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CHAPTER I

Introduction

As the history of mathematics shows, working in rings where p is a prime integer
and the p'™™ multiple of any number is zero often has strong advantages. These are
called rings of positive characteristic p. At the end of the 1980s Mel Hochster and
Craig Huneke in a series of papers, [HH89a|, [HH89b], [HHI0], introduced the notion
of the tight closure of ideals and modules over such rings. Over time this has proved
to be a very powerful technique for attacking problems in both commutative algebra
and algebraic geometry, especially in the theory of singularities. Using the Frobenius
endomorphism, notions of F-regularity, F-purity, F-rationality and etc. have been
defined. In addition, many classes of rings, such as determinantal rings [HH94b], were
proved to posses these properties. Significant progress in solving various problems
has been made since then by using these tools. However, there are still questions
which naturally appeared with the birth of this new theory, many of which are still

open. Some of the major questions have been settled.

Question I.1. Let R be a Noetherian commutative ring with identity and of prime
characteristic p > 0. Let I be an ideal of R and let I* be its tight closure in R. Is it

true that for any prime ideal P € R, I*Rp = (IRp)*?

The question was open until 2010, when H.Brenner and P.Monsky found a coun-



terexample, [BM10]. However, it is known that the above question has an affirmative
answer for very special class of ideals, parameter ideals, [Smi94].

Other natural conjectures that were stated are the following.

Conjecture 1.2. Let R be a ring in which every ideal is tightly closed (such rings
are called weakly F-reqular). Then for every multiplicative system W < R, W™'R is

weakly F'-regular.

Conjecture 1.3. Let R be a ring such that it splits from its every module-finite ring

extension. Then R is weakly F'-regular.

The latter conjecture implies the former which was answered positively for Q-
Gorenstein rings (hence for local rings of dimension at most 2), [Sin99], and for
graded rings of any dimension, [L.S99].

The first part of this thesis concentrates on finding criteria for weak F-regularity
that may be used to attack the above questions.

To this end we define the notion of quasi-parameter ideals for Cohen-Macaulay
domains for which there exists a pure height one ideal isomorphic to the canonical

module.

Definition I.4. If J is a proper canonical ideal (isomorphic to the canonical module
wr) in a Cohen-Macaulay local ring R of dimension d, and zy,...,x; are part of a
system of parameters for R whose images form part of a system of parameters in R/.J,
then we call (z1,...,2;)+J a quasi-parameter ideal for J. All the (2%, ... al)+J are
also quasi-parameter ideals for J. If i = d — 1, then we say that (xy,...,24-1) + J
is a full quasi-parameter ideal for J. If R is a Gorenstein local ring, then J is a
principal ideal and all the quasi-parameter ideals are simply parameter ideals.

It is an open question whether localization commutes with tight closure of quasi-



parameter ideals. However, we have that a positive answer to this question will imply
an affirmative answer to Conjecture 1.2, see Theorem III.9.
We also use the above notion to give a sufficient condition for R to be weakly

F-regular.

Lemma 1.5. Let (R,m, K) be a Cohen-Macaulay local domain of Krull dimension
d with a canonical module w. Let J denote a pure height one ideal of R such that
J = w. If for one choice of a canonical ideal J, every full quasi-parameter ideal for

J is tightly closed in R, then R is weakly F'-reqular.

In addition, we study a notion of a test ideal relative to an ideal J defined as

follows.

Definition 1.6. Let R be any Noetherian ring of characteristic p > 0 and J be an
ideal of R. Then the J-test ideal of R is 7;(R) = ();c;( :r I*).

Moreover, we define the notion of a finitistically amenable ring, see Definition I11.22,
and we prove that for a finitistically amenable Cohen-Macaulay normal complete lo-
cal domain there exists a choice of an ideal J = wp so that this notion of test ideal
coincides with the classical one, i.e., 7;(R) = 7(R), see Corollary II1.37.

In a related direction we prove:

Theorem 1.7. Let (R,m, K) be a Cohen-Macaulay complete local domain with the
canonical module wgr. If u € OET;(K), then there exists a choice of an ideal J = wg

such that u € OTE}};/J(K) over R.

The next part of this thesis focuses on algebraic sets of nearly commuting matrices
and their irreducible components. The area of mathematics which studies matrices
and related problems is one of the oldest, and since its inception one of the natural

questions one could ask was about when two matrices commute or almost commute



in a certain given sense. However, such questions have proved to be among the
hardest, and many of them are still open. Here, I want to list some of the related
open questions.

Let X = (x;;) and Y = (y;;) be n x n square matrices with indeterminate entries
over a field K. Let R = K[X,Y] be the polynomial ring in the entries of X and Y
and let I be the ideal of R generated by the off-diagonal entries of the commutator
matrix C' = XY — Y X. Let J be the ideal generated by the entries of C' and let P

be its radical, which is known to be prime, see [Ger61], [MT55].

Conjecture 1.8.

(a) I is a radical ideal.

(b) R/J is Cohen-Macaulay.
(¢c) J =P is a prime ideal.
(d) R/J is F-pure.

(e) R/J is F-rational.

(f) R/J is F-regular.

Part (a) is known to be true when K has characteristic 0, [Youll], and in the
case n = 2 when characteristic of the field is positive prime. Parts (a),(b) and (c)
are known to be true for n < 3, [Tho85]. We prove part (a) in all characteristics for
all positive integers n, see Theorem IV.33.

Moreover, it is known that Rad(l) = P ()@, where @ is a prime ideal and V(Q)
is an irreducible component of V(I), see [Youll]. The variety defined by @ is called
the skew-component of I. It was not known if V(P + Q) is irreducible. We prove
that Rad(P + @) is prime in all characteristics and for all n. Moreover, we show that

P + @ is prime when n = 3.



Using Fedder’s criterion, Lemma IV.12, we prove the following result.

Theorem 1.9. Whenn =3, R/I, R/P, R/Q and R/(P + Q) are F-pure.

The proof that R/I is F-pure in the case of 3 by 3 matrices utilizes the fact that I
is generated by a regular sequence. Let U be the product of the off-diagonal entries of
the commutator matrix C, i.e., of the generators of I. We explicitly find a monomial
term p of U such that ! is a nonzero monomial term of UP~! and ="' ¢ ml?! for
all values of p. It turns out to be a rather nice term, since its coefficient is always
1 modulo p. However, not all terms of UP~! have such a “uniform” behavior. In
fact, there are terms which do not work for all p but seem to work for an infinite
number of values of p, see Appendix 4.7. Another interesting fact, in characteristic
2, U has 24,846 nonzero terms and only 108 can be used to prove F-purity of R/I.
In characteristic 3, U has 12,229,308 terms in total while only 23,823 are useful for
us and only 162 are such that every variable in its support has exponent 2.

Furthermore, by applying known results of [Tho85] and [PS74], see Definition IV.7
and Theorem IV.9, we obtain that P and () are linked via I. Hence we have the

following theorem.

Theorem 1.10. R/P is Cohen-Macaulay if and only if R/Q is Cohen-Macaulay, in
which case R/(P + Q) is Gorenstein. In particular, when n = 3, R/P and R/Q

are Cohen-Macaulay domains and R/(P + Q) is a Gorenstein domain of dimension

dim R/P — 1.
Moreover, we have the following conjecture.
Conjecture 1.11. R/P, R/Q and R/(P + Q) are F-regular.

We also show that to prove the conjecture it is sufficient to have that R/(P + Q)

is F-rational. This is done by applying the result of F.Enescu, Lemma 11.46, and the



fact that F-rationality and F-regularity are equivalent for Gorenstein rings.

We finish the chapter by stating conjectures for R/I which we have developed
while working on the subject.

The last part of the thesis looks into the theory of algebras with straightening law
and some interesting observations are made. Let A = B[xy,...,z,] be a polynomial
ring in n indeterminates over a Noetherian ring B. Let I be an ideal of A. It is well
known that if I is generated by monomials, then one can exhibit a monomial B-basis
for the quotient A/I and this makes its study more approachable. However, if I is
not a monomial ideal, it can be quite a hard problem to understand the quotient.
Thus the purpose of the theory of algebras with straightening law (ASL) is to give
a (non-monomial) B-basis for A which shares many of the properties of the classical
monomial basis and under certain hypotheses one can have that the quotient inherits
these properties. One of the important features of such a basis is that we have a
partial ordering on its elements.

We have proved that given a basis II for an ASL and £ € Il we can replace £ in
the basis by a B-linear combination of the elements of II which form a chain in II
ending in . Then the new set is again a basis for A as an ASL. That is, we have a
B-linear change of basis for the algebra with the induced partial ordering and which
preserves the property of being an ASL.

As an application to our result, we prove that the off-diagonal (respectively all)
entries of the commutator matrix XY —Y X, as in Chapter 3, are part of the basis for
R = K[X,Y] as an ASL. However, we do not know if the quotient is an ASL. If this
was the case, we could try to approach Conjecture 1.8 (a), (b) with the methods of the
theory of algebras with straightening law. In fact, part (a) would follow immediately.

Let us define the set-up in which we shall work in the coming chapters. All rings



will be assumed commutative Noetherian with identity. The notation (R, m, K') shall
mean that R is a local ring with the unique maximal ideal m and the residue field
K = R/m. The m-adic completion of R is denoted by R . By dimension of the ring
we shall mean its Krull dimension. Given an ideal I of R, by V(I) we denote the
algebraic set defined by the ideal I. In particular, if R is a finitely generated affine
K-algebra, then we can think of V(I) as the set of common zeros of the generators
of I. Also, if f € R, then V() represents the set of common zeros of elements of [

on which f does not vanish.



CHAPTER II

Introduction and preliminaries

The goal of this chapter is to define the necessary prerequisite material which is
used in the thesis. This includes the notions of tight and plus closure of ideals and

local cohomology theory.

2.1 Tight closure

In this section we discuss the notion of tight closure of ideals and modules.
Throughout this section, unless otherwise stated, let R be a Noetherian ring of
positive prime characteristic p and let I be an ideal of R. Let ¢ denote a variable
power of p and I'9 the ideal generated by gth powers of elements in I. Let also R°

denote the set of all elements of R not in any of the minimal primes of the ring.

Definition II.1. An element r € R is in the tight closure I* of I if there exists
c € R° such that ¢r? e Il9 for all ¢ sufficiently large.

The following proposition shows that this is in fact a closure operation:
Proposition I1.2. Let I < J be ideals of R. Then
(1) I < I* < Rad[.

(2) (I*)* = I*.



(3) I* < J*.

For more of the basic properties of tight closure see [HH90] Proposition 4.1.

Once a closure operation is defined, it is natural to start asking questions about
rings with the property that every ideal (in a certain class) is closed and/or if the clo-
sure operation commutes with localization. The following definitions were introduced

to address them for tight closure.

Definition I1.3. A ring R is said to be weakly F-reqular if every ideal of R is tightly

closed.
Definition II.4. A ring R is F-regular if every localization of R is weakly F-regular.

Definition I1.5. A local ring R is F-rational if every ideal generated by a system
of parameters is tightly closed. A ring is called F-rational if every localization at a
maximal ideal is F-rational.

Clearly, F-regularity implies weak F-regularity and the latter implies F'-rationality.
One of the nicest examples of F-regular rings, as one might expect, are regular rings,

see [HH90] Theorem 4.6.

Theorem I1.6 ([HH90]). Let (R,m, K) be a local excellent ring or a homomorphic

image of a Gorenstein ring. If R is F'-rational then it is Cohen-Macaulay and normal.

Sometimes making a problem more general makes its solution more approachable.
This works quite well in the tight closure theory when one extends the theory to
modules. Let us now define the relevant notions.

In characteristic p there is a natural ring endomorphism Fr : R — R defined by
r — rP. It is called the Frobenius endomorphism. We shall omit the subscript R in
the notation Fr whenever it is clear form the context over which ring we take the

Frobenius. When R is reduced, the map is isomorphic to R» — R and R — R'P,
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where RP = {r?|r € R} and RY? = {r'/?|r € R}. Naturally, we can take e-fold
iterated Frobenius endomorphism F° and we can get an identification F¢(R) = R.
Although, R and F¢(R) are isomorphic as rings, they are not isomorphic as R-
modules. If M is an R-module, then via a base change, F¢(M) = F¢(R) ®g M is a
left F¢(R) module with r- (' @ m) = r’r' @ m = r' @ rm.

Let N € M be finitely generated R-modules. Let ¢ = p°. Denote by N4 the
image of the map N ® F¢(R) > M ® F¢(R). For every element u € N, its image in
N4 we shall denote by w9, In fact, N9 is the R-span of all such u?. We also have

that F¢(M/N) = F¢(M)/N9 and, in particular, Fr(R/I) = R/I'9.

Definition I1.7. An element u € M is in the tight closure Nj; of N in M if there
exists ¢ € R° such that cu? € N4 for all ¢ sufficiently large.

We shall omit the subscript M in the notation Nj;, whenever it is clear from the
context what the ambient module is.

Tight closure of modules extends the corresponding notion for ideals and has basic

properties similar to those of the ideals.
Proposition I1.8. Let N € M < Q be finitely generated modules over R. Then
(1) N < Nj,.
(2) Ni; is an R-module.
(3) (N3t = N3
(4) Ny < N§ and Ni < M.
(5) we Ny in M if and only if its image @ € Oy, in M/N.

(6) I*N%, < (IN)%,.
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The next theorem allows us to reduce to the local case when studying weak F'-
regularity and shows that if every ideal of R is tightly closed, then so are all submod-
ules of finitely generated R-modules. Moreover, in the local case the tight closure of

ideals is completely determined by those primary to the maximal ideal.

Theorem I1.9 ([HH90]). The following are equivalent for a Noetherian ring R of

prime characteristic p > 0
(1) R is weakly F-regular.
(2) Every submodule of a finitely generated R-module is tightly closed.
(3) For every mazimal ideal m < R, R,, is weakly F-reqular.
(4) Every ideal primary to a mazimal ideal is tightly closed.

(5) For every mazimal ideal m < R and {I;} a descending sequence of irreducible

m-primary ideals cofinal with the powers of m, I} = I, in R, for all t.
The following notion of a test ideal is central to the study of tight closure of ideals.

Definition I1.10. The test ideal of R is defined to be 7(R) = (\yey (N r Nip)

where the intersection is taken over all finitely generated R-modules N < M.

Theorem I1.11 ([HH90] Proposition 8.3 (f)). Let (R, m, K) be a reduced local ring.
Then T(R) = (\;cp(I : I*), where the intersection is taken over all ideals of R or

equivalently over all irreducible m-primary ideals.

Lemma II.12 ([Nag72] Theorem 18.1). Let A — B be a flat ring homomorphism.
Let I and J be ideals of A such that J is finitely generated. Then (I :g J)S = 1S g5

JS.

Theorem I1.13 (Persistence [HH94a] Theorem 6.24). Let A — B be a homomor-

phism of Noetherian rings of prime characteristic p > 0. Let N < M be finitely
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generated A-modules and let w € M be an element of M in N*. Suppose also that B
1s a complete local ring. Then 1 ®@w s in the tight closure of the image of B& N in

B® M.

Definition II.14. A map of R-modules S — T is said to be pure if for every R-
module M, the induced map M ® S — M ® T is injective.

The following notion was first defined in the works of M. Hochster and J.Roberts,
[HR74], [HR76] and was extensively studied by Fedder and Watanabe, see [Fed97]

and [FW89].

Definition I1.15. A ring R is F-pure if the Frobenius endomorphism F' is pure.

Remark 11.16. If R is F-pure, then F': R — R is injective and hence R is necessarily

reduced.

The Frobenius endomorphism can be used to define another closure operation,

namely the Frobenius closure.

Definition I1.17. An element u € R is in I, the Frobenius closure of an ideal I, if
there exists ¢ such that ul e 1ldl,

It is indeed a closure operation, and properties similar to those in Proposition II.2
can be easily verified. The following are obvious but important properties of F-pure

rings.
Theorem I1.18. Suppose R is F-pure. Then every ideal of R is Frobenius closed.
Theorem I1.19. A weakly F-regular ring is F-pure.

Remark 11.20. There are rings which are F-pure but not F-rational and vice versa,

[Wat88], [Wat91].
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2.2 Plus-closure

In this section we look into the notion of plus-closure, nice properties of which we
shall utilize in order to attack the problem on the localization of weakly F-regular

rings.

Definition I1.21. Let R be an integral domain. Then by R* we shall denote the
integral closure of R in the algebraic closure of its fraction field, it is called the

absolute integral closure of R.

Definition I1.22. Let I be an ideal of an integral domain R. Then I = IRT (R
is the plus-closure of I.
Unlike the tight closure of ideals, the operation of plus-closure commutes with

localization.

Theorem I1.23 ([HH92] Lemma 6.5). Let U be any multiplicative system in a com-

mutative ring R. Then IT(U'R) = (U7*(IR))™.

However, the following result shows that for parameter ideals tight closure does

commute with localization.

Definition I1.24. Elements x,...,z, € R are called parameters, if their images
form a part of a system of parameters in every local ring Rp of R such that z1,...,x, €
P.

Definition 11.25. Anideal I < R is called a parameter ideal if it is generated locally

(at each maximal ideal) by parameters.

Theorem I1.26 ([Smi94] Theorem 5.1). Let R be a locally excellent Noetherian

domain of characteristic p > 0. Let I be a parameter ideal. Then I* = IT.
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Here is a very interesting characterization of rings where this closure operation is

equal to the identity closure.

Theorem I1.27 ([Hoc73|). Let R be a Noetherian ring of positive characteristic p.
Then every ideal I of R is plus-closed if and only if R splits from its every module-

finite extension.

Rings as in the above theorem are called splinters.
We shall return to the defined closure operations once we give preliminaries for

the machinery we shall need in order to attack our problem.

2.3 Local cohomology

The purpose of this section is to define necessary notions from the theory of local
cohomology that are going to be used throughout this thesis. For a more detailed
treatment of the material and the proofs of statements see [BH9S].

In this section let R denote a Noetherian commutative ring with identity without

any restrictions on the characteristic.

2.3.1 Local cohomology modules

Let I be an ideal of R and M be any R-module. Then we have natural surjective

maps R/I'" — R/I' for all t € N. Hence, we get induced maps
Ext(R/I'*', M) — Ext*(R/I', M)

for all i € N, where Ext(__, M) is the right derived functor of Homg(__, M).

— )

Definition I1.28. H’(M) = lim, Ext®(R/I', M) is the ith local cohomology module

of M with support at I.
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The following proposition summarizes some of main properties of the local coho-
mology modules that we are going to use.
Proposition 11.29. The following is true for all R-modules M and for all t € N
(1) Let I and J be ideals of R with the same radical, then Hy(M) = H,(M).
(2) Every element of H}(M) is killed by a power of I.
(3) Hf (M) = >, Anny I'.
(4) If I is generated by n elements up to radical, then H;(M) =0 for all i > n.
(5) If N — M is a map of R-modules, then there exists an induced map H}(N) —
(6) If 0 > N — M — @ — 0 is s short ezact sequence of R-modules, then there is a

long exact sequence of local cohomology
= H(Q) — HP'(N) — H" (M) — H™(Q) — ...

Local cohomology modules with support at a maximal ideal are of particular
interest due to their properties which allow us to reduce our study to a local and/or

complete case.

Proposition 11.30. Let m denote a mazimal ideal of R and let M be an R-module

(1) H (M) = H

mRm(Mm)‘
(2) If (R,m, K) is a local ring, then Hy(M) =~ H' (M ®g R), where R is the m-adic

compeletion of R.

When a ring R is Cohen-Macaulay, the local cohomology modules have especially
nice properties, which in fact characterize the property of being a Cohen-Macaulay

local ring.
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Theorem I1.31. Let (R, m, K) be a local Cohen-Macaulay ring of Krull dimension

d. Then H’m(M) =0 for all i # d and is nonzero for i = d. Moreover, let x1,...,xq

be a system of parameters for R and I, = (2%,...,24)R for all positive integers t.

Then H(M) = lim R/I, where the direct limit system is injective and the maps

R/I; — R/I;+q are defined by multiplication by x . .. xq4.

2.3.2 Injective hulls and Matlis duality

Definition I11.32. Let ¢ : N — M be a homomorphism of finitely generated R-
modules. It is said to be essential if one of the following three equivalent conditions

holds

(a) Every nonzero submodule of M has a nonzero intersection with ¢(V).

(b) Every element of M has a nonzero multiple in ¢(N).

(c) For every R-module homomorphism 6 : M — @, if 6 o ¢ is injective then ¢ is
injective.

Definition I1.33. Let (R, m, K) be a local ring and let M be an R-module. Then

the socle, Soc M, of M is Annj; m.

Example. Soc M < M is an essential extension.

Below are the basic important properties of essential extensions
Proposition 11.34. Let M, N and ) be R-modules.
(1) The identity map on M is an essential extension.

(2) If N M < Q, then N < Q is essential if and only if N € M and M < Q are

essential.

(3) If N © M, then there ezists a mazimal submodule N’ such that N < N’ is

essential.
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One can prove that every module has a maximal essential extension, which is in

fact an injective module.

Theorem 11.35. Let M be an R-module. Then there exists a mazximal essential
extension of M , and it is unique up to non-canonical isomorphism. Moreover, it is

mjective as an R-module.

Such an extension is called an injective hull of M and denoted by Er(M).
Injective hulls of prime cyclic modules R/P are the building blocks for injective

modules, more precisely we have the following proposition.

Proposition I1.36. Let E be an injective R-module. Then E = @FEg(R/P) for

varying prime ideals P of R. And all such Er(R/P) are indecomposable.

It is natural in commutative algebra to reduce our study to the local case, and

injective hulls of prime cyclic modules behave quite well in this respect.

Lemma 11.37. For every prime ideal P of R:
(a) ER(R/P) = ERP(RP/PRP).
(b) Ass Eg(R/P) = {P} and every element of the injective hull is killed by a power

of P.

Therefore, an injective hull of a residue field of a local ring is of particular interest.
So for the rest of the section let us assume that (R, m, K) is a local ring and let

E = ER(K). The following theorem summarizes important properties of E.
Theorem I1.38. Let (R, m, K) be a local ring.
(1) En(K) = E(K).

(2) If S = R/I for an ideal I < R, then Eg(K) =~ Anng I.
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(3) R ~ Homp(E, E).
(4) E has DCC as an R-module.
(5) Let {1} be a descending chain of irreducible ideals of R cofinal with the powers
of m. Then E = lim, R/I;, where the maps R/I; — R/I;.1 are injective.
(6) If R is Gorenstein of dimension d, H-(R) = E.

The concept of Matlis duality was first defined by E.Matlis in the 1950s and has
proved to be a very powerful tool in studying local cohomology modules.
Definition 11.39. Let M be an R-module. Then the Matlis dual MY of M is
Hompg (M, E).

Remark 11.40. Hompg(__, E) is an exact covariant functor.

g—

Theorem I1.41 (Matlis duality). Let (R, m, K) be a complete local ring and M be

an R-module.

(1) If M has ACC, then MY has DCC. If M has DCC, then M has ACC. In

either case, the obvious map M — MY is an isomorphism.

(2) As a functor from the set of R-modules to itself, _ gives an anti-equivalence

of categories of modules with ACC" and DCC.

2.3.3 Canonical modules
Definition I1.42. Let (R, m, K) be a Cohen-Macaulay ring of dimension d. Then a
finitely generated module w is called a canonical module of R if w" =~ H%(R).

Remark 11.43. There may not exist a canonical module for an arbitrary ring R and

there are such examples. However, if the ring is complete, there is always one, namely

the Matlis dual of H%(R).
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Here are some useful properties of the canonical modules.
Theorem I1.44. Let (R, m, K) be a Cohen-Macaulay ring of dimension d.

(1) A finitely generated R-modules w is a canonical module for R if and only if &

s a canonical module for R.
(2) If w and W' are canonical modules for R, then w = w'.

(3) A canonical module wr for R is a torsion-free Cohen-Macaulay module of di-

mension d.
(4) R is Gorenstein if and only if wg = R.

(5) For every prime ideal P of R, if w is a canonical module, then wp is a canonical

module for Rp.

(6) If R is a domain which has a canonical module, then there exists a pure height

one ideal J < R such that the canonical module for R is isomorphic to J as an

R-module.

Moreover, in the situation of the above theorem in part (6), we have that the

quotient R/.J has particularly nice properties.

Lemma I1.45 ([BH98] Proposition 3.3.18). Let R be a Cohen-Macaulay ring with
a canonical module isomorphic to an ideal J. Then R/J is a Gorenstein ring of

dimension d — 1. O]

Furthermore, it is known that sometimes good properties of R/J can be lifted

back to R, see [Ene03], [DSNB].

Lemma I1.46 ([Enec03] Corollary 2.9). Let (R, m, K) be an F-finite Cohen-Macaulay
local domain such that there exists an ideal J S R isomorphic to the canonical module

of R. Suppose that R/J is F-rational. Then R is F-regular. ]



CHAPTER III

Tight closure and localization problems

3.1 Quasi-parameter ideals

In this section we define the notion of quasi-parameter ideals and then use it to
give a sufficient condition for weak F'-regularity.

First, let us define the set-up in which we shall work throughout this section.

Assumption IIL.1. Let (R,m, K) be a Cohen-Macaulay local domain of Krull di-
mension d with a canonical module w. Let J denote a pure height one ideal of R

such that J =~ w.

Notation ITI.2. Let x1,...,x4.1 € R be part of a system of parameters in R that
also form a system of parameters for R/.J, and let x4 € J be such that {xy,..., 24}

is a system of parameters for R. Let I, = (a%,...,2} ;)R + 24 J < R and let

A, = (24,..., 24 )R+ J. Notice that 252, < I, = 2.
Next we give the following definition of quasi-parameter ideals.

Definition III1.3. Let R be as in Assumption III.1 and let x4,...,z; be part of a
system of parameters for R whose images form part of a system of parameters in R/.J,
then we call (z1,...,2;)+J a quasi-parameter ideal for J. All the (2%, ... xl)+J are

also quasi-parameter ideals for J. If i = d — 1, then we say that (xy,...,24-1) + J

20
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is a full quasi-parameter ideal for J. If R is a Gorenstein local ring, then J is a
principal ideal and all the quasi-parameter ideals are simply parameter ideals.
To make use of our definition we shall study the properties of quasi-parameter

ideals %I, in connection with those of I;.

Lemma II1.4. Let R be as in Assumption II1.1 and let I, be ideals defined as in
Notation III.2. Then the sequence of ideals I, = (z,..., 24, )R+ 24 < R is a

descending sequence of irreducible ideals cofinal with the powers of the maximal ideal

m of R.

Proof. Clearly, I; € m' are all m-primary, so for every ¢ there is a large enough power
of m contained in [, . Moreover, for every ¢t > 0, R/I; are Gorenstein 0-dimensional,

hence the irreducibility of I;. O

Remark 111.5. The socle of R/I; is one dimensional. Let u; be its generator. Hence,

Kuy € R/I; is an essential extension and every nonzero ideal of R/I; contains ;.

Remark 111.6. Since zt, ... 2% is a system of parameters for R, we have injective
maps R/I; — R/, defined by multiplication by z; ...xz4. Moreover, if u is a socle

generator for R/I;, then (z;...x4)" 'u is a socle generator for R/I,.

Thus if one wants to prove that R is a weakly F-regular ring, it is necessary
and sufficient to show that I; = I, for all ¢ > 0, see Theorem I1.9. Moreover, the
following lemma allows us to reduce the problem to another family of ideals, namely

quasi-parameter ideals 2l;, which is relatively easier to handle.

Lemma II1.7. Let R be as in Assumption III.1 and let I; and 2A; be ideals as in
Notation II1.2. If all of the ideals A, = («%,... 25 )R + J are tightly closed in R

then so are all the I, for all t > 0.
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Proof. Since x12(; < I, we have a well defined homomorphism of R modules
d
0:R/A — R/I,

given by multiplication by zf;. In fact, it is injective. Let z € R and suppose z};z € I,.

Then there is an element j € J such that (z — j)zf, € (¢, ..., 2% ;). Since 1,..., x4
form a regular sequence in R, z € (z4,... 24 )+ J =2,

Let u be a socle generator in R/((z1,...,74-1) + J). Then uy = (z1---2q_1)" " u
is a socle generator in R/((x},...,24_ ;) + J). We claim that (z;...24-1)" '2u is a

socle generator in R/I;. For every element r € m, we have that
r(wy . xg 1) e =r0((r . wg )T ) = 0(r(2y . wgo1) T ) = 0

and, since 6 is injective, (z1...z4_1)" 'zhu ¢ I,.
Since R/I; is a 0-dimensional Gorenstein ring, to prove the lemma it is sufficient to

show that (w1 ...2z4 1) tabu ¢ (2%, ... 25 )R+ z4J)*, see Remark II1.5. Suppose

to the contrary that (z;...x4 1) t2lue (24, ..., 24 )R+ x4 J)*, then there exists

c € R° such that for all ¢ » 0
c(xy .. xgy) 2%l e (247 9" R+ z% jldl
1.--Lg—1 TgU Tyy-oyTg_q o) s
_ . t
(c(zy ... wq_1)" Wt — j)o% e (217, 29 R,
for some j, € Jlal.
Since x?t, e ,xgt form a regular sequence in R,
cul =c(wy...wq )" Wl e (24, 2% YR+ Jl.
Hence, us € ((a}, ..., 24 )R+ J)* = (a},... 2, )R+ J.

This is a contradiction with the fact that u; is a socle generator modulo 2A;. O

The next result is an immediate consequence of the previous lemma.
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Theorem II1.8. Let R be as in Assumption II1.1 and let {2} be full quasi-parameter
tdeals defined as in Notation II1.2. If every full quasi-parameter ideal for J, i.e., ev-

ery Ay, 1s tughtly closed in R then R is weakly F'-reqular.
In fact, we conclude a stronger statement.

Theorem III1.9. Let R be as in Assumption II1.1. Suppose that for every quasi-
parameter ideal of R, tight closure commutes with localization. Suppose also that R

1s weakly F-regular. Then R is F-reqular.

Proof. Let () be a prime ideal of R of height h. If J & @, then JRg = Rg and
Rg is Gorenstein. Choose z1,...,7, € @ part of a system of parameters in R
such that their images form a system of parameters in Rg. By Theorem II.26,
(1,...,21)*Rg = ((z1,...,21)Rg)*. Hence, Rg is F-rational and, therefore, is F-
regular. Now assume that J < ). Choose x1,...,2,_1 € @) part of a system of
parameters for R whose image form part of a system of parameters in Rg and R/J.
Then (z%,...,a} ;) + J are quasi-parameter ideals for J. Hence ((a},... 2} ;) +

J)*Rg = ((«},...,2,_1) + J)Rg)*. Finally, by Theorem IIL.8, Ry is weakly F-

regular. [

We would have that tight closure of quasi-parameter ideals commutes with local-
ization if tight closure agrees with plus-closure for quasi-parameter ideals. Thus we

have a natural question.

Question II1.10. Let R be as in Assumption III.1. Is it true that for all quasi-

parameter ideals of R tight closure agrees with plus-closure?
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*

3.2 Comparison of O*ER(K) and OER/J(K)

For a local ring (R, m, K), properties of O*ER( K) play an important role in the study
of localization problems of tight closure. In this section we use the notion of quasi-
parameter ideals to reduce the study of 0*# in Eg(K) to 0*F in Eg/;(K), where J
shall denote an ideal of R isomorphic to the canonical module.

First, we define the hypothesis on the ring R which we shall assume throughout

the section.

Assumption II1.11. Let (R, m, K) be a Cohen-Macaulay excellent local domain of
Krull dimension d with the canonical module wg and let J < R be a proper ideal of
R isomorphic to wg. Let E denote the injective hull Er(K). Recall that J has pure

height one in R and R/J is a Gorenstein ring of dimension d — 1.
We shall also use the following notation.

Notation III.12. Let x1,...,x4.1 € m be part of a system of parameters in R so
that their images form a system of parameters for R/J. Let x4 € J be such that
{x1,...,24-1, 74} is a full system of parameters for R. Let I, = (2%,... a4 )+ 24J

and A, = (2t,... 2% ;) + J for all positive integers t.

Important! Unless otherwise stated, all the tight closure operations performed

in this section are over the ring R.

Lemma II1.13. Let R be as in Assumption I11.11 and let I, and A; be ideals defined
as in Notation II1.12. Then xf W ccl, <A, < I : a:f. Moreover, the following are
well defined injective homomorphisms of R-modules

(1)
R/~ R/,
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(2)
A /A, — > I¥ /1,

(3)

(z1...xq

R/LEY RyL,

(4)

(z1..2q)

It*/[t - [t*+1/[t+1

(5)

(T1.mg 1

R/Q(t —_— ) R/Qlt+1

(6)

(@1 g1

* ) £
22(t /Q[t - Qlt+1/9’[t+1

Proof.

(1) Since 2421, < I, we have a well defined homomorphism of R modules R/, —

R/I; given by multiplication by zf. Let z € R and suppose 2,z € I;. Then there is

an element j € J such that (z—j)a% € («},..., 2} ;). Since 1, ..., x4 form a regular

sequence in R, z € (zt,...,2% )+ J =2;.

(2) Let z € A}, then there exists ¢ € R° so that cz? € Al = (gl o) + J for

all ¢ » 0. Therefore, c(zh2)? € (2%, ... 2 )+ 2'9Jla) = 17 Thus z € I7.

(3) Since (21 ...2q)1; < I;41, we have a well defined homomorphism of the quotients.

Let z € R and suppose that (z;...24)z € Iy = (2™, ... 25 ) + 271 J. Then there

exist an element j of J such that (zy...24.12 — 24j)zg € Ly = (2. 20)).

Recall that xq,...,z4 form a regular sequence on R. Therefore, (x;...24-1)z €
(at+! t+1 7trl)

2 2t ) +at . Working modulo @], we get that (z ... 74_1)z € (™, ..., 25H).

Hence, z e (zt,...,2% ;) and z € I,.
) 1 »Yd—1
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(4) Let z € I¥, then there exists ¢ € R° such that ¢z? e [V = (219, . .. o))+ kgl
for all ¢ sufficiently large. Hence ¢(xy...x42)7 € (xgtﬂ)q, . ,:L"gjll)q) + ngrl)qJ[q] =

It[i]l and xq...xqz € I ;.

(5) Use the facts that R/J is Gorenstein and xy, ..., z4—1 form a regular sequence on
R/J.
(6) Let z € A*, then there exists ¢ € R° such that ¢z? e A9 = (217, .. o)) + gl

for all ¢ sufficiently large. Hence c(zy ... 24 12)7 € (xgtH)q, . ,xl(frll)q) + Jla = Q(E(i]l

and 1 ...24-12 € A}, ;. O

Lemma II1.14. Let R be as in Assumption II11.11 and let I, and 2A; be ideals defined
as in Notation II1.12. The following two diagrams of R-modules and injective R-
modules homomorphisms commute

t
Ty

R/A, —"~ R/,
-(w1-...-:pd1)i \L(a}lxd)
R/Qltﬂ i R/]t+1
-zt
at

A7 /Ay Iy /1
~(z1...xd_1)l l(xlzd)
Ql;;kﬂ/%tﬂ T I:+1/It+1

t+1
Ty

and induce a commutative diagram of direct limits

lim, 247/2, lim, I7/1,

| |

HEYR/T) = limy R/, ——  Ep(K) = lig R/,

Proof. The proof is clear from the previous lemma. O
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Notation III.15. Let R be as in Assumption III.11 and let I; and 2l; be ideals

defined as in Notation IIL.12. Let W, = lim, 2% /2, and W = lim, I}/

Remark 111.16. W, = 057 and W = 037,

Proof. First observe that HE'(R/J) = Eg/(K), since R/J is Gorenstein. It is
sufficient to show that 0579 < W. Let z € 059 then there exists a finitely
generated submodule N < E such that z € 0%. Moreover, since the direct limit
system defining E is injective, N < R/I, for t » 0. Hence z € 0xp/;,. Finally by

properties of tight closure z € [}f/I;. The proof for W is similar. ]

The next theorem is due to J. Stubbs and it will help us to compare the tight

closure of 0 in E and Eg/;(K).

Theorem II1.17 ( [Stu08]). Let (R,m, K) be a complete local ring and let V' be an
Artinian R-module. Let M be the Matlis dual of V' and let I define the non-finite
injective dimension locus in M. If u € 0, then w € Oy for all t sufficiently

large.

We shall use the injective hull F as the Artinian module in Stubbs’s theorem.
Its Matlis dual is R. When the ring R is not Gorenstein, it does not have a finite
injective dimension over itself. For any prime ideal P < R, Rp is Gorenstein if and
only if it has a finite injective dimension over itself if and only if JRp =~ Rp for
all choices of J isomorphic to the canonical module. Moreover, for all r € J, we
have that R, is Gorenstein. Hence .J is contained in the ideal defining the non-finite

injective dimension locus for R.

Theorem II1.18. Let (R, m, K) be a Cohen-Macalay complete local domain with the

canonical module wgr. If u € OE;(K), then there exists a choice of an ideal J, =~ wg
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such that u € O*E};/J (k) over R.

Proof. Let E denote the injective hull Fr(K).

Let I denote the ideal defining the non-finite injective dimension locus for R. Then
for any proper ideal J =~ wg, we have that J < I. Let J be any ideal of R isomorphic
to wg. By Stubbs’s theorem, there exists a natural number n such that if u € 0%,
then u € 0%, n. Moreover, 0%, n S 0%,,, - Let a be any nonzero element in

J". Then, since aJ < J", we have that u € 03, ,,. Recall that Er/;(K) = Anng J.

*

Therefore, u € 0 Erjan) (K

)- Since aJ =~ J =~ wg, we have the result. O
It is known that E has DCC as an R-module. If, in addition, 0% is of finite length,

then we have the following corollary.

Corollary II1.19. Let 03, be a module of finite length. Then 0}, = O*ER/J(K) for some

J = w.
Proof. Let uy,...,u, be a generating set of 0} as an R-module. Then there exist
natural numbers ny,...,ny, such that u; € 03, m for all 1 <i < m. Take n =

max{n; |1 <4 < m}. Then we have that 03, < 03, ;.. Finally, let a € J" for any

J =~ wg. Then 0% < ER/(E_U(K)' Hence the result. O

We always have that OTE};;/J( ) € 03" € E for all choices of J = wg. Therefore, we

*R

R . .
may form ;. O*ER/J( k) inside E. Denote >,. 0 By

(k) by Op. Thus we have
that O}, < 0%. By applying the above theorem we get that O}, = 07,.

Furthermore, we are motivated to give the following definition.

Definition ITI1.20. Let (R, m, K) be a Noetherian local ring of positive prime char-
acteristic p. Let I be the defining ideal of the non-finite injective dimension locus of
R and let E denote the injective hull of K over R. We say that R is amenable if 0%,

is an R-module of finite length.
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Remark 111.21. Corollary III.19 holds for an amenable Cohen-Macaulay complete

local domain.

It is a natural question if Stubbs’s theorem has analogue for finitistic tight closure.

This leads us to the following definition.

Definition I1I.22. Let (R, m, K) be a Noetherian local ring of positive prime char-
acteristic p. Let I be the defining ideal of the non-finite injective locus of R and let
E denote the injective hull of K over R. Then we say that R is finitistically amenable
if 039 ~ OZJ; 7 o for all ¢ sufficiently large and 0% has finite length as an R-module.

Immediately, we get a result whose proof is identical to that of the Theorem III.18.
Theorem II1.23. Let (R, m, K) be a finitistically amenable Cohen-Macaulay com-
plete local domain with the canonical module wgr. Then there exists a choice of an

tdeal J < R isomorphic to wgr so that O*Ei{f() = O*Eiff(K)' -

Therefore, the modules we have defined earlier, W and W}, are in fact the same

for some choice of J when the ring R has nice properties.

Corollary I11.24. Let R be a finitistically amenable ring with the hypotheses defined
as in Assumption III.1 and in Notation II1.2. Then W =~ W for some choice of

J =~ wg.

Proof. Recall that W =~ 0%/9 and W, ~ O*EZQ/J(K), see Remark II1.16. Then apply

Theorem I11.23. 0

We have that R is weakly F-regular if and only if all the ideals {I;} are tightly
closed in R, and the fact that all the ideals {2;} are tightly closed is a sufficient

condition. Hence we have the following result.
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Corollary II1.25. Let R be as in Assumption III.1. Then W = 0 if and only if

W; =0 for all choices of J. O

3.3 The J-test ideal

In this section we develop a notion of the J-test ideal which arises naturally in
the course of working on the Conjecture 1.2 stated in Chapter I. Let us define the

condition on a ring R which we use in this section.

Assumption II1.26. Let (R,m, K) be Cohen-Macaulay complete local normal do-
main of Krull dimension d with the canonical module wg. Let J be an ideal of R
1somorphic to wg.

Let x1,...,24-1 € R be part of a system of parameters in R that also form a
system of parameters for R/J, and let x4 € J be such that {xy,..., x4} is a system
of parameters for R. Let A, = (2%, ... 2% )R+ J be full quasi-parameter ideals for
J. Then we have that R/ is a Gorenstein ring for all t, as well as R/J.

As before, let W; = limy, A7 /2.

Throughout this section the operation of tight closure is performed over R.

Definition III.27. Let R be any Noetherian ring of characteristic p > 0. Let B
be an ideal of R. Then the B-test ideal of R is 78(R) = (\ge;(I :r I*), where the
intersection is taken over all ideals of R containing B.

We are primarily interested in the case when R is a ring as in Assumption I11.26
and J < R is an ideal isomorphic to the canonical module wg.

The next result shows that it is sufficient to consider quasi-parameter ideals for

J in order to define 7;(R).
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Lemma IT1.28. Let R be a ring and {24;} be a sequence of full quasi-parameter ideals

defined as in Assumption II11.26. Then 7;(R) = [),(2As : AY).

Proof. Clearly, 7;(R) < (),(&; : ;). Suppose that there exists ¢ € [),(; : A}) —
77(R), hence, there exist an ideal 2 of R and an element u € A* — 2, so that cu ¢ 2.
Choose an ideal B of R maximal with respect to the property B 2 2 and cu ¢ 5.
Then R/ is a module of finite length and the image @ of u belongs to every nonzero
ideal of R/®B and spans its socle. Therefore, R/Bu =~ Ku — R/*B is an essential
extension of R-modules. Then R/B < Eg/;(K) = [, R/%;. Finally, we get that
R/B — R/, for all t » 0 and @ corresponds to a socle element of R/%(;. Thus
u € Af and cu € A, for all ¢ » 0, which contradicts our choice of B. [

Next we shall relate the notions of W; and 7,(R). In fact, we show that the J-test
ideal is the annihilator of W;.

Consider HEH(R/J) = lim R/((2f,...,25_,) +J) = lim, /2 which is an injec-
tive direct limit system and is defined by multiplication by x; ... z4_1. Every element
n € lim R/%A; can be thought as an equivalence class [z + 24;] for some 2 € R, where
[z+20] = [w+A] for s >t if and only if (x; ... 24 1) "2 —w € A,. Moreover, since
R/J is Gorenstein, HE ' (R/J) =~ Eg/;(K).

Recall that W; = lim 247 /2, is a submodule of HEY(R/J). Tt is also an injective
direct limit system defined by multiplication by x; ... x4 1, see Lemma II1.13. Simi-
larly, every element 1 € W can be represented by its equivalence class [z + 2], for
some z € ;.

We do not have a natural action of the Frobenius endomorphism Fr on HE(R/.J).
However, we can define an endomorphism which has properties very similar to that

of the Frobenius.
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Lemma IT1.29. Let R be as in Assumption II11.26. Let ¥ : H-(R/J) — H:Y(R/J)

be such that if n = [z +A,] € HEY(R/J), then W(n) = [P + Ay]. Then
(a) W is a well-defined endomorphism of H- ' (R/J).

(b) Wy is U-stable submodule of H-*(R/J), i.e., U(W;) < Wj.

Proof.

(a) Suppose that [z + ;] = [w + A,] € HEY(R/J) with s = ¢. Then

s

(... 2q1) "2 —we,.

Hence

((x1...241) 2 —w)P e AP = 2, .
Thus
[27 + 2] = [wP + Aps).
(b) For every n = [z + ;] € W, there exists ¢ € R° such that cz? € Al 2, for

all ¢ » 0. Equivalently, ¢(z?)? € Q(z[z] for all ¢ sufficiently large. Thus, 2 € 7, and

F(n) = [27 +Ap) € Wy. O
Similar to the notion of an F-stable ideal in [Smi94], we define W-ideals as follows.

Definition ITI.30. For a ring R as in Assumption I11.26, let Z < R be an ideal. Then
we say that it is a W-ideal if Annga ;) 7 is a U-stable submodule of HIY(R/T).

We also get a characterization of W-ideals analogous to the Lemma 4.6 in [Smi94].

Lemma II1.31. Let R be a ring and {2;} be a sequence of quasi-parameter ideals
defined as in Assumption II1.26. Let T be an ideal of R. Then I is a V-ideal if and

only if for any z€ R if Tz < 244, then Iz < 2,,.
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Proof. For an element n = [z + ;] in HEY(R/J), In = [Tz + 1] = 0 if and
only if 7z < 2. Hence, n € Anan‘q(R/J) Z. Then 7 is a U-ideal if and only if

U(n) = [ + A,] is killed by Z. O
The next lemma is analogous to Proposition 4.8 in [Smi94].

Lemma II1.32. Let R be a ring and {2;} be a sequence of quasi-parameter ideals
defined as in Assumption II11.26. If T is a V-ideal of R, then for any prime ideal P

of R, TRp is a V-ideal of Rp.

Proof. The proof is similar to that of Proposition 4.8 in [Smi94]|. We use the criterion
from the previous lemma to prove the statement.
First let P be a prime ideal of R of height A such that J & P. Then JRp = Rp.

ZRp is a W-ideal if Anan&l T is U- stable in Hy; (Rp/(JRp)). However,
P

(Rp/(JRP))
Hp g, (Re/(JRp)) = 0.

Let P be a prime ideal of R of height h such that J < P. Let x1,...,24.1 € R
be such that they form a part of a system of parameter ideals for R and a system
of parameters for R/J and such that images of z1,...,2,1 € P form part of a
system of parameters for Rp and a system of parameters for Rp/JRp. Let B =
(x1,...,2p-1) + J. Then BRp is a quasi-parameter ideal of Rp.

Let z/1 € Rp such that ZRpz € BRp. Then since R is a domain, there exists an

element f e R — P such that fZz < . Hence
fIz< (21,... ,xp_,xh, . x) )+ J
for all N > 0. Since Z is a V-ideal, by Lemma II1.31 we have that

Z(f2)P < (2, ... ab_ a4+
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Therefore,

o0
I(fz)P < [\ (2, oah_y 2, o) + ).
N=0

Finally, we have that

I(fz)P < (af,...,ah )+ T
Hence apply Lemma II1.31 again to get the desired result. O

Remark 111.33. As a submodule of HX ' (R/.J), W; has DCC over R.

Consider the Matlis dual of W;.

Wj = Homg(Wy, E) = Hom(lim A} /Ay, E) = Im (A} /A;)” = lim R/(A; :p A7).
t t t
Here we used the facts that if M < E, then M =~ R/Anng M and R/2; < E.
Moreover, since the direct limit system defining W is injective, the inverse limit
system of W is surjective and hence ;11 : 25, < 2, : A} for all £ > 0. Therefore,

Wy = R/()@ :r 247).

t>0

Thus we have the following lemma.
Lemma II1.34. Let R be as in Assumption I11.26. Then Wy = R/7;(R).

Corollary III1.35. Let R be a ring defined as in Assumption II11.26. If every ideal

of R containing J is tightly closed then R is weakly F-reqular.

The next result is a weaker version of similar statements in [Ene03] and [DSNB],

see Lemma 11.46.

Corollary I11.36. Let R be a ring defined as in Assumption 111.26. If R/J is weakly

F'-regqular, then so is R.
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Proof. Observe first that, by persistence, 7(R/J) < 7;(R)(R/J), then the result is
immediate. O
Moreover, combining with the results we obtained in the previous sections, we

have the following theorem.

Theorem II1.37. Let R be as in Assumption I11.26. Suppose also that R is finitis-

tically amenable. Then there exists a choice of J such that 7;(R) = 7(R).

Proof. Use the facts that W =~ W) for some choice of J and the test ideals are

annihilators of W and W respectively. O

Our next goal is to show that if we assume that R is locally F-regular in addition
to hypotheses in Assumption I11.26, then W; has finite length as an R-module.
The following result shows that if the tight closure of quasi-parameter ideals com-

mutes with localization, then the J-test ideal commutes with localization.

Lemma II1.38. Let R be a ring as in Assumption I11.26. Let P be a prime ideal of
height h and J < P. Choose x1,...,xn_1 € P so that they form a system of parameters
for Rp/JRp and a part of system of parameters in R and in R/J. Suppose that for

all prime ideals P # m and parts of a system of parameters as above, the following

holds for allt > 0
(@1 2hoy) + IR = ((af, ., @) _y) + JRp)*T.
Then 7;(R)Rq = Tir,(Rq) for every prime ideal Q of R.

Proof. First assume that J & @, then JRgy = Rg and 7;r,(Rqg) = Rg. On the other
hand, J < TJ(R), SO TJ(R)RQ =2 JRQ = RQ.
Now consider the case when J < (). Choose x1,...,x,_1 € () as in the statement

of the lemma, where ht Q = h. Let B, = (2%,..., 2} ;) + J be ideals of R. We have
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that 77r, (Rg) = (,(B: Rq ry (Be Ro)*) = (,(B: Rg ry B} Ro) = (,[(B: r
B;)Rq]. Let ¢ € 75(R) = (),5,(I : I*), then ¢B; < B, for all t. Therefore,
c/l1 € (B, :r By)Rq for all t and ¢/1 € g, (Rq). So, T;(R)Rg S Tir,(Rq).

Now let us prove the opposite inclusion. Recall that Wy = R/7;(R), hence

77(R) = Anng W = Anng W. Therefore,
77(R)Rg = (Annp W) ®g Rg =
= Annp, (WY ®r Rg) =
= Anng, (WY ®g Rg)** =
= Annp, (Hompg, (WY ®r Ro, Er,(Ro/QRq))) =
= Anng, (Homp(W", Er(R/Q)) ®r Rq) =
= Anng, (Homg(R/7,(R), E(R/Q)) ®r Rq) =
= Anng, Annp /) (7(R)Rg).

(B¢ Rg)* _ :
B Anng,, lim

B Ro

We also have that 7,r,(Rq) = Anng, h_f,ﬂt t B Rg

To show that 7;r,(Rq) < 77(R)Rq it is equivalent to prove that

B} Rg
B¢ Ro

Anng, lim, < Anng, Anngrq)(1/(R)Rg)

and therefore, since Eg,/sr,(Rq/QRq) S Er,(Rq/QRq), it is sufficient to prove
that

. BFR
h_II)lt %tt RS = AHHERQ/JRQ (RQ/QRQ)(TJ<R>RQ)-

For simplicity of notation, let £’ denote Eg,/sr,(Rq/QRq). Let ¢/1 € 7;(R)Rq
and n € Anng (7,(R)Rg) € £ = Hg&é(RQ/JRQ) = lim Ro/ % Rg. We know that
W; is a W-stable submodule of Hi~1(R/J), hence Anng W, = 7;(R) is a P-ideal

of R by definition. Based on Lemma II1.32, 7,(R) R is a U-ideal of Rg, hence we
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have Anng (7;(R)Rg) is an F-stable submodule of £’ and F'°(n) € Anng (7;(R)Rg).
Finally, we get that (¢/1)F¢(n) = 0in E’ for all e > 0. Suppose that n = [2/1+B; Rg]|

with z € R. Then (¢/1)F¢(n) = [cz9/1+B4, Rg| = 0, s0 cz? € Bl for all ¢ = p° > 0.

Since ¢ # 0, c€ R° and z/1 € By Rq. Thus, n € lim, ggg. O

Theorem II1.39. Let R be a ring as in Assumption I11.26. Suppose that for every
prime ideal P # m of R, the local ring Rp is weakly F-reqular. Then W; has finite

length as an R-module.

Proof. Since R is complete, it suffices to show that the Matlis dual W is a module
with DCC over R.

Since W is a module with DCC over R, its dual satisfies ACC. Therefore, to prove
the theorem It is sufficient to show that Wy is supported only at the maximal ideal
m. Let P € R be a prime ideal of height h containing J and choose x1,...,x,_1 € P
so that (x1,...,x5_1) + J is a quasi-parameter ideal for J. Then by persistence of
tight closure we have that ((z%,...,2% ) + J)*Rp < ((2%,..., 2% ) + JRp)*F/P.
By our assumption, Rp is weakly F-regular, so ((«},...,2} ) + JRp)*R/P =
((2%,...,24_ )+ J)Rp, hence ((«,... .2t )+ J)*Rp = ((«,... 2t )+ JRp)*/".
Therefore, by the above lemma 7;(R)Rg = Tsr,(Rq) for all prime ideals @ of R.
Moreover, 7;,(R)Rg = R for all Q # m. Since Wy = R/7;(R), we have that

(W))q = Ro/Tir,(Rg) = 0 for for all Q # m. O

Corollary I11.40. Let (R, m, K) be a complete Cohen-Macaulay local ring. Suppose
that for every prime ideal P # m of R, the local ring Rp is weakly F-reqular. Then
the J-test ideal T;(R) is m-primary. Moreover, if R is finitistically amenable, then

the test ideal of R is m-primary.
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Proof. We have that for all J =~ wg, 77(R) = AnngW; and 7(R) = AnngW.

Moreover, W; =~ W for some choice of J in case R is amenable. O

3.4 Big ideals

In the theory of tight closure we study rings which have the property that every
ideal is tightly closed and it is equivalent to the property that every submodule
of a finitely generated module is tightly closed. Then one might ask the following
question. Can one characterize finitely generated modules such that all submodules
are tightly closed? We shall see that this reduces, in a sense, to the study of ideals
I of R such that every submodule of R/I is tightly closed over R, which we refer to

as big ideals.

Theorem II1.41. Let R be a Noetherian commutative ring of positive prime charac-
teristic p. Let M be a finitely generated R-module. Suppose that for every submodule

N of M, N}, = N. Then every ideal of R/ Anng M is tightly closed over R.

Proof. Throughout this proof all tight closure operations are taken over the ring R.
First observe that if M; and M, are finitely generated R-modules with the prop-
erty that every submodule is tightly closed then M; @ M, has this property as well.

Let N < M; @ M, be any submodule. We have a short exact sequence
0— My + N — My @M, — Mp/(N( | Ms) — 0.
Hence M; + N is tightly closed in M; @ M>. Next, we have a short exact sequence
0— N — M+ N — M/(N()|M)— 0.

Therefore, N is tightly closed in M; + N and hence in M; @ M.
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Now let M be a finitely generated R-module with the property as in the statement
of the lemma. Let uq,...,u; be generators of M. Then we have a short exact

sequence

0— Anny,, R —> R — M® -

such that

r—ru; ®...rug

Then R/Anny; R — M® and every R-submodule of R/ Anny, R is tightly closed

over R. OJ

Therefore, we can focus on rings R/I in which every ideal is tightly closed over
R.

The next natural question one might ask: if we have a quotient ring with the
property as above, is R/I weakly F-regular? The answer is no. Take R = K|z, v, z]
the polynomial ring over a field K. Let I = (23 +y3+2?) be an ideal of R. Then every
ideal of R/I is tightly closed since R is regular, but R/I is not weakly F-regular.

However, we might ask this question. Let I be an ideal of R such that every ideal
of R/I is tightly closed. Does there exist an ideal J of R contained in I such that

R/J is weakly F-regular? In the above example, we have that J = (0) works.

Remark 111.42. If I has the property that every ideal of R/I is tightly closed over R,

then every ideal in R containing I is tightly closed in R.
Remark 111.43. The question can be positively answered for a Cohen-Macaulay com-
plete local normal domain. If I =~ wg, then J = (0), see Corollary I11.36.

Corollary II1.36, originally proved by F. Enescu in a more general setting and gen-

eralized even further by A. De Stefani and L. Nunez-Betancourt, leads to a question:
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for an F-regular ring R, does there exist an ideal J =~ wg such that R/J is F-regular.

Unfortunately, the answer is no, as an example in [DSNB] shows.



CHAPTER IV

Nearly commuting and commuting matrices

4.1 Introduction and preliminaries

In this chapter we study algebraic sets of pairs of matrices such that their com-
mutator is either nonzero diagonal or zero. We also consider some other related
algebraic sets. Let us define relevant notions.

Let X = (%ij)1<ij<n and Y = (¥ij)1<ij<n be n x n matrices of indeterminates
over a field K. Let R = K[X,Y] be the polynomial ring in {x;;, ¥ }1<i j<n and let
I denote the ideal generated by the off-diagonal entries of the commutator matrix
XY —Y X and J denote the ideal generated by the entries of XY —Y X. The ideal I
defines an algebraic set of pairs of matrices with nonzero diagonal commutator and
is called an algebraic set of nearly commuting matrices.

Let u;; denote the (7, j)th entry of the matrix XY — Y X. Then [ = (w;; |1 <17 #

j<n)and J = (u; |1 <1, 7 <n).

Theorem IV.1 ([Ger6l]). The algebraic set of commuting matrices is irreducible,

i.e., it is a variety. Equivalently, Rad(J) is prime.

The following result is due to Knutson [Knu05], when the characteristic of the

field is 0, and to H.Young [Youll] in all characteristics.

Theorem IV.2 ([Knu05], [Youll]). The algebraic set of nearly commuting matrices

41
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is a complete intersection, with the variety of commuting matrices as one of its

wrreducible components.

Theorem IV.3 ([Knu05], [Youll]). When K has characteristic zero, I is a radical

1deal.

A. Knutson in his paper [Knu05] conjectured that V(I) has only two irreducible

components and its was proved in all characteristics by H.Young in his thesis, [Youll].

Theorem IV.4 ([Youll]). If n = 2, the algebraic set of nearly commuting matrices
has two irreducible components, one of which is the variety of commuting matrices
and the other is the so-called skew component. That is, I has two minimal primes,
one of which is Rad(J).

Let P = Rad(J) and let @) denote the other minimal prime of I, i.e., Rad(l) =
PNQ.

The following conjecture was made in 1982 by M. Artin and M. Hochster.

Conjecture IV.5. J is reduced, i.e., J = P.

It was answered positively by Mary Thompson in her thesis in the case of 3 x 3

matrices.
Theorem IV.6 ([Tho85]). R/J is a Cohen-Macaulay domain when n = 3.

The following known results will show that the properties of varieties defined by

P and (@) are closely related.

Definition IV.7 ([HU87]). Let Z and J be two ideals in a Cohen-Macaulay ring A.
Then Z and J are said to be linked, if there is a regular sequence o = ay, ..., qx in

Z()J suchthat a:Z=7J and o : J = T.
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Lemma IV.8. Let A be a Noetherian Cohen-Macaulay ring and let J be a radical
ideal of A generated by a reqular sequence and with the primary decomposition J =

PAOQ. ThenT:P=Q andJ:Q = P, i.e., P and Q are linked.

Proof. Clearly, PQ) < J. Hence we need only to show that J: P Q and J: Q < P.
Let z€J: P,then Pz J< . Then since PE @, z€ Q. J: Q < P can be proved

similarly. O

For more properties of linkage see [HU87].

The next theorem is due to C. Peskine and L. Szpiro and it shows that quotients
by ideals which are linked share certain nice properties. We shall make use of this
result later in the chapter when we discuss F-regularity of the variety of commuting

matrices and the skew-component.

Theorem IV.9 ([PS74]). In the situation of the above lemma, A/P is Cohen-
Macaulay if and only if A/Q is Cohen-Macaulay, in which case the corresponding
canonical modules are wa/p = (P+Q)/P and wajg = (P+Q)/Q. Hence, A/(P+Q)

is Gorenstein of dimension dim A — 1.

Now let us go back to algebraic sets of nearly commuting matrices and their
irreducible components. First, let us take a look at what we have when n = 1, 2.

When n = 1, everything is trivial. More precisely, [ = P = Q = K|[x11,y11]-

When n = 2, without loss of generality we may replace X and Y by X — z9l,
and Y — ygol,, respectively. Here I, is the identity matrix of size n. Denote z/;, =

T11 — T22, Y13 = Y11 — Yo2. Then the generators of I are 2 by 2 minors

! /
Ty T12 Ty 21

Uig = , U2 = —
/ /
Y11 Y12 Y11 Y21



44

The diagonal entries of XY — Y X are

T12 T21 T12 T21
Uyl = , U2 = —

Y12 Y21 Y12 Y21

. i . . xln T2 T21
Then J is the ideal generated by size 2 minors of and therefore,

Y Y2 Yn
J = P is prime. We also have that Q = (2}, };). Moreover, I = P()(Q is radical

and P + Q) = x12Y91 — T21y12 is prime.

We have that

(wigua1)P~' = (#1912 — 12y1))P (@Y1 — 21y}, )P ' =

O N a -1 p—1 @ a— o«
Z Z +B( >( 3 >(5’5/11) +6(y£1)2(p b= ﬁxml 9121’21 ?/51-

-0

Therefore (U122 )P~ 1 has a monomial term (2} ,9/}, 71221 )P~ with coefficient (—1)P~1.
Since I'P1 : I = (uypug )P~ + 171, R/I is F-pure, see Fedder’s criterion Lemma IV.12.
Furthermore, determinantal rings R/P, R/Q, R/(P + Q) are F-regular, see [HH94b].

Therefore, for the rest of the chapter we shall use the following notations.

Notation IV.10. Let n > 3 be an integer. Let X = (2;;)1<ij<n a0d Y = (¥ij)1<ij<n
be n x n matrices of indeterminates over a field K. Let R = K[X, Y] be the polyno-
mial ring in {z;;, ¥ij}1<i j<n and let I denote the ideal generated by the off-diagonal
entries of the commutator matrix XY — Y X and J denote the ideal generated by
the entries of XY —Y X. Let P denote the radical of J and @) be the other minimal

prime of Rad(I).

4.2 F-purity

In this section we show that the coordinate ring of the algebraic set of pairs

of matrices with a diagonal commutator is F-pure in the case of 3 by 3 matrices.
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Moreover, we also prove that it implies the corresponding fact for its irreducible
components, the variety of commuting matrices and the skew-component, and their
intersection.

First we state two lemmas due to R. Fedder and this includes a criterion for F-
purity for finitely generated K-algebras and which has a particularly convenient form

for complete intersections.

Lemma IV.11 (Fedder [Fed97]). Let S be a regular local ring or a polynomial ring
over a field. If S has characteristic p > 0 and I is an unmized proper ideal (homo-
geneous in the polynomial case) with the primary decomposition I = (;_, 2;, then

1P =, @l 2.

Lemma IV.12 (Fedder’s criterion [Fed97]). Let (S,m) be a regular local ring or a
polynomial ring over a field and its homogeneous maximal ideal. If S has character-

istic p > 0 and I is a proper ideal (homogeneous in the polynomial case), then S/I

is F-pure if and only if IP) : I ¢ ml?],

Next result is a straightforward consequence of the above two lemmas. It will

prove to be quite useful for us.

Lemma IV.13. Let S be a regqular local ring or a polynomial ring over a field.
Suppose that S has characteristic p > 0 and I is an ideal of S (homogeneous in the
polynomial case). Suppose also that S/I is F-pure and I = (;_, ; is the primary
decomposition. Then S/(;, +...2,,) is F-pure for all 1 < iy < ... < i, <n and

foralll <m < n.

Proof. Observe first that (2, +... 20, )P g (%, +...2;,) = (", AP ;) 2

=1\
ﬂ?zl(ﬂl[p] :2;) = (I : I). The rest is immediate from Lemma IV.11 and Lemma IV.12.

]
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The above lemma is closely related to results on compatibly split ideals, cf [ST12].

Immediately we get the corresponding result for our algebraic set.

Corollary IV.14. Suppose that the coordinate ring of the algebraic set of nearly

commuting matrices R/I is F-pure. Then R/P, R/Q) and R/(P + Q) are F-pure.
Next, we use Fedder’s criterion to show F-purity of R/I in case when n = 3.

Theorem IV.15. Let K be a field of characteristic p > 0 and let n = 3. Let R be a

ring as in Notation IV.10. Then R/I is F-pure.

Proof. Recall that I is generated by a regular sequence {u;;|1 < i # j < n}. There-
fore, 1PV : T = (T, ., si<n ufj_l)R + IP1. Thus by Fedder’s criterion it is sufficient to

prove that [, _,. j<n ufj*l ¢ ml?l. We show this by proving the following claim.

. 71 . .
Claim. If 1 = 219713721 723%31T33Y11Y12Y23Y31Y32Y33, then pP~" is a monomial term

p—l . .
of [ [1<inje3ui;  with a nonzero coefficient modulo p.

Proof. We compute the coefficient of #~1. Tt can be obtained by choosing a monomial

from every wu;; in the following way:

urp (= w1y11)* (213y32)™"

us : (—asy12)® (212Y23) 7 (—213Y11) 7 (£13Y33)
Upy : (—T31Y23) ™ (T21y11)™ (T23y31 )"

Us : (Ta3ys3)™* (—233Y3)™

usy : (—21y32)* (233y31)% (—231Y33)"° (£31911)%
usy : (231912)" (—12y31) % (233Y32)7°

Then the exponents Ay and By of each x4 and yg respectively are

Ay =01+ Ba+ Bs Ao = o + 73+ ay
Az =P +72+ 92 Asi = a3 + 75 + 05 + ag

Aoy = B3+ a5 Asz = Bs+ B5 + %
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Bii =01 +7+ B3+ 05 B3y = v3 4+ 85 + Bs
Bis = ag + Bsy = 31+ as + v
Bas = By + a3 + Bsz = 09 + g + 75

In addition, denote

Cr2 = a1 + fy,

Ciz = az + P2 + 72 + 0,

Co1 = az + B3 + 73,

Coz = ay + Py,

Cs1 = a5+ B5 + 75 + 05,

Cs2 = ag + P6 + -

Our goal is to find all nonnegative integer tuples a = (v, ..., a5), 8= (B1,...,06),7 =
(V2,735 Y5, Y6), 0 = (05, 06) such that Ay =p—1, By =p—1forall 1 <s,t<3and
Cii=p—1forall 1 <i=#j<3.

Notice that the linear system does not have a nonzero determinant: the sum of
the first 12 equations is twice the sum of the rest 6 equations. Therefore, there is
not a unique solution.

The above linear system can be solved using standard methods from linear algebra

and has the following solution

o a b d p—1—b—a+d a p—1—5b
153 p—1—a p—1—a—-b p—1—a a+b—d p—1—a—-b+d b
y - a—c a—d — b+a—-d—c 0
0 — c — — c—a —

where column vector [«, 3,7, §] represents the matrix of solutions and a, b, ¢, d are
elements of the field K.
Since we look for nonnegative integer solutions we must have that a = ¢ and

a,b>dand a+b<p—1. Hence we have that
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«@ a b d p—1—-b—a+d a p—1—0b
B 1|1 | p=-1-a p—1-a—-b p—1-a a+b—d p—1l—a—-b+d b
v — 0 a—d — b—d 0
0 — a — — 0 —

Therefore, the coefficient of ;P! is the sum of expressions of the form

(—1)cateetmtastitastrs+fo((h — VN6 /(aql. . ag!By! ... Blvalys!vs!ve!05106!)

where o = (ala s 7a6)a B = (ﬁla s 766)77 = (72773775776)7 5 = (55756) run over

all solutions of the linear system above. That is,

<p;10/2ab>d§b<p1(_1)ad<p;1)2<p;1)2<ai;i d)2<p_i - b) <a +Z— d) @

which modulo p is equivalent to

pzl/z 5 (_1)a_d(p—1—b)(a+b—d>(b)
d=0 a,b=d,a+b<p—1 a b d

It is also can be written as

or

ZEE e ()0

The following lemma shall show that the above expression is equal to 1 for all values

of p. In fact, for this purpose p does not have to be prime.

Lemma IV.16. Let C,, = " OZd 0 D P(—1)* d(m= b) (‘”Z_d) (Z) Then Cy, =

a

for allm > 1.

Proof. We shall prove a stronger statement.



Claim. Let B,,, = >_

Proof. First observe that By, ,, = >." Zgzd(—l)“*d(

m
a=0

m

(=)(%
Let Am,b,d = Z

2

m—>b
a=d

the difference
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m—>b
a

a+Z_d) (Z) Then for all m > 1

0 Zad (1 (") (

0 fogsb<sm—1;

Bm,b =

1 if b=m.

m—b
a

)(

‘”27‘1) (Z) = land By, =

) = 0. Hence we may assume that 0 < b < m.

(_

m—>b
a

a+2_d)7 then By, = ZZ:O(—l)d(Z) App.a. Consider

D (")

Am,b,d - Am,b,d-‘rl =

m—>b

’g(_l)a(m;b) (a+2—d) _a;‘m(_l)a(ma—b) (a+b;d— 1) )
(_1)d<md—b> . gl(_l)a<m;b)(<a+2—d) - <a+b;d—1>) _
Using Pascal’s identity,a ;Ve get
() e () -
B ()
ml(bl)(_l)a (m —1—(b— 1)) (a + (l; : 1) - d>.

a=d

Thus we have that

Am’de — Am,b,d+1 = Am—l,b—l,d forallm—-1>b>d+1and d = 0.

Therefore,
b—1 b—1
b—1 b—1
Bosi = 207 Aneicna = BEV(" ) s = A =

d=0 d=0

b—1 b—1

b—1 b—1
Z(—l)d( J >Am,b,d - ;}(-Dd( p >Am,b,d+1 =

d=0
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d=0 d=1
b—1 b
b\b—d b\ d
—D)* ) —An Y (=D ) Ampa =
d=0( ) (d) 2 7b7d+d=1( ) <d)b byd

iyl
gl
—
|
—_
SN—
a
N
IS~

)Am,b,d + Ao+ (D0 A0 =

& b
Z(—l)d<d) Ampd = Bmp-
d=0

Thus we have that B,,_1p-1 = Bppforallm>1landm—-1>0b> 1.

In case m = 1, we only have B;( = 0. Finally, use induction on m to conclude
that B, =0forallm >1and m—1>b.

Thus, Cy, = D% o Bmp = 1. O

Finally, we complete the proof of Theorem IV.15. We have that [ [, _, si<n fj_l ¢

£

mlPl and R/I is F-pure when n = 3. O

Corollary IV.17. Let R be a ring as in Notation 1V.10. When n = 3, R/P, R/Q

and R/(P + Q) are F-pure Cohen-Macaulay rings and R/(P + Q) is Gorenstein.

Corollary IV.18. Let R be a ring as in Notation IV.10. Then P + @ is radical

when n = 3.

Remark TV.19. We shall prove in the next section that the radical of P + () is prime,
which will imply that P + @ is prime when n = 3. In particular, we shall have that

R/(P + Q) is a domain when n = 3.

4.3 Irreducibility of P + ()

In this section we prove that the intersection of the variety of commuting matrices

and the skew-component is irreducible. But first we need to define some notions.
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Definition IV.20. Let X be an n by n matrix of indeterminates. Then D(X) is an
n by n matrix whose ith column is defined by the diagonal entries of X*~! numbered
from upper left corner to lower right corner. Let P(X) denote the determinant of
D(X).

Theorem IV.21 ([Youll]). P(X) is an irreducible polynomial.

Remark 1V.22. P(X) = P(X — al), where a € K and I € M, (K) is the identity
matrix.

The next two lemmas are due to H. Young. They give us the connection between

the variety defined by P(X) and the algebraic set of nearly commuting matrices.

Lemma IV.23 ([Youll)). Given an n x n matriz A, if there exists a matriz B such

that [A, B] is a non-zero diagonal matriz, then P(A) = 0.

Lemma IV.24 ([Youll]). There is a dense open set U in the variety defined by
P(X) where for every point A in U, there exists a matriz B such that [A, B] is a

nonzero diagonal matriz. O

The following notion of a discriminant is of significant importance in matrix the-
ory. We use it in this section in order to reduce our study to the case when commuting

matrices have a particularly simple characterization.

Definition IV.25. Let A € M,(K). Then the discriminant A(A) of A is the
discriminant of its characteristic polynomial. That is, if K contains all the eigenvalues

)\17 ey >\n of A, then A(A) = H1<i<j<n()\i - >‘j)2'

Fact. Let A € M,(K) be a matrix such that A(A) # 0, or equivalently, A
has distinct eigenvalues. Then a matrix B commutes with A if and only if B is a

polynomial in A of degree at most n — 1, see Theorem 3.2.4.2 [HJ85].
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Remark 1V.26. P(X) is an irreducible polynomial of degree n(n —1)/2 and A(X) is
a polynomial of degree n(n—1). Moreover, when n > 3, P(X) does not divide A(X).
This can be proved by showing that there exists a matrix A with the property that

P(A) = 0 while A(A) # 0. For example, for this purpose one can use the following

matrices.
0O 1 O 0 0
0O 0 1 . 0 0
~ 0 0
E, = o o if ptn, and E, = , otherwise.
0 Enfl
O 0 0 . 0 1
1 0 0 0 0

The characteristic polynomials are 2 — 1 for E, and z(z"! — 1) for E,.

Our next goal is to show that A(X) is not in any of the minimal primes of P + Q).
We do it by proving that the dimension of R/(P + @) drops when we kill A(X).

Now lets us define the set-up which we need to state and prove our next result.

Let m be an integer such that m < n. Fix a partition (hy,...,h,) of n, that is,
choose positive integers hq, ..., h,, such that hy + ... + h,, = n. Let J; be an upper
triangular Jordan form of a nilpotent matrix of size h;. For each h; there are finitely
many choices of J;. Let J = (Ji,...,J,) and let I; denote the identity matrix of size
h;.

For any m-tuple A = Ay, ..., A, of distinct elements of K, let J(A) = J( A1, ..., Am)
be a matrix such that for all 1 < ¢ < m, the blocks \;I; + .J; are on the main diagonal.
That is, J(A) is the direct sum of matrices A\;I; + J;.

Let A = {(A1,...,Am) €A™ |\ # ) forall 1 < # j <m}. It is an open subset
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of A™ and therefore is irreducible and has dimension m. Let
Wy ={Ae M,(K)| Ais similar to some J(A1,...,A\y) with Ay, ..., A, € K distinct}.

Let ¢; denote the dimension of the set of matrices that commute with J()), for
some A. This number is independent of the choice of A, since J(A) commutes with a
matrix A if and only if A is a direct sum of matrices A; such that each A; has size
h; and A; commutes with J;. Moreover, c; is the dimension of the set of invertible

matrices that commute with J()), for some \.

Lemma IV.27. The dimension of Wy is n®> — c; + m.

Proof. Define a surjective map of algebraic sets
GL,(K)x A —> W,

such that

(UM, Am) = U N T, AU

Fix A = (A\,..., An). Then
071 (J(A) = {U € GL(K) [U I = JA)} = {U € GL(K) | JAU = UJ(A)},

that is, it is the set of all invertible matrices commuting with J().

Let M = U 'J(A)U € Wy and let V € 671(M). Then U'J AU = V-LIQA)V
and J()A) = (UVYH)7LJQ)(UVY). Hence, V € 071 (J(A))U. Therefore, 671 (J()))
and 6~ (M) have the same dimension. Since the dimension of W is the dimension
of GL,(K) x A minus the dimension of a generic fiber #7'(J())), we have that the
dimension of Wj is n? — c; + m.

Moreover, the set of pairs of matrices (A, B) € M,,(K) x M, (K) such that A and

2

B commute has dimension (n? —c; + m) + c¢; = n> + m < n® + n. O
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Now we are ready to prove the following lemma.

Lemma IV.28. Let X = (x;;) be an n by n matriz of indeterminates over a field
K. Let S = K[X] and let P = det D(X). Then the discriminant A(X) of X is not

in any of the minimal primes of the ideal (P)R.

Proof. We prove the lemma by showing that the dimension of R/(P + Q) drops when

we kill A(X). This is done by proving the claim below.

Claim. The dimension of the set W = {(A,B) € M,(K) x M,(K)|[A,B] =

0, A(A) =0, P(A) =0, P(B) = 0} is at most n? + n — 2.

Proof. Let V. = {(A,B) € M,(K) x M,(K)|[A,B] = 0, A(A) = 0} and V,, =
{(A, B) € V| A has m distinct eigenvalues }. Then we have that dim V,, = n* + m
and V = U::1 Vin. Therefore, dimV < n? + n — 1. Notice that since A(A) = 0,
m<n-—1

Similarly, let W,,, = {(A, B) € W/| A has m distinct eigenvalues }. Then W =
UZ;11 W,,. For each value of m, W,, < V,,. Therefore, the dimension of W is at
most n? + n — 1. Moreover, W is a closed subset of V defined by the vanishing
of P(X) and P(Y). To prove the lemma we need to show that dim W cannot be
n? —n — 1. We do this by showing that W # V. In other words, we show that there
are pairs of matrices (A4, B) € V but not in W, i.e., either P(A) # 0 or P(B) # 0.

Let A € M,(K) be a matrix with distinct eigenvalues A = A\; = Ao, A3,..., \p.

Then A is similar to a Jordan matrix in two possible forms.
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A0 0 0 0
0O XN 0 O 0
Case 1. A is similar to J = 0 0 X O ... 0
0 0 0 0 ... X\,
Take B = diag(ay, ..., a,) be a diagonal matrix with distinct entries on the diago-

nal. Then [A, B] = 0 and P(B) = [[,,_;<,(ai—a;) # 0. Hence dim W < n®+n—2.

A1 0 0 0
0O AN 0 O 0
Case 2. A is similar to J = 0 0 X O ... 0
0 0 0 O An
[ T )\4 0 0
A1 0
Jo| O 0 X5 ... O
Write J = ,where Jy=| 0 N 0 |andJ; =
0|
0 0 A3
- - 0 0 An
0 0 a
Uy | O
Take an n by n block-diagonal matrix U = suchthat Uy = | p ¢ 0
0 |U,
0 d e

and U; € M,,_3(K) are invertible matrices with abcde # 0.
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Our goal is to show that P(U~'JU) # 0. First, we shall prove it for the case of 3
by 3 matrices, i.e., for Uo_lJOUO.

Observe that P(Uy ' JoUy) = P(Uy ' JoUp — M) = P(Uy H(Jo — M) Up).

Denote M = U~Y(J — AI)U and My = Uy (Jo — AI)U.

We have that

ce ad —ac

Uy'=1/(abd) | —be 0 ab

and

bee  ce? —acd(A3 — )  —ace(A3 — )

My = Uy ' (Jo = AU = 1/(abd) | —b2%e —bce + abd(Xs — A)  abe(As — \)

bd bed 0

Moreover,

0 —abed®(\s — A2 —a2bede(Ag — \)?

Mg =1/(abd)* | 0 (abd(\s —\))?  a?bPde(Ns — \)?

0 0 0

In particular, the diagonal diag(M¢) = (0, (A3 — A\)*,0) for all ¢ > 2. Then

1 bee 0

P(Mp) =det | 1 —bee+ (A3 —A) (A3 —A)? | =bee(As = A)? # 0.

1 0 0

Finally,
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1 bce 0 0

1 —bece+A3—A ()\3 — )\)2 ()\3 — )\)3 ()\3 — )\)ni1

1 0 0 0
P(M) = det

1 A — A YD LN O VDL Ay — At

1 An — A A=A A= A)? (Ap —A) 1

Subtract the third row from every other row

0 bce 0 0

0 A=A (A3—A)2 (A3—A)?°

1 0 0 0
= det

0 A=A (AM—A2 (A—A?

0 A=A (u—=A2 (A, — A3

0
()\3 _ )\)n—l
0

()\4 — )\)n—l

(Ao — A

Subtract from the ith row (A; — X)/bce times the first row, for all i # 1, 3:

0 bce 0 0
0 0 (M3— )\)2 (A3 — )\)3
1 0 0 0

= det
0 0 (M—XA7 (M- )\)3
0 0 (A—=XN2 (M= ))3

(Ag — A

(A — )

(An — A
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| a— 2 L (g
= bce det (e =) (e =2 =
| O‘n - )‘)2 ()‘n - )‘)nil

1 A3— A ()\3 — )\)ni3

1 A=A ()\4 — )\)n—S
— bee(Ag — A2(Ag — A% (A — )2 det

L A=A o (= A3

n

=bee[ [ =N [ i=M)

i=3 3<i<j<n
The final expression for the determinant is nonzero. O
Thus we have that A(X) is not in any minimal primes of P + Q. O

Next we observe that P + () has no minimal primes of height larger than one over

P and ). First we need the following theorem due to Hartshorne.

Theorem IV.29 ([Har62] Proposition 2.1). Let A be a Noetherian local ring with
the maximal ideal m. If Spec(A) — {m} is disconnected, then the depth of A is at

most 1.

Lemma IV.30. Let P and Q be ideals as in Notation IV.10. Then every minimal

prime of P+ Q has height n®> —n + 1.

Proof. Suppose that there exists a minimal prime ideal T of P + ) of height at
least ht(I) + 2. Localize at T. Then (P + Q)(R/I)r is T(R/I)r-primary. Moreover,
V(P) and V(Q) are disjoint on the punctured spectrum Spec((R/I)r) — {T(R/I)r}.

However, the above theorem shows that this is not possible. O]
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Now we prove that P + () has only one minimal prime.

Theorem IV.31. Let P and Q be as in Notation IV.10. Then V(P + Q) is irre-

ducible, i.e., Rad(P + Q) is prime.

Proof. Let U be a dense open subset in the algebraic set defined by P(X) as in
Lemma IV.24. Let A € M,(K) be such that P(A) = 0. Suppose that A € U.
Then by Lemma IV.24 there exists a matrix B such that (A, B) is in the skew-
component of the algebraic set of nearly commuting matrices, that is (A, B) € V(Q).
Let K|t] be a polynomial ring in one independent variable ¢t. Fix any f € K[t]. Then
(A,eB + f(A)) € V(Q) for all ¢ € K — {0}. Since @ defines a closed set, we must
have that (A, f(A)) € V(Q), i.e., when ¢ = 0 as well. Since U is a dense subset in
V(P(X)), (A, f(A)) € V(Q) for all A e V(P(X)). Recall that f was an arbitrary
element of K|[t].

Now assume also that A(A) # 0. Then every matrix B that commutes with A is

a polynomial in A of degree at most n — 1. Thus
V(P)ax)y = {(A, f(A)) | A(A) # 0 and f is a polynomial of degree at most n — 1}.

Moreover, since V(P + Q) < V(P), every element of V(P 4+ @Q)a(x) is of the form
(A, f(A)), where P(A) = 0 and f is a polynomial of degree at most n — 1.
Identify polynomials f € KJ[t] of degree at most n — 1 with A". Then we can

consider a map
V(P(X)) x A" = V(P + Q)a(x)
such that
(4, f) = (4, f(A)).
Moreover, this map is a bijective morphism. Therefore, V(P 4+ Q)a(x) is irre-

ducible. If V(P + @) is not irreducible, then its nontrivial irreducible decomposition
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will give us a nontrivial irreducible decomposition of V(P + Q) a(x). Thus the result.

O

Corollary IV.32. Let P and QQ be as in Notation IV.10. Then, whenn =3, P+ Q)

18 prime. L]

4.4 The ideal of nearly commuting matrices is a radical ideal

In this section we prove that [ is a radical ideal in all characteristics. We know
that Rad(I) = P[)Q. To prove the result it is sufficient to show that I becomes

prime or radical once we localize at P or ().

Theorem IV.33. The defining ideal of the algebraic set of nearly commuting ma-

trices is radical.

Proof. For simplicity of notation, let P denote P(X).
We have that K[X] ()P = (0), since otherwise every f € K[X]|() P must vanish
when we set X =Y. Therefore, W = K[X] — {0} is disjoint from P and hence from

I. Localize at P. Then we have an injective homomorphism of K[X,Y]/I-modules
(K[X,Y]/D)p — (K(X)[Y]/T)p = (L[Y]/T)p,

where L = K(X) and now I is an ideal generated by m? — n linear equations in
the entries of Y with coefficients in L. We can always choose at least n variables
Yij, (¢,7) € A, and write the rest of them as L-linear combinations of the chosen ones.
Thus (K[X,Y]/I)p — Llyi;l(ijjea and IK[X,Y]p is prime.

Next observe that K[X]|(Q = (P). Clearly, P < Q. To prove the other direc-

tion, let f € K[X][)Q be nonzero. Then by Lemma IV.23, f € (P). In other words,
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for all A e M,(K) such that A € V(@) and such that there exists a matrix B with
the property that [A, B] is nonzero diagonal, then P(A) = 0.

Therefore, we have an injective homomorphism of K[X,Y]|/I-modules
(KX, Y]/ = (VIY]/Dae

where V' = K[X](p) is a discrete valuation domain. Then generators of I become
linear polynomials in the entries of Y with coefficients in V. Let B be the matrix
of coefficients of this linear system such that its rows are indexed by (i,7) for 1 <
i # j < n and columns are indexed by (h, k) for all 1 < h,k < n. Then B has an
entry x;, in the (4, h), (h, k) spot, has an entry —xzy; in the (¢, ), (¢, k) spot, and zero
everywhere else. Let yy,...,y,2 denote the entries of Y such that y;_1)n4; = v;;. In

V[Y], I is generated by the entries of the matrix

Y1

Y2

Yn2

By doing elementary row operations over V', we can transform B into a diagonal
matrix C. This gives new generators of I. To prove that IV[Y] is radical, it is
sufficient to show that the diagonal entries in C have order at most one in V. To
this end it reduces to show that C has rank n? — n and the ideal generated by the
minors of C of size n? — n cannot be contained in P?V. But then it is sufficient to

prove this for the original matrix B. Hence it suffices to show:

Claim.

(1) The submatrix By of B obtained from the first n* —n columns has nonzero deter-

minant in V.
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(2) The determinant of By is in (P) — (P?).

Proof.

(1) It is sufficient to prove the first part of the claim over K (X) = frac(V), i.e., after
we invert P. Hence in S, since X and Y nearly commute, they must commute, see
Lemma IV.23. Moreover, X is a generic matrix, hence its discriminant is nonzero
and is not divisible by P. Thus X has distinct eigenvalues and Y is a polynomial in

X of degree at most n — 1. Write B = [By|B;], then our equations become

n Yn2—n+1
Y2 Yn2—n+2
By +B | T =0
Yn2—n Yn2

Notice that By is invertible if and only if for every choice of the values for
[Yn2_ni1s-- -, Ynz] there is a unique solution for the above equation.
Furthermore, the bottom rows of X% X,..., X" ! are linearly independent for a

generic matrix X. This is true because it even holds for the permutation matrix

| 0 1 0 00 |
0 0 1 00
E =
0 0 0 ... 01
1 0 0 ... 00
for which the bottom rows of E°, E, ..., E"~! are the standard basis vectors e; for

I<i<n.
Thus, given any bottom row p of Y, there exist ay,...,a, 1 € K(X) such that p

equals the bottom row of g + ;. X + ... + a,_; X™ L. That is, such Y is uniquely
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determined by the entries of its bottom row. Therefore, By is invertible in K (X).

(2) First, let us show that det By € P. For any matrix A in an open dense subset
defined by P, there exists a matrix A’ such that the commutator [A, A’ is a nonzero
diagonal matrix, see Lemma IV.24 . Hence, for all ¢ € K — {0} and for all f € K[X]

polynomials of degree at most n — 1, (A,cA’ + f(A)) € I. Therefore, the space of
hn

Y2
solutions of B - = 0 has dimension n + 1, which is a contradiction since

Yn2
we showed that it must be n. Therefore, the minors of B must vanish whenever P

vanishes.

Now let us put grading on the entries of X and Y. Let deg x;; = deg y;; =7 — J.
Then their products XY and Y X and sums have this property as well: deg (XY);; =
i—j and deg (X +Y);; = i—j. Therefore, so does the commutator matrix XY —Y X.
In fact, any polynomial in X and Y has this property. Notice that the diagonal
entries have degree 0, thus P has degree 0. However, this is not the case for the
determinant of the matrix By. The nonzero entry corresponding to (4, j), (h, k) has
degree © — j + h — k. Therefore, if a product of the entries is a nonzero term of
the determinant of By, then its degree is >}) ;.. > cpan 2ncpn(i —J +h — k) =
Z1<i¢j<n(i_j)+Z1<h,k<n<h_k)_Z1<h<n(h_n) =0+0—(1-n+2-n+...(-1)) =
n(n —1)/2 # 0 for all n > 2. Hence By cannot be a K-scalar multiple of a power of
P. That is, when we factor out P from the minors of B, the remaining expression is

not divisible by P. O]

Now we are ready to finish our discussion. We have that C is a diagonal matrix of

maximal rank with entries in V' and its submatrix Cy has the determinant in P — P2.
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More precisely, I is generated by the following equations.

vy O 0 ... 0 0 0 ... 0 - 7
Y1

0 V92 0 Ce 0 0 0O ... 0
Y2

0 0 0 cee Up2_p1n2-n-1 0 0O ... 0
Yn2

0 0 0 .. 0 Up2mm2—n |0 ... 0 | 77

where only one of the v;; € V is divisible by P, the rest are units in V. Then
VIY]/I = V]z]/(P) is reduced. Finally, (R/I)g — (V[Y]/I)g.- Hence IRq is

radical and therefore is prime. O

4.5 [F-regularity

In this section we state a conjecture that the variety of commuting matrices V(P),
the skew-component V(@) and their intersection V(P + @) are F-regular. We show
that when R/P is Cohen-Macaulay it is sufficient to have F-regularity of R/(P + Q)
in order to prove the conjecture. Furthermore, we discuss various ways to attack the

problem.

Conjecture IV.34. Let R be as in Notation IV.10. Then R/P, R/Q and R/(P+Q)

are F-reqular.

The following lemma allows us to reduce the above conjecture to F-regularity of
R/(P + Q).

Lemma IV.35. Let R be a Noetherian local or N-graded ring of prime characteristic
p >0 and let I be an ideal (homogeneous in the graded case) generated by a reqular

sequence. Let P and Q) be ideals of R of the same height such that P and Q) are linked
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via I = P(\Q. Let R/P be Cohen-Macaulay. Suppose that R/(P + Q) is F-regular

(or equivalently, F-rational). Then R/P and R/Q are F-regular.

Proof. By [PS74], R/Q is Cohen-Macaulay and has the canonical module isomorphic
to (P+Q)/Q. Similarly, the canonical module of R/P is (P+@Q)/P. Then R/(P+Q)
is Gorenstein, hence it is F-rational if and only if it is F-regular.

Recall that a graded ring R is F-regular if and only if Ry, is F-regular, [LS99].
Then R/(P + Q) is F-rational if and only if its localization at the homogeneous
maximal ideal is F-rational. Then by applying Lemma I1.46 we get that R/(P + Q)

is F-rational implies that so are R/P and R/Q. O

Thus if we want to prove that the variety of commuting matrices and the skew
component are F-regular, it is sufficient to prove the statement for their intersection.
Of course we need to know whether R/P is Cohen-Macaulay.

There are few ways to achieve F-regularity of R/(P + Q). There exists a criterion
similar to Fedder’s criterion for F-purity, Lemma IV.12. It is due to D. Glassbrenner,

[G1a96], who proved the following result.

Theorem IV.36. Let (S,m) be an F'-finite reqular local ring of positive characteristic
p. Let I be an ideal of S and let s € R° be such that Ry is reqular. Then S/1 is strongly

F-regular if and only if there exists a positive integer e such that s(IP7: I) & mlP],

One direction that one might be interested in pursuing is to give a criterion for
F-regularity of R/P, R/Q) and R/(P + Q) similar to that of Lemma IV.13. That is,
we want to have a certain condition on / which will imply F-regularity of our rings.
However, one needs to be cautious, since R/I cannot be F-regular itself.

Another possible way to show that R/(P + @) is F-regular utilizes a result due

to M. Hochster and C. Huneke, see [HH94b] Corollary 7.13, which is the following.
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Theorem IV.37. Let R be a finitely generated N-graded Gorenstein K -algebra with
homogeneous maximal ideal m such that Ry = K. Suppose that dim R = d > 2.

Then the following are equivalent.
(1) R is F-regular.
(2) Localization of R at any prime except m is F-reqular, there is an ideal generated by

a homogeneous system of parameters such that it is Frobenius closed and a(R) < 0,

where the a-invariant of R is max{i | [H%(R)]; # 0}.

Thus if we want to use the above theorem to prove F-regularity of R/(P + Q)
when n = 3, then we only need to show that R/(P + @) is locally F-regular. This is
true because we already know that it is F-pure when n = 3. As for the a-invariant,
we have a result which insures that a(R/(P + Q)) < 0. However, we again need to

rely on the fact that R/P and R/(Q are Cohen-Macaulay.

Lemma IV.38. Let R be a Noetherian N-graded ring. Let M, M’, M" be finitely gen-
erated Z-graded Cohen-Macaulay R-modules such that dim M = dim M” = dim M’ —
1. Suppose that 0 — M' — M — M" — 0 is a short exact sequence and a(M) < 0.

Then a(M),a(M") are negative.

Before we prove the lemma let us state some properties of a-invariants, see [HH94b|

Section 7.4.

Lemma IV.39. Let R be a Noetherian N-graded ring such that Ry = K. Then

(1) Let S be a polynomial ring K|z1,...,x,] and I be a homogeneous ideal of S
generated by a regular sequence fi, ..., fm. Let R = S/I. Then a(R) = >, degf; —
D deg ;.

(2) Let h(z) be a rational function whose expansion is a Hilbert-Poincaré series of

R, .2, dimg[R];. Then a(R) = deg h(z), where the degree of a rational function
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f(2)/g(z) is deg f(z) — deg g(z). Moreover, if R has dimension d, then h(z) =
f(2)/(1 —t)4, where f(2) € Z|z]. O
Now we can prove the lemma.

Proof. Let dim M’ = d. Since M', M, M" are Cohen-Macaulay, their Hilbert-Poincaré
series are of the form F(z)/(1—1)%, G(2)/(1—t)*! and H(z)/(1—t)%! respectively
and F, G, H are polynomials with positive integer coefficients.

Since 0 > M’ — M — M"” — 0 is a short exact sequence, we have that
G(2)/(1 =)' = F(2)/(1 = )"+ H(2)//(1 = t)"".
Equivalently,
G(z)(1—t)=F(2)+ H(z)(1 —1t).

By hypothesis, a(M’) < 0, therefore, deg G(z) < d — 1. However, the leading
coefficient of G(2)(1 — t) is negative. Hence it should come with a contribution
from a leading coefficient of H(z)(1 — ). Then deg G = deg H < d — 1. Also,

deg F(z) < deg G(z)(1 —t) < d. Thus, a(M) < 0 and a(M") < 0. O
Next we apply Lemma V.38 to our situation.

Lemma IV.40. Let R be as in Assumption IV.10. Suppose that R/P is Cohen-
Macaulay, which is true when n = 3. Then a(R/P),a(R/Q) and a(R/(P + Q) are

negative.

Proof. We have the following short exact sequence of R-modules.
0— R/ —R/POR/Q—R/(P+Q)—0

Since I is generated by a regular sequence, a(R/I) = 2(n* —n) — 2n* = —2n < 0,

see Lemma IV.39 (1). By Lemma IV.9, R/Q is Cohen-Macaulay and R/(P + Q)
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is Gorenstein of dimension dim R/P — 1. Therefore, by Lemma IV.38 we have that

R/P,R/Q and R/(P + Q) have negative a-invariant. O

4.6 Conjectures

Here we list the conjectures we have developed in the course of working on the

algebraic set of nearly commuting matrices and its irreducible components.
Conjecture IV.41. R/I is F-pure for alln > 4.

The above conjecture can be solved by proving the following one.

Conjecture 1V.42. Let i = iy @05

1_[?;11 TiiYi,n—i41 Tnn—1"Yn—1,1
p—1 3 . D . .
Then pP~" is a monomial term of ], ..., uj; with the coefficient equal to 1

modulo p.

Remark IV.43. The above monomial can be obtained taking the product of all the
variables and dividing by the variables according to the following pattern: denote by

* the variable to be divided out.

* T12 e Tinp-2 T1n—1 T1in
T21 * cee Tap—2 T2 n—1 Lon
X = ’
Tn—21 Tpn—22 .- * Tn—2n—1 Tn—-1n
Tp-11 Tp-12 --- Tp—-1np-—2 * Tpn—1n
:En,l -Tn,Z BRI $n,n72 * xn,n
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Y1 Y12 N3 - UYin—1 *
Y21 Y22 Y23 ... * Yon
Y =
Yn—2,1 Yn—2.2 * coo Yn—2n-1 Yn-2n
* * Yn—1,3 -+ YUn—1n—-1 Yn—-1n
yn,l yn,Q yn,?) s yn,nfl yn,n

Conjecture IV.44. R/(P + Q) is F-regular for all n = 3.
Remark IV.45. In the case when n = 2 the conjecture is true.

Conjecture 1V.46. Let X be a matriz of indeterminates of size n over a field K.
Let P(X) be the irreducible polynomial as in Definition 1V.20. Then K[X]|/P(X) is

F-regular.

Conjecture IV.47. The following is a reqular sequence on R/I and hence a part of

a system of parameters on R/J and R/Q.

Tst — Yt,0(s,t)) T1n, Tnns L11 — Yon

(s +t)mod n, if s+t # n;
for all 1 < s,t, < n and where 0(s,t) =

n, if s+t =n.

Remark 1V .48. The conjecture was verified by using Macaulay2 software when n =

3,4 over K = Q and in some small prime characteristics.

In the case when n = 3, this is equivalent to the following identifications of vari-

ables in matrices X and Y
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11 T2 0 xr31 T11 T21

X = To1

T2 T22 To2 XT32 T12

31 T32 0 0 92 0

Conjecture IV.49. Let Z < {u;;|1 < i@ # j < n} be any subset of cardinality at
most n? —n—1. Let I be the ideal of R generated by the elements of Z. Then R/Zy

18 F'-reqular. In particular, Z; is a prime ideal.

4.7 Appendix

We devote this section to interesting computational observations we have obtained
using Macaulay2, a computer algebra system, [GS], while working on the proof of F-
purity of the coordinate ring R/I of the algebraic set of nearly commuting matrices
of size 3.

Recall that we used Fedder’s criterion, Lemma IV.12, to prove F-purity of R/I
in the case of 3 by 3 matrices. This was done by exhibiting a nonzero monomial
term of [ [, jcn ufj_l such that it is not in ml?). The term given in the proof turns
out to be a rather nice one as our computations on Macaulay2 show. In particular,
it has coefficient 1 modulo p for all values of characteristic p. However, there are
terms which appear to work in many but not all characteristics. We want to give
one example of such a term.

Let g = 211219021 220T31032Y11Y12Y13Y21Y22Y23. 1t is the product of all the entries
of X except for the last column and all the entries of Y except for the last row. As
in the proof for F-purity given earlier in this chapter, we first look at all possible

p—1

ways to obtain y¢#~' in [],_, 4j<n Wi; - We then solve a linear system of equations
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associated with all the choices. Then we have that the coefficient of #?~! modulo p

2 S0
0<a+b<p—1c=0 a c)

Unfortunately, this seems to be zero for many values of p. The table below gives

is equal to

the coefficient of y?~! in [Ti<iv; u?7* for prime values of p < 1000.

<n i

p | coefficient of pP~* p | coefficient of pP~1 p | coefficient of pP~1
2 0 67 -9 157 0
3 1 71 0 163 4
5) 0 73 4 167 0
7 0 79 0 173 0
11 3 83 -8 179 -34
13 0 89 -32 181 0
17 2 97 3 191 0
19 4 101 0 193 -95
23 0 103 0 197 0
29 0 107 36 199 0
31 0 109 0 211 -15
37 0 113 -15 223 0
41 -5 127 0 227 -8
43 14 131 62 229 0
47 0 137 36 233 -32
53 0 139 67 239 0
59 -23 149 0 241 -47
61 0 151 0 251 36
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p | coefficient of pP~! p | coefficient of pP~! p | coefficient of pP~!
257 -128 397 0 047 =72
263 0 401 36 o957 0
269 0 409 75 563 -226
271 0 419 -95 569 57
277 0 421 0 o971 -87
281 43 431 0 o7 2
283 -82 433 145 087 36
293 0 439 0 593 -269
307 =72 443 -8 599 0
311 0 449 -32 601 -288
313 100 457 219 607 0
317 0 461 0 613 0
331 14 463 0 617 283
337 -141 467 -34 619 57
347 36 479 0 631 0
349 0 487 0 641 -159
353 -159 491 -200 643 =72
359 0 499 196 647 0
367 0 503 0 653 0
373 0 509 0 659 324
379 -72 521 36 661 0
383 0 523 -125 673 100
389 0 541 0 677 0
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p | coefficient of pP~! p | coefficient of pP~! p | coefficient of pP~!
683 -285 797 0 887 0
691 43 809 36 907 100
701 0 811 -178 911 0
709 0 821 0 919 0
719 0 823 0 929 129
727 0 827 -392 937 219
733 0 829 0 941 0
739 -322 839 0 947 -47
743 0 853 0 953 -142
751 0 857 345 967 0
757 0 859 =72 971 3
761 -128 863 0 977 36
769 -285 877 0 983 0
773 0 881 324 991 0
787 139 883 4 997 0




CHAPTER V

Algebras with straightening law

5.1 Introduction and preliminaries

Definition V.1. Let A be a commutative ring and let R be an A-algebra. Let
IT < R be a finite subset with a partial order <, called a poset for short. Then R is a
graded algebra with straightening law (ASL) over A on II if the following conditions

hold:

(Hp) R = @;i=0R; is a graded A-algebra such that Ry = A, II consists of homogeneous

elements of positive degree and generates R as an A-algebra.

(Hy) The products & ...&,, where m € N, & € Il and & < ... < &, are linearly

independent. They are called standard monomials.

(Hy) (Straightening law) For all incomparable &, v € II, the product {v has a rep-
resentation {v = > a,u where 0 # a, € A and p is a standard monomial,
satisfying the following condition: every p contains a factor ( € II such that

¢ <&, ¢ <wv. Itisallowed that v = 0, the sum ), a,u being empty.

Lemma V.2 ([BV88| Proposition 4.1). Let R be an ASL over A on II. Then every
monomial 1 = pu ... p, in elements of II is an A-linear combination )., axA of

standard monomials, such that every standard monomial A\ on the right hand side
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has a factor N < pq, ..., pn and w(p) < w(X) with w(p) = w(\) if and only if p is

standard (and hence p = \).

5.2 Change of basis for a graded algebra with straightening law

In this section we shall prove that given a basis for an ASL we can obtain a new
one with an induced partial order by a certain linear transformation which preserves
the property of being an ASL.

For the rest of the section assume the following hypothesis on R.

Let R be a graded algebra with straightening law on a finite poset (II, <) over a
commutative ring A. Let & < & € II be homogeneous elements of the same degree.
Let u = ¢& + &, where ¢ € A. Define a partial order < on ¥ = IT| J{u} extending
< on II such that if p,v € IT — {&}, p < w if and only if p < & and u < v if and
only if & < v. Let IT"' = ¥ — {&} = T J{u} — {&} be a poset with the partial order

induced from Y.

Definition V.3. For an element £ € ¥ first define «(§) = [{6 € ¥ : £ < §}|. Then
let w(§) =3 and w(& -+ &) = 2L, w(&)-

Definition V.4. For an element £ € ¥ define rk £ = max{k € N : there is a chain £ =

& > &1 > ... > &, & e 1T}, For a subset Q < 3 let rk Q = max{rk £ : £ € Q}.

Lemma V.5. Every monomial it = iy . ..y in elements of II' can be written as an
A-linear combination of standard monomials in I, i.e., p = Y, a,7, where T is a

standard monomial in 1I', and such that T has a factor ¢ < pq, ..., .

Proof. We shall prove a slightly more general statement: every monomial in elements
of ¥ is an A-linear combination of standard monomials in IT'. If g = pf and py is

minimal in >, then py # & and the lemma holds.
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Let © be a monomial in elements of 3. If u does not divide y, then it is a monomial
in II. Then by Lemma V.2, it is a linear combination of standard monomials in
IT. If none of them have & as a factor, then they are also standard monomials in
IT'. Otherwise, replace & by u — ¢&. Thus it is sufficient to consider monomials
o= piy e e g ey With g ey phsy ooy e € I — {u} and m > 1.

If pu is standard, then we are done. So assume that p is not standard.

Then

po= iy i (cfy &) s =
m—1

m S -
<]’>Cju1.”mq€{ o s e g € s i

7=0
Since & < &, w(é1) > w(&). Therefore, w(p) < wp - k& pg--- ) for
all j < m and w(p) = w(py - &S s -+ pg). Since p is not standard, so is not
o=y & s - - - pip. Therefore by Lemma V.2, it is a linear combination ) ayA
of standard monomials in II with a larger weight such that A\ has a factor \' e II
and N < pi,. .., pr, &2, s, - - -, fiz. Then by decreasing induction on the values of w
we can write A as a linear combination of standard monomials in IT" which have a
factor ¢ € II' such that ¢ < A. Also, by decreasing induction on the values of w each
of the summands g - - ,urf’{f';n gy = > b, 7 is linear combination of standard

monomials in IT" such that 7 has a factor 7" € II' and 7" < pq, ..., e, E1, s - - - flg-

Thus the desired result. O
Theorem V.6. R is an ASL over A on IT.

Proof. The first two conditions (Hy) and (H;) are immediate from the corresponding
properties of R as an ASL on II. Let us prove the remaining condition (H,).
Let A\, v € IT" be incomparable. By the previous lemma, Av = > b, 7 where each

7 is a standard monomial in elements of II' and has a factor 7 € II' such that
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Corollary V.7. Let R be a graded algebra with straightening law on a finite poset

(I1, <) over a commutative ring A.

En < ... < &

Forn =2 and m > 1 let be homogeneous elements in

1 < .. < &

IT such that elements in each row have the same degree and either rows are pairwise
disjoint or the maximal elements in each row do not occur in other rows.

Let u; = cn&in + ...+ Ccin—1&im—1 + &in, where ci1, ..., Cin—1 € A foralll <i<m.
Define a partial order < on ¥ = IT| J{w;}I", extending < on Il such that if p,v €
II — {&n}, p < w; if and only if p < &, and u; < v if and only if &, < v. Let
II' = ¥ — (J{&n}" be a poset with the partial order induced from ¥. Then R is an

ASL on II' over A.

Proof. Induct on n and m. Case whenn = 2 and m = 1 comes from the Theorem V.6.

]

5.3 Application to algebraic sets of nearly commuting and commuting
matrices

Let X = (24))1<ij<n a0d Y = (¥i;)1<ij<n be n x n matrices of indeterminates over
afield K. Let R = K[X,Y] be the polynomial ring in {z;;, ¥i; }1<i j<n. Asin Chapter
2 let I be the ideal generated by the off-diagonal entries of the commutator matrix
XY —Y X and let J be the ideal generated by the entries of XY —Y X. Let u;; denote
the (¢, j)th entry of the matrix XY —Y X. Then I = (u;; |1 <@ # j < n). Moreover,
Tik  Tkj

Uiy = Doy Tiklkj — Dopey YikThj = 2opey (Tikhj — Trglir) = Dp_q det
Yik  Ykj
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Tk Ty
Notice that every minor of the form occurs as one of the summands

Yik  Ykj
of u;; for 1 < 4,7 < n. Moreover, for all i # j there are n?(n — 1) of such minors in

2

total. Also, there are n®* —n = n(n — 1) generators u;; of I each being a sum of n

minors. Therefore, all the minors that occur as summands of the generators of I are

distinct.

. r11 12 ... 21 X292 ... Tpn
Write R = K , where the n(k — 1) + lth

Yin Y2z - Y21 Y22 .- Ynn
column is the column vector [z, Y]

11 12 ... 21 T2 ... Tpp 10
Let Z =

yii Yz .- Y21 Y22 oo Ynn O 1
Let II be a set of all 2 x 2 minors of Z partially ordered in the following way: each
minor can be represented by a pair [k [], for some 1 < k # [ < n + 2, and we say

that [k ] <[s t]if and only if k < s and [ <t.

Therefore, each 2 by 2 minor e of Z corresponds to [n(k—1)+1 n(s—
Ykt Yst
1) +t].
Tik  Tkj
In particular, u;; = >;_, det = > qn@ -1 +k j+nk-1)]
Yik  Ykj

Notice that the summands of u;; increase by [1 n] as k increases.

Proposition V.8 ([BV88| Theorem 4.11). Let R = K[X,Y] be defined as above.

Then R is an algebra with straightening law on I over K.

For all 1 < i # j < n,1 <k < n, let fl(]k) =[n(i—1)+k j+nlk-1)],
then u; = Y7, 51.(;). Moreover, fi(jl) < ..o < l(]") Define a partial order < on

Y = I {U{wij }1<izj<n extending < on II such that if p,v e II — {55?)}, p < w;; if and
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only if u < fgL) and u;; < v if and only if ﬁfjn) <v. Let IT' =% — U{gi(‘?)}lgi#jgn be

a poset with the partial order induced from ..

Proposition V.9. The polynomial ring R = K[X,Y] is a graded ASL on II' over

K.

Proof. First notice that fl(]k) = f,(«? if and only if i = r, j = s, k = t, i.e., the sets
of summands of w;; are disjoint for distinct pairs of (i, j). Therefore, we may apply

Corollary V.7 and get the desired result. O]

Now let us consider the elements {u;}", = Y7 , det ' ” | on the diago-

Yik Yk
nal of XY — Y X. We do not have disjointness of the sets of summands. Each

k i j . L . .
§Z( ) = det occurs precisely twice: in u;; and with negative sign in ug. In

Yik  Ykj

particular, the largest terms fi(n) in every u;; also occur in u,,. Therefore, if we only
consider {u;}1<i<n, then the largest terms appear only once.

Recall that tr(XY —Y X) = 0, hence u,,, = —u11 — ... — Up_1,—1 can be omitted
from the list of generators of J.

Define a partial order < on X' = IT" | J{wsi}1<i<n extending < on II' such that if
w,v eIl — {fl(n)}, i < uy if and only if p < Sl(n) and u;; < v if and only if fz(n) <.

Let II" = ¥/ — U{fi(n)}lgi<n be a poset with the partial order induced from .

Proposition V.10. R is a graded ASL on 11" over K.

Proof. Follows from Proposition V.9 and Corollary V.7. m
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