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ABSTRACT

Analysis and Simplex-type Algorithms for Countably Infinite Linear Programming Models
of Markov Decision Processes

by

Ilbin Lee

Chair: Marina A. Epelman and H. Edwin Romeijn

The class of Markov decision processes (MDPs) provides a popular framework which covers a

wide variety of sequential decision-making problems. We consider infinite-horizon discounted

MDPs with countably infinite state space and finite action space. Our goal is to establish

theoretical properties and develop new solution methods for such MDPs by studying their

linear programming (LP) formulations. The LP formulations have countably infinite num-

bers of variables and constraints and therefore are called countably infinite linear programs

(CILPs). General CILPs are challenging to analyze or solve, mainly because useful theo-

retical properties and techniques of finite LPs fail to extend to general CILPs. Another

goal of this thesis is to deepen the limited current understanding of CILPs, resulting in new

algorithmic approaches to find their solutions.

Recently, Ghate and Smith (2013) developed an implementable simplex-type algorithm

for solving a CILP formulation of a non-stationary MDP with finite state space. We estab-

lish rate of convergence results for their simplex algorithm with a particular pivoting rule

and another existing solution method for such MDPs, and compare empirical performance

of the algorithms. We also present ways to accelerate their simplex algorithm. The class

xi



of non-stationary MDPs with finite state space can be considered to be a subclass of sta-

tionary MDPs with countably infinite state space. We present a simplex-type algorithm for

solving a CILP formulation of a stationary MDP with countably infinite state space that

is implementable (using only finite data and computation in each iteration). We show that

the algorithm finds a sequence of policies that improves monotonically and converges to

optimality in value, and present a numerical illustration. An important extension of MDPs

considered so far are constrained MDPs, which optimize an objective function while satis-

fying constraints, typically on budget, quality, and so on. For constrained non-stationary

MDPs with finite state space, we provide a necessary and sufficient condition for a feasible

solution of its CILP formulation to be an extreme point. Since simplex-type algorithms are

expected to navigate between extreme points, this result sets a foundation for developing a

simplex-type algorithm for constrained non-stationary MDPs.
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CHAPTER I

Introduction

Sequential decision-making problems arise in various application areas that require long-

term planning, such as production planning [7, 54, 52], queueing control problems [5, 30, 34,

44], facility maintenance [12, 25, 61], medical treatment planning [1, 48], and stochastic unit

commitment [33]. In such problems, there are multiple stages of decisions to be made on

a dynamic system. When a decision maker makes a decision, she should take into account

not only the decision’s immediate cost (or reward), but also how the decision will affect the

system and her future decision-making. For example, a decision that incurs the minimum

immediate cost may put the system in a position that leads to high costs in future. The

class of Markov decision processes (MDPs) provides a popular framework that covers a wide

variety of sequential decision-making problems (see [10, 18, 39, 60] and the references cited

above).

Consider a dynamic system that evolves over discrete time periods. In period n ∈ N =

{1, 2, . . .}, the system is observed in a state s ∈ S and a decision maker chooses an action a ∈

A. Given that action a is taken in state s, the system makes a transition to a next state t ∈ S

with probability p(t|s, a) incurring a nonnegative cost c(s, a; t). This procedure continues

indefinitely, and future costs are discounted by a fixed discount factor α ∈ (0, 1), thus, we

consider infinite-horizon discounted problems throughout this thesis. Let c(s, a) denote the

expected cost incurred by taking action a at state s, i.e., c(s, a) =
∑

t∈S p(t|s, a)c(s, a; t).
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The goal of the decision maker is to minimize expected total discounted cost over infinite

horizon.

There is a vast literature about solving the case where |S| = S and |A| = A are both

finite (e.g., [10, 39]). We call such MDPs the base case. In this thesis, we will consider

three extensions of the base case in each of Chapters II, III, and IV, that arise in different

applications. The first extension we consider in Chapter II is obtained from the base case by

relaxing the assumption that transition probabilities and cost function are stationary, which

is often violated in practice. We call this class of problems non-stationary MDPs. That is,

non-stationary MDPs have finite state space, finite action space, and non-stationary problem

data. To note the dependence on period index, transition probabilities pn(t|s, a) and cost

function cn(s, a) will have a subscript n. The class of non-stationary MDPs covers a variety

of applications, such as production planning under non-stationary cost and demand data

[22, 52], capacity expansion under nonlinear demand [9], and equipment replacement under

technological change [8]. The second extension considered in Chapter III is obtained from the

base case by allowing the state set S to be countably-infinite. We call this class countable-

state MDPs. Thus, countable-state MDPs have countably-infinite state space, finite action

space, and stationary problem data. Applications that require a countably-infinite state

space include inventory management and queueing control where there is no specific limit

on the size of inventory or queue [4, 39]. The third class of MDPs considered in Chapter IV

is obtained from a non-stationary MDP by adding side constraints, typically on budget or

quality. We call this constrained non-stationary MDPs. That is, constrained non-stationary

MDPs have finite state space, finite action space, non-stationary problem data, and side

constraints. MDPs with side constraints often arise in data communications and facility

maintenance (e.g., [5, 61]).

In this dissertation, we analyze the above three classes of MDPs by studying their linear

programming (LP) formulations. We will introduce new solution algorithms for the MDPs

by providing algorithms for solving the LP formulations. The main goal of this thesis is

2



developing simplex-type algorithms for solving the LP formulations (a simplex-type algo-

rithm navigates through adjacent extreme points of a feasible region, improves an objective

function in each move, and converges to optimality) and analyzing the algorithms. When-

ever necessary, we will also establish theoretical properties that are required for developing

simplex-type algorithms.

Solving an equivalent LP formulation is a popular solution method for MDPs. It is well

known that policy iteration, one of the popular solution methods for base case MDPs, can

be viewed as the simplex method applied to an equivalent LP formulation of the MDP. A

recent result in [62] showed that for base case MDPs, simplex method with Dantzig’s pivoting

rule (for minimization, choosing a non-basic variable with the most negative reduced cost)

is strongly polynomial for a fixed discount factor, and the complexity bound is better than

that of the other solution methods. Furthermore, LP models of MDPs can easily incorporate

additional constraints while other popular solution methods for MDPs such as value iteration

and policy iteration do not naturally extend to constrained MDPs.

For the three classes of MDPs considered in this thesis, equivalent LP formulations have a

countably-infinite number of variables and a countably-infinite number of constraints. Such

LPs are called countably-infinite linear programs (CILPs). In general, CILPs arise in various

additional applications, such as multistage stochastic programs [51], infinite network flow

problems [50], and games with partial informations [14, 20]. However, general CILPs are

challenging to analyze or solve mainly because one encounters many obstacles in trying to

extend useful theoretical properties and techniques of finite LPs to general CILPs. First, it

is possible that a CILP and its dual have a duality gap (see [42] for an example). Also, for

finite LPs, a feasible solution is an extreme point if and only if it is a basic solution, but

such an algebraic characterization of extreme points does not extend to CILPs in general,

which is one of the difficulties in devising a simplex-type algorithm [22]. In addition, it is

possible for a CILP to have an optimal solution but not an extreme point optimal solu-

tion [6]. Even for CILPs that have extreme point optimal solutions, extending the simplex

3



Classes Characterization Simplex-type Convergence rate
of MDPs of extreme points algorithm of simplex algorithm
Stationary, [39] [15, 31] [62]
finite-state
(base case)
Non-stationary, [4, 18] [24] Chapter 2
finite-state
Stationary, [4, 18] Chapter 3
countable-state
Constrained, Chapter 4
non-stationary,
finite-state

Table 1.1: An organization of the contributions of this thesis and representative related work

method is challenging. A pivot operation may require infinite computation, and hence not be

implementable [6, 50]. Moreover, [21] provided an example of a CILP in which a strictly im-

proving sequence of extreme points may not converge in value to optimality, which indicates

that proving convergence to optimality requires careful considerations (for more details, see

[24, 21]). However, we note that some of LP results can be extended by considering more

structured CILPs [24, 41, 42] or finding appropriate sequence spaces [20].

Due to these hurdles, there are only a few algorithmic approaches to CILPs in the lit-

erature [24, 21, 50] (all of these are simplex-type algorithms). In particular, for a CILP

formulation of a non-stationary MDP, [24] recently provided duality results, characteriza-

tion of extreme points, and a simplex-type algorithm that improves in every iteration and

converges to optimality. Their algorithm is implementable in the sense that each of its iter-

ations requires only a finite amount of data and computation. In Chapter II, we establish

rate of convergence results for their simplex algorithm with a particular pivoting rule and

an existing solution method for non-stationary MDPs, called receding horizon approach,

and compare the two results. Also, we introduce a technique that accelerates the simplex

algorithm and present experimental results for the two algorithms.

The class of non-stationary MDPs can be considered to be a subclass of countable-state

4



MDPs. In Chapter III, we introduce an implementable simplex algorithm for solving a CILP

formulation of a countable-state MDP. The contributions of this development is twofolds.

First, this is the first algorithm for countable-state MDPs that computes a sequence of

policies that not only converges to optimality but also improves monotonically. The existing

solution methods of countable-state MDPs obtain a sequence of policies that converges to

optimality in value (to be more precise, value functions of the policies converge to the optimal

value function, see Section 1.1 for precise definitions). However, the policies obtained by those

methods may not improve in every iteration. In other words, a policy obtained in a later

iteration may be worse than a previously obtained policy. In practice, one can run those

algorithms only for a finite time, obtaining a finite sequence of policies. Upon termination, it

should be determined which policy to execute. Without monotone improvement of obtained

policies, those policies should be evaluated in order to find the best one. However, exact

evaluation of even one policy takes an infinite amount of computation for countable-state

MDPs, and even if the policies are evaluated approximately, it still requires a considerable

amount of computation (in addition to the running time of the algorithm). On the other

hand, if the sequence of obtained policies is guaranteed to improve monotonically, then the

last obtained policy is always guaranteed to be the best one so far. Furthermore, consider

cases where the decision-maker has been executing a policy (e.g., one based on a rule-of-

thumb) and wants to improve her decision-making by employing a solution algorithm. If

an algorithm improves monotonically and also converges to optimality, then by running the

algorithm starting from the policy she has been executing, she can obtain a sequence of

policies that are better than the initial policy and also converge to optimality. Meanwhile,

the existing solution methods do not provide any guarantee regarding how long they should

be run in order to obtain a policy that is better than a given one.

Second, there are simplex-type algorithms for solving classes of CILPs in literature

[24, 21, 50] but classes of CILPs considered therein have a special structure that each con-

straint has only a finite number of variables and each variable appears only in a finite number

5



of constraints. In the CILP formulation of countable-state MDPs we consider, each constraint

may have an infinite number of variables and each variable may appear in an infinite num-

ber of constraints (i.e., the coefficient matrix of the CILP can be “dense”). Another key

contribution is that we show that even without restrictions on positions of nonzeros in the

coefficient matrix, “the MDP structure” in the coefficient matrix of the CILP formulation

of a countable-state MDP still enables us to establish the standard LP results and develop

a simplex-type algorithm.

Decision-making problems with multiple criteria are often approached by optimizing one

criterion while satisfying constraints on the other criteria. In Chapter IV, we consider con-

strained MDPs, which optimize an objective function while satisfying constraints, typically

on budget, quality, and so on. Specifically, we analyze constrained non-stationary MDPs

(constrained MDPs with finite state space and non-stationary problem data) by studying

their CILP formulations. In this chapter, we focus on characterizing extreme point solutions

of such CILPs, and corresponding policies for constrained MDPs. By Bauer’s Maximum

Principle (e.g., see Theorem 7.69 of [2]), there exists an extreme point optimal solution for

finite LPs, and the CILP formulations of constrained non-stationary MDPs as well. For finite

LPs, a feasible solution is an extreme point if and only if it is a basic solution. This equiva-

lency translates the geometric concept of an extreme point to the algebraic object of a basic

solution. However, such an algebraic characterization of extreme points does not extend to

CILPs in general [22]. We provide algebraic necessary conditions for a feasible solution of

the CILP formulation of a constrained non-stationary MDP to be an extreme point of its

feasible region. Using those necessary conditions, we also establish a necessary and sufficient

condition for a feasible solution to be an extreme point, which can be checked by considering

a familiar finite dimensional polyhedron. This yields a complete algebraic characterization

of extreme points for CILPs representing constrained non-stationary MDPs, and thus, sets

foundations towards development of a simplex-type algorithm. Also, by characterizing ex-

treme points, we provide an alternative proof that there exists an optimal policy that is

6



K-randomized, where K is the number of constraints and a policy is K-randomized if it

uses K “more” actions than a Markov deterministic policy (for more precise definitions, see

Section 4.4).

1.1 Technical Background

In this section, we first introduce notation and definitions that will be used throughout

the thesis. Then we review theoretical properties of base case MDPs (finite state space and

stationary problem data) and an LP approach to these MDPs. This provides a common base

for the following three chapters because each of the chapters can be viewed as an extension

of the LP approach in this section to the class of MDPs studied in the chapter.

A policy π is a sequence π = {π1, π2, . . .} of probability distributions πn(·|hn) over the

action set A, where hn = (s0, a0, s1, a2, . . . , an−1, sn) is the whole observed history of state

visited and actions taken at the beginning of period n. Given an initial state s, each policy

π induces a probability measure P s
π on sequences {(sn, an)}∞n=1, where (sn, an) ∈ S × A for

n = 1, 2, . . . and defines the state process {Sn}∞n=1 and the action process {An}∞n=1. The

corresponding expectation operator is denoted by Es
π. Let

Jπ(s) , Es
π

[
∞∑
n=1

αn−1cn(Sn, An)

]
for s ∈ S, (1.1)

which is the expected total discounted cost of policy π starting from state s. The function

Jπ on S is called the value function of the policy π. Let

J?(s) , sup
π∈Π

Jπ(s) for s ∈ S,

where Π denotes the set of all policies. The function J? on S is called the optimal value

function. Then, the goal of an MDP problem is finding a policy that is optimal for any

starting state, i.e., a policy π? such that Jπ?,1(s) = J?(s) for all s ∈ S.

7



A policy π is called Markov if the distributions πn depend only on the current state and

time, i.e., πn(·|hn) = πn(·|sn). A Markov policy π is called stationary if the distributions

πn do not depend on time n, i.e., πn(·|s) = πm(·|s) for s ∈ S and time periods m and n.

A policy π is said to be deterministic if each distribution πn(·|hn) is concentrated on one

action. Let Π,ΠM , ΠMD, ΠS, and ΠSD denote the set of all policies, Markov policies, Markov

deterministic policies, stationary policies, and stationary deterministic policies, respectively.

For a Markov deterministic policy π, let πn(s) denote the action chosen by π at state s in

period n, and for a stationary deterministic policy σ (in this thesis, notation σ is used to

emphasize the choice of a stationary policy), σ(s) denotes the action chosen by σ at state s.

For base case MDPs, it is well known that there exists an optimal policy that is stationary

and deterministic and that we can compute such an optimal policy and the optimal value

function J? by solving Bellman equations.

Theorem 1.1 (cf. Proposition 1.2.2 and 1.2.3 of [10]). MDPs with finite state spaces and

stationary problem data (base case) satisfy the following.

(1) There exists an optimal policy that is stationary and deterministic.

(2) The optimal value function V ? is the unique solution of Bellman equations:

y(s) = min
a∈A

{
c(s, a) + α

S∑
t=1

p(t|s, a)y(t)

}
for s ∈ S.

Moreover, the actions that achieve the above minimum form a stationary and deterministic

optimal policy.

In particular, for any stationary deterministic policy σ, Jσ equals the optimal value function

of a new MDP obtained by allowing only one action σ(s) for s ∈ S, and thus, Jσ is the

unique solution of

y(s) = c(s, σ(s)) + α
S∑
t=1

p(t|s, σ(s))y(t) for s ∈ S.

In the rest of this section, we summarize the well-known LP approach to base case MDPs

8



(for more details, e.g., see Section 6.9 of [39]).

Consider the following LP formulation of a base case MDP:

(P ) min
x

∑
s∈S

∑
a∈A

c(s, a)x(s, a)

s.t.
∑
a∈A

x(s, a)− α
S∑
t=1

∑
a∈A

p(s|t, a)x(t, a) = β(s) for s ∈ S

x ≥ 0,

where β : S → R satisfies β(s) > 0 for s ∈ S and
∑

s∈S β(s) = 1 (β can be interpreted as an

initial state distribution).

The following LP is its dual:

(D) max
y

∑
s∈S

β(s)y(s)

s.t. y(s)− α
S∑
t=1

p(t|s, a)y(t) ≤ c(s, a) for s ∈ S, a ∈ A.

There is a unique optimal solution to (D) and from Theorem 1.1, it is easy to check that the

optimal solution of (D) equals the optimal value function J?.

The above two LPs are finite LPs and dual to each other, and y(s) = 0 for s ∈ S is

feasible to (D). Thus, their optimal objective function values are equal (strong duality) and

complementary slackness is necessary and sufficient for optimality (e.g., see Section 4.3 of

[11]).

It is well known that there exists a one-to-one correspondence between feasible solutions

of (P) and stationary policies. For a stationary policy, the corresponding solution of (P) is

the occupancy measure of the policy, which is the expected total discounted time spent in

different state-action pairs under the policy (see Section 3.5.1 for a precise definition). Also,

a feasible solution x of this LP is basic (i.e., an extreme point) if and only if for any s ∈ S

there exists a unique a(s) ∈ A such that x(s, a(s)) > 0. Note that this equivalent condition

9



naturally defines a stationary deterministic policy formed by the actions a(s) for s ∈ S and

in fact, a basic feasible solution x is the occupancy measure of the stationary deterministic

policy.

One can obtain a stationary deterministic optimal policy for the MDP by obtaining an

optimal basic feasible solution of (P). One of the popular methods to do it is the simplex

method. Note that for (P), choosing a basis is equivalent to assigning a unique action to

each state. One iteration of the simplex method applied to (P) can be written as follows.

Simplex method for base case MDPs

0. A basis: Have a unique action σ(s) for each state s

1. Compute the complementary dual solution: by solving

y(s)− α
S∑
t=1

p(t|s, σ(s))y(t) = r(s, σ(s)) for s = 1, . . . , S

2. Compute reduced costs: for s = 1, . . . , S and a 6= σ(s),

γ(s, a) , r(s, a) + α
S∑
t=1

p(t|s, a)y(t)− y(s)

3. Pivot: Choose a nonbasic variable x(s, a) with a negative reduced cost and make it

basic

Let us discuss some challenges in extending the above LP approach to the three classes

of MDPs considered in this thesis. As previously mentioned, LP formulations of the three

classes (non-stationary MDPs, countable-state MDPs, and constrained non-stationary MDPs)

are CILPs.1 Since the useful theoretical properties of finite LPs such as duality results and

1Although the LP formulations of MDPs we consider are CILPs, they will look similar to (P) and (D),
and simplex-type algorithms we develop or analyze will be also similar to the simplex method presented in
this section. When coming across LP formulations of MDPs and simplex-type algorithms in later chapters,
we recommend the readers to re-visit this section and check the similarity.
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the characterization of extreme points as basic feasible solutions do not directly extend to

general CILPs, we have to establish those properties before developing simplex-type algo-

rithms. However, even with those properties in hand, it is challenging to extend the above

simplex method to the CILP formulations of MDPs. First, a mere extension of the simplex

method to the CILPs may require performing infinite computation and using infinite data

in one iteration. For example, the system of equations solved in Step 1 of the above simplex

method becomes an infinite system of equations with an infinite number of variables when

applied to the CILPs we consider. In addition, Step 2 computes reduced cost of all nonbasic

variables, but in the CILPs we consider there is an infinite number of nonbasic variables.

Thus, in order to develop an implementable extension of the above simplex method, it is

necessary to develop proper approximation schemes. Consequently, there are challenges in

ensuring that despite approximations we will have to introduce, simplex-type algorithms

we develop generate a sequence of extreme points that improves an objective function in

every iteration and converges to optimality. In particular, we remind the reader that for

CILPs, strictly improving sequences of extreme points may not converge to optimality [21],

so a careful consideration is required to ensure that a simplex-type algorithm converges to

optimality.

In Chapter II, we establish a complexity bound for the simplex algorithm for non-

stationary MDPs introduced in [24] to achieve near-optimality and suggest ways to acceler-

ate the algorithm. We experimentally illustrate the performance of the algorithm and the

improvements. In Chapter III, we extend the major theoretical extreme point and duality

results to a CILP formulation of countable-state MDPs under standard assumptions for ana-

lyzing MDPs with countably-infinite state spaces. Under an additional technical assumption

which is satisfied by several applications of interest, we present a simplex-type algorithm that

is implementable. We show that the algorithm finds a sequence of policies which improves

monotonically and converges to optimality in value. A numerical illustration for inventory

management problems is also presented. In Chapter IV, we provide duality results and a
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complete characterization of extreme points of a CILP formulation of a constrained non-

stationary MDP. The resulting necessary and sufficient condition to be an extreme point

can be checked by considering a familiar finite dimensional polyhedron. We also illustrate

the condition for special cases. As a corollary, we obtain a new proof of the existence of

a K-randomized optimal policy, where K is the number of constraints. We conclude in

Chapter V with a summary of contributions and future research directions.
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CHAPTER II

Analysis of Algorithms for Non-stationary Markov

Decision Processes

2.1 Introduction

Non-stationary MDPs are MDPs with finite state space, finite action space, and non-

stationary problem data. Specifically, the set of states S and the set of actions A are

finite with |S| = S and |A| = A, and given that action a is taken at state s in period n,

the system makes a transition to a next state t with probability pn(t|s, a) incurring cost

0 ≤ cn(s, a; t) ≤ c <∞, where c is a uniform upper bound on immediate costs. Let cn(s, a)

denote the expected cost incurred by taking action a at state s in period n. The goal of

the decision maker is to find a policy that minimizes the expected total discounted cost over

infinite horizon. This problem is called a non-stationary MDP. Non-stationary MDPs arise

in various applications, such as production planning under non-stationary cost and demand

data [23, 52], capacity expansion under nonlinear demand [9], and equipment replacement

under technological change [8].

Note that a non-stationary MDP can be also viewed as a stationary MDP with a count-

able number of states by appending states s ∈ S with time-indices n ∈ N. The states in the

stationary MDP counterpart are (n, s) ∈ N× S. It is well known that for stationary MDPs

with a countable number of states and uniformly bounded costs, there exists an optimal
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policy that is stationary and deterministic (e.g., see Theorem 6.10.4 of [39]). A stationary

deterministic policy in the stationary MDP counterpart corresponds to a Markov determin-

istic policy in the original non-stationary MDP. Therefore, we can limit our attention to

Markov deterministic policies. For a Markov deterministic policy π, let πn(s) denote the

action chosen by π at state s in period n.

The simplex algorithm for solving non-stationary MDPs introduced in [24] is a simplex-

type algorithm for solving CILP formulations of non-stationary MDPs. We will review

the algorithm and prove its convergence in Section 2.2. In short, the algorithm finds a se-

quence of extreme points of the CILP feasible region whose objective function values improve

monotonically and converge to the optimal objective function value. There is a one-to-one

correspondence between extreme points of the CILP and Markov deterministic policies. This

implies that the simplex algorithm obtains a sequence of improving policies that converges

to optimality (see Section 2.2 for more details).

Another solution method for non-stationary MDPs is to solve successively larger but

finite horizon truncations to optimality, i.e., for N = 1, 2, . . ., solve the truncated problem

of periods 1, . . . , N obtained from the original problem by assuming no cost is incurred after

period N . Each truncated problem is solved by backward induction. We call this algorithm

the receding horizon approach (RHA). RHA can be viewed as a special case of the shadow

simplex method [21]. Also, RHA can be considered as a version of algorithm in [57] that

solves stationary MDPs with countable state space by solving successively larger but finite

state truncation to optimality. RHA for non-stationary MDPs can be viewed as a version of

the algorithm in [57] applied to the stationary MDP counterpart of non-stationary MDPs.

RHA computes a sequence of policies whose value functions converge to the optimal value

function but may not improve monotonically.1

In this chapter, we establish rate of convergence results of the simplex algorithm and

RHA. For base case MDPs (finite state space and stationary problem data), the simplex

1In [57], the convergence of value functions of the policies generated by the algorithm was not established,
but it can be proven by arguments similar to those in the paper.
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method with Dantzig’s pivoting rule (choosing a non-basic variable with the most negative

reduced cost) was shown to be strongly polynomial for a fixed discount factor [62]. For

non-stationary MDPs, we establish a number of iterations for the simplex algorithm with a

particular pivoting rule to find a solution whose objective function value is within a given

threshold from the optimal value. Note that one cannot expect any algorithm to solve a

non-stationary MDP in finite time because of the non-stationarity of problem data. We also

derive a similar result for RHA and compare the two results.

We also introduce a modification to the simplex algorithm that greatly accelerates its

empirical performance. The simplex algorithm for non-stationary MDPs in [24] performs only

one pivot operation (a pivot operation is replacing a basic variable by a nonbasic variable)

per iteration. Policy iteration, one of the popular solution methods for base case MDPs, is

the simplex method performing block pivot operations in each iteration. In this spirit, we

modify the simplex algorithm so that it performs multiple pivot operations in one iteration.

In Section 2.2, we review CILP formulations of non-stationary MDPs, the simplex algo-

rithm introduced by [24], and related results. We also provide a proof of convergence that

is different from the one in [24], which is useful in later sections. In Section 2.3 and 2.4,

we establish rate of convergence results of the simplex algorithm and RHA, respectively.

Section 2.5 introduces multiple pivoting. In Section 2.6, we provide experimental results

for the simplex algorithms introduced in this chapter and RHA for inventory management

problems.

2.2 Technical Background

2.2.1 CILP Formulations

Let x = {xn(s, a)} denote a sequence indexed by n ∈ N, s ∈ S, and a ∈ A. We consider

the following CILP formulation of a non-stationary MDP introduced in [24] (see also Chapter
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8 of [4] and Chapter 12 of [18] for similar LP formulations of more general classes of MDPs):

(NP) min f(x) =
∞∑
n=1

∑
s∈S

∑
a∈A

αn−1cn(s, a)xn(s, a) (2.1)

s.t.
∑
a∈A

x1(s, a) = 1 for s ∈ S (2.2)

∑
a∈A

xn(s, a)−
∑
t∈S

∑
a∈A

pn−1(s|t, a)xn−1(t, a) = 1 for n ∈ N \ {1}, s ∈ S (2.3)

xn(s, a) ≥ 0 for n ∈ N, s ∈ S, a ∈ A. (2.4)

To gain intuition, it is convenient to interpret solutions of (NP) as flows in a directed

staged hypernetwork with an infinite number of stages (cf. [22]). Stage n in the hypernetwork

corresponds to period n of the MDP, and each stage includes S nodes, one for each state

in S. There are A directed hyperarcs emanating from each node, one for each action in

A; thus, a hyperarc (n, s, a) corresponds to action a at state s in stage n. A hyperarc (in

a hypernetwork) can connect its “tail” node to multiple “head” nodes; here, a hyperarc

(n, s, a) has (n, s) as its tail node, and all nodes (n + 1, t) such that pn(t|s, a) > 0 as its

head nodes. If all nodes (n, s) have supply of 1 units for n ∈ N and s ∈ S, any x satisfying

the constraints of (NP) can be visualized as a flow in this hypernetwork. See Figure 2.1.

Specifically, xn(s, a) is the flow in the hyperarc (n, s, a), and the flow reaching from node

(n, s) to node (n+1, t) through this hyperarc equals pn(t|s, a)xn(s, a). Moreover, constraints

(2.2) and (2.3) ensure flow balance at each node. We will refer to any x feasible to (NP) as

a flow in the hypernetwork. Let P denote the feasible region of (NP).2

For any Markov policy π for the non-stationary MDP, the corresponding flow x can be

found as

xn(s, a) = πn(a|s)
∑
t∈S

P t
π(Sn = s) for n ∈ N, s ∈ S, a ∈ A.

That is, xn(s, a) is proportional to the probability, under π, of using action a at state s in

2In each of the following chapters, P will denote the feasible region of the primal CILP considered in the
chapter.

16



(n,	
  s)	
   xn(s,a) 

Period n 

(n+1,	
  1)	
  

(n+1,	
  t)	
  

Period n+1 

(n+1,	
  S)	
  

pn(t|s,a)xn(s,a) 

pn(1|s,a)xn(s,a) 

pn(S|s,a)xn(s,a) 
pn-1(s|S,A)xn-1(S,A) 

pn-1(s|1,1)xn-1(1,1) 

pn-1(s|1,A)xn-1(1,A) 

xn(s,1) 

xn(s,A) 

pn-1(s|2,1)xn-1(2,1) 

Figure 2.1: Hypernetwork of (NP)

period n, scaled by the sum of the probabilities of reaching this state in period n under the

policy π for different initial states, while the total inflow into node (n, s) is precisely the sum∑
t∈S P

t
π(Sn = s). In light of this interpretation, a Markov policy corresponding to any flow

x is also easy to identify, and thus, there exists a one-to-one correspondence between the set

of Markov policies and the set of flows.

Using the following lemma from [24], one can easily show that the infinite series in the

objective function of (NP) converges absolutely for any x ∈ P .

Lemma 2.1 (Lemma 2.1 of [24]). For a feasible solution x of (NP ), for each n ∈ N,

∑
s∈S

∑
a∈A

xn(s, a) = nS, (2.5)

and this also implies xn(s, a) ≤ nS.

We consider another CILP formulation of a non-stationary MDP which can be derived
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by following arguments in Chapter 2.5 of [45] (see also [24]):

(ND) max g(y) =
∞∑
n=1

∑
s∈S

yn(s)

s.t. yn(s)−
∑
t∈S

pn(t|s, a)yn+1(t) ≤ αn−1cn(s, a) for n ∈ N, s ∈ S, a ∈ A

y ∈ Y,

where Y is the subspace of all sequences y = {yn(s)} indexed by (n, s) ∈ N × S such that

|yn(s)| ≤ αn−1τy for all (n, s), for which τy is a finite constant that depends on y. Note that

the infinite series in the objective function converges absolutely for any y ∈ Y . We remark

that there exists a unique optimal solution y? of (ND) and that y?n(s) equals αn−1J?n(s) where

J?n(s) denotes the minimum expected total discounted cost starting from the state s in period

n, i.e., y?n(s) equals J?n(s) discounted back to the initial period [24].

Duality results between (NP) and (ND) can be found in literature. Chapter 8 of [4]

and Chapter 12 of [18] presented duality results for similar LP formulations of more general

classes of MDPs. Specifically for the above LP formulations of non-stationary MDPs, [24]

provided duality results, which we state below without proofs.

Theorem 2.2 (Strong duality, Theorem 3.5 of [24] or see Chapter 9 of [4]). (NP) and (ND)

have optimal solutions and their optimal objective function values are equal.

Definition 2.3 (Complementary slackness). Suppose x is feasible to (NP) and y ∈ Y . Then

we say that x and y satisfy complementary slackness if

xn(s, a)

(
αn−1cn(s, a)− yn(s) +

∑
t∈S

pn(t|s, a)yn+1(t)

)
= 0 for n ∈ N, s ∈ S, a ∈ A. (2.6)

Theorem 2.4 (Theorem 3.4 and 3.6 of [24]). (1) Suppose x is feasible to (NP) and com-

plementary with some y ∈ Y . Then f(x) = g(y). If y is feasible to (ND), then x and y are

optimal to (NP) and (ND), respectively.
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(2) Suppose x and y are optimal to (NP) and (ND), respectively. Then, they are comple-

mentary.

2.2.2 Basic Feasible Solution and Pivot Operation

By Theorem 2.2 in [24], (NP) has an extreme point optimal solution and the goal of the

simplex algorithm we will analyze is to generate a sequence of improving extreme points

whose objective function values converge to the optimal value. We define a basic feasible

solution of (NP) which provides an algebraic characterization of extreme points of P , as

shown by the theorem following the definition.

Definition 2.5 (Basic feasible solution). Suppose x is feasible to (NP). We call it a basic

feasible solution of (NP) if, for every n ∈ N and s ∈ S, there is exactly one action an(s) ∈ A

for which xn(s, an(s)) > 0.

Theorem 2.6 (Theorem 11.3 of [18] or Theorem 4.3 of [24]). A feasible solution x of (NP)

is an extreme point of P if and only if it is a basic feasible solution.

Note that a basic feasible solution x naturally defines a Markov deterministic policy π.

By the one-to-one correspondence between the set of Markov policies and the set of flows in

the hypernetwork, it is easy to show that x is the flow in the hypernetwork corresponding

to the policy π. Given a basic feasible solution x, for n ∈ N and s ∈ S, the unique action

an(s) ∈ A such that xn(s, an(s)) > 0 is said to be the basic action of x at state s in period

n.

Let us extend the definition (1.1) as follows: for a policy π,

Jπ,n(s) , Es
π

[
∞∑
k=n

αk−1ck(Sk, Ak)

]
= αn−1Es

π

[
∞∑
k=n

αk−nck(Sk, Ak)

]
for n ∈ N, s ∈ S, (2.7)

that is, the expected total discounted cost of policy π starting from state s in period n,

discounted back to the initial period. By Theorem 1.1, for a Markov deterministic policy π,
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Jπ , {Jπ,n(s)}(n,s)∈N×S is the unique solution of the following system of equations:

yn(s) = αn−1cn(s, πn(s)) +
∑
t∈S

pn(t|s, a)yn(t) for n ∈ N and s ∈ S. (2.8)

That is, for a basic feasible solution x and the corresponding policy π, Jπ is the unique

complementary solution of x. From the definition of Jπ, it is evident that

0 ≤ Jπ,n(s) ≤ αn−1 c

1− α
for π ∈ ΠMD, n ∈ N, s ∈ S, (2.9)

and thus, Jπ ∈ Y .

Let f ? denote the optimal objective function value of (NP). The following theorem shows

that if an algorithm generates a sequence of basic feasible solutions of (NP) whose objective

function values converge to f ?, then the algorithm generates a sequence of policies converging

to optimality for non-stationary MDPs.

Theorem 2.7. Let xk be a sequence of basic feasible solutions and πk be the policy corre-

sponding to xk. If limk→∞ f(xk) = f ?, then limk→∞ Jπk,n(s) = J?n(s) for n ∈ N, s ∈ S.

Proof: Because of the definition of J?, we have Jπk,n(s) − J?n(s) ≥ 0 for n ∈ N, s ∈ S.

Moreover, we have

f(xk)− f ? = g(Jπk)− g(J?) =
∞∑
n=1

∑
s∈S

Jπk,n(s)−
∞∑
n=1

∑
s∈S

J?n(s)

=
∞∑
n=1

∑
s∈S

(Jπk,n(s)− J?n(s)),

where the first equality is obtained from complementary slackness and the third inequality

is obtained because Jπ and J? are both feasible to (ND). Since each term in the last sum is

nonnegative and the sum converges to zero, each term converges to zero, and therefore, the

theorem is proven.

In the rest of this subsection, we define a pivot operation and provide an expression of
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the change in objective function value made by a pivot operation. Consider a basic feasible

solution x and its complementary solution y. We first define reduced costs.

Definition 2.8. Given a basic feasible solution x and its complementary solution y, reduced

cost γn(s, a) of a hyperarc (n, s, a) is defined as the slack in the corresponding constraint in

(ND):

γn(s, a) , αn−1cn(s, a) +
∑
t∈S

pn(t|s, a)yn+1(t)− yn(s). (2.10)

Recall that y = Jπ where π is the Markov deterministic policy corresponding to x. From

the definition of the reduced cost and (2.9), we can easily prove the next lemma.

Lemma 2.9. The reduced cost γ satisfies

−αn−1 c

1− α
≤ γn(s, a) ≤ αn−1 c

1− α
for n ∈ N, s ∈ S, a ∈ A. (2.11)

Fix a period n, a state s, and an action a 6= πn(s). Consider a Markov deterministic

policy ρ obtained from π by changing the basic action at state s in period n to a. We call

this procedure for obtaining ρ from π a pivot operation. Let z be the basic feasible solution

corresponding to ρ. The next proposition shows the relation between the change in objective

function value made by this pivot operation and the reduced cost γn(s, a).

Proposition 2.10. The difference in objective function values at basic feasible solution x

and the adjacent basic feasible solution z is given by

f(z)− f(x) = (1 + θn(s))γn(s, a) (2.12)

where θn(s) = xn(s, an(s))− 1 ≥ 0 for n ∈ N, s ∈ S.

Proof: Proposition 5.1 of [24] showed that f(z) − f(x) = (1 + θn(s))γn(s, a) for some

θn(s) ≥ 0. Thus, we only have to prove that 1 + θn(s) = xn(s, an(s)), which is done in

Section 2.7.1.
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In this proposition, x and z are two extreme points whose basic actions differ only at

one period-state pair. We define such two extreme points to be adjacent. Note that the set

of nonnegativity constraints (2.4) binding at x differs from those binding at z only by one

constraint. Thus, the definition of adjacent extreme points of P naturally aligns with the

general notion of adjacency in a finite-dimensional polyhedron. Notice also that for a given

extreme point of P , there are a countably infinite number of adjacent extreme points.

2.2.3 The Simplex Algorithm for Non-stationary MDPs

Proposition 2.10 provides an exact expression of the difference in objective function value

made by a pivot operation. Also, the proposition implies that, if one finds a nonbasic variable

that has a negative reduced cost, then the solution resulting from the pivot operation has

a strictly lower objective function value. However, in order to compute a reduced cost, one

should first compute the complementary solution y and computing y requires either solving

the infinite system of equations (2.8) or computing (2.7) exactly, thus an infinite amount

of computation would be required. Consequently, the implementable simplex algorithm in

[24] (stated below) approximates y and reduced costs using an m-horizon truncation of the

non-stationary MDP and increases m as necessary to enhance the approximation until it

finds a nonbasic variable with a negative reduced cost. In addition, recall that a strictly

improving sequence of extreme points may not converge to optimality for general CILPs,

as mentioned in Chapter I. In other words, the improvement in each iteration should be

“sufficiently large” for the sequence of objective function values at obtained extreme points

not to get stalled prematurely before converging to optimality. It was shown in [24] that the

following algorithm, which we denote as SA in the rest of this chapter, generates a sequence

of improving extreme points that converges to optimality.

The simplex algorithm (SA)

1. Initialize: Set iteration counter k := 0. Fix basic actions a0
n(s) ∈ A for s ∈ S and

n ∈ N. Set m := 1.
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2. Find a nonbasic arc with the most negative approximate reduced cost:

(a) Define m(k) ,∞ and γk,∞ , 0.

(b) Let yk,m be the solution of the finite system of equations

yk,mn (s) = αn−1cn(s, akn(s)) +
∑
t∈S

pn(t|s, akn(s))yk,mn+1(t) for s ∈ S, n ≤ m, (2.13)

yk,mm+1(s) = 0. (2.14)

(c) Compute approximate nonbasic reduced costs

γk,mn (s, a) , αn−1cn(s, a) +
∑
t∈S

pn(t|s, a)yk,mn+1(t)− yk,mn (s) (2.15)

for n ≤ m, s ∈ S, a ∈ A such that a 6= akn(s).

(d) Compute the smallest approximate nonbasic reduced cost

γk,mmin , min
(n,s,a)

γk,mn (s, a) (2.16)

(e) If γk,mmin < −αm c
1−α , setm(k) = m, (nk, sk, ak) = arg min(n,s,a) γ

k,m
n (s, a), ak+1

nk (sk) =

ak and ak+1
n (s) = akn(s) for (n, s) 6= (nk, sk), and go to Step 3 below; else set

m := m+ 1 and go to Step 2(b) above.

3. Set k := k + 1 and go to Step 2.

In this algorithm, m is the number of periods used to approximate reduced costs and is

called strategy horizon. The above simplex algorithm is different from the one in [24] only

in the way it sets the strategy horizon at the beginning of each iteration: in Step 2(a), the

algorithm in [24] resets m := 1 at the beginning of each iteration, but this begins iteration

k with strategy horizon m = m(k − 1), i.e., the strategy horizon at which the previous

iteration found a pivot operation satisfying the conditions. We consider this modified version
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because we empirically experienced that the modification greatly accelerates convergence of

the algorithm. It can be easily shown that all of the results in [24] still hold after this change

because a starting value of m in each iteration does not play any role in their proofs.

Let xk denote the basic feasible solution found in iteration k of SA with basic actions

akn(s) for s ∈ S and n ∈ N. Let yk be the complementary solution of xk. Then, yk,m

computed in Step 2(b) approximates yk with the following error bound.

Lemma 2.11 (Lemma 5.4 of [24]). The approximation yk,m of yk satisfies

yk,mn (s) ≤ ykn(s) ≤ yk,mn (s) + αm
c

1− α
for s ∈ S, n ≤ m+ 1. (2.17)

Remark 2.12. The above inequality has the following interpretation. ykn(s) is the infinite-

horizon cost-to-go of the current policy at the kth iteration starting from the period-state

pair (n, s) discounted back to the initial period, whereas yk,mn (s) is the cost-to-go of the

current policy at the kth iteration starting from the period-state pair (n, s) only to period m

discounted back to the initial period. From period m+ 1, an upper bound on the cost that

the current policy can incur is obtained by paying c in every period from period m+ 1, and

a lower bound is obtained by paying 0 from period m+ 1 onward.

In iteration k of the algorithm, the approximate reduced costs computed in Step 2(c)

satisfy the following error bound.

Lemma 2.13. The approximation γk,m of γk satisfies

γk,mn (s, a)− αm c

1− α
≤ γkn(s, a) ≤ γk,mn (s, a) + αm

c

1− α
for n ≤ m, s ∈ S, a ∈ A. (2.18)

Remark 2.14. The above inequality has a similar interpretation with the one of (2.17).

γkn(s, a) is the difference of infinite-horizon cost incurred by changing the basic action of the

period-state pair (n, s) from the action given by the current policy to a new basic action

a. γk,mn (s, a) is the difference of m-horizon cost incurred by the same procedure. Assume
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that from the period m+ 1, taking the current basic action in period n at state s causes the

maximum cost c in periods m + 1,m + 2, . . . while the action a causes cost zero in periods

m+1,m+2, . . .. This case gives the lower bound (the most optimistic case for the new basic

action) on the approximate reduced cost and it is the left side of the above inequality. The

upper bound is derived in a similar way.

Let γkmin be the minimum (exact) reduced cost over all nonbasic variables in iteration

k. The following lemma shows the relation between γkmin, the approximate reduced cost

γ
k,m(k)

nk (sk, ak) of the nonbasic variable chosen by the algorithm, and its (exact) reduced cost

γk
nk(sk, ak).

Lemma 2.15. The minimum reduced cost γkmin, the approximate reduced cost γ
k,m(k)

nk (sk, ak)

of the nonbasic variable chosen by the algorithm, and its (exact) reduced cost γk
nk(sk, ak)

satisfy

γknk(sk, ak)− 2αm(k) c

1− α
≤ γ

k,m(k)

nk (sk, ak)− αm(k) c

1− α
≤ γkmin. (2.19)

Proof: Let a hyperarc (n̄, s̄, ā) attain the minimum reduced cost γkmin, i.e., γkn̄(s̄, ā) =

γkmin. Suppose n̄ > m(k). By the choice of m(k) and (nk, sk, ak),

γ
k,m(k)

nk (sk, ak) < −αm(k) c

1− α
< −αn̄ c

1− α
≤ γkn̄(s̄, ā).

If n̄ ≤ m(k), then

γ
k,m(k)

nk (sk, ak)− αm(k) c

1− α
≤ γ

k,m(k)
n̄ (s̄, ā)− αm(k) c

1− α
≤ γkn̄(s̄, ā),

by (2.18). By combining the above two inequalities, we obtain

γ
k,m(k)

nk (sk, ak)− αm(k) c

1− α
≤ γkn̄(s̄, ā) = γkmin.
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By applying (2.18) again, we obtain

γknk(sk, ak)− 2αm(k) c

1− α
≤ γ

k,m(k)

nk (sk, ak)− αm(k) c

1− α
≤ γkmin.

The next lemma states that SA generates an improving sequence of extreme points.

Lemma 2.16 (Lemma 5.5 and 5.6 of [24]). If xk is not optimal to (D), then Step 2 terminates

and f(xk+1) < f(xk).

2.2.4 Proof of Convergence

In this subsection, we prove that SA generates a sequence of extreme points whose objec-

tive function values converge to optimality. This proof is different from the one in [24]. This

alternative proof will be helpful in Section 2.3 in analyzing convergence rate of the simplex

algorithm.

In addition to the above preliminary results, [24] showed the following lemma about m(k)

and γ
k,m(k)
min = γ

k,m(k)

nk (sk, ak) of SA, which is necessary to prove convergence of the algorithm.

Lemma 2.17 (Lemma 5.7 of [24]). The sequence m(k)→∞ as k →∞. Also, γ
k,m(k)

nk (sk, ak)

→ 0 as k →∞.

Let x? denote an extreme point optimal solution of (NP) and a?n(s) denote its (optimal)

basic action at state s in period n. Then, the optimality gap of a basic feasible solution x

can be written using reduced costs as follows.

Lemma 2.18. The optimality gap of a basic feasible solution x is written as

f(x)− f ? =
∞∑
n=1

∑
s∈S

x?n(s, a?n(s))(−γn(s, a?n(s))). (2.20)

Proof: In Section 2.7.2.
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Remark 2.19. In Appendix A, we provide another proof of Lemma 2.18 by analyzing geom-

etry of P . We show that given an extreme point of P , any point in P can be represented as

the sum of the extreme point and a conic combination of vectors from the extreme point to

its adjacent extreme points, and using the result, we prove Lemma 2.18.

Using the lemmas established so far, we provide a proof of convergence of SA that does

not use the duality results, unlike the proof in [24].

Theorem 2.20. Let xk be the sequence of basic feasible solutions generated by SA. Then

limk→∞ f(xk) = f ?.

To prove this theorem, it suffices to show that for any number ε > 0, there exists a

positive integer K(ε) such that for k ≥ K(ε), f(xk) − f ? ≤ ε. In the proof and also in

Section 2.3, we will repeatedly use the following positive integer N(ε):

N(ε) ,

⌈
log(ε(1− α)3/2cS)

logα + 1− α

⌉
. (2.21)

For any basic feasible solution x and its complementary solution y, we have f(x) = g(y) =∑∞
n=1

∑
s∈S yn(s) and yn(s) ≤ αn−1 c

1−α by (2.9), and thus, f(x) ≤ cS
(1−α)2

. Therefore, any

ε ≥ cS
(1−α)2

is not of interest to us. For ε < cS
(1−α)2

, the numerator of the fraction in (2.21) is

negative. Since logα < α− 1 for 0 < α < 1, N(ε) is positive for all ε of our interest.

This number N(ε) will be used to bound contribution of decisions after period N(ε) to the

objective function f . The property of N(ε) we will mainly use is described in the following

proposition.

Proposition 2.21. The positive integer N(ε) in (2.21) satisfies

cS

1− α

∞∑
n=N(ε)+1

nαn−1 =
cSαN(ε)

(1− α)2

(
N(ε) +

1

1− α

)
≤ ε

2
. (2.22)

Proof: In Section 2.7.3
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Proof of Theorem 2.20: Fix an arbitrary ε > 0. By Lemma 2.18,

f(xk)− f ? =
∞∑
n=1

∑
s∈S

x?n(s, a?n(s))(−γkn(s, a?n(s)))

=

N(ε)∑
n=1

∑
s∈S

x?n(s, a?n(s))(−γkn(s, a?n(s))) +
∞∑

n=N(ε)+1

∑
s∈S

x?n(s, a?n(s))(−γkn(s, a?n(s)))

≤
N(ε)∑
n=1

∑
s∈S

x?n(s, a?n(s))(−γkn(s, a?n(s))) +
∞∑

n=N(ε)+1

nSαn−1 c

1− α

≤
N(ε)∑
n=1

∑
s∈S

x?n(s, a?n(s))(−γkn(s, a?n(s))) +
ε

2

where the first inequality is obtained from Lemma 2.1 and 2.9, and the second inequality is

obtained from Proposition 2.21. By Lemma 2.15,

−γkn(s, a?n(s)) ≤ −γkmin ≤ αm(k) c

1− α
− γk,m(k)

nk (sk, ak).

Note that the right hand side above is strictly positive by the way (nk, sk, ak) is chosen.

Then, continuing the chain of inequalities

f(xk)− f ? ≤
N(ε)∑
n=1

∑
s∈S

x?n(s, a?n(s))(−γkn(s, a?n(s))) +
ε

2

≤
N(ε)∑
n=1

nS

(
αm(k) c

1− α
− γk,m(k)

nk (sk, ak)

)
+
ε

2

≤ N(ε)(N(ε) + 1)S

2

(
αm(k) c

1− α
− γk,m(k)

nk (sk, ak)

)
+
ε

2
.

By Lemma 2.17, we can find K(ε) such that for k ≥ K(ε),

αm(k) c

1− α
− γk,m(k)

nk (sk, ak) ≤ ε

N(ε)(N(ε) + 1)S
.

For such k, we have f(xk)− f ? ≤ ε and the theorem is proven.
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2.3 Convergence Rate of Simplex Algorithm

In the previous section, we proved that for any ε > 0, there exists K(ε) such that for

k ≥ K(ε), f(xk)− f ? ≤ ε. In this section, we derive such a K(ε) for the simplex algorithm

with a particular pivoting rule, i.e., we provide a rate of convergence result. We first introduce

the pivoting rule.

2.3.1 Simplex Algorithm with Accuracy δ

For a given δ > 0, let M(δ) be the smallest positive integer satisfying 2αM(δ) c
1−α < δ.

Then, the only modification we make to SA is to set m = M(δ) in Step 1. All the results

presented in the previous section still hold after this modification. In addition, the following

proposition shows that the reduced cost of the nonbasic variable chosen by the SA(δ) is

within δ from the true minimum reduced cost.

Proposition 2.22. For a given δ > 0, the nonbasic variable (nk, sk, ak) found in iteration

k of the SA(δ) satisfies

γknk(sk, ak)− δ ≤ γkmin. (2.23)

Proof: By the modified Step 2, we have m(k) ≥M(δ). By Lemma 2.15,

γknk(sk, ak)− δ < γknk(sk, ak)− 2αM(δ) c

1− α
≤ γknk(sk, ak)− 2αm(k) c

1− α
≤ γkmin.

We call the modified algorithm the simplex algorithm with accuracy δ, or in short, SA(δ).

2.3.2 Convergence Rate of SA(δ)

For a given ε > 0, if a solution x satisfies f(x) − f ? ≤ ε, then x is said to be ε-optimal.

We will establish an upper bound on the number of iterations for the simplex algorithm with

a certain accuracy to obtain an ε-optimal solution.
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Let

δ(ε) ,
ε

N(ε)(N(ε) + 1)S
. (2.24)

From Lemma 2.16 and Theorem 2.20, we know that SA(δ(ε)) generates a sequence of solu-

tions xk such that f(xk) is decreasing and converges to f ?. For a given ε > 0, the next key

lemma illustrates how fast f(xk) approaches f ? + ε.

Lemma 2.23. For a given ε > 0, let N(ε) be defined as (2.21). Let xk be the sequence

of solutions generated by SA(δ(ε)) starting from x0. If f(xk−1) − (f ? + ε) > 0, then for

l = 0, 1, . . . , k − 1,

f(xl+1)− (f ? + ε)

f(xl)− (f ? + ε)
≤ 1− 2δ(ε)

ε
= 1− 2

N(ε)(N(ε) + 1)S
, (2.25)

and thus, we have

f(xk)− (f ? + ε)

f(x0)− (f ? + ε)
≤
(

1− 2δ(ε)

ε

)k
=

(
1− 2

N(ε)(N(ε) + 1)S

)k
. (2.26)

Proof: Note that since f(xk−1) − (f ? + ε) > 0 and f(xl) is decreasing in l, we have

f(xl) − (f ? + ε) > 0 for l = 0, 1, . . . , k − 1. By following the same steps as in the proof of

Theorem 2.20, for any positive integer l, we obtain

f(xl)− f ? ≤
N(ε)∑
n=1

∑
s∈S

x?n(s, a?n(s))(−γln(s, a?n(s))) +
ε

2

≤ −γlmin

N(ε)∑
n=1

nS +
ε

2

= −γlmin

N(ε)(N(ε) + 1)S

2
+
ε

2
= −γlmin

ε

2δ(ε)
+
ε

2
. (2.27)
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By Proposition 2.10, for some θ ≥ 0,

f(xl)− f(xl+1) = (1 + θ)(−γlnl(s
l, al)) ≥ −γlnl(s

l, al) ≥ −γlmin − δ(ε)

≥ 2(f(xl)− (f ? + ε/2))δ(ε)

ε
− δ(ε) =

2(f(xl)− (f ? + ε))δ(ε)

ε
(2.28)

where the first inequality is obtained from γl
nl(s

l, al) < 0, the second inequality from (2.23),

and the third inequality from (2.27). By rearranging terms in the left and right hand sides

of (2.28), we obtain, for l = 0, 1, . . . , k − 1,

f(xl+1)− (f ? + ε)

f(xl)− (f ? + ε)
≤ 1− 2δ(ε)

ε
= 1− 2

N(ε)(N(ε) + 1)S
.

By multiplying the above inequality for l = 0, 1, . . . , k − 1, we obtain

f(xk)− (f ? + ε)

f(x0)− (f ? + ε)
≤
(

1− 2δ(ε)

ε

)k
=

(
1− 2

N(ε)(N(ε) + 1)S

)k

and this proves the lemma.

In the proof of the above lemma, (2.28) gives a positive lower bound on f(xl)− f(xl+1)

only when f(xl)− (f ? + ε) > 0 (and for this, we need the condition f(xk−1)− (f ? + ε) > 0).

In other words, we can only provide a lower bound on the amount of improvement achieved

by an iteration of the simplex algorithm when the current iterate has a sufficiently large

optimality gap.

Let φ , f(x0)− f ? denote the initial optimality gap and let φ̄ be an upper bound on φ.

Later, we will provide a way to compute such an upper bound. The following main theorem

establishes the number of iterations of SA(δ(ε/2)) to obtain an ε-optimal solution.

Theorem 2.24. Let x0 be an initial basic feasible solution and φ̄ be an upper bound of the

initial optimality gap f(x0)− f ?. Then the sequence of solutions xk generated by SA(δ(ε/2))
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satisfies f(xk)− f ? ≤ ε for k ≥ K1(φ̄, ε) where

K1(φ̄, ε) ,

⌈
ε

4δ(ε/2)
log

(
2φ̄

ε
− 1

)⌉
.

Proof: If we show that f(xK1(φ̄,ε)) − f ? ≤ ε, then the conclusion trivially holds by

monotonicity of f(xk).

Suppose f(xK1(φ̄,ε)) − f ? > ε > ε/2. From Lemma 2.23 (with ε/2 in place of ε), for

k ≤ K1(φ̄, ε),

f(xk)− f ? ≤ ε

2
+
(
f(x0)− f ? − ε

2

)(
1− 4δ(ε/2)

ε

)k
≤ ε

2
+
(
φ̄− ε

2

)(
1− 4δ(ε/2)

ε

)k
. (2.29)

By the definition of K1(φ̄, ε), for k ≥ K1(φ̄, ε),

k log

(
1− 4δ(ε/2)

ε

)
≤ −k4δ(ε/2)

ε
≤ log

1

2φ̄/ε− 1
(2.30)

where the first inequality is obtained from log(1 − u) ≤ −u for u < 1. Applying (2.30) to

(2.29), we obtain f(xK1(φ̄,ε))− f ? ≤ ε.

If c, α, φ̄ are considered fixed constants, then the number of iterations that guarantees

ε-optimality is K1(φ̄, ε) = O(S(logS)2(log ε)3).

By applying arguments nearly identical to the above proof, we can prove the following

theorem as well.

Theorem 2.25. Let z0 be an initial basic feasible solution and suppose that f(z0)− f ? ≤ ε.

Then the sequence of solutions zk generated by SA(δ(ε/4)) satisfies f(zk) − f ? ≤ ε
2

for

k ≥ K2(ε) where

K2(ε) ,

⌈
N(ε/4)(N(ε/4) + 1)S

2
log 3

⌉
.

This theorem shows that the number of iterations guaranteed to reduce optimality gap
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from ε to its half is K2(ε) = O(S(logS)2(log ε)2) given c, α, φ̄ are considered fixed constants.

As promised, we provide an upper bound φ̄ on φ. Since costs cn(s, a) are nonnegative,

by Lemma 2.11 and (2.9), for any positive integer m, we can obtain an upper bound φ̄ as

follows:

φ = f(x0)− f ? ≤ f(x0) = g(y0) =
∞∑
n=1

∑
s∈S

y0
n(s) =

m∑
n=1

∑
s∈S

y0
n(s) +

∞∑
n=m+1

∑
s∈S

y0
n(s)

≤
m∑
n=1

∑
s∈S

[
y0,m
n (s) + αm

c

1− α

]
+

∞∑
n=m+1

∑
s∈S

αn−1 c

1− α

=
m∑
n=1

∑
s∈S

y0,m
n (s) +mSαm

c

1− α
+ Sαm

c

(1− α)2
, φ̄.

In fact, for any basic feasible solution xk and any positive integer m, we have

m∑
n=1

∑
s∈S

yk,mn (s) ≤
∞∑
n=1

∑
s∈S

ykn(s)(= g(yk))

≤
m∑
n=1

∑
s∈S

yk,mn (s) +mSαm
c

1− α
+ Sαm

c

(1− α)2
. (2.31)

Therefore, we can estimate the objective function value f(xk) = g(yk) with arbitrary preci-

sion by computing the left hand side of (2.31) for a large enough m. In Section 2.6, we use

this to evaluate policies generated by solution algorithms.

2.4 Convergence Rate of RHA

Since SA(δ) performs one pivot operation per iteration, Theorems 2.24 and 2.25 provide

an upper bound on the number of pivot operations for SA(δ) to obtain a near-optimal

solution. In this section, we provide a similar result for RHA. RHA can be formally written

as follows.

Receding horizon approach (RHA)

1. Initialize: Set N := 1. Fix basic actions a0
n(s) ∈ A for s ∈ S and n ∈ N.
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2. Let wN+1(s) = 0 for s ∈ S.

3. For n = N,N − 1, . . . , 1,

(a) For s ∈ S,

(i) Compute

wn(s) = min
a∈A

{
cn(s, a) + α

∑
t∈S

pn(t|s, a)wn+1(t)

}
,

aNn (s) = arg min
a∈A

{
cn(s, a) + α

∑
t∈S

pn(t|s, a)wn+1(t)

}
. (2.32)

4. Set N := N + 1 and go to Step 2.

Let zN be the basic feasible solution corresponding to the policy formed by the basic

actions aNn (s) for n ∈ N and s ∈ S computed by RHA.

For a given ε > 0, the next theorem gives a value of N for which zN is an ε-optimal

solution. In Step 3(a)(i) of RHA, basic action of one period-state pair (n, s) is updated,

which is a pivot operation. The following theorem also gives the number of pivot operations

for RHA to obtain an ε-optimal solution.

Theorem 2.26. Let zN be the sequence of basic feasible solutions generated by RHA. Then

f(zN)− f ? ≤ ε for N ≥ N ′(ε) where

N ′(ε) ,

⌈
log(ε(1− α)2/cS)

logα + 1− α

⌉
. (2.33)

The number of pivot operations for RHA to obtain zN
′(ε) is at most N ′(ε)(N ′(ε) + 1)S/2.

Proof: In Section 2.7.4.

This theorem shows that, if c and α are considered fixed constants, the number of pivot

operations for RHA to achieve ε-optimality is N ′(ε)(N ′(ε) + 1)S/2 = O(S(logS)2(log ε)2).

The number of pivot operations for SA(δ(ε/2)) to achieve ε-optimality isO(S(logS)2(log ε)3),
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given by Theorem 2.24. Thus, the number of pivot operations for RHA has a lower order in ε

by a factor of log ε than that of SA(δ(ε/2)). However, our experimental results in Section 2.6

show that the simplex algorithm takes fewer pivot operations to find a near-optimal solution

than RHA does, as opposed to the theoretical guarantees.

We should point out that the amounts of computation per pivot operation of the two

algorithms can be vastly different. In order to find a pivot operation that improves the current

policy, the simplex algorithm approximately evaluates the current policy and increases the

strategy horizon if such a pivot operation is not detected. As we cannot predict at what

strategy horizon an improving pivot operation will be detected, we cannot exactly estimate

the amount of computation per pivot operation for the simplex algorithm. On the other

hand, RHA’s pivot operation is computing (2.32) (which is often called a backup operation in

literature) whose computational complexity isO(SA). However, a pivot operation performed

by RHA may make its policy worse as demonstrated in our experiments in Section 2.6.

2.5 Multiple Pivoting in the Simplex Algorithm

The simplex algorithm in Section 2.2.3 (SA) performs only one improving pivot operation

in each iteration. In this section, we introduce a modification to SA so that it performs

possibly multiple improving pivot operations in one iteration, which greatly improves its

empirical performance as illustrated in Section 2.6. The resulting algorithm also generates a

sequence of policies that improves monotonically and converges to optimality, as the original

SA does. We call it the simplex algorithm with multiple pivoting, in short, SAMP.

SAMP is obtained from SA by replacing Step 2(e) by the following:

The simplex algorithm with multiple pivoting (SAMP)

(only the replaced parts)
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2. (e′) If γk,mmin < −αmc/(1− α), set m(k) = m, compute

Ck
n ,

{
(n, s, a)

∣∣∣∣ a = arg min
a′∈A

γk,mn (s, a′), γk,mn (s, a) < −αm c

1− α

}
and

Ck ,
m⋃
n=1

Ck
n,

set ak+1
n (s) = a for all (n, s, a) ∈ Ck and ak+1

n (s) = akn(s) for all (n, s) such that

there is no a satisfying (n, s, a) ∈ Ck, and go to Step 3; else set m := m + 1 and

go to Step 2(b).

That is, Ck
n contains all hyperarcs (n, s, a) in period n such that (n, s, a) can be guaranteed

to have a negative reduced cost (based on the inequality in the definition of Ck
n) and where

a has the smallest approximate reduced cost among all actions at state s in period n. Ck

contains all such hyperarcs in periods 1 to m(k).

Note that in SAMP, the inequality that triggers pivot operations is still the same as in

SA, but when the inequality is satisfied, SAMP performs all pivot operations in Ck. The

next proposition extends Proposition 2.10 and gives an expression for the change in objective

function value made by pivot operations in Ck.

Proposition 2.27. Let x be the basic feasible solution in iteration k of SAMP. Then, the

difference in objective function values of x and the new basic feasible solution z obtained by

applying all pivot operations in Ck to x is given by

f(z)− f(x) =

m(k)∑
n=1

ln∑
i=1

(1 + θn(sin))γn(sin, a
i
n) (2.34)

where Ck
n = {(n, s1

n, a
1
n), (n, s2

n, a
2
n), . . . , (n, slnn , a

ln
n )} for n = 1, 2, . . . ,m(k) and θn(sin) ≥ 0

for n = 1, 2, . . . ,m(k) and i = 1, 2, . . . , ln.

Proof: In Section 2.7.5.

SAMP and SA share the same scheme to approximate reduced costs (Step 2(b) and (c)

of SA). Thus, Lemma 2.11, 2.13, and 2.15 hold for SAMP. Furthermore, using the above
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proposition, we can easily prove that Lemma 2.16 and 2.17 also hold for SAMP. Therefore,

we have the following theorem, convergence of SAMP, and the proof is omitted as it is nearly

identical to the one of Theorem 2.20.

Theorem 2.28. SAMP produces a sequence of basic feasible solutions xk whose objective

function values f(xk) converge to f ∗, i.e., limk→∞ f(xk) = f ∗.

2.6 Experimental Results

The objectives of this section are: (1) to compare empirical performance of the simplex

algorithms introduced in this section, in particular, to evaluate how the multiple pivoting

affects performance and (2) to compare the simplex algorithms and RHA empirically.

2.6.1 Comparison of the Simplex Algorithms

As a testing ground for the algorithms, we consider the following inventory management

problem over discrete time periods with stochastic non-stationary demands, non-stationary

costs, and lost sales. At the beginning of period n = 1, 2, . . ., a decision maker observes the

current integer-valued inventory level in and determines an integer-valued order quantity,

denoted as an. A nonnegative integer-valued demand Dn is realized from a distribution

function Fn, and then the inventory level at the beginning of the next period is (in+an−Dn)+

and the unmet demand (Dn− in− an)+ is lost. We assume no lead time for delivery. Given

in, an, and Dn, cost incurred in period n is pn(an) + hn(in + an) + sn((Dn− in− an)+) where

pn, hn, sn are functions for purchase, holding, and shortage cost in period n, respectively.

We assume that items ordered in period n takes up inventory space in that period, so the

holding cost in period n is hn(in + an). We also assume that there is a limit I on inventory

level, i.e., in + an ≤ I for all n, that demands are uniformly bounded by a constant D < I,

and that the marginal costs of purchase, holding, and shortage are uniformly bounded from

below and above, i.e., 0 <
¯
p ≤ pn(a) − pn(a − 1) ≤ p̄ < ∞ for all integers a > 0, 0 <

¯
h ≤
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Average CPU time (secs) Average number of pivots
SA 1453.3 2290.9
SA(δ) 3010.61 2291.4
SAMP 280.52 2283.85

Table 2.1: Average performance of the simplex algorithms for ε = 0.01

hn(i)− hn(i− 1) ≤ h̄ <∞ for all integers i > 0, and 0 <
¯
s ≤ sn(u)− sn(u− 1) ≤ s̄ <∞ for

all integers u > 0, for all n = 1, 2, . . ..

For experiments, we used the following five parameter sets

(D, I,
¯
p, p̄,

¯
h, h̄,

¯
s, s̄) = (10, 20, 100, 10, 3, 1, 150, 10),

(10, 20, 100, 10, 10, 5, 150, 10), (15, 20, 100, 10, 3, 1, 150, 10),

(10, 25, 100, 10, 3, 1, 150, 10), (10, 20, 100, 50, 3, 1, 150, 100),

and randomly generated four instances using each parameter set. Discount factor was 0.9.

For the 20 instances, we measured CPU time and number of pivot operations for the three

simplex algorithms to achieve 0.01-optimality (“a penny away” from the optimal cost). In or-

der to compare the theoretical guarantee given by Theorem 2.24 and empirical performance,

we used δ = δ(0.005) for SA(δ). The objective function value of each policy generated by the

algorithms was estimated using (2.31). The optimal objective function value was estimated

by RHA. For inventory level i, the initial policy was ordering (D− i)+, i.e., filling up to the

maximum one-period demand. The algorithms were implemented in Python and ran on 2.93

GHz Intel Xeon CPU.

Table 2.1 shows average CPU time and average number of pivots for the three algorithms

to achieve 0.01-optimality. Note that SAMP may perform multiple pivot operations in

one iteration. We counted the pivot operations performed in one iteration separately, and

evaluated all of the intermediate policies obtained by applying the pivot operations one by

one. Figure 2.2 shows optimality gap progress of the simplex algorithms as a function of (a)
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(a) For CPU time

(b) For number of pivots

Figure 2.2: Optimality gap progress of the simplex algorithms for inventory management
problems
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CPU time and (b) number of pivot operations, for one of the 20 instances. (The plots look

very similar for the other instances.) The vertical axis of Figure 2.2 is optimality gap, the

difference between the objective function value of policies obtained by the simplex algorithms

and the optimal objective function value. The circles mark every 20 iterations of SAMP.

In Table 2.1, SAMP is at least five times faster than SA, thus, the multiple pivoting

greatly accelerates the simplex algorithm. SAMP performed 7.59 pivot operations per it-

eration on average. On the other hand, SA(δ) is about two times slower than SA. SA(δ)

uses larger strategy horizons than SA does, thus takes further future into account in making

pivoting decisions, but it also means more computation. We can deduce that the addi-

tional computational load overwhelmed the gain from using more information for pivoting

decisions.

The average numbers of pivot operations to achieve 0.01-optimality in Table 2.1 are nearly

identical. Also, in Figure 2.2(b), we observe that the simplex algorithms improve at nearly

identical paces as the number of pivots increases although their pivoting decisions are made

quite differently. For the 20 instances we generated, the guaranteed numbers of iterations

for SA(δ(0.005)) to achieve 0.01-optimality given by Theorem 2.24 are larger than a billion,

as opposed to a few thousands in Table 2.1. Thus, for the inventory management problem,

the theoretical guarantee given by Theorem 2.24 is a pessimistic bound.

For the sequence of solutions generated by SA(δ(0.005)), we compared the left and right

hand sides of (2.25) in Lemma 2.23, which are the actual improvement rate and the guar-

anteed improvement rate, respectively. Figure 2.3 plots the actual improvement rate of

solutions generated by SA(δ(0.005)) divided by the guaranteed improvement rate, for the

same instance as the one of Figure 2.2. Thus, in Figure 2.3, dots close to zero indicate

improvements bigger than the guarantee.

In Figure 2.3, we observe that although the actual improvement rates are mostly close

to the guaranteed one (a lot of dots concentrated around one), there are occasional big

improvements, which make the actual improvement a lot faster than the guarantee, as the
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Figure 2.3: Comparison of guaranteed/actual improvement rates

Avg. CPU time (secs) Avg. number of pivots Avg. number of iterations
SAMP 280.52 2283.85 306.60
RHA 67.90 5167.65 181.65

Table 2.2: Average performance of SAMP and RHA for ε = 0.01

total improvement rate over multiple iterations is multiplicative.

2.6.2 Comparison of SAMP and RHA

We empirically compared SAMP and RHA for the 20 instances of the inventory manage-

ment problem (see Table 2.2). For RHA, we evaluated every policy obtained after each pivot

operation. Recall that not all pivot operations performed by RHA improve the objective

function. We define the CPU time of RHA to achieve 0.01-optimality as the time when the

objective function value of a policy obtained by RHA enters the interval [f ?, f ? + 0.01] and

does not go out of the interval afterwards, and the second column of Table 2.2 shows its

average. The other two metrics of RHA in the table were computed in similar manners.
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Figure 2.4 shows optimality gap progress of SAMP and RHA as a function of (a) CPU time

and (b) number of pivot operations, for the same instance as the one used for Figure 2.2 and

Figure 2.3. For the other instances, the plots look similar.

In Table 2.2 and in Figure 2.4 (a), we observe that RHA converges faster than SAMP.

Note that in Figure 2.4 (a), RHA often goes up (i.e., performs a pivot operation that worsens

its policy) while SAMP always goes down (i.e., always improves its policy). In Table 2.2 and

Figure 2.4 (b), we observe that SAMP takes a smaller number of pivot operations than RHA

to achieve the same level of near-optimality. Recall that SAMP approximately evaluates its

current policy and enhances the approximation until an improving pivot operation is found.

On the other hand, RHA performs only a backup operation per pivot operation, but the

chosen pivot may not improve its policy. We can deduce that although SAMP performs

“smarter” pivot operations than RHA does, for the inventory management problem, the

additional computation of SAMP to find smarter pivot operations overwhelms its benefit.

Recall that RHA solves successively longer finite horizon truncations to optimality, and

thus, it requires costs and transition probabilities of further future periods as it runs. SAMP

also requires problem data of further future periods as the strategy horizon increases. Fig-

ure 2.5 shows improvement of the two algorithms as a function of number of periods for

which problem data are requested. For the inventory management problem, SAMP required

more data than RHA to achieve the same level of near-optimality.

In Table 2.2, RHA achieved 0.01-optimality after 181.65 iterations or 5167.65 pivot op-

erations on average. The number of iterations and the number of pivot operations of RHA

guaranteed to achieve 0.01-optimality given by Theorem 2.26 are in order of thousands and

hundreds of millions, respectively. Thus, the theoretical guarantee of RHA given by Theo-

rem 2.26 is also pessimistic.
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(a) For CPU time

(b) For number of pivots

Figure 2.4: Optimality gap progress of RHA and SAMP for inventory management problems

43



Figure 2.5: Comparison of data requirement of RHA and SAMP

2.7 Technical Proofs

2.7.1 Proof of Proposition 2.10

In the proof of Proposition 5.1 in [24], θn(s) is given as follows:

θn(s) ,
n−1∑
k=1

∑
t∈S

θnk (s, t)

where

θnn−1(s, t) , pn−1(s|t, an−1(t)) and

θnk (s, t) ,
∑
s′∈S

pk(s
′|t, ak(t))θnk+1(s, s′) for k = 1, 2, . . . , n− 2.

Interpretations of the above definitions are in order. θnn−1(s, t) is the probability of transition

from t to s in period n− 1 under the policy given by x. One can easily verify that θnk (s, t) is
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the probability of going from period-state pair (k, t) to (n, s) under the policy x. Therefore,

θn(s) is the sum of probabilities reaching (n, s) from (k, t) for k = 1, . . . , n− 1 and t ∈ S.

We prove 1 + θn(s) = xn(s, an(s)) for s ∈ S by induction on n. For n = 1 and s ∈ S,

1 + θ1(s) = 1 = x1(s, a1(s)). Suppose that for a positive integer k, 1 + θk(s) = xk(s, ak(s))

for s ∈ S. Then for s ∈ S,

xk+1(s, ak+1(s)) = 1 +
∑
s′∈S

pk(s|s′, ak(s′))xk(s′, ak(s′))

= 1 +
∑
s′∈S

pk(s|s′, ak(s′))(1 + θk(s′))

= 1 +
∑
s′∈S

pk(s|s′, ak(s′)) +
∑
s′∈S

pk(s|s′, ak(s′))θk(s′)

= 1 +
∑
s′∈S

θk+1
k (s, s′) +

∑
s′∈S

pk(s|s′, ak(s′))
k−1∑
l=1

∑
t∈S

θkl (s
′, t)

= 1 +
∑
s′∈S

θk+1
k (s, s′) +

k−1∑
l=1

∑
t∈S

∑
s′∈S

pk(s|s′, ak(s′))θkl (s′, t)

= 1 +
∑
s′∈S

θk+1
k (s, s′) +

k−1∑
l=1

∑
t∈S

θk+1
l (s, t)

= 1 +
k∑
l=1

∑
t∈S

θk+1
l (s, t) = 1 + θk+1(s),

where the first equality is obtained from feasibility of x to (NP) and the second equality is

obtained from the induction hypothesis. Thus, by induction, the lemma is proven.
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2.7.2 Proof of Lemma 2.18

Recall that x? is a basic feasible solution and a?n(s) denotes its basic action at (n, s). For

a positive integer N ,

N∑
n=1

∑
s∈S

x?n(s, a?n(s))(−γn(s, a?n(s))) =
N∑
n=1

∑
s∈S

∑
a∈A

x?n(s, a)(−γn(s, a))

=
N∑
n=1

∑
s∈S

∑
a∈A

x?n(s, a)

[
−αn−1cn(s, a)−

∑
s′∈S

pn(s′|s, a)yn+1(s′) + yn(s)

]

=−
N∑
n=1

∑
s∈S

∑
a∈A

αn−1cn(s, a)x?n(s, a)

−
N∑
n=1

∑
s∈S

∑
a∈A

[∑
s′∈S

pn(s′|s, a)yn+1(s′)− yn(s)

]
x?n(s, a) (2.35)

where y is the complementary solution of x. We can simplify the second term of (2.35) as

follows:

N∑
n=1

∑
s∈S

∑
a∈A

(∑
s′∈S

pn(s′|s, a)yn+1(s′)− yn(s)

)
x?n(s, a)

=
N∑
n=1

∑
s′∈S

yn+1(s′)
∑
s∈S

∑
a∈A

pn(s′|s, a)x?n(s, a)−
N∑
n=1

∑
s∈S

yn(s)
∑
a∈A

x?n(s, a)

=
N∑
n=1

∑
s′∈S

yn+1(s′)

(∑
a∈A

x?n+1(s′, a)− 1

)
−

N∑
n=1

∑
s∈S

yn(s)
∑
a∈A

x?n(s, a)

=
N∑
n=1

∑
s∈S

yn+1(s)
∑
a∈A

x?n+1(s, a)−
N∑
n=1

∑
s∈S

yn(s)
∑
a∈A

x?n(s, a)−
N∑
n=1

∑
s∈S

yn+1(s)

=
∑
s∈S

yN+1(s)
∑
a∈A

x?N+1(s, a)−
∑
s∈S

y1(s)
∑
a∈A

x?1(s, a)−
N∑
n=1

∑
s∈S

yn+1(s)

=
∑
s∈S

yN+1(s)
∑
a∈A

x?N+1(s, a)−
N+1∑
n=1

∑
s∈S

yn(s)
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where the second and the last equalities are obtained from feasibility of x? to (NP). However,

since 0 ≤ yN+1(s) ≤ αN c
1−α by (2.9) and 0 ≤ x?N+1(s, a) ≤ (N + 1)S by Lemma 2.1, we have

0 ≤
∑
s∈S

yN+1(s)
∑
a∈A

x?N+1(s, a) ≤ S2A(N + 1)αN
c

1− α
,

thus,
∑

s∈S yN+1(s)
∑

a∈A x
?
N+1(s, a) → 0 as N → ∞. Therefore, taking N → ∞ in (2.35)

gives
∞∑
n=1

∑
s∈S

x?n(s, a?n(s))(−γn(s, a?n(s))) = −f ? +
∞∑
n=1

∑
s∈S

yn(s) = f(x)− f ?

where the last equality is obtained from the fact that y is complementary with x. Thus, the

lemma is proven.

2.7.3 Proof of Proposition 2.21

Consider a function F (N) = log(N + 1
1−α). Since F (N) is a concave function, we have

F (N(ε)) ≤ F (0) + F ′(0)N(ε) and that is,

log(N(ε) +
1

1− α
) ≤ (1− α)N(ε)− log(1− α).

Thus, we have

N(ε) logα + log(N(ε) +
1

1− α
) ≤ N(ε) logα + (1− α)N(ε)− log(1− α)

= (logα + 1− α)N(ε)− log(1− α).

Since 0 < α < 1, we have logα + 1− α < 0. By the definition of N(ε) in (2.21),

(logα + 1− α)N(ε)− log(1− α) ≤ log(ε(1− α)2/2cS)− log(1− α) = log(ε(1− α)2/2cS).

Thus,

N(ε) logα + log(N(ε) +
1

1− α
) ≤ log(ε(1− α)2/2cS)
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. By taking exponential function on both sides, we obtain the result.

2.7.4 Proof of Theorem 2.26

Let π be the policy corresponding to zN
′(ε), i.e., the policy obtained after solving the

N ′(ε)-horizon truncated problem. Note that π restricted to N ′(ε)-horizon is optimal for the

N ′(ε)-horizon truncated problem. We first show that π is ε-optimal for the original problem.

Let x denote the basic feasible solution of π and y denote its complementary solution. Let

w denote the optimal solution to (ND). Then

0 ≤ f(x)− f ? = g(y)− g(w) =
∞∑
n=1

∑
s∈S

yn(s)−
∞∑
n=1

∑
s∈S

wn(s)

=

N ′(ε)∑
n=1

∑
s∈S

(yn(s)− wn(s)) +
∞∑

n=N ′(ε)+1

∑
s∈S

(yn(s)− wn(s))

=

N ′(ε)∑
n=1

∑
s∈S

(yN
′(ε)

n (s)− wN ′(ε)n (s)) +

N ′(ε)∑
n=1

∑
s∈S

(yn(s)− yN ′(ε)n (s))

+

N ′(ε)∑
n=1

∑
s∈S

(wN
′(ε)

n (s)− wn(s)) +
∞∑

n=N ′(ε)+1

∑
s∈S

(yn(s)− wn(s))

≤
N ′(ε)∑
n=1

∑
s∈S

(yn(s)− yN ′(ε)n (s)) +
∞∑

n=N ′(ε)+1

∑
s∈S

(yn(s)− wn(s))

≤
N ′(ε)∑
n=1

∑
s∈S

αN
′(ε) c

1− α
+

∞∑
n=N ′(ε)+1

∑
s∈S

αn−1 c

1− α

=
cSαN

′(ε)

1− α
N ′(ε) +

cSαN
′(ε)

(1− α)2
=
cSαN

′(ε)

1− α

(
N ′(ε) +

1

1− α

)
≤ ε

where yN
′(ε) and wN

′(ε) denote the N ′(ε)-horizon approximations of y and w (computed in

the same way as (2.13) and (2.14)), respectively; the second inequality is obtained from the

fact that π is optimal for the N ′(ε)-horizon truncated problem (i.e., yN
′(ε) ≤ wN

′(ε)) and

Lemma 2.11; the third inequality is from Lemma 2.11 and (2.9); and the last inequality

is obtained by using arguments similar to the proof of Proposition 2.21. Therefore, π is

ε-optimal.
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We conclude the proof by computing the number of pivot operations to obtain π. RHA

solves 1, 2, . . . , N ′(ε)-horizon problems by backward induction until π is obtained. For a

positive integer m, backward induction solving an m-horizon problem performs at most mS

pivot operations. Thus, the ε-optimal policy π is obtained after at most N ′(ε)(N ′(ε) + 1)S/2

pivot operations.

2.7.5 Proof of Proposition 2.27

Since the iteration counter k is fixed in the proposition, we omit it in the notation Ck
n

and Ck and denote them as Cn and C, respectively. We first prove the following proposition,

which is a simpler version of Proposition 2.27.

Proposition 2.29. For a fixed n ≤ m(k), the difference in the objective function values at a

basic feasible solution x and the new basic feasible solution z obtained by applying the pivot

operations in Cn to x is given by

f(z)− f(x) =
ln∑
i=1

(1 + θn(sin))γn(sin, a
i
n)

where θn(sin) ≥ 0 for i = 1, 2, . . . , ln.

Proof: Let y and w be the complementary solutions of x and z, respectively. Let

Sn = {s1
n, s

2
n, . . . , s

ln
n }. Since basic actions of periods n + 1, n + 2, . . . are not changed,

yj(s) = wj(s) for all s ∈ S and for j = n+ 1, n+ 2, . . .. Since basic actions of states s /∈ Sn

in period n are not changed, yn(s) = wn(s) for s /∈ Sn. By complementary slackness, for

i = 1, 2, . . . , ln

wn(sin) = αn−1cn(sin, a
i
n) +

∑
s′∈S

pn(s′|sin, ain)yn+1(s′). (2.36)

Let Sn−1,i ⊂ S be the set of states t in period n − 1 such that sin ∈ Jn−1(t, an−1(t)) where

Jn−1(t, an−1(t)) is the set of states that are reachable by choosing action an−1(t) (the basic

action of x at state t in period n− 1) at state t in period n− 1. Let Sn−1 = ∪lni=1Sn−1,i. For
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t ∈ Sn−1, by complementary slackness,

wn−1(t) = αn−2cn−1(t, an−1(t)) +
ln∑
i=1

pn−1(si|t, an−1(t))wn(sin)

+
∑

s′∈S\Sn

pn−1(s′|t, an−1(t))yn(s′)

yn−1(t) = αn−2cn−1(t, an−1(t)) +
ln∑
i=1

pn−1(si|t, an−1(t))yn(sin)

+
∑

s′∈S\Sn

pn−1(s′|t, an−1(t))yn(s′).

Thus, for t ∈ Sn−1,

wn−1(t)− yn−1(t) =
ln∑
i=1

pn−1(sin|t, an−1(t))(wn(sin)− yn(sin))

=
ln∑
i=1

θnn−1(sin, t)(wn(sin)− yn(sin))

(see Section 2.7.1 for definition of θnn−1(sin, t)). For t /∈ Sn−1, wn−1(t) = yn−1(t).

Now for j = 1, 2, . . . , n − 2, we recursively define Sj ⊂ S as the set of states t in period j

such that Ij(t, aj(t)) , Jj(t, aj(t)) ∩ Sj+1 6= ∅. Then for t ∈ Sj, we have

wj(t) = αj−1cj(t, aj(t)) +
∑

s′∈Ij(t,aj(t))

pj(s
′|t, aj(t))wj+1(s′) +

∑
s′ /∈Ij(t,aj(t))

pj(s
′|t, aj(t))yj+1(s′),

yj(t) = αj−1cj(t, aj(t)) +
∑

s′∈Ij(t,aj(t))

pj(s
′|t, aj(t))yj+1(s′) +

∑
s′ /∈Ij(t,aj(t))

pj(s
′|t, aj(t))yj+1(s′).
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Thus,

wj(t)− yj(t) =
∑

s′∈Ij(t,aj(t))

pj(s
′|t, aj(t))(wj+1(s′)− yj+1(s′))

=
∑

s′∈Ij(t,aj(t))

pj(s
′|t, aj(t))

ln∑
i=1

θnj+1(sin, s
′)(wn(sin)− yn(sin))

=
ln∑
i=1

(wn(sin)− yn(sin))
∑

s′∈Ij(t,aj(t))

pj(s
′|t, aj(t))θnj+1(sin, s

′)

=
ln∑
i=1

θnj (sin, t)(wn(sin)− yn(sin)).

For t /∈ Sj, wj(t) = yj(t). Therefore, the difference between objective function values of w

and y is

g(w)− g(y) =
∑
j∈N

∑
t∈S

(wj(t)− yj(t)) =
n∑
j=1

∑
t∈S

(wj(t)− yj(t))

=
ln∑
i=1

(wn(sin)− yn(sin)) +
n−1∑
j=1

∑
t∈Sj

(wj(t)− yj(t))

=
ln∑
i=1

(wn(sin)− yn(sin)) +
n−1∑
j=1

∑
t∈Sj

ln∑
i=1

θnj (sin, t)(wn(sin)− yn(sin))

=
ln∑
i=1

1 +
n−1∑
j=1

∑
t∈Sj

θnj (sin, t)

 (wn(sin)− yn(sin))

,
ln∑
i=1

(1 + θn(sin))(wn(sin)− yn(sin)),

and (2.36) gives wn(sin)− yn(sin) = γn(sin, a
i
n), thus the proposition is proven.

Now we prove Proposition 2.27. Let z0 = x. Inductively, for n = 1, 2, . . . ,m(k), let zn

be the basic feasible solution obtained by applying the pivot operations in Cn to zn−1. By

definition, zm(k) = z.

Fix n ≤ m(k). For n′ ∈ N, s ∈ S, a ∈ A, let γ̃n′(s, a) be the reduced cost of variable
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xn′(s, a) computed at the basic feasible solution zn−1. Then, by Proposition 2.29, we have

f(zn)− f(zn−1) =
ln∑
i=1

(1 + θn(sin))γ̃n(sin, a
i
n)

where θn(sin) ≥ 0 for i = 1, 2, . . . , ln. The basic feasible solution zn−1 is obtained by applying

the pivot operations of C1, C2, . . . , Cn−1 to z0 = x. The sets C1, C2, . . . , Cn−1 contain nonbasic

variables in periods 1, 2, . . . , n − 1. Thus, the basic actions of zn−1 in periods n, n + 1, . . .

coincide with those of x. This implies that γ̃n′(s, a) equals γn′(s, a), the reduced cost of the

same nonbasic variable computed at x, for n′ ≥ n, s ∈ S, a ∈ A. Therefore, we have

f(zn)− f(zn−1) =
ln∑
i=1

(1 + θn(sin))γn(sin, a
i
n)

and by adding this equality for n = 1, 2, . . . ,m(k), the proposition is proven.
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CHAPTER III

Simplex Algorithm for Countable-state Markov

Decision Processes

3.1 Introduction

In this chapter, we introduce a simplex-type algorithm for solving countable-state MDPs.

Consider MDPs that have a countable state space, a finite action space, and stationary

transition probabilities and reward function, but whose objective is to maximize expected

total discounted reward.1 Specifically, the set of states S is countably-infinite, and given

that action a is taken in state s, reward r(s, a, t) is obtained with probability p(t|s, a). Let

r(s, a) denote the expected reward incurred by choosing action a at state s, i.e., r(s, a) =∑
t∈S p(t|s, a)r(s, a, t). Note that the transition probabilities and the rewards do not depend

on period index, i.e., are stationary. Countable-state MDPs arise in inventory management

and queueing control where there is no specific limit on the size of inventory or queue, as

we illustrate in Section 3.1.3. We let S = {1, 2, . . .} and A = {1, 2, . . . , A} unless otherwise

specified.

We define the value function of a policy for an arbitrary initial state distribution, ex-

tending (1.1) in Section 1.1. Given an initial state distribution β, each policy π induces

1This chapter studies countable-state MDPs under assumptions given in [39] (Section 6.10) which studies
maximization problems. For consistency with the reference, we also study countable-state MDPs maximizing
expected total discounted reward. Since we allow rewards to be negative in this chapter, all results in this
chapter can be easily converted to minimization problems.
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a probability distribution P β
π and defines the state process {Sn}∞n=1 and the action process

{An}∞n=1. We denote by Eβ
π the corresponding expectation operator. The expected total

discounted reward of a policy π with initial state distribution β is defined as

Jπ(β) , Eβ
π

[
∞∑
n=1

αn−1r(Sn, An)

]
. (3.1)

We call Jπ(β) the value of policy π with initial state distribution β, or simply the value of

policy π whenever it is clear which initial state distribution is used. Recall that Jπ(s) denotes

(3.1) for those initial state distributions concentrated on one state s.

A policy π? is said to be optimal for initial state distribution β if Jπ?(β) = J?(β) ,

supπ∈Π Jπ(β). A policy π? is said to be optimal for initial state s if Jπ?(s) = J?(s) =

supπ∈Π Jπ(s). Recall J? : S → R is called the optimal value function. A policy π? is optimal

if Jπ?(s) = J?(s) for all s ∈ S. The goal of the decision maker is to find an optimal policy.

The main contribution of this chapter is that we introduce a simplex-type algorithm

for solving a CILP formulation of countable-state MDPs. It is the first solution algorithm

for countable-state MDPs that finds a sequence of policies whose value functions not only

converge to the optimal value function but also improve in every iteration. Countable-state

MDPs were studied by many researchers, including [13, 28, 39, 56, 57, 58], with predominant

solution methods summarized as the three algorithms in [56, 57] and [58]. In the next section,

we review the three existing solution methods for countable-state MDPs as discussed in

[56, 57, 58].

3.1.1 Literature Review

The algorithm suggested in [58] is an extension of value iteration to countable-state

MDPs. In general, value iteration computes a sequence of real-valued functions on S that

converges to the optimal value function. To remind the readers, value iteration for finite-

state MDPs starts with a function J0 : S → R and for k = 1, 2, . . ., computes a function
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Jk : S → R in iteration k by the following recursion formula:

Jk(s) , max
a∈A

{
r(s, a) + α

∑
t∈S

p(t|s, a)Jk−1(t)

}
for s ∈ S. (3.2)

Extending this to countable-state MDPs requires an adjustment in order for each iteration

to finish in finite time. The value iteration for countable-state MDPs first selects a function

u : S → R and then, in iteration k, computes Jk(s) by (3.2) only for s ≤ k and lets

Jk(s) = u(s) for s > k. In [58], it was shown that Jk converges pointwise to the optimal

value function J? and error bounds on the approximations were provided. In iteration k, a

policy πk : S → A (i.e., a stationary and deterministic policy) is obtained by assigning the

action that achieves the maximum in (3.2) to s ≤ k and an arbitrary action to s > k. It

was also shown in [58] that Jπk converges pointwise to J? but the convergence may not be

monotone.

The solution method in [56] is an extension of policy iteration, another popular solution

method for finite-state MDPs. Recall that, given π0 : S → A, the kth iteration of policy

iteration for finite-state MDPs is as follows:

1. Obtain Jk : S → R that satisfies

Jk(s) = r(s, πk−1(s)) + α
∑
t∈S

p(t|s, πk−1(s))Jk(t) for s ∈ S; (3.3)

2. Choose πk : S → A that satisfies

πk(s) ∈ arg max
a∈A

{
r(s, a) + α

∑
t∈S

p(t|s, a)Jk(t)

}
for s ∈ S. (3.4)

Each iteration consists of computing the value function of the current (stationary and deter-

ministic) policy (Step 1) and obtaining a new policy based on the evaluation (Step 2). The

extension of policy iteration to countable state space is as follows: after selecting a function
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u : S → R, in iteration k, it computes Jk that satisfies (3.3) for s ≤ k and Jk(s) = u(s) for

s > k, and then finds πk that satisfies (3.4) only for s ≤ k. It was shown in [56] that Jk

obtained by this method also converges pointwise to J? and error bounds on the approxima-

tions were provided. One can extend πk to the entire state space S by assigning an arbitrary

action to s > k; then Jπk converges pointwise to J? but again, the convergence may not be

monotone.

Another method, proposed in [57], is to solve successively larger but finite-state approxi-

mations of the original MDP to optimality. The real-valued functions on S obtained by this

method were also proven to converge pointwise to J?. A sequence of policies covering S is

also obtained by this algorithm in a similar manner but pointwise convergence of their value

functions was not established in the paper.

It should be pointed out that the above three papers only considered the case where

the reward function is uniformly bounded. However, in the aforementioned applications of

countable-state MDPs, immediate reward typically goes to infinity as the inventory level

or the number of customers in queue goes to infinity, which suggests the need to consider

countable-state MDPs with unbounded immediate reward functions. For brevity, let us refer

to a set of assumptions on transition probabilities and rewards as a setting in the following

literature review. Under three different settings with unbounded rewards, [27, 35, 55] studied

properties of countable-state MDPs. In [59], each of the three settings with unbounded

rewards in [27, 35, 55] was equivalently transformed into a bounded one. Therefore, the

algorithms and results mentioned in previous paragraphs for bounded case were extended

to the three unbounded problems in [27, 35, 55]. Meanwhile, [13] extensively reviewed

conditions under which the extension of the value iteration in [58] converges to optimality

in value and studied its rate of convergence. The setting in [13] is more general than the

settings in [27, 35, 55] but one cannot check whether it holds for given transition probabilities

and rewards without solving the MDP since it includes an assumption on the optimal value

function. In this chapter, we consider the setting in [39] (Section 6.10) for countable-state

56



MDPs with unbounded rewards (Assumptions A1, A2, and A3 in Section 3.1.2). One can

easily show that this setting covers the three settings in [27, 35, 55]; it is a special case of

the one in [13] but it is checkable for given parameters without solving the MDP and has

enough generality to cover many applications of interest.

3.1.2 Assumptions

Let us define additional notation that will come in handy in the rest of the chapter.

Given a policy π and states s, t ∈ S, P n
π (t|s) denotes the probability of reaching state t

after n transitions starting from state s when policy π is applied, with P 0
π (t|s) , 1{t = s}.

P n
π denotes the transition probability matrix of policy π for n transitions with both rows

and columns indexed by states. P 0
π , defined similarly, is denoted as I. For simplicity, we

denote P 1
π (t|s) and P 1

π as Pπ(t|s) and Pπ, respectively. For a stationary policy σ (recall that

notation σ is used to emphasize the choice of a stationary policy) and a state s ∈ S, rσ(s)

denotes the expected immediate reward at s when σ is applied, and rσ denotes the reward

vector indexed by states. For a stationary and deterministic policy σ and a state s, σ(s)

denotes the action chosen by π at s. Throughout this chapter, we will make the following

assumptions, which enable us to analyze countable-state MDPs with unbounded rewards:

Assumption (cf. Assumptions 6.10.1 and 6.10.2 of [39]) There exists a positive

real-valued function w on S satisfying the following:

A1 |r(s, a)| ≤ w(s) for all a ∈ A and s ∈ S;

A2 There exists κ, 0 ≤ κ <∞, for which

∞∑
t=1

p(t|s, a)w(t) ≤ κw(s)

for all a ∈ A and s ∈ S;
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A3 There exists λ, 0 ≤ λ < 1, and a positive integer J such that

αJ
∞∑
t=1

P J
π (t|s)w(t) ≤ λw(s)

for all π ∈ ΠMD.

Using the infinite matrix and infinite vector notation, the above three assumptions can

be written as: A1 |rσ| ≤ w for all σ ∈ ΠSD, A2 Pσw ≤ κw for all σ ∈ ΠSD, and A3

αJP J
π w ≤ λw for all π ∈ ΠMD, where the inequalities are component-wise. We can easily

show that the above assumptions imply that |rσ| ≤ w and Pσw ≤ κw for all σ ∈ ΠS, and

αJP J
π w ≤ λw for all π ∈ ΠM , i.e., they also hold for the corresponding class of randomized

policies.

Assumption 1 tells us that the absolute value of the reward function is bounded by the

function w. In other words, the function w provides a “scale” of reward that can be obtained

in each state. Assumption 2 can be interpreted as that the transition probabilities prevent

the expected scale of immediate reward after one transition from being larger than the scale

in the current state (multiplied by κ). Assumption 3 can be interpreted similarly, but for J

transitions. However, note that λ is strictly less than one, which is important because λ will

play a role similar to that of the discount factor α in our following analysis.

3.1.3 Examples

We give two examples of countable-state MDPs with unbounded costs that satisfy As-

sumptions A1, A2, and A3.

Example 3.1 (Example 6.10.2 in [39]). Consider an infinite-horizon inventory management

problem with a single product and unlimited inventory capacity where the objective is to

58



maximize the expected total discounted profit. Let S = {0, 1, . . .}, A = {0, 1, . . . ,M}, and

p(t|s, a) =


0 t > s+ a

ps+a−t s+ a ≥ t > 0

qs+a t = 0,

where pk denotes the probability of demand of k units in any period, and qk =
∑∞

j=k pj

denotes the probability of demand of at least k units in any period. For s ∈ S and a ∈ A,

the reward r(s, a) is given as

r(s, a) = F (s+ a)−O(a)− h · (s+ a),

where

F (s+ a) =
s+a−1∑
j=0

bjpj + b(s+ a)qs+a,

with b > 0 representing the per-unit price, O(a) = K+ca for a > 0 and O(0) = 0 representing

the ordering cost, and h > 0 representing the cost of storing one unit of product for one

period. It is reasonable to assume
∑∞

k=0 kpk <∞, i.e., the expected demand is finite. Then,

|r(s, a)| ≤ b(s+M) +K + cM + h(s+M) = K +M(b+ c+ h) + (b+ h)s , C +Ds

by letting C , K+M(b+ c+h) and D , b+h. Let w(s) , C+Ds so that A1 holds. Since

∞∑
t=0

p(t|s, a)w(t) =
s+a∑
t=1

ps+a−t · w(t) + qs+a · w(0) =
s+a−1∑
t=0

pt · w(s+ a− t) + qs+a · w(0)

= C +D

s+a−1∑
t=0

(s+ a− t)pt ≤ C +D(s+ a) ≤ w(s) +DM,

by Proposition 6.10.5(a) in [39], A2 and A3 are also satisfied.

Example 3.2 (Generalized flow and service control). This example is a generalization of the
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flow and service rate control problem in [4]. Consider a discrete-time single-server queue with

an infinite buffer. State is defined as the number of customers in the queue at the beginning

of a period, so S = {0, 1, . . .}. Let A1 and A2 be finite sets of nonnegative numbers and let

A = A1×A2. If the decision-maker chooses (a1, a2) ∈ A1×A2 in a period, then the number

of arrivals in the period is a Poisson random variable with mean a1 and the number of served

(thus, leaving) customers in the period is the minimum of a Poisson random variable with

mean a2 and the number of customers in the system at the beginning of the period plus the

number of arrivals in the period. (That is, we assume that order of the events in a period

is: the decision-maker observes the current state and chooses two numbers a1 ∈ A1 and

a2 ∈ A2, arrivals occur, and then services are provided and served customers leave.) For

s ∈ S, a = (a1, a2) ∈ A, the immediate reward is

r(s, a) = −cs− d1(a1)− d2(a2),

where c is a positive constant, d1(·) is the flow control cost function, and d2(·) is the service

control cost function. The reward is linear in s, which is justified by the well-known Little’s

Law.

In the flow and service control problem in [4], it was assumed that in a period, at most

one customer arrives and at most one customer leaves the system, which no longer holds in

this example.

Let C , c and D , maxa1∈A1 |d1(a1)| + maxa2∈A2 |d2(a2)|. Then A1 is satisfied with

w(s) , Cs+D. In addition,

∑
t∈S

p(t|s, a)w(t) = D + C
∞∑
t=0

p(t|s, a)t

= D + C

[
s−1∑
t=0

p(t|s, a)t+
∞∑
u=0

p(s+ u|s, a)(s+ u)

]

≤ D + Cs+
∞∑
u=0

p(s+ u|s, a)u ≤ w(s) +
∞∑
u=0

e−a
1
max(a1

max)u

u!
u = w(s) + Ca1

max,
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where the second inequality is obtained by considering maximum arrival rate a1
max = maxA1

and zero service rate. Therefore, by Proposition 6.10.5(a) in [39], A2 and A3 are satisfied.

Parts (b) and (c) of Proposition 6.10.5 in [39] provide two other sufficient conditions to

satisfy A2 and A3.

3.1.4 Background

In this section we review some technical preliminaries that were established in the liter-

ature and will be used in this chapter.

The following theorem is an extension of Theorem 1.1 to countable-state MDPs. By this

theorem, we can limit our attention to policies that are stationary and deterministic.

Theorem 3.3 (cf. Theorem 6.10.4 of [39]). Countable-state MDPs under Assumptions A1,

A2, and A3 satisfy the following.

(1) There exists an optimal policy that is stationary and deterministic.

(2) The optimal value function J? is the unique solution of

y(s) = max
a∈A

{
r(s, a) + α

∞∑
t=1

p(t|s, a)y(t)

}
for s ∈ S.

Moreover, the actions that achieve the above maximum form a stationary and deterministic

optimal policy.

In particular, for any stationary deterministic policy σ, Jσ equals the optimal value function

of a new MDP obtained by allowing only one action σ(s) for s ∈ S, and thus, Jσ is the

unique solution of

y(s) = r(s, σ(s)) + α

∞∑
t=1

p(t|s, σ(s))y(t) for s ∈ S,

or y = rσ + αPσy in the infinite vector and matrix notation.
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Define

L ,


J

1−λ if ακ = 1

1
1−λ

1−(ακ)J

1−(ακ)
otherwise.

It has been shown that the value function of any Markov policy is bounded by Lw:

Proposition 3.4 (cf. Proposition 6.10.1 of [39]). If Assumptions A1, A2, and A3 are satis-

fied,

|Jπ(s)| ≤ Lw(s) for any s ∈ S and π ∈ ΠM . (3.5)

In the rest of this subsection, we review some real analysis results that will be used in

this chapter for exchanging two infinite sums, an infinite sum and an expectation, or a limit

and an expectation.

Proposition 3.5 (cf. Tonelli’s theorem on page 309 of [46]). Given a double sequence {aij}

for i = 1, 2, . . ., j = 1, 2, . . ., if aij ≥ 0 for all i and j, then

∞∑
i=1

∞∑
j=1

aij =
∞∑
j=1

∞∑
i=1

aij.

Proposition 3.6 (Theorem 8.3 in [47]). Given a double sequence {aij} for i = 1, 2, . . .,

j = 1, 2, . . ., if
∑∞

i=1

∑∞
j=1 |aij| converges, then

∞∑
i=1

∞∑
j=1

aij =
∞∑
j=1

∞∑
i=1

aij <∞.

This proposition is a special case of Fubini-Tonelli theorem, which is obtained by com-

bining Fubini’s theorem (see Theorem 19 on page 307 of [46]) and Tonelli’s theorem. We

will also use monotone convergence theorem (MCT) and dominated convergence theorem

(DCT).
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Proposition 3.7 (Series version of monotone convergence theorem, Corollary 5.3.1 of [40]).

If Xi are nonnegative random variables for i = 1, 2, . . ., then

E

[
∞∑
i=1

Xi

]
=
∞∑
i=1

E[Xi].

Proposition 3.8 (Dominated convergence theorem, Theorem 5.3.3 of [40]). If a sequence of

random variables {Xi}∞i=1 converges to a random variable X and there exists a dominating

random variable Z such that |Xi| ≤ Z for i = 1, 2, . . . and E[|Z|] <∞, then

E[Xi]→ E[X].

3.2 CILP Formulations

In this section, we introduce primal and dual CILP formulations of countable-state MDPs.

We start with a straightforward result which was used in [39] and [45] without being explicitly

stated.

Lemma 3.9. A policy is optimal if and only if it is optimal for an initial state distribution

that has a positive probability at every state.

Proof: For a policy π and an initial state distribution β, observe that

Jπ(β) = Eβ
π

[
∞∑
n=1

αn−1r(Sn, An)

]
=
∞∑
s=1

β(s)Eπ
s

[
∞∑
n=1

αn−1r(Sn, An)

]
=
∞∑
s=1

β(s)Jπ(s).

Since Jπ(s) ≤ J?(s) for any s ∈ S, and β(s) > 0 for any s ∈ S, a policy π maximizes Jπ(β)

if and only if it maximizes Jπ(s) for each state s, and thus, the equivalency is proven.

Using this lemma, we equivalently consider finding an optimal policy for a fixed initial

state distribution that satisfies

β(s) > 0 for all s ∈ S. (3.6)
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Additionally, we require that β satisfies

βTw =
∞∑
s=1

β(s)w(s) <∞. (3.7)

(3.7) will help us show that a variety of infinite series we consider in this chapter converge.

Note that β is not a given problem parameter and that there are many functional forms

of w that allow us to choose β satisfying (3.6) and (3.7). For example, if w ∈ O(sm) for

some positive number m (in other words, w is asymptotically dominated by a polynomial in

s), then we can easily find β satisfying the conditions by modifying an exponential function

appropriately.

Now we introduce a CILP formulation of a countable-state MDP.

(CP) max f(x) =
∞∑
s=1

A∑
a=1

r(s, a)x(s, a) (3.8)

s.t.
A∑
a=1

x(s, a)− α
∞∑
t=1

A∑
a=1

p(s|t, a)x(t, a) = β(s) for s ∈ S (3.9)

x ≥ 0, x ∈ l1,

where l1 is the space of absolutely summable sequences: x ∈ l1 means

∞∑
s=1

A∑
a=1

|x(s, a)| <∞.

Derivations of (CP) can be found in the literature even for more general classes of MDPs.

(Chapter 12.3 of [18] introduced a similar CILP formulation for a more general class of

MDPs, but for the average reward criterion. Additionally, in Chapter 8.8 of [4], a similar

CILP formulation was derived for constrained MDPs, with regular MDPs a special case.

However, assumptions used in the latter are quite different from ours and it is not known

either if his set of assumptions implies ours or vice versa.) In Section 3.5.1, we provide a

high-level derivation of (CP). Briefly, (CP) is derived by a convex analytic approach which

64



considers the MDP as a convex optimization problem maximizing a linear functional over

the convex set of occupancy measures. (An occupancy measure corresponding to a policy

is the total expected discounted time spent in different state-action pairs under the policy;

for a precise definition, see Section 3.5.1.) It is well known that P , which denotes the set

of feasible solutions to (CP), coincides with the set of occupancy measures of stationary

policies. For any stationary policy σ and its occupancy measure x ∈ P , Jσ(β) is equal to the

objective function value of (CP) at x. An optimal stationary policy (which is known to be

an optimal policy) can therefore be obtained from an optimal solution to (CP) by computing

the corresponding stationary policy (for more details, see Section 3.5.1).

The following visualization of constraint (3.9) will help readers understand the structure

of (CP). Using infinite matrix and vector notation, constraint (3.9) can be written as

[M1|M2| . . . |M s| . . .]x = β. (3.10)

Here, for s ∈ S, M s is an∞×A matrix whose rows are indexed by states and M s = Es−αP s,

where each column of Es is the unit vector es, and the ath column of P s is the probability

distribution p(·|s, a).2

Remark 3.10. Let us re-visit Example 2. For any state s, for any action a = (a1, a2) such that

a1 > 0, transition to any state t ≥ s has a positive probability. That is, the ath column of

P s has an infinite number of positive entries. On the other hand, any state s can be reached

by a transition from any state t ≥ s by an action a = (a1, a2) such that a2 > 0. That is,

for any t ≥ s, the entry of P t at the sth row and the ath column is positive. Consequently,

in the CILP (CP) for Example 2, there are variables that appear in an infinite number of

constraints (unless A1 = {0}) and each constraint has an infinite number of variables (unless

A2 = {0}).

We consider another CILP formulation of countable-state MDPs. Let ‖y‖w , sups∈S
|y(s)|
w(s)

2Note that the rows of P s are indexed by next states. Meanwhile, given a stationary deterministic policy
σ, the rows of Pσ are indexed by current states and its columns are indexed by next states.
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for y ∈ R∞ and Yw , {y ∈ R∞ : ‖y‖w <∞}. Consider the following CILP:

(CD) min g(y) =
∞∑
s=1

β(s)y(s) (3.11)

s.t. y(s)− α
∞∑
t=1

p(t|s, a)y(t) ≥ r(s, a) for s ∈ S and a ∈ A (3.12)

y ∈ Yw. (3.13)

A CILP formulation consisting of (3.11) and (3.12) was introduced in Chapter 2.5 of [45]

for MDPs with uniformly bounded rewards. By adding constraint (3.13), one can apply

essentially the same arguments to countable-state MDPs being considered in this chapter

(i.e., ones with unbounded rewards but satisfying Assumptions A1, A2, and A3) to show

that the optimal value function J? is equal to the unique optimal solution of (CD).

A few remarks about (CD) are in order. Note that for any y ∈ Yw, the objective

function value is always finite because of (3.7). Also, the infinite sum in each constraint,∑∞
t=1 p(t|s, a)y(t) for s ∈ S and a ∈ A, can be shown to be finite for any y ∈ Yw by using

Assumption A2. Also, under Assumptions A1, A2, and A3, value functions of all Markov

policies belong to Yw due to Proposition 3.4, so (3.13) does not exclude any solution of

interest. Since, for any optimal policy π?,

J?(β) = Jπ?(β) =
∞∑
s=1

β(s)Jπ?(s) =
∞∑
s=1

β(s)J?(s), (3.14)

the optimal value of (CD) equals J?(β). Lastly, we note that Yw is a Banach space, so (CD)

is a problem of minimization of a linear function in a Banach space while satisfying linear

inequalities.

Section 3.5.1 proves that the optimal objective function value of (CP) is J?(β), and thus,

we have the following strong duality theorem.

Theorem 3.11. Strong duality holds between (CP) and (CD), i.e., f(x∗) = g(y∗), where x∗
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and y∗ are optimal solutions of (CP) and (CD), respectively.

Note that (CP) has only equality constraints and non-negativity constraints, and thus

can be said to be in standard form. The main goal of this chapter is to develop a simplex-

type algorithm that solves (CP). A simplex-type algorithm is expected to move along an

edge between two adjacent extreme points, improving the objective function value at every

iteration, and converge to an extreme point optimal solution. The following characterization

of extreme points of P is also well known in literature (e.g., Theorem 11.3 of [18]).

Theorem 3.12. A feasible solution x of (CP) is an extreme point of P if and only if for

any s ∈ S, there exists a(s) ∈ A such that x(s, a(s)) > 0 and x(s, b) = 0 for all b 6= a(s).

That is, the extreme points of P correspond to stationary deterministic policies.

Therefore, it is natural to define basic feasible solution in the following way.

Definition 3.13. A feasible solution x to (CP) is defined to be a basic feasible solution of

(CP) if for any s ∈ S, there exists a(s) ∈ A such that x(s, a(s)) > 0 and x(s, b) = 0 for all

b 6= a(s).

Note that a basic feasible solution is determined by choosing one column from each block

matrix M s in (3.10) for s ∈ S. For a basic feasible solution x and for s ∈ S, the unique

action a(s) that satisfies x(s, a(s)) > 0 is called a basic action of x at state s. Basic actions

of x naturally define a stationary deterministic policy, say, σ. Recall that P is the set of

occupancy measures of stationary policies; moreover, the set of extreme points of P coincides

with the set of occupancy measures of stationary deterministic policies. Thus, conversely,

the extreme point x is the occupancy measure of the stationary deterministic policy σ.

The next theorem follows immediately, based on the existence of an optimal policy that

is stationary and deterministic and the correspondence between stationary deterministic

policies and extreme points (Theorem 11.3 of [18]).

Theorem 3.14. (CP) has an extreme point optimal solution.
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In Appendix B, we provide an alternative proof of the above theorem. Briefly, the

proof shows that P is convex and compact in R∞ under the product topology and that the

objective function f(x) of (CP) is continuous over the feasible region P , and then, by Bauer’s

Maximum Principle (e.g., see Theorem 7.69 of [2]), that (CP) has an extreme point optimal

solution.

Next, we define complementary slackness between solutions of (CP) and (CD), and prove

its equivalence to optimality.

Definition 3.15. (Complementary slackness) Suppose x ∈ P and y ∈ Yw. x and y are said

to satisfy complementary slackness (or be complementary) if

x(s, a)

[
r(s, a)−

(
y(s)− α

∞∑
t=1

p(t|s, a)y(t)

)]
= 0 for all s ∈ S, a ∈ A. (3.15)

Theorem 3.16. (Complementary slackness sufficiency) Suppose x ∈ P and y ∈ Yw are

complementary. Then f(x) = g(y), and if y is feasible to (CD), then x and y are optimal to

(CP) and (CD), respectively.

Proof: In Section 3.5.2.

Theorem 3.17. (Complementary slackness necessity) If x and y are optimal to (CP) and

(CD), respectively, then they are complementary.

Proof: In Section 3.5.3.

Given a basic feasible solution x, let σ be the corresponding stationary deterministic

policy. By Theorem 3.3(2) and the definition of complementary slackness, a y ∈ Yw is

complementary with x if and only if y is the value function of σ. Since the value function

of a policy is unique, for any basic feasible solution x, there exists a unique y ∈ Yw that is

complementary with x, and moreover, y satisfies |y| ≤ Lw by Proposition 3.4.

Recently in [20], it was shown that for general CILPs, weak duality and complementary

slackness could be established by choosing appropriate sequence spaces for primal and dual,
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and the result was applied to CILP formulations of countable-state MDPs with bounded

rewards. In the paper, one of the conditions for the choice of sequence space is that the

objective function should converge for any sequence in the sequence space. However, in

(CP), the sequence space l1 does not guarantee convergence of the objective function (but

the objective function converges for any feasible solution of (CP) as shown in Section 3.5.1).

Thus, for countable-state MDPs with unbounded rewards being considered in this chapter,

applying the choice of sequence spaces in [20] would yield a different CILP formulation

from (CP), in which the feasible region may not coincide the set of occupancy measures of

stationary policies.

We conclude this section with the next lemma which will be useful in later sections.

Lemma 3.18. Any x ∈ P satisfies

∞∑
s=1

A∑
a=1

x(s, a) =
1

1− α
.

Proof: In Section 3.5.4.

3.3 Simplex Algorithm

To devise a simplex-type algorithm for (CP), let us recall how the simplex method for fi-

nite LPs works (in case of maximization). It starts with an initial basic feasible solution, and

in each iteration, computes reduced costs of nonbasic variables, chooses a nonbasic variable

with a positive reduced cost, and then replaces a basic variable with this nonbasic variable

to move to an adjacent basic feasible solution (this step is called a pivot operation). The

difficulties in replicating this for general CILPs are summarized in [21, 24]: 1) for a given so-

lution, checking feasibility may require infinite data and computation, 2) it generally requires

infinite memory to store a solution, 3) there are an infinite number of nonbasic variables to

consider for pivot operation, 4) computing reduced cost of even one nonbasic variable may

require infinite data and computation. In addition to these difficulties in implementation,

69



[21] provided an example of a CILP in which a strictly improving sequence of adjacent ex-

treme points may not converge in value to optimality. Therefore, an implementable simplex

algorithm for (CP) should store each iterate in finite memory, and approximate reduced

costs of only a finite number of nonbasic variables using only finite computation and data in

every iteration. We should also ensure that the algorithm improves in every iteration and

converges to optimality despite the above restrictions.

In [24], a simplex algorithm for non-stationary MDPs with finite state space that satisfies

all of the requirements was introduced. Here we introduce a simplex algorithm that satisfies

all of the requirements for a larger class of MDPs, namely, countable-state MDPs.

3.3.1 Approximating Reduced Costs

In this section we describe how we approximate reduced costs and prove an error bound

for the approximation. Let x be a basic feasible solution to (CP) and let y ∈ Y be its

complementary solution. We first define reduced costs.

Definition 3.19. Given a basic feasible solution x and the corresponding complementary

solution y, reduced cost γ(s, a) of state-action pair (s, a) ∈ S × A is defined as negative of

the slack in the corresponding constraint in (CD):

γ(s, a) , r(s, a) + α
∞∑
t=1

p(t|s, a)y(t)− y(s). (3.16)

For a state-action pair (s, a) such that x(s, a) > 0, the reduced cost γ(s, a) is zero by

complementarity. If γ(s, a) ≤ 0 for all (s, a) ∈ S × A, it means that y is feasible to (CD),

and thus, x is optimal to (CP) by Theorem 3.16.

Let σ be the stationary deterministic policy corresponding to x. Fix a state s and

an action a 6= σ(s) and consider a stationary deterministic policy τ obtained from σ by

changing the basic action at state s to a. We call this procedure for obtaining τ from

σ a pivot operation. Let z be the basic feasible solution corresponding to τ . The next
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proposition shows the relation between the change in objective function value made by this

pivot operation and the reduced cost γ(s, a).

Proposition 3.20. In the aforementioned pivot operation, the difference in objective func-

tion values of x and z is given by

f(z)− f(x) = γ(s, a)
∞∑
t=1

β(t)
∞∑
n=0

αnP n
τ (s|t).3

If the reduced cost γ(s, a) is positive, then the objective function strictly increases after the

pivot operation, by at least β(s)γ(s, a).

Proof: First, note that we can easily show that the infinite sum on the right hand side is

finite because probabilities are less than or equal to one. Let y and v be the complementary

solutions of x and z, respectively. Then, we have y = rσ + αPσy and v = rτ + αPτv. Thus,

v− y = rτ +αPτv− y = rτ +αPτ (v− y) +αPτy− y where the last equality follows because

each entry of Pτv and Pτy is finite (since |v| and |y| are bounded by Lw and each entry

of Pτw is finite by Assumption A2). By Theorem C.2 in [39], (I − αPτ )
−1 exists for any

stationary policy τ and we have4

(I − αPτ )−1 , I + αPτ + α2P 2
τ + . . . .

Therefore, we have v − y = (I − αPτ )
−1(rτ + αPτy − y). Entries of the infinite vector

rτ + αPτy − y are

(rτ + αPτy − y)(t) = r(t, τ(t)) + α

∞∑
t′=1

p(t′|t, τ(t))y(t′)− y(t) =


γ(s, a) if t = s

0 otherwise.

3Note that in the second sum, the index n starts from 0 since it is not a period index, but denotes a
number of transitions.

4Because αPτ is a bounded linear operator on Yw equipped with the norm ‖ · ‖w and the spectral radius
of αPτ is strictly less than one, the conditions of the theorem is satisfied.
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Therefore,

f(z)− f(x) = βTv − βTy = βT (v − y) = βT (I − αPτ )−1(rτ + αPτy − y)

= γ(s, a)
∞∑
t=1

β(t)
∞∑
n=0

αnP n
τ (s|t),

establishing the first result. Because

∞∑
t=1

β(t)
∞∑
n=0

αnP n
τ (s|t) ≥ β(s)P 0

τ (s|s) = β(s) > 0,

the second claim is also proven.

Computing the reduced cost of even one state-action pair requires computing y. Recall

that y is the value function of the policy σ. Computing y requires an infinite amount

of computation and an infinite amount of data, no matter how it is computed, either by

computing the infinite sum (3.1) or solving the infinite system of equations y = rσ + αPσy.

For a given policy σ, we consider approximating the complementary solution y by solving

the following N-state truncation of the infinite system of equations y = rσ + αPσy. Let N

be a positive integer. The approximate complementary solution, which we denote as yN , is

defined to be the solution of the following finite system of equations:

yN(s) = rσ(s) + α
N∑
t=1

Pσ(t|s)yN(t) for s = 1, . . . , N. (3.17)

Note that yN is the value function of policy σ for a new MDP obtained by replacing states

greater than N by an absorbing state in which no reward is earned, and thus, yN is an

approximation of y obtained from the N -state truncation of the original MDP. The next

lemma provides an error bound for the approximate complementary solution.

Lemma 3.21. For any positive integer N , the approximate complementary solution yN
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satisfies

|yN(s)− y(s)| ≤ L
∑
t>N

∞∑
n=1

αnP n
σ (t|s)w(t) for s = 1, . . . , N.

The error bound on the right hand side converges to zero as N →∞. Therefore, yN converges

pointwise to y as N →∞.

Proof: In Section 3.5.5.

Using the approximate complementary solution, we define approximate reduced costs of

nonbasic variables that belong to the N -state truncation:

γN(s, a) , r(s, a) + α
N∑
t=1

p(t|s, a)yN(t)− yN(s) for s = 1, . . . , N, a ∈ A. (3.18)

Note that γN(s, a) is an approximation of reduced cost γ(s, a) computed by using yN in

place of y. The next lemma provides an error bound on the approximate reduced cost.

Lemma 3.22. For any positive integer N , the approximate reduced cost γN satisfies

|γN(s, a)− γ(s, a)| ≤ δ(σ, s, a,N) for s = 1, . . . , N, a ∈ A,

where we define

δ(σ, s, a,N) ,L
∑
t>N

∞∑
n=1

αnP n
σ (t|s)w(t) + αL

N∑
t=1

p(t|s, a)
∑
t′>N

∞∑
n=1

αnP n
σ (t′|t)w(t′)

+ αL
∑
t>N

p(t|s, a)w(t). (3.19)
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Proof: By Lemma 3.21 and (3.5), for any s ≤ N and a ∈ A,

|γN(s, a)− γ(s, a)|

≤ α

N∑
t=1

p(t|s, a)|yN(t)− y(t)|+ |yN(s)− y(s)|+ α
∑
t>N

p(t|s, a)|y(t)|

≤ αL

N∑
t=1

p(t|s, a)
∑
t′>N

∞∑
n=1

αnP n
σ (t′|t)w(t′) + L

∑
t>N

∞∑
n=1

αnP n
σ (t|s)w(t) + αL

∑
t>N

p(t|s, a)w(t)

= δ(σ, s, a,N),

which proves the lemma.

By using Assumptions A2 and A3 and arguments similar to those in Section 3.5.5, it is

not hard to prove the following proposition about δ(σ, s, a,N).

Proposition 3.23. For any positive integer N and for σ ∈ ΠSD, s = 1, . . . , N , and a ∈ A,

δ(σ, s, a,N) ≤ L(L+ ακL+ ακ)w(s), (3.20)

and for any σ ∈ ΠSD, s = 1, . . . , N , and a ∈ A,

δ(σ, s, a,N)→ 0 as N →∞. (3.21)

Thus, by this proposition and Lemma 3.22, we have γN(s, a) → γ(s, a) as N → ∞ for

any state-action pair (s, a).

To design a convergent simplex-like algorithm for solving (CP), we need to assume the

existence of a uniform (policy independent) upper bound on δ(σ, s, a,N), i.e., δ̄(s, a,N) ≥

δ(σ, s, a,N) for all σ ∈ ΠSD, positive integer N , s ≤ N , and a ∈ A, such that

δ̄(s, a,N)→ 0 as N →∞ for any (s, a). (3.22)

Additionally, for the algorithm to be implementable, we require δ̄(s, a,N) to be computable

74



in finite time, using finite data. In Section 3.3.4, we show how such an upper bound δ̄(s, a,N)

can be computed for Examples 1 and 2.

3.3.2 Simplex Algorithm

Our simplex algorithm finds a sequence of stationary deterministic policies whose value

functions strictly improve in every iteration and converge to the optimal value function.

Let σk denote the stationary deterministic policy our algorithm finds in iteration k. Let xk

denote the corresponding basic feasible solution of (CP) and yk denote the complementary

solution.

The intuition behind the algorithm can be described as follows. If σk is not optimal,

yk is not feasible to (CD), and thus, there is at least one nonbasic variable (state-action

pair) whose reduced cost is positive. To identify such a variable with finite computation,

in each iteration we consider N -state truncations of the MDP, increasing N as necessary.

As N increases, the variable’s approximate reduced cost approaches its exact value, and for

sufficiently large N becomes sufficiently large to deduce (by Lemma 4.4) that the (exact)

reduced cost of the variable is positive. Moreover, in choosing a variable for the pivot

operation, the algorithm selects a nonbasic variable that not only has a positive reduced

cost, but also has the largest approximate reduced cost (weighted by β) among all nonbasic

variables in the N-state truncation; this choice is similar to the Dantzig pivoting rule for finite

LPs. Choosing a nonbasic variable with a positive reduced cost ensures strict improvement,

and choosing one with the largest weighted approximate reduced cost enables us to prove

convergence to optimality. (As demonstrated by a counter-example in [21], an arbitrary

sequence of improving pivot operations may lead to convergence to a suboptimal value.)

A unique feature of our algorithm is that in each iteration it adjusts N , the size of finite-

state truncation, dynamically until a condition for performing a pivot operation is satisfied,

whereas existing solution methods for countable-state MDPs increase the size by one in every

iteration.
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An implementable simplex algorithm for countable-state MDPs

1. Initialize: Set iteration counter k = 1. Fix basic actions σ1(s) ∈ A for s ∈ S.5

2. Find a nonbasic variable with the most positive approximate reduced cost:

(a) Set N := 1 and set N(k) :=∞.

(b) Compute the approximate complementary solution, yk,N(s) for s = 1, . . . , N by

solving (3.17).

(c) Compute the approximate reduced costs, γk,N(s, a) for s = 1, . . . , N, a ∈ A by

(3.18).

(d) Find the nonbasic variable achieving the largest approximate nonbasic reduced

cost weighted by β:

(sk,N , ak,N) = arg max
(s,a)

β(s)γk,N(s, a). (3.23)

(e) If γk,N(sk,N , ak,N) > δ̄(sk,N , ak,N , N), set N(k) = N , (sk, ak) = (sk,N , ak,N), and

σk+1(sk) = ak, σk+1(s) = σk(s) for s 6= sk, and go to Step 3; else set N := N + 1

and go to Step 2(b).

3. Set k = k + 1 and go to Step 2.

3.3.3 Proof of Convergence

In this section we show that the simplex algorithm of Section 3.3.2 strictly improves in

every iteration and that it converges to optimality.

In Step 2(e) of the algorithm, a pivot operation is performed only if γk,N(sk, ak) >

δ̄(sk, ak, N). This inequality implies that the reduced cost of variable x(sk, ak) is positive as

5Note that we can select an initial policy that can be described finitely. For example, for A = {1, . . . , A},
we can let σ1(s) = 1 for all s ∈ S. Then, the algorithm stores only deviations from the initial policy, which
total at most k at the kth iteration.
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shown in the following lemma. For s ∈ S, a ∈ A, and k = 1, 2, . . ., we use γk(s, a) to denote

the reduced cost of variable x(s, a) where the current policy is σk.

Lemma 3.24. The reduced cost γk(sk, ak) of the state-action pair chosen in iteration k of

the simplex algorithm is strictly positive.

Proof: We have

γk(sk, ak) ≥ γk,N(sk, ak)− δ(σk, sk, ak, N) ≥ γk,N(sk, ak)− δ̄(sk, ak, N) > 0

where the first inequality follows by Lemma 3.22, the second by the definition of δ̄(sk, ak, N),

and the last by Step 2(e) of the algorithm.

By this lemma and Proposition 3.20, the following corollary is immediate. We denote

f(xk) as fk for simplicity.

Corollary 3.25. The objective function of (CP) is strictly improved by the simplex algorithm

in every iteration, i.e., fk+1 > fk for k = 1, 2, . . ..

The next corollary shows that the value function of the policies found by the algorithm

improves in every iteration.

Corollary 3.26. The value function of the policies obtained by the simplex algorithm is

nondecreasing in every state and strictly improves in at least one state in every iteration,

i.e., for any k, yk+1 ≥ yk and there exists s ∈ S for which yk+1(s) > yk(s).

Proof: As shown in the proof of Proposition 3.20,

yk+1 − yk = (I − αPσk+1)−1(rσk+1 + αPσk+1yk − yk),

and for s ∈ S,

yk+1(s)− yk(s) = γk(sk, ak)
∞∑
n=0

αnP n
σk+1(s

k|s).
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Since γk(sk, ak) > 0, we have yk+1(s)− yk(s) ≥ 0 for all s ∈ S. Moreover,

yk+1(sk)− yk(sk) = γk(sk, ak)
∞∑
n=0

αnP n
σk+1(s

k|sk) ≥ γk(sk, ak)P 0
σk+1(s

k|sk) = γk(sk, ak) > 0.

From the above corollaries, the next corollary is trivial.

Corollary 3.27. The simplex algorithm does not repeat any non-optimal basic feasible so-

lution.

The next lemma shows that the algorithm finds a pivot operation satisfying the conditions

as long as the current basic feasible solution is not optimal.

Lemma 3.28. Step 2 of the algorithm terminates if and only if xk is not optimal to (CP).

Proof: In Section 3.5.6.

In the rest of this section we show that the algorithm converges in value to optimality.

We begin by proving a few useful lemmas.

From Proposition 3.20, we know that β(sk)γk(sk, ak) is a lower bound on the improvement

of the objective function in iteration k. The next lemma shows that fk converges, and thus

the guaranteed improvement should converge to zero.

Lemma 3.29. The sequence fk has a finite limit and β(sk)γk(sk, ak) tends to zero as k →∞.

Proof: For any k,

fk = f(xk) = g(yk) =
∞∑
s=1

β(s)yk(s) ≤ L

∞∑
s=1

β(s)w(s) <∞,

where the second equality follows by Theorem 3.16, the first inequality by (3.5), and the last

inequality by (3.7). By Corollary 3.25, the sequence fk is an increasing sequence. Therefore,

fk has a finite limit, and thus fk+1 − fk converges to zero as k →∞. Since β(sk)γk(sk, ak)
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is nonnegative for any k, by Proposition 3.20, we can conclude that β(sk)γ(sk, ak) converges

to zero.

The next lemma shows that N(k), the size of the finite truncation at which the simplex

algorithm finds a state-action pair satisfying the conditions of Step 2(e), tends to infinity as

k →∞.

Lemma 3.30. N(k)→∞ as k →∞.

Proof: This proof is similar to the proof of Lemma 5.7 in [24].

The lemma holds trivially if xk is optimal for any k. Suppose that this is not the case, and

that there exists an integer M such that N(k) = M for infinitely many k. Let {ki}∞i=1 be the

infinite subsequence of iteration counters in which this occurs. Let σki,M be the stationary

deterministic policy in the M -state truncation defined by σki(s) for s = 1, . . . ,M . Note that

in the M -state truncation of the original MDP, sinceA is finite, there are only a finite number

of stationary deterministic policies. Thus, there exists a stationary deterministic policy of

the M -state truncation that appears for infinitely many ki. Let σ∗,M denote the M -state

stationary deterministic policy and, passing to a subsequence if necessary, let σki,M = σ∗,M .

In the simplex algorithm, the nonbasic variable chosen by the algorithm is completely

characterized by the basic feasible solution of the M -state truncation. Thus, in iteration ki

for i = 1, 2, . . ., the state-action pair chosen for a pivot operation is the same. Let (s∗, a∗)

denote this state-action pair. For i = 1, 2, . . ., in iteration ki of the simplex algorithm, the

improvement of the objective function is

fki+1 − fki ≥ β(s∗)γki(s∗, a∗) ≥ β(s∗)(γki,M(s∗, a∗)− δ(σki , s∗, a∗,M))

≥ β(s∗)(γki,M(s∗, a∗)− δ̄(s∗, a∗,M)) > 0,

where the first inequality follows by Proposition 3.20, the second by Lemma 3.22, the third

by the definition of δ̄(s∗, a∗,M), and the last by Step 2(e) of the algorithm. Note that the

approximate reduced cost γki,M(s∗, a∗) is also solely determined by the basic feasible solution
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of the M -state truncation. Thus, the last nonzero expression in the above inequalities,

β(s∗)(γki,M(s∗, a∗) − δ̄(s∗, a∗,M)), is a positive constant. This implies that the objective

function is increased by at least a fixed amount in iteration ki for i = 1, 2, . . .. However,

we know that fk is an increasing convergent sequence from Corollary 3.25 and Lemma 3.29.

Thus, we established the result by contradiction.

Theorem 3.31. Let f ? be the optimal value of (CP). The simplex algorithm converges to

optimality in value, i.e., limk→∞ f
k = f ?.

Proof: The main steps of this proof are similar to the steps of the proof of Theorem 5.3

in [24], but details of each step are quite different. We borrowed some of their notation.

This theorem trivially holds if xk is optimal for any k, so suppose that this is not the

case.

There exists a sequence of positive integers {rk} such that srk →∞ as k →∞. Indeed,

recall that sk is the state where the algorithm performs a pivot operation in iteration k.

Suppose that there exists N ′ such that sk < N ′ for all k. Then, the algorithm performs

pivot operations only for states less than N ′, and thus, can encounter only a finite number

of basic feasible solutions, since the action set A is finite. However, we assumed that xk is

not optimal for any k and the algorithm performs a pivot operation as long as it does not

reach an optimal solution (Lemma 3.28) and never repeats any non-optimal basic feasible

solutions (Corollary 3.27). Thus, we reached a contradiction.

We will next show that the sequence xrk has a converging subsequence whose limit is an

optimal solution to (CP). The fact that srk →∞ as k →∞ will play a role in showing the

optimality of the limit, later in this proof.

For any k, xrk belongs to P which is shown to be compact in Theorem 11.3 of [18]

or Corollary 10.1 of [4], and thus, there exists a convergent subsequence xtk of xrk with

limk→∞ x
tk = x̄. Note that x̄ ∈ P . Let ytk be the corresponding subsequence of yk. Let

YL , {y ∈ Rn : ‖y‖w ≤ L}, then YL is a compact set of R∞ under the product topology by

Tychonoff’s theorem (e.g., see Theorem 2.61 of [2]). By (3.5), we have ytk ∈ YL for all k, and
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thus, the subsequence ytk also has a further convergent subsequence yuk . Let limk→∞ y
uk = ȳ,

and note that limk→∞ x
uk = x̄. We will show that x̄ and ȳ are complementary and ȳ is feasible

to (CD), and thus, that x̄ is optimal for (CP).

Since xuk and yuk are complementary, we have

xuk(s, a)

[
r(s, a)−

(
yuk(s)− α

∞∑
t=1

p(t|s, a)yuk(t)

)]
= 0 for s ∈ S, a ∈ A. (3.24)

Recall that, by (3.5), |yuk(t)| ≤ Lw(t) for any state t and

∞∑
t=1

p(t|s, a)Lw(t) ≤ κLw(s) for any s ∈ S.

Thus, by Proposition 3.8, we have

lim
k→∞

∞∑
t=1

p(t|s, a)yuk(t) =
∞∑
t=1

p(t|s, a)ȳ(t).

Consequently, by taking k →∞ in (3.24), we obtain

x̄(s, a)

[
r(s, a)−

(
ȳ(s)− α

∞∑
t=1

p(t|s, a)ȳ(t)

)]
= 0 for s ∈ S, a ∈ A.

Therefore, x̄ and ȳ are complementary.

Suppose that ȳ is not feasible to (CD). That is, there exists (s, a) ∈ S × A and ε > 0

such that

r(s, a) + α
∞∑
t=1

p(t|s, a)ȳ(t)− ȳ(s) = ε.

Thus, there exists K such that for k ≥ K,

r(s, a) + α
∞∑
t=1

p(t|s, a)yuk(t)− yuk(s) ≥ 1

2
ε. (3.25)
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Since limk→∞N(uk) =∞ by Lemma 3.30, s ≤ N(uk) for sufficiently large k. For all such k,

r(s, a) + α
∞∑
t=1

p(t|s, a)yuk(t)− yuk(s) = γuk(s, a)

≤ γuk,N(uk)(s, a) + δ(σuk , s, a,N(uk)) ≤ γuk,N(uk)(s, a) + δ̄(s, a,N(uk)) (3.26)

by Lemma 3.22 and the definition of δ̄(s, a,N(uk)). By Lemma 3.30, we know that

δ̄(s, a,N(uk))→ 0 as k →∞.

We will also show that γuk,N(uk)(s, a) becomes nonpositive as k →∞, which will contradict

(3.25), and thus, we will conclude that ȳ is feasible to (CD).

We have:

β(s)γuk,N(uk)(s, a) ≤ β(suk)γuk,N(uk)(suk , auk)

≤ β(suk)γuk(suk , auk) + β(suk)δ(σuk , suk , auk , N(uk)) (3.27)

where the first inequality is due to (3.23). By Lemma 3.29, the first term of the right hand

side of (3.27) tends to zero as k → ∞. Also, by (3.20), the second term of the right hand

side of (3.27) is bounded as follows:

β(suk)δ(σuk , suk , auk , N(uk)) ≤ L(L+ ακL+ ακ)β(suk)w(suk).

The right hand side tends to zero as k →∞ because β(s)w(s)→ 0 as s→∞ by (3.7) and

suk → ∞ as k → ∞ by the choice of sequence uk. Therefore, the right hand side of (3.27)

converges to zero as k → ∞. Since β(s) > 0, we obtain that lim supk γ
uk,N(uk)(s, a) ≤ 0.

Thus, (3.25) is contradicted and so ȳ is feasible to (CD).

Thus, we have shown that x̄ is optimal to (CP). By following arguments similar to those

of Lemma 8.5 of [4], one can show that f , the objective function of (CP), is continuous on
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P under the product topology. Thus, fuk converges to f ? as k →∞. However, fk converges

by Lemma 3.29 and its limit should be the same as the limit of its subsequence. Therefore,

fk converges to f ? as k →∞.

3.3.4 Examples (continued)

Recall that our simplex algorithm relies on δ̄(s, a,N) — a finitely computable upper

bound on δ(σ, s, a,N) that converges to zero as N increases. Let us demonstrate how this

bound can be computed for the examples of inventory management and queueing from

Section 3.1.3.

Example 3.1 (continued). In the inventory example, recall that the maximum inventory

level that can be reached by n transitions from state s is s + nM . An upper bound on the

first term in (3.19) can be computed as follows:

L
∑
t>N

∞∑
n=1

αnP n
σ (t|s)w(t) = L

∞∑
n=1

αn
∑
t>N

P n
σ (t|s)(C +Dt)

≤ L
∞∑
n=1

αn[C +D(s+ nM)]1{N < s+ nM}

= L
∞∑
n=ν

αn[C +D(s+ nM)]

=
Lαν

1− α

[
(C +Ds) +DM

α + ν − αν
1− α

]
,

where the exchange of infinite sums follows by Proposition 3.5 and ν , bN−s
M
c+1. An upper

bound on the rest of (3.19) can be found similarly. Thus, we obtain the following upper
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bound on δ(σ, s, a,N):6

δ(σ, s, a,N) ≤ Lαν

1− α

[
(C +Ds) +DM

α + ν − αν
1− α

]
+

Lα2

1− α

(
C +DN +

DM

1− α

)
1{N < s+M}

+
Lαν

1− α

[
C +Ds+DM

α + ν − αν
1− α

]
1{N ≥ s+M}

+ Lα(C +Ds+DM)1{N < s+M}

, δ̄(s, a,N)

and δ̄(s, a,N) decreases to zero as N increases. It can also be denoted as δ̄(s,N) since it

does not depend on action a.

In the above example, w is a linear function of the state. However, note that for any

polynomial function w, one can easily find δ̄(s, a,N) that converges to zero as N → ∞ by

following arguments similar to the above steps.

Example 3.2 (continued). For n = 1, 2, . . ., let Xn be a Poisson random variable with

mean na1
max and let Y be a random variable that equals Xn with probability (1−α)αn−1 for

n = 1, 2, . . .. Let µ denote the expected value of Y . For a random variable X, let fX and

FX denote the probability distribution function and the cumulative distribution function of

X, respectively.

Then, for s ∈ S and N = 1, 2, . . ., we define δ̄(s, a,N) as

δ̄(s, a,N) , L · h1(s,N) + αL
N∑
t=0

p(t|s, a) · g(t, N) + α · L · h2(s,N) (3.28)

6In (3.19), it is assumed that S = {1, 2, . . .}. However, note that in Examples 1 and 2, S = {0, 1, . . .}.
Thus, we derive an upper bound on δ(σ, s, a,N) for which the first sum in the second term in (3.19) starts
with t = 0 instead of t = 1. Then, δ(σ, s, a,N) is an error bound of the approximate reduced cost computed
from the (N + 1)-state truncation.
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where

h1(s,N) ,
α

1− α

[
C

(
µ−

N−s∑
u=0

ufY (u)

)
+ (Cs+D)(1− FY (N − s))

]
and

h2(s,N) , C

(
a1

max −
N−s∑
u=0

ufX1(u)

)
+ (Cs+D)(1− FX1(N − s)).

In Section 3.5.7, we prove that δ(σ, s, a,N) ≤ δ̄(s, a,N) and that δ̄(s, a,N)→ 0 as N →∞,

and illustrate how δ̄(s, a,N) can be computed finitely.

3.4 Numerical Illustration

We implemented the simplex algorithm and tested it on five instances of the inventory

management problem of Example 3.1. Recall that b,K, c, h,M denote the per-unit price,

the fixed ordering cost, the per-unit ordering cost, the per-unit inventory cost, and the max-

imum ordering level, respectively, and let d denote the expected demand in one period. The

parameters of the five instances were (b,K, c, h, d,M) = (15, 3, 5, 0.1, 2, 4), (10, 5, 7, 0.1, 2, 4),

(10, 3, 5, 0.2, 2, 4), (10, 3, 5, 0.2, 2, 5), (10, 3, 5, 0.2, 3, 5), respectively. For all instances, de-

mand in each period follows Poisson distribution with the specified expected value. We used

discount factor α = 0.9. The simplex algorithm was written in Python and ran on 2.93 GHz

Intel Xeon CPU.

Figure 3.1 shows cost improvement of the simplex algorithm for the above instances of

the inventory management problem as a function of (a) CPU time and (b) number of pivot

operations. The vertical axis of Figure 3.1 is the difference between the objective function

value of (CP) of policies obtained by the simplex algorithm and the optimal objective function

value. For s ∈ S, the initial basic action σ1(s) was the remainder of s+3 divided by M . The

objective function values of each policy were estimated by computing
∑N

s=1 β(s)yN(s) for

increasing N until the change of the value in consecutive iterations was less than a threshold,

where yN is obtained by solving (3.18).

Figure 3.1 illustrates that for all instances, the difference between the objective function
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Figure 3.1: Optimality gap progress of the simplex algorithm for inventory management
problems
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value of policies and the optimal value decreased monotonically and converged to zero.

As shown in Figure 3.1(b), the algorithm converges at similar rates for all instances as

the number of iterations increases, but CPU time of one iteration is longer on average for

instances 4 and 5 as shown in Figure 3.1(a), possibly because of the higher maximum ordering

level.

3.5 Technical Proofs

3.5.1 Derivation of (CP) and Proof of Strong Duality

Here we provide some intuition behind problem (CP) by illustrating its relationship to

the MDP problem. We also prove strong duality between (CP) and (CD).

We first define an occupancy measure and will show that the feasible region of (CP)

coincides with the set of occupancy measures of all policies. In order to introduce the

concept of an occupancy measure, we consider the expected total reward criterion, instead of

the discounted one. It is well known (e.g., see Chapter 10 of [4]) that we can transform an

MDP with the expected total discounted reward criterion into an equivalent MDP with the

expected total reward criterion, by adding an absorbing state, say, 0. Let S̃ = S ∪ {0} =

{0, 1, 2, . . .} and set the transition probabilities and rewards for s ∈ S̃ and a ∈ A as:

p̃(t|s, a) ,


αp(t|s, a) if s 6= 0, t 6= 0

1− α if s 6= 0, t = 0

1 if s = t = 0

,

r̃(s, a) ,


r(s, a) if s 6= 0

0 if s = 0.

Extend β by letting β(0) = 0 and π by arbitrarily choosing an action at state 0. The
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expected total reward is defined as:

Ṽπ(β) , Ẽβ
π

[
∞∑
n=1

r̃(S̃n, Ãn)

]
,

where P̃ β
π and Ẽβ

π are defined similarly for the new MDP, and the processes {S̃n} and {Ãn}

are also defined accordingly. Then it is easy to show that Jπ(β) = Ṽπ(β) for any policy π.

We call this the absorbing MDP formulation of the original discounted MDP. It is said to

be absorbing since it has a finite expected lifetime before entering 0 under any policy, i.e.,

Eβ
πT = 1/(1− α) <∞ for any policy π, where T = min{n ≥ 1 : sn = 0}. Since the original

discounted MDP and its absorbing MDP formulation can be considered equivalent, we use

the same notation for both; it will be clear which one is discussed from the context.

For s ∈ S and a ∈ A, the occupancy measure of the state-action pair is denoted as

Qβ
π(s, a) and defined as the expectation of the number of visits to (s, a) until entering the

absorbing state 0 under policy π with the initial state distribution β, that is, for any s ∈ S

and a ∈ A,

Qβ
π(s, a) , Eβ

π

T−1∑
n=1

1{Sn = s, An = a} = Eβ
π

∞∑
n=1

1{Sn = s, An = a}

=
∞∑
n=1

P β
π {Sn = s, An = a}, (3.29)

where the last equality is due to Proposition 3.7. (An equivalent alternative interpretation of

the occupancy measure is as the total expected discounted time spent in different state-action

pairs in the original discounted MDP.)

It is well known (e.g., Theorem 8.1 of [4]) that for any policy π, there exists a stationary

policy σ such that Qβ
π = Qβ

σ, namely,

σ(a|s) =
Qβ
π(s, a)∑

b∈AQ
β
π(s, b)

, (3.30)
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where σ(a|s) denotes the probability of σ choosing a at s. This result implies that Q =

QM = QS where Q,QM , and QS denote the sets of occupancy measures of all policies,

Markov policies, and stationary policies, respectively.

It is also well known (e.g., Theorem 11.3 of [18] and Corollary 10.1 of [4]) thatQS coincides

with the set of nonnegative and summable solutions of the following set of equations:

A∑
a=1

x(s, a) = β(s) + α

∞∑
t=1

A∑
a=1

p(s|t, a)x(t, a) for s 6= 0. (3.31)

Therefore, the feasible region of (CP) is the set of occupancy measures of all stationary

policies, and thus, it is the set of occupancy measures of all policies.

By using arguments similar to those in the proof of Theorem 8.3 of [4], one can show

that for any Markov policy π,

Jπ(β) =
∞∑
s=1

A∑
a=1

r(s, a)Qβ
π(s, a). (3.32)

From Proposition 3.4 and (3.7), we know that Jπ(β) is finite, and thus the right hand side of

the above equation is finite, for any Markov policy π. Since the feasible region of (CP) is the

set of occupancy measures of all stationary policies, the objective function of (CP) is finite

for any feasible solution. Moreover, by Lemma 3.9, a stationary policy whose occupancy

measure is an optimal solution to (CP) is also optimal for the MDP. Given an optimal

solution of (CP), a stationary optimal policy can be obtained by (3.30).

By following the arguments of Lemma 8.5 of [4], one can show that f , the objective

function of (CP), is continuous on its feasible region under the usual product topology. In

addition, it is also well known (e.g., Theorem 11.3 of [18] and Corollary 10.1 of [4]) that the

feasible region of (CP) is a compact subset of R∞ under the product topology. Therefore,

the maximum of f is attained in the feasible region of (CP).

Recall that the optimal value of (CD) is V ?(β). As we just discussed, the optimal value

of (CP) is the maximum of Jπ(β) over all policies π, thus (CD) and (CP) satisfy strong
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duality.

3.5.2 Proof of Theorem 3.16

Since x and y are complementary, for any s ∈ S and a ∈ A,

r(s, a)x(s, a) =

(
y(s)− α

∞∑
t=1

p(t|s, a)y(t)

)
x(s, a).

By summing up both sides for s = 1, 2, . . . , N and a = 1, 2, . . . , A,

N∑
s=1

A∑
a=1

r(s, a)x(s, a)

=
N∑
s=1

A∑
a=1

(
y(s)− α

∞∑
t=1

p(t|s, a)y(t)

)
x(s, a)

=
N∑
s=1

A∑
a=1

y(s)x(s, a)− α
N∑
s=1

A∑
a=1

∞∑
t=1

p(t|s, a)y(t)x(s, a)

=
N∑
s=1

y(s)
A∑
a=1

x(s, a)−
∞∑
t=1

y(t)α
N∑
s=1

A∑
a=1

p(t|s, a)x(s, a)

=
N∑
s=1

y(s)
A∑
a=1

x(s, a)−
∞∑
t=1

y(t)

(
A∑
a=1

x(t, a)− β(t)− α
∞∑

s=N+1

A∑
a=1

p(t|s, a)x(s, a)

)
,

(3.33)

where the exchange of sums in the third equality is justified by the fact that the sum∑∞
t=1 p(t|s, a)y(t) is finite for any s and a, and the last equality is obtained from feasibility

of x to (CP). We will find the limit of (3.33) as N →∞.

We use the fact that ‖y‖w is finite to observe the following:

∞∑
s=1

A∑
a=1

|y(s)x(s, a)| =
∞∑
s=1

|y(s)|
A∑
a=1

x(s, a) ≤ ‖y‖w
∞∑
s=1

w(s)
A∑
a=1

x(s, a),

and since x is feasible to (CP), there exists a stationary policy σ such that (here we consider
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the absorbing MDP formulation introduced in Section 3.5.1)

‖y‖w
∞∑
s=1

w(s)
A∑
a=1

x(s, a) = ‖y‖w
∞∑
s=1

w(s)
A∑
a=1

Qβ
σ(s, a)

= ‖y‖w
∞∑
s=1

A∑
a=1

∞∑
n=1

P β
σ (Sn = s, An = a)w(s)

= ‖y‖w
∞∑
s=1

∞∑
n=1

A∑
a=1

P β
σ (Sn = s, An = a)w(s)

= ‖y‖w
∞∑
s=1

∞∑
n=1

P β
σ (Sn = s)w(s), (3.34)

where the third equality is obtained from Proposition 3.5. However,

∞∑
n=1

∞∑
s=1

P β
σ (Sn = s)w(s) = βT (w + αPσw + α2P 2

σw + . . .)

≤ βT [(w + (ακ)w + (ακ)2w + . . .+ (ακ)J−1w) + (λw + λ(ακ)w + . . .+ λ(ακ)J−1w) + . . .]

= LβTw <∞

by Assumptions A2 and A3, and (3.7). Thus, the sum (3.34) is finite by Proposition 3.5.

Therefore, we have
∞∑
s=1

y(s)
A∑
a=1

x(s, a) <∞. (3.35)

We will also prove that

∞∑
t=1

y(t)
∞∑

s=N+1

A∑
a=1

p(t|s, a)x(s, a) <∞ (3.36)

and that the above sum tends to zero as N → ∞. We first show that the following sum is
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finite:

∞∑
s=1

∞∑
t=1

∣∣∣∣∣
A∑
a=1

y(t)p(t|s, a)x(s, a)

∣∣∣∣∣ ≤
∞∑
s=1

∞∑
t=1

A∑
a=1

|y(t)| p(t|s, a)x(s, a)

=
∞∑
s=1

A∑
a=1

x(s, a)
∞∑
t=1

p(t|s, a) |y(t)| ≤
∞∑
s=1

A∑
a=1

x(s, a)‖y‖w
∞∑
t=1

p(t|s, a)w(t)

≤ κ‖y‖w
∞∑
s=1

A∑
a=1

w(s)x(s, a) <∞,

where the interchange of sums in the equality follows by Proposition 3.5, the second inequality

by y ∈ Yw, the third inequality by Assumption A2, and the last infinite sum is finite as shown

before. Then, by Proposition 3.6,

∞∑
s=1

∞∑
t=1

A∑
a=1

y(t)p(t|s, a)x(s, a) =
∞∑
t=1

∞∑
s=1

A∑
a=1

y(t)p(t|s, a)x(s, a) <∞.

Therefore,
∞∑

s=N+1

∞∑
t=1

A∑
a=1

y(t)p(t|s, a)x(s, a)→ 0 as N →∞.

Using the same arguments, we can also show that, for any N ,

∞∑
s=N+1

∞∑
t=1

A∑
a=1

y(t)p(t|s, a)x(s, a) =
∞∑
t=1

∞∑
s=N+1

A∑
a=1

y(t)p(t|s, a)x(s, a) <∞.

Therefore, (3.36) is proven and its left hand side converges to zero as N → ∞. Also, we

know
∞∑
t=1

β(t)|y(t)| ≤ ‖y‖w
∞∑
t=1

β(t)w(t) <∞. (3.37)
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Then, by (3.35), (3.36), and (3.37), we can write (3.33) as

N∑
s=1

A∑
a=1

r(s, a)x(s, a)

=
N∑
s=1

y(s)
A∑
a=1

x(s, a)−
∞∑
t=1

y(t)
A∑
a=1

x(t, a) +
∞∑
t=1

β(t)y(t)

+ α

∞∑
t=1

y(t)
∞∑

s=N+1

A∑
a=1

p(t|s, a)x(s, a).

By letting N →∞ on both sides, we obtain

∞∑
s=1

A∑
a=1

r(s, a)x(s, a) =
∞∑
t=1

β(t)y(t),

and thus, the theorem is proven.

3.5.3 Proof of Theorem 3.17

Since y and x are feasible to (CD) and (CP), respectively, for any s ∈ S and a ∈ A,

x(s, a)

[
r(s, a)−

(
y(s)− α

∞∑
t=1

p(t|s, a)y(t)

)]
≤ 0.

By summing up the above for s = 1, 2, . . . , N and a = 1, 2, . . . , A, we obtain

0 ≥
N∑
s=1

A∑
a=1

x(s, a)

[
r(s, a)−

(
y(s)− α

∞∑
t=1

p(t|s, a)y(t)

)]

=
N∑
s=1

A∑
a=1

r(s, a)x(s, a)−
N∑
s=1

A∑
a=1

(
y(s)− α

∞∑
t=1

p(t|s, a)y(t)

)
x(s, a)

=
N∑
s=1

A∑
a=1

r(s, a)x(s, a)−
N∑
s=1

y(s)
A∑
a=1

x(s, a) +
∞∑
t=1

y(t)
A∑
a=1

x(t, a)−
∞∑
t=1

β(t)y(t)

− α
∞∑
t=1

y(t)
∞∑

s=N+1

A∑
a=1

p(t|s, a)x(s, a), (3.38)
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where the last equality is obtained similarly to the proof of Theorem 3.16. Note that by

strong duality we have
∞∑
s=1

A∑
a=1

r(s, a)x(s, a) =
∞∑
t=1

β(t)y(t).

Therefore, by letting N → ∞ in (3.38) and using arguments similar to the proof of Theo-

rem 3.16, we obtain that

0 ≥
∞∑
s=1

A∑
a=1

x(s, a)

[
r(s, a)−

(
y(s)− α

∞∑
t=1

p(t|s, a)y(t)

)]
= 0,

and thus, for any s ∈ S and a ∈ A,

x(s, a)

[
r(s, a)−

(
y(s)− α

∞∑
t=1

p(t|s, a)y(t)

)]
= 0,

i.e., y and x are complementary.

3.5.4 Proof of Lemma 3.18

For any x ∈ F , there exists a stationary policy σ such that x(s, a) = Qβ
σ(s, a) for

s ∈ S, a ∈ A. By (3.29), it suffices to show (here we consider the absorbing MDP formulation

introduced in Section 3.5.1)

∞∑
s=1

A∑
a=1

∞∑
n=1

P β
σ {Sn = s, An = a} =

1

1− α
.

Using Proposition 3.5 to interchange the sums, we have:

∞∑
n=1

∞∑
s=1

A∑
a=1

P β
σ {Sn = s, An = a} =

∞∑
n=1

∞∑
s=1

P β
σ {Sn = s} =

∞∑
n=1

αn−1 =
1

1− α
.
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3.5.5 Proof of Lemma 3.21

We prove this lemma for a more general case of an arbitrary stationary policy σ (rather

than just stationary deterministic policy). For s = 1, . . . , N ,

yN(s) =rσ(s) + α

N∑
t1=1

Pσ(t1|s)yN(t1)

=rσ(s) + α

N∑
t1=1

Pσ(t1|s)rσ(t1) + α2

N∑
t1=1

N∑
t2=1

Pσ(t1|s)Pσ(t2|t1)rσ(t2)

+ α3

N∑
t1=1

N∑
t2=1

N∑
t3=1

Pσ(t1|s)Pσ(t2|t1)Pσ(t3|t2)rσ(t3) + . . . .

On the other hand, for s = 1, . . . , N ,

y(s) =rσ(s) + α
∞∑
t1=1

Pσ(t1|s)rσ(t1) + α2

∞∑
t1=1

∞∑
t2=1

Pσ(t1|s)Pσ(t2|t1)rσ(t2)

+ α3

∞∑
t1=1

∞∑
t2=1

∞∑
t3=1

Pσ(t1|s)Pσ(t2|t1)Pσ(t3|t2)rσ(t3) + . . . .
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Then, for s = 1, . . . , N ,

|y(s)− yN (s)| =

∣∣∣∣∣∣α
∑
t1>N

Pσ(t1|s)rσ(t1)

+ α2

∑
t1>N

∞∑
t2=1

Pσ(t1|s)Pσ(t2|t1)rσ(t2) +
∑
t1≤N

∑
t2>N

Pσ(t1|s)Pσ(t2|t1)rσ(t2)


+ α3

∑
t1>N

∞∑
t2=1

∞∑
t3=1

Pσ(t1|s)Pσ(t2|t1)Pσ(t3|t2)rσ(t3)

+
∑
t1≤N

∑
t2>N

∞∑
t3=1

Pσ(t1|s)Pσ(t2|t1)Pσ(t3|t2)rσ(t3)

+
∑
t1≤N

∑
t2≤N

∑
t3>N

Pσ(t1|s)Pσ(t2|t1)Pσ(t3|t2)rσ(t3)

+ . . .

∣∣∣∣∣∣
≤ α

∑
t1>N

Pσ(t1|s)w(t1)

+ α2

∑
t1>N

∞∑
t2=1

Pσ(t1|s)Pσ(t2|t1)w(t2) +
∑
t1≤N

∑
t2>N

Pσ(t1|s)Pσ(t2|t1)w(t2)


+ α3

∑
t1>N

∞∑
t2=1

∞∑
t3=1

Pσ(t1|s)Pσ(t2|t1)Pσ(t3|t2)w(t3)

+
∑
t1≤N

∑
t2>N

∞∑
t3=1

Pσ(t1|s)Pσ(t2|t1)Pσ(t3|t2)w(t3)

+
∑
t1≤N

∑
t2≤N

∑
t3>N

Pσ(t1|s)Pσ(t2|t1)Pσ(t3|t2)w(t3)

+ . . . (3.39)

by Assumption A1. Note that the terms of the infinite sum on the right hand side of (3.39)

can be reordered by Proposition 3.5. In particular, consider rearranging the terms in (3.39)
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as follows:α ∑
t1>N

Pσ(t1|s)w(t1) + α2
∑
t1>N

∞∑
t2=1

Pσ(t1|s)Pσ(t2|t1)w(t2)

+ α3
∑
t1>N

∞∑
t2=1

∞∑
t3=1

Pσ(t1|s)Pσ(t2|t1)Pσ(t3|t2)w(t3) + . . .


+

α2
∑
t1≤N

∑
t2>N

Pσ(t1|s)Pσ(t2|t1)w(t2) + α3
∑
t1≤N

∑
t2>N

∞∑
t3=1

Pσ(t1|s)Pσ(t2|t1)Pσ(t3|t2)w(t3) + . . .


+

α3
∑
t1≤N

∑
t2≤N

∑
t3>N

Pσ(t1|s)Pσ(t2|t1)Pσ(t3|t2)w(t3)

+α4
∑
t1≤N

∑
t2≤N

∑
t3>N

∞∑
t4=1

Pσ(t1|s)Pσ(t2|t1)Pσ(t3|t2)Pσ(t4|t3)w(t4) + . . .


+ . . . . (3.40)

First, let us compute an upper bound on the first bracket of (3.40) by considering groups of

J terms, and establishing bounds using A2 and A3:

α
∑
t1>N

Pσ(t1|s)w(t1) + α2
∑
t1>N

∞∑
t2=1

Pσ(t1|s)Pσ(t2|t1)w(t2)

+ α3
∑
t1>N

∞∑
t2=1

∞∑
t3=1

Pσ(t1|s)Pσ(t2|t1)Pσ(t3|t2)w(t3) + . . .

≤

α ∑
t1>N

Pσ(t1|s)w(t1) + α2
∑
t1>N

Pσ(t1|s)κw(t1) + . . .+ αJ
∑
t1>N

Pσ(t1|s)κJ−1w(t1)


+

α ∑
t1>N

Pσ(t1|s)λw(t1) + α2
∑
t1>N

Pσ(t1|s)λκw(t1) + . . .+ αJ
∑
t1>N

Pσ(t1|s)λκJ−1w(t1)

+ . . .

= α
1

1− λ
[1 + (ακ) + . . .+ (ακ)J−1]

∑
t1>N

Pσ(t1|s)w(t1) = Lα
∑
t1>N

Pσ(t1|s)w(t1).
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Applying similar arguments to the other terms of (3.40), we obtain the following upper

bound:

L

α ∑
t1>N

Pσ(t1|s)w(t1) + α2
∑
t1≤N

∑
t2>N

Pσ(t1|s)Pσ(t2|t1)w(t2)

+α3
∑
t1≤N

∑
t2≤N

∑
t3>N

Pσ(t1|s)Pσ(t2|t1)Pσ(t3|t2)w(t3) + . . .


≤ L

α ∑
t1>N

Pσ(t1|s)w(t1) + α2
∞∑
t1=1

∑
t2>N

Pσ(t1|s)Pσ(t2|t1)w(t2)

+α3
∞∑
t1=1

∞∑
t2=1

∑
t3>N

Pσ(t1|s)Pσ(t2|t1)Pσ(t3|t2)w(t3) + . . .


= L

α ∑
t1>N

Pσ(t1|s)w(t1) + α2
∑
t2>N

∞∑
t1=1

Pσ(t1|s)Pσ(t2|t1)w(t2)

+α3
∑
t3>N

∞∑
t1=1

∞∑
t2=1

Pσ(t1|s)Pσ(t2|t1)Pσ(t3|t2)w(t3) + . . .


= L

∞∑
n=1

∑
t>N

αnPnσ (t|s)w(t). (3.41)

by Proposition 3.5. Combining these, we obtain

|y(s)− yN(s)| ≤ L

∞∑
n=1

∑
t>N

αnP n
σ (t|s)w(t) = L

∑
t>N

∞∑
n=1

αnP n
σ (t|s)w(t), (3.42)

again by Proposition 3.5. The right hand side of (3.42) converges to zero as N →∞ because

∞∑
n=1

∞∑
t=1

αnP n
σ (t|s)w(t) ≤ Lw(s),

which can be shown by using Assumptions A2 and A3 following already familiar steps. Thus,

the lemma is proven.
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3.5.6 Proof of Lemma 3.28

In order to prove this lemma, we introduce a new interpretation of the approximate

reduced cost γk,N . As explained before, γk,N is the reduced cost (defined in (3.16)) of policy

σk for the N -state truncation of the original MDP, obtained by replacing states bigger than N

with an absorbing state where no reward is earned. We can extend the N -state truncation

into a countable-state MDP by adding artificial states that have zero initial probabilities

and are never reached. It is easy to prove that the countable-state version of the N -state

truncation satisfies all the assumptions in Section 3.1.2. Then, yk,N and γk,N are the exact

value function and the exact reduced cost of policy σk in the new countable-state MDP,

respectively. Therefore, yk,N also satisfies |yk,N(s)| ≤ Lw(s) for s = 1, . . . , N .

Thus, for s = 1, . . . , N and a ∈ A,

|γk,N(s, a)| =

∣∣∣∣∣r(s, a) + α
N∑
t=1

p(t|s, a)yk,N(t)− yk,N(s)

∣∣∣∣∣
≤ |r(s, a)|+ α

N∑
t=1

p(t|s, a) |yk,N(t)|+ |yk,N(s)|

≤ w(s) + α
N∑
t=1

p(t|s, a)Lw(t) + Lw(s)

≤ w(s) + ακLw(s) + Lw(s) = [1 + (1 + ακ)L]w(s).

Suppose that xk is not optimal to (CP). Then, yk must not be feasible to (CD), so there

exists a state-action pair (ŝ, â) such that γk(ŝ, â) = ε > 0. Since we have limN→∞ γ
k,N(ŝ, â) =

γk(ŝ, â) = ε, there exists N1 ≥ ŝ such that for N ≥ N1, γk,N(ŝ, â) ≥ 3
4
ε.

Since
∑∞

s=1 β(s)w(s) is finite, we know lims→∞ β(s)w(s) = 0. Thus, there exists s1 > ŝ

such that for s ≥ s1, [1 + (1 + ακ)L]β(s)w(s) < 3
4
β(ŝ)ε. Then for N ≥ max{N1, s1}, s ∈ S

such that s1 ≤ s ≤ N , and a ∈ A,

β(ŝ)γk,N(ŝ, â) ≥ 3

4
β(ŝ)ε > [1 + (1 + ακ)L]β(s)w(s) ≥ β(s)γk,N(s, a).
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That is, for N ≥ max{N1, s1}, state-action pair (s, a) such that s1 ≤ s ≤ N cannot achieve

the maximum in Step 2(d) of the simplex algorithm. Thus, for N ≥ max{N1, s1}, we can

limit our attention to the state-action pairs (s, a) such that s < s1 to find the maximum in

Step 2(d) of the simplex algorithm.

Let C be the set of state-action pairs (s, a) such that s < s1 and γk(s, a) > 0. Note

that C is a finite set and (ŝ, â) ∈ C. Since limN→∞ δ̄(s, a,N) = 0 and limN→∞ γ
k,N(s, a) =

γk(s, a) for any (s, a) ∈ S × A, there exists N2 such that for N ≥ N2, any (s, a) ∈ C

satisfies γk,N(s, a) ≥ 1
2
γk(s, a) > δ̄(s, a,N). There also exists N3 such that for N ≥ N3, any

(s′, a′) /∈ C such that s′ < s1 satisfies β(s′)γk,N(s′, a′) < min(s,a)∈C
1
2
β(s)γk(s, a). Then, for

N ≥ max{N1, N2, N3, s1} and for any (s, a) ∈ C and any (s′, a′) /∈ C such that s′ < s1, we

have β(s)γk,N(s, a) > 1
2
β(s)γk(s, a) > β(s′)γk,N(s′, a′), i.e., β(s)γk,N(s, a) > β(s′)γk,N(s′, a′).

Thus, for N ≥ max{N1, N2, N3, s1}, the maximum in Step 2(d) of the algorithm is achieved

by an element of C and the inequality γk,N(s, a) > δ̄(s, a,N) is satisfied for any (s, a) ∈ C.

Therefore, the Step 2 terminates with some N ≥ max{N1, N2, N3, s1}.

Now suppose that xk is optimal for (CP). Then yk is feasible to (CD), so γk(s, a) ≤ 0 for

all (s, a) ∈ S×A. Suppose that the Step 2 terminates. Then, (sk, ak) satisfies γk,N(sk, ak) >

δ̄(sk, ak, N). However, by Lemma 3.22, we have γk(sk, ak) ≥ γk,N(sk, ak)− δ(σk, sk, ak, N) ≥

γk,N(sk, ak)− δ̄(sk, ak, N) > 0, which is a contradiction.

3.5.7 Example 3.2 (continued)

Let us first show that δ̄(s, a,N) is an upper bound of δ(σ, s, a,N) for any σ ∈ ΠSD.
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The first term in (3.19) is bounded as follows:

L
∑
t>N

∞∑
n=1

αnP n
σ (t|s)w(t) = L

∑
u>N−s

∞∑
n=1

αnP n
σ (s+ u|s)w(s+ u)

≤ L
∑

u>N−s

∞∑
n=1

αnP{Xn = u}(Cs+ Cu+D)

= CL
∑

u>N−s

∞∑
n=1

αn
ena

1
max(na1

max)u

u!
u+ L(Cs+D)

∑
u>N−s

∞∑
n=1

αn
ena

1
max(na1

max)u

u!

= L

[
αC

1− α
∑

u>N−s

∞∑
n=1

(1− α)αn−1 e
na1max(na1

max)u

u!
u

+
α

1− α
(Cs+D)

∑
u>N−s

∞∑
n=1

(1− α)αn−1 e
na1max(na1

max)u

u!

]

=
αL

1− α

[
C

(
µ−

N−s∑
u=0

ufY (u)

)
+ (Cs+D)(1− FY (N − s))

]

= Lh1(s,N),

where the first equality is a change of variable u , t− s, the inequality follows by assuming

the maximum arrival rate (a1
max) and zero service rate, and the following equalities follow by

the definitions of Xn, Y , fY , and FY .

Similarly, the second term in (3.19) is bounded as follows:

αL
N∑
t=0

p(t|s, a)
∑
t′>N

∞∑
n=1

αnP n
σ (t′|t)w(t′) ≤ αL

N∑
t=0

p(t|s, a)g(t, N). (3.43)
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The last term in (3.19) is also bounded as follows:

αL
∑
t>N

p(t|s, a)w(t) = αL
∑

u>N−s

p(s+ u|s, a)(Cs+ Cu+D)

≤ αL
∑

u>N−s

P{X1 = u}(Cs+ Cu+D)

= αL

[
C
∑

u>N−s

P{X1 = u}u+ (Cs+D)
∑

u>N−s

P{X1 = u}

]

= αL

[
C

(
a1

max −
N−s∑
u=0

ufX1(u)

)
+ (Cs+D)(1− FX1(N − s))

]

= αLh2(s,N)

by using similar arguments. Therefore, we showed that δ̄(s, a,N) ≥ δ(σ, s, a,N).

Now we show that δ̄(s, a,N) → 0 as N → ∞. Since the expectations of Y and X1 are

finite, it is clear that h1(s,N) and h2(s,N) converge to zero as N →∞. Thus, it suffices to

prove that the second term of δ̄(s, a,N) in (3.28) converges to zero as N → ∞. This term

can be written as follows:

αL
N∑
t=0

p(t|s, a)g(t, N) =
α2CL

1− α

(
µ

N∑
t=0

p(t|s, a)−
N∑
t=0

p(t|s, a)
N−s∑
u=0

ufY (u)

)

+
α2L(Cs+D)

1− α

(
N∑
t=0

p(t|s, a)−
N∑
t=0

p(t|s, a)FY (N − s)

)
. (3.44)

As N → ∞, µ
∑N

t=0 p(t|s, a) converges to µ. Also, as N → ∞,
∑N

t=0 p(t|s, a)
∑N−s

u=0 ufY (u)

converges to µ as well. Therefore, the first big parenthesis in (3.44) converges to zero as

N →∞. We can also similarly show that the second big parenthesis in (3.44) converges to

zero. Therefore, we proved that the second term of δ̄(s, a,N) in (3.28) converges to zero as

N →∞, and thus, δ̄(s, a,N)→ 0 as N →∞.

Lastly, we illustrate that we can compute δ̄(s, a,N) finitely. Clearly, we can compute

h2(s,N) finitely. To show that h1(s,N) can be computed finitely, we only have to show that
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FY (U) can be computed finitely for any nonnegative integer U . For any U ,

FY (U) =
U∑
u=0

P{Y = u} =
U∑
u=0

∞∑
n=1

(1− α)αn−1 e
−na1max(na1

max)u

u!

=
U∑
u=0

(1− α)(a1
max)u

α(u!)

∞∑
n=1

nu(αe−a
1
max)n.

Thus, in order to show that FY (U) can be computed finitely, it suffices to show that Bu ,∑∞
n=1 n

uζn can be computed finitely for any ζ ∈ (0, 1) and nonnegative integer u. Clearly,

B0 can be computed finitely. Suppose that B0, B1, . . . , Bu−1 can be computed finitely. Then,

(1− ζ)Bu =
∞∑
n=1

nuζn −
∞∑
n=1

nuζn+1 =
∞∑
n=1

nuζn −
∞∑
n=1

(n− 1)uζn =
∞∑
n=1

[nu − (n− 1)u]ζn

=
∞∑
n=1

(
u−1∑
l=0

(
u

l

)
nl(−1)u−l+1

)
ζn =

u−1∑
l=0

(
u

l

)
(−1)u−l+1

∞∑
n=1

nlζn

=
u−1∑
l=0

(
u

l

)
(−1)u−l+1Bl,

where the sum exchange is justified by the fact that Bl is finite for l = 0, 1, . . . , u− 1. Thus,

Bu can be computed finitely. By induction, Bu can be computed finitely for ζ ∈ (0, 1) and

any nonnegative integer u, and therefore, h1(s,N) can be computed finitely. This implies

that we can compute δ̄(s, a,N) finitely.

103



CHAPTER IV

A Linear Programming Approach to Constrained

Non-stationary Markov Decision Processes

4.1 Introduction

For the last couple of decades, growing attention has been given to solving constrained

Markov decision processes (MDPs). Constrained MDPs are MDPs optimizing an objective

function while satisfying constraints, typically on budget, quality, etc. In addition, decision

making problems with multiple criteria are often approached by optimizing one criterion

while satisfying constraints on the other criteria, which also turns into a constrained MDP.

One setting where such problems often arise is data communications. In queueing systems

with service rate control, the average throughput is maximized with constraints on the

average delay [30, 34]. Priority queueing systems with a fixed service rate are another

example [5, 37, 44]. Here, one optimizes the queueing time of non-interactive traffic while

satisfying a constraint on the average end-to-end delay of interactive traffic. For these

problems, [49] considered a case where service rate costs and penalty costs of delay are

actually incurred in discrete time periods and it is desired to minimize the discounted service

rate cost with constraints on the discounted delay cost. Facility maintenance is another type

of problems modeled by constrained MDPs. Examples are finding an optimal maintenance

policy for each mile of a network of highways [25] and a problem in building management
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[61]. In the models for these problems, the total cost is minimized subject to constraints on

quality of facilities.

In this chapter, we consider constrained MDPs that have a finite state space, a finite

action space, and non-stationary transition probabilities and reward function, which we call

constrained non-stationary MDPs. Specifically, the state set S and the action set A are both

finite and given that action a is taken at state s in period n, multiple kinds of costs, denoted

by cn(s, a) and dkn(s, a) for k = 1, . . . , K, are incurred, and the system makes a transition

to be observed in a state t at the beginning of period n+ 1 with probability pn(t|s, a). The

costs are assumed to be nonnegative and uniformly bounded, i.e., there exist c and dk for

k = 1, . . . , K such that 0 ≤ cn(s, a) ≤ c, 0 ≤ dkn(s, a) ≤ dk for n ∈ N, s ∈ S, a ∈ A, and

k = 1, . . . , K. The goal is to minimize the expected total discounted “c-cost” satisfying K

constraints on the expected total discounted “dk-costs” for k = 1, . . . , K, with a common

discount factor 0 < α < 1. Let

Cπ(β) , Eπ
β

[
∞∑
n=1

αn−1cn(Sn, An)

]
,

Dk
π(β) , Eπ

β

[
∞∑
n=1

αn−1dkn(Sn, An)

]
for k = 1, . . . , K,

and let Πf , {π |Dk
π(β) ≤ Vk for k = 1, . . . , K}. The optimization problem can then be

written as

(Q) min
π∈Πf

Cπ(β).

In [19] it was shown that an optimal policy for a constrained MDP may depend on the initial

state; more generally, we formulate (Q) with a fixed initial state distribution β.

In this chapter, we study CILP formulations of the problem (Q), constrained non-

stationary MDPs. As mentioned in Introduction, duality results and the algebraic char-

acterization of extreme points as basic feasible solutions do not extend to CILPs in general

[22]. After introducing primal and dual CILP formulations, we introduce the duality re-
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sults proven in [4], define complementary slackness, and establish its relation to optimality.

We provide algebraic necessary conditions for a feasible solution of the CILP formulation

of a constrained non-stationary MDP to be an extreme point of its feasible region. Using

those necessary conditions, we also establish a necessary and sufficient condition for a feasible

solution to be an extreme point, which can be checked by considering a familiar finite dimen-

sional polyhedron. This yields a complete algebraic characterization of extreme points for

CILPs representing constrained non-stationary MDPs. Thus, this chapter sets important

foundations towards the development of a simplex-type algorithm for solving constrained

non-stationary MDPs.

Under typical settings for constrained MDPs, there exists a stationary optimal policy but

a deterministic stationary optimal policy may not exist [19]. Thus, an often pursued goal in

literature is to prove existence of an optimal policy that is as close to deterministic as possible.

In particular, this means that we are interested in the existence of a K-randomized optimal

policy, whereK is the number of constraints and a policy isK-randomized if it usesK “more”

actions than a deterministic stationary policy (for a more precise definition, see Section 4.4).

It is well-known that extreme points of LP formulations of unconstrained MDPs with a finite

number of states correspond to deterministic policies. Now consider a constrained MDP

obtained by adding linear constraints to an unconstrained MDP. Then an extreme point of

the LP formulation of the constrained MDP is a convex combination of extreme points of

the LP formulation of the unconstrained MDP, i.e., deterministic policies, and this explains

how randomization is introduced. The existence of (K + 1)-randomized optimal policy was

shown for constrained MDPs with Borel state space and stationary problem data in [26] using

the Carathéodory’s theorem. For constrained MDPs with finite state space, there exists a

K-randomized optimal policy and it can be found by obtaining an optimal basic feasible

solution of the corresponding finite LP formulation [29, 32, 43]. For constrained MDPs with

a countably infinite number of states, a K-randomized optimal policy is proven to exist

for the single constraint case using the Lagrangian multiplier approach in [49] and for the
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general case in [17] by studying the Pareto frontier of the performance set. In this chapter,

we obtain the existence of a K-randomized optimal policy for constrained non-stationary

MDPs as a byproduct of characterizing extreme points of the CILP formulation.

We conclude this section by discussing a set of policies to which we can limit our attention.

Constrained non-stationary MDPs (which has finite state space) can be reformulated as a

constrained stationary MDP with a countable number of states by appending the states

s ∈ S with time-indices n ∈ N. For constrained stationary MDPs, it was shown in [4] that,

without loss of optimality, we can restrict our attention to Markov policies. In the stationary

MDP counterpart of constrained non-stationary MDPs, a Markov policy is also stationary

because each period-state pair is visited only once. Moreover, any stationary policy in the

stationary MDP counterpart corresponds to a Markov policy in the original constrained non-

stationary MDP, and thus, we can restrict our attention to Markov policies for constrained

non-stationary MDPs.

4.2 CILP Formulations

It was proven that (Q) has an equivalent CILP formulation [3, 4], which can be written

as:

(CNP) min f(x) =
∑
n∈N

∑
s∈S

∑
a∈A

αn−1cn(s, a)xn(s, a) (4.1)

s.t.
∑
a∈A

x1(s, a) = β(s) for s ∈ S (4.2)

∑
a∈A

xn(s, a)−
∑
s′∈S

∑
a∈A

pn−1(s|s′, a)xn−1(s′, a) = 0 for n ≥ 2, s ∈ S (4.3)

∑
n∈N

∑
s∈S

∑
a∈A

αn−1dkn(s, a)xn(s, a) ≤ Vk for k = 1, . . . , K (4.4)

x ≥ 0. (4.5)

Note that (CNP) is similar to (NP) in Section 2.2.1, but they are different in that (CNP)
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has the side constraints (4.4) and the right hand side of (4.2) is β(s) instead of 1. Let P

denote the feasible region of (CNP). Constraints (4.2) and (4.3) imply that for any x ∈ P ,

∑
s∈S

∑
a∈A

xn(s, a) = 1 for n ∈ N.1 (4.6)

Since x is nonnegative, we have 0 ≤ xn(s, a) ≤ 1 for n ∈ N, s ∈ S, a ∈ A. Because all

objective and constraint cost functions are uniformly bounded, the infinite sums in (4.1) and

(4.4) exist.

Solutions of (CNP) can be interpreted as flows in a directed staged hypernetwork with

infinite stages, in a way similar to the interpretation of (NP) in Section 2.2.1. Structure

of the hypernetwork for (CNP) is exactly the same as the one for (NP) except the nodes

(1, s) have supply of β(s) units for s ∈ S, instead of 1 (due to the different right hand side

of constraint (4.2)). Any x satisfying (4.2), (4.3), and (4.5) can be visualized as a flow in

the hypernetwork, thus as we did in Section 2.2.1, we will refer to any x satisfying (4.2),

(4.3), and (4.5) as a flow in the corresponding hypernetwork. This interpretation provides

particularly helpful intuition for proofs in Section 4.4.2.

For any Markov policy π for the non-stationary MDP, the corresponding flow x can be

found as

xn(s, a) = πn(a|s) · P π
β (Sn = s), n ∈ N, s ∈ S, a ∈ A,

i.e., xn(s, a) is proportional to the probability, under π, of using action a in state s in

period n, scaled by the probability of reaching this state under the probability measure

induced by π and β. Thus, xn(s, a) can also be interpreted as the probability of encountering

hyperarc (n, s, a) under policy π for the given initial state distribution β, while the total

inflow into node (n, s) is precisely P π
β (Sn = s). In light of this interpretation, a Markov

policy corresponding to any flow x is also easy to identify, with the following caveat: for a

given flow x, there may be some nodes (n, s) that receive no incoming flow, and thus have

1Note the difference from Lemma 2.1
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∑
a∈A xn(s, a) = 0 and no outgoing flow. For those nodes, we can define πn(s) arbitrarily,

i.e., we do not distinguish between policies that have the same corresponding flows. Under

this convention, there exists a one-to-one correspondence between the set of policies and the

set of flows. There also exists an obvious one-to-one correspondence between P and Πf . We

refer to a (feasible) policy and the corresponding (feasible) flow interchangeably.

Finally, the quantity αn−1xn(s, a), n ∈ N, s ∈ S, a ∈ A can be interpreted as the

occupancy measure studied in [16]. The next result was shown to hold for a more general

setting (e.g., Theorem 9 in [38]), but to make this paper self-contained, we provide the

theorem and its proof.

Theorem 4.1. If (CNP) is feasible, then it has an extreme point optimal solution.

Proof: It is easy to show that P is a closed and convex subset of R∞. By Tychonoff’s

product theorem (see [2]) and (4.6), P is a subset of a compact set and thus, it is compact.

Since the objective function is continuous and convex, by Bauer’s Maximum Principle (e.g.,

Theorem 7.69 of [2]), (CNP) has an extreme point optimal solution.

[4] (see Section 9.5 and Theorem 9.11) defined dual of (CNP) as follows.

(CND) max g(y, µ) =
∑
s∈S

β(s)y1(s)−
K∑
k=1

µkVk (4.7)

s.t. yn(s)−
∑
s′∈S

pn(s′|s, a)yn+1(s′)− αn−1

K∑
k=1

µkd
k
n(s, a) ≤ αn−1cn(s, a)

for n ∈ N, s ∈ S, a ∈ A (4.8)

µ ≥ 0 (4.9)

y ∈ l∞, (4.10)

where l∞ denotes the set of sequences whose supremum norm is finite, i.e.,

sup
(n,s)∈N×S

|yn(s)| <∞.
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4.3 Duality Results

In this section, we present strong duality between (CNP) and (CND), define complemen-

tary slackness, and prove its relation to optimality. Throughout this section, we make the

following assumption, which is known as Slater’s condition.

Assumption 4.2. (Slater’s condition) (CNP) has a strict feasible solution, i.e., there exists

a feasible solution x to (CNP) that satisfies all of the inequality constraints (4.4) strictly.

Under this assumption, strong duality holds between (CNP) and (CND).

Theorem 4.3. (Theorem 9.11 of [4]) Under Assumption 4.2, the optimal objective function

values of (CNP) and (CND) coincide.

We now define complementary slackness and show that feasible solutions of (CNP) and

(CND) are optimal to their corresponding problems if and only if they satisfy the comple-

mentary slackness. Under Assumption 4.2, [4] showed necessity of complementary slackness

for optimality for a more general class of MDPs by using an interpretation of constrained

MDPs as an inf-sup problem with Lagrangian multipliers. For constrained non-stationary

MDPs, we provide an alternative proof for necessity and establish sufficiency of complemen-

tary slackness for optimality.

Definition 4.4. (Complementary slackness) Suppose x is feasible to (CNP). Then we say

that x and (y, µ) satisfy complementary slackness if

xn(s, a)

[
αn−1

(
cn(s, a) +

K∑
k=1

dkn(s, a)µk

)
− yn(s) +

∑
s′∈S

pn(s′|s, a)yn+1(s′)

]
= 0

for n ∈ N, s ∈ S, a ∈ A, (4.11)

µk

[
dk −

∑
n∈N

∑
s∈S

∑
a∈A

αn−1dkn(s, a)xn(s, a)

]
= 0 for k = 1, 2, . . . , K. (4.12)
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Theorem 4.5. (Complementary slackness sufficiency) Suppose that Assumption 4.2 holds

and that x is feasible to (CNP) and complementary with some (y, µ). Then f(x) = g(y, µ). If

(y, µ) is feasible to (CND), then x and (y, µ) are optimal to (CNP) and (CND), respectively.

Proof: In Section 4.7.1.

Theorem 4.6. (Complementary slackness necessity) Suppose that Assumption 4.2 holds,

and x and (y, µ) are optimal to (CNP) and (CND), respectively. Then x and (y, µ) are

complementary.

Proof: In Section 4.7.2.

4.4 Splitting Randomized Policies

One of the main objectives in this chapter is to study extreme points of P , the feasible

region of (CNP). An extreme point of a convex set is defined as a point in the set that cannot

be represented as a non-trivial convex combination of other points in the set. This section

provides preliminary results in the form of two different representations of a randomized MDP

policy as a convex combination of other policies (the results in this section are not limited

to constrained problems). The first one, which describes a convenient characterization of

representations of a randomized policy as a convex combination of deterministic policies,

will be needed in Section 4.6 to derive a necessary and sufficient condition for a point in

P to be an extreme point. The second one is needed in Section 4.5 to provide necessary

conditions for an extreme point.

The following definitions will be helpful in describing the two representations. Following

[17], we define a submodel of the MDP to be an MDP that is identical to the original one

except that the action sets are limited to Bn(s) ⊆ A for n ∈ N, s ∈ S. For a given policy x,

we define a submodel defined by x as a submodel such that Bn(s) = {a ∈ A | xn(s, a) > 0} for

n ∈ N, s ∈ S. We also say that a policy x belongs to a submodel if {a ∈ A |xn(s, a) > 0} ⊆

Bn(s). We refer to the number M =
∑

n∈N
∑

s∈S(|Bn(s)| − 1) as the index of the submodel.

111



A randomized policy that belongs to a submodel with index M can be interpreted as using

at most M “more” actions than a deterministic policy. Since in each period of the original

MDP there are S states, and each state has A action choices, in each period a policy can

use up to S(A− 1) “more” actions than a deterministic policy.

Definition 4.7. A randomized policy that belongs to a submodel with index M is called an

M-randomized policy. An M -randomized policy that does not belong to any submodel with

index less than M is called an exactly M-randomized policy. A randomized policy that does

not belong to any submodel with a finite index is called an ∞-randomized policy.

4.4.1 Splitting into deterministic policies

The following result is well-known:

Lemma 4.8 (cf. Theorem 5.1 in [17]). For any positive integer M , any exactly M-randomized

policy is a convex combination of M + 1 0-randomized (i.e., deterministic) policies.

In addition, it was recently shown in [16] that, for any positive integer M , it is possible to

represent an M -randomized policy as a convex combination of M + 1 deterministic policies

that can be ordered so that each pair of consecutive policies differ at only one period-state

pair, and an efficient algorithm to find such a convex combination of deterministic policies

was introduced.

Consider an exactly M -randomized policy x for a positive integer M . Let B be the

submodel defined by x. SinceM is finite, the number of deterministic policies in the submodel

B is also finite, say, N . Let x1, . . . , xN be these deterministic policies. Let

Λ(x) =

{
λ ∈ RN |x =

N∑
i=1

λix
i,

N∑
i=1

λi = 1, λ ≥ 0

}
(4.13)

be the set of all weights of convex combinations of x1, . . . , xN that equal x (this set plays

an important role in the analysis of Section 4.6.). Although in (4.13) Λ(x) is defined as the
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set of solutions of an infinite number of linear equations, the following theorem shows that

a finite number is sufficient.

Theorem 4.9. Let x be an exactly M-randomized policy and N be the number of determin-

istic policies in the submodel defined by x. Then there exists a matrix A ∈ RM×N and a

vector b ∈ RM such that Λ(x) = {λ ∈ RN |Aλ = b,1Tλ = 1, λ ≥ 0}, and matrix

A
1T

 has

full row rank.

Proof: In Section 4.7.3.

Theorem 4.9 provides a way to construct Λ(x) for a given exactly M -randomized policy

x. Define E(x) as the subset of Λ(x) whose elements have at most M + 1 nonzeros; then

we can easily show Λ(x) = convE(x). Indeed, by Theorem 4.9, Λ(x) is the set of feasible

solutions of a standard form LP with M + 1 constraints. Thus, E(x) contains all extreme

points of Λ(x) and therefore, we have Λ(x) = convE(x). One can construct E(x) by finding

every representation of x as a convex combination of M + 1 deterministic policies among

x1, . . . , xN , which can be done by applying the procedure described in the proof of Theorem

5.1 in [17] or Algorithm 1 in [16] in a straightforward way.

4.4.2 Splitting into “less” randomized policies

In this section, we introduce another representation of a randomized policy as a convex

combination of “less randomized” policies, in two lemmas. The particular representation

satisfies a set of properties which will help us establish necessary conditions for an extreme

point of P in Section 4.5. Lemma 4.10 considers the case of an exactly M -randomized policy

for a positive integer M .

Lemma 4.10. Let M be a positive integer. Any exactly M-randomized policy x can be

represented as a convex combination of M + 1 (M − 1)-randomized policies x1, x2, . . . , xM+1

such that the weights of the representation are uniquely determined (by the policies) and

positive.
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Proof: We use induction on M .

Base case. For M = 1, let x be an exactly 1-randomized policy, randomizing in period-

state pair (n, s) over actions a and b (xn(s, a) = δ > 0, xn(s, b) = ε > 0, and xn(s, a′) = 0

for a′ ∈ A \ {a, b}). We show that x is a convex combination of two 0-randomized (i.e.,

deterministic) policies, w and z. To construct them, we first define two sub-flows, u and v.

Here, and in the rest of this section, the steps to define sub-flows are similar to the proof of

Theorem 4.3 of [24], and we also borrowed their notation.

For k ≥ n+1, since x does not randomize in those periods, let ak(s
′) for s′ ∈ S denote the

action chosen by x at (k, s′), i.e., xk(s
′, ak(s

′)) > 0. Let Sn+1(x) = {s′ ∈ S | pn(s′|s, a) > 0}.

For k ≥ n+ 2, recursively define

Sk(x) = {s′ ∈ S | pk−1(s′|s̃, ak−1(s̃)) > 0 for some s̃ ∈ Sk−1(x)}.

That is, Sk(x) is the set of states in period k that receive any portion of flow δ originating

in hyperarc (n, s, a) under policy x. Let F(x) be the sub-hypernetwork formed by the node

(n, s), the hyperarc (n, s, a), nodes in ∪∞k=n+1Sk(x) and hyperarcs ∪∞k=n+1{(k, sk, ak(sk)) | sk ∈

Sk(x)}. We construct a sub-flow u in F(x) recursively in the following way. Node (n, s) is

the only source node in the sub-hypernetwork, with supply of 1. Set un(s, a) = 1, and for

each sn+1 ∈ Sn+1(x), set un+1(sn+1, an+1(sn+1)) = pn(sn+1|s, a). For k ≥ n + 2 and for each

sk ∈ Sk(x),

uk(sk, ak(sk)) =
∑

sk−1∈Sk−1(x)

pk−1(sk|sk−1, ak−1(sk−1))uk−1(sk−1, ak−1(sk−1)).

By construction, we can easily see that xn(s, a) = δun(s, a) and xk(sk, ak(sk)) ≥ δuk(sk, ak(sk))

for any other hyperarc (k, sk, ak(sk)) in F(x). To see this, note that for hyperarcs (k, sk, ak(sk))

in F(x), uk(sk, ak(sk)) can be interpreted as the conditional probability of encountering hy-

perarc (k, sk, ak(sk)) by following policy x, given that we encountered hyperarc (n, s, a). Fix a

hyperarc (k, sk, ak(sk)) in F(x). Let A be an event of encountering the hyperarc (k, sk, ak(sk))
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by following the policy x and let B be an event of encountering hyperarc (n, s, a) by following

policy x. Then, P (A|B) = uk(sk, ak(sk)), P (B) = δ, and P (A) = xk(sk, ak(sk)). Therefore,

we have xk(sk, ak(sk)) = P (A) ≥ P (A ∩B) = P (A|B)P (B) = δuk(sk, ak(sk)).

Similarly, for k ≥ n + 1, let Tk(x) ⊂ S be the set of states in period k receiving any

portion of flow ε in hyperarc (n, s, b) under policy x. For any tk ∈ Tk(x), there exists a

unique action bk(tk) such that xk(tk, bk(tk)) > 0. Let G(x) be the sub-hypernetwork defined

similarly to F(x), formed by the node (n, s), the hyperarc (n, s, b), nodes in ∪∞k=n+1Tk(x) and

hyperarcs in ∪∞k=n+1{(k, tk, bk(tk)) | tk ∈ Tk(x)}. We construct a sub-flow v in G(x) similarly

to construction of u. Let the node (n, s) be a source of supply 1 and all other nodes in

sub-hypernetwork G(x) have no supply. Set vn(s, b) = 1, then for each tn+1 ∈ Tn+1(x), set

vn+1(tn+1, bn+1(tn+1)) = pn(tn+1|s, b). For k = n+ 2, n+ 3, . . . and for each tk ∈ Tk(x), set

vk(tk, bk(tk)) =
∑

tk−1∈Tk−1(x)

pk−1(tk|tk−1, bk−1(tk−1))vk−1(tk−1, bk−1(tk−1)).

By construction, xn(s, b) = εvn(s, b) and by using the same interpretation as u, we can easily

check xk(tk, bk(tk)) ≥ εvk(tk, bk(tk)) for any other hyperarc (k, tk, bk(tk)) in G(x).

We construct a new flow w as follows.

wk(sk, ak) =



xk(sk, ak) if (k, sk, ak) not in F(x) or G(x)

xk(sk, ak)− δuk(sk, ak) if (k, sk, ak) in F(x) \ G(x)

xk(sk, ak) + δvk(sk, ak) if (k, sk, ak) in G(x) \ F(x)

xk(sk, ak) + δ(vk(sk, ak)− uk(sk, ak)) if (k, sk, ak) in F(x) ∩ G(x).

Since we have xk(sk, ak) ≥ δuk(sk, ak) for any hyperarc (k, sk, ak) in F(x), w is nonnegative.

Note that w is obtained from x by redirecting flow δ from F(x) to G(x). Thus, w satisfies

the flow balance constraints and is 0-randomized.
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z is constructed similarly, by redirecting flow ε from G(x) to F(x). More precisely,

zk(sk, ak) =



xk(sk, ak) if (k, sk, ak) not in F(x) or G(x)

xk(sk, ak) + εuk(sk, ak) if (k, sk, ak) in F(x) \ G(x)

xk(sk, ak)− εvk(sk, ak) if (k, sk, ak) in G(x) \ F(x)

xk(sk, ak) + ε(uk(sk, ak)− vk(sk, ak)) if (k, sk, ak) in F(x) ∩ G(x).

By construction, z also satisfies the flow balance constraints and is 0-randomized. Moreover,

x = δz+εw
δ+ε

, i.e., x is a non-trivial convex combination of two 0-randomized flows. Note that

the weights in the convex combination are both positive, and are uniquely determined (by

w and z).

Inductive step. Suppose the statement holds for M = M ′−1. Let x be an exactly M ′-

randomized policy. There are finitely many period-state pairs at which x randomizes; among

them, let (n, s) be the one with the largest period index (break ties arbitrarily). At (n, s), x

randomizes over actions a, b1, . . . , bl for some l ≥ 1; let xn(s, a) = δ > 0 and xn(s, bi) = εi > 0

for i = 1, . . . , l, with ε =
∑l

i=1 εi. We show that x is a convex combination of two (M ′ − 1)-

randomized flows, denoted by w and z. To define w and z, we first introduce sub-flows u and

vi for i = 1, . . . , l. Construction of u is the same as in the base case, and vi, for i = 1, . . . , l,

is constructed in the same way as v in the base case except that the starting hyperarc is

(n, s, bi), with Gi(x) denoting the corresponding sub-hypernetwork. Then, we construct flow

w from x by subtracting δu in F(x) and adding (δεi/ε)v
i in Gi(x) for i = 1, . . . , l (i.e.,

by redirecting flow δ from F(x) to Gi(x)’s, maintaining the original proportion of flows in

Gi(x)’s), and construct flow z from x by adding εu in F(x) and subtracting εiv
i in Gi(x)

for i = 1, . . . , l (i.e., redirecting total flow ε from Gi(x)’s to F(x)). By construction, w and

z are nonnegative and satisfy the flow balance constraints. Moreover, note that, except at

(n, s), x does not have any randomization in either F(x) or Gi(x) for i = 1, . . . , l. Therefore,

w is exactly (M ′ − 1)-randomized and z is exactly (M ′ − l)-randomized. By construction,
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x = δz+εw
δ+ε

, i.e., x is a nontrivial convex combination of these two (M ′− 1)-randomized flows.

By the induction hypothesis, w can be represented as a convex combination of M ′ (M ′−

2)-randomized flows, say w1, . . . , wM
′
, with unique positive weights λ1, . . . , λM ′ . Thus, x is

a convex combination of z and w1, . . . , wM
′
, i.e., M ′ + 1 (M ′ − 1)-randomized policies. Now

we have to show that the representation of x as a convex combination of z and w1, . . . , wM
′

is unique and all of the weights are positive. Let

x = λzz +
M ′∑
i=1

λiw
i, (4.14)

where λz ∈ [0, 1], λi ∈ [0, 1] for i = 1, . . . ,M ′, and λz +
∑M ′

i=1 λi = 1. By construction of w

and z, and since w is a convex combination of w1, . . . , wM
′
, we have zn(s, a) = δ+ ε > 0 and

win(s, a) = 0 for i = 1, . . . ,M ′. Since xn(s, a) = δ > 0, we should have λz = δ
δ+ε

> 0. From

(4.14), we obtain
M ′∑
i=1

λiw
i = x− λzz =

δz + εw

δ + ε
− δz

δ + ε
=

εw

δ + ε
.

Since ε
δ+ε

> 0, by dividing the both sides by ε
δ+ε

we obtain

w =
M ′∑
i=1

λ′iw
i, (4.15)

where λ′i = δ+ε
ε
λi and

∑M ′

i=1 λ
′
i = 1. By the induction hypothesis, the representation in

(4.15) is unique and has positive weights. Thus, there exist unique and positive λi’s for

i = 1, . . . ,M ′ that satisfy (4.14) along with λz = δ
δ+ε

. Therefore, representation of x as a

convex combination of z and w1, . . . , wM
′

is unique, and all of the weights are positive. By

induction, the lemma is proven.

By the above lemma, for any positive integer M and any exactly M -randomized policy x

we can find M+1 (M−1)-randomized policies x1, . . . , xM+1 that, by construction, belong to

the submodel defined by x such that we can uniquely represent x as a convex combination of

x1, . . . , xM+1 and the weights of the convex combination are positive. Note that we can also
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find M + 1 deterministic policies to represent x via a convex combination, but there may

not exist M + 1 deterministic policies such that the convex combination representation of x

is unique, and all the weights are positive [16, Example 6.1]. For ∞-randomized policies, we

have a somewhat extended result with the same properties.

Lemma 4.11. For any ∞-randomized policy x and for any positive integer L, there exist an

integer L̄ ≥ L such that x can be represented as a convex combination of policies x1, . . . , xL̄

that belong to the submodel defined by x, such that the weights of the representation are

uniquely determined and positive.

Proof: In Section 4.7.4.

Remark 4.12. Since we have argued that nonstationary MDPs with finite state space can be

seen as a special case of stationary MDPs with countably infinite state space, it is natural to

consider extending the results presented here to the more general problem class. At present,

we do not know whether the generalization is possible. The proofs in this section, which

provides the foundation for the following results, have relied on the staged structure of the

hypernetwork corresponding to nonstationary MDPs (e.g., by finding the smallest or the

largest period index of a state at which randomization occurs), and thus are not directly

extendable to the stationary case. For example, to generalize results of subsection 4.4.2 to

stationary MDPs with countably infinite state space, for a given M - or∞-randomized policy

x, we may follow steps similar to the proofs of Lemmas 4.10 and 4.11 to obtain the split

into two policies, w and z. For nonstationary MDPs with finite state space, it is clear by

construction that w is (M−1)-randomized if x is M -randomized and that we can find w that

has any number of randomizations as needed if x is ∞-randomized. However, for stationary

MDPs with countably infinite state space, the randomization of w is unknown and should

be studied to generalize our results.
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4.5 Necessary Conditions for an Extreme Point

We now return to constrained MDPs. In this section we provide necessary conditions

for a feasible solution of (CNP) to be an extreme point, while the next section deals with

a necessary and sufficient condition. Although many researchers have studied constrained

MDPs, as far as we know, algebraic characterizations of extreme points of CILPs that rep-

resent constrained MDPs with countably infinite number of states have not been studied

before. In this section, the existence of a K-randomized optimal policy, which was proven in

[17] for a more general class of constrained MDPs, is given as a corollary of Theorem 4.13.

Theorem 4.13. Any extreme point of P is K-randomized.

Proof: Let x be an extreme point of P . Suppose that x is exactly M -randomized for

some K + 1 ≤ M ≤ ∞. Combining Lemmas 4.10 and 4.11, we can state that there exist a

(finite) integer N > K + 1 and N policies x1, . . . , xN that belong to the submodel defined

by x, such that x can be represented as their convex combination with uniquely determined

positive weights λ1, . . . , λN . Note that the N policies x1, . . . , xN may not be in P . Consider

polyhedron F1 of weights of convex combination of x1, . . . , xN that belong to P . That is,

F1 = {(ν1, . . . , νN) ≥ 0 |
∑N

i=1 νi = 1, x′ =
∑N

i=1 νix
i ∈ P}. We can easily show that any

convex combination of flows is a flow. Thus, in order for x′ to belong to P , it only has to

satisfy inequality constraints (4.4), i.e., for k = 1, . . . , K,

Vk ≥
∑
n∈N

∑
s∈S

∑
a∈A

αn−1dkn(s, a)x′n(s, a) =
∑
n∈N

∑
s∈S

∑
a∈A

(
αn−1dkn(s, a)

N∑
i=1

νix
i
n(s, a)

)

=
N∑
i=1

νi

(∑
n∈N

∑
s∈S

∑
a∈A

αn−1dkn(s, a)xin(s, a)

)
,

N∑
i=1

νiD
k(xi).

The exchange of sums is justified because x1, . . . , xN are flows, so they satisfy (4.6), and thus

Dk(xi) exists for k = 1, . . . K and i = 1, . . . , N . To use matrix notation, let D = {Dk,i} ∈

RK×N , where Dk,i , Dk(xi), ν = (ν1, . . . , νN)T ∈ RN , and v = (V1, . . . , VK)T ∈ RK . Then
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F1 can be written as

F1 = {(ν, t) |Dν + t = v, 1Tν = 1, (ν, t) ≥ 0}. (4.16)

F1 is a polyhedron in standard form with K + 1 equality constraints and N + K variables,

so any extreme point of F1 has at most K + 1 nonzeros. Note that ν = λ = (λ1, . . . , λN)T

belongs to F1 with some slack tλ since x ∈ P and λ > 0. Since N > K + 1, (λ, tλ) is not

an extreme point of F1. Therefore, it is a convex combination of extreme points of F1, say,

(ν1, t1), . . . , (νm, tm) for some m ≥ 2. Set zj ,
∑N

i=1 ν
j
i x

i for j = 1, . . . ,m. For j = 1, . . . ,m,

zj ∈ P because (νj, tj) ∈ F1. Since x =
∑N

i=1 λix
i and λ is a convex combination of

ν1, . . . , νm, we can easily show that x is a convex combination of z1, . . . , zm.

Recall that ν1, . . . , νm have at most K + 1 nonzeros whereas λ has N > K + 1 nonzeros.

Since λ > 0 is the unique weight vector to represent x via a convex combination of x1, . . . , xN ,

x 6= zj for j = 1, . . . ,m. That is, x is a convex combination of points in P that are different

from x, contradicting the assumption that x is an extreme point of P . Therefore, the theorem

is proven.

Theorem 4.1 and Theorem 4.13 lead to the following corollary.

Corollary 4.14. (Q) has a K-randomized optimal policy.

The existence of a K-randomized optimal policy for constrained stationary MDPs with

countably infinite number of states, which covers the stationary MDP counterpart of con-

strained nonstationary MDPs with finite number of states, was proven in [17]. However,

the approach in [17] was based on vector optimization and geometry of the performance set,

defined as the set of vectors (C(β, π), D1(β, π), D2(β, π), . . . , DK(β, π)) for any π ∈ Πf . Our

proof is conceptually simpler and gives insights into geometry of the feasible region of the

CILP representation of a subclass of constrained MDPs with countably infinite number of

states.

The next theorem shows that, at an extreme point x that uses M “more” actions than a
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deterministic policy, at least M inequality constraints (4.4) are binding. To illustrate this,

consider a feasible set {(x, s) |Ax + s = b, x ≥ 0, s ≥ 0} of a finite LP. At an extreme point

(x, s), the number of basic variables equals the number of equality constraints. That is, the

number of non-basic (and hence 0) slack variables is greater than or equal to the number of

positive components of x. Theorem 4.15 extends this condition to the CILP (CNP).

Theorem 4.15. For any integer M ≤ K, at an extreme point of P that is exactly M-

randomized, at least M of inequality constraints (4.4) are binding.

Proof: Let x be an exactly M -randomized extreme point of P . Suppose that only k < M

inequalities of (4.4) are binding at x. Let x1, . . . , xM+1 be the M + 1 (M − 1)-randomized

policies and λ > 0 be the weight found by Lemma 4.10. Consider polyhedron F2 of weights

of convex combination of x1, . . . , xM+1 that belong to P . Using similar notation, F2 has the

form (4.16), but with M + 1 + K variables and K + 1 equality constraints. Since x ∈ P , λ

belongs to F2 with some slack tλ. Since only k of the constraints (4.4) are binding at x, the

slack tλ has K−k nonzeros. Therefore, (λ, tλ) has M+1+K−k nonzeros and since k < M ,

we have M + 1 + K − k > K + 1, i.e., (λ, tλ) is not an extreme point of F2. Then, (λ, tλ)

is a convex combination of extreme points of F2, say, (ν1, s1), . . . , (νm, sm) for some m ≥ 2.

Note that this convex combination is not a trivial one. Also, note that slack variables are

determined by the weight variables, i.e., having λ = νj for some j implies (λ, tλ) = (νj, sj).

Thus, ν1, . . . , νm are different from λ. Set zj ,
∑N

i=1 ν
j
i x

i for j = 1, . . . ,m. Then, by

Lemma 4.10, z1, . . . , zm are different from x. Similarly to the proof of Theorem 4.13, zj ∈ P

for j = 1, . . . ,m and x is a convex combination of z1, . . . , zm, contradicting that x is an

extreme point of P .

4.6 A Necessary and Sufficient Condition for an Extreme Point

Theorems 4.13 and 4.15 lead to the following necessary condition for x ∈ P to be an

extreme point: it should be exactly M -randomized for some M ≤ K and at least M of
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constraints (4.4) should be binding at x. In this section, we establish a necessary and

sufficient condition for a point in P to be an extreme point.

Definition 4.16 ([53]). A convex subset E of a convex set D is called extreme if any

representation x = λz + (1 − λ)w for 0 < λ < 1, with z, w ∈ D, of a point x ∈ E implies

z, w ∈ E.

For example, a face of a polyhedron in a finite dimensional space is an extreme set of

the polyhedron. (A subset E of a convex set D is called exposed if there is a hyperplane H

supporting E such that E = H ∩D. In general, an exposed subset of a convex set is extreme

but the converse may not hold [17].)

Guided by the necessary conditions from the previous section, we consider an exactly

M -randomized feasible policy x with M ≤ K at which M of inequality constraints (4.4) are

binding. Let B be the submodel defined by x. Let N be the number of deterministic policies

in submodel B and let x1, . . . , xN be these deterministic policies. (Notice that policies xi

for i = 1, . . . , N considered here are different from those used in the proof of Theorem 4.13;

rather, they correspond to the decomposition discussed in Theorem 4.9.)

Consider polyhedron G of weights of convex combinations of x1, . . . , xN that belong to

P . Using the same notation as in (4.16), G is described as:

G = {(ν, t) |Dν + t = v, 1Tν = 1, (ν, t) ≥ 0}.

We emphasize again that, unlike F1 and F2, G is formed using Ndeterministic policies in

submodel B.

Let λ = (λ1, . . . , λN)T be an element of Λ(x) defined in (4.13). Since x =
∑N

i=1 λix
i ∈ P ,

ν = λ belongs to G together with some slacks. Since the values of the slack variables are

determined by x (and do not depend on a specific λ ∈ Λ(x)), let tx denote the vector of
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slacks corresponding to x. Let

Λ̃(x) =
{

(λ, tx) ∈ RN × RK
+ |λ ∈ Λ(x), tx = v −Dλ

}
.

Note that the last K components of elements of Λ̃(x) (the slack part) are fixed at tx. Since

x ∈ P , we have Λ̃(x) ⊆ G. We state the following theorem (a proof will be provided later in

this section).

Theorem 4.17. A feasible exactly M-randomized policy x for some M ≤ K at which at

least M of inequality constraints (4.4) are binding is an extreme point of P if and only if

Λ̃(x) is an extreme set of G.

Theorems 4.13, 4.15, and 4.17 lead to the following corollary, a necessary and sufficient

condition for a feasible solution of (CNP) to be an extreme point that can be checked using

the finite polyhedron G.

Corollary 4.18. A point x ∈ P is an extreme point of P if and only if it is an exactly M-

randomized policy for some M ≤ K, at least M of inequality constraints (4.4) are binding

at x, and Λ̃(x) is an extreme set of G.

We first illustrate the above corollary for the case of K = 1. For K = 1, the only

candidates to be considered are deterministic policies and exactly 1-randomized policies for

which constraint (4.4) is binding. Let x be a feasible deterministic policy, and let tx be

the corresponding slack. Then Λ̃(x) = {(1, tx)}. It is easy to show that the corresponding

polyhedron G consists of one point, (1, tx) and Λ̃(x) is an extreme set of G. Now, let x be a

feasible 1-randomized policy with tx = 0. There exists λ ∈ (0, 1) and deterministic policies

x1, x2 such that x = λx1 + (1 − λ)x2, and we have Λ̃(x) = {(λ, 1 − λ, 0)T}. Since Λ̃(x) is a

singleton, it is an extreme set if and only if the point (λ, 1− λ, 0)T is an extreme point of G.

Since K = 1, by dropping the constraint index k, G can be written as

G = {(ν1, ν2, t) |D(x1)ν1 +D(x2)ν2 + t = V, ν1 + ν2 = 1, (ν1, ν2, t) ≥ 0}.
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Since (λ, 1−λ, 0) ∈ G, we have either D(x1) < V < D(x2) or D(x2) < V < D(x1) or D(x1) =

D(x2) = V . The point (λ, 1−λ, 0) is an extreme point if and only if the corresponding basis

matrix is nonsingular, which is equivalent to D(x1) 6= D(x2). Consequently, Λ̃(x) is an

extreme set of G if and only if either D(x1) < V < D(x2) or D(x2) < V < D(x1). Therefore,

according to Corollary 4.18, for K = 1, a point x ∈ P is an extreme point if and only if x

is either a feasible deterministic policy or a feasible exactly 1-randomized policy such that

the inequality constraint is binding at x and it is a non-trivial convex combination of two

deterministic policies x1 and x2 for which either D(x1) < V < D(x2) or D(x2) < V < D(x1)

holds.

To gain intuition, consider the intersection of a polyhedron and a halfspace in a finite

dimensional space (Figure 4.1). Extreme points of the intersection of the polyhedron P and

the halfspace defined by an additional constraint {x : dTx ≤ v} are either extreme points

of P that belong to the halfspace (such as x3 in Figure 4.1) or points where an edge of

P intersects the hyperplane defined by the halfspace (such as x′ in Figure 4.1, which is a

convex combination of adjacent extreme points x1 and x2). Consider now an unconstrained

MDP obtained by excluding the linear inequality constraint (4.4) from (CNP). A feasible

solution to the unconstrained MDP is an extreme point if and only if it is a deterministic

policy (e.g., Theorem 4.3 of [24]). Then, the necessary and sufficient condition for K = 1

shows that the characterization of extreme points of the intersection of a polyhedron and

a halfspace in finite dimensional space naturally extends to P , which is the intersection of

the infinite dimensional feasible region of the unconstrained MDP and the set satisfying the

(linear) inequality constraint.

Proof of Theorem 4.17: Suppose that Λ̃(x) is not an extreme set of G . Then there

exist (σ, t1) and (τ, t2) in G such that (θσ + (1 − θ)τ, θt1 + (1 − θ)t2) ∈ Λ̃(x) for some

θ ∈ (0, 1), but either (σ, t1) /∈ Λ̃(x) or (τ, t2) /∈ Λ̃(x), or both. Without loss of generality,

suppose (σ, t1) /∈ Λ̃(x). Let z ,
∑N

i=1 σix
i and w ,

∑N
i=1 τix

i; by construction, z and w are

in P . If z = x, then (σ, t1) ∈ Λ̃(x) since the slack of z, t1, should equal the slack of x. Thus,

124



x1

x2dTx≤v

d
x'

P

x3

Figure 4.1: Extreme points for K = 1

z is not equal to x. However, x =
∑N

i=1[θσi + (1− θ)τi]xi = θz + (1− θ)w, where θ ∈ (0, 1)

and z 6= x. Since both z and w are in P , x is not an extreme point of P . We showed that if

x is an extreme point of P , then Λ̃(x) is an extreme set of G.

For the converse, suppose x ∈ P is not an extreme point. Then there exist z and w in

P such that x = θz + (1− θ)w for some θ ∈ (0, 1). It can be shown that z and w belong to

the submodel defined by x and thus can be expressed as convex combinations of x1, . . . , xN ,

say, z =
∑N

i=1 σix
i and w =

∑N
i=1 τix

i. By construction, σ and τ belong to G with slacks tz

and tw, respectively. Since z and w are different from x, (σ, tz) and (τ, tw) are not in Λ̃(x).

However,

N∑
i=1

[θσi + (1− θ)τi]xi = θ
N∑
i=1

σix
i + (1− θ)

N∑
i=1

τix
i = θz + (1− θ)w = x,

and moreover,

θtz + (1− θ)tw = θ(v −Dσ) + (1− θ)(v −Dτ) = v −D(θσ + (1− θ)τ) = tx.

Therefore, (θσ + (1 − θ)τ, θtz + (1 − θ)tw) ∈ Λ̃(x) and it is a convex combination of (σ, tz)

and (τ, tw) which are not in Λ̃(x). That is, Λ̃(x) is not an extreme set of G. Therefore, if

Λ̃(x) is an extreme set of G , then x is an extreme point of P .
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The next example illustrates Theorem 4.17 for one possible type of a 2-randomized policy

and K = 2.

Example 4.19. Let K = 2. Consider an exactly 2-randomized policy x such that both

inequality constraints (4.4) are binding at x, and x randomizes only at a period-state pair

(n, s) over three actions, say, a1, a2, and a3. Then in the submodel defined by x, there are

three deterministic policies, say, x1, x2, x3, where xi chooses ai at (n, s) for i = 1, 2, 3, and

x =
∑3

i=1 λix
i where λ > 0 and 1Tλ = 1. Since both inequality constraints are binding at x,

its corresponding tx is 0. We can check that Λ̃(x) = {(λ1, λ2, λ3, 0, 0)}. Then, Theorem 4.17

implies that x is an extreme point of P if and only if (λ1, λ2, λ3, 0, 0) is an extreme point of

G, which is equivalent to the following basis matrix being nonsingular:

DB =


D1(x1) D1(x2) D1(x3)

D2(x1) D2(x2) D2(x3)

1 1 1

 .

Consider xi for i = 1, 2, 3 as vectors in R∞, easily shown to be linearly independent. Then the

subspace S of R∞ spanned by x1, x2, x3 has dimension 3. Define an isomorphism linear oper-

ator T : S → R3 as T (ν1x
1 + ν2x

2 + ν3x
3) = (ν1, ν2, ν3). Then Tx belongs to the hyperplane

H , {ν ∈ R3 |1Tν = 1}. D1(·) is a linear functional on R∞ and H1
inf , {x′ : D1(x′) = v1} is a

hyperplane in R∞. Then H1 , T (H1
inf∩S) = {ν ∈ R3 |D1(x1)ν1+D1(x2)ν2+D1(x3)ν3 = v1},

and H2 (defined analogously using D2(·) and v2) are also hyperplanes in R3. Then, nonsin-

gularity of DB is equivalent to the hyperplanes H, H1 and H2 intersecting at a single point

in R3. However, Tx = (λ1, λ2, λ3) is in H and x also satisfies D1(x) = v1 and D2(x) = v2.

Thus, if the intersection of H, H1 and H2 is a single point, then Tx is that point. Therefore,

the necessary and sufficient condition of Theorem 4.17 is equivalent to H ∩H1∩H2 = {Tx}.
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4.7 Technical Proofs

4.7.1 Proof of Theorem 4.5

From the complementary slackness condition (4.11), we have

αn−1cn(s, a)xn(s, a) =

(
yn(s)−

∑
s′∈S

pn(s′|s, a)yn+1(s′)

)
xn(s, a)

− αn−1

(
K∑
k=1

dkn(s, a)µk

)
xn(s, a)

for n ∈ N, s ∈ S, a ∈ A. By summing up both sides for n = 1, 2, . . . , N , s ∈ S, a ∈ A, we

obtain

N∑
n=1

∑
s∈S

∑
a∈A

αn−1cn(s, a)xn(s, a)

=
N∑
n=1

∑
s∈S

∑
a∈A

(
yn(s)−

∑
s′∈S

pn(s′|s, a)yn+1(s′)

)
xn(s, a)

−
K∑
k=1

µk

N∑
n=1

αn−1
∑
s∈S

∑
a∈A

dkn(s, a)xn(s, a). (4.17)

We simplify the first sum of the right hand side as follows:

N∑
n=1

∑
s∈S

∑
a∈A

(
yn(s)−

∑
s′∈S

pn(s′|s, a)yn+1(s′)

)
xn(s, a)

=
N∑
n=1

∑
s∈S

yn(s)
∑
a∈A

xn(s, a)−
N∑
n=1

∑
s′∈S

yn+1(s′)
∑
s∈S

∑
a∈A

pn(s′|s, a)xn(s, a)

=
N∑
n=1

∑
s∈S

yn(s)
∑
a∈A

xn(s, a)−
N∑
n=1

∑
s′∈S

yn+1(s′)
∑
a∈A

xn+1(s′, a)

=
∑
s∈S

y1(s)
∑
a∈A

x1(s, a)−
∑
s∈S

yN+1(s)
∑
a∈A

xN+1(s, a)

=
∑
s∈S

β(s)y1(s)−
∑
s∈S

yN+1(s)
∑
a∈A

xN+1(s, a). (4.18)
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By substituting (4.18) into (4.17), we have

N∑
n=1

∑
s∈S

∑
a∈A

αn−1cn(s, a)xn(s, a)

=
∑
s∈S

β(s)y1(s)−
∑
s∈S

yN+1(s)
∑
a∈A

xN+1(s, a)−
K∑
k=1

µk

N∑
n=1

αn−1
∑
s∈S

∑
a∈A

dkn(s, a)xn(s, a).

(4.19)

The second term above goes to zero as N increases, because

−SαNτy ≤
∑
s∈S

yN+1(s)
∑
a∈A

xN+1(s, a) ≤ SαNτy. (4.20)

By the second condition (4.12) of complementary slackness, for k = 1, 2, . . . , K,

µk

N∑
n=1

αn−1
∑
s∈S

∑
a∈A

dkn(s, a)xn(s, a)→ Vkµk as N →∞.

Thus, taking N →∞ on both sides of (4.19) gives f(x) = g(y, µ). The second statement of

the theorem follows by weak duality.

4.7.2 Proof of Theorem 4.6

Since x and (y, µ) are feasible to (CNP) and (CND), respectively, we have xn(s, a) ≥ 0

and

αn−1

(
cn(s, a) +

K∑
k=1

dkn(s, a)µk

)
≥ yn(s)−

∑
s′∈S

pn(s′|s, a)yn+1(s′) for n ∈ N, s ∈ S, a ∈ A.

Thus, the left hand side of the first condition (4.11) of complementary slackness is nonnega-

tive for n ∈ N, s ∈ S, a ∈ A. By summing up the left hand side of (4.11) for n = 1, 2, . . . , N ,
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s ∈ S, and a ∈ A, we obtain

0 ≤
N∑
n=1

∑
s∈S

∑
a∈A

xn(s, a)

[
αn−1

(
cn(s, a) +

K∑
k=1

dkn(s, a)µk

)
− yn(s) +

∑
s′∈S

pn(s′|s, a)yn+1(s′)

]

=
N∑
n=1

∑
s∈S

∑
a∈A

αn−1cn(s, a)xn(s, a) +
K∑
k=1

µk

N∑
n=1

∑
s∈S

∑
a∈A

dkn(s, a)xn(s, a)

−
N∑
n=1

∑
s∈S

∑
a∈A

[
yn(s)−

∑
s′∈S

pn(s′|s, a)yn+1(s′)

]
xn(s, a)

=
N∑
n=1

∑
s∈S

∑
a∈A

αn−1cn(s, a)xn(s, a) +
K∑
k=1

µk

N∑
n=1

∑
s∈S

∑
a∈A

dkn(s, a)xn(s, a)

−
∑
s∈S

β(s)y1(s) +
∑
s∈S

yN+1(s)
∑
a∈A

xN+1(s, a)

where the last equality is obtained from (4.18). By taking N →∞ on both sides,

0 ≤ lim
N→∞

N∑
n=1

∑
s∈S

∑
a∈A

xn(s, a)

[
αn−1

(
cn(s, a) +

K∑
k=1

dkn(s, a)µk

)
− yn(s)

+
∑
s′∈S

pn(s′|s, a)yn+1(s′)

]

≤ f(x) +
K∑
k=1

Vkµk −
∑
s∈S

β(s)y1(s) = f(x)− g(y, µ) = 0,

by strong duality. This shows that the sum of the left hand side of (4.11) equals zero.

However, we know the left hand side of (4.11) for n ∈ N, s ∈ S, a ∈ A is nonnegative, and

thus, each of them equals zero. Therefore, (4.11) holds.

We now prove (4.12). Since x is feasible to (CNP),

Vk ≥
∑
n∈N

∑
s∈S

∑
a∈A

αn−1dkn(s, a)xn(s, a) for k = 1, 2, . . . , K.
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Since µk ≥ 0, the left hand side of (4.12) is nonnegative for k = 1, 2, . . . , K. By summing

up the left hand side of (4.12) for k = 1, 2, . . . , K, we obtain

0 ≤
K∑
k=1

µk

[
Vk −

∑
n∈N

∑
s∈S

∑
a∈A

αn−1dkn(s, a)xn(s, a)

]

=
∑
s∈S

β(s)y1(s)−
∑
n∈N

∑
s∈S

∑
a∈A

αn−1cn(s, a)xn(s, a)−
K∑
k=1

µk
∑
n∈N

∑
s∈S

∑
a∈A

αn−1dkn(s, a)xn(s, a)

= lim
N→∞

[∑
s∈S

β(s)y1(s)−
N∑
n=1

∑
s∈S

∑
a∈A

αn−1

(
cn(s, a) +

K∑
k=1

dkn(s, a)µk

)
xn(s, a)

]

≤ lim
N→∞

[∑
s∈S

β(s)y1(s)−
N∑
n=1

∑
s∈S

∑
a∈A

(
yn(s)−

∑
s′∈S

pn(s′|s, a)yn+1(s′)

)
xn(s, a)

]

= lim
N→∞

∑
s∈S

yN+1(s)
∑
a∈A

xN+1(s, a)

where the first equality is obtained from strong duality, the second inequality from the

constraint (4.8) of (CND), and the last equality from (4.18). We know that the last expression

is zero from (4.20) and thus, (4.12) holds.

4.7.3 Proof of Theorem 4.9

For simplicity, we will assume that x does not allow any node that has zero incoming

flow. Our proof can be easily extended to the general case.

Let (n1, s1), (n2, s2), . . . , (nm, sm) be the period-state pairs at which x randomizes and

suppose that they are ordered so that the period index is nondecreasing. For i = 1, 2, . . . ,m,

assume that x randomizes over ai,1, ai,2, . . . , ai,li at (ni, si). We have
∑m

i=1(li − 1) = M and∏m
i=1 li = N . Let Λ0(x) = {λ ∈ RN | 1Tλ = 1, λ ≥ 0}. Since policy x does not randomize in

periods 1 to n1−1, the policies x1, x2, . . . , xN choose the same action with x in those periods.

Consequently, for any λ ∈ Λ0(x),
∑N

i=1 λix
i and x have the same flows in periods 1 to n1−1.

This implies that they also have the same flow on hyperarcs from the period-state pairs

in period n1 where x does not randomize. Let Λ1(x) = {λ ∈ RN |
∑N

i=1 x
i
n1

(s1, a
1,1)λi =

xn1(s1, a
1,1),1Tλ = 1, λ ≥ 0}. Then, for any λ ∈ Λ1(x),

∑N
i=1 λix

i and x have the same
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flows in periods 1 to n1 − 1 and on those hyperarcs from the period-state pairs in period

n1 where x does not randomize. Moreover, in period n1, they have the same flow on hy-

perarc (n1, s1, a
1,1). Let Λl1−1(x) = {λ ∈ RN |

∑N
i=1 x

i
n1

(s1, a
1,j)λi = xn1(s1, a

1,j) for j =

1, 2, . . . , l1− 1,1Tλ = 1, λ ≥ 0}. For any λ ∈ Λl1−1(x),
∑N

i=1 λix
i and x coincide in periods 1

to n1 − 1 and on those hyperarcs from the period-state pairs in period n1 where x does not

randomize, and additionally in period n1, they have the same flow on hyperarc (n1, s1, a
1,j)

for j = 1, 2, . . . , l1 − 1. Then, they also have the same flow on hyperarc (n1, s1, a
1,l1), and

thus, they coincide on all hyperarcs emanating from (n1, s1). Note that x randomizes over

l1 actions at (n1, s1) and we added l1 − 1 equations to obtain Λl1−1(x) from Λ0(x).

We can apply the same procedure repeatedly to the other period-state pairs (n2, s2),

(n3, s3), . . . , (nm, sm), in order of nondecreasing period index. Then we obtain ΛM(x) such

that for any λ ∈ ΛM(x),
∑N

i=1 λix
i and x coincide in periods 1 to nm− 1 (which implies that

they also have the same flow on all hyperarcs in period nm where x does not randomize).

Moreover, in period nm, they have the same flow on all hyperarcs from any period-state pair

where x randomizes due to the added equality constraints on λ. Thus, for any λ ∈ ΛM(x),∑N
i=1 λix

i and x coincide in all periods, i.e., ΛM(x) ⊂ Λ(x). We can easily see that any λ ∈

Λ(x) satisfies all of the equalities that define ΛM(x). Therefore, we showed ΛM(x) = Λ(x).

Let A be the coefficient matrix of the M equalities added to obtain ΛM(x) from Λ0(x).

We will show that the rows of the matrix

A
1T

 are linearly independent. The rows of A

corresponds to the M equalities that define ΛM(x) from Λ0(x). For i = 1, 2, . . . ,m and j =

1, 2, . . . , li−1, let A(i,j) denote the row of A corresponding to the equality
∑N

k=1 x
k
ni

(si, a
i,j)λk

= xni
(si, a

i,j). Then, A(i,j) for i = 1, 2, . . . ,m and j = 1, 2, . . . , li − 1 form all rows of A. Let

the rows of A be sorted in lexicographic order of their subscripts. Recall that the columns of

A correspond to the deterministic policies x1, x2, . . . , xN and that a row A(i,j) has nonzeros

in those columns that correspond to the deterministic policies that choose the action ai,j

at (ni, si). Let’s fix a row A(i,j) and let’s focus on the columns corresponding to policies
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choosing ak,lk at (nk, sk) for k = 1, 2, . . . , i− 1 and ai,j at (ni, si). In these columns, the row

A(i,j) has nonzeros. However, by construction, all rows above the row A(i,j) have zeros in

those columns. Therefore, we showed that each row of A has a nonzero in a column at which

other rows above the row have zeros. Moreover, all the rows of A have zeros at the column

of policy choosing ak,lk at (nk, sk) for k = 1, . . . ,m (i.e., always choosing the last action),

and thus, the row with ones has a nonzero in the column at which all rows of A have zeros.

Therefore, we proved that the matrix

A
1T

 has a full row rank.

4.7.4 Proof of Lemma 4.11

Let H(x, n) , {(n, s, a) |xn(s, a) > 0, s ∈ S, a ∈ A}, and let rn(x) = |H(x, n)|−|S|, i.e.,

rn(x) is the number of “additional” actions used by x compared to a deterministic policy in

period n. Also, for any m ∈ N, t ∈ S, b ∈ A, let φm(t, b) = xm(t, b)/
∑

a∈A xm(t, a), i.e.,

φm(t, b) is the probability that x will select action b in state t in period m.

We prove the lemma by induction on L. For L = 1, we can simply let L̄ = L = 1 and

x1 = x.

Suppose the statement holds for L = L′ − 1 ≥ 1. Since x is an ∞-randomized policy,∑∞
n=1 rn(x) = ∞. Let n = min{n̄ |

∑n̄
n′=1 rn′(x) ≥ L′ − 1}. Let s ∈ S be any state such

that in period-state pair (n, s), x randomizes over multiple actions, say, a, b1, b2, . . . , bl. Let

xn(s, a) = δ > 0, xn(s, bi) = εi > 0, i = 1, . . . , l, and let ε =
∑l

i=1 εi. We will represent

x as a convex combination of two flows, w and z. Again, we define sub-flows u and vi for

i = 1, . . . , l to construct w and z.

For k ≥ n + 1, let T ik (x) ⊂ S be the set of states in period k that receive any portion

of flow εi originating in hyperarc (n, s, bi) under policy x, and for tk ∈ T ik (x), let Bik(tk) =

{bk ∈ A |xk(tk, bk) > 0}. Let Gi(x) be the sub-hypernetwork formed by the node (n, s),

hyperarc (n, s, bi), nodes in ∪∞k=n+1T ik (x), and hyperarcs in ∪∞k=n+1 ∪tk∈T i
k (x) Bik(tk). Then,

define sub-flow vi in the following way. Let node (n, s) be the source node with supply 1.
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Set vin(s, bi) = 1 and for each tn+1 ∈ T in+1(x) and each bn+1 ∈ Bin+1(tn+1),

vin+1(tn+1, bn+1) = φn+1(tn+1, bn+1)pn(tn+1|s, bi).

For k ≥ n+ 2 and for tk ∈ T ik (x) and bk ∈ Bik(tk), set

vik(tk, bk) = φk(tk, bk)
∑

tk−1∈T i
k−1(x)

∑
bk−1∈Bik−1(tk−1)

pk−1(tk|tk−1, bk−1)vik−1(tk−1, bk−1).

Sub-flow u is defined similarly in the sub-hypernetwork consisting of the node (n, s), hyperarc

(n, s, a) and the part of the hypernetwork receiving any portion of the flow δ.

As in the proof of Lemma 4.10, w is obtained from x by redirecting flow δ from F(x)

to Gi(x)’s, and z is obtained from x by redirecting flow ε from Gi(x)’s to F(x), maintaining

the original proportion of flows in Gi(x)’s. By construction, w and z satisfy the flow balance

constraints, and we have x = δz+εw
δ+ε

.

In the construction of w, the hyperarc (n, s, a) is the only randomization removed from

x in periods 1, 2, . . . , n. Since
∑n

n′=1 rn′(x)− 1 ≥ L′ − 2, w is at least (L′ − 2)-randomized.

We consider the following two cases regarding the randomization of w.

If w is exactly N̄ -randomized for some positive integer N̄ ≥ L′− 2, then by Lemma 4.10,

there exists N̄ + 1 (N̄ − 1)-randomized policies w1, . . . , wN̄+1 such that w is their con-

vex combination with uniquely determined, positive weights. By arguments in the proof

of Lemma 4.10, we can show that in representing x as a convex combination of z and

w1, . . . , wN̄+1 the weight of z is δ
δ+ε

> 0, and therefore x can be represented as a convex com-

bination of N̄ + 2(≥ L′) policies z and w1, . . . , wN̄+1, and the representation has uniquely

determined positive weights.

If w is ∞-randomized, by the induction hypothesis, there exists a positive integer N ′ ≥

L′ − 1 and policies w1, . . . , wN
′

such that w is uniquely represented as their convex combi-

nation and the weights are positive. Similarly, we can show that all of z and w1, . . . , wN
′

are necessary to represent x as their convex combination and the weights are uniquely de-
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termined.

Therefore, by induction, the lemma is proven.
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CHAPTER V

Conclusion and Future Research

In this dissertation, we studied CILP formulations of non-stationary MDPs, countable-

state MDPs, and constrained non-stationary MDPs. We established foundations for devel-

oping simplex-type algorithms for solving the CILP formulations, developed simplex-type

algorithms, and analyzed performance of the algorithms.

In Chapter II, we established rate of convergence results of the simplex algorithm for non-

stationary MDPs introduced in [24] with a particular pivoting rule and RHA. We introduced

the multiple pivoting technique which greatly accelerates the simplex algorithm. We also

compared the simplex algorithm and RHA empirically and analyzed its performance. The

experiments showed that the upper bound on the number of iterations to achieve near-

optimality was pessimistic for the inventory management problem. It is a future research

either to derive a tighter theoretical guarantee or to find a non-stationary MDP example for

which the bound is not so pessimistic or even tight. In the experimental section, we only

compared how fast the two algorithms converge to optimality. However, the cost of data

acquisition is another important issue. As those algorithms proceed, they require transition

probabilities and rewards in more periods. In practice, obtaining the problem data can be

expensive. It will be interesting to compare how much data the algorithms require to achieve

ε-optimality for a given ε.

In Chapter III, we extended the major theoretical extreme point and duality results to
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the CILP formulation of countable-state MDPs and introduced the implementable simplex

algorithm for solving the CILP formulation. This algorithm is the first solution algorithm for

countable-state MDPs that generates a sequence of policies whose value functions improve

monotonically and converge to optimality. Also, unlike existing simplex-type algorithms for

CILPs, our algorithm solves a class of CILPs in which each constraint may contain an infinite

number of variables and each variable may appear in an infinite number of constraints.

A possible future research is comparing the simplex algorithm to the existing methods

for countable-state MDPs. However, it is not straightforward how to make an empirical

comparison, also because of the issue of data acquisition. As those algorithms for countable-

state MDPs proceed, they require transition probabilities and rewards from more states. For

example, if an algorithm converges to optimality in value faster than another algorithm but

requires significantly more data, then it is not clear which one is a better solution method.

Another future research direction is to study convergence rate of the simplex algorithm for

countable-state MDPs, possibly in a way similar to our analysis in Chapter II on the simplex

algorithm for non-stationary MDPs. Then, it would be possible to compare the convergence

rates of the algorithms for countable-state MDPs by comparing the result for the simplex

algorithm to the ones in [58, 56]. However, the convergence rates provide us with upper

bounds on number of iterations (or computational complexity) to achieve near-optimality so

this theoretical comparison would also be incomplete.

In Chapter IV, we established duality results for the CILP formulation of constrained

non-stationary MDPs and provided a complete algebraic characterization of extreme points

of the CILP formulation. The existence of a K-randomized optimal policy followed this

characterization. It is a natural next step to develop a simplex-type algorithm for solving the

CILP based on the characterization of extreme points. However, there is a major difference

between the CILP (CNP) and other primal CILPs in this thesis which makes the development

difficult: the left hand side of (4.4) cannot be exactly computed using finite computation,

in other words, feasibility of a solution cannot be determined, while in (NP) and (CP) basic
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solutions are trivially feasible. Thus, we will instead consider solving a Lagrangian dual

of (CNP). Let’s first consider the following Lagrangian relaxation of (CNP) obtained by

relaxing the side constraints (4.4):

min
x

L(x, µ) =
∑
n∈N

∑
s∈S

∑
a∈A

αn−1

(
cn(s, a) +

K∑
k=1

µkd
k
n(s, a)

)
xn(s, a)− µTV

s.t.
∑
a∈A

x1(s, a) = β(s) for s ∈ S

∑
a∈A

xn(s, a)−
∑
s′∈S

∑
a∈A

pn−1(s|s′, a)xn−1(t, a) = 0 for n ≥ 2, s ∈ S

x ≥ 0.

Let L(µ) be the optimal value of the Lagrangian relaxation for a multiplier µ. Then we

consider the following Lagrangian dual of (CNP):

(LCNP) max
u≥0

L(u).

It was shown in [4] that (LCNP) is a strong dual of (CNP) under Assumption 4.2. We

will develop subgradient algorithms for solving (LCNP). Note that exact evaluation of L(·)

and its subgradient involve solving the Lagrangian relaxation exactly, that is, solving an

unconstrained non-stationary MDP to optimality. Therefore, challenges are in ensuring

convergence of subgradient algorithms despite the fact that L(·) and its subgradient are only

approximately computed.

In this thesis, we extended the standard LP results and the simplex method to the CILPs

representing the three classes of MDPs. In order to extend the LP approach to more general

classes of CILPs, one would have to understand what aspects of the CILPs considered in this

thesis enabled the success of the LP approach. In (NP), each variable appears only in a finite

number of constraints and each constraint has only a finite number of variables, and this

property was shown to be useful in proving duality results [41, 42]. In (CNP) of Chapter IV,
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each variable appears only in a finite number of constraints but the side constraints have an

infinite number of variables. Meanwhile, the coefficient matrix of (CP) in Chapter III can

be dense, but it still has the MDP structure. Thus, this thesis is an encouraging first step

to extend the standard LP results and the simplex method to CILPs that do not have any

sparsity structure. We will analyze what characteristics of the MDP structure made the LP

approach successful. We will also study how the assumptions on problem parameters (such

as uniformly bounded costs for non-stationary MDPs or the assumptions in Section 3.1.2 for

countable-state MDPs) helped the success.
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APPENDIX A

Extreme Point Cone Inclusion

Consider a finite-dimensional polyhedron that has an extreme point. Then any point in

the polyhedron is represented as a sum of the vector from origin to the extreme point and a

conic combination of vectors from the extreme point to its adjacent extreme points. In this

section we prove this statement for any bounded polyhedron in finite dimension and also

for the feasible region of (NP) which is infinite-dimensional. Using the result for (NP), we

provide an alternative proof of Lemma 2.18.

A.1 In Finite-dimensional Spaces

Consider a finite-dimensional polyhedron H that is bounded (such polyhedron is also

called polytope). Then, H is represented by a set of linear equations:

H = {x ∈ RN |
N∑
n=1

am,nxn ≤ bm,m = 1, 2, . . . ,M}.

For simplicity of illustration, suppose that H is a full dimensional polytope. H has an

extreme point, say x0. There are a finite number, say K, of adjacent extreme points of x0.

Let us denote them as x1, x2, . . . , xK . Consider a cone generated by conic combinations of

140



vectors from x0 to the adjacent extreme points and let C1 be the cone transferred by x0, i.e.,

C1 , {x ∈ Rn | x = x0 +
K∑
k=1

µi(x
k − x0), µk ≥ 0, k = 1, 2, . . . , K}.

On the other hand, among the constraints that are binding at x0, there are N constraints that

are linearly independent (constraints are linearly independent if vectors of the coefficients

appended by the right hand side are linearly independent). Let them be indexed by m(i)

for i = 1, 2, . . . , N , i.e.,
∑N

n=1 am(i),nxn ≤ bm(i) for i = 1, 2, . . . , N . Let C2 be the points that

satisfy those constraints, i.e.,

C2 = {x ∈ RN |
N∑
n=1

am(i),nxn ≤ bm(i), i = 1, 2, . . . , I}.

It is clear that H ⊂ C2. We show that C1 = C2, which implies that any point in H can be

represented as the sum of x0 and a conic combination of vectors xk − x0 for k = 1, 2, . . . , K.

Theorem A.1. The sets C1 and C2 coincide.

Proof: By definition, C2 is a polyhedron. We can easily see that x0 is the only extreme

point of C2 as follows. For any extreme point of C2, there should be n linearly independent

constraints of C2 that are binding at the extreme point. However, C2 has only n constraints,

thus, x0 is the only extreme point of C2.

We also show that xk − x0 for k = 1, 2, . . . , K form the complete set of extreme rays of C2.

For k = 1, 2, . . . , K, i = 1, 2, . . . , I, and µ ≥ 0,

N∑
n=1

am(i),n(x0
n + µ(xkn − x0

n)) = (1− µ)
N∑
n=1

am(i),nx
0
n + µ

N∑
n=1

am(i),nx
k
n

≤ (1− µ)bm(i) + µbm(i) = bm(i)

where the inequality is obtained from the fact that the constraint m(i) is binding at x0

and satisfied at xk. Also, for k = 1, 2, . . . , K, xk has n binding constraints that are linearly
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independent and share n−1 of them with x0 because they are adjacent. Thus, xk−x0 satisfies

n− 1 linearly independent constraints of C2. This shows that xk − x0 for k = 1, 2, . . . , K are

extreme rays of C2. We also can easily show that they are only extreme rays of C2 using the

fact that x1, x2, . . . , xK are the complete list of adjacent extreme points of x0.

By the theorem of representation of polyhedra (e.g., Theorem 4.15 of [11]), C1 = C2.

Corollary A.2. The polytope H is contained in C1.

A.2 In the Feasible Region of (NP)

In this section, we will prove a similar result to Corollary A.2 for F , the feasible region

of (NP).

For n ∈ N, s ∈ S, and a ∈ A\ {an(s)}, let e(n,s,a) denote the extreme point adjacent to x

whose basic action differs only at state s in period n and the basic action is a. Then we prove

the following theorem which is a counterpart of Corollary A.2 for the infinite-dimensional

set F .

Theorem A.3. Any point z ∈ F is represented as the sum of x and a conic combination of

vectors ej − x for j = 1, 2, . . ., i.e.,

z = x+
∑
n∈N

∑
s∈S

∑
a∈A

λn,s,a(e
(n,s,a) − x) (A.1)

where the convergence is pointwise (i.e., we consider the product topology of R∞) and λ ≥ 0.

To prove this theorem we first establish a special case of the theorem where z is an

extreme point. Let an(s) and bn(s) be basic actions of x and z at state s in period n,

respectively.

Lemma A.4. Any extreme point z ∈ F is represented as the sum of x and a conic combi-
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nation of vectors e(n,s,a) − x for n ∈ N, s ∈ S, a ∈ A, i.e.,

z = x+
∑
n∈N

∑
s∈S

λn,s(e
(n,s,bn(s)) − x) (A.2)

where

λn,s =
zn(s, bn(s))

xn(s, an(s))
(A.3)

for n ∈ N and s ∈ S.

Proof: Let

zN , x+
N∑
n=1

∑
s∈S

λn,s(e
(n,s,bn(s)) − x). (A.4)

We will prove by induction that zN and z coincide in periods up to N , i.e., zNn (s, a) = zn(s, a)

for n = 1, 2, . . . , N, s ∈ S, a ∈ A.

First, consider z1 = x+
∑

s∈S λ1,s(e
(1,s,b1(s)) − x). For s, t ∈ S and a ∈ A,

e
(1,s,b1(s))
1 (t, a)− x1(t, a) =


1 if t = s and a = b1(s)

−1 if t = s and a = a1(s)

0 otherwise.

Also, λ1,s = z1(s,b1(s))
x1(s,a1(s))

= 1 for s ∈ S. Then, we can easily show that for t ∈ S, z1
1(t, b1(t)) = 1

and z1
1(t, a) = 1 for a 6= b1(t). Thus, z1 and z coincide in period 1. Also, we can easily

show that z1 satisfies the flow balance constraints, (2.2) and (2.3). In addition, note that

for a state s, e(1,s,b1(s)) and x have the same basic actions in periods bigger than 1, that

is, e
(1,s,b1(s))
m (t, a) = xm(t, a) = 0 for m ≥ 2, t ∈ S, and any action a 6= am(t). Thus, we

also have z1
m(t, a) = 0 for m ≥ 2, t ∈ S, and any action a 6= am(t). From the flow balance

constraints, we can easily see that z1
m(t, am(t)) should be positive for m ≥ 2, t ∈ S, and thus,

z1 is nonnegative. Therefore, z1 is a flow in the hypernetwork, whose basic actions are equal

to those of z in period 1 and those of x in period bigger than 1 (but note that the flows of z1
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after period 1 may be different from x because the basic actions in period 1 are different).

Suppose that zk−1 is a flow whose basic actions are equal to those of z in period up to

k − 1 and those of x in periods from k. We have

zk = x+
k∑

n=1

∑
s∈S

λn,s(e
(n,s,bn(s)) − x) = zk−1 +

∑
s∈S

λk,s(e
(k,s,bk(s)) − x).

First, note that e(k,s,bk(s)) and x coincide in periods up to k−1. Thus, in periods up to k−1,

zk−1 and zk coincide, and therefore, zk and z coincide. For s, t ∈ S and a ∈ A,

e
(k,s,bk(s))
k (t, a)− xk(t, a) =


xk(s, ak(s)) if t = s and a = bk(s)

−xk(s, ak(s)) if t = s and a = ak(s)

0 otherwise

where the first case is obtained from the fact that e(k,s,bk(s)) and x have the same incoming

flow to the node (k, s). Thus, in period k,

zkk(t, a) = zk−1
k (t, a) +

∑
s∈S

λk,s(e
(k,s,bk(s))
k (t, a)− xk(t, a))

= zk−1
k (t, a) +

zk(t, bk(t))

xk(t, ak(t))
(e

(k,t,bk(t))
k (t, a)− xk(t, a))

Since zk−1 is the same with z in periods up to k−1 and has the same basic actions with x in

period k, the flow of zk−1 in period k is given as, for t ∈ S, zk−1
k (t, ak(t)) = zk(t, bk(t)) and

zk−1
k (t, a) = 0 for a 6= ak(t). Then, we can easily check that for t ∈ S, zkk(t, bk(t)) = zk(t, bk(t))

and zkk(t, a) = zk(t, a) = 0 for a 6= bk(t). That is, zk and z coincides in period k. Using

similar arguments we used for z1, it is straightforward to show that zk is a flow and its basic

actions in period bigger than k are equal to those of x.

By induction, we showed that zN converges to z as N →∞.

Proof of Theorem A.3: F is compact and convex (see [24]). Thus, Krein-Milman
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theorem (e.g., see Theorem 7.68 of [2]) gives us every feasible point as a convex combination

of extreme points. Hence it suffices to show Theorem A.3) for extreme point z, thus the

theorem is proven.

Using Theorem A.3, we can prove the following proposition.

Proposition A.5. For any extreme point z of (D), f satisfies

f(z) = f(x) +
∑
n∈N

∑
s∈S

λn,s
(
f(e(n,s,bn(s)))− f(x)

)
.

Proof: Define zN as in (A.4). We showed zN → z as N →∞. We know that z and zN

coincide in periods up to N . Therefore,

|f(z)− f(zN)| = |
∞∑

n=N+1

∑
s∈S

∑
a∈A

αn−1cn(s, a)(zn(s, a)− zNn (s, a))|

≤
∞∑

n=N+1

∑
s∈S

∑
a∈A

αn−1|cn(s, a)||zn(s, a)− zNn (s, a)|

≤
∞∑

n=N+1

∑
s∈S

∑
a∈A

αn−1cnS

where the last inequality is obtained from Lemma 2.1. Thus, f(zN)→ f(z) as N →∞. By

linearity of f ,

f(zN) = f(x+
N∑
n=1

∑
s∈S

(e(n,s,an(s)) − x)) = f(x) +
N∑
n=1

∑
s∈S

(f(e(n,s,an(s)))− f(x))

and by taking N →∞ on both sides,

f(z) = f(x) +
∑
n∈N

∑
s∈S

(f(e(n,s,an(s)))− f(x)).
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Another proof of Lemma 2.18: From Proposition A.5, we have

f ? = f(x?) = f(x) +
∑
n∈N

∑
s∈S

λn,s
(
f(e(n,s,a?n(s)))− f(x)

)

where λn,s = x?n(s,a?n(s))
xn(s,an(s))

, x? is an optimal basic feasible solution, and an(s) and a?n(s) are the

basic actions of x and x? at state s in period n, respectively. By Proposition 2.10, we have

f(e(n,s,a?n(s)))− f(x) = xn(s, an(s))γn(s, a?n(s)) (recall Definition 2.8). Therefore,

f(x)− f ? =
∑
n∈N

∑
s∈S

x?n(s, a?n(s))(−γn(s, a?n(s)))

and the lemma is proven.
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APPENDIX B

Proof for Theorem 3.14 using Bauer’s Maximum

Principle

In this section, we present an alternative proof of Theorem 3.14 using Bauer’s Maximum

Principle (e.g., see Theorem 7.69 of [2]). A similar proof for a more general class of MDPs

than countable-state MDPs is available in Section 7 and 8 of [4] but our proof is much

simpler because it is focused on discrete state space and finite action space. While proving

the theorem, we will use the integral version of dominated convergence theorem (DCT)

which is called Lebesgue DCT and more general than Proposition 3.8. Also, we will use a

generalization of the Lebesgue DCT.

Proposition B.1 (Lebesgue DCT, Theorem 16 on page 267 of [46]). Let h̄ be an integrable

function over E, and suppose that {hn} is a sequence of measurable functions such that

|hn(x)| ≤ h̄(x) on E, and hn(x)→ h(x) a.e. on E. Then

∫
E

h = lim

∫
E

hn.

Proposition B.2 (Generalized DCT, Proposition 18 on page 270 of [46]). Let (X,B) be a

measurable space and {µn} a sequence of measures on B which converge setwise to a measure
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µ. Let {hn} and {h̄n} be two sequences of measurable functions which converge pointwise to

h and h̄, respectively. Suppose |hn| ≤ h̄n and that

lim

∫
h̄n dµn =

∫
h̄ dµ <∞.

Then

lim

∫
hn dµn =

∫
h dµ.

We will show that P , the feasible region of (CP), is a compact subset of R∞ under the

product topology and the objective function f(x) of (CP) is continuous over the feasible

region P . It is straightforward to show that P is convex. Therefore, by Bauer’s Maximum

Principle, we will obtain that (CP) has an extreme point optimal solution. We present this

proof by using only the absorbing MDP formulation defined in Section 3.5.1. Recall that 0

denotes the absorbing state. Let S = {0, 1, 2, . . .} and extend w by letting w(0) = 0.

To show that P is compact in R∞ and that f(x) is continuous on P , we first define a

topology on ΠS, the set of stationary policies. LetM(A) be the set of probability measures on

the finite action set A. Then, M(A) = [0, 1]A∩{p ∈ RA : 1Tp = 1} (which is often called the

unit A-simplex) and this is compact in RA. A stationary policy can be considered as assigning

a probability measure onA to each state, and thus, ΠS is represented as
∏∞

s=1M(A) ⊂ (RA)∞

and (RA)∞ is trivially isomorphic to R∞. By Tychonoff’s theorem (e.g., see Theorem 2.61

of [2]), ΠS is compact under the product topology of R∞. Also, note that R∞ equipped with

the product topology is metrizable (e.g., see Theorem 20.5 of [36]), so a function f from ΠS

is continuous if and only if for any sequence {σm} ⊂ ΠS converging to σ̄ ∈ ΠS, {f(σm)}

converges to f(σ̄) (e.g., see Theorem 21.3 of [36]).

Consider a function Qβ
(·) : ΠS → R∞ that maps a stationary policy σ to its occupancy

measure Qβ
σ ∈ P . We call Qβ

(·) the occupancy measure function. By (3.30) and the definition

of occupancy measure (3.29), we can easily show that Qβ
(·) is a one-to-one mapping onto

P ⊂ R∞. Since we know ΠS is compact, proving continuity of Qβ
(·) is sufficient to show the

148



compactness of P . Toward the end, we first prove the following two lemmas.

Lemma B.3. For s ∈ S, an initial distribution β, and a nonnegative integer n, P β
σ (Sn = s)

is a continuous function of σ on ΠS.

Proof: We first show that P t
σ(Sn = s) is continuous for t ∈ S by induction on n.

For n = 1, P t
σ(S1 = s) = 1{t = s}, which is a constant, so continuous. Suppose that

P t
σ(Sm = s) = αm−1Pm−1

σ (s|t) is continuous for some positive integer m. We have

P t
σ(Sm+1 = s) = αmPm

σ (s|t) =
∑
t′∈S

αPσ(t′|t)αm−1Pm−1
σ (s|t′).

Consider a sequence of stationary policies {σk} converging to σ̄. Because of the induction

hypothesis,

αPσk(t′|t)αm−1Pm−1
σk (s|t′)→ αPσ̄(t′|t)αm−1Pm−1

σ̄ (s|t′) as k →∞.

Also, for any σ ∈ ΠS, |αPσ(t′|t)αmPm
σ (s|t′)| ≤ αPσ(t′|t) and

∑
t′∈S αPσ(t′|t) = α. Thus, by

Proposition B.1,

lim
k→∞

∑
t′∈S

αPσk(t′|t)αmPm
σk(s|t′) =

∑
t′∈S

αPσ̄(t′|t)αmPm
σ̄ (s|t′),

that is, P t
σ(Sm+1 = s) is continuous in σ. Therefore, P t

σ(Sn = s) is continuous for t ∈ S and

for any n. Then, we can easily show that P β
σ (Sn = s) is continuous for a general initial state

distribution β by using Proposition B.1 or Proposition 3.7.

Lemma B.4. For s ∈ S,
∑

t∈S Pσ(t|s)w(t) is a continuous function of σ on ΠS.

Proof: Consider a sequence {σk} in ΠS that converges to σ̄ ∈ ΠS. For any k, we have

∑
t∈S

Pσ(t|s)w(t) =
∑
t∈S

∑
a∈A

σk(a|s)p(t|s, a)w(t) =
∑
a∈A

σk(a|s)
∑
t∈S

p(t|s, a)w(t) (B.1)
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where the exchange of sums follows by Proposition 3.5. By the assumption A2, we know

that
∑

t∈S p(t|s, a)w(t) is finite for any (s, a). Since limk→∞ σ
k(a|s) = σ̄(a|s) for all (s, a)

and A is a finite set, (B.1) converges to

∑
a∈A

σ̄(a|s)
∑
t∈S

p(t|s, a)w(t)

as k →∞, and thus, the lemma is proven.

Lemma B.5. For s ∈ S, an initial distribution β, and a positive integer n, Eβ
σ [w(Sn)] =∑

s∈S P
β
σ (Sn = s)w(s) is a continuous function of σ on ΠS.

Proof: Proof of this lemma is similar to that of the previous lemma. First, for t ∈ S, we

show that Et
σ[w(Sn)] is continuous by induction on n. For n = 1, Et

σ[w(S1)] = w(t), which

is a constant. Suppose that Et
σ[w(Sm)] is continuous for a positive integer m. We have

Et
σ[w(Sm+1)] =

∑
t′∈S

αPσ(t′|t)Et′

σ [w(Sm)]. (B.2)

Because of the induction hypothesis, each term of the above sum is continuous. By the

assumption A2,

αPσ(t′|t)Et′

σ [w(Sm)] ≤ ακm−1Pσ(t′|t)w(t′).

By Lemma B.4, ∑
t′∈S

ακm−1Pσ(t′|t)w(t′) = ακm−1
∑
t′∈S

Pσ(t′|t)w(t′)

is continuous in σ. Then, by Proposition B.2, (B.2) is continuous in σ. By induction, we

conclude that Et
σ[w(Sn)] is continuous in σ for any n. Since

Eβ
σ [w(Sn)] =

∑
t∈S

β(t)Et
σ[w(Sn)],

it is also easy to show that Eβ
σ [w(Sn)] is continuous in σ by using Assumption A2 and (3.7),

and applying Proposition B.1.
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The next lemma shows that Qβ
(·) is weakly continuous in the following sense.

Lemma B.6. For any real-valued function r on S × A satisfying |r(s, a)| ≤ Lw(s) for all

(s, a) ∈ S ×A, the function 〈r,Qβ
(·)〉 : ΠS → R defined as

〈r,Qβ
σ〉 ,

∞∑
s=1

A∑
a=1

r(s, a)Qβ
σ(s, a) (B.3)

is a continuous function of σ on ΠS.

Proof: By (3.32), we have

〈r,Qβ
σ〉 =

∞∑
s=1

A∑
a=1

r(s, a)Qβ
σ(s, a) = Vσ(β) = Eβ

σ

[ ∞∑
n=1

r(Sn, An)
]
. (B.4)

Then

Eβ
σ

[ ∞∑
n=1

|r(Sn, An)|
]

=βT [|rσ|+ αPσ|rσ|+ α2P 2
σ |rσ|+ . . .]

≤βT [w + ακw + α2κ2w + . . .+ αJ−1κJ−1w

+ λw + λακw + λα2κ2w + . . .+ λαJ−1κJ−1w

+ . . .]

=LβTw <∞,

where the inequality follows by considering groups of J terms and applying Assumptions A2

and A3. Therefore, we have

Eβ
σ

[ ∞∑
n=1

r(Sn, An)
]

=
∞∑
n=1

Eβ
σ [r(Sn, An)]

by Fubini-Tonelli theorem, which is the combination of Fubini’s theorem (see Theorem 19

on page 307 of [46]) and Tonelli’s theorem (see Theorem 20 on page 309 of [46]), and is a

more general version of Proposition 3.6.
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We will show that the partial sums
∑N

n=1 E
β
σ [r(Sn, An)] converges uniformly to the infinite

sum on ΠS as N →∞. Let

V N
σ (β) =

∞∑
n=N+1

Eβ
σ [r(Sn, An)],

and let V N
σ denote the infinite vector indexed by states whose value at s is V N

σ (s). Let

N = kJ + l for some nonnegative integers k and l ≤ J , then

|V N
σ | ≤αNPN

σ |rσ|+ αN+1PN+1
σ |rσ|+ . . .

=αkJ+lP kJ+l
σ |rσ|+ αkJ+l+1P kJ+l+1

σ |rσ|+ . . .

≤αlP l
σ(αJP J

σ )kw + αl+1P l+1
σ (αJP J

σ )kw + . . .+ αJ−1P J−1
σ (αJP J

σ )kw

+ (αJP J
σ )k+1w + αPσ(αJP J

σ )k+1w + . . .+ αJ−1P J−1
σ (αJP J

σ )k+1w

+ (αJP J
σ )k+2w + αPσ(αJP J

σ )k+2w + . . .+ αJ−1P J−1
σ (αJP J

σ )k+2w

+ . . .

≤αlκlλkw + αl+1κl+1λkw + . . .+ αJ−1κJ−1λkw

+ λk+1w + ακλk+1w + . . .+ αJ−1κJ−1λk+1w

+ λk+2w + ακλk+2w + . . .+ αJ−1κJ−1λk+2w

+ . . .

=

{
[λk(ακ)l[1 + ακ+ . . .+ (ακ)J−l−1] +

λk+1

1− λ
[1 + ακ+ . . .+ (ακ)J−1]

}
w,

where the second inequality follows by applying Assumption A1 and considering a group

the first J − l terms and groups of J terms for the rest; and the third inequality follows by

Assumptions A2 and A3. Therefore,

|V N
σ (β)| = |βTV N

σ |

≤
{

[λk(ακ)l[1 + ακ+ . . .+ (ακ)J−l−1] +
λk+1

1− λ
[1 + ακ+ . . .+ (ακ)J−1]

}
βTw
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In the last expression, βTw is finite by (3.7) and its preceding multiplier tends to zero

as k → ∞. That is, given ε > 0, for each 0 ≤ l ≤ J − 1, there exists kl such that for

k ≥ kl, we have |V kJ+l
σ (β)| < ε for any σ ∈ ΠS. Then, for N ≥ max0≤l≤J−1{klJ+ l}, we have

|V N
σ (β)| < ε for any σ ∈ ΠS. Therefore, as N → ∞, the partial sums

∑N
n=0 E

β
σ [r(Sn, An)]

converges to the infinite sum uniformly on ΠS.

Secondly, we will show that Eβ
σ [r(Sn, An)] is continuous in σ for any n, then it will imply

that (B.3) is continuous on ΠS. By conditioning on state, we have

Eβ
σ [r(Sn, An)] =

∑
s∈S

P β
σ (Sn = s)r(s, σ) (B.5)

where r(s, σ) =
∑A

a=1 σ(a|s)r(s, a). It is easy to show that r(s, σ) is continuous in σ. By

Lemma B.3, P β
σ (Sn = s)r(s, σ) is also continuous in σ. By the assumption A1, |P β

σ (Sn =

s)r(s, σ)| ≤ P β
σ (Sn = s)w(s), and by Lemma B.5,

∑
s∈S P

β
σ (Sn = s)w(s) is continuous

in σ. Therefore, by Proposition B.2, (B.5) is continuous in σ. Thus, the partial sum∑N
n=1E

β
σ [r(Sn, An)] is continuous in σ. Since the partial sum converges to the infinite sum

uniformly over σ,

〈r,Qβ
σ〉 =

∞∑
n=0

Eβ
σ [r(Sn, An)]

is continuous in σ.

Using the weak continuity of Qβ
(·), it is easy to show that it is actually continuous in the

product topology.

Lemma B.7. The occupancy measure function Qβ
(·) : ΠS → R∞ is continuous.

Proof: By the previous lemma, we know that 〈r,Qβ
(·)〉 is continuous over ΠS for any

r such that |r(s, a)| ≤ Lw(s) for s ∈ S. Consider a sequence {σm} ⊂ ΠS converging to

σ̄ ∈ ΠS. Fix an arbitrary state-action pair (s, a) ∈ S ×A. Let r(s, a) = w(s) and r(t, b) = 0

for (t, b) 6= (s, a). Then, by the weak continuity, 〈r,Qβ
σm〉 = w(s)Qβ

σm(s, a) converges to

〈r,Qβ
σ̄〉 = w(s)Qβ

σ̄(s, a), i.e., Qβ
σm(s, a) converges to Qβ

σ̄(s, a) for an arbitrary state-action
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pair (s, a), and therefore, Qβ
σm converges to Qβ

σ̄ in the product topology of R∞. Since the

product topology of R∞ is metrizable, the function Qβ
(·) is continuous.

Since P = QS is the image of ΠS by Qβ
(·), the compactness of ΠS and the above lemma

implies the following corollary.

Corollary B.8. P is a compact subset of R∞.

Using Lemma B.6, we can easily prove the next lemma by which we conclude the proof

of Theorem 3.14.

Lemma B.9. The objective function f(x) of (CP) is continuous in its feasible region P.

Proof: For any x ∈ P , there exists a unique stationary policy σ defined by (3.30) such

that Qβ
σ = x. Let ξ : P → ΠS denote the function that maps an occupancy measure x ∈ P

to its corresponding stationary policy, i.e., ξ(x) , σ. Then,

f(x) =
∞∑
s=1

A∑
a=1

r(s, a)x(s, a) =
∞∑
s=1

A∑
a=1

r(s, a)Qβ
ξ(x)(s, a) = 〈r,Qβ

ξ(x)〉.

By Lemma B.6, 〈r,Qβ
(·)〉 is continuous on ΠS. If ξ is continuous, then f is also continuous

on x. To show that ξ is continuous, consider a sequence {xm} in P converging to x̄ ∈ P ,

that is, xm(s, a) converges to x̄(s, a) for each state-action pair (s, a). Then the corresponding

stationary policies σm = ξ(xm) for m = 1, 2, . . . and σ̄ = ξ(x̄) are computed by, respectively,

σm(a|s) =
xm(s, a)∑A
b=1 x

m(s, b)
and σ̄(a|s) =

x̄(s, a)∑A
b=1 x̄(s, b)

.

Therefore, σm(a|s) also converges to σ̄(a|s) for each state-action pair (s, a), and thus, σm =

ξ(xm) converges to σ̄ = ξ(x̄) in the product topology. We showed that ξ is continuous, and

thus, f is continuous in x.
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