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ABSTRACT

Statistical Issues in the Analysis of Correlated Data

by
Rong Xia

Chair: Thomas M. Braun and Mousumi Banerjee

In the first project, we extend the original classification and regression trees

(CART) paradigm [Breiman et al., 1984] to clustered binary outcomes, where in-

dividuals within a cluster are correlated. We propose to generate tree models using

residuals from a null generalized linear mixed model (with fixed and random inter-

cepts only) as the outcome, which circumvents modeling the correlation structure

explicitly while still accounting for the cluster-correlated design, thereby allowing us

to adopt the original CART machinery in tree growing, pruning and cross-validation.

Based on extensive simulations, we compare our residual-based classification tree to

the standard CART that ignores the clustering. We find that our residual-based tree

is more appropriate for analyzing clustered binary data, and provides more accurate

classification predictions. Our method is also illustrated using data from studies

of kidney cancer treatment receipt, surgical mortality after colectomy, and determi-

nant of vaccination coverage. In all studies, residual-based trees identified clinically

meaningful subgroups.

The second project is motivated by the analysis of periodontal data. Clinical
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attachment level (CAL) is a tooth-level measure that quantifies the severity of pe-

riodontal disease. The within-mouth correlation of tooth-level measures of CAL is

difficult to model because it must reflect the three-dimensional spatial geography of

teeth and their functional similarity. We propose two linear mixed effects (LME)

models with random effects that quantify the within-mouth correlation of teeth and

their shared functionality. Via simulations, we compare the bias and efficiency of

fixed effect estimates computed with our models to corresponding results produced

with a t-test and generalized estimating equations. We demonstrate that our mixed

models give estimates that are consistent and more efficient than other methods that

fail to model the within-mouth correlation of teeth accurately. We also evaluate the

performance of the approaches when data are missing under different biologically

plausible missing data mechanisms.

Inference for the fixed effects in an LME model is dependent upon the correlation

structure implied by the random effects included in the LME model. However, limited

methods are available for making inference about the fit of the assumed covariance

structure in the LME model. In the third project, we propose three permutation

tests, all of which are based on comparing the estimated assumed covariance matrix

to the covariance matrix of the marginal residuals. Cholesky residuals, which are

exchangeable both within and among subjects, are employed in the permutations.

Through simulations, we show that two of our tests have valid size and comparable

power in testing different covariance structure assumptions. We also apply our tests

to data collected from the periodontal disease study that motivated the methods in

our second project.
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CHAPTER I

Introduction

Correlated data is abundant in biomedical studies. For example, in longitudinal

studies, measurements on a subject are collected repeatedly over time, and thereby

are correlated within-subject through shared subject-specific characteristics. Such

correlation is commonly known as serial correlation. In multi-level or clustered data,

subjects are nested within clusters, and subjects within the same level or cluster are

generally more similar to each other than subjects from different clusters. This clus-

tering effect induces intra-cluster correlation among subjects within the same cluster,

e.g., in familial segregation studies, family members are usually similar as they share

genetic factors. Thus, the assumption of independence, which is common for most

standard statistical methods, i.e., ordinary linear models, is violated in correlated

data. Therefore, in order to draw valid statistical inferences, special methods are re-

quired for analyzing correlated data, as it is necessary to account for the correlation.

Ignoring this correlation could inflate the variance estimates.

Mixed effects models are a rich family of models containing both fixed and ran-

dom effects, which are widely adopted in analyzing correlated data. The fixed effects

coefficients play the same role as the coefficients in an ordinary linear model, and

are interpreted as estimates of the average population effect. The random effects are
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subject-specific, which represent an aggregation of factors that make measurements

on the same subject intrinsically similar, and are often assumed to follow certain

distributions. The usage of random effects and/or random errors creates a flexible

class of covariance structures that allows us to account for and take advantage of

the structured patterns in the correlated data. Two popular mixed effects mod-

els are the linear mixed effects (LME) models for normally distributed outcomes

[Laird and Ware, 1982], and the generalized linear mixed models (GLMMs) for non-

normal outcomes (e.g., binary, count etc.) [Breslow and Clayton, 1993]. In both

models, parameter estimations involve likelihood based methods implemented with

the expectation-maximization (EM) algorithm. These likelihood methods rely on

the distribution of the outcomes, and therefore require us to model the covariance

structure accurately, in order to obtain consistent and unbiased estimates.

An alternative to mixed effects models is the method of generalized estimating

equations (GEEs), where the population-averaged effects are estimated by solving

estimating equations [Liang and Zeger, 1986]. The estimating equations are based

on the moments of the outcomes, rather than the full distribution. Therefore, when

GEEs are used in conjunction with the “sandwich” estimator, the resulting popu-

lation effects variance estimates are robust to misspecified covariance structures, as

long as the mean structure is specified correctly. However, GEEs require stronger

assumptions than mixed effects models on missing data and are less efficient than

the estimator which uses the correct covariance model.

Tree-based methods have become one of the most flexible, intuitive, and powerful

data analytic tools for exploring complex data. The arguably most widely used tree

model is the Classification and Regression Trees (CART) introduced by Breiman

et al. [1984]. In the CART paradigm, the covariate space is recursively partitioned

2



into disjoint regions and the corresponding data is split into groups (nodes), with the

intent of increasing within-node homogeneity in the response distribution. The final

resulting tree can be represented as a binary tree, and its terminal nodes represent

subgroups characterized by common covariate values and homogeneous outcomes.

However, the standard CART is not designed for handling clustered data, where

subjects within a cluster are usually correlated, and accounting for the clustering

effect could potentially improve the validity of statistical analysis.

Several researchers have studied extensions of the standard CART to clustered

data. One type of approaches is to generalize the univariate impurity function to mul-

tivariate outcomes [Segal, 1992, Zhang, 1998]; However, these methods allow splits

to only be based upon cluster-level covariates, and splits on subject-level covariates

are prohibited. Another type of extension is to combine a regular tree model with

cluster-level random effects to grow a mixed effects tree [Hajjem et al., 2011, Sela

and Simonoff, 2012]; However, software implementations of such methods to date

have been limited.

In sight of these limitations, we propose a new method to extend the standard

CART to clustered binary outcomes in Chapter II. Our method is based on using

residuals from a null generalized linear mixed model, which only contains fixed inter-

cept and cluster-level random intercepts, as the outcome to partition the covariate

space into rectangles. This circumvents modeling the correlation structure explicitly

while still accounting for the cluster-correlated design, thereby allowing us to adopt

the original CART machinery in tree growing, pruning and cross-validation. We

compare our residual-based tree to the standard CART via a series of simulations.

We also illustrate our method using data from studies of kidney cancer treatment

receipt, surgical mortality after colectomy, and determinants of vaccination coverage

3



in Uttar Pradesh, India.

Chapter III is motivated by a periodontal disease study, conducted at the the

Michigan Center for Oral Health Research [Ramseier et al., 2009, Kinney et al.,

2011]. Periodontal disease is a chronic inflammatory disorder that affects the gin-

giva, the supporting connective tissue and the alveolar bone, all of which anchor the

teeth in the jaws. Periodontal disease is the most common cause of tooth loss in

adults in the United States, and it has a prevalence around 50% [Eke et al., 2012].

Diagnosis of periodontal disease often involves the evaluation of periodontal out-

comes such as clinical attachment loss (CAL), which measures the extent to which

the gingiva has lost its attachment to a tooth. The difficulty in modeling periodontal

outcomes lies in the fact that teeth from the same subject are usually correlated due

to their three-dimensional spatial geography, functional similarity, and the natural

symmetry of mouth. Traditionally, researchers have analyzed periodontal outcomes

using ordinary linear regression, t-test or generalized estimating equations (GEE).

However, these methods have low efficiency because they fail to model the within

mouth correlation accurately. Recently, Reich et al. [2007] , Reich and Hodges [2008]

and Reich et al. [2013] have proposed to use conditionally auto-regressive (CAR)

models for periodontal outcomes, which take account of the spatial correlations by

smoothing over neighboring teeth. However, these methods require complicated sta-

tistical programming that does not yet exist in standard statistical packages, so that

these methods have not been widely adopted in periodontal studies.

Thus in Chapter III, we develop two linear mixed effects (LME) models for pe-

riodontal outcomes, where we use random effects and random errors to quantify

the complex within-mouth correlation of teeth. Our intention is to create accurate

models that are easily accessible to periodontal researchers, therefore can be widely
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used in periodontal studies. We also discuss criteria for the selection between these

two models. Via simulations, we compare the estimates from our models to the

corresponding results of t-tests and GEEs. We further evaluate the performance

of our models when data are missing under different biologically plausible missing

data mechanisms. Finally we apply our methods to the Michigan periodontal data

and estimate the mean difference in CAL values between periodontal diseased and

healthy subjects.

When we applied the two LME models to the Michigan periodontal data, one

remaining challenge was to assess their goodness of fit. As mentioned earlier, infer-

ence for the fixed effects in an LME model depends upon the correlation structure

implied by the model. It is important to appropriately model the true covariance

structure, otherwise the variance of fixed effects estimates may be biased. However,

diagnostic methods for evaluating the fit of the assumed covariance structure in an

LME model remain underdeveloped. To the best of our knowledge, the quantile-

quantile (Q-Q) plots of Cholesky residuals proposed by Houseman et al. [2004] and

Jacqmin-Gadda et al. [2007], and an informal check recommended by Verbeke and

Molenberghs [2009] are the only approaches available for evaluating the overall co-

variance assumption directly. However, these two methods do not provide any formal

statistical inferences. Other methods include successively testing for the inclusion

or exclusion of each possible random effect, which is difficult because the variance

component is on the boundary of the parameter space under the null hypothesis. To

overcome these issues, in Chapter IV we propose three permutation tests employing

test statistics that quantify the difference between the estimated assumed covariance

of the LME model and the smoothed sample covariance of the marginal residuals.

The empirical null distributions of our test statistics are generated by permuting

5



the Cholesky residuals both within and among subjects. Through simulations, we

show that two of our tests have valid size and comparable power in testing different

covariance structure assumptions. We also apply our permutation tests to Michigan

periodontal study and evaluate the fit of the two proposed LME models.
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CHAPTER II

Residual-Based Tree for Clustered Binary Data

2.1 Introduction

Tree-based methods have become one of the most flexible, intuitive, and powerful

data analytic tools for exploring complex data structures. The applications of these

methods are far reaching. The best documented, and arguably most popular uses of

these methods are in health sciences research where classification is a central issue.

Tree-based methods partition the covariate space into a set of rectangles, leading to

a fitted model that is piecewise constant over regions of the covariate space. Some

interesting applications of tree-based methods in the health sciences literature are

described by Zhang and Singer [1999], Banerjee et al. [2004] and Segal et al. [2004].

Tree-based methods were originally introduced by Morgan and Sonquist [1963],

and further advanced by Breiman et al. [1984] in their monograph on Classification

and Regression Trees (CART). In the CART paradigm, the covariate space is recur-

sively partitioned into disjoint regions and the corresponding data is split into groups

(nodes). The partitions are intended to increase within-node homogeneity in the re-

sponse distribution. For each node, extent of homogeneity is measured quantitatively

using an impurity function, e.g., residual sum of squares for continuous outcomes,

and Gini or entropy for binary outcomes. At each stage of the splitting process, a

7



parent node gives rise to two daughter nodes (binary partitioning). Goodness of a

split is assessed by the reduction in impurity going from a parent node to the two

daughter nodes. All possible splits for each covariate are evaluated, and the covariate

with the corresponding split point that results in the maximum impurity reduction

is chosen. This splitting procedure is applied recursively until each node is pure in

response or only contains a few subjects. After a large tree is grown, there are rules

for pruning and readjusting the size of the tree. The final result can be represented as

a binary tree, and its terminal nodes represent subgroups characterized by common

covariate values and homogeneous outcomes.

Clustered, or more specifically cluster-correlated data arise when there is nested

structure to the data. Data of this sort frequently arise in the social, behavioral,

and health sciences since individuals can be grouped in many different ways. For

example, in studies of health services and outcomes, assessments of quality of care

are often obtained from patients who are nested within physicians and/or hospitals

[Miller et al., 2008, Haymart et al., 2011]. Such data are also referred to as hierar-

chical/multilevel, with patients referred to as level 1 units and physicians/hospitals

as level 2 units. The clustering induces correlation among units within the same

cluster, and this intra-cluster correlation has to be accounted for in order to obtain

valid statistical inferences.

Some authors have studied extensions of original tree-based methods to multilevel

data. Segal [1992] developed trees for multilevel continuous outcomes using weighted

residual sum of squares as a measure of impurity, where the weights were based on

the estimated covariance matrix of some simple variance models. Abdolell et al.

[2002] used the likelihood ratio statistic for evaluating splits. Hajjem et al. [2011]

and Sela and Simonoff [2012] independently developed mixed effects tree models by
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combining a regular tree with cluster-level random effects. For multilevel binary

outcome, Zhang [1998] developed classification trees using generalized entropy and

Gini criteria for splitting. Keon Lee [2005] proposed building multivariate decision

trees that employed generalized estimating equations. However, all of these methods

suffer from one or several drawbacks, namely 1) can handle only cluster-level covari-

ates, such that subjects within a cluster always end up in the same node of the tree;

2) require the clusters/groups to be balanced in size; and 3) do not have available

software implementations, thereby limiting their applicability.

In this chapter, we develop a methodology for growing trees in the setting of

cluster-correlated binary data. As opposed to the conventional CART, our approach

uses the residuals from a null generalized linear mixed model as the outcome to par-

tition the covariate space into rectangles. This circumvents modeling the correlation

structure explicitly while still accounting for the cluster-correlated design, thereby

allowing us to adopt the original CART machinery in tree growing, pruning and

cross-validation. Our proposed method is flexible at handling both individual- and

cluster- level covariates, does not require balance in cluster sizes, and can be easily

implemented in any standard software for binary recursive partitioning. Further-

more, our method lends itself to a natural extension to an ensemble of trees, that

can often give more accurate predictions and address instability in a single tree.

This chapter is organized as follows. In Section 2.2, we introduce the methodology

for growing trees for clustered binary outcome using residuals from a null generalized

linear mixed model. Section 2.3 compares our residual-based trees to the standard

classification trees via simulations. We illustrate our methodology in Section 2.4

using data from a health services research study to investigate determinant of kidney

cancer treatment receipt. Section 2.5 applies our methodology to study the surgical
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mortality after receiving colectomy surgery. Section 2.6 applies our methods to study

the vaccination coverage in Uttar Pradesh, India. Finally, Section 2.7 contains some

concluding remarks.

2.2 Residual-Based Tree for Clustered Data

For clustered data, individuals within the same cluster are usually correlated,

e.g., in familial segregation studies, family members are usually alike as they share

the same genetic factors; in clinical studies, patients treated by the same provider

are usually more similar in terms of treatment received. Popularized by Breslow

and Clayton [1993], generalized linear mixed effects models (GLMMs) have become

a standard framework for modeling clustered non-normal data, where the inclusion

of cluster-specific random effects induces correlation among individuals within the

same cluster. Consider a two-level hierarchical data structure: let yij be the binary

response of the jth individual (level-one unit) in the ith cluster (level-two unit),

where 0 stands for ‘failure’ and 1 stands for ‘success’, i = 1, ...,m, j = 1, ..., ni,

N =
∑m

i=1 ni. The GLMM with logit link can be written as

(2.1) g(µij) = log(
µij

1− µij

) = xijβ + zijbi,

where β = (β0, ..., βp) are the population level fixed effects coefficients, and bi =

(bi0, ..., biq)
′ are the random effects for cluster i. The xij = (1, xij1, ..., xijp)

′ and

zij = (1, zij1, ..., zijq)
′ are the fixed effects covariates and random effects covariates,

respectively, for the jth individual in cluster i. The random effects bi are assumed

to follow a multivariate normal distribution with mean 0 and covariance matrix Σ.

The µij = E(yij|bi) = P (yij = 1|bi) is the conditional expectation of yij given

random effects bi. Given random effects bi, all ni individuals yij from cluster i are

conditionally independent.
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Parameter estimation in GLMMs typically involves maximum likelihood (ML) or

variants of ML. In order to obtain the likelihood, integration over the random effects

must be evaluated. In general this integration can not be done analytically, instead,

numerical algorithm such as penalized quasi-likelihood (PQL) [Breslow and Clayton,

1993] is often employed. The random effects bi are estimated using empirical Bayes

method.

2.2.1 Residuals from Null Model

We propose to fit a null GLMM with only one fixed effect β0, which is the pop-

ulation level intercept, and one random effect bi0, which is the cluster-level inter-

cept that represents the effect of cluster i. The prediction from this null model is

µ̂ij = g−1(β̂0 + b̂i0), where g−1(.) is the inverse of the logit link. It is easily seen from

this model that all ni individuals from cluster i have the same predicted value, which

is the estimated cluster-level success probability for cluster i after accounting for the

hierarchical structure.

Two types of residuals are commonly used for binary responses: the Pearson

residual and the deviance residual. Given µ̂ij, the prediction for individual j in

cluster i from the null GLMM, the Pearson residual prij can be defined as

(2.2) prij =
yij − µ̂ij√
µ̂ij(1− µ̂ij)

.

The deviance residual drij is defined as

(2.3) drij = sign(yij − µ̂ij)

√
2yijlog(

yij
µ̂ij

) + 2(1− yij)log(
1− yij
1− µ̂ij

),

where sign(yij − µ̂ij) is the sign of yij − µ̂ij.

2.2.2 Residual-Based Tree

Therneau et al. [1990] had advocated using null martingale residuals from a Cox
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proportional hazards model as the responses to grow tree models for survival data.

Following their approach, we propose to grow a regression tree using residuals from

the null GLMM as our new responses. This circumvents the complexity induced by

clustering while still accounting for the correlation structure.

In the CART paradigm, the covariate space is recursively partitioned into disjoint

rectangular regions and the data is divided into subgroups (nodes). Each terminal

node represents a rectangular region. Here we denote the rectangular region formed

by terminal node l as Rl. Suppose tree T has L terminal nodes, then we can envision

this tree as an additive model f with L terms, where each term corresponds to a

terminal node

(2.4) f(xij) =
L∑
l=1

alI(xij ∈ Rl),

and al is defined as the prediction for all observations fall in terminal node l. Fitting

a tree involves greedy searching for the optimized combination of L, Rl’s and al’s.

For clustered binary outcomes, we propose to grow a regression tree using residuals

as the outcome variable (i.e. in a transformed scale). At each stage, we search for the

best split that maximizes the node impurity, which is measured as the residual sum

of squares based on the transformed outcome, i.e.,
∑

ij∈node(rij − r̄)2. After a large

tree is grown, we prune it using cost-complexity pruning. Therefore, L and Rl’s are

both obtained by optimizing the within-node homogeneity based on the transformed

outcome. Once the tree architecture has been selected, class prediction for the l− th

terminal node in the original outcome scale is obtained by estimating the proportion

of subjects with success or failure in that terminal node, i.e.,

âl =

∑
i,j yijI(xij ∈ Rl)∑
i,j I(xij ∈ Rl)

.

The method does not rely on balanced clusters, and can be applied to unbalanced
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data with varying cluster sizes. Furthermore, it is possible to choose splits based on

both individual- and cluster- level covariates.

2.2.3 Software Implementation

Our residual-based tree algorithm can be easily implemented in the R system.

The null GLMM is fitted using the “glmmPQL” function from the “MASS” package,

which utilizes the Penalized Quasi-Likelihood algorithm. (As a sensitivity analysis,

we have also tried other model fitting algorithms such as Laplace approximation

or Gauss-Hermite quadrature.) The regression tree with residuals as the new re-

sponses is grown with the standard “rpart” package. We create an R function that

extracts the architecture of the regression tree and use it towards terminal node class

prediction of the original binary outcomes.

2.3 Simulation Studies

In this section, we compared our residual-based tree to the standard classification

tree via simulations. Our comparisons focused on the architectures of the trees as

well as prediction performance.

2.3.1 Simulation Design

We generated data from a two-level hierarchical design with 75 clusters and 10

(50 or 100) individuals per cluster. The binary responses yij were generated from a

two-level random intercept model via a latent variable formulation

(2.5) y∗ij = log(
p(xij)

1− p(xij)
) + bi + εij,

where the random intercept bi was generated from normal distribution N(0, σ2
b ), and

the level-one error εij was generated from a logistic distribution with mean 0 and

variance π2/3. We defined yij = 1 if y∗ij > 0, and yij = 0 otherwise.
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Eight independent covariates (X1 to X8) were generated 1) from two distributions,

2) at the cluster- and individual- levels, 3) and divided to signal or noise components.

Covariates X1, X2, X5 and X6 followed standard normal distributions, while X3, X4,

X7 and X8 had Bernoulli distributions with mean 0.5. The X1, X3, X5 and X7 were

individual-level covariates, while the others were at the cluster-level. Covariates X1

to X4 contributed to the responses and the rest were noises.

The fixed effect p(xij) depended on covariates X1 to X4 via an underlying tree

illustrated in Figure 2.1, where (p1, p2, p3, p4, p5)
′ = (0.9, 0.4, 0.8, 0.3, 0.7)′ were the

marginal probabilities of success in terminal nodes:

Terminal Node I: If xij3 = 0 and xij1 ≤ 0, p(xij) = p1;

Terminal Node II: If xij3 = 0 and xij1 > 0 and xij4 = 0, p(xij) = p2;

Terminal Node III: If xij3 = 0 and xij1 > 0 and xij4 = 1, p(xij) = p3;

Terminal Node IV: If xij3 = 1 and xij2 ≤ 0, p(xij) = p4;

Terminal Node V: If xij3 = 1 and xij2 > 0, p(xij) = p5.

Figure 2.1:
Underlying tree structure of the two-level random intercept model used for simulat-
ing data, where (p1, p2, p3, p4, p5)′ are the marginal probabilities of success in terminal
nodes.

Under this simulation design, individuals in different clusters were independent

while individuals within the same cluster were equally correlated. The strength of

correlation between individuals belonging to the same cluster could be expressed

by the intra-cluster correlation coefficient (ICC), which was defined as the ratio of
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between-cluster variance to total variance, i.e.,

ICC =
σ2
b

σ2
b + (π2/3)

.

To study the effect of different within cluster correlations, we varied σ2
b between 0,

0.52, 12 and 22, which corresponded to estimated ICC of 0, 0.07, 0.23 and 0.55.

The simulated data were randomly divided into a training set and a testing set.

The training set contained 50 clusters and it was used for building the trees. The

remaining 25 clusters were employed as the testing set for evaluating predictions.

The simulations were repeated for 1, 000 times.

2.3.2 Simulation Results

We compared how similar our residual-based tree or the standard classification

tree was to the true underlying tree architecture. Two simple choices of similarity

metric were tree size, i.e., the number of terminal nodes, and the number of times

each covariate was split in the tree. In addition, we argued that two trees are similar

if they place the same individuals together in a terminal node and separate the same

individuals in different terminal nodes (i.e., if individuals g and h were placed in

two different terminal nodes by Tree A, then these two individuals should also be

placed in two different terminal nodes by Tree B for it to be similar to Tree A).

As introduced in Banerjee et al. [2012], we employed a metric d to quantify how

individuals were clustered in the terminal nodes. For all
(
N
2

)
pairs of individuals,

if individual g and h were in the same terminal node by tree T , then IT (g, h) = 1,

otherwise IT (g, h) = 0. The difference of terminal nodes clustering between the fitted

tree T1 and the underlying true tree T0 was then measured as

(2.6) d(T0, T1) =

∑
g>h

∑
h |IT0(g, h)− IT1(g, h)|(

N
2

) ,
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where the factor
(
N
2

)
scaled this metric to range from 0 to 1 such that d = 0 when

the terminal nodes of the fitted tree T1 were exactly the same as the terminal nodes

of the underlying true tree T0, and d = 1 when they were completely different.

Lastly, we compared the residual-based trees and the standard classification tree

in terms of prediction accuracy based on the c-statistic obtained using the testing

set data.

Table 2.1 contain the averages of the above mentioned statistics over 1, 000 sim-

ulations, under different combinations of cluster size (n) and random effect (σ2
b ). To

examine the variations over different repeats, we show in Figure 2.2-2.4 the boxplots

of fitted tree sizes, terminal nodes clustering metrics d, and C-statistics on the testing

set. Within each figure, the top, middle and bottom panel is under cluster size 10,

50 and 100, respectively.

When intra-cluster correlation is none or small, e.g., (ICC = 0 or 0.07), the archi-

tectures of the fitted standard classification tree (RPART), Pearson residual-based

tree (PR) and Deviance residual-based tree (DR) are all similar to the underlying

true tree, for cluster sizes 50 and 100. The average fitted tree sizes are all around

5; the four signal covariates X1 to X4 are correctly selected for splitting, and each

covariate is split once on average; the average terminal nodes clustering metric d

are all near 0. The prediction performances of the three fitted trees are also similar

based on their c-statistics. The boxplots further indicate that these statistics have

little variations over the 1000 simulations.

When intra-cluster correlation is strong, e.g., (ICC = 0.23 or 0.55), RPART fits

overly complicated trees, with average tree sizes much larger than 5. This is pri-

marily because RPART fails to discriminate between signal and noise variables, and

frequently splits on the noise variables X5, X6 and X8. Furthermore, it exhibits a
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Table 2.1:
Average of statistics over the 1, 000 simulations (RPART: standard classification tree;
Pearson: Pearson residual-based tree; Deviance: Deviance residual-based tree).

Cluster
Size

σ2
b ICC

Tree
Type

Tree
Size

Selection Frequency
d

C-statistic on
Testing Set DataX1 X2 X3 X4 X5 X6 X7 X8

10

0 0.00
RPART 4.0 0.5 1.1 1.0 0.4 0.1 0.0 0.0 0.0 0.156 0.703

PR 4.1 0.8 0.9 1.0 0.4 0.0 0.0 0.0 0.0 0.093 0.726
DR 4.2 0.8 0.9 1.0 0.4 0.0 0.0 0.0 0.0 0.088 0.731

0.52 0.07
RPART 4.2 0.5 1.1 1.0 0.4 0.1 0.1 0.0 0.0 0.173 0.686

PR 3.8 0.8 0.7 1.0 0.3 0.0 0.0 0.0 0.0 0.123 0.701
DR 4.0 0.8 0.8 1.0 0.4 0.0 0.0 0.0 0.0 0.107 0.710

12 0.23
RPART 4.8 0.6 1.3 1.0 0.3 0.2 0.3 0.0 0.0 0.205 0.657

PR 3.2 0.7 0.3 0.9 0.2 0.0 0.0 0.0 0.0 0.201 0.654
DR 3.5 0.8 0.5 1.0 0.2 0.0 0.0 0.0 0.0 0.157 0.671

22 0.55
RPART 10.7 1.3 3.4 0.9 0.5 0.7 2.7 0.1 0.3 0.247 0.574

PR 2.0 0.4 0.1 0.6 0.0 0.0 0.0 0.0 0.0 0.443 0.566
DR 2.5 0.5 0.2 0.7 0.1 0.0 0.0 0.0 0.0 0.334 0.588

50

0 0.00
RPART 5.2 1.0 1.0 1.1 1.0 0.0 0.0 0.0 0.0 0.030 0.769

PR 5.0 1.0 1.0 1.0 0.9 0.0 0.0 0.0 0.0 0.010 0.773
DR 5.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.006 0.774

0.52 0.07
RPART 5.2 1.0 1.1 1.1 1.0 0.0 0.1 0.0 0.0 0.048 0.752

PR 4.9 1.0 1.0 1.0 0.9 0.0 0.0 0.0 0.0 0.016 0.759
DR 5.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.007 0.764

12 0.23
RPART 11.2 1.5 3.4 1.1 1.2 0.4 2.3 0.0 0.2 0.100 0.709

PR 4.6 1.0 0.7 1.0 0.8 0.0 0.0 0.0 0.0 0.049 0.721
DR 4.9 1.0 1.0 1.0 0.8 0.0 0.0 0.0 0.0 0.020 0.734

22 0.55
RPART 27.8 2.5 10.7 1.6 1.5 0.9 8.6 0.1 0.9 0.192 0.586

PR 3.2 0.9 0.1 1.0 0.1 0.0 0.0 0.0 0.0 0.154 0.629
DR 4.4 1.0 0.8 1.0 0.6 0.0 0.0 0.0 0.0 0.068 0.664

100

0 0.00
RPART 5.2 1.1 1.0 1.1 1.1 0.0 0.0 0.0 0.0 0.015 0.774

PR 5.3 1.0 1.2 1.0 1.0 0.0 0.0 0.0 0.0 0.008 0.776
DR 5.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.002 0.776

0.52 0.07
RPART 5.6 1.1 1.2 1.1 1.1 0.0 0.1 0.0 0.0 0.029 0.761

PR 5.3 1.0 1.3 1.0 1.0 0.0 0.0 0.0 0.0 0.009 0.766
DR 5.1 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.004 0.766

12 0.23
RPART 16.7 1.7 5.8 1.3 1.5 0.5 4.4 0.0 0.5 0.108 0.713

PR 5.1 1.0 1.1 1.0 1.0 0.0 0.0 0.0 0.0 0.013 0.740
DR 5.1 1.0 1.1 1.0 1.0 0.0 0.0 0.0 0.0 0.008 0.742

22 0.55
RPART 33.3 2.6 13.7 2.0 1.7 0.8 10.3 0.1 1.2 0.196 0.585

PR 3.7 1.0 0.3 1.0 0.4 0.0 0.0 0.0 0.0 0.116 0.645
DR 5.6 1.0 1.4 1.0 1.0 0.0 0.1 0.0 0.0 0.037 0.676
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Figure 2.2:
Boxplot of tree sizes over different random intercept variance σ2

b . The top panel is under
cluster size 10, the middle panel is under cluster size 50, and the bottom panel is under
cluster size 100 (RPART: standard classification tree; PR: Pearson residual-based tree;
DR: Deviance residual-based tree).
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Figure 2.3:
Boxplot of terminal nodes clusters metrics d over different random intercept variance
σ2
b . The top panel is under cluster size 10, the middle panel is under cluster size 50,

and the bottom panel is under cluster size 100 (RPART: standard classification tree;
PR: Pearson residual-based tree; DR: Deviance residual-based tree).
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Figure 2.4:
Boxplot of C-statistics on the testing set data over different random intercept variance
σ2
b . The top panel is under cluster size 10, the middle panel is under cluster size 50,

and the bottom panel is under cluster size 100 (RPART: standard classification tree;
PR: Pearson residual-based tree; DR: Deviance residual-based tree).
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propensity to over-split individual-level continuous coavariates. This finding agrees

with the well-known selection bias issue of RPART [Hastie et al., 2001]. In contrast,

PR and DR, particularly DR, fit trees with sizes close to that of the true underlying

tree. Both PR and DR are unaffected by noise variables, and in general, make correct

splits on the signal covariates. The standard classification tree also exhibits variation

in tree sizes over the 1000 simulations. The average of the metric d across the 1000

simulations is consistently smallest for DR, indicating that the DR tree is most simi-

lar to the true underlying tree in terms of terminal node clustering. Furthermore, the

c-statistic of the DR tree is consistently larger than the PR or RPART tree, demon-

strating the former’s superior prediction performance. For small clusters (size= 10),

however, both PR and DR trees are simpler than the true underlying tree, especially

when ICC = 0.55. This is possibly due to the biased empirical Bayes estimation

of the cluster effect (b̂i) when the cluster size is small [Skrondal and Rabe-Hesketh,

2009].

In summary, based on the simulations, we conclude that for clustered data the

residual-based trees are superior to the standard classification tree. In particular, the

deviance residual-based tree can better identify the true underlying structure of the

data, and provide more accurate predictions. These improvements are substantial

when the intra-cluster correlations are strong, given the cluster sizes are moderate

to large.

2.4 Application to Kidney Cancer Treatment Receipt Study

To illustrate our method, we present an analysis of data from a population-based

study of kidney cancer where the outcome of interest is (binary) receipt of treat-

ment. Radical nephrectomy is the traditional gold standard for treating patients
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with organ-confined kidney cancer. During the last two decades, however, the in-

troduction of a nephron-sparing alternative (i.e., partial nephrectomy) to radical

excision has appreciably modified the therapeutic options for patients with kidney

cancer. Partial nephrectomy yields oncologic outcomes that are indistinguishable

from those achieved by radical excision and also preserves long-term renal function

while reducing overtreatment of patients with benign tumors. Despite these poten-

tial benefits, population-based data suggest that the adoption of partial nephrectomy

has been slow, and radical nephrectomy remains the predominant surgical therapy

for patients with kidney cancer [Hollenbeck et al., 2006, Banerjee et al., 2014]. The

goal of our study was to apply the residual-based trees to understand the pattern of

utilization partial nephrectomy in the population.

Our analysis cohort comprised of 11, 136 Medicare beneficiaries treated by 2, 031

urologists for kidney cancer diagnosed between year 1995 and 2006. This data set

exhibited a two-level hierarchical structure with patients nested within surgeons.

The median number of patients treated by a surgeon was 4. The outcome of interest

was receipt of partial versus radical nephrectomy (i.e., binary outcome). Among the

11, 136 patients, 1, 667 underwent partial nephrectomy. A total of sixteen covariates

were considered for analysis, which included eight patient characteristics such as

socio-demographic variables (age, year of surgery, race/ethnicity, gender, marital

status and socioeconomic status), tumor size and the number of preexisting comorbid

conditions (using a modification of the Charlson index based on claims submitted

during the 12 months before kidney cancer surgery). On the basis of standard clinical

guidelines, we categorized tumor size as ≤ 4 cm, 4.1 − 7 cm and > 7 cm. We also

considered eight surgeon-level covariates including a surgeon’s age, gender, year of

medical school graduation, practice size (solo or two-person, group practice, HMO
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or hospital-based, medical school, or other/unclassified), practice location (rural vs.

urban), academic affiliation (major, minor, or no academic affiliation), surgeon’s

association with a National Cancer Institute (NCI)-designated Cancer Center, and

surgeon’s average annual nephrectomy volume during the study period.

We first implemented our residual-based tree approach on the entire cohort of

11, 136 Medicare beneficiaries. After the full tree was grown, we performed cost-

complexity pruning. The final tree was chosen based on 10-fold cross-validation, and

the tree with the minimum error on the residualized response scale was selected.

The deviance and Pearson residual-based trees were very similar. In Figure 2.5 we

present the deviance residual-based tree. At each level of the tree, we show the

best split (covariate with cut-point). The numbers in the terminal nodes denote

the estimated probability of receiving PAR (p̂) and the number of patients (n) in

that node. Tumor size and the year of surgery were strong determinants of receipt of

PAR. Surgeons affiliated with NCI-designated cancer centers were also more likely to

use PAR. Year of medical school graduation and academic affiliation of the surgeon

were other important determinants of PAR use.

Single tree model is usually unstable, where a small change in data may largely

affect the tree architecture. Another shortcoming of single tree is its modest predic-

tion performance. Ensemble methods such as bagging [Breiman, 1996] and random

forest [Breiman, 2001] greatly improve upon these problems. The framework of our

residual-based approach can be easily extended to generate residual-based ensembles

of trees, where each tree in the ensemble is build on the residualized responses.

We also analyzed this data by growing a deviance residual-based random forests.

Individual tree structures were lost in growing the forest, therefore, we evaluated

the effect of covariates by examining their permutation variable importance. For
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each covariate, its permutation importance was calculated as the average percentage

increase in mean squared error (MSE) of the predicted responses (in the residual

scale) from the forest, after randomly permuting the values of this variable. The

permutation variable importance plot is displayed in Figure 2.6. This variable im-

portance plot again confirms that tumor size is the most important determinant of

PAR use. The second and fourth most important factors according to the ranked

variable importance, i.e., year of medical school graduation and year of surgery also

aligns with our results from the deviance residual-based tree. Surgeon age was also

deemed important in the residual-based forest.

Figure 2.5:
Deviance residual-based tree applied to kidney cancer data. In each terminal node, we
list the estimated probability of receiving PAR (p̂) and the number of patients (n) fall
in that node.

2.5 Application to Surgical Mortality after Colectomy Study

Understanding the relationship between hospital/patient characteristics and pa-

tient outcomes is important for improving health care quality. In this analysis, we
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Figure 2.6:
Variable importance plot of deviance residual-based random forests applied to kidney
cancer data. Variable importance is defined as the percentage of increase in mean
squared errors (MSE) of the predicted residualized reponses, after randomly permuting
a variable.

were interested in identifying hospital characteristics and patient risk factors that

might be associated with patient outcomes after receiving colon resection surgeries

[Friese et al., 2015].

We extracted data from nationwide Medicare inpatient claims files between year

2009 and 2010 on patients hospitalized for colon resection. A total of 58, 816 patients

65 years or older, enrolled in fee-for-service Medicare were included in our analysis,

and these patients were treated in 3, 189 hospitals. On average, each hospital treated

18 colectomy patients. We measured patient outcomes using failure to rescue (FTR),

which is defined as death within 30 days of hospital admission for patients who have

experienced a postoperative complication. FTR focuses on a hospital’s capability to

recognize and address a complication and is less affected by the severity of patients’
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illness, therefore, it is considered as a better measure for comparing hospital quality

[Ghaferi et al., 2009]. Seven hospital characteristics were considered, including a

hospital’s recognition of Magnet status by the American Nurses’ Credentialing Cen-

ter, which was a voluntary program reflecting a hospital’s nursing care quality; the

geographic location (rural vs. urban); whether a hospital had an active organ and/or

tissue transplant program; whether a hospital had full-time equivalent medical res-

idents or fellows; the number of staffed beds; a hospital’s cost to charge ratio; and

a hospital’s registered nurse hours per patient day (RNHPPD). Patient risk factors

included age (categorized as 65−69, 70−74, 75−79, 80−84, 85 and older), gender,

race/ethnicity, and the number of comorbid conditions reported in their insurance

claims.

This data set exhibited a two-level hierarchical structure as patients were nested

within hospitals. We accounted for this hierarchical structure by fitting a hospital-

specific random effect in the null GLMM model. Deviance residuals from the null

model were used as response in growing the tree and random forest. The deviance

residual-based tree is presented in Figure 2.7. At each level of the tree, we show

the best split covariate along with the cut-point of the best split. For each terminal

node, we present the estimated failure to rescue rate (p̂) and the number of patients

(n) in that node.

The deviance residual-based tree first split by patients’ age and divided into three

cohorts with age 65−74, 75−84, and 85 or older. As expected, FTR rates increased

with patients’ age. Patients aged 65 − 74 were further split by their comorbid con-

ditions: Terminal node I contained the 6, 312 patients with 3 or more comorbid

conditions, who had the lowest FTR on average, which was 16%; Terminal node II

contained the 15, 526 patients with no more than 2 comorbid conditions, and their
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average FTR was 19%. For patients in this age group, hospital characteristics did

not show an association with FTR. Among patients aged 75− 84 with 2 or more co-

morbid conditions, FTR was higher in rural hospitals than in urban hospitals, as we

compared terminal node V to terminal nodes III and IV. In addition, terminal nodes

I and VII suggested that between patients with no more than 1 comorbid condition,

the average FTR was 5% higher for age 80 − 84 than 75 − 79. Patients older than

85 were further divided by their comorbid conditions, as well as the location and

bed size of hospitals they were treated in: Terminal nodes VIII, IX and X indicated

that among patients with 2 or more comorbid conditions, the average FTR in rural

hospitals was 40%, which was much higher than urban hospitals; For patients with

no more than 1 comorbid condition, the average FTR was 42% in hospitals with less

than 406 staffed beds, comparing to 34% in hospitals with more than 407 staffed

beds, as illustrated by terminal nodes XI and XII.

In summary, through this deviance residual tree, we found that failure to rescue

exhibited an increasing trend with patients’ age. The effects of hospital characteris-

tics were more evident among older patients, who were commonly considered frailer.

Older patients treated in bigger and/or urban hospitals tended to have lower FTR.

Our findings on patients’ comorbid conditions were confusing, since patients with

more comorbid conditions appeared to have lower FTR. The frequency table demon-

strated that for patients with 0, 1, 2, and 3 or more comorbid conditions, the crude

FTR was 26%, 27%, 24%, and 21%, respectively. Hence this pattern, despite being

counterintuitive, actually existed in the raw data, and our residual tree accurately

identified this pattern. One possible explanation for this phenomenon is the bias

in coding comorbidities, also known as “DRG Creep” [Iezzoni, 2012]. The number

of comorbid conditions is collected from a patient’s insurance claims, rather than
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the medical records. Thus it is not a precise reflection of a patient’s illness condi-

tion. Furthermore, hospitals with more resources are likely to identify and report

more comorbidities in their patients’ insurance claims, in order to receive higher re-

imbursements. These better resourced hospitals usually provide better health care

service as well. Therefore, patients’ comorbid conditions could be a confounder of

hospitals’ service quality.

The permutation variable importance plot based on deviance residual-based ran-

dom forest is shown in Figure 2.8. The two most important variables, patients’ age

and hospitals’ bed size matched with our findings from the single deviance residual-

based tree. This confirmed our conclusion that FTR is primarily associated with

patients’ age, and larger hospitals have lower FTR in general. Interestingly, the

importance of hospital location was relatively low, which is possibly due to its con-

founding with other hospital characteristics such as bed size and teaching program,

as urban hospitals are usually bigger and more likely to have teaching program. It

is also worth mentioning that patients’ comorbidity was not deemed very important

in the residual forest.

For this data, we also performed the standard classification tree analysis. However,

the standard classification tree was unable to find any splits, and simply returned a

root node. Therefore, this surgical mortality example illustrates a real data scenario

when our residual-based tree approach served as a helpful alternative to the standard

classification tree.

2.6 Application to Determinant of Vaccination Coverage Study

Despite rapid increase in vaccine coverage and substantial reduction in the inci-

dence of many vaccine preventable diseases in India, poor vaccination coverage rates
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Figure 2.7:
Deviance residual-based tree applied to surgical mortality data. In each terminal node,
we list the estimated probability of failure to rescue rate (p̂) and the number of patients
(n) fall in that node.
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Figure 2.8:
Variable importance plot of deviance residual-based random forest applied to surgical
mortality data. Variable importance is defined as the percentage of increase in mean
squared errors (MSE) of the predicted residualized reponses, after randomly permuting
a variable.

still prevail in certain subgroups of children. Coverage rates may be improved upon

by targeting these subgroups for interventions. It is therefore crucial to examine

characteristics or factors associated with vaccine uptake in order to identify groups

with deficient vaccination coverage.

Vaccination status is determined by a range of factors, from supply-side issues

of service availability to the more demand-side determinants related to affordability

and acceptability. Numerous studies have explored socio-economic and demographic

determinants or demand-side factors of vaccination coverage. However, health care

system drivers or supply side factors of vaccination coverage have received little at-

tention in the literature and are not well-understood. The complex interplay between

the demand and supply-side variables has rarely been examined. Traditional statis-

tical methods, e.g., logistic regression, are limited when analyzing variables that
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may interact in complex ways, as interactions must be specified a priori. Therefore,

we propose to use residual based tree methodology to study the role of supply-side

constraints and demand-side determinants of immunization coverage.

We used data from the third round of the District Level Household Survey (DLHS-

3) conducted during 2007-08. It is a large cross-sectional survey covering more than

700, 000 households from 601 districts (1, 000-1, 500 households per district) in 28

States and 6 Union Territories in India. DLHS-3 adopted a multistage stratified sam-

pling design and interviewed more than 600, 000 ever married women aged 15 − 49

years from the sampled households. As a preliminary analysis, we focused on data

from Uttar Pradesh, which is a state located in northern India. A total of 7, 704

children from 2, 595 villages of 70 districts in this state were studied. The outcome

of interest is whether a child is fully compliant with recommended vaccines. We

examined seven supply side factors at village level, e.g., availability of electricity,

availability of anganwadi centre, has health subcentre within 3 kilometers, has pri-

mary health centre (PHC) within 5 kilometers, is connected by all-weather road to

subcentre or PHC, availability of accredited social health activists and availability of

auxiliary nurse midwives. On the demand side, we considered birth order, age and

gender of the child, the educational status of the parents, mother’s age and health

knowledge, household head’s caste, religion, household wealth index and location.

In addition, we included the proportion of illiterate women and the proportion of

households with higher (no less than 4) birth order children in the district.

This data exhibit a three-level structure as children are nested within villages

nested within districts. We accounted for this hierarchical structure by assigning

random effects to both villages and districts in the NULL GLMM. Residuals from

the NULL GLMM were then used for growing the trees, which were further pruned
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by minimizing the 10-fold cross-validation error. The Pearson and deviance residual-

based trees were identical in this analysis, and we displayed the deviance residual-

based tree in Figure 2.9. At each level of the tree, we show the covariate and cut-point

of the best split. In each terminal node, we present the number of children (n) and the

estimated probability of being fully immunized (p̂). We also present the permutation

variable importance plot based on deviance residual-based random forest in Figure

2.10.

Figure 2.9 suggests that mother’s education is strongly associated with children

immunization status. Mothers with less than 6 years of schooling are less likely to

have their children fully immunized. Among these children, if their fathers receive

less than 1 year of education, then the estimated fully immunization rate is as low

as 0.15, and 2, 335 children belongs this group. For mothers with less than 6 years

of schooling, if their husbands receive more than 1 year of education, then the im-

munization status is further associated with household wealth: around 24% children

from poor (lower 60% quantile) families are fully immunized, comparing at 37% for

children from rich (upper 40% quantile) families. For mothers with 6 to 10 years

of schooling, their children have an estimated fully immunization rate of 0.45, and

976 children failing into this group. The immunization rate is as high as 0.61 if

mothers have over 10 years of schooling, however, only 667 children belong to this

cohort. The residual-based random forests confirmed that parents’ education, espe-

cially mother’s education is the most important variable. It is also meaningful to see

that the proportion of illiterate women in a district is highly important.

In summary, parents’ education, specially mother’s education, are associated with

children’s immunization status. Increased efforts should be focused on less educated

and low income families to improve the vaccination coverage.
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Figure 2.9:
Deviance residual-tree applied to vaccination coverage data. In each terminal node,
we list the estimated probability of receiving full immunization (p̂) and the number of
children (n) fall in that node.

Figure 2.10:
Variable importance plot of deviance residual-based random forest applied to vacci-
nation coverage data. Variable importance is defined as the percentage of increase
in mean squared errors (MSE) of the predicted residualized reponses, after randomly
permuting a variable.
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2.7 Discussion

Clustered data are abundant in practice, where observations within a cluster are

usually correlated. This intra-cluster correlation needs to be accounted for when

performing statistical analyses. Tree-based methods are one of the most flexible, in-

tuitive, powerful data analytic tools for exploring complex data structures, however,

the standard classification and regression trees (CART) paradigm is not designed

for handling clustered data. In this chapter, we extended CART to handle clustered

binary outcomes. Our approach was based on using residuals from a null general-

ized linear mixed model as the outcome. This circumvents modeling the correlation

structure explicitly while still accounting for the cluster-correlated design, thereby

allowing us to adopt the original CART machinery in tree growing, pruning and

cross-validation. Class predictions for the terminal nodes of our residual-based tree

were estimated based on success probabilities within each terminal node. We also

provide a natural and direct extension of our residual-based tree to random forest.

Through extensive simulation studies, we have shown that our residual-based

trees, especially the deviance residual-based tree, are more appropriate for analyz-

ing clustered binary data than the standard CART. The residual-based trees were

better adept in identifying the true structure in the data, and provided more accu-

rate predictions. The improvements over the standard CART are substantial when

the intra-cluster correlations are strong, given moderate cluster sizes. We also ap-

plied our residual-based approaches to studies of kidney cancer treatment receipt and

surgical mortality after colectomy, where the data exhibited cluster-correlated struc-

tures. In both studies, residual-based tree and forest identified clinically meaningful

subgroups. For the surgical mortality data, standard CART failed to split at all,
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further demonstrating the advantage of our residual-based approach. One caveat of

our approach is that when fitting the null generalized linear mixed models (GLMMs),

at least moderate cluster sizes are needed in order to correctly estimate the cluster-

specific effects. When the cluster sizes are small, the estimated random effects might

be biased which in turn could affect the performance of our residual-based trees. In

a sensitivity analysis, we also tried fititng the null GLMM using other algorithms

such as Laplace approximation or Gauss-Hermite quadrature. However, we did not

see significant improvements.

An R program implementing the residual-based tree algorithm is available.
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CHAPTER III

Reflecting the Orientation of Teeth in Random Effects
Models for Periodontal Outcomes

3.1 Introduction

Periodontal disease (PD) is a chronic inflammatory disorder that affects the gin-

giva, the supporting connective tissue and the alveolar bone, all of which anchor the

teeth in the jaws. PD is the most common cause of tooth loss in adults in the United

States, and moderate periodontal disease affects about half of the US population

[Eke et al., 2012]. Given the increased life expectancy of US adults, the prevalence

of periodontal disease may even increase in the future [Williams, 1990].

The diagnosis of periodontal disease involves the evaluation of gingival inflam-

mation and tooth attachment structure destruction. The clinical parameters most

commonly used in the diagnosis of PD are radiographically measured alveolar bone

level (BL), bleeding on probing (BOP), clinical attachment level (CAL) and pocket

depth (PKD). A tooth can be anatomically divided into the crown, which is covered

by enamel, and the root, which is covered by the cementum. The border where the

enamel meets the cementum is known as the cementoenamel junction (CEJ). Alveo-

lar bone surrounds and supports the root of the tooth. Any detachment of the gingiva

from the cementum forms a gap between the gum and the tooth, commonly referred

to as a periodontal pocket. PKD quantifies the depth of the pocket, while CAL
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quantifies the vertical distance from the CEJ to the bottom of the pocket. Figure

3.1 illustrates the clinical parameters and compares a normal tooth to a periodontally

diseased tooth [Arora et al., 2009].

Figure 3.1:
Diagram comparing clinical parameters in normal (left) and periodontally diseased
(right) tooth [Arora et al., 2009].

BOP, CAL and PKD are typically measured manually via a periodontal probe;

an examiner gently inserts the probe between the tooth and gingiva until slight resis-

tance is felt. BOP is the indicator of bleeding resulting from the probe, while CAL

and PKD are the corresponding distance read from the probe calibration, rounded to

the nearest whole millimeter. CAL reflects both destruction of periodontal ligament

and resorption of alveolar bone, and is considered as the “gold standard” for identi-

fying periodontitis. According to the American Academy of Periodontology, severity

of periodontitis has a site-specific, three-category definition based on the amount of

CAL and is designated as slight (1 − 2 mm), moderate (3 − 4 mm) or severe (≥ 5

mm) [Wiebe and Putnins, 2000].

During a full periodontal exam, BOP, CAL and PKD are measured around each

tooth at six sites: mesial-buccal (MB), buccal (B), distal-buccal (DB), distal-lingual
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(DL), lingual (L) and mesial-lingual (ML); see Figure 3.2. According to the Amer-

ican Dental Association, we number the teeth from 1 to 32 using the Universal

Numbering System, with numbers 1-16 referring to the sixteen teeth in the upper

jaw (maxillary) and numbers 17-32 referring to the sixteen teeth in the lower jaw

(mandibular). Due to the natural symmetry of a mouth, we further divide teeth

equally into four quadrants of eight teeth each as shown in Figure 3.3. Based on

their different functionality, teeth are classified as incisors, cuspids, bicuspids and

molars. Since the third molars (also known as the “wisdom teeth”, teeth 1, 16, 17

and 32) are often removed in most adults, even when healthy, these teeth are usually

omitted from periodontal studies. Thus, BOP, CAL, and PKD can be measured at

a maximum of 168 sites, six from each of the 28 teeth.

Figure 3.2: Schematic of a single tooth and sites of clinical examination.

Numerous studies have been conducted to identify risk factors of periodontal

disease and to assess the effectiveness of treatments [Genco and Borgnakke, 2013].

Historically, statistical analysis in periodontal studies has been performed at the

site-level via standard methods such as t-tests or regression models. However, these

analyses assumed independence of sites and completely ignored the potential corre-
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Figure 3.3: Diagram of teeth including numbering and functional groupings.
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lations between sites. Alternatively, other analyses summarized the site-level mea-

surements to mouth-level averages, leading to inefficient results [Emrich, 1990]. Due

to the bias and inefficiency of these traditional approaches, conflicting conclusions

have been made between periodontal studies [Harrel and Nunn, 2001].

In the last decade, several advanced statistical methods have been introduced

to improve upon the weakness of traditional approaches. By treating periodontal

data with a three-level hierarchical structure for mouth, tooth and site, multilevel

models were introduced to model site-level measurements [Axtelius et al., 1999, Tu

et al., 2004, Müller, 2009, Wan et al., 2009]. In these multilevel models, random

effects were incorporated to account for the correlations within each level of the

data. However, functionality was not incorporated in these models. Generalized

estimating equations (GEE) with exchangeable working correlation structure were

employed to study tooth-level PKD and CAL, which were obtained by averaging

over all sites of each tooth [Harrel and Nunn, 2001]. Maitra [2012] first identified

regions of the mouth that were most susceptible to periodontal disease via GEE

by assuming the directions of the diseased teeth to follow a generalized von Mises

distribution. To account for the within-mouth spatial correlation of teeth and sites,

Reich et al. [2007] analyzed baseline site-level CAL data with a conditionally auto-

regressive (CAR) model. Reich and Hodges [2008] then extended the spatial model

to a nonstationary spatiotemporal model to study longitudinal CAL data. Most

recently, Reich et al. [2013] proposed a semi-parametric model to jointly model CAL

and the location of missing teeth via kernel convolution methods.

Multilevel models assume that clinical parameters at the same level are equally

correlated, i.e., all teeth within the same mouth are equally correlated and all sites

within the same tooth are equally correlated, and ignores the spatial proximity be-
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tween measurements. CAR models smooth only over adjacent neighbors, which

are based solely on their spatially-defined distance. However, several studies have

suggested that presence of periodontal disease is usually symmetric between the left

side and the right side of a mouth [Mombelli and Meier, 2001, Minaya-Sánchez et al.,

2010]. These authors also found that different functional types of teeth contributed

differently to periodontal outcomes. Dowsett et al. [2002] stressed that the mouth

exhibited symmetry among quadrants. Based on these findings, we have chosen to

model the complex within-mouth correlation of periodontal outcomes by exploring

the contributions of spatial proximity, the biological function of the teeth and the

natural symmetry of the mouth.

Furthermore, although the semi-parametric spatial model proposed by Reich et al.

[2013] could account for spatial proximity, biological function of the teeth as well as

the symmetry of the mouth, it requires complex computational effort that does not

exist in standard statistical packages. In this study, we propose to model periodontal

outcomes with linear mixed models that can be implemented in standard statistical

software packages. We will adjust for the complex within-mouth correlation by in-

corporating various random effects, and we will also compare our mixed models with

GEEs and t-test via simulations and an application on actual data. Finally we will

evaluate the performance of these approaches when data are missing under different

biologically plausible mechanisms.

3.2 Methods

To explain our methods, we will focus on tooth-level CAL, although our concepts

are applicable to PKD, BOP and BL as well. Tooth-level CAL is calculated as the

average of measured CAL on the six sites of a tooth. Although each measurement
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is a non-negative integer, we will treat the tooth-level average CAL as a continuous

variable.

A total of m subjects are enrolled in the study, and for subject i, we observe a

vector of ni × 1 outcomes Y i = (Yi1, ..., Yini
)′, where Yij is the CAL of tooth j. In

periodontal studies, a healthy person has a maximum of 28 teeth, thus ni ≤ 28.

The teeth are numbered as in Figure 3.3. We assume that Y i has a multivariate

normal distribution, i.e., Y i | ωi,β ∼ N [X iβ,Σ(ωi)], where X i is a ni × p matrix

of covariates and β is a p× 1 vector of coefficients. Σ is a ni × ni covariance matrix

depending on parameters ωi, which reflects the within-mouth correlation structure.

We further assume that teeth from different subjects are independent, i.e., Y i⊥Y k.

3.2.1 Introduction to Generalized Estimating Equations

Introduced by Liang and Zeger [1986], generalized estimating equations (GEE)

is used to model correlated data and produces a moment based estimator. Unlike

linear mixed models (described next), GEE does not require explicit assumptions

on the joint distribution of Y i and the correlation structures Σ(ωi). Instead, GEE

assumes that the marginal mean and variance of the outcomes are E(Yij) = µij,

Var(Yij) = φa−1ij v(µij), and the mean model is g(µij) = X
′

ijβ (g(.) is the link function

and g(µij) = µij for normal outcomes). Estimation of β is obtained via numerically

solving the equation
m∑
i=1

D
′

iV
−1
i (Y i − µi) = 0,

where Di = ∂µi/∂β
′
, and V i is the working covariance matrix. The working covari-

ance matrix V i = V
1/2
Mi
Ri(α)V

1/2
Mi

, where V Mi
= diag{φa−1ij v(µij)} is the marginal

variance and Ri(α) is a working correlation matrix, where α is the correlation pa-

rameter. Common choices of Ri(α) include independence, which assumes that all
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teeth are independent; exchangeable, which assumes that all pairs of teeth have the

same correlation; and autoregressive(1), which assumes that the correlation between

two teeth decreases as their distance (measured by teeth number) increases.

The advantage of GEE is that the estimated β̂ is consistent given that the mean

model is correctly specified, even if the correlation matrix Ri(α) is misspecified.

However, if Ri(α) is correctly specified, the estimation β̂ is efficient within the linear

estimating function family [Lipsitz et al., 1994]. Due to the complex within-mouth

correlation, the assumption of any of the standard correlation structures seems un-

reasonable for periodontal data, while use of an unstructured form for Ri(α) will

require estimation of too many parameters, motivating the use of a linear mixed

effects model.

3.2.2 Linear Mixed Effects Models

A linear mixed effect (LME) model is a linear model that contains both fixed

and random effects, which provides a flexible framework for modeling correlated

data [Henderson, 1950, Laird and Ware, 1982]. Following the notation introduced in

Section 3.2.1, an LME model is written as

Y i = X iβ +Zibi + εi,

where bi ∼ Nq(0,D) and εi ∼ Nni
(0,Ri). HereX i is the ni×p matrix of fixed effects

covariates, Zi is the ni × q matrix of random effects covariates, bi = (bi1, ..., biq)
′ is

the q × 1 unknown vector of random effects for subject i, and εi = (εi1, ..., εini
)′

is the ni × 1 vector of errors. The covariance matrix of bi is D while Ri is the

covariance matrix of εi. An LME model usually assumes that the random effects bi

are independent of the errors εi. Therefore, the covariance matrix of the responses

Y i of subject i is Σ(ωi) = ZiDZ
′
i +Ri.
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The parameters in a LME model can be estimated by the maximum likelihood

(ML) method implemented with the expectation-maximization (EM) algorithm [Laird

and Ware, 1982]. The EM algorithm treats the maximization of the likelihood as a

missing data problem, where the Y i are the observed data and bi are the missing

data. Therefore, the full data are (Y i,X i,Zi, bi) with parameters β, D and Ri.

This algorithm calculates the expected values of the missing values bi, given the cur-

rent observed data and estimated parameter values (the expectation step), and then

uses the expected values to update the estimates of the parameters β̂, D̂ and R̂i

(the maximization step). These two steps are repeated until convergence to achieve

valid estimates.

3.2.3 Functional and Spatial Modeling

The correlations among multiple teeth of a subject are not only related to the

biological proximity of the teeth, but also to their functionalities. In order to properly

account for this complex within-mouth correlation, we propose two linear mixed effect

(LME) models to model periodontal data.

In the first model, we model the within-mouth variation between the maxillary and

mandibular arches with random effects. The functional variation between different

types of teeth (molar, bicuspid, cuspid and incisor) are also represented by random

effects. In addition, we constrain the 28 teeth to be uniformly distributed around a

unit-radius circle and model the spatial correlation as a circular effect. Thus, we can

write our LME model as:

(3.1) Yij = X ijβ +
2∑

k=1

Ukijaki +
4∑

l=1

Zlijbli + εij,

where U1ij = I(j ≤ 15), U2ij = I(j ≥ 18), Z1ij = I(tooth j is a molar), Z2ij

= I(tooth j is a bicuspid), Z3ij = I(tooth j is a cuspid), Z4ij = I(tooth j is an
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incisor). The random effects are mutually independent and are marginally distributed

as aki ∼ N (0, γk) and bli ∼ N (0, τl). The variance parameter γ1 represents the

maxillar variation while γ2 represents the mandibular variation. Functional variation

is reflected by τl, l = 1, ..., 4, where τ1 represents molars, τ2 represents bicuspids, τ3

represents cuspids and τ4 represents incisors. The vector of errors εi = (εi1, ..., εini
)′

follows a multivariate normal distribution with mean 0, variance Var(εij) = σ2 and

correlations Corr(εij, εij′) = exp{−d2jj′/θ}. Here d2jj′ is the distance between tooth j

and j′ on the unit-radius circle and is calculated as

d2jj′ = {[cos(Aj)− cos(Aj′)]
2 + [sin(Aj)− sin(Aj′)]

2},

where Aj is the angle of tooth j in the polar coordinate system (i.e., A2 = 0.295 and

A31 = −0.295). The variance parameter θ describes the spatial correlation and σ2 is

the residual variation.

3.2.4 Quadrant and Spatial Modeling

In the second model, we consider the natural symmetry of a mouth and divide it

into four correlated quadrants, as is often done in clinical practice and research. The

correlated quadrant effects are modeled with random effects. Similar to the model

presented in Section 3.2.3, we utilize the polar coordinate distances to measure the

spatial correlations. In addition, we introduce greater heterogeneity among teeth by

allowing the residual variation to differ among the different types of teeth, rather

than by function. Therefore, the LME can be written as:

(3.2) Yij = X ijβ +
4∑

k=1

Ukijaki + εij,

where U1ij = I(j ≤ 15), U2ij = I(j ≥ 18), U3ij = I(9 ≤ j ≤ 24), U4ij = I(j ≤

8 or j ≥ 25). The random effects (a1ij, ..., a4ij)
′ follow a multivariate normal dis-

tribution centered at zero with a compound symmetry covariance matrix such that
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Var(aki) = τ, k = 1, ..., 4 and Cov(aki, ak′i) = φ for k 6= k′. The variance parameters

τ and φ describe the correlation among quadrants.

The vector of errors εi = (εi1, ..., εini
)′ follows a multivariate normal distribu-

tion with mean 0, and variance Var(εij) = σ2(
∑7

l=1 Zlijρl), where Z1ij = I(j ∈

{8, 9, 24, 25}), Z2ij = I(j ∈ {7, 10, 23, 26}), Z3ij = I(j ∈ {6, 11, 22, 27}), Z4ij =

I(j ∈ {5, 12, 21, 28}), Z5ij = I(j ∈ {4, 13, 20, 29}), Z6ij = I(j ∈ {3, 14, 19, 30}),

Z7ij = I(j ∈ {2, 15, 18, 31}). By doing so, we place the teeth into seven categories.

Type 7 teeth (Teeth 2, 15, 18 and 31) are chosen as the reference and hence ρ7 is

constrained to be 1. Parameters ρ1, .., ρ6 reflect the variation of other types of teeth

relative to Type 7 teeth. The variance parameter σ2 is the residual variation of Type

7 teeth. The correlations Corr(εij, εij′) = exp{−d2jj′/θ} are defined in the same way

as they were in Section 3.2.3.

To better understand the difference between the functional and spatial LME (3.1)

and the quadrant and spatial (3.2), in Table 3.1 we present a direct comparison of

the covariance parameters of these two models.

Table 3.1:
Comparison of covariance parameters between the functional and spatial LME (3.1) and
the quadrant and spatial LME (3.2).

Functional and Spatial LME (3.1) Quadrant and Spatial LME (3.2)
Maxillar Mandibular Maxillar Mandibular

Left Right Left Right Left Right Left Right
Tooth Number Tooth Number

9 8 24 25
τ4

9 8 24 25 ρ1
10 7 23 26 10 7 23 26 ρ2
11 6 22 27 τ3 11 6 22 27 ρ3
12 5 21 28

τ2
12 5 21 28 ρ4

13 4 20 29 13 4 20 29 ρ5
14 3 19 30

τ1
14 3 19 30 ρ6

15 2 18 31 15 2 18 31 1
γ1 γ2 a1 a2

a3 a4 a3 a4
These six random effects
are mutually independent

V ar(ak) = τ
Cov(ak, ak′) = φ
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3.2.5 Selecting Between Linear Mixed Effects Models

Given the two linear mixed effects models in Section 3.2.3 and 3.2.4, we want

to choose which model best fits a given set of data. We are especially interested

in choosing a parsimonious covariance matrix that produces the LME model with

meaningful interpretations and efficient estimations. Many methods exist for model

selection with LME models, and we will focus on two types: (1) information based

on likelihood, specifically Akaike’s information criterion (AIC) [Akaike, 1998] and

Bayesian information criterion (BIC) [Schwarz, 1978]; and (2) the geodesic distance

proposed by Carey and Wang [2011].

AIC attempts to prevent overparameterization of a model by penalizing the log-

likelihood for the number of parameters used in the model. Although two types of

maximum likelihood exist for LME models (maximum likelihood (ML) and restricted

maximum likelihood (REML)), we will use REML to derive the AIC since our esti-

mates are based on REML and our candidate models have the same mean structure.

If we let lR be the natural logarithm of the restricted likelihood of a LME model, its

AIC is defined as AIC = −2lR + 2(p+ q), where p denotes the number of fixed effect

parameters and q denotes the number of variance parameters. Several methods have

been proposed for treating fixed and random effects parameters differently [Müller

et al., 2013], but we will avoid these differences by treating the variance parameters

in the same way as the fixed effect parameters.

The simplest and most widely used BIC for LME models is BIC = −2lR +

log(n)(p + q), where n is the sample size. Here n is chosen as the total number

of teeth over all subjects, i.e., n =
∑m

i=1 ni. Models with smaller values of AIC and

BIC are preferred to larger values. When the sample size is large (log(n) > 2), BIC

tends to select more parsimonious models by putting higher penalty on the number
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of parameters.

Carey and Wang [2011] derived a geodesic distance that quantifies the discrep-

ancy between the working covariance and the empirical covariance, and allows for

selection of the working covariance models for GEE. Inspired by their approach, we

propose to choose the LME model whose model-based covariance is closest to the

true covariance. We evaluate the discrepancy between the model-based covariance

and the empirical covariance using the following statistics:

Q0 =
m∑
i=1

X ′iΣ
−1(ω̂i)X i,

Q1 =
m∑
i=1

X ′iΣ
−1(ω̂i)eie

′
iΣ
−1(ω̂i)X i,

where Σ(ω̂i) = ZiD̂Z
′
i+R̂i is the estimated covariance matrix from the LME model,

and ei = Y i − Ŷ i = Y i −X iβ̂ is the vector of residuals.

If we let ck be the eigenvalues of Q−10 Q1, Rotnitzky and Jewell [1990] proved

that all elements of ck = 1 whenever the model-based covariance and the true

covariance coincide. Following this fact, we consider the following criteria: (i)

∆1 =
∑p

k=1 (ck − 1)2/p; and (ii) ∆2 =
∑p

k=1 (log(ck))2. These two criteria should be

close to zero when model-based covariance approximates the true covariance, which

indicates that the LME model has properly accounted for the within-mouth correla-

tion.

3.3 Simulation Studies

Our simulations are motivated by a clinical trial described in Ramseier et al. [2009]

and Kinney et al. [2011], and a subset of data from this clinical trial are analyzed in

Section 3.4. We apply the two proposed LME models, GEE with an exchangeable

working correlation structure, GEE with AR-1 structure and a t-test using mouth-
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level averages to the simulated data. We are primarily interested in comparing the

efficiency of the fixed effect estimators from these different approaches. We also

study the performance of the model selection criteria described in Section 3.2.5.

Both complete data and data with missing outcomes are considered.

3.3.1 Complete Cases

We have 100 independent subjects, and every subject has 28 teeth. The only

covariate considered is a subject-level indicator of periodontal disease, and we assume

that diseased subjects have 1mm more CAL, on average, than healthy subjects.

There are 50 subjects each in the diseased group and the healthy group. For all

scenarios, we generate tooth-level CAL from a multivariate normal distribution, with

mean equal to 2mm for the healthy group and 3mm for the diseased group, i.e., β0 = 2

and β1 = 1. In scenario 1, the covariance matrix, Σ, is chosen as the (unstructured)

empirical within-mouth covariance of the baseline CAL in the motivating data set.

For scenario 2, Σ is based upon the functional and spatial mixed model (LME (3.1))

described in Section 3.2.3. The variance parameters are chosen as γ1 = 0.7907,

γ2 = 0.4702, τ1 = 0.4830, τ2 = 0.0025, τ3 = 0.0991, τ4 = 0.1288, θ = 0.3473 and

σ2 = 0.6725. For scenario 3, Σ is based upon the quadrant and spatial mixed model

(LME (3.2)) described in Section 3.2.4, with τ = 0.1777, φ = 0.1600, ρ1 = 0.8128,

ρ2 = 0.7570, ρ3 = 0.8214, ρ4 = 0.7233, ρ5 = 0.7680, ρ6 = 0.9836, σ2 = 1.1569 and

θ = 0.3536. The chosen variance parameter values in scenarios 2 and 3 are based on

the motivating data set as well. One thousand simulations are performed for each

scenario.

We are primarily interested in comparing the efficiency of the fixed effect estimator

β̂1 among the different modeling approaches. We summarize the 1, 000 simulations

by using (a) the empirical mean of β̂1 and (b) the empirical standard deviation (S.D.)
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of β̂1. We then compare (a) to the true value β1 = 1 and (b) to the mean of the

model-based standard error (S.E.) or the robust S.E. To evaluate the performance

of the model selection criteria, for each LME model, we compute the median values

of AIC, BIC, ∆1 and ∆2, as well as the frequency each model is selected by each

criterion. The results from the three simulation scenarios are presented in Table 3.2.

Across all three simulation scenarios, the empirical mean of β̂1 from all five meth-

ods is very close to the true value 1, which suggests that these methods are all

unbiased when we have complete data. GEE with exchangeable correlation struc-

ture is identical to the t-test, which is due to the balanced design. The empirical

S.D.’s resulting from both LME models are always smaller than the empirical S.D.’s

from both GEEs and the t-test, which indicates that our LME models have improved

the efficiency of estimates by properly modeling the complex within-mouth correla-

tion. Under scenarios 2 and 3, the corresponding LME model used for generating

the data gives the smallest empirical S.D. For GEE with exchangeable correlation

structure, the empirical S.D., the model-based S.E., and the robust S.E. are simi-

lar, which suggests that the empirical correlation of the simulated data is close to

exchangeable.

As to the model selection criteria, we notice that both AIC and BIC are able

to identify the true LME model used for generating data under scenarios 2 and

3. However, information criteria do not guarantee selecting the model with higher

efficiency, as illustrated in scenario 1, where LME (3.2) is selected while LME (3.1)

has a smaller empirical S.D.

It is worth noticing that for LME (3.1), the model-based S.E. underestimates

the empirical S.D. under scenarios 1 and 3, which indicates that LME (3.1) does not

model the true covariance structure correctly in these situations. In the contrast, the
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Table 3.2:
Summary of estimated β̂1 over 1, 000 simulations when data are generated from the
empirical distribution under scenario 1, the functional and spatial mixed model (LME
(3.1)) under scenario 2 and the quadrant and spatial mixed model (LME (3.2)) under
scenario 3 (S.F.=Selection Frequency, ∗ are based on 100 simulations.)

Scenario GEE:Exch GEE:AR-1 t-test LME (3.1) LME (3.2)

1

Mean β̂1 1.0091 1.0063 1.0091 1.0083 1.0092
Empirical S.D. 0.1782 0.1802 0.1782 0.1725 0.1761

Model-based S.E. 0.1673 0.1654 0.1182 0.1670
Robust S.E. 0.1673 0.1686

AIC
(S.F.)

6521.23
(0)

6366.81
(1000)

BIC
(S.F.)

6580.60
(0)

6438.05
(1000)

∆1

(S.F.)
0.25∗ 0.16∗

1.55
(0)

0.02
(1000)

∆2

(S.F.)
0.17∗ 0.23∗

0.78
(0)

0.02
(1000)

2

Mean β̂1 1.0070 1.0081 1.0070 1.0047 1.0065
Empirical S.D. 0.1405 0.1515 0.1405 0.1331 0.1390

Model-based S.E. 0.1325 0.1269 0.1263 0.1317
Robust S.E. 0.1325 0.1428

AIC
(S.F.)

6449.42
(1000)

6761.07
(0)

BIC
(S.F.)

6508.78
(1000)

6832.31
(0)

∆1

(S.F.)
0.53∗ 0.46∗

0.04
(268)

0.02
(732)

∆2

(S.F.)
0.32∗ 0.87∗

0.04
(279)

0.02
(721)

3

Mean β̂1 1.0099 1.0082 1.0099 1.0096 1.0098
Empirical S.D. 0.1809 0.1925 0.1809 0.1807 0.1799

Model-based S.E. 0.1722 0.1680 0.1287 0.1732
Robust S.E. 0.1722 0.1864

AIC
(S.F.)

6690.01
(0)

6518.59
(1000)

BIC
(S.F.)

6749.37
(0)

6589.83
(1000)

∆1

(S.F.)
0.53∗ 0.11∗

1.33
(0)

0.02
(1000)

∆2

(S.F.)
0.34∗ 0.15∗

0.69
(0)

0.02
(1000)
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model-based S.E. is close to the empirical S.D. for LME (3.2) across all three scenar-

ios. Through additional simulations (not shown), we find that this is because LME

(3.2) allows for quadrant-level correlations, while LME (3.1) restricts the maxillary

and the mandibular arches to be uncorrelated. While simulating from LME (3.1),

even though the true quadrant-level correlation is zero between Quadrants I and III,

I and VI, II and III, II and IV, the fitted LME (3.2) is able to approximate the true

correlations well through the covariance parameters τ and φ. On the other hand,

while simulating from LME (3.2), in which the true correlations between all pairs

of quadrants are non-zero, the fitted LME (3.1) forces a zero correlation between

Quadrants I and III, I and VI, II and III, II and IV, which leads to a model-based

covariance that deviates from the truth.

Unlike the GEEs, the LME models require correct modeling of the covariance

structure to obtain valid estimation; otherwise, the model-based S.E. might under-

estimate the true variability [Ga lecki and Burzykowski, 2013]. Through our simula-

tions, we find that the geodesic distance statistics ∆1 and ∆2 serve as good criteria

for identifying the LME model that has modeled the true covariance appropriately;

the values of ∆1 and ∆2 are near zero when the LME model-based S.E. is similar to

the empirical S.D. However, smaller ∆1 and ∆2 are not necessarily associated with

a more efficient LME model, as illustrated by scenario 2, where LME (3.1) has a

smaller empirical S.D. and LME (3.2) is more frequently preferred by these geodesic

distance statistics.

We also calculated the median geodesic distance of the two GEEs over the first

100 simulations. It is interesting to notice that under scenarios 1 and 3, the ∆s of

GEEs are between the ∆s of LME (3.2) and LME (3.1); Under scenario 2, GEEs

have larger ∆s than the two LME models. This matches our previous finding that
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higher ∆s are related to more bias in the model-based S.E.

Based on these simulations, we conclude that when data are complete, estimates

from the proposed LME models, the GEEs and the t-test are all unbiased. The

proposed LME models could moderately improve the efficiency of the estimates.

The LME model with smaller values in information criteria, ∆1 and ∆2 should be

selected for making inference.

3.3.2 With Missing Data

We simulate data under different missing mechanisms and examine the effect of

missingness on the above mentioned methods. The tooth-level CALs are generated

from the empirical multivariate normal distribution, as described in scenario 1 of

Section 3.3.1. We then impose missing CAL according to three different biologically

plausible mechanisms: (1) when missingness depends on the covariates but not on

the outcomes, i.e., covariate-dependent missingness (CDM); (2) when missingness

only depends on the observed outcomes, i.e., missing at random (MAR); (3) when

missingness depends on both observed and unobserved outcomes, i.e., missing not at

random (MNAR).

We assume that around 5.5% of teeth are missing, which is the percentage of

missing teeth at baseline in the motivating data set. When simulating under CDM,

we assume that diseased subjects have more missing teeth than healthy subjects.

We generate binary missing indicators with probability 0.093 for the diseased group,

and with probability 0.017 for the healthy group, thus the missingness depends on

the observed covariate (disease group) only. When simulating under MAR, we as-

sume that for each subject, the first tooth (Tooth 1) is always observed. A missing

indicator for Tooth 2 depends on the CAL value of Tooth 1 via a logistic model, i.e.,

logit(P(Tooth 2 is missing|Tooth 1 CAL)) = −8.935 + 1.721× (Tooth 1 CAL). Sim-
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ilarly, for every following tooth, the probability of missingness depends on the CAL

value of the closest existing tooth via the same logistic model. The coefficient values

in the logistic model are chosen such that the missing probabilities match with CDM.

When simulating under MNAR, we set any teeth with CAL values larger than 4.5mm

to be missing. As a result, the missingness depends on both observed and unobserved

outcomes. Here we have chosen 4.5mm as the cutoff so that around 5.5% of teeth

are removed, which is consistent with the two previous situations. Furthermore, as

mentioned in Section 3.1, 5mm is the cutoff for classifying severe periodontitis, and

such teeth are usually extracted by the dentist.

The simulations are repeated 1, 000 times under each missing mechanism; we

display the summary statistics in Table 3.3.

Based on the simulations, we find that with a moderate missing percentage, CDM

does not impact the performances of the GEEs, the t-test and the LME models, as

their estimates are still unbiased and the empirical S.D.’s remain roughly the same as

with complete data. The LME models are still more efficient than their competitors,

and the model selection criteria work as before. When data are MAR, the estimates

from the LME models are unbiased while the estimates from the GEEs and the t-test

are biased. LME (3.1) is the most efficient method as it has the smallest empirical

S.D. When data are MNAR, all five methods suffer from biased estimates and loss

of efficiency, although the bias in the LME models is less severe than the GEEs and

the t-test. LME (3.1) is still the most efficient among these methods.

3.4 Application to Michigan Periodontal Study

We applied our LME models and the competing approaches to the data motivating

our simulations. This non-randomized longitudinal observational study, conducted
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Table 3.3:
Summary of estimated β̂1 over 1, 000 simulations when data are generated from the
empirical distribution under CDM, MAR or MNAR. (S.F.=Selection Frequency.)

GEE:Exch GEE:AR-1 t-test LME (3.1) LME (3.2)

CDM

Mean β̂1 1.0049 1.0062 1.0049 1.0056 1.0051
Empirical S.D. 0.1792 0.1831 0.1792 0.1731 0.1767

Model-based S.E. 0.1676 0.1657 0.1187 0.1674
Robust S.E. 0.1676 0.1691

AIC
(S.F.)

6214.56
(2)

6057.78
(998)

BIC
(S.F.)

6273.31
(3)

6128.38
(997)

∆1

(S.F.)
1.53
(0)

0.02
(1000)

∆2

(S.F.)
0.77
(0)

0.02
(1000)

MAR

Mean β̂1 0.9790 1.0118 0.9847 0.9916 0.9974
Empirical S.D. 0.1671 0.1762 0.1681 0.1649 0.1689

Model-based S.E. 0.1570 0.1557 0.1180 0.1669
Robust S.E. 0.1638 0.1696

AIC
(S.F.)

6162.32
(0)

6013.86
(1000)

BIC
(S.F.)

6221.03
(0)

6084.33
(1000)

∆1

(S.F.)
1.50
(0)

0.02
(1000)

∆2

(S.F.)
0.76
(0)

0.02
(1000)

MNAR

Mean β̂1 0.8843 0.8930 0.8889 0.9005 0.9042
Empirical S.D. 0.1536 0.1569 0.1540 0.1516 0.1550

Model-based S.E. 0.1455 0.1431 0.1073 0.1509
Robust S.E. 0.1480 0.1502

AIC
(S.F.)

5914.97
(0)

5774.89
(1000)

BIC
(S.F.)

5973.80
(0)

5845.42
(1000)

∆1

(S.F.)
1.59
(0)

0.04
(1000)

∆2

(S.F.)
0.78
(0)

0.04
(1000)
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at the Michigan Center for Oral Health Research, involved 50 periodontally healthy

and 50 periodontally diseased subjects. Periodontal exams were given to the subjects

periodically at the baseline, six and twelve months after enrollment. We were in-

terested in estimating the difference in CAL between the periodontally diseased and

healthy group at the baseline, and comparing the estimates from our LME models

to other methods.

A total of 2, 646 teeth were observed at the baseline, which suggested a 5.5% rate

of missing. On average, healthy subjects lost 1.7% of their teeth while periodontally

diseased subjects lost 9.3%. The histogram plot suggested that tooth-level CAL was

not normally distributed, but positively skewed. Although a transformation could

fix the skewness, it would hamper the interpretation of the estimates. In addition,

Jacqmin-Gadda et al. [2007] has shown that linear mixed model is robust to a non-

normal error distribution. Therefore, we decided to analyze the tooth-level CAL

data without transformation.

The results were presented in Table 3.4. The estimated mean CAL of periodontally

diseased subjects was 1.6439mm larger than the healthy subjects by the functional

and spatial LME (3.1), and it was 1.7546mm by the quadrant and spatial LME (3.2).

Both LME estimates, which were more robust to missing data, were smaller than the

estimates of the GEEs and the t-test. Comparing the two LME models, both AIC

and BIC preferred LME (3.1), which had the smallest model-based S.E. across all five

methods. However, since the geodesic distance statistics were larger for LME (3.1),

which indicated that its model-based S.E. might have underestimated the truth,

it was more proper to make inference using LME (3.2), which also had a smaller

model-based S.E. than the robust S.E. of the GEEs and the t-test. Therefore, our

LME models have improved the efficiency of the estimate, although the improvement
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was minor in this application. It is worth noticing that for GEEs, the model-based

S.E. was different from the robust S.E., which indicated that the true within-mouth

correlation in this actual data set was more complex than exchangeable or AR-1.

Table 3.4: Analysis results of Michigan Center for Oral Health Research Data.
GEE: Exch GEE: AR-1 t-test LME (3.1) LME (3.2)

Estimated Difference 1.8252 2.1135 1.8273 1.6439 1.7546
Model-based S.E. 0.1674 0.1751 0.1828 0.1271 0.1798

Robust S.E. 0.1805 0.1869 0.1726 0.1781
AIC 6154.86 6180.49
BIC 6213.66 6251.05
∆1 4.23 0.81
∆2 1.41 1.37

Covariance
Parameters

γ̂1 0.7907 τ̂ 0.1777

γ̂2 0.4702 φ̂ 0.1777
τ̂1 0.4830 ρ̂1 0.8128
τ̂2 0.0000 ρ̂2 0.7570
τ̂3 0.0991 ρ̂3 0.8214
τ̂4 0.1288 ρ̂4 0.7233

θ̂ 0.3473 ρ̂5 0.7680

σ̂2 0.6725 ρ̂6 0.9836

θ̂ 0.3536

σ̂2 1.1569

3.5 Discussion

Periodontal disease is prevalent in the United States. The relatively small signal-

to-noise ratio in periodontal outcomes has raised the request for proper statistical

methods. In this chapter, we have proposed to model tooth-level periodontal out-

comes using two linear mixed effects models, which could account for the complex

within-mouth correlation and provide better estimates. Via simulations, we have

shown that our mixed models are more robust to missing data (unbiased provided

that data is not MNAR), and more efficient than traditional methods such as GEE

and t-test in periodontal analysis. We have also suggested model selection criteria

for choosing the LME model that better fits the data. The proposed LME mod-

els and the selection criteria can be conveniently implemented in standard software
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packages, which makes them readily accessible to dentists.

One disadvantage of the geodesic distance based selection criteria is that they

do not formally test how well the LME models approximate the true data-based

covariance. Incorporating more random effects into a LME model could better ap-

proximate the data-based within-mouth correlation. However, over-parameterized

models face the risk of overfitting, and the complex null distributions in hypothesis

testing random effects make it impractical to extensively test all random effects one

by one. It is therefore beneficial to derive a statistical test based on the geodesic

distance that can identify whether the LME model has adequately approximated the

true within-mouth correlation. We will explore this idea in the next chapter.

Longitudinal data are common in periodontal studies, where the repeated mea-

surements over time are usually correlated. In order to efficiently analyze longitudinal

periodontal outcomes, it is crucial to generalize our LME models to account for the

temporal correlation as well.

Finally, periodontal disease is a leading cause of tooth loss, and teeth with larger

periodontal outcomes have a higher chance of being removed. Therefore, informative

missing, i.e., MNAR is inevitable in periodontal studies. Through the simulations,

we have seen that our LME models are biased and less efficient when data are MNAR.

Joint modeling of missing teeth and periodontal outcomes rises as an interesting and

rewarding direction for future studies.
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CHAPTER IV

Permutation Tests for Covariance Structure Assumption in
Linear Mixed Effects Models

4.1 Introduction

Correlated data is abundant in biomedical studies. For example, in longitudinal

or repeated measures data, outcomes for subjects are collected repeatedly over time,

and thereby are typically correlated within-subject through sharing subject-specific

characteristics. In multilevel or clustered data, observations within the same level or

cluster are generally more similar to each other than observations from different clus-

ters, which induces within-level or within-cluster correlations. Linear mixed effects

(LME) models are a rich family of models containing both fixed and random effects,

which are widely adopted in modeling correlated data [Laird and Ware, 1982]. The

random effects and residual errors in LME models create a flexible class of covari-

ance structures that allows us to account for and take advantage of the structured

patterns in the correlated data.

In applying LME models, it is important to appropriately model the true co-

variance structure in order to obtain efficient standard errors and valid statistical

inference for fixed effect parameters. Lange and Laird [1989] demonstrated that, in

general, variance of fixed effects estimates and random effects may be biased when

the covariance structure is not correct. Taylor and Law [1998] showed that individual
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predictions are affected by misspecified covariance structures. Although the “sand-

wich” estimator recommended by Liang and Zeger [1986] brought in robustness to

misspecified covariance, the sandwich estimator is less efficient than the estimator

using the correct covariance model. Valid inference with the sandwich estimator also

requires additional assumptions about the missing data, and the sandwich estima-

tor has not been fully evaluated in small samples [Verbeke and Molenberghs, 2009].

Therefore, it is still desirable to accurately model the true covariance structure when

fitting LME models.

Despite the importance of appropriately modeling the true covariance structure

in LME models, the diagnostic methodology for evaluating the covariance structure

assumption remains relatively underdeveloped. Houseman et al. [2004] and Jacqmin-

Gadda et al. [2007] proposed drawing quantile-quantile (Q-Q) plots of Cholesky

residuals to graphically examine the goodness of fit in LME models. The former

paper also established the asymptotic properties of the Cholesky residuals. Verbeke

and Molenberghs [2009] suggested an informal check for the appropriateness of the

selected random effects by comparing the fitted covariance function based on an

LME model to the smoothed sample covariance function of the marginal residuals.

However, these two approaches do not provide any formal statistical inferences.

An alternative solution is to successively test for the inclusion or exclusion of all

possible random effects; i.e., testing variance components against 0. However, it

is challenging to test for random effects because the variance component is equal

to 0 under the null hypothesis, which is on the boundary of the parameter space.

As a result, the asymptotic null distribution of the Wald, score, and likelihood ra-

tio tests no longer follow the typical χ2 distributions, but often follow mixture of

χ2 distributions [Stram and Lee, 1994, Verbeke and Molenberghs, 2003, Silvapulle,
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1992]. In addition, when testing for multiple variance components simultaneously,

it is especially difficult to determine the mixture weights. Other approaches include

the random effect selection methods proposed by Chen and Dunson [2003] and Kin-

ney and Dunson [2007]. These authors proposed the use of a Bayesian stochastic

search to identify nonzero random effect variances in LME models. However, these

approaches are computationally expensive and do not currently exist in standard

statistical packages.

Permutation tests provide a viable alternative to the aforementioned methods. A

permutation test determines the null distribution of the test statistic through per-

mutations of the data and circumvents the difficulties with explicitly deriving an

asymptotic distribution. For LME models, Fitzmaurice et al. [2007] first introduced

using permutation tests for the inclusion of a single random effect in multilevel mod-

els. Lee and Braun [2012] proposed two permutation tests, one based on the best

linear unbiased predictors and one based on the restricted likelihood ratios test statis-

tic, for testing single or multiple random effects. Drikvandi et al. [2013] proposed

testing for multiple random effects, by defining a test statistic based on the variance

least square estimator of variance components, and applied a permutation procedure

to approximate its null distribution. However, these permutation tests were limited

to the testing of inclusion or exclusion of specific random effects, rather than the

overall fit of the assumed covariance structure. Finally, it is worth mentioning that

Schmoyer [1994] proposed using permutations of the regression residuals to test for

correlation in errors of ordinary linear models.

Our method integrates the informal check suggested in Verbeke and Molenberghs

[2009] and the permutation procedures introduced in Lee and Braun [2012], and it

leads to three permutation tests that allow for inference on the overall covariance
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structure assumption of LME models. All three test statistics are defined as different

metrics that quantify the discrepancy between the fitted covariance matrix based on

the LME model and the smoothed sample covariance matrix of the marginal resid-

uals; the empirical null distributions are generated by permutations of the Cholesky

residuals. Via simulations, we demonstrate that two of our tests have valid size and

sufficient power under different covariance structure assumptions.

The rest of this chapter is organized as follows. In Section 4.2, we review some

background of LME models and introduce our permutation tests on covariance struc-

tures. Section 4.3 presents simulation studies designed to evaluate the validity and

powers of our proposed tests for different components of covariance structures. We

illustrate our methods in Section 4.4 using data from a periodontal disease study.

Section 4.5 contains some concluding remarks.

4.2 Methods

4.2.1 Linear Mixed Effects Models

Consider a repeated measures scenario in which Yij is the jth measurement of

subject i for i = 1, 2, ...,m and j = 1, 2, ..., ni. Then vector Y i = {Yi1, ..., Yini
}′

represents all ni outcomes of subject i. An LME model can be expressed as

(4.1) Y i = X iβ +Zibi + εi,

where β = {β1, ..., βp}′ is a p × 1 vector of population level fixed effect coefficients,

bi = {bi1, ..., biq}′ is the q × 1 vector of random effect coefficients for subject i, and

εi = {εi1, ..., εini
}′ is the ni × 1 vector of random errors of subject i. The ni × p

matrix X i contains fixed effect covariates, and Zi is the ni × q matrix of random

effect covariates, respectively, for the ith subject. Generally, all elements of the first

column of X i and Zi are equal to 1 to represent the fixed and random intercept,
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respectively.

For an LME model, it is commonly assumed that the random effects bi follow a

multivariate normal distribution with mean 0 and covariance matrix D; i.e., bi ∼

Nq(0,D); and the random errors εi follow a multivariate normal distribution with

mean 0 and covariance matrix Ri; i.e., εi ∼ Nni
(0,Ri). The covariance matrix

Ri is usually assumed to be diagonal. However, in cases when the variability in

observations cannot be completely modeled by the random effects, we also introduce

correlated random errors via non-diagonal Ri to allow for more flexible covariance

structures. Finally, random effects bi and random errors εi are usually assumed to

be independent.

To simplify our notation, we combine data over all m subjects by stacking vectors

Y i, bi, εi, and matrices X i, Zi, Ri respectively, and re-write our LME model as

Y = Xβ+Zb+ ε. The formulation of this LME model implies an assumption that

the covariance matrix of the outcomes Y , var(Y ), is identical to the model-based

covariance structure W = ZTDZ +R.

Estimation of parameters β, D and R is typically done through maximum likeli-

hood (ML) or restricted maximum likelihood (REML), and the subject-specific ran-

dom effects b can be predicted using the best linear unbiased predictions (BLUPs).

Verbeke and Molenberghs [2009] provides a comprehensive discussion of these topics.

According to Henderson [1950], the estimate of β, β̂ and the prediction of b, b̃, can

be obtained analytically as solutions to the following mixed model equations:

XTR−1Xβ̂ +XTR−1Zb̃ = XTR−1Y ,

ZTR−1Xβ̂ + (ZTR−1Z +D−1)b̃ = ZTR−1Y ,

(4.2)
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which lead to

β̂ = (XTŴ
−1
X)−1XTŴ

−1
Y ,

b̃ = D̂ZŴ
−1
ê,

(4.3)

where ê = Y − Xβ̂ are the marginal residuals from the fitted LME model, and

Ŵ = ZTD̂Z + R̂ is the estimated model-based covariance matrix for Y .

Equation 4.3 induces the so called robust “sandwich” estimator for the variance

of the estimated fixed effects β̂:

(4.4) ˆvar(β̂) = (XTŴ
−1
X)−1(XTŴ

−1
ˆvar(Y )Ŵ

−1
X)(XTŴ

−1
X)−1,

where ˆvar(Y ) is the smoothed empirical estimator of var(Y ) that is based on the

marginal residuals ê [Liang and Zeger, 1986]. Although the sandwich estimator is

robust to misspecified covariance structure, Verbeke and Molenberghs [2009] noted

that, (i) the sandwich estimator is less efficient than the one using the correct co-

variance model; (ii) valid inference requires additional assumptions about missing

data; and (iii) the sandwich estimator has not been fully evaluated in small samples.

Therefore, in practice, we usually use the reduced estimator

(4.5) ˆvar(β̂) = (XTŴ
−1
X)−1

instead. The validity of the model-based estimator in Equation (4.5) depends on

the assumption that the model-based covariance matrix W is identical to the true

covariance matrix of Y , var(Y ), i.e., the covariance structure of the LME model is

correctly specified. When this assumption does not hold, the model-based estimator

will result in a biased assessment of the variability of β̂, which might impact the

validity of statistical inferences. It is therefore essential to examine the covariance

structure assumption of an LME model before applying it for inference.
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4.2.2 Permutation Tests for Covariance Structure Assumption

We wish to test the null hypothesis

(4.6) H0 : W = var(Y )

versus the alternative hypothesis H1 : W 6= var(Y ).

The model-based covariance matrix can be estimated by Ŵ = ZTD̂Z + R̂,

where D̂ and R̂ are the variance parameter estimates from the LME model. Con-

ditioning on a correctly specified mean structure; i.e., E(Y ) = Xβ, an unbiased

estimator of var(Y ) is the smoothed sample covariance of the marginal residuals;

i.e., V̂ = êêT/(m − 1), where ê = {ê1, ..., êm} is a n × m matrix combining all

m subjects’ marginal residuals, and êi = {êi1, ..., êin}′ is a vector containing all n

marginal residuals of subject i (assuming all subjects have the same number of mea-

surements). Inspired by the informal check suggested by Verbeke and Molenberghs

[2009], we propose to define our test statistics as metrics that quantify the discrep-

ancy between the estimated model-based covariance Ŵ and the empirical covariance

V̂ .

We first compare the two estimated covariance matrices by examining the multi-

plication Ŵ
−1
V̂ , and define our first two test statistics as:

(4.7) T1 =
n∑

k=1

(ck − 1)2,

(4.8) T2 =
n∑

k=1

(log(ck))2,

where the ck are the eigenvalues of matrix Ŵ
−1
V̂ . Rotnitzky and Jewell [1990]

proved that all elements of ck should equal to 1 when W = var(Y ). Thus, we will

reject our null hypothesis H0 if T1 and T2 deviate much from 0.
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Covariance structure analysis is also used in structural equations modeling (SEM),

and one intuitive index is the standardized element-wise difference between the esti-

mated model-based covariance and the sample residual covariance [Hu and Bentler,

1999]. This index motivates us to define our third test statistic as:

(4.9) T3 =
n∑

i=1

n∑
j=1

|ŵij − v̂ij|,

which is the L1-norm of the difference matrix Ŵ − V̂ . It is easy to see that T3 = 0

when W = var(Y ). Thus, we will reject our null hypothesis H0 if T3 deviates much

from 0.

Despite the intuitive nature of our three test statistics, it is not straightforward

to derive their exact or asymptotic distributions. Instead of seeking analytical solu-

tions, we propose to estimate their distributions numerically using permutations. A

permutation test is one that approximates the null distribution of the test statistic

via permutations of the data. The test will have a nominal size as long as we have

exchangeability of the data under the null hypothesis. For a vector Y , it is exchange-

able if, for any permutation of Y , denoted as Y ∗, the distribution of Y ∗ is the same

as that of Y . Good [2006] provides a comprehensive explanation of permutations

tests.

We now give a detailed explanation of how to perform our permutation tests for

the covariance structure assumption in LME models. After a LME model Y =

Xβ +Zb+ ε is fitted, we first obtain the estimated model-based covariance matrix

as Ŵ = ZTD̂Z + R̂, where D̂ and R̂ are the variance component estimates from

the fitted LME model. We also estimate the marginal residuals from ê = Y −Xβ̂

and calculate their smoothed sample covariance matrix as V̂ = êêT/(m − 1). We

then calculate our three test statistics T1(Ŵ , V̂ ), T2(Ŵ , V̂ ), and T3(Ŵ , V̂ ), based
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on the estimated Ŵ and V̂ .

In order to construct the permutation distributions, we would like to permute

the marginal errors, i.e., ε = Y − Xβ. However, as indicated by Equation 4.1,

conditioning on a correctly specified mean structure, under the null hypothesis H0,

the marginal errors are normally distributed with mean 0 and covariance matrix

W = ZTDZ+R. Therefore the marginal errors are not immediately exchangeable.

To solve this issue, we propose to weight the errors by the matrix L−1, where L is the

Cholesky decomposition of W , i.e., W = LLT . As a result, the Cholesky marginal

errors, L−1ε become normally distributed with mean 0 and covariance matrix I,

and thereby are exchangeable, allowing for permutations both within and among

subjects.

In practice, we work with the marginal residuals, ê and the estimated model-

based covariance matrix, Ŵ , and permute the Cholesky marginal residuals, i.e.,

L̂
−1
ê, where Ŵ = L̂L̂

T
, both within and among subjects. Let (L̂

−1
ê)∗ denote the

permuted Cholesky marginal residuals; we further re-weight them with L̂, and ob-

tain L̂(L̂
−1
ê)∗. Under the null hypothesis H0, the smoothed sample covariance of

L̂(L̂
−1
ê)∗, i.e., V̂

∗
= [L̂(L̂

−1
ê)∗][L̂(L̂

−1
ê)∗]T/(m−1) should be identical to the esti-

mated model-based covariance matrix Ŵ . Therefore, we calculate our permuted test

statistics based on V̂
∗

and Ŵ , and obtain T1(Ŵ , V̂
∗
), T2(Ŵ , V̂

∗
), and T3(Ŵ , V̂

∗
),

respectively.

As recommended by Good [2006], we perform the permutation procedure 1, 000

times, and obtain 1, 000 permuted values for each test statistic, i.e., T ∗1l, T
∗
2l, T

∗
3l,

l = 1, ..., 1000. These 1, 000 permuted values provide an approximate empirical null

distribution for each test statistic. Then for each test, we generate its p-value by

counting the percentage of permutations with permuted values T ∗ greater than T ,
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e.g., p1 =
∑1000

l=1 I(T1 < T ∗1l)/1000 for Test 1, where I(T1 < T ∗1l) = 1 if T1 < T ∗1l.

4.3 Simulation Studies

We performed a series of simulations to study the performance of our permutation

tests in examining different components of the covariance structure assumption. The

first simulation tested the inclusion or exclusion of random effects; and the follow-

ing two simulations tested the appropriateness of assumptions on random errors. In

each simulation, we generated data with a known covariance, and fitted LME models

under correct or incorrect covariance structure assumptions. We verified the validity

of our permutation tests when the covariance structure was correctly specified; and

evaluated the power of our permutation tests in detecting incorrectly specified co-

variance structures. Each simulation was repeated 1, 000 times. All simulations were

performed in the R system using the lme() function from the nlme package [Pinheiro

et al., 2015].

4.3.1 Testing for a Random Slope

Testing for the inclusion or exclusion of random effects is arguably the most com-

monly encountered situation in fitting LME models. This can also be expressed as

examining the appropriateness of covariance matrix D in LME model (4.1). As a

special case, here we present simulations testing for the inclusion of a random slope

given an independent random intercept. We considered situations when the random

effect covariates were the same for all subjects or varied among subjects.

Measurements Occur at the Same Time Points

The data set was generated from an LME model with a random intercept and a

possible random slope Yij = β0 + xij1β1 + bi0 + zij1bi1 + εij, where the fixed effect

coefficients β0 = 3, β1 = 2.75, fixed effect covariate xij1 ∼ N (0, 1), random effects
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bi0 ∼ N (0, σ2
0), bi1 ∼ N (0, σ2

1), and error εij ∼ N (0, σ2). The random effect covariate

zij1 = zj1 for all subjects, and zj1 ∼ N (0, 1). Thus, this design could be viewed as

a longitudinal study where observations were measured at the same time points for

all subjects. Both xij1 and zij1 were centered at 0 and scaled by their standard

errors. Here we set σ2
0 = 1, σ2 = 1, and let σ2

1 = 0, 0.152, 0.22, 0.32, respectively. We

varied the number of subjects to be either n = 50 or n = 10, and the number of

measurements per subject to be m = 10 or m = 5.

We fit an LME model with a random intercept only. When σ2
1 = 0, the fitted

model had correctly specified the covariance structure, and we verified the validity of

our permutation tests; when σ2
1 = 0.152, 0.22, 0.32, the covariance structure implied

by the fitted model was different from the truth, and we evaluated the power of our

tests. The rejection rates of our permutation tests over the 1, 000 simulations are

presented in Table 4.1.

Based on this simulation, we find that our permutation Test 1 (4.7) and Test

2 (4.8) are valid in testing the random intercept, as they have nominal size when

H0 holds. However, these two tests are more conservative when m = 5 than when

m = 10. When σ2
1 increases to 0.152, 0.22, and 0.32, the covariance structure of

the fitted model gradually deviates from the truth, and the power of Tests 1 and 2

increase as well. Test 1 seems to be more powerful than Test 2 over all scenarios. As

expected, the power of these two permutation tests decrease as fewer subjects are

included in the study. When the number of subjects equals 10 or 5, Test 2 has very

limited power. The performance of permutation Test 3 (4.9) is disappointing, as it

has neither a valid size nor any power.
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Table 4.1:
Testing for a random slope when measurements occur at the same time points for all
subjects. Rejection rates (expressed as percentages) of our permutation tests (at 5%
level) over 1, 000 simulations.

n m σ2
1 Test 1 Test 2 Test 3

50 10

0 4.3 3.8 0.0
0.152 73.4 37.5 0.1
0.22 91.0 59.9 0.4
0.32 99.1 86.3 5.2

50 5

0 2.3 2.6 0.0
0.152 28.8 19.9 0.4
0.22 47.3 32.9 0.8
0.3 77.6 62.0 4.2

10 10

0 5.5 5.7 0.2
0.152 16.0 5.1 0.6
0.22 23.3 4.9 1.0
0.32 42.9 5.7 2.5

10 5

0 3.6 4.0 0.1
0.152 6.3 5.9 0.9
0.22 8.0 5.9 0.9
0.32 14.2 7.4 2.2

Measurements Occur at Different Time Points

In real longitudinal studies, observations are rarely measured at the exactly same

time points for different subjects. Instead, measurements may occur at slightly

different time points that vary among subjects. To mimic this situation, we designed

a simulation study to test for a random slope, when the random effect covariate

varied by subjects.

Similar to Section 4.3.1, the data set was also generated from an LME model with

a random intercept and a possible random slope Yij = β0 +xij1β1 + bi0 + zij1bi1 + εij,

where the fixed effect coefficients β0 = 3, β1 = 2.75, fixed effect covariate xij1 ∼

N (0, 1), random effects bi0 ∼ N (0, σ2
0), bi1 ∼ N (0, σ2

1), and error εij ∼ N (0, σ2). For

each subject i, random effect covariate zij1 ∼ N (µj, σ
2
z), where (µ1, ..., µj, ..., µm) is

a sequence of numbers increasing from −(m − 1)/2 to (m − 1)/2 by 1. Both xij1

and zij1 were centered at 0 and scaled by their standard errors. We considered three

scenarios with σ2
z = 0.22, 1 and 52, respectively. Under each scenario, we set σ2

0 = 1,
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σ2 = 1, and let σ2
1 = 0, 0.152. We also varied the number of subjects to be either

n = 50 or n = 10, and the number of measurements per subject to be m = 10 or

m = 5.

We again fit an LME model with a random intercept only. When σ2
1 = 0, the

fitted model had correctly specified the covariance structure, and we verified the

validity of our permutation tests; when σ2
1 = 0.152, the covariance structure implied

by the fitted model were different from the truth, and we evaluated the power of

our permutation tests. The rejection rates of our permutation tests over the 1, 000

simulations are presented in Table 4.2.

Across all situations, the rejection rates of permutation Test 1 and Test 2 are

around 5% when σ2
1 = 0. Thus we confirm that these two tests are valid in testing

for the random intercept, even when measurements occur at different time points. In

addition, these tests are more conservative when m = 5 than when m = 10. When

σ2
z = 0.22, the time points of measurements only vary slightly for different subjects,

and the power of Tests 1 and 2 is still prominent. As σ2
z enlarges, measurements

time points are more significantly different over subjects. As a result, the power of

Tests 1 and 2 diminishes. We hardly see any power when σ2
z = 52. We also notice

decreased power with fewer subjects, which is expected. In general, Test 1 is has

more power than Test 2, and permutation Test 3 is not valid.

4.3.2 Testing for Serial Correlations among Random Errors

In longitudinal studies, measurements on the same subject are usually correlated

via serial correlations, e.g., autoregressive (AR). An LME model allows accounting for

the serial correlation by introducing correlated random errors through the R matrix

in LME model (4.1). Here we designed simulations to evaluate the performance of

our permutation tests in examining serial correlations.
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Table 4.2:
Testing for a random slope when measurements occur at different time points. Rejec-
tion rates (expressed as percentages) of our permutation tests (at 5% level) over 1, 000
simulations.

σ2
z n m σ2

1 Test 1 Test 2 Test 3

0.22

50 10
0 4.8 5.4 0.0

0.152 75.0 39.1 50.0

50 5
0 3.1 4.2 0.0

0.152 27.6 18.8 17.6

10 10
0 4.2 4.9 0.0

0.152 13.3 4.9 8.5

10 5
0 3.6 5.1 0.3

0.152 6.8 5.7 4.5

1

50 10
0 4.0 4.1 0.0

0.152 64.8 28.7 37.7

50 5
0 4.1 4.0 0.0

0.152 12.9 11.2 7.5

10 10
0 4.1 4.8 0.2

0.152 13.0 5.6 7.5

10 5
0 3.4 3.7 0.2

0.152 5.0 3.2 3.3

52

50 10
0 4.6 3.7 0.0

0.152 8.9 6.0 3.8

50 5
0 3.2 3.2 0.0

0.152 4.3 4.3 2.9

10 10
0 4.7 4.2 0.0

0.152 7.0 5.4 3.6

10 5
0 3.4 3.2 0.1

0.152 3.4 4.2 3.5

The data set was generated from an LME model with a random intercept and

possibly correlated random errors Yij = β0 + xij1β1 + bi0 + εij, where the fixed

effect coefficients β0 = 3, β1 = 2.75, fixed effect covariate xij1 ∼ N (0, 1), and it was

centered at 0 and scaled by its standard error, random effect bi0 ∼ N (0, σ2
0). For each

subject i, its random errors (εi1, ..., εij, ...εik, ..., εim)′ followed a multivariate normal

distribution with mean 0 and AR-1 covariance; i.e., var(εij) = σ2, corr(εij, εik) =

ρ|j−k|. We set σ2
0 = 1, σ2 = 1, and let ρ = 0, 0.2, 0.3, 0.4, 0.6, respectively. We again

varied the number of subjects to be either n = 50 or n = 10, and the number of

measurements per subject to be m = 10 or m = 5.

We fit an LME model with a random intercept and independent errors. When

ρ = 0, the fitted model had correctly specified the covariance structure, and we ver-
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ified the validity of our permutation tests; when ρ = 0.2, 0.3, 0.4, 0.6, the covariance

structure implied by the fitted model were different from the truth, and we evaluated

the power of our permutation tests. The rejection rates of our permutation tests over

the 1, 000 simulations are presented in Table 4.3.

In this simulation, our permutation Test 1 and Test 2 have nominal size when

ρ = 0, i.e., H0 holds. Thus these two tests are valid for testing serial correlations

among random errors. However, these two tests are generally more conservative when

m = 5 than when m = 10. As ρ increases, the serial correlation becomes stronger in

the data, and Tests 1 and 2 have a higher chance to detect it. The power of these two

tests is affected by the sample size: having fewer subjects would reduce the power.

Test 1 has slightly higher power than Test 2 in general. Permutation Test 3 is not

valid again.

Table 4.3:
Testing for serial correlations among random errors. Rejection rates (expressed as per-
centages) of our permutation tests (at 5% level) over 1, 000 simulations.

n m ρ Test 1 Test 2 Test 3

50 10

0 4.3 3.8 0.0
0.2 32.6 25.1 0.0
0.3 76.6 66.1 0.0
0.4 97.3 95.3 0.0
0.6 100.0 100.0 0.2

50 5

0 3.7 3.4 0.0
0.2 15.4 15.0 0.0
0.3 37.8 32.0 0.0
0.4 63.6 57.4 0.0
0.6 97.2 96.4 0.0

10 10

0 2.8 6.3 0.0
0.2 9.5 7.1 0.2
0.3 16.5 5.6 0.2
0.4 24.5 6.0 0.2
0.6 61.4 6.8 0.3

10 5

0 4.0 3.7 0.1
0.2 5.3 4.1 0.5
0.3 8.7 5.2 0.5
0.4 11.4 7.9 0.6
0.6 24.9 15.0 0.3
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4.3.3 Testing for Heterogeneous Random Errors

Another commonly encountered situation in longitudinal studies is that measure-

ments observed at different time points may have different variances. For example,

the machine used for collecting data is gradually worn over time, and the variability

of the measurements increases. An LME model can take such variability into account

by allowing for heterogeneous random errors; i.e., the diagonal elements of matrix R

in LME model (4.1) may differ among measurements. Here we designed simulations

to evaluate the performance of our permutation tests in diagnosing heterogeneous

errors.

The data set was generated from an LME model with a random intercept and

possibly heterogeneous random errors Yij = β0 + xij1β1 + bi0 + εij, where the fixed

effect coefficients β0 = 3, β1 = 2.75, fixed effect covariate xij1 ∼ N (0, 1), and it was

centered at 0 and scaled by its standard error, random effect bi0 ∼ N (0, σ2
0). For

each subject i, its random errors (εi1, ..., εij, ..., εim)′ followed a multivariate normal

distribution with mean 0 and diagonal covariance matrix; i.e., var(εij) = σ2hj, where

(h1, ..., hj, ..., hm) is a sequence of numbers increasing from h to 1 by (1−h)/(m−1).

We set σ2
0 = 1, σ2 = 1, and let h = 1, 0.7, 0.5, 0.3, 0.1, respectively. We varied the

number of subjects to be either n = 50 or n = 10, and the number of measurements

per subject to be m = 10 or m = 5 as before.

We fit an LME model with a random intercept and homogeneous errors. When

h = 1, the fitted model had correctly specified the covariance structure, and we ver-

ified the validity of our permutation tests; when h = 0.7, 0.5, 0.3, 0.1, the covariance

structure implied by the fitted model were different from the truth, and we evaluated

the power of our permutation tests. The rejection rates of our permutation tests over

the 1, 000 simulations are presented in Table 4.4.
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In this simulation, permutation Test 1 and Test 2 have nominal size when the null

hypothesis H0 holds. Thus these two tests are valid for testing heterogeneous random

errors. However, these two tests are more conservative when m = 5 than when

m = 10. As the heterogeneity parameter range enlarges, random errors have more

variability, and Tests 1 and 2 have higher chance in identifying this heterogeneous

structure. The power of these two tests decreases with sample size. Unlike previous

simulations, neither Test 1 nor Test 2 has universally higher power. Permutation

Test 3 is not valid as before.

Table 4.4:
Testing for heterogeneous random errors. Rejection rates (expressed as percentages) of
our permutation tests (at 5% level) over 1, 000 simulations.

n m
Heterogeneity

Parameter Range
Test 1 Test 2 Test 3

50 10

[1, 1] 5.7 4.3 0.0
[0.7, 1] 6.8 6.9 0.0
[0.5, 1] 18.9 16.6 0.0
[0.3, 1] 58.2 55.2 0.0
[0.1, 1] 98.7 100.0 0.0

50 5

[1, 1] 3.3 3.0 0.0
[0.7, 1] 6.1 5.9 0.0
[0.5, 1] 15.4 15.8 0.0
[0.3, 1] 44.4 51.5 0.0
[0.1, 1] 95.1 98.9 0.0

10 10

[1, 1] 4.3 4.2 0.0
[0.7, 1] 3.6 5.7 0.0
[0.5, 1] 5.1 6.1 0.0
[0.3, 1] 8.5 5.0 0.0
[0.1, 1] 16.2 7.3 0.0

10 5

[1, 1] 3.4 3.1 0.2
[0.7, 1] 3.6 4.2 0.4
[0.5, 1] 4.5 5.0 0.4
[0.3, 1] 8.2 6.4 0.2
[0.1, 1] 12.6 13.8 0.2

In summary, through these simulation studies, we show that our permutation

Test 1 and Test 2 have nominal size in testing different components, i.e., random

effects and/or random errors, of the covariance structure assumption in LME models.

However, these two tests are generally more conservative when m = 5 than when
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m = 10. The power of Test 1 and 2 are sufficient. Permutation Test 3 seems to be

invalid.

4.4 Application to Michigan Periodontal Study

Here we apply our permutation tests to evaluate the two LME models developed

for analyzing periodontal data presented in Chapter III. It is challenging to model

periodontal outcomes due to the complex within-mouth correlation induced by the

three-dimensional spatial geography of teeth and their functional similarity. Thus we

have proposed two LME models with random effects and correlated random errors

that quantify the within-mouth correlation of teeth. However, we were not able to

find proper statistical tests to evaluate the fit of our LME models. In this application,

we fit the two LME models to the Michigan periodontal data, and assessed their

covariance structure assumptions using our permutation tests.

The data set contained clinical attachment level (CAL), a tooth-level measure

that quantifies the severity of periodontal disease, of 2, 646 teeth collected from

50 periodontally healthy and 50 periodontally diseased subjects. The goal of the

study was to compare the difference in CALs between periodontally healthy and

diseased subjects. As an illustration, we focused on the 38 periodontally healthy and

9 diseased subjects who had complete CALs on all 28 teeth.

The first proposed LME model used random effects to account for the within-

mouth variation between the maxillary and mandibular arches, and the functional

variation between different types of teeth (molar, bicuspid, cuspid and incisor); it

also modeled the spatial proximity of teeth via circularly correlated random errors.

We called this model the functional and spatial LME 1 (3.1). The second proposed

LME model used random effects to model the natural symmetry between the four
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quadrants; and it employed circularly correlated heterogeneous random errors to

account for the extra variability. This model was called the quadrant and spatial

LME 2 (3.2). Please refer to Chapter III for details about these two models.

We fit the functional and spatial LME 1 and the quadrant and spatial LME

2, with a fixed effect intercept and a fixed effect binary indicator for periodontal

disease status. Then we applied our permutation tests to examine the covariance

assumptions of the two fitted models. The null hypothesis was H0: “The covariance

matrix implied by LME 1 (or 2) is identical to the true covariance of CALs”. The

p-values of our permutation tests are presented in Table 4.5. For both LME 1 and

LME 2, the p-values of our permutation Test 1 and 2 are < 0.01, which indicate

strong rejections of the null. Thus LME 1 and LME 2 did not correctly model

the within-mouth correlation for subjects in the Michigan periodontal study, and

the standard errors of the fixed effects estimates from these LME models might be

biased. However, we should not over interpret these p-values, as they only reflect the

appropriateness of LME 1 and LME 2 in modeling these 47 subjects, rather than

overall evaluations of the merits of the two LME models.

Table 4.5:
p-values from applying our permutation tests to evaluate the covariance structure as-
sumption of the functional and spatial LME 1, and the quadrant and spatial LME 2
fitted to Michigan data.

Fitted Model Test 1 Test 2
Functional and Spatial LME 1 (3.1) < 0.01 < 0.01
Quadrant and Spatial LME 2 (3.2) < 0.01 < 0.01

One limitation of this application is that we are unclear whether the mean struc-

ture of the LME models are specified correctly. It is very likely that there are other

influential fixed effects, e.g., gender and age, that have not been included in the anal-

ysis. Therefore, we proposed a small simulation study to compare the functional and

spatial LME 1 to the quadrant and spatial LME 2. We generated 50 periodontally
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healthy and 50 diseased subjects with known mean profile and known covariance

matrices. Two covariance matrices were considered, one was based on the functional

and spatial LME 1; and the other one was based on the quadrant and spatial LME

2. For each simulated data set, we fitted the two LME models, and applied our

permutation tests to evaluate the covariance assumption of the fitted models. The

simulations were repeated 200 times. The rejection rates of our permutation tests

over the 200 simulations are presented in Table 4.6.

When the correct model is fitted to the simulated data, its covariance structure

assumption is satisfied, and our permutation Test 1 and Test 2 are unlikely to reject

the null hypothesis. In the contrast, if the fitted model is different from the model

used for generating data, Test 1 and 2 will almost always reject the fitted model.

This simulation convinces that our permutation Test 1 and 2 are valid for evaluating

rather complex covariance structures in LME models.

Table 4.6:
Applying permutation tests to evaluate the covariance structure assumption of the fitted
functional and spatial LME 1, and the quadrant and spatial LME 2 when data is gener-
ated from a known model. Rejection rates (expressed as percentages) of our permutation
tests (at 5% level) over 200 simulations.

True Model Fitted Model Test 1 Test 2

Functional and Spatial LME 1 (3.1)
Functional and Spatial LME 1 (3.1) 2.0 2.5
Quadrant and Spatial LME 2 (3.2) 100.0 100.0

Quadrant and Spatial LME 2 (3.2)
Functional and Spatial LME 1 (3.1) 99.5 100.0
Quadrant and Spatial LME 2 (3.2) 3.0 4.5

4.5 Discussion

In this chapter, we have proposed three permutation tests for examining the co-

variance structure assumption in linear mixed effects models. Our methods are eli-

gible for testing different components of the covariance structure in an LME model

by comparing the estimated model-based covariance matrix to the smoothed sam-

ple covariance matrix of the marginal residuals. To the best of our knowledge, our
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permutation tests are the first methods that provide formal statistical inference on

the overall appropriateness of covariance structure in LME models. Through sim-

ulations, we have seen that our permutation Test 1 and Test 2 have valid size and

sufficient power. Our methods can be easily implemented in standard statistical soft-

ware and it has an immediate extension to other models such as structural equation

modeling.

Through simulations, we have seen that Permutation Test 3 has neither valid size

nor sufficient power to be useful. One possible explanation is that test statistic T3 in

Equation (4.9) is an element-wise comparison of the two estimated covariance matri-

ces, and the true difference could be overwhelmed by the level of noise associated with

the estimates of all the individual elements of the matrices. In addition, Permutation

Test 1 appears to be more powerful than Test 2 in most settings, even though test

statistics T1 and T2, in Equations (4.7) and (4.8), respectively, are computed from the

same set of eigenvalues. We think the difference in power is possibly due to compu-

tational reasons, as the value of (log(ck))2 will be extremely large for any eigenvalue

ck close to 0. Thus, relative to a permutation test based upon T1, small eigenvalues

could overwhelm the computation of test statistic T2 across permutations, leading

to a permutation distribution that is less variable than desired, thereby reducing the

power of the permutation test. Future research is needed to explore the differences

among these three test statistics, which might help us to identify the differences in

their operating characteristics, as well as propose additional permutation tests with

greater power.

One limitation of our methods is that we have assumed the same number of

measurements for each subject, which is required by our estimation of the empirical

covariance V̂ . In addition, our methods assume a common estimated model-based
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covariance matrix for all subjects, which has restricted their application to situations

when random effect covariates vary largely by subjects. One possible approach to

eliminate this limitation is to average the estimated subject-specific model-based

covariance matrices over all subjects; and use the resulting smoothed model-based

covariance matrix in calculating our test statistics.

We have assumed that the mean structure of the fitted LME model is correct. It

will provide more insights on our permutation tests by evaluating their performance

under situations when the mean profile is not modeled correctly. In addition, we have

assumed normal distributed random effects and random errors when we performed

our simulations. However, our test statistics only rely on the moments, rather than

the full distributions. Therefore, it will be beneficial to perform sensitivity analysis of

our permutation tests to nonnormal random effects and/or errors. Finally, extending

our permutation tests to generalized linear mixed models may be rewarding.
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CHAPTER V

Conclusion and Future Work

In this dissertation we have developed three methods for handling correlated data.

In Chapter II, we extended the standard classification and regression trees (CART)

method to clustered binary outcomes. As opposed to the conventional CART, we

propose to build tree models using the residuals from a null generalized linear mixed

model (GLMM) as the outcome. This circumvents modeling the correlation structure

explicitly while still accounting for the cluster-correlated design, thereby allowing us

to adopt the original CART machinery in tree growing, pruning and cross-validation.

Class predictions for the terminal nodes of our residual-based tree are estimated based

on success probabilities within each terminal node. We also provide a natural and

direct extension of our residual-based tree to random forest.

Through extensive simulation studies, we have shown that our residual-based

trees, especially the deviance residual-based tree, are more appropriate for analyzing

clustered binary data than the standard CART. The residual-based trees are better

adept in identifying the true relationship in the data, and provide more accurate

predictions. The improvements over the standard CART are substantial when the

intra-cluster correlations are strong, given moderate cluster sizes. We also applied

our residual-based approaches to studies of kidney cancer treatment receipt, surgical
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mortality after colectomy and determinants of vaccination coverage, where the data

exhibited cluster-correlated structures. In all studies, residual-based tree and forest

identified clinically meaningful subgroups.

One caveat of our approach is that when fitting the null GLMMs, at least moderate

cluster sizes are needed in order to correctly estimate the cluster-specific random

effects. When the cluster sizes are small, the estimated random effects might be

biased, which in turn could affect the performance of our residual-based trees. It will

be beneficial to find other algorithms that could reduce the bias in estimating the

random effects of GLMMs under small cluster sizes.

In Chapter III, we have proposed two linear mixed effects (LME) models for

tooth-level periodontal outcomes, which can account for the complex within-mouth

correlation via the usage of random effects and random errors. Through simulations,

we have shown that our LME models are more robust to “missing at random”,

and more efficient than traditional methods such as GEE and t-tests in periodontal

analysis. We have also suggested model selection criteria for choosing the LME

model that better fits the data. The proposed LME models and the selection criteria

can be conveniently implemented in standard software packages, which makes them

readily accessible to periodontal researchers.

Longitudinal data are common in periodontal studies, where each tooth are mon-

itored repeatedly over time. This temporal effect, along with the within mouth

correlation, will induce even more complex correlation structures. Further research

could be conducted to generalize our LME models to longitudinal periodontal out-

comes. In addition, periodontal disease is a leading cause of loss tooth, and teeth

with larger periodontal outcomes have a higher chance of being removed. Therefore,

informative missing, i.e., MNAR is inevitable in periodontal studies. Through the
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simulations, we have seen that our LME models are biased and less efficient when

data are MNAR. Joint modeling of missing teeth and periodontal outcomes rises as

an interesting and rewarding direction for future studies.

In Chapter IV, we have proposed three permutation tests for evaluating the co-

variance structure in linear mixed effects models. Our methods are among the first

few efforts to provide formal statistical inferences on the appropriateness of the co-

variance structure implied by an LME model. Through simulations, we have shown

that our permutation Test 1 and Test 2 have valid size and comparable power in

testing different covariance structure assumptions. We also applied our tests to the

Michigan periodontal study and evaluated the two LME models proposed in Chapter

III. We confirmed that our permutation tests can identify the LME model that has

accurately modeled the within mouth correlation of periodontal outcomes.

Our permutation tests assume a common covariance structure for all subjects.

Thus our methods are restricted to balanced data or situations when only slight

variations are allowed in random effect covariates. One possible approach to eliminate

these limitations is to average the estimated subject-specific model-based covariance

over all subjects, and use the resulting smoothed covariance in calculating our test

statistics. Future research could be conducted to examine this possible solution.

In addition, sensitivity analysis under misspecified mean structure or nonnormal

random effects and/or random errors would provide a more comprehensive assess-

ment of our permutation tests. Finally, it will be rewarding to extend our permuta-

tion tests to generalized linear mixed models.
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