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CHAPTER 1

Introduction

1.1 Hodge decomposition and Hodge conjecture

Every smooth projective complex algebraic variety is naturally equipped with the structure

of a complex manifold. As such, it has topological invariants such as singular cohomology

groups. Central to the subject of complex algebraic geometry is the comparison of the

algebraic and topological invariants of a smooth compact complex variety.

On a complex manifold X, differential forms have a natural bigrading. A differential

form is of type (p, q) if it is a section of the bundle (∧pΩ1,0)∧ (∧qΩ0,1), where Ω1,0 and Ω0,1

are the holomorphic and antiholomorphic cotangent bundle. Thanks to the de Rham theo-

rem, which states that each cohomology class of a differential manifold can be represented

by a closed differential form, there is an induced grading on the cohomology groups:

Hp,q(X) = {α ∈ Hp,q(X,C) : α can be represented by a closed form of type (p, q)}.

On a projective manifold, we have the following stronger theorem:

Theorem 1.1.1 (Hodge decomposition) For a projective manifold X, we have

Hk(X,C) =
⊕
p+q=k

Hp,q(X).
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This decomposition, which was first proved by Hodge early last century [12], is the

first example of the interplay between the topological invariant and algebraic structure of

complex algebraic varieties. Hodge theory - the study of this interplay - remains a vital

branch of algebraic geometry today.

Fix a smooth projective variety X of complex dimension n. A subvariety is a subset

defined locally as the vanishing locus of a collection of polynomials in local coordinates.

Each subvariety V of codimension p gives rise to a natural cohomology class in H2p(X,Z)

by Poincaré duality. From the viewpoint of de Rham theory, this can be seen as the class

of the integral operator
∫

V
over closed forms. An important observation is that the integral

is nonzero only when integrating forms of bidegree (n − p, n − p), hence the cohomology

class of V lies in H2p(X,Z) ∩ Hp,p(X). The now famous Hodge conjecture states that every

rational (p, p) class is of this type:

Conjecture 1.1.1 (Hodge conjecture) For a smooth projective variety X, every rational

cohomology class of type (p, p) (i.e. a class in H2p(X,Q)∩Hp,p(X)) is a linear combination

of cohomology classes of algebraic subvarieties of X.

Despite intense efforts of many powerful mathematicians, the Hodge conjecture re-

mains open. Progress has been made in special cases; notably the p = 1, n = 2 case was

solved by Lefschetz [14] taking the advantage of the fact that every point of the Jacobian

of a curve comes from an algebraic cycle, which will be recalled in the following sections.

1.2 Abel-Jacobi mapping for curves

In this section, when we say an algebraic curve, we mean a smooth irreducible complex

projective variety of dimension 1. The Abel-Jacobi mapping is the most important tool for

studying the Hodge theory of an algebraic curve. The study of this mapping originated in

the nineteenth century [1, 13], and a detailed account can be found in [15, 22].
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Fix a point p0 on an algebraic curve C. Since the curve is connected, for any point

p ∈ C, we can connect p0 to p by a path Γ in C. It is a standard result that each class

in H1,0(C) can be represented by a unique holomorphic 1-form, and integrating this form

over Γ gives rise to a complex number. In this way, to each p it associates a linear operator∫
Γ
∈ H1,0(C)∗. For two different paths Γ1 and Γ2 from p0 to p, the difference Γ1 − Γ2 has

boundary 0, so in fact represents a class in H1(C,Z). Hence the corresponding integral

operators differ by the image of the morphism

H1(C,Z)→ H1,0(C)∗,

given by the natural pairing between cohomology and homology. Note that the image of

H1(C,Z) in H1,0(C)∗ is a lattice of full rank. Taking the quotient, we can define the Abel-

Jacobi mapping.

Definition 1.2.1 For an algebraic curve C, the Jacobian of the curve is defined by

J(C) :=
H1,0(C)∗

H1(C,Z)
.

Fixing a point p0, the Abel-Jacobi mapping is given by

AJ : C → J(C),

p→
∫

Γ

=

∫ p

p0

.

Here the Jacobian J(C) has a natural structure of a complex torus induced from the

complex structure of the vector space H1,0(C)∗. Furthermore, the Abel-Jacobi mapping is

holomorphic [11, Section 2.2]. A more detailed argument shows that J(C) is in fact an

abelian variety [11, Section 2.2], i.e. a projective variety with an abelian group structure,

and the Abel-Jacobi mapping is a morphism between projective varieties.
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A divisor D on a curve C is a formal linear combination

D =
∑

i

ni pi.

of points on C. When
∑

i ni = 0, we can find a 1-chain Γ on C such that

∂Γ = D.

In this case, the divisor is homologically trivial, i.e. the associated degree-zero cohomology

class vanishes. More generally, the Abel-Jacobi image of a homologically trivial divisor D

is defined to be the class of
∫

Γ
in J(C). Using the group structure on the Jacobian J(C), we

can take the sum
∑

i ni ·AJ(pi) of the Abel-Jacobi images of all the points, and this gives an

equivalent definition. We then have the Jacobi inversion theorem [13]:

Theorem 1.2.1 (Jacobi inversion) For an algebraic curve C, each point on the Jacobian

J(C) is the Abel-Jacobi image of some divisor on C of degree 0.

1.3 Lefschetz’ theorem on (1,1) classes

Among the cases in which Hodge conjecture is proved, the most important one is the case

when p = 1, usually known as the Lefschetz theorem on (1, 1) classes.

Theorem 1.3.1 (Lefschetz theorem on (1, 1) classes) Each class in H2(X,Z) ∩ H1,1(X) is

a linear combination of cohomology classes of subvarieties in X.

Lefschetz originally proved this theorem for varieties of dimension two ([14], for de-

tails see [24, Chapter VII]), using the following beautiful geometric idea. The first step is to

choose a Lefschetz pencil on the variety X, that is a one-dimensional family of hyperplane

sections of X π : C → P1, all smooth but for finitely many exceptions which have exactly

one ordinary double point. The existence of such a pencil is shown for example in [23,
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Section II.2.1]. Now as each smooth hypersurface Cb := π−1(b) of X is a smooth algebraic

curve, we can consider its Jacobian J(Cb). The Jacobians turn out to form an algebraic

family J → P1
sm, called the Jacobian fibration, parametrized by the locus P1

sm in P1 cor-

responding to smooth curves. Any given (1, 1) class on X induces a section of J → P1
sm,

with certain restricted boundary behavior when approaching the singular fibers. Such a

section is called a normal function, and in some sense, the Hodge conjecture is equivalent

to saying that normal functions can be constructed out of algebraic cycles. In this special

case, the magic is the Jacobi inversion theorem. Using this theorem with some extra work

we deduce the algebraicity of the (1, 1) class.

1.4 Griffiths’ Abel-Jacobi mapping

One theme in Hodge theory is the higher dimensional generalization of the above notions.

For a smooth projective variety X, Griffiths’ Abel-Jacobi mapping is a group homomor-

phism from the group Ak
hom(X) of homologically trivial algebraic cycles of codimension k

to the intermediate Jacobian J2k−1(X). The Hodge filtration F• on the singular cohomology

Hk(X,C) is the decreasing filtration defined by

F pHk(X,C) :=
⊕
m≥p

Hm,k−m(X).

The intermediate Jacobian J2k−1(X) is given by

J2k−1(X) :=
H2k−1(X,C)

FkH2k−1(X) ⊕ H2k−1(X,Z)
�

FkH2k−1(X,C)∗

H2k−1(X,Z)
.

Here H2k−1(X,Z) is identified with a lattice in FkH2k−1(X,C)∗ via the pairing between ho-

mology and cohomology. Because FkH2k−1(X,C)∗ is a complex vector space and H2k−1(X,Z)

is a lattice of the same dimension, the intermediate Jacobians are naturally compact com-

plex tori. However, as opposed to the curve case, these complex tori cannot in general be
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given the structure of projective varieties.

For an algebraic cycle Σ ∈ Ak
hom(X), by definition we can choose a differential chain Γ,

such that ∂Γ = Σ. Now for every element in FkH2k−1(X,C), it is a consequence of Hodge

theory that we can pick a closed form representing the cohomology class such that the

holomorphic degrees of the forms are at least k. Now the integral operator
∫

Γ
, paired with

the above representatives, can be viewed as a linear operator on FkH2k−1(X,C). Griffiths’

Abel-Jacobi image of Σ is defined to be the projection of this operator to J2k−1(X):

Ak
hom(X)→ FkH2k−1(X,C)∗ → J2k−1(X)

Σ→

∫
Γ

→ AJ(Σ)

This doesn’t depend on the choice of the differential chain and the closed forms, we refer

to [23, Section I.12.1] for the details of this construction.

The study of these objects leads to many important results, e.g. the proof of the irra-

tionality of cubic threefolds by Clemens and Griffiths [6]. However, unlike the curve case,

in higher dimensions the Abel-Jacobi mapping is rarely surjective [23, Corollary I.12.19].

This non-surjectivity is one obstruction to the geometric interpretation of normal functions,

and the first part of my thesis overcomes this obstruction in a canonical way. The obstruc-

tion to characterizing the ‘algebraicity’ of this canonical geometric representative remains.

1.5 Topological Abel-Jacobi mapping and Jacobian inver-

sion

In Chapter 2, we construct an extension of Griffiths’ Abel-Jacobi mapping beyond just

algebraic cycles. Let X be a smooth projective variety of odd dimension 2n − 1, and fix an
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ample line bundle on X. We only look at the primitive part

J2n−1(X)prim =
FnH2n−1(X,C)∗prim

H2n−1(X,Z)prim/torsion

of the intermediate Jacobian in the middle dimension. Recall H2n−1(X,Z)prim is the kernel

of the Lefschetz operator, i.e. cupping with the Chern class of the given ample line bundle.

By Grothendieck’s inductive approach to the Hodge problem ([16, Theorem 12.12]), this is

the most interesting part. For a smooth hypersurface Y
i
↪→ X, there is a natural pushforward

morphism between the singular cohomology groups H2n−2(Y,Z) → H2n(X,Z). Define the

vanishing cohomology of Y, H2n−2(Y,Z)van, as the kernel of this morphism.

Our topological Abel-Jacobi mapping is a group homomorphism AJ : H2n−2(Y,Z)van →

J2n−1(X)prim; it has two important properties:

(i) When the class in H2n−2(Y,Z)van can be represented by an algebraic cycle, the topological

Abel-Jacobi image of this class agrees with Griffiths’ Abel-Jacobi image of the algebraic

cycle in J2n−1(X)prim defined in Section 1.4;

(ii) When Y deforms in a linear series, and the class in H2n−2(Y,Z)van moves to cohomology

classes of nearby fibers by the Gauss-Manin connection, the topological Abel-Jacobi image

varies differentially in J2n−1(X)prim.

The construction of the topological Abel-Jacobi mapping is given in Section 2.1. The

strategy is to define a closed current for each vanishing cohomology class, using harmonic

representatives and several canonically defined differential operators from Kähler geom-

etry. We show that this construction is canonical, and works for all projective manifolds

of odd dimensions. The proof of the two properties is also given in Section 2.1, using

harmonic decomposition of currents on Kähler manifolds.

Property (ii) allows us to study the topological Abel-Jacobi mapping for a family of

hypersurfaces. In particular, when we take an ample linear series on X, the mapping is

defined for the local system of vanishing cohomology of hypersurfaces over the smooth
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locus of the linear series. This local system can be viewed as an infinitely sheeted covering

space of the smooth locus, hence is equipped with the structure of a complex manifold.

Our first main theorem, proved in Section 3.2, is the following topological Jacobi inversion

theorem:

Theorem 1.5.1 The topological Abel-Jacobi mapping is a canonically-defined smooth ex-

tension of the Griffiths’ Abel-Jacobi mapping on algebraic cycles. It is independent of the

choice of Kähler metric on X. When the hypersurface linear series is sufficiently ample,

there exists a connected component of the local system of vanishing cohomology (viewed

as a complex manifold), such that the topological Abel-Jacobi mapping restricted to this

component is a surjection to J2n−1(X)prim.

The proof makes use of a nice result of Schnell [20] and a detailed analysis of the

boundary behavior of the topological Abel-Jacobi mapping. Note that when n = 1 this

reduces to the classical Jacobi inversion theorem for curves.

In Chapter 4, we study another type of topological Abel-Jacobi mapping. This mapping

only works for sufficiently ample hypersurfaces in a given even dimensional variety, but has

the benefit of being holomorphic. The idea originates from an approach to Griffiths’ Abel-

Jacobi mapping for Calabi-Yau threefolds, given by Clemens and Voisin [5], which will be

recalled at the beginning of Chapter 4.

1.6 Extended locus of Hodge classes

We have seen the important role of Lefschetz pencils in the study of integral (1, 1) classes.

However, recent advances indicate that in the study of Hodge loci in higher dimensions, we

need to consider the complete family of hypersurfaces in an ample linear series, rather than

just one-dimensional families. In particular, the notion of singularities of normal functions

over the complete family was introduced [9], and it is shown that the existence of such

singularities is equivalent to the Hodge conjecture [9, 2].
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In this section we want to recall Schnell’s construction of the extended locus of Hodge

classes [19], which is closely related to the circle of ideas mentioned above, and also to our

work in Chapter 4.

Fix a smooth projective variety X of odd dimension 2n− 1 and an ample line bundle L

over X. Consider P := P(H0(X,L )) as the parameter space of hypersurfaces in L and Psm

as the locus of smooth hypersurfaces. For each smooth hypersurface Y , we can define the

vanishing cohomology

H2n−2(Y,Z)van := ker(H2n−2(Y,Z)→ H2n(X,Z)).

Over Psm, this forms a local systemHY,2n−2,Z, and we useU to denote the topological space

associated to this local system.

Now following Saito [17, 18] and Schnell [21], there exists a mixed Hodge moduleM,

which is an extension of the local system H2n−2(Y,Z)van over Psm. Consider the holomorphic

morphism

ι : U(K)→ T (F−nM),

given by the cup product, where U(K) is the union of connected components of U over

which the self intersection is bounded by K, and T (F−nM) is the analytic space defined

as the spectrum of the symmetric algebra of the coherent sheaf F−nM. Concretely, this is

given by

H2n−2(Y,Z)van → FnH2n−2(Y)∗van,

α→< α, · > .

It is proved by Schnell that the closure of ι(U(K)) is an analytic subset of T (F−nM).

Denote the normalization of the closure of the image by Ψ̄. Now we factor ι through Ψ̄,

and it is shown that the morphism ι : U(K) → Ψ̄ is finite. By a standard construction in

9



complex analysis, we can build an extension ofU(K) as a finite (ramified) cover of Ψ̄. We

get the following important theorem in [19]

Theorem 1.6.1 There is a normal analytic space Ū(K) containingU(K) as a dense open

subset, and a finite holomorphic mapping

ῑ : Ū(K)→ T (F−nM),

whose restriction to U(K) coincides with ι. Moreover, ῑ and Ū(K) are unique up to iso-

morphism.

According to the uniqueness, when K1 < K2, Ū(K1) is naturally contained in Ū(K2)

as a subspace. We can take the direct limit and form an extension of U. We will denote

this complex analytic space as Ū. In this case, Schnell proved that Ū is holomorphically

convex. The inverse image ι−1(0) in Ū is the extended locus of Hodge classes.

10



CHAPTER 2

Topological Abel-Jacobi mapping

2.1 Construction

Assume X is a smooth irreducible projective variety of dimension 2n−1, and Y is a smooth

ample hypersurface in X. By definition, H2n−1(X,R)prim is the kernel of the restriction

mapping between the cohomology groups

i∗ : H2n−1(X,R)→ H2n−1(Y,R),

and H2n−1(X,Z)prim, H2n−1(X,C)prim can be defined in a similar way. These groups naturally

carry Hodge structures, as substructures of the corresponding cohomology groups of X.

We will introduce the notion of primitive intermediate Jacobian. Using Poincaré dual-

ity, we have the following diagram,

H2n−1(X,Z)prim/torsion

��

= H2n−1(X,Z)prim/torsion

��
H2n−1(X,R)prim = H2n−1(X,R)∗prim,

where the second vertical mapping is given by integrating forms over chains. In order

to have a complex structure, we identify H2n−1(X,R)prim with the complex vector space

FnH2n−1(X,C)prim, when F• denotes the Hodge filtration.
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Definition 2.1.1 The primitive intermediate Jacobian of X is defined to be the compact

complex torus

J2n−1(X)prim =
FnH2n−1(X,C)∗prim

H2n−1(X,Z)prim/torsion
.

Recall that the vanishing cohomology group H2n−2(Y,Z)van is defined to be the kernel of the

Gysin morphism

i∗ : H2n−2(Y,Z)

P.D.
��

// H2n(X,Z)

H2n−2(Y,Z)
i∗ // H2n−2(X,Z),

P.D.−1

OO

where P.D. is the Poincaré duality morphism.

For a vanishing cohomology class α ∈ H2n−2(Y,Z)van, we can choose a topological

cycle Σ on Y , such that Σ represents the Poincaré dual of α. In other words, the current
∫

Σ

associated to Σ, which we will denote also as Σ, represents α. By definition, we see that

the homology class of Σ in X is zero, so we can choose a topological chain Γ in X whose

boundary is Σ. As currents, we have

dΓ = Σ.

Now on Y , we can consider the harmonic form hα representing α. This defines a current

Σα,Y =

∫
Y

hα ∧ (−).

We will use Σα to denote the push forward of Σα,Y into X. Σα is an exact current on X. So

for a fixed metric on X, using differential operators on currents, we have a current on X

given by d∗GΣα.

Remark 2.1.1 Instead of the harmonic representative, we can take any d-closed and ∂-

closed differential form representing α, and the argument in this section still works. In this

paper we will stick to the harmonic forms since it simplifies several proofs in later sections.

Note that Σ and Σα,Y represent the same cohomology class on Y , so their difference is a

12



coboundary. We will write

dB = Σα,Y − Σ,

where B is supported on Y . Consider the following current

Aα = −d∗GΣα + B + Γ.

The following proposition shows that Aα defines a mapping from H2n−2(Y,Z)van to J2n−1(X)prim.

Proposition 2.1.1 Aα is a closed current on X. It determines a point AJ(α) ∈ J2n−1(X)prim,

which is independent of the choice of Σ and Γ, and also the choice of metrics on X and Y.

Moreover, if α is represented by an algebraic cycle, then this point in J2n−1(X)prim coincides

with the Abel-Jacobi image of this algebraic cycle.

Proof: We will first show that Aα is closed. Note that Σα represents the cohomology class

i∗(α) = 0, so it is an exact current, and

Σα = dd∗GΣα.

So we can compute

dAα = −dd∗GΣα + dB + dΓ

= −Σα + Σα − Σ + Σ

= 0.

Since Aα is closed, it takes zero value when paired with exact forms, we see Aα is a well

defined element in FnH2n−1(X,C)∗prim. The corresponding point AJ(α) ∈ J2n−1(X)prim is

determined by the projection of this element.

In order to show that AJ(α) doesn’t depend on the choice of Σ and Γ, assume a cycle

Σ′ on Y also represents α, and Γ′ is a chain on X whose boundary is Σ′. We can define B′

13



similarly, and consider the current

A′α = −d∗GΣα + B′ + Γ′.

Note that Σ and Σ′ are cycles on Y representing the same cohomology class, so they differ

by a boundary on Y , write

Σ − Σ′ = dT.

Now

Aα − A′α = B + Γ − B′ − Γ′

= (Γ − Γ′ − T ) + (B − B′ + T ).

The first term is a topological cycle on X, a multiple of which can be written as the sum

of an element of H2n−1(X − Y) and an element of the image of H2n−1(Y), so its image in

FnH2n−1(X,C)∗prim is contained in the image of H2n−1(X−Y,Q)∩H2n−1(X,Z)prim. The second

term is a closed current supported on Y . Since for any differential form on X representing a

primitive cohomology class, its restriction to Y is exact and pairs to zero with closed forms,

we see the Abel-Jacobi image of Aα − A′α is 0.

Now we want to show that the Abel-Jacobi mapping doesn’t depend on the Kähler

metric of X. Using the fact that Σα is dc − closed, we see that

d∗GΣα = dcdc∗d∗G2Σα.

So for two Kähler metrics on X, the difference of the two expressions of d∗GΣα is d−closed

and dc − exact, hence d − exact. We see that the choice of Kähler metrics on X doesn’t

change the Abel-Jacobi mapping.

Now for a primitive cohomology class θ ∈ FnH2n−1(X,C)prim, we choose the harmonic

form hθ as the representative of θ. Since hθ|Y is d − exact and ∂ − closed, by ∂∂̄ − lemma,
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we have

hθ|Y = ddcγ,

for some differential form γ on Y . Then

Aα(hθ) =

∫
Γ

hθ +

∫
X

hθ ∧ B

=

∫
Γ

hθ +

∫
Y

ddcγ ∧ B

=

∫
Γ

hθ +

∫
Y

(Σα,Y − Σ)(dcγ)

=

∫
Γ

hθ +

∫
Y

hα ∧ dcγ −

∫
Σ

dcγ

=

∫
Γ

hθ −
∫

Σ

dcγ.

Here the second term in the fourth line vanishes by the Stokes theorem because hα is dc −

closed. In particular, we see that this is independent of the choice of the Kähler metric on

Y .

Moreover, if Σ is an algebraic cycle, the restriction of the Weil operator C to Σ is the

identity on forms of top degree on Σ, hence
∫

Σ
dcγ =

∫
Σ

dcγ = 0 by Stokes theorem. In this

case, the only contribution comes from the current Γ, which coincides with the Abel-Jacobi

image of an algebraic cycle. �

Definition 2.1.2 The group homomorphism from H2n−2(Y,Z)van to J2n−1(X)prim, as defined

above, is the topological Abel-Jacobi mapping.

2.2 First order derivatives

Now we fix an ample line bundle L over X, and use Psm ⊂ L = PH0(X, L) to denote

the locus where for t ∈ Psm, the corresponding hypersurfaces Yt is smooth. Over Psm, we

have the local system H2n−2(Z)van, which is fiberwise given by H2n−2(Yt,Z)van. Equipped

with the Gauss-Manin connection, H2n−2(Z)van can be viewed as a covering space of Psm,
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hence is equipped with a natural complex structure. We will useU to denote this complex

manifold.

For a holomorphically embedded one-dimensional complex disc T ⊂ Psm, consider the

corresponding family of hypersurfaces Y → T . Given a flat section α of H2n−2(Z)van,

for each point t ∈ T , we have αt ∈ H2n−2(Yt,Z)van, for which the topological Abel-Jacobi

mapping is defined. In order to compute the derivatives of the topological Abel-Jacobi

mapping, we fix a primitive cohomology class θ ∈ FnH2n−1(X,C)prim, and consider the

complex function AJ(αt)(θ) : T → C. Choose a transversely holomorphic trivialization

σ : X × T → X × T , such that σ also trivializes the family Y → T . For a tangent vector

field v over T , we have a canonical global lifting ṽ of v to X × T , and let v̄ = σ∗(̃v). Note

that by the choice of the trivialization, v̄ and v are of the same type. Use p : X × T → X to

denote the projection morphism.

Let hαt be the harmonic forms on Yt representing αt, we can take a lifting form Hα on

Y such that i) Hα|Yt = hαt , ii) iuHα = 0, for any horizontal vector field u on Y . Also let

hθ be the harmonic form on X representing θ. It is easy to see that p∗hθ|Y is d − exact,

write p∗hθ|Y = dΩ for some differential form Ω on Y . Assume Ω|Yt = ωt, then we have

dωt = hθ|Yt .

Theorem 2.2.1 In above setting, we have

∂

∂v
|t=0(AJ(αt)(θ)) =

∫
Y0

iv̄dHα ∧ ω0 +

∫
Y0

hα0 ∧ iv̄(p∗hθ),

where iv̄ is the contraction against the vector field v̄.

Proof: We have seen that the topological Abel-Jacobi mapping is independent of the

choice of Σ and Γ, so we can assume that the trivialization σ also trivializes the family of
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Σt and Γt. So

AJ(αt)(θ) =

∫
Γt

hθ +

∫
Yt

Bt ∧ dωt

=

∫
Γt

hθ −
∫

Σt

ωt +

∫
Yt

hαt ∧ ωt.

Use Lv̄ to denote the Lie derivative in v̄ direction, we have the Cartan-Lie formula

Lv̄ = div̄ + iv̄d.

Now we compute the derivative of each term.

∂

∂v
|t=0

∫
Γt

hθ =

∫
Γ0

Lv̄ p∗hθ

=

∫
Γ0

div̄ p∗hθ +

∫
Γ0

iv̄dp∗hθ

=

∫
Γ0

div̄ p∗hθ

=

∫
Σ0

iv̄ p∗hθ.

∂

∂v
|t=0

∫
Σt

ωt =

∫
Σ0

Lv̄Ω

=

∫
Σ0

div̄Ω +

∫
Γ0

iv̄dΩ

=

∫
Σ0

iv̄dΩ

=

∫
Σ0

iv̄ p∗hθ.
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So the derivatives of the first two terms cancel each other. For the third term, we have

∂

∂v
|t=0

∫
Yt

hαt ∧ ωt =

∫
Y0

Lv̄(Hα ∧Ω)

=

∫
Y0

Lv̄Hα ∧ ω0 +

∫
Y0

hα0 ∧ Lv̄Ω

=

∫
Y0

div̄Hα ∧ ω0 +

∫
Y0

iv̄dHα ∧ ω0 +

∫
Y0

hα0 ∧ div̄Ω +

∫
Y0

hα0 ∧ iv̄dΩ

=

∫
Y0

iv̄dHα ∧ ω0 +

∫
Y0

hα0 ∧ iv̄(p∗Hθ).

�

In particular, if α0 is a Hodge class, i.e. a class of type (n − 1, n − 1), and the tangent

vector is of type (0, 1), the second term vanishes since the integrand is of holomorphic

degree larger than the antiholomorphic degree. Moreover, if the tangent vector is also

tangent to the Hodge locus, then iv̄dHα is of type (n− 1, n− 1) or (n, n− 2), so the first term

also vanishes for type reason. Hence we obtain

Corollary 2.2.1 When restricted to the Hodge locus, the topological Abel-Jacobi mapping

is holomorphic.

Moreover, we need the following proposition for later use

Proposition 2.2.2 The topological Abel-Jacobi mapping is real analytic.

Proof: Recall from the first section that, when we take

hθ|Yt = ddcγt

for some differential form γt on Yt, the topological Abel-Jacobi image is given by

Aαt(hθ) =

∫
Γt

hθ −
∫

Σt

dcγt.

Notice we can embed X into a projective space such that the family Yt is a family of hyper-
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plane sections. In this way, the Fubini-Study metric on the projective space induces a real

analytic family of metrics on Yt. By Kuranishi theory, the trivialization of the family can

be taken to be real analytic. In particular, the families of Γt and Σt are real analytic. On the

other hand, harmonic forms are always real analytic, so we can take γt to be a real analytic

family. So the two terms both vary real analytically when t changes. �
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CHAPTER 3

Topological Jacobi inversion

3.1 Boundary behavior of the topological Abel-Jacobi map-

ping

In this section, we want to study the behavior of the topological Abel-Jacobi mapping

along the boundary of U. We will focus on the one-dimensional case, which will be im-

portant in the next section. Assume we have a family of ample hypersurfaces Y over

one-dimensional disc ∆, and for t ∈ ∆∗ the hypersurface Yt is smooth, while Y0 is a union

of smooth hypersurfaces Y0,i with simple normal crossing. Assume Y is smooth. For any

αt ∈ H2n−2(Yt,Z)van of finite monodromy, by applying a finite base change, we can assume

αt is an invariant cycle class, so by the local invariant cycle theorem, it is the restriction of

a class on Y . Choosing a topological cycle Σ on Y representing this class, and write its

restriction to Yt as Σt for every t. Moreover we assume that every Σt is a differential cycle

and that Σ0 is disjoint from the singularities of Y0. These assumptions will be automatically

satisfied in the applications in next section. Clearly Σ0 and α0 decompose into sums of Σ0,i

and α0,i with respect to the irreducible components decomposition. For t , 0, αt is a local

section ofU over ∆, and the topological Abel-Jacobi mapping is defined for each αt. The

topological Abel-Jacobi image of α0 is defined to be the sum of the images of α0,i. Note

that over the disc ∆, the topological Abel-Jacobi mapping is defined separately for t , 0

and t = 0. However, we have the following theorem:
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Theorem 3.1.1 The topological Abel-Jacobi mapping is continuous for the family of αt

over ∆, i.e. in the primitive Jacobian J2n−1(X)prim,

lim
t→0

AJ(αt) = AJ(α0).

Proof: Fix θ ∈ FnH2n−1(X,C)prim, recall that when we take hθ to be the harmonic represen-

tative of θ,

AJ(αt)(θ) =

∫
Bt

hθ +

∫
Γt

hθ.

By our choice of Σt, we can take Γt to be a continuous family of chains in X, so the second

term certainly varies continuously. We need to prove that the first term also varies continu-

ously, i.e. for any given ε > 0, we want to show there exists δ > 0, such that for any t ∈ ∆,

0 < |t| < δ, we have

|

∫
Bt

hθ −
∫

B0

hθ| < ε.

The fact that the restriction of the primitive class θ to Yt vanishes for every t implies that

the pullback of θ to Y is cohomologically trivial, hence the pullback of hθ is exact, written

as dγ. Then we have for t ∈ ∆∗

hθ|Yt = dγt,

and also

hθ|Y0,i = dγ0,i,

where γt and γ0,i are the restrictions of γ to Yt and Y0,i.

Take I0 to be a tubular neighborhood in Y0 of the singularities, which does not intersect

with Σ0. Let Y in
0 := Y0\I0, note that Y in

0 is a smooth open complex manifold. In [4], Clemens

defined a flow on Y , such that for arbitrary I0, Y in
0 deforms smoothly to open submanifolds

Y in
t of Yt under this flow. In particular, this gives us diffeomorphisms ϕt : Y in

t → Y in
0 , where

ϕ0 = id. Let It := Yt\Y in
t , we can take Σt to be the image of Σ0 under the diffeomorphism.
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Note that B0 is a current on Y0 satisfying

dB0 = Σα0 − Σ0,

so in particular, we have

∫
B0

hθ =

∫
B0

dγ0 =
∑

i

(
∫

Y0,i

hα0,i ∧ γ0,i −

∫
Σt

γ0,i).

As on each component hα0,i ∧ γ0,i is a smooth form, we see that we can take I0 to be

sufficiently small, so

|

∫
B0

hθ − (
∫

Y in
0

hα0 ∧ γ0 −

∫
Σ0

γ0)| = |
∫

I0

hα0 ∧ γ0| <
ε

4
.

Similarly for t , 0, ∫
Bt

hθ =

∫
Bt

dγt =

∫
Yt

hαt ∧ γt −

∫
Σt

γt.

Now γt is the restriction of the global form γ defined Y , in order to give a uniform bound

for
∫

It
hαt ∧ γt, we only need to show the norm of hαt |It uniformly converges to 0, when the

volume of I0 (hence the volume of It) goes to 0.

Note that by our assumption, αt is the restriction of some class of Y , taking any smooth

form h on Y representing this global class, we see that the restriction h|Yt = hαt+ exact

form. As a consequence, we see the norm of hαt over It is bounded by the norm of h|It , so

we only need to show that the norm of h|It goes to 0 uniformly, when the volume of I0 goes

to 0.

The point is that h is defined over Y , so we can also restrict it to each component of Y0.

As the Kähler metrics are taken to be the restricted ones, the norm of a continuous family

of forms is still continuous. So the norm of h|It goes to 0 for every t ∈ ∆. By possibly

shrinking ∆ we have this property over a compact set containing 0 ∈ ∆, so the uniform

convergence follows from the Arzela-Ascoli theorem. Now by taking a sufficiently small
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I0, we can find δ1 > 0, such that for any t ∈ ∆, 0 < |t| < δ1, we have

|

∫
Bt

hθ − (
∫

Y in
t

hαt ∧ γt −

∫
Σt

γt)| =
∫

Y in
t

hαt ∧ γt <
ε

4
.

Now take I0 to be sufficiently small such that the two inequalities above both hold. Note

also that the family of cycles Σt is away from the singularities of Y0, so over the support the

family of differential forms γt is continuous, hence
∫

Σt
γt is continuous at t = 0. So we have

δ2 > 0, such that for any t ∈ ∆, 0 < |t| < δ2,

|

∫
Σt

γt −

∫
Σ0

γ̃0| <
ε

4
.

Now we have the following lemma, which deals with the integral involving the harmonic

forms:

Lemma 3.1.2 In the above setting, given any continuous family of differential forms γt on

Y in
t , the integral

∫
Y in

t
hαt ∧ γt is continuous at t = 0.

Admitting this lemma for the moment, we see that there exists δ3 > 0 such that, for any

t ∈ ∆ with 0 < |t| < δ3,

|

∫
Y in

t

hαt ∧ γt −

∫
Y in

0

hα0 ∧ γ̃0| <
ε

4
.

Now take δ = min{δ1, δ2, δ3}, combining the inequalities above we get what we want. �

Proof of the lemma: the point is to show that hαt is a continuous family at t = 0. As the

Kähler metric on Y in
t is restricted from the Kähler metric of X, we see the Hodge ∗-operator

and hence the norm of differential forms on Y in
t varies continuously at t = 0.

Now recall we have diffeomorphisms ϕt : Y in
t → Y in

0 , where ϕ0 = id. Consider the form

ϕt,∗(hαt) since this represents the same cohomology class as hα0 , we see ϕt,∗(hαt) = hα0 +dηt.
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In the proof of this lemma, all the norms || · || are taken over the open sets Y in
t . We see

||ϕt,∗(hαt)|| = ||hα0 + dηt|| = ||hα0 || + ||dηt|| ≥ ||hα0 ||.

Taking limit for t → 0, we see

lim
t→0
||ϕt,∗(hαt)|| ≥ ||hα0 ||.

On the other hand, we have

hαt = ϕ∗tϕt,∗(hαt) = ϕ∗t (hα0) + dϕ∗t (ηt),

so

||ϕ∗t (hα0)|| = ||hαt − dϕ∗t (ηt)|| ≥ ||hαt ||.

Taking limit we have

lim
t→0
||ϕ∗t (hα0)|| ≥ lim

t→0
||hαt ||.

By the fact that ϕt is a continuous family of diffeomorphisms, ϕ0 = id, and the continuity

of the norm, we see that

lim
t→0
||hαt || = lim

t→0
||ϕt,∗(hαt)||,

and

lim
t→0
||ϕ∗t (hα0)|| = ||hα0 ||.

Combining the inequalities above, we get

||hα0 || ≥ lim
t→0
||ϕt,∗(hαt)|| ≥ lim

t→0
||ϕt,∗(hαt)|| ≥ ||hα0 ||,
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hence

lim
t→0
||ϕt,∗(hαt)|| = ||hα0 ||.

In particular, we see

lim
t→0

dηt = 0,

and

lim
t→0

ϕt,∗(hαt) = hα0 .

Now ∫
Y in

t

hαt ∧ γt =

∫
Y in

0

ϕt,∗(hαt) ∧ ϕt,∗(γt),

note that ϕ0,∗(γ0) = γ0, so ϕt,∗(γt) is a continuous family. By what we proved we see the

integral is continuous at t = 0. �

3.2 Topological Jacobi inversion

In this section, we prove a Jacobi inversion theorem for the topological Abel-Jacobi map-

ping. In order to see this, it is easier to work with the real structure of the primitive inter-

mediate Jacobian. Let

J2n−1(X)prim =
H2n−1(X,R)∗prim

H2n−1(X,Z)prim/torsion
.

Now the topological Abel-Jacobi mapping AJ(α) of α ∈ H2n−2(Y,Z)van is still given by the

real current

Aα = −d∗GΣα + B + Γ,

paired with real differential forms representing real primitive cohomology classes of X.

Note that this is the real part of the complex Abel-Jacobi mapping defined in previous

sections.
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We first recall a theorem in [20]. Consider the monodromy action of the fundamental

group π1(Psm) onH2n−2(Q)van. Given α ∈ H2n−2(Y0,Q)van and g ∈ G = π1(Psm, 0), such that

α is invariant under the action of g, we define the tube mapping to H2n−1(X,Q)prim as follow.

Choose a topological cycle Σ representing α, and a closed path γ representing g. When α

is transported along γ, it moves through a one-dimensional family of hypersurfaces, and in

the process, traces out a (2n − 1)-chain. This is a (2n − 1)-cycle, since gα = α, and defines

a well defined element in H2n−1(X,Q)prim. We obtain the tube mapping

T : {g ∈ G, α ∈ H2n−2(Y0,Q)van | gα = α} → H2n−1(X,Q)prim.

In [20], Schnell proved the following theorem:

Theorem 3.2.1 If H2n−2(Y0,Q)van , 0, then the tube mapping is surjective.

In this paper we will work with the integral tube mapping

T : {g ∈ G, α ∈ H2n−2(Y0,Z)van | gα = α} → H2n−1(X,Z)prim.

As a consequence of Schnell’s theorem, the image of this mapping is cofinite, i.e. the

quotient of H2n−1(X,Z)prim by T ({g ∈ G, α ∈ H2n−2(Y0,Z)van | gα = α}) is a finite group.

Now we study the relationship between the integral tube mapping and the topological

Abel-Jacobi mapping. For a fixed α ∈ H2n−2(Y0,Z)van, the topological Abel-Jacobi mapping

induces a morphism on the fundamental groups

AJ∗ : π1(U, α)→ π1(J2n−1(X)prim) � H2n−1(X,Z)prim � H2n−1(X,Z)prim.

Note that by the projection from U to Psm, an element in π1(U, α) can be realized as an

element g ∈ π1(Psm, 0) such that gα = α. Hence the tube mapping is also defined for

π1(U, α), and we will show these two mappings actually coincide (up to a sign). To see

this, choose a topological cycle Σ0 on Y0 representing α, and a topological chain Γ0 on X
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whose boundary is Σ0. Assume γ : [0, 1]→ Psm is a loop representing g, and Γ0 and Σ0 are

transported to Γt and Σt along γ. Now

AJ∗(g) = (−d∗GΣα + B1 + Γ1) − (−d∗GΣα + B0 + Γ0)

= (B1 − B0) + (Γ1 − Γ0).

Since B1 − B0 is supported on Y0, the corresponding class in H2n−1(X,Z)prim is represented

by Γ1 − Γ0. On the other hand, consider the cylinder traced out by the family of Γt, the

boundary of it is Γ1 − Γ0 + T (g, α), so up to a sign the tube mapping coincides with the

induced morphism of the topological Abel-Jacobi mapping on the fundamental groups.

In the following discussion, we will make use of different linear series. Notations will

be similar, with the corresponding linear series specified, e.g. Psm(L ), H2n−2(L ,Z)van,

U(L ). Note that all the linear series are taken to be complete. We have the following

theorem, which is an analogue of the classical Jacobi inversion theorem.

Theorem 3.2.2 There exists a complete linear series L , and a connected component U0

ofU(L ), such that

AJ : U0 → J2n−1(X)prim

is surjective.

Proof: Choose an ample linear series K . As a consequence of Theorem 3.2.1, given a

point 0 ∈ Psm(K ), there exist αi ∈ H2n−2(Y0,Z)van and gi ∈ π1(Psm(K ), 0), such that

giαi = αi, and the images of (αi, gi) under the tube mapping generate a cofinite subgroup

of H2n−1(X,Z)prim. Here i = 1, 2, . . . , d, where d := dim H2n−1(X,R)prim. According to

the identification of the tube mapping with the induced morphism of the topological Abel-

Jacobi mapping on the fundamental groups, we see AJ∗(αi, gi) generate H2n−1(X,R)prim,

where (αi, gi) is understood to be an element of π1(U(K ), αi).

In order to translate this property on the fundamental groups to a local statement, we

need the following lemma:
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Lemma 3.2.3 Consider a differential manifold M, and a smooth morphism to a compact

torus f : M → A = V/Λ. Assume that there exist points pi ∈ M and gi ∈ π1(M, pi) such

that f∗(gi) ∈ π1(A, f (pi)) = Λ ⊂ V generate V. Now consider the morphism

f∗ : T M → T A � V × A→ V,

where the first morphism is the pushforward of the tangent vectors, and the last morphism

is the projection to V. Then we can find xi ∈ M, and vi ∈ Txi M, such that f∗(vi) generate V.

Proof of the lemma: Choose smooth morphisms γi : S1 → M representing gi. Without loss

of generality, we can assume all the loops pass through the origin 0 ∈ A. Now consider the

images of ( f∗ ◦ γi∗)(TS1) in V , it suffices to show that the images generate V . If not, we can

assume the image is contained in a proper subspace W of V . In this case, we see the image

( f ◦ γi)(S1), as a compact set in A, is the projection of a loop in W to A. As a consequence,

f∗(gi) is contained in W, and this contradicts with the assumption that f∗(gi) generate V. �

By this lemma, we can choose αi ∈ H2n−2(Yi,Z)van and vi ∈ TU(K ) such that AJ∗(vi) ∈

H2n−1(X,R)prim generate H2n−1(X,R)prim, where

AJ∗ : TU → T J2n−1(X)prim � J2n−1(X)prim × H2n−1(X,R)prim → H2n−1(X,R)prim.

Now take L = dK , and consider the singular hypersurface H0 :=
d⋃

i=1
Yi. This corresponds

to a point p0 ∈ Pdeg :=
d∏

i=1
Psm(K ) ⊂ P(L ), and over Pdeg, we have the local system

d⊕
i=1
H2n−2(Z)van. Thanks to the Gauss-Manin connection, this local system is also associated

with a complex manifoldUdeg. The topological Abel-Jacobi mapping for this local system
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is defined to be the sum of the topological Abel-Jacobi mapping over each components, i.e.

AJ : Udeg → J2n−1(X)prim,

(β1, β2, . . . , βd) 7→
d∑

i=1

AJ(βi).

Now over the point p0, consider the class ᾱ = (α1, α2, . . . , αd) and tangent vectors of

Udeg given by the pushforward of vi under the natural embedding ofU(K ) intoUdeg. By

our construction, the topological Abel-Jacobi mapping over Udeg is a local submersion at

the point ᾱ.

The singular hypersurface H0 =
d⋃

i=1
Yi ∈ Pdeg, locally in L , can be deformed into

smooth hypersurfaces in Psm(L ). Now for every i = 1, . . . , d, take topological cycles Σi

on Yi representing αi. Since αi are vanishing cohomology classes, we can assume Σi to be

disjoint from the intersection of Yi with other Y j’s. Take I to be a tubular neighborhood

in H0 of the intersection of different Yi and Y j, which does not intersect with any Σi, and

let Hin
0 := H0\I. Hin

0 is a smooth open complex manifold, and locally in L , it deforms

smoothly to open submanifolds of smooth hypersurfaces in Psm(L ). The topological cycles

Σi deform to topological cycles on those smooth hypersurfaces, and all of the deformations

represent vanishing cohomology classes, since the corresponding cohomology classes in X

do not change. Note that this works for any singular hypersurfaces in Pdeg and any points

inUdeg, so this gives us a way to realizeUdeg as a submanifold of the boundary ofU(L ).

Concretely, let the hypersurfaces Yi be defined by equations fi = 0. Then H0 is simply

the hypersurface defined by F :=
∏

fi = 0. For a tangent direction v along Pdeg, we can

choose hypersurfaces Yi(s) defined by functions fi(s), both depending on the parameter s ∈

∆, such that the infinitesimal deformation at s = 0 represents v. Note that the hypersurfaces

given by F(s) :=
∏

fi(s) are contained in Pdeg. Now consider the family of hypersurfaces

H(s, t) defined by functions G(s, t) = F(s) + tE, where s, t ∈ ∆, and E is a function of the

same degree as F. For a generic choice of E, we can assume that H(s, t) ∈ Psm for t , 0.
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The family H(0, t) is an example of the deformation in last paragraph. Also, by taking the

derivative with respect to s, a tangent vector v along Pdeg can be lifted to a vector field v(t)

in TP|H(0,t).

Now we want to show the derivatives of the topological Abel-Jacobi mapping along

such a vector field v(t), defined seperately forUdeg andU(L ), is in fact continuous on the

union of these two manifolds. To see this, assume we have a family of hypersurfaces Ht

over a disc ∆, where H0 is as before and all the other fibers are smooth. Let H to denote

the total space. So ∆ is embedded in P(L ), and the vi are tangent vectors of Pdeg at 0 ∈ ∆.

As in the proof of Theorem 3.1.1, take a differential form Ω on H such that dΩ = hθ|H ,

and Hαi to be the family of harmonic forms. Now recall when we deform H0 in Pdeg in

direction v, the derivative of the topological Abel-Jacobi mapping is given by

∑
i

(
∫

Yi

iv̄dHαi ∧Ω|Yi +

∫
Yi

hαi ∧ iv̄(hθ|Yi)),

where v̄ is a lifting of v, and hθ is the harmonic representative of θ ∈ H2n−1(X,R)prim.

Extend vi to a tangent vector field vi(t) of P(L ) over ∆. Since Psm is open in P(L ), we

see for t ∈ ∆∗, Ht deforms to a smooth hypersurface in direction vi(t), so the derivative of

the topological Abel-Jacobi mapping is given by

∫
Ht

iv̄dHαt ∧Ω|Ht +

∫
Ht

hαt ∧ iv̄i(t)(hθ|Ht).

As in the proof of Theorem 3.1.1, take Hin
t = Ht\It. Since vi(t) is a continuous vector

field, we can take lifting v̄i(t) to Hin
t , such that this family of lifting is continuous at t = 0.

On one hand, the forms under integration remain bounded on It, so we can take sufficiently

small It such that the integration on It is bounded by arbitrarily small constant. On the other

hand, the family of forms Ω|Hin
t

and iv̄i(t)(hθ|Hin
t

) is clearly continuous, so by Lemma 3.1.2,
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the integral ∫
Hin

t

iv̄dHαt ∧Ω|Hin
t

and
∫

Hin
t

hαt ∧ iv̄i(t)(hθ|Hin
t

)

are both continuous at t = 0. So we see the derivatives of the topological Abel-Jacobi

mapping along vi(t) are continuous.

Now since the topological Abel-Jacobi mapping is a local submersion at the point ᾱ,

we see it is a local submersion at a generic point in the intersection of U(L ) and ∆. Pick

such a point p, by the fact that the topological Abel-Jacobi mapping over U(L ) is real

analytic, we see there is a surjection from a neighborhood of p ∈ U(L ) to a neighborhood

of AJ(p) ∈ J2n−1(X)prim. Thanks to the group structures on U(L ) and J2n−1(X)prim, when

we take a multiple mp of p for m � 0, a neighborhood of mp will map surjectively to

J2n−1(X)prim. So the connected componentU0 containing mp is what we need. �
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CHAPTER 4

Holomorphic relative Abel-Jacobi mapping

4.1 Recall: Abel-Jacobi mapping for Calabi-Yau three-

folds and Hodge loci

In this chapter, we will study a relative version of the Abel-Jacobi mapping. The idea

originates from an approach to Griffiths’ Abel-Jacobi mapping for Calabi-Yau threefolds,

given by Clemens and Voisin [5]. To motivate the whole construction, we review this story

from [5].

Assume X0 is a Calabi-Yau threefold, i.e. X0 is simply connected and ωX0 � OX0 . It

is known that the infinitesimal deformations of X0 are unobstructed. Each line bundle L0

on X0 deforms canonically with X0 since H0,1(X0) = 0. Here we assume that L0 is ample,

and fix a smooth hypersurface Y0 ∈ |L0|. Following [5], let X′ be a local deformation

space of X0, and U′ a local deformation space of the pair (X0,Y0). Note that H0(X, ωX) is

one-dimensional, and we consider the space X̃′ of pairs (X, ω), where ω is a holomorphic

(3, 0)-form. Ũ′ is the space of triples (X,Y, ω).

For each pair (Xx′ ,Yu′), we have the vanishing cohomology group H2(Yu′ ,Z)van and the

relative homology group H3(Xx′ ,Yu′ ,Z). Over U′, consider the local system H2
Y,Z,van and

H3,X,Y,Z with fibers H2(Yu′ ,Z)van and H3(Xx′ ,Yu′ ,Z) respectively. Using the Gauss-Manin

connection, a vanishing class α ∈ H2(Y0,Z)van can be extended to a local flat section αu′ of

H2
Y,Z,van, and this lifts to a local section α̃u′ of H3,X,Y,Z. More concretely, if αu′ are represented
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by 2-cycles Σu′ , then α̃u′ are represented by differentiable 3-chains Γu′ such that

∂Γu′ = Σu′ .

Now consider the Hodge bundle H3
X and H3

X,Y over U′, which are bundles with fiber

H3(Xx′ ,C) and H3(Xx′ ,Yu′ ,C) respectively. There is a natural bundle mapping

f : H3
X,Y → H

3
X,

induced by the inclusion operator on cycles. Since (3, 0)-forms restrict to zero on any

hypersurface, we see that a section ωũ′ of F3H3
X canonically lifts to a section ωrel of H3

X,Y .

Using the pairing between H3(Xx′ ,Yu′) and H3(Xx′ ,Yu′), we can define the potential function

ΦBN : Ũ′ → C

ũ′ →< ωrel(ũ′), α̃(ũ′) > .

More concretely, we have

ΦBN(ũ′) =

∫
Γu′

ωũ′ .

This function is well-defined up to the choice of the lifting α̃u′ . For two different

choices, the difference is an element in H3(Xx′ ,Z), so the function is well defined up to

periods of ωũ′ . Since the section Urel is holomorphic and the lifting α̃u′ is flat, the function

ΦBN is holomorphic. We will first study the relationship between the relative differential

dŨ′/X̃′ΦBN and the Hodge loci.

Recall the following lemma in [5]:

Lemma 4.1.1

5Ũ′/X̃′Urel ∈ Ω1
Ũ′/X̃′ ⊗ i(F2H2

Y),
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Furthermore, the morphism

5Ũ′/X̃′Urel : TŨ′/X̃′ → i(F2H2
Y)

is surjective.

In particular,

5Ũ′/X̃′ΦBN =< 5Ũ′/X̃′Urel, α̃ >

=< i(µ), α̃ >

=< µ, ∂α̃ >

=< µ, α > .

where µ is a local section of F2H2
Y , and the last intersection pairing is taken overH2

Y . Note

that by the surjectivity lemma, (5Ũ′/X̃′ΦBN)|u′ = 0 if and only if αu′ is of type (1, 1).

The Hodge locus U′h is defined by

U′h := {u′ ∈ U′|αu′ ∈ F1H2(Yu′)},

and we use Ũ′h to denote the inverse image of U′h in Ũ′. By the argument above, we have

the following analogue of the result in [5]:

Theorem 4.1.2 The Hodge locus Ũ′h is defined by the vanishing of the relative differential

dŨ′/X̃′ΦBN .

Now we want to show that the differential of the potential function gives information

on the Abel-Jacobi mapping. Fix a local section ω of F3H3
X. By applying the Gauss-Manin

connection, we have the following isomorphism([5], [8]):

5ω : TX̃′ � F2H3
X
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and dually

ΩX̃′ � (F2H3
X)∗.

Then for any vanishing algebraic class α on Y0, we have the potential function ΦBN .

The differential dΦBN ∈ ΩX̃′ can be identified with an element in F2H3(X0)∗ via the iso-

morphism above, and it projection to

J3(X0)prim �
F2H3(X0)∗

H3(X0,Z)

is well defined, independent of the choice of the liftings and ω. The following theorem

shows that Griffiths’ Abel-Jacobi image of an algebraic cycle agrees with the above con-

struction [5].

Theorem 4.1.3 For a vanishing class α of type (1, 1) on Y0, the differential

dΦBN |{X0,Y0,ω} ∈ ΩX̃′,0 � F2H3(X0)∗ → J3(X0)prim

maps to the Abel-Jacobi image of α.

4.2 Relative Abel-Jacobi mapping

For a smooth projective variety X of dimension 2n − 1, which is ample in a fixed smooth

variety W of dimension 2n, we will consider the vanishing cohomology H2n−1(X)van, which

is the kernel of the pushforward H2n−1(X) → H2n+1(W). For an ample smooth hyper-

surface Y in X, define the subspace H2n−1(X,Y)W of H2n−1(X,Y,C) to be the preimage of

H2n−1(X,C)van under the coboundary morphism of cohomology groups. Similarly we can

define a space H2n−1(X,Y)W in the relative homology, and there is a natural pairing between

these two subspaces, as the restriction of the pairing between the relative homology and

cohomology. We have short exact sequences of mixed Hodge structures
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0 // H2n−2(Y)van
i // H2n−1(X,Y)W� _

��

f // H2n−1(X)van� _

��

// 0

0 // H2n−2(Y)van
i // H2n−1(X,Y)

f // H2n−1(X)prim
// 0.

In this section, we will make use of the relative Jacobian J(X,Y)W , defined by

J(X,Y)W :=
FnH2n−1(X,Y)∗W
H2n−1(X,Z)van

,

where we use the natural inclusion

H2n−1(X,Z)van → H2n−1(X,C)∗van → H2n−1(X,Y,C)∗W → FnH2n−1(X,Y)∗W .

J(X,Y)W is naturally an open complex manifold. with the complex structure induced from

that of FnH2n−1(X,Y)∗W .

Now if we dualize the first short exact sequence, we get

0→ H2n−1(X,Z)van → H2n−1(X,Y,Z)∗W → H2n−2(Y,Z)van → 0.

For an element α ∈ H2n−2(Y,Z)van, we can choose a lifting α̃ ∈ H2n−1(X,Y,Z)∗W , which can

be viewed as an element in FnH2n−1(X,Y)∗W via the natural morphism

H2n−1(X,Y,Z)∗W → FnH2n−1(X,Y)∗W .

Now for two different liftings, they differ by an element in H2n−1(X,Z)van, so we see that α̃

is in fact a well defined point in the relative Jacobian J(X,Y)W .

Definition 4.2.1 The above morphism

H2n−2(Y,Z)van → J(X,Y)W
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is defined to be the relative Abel-Jacobi mapping.

In the rest of this chapter, we will give an alternate construction of this mapping, when

X satisfies certain surjectivity condition on the Gauss-Manin connections. We will also

show that this condition holds when X is a section of a sufficiently high power of an ample

line bundle on W.

4.3 Surjectivity of the Gauss-Manin connection

When X is a smooth projective variety of dimension n − 1, recall that we have the (graded)

Gauss-Manin connection

5̄ : Hn−p,p−1(X)van × H1(X,TX)→ Hn−p−1,p(X)van.

In this section we want to study a surjectivity condition on the Gauss-Manin connec-

tion, and show that this holds for sufficiently ample hypersurfaces in any given projective

smooth variety W of dimension n. Here being sufficiently ample means that for any ample

line bundle, sections of a sufficiently high power of the line bundle will satisfy the given

property. Recall the following lemma in [10]:

Lemma 4.3.1 For a sufficiently ample hypersurface X in a smooth projective variety W of

dimension n, we have the surjective morphisms

ᾱp : H0(W,KW(pX))→ Hn−p,p−1(X)van.

The morphisms ᾱp are constructed as an analogue of the residue maps [10, 23]. For hy-

persurfaces X in W, the infinitesimal deformation space contains the sections H0(W,OW(X))

of the normal bundle as a subspace, and we have the following important description of the

Gauss-Manin connection [3]:
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Theorem 4.3.2 The Gauss-Manin connection

5̄ : Hn−p,p−1(X)van × H0(W,OW(X))→ Hn−p−1,p(X)van

can be described as follows. For P ∈ H0(W,KW(pX)) and H ∈ H0(W,OW(X)), we have

5̄(ᾱp(P))(H) = −pᾱp+1(PH).

By this theorem, in order to show that a sufficiently ample hypersurface X satisfies

the surjectivity condition of the Gauss-Manin connection, we only need to prove that the

multiplication morphism

H0(W,KW(pX)) × H0(W,OW(X))→ H0(W,KW((p + 1)X))

is surjective.

Consider the product variety W×W, and the projection morphisms p1, p2 : W×W → W.

For the diagonal 4, we have the short exact sequence:

0→ I4 → OW×W → O4 → 0.

Tensor with the sheaf p∗1KW(pX) ⊗ p∗2OW(X) and take the long exact sequence of cohomol-

ogy, we see

H0(W,KW(pX))×H0(W,OW(X))→ H0(W,KW((p+1)X))→ H1(W×W,I4⊗p∗1KW(pX)⊗p∗2OW(X)).

When X is sufficiently ample, by Serre asymptotic vanishing theorem, H1(W ×W,I4 ⊗

p∗1KW(pX) ⊗ p∗2OW(X)) = 0, so we obtain:

Proposition 4.3.3 For a sufficiently ample hypersurface X in a smooth projective variety
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W of dimension n, Gauss-Manin connections

5̄ : Hn−p,p−1(X)van × H1(X,TX)→ Hn−p−1,p(X)van

are surjective.

4.4 General construction

Let X0 be a sufficiently ample hypersurface in a smooth projection variety W of dimension

2n. Note that by the results in Section 4.3, we proved that the Gauss-Manin connections

5̄ : H2n−p,p−1(X0)van × H1(X0,TX0)→ H2n−p−1,p(X0)van

are surjective for p ≥ 1. Also fix a smooth ample hypersurface Y0 in X0. Similarly, we

use X′ to denote a local deformation space of X0, and U′ for a local deformation space

of the pair (X0,Y0). So there is a morphism U′ → X′. Now consider the Hodge bundles

H2n−1
X,van and H2n−1

X,Y,W over U′, associated to the local systems with fibers H2n−1(Xx′ ,Z)van and

H2n−1(Xx′ ,Yu′ ,Z)W . We get the natural bundle morphism

f : H2n−1
X,Y,W → H

2n−1
X,van.

Now use X̃′ to denote the total space of the subbundle F2n−1H2n−1
X,van, i.e. the total space of the

pair (Xx′ , ω), where x′ ∈ X′ and ω ∈ H2n−1,0(Xx′)van. Similarly we have Ũ′ for the subbundle

F2n−1H2n−1
X,Y,W , consisting of triples (Xx′ ,Yu′ , ω), where ω ∈ F2n−1H2n−1(Xx′)van.

Over U′, we have the local systems H2n−2
Y,Z,van and H2n−1,X,Y,Z,W with fibers H2n−2(Yu′ ,Z)van

and H2n−1(Xx′ ,Yu′ ,Z)W respectively. Also we have the Hodge bundleH2n−2
Y , and morphism

i : H2n−2
Y → H2n−1

X,Y,W .
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Fix a vanishing class α ∈ H2n−2(Y0,Z)van, it induces a local flat section αu′ of H2n−2
Y,Z,van,

which can be lifted to a local section α̃u′ of H2n−1,X,Y,Z,W . More concretely, if αu′ are repre-

sented by (2n − 2)-cycles Σu′ , then α̃u′ are represented by differentiable (2n − 1)-chains Γu′

such that

∂Γu′ = Σu′ .

Now we also use H2n−1
X,Y,W to denote the pull back of the bundle H2n−1

X,Y,W to Ũ′. Since any

holomorphic (2n − 1, 0)-form restricts to zero on a hypersurface, Ũ′ canonically lifts to a

section Urel of the pullback bundle H2n−1
X,Y,W . Using the paring between H2n−1(Xx′ ,Yu′)W and

H2n−1(Xx′ ,Yu′)W , we can define the potential function over Ũ′

ΦBN =< Urel, α̃ > .

More concretely, we have

ΦBN(ũ′) =

∫
Γu′

ωũ′ .

This function is well-defined up to the choice of the lifting α̃u′ . For two different

choices, the difference is an element in H2n−1(Xx′ ,Z)van, so the function is well defined

up to periods of ωũ′ . Since the section Urel is holomorphic and the lifting α̃u′ is flat, the

function ΦBN is holomorphic.

Now Use u0 to denote the point (X0,Y0, 0) ∈ Ũ′. Consider the (k+1)-st order differen-

tial operators Dk+1(Ũ′)|u0 over Ũ′ supported at u0, we have the natural symbol morphism

composed with the push forward

S k : Dk+1(Ũ′)|u0 → S ymk+1TŨ′|u0 → S ymk+1TU′|(X0,Y0).

Use Vk to denote the (infinitely dimensional) vector space ker(S k).
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By Griffiths transversality, we have the following morphism:

φk : Vk → F2n−k−1H2n−1(X0,Y0)W ,

v→ 5v(Urel).

Lemma 4.4.1 The morphisms φk are surjective for 0 ≤ k ≤ n − 1.

Proof: In the case k = 0, this is clear since we can only differentiate in the F2n−1H2n−1(X0,Y0)W

direction.

We have the short exact sequence

0→ H2n−2(Y0)van
i
→ H2n−1(X0,Y0)W

f
→ H2n−1(X0)van → 0.

By Lemma 4.3.3, when we take infinitesimal deformations of Y0, i(F2n−2H2n−2(Y0)van) is

contained in the image of φ1. Then by Section 4.3, when we take higher order derivatives

by deforming Y0, i(F2n−k−1H2n−2(Y0)van) is contained in the image of φk.

On the other hand,

f (5v(Urel) = 5v( f (Urel)),

so the image of f◦φk contains the image of the Gauss-Manin connection φk on F2n−1H2n−1(X)van.

We claim that the image of f ◦ φk contains F2n−k−1H2n−1(X0)van. This is clearly true when

k = 0. Assume that this holds for k−1, by our assumption and Section 4.3, the Gauss-Manin

connection on the graded piece

5̄ : H2n−k,k−1(X0)van × H1(X0,TX0)→ H2n−k−1,k(X0)van

is surjective. So the image of f ◦ φk contains F2n−k−1H2n−1(X0)van, hence φk is surjective. �
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In particular, we see the morphism

φn−1 : Vn−1 → FnH2n−1(X0,Y0)W

is a surjection.

Now for a local section α of H2n−2
Y,Z,van, we can define the potential function ΦBN . The

differential of ΦBN of order n induces an element in V∗n−1. Note that for any vector v ∈ Vn−1

satisfying

φn−1(v) = 0,

we have

dv(ΦBN) =< 5vUrel, α̃ >=< φ(v), α̃ >= 0,

so dΦBN is the pullback of an element J(α0) in FnH2n−1(X0,Y0)∗W . By Lemma 4.4.1, this

element is unique. Moreover, different choices of the lifting α̃ are differed by elements in

H2n−1(X0,Z)W , so

J(α0) ∈ J(X,Y)W =
FnH2n−1(X,Y)∗W
H2n−1(X,Z)van

is a canonically defined element. Note that this is defined by the pairing of α̃ with ele-

ments of FnH2n−1(X,Y)W , so this coincides with the relative Abel-Jacobi mapping defined

in Section 4.2.

By the holomorphicity of the Gauss-Manin connection and the potential function ΦBN ,

we see for the local section α, J(α) is a holomorphic section of the holomorphic family

J(X,Y)var.

4.5 Extension of the potential function

Let X be a smooth projective variety of dimension 2n − 1, and L be a sufficiently ample

line bundle over X. We will use P to denote the linear series P := P(H0(X,L )), and use
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Psm to denote the smooth locus, i.e. the locus of smooth sections of L . Let Psing := P−Psm

be the singular locus. As in last section, over Psm we have the local system H2n−2
Y,Z,van of the

vanishing cohomology of hypersurfaces, and U for the associated topological space. For

the convenience of our discussion, we will use the following form of the potential function:

fix a class ω ∈ F2n−1H2n−1(X)prim, and let ω̃ ∈ F2n−1H2n−1(X,Yt) be the canonical lifting for

t ∈ Psm. For any αt ∈ H2n−2(Yt,Z)van, pick a lifting α̃t ∈ H2n−1(X,Yt,Z), and we define the

potential function overU by

ΦBN(αt) =< ω̃, α̃t > .

More concretely, we have

ΦBN(αt) =

∫
Γt

ω,

where Γt is a chain representing α̃t, and we denote the harmonic representative of ω by the

same letter. Note that this is well defined up to the periods of ω. This is the restriction of

the potential function defined in last section to a fixed ω.

In the introduction we recalled Schnell’s construction of the extension Ū of U. Here

we want to show that the potential function can be extended to a holomorphic function over

an open subset of Ū. It is a standard fact (for example, see [23, Section II.2.1]) that the

locus P0
sing consisting of hypersurfaces with at most one ordinary double point is a smooth

dense subvariety in Psing. Since the morphism π : Ū(K) → P is holomorphic, we see that

the subvariety π−1(P0
sing) in Ū(K) is an open analytic subset. We want to show that the

potential function extends to π−1(P0
sing).

The question is local, and we introduce the following model: let 4 → P be a holomor-

phically embedded disc, such that the image intersects with P0
sing transversely at the origin.

Now consider the universal family Y → 4, and the local monodromy operator:

ρ : π1(4∗, t) � Z→ Aut(H2n−2(Yt,Z)),

for t , 0.
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Since Y0 has only one ordinary double point, by the Picard-Lefschetz formula [23,

Theorem II.3.16], the vanishing cohomology decomposes into the direct sum of the mon-

odromy invariant subgroup and the subgroup spanned by the local vanishing cycle, over

which the monodromy operator has order two. The decomposition is equivariant under the

parallel transformation.

Now we have the restriction of the local system H2n−2
Y,Z,van to 4∗. There are two cases:

1) If we start with an invariant class αt ∈ H2n−2(Yt,Z), this gives us a section of H2n−2
Y,Z,van

over 4∗ by the parallel transformation. By Schnell’s construction, the extended complex

space is isomorphic to 4 in this case, and we just need to show that the potential function

remains bounded when t approached the origin.

To see this, recall that we have the local invariant cycle theorem [23, Theorem II.4.18],

which says that there exists a class α ∈ H2n−2(Y ), such that αt = α|Yt . Now we can choose

a cycle Σ in Y representing α, and let Σt = Σ∩Yt for any t ∈ 4. This is a continuous family,

so back in X, we can choose a continuous family of Γt whose boundary is Σt. Recall over

4∗, the potential function is given by

ΦBN(αt) =

∫
Γt

ω.

Now Γt extends continuously to the origin, so the potential function extends continuously

to the origin, hence holomorphically.

2) If αt ∈ H2n−2(Yt,Z) is a local vanishing cycle, it gives a two sheeted covering space

of 4∗, and Schnell’s extension is the 2 : 1 cover of 4, ramified at the origin.

By Morse theory and the local structure of vanishing cycles [23, Section II.2.3], there

exists a cone C in Y , such that each αt is represented by C ∩ Yt � S 2n−2, and Y0 intersects

C at the vertex. By the same argument as above, we can choose a continuous family of Γt,

and show that the potential function extends holomorphically to the origin. Note that in this

case, Γ0 is a cycle, so the value of the potential function at the origin is zero up to periods.

44



So we prove that the potential function extends to π−1(P0
sing).

To extend this even further, let Ūl f be the locally finite locus of the projection π. By

construction, Ūl f is an open dense normal analytic subspace of Ū. Clearly it contains

π−1(P0
sing) as a subspace. Since Psing − P

0
sing is of codimension at least 2 in P, by the local

finiteness, we see that (π−1(Psing − P
0
sing)) ∪ Ūl f is of codimension at least 2 in Ūl f . By the

Hartogs’ theorem ([7, Corollary 2.7.8]), the potential function extends to a holomorphic

function on Ūl f .
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CHAPTER 5

Further questions on the boundary behaviors

From last chapter we see that the holomorphic relative Abel-Jacobi mapping is defined

over the complex manifold U associated to the local system of vanishing cohomology.

By the theory of mixed Hodge modules [17, 18], there is a natural extension J̄ over P of

the relative Jacobian J(X,Y). It is a natural question to ask whether this mapping extends

to a holomorphic morphism from Schnell’s extension Ū to J̄. Here we will list several

conjectures related to the boundary behaviors of this mapping and a possible way to attack

them.

Again useU(K) to denote the subspace ofU over which the self-intersection is bounded

by K. Recall from Section 4.5 that the morphism π : Ū(K) → P is the natural projection,

and the locus P0
sing consisting of hypersurfaces with at most one ordinary double point is a

smooth dense subvariety in Psing.

Conjecture 5.0.1 The holomorphic relative Abel-Jacobi mapping extends holomorphically

to π−1(P0
sing).

The reason for this should be the simple form of the monodromy operator around a

hypersurface with only one ordinary double point. Moreover, we have the following con-

jecture:

Conjecture 5.0.2 Let ∆ be a holomorphically embedded disc in Ū, such that ∆∗ is con-

tained in U. Consider the cohomology classes parametrized by ∆∗, which can be locally
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lifted to the relative cohomology groups. Suppose that the liftings are invariant under the

monodromy action of π1(∆∗), i.e. we can choose a global lifting over ∆∗. Then the holo-

morphic relative Abel-Jacobi mapping, restricted to ∆∗, extends holomorphically to the

origin.

When the hypersurface acquires worse singularities, the monodromy is of a more com-

plicated form. In this case, we expect the holomorphic relative Abel-Jacobi mapping ex-

tends only as a meromorphic mapping.

Question 5.0.1 What is the meromorphic locus in Ū of the extension of the holomorphic

relative Abel-Jacobi mapping?

One possible way to attack these conjectures is to generalize Schnell’s construction in

[19]. Now consider the image ofU(K) in J(X,Y).

Conjecture 5.0.3 The closure of the image ofU(K) in J̄ is an analytic subspace.

The point is to prove a similar lemma on the boundary behavior of variation of mixed

Hodge structures as in [19]. If this holds, we can extend the holomorphic relative Abel-

Jacobi mapping to a meromorphic mapping over Ū.

Given this, we can now mimic Schnell’s construction: take the normalization Ξ̄ of the

closure of the image, and construct the extension ofU(K) as the finite (ramified) cover of

Ξ̄. It is not clear whether this extension coincides with Schnell’s Ū. In Section 1.6, we

introduced the normal analytic space Ψ̄. There is a natural morphism from Ξ̄ to Ψ̄, induced

by the cohomological mapping:

H2n−2(Y,Z)→ FnH2n−1(X,Y)∗ → FnH2n−2(Y)∗,

α→ < α, · > → < α, · > .

The main question is:
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Question 5.0.2 When is the morphism from Ξ̄ to Ψ̄ finite?

In fact, the non-finite locus is closely related to the locus of Ū over which the mapping

fails to extend holomorphically. The study of this locus should give us much information

about the corresponding cohomology classes.
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