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ABSTRACT

Time-Domain Analysis of Sensor-to-Sensor Transmissibility Operators with
Application to Fault Detection

by
Khaled F. Aljanaideh

Chair: Dennis S. Bernstein

In some applications, multiple measurements are available, but the driving input
that gives rise to those outputs may be unknown. This raises the question as to
whether it is possible to model the response of a subset of sensors based on the
response of the remaining sensors without knowledge of the driving input. To address
this issue, we develop time-domain sensor-to-sensor models that account for nonzero
initial conditions. The sensor-to-sensor model is in the form of a transmissibility
operator, that is, a rational function of the differentiation operator. What is essential
in defining the transmissibility operator is that it must be independent of both the
initial condition and inputs of the underlying system, which is assumed to be time-
invariant. The development is carried out for both single-input, single-output and
multi-input, multi-output transmissibility operators. These time-domain sensor-to-
sensor models can be used for diagnostics and output prediction.

We show that transmissibility operators may be unstable, noncausal, and of un-

known order. Therefore, to facilitate system identification, we consider a class of

XV



models that can approximate transmissibility operators with these properties. This
class of models consists of noncausal finite impulse response models based on a trun-
cated Laurent expansion. These models are shown to approximate the Laurent ex-
pansion inside the annulus between the asymptotically stable pole of largest modulus
and the unstable pole of smallest modulus. By delaying the measured pseudo output
relative to the measured pseudo input, the identified finite impulse response model is
a noncausal approximation of the transmissibility operator. The causal (backward-
shift) part of the Laurent expansion is asymptotically stable since all of its poles are
zero, while the noncausal (forward-shift) part of the Laurent expansion captures the
unstable and noncausal components of the transmissibility operator.

This dissertation also develops a time-domain framework for both single-input,
single-output and multi-input, multi-output transmissibilities that account for nonzero
initial conditions for both force-driven and displacement-driven structures. We show
that motion transmissibilities in force-driven and displacement-driven structures are

equal when the locations of the forces and prescribed displacements are identical.

Xvi



CHAPTER 1

Introduction

The traditional concept of input-output modeling distinguishes between inputs
that evoke response and outputs that capture the response. In some applications,
multiple measurements are available, but the driving input that gives rise to those
outputs may be unknown. This raises the question as to whether it is possible to
model the response of a subset of sensors based on the response of the remaining
sensors without knowledge of the driving input. Since the “transfer function” between
sensors does not arise as the forced response of a state space model, a sensor-to-sensor
“transfer function” is not a transfer function in the usual sense. Therefore, we adopt
the terminology pseudo transfer function (PTF) and transmissibility operator to refer
to a dynamic model relating sensor signals, which are called the pseudo input and
pseudo output [1-3]. Models of this type are widely used in structural modeling
and health monitoring [4-12]. In structural vibration analysis, a transmissibility is
a relation between a pair of sensor measurements of the same type, for example,
displacements, accelerations, or forces [13].

In the most common setup, the transmissibility involves the motion of the point
at which the force is prescribed. A more general notion of transmissibility arises in
the case where neither of the displacement measurements coincides with the location

of the applied force. This situation is of interest in applications where the applied



force is unknown. Except for the case where one of the measurements is located at
a node of a mode, the resulting transmissibility captures information about only the
zeros (anti-resonances) in the structural response, and thus information about the
modal resonances is not included in the model.

The potential usefulness of transmissibilities for applications such as damage de-
tection [14-16] has led to increased interest in their properties. In [8, 17, 18], trans-
missibilities are used to update modal models, while computation and identification
of transmissibilities is discussed in [11, 19, 20]. Transmissibilities are used in [21] to
analyze the effects of structural coupling. Multi-input, multi-output (MIMO) trans-
missibilities are considered in [22], while the effect of distributed forces is analyzed in
[20]. Finally, transmissibilities play a role in “operational modal analysis” [17, 23],
which assumes stationary excitation.

While the transmissibility literature is extensive, a common feature is that trans-
missibilities are modeled in the frequency domain [7, 8, 11, 14, 17, 18, 22, 24-26]. A
transmissibility is not a transfer function in the usual sense, however, since neither
sensor captures the input driving the system except in the special case that one of the
sensors measures the driving input. Consequently, a transmissibility does not have a
state space realization with physically meaningful states.

Transmissibility estimates are traditionally obtained using frequency-domain meth-
ods [7, 8, 11, 14, 17, 18, 22, 24-26], which are based on the assumption that the re-
sponse of the system consists entirely of the forced response and thus the free response
is zero. For asymptotically stable systems, the free response decays exponentially,
which suggests that measurements of the forced response can be obtained by using
only data obtained after the free response is approximately zero. However, as shown
in the following example, at the time at which data collection begins, a nonzero initial

condition can degrade the accuracy of frequency-domain identification.

Example 1.1. Consider the discrete-time asymptotically stable system S with



the state-space realization

—0.5 0.2 4
A= , B= , C=[125 -3, D=0 (L1

0 0.7 1

Let z(k) € R? be the state vector and thus z(0) is the initial state. Let ug € RN
be a realization of a stationary white random process with the gaussian distribution
N(0,1). Define the input u = [ug up] € RY*2V | that is, u is formed by repeating wuq.
Consider zero initial conditions, that is, x(0) = 0, and define y(k) £ Cuz(k). If we

R™2N into two halves, then the first half of y is the response of S due to the

split y €
input uy and the zero initial condition x(0), while the second half of y is the response
of § due to the input uy and the possibly nonzero initial condition z(N). Figure 1.1
shows a plot of the difference y(k) — y(k + N), where k =0,..., N —1 and N = 500
time steps for a given realization uy. Note that despite the initial condition z(0) = 0,
the difference y(k) — y(k + N) is not zero due to the fact that x(N), which is the
initial state when data collection begins at time k£ = N, is not zero.

Next, define Yiy.p 2 [y(N) -+ y(N+L—1)] € R™L and Uy; 2 [u(N) -+ u(N+
L—1)] € R™E and define My, = 2P, where p is the smallest integer such that 27 > L.
For all j = 1,..., My, let S(¢?%) be the frequency response of S at frequency 0;.

Moreover, for all j =1,..., My, let

A Al ,
Sn,(e) = r Z Sn.ri(e), (1.2)
i=1

where 7 is the number of experiments and S ~.1.i(€%) is the estimated value of S(e?%)
obtained from the i*" experiment using either frequency-domain or time-domain iden-
tification. For frequency-domain identification, S N, Lvi(eﬁj) is obtained by finding the
ratio of the cross power spectral density of Yy 1 and Uy 1, to the power spectral density

of Uy, for the i experiment. For time-domain identification, S ~.2.i(€%) is obtained
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Figure 1.1: Plot of the difference y(k) —y(k+ N) for the system S with the realization
(1.1), where k = 0,...,50, N = 500, u = [ug uo is the input, and z(0) =0
is the initial state. This plot shows that the difference y(k) —y(k+ N) is
not zero due to the fact that x(N), which is the initial state of the system
when we start collecting data at time k& = N, is not zero.

by finding the frequency response of the estimated model obtained using least squares

identification with the time-domain data Uy, and Yy 1. Define the error

My, ) 1/2
eN’Lé<Z (|8<eﬁj>|—|SN,L<eﬁj>\>) ' (1.3

j=1

Figure 1.2 shows a plot of ey 1, when using time-domain identification with L = 10, 000
time steps and N varies from 1 to 1000. Moreover, Figure 1.2 shows a plot of ey r,
when using frequency-domain identification with L = 10,000 and L = 100,000 time
steps and N varies from 1 to 1000. The initial condition is z(0) = [1000 1000]".
Note from Figure 1.2 that the frequency response function (FRF) estimates obtained
using time-domain identification are much better than the FRF estimates obtained
using frequency-domain identification. Moreover, although we are using noise-free

data, Figure 1.2 shows that waiting for the free response to decay does not help the



FRF estimates obtained using frequency-domain identification to converge to the true
values. This is partly due to the nonzero initial condition x(/N), which occurs at the
instant that data collection begins, and thus corrupts the estimates when using finite
data sets. On the other hand, Figure 1.2 shows that the FRF estimates obtained
using time-domain identification are not affected by the nonzero initial conditions. It
can be seen that the significance of the transients depends on the magnitude of the

initial state relative to the magnitude of the state under stationary conditions. W

Another issue with frequency-domain identification techniques is leakage errors,

10 I R
Frequency Domain Identification
. (L =10,000) : SRR
10 e S AL
- Frequency Domain Identification
0 (L =100,000): SRR
20| STTE R ]
5 10
0 Time Domain Identification -
EERIEEAC S 5
1075 SRS IS N S S A N S S
10° 10" 10° 10°

Time N [step] at which data collection begins

Figure 1.2: Plot of ey 1, using time-domain identification with L = 10,000 time steps
and frequency-domain identification with L = 10,000 and L = 100, 000
time steps, N varies from 1 to 1000, and » = 100 experiments. The initial
condition is x(0) = [1000 1000]*. Note that the FRF estimates obtained
using time-domain identification are much better than the FRF estimates
obtained using frequency-domain identification. Moreover, waiting for the
free response to decay does not help the FRF estimates obtained using
frequency-domain identification to converge to the true values, whereas
the FRF estimates obtained using time-domain identification are not af-
fected by the nonzero initial conditions.



which are unavoidable in the case of aperiodic random excitations [27]. Theorem 2.6
in [27] shows that leakage errors decrease as the number of samples increases, but
it is not guaranteed that the leakage errors are small for finite data sets. Example
2.7 in [27] shows that leakage errors can be interpreted as a transient effect, that is,
as the effect of a nonzero initial condition. Leakage errors can be avoided by using
periodic excitation and measurements of an integer number of periods, which cannot
be achieved if the excitation signal cannot be specified.

The goal of the present dissertation is to develop sensor-to-sensor models that
account for nonzero initial conditions and thus are necessarily defined in the time
domain. These models, which we call transmissibility operators, are rational func-
tions of the differentiation operator. Accordingly, a transmissibility operator defines
a differential equation involving the sensor signals. The internal state of the under-
lying input-output system loses its meaning within the context of a transmissibility
operator. What is essential in defining the transmissibility operator, however, is that
it must be independent of both the initial condition and inputs of the underlying
system, which is assumed to be time-invariant.

The development of time-domain transmissibility models requires special attention
to the cancellation of poles in the underlying structural model as well as the role of
the initial conditions. The resulting model is not an input-output model in the usual
sense, and therefore the notions of free and forced response do not apply. These issues
were considered in [1, 28, 29] in terms of PTFs. The present dissertation goes beyond
these papers by providing a significantly more detailed and rigorous treatment of
transmissibility operators, including complete proofs.

Transmissibility operators are developed in this dissertation within the context
of continuous-time, linear, time-invariant systems. We show that a transmissibility
operator that relates sensor signals can be defined independently of the initial condi-

tion and inputs. This operator is a rational function of the differential operator, and



thus represents a differential equation. However, the transmissibility operator cannot
be defined in terms of the Laplace variable “s,” due to the nonzero initial condition.
This observation is a key conceptual contribution of this dissertation.

Transmissibility operators contain information about the zeros of the system and
not the poles. Therefore, a nonminimum-phase zero in the pseudo-input channel of a
transmissibility operator yields an unstable transmissibility operator. Moreover, if the
pseudo-output channel of a transmissibility operator has more zeros than the pseudo-
input channel, then the transmissibility operator is improper, and thus noncausal.
However, neither instability nor causality has the usual meaning associated with
transfer functions. Nevertheless, to facilitate system identification, we consider a
class of models that can approximate transmissibility operators that may be unstable,
noncausal, and of unknown order. This class of models consists of noncausal finite
impulse response (FIR) models based on a truncated Laurent expansion. The causal
(backward-shift) part of the Laurent expansion is asymptotically stable since all of
its poles are zero, while the noncausal (forward-shift) part of the Laurent expansion
captures the unstable and noncausal components of the transmissibility operator [30].

Linear systems inside a closed loop are similar to transmissibilities in several
aspects, namely, they can be stable or unstable, of unknown order, and have bounded
input and bounded output. Therefore, noncausal FIR models can be also used to
identify linear systems inside a closed loop. A noncausal FIR model that approximates
the Laurent series of an unstable plant involves both positive and negative powers of
the Z-transform variable z. The negative powers approximate the stable part of the
plant outside of a disk (that is, inside a punctured plane), whereas the positive powers
approximate the unstable part of the plant inside a disk. Inside the common region,
which is an annulus, the Laurent series represents a noncausal model, as evidenced
by the positive powers of z.

To identify an unstable plant inside a stabilizing feedback loop, the measured



output can be delayed relative to the measured input to obtain an FIR model that
is a noncausal approximation of the unstable plant. The transfer function of this
noncausal FIR model approximates the Laurent series of the plant inside the maximal
annulus of analyticity lying between the smallest disk containing the asymptotically
stable poles and the smallest punctured plane containing the unstable poles.

One of the contributions of the present dissertation is a fully justified treatment of
closed-loop identification of unstable plants using noncausal FIR models. This work
presents analysis and proofs that connect the Laurent series of a transfer function
and an associated noncausal FIR model. These results are developed in the context
of identifying noncausal models and are needed to establish a rigorous connection
between the estimated noncausal FIR model and the impulse response of the system.

The theoretical basis for this work is given by Theorem 2, which provides necessary
and sufficient conditions under which the coefficients of the Laurent series are square
summable. Most importantly, Theorem 2 shows that there is exactly one maximal
annulus corresponding to which the coefficients of the Laurent series are bounded.
This fact suggests that the objective of identifying the unstable system G in closed
loop by estimating the coefficients of a Laurent series of GG is meaningful only for the
Laurent series corresponding to this special annulus, since otherwise the unidentified
(that is, truncated) coefficients are unbounded. For unstable plants, the Markov
parameters, which are the coefficients of the Laurent series in the maximal punctured
plane, are unbounded. For unstable plants, however, the Laurent series in the special
annulus (as opposed to the punctured plane) has terms involving positive powers of
z, which represent a noncausal model. The coefficients of the negative powers of z

are Markov parameters of the stable part of the transfer function.



1.1 Current Fault Detection Techniques and the Proposed

Approach

Different fault detection techniques have been introduced in the literature [31-
44]. In some cases, health monitoring can be assessed by exciting the system in a
controlled manner, using a plant model and observer to predict the response, and by
comparing the measured response to the prediction [34, 35, 45-50]. This approach,
known as active fault detection, is based on residual generation. In contrast, passive
fault detection detects faults by analyzing the sensors signals alone and searching for
anomalies [51-58].

In this dissertation we focus on a technique for fault detection called sensor-to-
sensor identification (S2SID). S2SID is neither active nor passive as defined above.
Instead, S2SID takes advantage of freely available and unknown external (ambient)
excitation to identify a sensor-to-sensor model (i.e. a PTF or a transmissibility op-
erator), which is independent of the excitation signal. In the presence of subsequent
unknown external excitation, the identified PTF is used to compute sensor-to-sensor
residuals, which are used to detect and diagnose faults in sensors or systems dynam-
ics. The sensor-to-sensor residual is the discrepancy between the predicted sensor
output (based on the PTF) and the actual measurements.

The novel feature of this approach is the way external excitation is taken advantage
of to identify a PTF between sensor signals. In particular, the external excitation,
whether it is provided by the environment or by actuators, need not be measured or
precisely controlled. Consequently, freely available ambient noise (such as flow around
an aircraft wing) can play a useful role in PTF identification. Most importantly, the
identified PTF is independent of the excitation; this means that the PTF identified
using one data set can be used for fault detection with a different data set; for both

data sets, the external excitation can be completely unknown.



The ability to take advantage of unknown external excitation along with the fact
that the PTF is independent of that excitation gives the method considerable flexi-
bility in practice by alleviating the need for a known or controlled excitation. This
feature is the key benefit of the proposed approach relative to residual-based fault-
detection methods that require known external excitation.

Excitation-free techniques for fault detection were also used in [1, 14-16, 28, 29,
59-61]. Transmissibility estimates obtained using frequency-domain methods were
used for fault detection in [14-16]. As we showed before, this approach ignores the
effect of nonzero initial conditions and requires periodic excitations to avoid leakage
errors. These issues are avoided in the present dissertation by developing a time-
domain framework for transmissibilities that accounts for nonzero initial conditions
and is independent of both the initial condition and inputs of the underlying system.
Discrete-time PTFs were developed in [1, 28, 29] and a p-Markov model is used
to identify them. A fault is detected if a sudden change in the identified Markov
parameters of the PTF occurs. Excitation-free fault detection was also used in [59—
61], where a SISO autoregressive model with exogenous input (ARX) between a
pair of sensors is identified to detect spike faults in wireless sensor networks. The
approaches in [1, 28, 29, 59-61] do not consider the possible noncausal relationships
between different sensors. Moreover, underestimating or overestimating the order of
the p-Markov or ARX models may yield inaccurate estimates, which can affect the
fault detection process. We show that the proposed approach circumvents the above

issues by using noncausal FIR models to identify PTFs.

1.2 Contributions
In the following, we list the major contributions of this dissertation.

e We develop a time-domain framework for MIMO transmissibilities that accounts
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for nonzero initial conditions as well as cancellation of the common factor oc-
curring in the underlying state space model. We show that transmissibility
operators are independent of both the initial condition and inputs of the under-

lying system, which is assumed to be time-invariant [62].

e We show that transmissibility operators may be unstable, noncausal, and of un-
known order. We show that noncausal FIR models can be used to approximate
transmissibility operators and unstable systems in closed loop. Noncausal FIR

models are used for closed-loop identification of unstable systems [30].

e Transmissibility operators can be effectively used for fault detection and out-
put prediction when the excitation signal is unknown. Application to health
monitoring of aircraft sensors [63], and the dynamics of acoustic systems are

considered.

e We derive continuous time-domain models for transmissibility operators in force-
driven and displacement-driven structures. We show that motion transmissi-
bilities in force-driven and displacement-driven structures are equal when the

locations of the forces and prescribed displacements are identical [64].

1.3 Dissertation Outline

The dissertation is organized as follows. We develop a time-domain framework
for transmissibilities in Chapter 2. We show that transmissibility operators are inde-
pendent of both the initial condition and inputs of the underlying system, which is
assumed to be time-invariant. The cancellation of a common factor that appears in
the numerator and denominator of the transmissibility operator is discussed. SISO
and MIMO transmissibility operators are illustrated by examples.

In Chapter 3 we use noncausal FIR models for closed-loop identification of un-

stable systems. In this chapter we first motivate the use of noncausal FIR models
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for identifying systems of unknown order. Then, we provide analysis of the Laurent
series of a rational function and the connection to noncausal FIR models. We show
the identification architecture using least squares (LS), instrumental variables (IV),
and prediction error methods (PEM). Numerical examples are presented to compare
noncausal FIR models to infinite impulse response (IIR) models for identification of
unstable systems in closed loop. A procedure to estimate the order of the system
from its identified noncausal FIR model is shown. Then we show how to construct
an IR model of the system from its identified noncausal FIR model.

Chapter 4 shows that noncausal FIR models can be used to approximate trans-
missibility operators. A procedure to estimate the number of unknown excitations
using only output measurements is presented. Moreover, PEMs with noncausal FIR
models are used to identify transmissibility operators. The NASA Generic Trans-
port Model (GTM) [65, 66] is used to simulate the fully nonlinear aircraft dynamics
for data generation and rate-gyro measurements are used along with sideslip-angle
measurements to construct a transmissibility operator. We then use the transmissi-
bility operator for health monitoring of the aircraft gyros. The case of gyro drift and
deadzone nonlinearity are considered as illustrative examples. Next, we consider an
experimental setup consists of a drum with two speakers and four microphones. Each
speaker is an actuator, and each microphone is a sensor that measures the acoustic
response at its location. Two plastic pieces are placed inside the drum, and these can
be removed during operation to emulate changes to the system. A transmissibility
operator is constructed from the four microphones and is used for health monitoring

of the dynamics of the drum.

Chapter 5 discusses transmissibilities in force-driven and displacement-driven struc
tures. We derive time-domain models for transmissibility operators in force-driven
and displacement-driven structures. We show the equality of motion transmissibilities

in force-driven and displacement-driven structures with identical inputs and outputs
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when the force and prescribed motion are applied to the same location. We introduce
examples for both lumped and distributed systems.

Chapter 6 considers the problem of identifying a SISO PTF for a two-output
Hammerstein system. We identify the Markov parameters of this PTF and compare
them to the Markov parameters of the PTF constructed from the same system without
the Hammerstein nonlinearities [67].

Finally, conclusions and future work are presented in Chapter 7.
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CHAPTER 2

Time-Domain Analysis of Sensor-to-Sensor

Transmissibility Operators

2.1 Introduction

Transmissibility operators are developed in the present chapter within the context
of continuous-time, linear, time-invariant systems. We show that a transmissibility
operator that relates sensor signals can be defined independently of the initial condi-
tion and inputs. This operator is a rational function of the differential operator, and
thus represents a differential equation. However, the transmissibility operator cannot
be defined in terms of the Laplace variable “s,” due to the nonzero initial condition.
This observation is a key conceptual contribution of this dissertation.

A feature of the transmissibility operator is the presence of a common factor in its
numerator and denominator. One of the main technical contributions of this disserta-
tion is a proof that this factor can be canceled; without such a proof, such cancellation
can potentially exclude solutions of the transmissibility differential equation and ren-
der it invalid. Since this proof is lengthy, several technical lemmas are sequestered
in the appendices. An earlier version of the proof was introduced in [68] in terms of
discrete-time SISO PTFs. In the present dissertation the proof is extended to cover

the continuous-time MIMO case.
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The contents of this chapter are as follows. In Section 2.2 we derive a time-
domain model for MIMO transmissibility operators. In Section 2.3 we discuss the
cancellation of a common factor that appears in the numerator and denominator of the
transmissibility operator. SISO and MIMO transmissibility operators are illustrated

in Section 2.4. Finally, we present conclusions in Section 2.5.

2.2 Time-Domain Transmissibility Operator

Consider the MIMO linear system

&(t) = Ax(t) + Bu(t), (2.1)
2(0) = m, (2.2)
y(t) = Cz(t) + Du(t), (2.3)

where A € R"" B € R*™ C € RP*" D € RP*™ and p > m. No assumptions are

made about the controllability of (A, B) or the observability of (A, C). Let

where C; € R™*" ¢, € RP=m)*n D e Rm*m and D, € RP=m*m_ Then,

yi(t) 2 Ciz(t) + Dyu(t) € R™, (2.5)

Yo(t) 2 Cox(t) + Dou(t) € RP-™, (2.6)

s 2 | 59 g (2.7)
yo(t)

The goal is to obtain a transmissibility function relating y; and y, that is independent

of both the initial condition xy and the input u. As a first attempt at obtaining such a
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function, assuming m = 1 and p = 2 and letting b € R, ¢;, ¢, € RY*", and d;, d, € R,

we consider the system

(t) = Az(t) + bu(t), (2.8)
yi(t) = cx(t) + dul(t), (2.9)
Yo(t) = co(t) + dou(t). (2.10)
Transforming (2.9) and (2.10) to the Laplace domain yields
5i(s) = ci(sI — A)rwg + [ei(s] — A) 1o + di]a(s) (2.11)
o(5) = co(sI — A) Loy + [co(sI — A) 7' + do)a(s) (2.12)
respectively, and thus
(2.13)

Uo(s)  co(sI — A)'wg + [co(sI — A)7'b + dy)u(s)
ci(sl — A~z + [ai(sI — A)~1b + dj)a(s)

Note that, if z is zero, then u(s) can be cancelled in (2.13), and g,(s) and ;(s) are

related by a transmissibility that is independent of the input. However, if z( is not

zero, then 4(s) cannot be canceled in (2.13).
Alternatively, we consider a time-domain analysis using the differentiation opera-

tor p = d/dt instead of the Laplace variable s. Multiplying (2.5), (2.6) by det(pl—A),

,P), and using the fact that

where p/ denotes diag(p, ...
(2.14)

det(pl — A)I,, = adj(pl — A)(pl — A)
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yields the differential equation

det(pl — A)y;(t) = Cidet(pl — A)L,x(t) + Didet(pl — A)u(t)
= Ciadj(pl — A)(pI — A)x(t) + Didet(pI — A)u(t)
= Ciadj(pl — A)(2(t) — Ax(t)) + Didet(pl — A)u(t)

= [Ciadj(pI — A)B + Didet(pI — A)]u(t). (2.15)

Similarly,

det(pl — A)yo(t) = [Coadj(pl — A)B + Dodet(pl — A)|u(t). (2.16)

For convenience, we define

Gi(p) 2 Ci(pI — A)"'B + D; € R™™(p), (2.17)

Go(p) 2 Co(pl — A)'B + D, € RP—™xm(p), (2.18)

and rewrite (2.15), (2.16) as

vi(t) = Gi(p)u(t),  wo(t) = Go(p)u(t), (2.19)

respectively, which are interpreted as the differential equations (2.15), (2.16), respec-
tively. Note that (2.19) includes both the free response due to x, and the forced
response due to u. In the subsequent analysis, we omit the argument “¢” where no

ambiguity can arise.
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Defining

A . mxXm
I'i(p) = Ciadj(p! — A)B + Dié(p) € R™™[p],
To(p) £ Coadj(pl — A)B + D,y8(p) € R®™>m[p],

5(p) £ det(pl — A),

we can rewrite (2.15), (2.16) as

respectively. Multiplying (2.23) by adj'i(p) from the left yields
d(p) adj Ti(p)y: = [adj I'i(p)| T'i(p)u = det T'y(p)u.
Next, multiplying (2.24) by det I';(p) yields
[det T'i(p)] 6(p)yo = [det I'i(p)] I'o (p)u.
Substituting the left hand side of (2.25) in (2.26) yields

6(p) det T'i(p)yo = d(P)To(p) adj Ti(p)y:-

In the case m =1 and p = 2, (2.27) becomes
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Definition 1. Assume that I'i(p) is nonsingular. Then, the transmissibility oper-

ator from v; to y, is the operator

)

T(p) d(p)det T';y(p)

I'o(p)adj I'i(p). (2.29)

Note that (2.29) is independent of the input u and the initial condition xy. Using

(2.29), the differential equation (2.27) can be written as

Yo =T (P)ys- (2.30)

Since I'y(p) is nonsingular, (2.29) can be written as

T(p) = %Mp)n—%p» (2.31)

Unlike common factors in the complex number s, common factors in the differen-
tiation operator p cannot always be canceled. In particular, the following examples
show that canceling common factors may exclude solutions of the original differential

equation.

Example 2.2.1. Consider the signals ;(t) = ¢t + 1 and y,(t) = ¢t + 5. Operating

on y;(?) and yo(t) with p yields pyi(t) = 9:(t) = 1 = 9o(t) = Pyo(t). Hence py; = pyo.

However, v; # v,. [ |

Example 2.2.2. Consider the signals () = 1 and y,(t) = 1+ e~*. Operating
on ¥(t) and yo(t) with p 4+ 1 yields (p + 1)vi(t) = 0i(¢) + wi(t) = 1 = 9o(t) + yo(t) =

(p+ 1)yo(t). Hence (p + 1)y = (p + 1)yo. However, y; # yo. [ |

Despite Examples 2.2.1 and 2.2.2, we show in Section 2.3 that the common factor

d(p) in (2.29) can be canceled without excluding any solutions of (2.25).
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2.3 Cancellation of the Common Factor J(p)

We now show that (2.27) holds if and only if (2.27) holds with the factor J(p)
cancelled. Since sufficiency is immediate, the goal of this section is to prove necessity.
This result allows us to reduce the order of 7 (p) without excluding any solutions of

(2.27).

Theorem 1. y; and y, satisfy

det T'i(p)yo = I'o(p)adj Ti(p)yi- (2.32)
Proof. Let
Gi1 Co,1
B:[bl bm:|’ 01: ) Co: )
Ci,m co,p—m

where, for all i € {1,...,m}, b; € R" and ¢;; € R'*" and, for all j € {1,...,p—m},

Coj € RY™™™. Moreover, for all i,j € {1,...,m}, let

ciiadj(pl, — A)bj + Dy ;0(p) = Z i j k",
k=0
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where D ; ; is the (7, j) entry of D;. Then, we can write

- n -
i i
E H11:Pp - E H1,m,iP
=0 i=0

n n
i i
Hm,1,:P e Hm,m P
L =0 =0 i

p1a(P) o pim(P)
= ; : (2.33)

| Hma(P) o pmn(P)

where, for all i,5 € {1,...,m}, u;;(p) 2 > n_o tijxP". Then, it follows from (2.33)

that

Tia(p) -+ Twma(p)
adjI'i(p) = I : , (2.34)

Tl,m(p) Tm,m(p)

where
A it
E,j (p> = (_1) I det Fi[i,]‘] (p)7

and I, (p) € R D*m=[p] denotes I'j(p) with the i row and j™® column re-
moved.

Forallie {l,...,p—m}and j € {1,...,m}, let

coiadj(pl, — A)bj + Do j0(p) = Z VijwP",
k=0
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where D, ; ; is the (4, j) entry of D,. Then, we can write

Z Vl,l,ipi e Z Vl,m,ipi
i=0 i=0
Fo(p) = .
Z Vp—m,l,ipi e Z Vp—m,m,ipi
L =0 i=0 i
nap) 0 vim(p)
i fom,l(p) e fom,m(p>
where, for all i € {1,...,p—m} and j € {1,...,m}, v, ;(p) 2 S oo vijkP".
T
Letu:[ul um:| .Deﬁne
T T
A A
yi[yi,l yi,m:| ) yo{yo,l o Yop-m | -
Multiplying (2.23) by adjI'j(p) yields
d(p)adjTi(p)y; = det I'i(p)u.
Therefore, for all i € {1,...,m}, we have
5(p) Y Tyi(p)yi; = det Ti(p)us. (2.36)
j=1
Using (2.35), for all k € {1,...,p —m}, (2.24) implies that
5(P)Yok = Y vral(P)ui. (2.37)
i=1
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Note that, for all k € {1,...,p—m} and all ¢t > 0,

Yo,k forced (t) = Z yo,k,i,forced(t)

where, for all k € {1,...,p—m} and all ¢ € {1,...,m},

t

A
yo,k,i,forced(t> - /Co ke b uz( )dT + Do,k,iui(t)'

0

Moreover, note that, for all ¢ > 0,

Yo,k free (t) Co, ke 1’0 E Yo,k i, free
where
A

cmkeAtxo.

1
yo,k,i,free (t) E

For all k € {1,...,p—m} and all i € {1,...,m}, define

AN
Yo,k,i = Yo,k,i free + Yo, ki forced -

Then, y, 1, satisfies

5(p)yo,k7i = Vk,i(p>ui-

Since

Yo,k = Yo,k,free + Yo,k forced s
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it follows from (2.38), (2.39), and (2.42) that

Yok = D Yok (2.43)
i=1

Multiplying (2.36) by v ,;(p) and multiplying (2.41) by det I'i(p) yields

6(P)ki(P) Z T;:(P)y; = Vki(p) det I's(p)us, (2.44)
5(p> det Fi(p)quﬂ; = I/]w; (p) det Fl(p)ul (245)

Comparing (2.44) and (2.45) yields
P)vii(P ZTJ P)yi; = 0(p) det I'i(P)yo,r., (2.46)

which represents a SISO relationship between y,j; and 2311 T;:(p)y;; due to the
input u; with the free response given by (2.40). Therefore, Lemma A.5 in Appendix

A implies that

m

Vii(P) Z T;:(P)yi; = det Ti(P) Yook, (2.47)
j=1
which indicates that J(p) can be cancelled from (2.46) without excluding any solu-

tions.

Using (2.34) and (2.35) we have

Z v1i(p) Th,( <Y 114(p) Trmi(p)
i=1
I'o(p)adjIi(p) = : . : : (2.48)
Z Vp—m, z Tl i P) T Z fomti(p) Tm,i(p)
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Using (2.43), (2.47), and (2.48) yields

=

Z g 2 yl J
Lo(p) [adj Ti(p)] v = :

SN vpmi(P) (v

i=1 j=1

i det F yo,l,i

=1

m

> det Ti(P)Yop-m.i

L =1

= det I'i(p)yo. a

Theorem 1 implies that we can redefine 7 (p) in (2.30) as

Lo(p)I (D). (2.49)

Note that each entry of 7 (p) is a rational operator that is not necessarily proper and
whose numerator and denominator are not necessarily coprime.
Consider the case m = 1 and p = 2. Then, using (2.49), the SISO transmissibility

from y; to vy, is

Po(p) o Coadj<p] - A)B + Doa(p)

T(p) = = : , 2.50
(P) = Ti(p) = Cadi(pl = A)B + D:o(p) (2:50)

which can be interpreted as the differential equation
Li(P)yo = To(P)yi- (2.51)
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2.4 Examples

Example 2.4.1. Consider the mass-spring system in Figure 2.1, where f is the

input force, ¢; and g are the displacements of m; and mg, respectively, and (2.1)

holds with
A . . 1"t A 02><2 [2
T=lq @ @ G| s AF ,
- - Q O2><2
_Fkitks ko T
A m1 mi
Q= , b= { 00 L o0 ] :
Ko k2 m
e m2 m2 —

For the transmissibility from y; = ¢; to y, = ¢2, we have

Ci=[1 00 o},Coz[o 10 0}.

Using (2.20), (2.21), and (2.22) it follows that

2
k
Ti(p) = Ciadj (pl, — A)B = /22" 12
ma1mme
k
Lo(p) = Coadj (pl, — A)B = ——,
m1Mme
k ki +k ke
5(p):p4+ ama + (k + 2>m2p2+ 1Ko ’
mimea mM1Mo

respectively. Therefore, we have
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(2.52)

(2.53)

(2.54)

(2.55)
(2.56)

(2.57)

(2.58)

(2.59)



Multiplying (2.58) and (2.59) by I',(p) and I'i(p), respectively, yields

in accordance with (2.28). Moreover, Theorem 1 and (2.51) imply that

Lo(p)gr = Ti(p)ga.

Alternatively, note that the equation of motion for ms is given by

map>qa + k2(g2 — q1) = 0.

Solving (2.64) for ¢; yields

m2p2 + ]{32
Q= ——F—4-

ks

Hence, (2.55), (2.56), and (2.65) imply

ko ko m2p2 + ko
Lo(p)y = Q= 2
mi1me mime k2
2
mop + kQ
= ———q¢ = Li(P)vo,
m1Mmeo
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(2.60)

(2.61)

(2.62)

(2.63)

(2.64)

(2.65)

(2.66)



which confirms (2.51) directly without using Theorem 1. Thus, y, = 7 (p)y; where

I's(p) ko
T = _= . .
®) = 1) T’ + ks
Example 2.4.2. Consider the MIMO system
1 -1 1 0
=1z |, A= 0 -1 1 |, (2.67)
T3 0 0 —1
10 100 10
B=l01|, C=|l010]|, D=]0 0], (2.68)
11 0 0 1 00

NOONNNNN

N\

Figure 2.1: Mass-spring system for Example 2.4.1, where f is the input force and
the outputs y; and y, are the displacements ¢; and g of my; and mo,
respectively.
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T

u = [uy ug)¥, ys = [x1 +u1 22)T, and y, = 3. Hence, m = 2,p = 3, and

100

Ci = : Coz{o 0 1}, (2.69)
010
10

D; = , Doz{o o}. (2.70)
0 0

It follows from (2.22) that §(p) = p® + 3p? + 3p + 1. Using (2.20) we have

I'i(p) = Ciadj(p! — A)B +6(p)D;

+1)*(p+2)+1 +2
p+1 (p+1)(P+2)
Moreover, (2.21) implies that
Lo(p) = Coadj (pI — A)B +6(p) Do
=+ (1)’ (2.72)
Hence, using (2.49) we have
T(p) = To(P)T; ' (p)
1
S TR | P Bl [ (27)
It follows from (2.30) that
(p+1)°(p+2)°z3 = (p+ 1)1 + (p+ 1)*(p* + 3p + D)zs, (2.74)

29



that is,

O 472 1+ 1920V + 255 + 1605 + 4z = 21V + 42 + 65y + 43y + 21

+ a4 628 + 1328 + 138, + 6@y + 5. (2.75)

To confirm (2.32), substituting x, A, and B from (2.67) and (2.68) and u into (2.1)

yields

pr1 = —21 + 22 + Uy, (2.76)
PTo = —T9 + X3 + Uo, (2.77)
pr3 = —T3 + ui + us. (2.78)

Using (2.76)—(2.78) note that

det Ti(p)yo = (p + 1)*(p + 2)*x3
p+13 p+2)zs+ (p+2) p+1:173)

(P +2)xs + (P +2)(ur + us

))
)

P+ 2) (x5 4+ uz) + (P + 2)uy

=(p+1)°(zy+u + p+1)u1+((p+2)(p+1)—1)x2)

) ((
> ((
) ((
p+13(p+2 P+ 1)a+ (p+2)u)
)*(
(P

)(@1 4 u1) + (p* + 3p + 1)a2)

= Lo(p)adjTi(p)y:. (2.79)
Hence, y; and y, satisfy (2.32) in accordance with Theorem 1. Moreover, multiplying
(2.79) by 6(p) shows that y; and y, satisfy (2.27). [ |

Example 2.4.3. Consider the mass-spring system in Figure 2.2, where f is the

input force, ¢, g, g3 are the displacements of m, msy, ms, respectively, and (2.1) holds
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with

AN . . . T A O3><3 [5
T=1q @ GG gy | o A= 7 (2.80)
Q2 Osx3
_ koitkiatkis k1o ki3
mi mi mi
0 é k1o _ kiotkos kas , (281)
mo mo mo
ki3 ka3 _ kiz+kos
ms3 m3 m3
T
B=1000 - 00 (2.82)
For i = 1,2, 3, define
Yi = Ciz, (2.83)
where

NOMONNNANNN
=3
5?‘
7

Figure 2.2: Mass-spring system for Example 2.4.3, where f is the input force and the
outputs y1, y2, and y3 are the displacements ¢, g2, and g3 of my, ms, and
mg, respectively.
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and e;, € R" is the ith unit vector. Then,

Y1 = Ciz = qi1,
Y2 = Cor = g2,
yz = Csz = gs.

Define

I'(p) = Ciadj (pI, — A)B

m2m3p4 + (m3(]€12 + /{23) + mg(klg + k‘gg)) p2 + k

m1mamms

k 2 1k

Po(p) 2 Coadj (pl,, — A)B = M27aP” T F
mimsamms

k 2 4k

Iy(p) 2 Cuadj (pl, — A)B = Ma2P” £ 5
mM1M1M3

(2.85)
(2.86)

(2.87)

(2.88)
(2.89)

(2.90)

where k 2 kiokis + ki2kas + kiskas. Next, let 7;;(p) be the transmissibility whose

pseudo input is ¢; and whose pseudo output is g;, where i, j € {1,2,3}. Therefore,

using (2.50)

[y (p
Toao) = 5
B kiamsp® + k
momsp* 4+ (ms(kia + kaz) + ma(kiz + kos)) P2 + k
[3(p
75,1(13) = Fjgp;
_ kigmop® + k
m2m3p4 —+ (mg(/ﬁz + k23) + mg(/ﬁg —+ k23)) p2 —+ k
r k 24k
Tor(p) = 3(P) _ kizmop” +

- Do(p)  kiemsp®+k
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(2.91)

(2.92)

(2.93)



are the transmissibilities from ¢; to ¢2, ¢1 to g3, and ¢o to g3, respectively. Note that

¢ = T21(P)a1, (2.94)
a3 = T32(P)q2, (2.95)

and thus
a3 = T32(P)T21(P)1 = T5.1(P) a1, (2.96)

that is,
Is(p) T2 (p) I's(p)

_ - , 2.97
4s Ts(p) Fl(p)ch Fl(p)ﬂh ( )
which shows that I';(p) can be cancelled. [

2.5 Conclusions

This chapter developed a time-domain framework for MIMO transmissibilities
that accounts for nonzero initial conditions as well as cancellation of the common
factor occurring in the underlying state space model. A natural extension of these

models is to the discrete-time case to facilitate system identification [28].
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CHAPTER 3

Closed-Loop Identification of Unstable Systems

Using Noncausal FIR Models

3.1 Introduction

Identification of a plant operating inside a closed loop is motivated by the need
to monitor plant changes without opening the loop [69-71]. This need is unavoidable
when the controlled plant is open-loop unstable, in which case opening the loop for
identification is prohibited. Even for plants that are asymptotically stable, opening
the loop for identification may not be feasible due to operational constraints. In
these cases, identification must rely on sensor-actuator data obtained under normal
operating conditions, although in some cases it may be possible to inject additional
signals to enhance persistency and signal amplitude relative to noise levels.

In addition to the fact that closed-loop identification constrains the feasible inputs,
output noise and process noise inside the feedback loop are correlated with the control
input. Although knowledge of this correlation may be useful for system identification,
this information is usually not available in practice, and decorrelation techniques are
needed [72-74]. In [75, 76] an IIR model is used with prediction error methods
(PEM) to identify unstable systems in closed loop. Assuming that the output noise

and process noise are uncorrelated with the exogenous signal, applying PEM with
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either the true system order or an overestimated system order guarantees that the
estimated transfer function converges to the true transfer function as the number of
samples used for identification tends to infinity [75]. However, for a finite data set,
overestimating the system order can yield poor transfer function estimates.

If the plant order is unknown, then an initial overestimate of the order can be
used with PEM, and a refined estimate can be obtained from Ho-Kalman realization
theory [77] and its implementation in terms of the singular value decomposition of the
Hankel matrix [78]. Although this approach, which requires estimates of the Markov
(impulse response) parameters, is sensitive to noise, heuristics can be used to improve
its accuracy [79-83].

By constructing a predictor, PEM identification minimizes the difference between
the predicted output and the measured output to obtain an estimate of the transfer
function. If the predictor is unstable, which is the case when output-error and Box-
Jenkins model structures are used to identify unstable systems in closed loop [84], the
prediction error may be large, which leads to erroneous transfer function estimates.
This issue can be mitigated by using modified output-error and Box-Jenkins models
as in [84], where the predictor is constrained to be stable. However, this constraint
complicates the search algorithm [84].

An alternative approach to PEM identification of unstable plants is discussed in
[85], where an output-error model structure is considered. In this case the predictor is
decomposed into stable and unstable parts, which correspond to causal and noncausal
filters, respectively. Since output-error models are a special type of IIR models, this
approach requires an estimate of the order of the system. However, as discussed
above, if the estimated order is incorrect, then the transfer function estimates may
have poor accuracy. In addition, identifying the noncausal part of the model requires
time-reversing the signal and thus is confined to offline identification. Moreover, the

approaches used in [85] and [84] require a priori knowledge of whether the system is
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stable or unstable.

Noncausal filtering was also used in [86] in a two-step projection method to identify
systems in closed loop with nonlinear feedback. A noncausal FIR model is first used
with linear least mean squares optimization to identify the causal closed-loop system
from the exogenous signal to the control input. Then, the identified model is used
with the exogenous signal to compute the predicted control input, which is then
compared with the output of the closed-loop system to identify the plant using an
IIR model. The role of the noncausal FIR model in [86] is restricted to approximating
the Wiener smoother, which relates the exogenous signal to the control input.

Instrumental variables can also be used to identify unstable systems in closed
loop, where the instruments consist of samples of either the exogenous signal or a
prefiltered version of the exogenous signal [72, 87]. Subspace methods can also be
used to identify linear systems in closed loop [88, 89].

The usefulness of Markov parameters for estimating the order of an IIR system
suggests consideration of a finite impulse response model structure, whose numerator
coefficients are its Markov parameters and all of whose poles are zero. Although
physical systems are rarely FIR, an FIR model can approximate an asymptotically
stable, IIR system [90-92]. An advantage of FIR models for system identification is
that the Markov parameters of an FIR model are given explicitly, and thus can be
used directly in Ho-Kalman realization to estimate the system order and construct an
ITR model. Most importantly, the FIR model structure is independent of the system
poles and zeros, and thus no prior estimate of the plant order is needed.

Noncausal FIR controllers are used for tracking problems where the command
signal is known in advance. In particular, a noncausal FIR feedforward controller is
obtained by truncating the Laurent series of the unstable inverse of a nonminimum-
phase plant; the resulting controller provides approximate plant inversion without

unstable pole-zero cancellation [93-97].
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A noncausal FIR model that approximates the Laurent series of an unstable plant
involves both positive and negative powers of the Z-transform variable z. The negative
powers approximate the asymptotically stable part of the plant outside of a disk (that
is, inside a punctured plane), whereas the positive powers approximate the unstable
part of the plant inside a disk. Inside the common region, which is an annulus, the
Laurent series represents a noncausal model, as evidenced by the positive powers of
z.

To identify an unstable plant operating inside a stabilizing feedback loop, the
measured output can be delayed relative to the measured input to obtain an FIR
model that is a noncausal approximation of the unstable plant. The transfer function
of this noncausal FIR model approximates the Laurent series of the plant inside
the maximal annulus of analyticity lying between the smallest disk containing the
asymptotically stable poles and the smallest punctured plane containing the unstable
poles.

Although advantages of noncausal filters were observed in [85] and [76], a complete
justification is lacking. One of the contributions of the present chapter is thus to use
the Laurent expansion of a rational transfer function to further justify the use of
these models in system identification. The contribution of the present chapter is thus
a detailed treatment of closed-loop identification of unstable plants using noncausal
FIR models. This work presents analysis and proofs that connect the Laurent series
of a transfer function and an associated noncausal FIR model. These results are
needed to establish a rigorous connection between the estimated noncausal FIR model
and the impulse response of the system. Unlike the noncausal output-error models
identified in [85], noncausal FIR models can be identified online. Moreover, unlike
the approaches of [85] and [84], noncausal FIR models do not require knowledge of

whether the system is stable or unstable.
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3.2 DMotivation for FIR Models in System Identification

The first challenge in identifying a linear system of unknown order using an IIR
model structure is the need to estimate the order of the system. To illustrate this
problem, we estimate the order n of the system by identifying an IIR model of order
Nmod, Where nyeq varies from 1 to an upper bound npedmax for n. For each value
of Nmoa, we use the identified IIR model of order n,,,q and the measured input and
output data to calculate the one-step predicted output. Then we compute the residual
between the one-step predicted output and the measured output. The estimated
order of the system is considered to be the value of n.q for which no significant
improvement in the residual occurs for values greater than n,.q. As the following

example shows, this approach may fail.

Example 3.2.1. Consider the asymptotically stable transfer function

(224 0.16)(z — 0.3)(z + 0.3)

G = 0807 £ 0.6)(z = 0.7)(z = 0.6)( + 0.25)

(3.1)

with input » and output gy, where u is a realization of a zero-mean, unit-variance
white random process. Let y be the output obtained by adding zero-mean white
gaussian output noise to yy with a signal-to-noise ratio of 10.

We use PEM with an IIR model of order ny,,q, where 1 < ny.q < 20, to identify
G using 100 independent realizations of 10,000 samples of u and y. For each value of
Nmod, 1€t €y ¢, .., Where £ is the number of samples be the averaged error in the one-
step predicted output obtained from each experiment using PEM with an ITIR model
of order npeq. Figure 3.1 shows €y, ., for nmea = 1,...,20. Note from Figure 3.1
that nmea = 3 gives the least value of €, 4, .. Therefore, the estimated order of (3.1)
using PEM with an ITR model is 3. However, the true order is n = 7. Moreover, note
from Figure 3.1 that €, 4, increases for values of nyoq > 7. That is, overestimating

n degrades €y ¢n,...-
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Figure 3.1: Plot of €, , for Example 3.2.1, where ny,q = 1,...,20. Note that
Nmod = 3 gives the least value of ¢, ., . Hence, the estimated order
of (3.1) using PEM with an IIR model is 3. However, the order of G is
n = 7. Moreover, note that €, 4, increases for values of 1,04 > 7. That
is, overestimating n degrades ;¢ .-

Next, we use PEM with an FIR model of order p, where 1 < p < 50, to identify

G using 100 independent realizations of 10,000 samples of v and y. For each value of

i, let €, 4, be the averaged error in the one-step predicted output obtained from each

experiment using PEM with an FIR model of order p. Figure 3.2 shows that ¢,

decreases monotonically as u increases for values of p less than 30, with no significant

improvement in €, 4, for larger values of .

We now use the coefficients of the FIR model of G to estimate the order of G.

Once the order of G is estimated, Ho-Kalman realization can be used to construct

an IR model of G from its estimated Markov parameters. Beginning with an initial

estimate n > n, we construct the Markov block-Hankel matrix

H, --- H,
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where H 2 Hy --- Hs,_; | isavector of Markov parameters of G. For all i > n,
the rank of H(H) is equal to the McMillan degree of G. We thus compute the singular
values of H(H) and look for a large decrease in the singular values. For noise-free
data, a large decrease in the singular values is evident. However, in the presence of
noise, the large decrease in the singular values disappears, and thus the problem of
estimating the model order becomes difficult [80].

Let H = ]f[O . ﬁzﬁq be the vector of estimated Markov parameters. To
estimate the order of G using H, the nuclear-norm minimization technique given in

[79, 80] considers the optimization problem

minimize HH(P_I(’y))HN (3.3)
H(v)
subject to
I1H(v) — Hlle <7, (3.4)
10°¢
<
2 102 - b
W
101 1 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50
I

Figure 3.2: Plot of €,,, for Example 3.2.1, where y = 1,...,50. Note that ¢,
decreases monotonically as y increases for values of p less than 30 and no
significant improvement in g, ¢, for larger values of f.
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where || - ||x is the nuclear norm, which is the sum of the singular values, || - ||r is
the Frobenius norm, + is varied over a range of small positive numbers, and H(v) €
R (22=1) i5 the optimization parameter vector. For each value of 7, we solve the
optimization problem (3.3), (3.4), and then construct the Markov block-Hankel matrix
H(H (7)) and compute its singular values. The singular values of H(H (7)) that are
robust to changes in v provide an estimate of the McMillan degree of G.

Figure 3.3 shows the singular values of H(H (7)) versus v, where H in (3.4) is the
vector of Markov parameters of the identified model of (3.1) obtained using PEM
with an IIR model of order n,.q = 20 averaged over 100 independent realizations.
Note from Figure 3.3 that 5 singular values of H(H (7)) are robust to the change in
v, which yields 5 as the estimated order of G. However, the order of G isn = 7.

Figure 3.4 shows the singular values of the Hankel matrix #(H (7)) versus v, where
H in (3.4) is the vector of estimated Markov parameters obtained from the identified
model using PEM with an FIR model of order ;1 = 50 averaged over 100 independent
realizations. Figure 3.4 shows that 7 singular values of H(H (7)) are robust to the
change in v, which correctly yields 7 as the estimated order of G.

Figure 3.5 shows the error |G(e) — G(e?)| in the frequency response of the
estimated model versus frequency 6, where G is either the estimated IIR model of
order ny,q = H or the estimated FIR model of order o = 50, each averaged over 100
independent realizations. Note that the estimated FIR model gives a better estimate

of the frequency response than the estimated IIR model. [ |

Example 3.2.2. Consider the unstable transfer function

(22 +0.16)(z — 0.3)(z + 0.3)
(z40.6)(z—0.7)(2240.25)(z — 1.6)(z — 1.7)(z — 1.8)

G(z) = (3.5)
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with the realization

0.2000 2.000 0.7200 —0.2999 —0.2088 —0.2156 —0.0941
1 0 0 0 0 0 0
0 1 0 0 0 0 0
A=| 0 0 1 0 0 0 0 , B =
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
C=10 0 1 0 0070 0 -0.0144|, D=0,
10"
=
T
T 10°
=
=
2 -1
E 10 'k E
=)
s}
jus)
g 5
¥ 10 "¢
N\ " '
~ 107t
g f
j L
bo L
5 I
” 10 : e — -
10" 10°° 10"

Figure 3.3: Example 3.2.1. Plot of the singular values of H(H (7)) versus , where H
in (3.4) is the vector of Markov parameters of the identified model of (3.1)
obtained using PEM with an IIR model of order n,,q = 20 averaged over
100 independent realizations. This figure shows that 5 singular values of
the Hankel matrix H(H (7)) are robust to the change in v, which suggests
that the estimated order of GG is 5, where the order of G is n = 7.
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stabilized by an LQR controller with () = I; and R = 1, where I7 is the 7 x 7 identity

matrix, and thus

K =103337 17995 06122 —0.3158 —0.2112 —0.2001 —0.0862 | -

(3.8)

Figure 3.6 shows the closed-loop control system, where A, B, C' are given by (3.6),
(3.7), x is the state vector, K is the LQR gain given by (3.8), ¢ is the exogenous
signal, v is the process noise, and uy and yy are the measured input and output
signals, respectively. The plant G given by (3.5) is unstable and the closed-loop
system is internally stable.

Let the exogenous signal ¢ of the closed-loop system shown in Figure 3.6 be a

=
o
N

[y
o
=}
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o|
iN
o)
1

!
N

Singular Values of the Hankel Matrix H(H (7))
5, 5
T
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=
o
&

=
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10

[y
o
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Figure 3.4: Example 3.2.1. Plot of the singular values of H(H(v)) versus v, where
7 =20 and H in (3.4) is the vector of Markov parameters obtained using
PEM with an FIR model of order i = 50 averaged over 100 independent
realizations. Note that 7 singular values of H(H(y)) are robust to the
change in v, which correctly yields 7 as the estimated order of G.
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realization of a zero-mean, unit-variance white random process and let the process
noise v be a white noise signal added to uy with a signal-to-noise ratio of 10. We use
ug and o to identify G.

We use PEM with an IIR model of order ny,,q, where 1 < ngoq < 20, to identify

G using 100 independent realizations of 10,000 samples of uy and yy. For each value

10
—IIR
—VFIR
=l | ~ +
) ‘
s | | ﬂ
S
G 10" -
10’6 | | | |
0 7/5 271/5 37/5 4 /5 T

Frequency 6 [rad/sample]

Figure 3.5: Example 3.2.1. Error in the frequency response of the estimated IIR
model of order ny,q = 5 and the estimated FIR model of order o = 50,
each averaged over 100 independent realizations. Note that the estimated
FIR model gives a better estimate of the frequency response than the
estimated IIR model.

v
c Ug U
~O O A B C

K

Figure 3.6: Discrete-time closed-loop control system, where A, B,C' are given by
(3.6), (3.7) z is the state vector, K is the LQR gain vector, ¢ is the
zero-mean, unit-variance white exogenous signal, v is a white noise signal
with signal-to-noise ratio of 10, and uy and gy, are the measured input
and output, respectively. The plant G given by (3.5) is unstable and the
closed-loop system is internally stable.
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of Nimod, let gy ¢n,.., De the averaged error in the one-step predicted output obtained
from each experiment using PEM with an IIR model of order ny.q. Figure 3.7 shows
that nmoa = 5 gives the least value of ¢, ¢, ... However, the order of G'is n = 7.
Moreover, note from Figure 3.7 that €, ¢, ., increases for values of nyeq > 7, that
is, overestimating n degrades the one-step prediction error.

Figure 3.8 shows the singular values of H(H (7)) versus v, where H in (3.4) is the
vector of Markov parameters of the identified model of (3.5) obtained using PEM
with an IIR model of order n,,q = 20 averaged over 100 independent realizations.
Note from Figure 3.8 that 5 singular values of H(H (7)) are robust to the change in
v, which yields 5 as the estimated order of G. However, the order of G isn = 7.

Next, we use PEM with an FIR model of order u to identify G using 100 inde-
pendent realizations of 10,000 samples of vy and y,. For each value of p let ¢, ¢, be
the averaged error in the one-step predicted output obtained from each experiment

using PEM with an FIR model of order p. Figure 3.9 shows ¢, ¢, for the estimated

10
o

10°F 0] © !

< le) @) o O o O o g
= o
w o o ©
o o O O
10'F o -
100 I I I I I I I I I
0 2 4 6 8 10 12 14 16 18 20
Mmod

Figure 3.7: Plot of €y, ., for Example 3.2.2, where np.q = 1,...,20. Note that
Nmod = O gives the least value of €y, ... Hence, the estimated order
of (3.5) using PEM with an IIR model is 5. However, the order of G
is n = 7. Note that gy, ¢, increases for values of nn,q > 7, that is,
overestimating n degrades the one-step prediction error.
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Singular Values of the Hankel Matrix H(H (7))

Figure 3.8: Example 3.2.2. Plot of the singular values of H(H (7)) versus y, where H
in (3.4) is the vector of Markov parameters of the identified model of (3.5)
obtained using PEM with an IIR model of order n,,q = 20 averaged over
100 independent realizations. This figure shows that 5 singular values of
the Hankel matrix H(H (7)) are robust to the change in -y, which suggests
that the estimated order of G is 5, where the order of G isn = 7.

FIR model of order p = 1,...,50, and the estimated FIR model of order u = 2d,

where the output yq is delayed d steps and d = 1,...,25. Note that the FIR model

with delay, which is noncausal, gives significantly lower values of €, ¢, than the FIR
model with no delay. Moreover, note that for the FIR model with delay €, ., de-
creases monotonically as p increases for values of p less than 32 and no significant
improvement in €y, ¢, for values of i greater than 32. Moreover, increasing the FIR
model order does not degrade the one-step prediction error.

Figure 3.10 shows the error |G(e?) — G(e?)| in the frequency response of the
estimated model versus 6, where @ is the frequency and G is either the estimated IIR

model of order ny,,q = 5, the estimated FIR model of order y# = 50, or the estimated

FIR model of order u = 50 with the output y, delayed d = 25 steps, each averaged
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over 100 independent realizations. Note that the FIR model with delay, which is
noncausal, gives the least error in frequency response of G. [ |
The justification for the use of noncausal FIR models will be developed in the

following sections.

3.3 Preliminaries

For p > 0, let D(p) 2 {z € C: |z| < p} be the open disk in the complex plane
centered at the origin with radius p. Also, for p > 0, let P(p) 2 {z € C:|z| > p} be
the open punctured plane centered at the origin with inner radius p. Moreover, for

A
0 < p1 < pa, let Alpr,p2) = {2z € C: p1 < [z] < pa} = P(p1) N D(p2) be the open

——FIR with no delay
—— FIR with delay
100 TE=—m ]
<
=
W
101 | | | | | | | | | ]
0 5 10 15 20 25 30 35 40 45 50

Figure 3.9: Plot of ¢,,,, for Example 3.2.2 for the estimated FIR model of order
@ = 1,...,50, and the estimated FIR model of order y = 2d, where
the output g, is delayed d steps and d = 1,...,25. Note that the FIR
model with delay, which is noncausal, gives significantly lower values of
Eyoe,p than the FIR model with no delay. Moreover, note that for the
FIR model with delay €, decreases as p increases for values of ;1 less
than 32 and no significant improvement in €, ,, for values of u greater
than 32. Moreover, increasing the FIR model order does not degrade the
one-step prediction error.
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0 /5 21/5 31/5 4m/5 T

Frequency 6 [rad/sample]

Figure 3.10: Example 3.2.2. Error in the frequency response of the estimated IIR
model of order ny,,q = 5, the estimated FIR model of order p = 50, and
the estimated FIR model of order p = 50 with the output y, delayed
d = 25 steps, each averaged over 100 independent realizations. Note
that the FIR model with d = 25 delay steps, which is noncausal, gives
the least error in frequency response.

annulus in the complex plane centered at the origin with inner radius p; and outer

radius ps.

Recall [98, p. 168] that if the rational function g(z) is analytic in the open annulus

A(p1, p2), then g(z) has a unique, absolutely convergent Laurent series in A(py, pa) of

the form

g(z) = Z hiz'. (3.9)

If py = 00, then g is analytic in the punctured plane P(p;) and, if ¢ is proper, then,
for all i > 0, h; = 0 in (3.9). If p; = 0 and ¢ has no pole at zero, then g is analytic in
the disk D(py) and, for all ¢ < 0, h; = 0 in (3.9). In this case, (3.9) is a power series

that converges absolutely in D(ps) and diverges at every point in P(py) [98, p. 138].
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Definition 2. Let 0 < p; < py and let g be a rational function. If p; > 0, then the
open annulus A(py, p2) is mazimal with respect to g if ¢ is analytic in A(py, p2) and,
for all &1 € [0, p1) and €9 > 0, not both zero, g is not analytic in A(p; — €1, p2 + £2).
If py = 0, then the open disk D(ps) is maximal with respect to ¢ if ¢ is analytic in
D(ps) and, for all € > 0, ¢ is not analytic in D(ps + €).

For convenience, the term maximal open annulus may also refer to an open disk
or an open punctured plane.

Consider the system

x(k+1) = Az(k) + Bu(k), (3.10)

y(k) = Cz(k) + Du(k), (3.11)

where A € R™" B € R™™ C € R>*" D € R*™. Assume that (A, B) is controllable
and (A, C) is observable. Let G be the [ x m transfer matrix corresponding to

(A, B,C, D). The ith Markov parameter H; of G, which is given by

(3.12)
CA-B, i>1,

is independent of the realization (3.10), (3.11) of G. Let p(A) denote the spectral

radius of A.

Proposition 1. {H;}, are the coefficients of the Laurent series of G in P(p(A)),

that is, for all z € P(p(A)),
i=0
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Proof. For all |z| > p(A),

G(z)=C(zI—A)"'B+D
=C(I—-z"A)"'Bz'+D

=0

o)

Z CA™'Bz""+ D

Next, we define the reflected transfer matrix G, to be the transfer matrix ob-

tained by replacing z in G(z) by 27!, that is, Gy (2) = G(z7h).

Proposition 2. Assume that A is nonsingular. Then G, is proper, and (A™', —A™1 B,

CA™Y, D — CA'B) is a minimal realization of G-

Proof. Note that

Gref(z) - C<Z_1] - A)_IB + D
= C(A(="'A" = 1)) 'B+ D

= CA Y2 —A Y 1A' B+ D-CA'B.
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Now, assume that (A, B) is controllable. Since A is nonsingular, it follows that

rank({_A—lB —A2B ... —A‘”B])

:rank(—A_”[An—lg A2 ... B}):n.

Likewise, (A, C') observable implies that (A~ C'A™') is observable.
To prove the converse, replace (A, B,C, D) with (A=, —A='B,CA~', D-CA™'B).
O

Definition 3. The spectral radius p(G) of G is the spectral radius of A.

Definition 4. Assume that A is nonsingular. Then, the inner spectral radius pipner(A)

of A is defined as

A 1
~p(AT)

Furthermore, the inner spectral radius pime:(G) of G is the inner spectral radius of

pinner(A)

A.

Proposition 3. Assume that zero is not a pole of G. Then,

1 1

pinner(Gref) = p(Gref) - pinTr(G()‘

el (3.14)

Proof. Assume that (A4, B,C, D) is a minimal realization of G(z). Then A is
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nonsingular and Proposition 2 implies that (A™', —A™'B,CA ', D —CA™'B) is a

minimal realization of G,.. It follows that

1 1

pinner(Gref) = pinner(Ail) = M = m

Similarly,

1 1
Gret) = p(A") = - | )
P(Gret) = p(A77) Pinner(A)  Pinner (G)

Definition 5. G is strongly unstable if it has no poles in the closed unit disk.

Proposition 4. G is strongly unstable if and only if G, is asymptotically sta-
ble.

Proof. The result follows directly from Proposition 3. a

3.4 Analysis of the Laurent Series

Throughout this section, let G' be a proper [ x m rational function with minimal
realization (A, B, C, D). If A is nonsingular, then the Markov parameters of G,es are
given by
D—-CA™'B, i=0,

1>

H, (3.15)

—CA=1B, i>1,
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Therefore, if A is nonsingular, then Proposition 1 and Proposition 3 imply that the

Laurent series of Gret in P(p(Gret)) = P(p(A™1)) = P(1/p(A)) is given by

Gret(2) = i Hz™" (3.16)

1=0

The following result shows that (3.15) provides the coefficients of the power series

for GG in the maximal disk.

Proposition 5. Assume that zero is not a pole of G. Then, for all z € D(pipner(G)),
G(z)=> H, (3.17)
=0
where H; are the Markov parameters of Ger given by (3.15).

Proof. Replacing z € P(p(Gref)) = P(1/pinner(G)) in (3.16) by 27 € D(pinne (G))
and using the fact that, for all z € P(p(Grer)), Gret(1/2) = G(2) yields (3.17). O

Using partial fractions, G can be represented as
G=G,+G,+ D, (3.18)

where the strictly proper transfer functions Gy and G, are asymptotically stable and
strongly unstable, respectively. Defining py 2 p(Gy), Proposition 1 implies that Gy is

analytic in P(ps) with the Laurent series
Gi(z) =) Hyz (3.19)
i=1

where, for all i > 0, H, is the i*" Markov parameter of Gy. Next, note that zero is

not a pole of GG,. Hence, defining p, = Pinner (G), Gy is analytic in D(p,) with the
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power series

Gu(z)=> H, 7, (3.20)
=0

where, by Proposition 5, H,_, is the i®® Markov parameter of G, ,ot. Rewriting (3.20)

as

Gu(z) = i Hy 2" (3.21)

it follows from (3.18), (3.19), and (3.21) that G is analytic in the annulus A(ps, pu)

with the Laurent series

G(z) = i Liz ", (3.22)

where .
H,,, i <0,
A
Li={ H,+D, i=0, (3.23)
Hy,, 1> 0.
\

Note that the Laurent series of G in A(ps, pu) given by (3.22) is different from the
Laurent series (3.13) of G in P(p(G)) given by (3.13). Furthermore, both D = G(00)

and H,, = Gy et(00) may be nonzero as illustrated by the following examples.

Example 3.4.1. Let

~(z=1)(2-0.5)
&)=y
Then, D = G(c0) = 1, and
3.5z — 5.5 —5.522 + 3.5z
Gule) =0, Gl =g gy Gl = sy
and thus Hy, = Gy ef(00) = —1i. |
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Example 3.4.2. Let

1
R Py T s
Then, D = G(x) =0,
—1 1 z
GS(Z) = - 05 Gu(z) = 15’ Gu,ref(z)

and thus Hy, = Gy ef(00) = —%.

Assume that G has no poles on the unit circle. Let d and r be positive integers,

and define the FIR truncations Gs, and G, 4 of Gg(z) and G,(z71), respectively, by

A

Gsr(2) = Z Hyz™' Gua(z™) = Z Hy, .z

where Hy, and H,_, are defined by (3.23). Note that

. d 0
Gsr(2) = Z Liz™", Gua(z) = Z L_;2t = Z L;z7"
i=1 =0

i=—d

Now, define the improper rational function G, 4(z) by

Gr,d é Gs,r + Gu,d + Da

(3.24)

(3.25)

(3.26)

where Gs,(z) and G, 4(z) are the causal and noncausal components of G, 4, respec-

tively. Hence, for all z # 0,
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3.5 Necessary and Sufficient Conditions for Boundedness of

the Laurent Series Coefficients

Throughout this section, let G be an [ x m proper rational function. Let || - ||g
denote the Frobenius norm.

For asymptotically stable and strongly unstable transfer functions, the following
result, which is used in the proof of Theorem 2, concerns boundedness of the coeffi-

cients of the Laurent series of a rational function.

Lemma 1. The following statements hold:

i) Assume that zero is not a pole of G. If the coefficients (3.15) of the power series

(3.17) of G in D(pinner(G)) are bounded, then piyne:(G) > 1.

i1) If the coefficients (3.12) of the Laurent series (3.13) of G in P(p(G)) are bounded,
then p(G) < 1.

Proof.

i) It follows from [98, p. 142] that the radius of convergence of the power series

(3.17) of G in D(piuner(Q)) is given by pinner = ———————=—7. Define the positive

lim sup, . |H:[1/?

number M 2 sup, |H;|. Then

1 1

= — > = - = 1.
limsup; o [F[11 ~ Timi-pog M7

pinner(G)

i1) Assume that zero is not a pole of G¢. Proposition 5 implies that the power series

of Gref In D(pinner(Grer)) is given by (3.17), where the coefficients of the power
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series of Gref in D(pinner (Grer)) are the Markov parameters of (Gief)rer = G, which

are given by (3.12). It follows from [98, p. 142] that the radius of convergence

1
i sup; o [Hi[1/°°

of the power series of Gyer in D(pinner(Gret)) 18 given by pinner =

Define the positive number M 2 sup, | H;|. Then

1 1 1

—:inanr = . Z - =1.
oG " er(Ghre) lim sup,_, o [H;[Y* — lim; 0o M/

Now assume that G, has m poles at zero. Then G, can be written as

1
—Ghrero(2), (3.28)

Zm

Gref(z) =

where Gl has no poles at zero. Note that the factor L shifts the indices

Zm
of the power series coefficients of (3.28) but otherwise leaves them unchanged.

Applying the above argument for Gyer thus yields p(G) < 1. a

The following result shows that there is a unique maximal annulus for which the

coefficients of the Laurent series of G are bounded.

Theorem 2. Let py > p; > 0, and assume that A(pq, po) is maximal with respect to

G. Then the following statements are equivalent:
i) The coefficients of the Laurent series of G in A(py, p2) are square summable.
i1) The coefficients of the Laurent series of G in A(py, p2) converge to zero.

ii1) The coefficients of the Laurent series of G in A(py, p2) are bounded.

i) p1 <1< po.
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Proof. i) implies ii) and i7) implies iii) are immediate. To show that éii) implies
iv) assume that the coefficients of the Laurent series of G in A(py, p2) are bounded.
Decompose G as G = G; + G, + D, where all of the poles of GG; are contained in
D(p;1) and all of the poles of G, are contained in P(ps). Suppose p; < p2 < 1 and
A(p1, p2) is maximal. Then pipner(Go) < 1, and thus ¢) of Lemma 1 implies that the
coefficients of the Laurent series of GG,, and thus the coefficients of the Laurent series
of G, are unbounded. Now suppose that 1 < p; < py and A(pq, p2) is maximal. Then
p(G;) > 1, and thus i) of Lemma 1 implies that the coefficients of the Laurent series
of G, and thus G, are unbounded. Therefore, p; < 1 < ps.

To show that iv) implies ¢) assume that p; < 1 < py and consider the Laurent
series of G in A(py, p2) given by (3.22), where {L;}3°__ is given by (3.23). Then,
f :]0,00) = C defined by f(6) = G(e?) is continuous and periodic. By Parseval’s
theorem, the coefficients of the Fourier series of f are square summable. Since, on the
unit circle, the Laurent series of G given by (3.22) is identical to the Fourier series of
f, it follows that {L;}°__ is square summable. O

Theorem 2 applies to rational functions that have no poles on the unit circle. If

this is not the case, let ps < @ < 1 be such that G has no poles on the circle |z| = a.

Consider the decomposition
G=Gia+Gou+D, (3.29)

where all poles of Gj, are contained in D(«), all poles of G, , are contained in P(«),

and D = G(o0). Using (3.22), we have

o0

Ga(2) 2 G(az) = Z Li(az)™" = Z a 'Lz " = Z Loz, (3.30)

1=—00 1=—00 1=—00
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where, for all i,

>

Lai

)

a L. (3.31)

Let ps < a < 1, and assume that G has no poles on the circle |z| = a. Therefore, G,
has no poles on the unit circle. Theorem 2 can now be applied to G, in A(2, 2+) and

(3.31) can be used to compute the coefficients of the Laurent series of G in A(ps, pu).

3.6 Noncausal Closed-Loop Identification

Consider the closed-loop system in Figure 3.11 consisting of the MIMO, discrete-
time transfer function G of order n and the discrete-time controller C. We assume that
the closed-loop system is internally asymptotically stable, although no assumptions
are made about the stability of G except that G has no poles on the unit circle.
However, this restriction can be avoided by using (3.30).

Using the Laurent series (3.22) of G in A(ps, pu), the output of G can be written

as

(k) = Y Lju(k - j), (3.32)

j=—o00

where u(k) = 0 for all & < 0. Note that the terms corresponding to j < 0 represent

Lo

Gy

v w
C:BCC&UGyOCL/y

Figure 3.11: Discrete-time closed-loop control system, where C'is the controller, G is
the plant, v and wqy are white noise signals, and G, is the output noise
model. The plant G may be unstable, and the closed-loop system is
assumed to be internally stable.
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the noncausal component of the model. Thus, for all £ > 0, (3.32) can be represented

as
yO(k> = yO,r,d(k) + er,d(k)v (333)
where the noncausal FIR model output yo.4(k) is defined as
A min{r,k}
yora(k) = Y Lju(k —j), (3.34)

j=—d

and the output error at time k is defined by

era(k) = yo(k) = yora(k). (3.35)

which is the difference between the true output and the noncausal FIR model output

at time k. Using (3.32) and (3.34) it follows that, for all k£ > 0,

k
i yora(k) = Z Liu(k — j) = yo(k). (3.36)
j=—o0
Therefore, for all £ > 0,
lim e, q4(k) =yo(k) — lim yo,q(k) =0. (3.37)
r,d—o0 r,d—00

It follows from (3.34) that computing the output at time k requires the inputs
u(k —r),...,u(k + d). That is, to identify a noncausal FIR model we delay the
measured output data by d steps and then perform identification between the input
and delayed output, as we show next.

Let ¢, v, and wq be realization of the zero-mean stationary white random processes
C,V, and W, respectively, and let w be a realization of the stationary colored random
process W. We assume that C,W,, and V are mutually independent and ergodic,

that is, their statistical properties can be determined from a single, sufficiently long

60



realization.
Let u and y denote measurements of the input uy and output yg, respectively, that

is, for all £ > 0,

u(k) = uo(k) + v(k), (3.38)

y(k) = yo(k) + w(k). (3.39)

Note that (3.33) can be expressed as

y0<k) = er,d(br,d(k) + er,d(k>7 (340)
where
A A T
Ora = [L_d o L, } ¢ralk) = [u(k+d) o u(k =)
Moreover, for all £ > 0
y(k) = 0,a0a(k) +w(k) + e a(k). (3.41)

3.6.1 Noncausal Closed-Loop Identification Using Least Squares

The least squares (LS) estimate 6}376 of 6, 4 is given by

é?&?l,[ = arg min H‘I]y,f —H_Tyd(IDH,gHF , (342)
ar,d
where 0,4 € R>#m,
A A
Ve = | y(r) - yll=d) |+ Pur = | dralr) -+ bpall—d) |
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1 Sr4d+ 1, and ¢ is the number of samples. It follows from (3.42) that the least

squares estimate é%,?z,e of 0, 4 satisfies
T jLS T
Wy o @y = 0,00Pue® 0 (3.43)
Note that

Vor="yor+Vur, Wyor=0.aPu0+ Ve 0, Pue=Pue+ Doy, (3.44)

where
N A
Wyt = | wo(r) -+ yo(l —d) ] s Uy = [ w(r) w(l — d) ] ;
A : A B
q)uo,fz QSOT’d(T) ¢0r’d(€—d) :| ) gbOT,d(k): [ Uo(k+d) Uo(k’—T’) :| ’
- T
A A
Py = Gu (1) o0 Py, (0 —d) 1 , o Oua(k) = { vk+d) - v(k—r) } :
Then, (3.43) becomes
Ora® @+ U@L, + T O, =085 D, T, (3.45)
where
A
\Ijer,dvg = er,d(r) T er,d(g —d) |-
Note from Figure 3.11 that u can be written as
u(k) = Gue(2)e(k) + Guu(2)v(k) + Guwy (2)wo(k), (3.46)

where G, ., G, and G, 4, are the asymptotically stable closed loop transfer functions
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from ¢, v, and wy to u, respectively. It follows from (3.46) that we can write
UK) = Gue(2)C(k) + Guu(2)V(E) + Gy, (2)Wo(K). (3.47)

Since C, V, and W, are ergodic processes and U is the output of a linear time-
invariance (LTI) system whose inputs are ergodic, then (3.47) implies that U is also
ergodic. Similarly, we can show that W, ), and ) are ergodic.

Dividing (3.45) by ¢ and taking the limit as ¢ tends to infinity yields

1 1 1 wpl . 1,
Or,q Jim chm@@ + Jim zqfw,gqu + Jim Z\Ifendjcp}l = Jim Ze;g@u,g@}j, (3.48)

T

. 1 T 1 1
where lim/_, o E®u7€¢u,£a limy_s oo Z\Pw,é@u,m

and limy_ %\Ijer,d7£¢z,£ exist due to ergod-

icity conditions.

Define
AN 1 T
Q= lim @, 0y, (3.49)
Therefore, (3.48) can be written as
0,40 + lim ~0, @7, + lim ~0, &, " fim 05 0 3.50
ra@ B pYeeBuet B Venac B = fig Ora@ B350

Taking the limit as r and d tend to infinity, (3.50) becomes

. . . 1 . . 1 wpl . . A
lim 6,40+ lim lim -V, g(IDTz + lim lim —\IJerZCIDTZ 2" lim lim 9%3 Q.
rd—oo r,d—00 £—00 I4 T r,d—00 £—00 /4 o rd—oo b—o0 77

(3.51)
It follows from (3.37) that

1 w
lim lim S0, 2, 2! 0o (3.52)

r,d—00 £—00
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Therefore, (3.51) becomes

r,d—00 £—00 14 pt r,d—00 £—00

1 w
lim lim —W,, @' b ( lim lim 65 rde hm HTd) Q. (3.53)

Since w and u are realizations of correlated processes, then lim, g, limy_,o %\I/w,ﬂ);l;z
is not zero. Therefore, (3.53) implies that (lim, 400 limy o0 QT a0 — iMoo 0, )@ s
not zero, which implies that lim, 4. limy_o 9} g0 — My g0 0,4 is not in the left null

space of (), and thus is not zero. Therefore, 9}13 ¢, 1s not a consistent estimator of 6, 4.

3.6.2 Noncausal Closed-Loop Identification Using the Basic Instrumental
Variables Method

The basic instrumental variables (BIV) method [72] is used with an FIR model
to identify the transfer function G shown in Figure 3.11 by modifying (3.43) [72, 99].
A typical choice of the vector of instrumental variables for closed-loop identification
is to use samples of the exogenous signal ¢ [87]. Let ¢.,q(k) denote the vector of

instrumental variables, that is,

Pe,ra(k) = ck+d) -+ clk—r) : € R¥™, (3.54)
We then modify (3.43) as
Uy D20 = O e ®uePey e (3.55)
where
e = Gera(r) o+ Gerall —d) |- (3.56)
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Then, (3.55) becomes

er,dcbuo,fcbzu,é + gr,dq)v,éq)z#,é + Uy, ZQ’TH 0+ Ve, E‘I) ot = 9r a,0P o, P e T o, v d, e Po, @, L

(3.57)
Since C, W, and V are ergodic processes, (3.57) implies
1 T 1 T
0r.4 elirgo ZCIDMO,KCIDC’M + 0,4 elglolo ZCI)MCI)C%@ + 111’?o K\IIUJ gCI)CM + hm 6\116 dgq)cue
(3.58)

Using (3.58), consistency of the estimated Markov parameters holds if ., , sat-

isfies the following assumptions
A1) limy o %q)uo,f@cT,u,e is nonsingular.
pl
A2 ) hm(—)oo g\I]w Z(I)C“g leum-
wpl

A3) hmg_mO eq)v E(I)c,uf == Oumxum-

The vector of instrumental variables is constructed from the exogenous signal data,
which is a realization of a stationary white random process and satisfies A1) [87].

Next, note that

cl) ... c(l—r—ad

. 1 [ d . . —d . .
= lim — _ Zf;r w(t)c(i+d) --- Zf:r w(i)e(r — 1) ]

= | EWVRC(k+d)] - EW(K)C(r = k)] } = Otyum; (3.59)
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where the last equality follows from the assumptions that W and C are independent
processes and C is zero-mean. Similarly, we can show that

lim E(I),,e(IDCM Opomox - (3.60)

{—o0

Then, it follows from (3.59) and (3.60) that the choice of the instrumental variables

satisfies A2) and A3). Moreover, using (3.59) and (3.60), (3.58) becomes

1 w 1
O,.d [hm g@uoﬁ@cué} —i—ll)m E\De M(pT 31 - erdg [hm gCIDMOECI)CM} (3.61)

Taking the limit of (3.61) as r and d tend to infinity and using (3.53) and assumption
A1), (3.61) becomes

A fm 0% i b 362)

We choose r and d to be sufficiently large such that limy_ %\Per, mgq);ig is negligible.

3.6.3 Noncausal Closed-Loop Identification Using the Extended Instru-

mental Variables Method

The extended instrumental variables (XIV) method generalizes the basic instru-
mental variables method by prefiltering the sampled data of the instrumental variables

(72, 87]. That is, in (3.55) we replace ®., ¢ by

AN
(I)é,u,é = L(z)q)c,,u,b (363)

where L(z) is an asymptotically stable filter. Using the same argument used above
to show consistency for the basic instrumental variables method, consistency of the
estimated Markov parameters of XIV denoted by éii%, holds if ®;,, satisfies the

assumptions

B1) limy_o £<I>u0 g(I)~ is nonsingular.
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. 1 T wpl

B2) limy,q 7V Pz, 0 = Oiscpm.
: 1 T wel

BS) hmg*)oo Z(I)U,E(I)* = O,umx,u,m-

.l

3.6.4 Noncausal Closed-Loop Identification Using Prediction Error Meth-

ods

Let ég((l) and émg(q) be estimates of G(q) and G, (q), respectively, obtained
with ¢ samples of input and output data, and assume that G, (q) and Gij(CI) are

square and nonsingular. Note that y in Figure 3.11 can be written as
y(k) = Ga)u(k) + Gu(q)wo(k). (3.64)
Then, the one-step predictor of (3.64) is defined by [100]
y(k G, Gu) = Gl (@Cu(@u(k) + (1= Gyl (@)y(k). (3.65)
Define the prediction error

2 y(k) — y(k|Gr o). (3.66)

5(k|ée, G’w’g)
Using (3.64) and (3.65), (3.66) can be written as

e(k|Ge, Gug) = y(k) = G (@) Ge(@)u(k) — (1= G (a)y(k)
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Assume that G, G,,, and G;! have no poles on the unit circle. Then G, G,,, and G;!
are analytic in the maximal annulus that contains the unit circle with the Laurent

series given by (3.22) for G and with the Laurent series

Gu(2) = i Mz, (3.68)
G Hz) = i Nz ™", (3.69)

for G, and G!, respectively, in the maximal annulus that contains the unit circle,
Y.

w

where for all 4, M;, N; € R*!. Define

H(q7 er,d) é Z Liq_i7 H(qa eM,r,d) é Z Miq_ia H(qa HN,r,d) é Z Niq_ia

i=—d i=—d i=—d

(3.70)

where 6,4 € R>**™ and 0y,.4,On.a € R, Note from (3.34) and (3.70) that
yO,r,d(k) - H(qa Qr,d)u(k>' (372)
Therefore, (3.35) implies that

er,d(k) = yO(k> - H<q7 er,d)u(k)

= G(q)u(k) — H(q, Or.a)u(k). (3.73)
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Moreover, define

ewra(k) 2 w(k) — Hlq, Oarra)wo(k)

= Gu(@)wo(k) — H(Q, Orrra)wo(k)- (3.74)

Therefore, (3.73) and (3.74) imply, respectively, that

G(q)u(k) = H(q, Orq)u(k) + era(k), (3.75)
Gw(q)wo(k) - H(qa HM,T,d)wO(k) + 6w,r,d(k)' (376)
Let
A A ~. s oal. .
H(qa er,d,é) - G@((]) = Z Li,éq 5 er,d,é = |: L_dj e Lng 1 ) (377)
i=—d

H(Q7 éM,r,d,K) é éw,f(q) = Z Mi,fq_ia éM,r,d,Z é |: M—d,é s Mﬁf :| s (378)

i=—d
A A U i N A ~ N

H(qv QN,T,d,E) é Gw,le(q) = Z Ni,fq P 0N,r,d,€ - |: Nfd,f s Nryg :| 5 (379)

i=—d

where éﬁd,g € R>#m and éMmd’g, éde,g € R>H, Then, using (3.75)-(3.79), (3.67) can

be rewritten as

A~

g(klér,d,fa éM,T,d,fa éN,r,d,é) é’}—[(q’ éN,r,d,f) |:(H(q> er,d) _H(qv 9T,d,€))“<k)
F(H(, O0r,0) = (@ Ot )00 (R) + €ga )+ €aal() | 100 ()

= H(q, éN,r,d,Z) [TT(% ér,d,e, éM,r,d,Z)é(k)+er,d(k)+ew,r,d(k)] +wo(k),

(3.80)
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where

~ ~ H(q7 er,d) - H(qa ér,d,ﬁ) u(k)
1(q, Ora, Orsra,e) = A . &(k) 2 . (3.81)
H(d, Orira) — Hd, Onirae) wo(k)
Define
ég é lim énd’g, HMZ é lim QMrdg, é]\@g é lim éde’g, (382)
r,d—o0 r,d—00 r,d—00
A A A A . A A
e(k|0e, Orre, Onye) = Tblgloo (K|Br.ae, Ortrae, ONrae), (3.83)
~ A H(qv 9) _H(qa éﬁ)
T(q,0.6x0) 2 i T(q 60, Orrrar) = A XY
H(q7 QM) - H(q7 QM,E)
Note from (3.68) and (3.70) that
Jim H(q, Orra) = Gu(), (3.85)
which implies that
lim ey, a(k) = Gu(q)wo(k) — Um H(dq, O ra)wo(k) = 0. (3.86)
r,d—o00 r,d—00

Using (3.37) and (3.82)—(3.86), taking the limit of (3.80) as r and d tend to infinity

yields

€(k|ézy éM,e, éN,,Z) = H(q, éN,Z>TT(q7 é& éM,e)ﬁ(k) + wo (k). (3.87)

Next, define the cost function

—_

¢
V(f,ée,éM,z,éNz ézz k‘\@e,@MzﬁNz)Hg- (3.88)
k=1



Define

é é lim ég, éM é lim éMj, éN é lim é]\ﬂg, (389)
{—00 £—00 {—00

which are independent of the data due to ergodicity. Define

V(0,0,0x5) 2 Tim V(£, 0y, 0110, 0.0). (3.90)

L— o0

Using Parseval’s theorem, (3.90) becomes

T 1
V(H,GM,HN) = g/q)a(w)dw, (391)

—Tr

where using (3.87), the spectrum of ¢ is given by
O (w) 2 H(e™, 03T (€, 0, 010) P (w)T (e, 0,00 )H (€7 Ox) + Augs  (3.92)

H(e™ Oy) and T(e*,0,0,;) are the discrete-time Fourier transforms of H(q, Ox) and

T(q, 0,0 M), respectively,

>
=
=
E
&
£
&
B

D¢ (w) (3.93)
is the spectrum of ¢, ®, is the spectrum of u, A, is the variance of wy, and ®,,
and ®,,, , are the cross-power spectra between u and wy.

Note from (3.84) and (3.92) that T'(e*,0,0,) = T(e*,0,0,) is the global mini-
mizer of (3.92), which implies that the PEM estimates 0} and 65F} of 6 and 6y,
respectively, converge to the true values as ¢ tends to infinity, that is,

lim O5FM = 0, lim 65FM = 6, (3.94)
L— o0 l—00 ’
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We choose r and d to be sufficiently large such that e, 4(k) and e, , 4(k) are negligible
for all £k > 1.

3.7 Numerical Examples

To identify a noncausal FIR model of a transfer function G in the closed-loop
system shown in Figure 3.11 we delay the measured output data by d steps and
then apply the identification methods discussed in the previous section using the
input data and delayed output data. A nonzero estimate of the noncausal component
of the identified FIR model indicates that G may have at least one unstable pole;
otherwise GG is asymptotically stable.

We assume that the exogenous signal c in Figure 3.11 is a realization of a stationary
white random process C with the Gaussian pdf N (0,1). Moreover, we assume that
the intermediate signal u is measured. In the first example in this section we assume
noise-free data, that is, v(k) = 0 and w(k) = 0 for all £ > 0 and we use least squares
to identify a baseline model. These examples illustrate the role of the noncausal terms
in the identified model. The second example in this section compares the accuracy of
the identified model obtained using least squares, instrumental variables techniques,
and prediction error methods for both IIR and noncausal FIR models in the presence

of noise.

Example 3.1. Consider the unstable MIMO system

oz = Gi11(2) Gia(z) N 1 —2+63 5Hz—-11.9

. (3.95)
Cor(2)  Gasl(2) 2 =224035 | 4 14 1924926
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with the realization

1.5 0.2 1 -1 1 2
A == y B = 5 C == 5 D - 02><2. (396)
2 0.5 -1 3 0 —4
Consider the LQR controller with () = 21, and R = I5, where 5 is the 2 x 2 identity

matrix, and thus

2.5446  0.4259
K = : (3.97)

1.3095 0.2707
Let r = 25 and d = 25. Figure 3.12 shows the true and identified Laurent series
coefficients of G in A(pg, p,), where p; =~ 0.1938 and p, ~ 1.8062. Note that the
impulse response of G has both causal and noncausal components, where the causal

components are due to the stable part of G and the noncausal components are due

to the unstable part of G. [ |

Example 3.2. Consider the 7®-order unstable but not strongly unstable transfer

10 T

E
= - G
g ° L1
<} - G
g 4 06825° @ o
&4 00833 50 21
3 ) o¥ - G
2 .
§ GO o} Q1 1
2 5L 4 o (51,2
2 O Giz
RS

-15 L L L L O] L 1 1 1
-25 -20 -15 -10 -5 0 5 10 15 20 25

Impulse response index

Figure 3.12: G is the MIMO system (3.95), » = 25, and d = 25 output-delay steps.
The entries of the true impulse response of GG are shown in dot markers
and the entries of the identified impulse response of G are shown in
circle markers. Note that the impulse response of G has both causal and
noncausal components.
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function

(224 0.16)(2 — 0.3)(2 + 0.3)

G(z) = 3.98
() (z+0.7)(z+0.6)(22+0.25)(z — 1.8)(z — 1.7)(z — 1.6) (3.98)

and the LQR controller with weighting matrices ) = I; and R = 1, and thus
K = 35197 —3.1272 —3.0739 2.0825 1.0096 0.7134 0.4997 |.  (3.99)

We set » = 50 and d = 50. Let v in Figure 3.6 be a realization of a zero-mean white
gaussian random process with signal-to-noise ratio of 10. Let GLS,Zy éIV’E, and épEM’K
of order ny,0q be the identified ITR models using LS, IV, and PEM, respectively, where
¢ samples are used for identification. To perform the identification using [V and PEM
we use the Matlab functions iv4 (data, ‘na’ ,nmeq, ‘nb’ ,Nmeq) and pem(data,nyoqd),
respectively. We use (3.27) to find the noncausal FIR truncations of C;’le, élv,e, and

épEM’b then we compute the error in the Markov parameters estimates defined by
A1 50
= =0 ; 10r.a — Or.dell2, (3.100)

where éndl’i is the vector of coefficients of the noncausal FIR truncation of C?Lsx,
Gmg, or GAPEM,Z obtained from the i*" experiment.

Next, we consider a noncausal FIR model with » = 50 and d = 50, and we estimate
the vector of Markov parameters for 50 independent realizations. We compute the
error in the Markov parameters estimates using (3.100), where 6,.4,; in (3.100) is the
estimate of the vector of Markov parameters obtained from the i*® experiment using
LS, IV, or PEM.

Figure 3.13 shows ¢, for LS, IV, and PEM with IIR and noncausal FIR models for
¢ = 10,000 samples, where the order n,.q of the IIR model changes between 1 and 20
and the order of the noncausal FIR model is fixed at » = 50 and d = 50. Figure 3.13
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shows that FIR models give better estimates than IIR models for all 1 < ny,0q < 20.
In the next section, we show that the estimated parameters of the noncausal FIR
model can be used to estimate the order of the system, which in turn can be used

with PEM to make the IIR estimates more accurate.

10

—— LS with FIR
~ — —1V with FIR
PEM with FIR |]
Tev ® LS with IIR
102k v IVwith IR |]
PEM with ITIR |}

Y,
<

10

Figure 3.13: G(z) given by (3.98) is an unstable but not strongly unstable transfer
function, » = 50, d = 50 output-delay steps, ¢ = 10,000 samples, and
v in Figure 3.6 is a realization of a zero-mean white gaussian random
process with signal-to-noise ratio of 10. This plot shows that FIR models
give better coefficient estimates than IIR models for all 1 < n0q < 20.

3.8 Reconstructing G from its Noncausal FIR Model

In order to reconstruct G from its noncausal FIR model we reconstruct the stable
and unstable parts of G separately using the eigensystem realization algorithm (ERA)
[78]. Then, we obtain G' by adding these two terms together as in (3.18). Singular
values of the Hankel matrix can be used to estimate the model orders ng of G and n,
of G,,. We begin with initial estimates ngy > ng and n, > n,. For Gy, we set r = 2n,—1
and d = 0 and obtain the Markov parameters of G5 using the identification methods

discussed above. On the other hand, for G, we set r = 0 and d = 2n, — 1 and obtain
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the Markov parameters of G,,(27!) using the identification methods discussed above.

Then, we construct the Markov block-Hankel matrix

HSI Hs,ﬁs
HH)= | 0 : (3.101)
Hs,ﬁs HS,QﬁS—l
where
A
Hy=| Hyo -+ Heznr | (3.102)

and H(-) is a linear mapping that constructs a Markov block-Hankel matrix from
the components of the vector Hs except for Hyp. The rank of H(Hs) is equal to the

McMillan degree of Gg. Similarly, for G, (z!) we construct the Markov block-Hankel

matrix
Hy 2342 -+ Hy-pet1
H(H,) £ 5 SO , (3.103)
Hy g1 -+ Hup
where
H, = Hy 24,41 -+ Hupo |- (3.104)

Note that H(-) constructs a Markov block-Hankel matrix from the components of the
vector H, except for Hy _o4,+1. The rank of H(H,) is equal to the McMillan degree
of Gu(z71).

We compute the singular values of H(Hs) and H(H,) and look for a large decrease
in the singular values. For noise-free data, a large decrease in the singular values is
evident. However, even with a small amount of noise, the large decrease in the sin-
gular values disappears and thus the problem of estimating the model order becomes
difficult [80].

The nuclear-norm minimization technique given in [79, 80] provides a heuristic

76



optimization approach to this problem. Let H, be the vector of of estimated Markov
parameters, where

PN .
Hy =1 Hgo -+ Hspp1 |- (3.105)

To estimate the model order of G5 we solve the optimization problem

minimize||H (Hy(7s)) || n (3.106)
HS('VS)
subject to
| Hy(vs) — Hyllr < s, (3.107)

where 7, is varied over a range of small positive numbers. For each value of ~,, we
solve the optimization problem (3.106), (3.107), and then we construct the Markov
block-Hankel matrix H(H(v;)) and compute its singular values. The singular values
of H(H,(vs)) that are robust to the change in , provide an estimate of the McMillan
degree of Gy. Finally, we use ERA to construct the estimate Gy(z) of Gy(2).

Similarly, let H, be the vector of of estimated Markov parameters, where

Hyo -+ Hyon 1 |- (3.108)

To estimate the model order of GG, we solve the optimization problem

minimize||H(Hy (7)) |Ix (3.109)
Hu(ya)
subject to
| Hu(va) — HullF < Y, (3.110)
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where 7, is varied over a range of small positive numbers. For each value of v,, we
solve the optimization problem (3.109), (3.110), and then we construct the Markov
block-Hankel matrix H(H,(y,)) and compute its singular values. The singular values
of H(H,(7,)) that are robust to the change in +, provide an estimate of the McMillan
degree of Gy. Finally, we use ERA to construct the estimate Gy(2') of Gy(z1).

The following example illustrates this method.

Example 3.3. Consider the system (3.98). We use ¢ in Figure 3.6 to be a realization
of the stationary white random process C with the Gaussian pdf AV(0,1). Let v be
a white noise signal with signal-to-noise ratio of 10. We set r = 25, d = 25, and
¢ = 5000 points and then we identify a noncausal FIR model of G. The estimated
Markov parameters are averaged over 100 experiments.

To choose the model order for G5(z), we set 1y = 10 and we solve the optimization
problem (3.106), (3.107) for a range of ~, from 1071° to 1078, For each value of s,
we find the optimal ]f[s(fys), and then we construct the Markov block-Hankel matrix

~

H(Hs(vs)) and compute its singular values.
Figure 3.14 shows the singular values of the Hankel matrix H(Hy(7s)) versus 7.
Figure 3.14 shows that 4 singular values of H(H(;)) are robust to the change in s,

which correctly yields 4 as the estimated order of G5. Using ERA we obtain

& (2) 0.0724123 + 0.0223422 + 0.016062 — 0.00113
s\%) = - :
2% 4 1.302022 + 0.759022 + 0.3697z + 0.08392

(3.111)

Similarly, for G,(27!), we set 7, = 10 and we solve the optimization problem
(3.109), (3.110) for a range of 7, from 1071° to 1078, For each value of 7, we find the
optimal H,(7,), and then we construct the Markov block-Hankel matrix #(Hy (7))
and compute its singular values. Figure 3.15 shows the singular values of the Hankel

matrix H(H,(7s)) versus v,. Figure 3.15 shows that 3 singular values of H(H,(V4))

are robust to the change in v,, which correctly yields 3 as the estimated order of G,.
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Using ERA we obtain

A

1 0.009623 — 0.08982% + 0.0147z — 0.00002
Gu(z7) =

23 —1.768022% 4+ 1.0400z — 0.2028 ’

(3.112)

that is,
& (2) 0.00002z3 — 0.01472% + 0.0898z — 0.0096
ul?) =
0.202823 — 1.040022 + 1.7680z — 1

(3.113)

It follows that the estimate G of G is

Grra(2) = Gy(2) + Gu(2)
B 0.000127—0.000125—0.00062°41.00702*+0.001823+0.157322—0.06942+0.0016
27— 3.824926 + 2.801125 4+ 2.899124 — 1.614923 — 0.949422 — 1.09122 — 0.4138"
(3.114)

Figure 3.16 shows the difference between the bode plots of G and the estimates Grra,
Grr obtained using PEM with an IIR model with order n,,,q = 5, and Gr,d obtained
using PEM with a noncausal FIR model with r = 25 and d = 25. Note that the
noncausal FIR estimate, G’nd yields the smallest error in the estimated frequency

response of G. [

3.9 Conclusions

In this chapter we used noncausal FIR models for closed-loop identification of
open-loop-unstable plants. To identify the noncausal model we delayed the measured
output relative to the measured input. We found that the identified FIR model
approximates the Laurent series of the plant inside the annulus of analyticity lying
between the disk of stable poles and the punctured plane of unstable poles. We
presented examples to compare the accuracy of the identified model obtained using
least squares, instrumental variables methods, and prediction error methods for both

IIR and noncausal FIR models under arbitrary noise that is fed back into the loop.
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Figure 3.14: Plot of the singular values of H(H (7)) versus s, where ng = 10 and
Hy in (3.107) is the vector of Markov parameters obtained using PEM
with a noncausal FIR model of order r = 25 and d = 25, averaged over
100 independent realizations. Note that 4 singular values of H(H (7))
are robust to the change in v, which correctly yields 4 as the estimated
order of G.

Numerical examples showed that for systems with unknown order, using noncausal

FIR models for identification gives better estimates than using IIR models with an

overestimated or underestimated model order. We used nuclear norm minimization

technique to estimate the orders of the asymptotically stable and unstable parts of
the plant, which can be used to improve the identification accuracy for IIR systems.

Finally, we reconstructed an IIR model of the system from its stable and unstable

parts using the eigensystem realization algorithm.
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Figure 3.15: Plot of the singular values of H(H(v,)) versus ~y,, where 7, = 10 and
H in (3.110) is the vector of Markov parameters obtained using PEM
with a noncausal FIR model of order » = 25 and d = 25 averaged over
100 independent realizations. Note that 3 singular values of H(H (7))
are robust to the change in ,, which correctly yields 3 as the estimated
order of G,,.

10 T
—IIR

Noncausal FIR | |
—— ERA

5 I I I I
0 /5 2m/5 3m/5 4w /5 ™
Frequency 6 [rad/sample]

Figure 3.16: Bode plots of G — Gy (red), G — Gy (blue), and G — Gera (green).
Note that the noncausal FIR estimate G, 4 yields the smallest error in
the estimated frequency response of G.
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CHAPTER 4

Application to Health Monitoring of Aircraft

Sensors and Acoustic Systems

4.1 Introduction

In the present chapter we use noncausal FIR models with prediction error methods
to identify transmissibility operators. Then, we use the identified transmissibility
operators for rate-gyro health monitoring in aircraft and to detect changes in the
dynamics of a vibrating plate and an acoustic system.

The NASA Generic Transport Model (GTM) [65, 66] is used to simulate the fully
nonlinear aircraft dynamics for data generation. In particular, we excite the aircraft
by using the ailerons, elevator, and rudder, and we use rate-gyro measurements along
with sideslip-angle measurements to construct a 1 x 3 transmissibility operator. We
then use the transmissibility operator for health monitoring by computing the result-
ing one-step residual. The case of gyro drift is considered as an illustrative example.

Next, we consider simulating a vibrating plate with clamped-free-free-free (CFFF)
boundary conditions. Three actuators and five sensors are placed on the plate. Mea-
surements from the five sensors are used to construct a 1 x 1,1 x 2,1 x 3, and 1 x4
transmissibility operators. We then use these transmissibility operators to estimate

the number of excitations acting on the plate and to detect changes in the dynamics
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of the plate by computing the resulting one-step residual.

Next, we consider an experimental setup consisting of a drum with two speakers
and four microphones. Each speaker is an actuator, and each microphone is a sensor
that measures the acoustic response at its location. Two plastic pieces are placed
inside the drum, and these can be removed during operation to emulate changes to
the system. Measurements from the four microphones are used to construct a 1 x 1,
1x2, and 1 x 3 transmissibility operators. We then use these transmissibility operators
to estimate the number of excitations acting on the system and to detect changes in

the dynamics of the system by computing the resulting one-step residual.

4.2 Noncausal FIR Approximation of Transmissibility Oper-

ators

Expression (2.49) shows that a transmissibility operator contains information
about the zeros of the system and not the poles. Therefore, a nonminimum-phase
zero in the pseudo-input channel of a transmissibility operator yields an unstable
transmissibility operator. Moreover, if the pseudo-output channel of a transmissibil-
ity operator has more zeros than the pseudo-input channel, then the transmissibility
operator is improper, and thus noncausal. However, neither instability nor causality
has the usual meaning associated with transfer functions. Nevertheless, to facilitate
system identification, we consider a class of models that can approximate transmissi-
bility operators that may be unstable, noncausal, and of unknown order. This class
of models consists of noncausal FIR models based on a truncated Laurent expansion.
The causal (backward-shift) part of the Laurent expansion is asymptotically stable
since all of its poles are zero, while the noncausal (forward-shift) part of the Laurent
expansion captures the unstable and noncausal components of the transmissibility

operator [30].
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Let T(q) be the discrete-time transmissibility operator whose pseudo input is y;

and whose pseudo output is y,, that is,

Yo(k) = T(a)yi(k). (4.1)

It follows from [30] that the truncated Laurent expansion

T(q,0,.q) £ > Hq™ (4.2)

i=—d

is a noncausal FIR approximation of 7(q), where r and d are positive integers,
H_g4,...,H, € Re=mxm are coefficients of the Laurent expansion of the rational

function 7 in an annulus that contains the unit circle, and

L

Opa=[H_4 ... H, ]€RPmxtdrlm (4.3)

Using (4.2), the one-step predicted output is given by

Yo(klOra) = T(a Ora)s(k) = > Higi(k — ). (4.4)

i=—d

4.3 Identification of Transmissibility Operators Using Non-

causal FIR models with Prediction Error Methods

To identify transmissibility operators that are possibly unstable, improper, and of
unknown order, we use noncausal FIR models with prediction error methods (PEM)
[75].

For each choice of transmissibility coefficients
N
= [

0. H_, --. H, ]€RE-mxtrdthm (4.5)
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it follows that
T(q,0,0) = Y _ Hiq™". (4.6)
i=—d

The residual of the transmissibility 7(q,0,.q4) at time k is defined to be the one-step

prediction error

e(k|8ra) = yo(k) = yo(k|Bra)

= Yo(k) — T(q, 0r.a)yi (k)

= yo(k) — Y Higi(k — ). (4.7)

i=—d

The accuracy of Q_T,d is measured by the performance metric

{—d

_ A 1 _

Va0 2 s S ek, (4.9
k=r

where|| - ||2 is the Euclidean norm and £+ 1 is the number of data samples. Then, the

PEM estimate énd,g of 0,4 is given by

Or.ac 2 argmin V (6,4, £), (4.9)
e_r,d
where
N JAY - - —m T m
Orae=[H 4o -+ Hy,l€ RP—m)x(rtd+1)m (4.10)

It follows from (4.7) that the residual of the identified transmissibility 7 (q, éryd,g) at
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time k is given by

e(kl0r.00) = Yo(k) — Yo(K|0r.a.0)
= yo(k) - T(qa ér,d,ﬁ)yi(k)

= yo(k) = Y Higti(k — ). (4.11)

i=—d
For all r < k </ —w — d, define
A w—+k
E(k|0pae,w) = | Y €(il0ra0) (4.12)
i=k

to be the norm of the residual of the rectangular data window of size w+ 1 starting at
time step k. Expressions (4.11) and (4.12) measure the accuracy of the transmissibility
from y; to y, for the estimate ér,d,g of 0, 4. The identification data set used to obtain
(4.9) is different from the validation data set used to compute (4.11) and (4.12).
Constructing a meaningful transmissibility operator requires knowledge of the
number m of independent disturbances acting on the system. Since m may be un-
known, we estimate m using the following procedure. Let m € {1,...,p — 1} and
define p = p — m. We use PEM with a noncausal FIR model to identify a trans-
missibility operator with m pseudo inputs and p pseudo outputs. For each identified
transmissibility operator we compute the residual using (4.11). The estimated num-
ber of disturbances is the value of m at which a sharp drop occurs in the norm of the
residual. If a sharp drop is not obvious, then the estimated number of disturbances
is the smallest value of m for which no sizable improvement is obtained for larger
values of m. Redundant sensors can then be removed or retained for possible benefits

in terms of the accuracy of the identified transmissibility operators.
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4.4 Application to Aircraft Sensor Health Monitoring

To apply transmissibility operators to aircraft sensor health monitoring, we con-
sider the NASA GTM model [65, 66|, which is a fully nonlinear model with aerody-
namic lookup tables. GTM includes sensor models that can be modified to emulate
sensor faults.

Let 68 denote the sideslip angle in degrees, and let w 2 [wy wy wz]T be the angular
velocity of the aircraft relative to the Earth resolved in the aircraft frame, where w,,
wy, and w, are measured by rate gyros in degrees per second. Define 7 (q) to be the
1 x 3 transmissibility operator whose pseudo input is 1 2 [w, wy, 6B]T and whose

: A .
pseudo output is y, = w,, that is,

w:(k) =T(a) | wy(k) |- (4.13)

We set the sampling time T, = 0.01 sec, and we assume that sampled data is
available for ¢ € [0, 500] sec, that is, 0 < k < 50,000 steps. Let da, de, and dr denote
the aileron, elevator, and rudder deflections, respectively. For all 0 < k& < 50,000
let da = sin(QkT;) deg, de = sin(QkT; + 45) deg, and or = cos(2kTy) deg, where
) = 30 deg/sec. Physically, the displacements of the ailerons, elevator, and rudder
are sinusoidal with an amplitude of 1 deg and a period of 12 sec. We consider the
following initial GTM trim conditions: Level flight, altitude = 8000.00 ft, equivalent
airspeed = 89.18 kt, true airspeed = 100.58 kt, alpha = 3.00 deg, beta = 0 deg,
gamma = 0 deg, roll = 0.066 deg, pitch = 3.00 deg, yaw = 45.00 deg, ground track
= 45.00 deg, elevator = 2.70 deg, throttle = 22.84%.

To emulate sensor noise we add zero-mean white noise with SNR of 50 to all

identification and validation measurements of w,, w,, w,, and 68. We use PEM with
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a noncausal FIR model with r = 50 and d = 50, along with identification data
for 2,500 < k < 20,000 steps to obtain the identified transmissibility 7 (q, énd,g)
of 7(q). Figure 4.1 shows the Markov (impulse response) parameters of T (q, 6,.4.)
from each pseudo input w,, w,, and 03 to the pseudo output w,. Data for 20,000 <
k < 50,000 is used for validation. Figure 4.2 shows w, and its one-step prediction

By 2 T(a, Opae)[we w, 68]T for 28,000 < k < 28,500, that is, for ¢ € [280, 285] sec.

01 T T T T T T T T T
From w, to w
0.08} : ’ 1
;g - - =From w, to w,
© 006 From 653 to w, |]
—
L o004l 1
g
< 0.02
&
3,
> 0
S .
2 ]
§ -0.02
-0.04+ |
-0.06 i i i i i i i i i

-50 -40 -30 -20 -10 0 10 20 30 40 50
Markov parameter index

Figure 4.1: Entries of the estimated Markov parameters ér,d,e of T(q,6,q) from each
pseudo input w, w,, and J5 to the pseudo output w..

Next, we consider the case where a ramp-like drift with a slope of 0.05 deg/sec?
is added to measurements of either w,, w,, or w, starting at ¢ = 300 sec. Measure-
ments of w,, w,, w,, and 68 are used with the identified transmissibility operator
T(q,0y.q¢) to generate the residual using (4.11). Figure 4.3 shows E(k|0,.q,w) for
all 2,500 < k£ < 50,000 —w — d for w = 1000 steps, where a ramp-like drift is added
to measurements of either w,, w,, or w,. Figure 4.3 shows that the residual levels
increase after ¢ = 300 sec, which indicates that, in all three cases, at least one of the

sensors is faulty. However, we cannot conclude from Figure 4.3 which sensor is faulty.
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Figure 4.2: For the aircraft example, this plot shows measurements of w, and the
computed one-step prediction w, under healthy sensor conditions with
SNR of 50 for both the pseudo inputs and the pseudo output.

Next, we consider the case where a deadzone nonlinearity is applied to measure-
ments of either w,, w,, or w, starting at ¢ = 300 sec. Measurements of w,, w,, w,, and
0 are used with the identified transmissibility operator T (q, éndl) to generate the
residual using (4.11). Figure 4.4 shows E(k|f,.4., w) for all 2,500 < k < 50,000—w—d
for w = 1000 steps, where a ramp-like drift is added to measurements of either w,,
Wy, Or w,. Figure 4.4 shows that the residual levels increase after ¢ = 300 sec, which
indicates that, in all three cases, at least one of the sensors is faulty. However, we
cannot conclude from Figure 4.4 which sensor is faulty.

Similar results can be shown for other types of faults, such as magnitude satura-

tion, rate saturation, and jam.
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Figure 4.3: For the aircraft example, this plot shows F (k|énd7g, w) for w = 1000 steps,
where a ramp-like drift is added to measurements of either w,, w,, or w,.
Note that the residual levels increase after t = 300 sec, which indicates
that, in all three cases, at least one of the sensors is faulty. However, we
cannot conclude from Figure 4.3 which sensor is faulty.
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Figure 4.4: For the aircraft example, this plot shows F (k‘|énd7g, w) for w = 1000 steps,
where a deadzone nonlinearity is applied to either w,, w,, or w,. Note that
the residual levels increase after ¢ = 300 sec, which indicates that, in all
three cases, at least one of the sensors is faulty. However, we cannot
conclude from Figure 4.4 which sensor is faulty.
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4.5 Application to a Vibrating Plate

Consider the rectangular aluminum plate shown in Figure 4.5 with length a, width
b, height h, and clamped-free-free-free (CFFF) boundary conditions. The equations
of motion are derived using a Lagrangian formulation with the kinetic energy and
potential energy expressions developed in [101, pp. 242-243]. Using Rayleigh-Ritz
discretization [101, pp. 247-253], assuming a nine-degree-of-freedom model of the

plate an approximation of the vertical displacement at (x,y) at time ¢ is given by

oy i (1), (4.14)

3 3
=1

w(z,y,t) 2>

i=1 j

where ¢; ; are generalized coordinates [102].

Let a = 5m, b = 1 m, and h = 0.0l m. Let u;(¢) be the force acting at
(Za;, Ya;) at time ¢ and y;(t) be the measured displacement in the vertical direction
at (xs,,ys,) at time ¢. Let uy(t) = 600sin(5t) N, uq(t) = 500sin(10¢) N, and ug(t) =
300sin(20t) N. Let (2a,¥a,) = (0.3,0.3), (Zay, Yay) = (1,1), (Zas,Yas) = (4,0.25),
(s, Ysy) = (0.5,0.1), (2s,, Ys,) = (1,0.5), (2sy,Ys5) = (2,0.8), (zs,,ys,) = (3,0.6), and

(Zss, Yss) = (3,0.75) as shown in Figure 4.5.

O Sensor

X Applied Force

]
/:

Figure 4.5: A rectangular plate with length a, width b, height h, and clamped-free-
free-free (CFFF) boundary conditions. The unit vectors gl, $2, and g3
correspond to the x,y, and z directions, respectively.
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For all i = 1,...,5, let y; be the measurement of w(zs,, ys,,t). Moreover, for all
i=1,...,4letY; 2 [y1 ... y]* € R and T;(p) be the transmissibility whose pseudo
input is Y; and whose pseudo output is y5. Suppose that all measurements are noise
free. We assume that data is available for 1 < k < 20,000. We use PEM with a
noncausal FIR model with » = 25, d = 25, and the first / = 2000 data points to
obtain the identified transmissibilities 7;(q ™, HAMM) of Ti(p) for alli =1,... 4.

Figure 4.6 shows E(k|ér7d¢, w) for T;(q7, ér7d7g), where i = 1,...,4 and w = 1000
steps. Note that using additional input sensors for the transmissibility reduces the
level of E(k|fy.q4¢,w). Moreover, note that the level of E(k|0,4,, w) does not change
significantly when three or four pseudo inputs are used for the transmissibility oper-
ator, which implies that three disturbances are acting on the system.

Next, we add zero-mean white noise with the gaussian pdf A(0,1) to y; for all

Time (sec)

Figure 4.6: For the vibrating plate shown in Figure 4.5, this plot shows F (k)|ér,d’g, w)
for T;(q !, énd’g), where i = 1,...,4 and w = 1000 steps and no noise is
added to the measurements. Note that using additional input sensors re-
duces the level of E(k|,q4¢, w). This plot implies that three disturbances
are acting on the system.
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1 with the same SNR varying from 1 to 100. We assume that data is available for
1 <k <20,000. We use PEM with a noncausal FIR model with » = 25, d = 25, and
the first £ = 2000 data points to obtain the identified transmissibility 7;(q~?, é,ﬂ’d’g) for
alli =1,...,4. Figure 4.7 shows a plot of the norm of the residual of 7;(q™ !, ér,d’g) for
alli =1,...,4. Note from Figure 4.7 that using more input sensors reduces the norm
of the residual. Moreover, note that the level of the norm of the residual does not
change when three or four pseudo inputs are used for the transmissibility operator,
which implies that three disturbances are acting on the system.

To emulate changes occurring in the plate, suppose that at ¢t = 5 sec the Young’s
modulus of the plate starts to decrease. We use PEM with a noncausal FIR model
with » = 25, d = 25, and the first / = 2000 data points to obtain the identified
transmissibilities 7;(q !, ér’d’g) for alli = 1,...,4. Figure 4.8 shows the norm of the
residual for ﬁ(q_l,ér,d,g), where 7 = 1,...,4 and w = 1000 steps. Note that after

t = 5 sec the residual level increases due to the change in the dynamics of the plate.

Norm of residual e

O | | | | 1 i
0 10 20 30 40 50 60 70 80 90 100

SNR

Figure 4.7: For the vibrating plate shown in Figure 4.5, this plot shows the norm of
the residual of T;(q~*, ér’d’g) for i = 1,...,4 where zero-mean white noise
with the gaussian pdf A/(0,1) is added to y; for all 7 with the same SNR
varying from 1 to 100. Note that using additional input sensors reduces
the norm of the residual.
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Figure 4.8: For the vibrating plate shown in Figure 4.5, this plot shows E(k|é,~,d,g, w)
of Ti(q™*,0,.44) for i =1,...,4 for w = 1000 steps. Note that after t =5
sec the residual level increases due to the change in the dynamics of the
plate.

4.6 Application to an Acoustic System

In order to investigate the ability of transmissibility operators to detect changes
in the dynamics of an acoustic system, we consider the experimental setup shown
in Figure 4.9. The setup consists of a drum with two speakers w; and ws and four
microphones mic;—micy. Each speaker is an actuator, and each microphone is a sensor
that measures the acoustic response at its location. Two plastic pieces are placed
inside the drum, and these can be removed during operation to emulate changes
to the system. All actuator signals are generated using MATLAB and sent to the
speakers through a data acquisition card. The sampling rate is chosen to be 1000 Hz.

Let u; and us be the measurements of the signals of the speakers w; and wo,

respectively, and let y;—y4 be the measurements obtained by the sensors mic;—micy,

94



respectively.

Fori=1,2,3, let Y; 2 [y1 ... y]T € R" and let T; be the transmissibility whose
pseudo input is Y; and whose pseudo output is y,. We assume that data is available
for 1 < k < 30,000.

Suppose that the system is operating under healthy conditions, and suppose that
w; and we are driven with realizations of a bandlimited white noise with bandwidth of

500 Hz. We use PEM with a noncausal FIR model with r = 25, d = 25, and the first

Top View Side View

mic1 mic2

w1 I ® .
w2 I
mic4

v I » . mic3

Obstruction in Drum

mic1 mic2

\

mic3 mi

\

\

This end is open
with no cover

I

Obstruction in Drum

Figure 4.9: Experimental setup. The setup consists of a drum with two speakers w;
and wy and four microphones mic;—micy. Each speaker is an actuator
and each microphone is a sensor measures the acoustic response at its
location. Two plastic pieces are placed inside the drum (shown in blue)
and can be removed during operation to emulate changes to the system.
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¢ = 10,000 samples to obtain the identified transmissibilities 7;(q ", HA”M) of T;(p)
for i = 1,2,3. Figure 4.10 shows E(k|0,q0, w) for T;(q",0pq.), where w = 1000
steps and i = 1,2,3. Note from Figure 4.10 that 7‘2(q’1,9rdg) gives significantly
lower residual than 77(q ™", ér,d,g) where T3(q~ rdz) produces no significant benefit
compared to ’7'2(q_1, GANM). This suggests that the number of excitations acting on
the system is two. Figure 4.11 shows y4 and the computed one-step prediction 74 2

T5(q ", Orae)[yr yo ys]™ for 15,000 < k < 15,300, that is, for t € [15,15.3] sec.

2.5
Tila™",0r40)
oL 75( rd@) i
75( rd@)

[
T
i

Norm of residual e
=
13

0.5F T

0 5 10 15 20 25 30
Time (sec)

Figure 4.10: For the acoustic system shown in Figure 4.9 operating under healthy
conditions, w; and wy are driven with realizations of a bandlimited
white noise with bandwidth of 500 Hz. This plot shows E(k|0,.q4.¢, w)
for T( ng) where w = 1000 steps and i = 1,2,3 Note that
To(q~ rdg) gives significantly lower residual than Tl( 9,,7“) and
Ts(q~ rdg) produces no benefit compared to T>(q~ HT,d,g). This sug-
gests that the number of excitations acting on the system is two.

Next, suppose that the system is operating under healthy conditions, and suppose
that wy is driven with a realization of a bandlimited white noise with bandwidth of 500
Hz and ws is not operating. We use PEM with a noncausal FIR model with r = 25,

d = 25, and the first £ = 10,000 samples to obtain the identified transmissibilities
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Figure 4.11: For the acoustic system shown in Figure 4.9 operating under healthy
conditions, w; and wy are driven with realizations of a bandlimited white
noise with bandwidth of 500 Hz. This plot shows the measurements of
y4 and the computed one-step prediction g,.

Ti(q™ !, énd,g) of Ti(p) for i = 1,2, 3. Figure 4.12 shows E(k|ér7d7g, w) for T( rdz)

where w = 1000 steps and i = 1,2,3. Note from Figure 4.12 that 75(q~ ng) gives

significantly lower residual than 7;(q~! Hrd[) and T3(q~ ng) gives slightly lower
residual than T5(q ™", 6,.4). This shows the potential benefits of sensor redundancy.

Suppose that the two speakers are operating simultaneously and suppose that
uy(t) = sin(1007t) and wus(t) = sin(1207t). We use PEM with a noncausal FIR
model with » = 25, d = 25, and the first £ = 5,000 samples to obtain the identified
transmissibilities 7;(q ™! ng) of Ti(p) for i = 1,2,3. At approximately ¢ = 10 sec
and t = 21 sec the first and second plastic pieces are removed. Data for 5,000 < k£ <

30, 000 is used for validation. Figure 4.13 shows E(k‘|ér7d,g, ) for Ti(q~ ng) where

w = 1000 steps and 7 = 1,2, 3. Note from Figure 4.13 the changes in E(k|€,~,d,g, w) at

approximately t = 10 sec and at t = 21 sec due to the change in the dynamics of the

drum.
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4.7 Conclusions

An estimate of the transmissibility operator between pairs or sets of sensors can
be used to detect sensor faults in the presence of unknown external excitation. The
ability to detect sensor faults by exploiting the presence of unknown external exci-
tation is the key difference between this approach and techniques based on residual
generation. In particular, the transmissibility operator is a relationship between pairs
or sets of sensors that is independent of the time history of the external excitation.

Transmissibility-based fault detection depends on various assumptions. In par-
ticular, this approach assumes that the plant itself does not change between the
identification and validation data sets and that the location of the external excita-

tion does not change. By using the estimated transmissibility operator, the residual
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Figure 4.12: For the acoustic system shown in Figure 4.9 operating under healthy
conditions, w; is driven with a realization of a bandlimited white
noise with bandwidth of 500 Hz and wy is not operating. This plot
shows E(kf|érdg, ) for T( rdg) where w = 1000 steps and i =
1,2, 3 Note that T2(q™', 0,4 g) glves significantly lower residual than
Ti(g~ ng) However, 7},( ,Omm) produces no benefit compared to
Ta(q ', 0,.40). This shows the potential benefits of sensor redundancy.
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between pairs or sets of sensors can be used to detect a sensor failure or a change
in the dynamics of a system. Moreover, the characteristic shape of the residual can
be used to infer the type of sensor failure. However, this approach does not identify

which sensor has failed. This problem is left for future research.

Ti(@™ Y, 0ra0)

75 (q71 ) ér',d,@ )
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Ek|0r.a0,w)
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Figure 4.13: For the acoustic system shown in Figure 4.9 with u;(¢) = sin(1007¢) and
uy(t) = sin(1207t), this plot shows E(k|0,.q., w) for To(q™", by.q,), where
w = 1000 steps, ¢ = 1,2,3 and at approximately ¢ = 10 sec and t = 21
sec the first and second plastic pieces are removed. Note the changes in
E(k’|ér7d7g, w) at approximately ¢ = 10 sec and at ¢t = 21 sec due to the

change in the drum dynamics.
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CHAPTER 5

Time-Domain Analysis of Motion
Transmissibilities in Force-Driven and

Displacement-Driven Structures

5.1 Introduction

Structural vibration is most commonly modeled as the displacement, velocity,
or acceleration response to a force input. Assuming that the dynamics are linear,
lumped models of structural vibration with multiple degrees of freedom typically
have the form of matrix differential equations with inertia, damping, and stiffness
coefficients [103]. In the frequency domain, these force-driven outputs are modeled by
compliance, admittance, and inertance transfer functions, respectively. Alternatively,
a transfer function can relate displacements at different locations on a structure. The
resulting transfer function is called a motion transmissibility [24, 25]. Velocity and
acceleration signals can also be considered instead of displacements. These concepts
extend directly to rotational variables, where “torque” replaces “force.”

It is also possible to define a force transmissibility, and the relationship between
force and motion transmissibilities is discussed in [26, 104]. In the present chap-
ter, force transmissibility is not considered, and the term “transmissibility” refers to

motion transmissibility.
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Motivated by the advantages of time-domain identification techniques over frequency-

domain identification techniques, in this chapter we develop a time-domain framework
for SISO and MIMO transmissibilities that accounts for nonzero initial conditions for
both force-driven and displacement-driven structures.

The contents of the chapter are as follows. In Section 5.2 and Section 5.3 we derive
SISO and MIMO time-domain models for transmissibility operators in force-driven
structures, respectively. In Section 5.4 we consider displacement-driven structures,
while in Section 5.5 and Section 5.6 we derive SISO and MIMO time-domain models
for transmissibility operators in displacement-driven structures, respectively. In Sec-
tion 5.7 we show the equality of transmissibilities of force-driven and displacement-
driven structures with identical inputs and outputs when the force and prescribed
motion are applied to the same location. We introduce examples in Section 5.8.

Finally, we present conclusions in Section 5.9.

5.2 SISO Transmissibilities in Force-Driven Structures

Consider a lumped force-driven structure (FDS) consisting of masses my,...,m,

connected by springs modeled by

M(t) + Kq(t) = fi(t), (5.1)
where M 2 diag(my, ..., m,) € R™™ is the positive-definite mass matrix, K € R"*"
T
is the positive-definite stiffness matrix, ¢(t) = [ ) - @) } € R" is the
T
vector of mass displacements, and fy(t) = bu(t) = { fut) oo fult) } € R" is the

vector of forces, where b € R™ is a nonzero vector, u(t) is a scalar force, and f;(t) is
the force applied to the i mass. Let ¢ € R'"™ be nonzero and consider the scalar

output

A
qclbu = €4, (52)
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where g, denotes the output c¢g with the driving force bu. Note that g.r ,, = €;, =

gi, where e; , € R" is the i™ unit vector.

Next, let wy, w, € R and define

A
Yi = Quyjpu = WiQ,
(5.4)

A
Yo = Quo|bu = Wo{-

The goal is to obtain a transmissibility function relating y; and y, that is independent

of the initial conditions ¢(0) and ¢(0) as well as the input u. As a first attempt at

obtaining such a function, transforming (5.1) to the Laplace domain yields
(M + K)d(s) — sMq(0) — Md(0) = bi(s). (5.5)

where (s) and 4(s) are the Laplace transforms of ¢(¢) and wu(t), respectively. There-

fore,
q(s) = (s*M + K)7'ba(s) + (s°M + K)™ M (sq(0) + 4(0)). (5.6)

It follows from (5.3), (5.4), and (5.6) that the Laplace transforms of y; and y, are

given by
Gi(s) = wi(s°M + K)~'bai(s) + wi(s*M + K) ™" M(sq(0) + ¢(0)), (5.7)
Jo(s) = wo(s*M + K)7'bau(s) + wo(s*M + K) ™' M(sq(0) + 4(0)),  (5.8)
respectively, and thus
(5.9)

Uo(s) _ wo(s*M + K)71bi(s) + we(s*M + K)~* M (sq(0) + ¢(0))
wi(s2M + K)~'bi(s) + wi(s2M + K)~'M(sq(0) + ¢(0))

Note that, if ¢(0) and ¢(0) are zero, then u(s) can be cancelled in (5.9), and g,(s)

and 7;(s) are related by a transmissibility that is independent of the input. However,
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if either ¢(0) or ¢(0) is not zero, then u(s) cannot be canceled in (5.9), and an input-
independent transmissibility cannot be obtained.

Alternatively, we consider a time-domain analysis using the differentiation oper-
ator p = d/dt instead of the Laplace variable s. It follows that (5.1) can be written
as

(P*M + K)q(t) = bu(t). (5.10)

Multiplying (5.3) by the polynomial J(p) 2 det(p?M + K) and using the fact that
§(p)I, = adj(p’M + K)(p*M + K) (5.11)
yields the differential equation

d(P)yi(t) = wid(p)Lnq(t)
= wiadj(pQM + K)(p2M + K)q(t)
= wiadj(p*M + K)(M(t) + Kq(t))

= wiadj(p>M + K)bu(t). (5.12)
Similarly,
3(p)yo(t) = woadj(p*M + K)bul(t). (5.13)
For convenience, we define the notation

Gu(P) = wi(p*M + K) b, (5.14)

Guos(P) 2 wo(p2M + K) b, (5.15)
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Using (5.14), (5.15) we can rewrite (5.12), (5.13) as

Yit) = Guyp(P)u(t), (5.16)

Yo(t) = Gu,p(P)ull), (5.17)

respectively. Note that (5.16), (5.17) are interpreted as the differential equations
(5.12), (5.13), respectively.

Note that (5.7), (5.8), (5.16), and (5.17) include the free response due to ¢(0) and
4(0) as well as the forced response due to u. In the subsequent analysis, we omit the
argument “t” where no ambiguity can arise.

Define the polynomials

10(P) £ woadj(p®M + K)b, (5.18)

ni(p) £ wiadj(p?’M + K)b. (5.19)

If Gy, » and Gy, are obtained from minimal state-space realizations, then d(p) is

coprime relative to both 7;(p) and 7,(p). Moreover, it follows from (5.14)—(5.17) that

Yi = Gup(P)u = ?51((;) u, (5.20)
Yo = Guop(P)u = ?(g)u (5.21)

Next, it follows from (5.20) and (5.21) that

1o(P)O(P)yi = 1o(P)mi(P)u,

n:(P)o(P)Yo = M (P)70(P)u,
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and thus

17:(P)0(P)Yo = 10(P)d(P) Y- (5.22)

Definition 6. The transmissibility operator from y; to ¥, is the operator

3(p)70(P)
TFwo wj P é 7 N/ N\ 523
) S o) (p) (523)
Hence, (5.22) can be written as
Yo = TFwD,wi\b(p)yi' (524)

Note that (5.23) is independent of the input u. Because (5.23) is expressed in terms
of the differentiation operator p and not the complex number s, it is a time-domain
model of the differential equation (5.22) and thus it accounts for nonzero initial con-
ditions. However, (5.23) is not a transfer function. In the case ¢(0) = 0 and ¢(0) = 0,

it follows from (5.9) that p in (5.24) can be replaced by s to obtain

Uo(s) = TFwo,wi\b(S)@i(5)7 (5.25)

where T%,, wp(s) is a possibly improper rational function. However, if ¢(0) or ¢(0)
is not zero, then p cannot be replaced by s in (5.24).

Unlike common factors in the complex number s, common factors in the differ-
entiation operator p cannot always be cancelled, as shown in Examples 2.2.1 and

2.2.2.
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Despite Examples 2.2.1 and 2.2.2, the following theorem shows that the common

factor §(p) in (5.23) can be cancelled without excluding any solutions of (5.22).

Theorem 3. y; and y, satisfy

_ 770(p)
m(p)

i-

Proof. See [62].

It follows from Theorem 3 that

Yo = ﬁ,wi\b(p)yiv

where the transmissibility operator in (5.23) is redefined as

17.(P) _ woadj<p2M + K)b

>

ui,wﬂb(p)

n(p)  wadj(p*M + K)b’

(5.26)

(5.27)

(5.28)

Note that ’7:507%‘ ,(P) is not necessarily proper, and the polynomials weadj(p*M + K)b

and wiadj(p?M + K)b are not necessarily coprime.

5.3 MIMO Transmissibilities in Force-Driven Structures

Consider the lumped MIMO force-driven structure

Mi(t) + Kq(t) = Fp(t),
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where M, K, and ¢ are as defined in (5.1), and

Fp = Bu(t), (5.30)
where
A A T
b= { by bin } ,u(t) = {ul(t) cu(t) | (5.31)
and, for all i € {1,...,m}, b; € R" and w; is a scalar force.

Consider p outputs for (5.29). Let W; € R™*" W, € RP~™)>" and define

A m
Yi = qwi|pu = Wig € R™, (5.32)

A -m
Yo = QW,|Bu = Woq € RP™, (533)

The goal is to obtain a transmissibility function relating y; and y, that is independent
of both the initial conditions ¢(0) and ¢(0), as well as the input w.

Multiplying (5.32), (5.33) by d(p) and following the procedure used to derive
(5.12), (5.13) yields

5(p)ys = Wiadj(p*M + K)Bu, (5.34)

5(P)yo = Woadj(p*M + K)Bu. (5.35)
For convenience, we define

Gw.5(p) = Wi(p*M + K)™'B, (5.36)

Gw, 5(p) = W, (p’M + K)'B, (5.37)
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and rewrite (5.34), (5.35) as

5 = Guis(®),  yo = G, 5P,

(5.38)

respectively, which are interpreted as the differential equations (5.34), (5.35), respec-

tively. Note that (5.38) includes the free response due to ¢(0) and ¢(0) as well as the

forced response due to u.

Defining the polynomial matrices

Ti(p) £ Wiadj(p*M + K)B € R™™[p],

To(p) £ Woadj(p*M + K)B € R#-™xm[p],

we can rewrite (5.34), (5.35) as

respectively. Multiplying (5.41) by adj'i(p) from the left yields

d(p)adjTi(p)yi = [adj T'i(p)] Ii(p)u = det Ti(p)u.

Next, multiplying (5.42) by det I';(p) yields

[det T'i(p)] (P)yo = [det T'i(p)] To(p)u.

Substituting the left hand side of (5.43) in (5.44) yields

6(p) det T'i(p)yo = d(P)To(p) adj Ti(p)yi-
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Definition 7. Assume that detI'j(p) is not the zero polynomial. Then, the trans-

massibility operator from y; to y, is the operator

Iy(p)adj Ti(p) = %nmm%p» (5.46)

. A o(p)
wowi|5(P) = 5(p)det T;(p)

Note that (5.46) is independent of the input uw and the initial condition ¢(0) and

4(0). Using (5.46), the differential equation (5.45) can be written as

Yo = T, wiyn(P)¥:. (5.47)

The following theorem shows that the common factor §(p) in (5.46) can be can-

celled without excluding any solutions of (5.45).

Theorem 4. Assume that det I'j(p) is not the zero polynomial. Then, y; and y,

satisfy

1

= otT.(o) Fi(p)Fo(p)[adj Li(p)]y: = Lo ()T (P)yi. (5.48)

Yo

Proof. See [62]. O

It follows from Theorem 4 that

Yo = T, wiis (P, (5.49)
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where the transmissibility operator (5.46) is redefined as

>

o) = Lo(P)Ii(p). (5.50)

Note that each entry of TMF,D Wil 5(p) is a rational operator that is not necessarily proper

and whose numerator and denominator are not necessarily coprime.

5.4 Modeling Displacement-Driven Structures

Consider a displacement-driven structure (DDS), where my is the driven mass,

and thus

ar(t) = qr.a(?), (5.51)

where gy, a(t) is the prescribed motion of my. This prescribed motion requires applying

a suitable force as in (5.1). Removing the k*® equation from (5.1) yields
M[k,.](j(t) + K[h.]q(t) =0, (5.52)

where My, ; € R®=D*" and Ky, ; € R®=D*" are M and K|, respectively, with the k™

row removed. It follows that (5.52) can be written as

My G + K an) = — Kk, €knqr,ds (5.53)

where Mp, 5 € RO=DX(=D and K ) € RO=D*(=1 are M and K, respectively, with
both the &™ row and k™ column removed, and gy is ¢ with the &™ row removed.

Writing (5.53) in terms of the differentiation operator p yields

(P*Myposg + Kpow) qi) = — Ko j€rnia. (5.54)

Suppose now that d masses are displacement-driven, where 1 < d < n — 2, and
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let D2 {k1,...,kq} be the set of displacement-driven masses. Then, using the same

procedure used to obtain (5.53) we obtain

gk, ,d

(P*Mp.o) + Kip.o) 4o = —Kip) | exym -+ €rym A (5.55)

Qky,d

where M{p p; € RO-D*0=d) and Kipp € RO-Dx(=d) are M and K with rows
ki,...,kq removed and columns ki, ..., kg removed, Kp ) is K with rows ki,..., kg

removed, and gpj is ¢ with rows &y, ..., ks removed.

5.5 SISO Transmissibilities in Displacement-Driven Struc-

tures

Define the output

AN
Qd,cles,, = CIn[Wk] qik], (556>

where I, , € R™*("=1) is the identity matrix I,, € R™ " with the k* column removed.
Thus, qq,e,,, 18 @ linear combination of all position states ¢;,7 = 1,...,n,i # k,

assuming that the £ mass is displacement-driven. Let w;, w, € R™" and define

yAN
Yid = ddwilex,, — wiln[4’k] qlk] (557)

yAN
Yo,d = ddwoler,n — wo[n[,,k]Q[k]' (558)

(5.59)
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Following the procedure used to derive (5.12), (5.13) we can show that

0a(P)¥ia = —wily , ad] (P*Miepy + Kpewy) Kk, 1€k.nk.d, (5.60)

0a(P)Yoa = —Woly , ad] (P*Mppesy + Kpewy) Kk, 1€k.nk.4, (5.61)
where dq(p) = det (pQM[kyk] + K [k,k}). For convenience, we define the notation

~1
—wiln y (P Mgy + Kpery) K€, (5.62)

1>

—1
Gawer (P) = —Woln o (P°Mpiy + Kit)  Kij€hm- (5.63)

Using (5.62), (5.63) we can rewrite (5.60), (5.61) as

- Ui,d(P)

yi,d = Gd,wi,ek’n (p)Qk,d - 5d (p) Qk,d> (564)
Yod = Gd,wo,ek’n (p>q1€,d = %i)p))q}ﬂ,du (565>
respectively, where
A :
Mia(P) = —wilng , adj (P*Mikp + Kisy) Kii€rm, (5.66)
A :
Nod(P) = —Woln ,,adj (P*Mpys) + K i) Kk, 1€k.ms (5.67)
are polynomials in p. It follows from (5.64) and (5.65) that
No.a(P)0a(P)¥ia = No,a(P)h,a(P)gk.a;
1:.d(P)0a(P)Yo.a = M:.a(P)No.a(P) 4k a;
and thus
M.a(P)0a(P)Yo.d = Mo.a(P)da(P)¥ia- (5.68)
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Definition 8. The transmissibility operator from y; 4 to yoq is the operator

Hence, (5.68) can be written as

Yod = TDwo,wi|ek7n (p)yi,d- (569)

As in Section 5.2, it can be shown that dq(p) can be cancelled without excluding any

solutions of (5.68), that is, T2 (p) in (5.69) can be redefined as

w07wi|3k,n

A Tod(P)  Woln yadi (P* Misy + Kppag) Kk 1600
maP)  wily ,adj (P*Mis) + Kir) Kigjeen

7Zu]:c),,wi|ek7n (p) (570)

Note that 7;2 wi‘ekn(p) is not necessarily proper, and the polynomials 7, 4(p) and

n.a(p) are not necessarily coprime.

5.6 MIMO Transmissibilities in Displacement-Driven Struc-

tures

Consider a DDS, where my,, ..., my, are the displacement-driven masses, 1 < d <

n — 2. Define the output qq,cje,,,, € RP by

A
Qd,C|eD7n = C[n“g]Q[D]; (571)

where C' € RP*" D = {k1,... ka}, and ep, = lekym - - €x,n). Hence, (5.71) is a

vector whose components are linear combinations of all ¢;,7 € {1,...,n} \ D. Let
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W; € R W, € Re=D*" and define

AN
Yid = dd,Wilep,, — VVi]n[.,D]Q[Dh (572)

AN
Yo.d = dd,Wolep,n, — WoIn[.7D] q|D)- (573)

Following the procedure used to derive (5.12), (5.13) yields

Ada(P)yia = —Wily, ,adj (P*Mp.p) + Kip.p)) Kip,1€D,00D.4, (5.74)

Aa(P)oa = ~Woln, ,adj (P*Mip p) + Kip,p)) Kp,1€Dn4D.a; (5.75)

A A .
where Aq(p) = det (p?Mp,p) + Kip,n)) € R[p] and gpa = [gr, -+ qr,]* € R% Using

the notation

1>

-1
Gawiep,(P) = =Wily , (P*Mip.p) + Kip.p)) Kip.1€Dn; (5.76)

>

-1
Gawyepn,(P) = ~Woln, o, (P°Mip.pj + Kipp)  Kip,1€0m, (5.77)

we can rewrite (5.74), (5.75) as

Yia = Gawiep., (P)D.d, (5.78)

Yo,d = Gd,wo,eD,n (p)QD,da (579)

which are interpreted as the differential equations (5.74), (5.75), respectively. Note
that (5.78) and (5.79) include the free response due to gp)(0) and ¢;p)(0) as well as

the forced response due to ¢p 4. Defining

1>

[ia(p)

Loa(p)

—Wily, ,adj (p°Mip,p) + Kip.p)) Kip,1€p.n € R™[p], (5.80)

1>

~Woln padj (p°Mip.p) + Kip,p)) Kip.jepn € R?9*p],  (5.81)
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we can rewrite (5.74), (5.75) as

A4(P)yia =Tia(P)gp.as (5.82)

Ad(P)Yoa = Foa(P)qp.a- (5.83)

Multiplying (5.82) by adjI'; 4(p) from the left yields

adj i a(p)Ad(P)yia = adj Iia(p)lia(P)gp.a = det I a(P)gp.a- (5.84)

Next, multiplying (5.83) by detI'; 4(p) yields

[det T a(P)] Aa(P)Yo,a = [det T a(p)] T'o.a(P)gp,a- (5.85)

Substituting the left hand side of (5.84) into (5.85) yields

A4(p)det T 4(P)yoa = Ad(P)oa(p) adj I'ia(P)yia- (5.86)

Definition 9. Assume that detI'; 4(p) is not the zero polynomial. The transmis-

sibility operator from y; 4 to y,q is the operator

Aq(p) : Ad(p) -
TP, wije 2 T'oq(p)adil;q(p) = T'oa(p)T L (D).
WoWilep,. (P) Aa(p) det Toa(D) a(p)adjlia(p) Aa(p) AP (p)
Hence, (5.86) can be written as
Yo = T Wy Wilep,, (P)Yid- (5.87)
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As in Section 5.3, it can be shown that A4(p) can be cancelled without excluding any

solutions of (5.86), that is, 7,7 (p) in (5.87) can be redefined as

o:VVileD,n

1>

T, wilen. (P) = Toa(P)Tid (P)- (5.88)

5.7 Equality of Motion Transmissibilities in Force-driven and

Displacement-Driven Structures

5.7.1 Equality of SISO Motion Transmissibilities in Force-driven and

Displacement-Driven Structures

Define w, ; and w;j to be w, and w;, respectively, with the k" component replaced
by zero. The following result shows that the SISO transmissbilities of force-driven
and displacement-driven structures with identical inputs and outputs and with the
force and prescribed motion applied to the same location are identical. This result is
somewhat surprising since the specified displacement of a mass could be perceived as

introducing a node.

Theorem 5. The SISO force-driven and displacement-driven transmissibilities are
equal, that is,

'Ui,kvwi,k|ek,n (p) = 7:U]:c)>,k,wi,k‘ek,n (p) (5'89)

Proof. It follows from (5.70) that

wO[n[~,k] adj (p2M[k,k] + K[k,k]) K[k,.]ekyn
wi-['n[,’k] ad.] (p2M[k‘,k‘} + K[k;Jq;]) K[k7.]€k7n .

7:u]:c),,wi|ek7n (p) = (590)
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Using Proposition B.1 in Appendix B, we have

w(,’kln[wk]adj (pQM[kyk] + K[k,k]) K[kde/m = —wc,,kadj (p2M + K) €k,n, (5.91)

whkln[”k]adj (pQM[kyk] + K[k,k]) K[h.}ekm = —wi7kadj (p2M + K) €kn- (592)

Using (5.91) and (5.92), (5.90) yields

wo padj (p*M + K) exn

D

= . 5.93
Too 1l (P) wipadj (p2M + K) e (5.93)

Replacing w,, w;, and b in (5.28) with we j, Wik, and ey ,, respectively, yields

- wo xadj(p*M + K)egn

= . 5.94
’7:1)0,]67wi,k‘6k’,n(p) wi,kadj<p2M _'_ K)ek,n ( )
Hence, (5.93) and (5.94) yield (5.89). O

5.7.2 Equality of MIMO Motion Transmissibilities in Force-driven and

Displacement-Driven Structures

Define W, p and W; p to be W, and W}, respectively, with the £, ... k" columns
replaced by zero. The following result shows that the MIMO transmissibilities of force-
driven and displacement-driven structures with identical inputs and outputs and with

the forces and prescribed motions applied to the same locations are identical.

Theorem 6. The MIMO force-driven and displacement driven transmissibilities

are equal, that is,

TMF/O,D:W/LD‘GD,” (p) = TI/‘]?O,D7Wi,D|6D,n (p) . (595)
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Proof. It follows from (5.80), (5.81), and (5.88) that

TV[I?O,DJ/Vi,DkD,n (p> - Fo’d<p)r;dl (p>
= Wofn['yD] adj (pzM[D,D] + K[D,D]) K[D,~]€D,n

. (I/Viln[wmadj (p2M[D7D] + K[D,D]) K[D,~]6D,n)_1' (596)
Using Proposition B.2 in Appendix B, we have

Woly,. ,ad] (p2M[D,D}+K[D,D])K[D;]GD,n(VViIn[‘,D] adj (p*Mp,p) + Kip,p))Kp.1€pn) "
= Wo,padj (p*M + K) ep (Wi padj(p’M + K)ep,,) .
(5.97)

Therefore, (5.96) becomes
T, o Wi plenn (P) = Wo padj (p*M + K) ep o (Wi padj(p*M + K)ep,) ™', (5.98)

Next, replacing W,, Wi, and B in (5.39) and (5.40) with W, p, Wip, and epp,

respectively, (5.50) becomes

Tt o1 () = Tul@)IT ()

= W, pad] (pQM + K) eD,n(WLDadj(pzM + K)epm)_l. (5.99)

Comparing (5.98) with (5.99) yields (5.95). O
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5.8 Numerical Examples

In this section we present three examples to illustrate the equality of transmissi-

bilities in force-driven and displacement-driven structures.

Example 5.8.1. Consider the mass-spring system shown in Figure 5.1, where
my = mg =mz=my =ms =mg=1kg and ko1 = kia = k14 = k15 = Koz = k3 =
kys = kag = 1 N/m. We force-drive my and consider the transmissibility from ¢; to
gé- Then we displacement-drive ms and consider the transmissibility from ¢; to ¢s.

Note that M = Is, M = I,

4 -1 0 -1 -1 O - -

K = Kpoy=| -1 0 3 -1 -1

It follows that

p® + 9p°® + 27p* + 32p” + 14
p'? + 13p® + 61p° + 124p* + 102p? + 25
8 6 4 2
p° + 11p° + 40p® + 54p~ + 22
adj (p*M + K) e = : (5.101)
p® + 8p* + 21p” + 16

p® +8p* +19p? + 15

p® + 10p* + 28p? + 19
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p* +9pS + 27p* + 32p? + 14 |
p® + 11p° + 40p* + 54p? + 22

adj (p* Mz + Kpozy) Kppjezs = — p® + 8p! + 21p? + 16 . (5.102)
p® +8p* +19p” + 15

p® + 10p* + 28p? + 19

Next, it follows from (5.28) with w, = eg g, w; = €], and b = ey ¢ that

p® + 10p* + 28p? + 19

F
= . 5.103
7;56’8{“62*6(1)) p8 + 9pb + 27p* + 32p? + 14 ( )
Similarly, it follows from (5.70) with w, = ef ¢, w; = €], and k = 2 that
7D (p) = p° + 10p* + 28p? + 19 (5.104)
TocToleas P! = 581 0p6 4 27pt + 32p? + 14 '
Hence,
F _ 7D
7;26{6761?6@2,6 (p) o 7;567‘3?,6\62,6 (p> u

Example 5.8.2. Consider a simply supported beam with a uniform density p per
unit length, modulus of elasticity £, moment of inertia I, length L, and rectangular
cross section with area A. We consider first the force-driven case by applying a
concentrated transverse force at the location x,, where 0 < z, < L. Let y(t, z) denote
the displacement of the beam from its equilibrium shape, and let §(x —x,) f(t) denote

the external force. The beam is modeled by

4 2

@y(t, x)+ %%y(t, x) = d6(x — x,) f(1). (5.105)

Let

y(t, z) = qutm(as), (5.106)
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ms my
ka3 § § kas
QdI ma | kg ms
/ ‘ §k12 § k15
| my |

kor
S S S S S S S S S S S

Figure 5.1: Mass-spring system for Example 5.8.1, where m; = my = mg = my =

ms = me = 1 kg and ko1 = kig = kg = k15 = ko3 = kze = kus = kug = 1
N/m. ms is either force-driven by the force f or displacement-driven with
the prescribed motion gq.

where ¢; is the modal coordinate corresponding to the mode shape v;(x) = sin(Z%).

L

Substituting (5.106) in (5.105) and taking the inner product of both sides of the

resulting equation with v;(z,) yields

where w; =

Defining

Gi(t) + wiqi(t) = bif(t), i=1,2,3,..., (5.107)

’i’f % is the modal frequency corresponding to v;(z) and b; 2 vi(x,).

q(t) [ql(t) qT(t)r,bé[bl brr, (5.108)
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it follows from (5.107) that
G(t) + q(t) = bf (1), (5.109)

where Q2 2 diag(w?, ..., w?).

In the displacement-driven case we assume that the interior point x, moves with

the specified displacement qq(t,z.) = > ., ¢;(t)v;(x,). We define the coordinates

Q(t) = S Tq(t), (5.110)
where
-T
I Or—
= ' A (5.111)
vi(ze) o0 vp(Ta).

where to ensure nonsingularity we assume that v.(z,) # 0. Then, the resulting

coordinates are

) =1 a@) - @a®) gtz | - (5.112)

NEG(t) + Ra(t) = B, (5.113)

where M 2 SST, K 2 S02ST, B=Sb 2 e,
Driving z, with a prescribed motion requires applying a suitable force as in (5.105).
As in Section 5.4 we remove the r*® equation of (5.113) and manipulate the remaining

equations to make qq(t, x,) the input. Therefore, (5.113) becomes
M[nr](j[r} + K[r,r]Q[r} = —IA([ﬁ.}ek’nqd(t, :L‘a). (5.114)

Suppose that £ = 200 GPa, L = 100mm, h = 10 mm,w = 1mm, z, = 83.3 mm,
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and s = 21.1mm. The transmissibility from z, to xs for the force-driven beam is

given by

e v (a, radj(p2M + K)uv(z,)

) (g ) adj (PPN + K Jo(a)
B pb + 156.4p* — 1.814 x 10*p? + 3.454 x 106
©63.38pS + 1.426 x 104p? + 8.057 x 10°p2 + 9.591 x 106’

(5.115)

where vT (25, 7) and v™ (z,,7) denote v*(z,) and v (x,), respectively, after setting the

r'" component of vT(zg,r) and vT(z,,7) to zero as suggested by Theorem 5. Next,

with a prescribed motion at x,, the transmissibility from x, to zg is given by

B UT(IS, T)I[n.]adj (pQM[rﬂ + K[r,r})K[r,']ezr
T T (1) 2 (92 M) + K K 6
B p® + 156.4p* — 1.814 x 10*p? + 3.454 x 10°
© 63.38p6 + 1.426 x 10%p* 4 8.057 x 105p2 4 9.591 x 106’

D
7;"‘F(acs,r),vT(

which is equivalent to (5.115). [

Example 5.8.3. Consider the mass-spring system shown in Figure 5.1, where
my = my =m3=my =ms =meg=1Kkg and koy = k1o = ki1y = k15 = ko3 = k3 =

kys = ks = 1 N/m. We force-drive my and mg and consider the transmissibility

T

from [q; qu]* to [g5 ¢s]*. Then we displacement-drive my and msz and consider the

transmissibility from [g¢; ga]* to [g5 ¢¢|*. Note that D = {2,3}, M = Is, Mip p) = 1,
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W, = lese es6)’, and Wi = [e16 e46]". Hence, we have

-1 0 -1 —-1 0

2 -1 0 0 0 4 -1 -1 0

-1 2 0 0 -1 -1 3 -1 -1
; Kppp =

0 0 3 —-1 -1 -1 -1 2 0

0 0 -1 2 0 0 -1 0 2

0 -1 -1 0 2

It follows that

ad] (pzM + K) [e2,6 €3,6]

p® +9p° + 27p* + 32p® + 14
p!® + 13p® + 61p8 + 124p* + 102p? + 25

p® + 11p8 + 40p* + 54p? + 22

p° + 8p* + 21p* 4 16
pb + 8p* + 19p2 + 15

p’ + 10p* + 28p? + 19

Using (5.39) and (5.40) we have

Wiadj (p2M + K) lea6 €3.6]

p’ +8p* +19p* + 14

p® + 11p% + 40p* + 54p? + 22

p'? + 13p® + 61p% + 126p* + 111p? + 30

p° + 9p? + 23p? + 18
op* + 13p? + 16

p® + 11p% + 40p* + 55p% + 24

p® +9p° + 27p* +32p% + 14 pb +8p* + 19p? + 14

pd + 8p* + 21p? + 16
Weoadj (p2M + K) le26 €3.6]

p® + 8p* +19p% + 15

I

p’® + 9p* + 23p? + 18

2p* + 13p? + 16

p® + 10p* + 28p? + 19 p® + 11p° + 40p* + 55p? + 24
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Moreover,

adj (pQM[D,D] + K[D,D]) Kip,jleas €3l

p® + 7p* + 14p? + 8 p?+3

4 2 4 2

p* +5p“+6 p*+6p°+7
(5.120)
p* +6p® +7 P’ +5

p>+3 p® +9p* + 23p% + 13

It follows from (5.80) and (5.81) that

[

Therefore,

= —Wil. pjadj (p°Mp,p) + Kip,n)) KD, (€26 €3]
p® + 7p* + 14p? + 8 p>+3

p*+5p*+6 pt+6p2+7

4= —WOI[.D]adj (pQM[D7D] + K[D,D}) K[D,~} [6276 6376]

4 2 2
1+ 6p2 7 +5
N P . (5.121)
p>+3 p® + 9p* + 23p2 + 13

det I 4(p)To(p)adj Ti(p) = (p' + 13p® + 62p° + 133p* + 125p” + 38)

p® +8p* +19p% + 15 2p* + 13p> + 16

p® + 10p* +28p? + 19 p® + 11p® + 40p* + 55p? + 24

p® + 9p* +23p% + 18 —p® —8p* — 19p? — 14

—pb —8p* —21p%? — 16 p®+9p° + 27p* + 32p? + 14

A1,1(p) A1,2(p)
AQ,l(P) Az,z(p)

: (5.122)
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where

A11(p) = p** + 28p?” + 342p'® 4 2394p'® + 10611p'* + 31052p*? + 60672p'? + 78167p®
+ 63850p°® + 30491p* + 7184p? + 532, (5.123)
A12(p) = A11(p), (5.124)
Az 1(p) = —p** — 31p?% — 426p?° — 3420p'® — 17793p'® — 62885p'* — 153828p!?
— 260183p'° — 298351p® — 222041p° — 98657p* — 22084p? — 1596, (5.125)
Ago(p) = p? 4 33p** + 487p*2 + 4244p®° 4 24291p™® + 96077p' + 268987p*

+ 536787p!'? + 758045p'0 + 740576p® + 478889p® + 188907p* + 38580p? + 2660.
(5.126)

Moreover,

det T'i(p)Loa(p)adj Iia(p)
= (p"* + 17p" + 115p™” 4 396p® + 735p° + 709p” + 300p* + 28)
pt+6p>+7 pi+5 p*+6p>+7 —p?—-3

p>+3 pé +9p*+23p>+13 | |-p*—5p>—6 pb+ Tp*+ 14p> +8

| Aa1a(P) Adrz(p) (5.127)

Ad,2,1(13) Ad,2,2<p)

126



Ag11(p) = p*% + 28p?° + 342p'® + 2394p'6 + 10611p'* + 31052p*2 + 60672p' + 78167p®
+ 63850p°® + 30491p* + 7184p? + 532, (5.128)

Ad12(p) = Aq1,1(p); (5.129)

— 260183p'? — 298351p® — 222041p° — 98657p* — 22084p? — 1596, (5.130)
Agq22(p) = p? + 33p** + 487p?? + 4244p® 4 24291p'® 4 96077p'® + 268987p '

+ 536787p'? + 758045p'0 + 740576p® + 478889p° + 188907p* + 38580p? + 2660.

(5.131)

Comparing (5.123), (5.124), (5.125), and (5.126) with (5.128), (5.129), (5.130), and

(5.131), respectively, yields,
Arp=Aqny, Aig=Aaqre, A= Aqp1, A= Adgo. (5.132)
Therefore, it follows from (5.122) and (5.127) that
det T a(p)lo(p)adjIi(p) = det I'y(p)o.a(p)adj Iia(p)- (5.133)
That is,

T ilenn ®) = Tt wilen... (P); (5.134)

which confirms Theorem 6.
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5.9 Conclusions

We developed a time-domain framework for SISO and MIMO transmissibilities
that accounts for nonzero initial conditions for both force-driven and displacement-
driven structures. It was shown that if the locations of the forces and prescribed
displacements are identical, then the SISO and MIMO force- and displacement-driven
transmissibilities are equal. Numerical examples for a mass-spring system and a
simply supported beam were presented to illustrate the equality of transmissibilities
in force-driven and displacement-driven structures.

The time-domain transmissibility models developed in this chapter are intended
to facilitate the use of time-domain identification methods. Preliminary results in

this direction are given in [1, 28, 29].
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CHAPTER 6

Sensor-to-Sensor Identification of Hammerstein

Systems

6.1 Introduction

The usefulness of S2SID depends on the ability to estimate a transfer function
independently of the details of the excitation signal. This ability depends on the
fact that the input signal is cancelled in the construction of the PTF. As expected,
however, this cancellation does not occur in the case of nonlinear systems, which
suggests that S2SID is confined to linear systems. However, in the present chapter we
consider the case of a Hammerstein system, and we estimate the Markov parameters
of a linear PTF between the pseudo input and pseudo output despite the fact that
these signals are not linearly related. Under these conditions we show that, despite
the presence of the input nonlinearities, the estimates of the Markov parameters of
the identified PTF are semi-consistent, that is, up to a uniform scale factor, they are
asymptotically correct estimates of the Markov parameters of the corresponding PTF
of the system in the absence of the input nonlinearities. This statement holds for the
case in which both input nonlinearities are nonzero, but otherwise arbitrary.

The contents of the chapter are as follows. In Section 6.2, we formulate the

problem. In section 6.3, we define the identification architecture. In section 6.4
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we analyze the consistency of the Markov parameters obtained from the proposed
method. In section 6.5 we show the numerical examples. We give conclusions in

section 6.6.

6.2 Problem Formulation

Consider the block diagram shown in Figure 6.1, where u is the input, V; : R — R
and Ms : R — R are memoryless nonlinearities, N7 (u) and N3(u) are the intermediate
signals, and y; and y, are the output signals of the asymptotically stable, SISO,
linear, time-invariant, causal, discrete-time systems (; of order n; and G5 of order
ng, respectively.

Since the input u is not measured, it is not possible to identify the SISO Ham-
merstein systems (N7, G1) and (N, Go). Furthermore, because of the presence of the
nonlinearities A} and N>, the relationship between 1; and ¥, is not linear. Neverthe-
less, for reasons explained in subsequent sections, we identify a linear model whose

input and output are the signals y; and y,, respectively, see Figure 6.2. This linear

N
.A[l : (U) G1 4’3/1
u
N
./\/'2 2 (U) G2 4’y2

Figure 6.1: SIMO Hammerstein system, N; and N, represent memoryless nonlinear-
ities, and y; and y, represent outputs of the linear transfer functions G
and (G, respectively.

Y1 Y2

Figure 6.2: The pseudo-transfer function G is a linear model that is identified based
on the input and output signals y; and ys, respectively. This identification
does not assume that the relationship between y; and ys is linear.
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model has the form

g(q) = —= (6.1)

where G is the PTF, q is the forward shift operator, and A and B are polynomials
in q. For simplicity, we assume that G is a finite impulse response (FIR) model, and
thus A(q) = g* and B(q) = >, H;q", where p is the model order. Consequently,
the FIR PTF model G that relates the pseudo input ¥; to the pseudo output y, has

the form

ya(k) = Zijl(k —7), (6.2)

where Hy, ..., H,_; are the Markov parameters of (6.1).
In order for the PTF to be causal, the relative degree of G, must be greater than
or equal to the relative degree of G1. If this is not the case then we delay the pseudo

output y» as needed.

6.3 Least Squares Identification of the PTF

The FIR model (6.2) can be expressed as

Y2 (k)= 0.0, (k), (6.3)
where
6, = {HO : Hﬂl},
e P
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The least squares estimate HAM of 0, is given by

(6.4)

0,, = argmin ||\I/y27g—0M<I>M -
0

o

where 6, is a variable of appropriate size, || . ||[r denotes the Frobenius norm,

>

W0 = { ya(p) -+ y2(0) } ’

02 |6, - 0.0 .

and ¢ is the number of samples. It follows from (6.4) that

Uy, L, = émg%gqﬁe. (6.5)

Next, consider the system in Figure 6.3, which represents the system in Figure 6.1
without the Hammerstein nonlinearities A; and A,. Note that y; and 3} represent
the outputs of G; and G, respectively.

Define Hy, ..., H,,_; to be Markov parameters of the PTF G constructed by y;

and y5, see Figure 6.4. It follows that

Wy o= 9; ;%z, (6.6)
yl
el !
u
y/
Gy 2

Figure 6.3: ¢} and y) are the outputs of the linear transfer functions G; and Go,
respectively, with input u. This system does not exist and is used only
for analysis
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g/

Figure 6.4: The pseudo-transfer function G’ is a linear model that is identified based
on the input and output signals ¢} and 15, respectively.

where

Ve 2| () ygw)], (6.7)

AN (65)
Ve & Lo a0 | (6.9)
oLk = | yi(k) y’l(k?—u+1)r (6.10)

Although the PTF G’ is unknown and cannot be identified, the goal is to compare
the Markov parameters of the identified FIR PTF G relating y; and ys to the Markov

parameters of the PTF G’ relating ¢} to ).

6.4 Consistency Analysis

Assumption 1. wu is a realization of a stationary white random process U, and
Y1, Yo, Yy, and y, are realizations of stationary random processes Y1, Yo, Y/, and Y7,

respectively.

Assumption 2. Forall k > 0, N, (U(k)), N2 (U(k)), NE(U(k)), and Ny (U (k)) N2 (U (k))

have finite mean and variance.

Assumption 3. For all k > 0, E[Nl (U(k))] — 0, E[/\/1 (U(k))/\/'g(U(k))] £ 0,
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and E[Nf (U(k))] £ 0.

Assumption 4. 0, is not zero.

Definition 10. The least squares estimator QAM of 0, is a semi-consistent estimator

of ), if there exists nonzero v € R such that

. A wpl /
lim6,, = 0.
{—00 Ho v ®

Theorem 7. Let assumptions 1-4 hold. Then éu,g is a semi-consistent estimator

of HL.

Proof. Note that,

k

yi (k)= (us ) (k)= uli)hi(k — ), (6.11)

Yo (k)=
yi (k)= (/\/1 (u)
ya (k) = <N2 (u)

1=—00

k

(ux o) (k)= u(i)ha(k — i), (6.12)

R h1> (k)= 3 N (i) (=), (6.13)
R h2> (k)= 3 N (u(i)) halk — ). (6.14)

where h; and hy are the impulse response sequences of GGy and Gs, respectively.

Furthermore,

ya(k) = myz(k)a (6.15)
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where

a(k) 2 <Ng(u)*h2>(k),
BE) 2 (s ho) ()
Therefore,
Ve = | 5Eu) . 590
Uy, Ay, (6.16)
where
a(u)
(1) 0
A2 (6.17)
a(t)
0 B0

Therefore, (6.6) and (6.16) imply that
U, =00 A, (6.18)

Bl

It follows from (6.5) and (6.18) that 6, , satisfies

0,2, A0, = 0,,P,P),. (6.19)
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Note that,

! AP,
[ i) () w0 |y ()
) -y || 0 2O | (1) -t D)
i 0 . . . 14 . . . T
GOw@nG Ui (i) — p+ 1)
;; (i) ;; 10
V4 . . . ¢ . . .

=+ Dyl <= v — i Dyaliyai— g+ 1)

_;; %(0) ;; 0 |
(6.20)

Since Y7,Ys, Y/, and Y] are stationary random processes, it follows that for all

k > 0 we can calculate

VOENE) | YRk
1 Y5 (k) Y5 (k)
lim 0L A, 2R : : , (6.21)
V[t DYa(Yi(k) V(U )Ya (Vi (gt 1)
Y5 (k) Y5 (k)
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where (6.21) is independent of k. Moreover, note that,

. {mkwkm(m]

Y5 (k)
> Ui (k —zZA@ ))ha(k — j) ZM —7)
—E 1=—00 Jj=—00 - r=—00
Z U(g)ha(k — q)
Z S > UGN(UGH)N (U () Ik = i) ok = j)a (k = 7)
1 s i -
> Ulg)halk = q)

(6.22)

Since U is a stationary white random process and N5 and N; are memoryless nonlin-
earities, it follows that the expectation in (6.22) is nonzero when the arguments i, j,

and r are equal and zero otherwise. Therefore, (6.22) can be also written as

. {w(km(k)w)}

- Y3(k) ]
Z (i)ha(k — 7) Z ZNz () ha(k = j)ha(k =)
g | P —
Z]i: U(q)ha(k = q)
=E Jimio/\fz (U) bk = )k = 1)
= jioo i:ooE N2 (UG))NL(U ()] ha(k — §)ha(k — 1)
:jiooﬂ-«:[ L (UR)N (U (K))] h2(k — j). (6.23)

Since E [N2(U(k))N:i(U(k))] is a nonzero constant for all k£ > 0 and independent of
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J in (6.23), it follows that

j=—o00
oo

— B [N (V)M (U0R)] 3 A

1=0

for all £ > 0.

Using the same procedure we obtain

lim ~ &/ KA@HE E [Nz (U (k)N (U(K))] T,

l—oo f M

where
> " hi) Y (i)ha (p—14+4)
=0 =0
r= e RH#XH,
Y oh(p=14i)ha (i) - > hi)
| =0 =0 J
Likewise,

lim ~®, 07, "2 E [N2(U(K))] T.

=00 {

Dividing (6.19) by ¢ and using (6.25) and (6.27) yields
E [Ny (UR) M (U (K))] 6,02 lim B [N? (U (K))] 6,01

That is,

(B N (UR)N (U()] 8, — E [NF(U ()] Jim 0, ) T "2 03
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(6.26)

(6.27)
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Since I is nonsingular, it follows that

E [Na(U(R)NL(UK))] 0, "2 B [N2(U(K))] lim ..

l—00

Finally,
wpl E INo(U(K))NL(U (K
lim 6, , "2 N <2)) 1 (U ))]e;, (6.29)
(00 E [N2(U(k))]
for all £ > 0. Thus, é‘u’g is a semi-consistent estimator of (9;. O

Example 6.4.1. Let N(U) = U, Ny(U) = U", and let U(k) be uniformly

distributed with the density function

B %1, lu| < a,
u) = (6.30)
0, |ul>a.
Then,
1 a
E[ 2(U(kz)>N1(U(/~c)>] :%/Um(k) dU (k) =a' /11,

—a

E[/\/’f (U(k;))} - %/W(k) dU = a%/7.

Finally, it follows from (6.29) that

wpl 7@4 0/

lim éﬂyg = 11 W
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6.5 Numerical Examples

Counsider the transfer functions

4q+1
Gi(q) = (q—0.6)(q+0.8)(q—0.9)’ (6.31)
2q+5
Gala) = (q—0.55)(q +0.6)(q — 0.4) (632)
Then, the PTF is
G(a) = g?gg;
~ (q—0.6)(q+0.8)(q — 0.9)(2q + 5) (6.33)

" (q—0.55)(q+0.6)(q— 0.4)(4g + 1)

It follows from (6.1) that

B(q) = (q—0.6)(q+0.8)(q — 0.9)(2q + 5),

A(q) = (q — 0.55)(q + 0.6)(q — 0.4)(4q + 1).

Define the normalized Markov parameters of the PTF constructed from ] and v

by

where H}; is the first nonzero Markov parameter of the PTF. The estimated Markov
parameters H;, obtained from éu,g, are normalized by H, to obtain f[zn The least

squares estimates are computed for 200 independent realizations of U. We also define
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the error metric

200 ’ o
122 g~ A
_ i — H7 6.34
© 7200 ; \H"| (6:34)

In the following we show five examples involving both odd, even, and neither
odd nor even nonlinearities in both cases of zero mean and nonzero mean for Na(u).
In example 6.5.2 the term M (u?) denotes the mean of the realization of the random
process U? and in example 6.5.5 the term M (u?e*) denotes the mean of the realization
of the random process U?eV.

Example 6.5.1. N (u) = sign(u), Na(u) = sin(u)

Consider the transfer functions G; in (6.31) and G, in (6.32), and let U be white
and have the uniform pdf (6.30) with a = 5. Figure 6.5 indicates that the estimates
of the Markov parameters Hy, H3, H,, and Hy are semi-consistent.

Example 6.5.2. Ni(u) = u? — M (u?), Na(u) = cos(u)

Consider the transfer functions G in (6.31) and Gs in (6.32), and let U be white
and have the Gaussian pdf N(0,1). Figure 6.6 indicates that the estimates of the
Markov parameters H,, H3, Hy, and Hs are semi-consistent.

Example 6.5.3. N;(u) = sinh(u), Na(u) = u?

Consider the transfer functions G in (6.31) and Gs in (6.32), and let U be white
and have the Gaussian pdf N(0,1). Figure 6.7 indicates that the estimates of the
Markov parameters H,, Hs, Hy, and Hs are semi-consistent.

Example 6.5.4. Ni(u) = sign(u), Na(u) = e*

Consider the transfer functions G; in (6.31) and G in (6.32), and let U be white
and have the uniform pdf (6.30) with a = 5. Figure 6.8 indicates that the estimates
of the Markov parameters Hy, Hs, Hy, and Hy are semi-consistent.

Example 6.5.5. Ni(u) = u?e* — M(u?e"), No(u) = sin(u) + 10

Consider the transfer functions G in (6.31) and G5 in (6.32), and let U be white
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and have the uniform pdf (6.30) with @ = 5. Figure 6.9 indicates that the estimates

of the Markov parameters Ho, Hs, Hy, and Hy are semi-consistent.

6.6 Conclusions

We used least squares with an FIR model structure to identify a pseudo transfer
function for a two-output Hammerstein system. Only output signals of the Hammer-
stein system were used since the intermediate signals were inaccessible. Despite the
presence of the input nonlinearities, we proved that, under certain assumptions, the
least squares estimate of the Markov parameters of the PTF is semi-consistent. This
method was demonstrated on several numerical examples including odd, even, and
neither odd nor even nonlinearities in both cases of zero mean and nonzero mean for
the output channel Hammerstein nonlinearity, where the input channel Hammerstein

nonlinearity should be of zero mean.
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10 ’ 3 4 5 10 ’ 3 4 5
10 10 10 10 10 10
Number of samples. Number of samples.
Tn Tn
Hj HY

10 10* 10 10 10* 10°

Number of samples. Number of samples.

Figure 6.5: Semi-consistency of the estimates of the Markov parameters obtained
from the FIR model with the Hammerstein nonlinearities A7 (u) = sign(u)

and N3 (u) = sin(u).
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10 10

10° 10" 10° 10° 10" 10°
Number of samples. Number of samples.
ago Tn
o Hj 0 Hg
10 10

10° 10" 10° 10° 10* 10

Number of samples. Number of samples.

Figure 6.6: Semi-consistency of the estimates of the Markov parameters obtained

from the FIR model with the Hammerstein nonlinearities N (u) = u? —
M (u?) and Na(u) = cos(u).
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X 107
W
1074 3 4 5 3 4 5
10 10 10 10 10 10
Number of samples. Number of samples.
Hy Hy

10° 10* 10° 10° 10* 10°

Number of samples. Number of samples.

Figure 6.7: Semi-consistency of the estimates of the Markov parameters obtained

from the FIR model with the Hammerstein nonlinearities N7 (u) = sinh(u)
and No(u) = u?.
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Number of samples. Number of samples.
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, Hj . H}
10 10

10 10°* 10 10 10* 10
Number of samples. Number of samples.

Figure 6.8: Semi-consistency of the estimates of the Markov parameters obtained
from the FIR model with the Hammerstein nonlinearities Nj(u) =

sign(u), Na(u) = e
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obtained

Figure 6.9: Semi-consistency of the estimates of the Markov parameters
from the FIR model with the Hammerstein nonlinearities N;(u) = u?e® —

M (u?e*) and N(u) = sin(u) + 10.
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CHAPTER 7

Conclusions and Future Work

7.1 Conclusions

Transmissibility estimates are traditionally obtained using frequency-domain meth-
ods. We showed that ignoring the initial conditions and transient effects can degrade
the transmissibility estimates in the frequency-domain. Moreover, we showed that
frequency-domain identification techniques cannot give exact estimates with finite
data sets. Therefore, we developed continuous time-domain models of transmissibil-
ity operators, which model the response of a subset of sensors based on the response
of the remaining sensors without knowledge of the driving input. We showed that
transmissibility operators account for nonzero initial conditions as well as cancellation
of the common factor occurring in the underlying state space model. Moreover, we
showed that transmissibility operators are independent of both the initial condition
and inputs of the underlying system, which is assumed to be time-invariant.

We showed that transmissibility operators may be unstable, noncausal, and of
unknown order. Therefore, to facilitate system identification, we considered a class of
models that can approximate transmissibility operators with these properties. This
class of models consists of noncausal FIR models based on a truncated Laurent expan-
sion. Connection between transmissibility operators and unstable systems in closed

loop was shown. Noncausal FIR models can be used for closed-loop identification
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of open-loop-unstable plants. To identify the noncausal plant model we delayed the
measured output relative to the measured input. We found that the identified non-
causal FIR model approximates the Laurent series of the plant inside the annulus of
analyticity lying between the disk of stable poles and the punctured plane of unstable
poles.

An estimate of the transmissibility operator between pairs or sets of sensors was
used to detect faults in the presence of unknown external excitation. The ability
to detect faults by exploiting the presence of unknown external excitation is the
key difference between this approach and techniques based on residual generation.
Transmissibility-based fault detection depends on various assumptions. In particular,
this approach assumes that the plant itself does not change between the identification
and validation data sets and that the location of the external excitation does not
change. By using the estimated transmissibility operator, the residual between pairs
or sets of sensors can be used to detect a sensor failure or a change in the dynamics
of a system.

We developed a time-domain framework for SISO and MIMO transmissibilities
that accounts for nonzero initial conditions for both force-driven and displacement-
driven structures. It was shown that if the locations of the forces and prescribed
displacements are identical, then the SISO and MIMO force- and displacement-driven
transmissibilities are equal.

Finally, since S2SID depends on cancellation of the input, this approach does not
extend to nonlinear systems. However, we showed that for the case of a two-output
Hammerstein system, the least squares estimate of the PTF is consistent, that is,

asymptotically correct, despite the presence of the nonlinearities.
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7.2 Future Work

We showed that transmissibility operator between pairs or sets of sensors can
be used to detect sensor faults in the presence of unknown external excitation. The
characteristic shape of the residual of the transmissibility can be used to infer the type
of sensor failure. However, this approach does not identify which sensor has failed.
This problem is left for future research. Moreover, the current approach assumes that
the underlying system is linear, time invariant and that the location of the external
excitation does not change. Future research may consider the effect of nonlinearities
as well as extensions to the case of moving loads.

The research objective for S2SID is to develop a technique for obtaining the most
accurate estimate of the transmissibility operator possible in the presence of noise
on all sensors. System identification with noisy input and output data is a standard
problem in system identification known as errors-in-variables (EIV) identification.
Since S2SID is based on sensor measurements, all of which may be noisy, the EIV
problem is especially relevant. The literature on this problem is extensive [105-108].

Although the idea of a PTF may be unconventional, we have reason to believe that
there may be a deep connection between PTF’s and behavioral models developed by
J. Willems [109, 110]. Unlike traditional input-output techniques, behavioral mod-
els focus on terminals and ports, which provide the mechanism for interconnecting
physical systems without assigning the attributes of “input” or “output.”

Unlike behavioral models, the development of PTF’s begins with a causal state
space description from which an excitation-independent PTF is derived. At the same
time, behavioral models have not been used to provide a time-domain framework for
transmissibilities or for sensor fault detection and diagnosis (note that [111] is not
based on behaviors in the sense of Willems). Therefore, future research may investi-
gate connections between PTF’s and behavioral models and, in so doing, deepen the

foundations of both areas. S2SID can also benefit from system identification tech-
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niques developed within the context of behavioral models [112], including conditions

that guarantee identifiability and persistency [113, 114].
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APPENDIX A

Cancellation of the Common Factor §(p) for SISO

Transmissibility Operators

Lemmas A.1-A.5 concern SISO transmissibility operators. Lemma A.1 is used
to prove Lemma A.2, which in turn is used to prove Lemma A.3 and Lemma A.4.
Lemmas A.3 and A.4 are used to prove Lemma A.5, which in turn is used to prove
Theorem 1.

Assume that m = 1 and p = 2 and let (2.20), (2.21), and (2.22) be written as
Ii(p) = Zﬁi,jpjv To(p) = Zﬁo,jpja
=0 =0
n—1
5(p) =p"+>_ P,
=0

respectively, where 5, = D; and ,, = D,.
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Define
T
Op—1 :|

A
= [ oy o
A é O(TL—l)Xl [nfl B é eT
Cc,i = |: 51,0 /811 ﬁi,nfl :| - Bia”aT7
Cc,o = |: 50,0 501 ﬁo,nfl :| - 50,na/Ta
where ¢; is the i column of I,,. Consider the state space representation
i, = Asxe + Beu, (A.1)
Y = C1c,i:Uc + Di“y (A2)
Yo = C10,03% + Dou- (AB)
Note that
F1<p) = C(c,i‘g‘“d-j (p[ - AC)BC + Dld(p)a (A4>
(A.5)
(A.6)

I'o(p) = Ceoadj(pl — Ac)B. + Do (p),

0(p) = det(pl — A.),

That is, (2.23) and (2.24) can be represented by (A.1), (A.2) and (A.1), (A.3), re-

spectively.
For all j =0,...,n, define
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For all 4,5 = 0,...,n, define f;; 2 Al
Lemma A.1. Forall ¢,7 =0,...,n, fi; = fji

Proof. Note that

I, J=0,
Al=q E;, 1<j<n-1,
An; ] =n,
where,
Cj+1
E; 2 ERV™ A : e R
T
en .
—atAI!
A

For all i = j, the result holds. For all 0 <i <n—1and j =n, fi, = e A" =
—aTAl = fp; Foral 0 <i<n—j—land 0<j<n-1, fi; = e E =

€1 = €1 B = fi; Finally, for all n —j < i <n—1and 0 < j < n—1,

fig=elnEj = —aT AT = el | E; = fja. O
Define
N .
1(p) = Ceiadj(pl — Al) B, (A.7)
A )
Y(p) = Ceoadj(pl — Ac)B.. (A.8)

Then, (2.20), (2.21) can be written as

Ii(p) = %(p) + Did(p), (A.9)

Lo(P) = 7(P) + Dod(p). (A.10)
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Lemma A.2. For all ¢t > 0,

IWO(IT))C’c,ieACt = Fi(p)cc,oeACta (A.ll)

’)/0(p)CC71€ - Wl(p)cc,oeACt- (Al?)

Proof. Using Lemma A.1 we have

Fo(p)cc,ieACt:Z Bo,ipicc,ieACt

=0

n
i A
:Z Bo,icc,iAz;e ot
1=0
n n—1
T
:Zﬁo,z Z ﬁl] J+1 anZ
=0 7=0
n
A
22250,i5i,jfj,i6 ot

i=0 j=0

:Z Z ﬁi,jﬁo,ifi,jeA !

§=0 i=0

n n—1
T
:Zﬁi,] [Z /60 z€1+1 Bo,na
7=0 =0

n

] Act

:E Biip’ Ceoe”™
=0

i Act
Ale’

j Act
Alese

= Fi(p)CC,OeACta

which proves (A.11). To prove (A.12) note that

Fo(p)CCleA ! (’70( ) + Do(s(p))cc,ieACt
= Yo (P)Ceie™ + DoCei0(Ac)e!

= Yo(p)Ceze™, (A.13)
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where ¢ is the characteristic polynomial of A., and thus 6(A.) = 0,,x,,. Similarly,

Fi (p) Cc,o eACt =M (p) C’c,oeACt .

Using (A.11), (A.13) and (A.14) yield (A.12).
Define
Act

A A
yi,free<t> - Cc,ieACtxcoa yo,free(t) - CC,Oe ¢ Leg -

Lemma A.3. For all £t > 0,

F0 (p)yi,free (t) = 11i (p)yo,free (t) .

Proof. Using (A.11) of Lemma A.2 we have

Lo (p)yivfree (t> =T, (p) Cc,ieACtl'cO

— Fi(p)CC,OeACthO = Fi(p)yo,free(t)-

Define

1>

t
yi,forced(t) /Cc,ieAC(tT)BCu(T)dT + Dlu(t)a
0

t
/CC,OeAC(t_T)BCu(T)dT + Du(t).
0

1>

yo,forced (t)
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(A.15)

(A.16)

(A.17)

(A.18)



Lemma A.4. For all ¢t > 0,

Fo(p)yi,forced(t) = Fi(p)yo,forced(t)' (Alg)

Proof.

t

I-‘o(p)yi,forced(t) = I-‘o(p) / Cc,ieAC(t_T)Bcu(7—)dT + DiFo(p)u<t)
0

t
= 1—\o(p) / Cc,ieAc(tiT)Bcu<T)dT + Dié(p>y0,forced(t>
0

t t

—0(p) [ Coae™ I Baulr)drs Dui(p) [ Cae™ T Bulr)ar
0 0
t
+ Dis(p) / Cooe™ D) Bau(r)dr + DyDod(p)ult). (A.20)
0

Using (A.12) of Lemma A.2 we have

t

t
%o(P) / Ceie™ "7 Beu(r)dr = 70(p) Cee™! / e~ Bu(r)dr
0

0
t

= %(p)CC,OeAct/e_AcTBCu(T)dT

0
t
= i(p) / Ceoe™ """ Bou(r)dr. (A.21)
0
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Using (A.17), (A.18), and (A.21), (A.20) can be written as

t t

Lo (P) Ui forced(t) = 71(p)/C’C,OeAC(t_T)BCu(T)dT + D05(p)/C’C,ieAC(t_T)BCU(T)dT
0 0

t
+ Dis(p) / Cloe™ 0 Bau(r)dr + DiDyd(p)ul?)
0

t

= T\(p) / Ceo™ ) Bou(7)dT + Dod(P)¥i forced (t)

0
t

= Ti(p) / Ceo 7 Bou(r)dr + DoTi(p)uf(t)
0

- 1_‘i(p)yo,forced (t) U

Lemma A.5. For all ¢t > 0,

Lo(P)ui(t) = Ti(p)yo(t). (A.22)

Proof. Using Lemmas A.3 and A.4

Fo(p)y1<t) = Fo(p)yi,free(t) + FO(p)yi,fOrced<t>
= Fi(p)yo,free(t) + Fi(p>yo,forced(t>

= Ti(P)yo(t). O

159



APPENDIX B

Adjugate Identities

Let A € C™, let A* € C™" denote the adjugate of A, and let A ) € C denote
the (7, j) entry of A. Let D 2 {k1,...,kq} wherel <d <n—2andk; € {1,...,n} for
alli=1,...,d. Let App € C=dxn denote A with rows ky, ..., kg removed and let
Ap,p) € C=dx(n=d) denote A with rows ky, ..., kg removed and columns ki, ..., kg
removed. Finally, Let ep,, = [exym -+ €ryn) € C™? where ¢;,, € C" denotes the i

unit vector. The following proposition is used in the proof of Theorem 5.

Proposition B.1. For all i € {1,...,n},
[(AA)[L-] + (A[i,i])AA[i,-ﬂ Cin = 0(n71)><1- (B.l)

Proof. See [115]. O
Next, let C' € C™™ and define R = Alep,, € C™4 and S = (Aip,p)*Ap,j€pn €
Cr=dxd_ Let CR € C™¢ and C|. pS € C™? be nonsingular where C|. pj € C*>*(n=9)
denotes C with columns kq, ..., k; removed. The following proposition is used in the

proof of Theorem 6.

160



Proposition B.2.

L R(CR)™" = S(Cr.;S) ™", (B.2)

where I, € C"*" is the identity matrix and I, p.] € C=dxn denotes I, with rows

ki, ..., kq removed.
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