

Healthy  

Eating 
Mediterranean 

Healthy 

Eating 
Mediterranean 

Healthy 

Eating 
Mediterranean 

 AA AA EPA EPA SFA SFA MUFA MUFA 

PGE2 0.21 0.103 -0.01 -0.01 -0.06 0.07  0.16 -0.03 

PGE3 0.12 0.23  0.23   0.09 -0.30a 0.01  0.18  0.01 

HPGD -0.11 0.12 -0.05  0.00  0.02 0.12  0.15 -0.20 

PTGS1 0.28  0.18 -0.02 -0.13  0.14 0.03 -0.06 -0.17 

PTGS2 0.08 0.28,  -0.01 -0.001 -0.10 0.27,   0.03 -0.23 

PTGES1 0.17 0.43b -0.01 -0.01  0.08 0.22  0.06 -0.32a 

PTGES3 0.07 0.04  0.06 -0.13  0.02 0.15 -0.29,   0.15 

PTGER2 0.23 0.22 -0.06 -0.12 -0.12 0.27  0.18 -0.19 

PTGER4 0.25 0.18  0.07 -0.37a  0.03 0.20  0.1    0.09 
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Table 4.7: Spearman Correlation Coefficients of RNA Expression with Protein Expression in 

Colon. Tissue 

 

 Whole tissue Mucosa Submucosa 

PTGS1(n=45) 0.33a   0.31 a  0.37 a 

HPGD (n=46) 0.34 a   0.38 a  0.34 a 

PTGES3 (n=24) 0.50 a -0.12  0.21 

PTGER2 (n=32) 0.62b  0.36 a  0.71b 

PTGER4 (n=35) 0.45 b  0.31 a  0.43 a 

a Correlation is significant at 0.05 level (2-tailed). 
b Correlation is significant at 0.01 level (2-tailed). 
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Figure 4.1: RNA and Protein Expressions of Biomarkers in the PGE2 Pathway 
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Figure 4.2: Immunohistochemically-stained colon tissue 

 (A, B), HPGD (C, D), PTGES3 (E, F), PTGER2 (G, H), and PTGER4 (I, J). Examples of biopsies with 

high expression (left panels) and low expression (right panels) are shown. Each panel shows the original 

and the false-color image generated using orange, red and brown for light, medium and highly positive 

pixels, respectively, and blue for negative pixels. Black arrows indicated the area where protein is most 

highly expressed for each gene: PTGS1 in the outer epithelium and submucosa, HPGD in the outer 

epithelium, PTGES3 in the epithelial cells, and PTGER2 in the stroma and PTGER4 in the epithelial 

cells.  

HPGD 

PTGS1 

PTGER

PTGES3 

PTGER

Low High 
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CHAPTER 5 

Conclusions 

5.1 Significance 

Despite the fact that colorectal cancer is one of the most preventable diseases, it is still 

the third most common cancer with the fourth highest mortality rate, and more than one million 

annual new cases reported worldwide [1]. In the United States, colorectal cancers are also  the 

third most common cancer type; therefore, this is a major public health concern [3]. 

Identification of cancer preventive strategies is difficult due to the long time frame of cancer 

induction. In this regard, use of biomarkers of cancer risk is helpful. 

 Prostaglandin E2 (PGE2) is a well-established pro-inflammatory mediator that can serve 

as a biomarker of colon cancer risk. Problems with measuring PGE2 in human tissue are that it is 

unstable compound and that its’ production fluctuates rapidly upon tissue injury. Our study 

controlled for these factors by using timed sample processing protocols, but evaluating 

expression of genes in the prostaglandin pathway might be more stable to measure and might 

predict PGE2 production.  

This study evaluated the utility of using expression of genes involved in the PGE2 as 

predictors of PGE2 formation, and this study also evaluated if a Mediterranean diet could affect 

PGE2 production in the colon.  Dietary change would be a non-toxic alternative to continuous use 

of non-steroidal anti-inflammatory drugs (NSAIDs) that show gastric toxicity. The 

Mediterranean diet has been shown to have systemic anti-inflammatory effects and to reduce risk 
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of CRC [90, 91, 197, 198]. It is also a “whole-diet” approach that may be more beneficial than 

modulating individual dietary nutrients. For example, dietary fiber has had consistent preventive 

effect on risk of colon cancer while dietary fiber supplementation has not [113, 114]. The impact 

of the Mediterranean diet as a whole on the PGE2 pathway and other biomarkers related to cancer 

remains unexplored.  

 

5.2 Objectives  

The purpose of this dissertation research was to evaluate the effect of a Mediterranean 

diet, on PGE2 and expression of genes in its pathway in the colon of persons at increased risk for 

colon cancer. The hypothesis was that adherence to a Mediterranean diet would be associated 

with a reduction in formation of PGE2 and corresponding changes in the expression of genes 

involved in its metabolic pathway.  

 

Aim 1 

The first aim was to establish that adherence to two dietary interventions, Mediterranean 

and Healthy Eating, was achieved using the exchange lists diets that were developed for both 

interventions (Chapter 2). We evaluated dietary adherence and both serum and colon tissue 

biomarkers of dietary intakes over six months of intervention. We found that subjects in both 

study arms largely achieved their food group goals. However, individuals in the Mediterranean 

diet arm took longer to achieve their dietary goals than in the Healthy Eating diet arm. This most 

likely was due to the fact that the Mediterranean diet arm had a greater number of dietary goals.  

Another interesting finding was that subjects in the Healthy Eating arm exceeded their 

goals for fruit and vegetables, and this resulted in similar fruit and vegetable intakes in both 
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study arms. This indicates that the more modest exchange list goals for fruit and vegetable 

consumption in the Healthy Eating arm, derived from the Healthy People 2010 guidelines, were 

sufficient to increase both quantity and variety of fruit and vegetable intakes similar to that in the 

Mediterranean arm with more complex goals. This is significant because the reported dietary 

changes were accompanied by increased concentrations of several serum and colon carotenoids. 

These findings have important implications for the design of dietary guidelines since increased 

concentrations of colon carotenoids are found in normal versus polyp tissue and appear to have 

beneficial effects on colon cancer recurrence [56, 199, 200].  

The Mediterranean diet arm was unique in increasing the intake of monounsaturated fatty 

acids (MUFA) and Omega-3 fatty acids as compared to the Healthy Eating diet arm. These 

increases were found to be reflected in serum fatty acid concentrations [122, 123]. Carotenoids 

and fatty acids in colon tissue were, however, were less responsive to reported changes in diet 

than serum carotenoids [201]. One possible reason could be that the 6-month time frame was 

inadequate for accumulation of carotenoids in tissues. Another factor may be the role of 

metabolic and genetic factors in regulating colon tissue micronutrients.  

Unexpectedly, we found there was a significant weight loss in the overweight and obese 

subjects randomized to the Mediterranean diet. This may be due to the high intakes of MUFA. 

Data on post-prandial fat oxidation indicates that MUFA is oxidized more readily than SFA and 

therefore would be less likely to increase adipose stores when energy intakes are equal [124, 

125]. This may be one reason why high MUFA diets have been associated with lower abdominal 

obesity [202].  

 

Aim 2 
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Aim 2 evaluated the factors that contributed to inter- individual variability in PGE2 

concentrations and in expression of genes in its pathway before dietary intervention, at study 

entry (Chapter 3). The highest mRNA expression was for 15-PGDH (HPGD) and COX-1 

(PTGS1), as could be anticipated for normal colon tissue. In contrast, we found that COX-2 

(PTGS2) and mPGES1 (PTGES1) had the lowest mean levels of mRNA expression among the 

quantified genes. High variability of gene expression was found among subjects, especially for 

15-PGDH, and future work could evaluate the etiology of this variability. Expression of 15-

PGDH, however, did not predict PGE2 concentrations in the colon.  The most important finding 

was that PTGS1 mRNA expression and saturated fatty acids (SFA) positively predicted colon 

PGE2 in linear regression models that included NSAID use, age, gender and smoking.  This 

finding is consistent with studies showing that saturated fatty acids activate inflammatory 

pathways through toll-like receptors (TLR) [174, 203, 204]. SFA also can activate COX through 

an allosteric mechanism [173]. As a result, we propose that high dietary intake of SFA may be 

linked to increased colon cancer risk in part through elevation of colon PGE2.   

Aim 3 

 In Aim 3, we evaluated whether the Mediterranean dietary intervention affected PGE2 

concentrations and gene expression of enzymes and receptors in the PGE2 metabolic pathway 

(Chapter 4). We hypothesized that the Mediterranean diet would act to reduce PGE2 formation. 

However, we found that after six months of dietary intervention, there was very little change in 

PGE2. On the other hand, PGE3 was increased in the colon of subjects randomized to the 

Mediterranean diet group. PGE3 is derived from COX-mediated metabolism of eicosapentaenoic 

acid (EPA), an omega3 fatty acid found mainly in fish oil [155, 205]. PGE3 has anti-

inflammatory properties, inhibits colon epithelial cell proliferation, induces colon tumor cell 
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apoptosis and inhibits colon stem cell self-replication [188-190, 206, 207]. We also evaluate the 

relationships between changes in PGE2, fatty acids and gene expression after six months of 

intervention. We found a positive association between changes in colon arachidonic acid and 

changes in PTGS1, and a negative association between changes in SFA and changes in PGE3 in 

the colon. This suggests involvement of substrate and non-substrate fatty acid availability in 

regulating PGE2 synthesis. Finally, we confirmed the association between mRNA gene 

expression and its corresponding protein levels by IHC to validate our results.   

5.3 Limitations and Strengths of the study 

Limitations of this work included the fact that subjects tended to be well-educated and 

Caucasian, which is not representative of the entire U.S. population. Another limitation was that 

only 114 of 212 tissue samples were available for protein quantification. Furthermore, the 

duration of the study was only six months and this may not be sufficient time to allow dietary 

intervention to fully affect changes in colon tissue fatty acids and carotenoids.  

Strengths of the study included the randomized design and the novel intervention 

methods that resulted in good participant adherence. Additionally, it is one of the few studies 

where colon tissue from humans was available for analysis before and after dietary change. This 

was also the first study to evaluate relationships between dietary intakes, tissue nutrient 

concentrations, PGE2 concentrations and expression of genes in the PGE2 pathway among 

persons at high risk for colon cancer.  

5.4 Summary and Implications 



 

108 
 

This thesis research indicated significant associations of PGE2 concentration with 

expression of PTGS1 and with the saturated fatty acids in human colon tissue. PTGS2 has often 

been utilized as a target for colon cancer prevention, and this was based on observations of the 

induction of PTGS2 during colon carcinogenesis.  In persons with normal tissue however, these 

results indicate that PTGS1 would be a target for prevention. The relationships of colon PGE2 

with SFA is also potentially important and intriguing since dietary intervention did not greatly 

affect tissue fatty acids. Future studies could look at metabolic and genetic factors that govern 

the nature of the fatty acids that are stored in colon tissue. Furthermore, intervention studies with 

a longer duration more than six months may be implemented to allow enough time for the diet to 

affect stores of fat-soluble nutrients[208]. 

The findings also revealed that mRNA expression of genes in the PGE2 pathway was 

highly variable among individuals. This points to future research needs aimed at deriving a better 

understanding of these inter-individual differences. The methods developed here for inducing 

dietary changes and for obtaining colon biopsy tissues in a consistent way open the possibility 

for these and other types of research questions pertaining to colon cancer prevention to be 

answered in human studies.     
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