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CHAPTER I

Introduction

As the history of mathematics shows, working in rings where p is a prime integer

and the pth multiple of any number is zero often has strong advantages. These are

called rings of positive characteristic p. At the end of the 1980s Mel Hochster and

Craig Huneke in a series of papers, [HH89a], [HH89b], [HH90], introduced the notion

of the tight closure of ideals and modules over such rings. Over time this has proved

to be a very powerful technique for attacking problems in both commutative algebra

and algebraic geometry, especially in the theory of singularities. Using the Frobenius

endomorphism, notions of F -regularity, F -purity, F -rationality and etc. have been

defined. In addition, many classes of rings, such as determinantal rings [HH94b], were

proved to posses these properties. Significant progress in solving various problems

has been made since then by using these tools. However, there are still questions

which naturally appeared with the birth of this new theory, many of which are still

open. Some of the major questions have been settled.

Question I.1. Let R be a Noetherian commutative ring with identity and of prime

characteristic p ą 0. Let I be an ideal of R and let I˚ be its tight closure in R. Is it

true that for any prime ideal P Ď R, I˚RP “ pIRP q˚?

The question was open until 2010, when H.Brenner and P.Monsky found a coun-
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terexample, [BM10]. However, it is known that the above question has an affirmative

answer for very special class of ideals, parameter ideals, [Smi94].

Other natural conjectures that were stated are the following.

Conjecture I.2. Let R be a ring in which every ideal is tightly closed (such rings

are called weakly F -regular). Then for every multiplicative system W Ď R, W´1R is

weakly F -regular.

Conjecture I.3. Let R be a ring such that it splits from its every module-finite ring

extension. Then R is weakly F -regular.

The latter conjecture implies the former which was answered positively for Q-

Gorenstein rings (hence for local rings of dimension at most 2), [Sin99], and for

graded rings of any dimension, [LS99].

The first part of this thesis concentrates on finding criteria for weak F -regularity

that may be used to attack the above questions.

To this end we define the notion of quasi-parameter ideals for Cohen-Macaulay

domains for which there exists a pure height one ideal isomorphic to the canonical

module.

Definition I.4. If J is a proper canonical ideal (isomorphic to the canonical module

ωR) in a Cohen-Macaulay local ring R of dimension d, and x1, . . . , xi are part of a

system of parameters for R whose images form part of a system of parameters in R{J ,

then we call px1, . . . , xiq`J a quasi-parameter ideal for J . All the pxt
1
, . . . , xt

iq`J are

also quasi-parameter ideals for J . If i “ d ´ 1, then we say that px1, . . . , xd´1q ` J

is a full quasi-parameter ideal for J . If R is a Gorenstein local ring, then J is a

principal ideal and all the quasi-parameter ideals are simply parameter ideals.

It is an open question whether localization commutes with tight closure of quasi-
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parameter ideals. However, we have that a positive answer to this question will imply

an affirmative answer to Conjecture I.2, see Theorem III.9.

We also use the above notion to give a sufficient condition for R to be weakly

F -regular.

Lemma I.5. Let pR,m, Kq be a Cohen-Macaulay local domain of Krull dimension

d with a canonical module ω. Let J denote a pure height one ideal of R such that

J – ω. If for one choice of a canonical ideal J , every full quasi-parameter ideal for

J is tightly closed in R, then R is weakly F -regular.

In addition, we study a notion of a test ideal relative to an ideal J defined as

follows.

Definition I.6. Let R be any Noetherian ring of characteristic p ą 0 and J be an

ideal of R. Then the J-test ideal of R is τJpRq “ Ş
JĎIpI :R I˚q.

Moreover, we define the notion of a finitistically amenable ring, see Definition III.22,

and we prove that for a finitistically amenable Cohen-Macaulay normal complete lo-

cal domain there exists a choice of an ideal J – ωR so that this notion of test ideal

coincides with the classical one, i.e., τJpRq “ τpRq, see Corollary III.37.

In a related direction we prove:

Theorem I.7. Let pR,m, Kq be a Cohen-Macaulay complete local domain with the

canonical module ωR. If u P 0˚R
ERpKq, then there exists a choice of an ideal J – ωR

such that u P 0˚R
ER{J pKq over R.

The next part of this thesis focuses on algebraic sets of nearly commuting matrices

and their irreducible components. The area of mathematics which studies matrices

and related problems is one of the oldest, and since its inception one of the natural

questions one could ask was about when two matrices commute or almost commute
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in a certain given sense. However, such questions have proved to be among the

hardest, and many of them are still open. Here, I want to list some of the related

open questions.

Let X “ pxijq and Y “ pyijq be n ˆ n square matrices with indeterminate entries

over a field K. Let R “ KrX, Y s be the polynomial ring in the entries of X and Y

and let I be the ideal of R generated by the off-diagonal entries of the commutator

matrix C “ XY ´ Y X. Let J be the ideal generated by the entries of C and let P

be its radical, which is known to be prime, see [Ger61], [MT55].

Conjecture I.8.

(a) I is a radical ideal.

(b) R{J is Cohen-Macaulay.

(c) J “ P is a prime ideal.

(d) R{J is F -pure.

(e) R{J is F -rational.

(f) R{J is F -regular.

Part (a) is known to be true when K has characteristic 0, [You11], and in the

case n “ 2 when characteristic of the field is positive prime. Parts (a),(b) and (c)

are known to be true for n ď 3, [Tho85]. We prove part (a) in all characteristics for

all positive integers n, see Theorem IV.33.

Moreover, it is known that RadpIq “ P
Ş

Q, where Q is a prime ideal and VpQq

is an irreducible component of VpIq, see [You11]. The variety defined by Q is called

the skew-component of I. It was not known if VpP ` Qq is irreducible. We prove

that RadpP `Qq is prime in all characteristics and for all n. Moreover, we show that

P ` Q is prime when n “ 3.
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Using Fedder’s criterion, Lemma IV.12, we prove the following result.

Theorem I.9. When n “ 3, R{I, R{P , R{Q and R{pP ` Qq are F -pure.

The proof that R{I is F -pure in the case of 3 by 3 matrices utilizes the fact that I

is generated by a regular sequence. Let U be the product of the off-diagonal entries of

the commutator matrix C, i.e., of the generators of I. We explicitly find a monomial

term µ of U such that µp´1 is a nonzero monomial term of Up´1 and µp´1 R mrps for

all values of p. It turns out to be a rather nice term, since its coefficient is always

1 modulo p. However, not all terms of Up´1 have such a “uniform” behavior. In

fact, there are terms which do not work for all p but seem to work for an infinite

number of values of p, see Appendix 4.7. Another interesting fact, in characteristic

2, U has 24,846 nonzero terms and only 108 can be used to prove F -purity of R{I.

In characteristic 3, U has 12,229,308 terms in total while only 23,823 are useful for

us and only 162 are such that every variable in its support has exponent 2.

Furthermore, by applying known results of [Tho85] and [PS74], see Definition IV.7

and Theorem IV.9, we obtain that P and Q are linked via I. Hence we have the

following theorem.

Theorem I.10. R{P is Cohen-Macaulay if and only if R{Q is Cohen-Macaulay, in

which case R{pP ` Qq is Gorenstein. In particular, when n “ 3, R{P and R{Q

are Cohen-Macaulay domains and R{pP ` Qq is a Gorenstein domain of dimension

dimR{P ´ 1.

Moreover, we have the following conjecture.

Conjecture I.11. R{P , R{Q and R{pP ` Qq are F -regular.

We also show that to prove the conjecture it is sufficient to have that R{pP ` Qq

is F -rational. This is done by applying the result of F.Enescu, Lemma II.46, and the



6

fact that F -rationality and F -regularity are equivalent for Gorenstein rings.

We finish the chapter by stating conjectures for R{I which we have developed

while working on the subject.

The last part of the thesis looks into the theory of algebras with straightening law

and some interesting observations are made. Let A “ Brx1, . . . , xns be a polynomial

ring in n indeterminates over a Noetherian ring B. Let I be an ideal of A. It is well

known that if I is generated by monomials, then one can exhibit a monomial B-basis

for the quotient A{I and this makes its study more approachable. However, if I is

not a monomial ideal, it can be quite a hard problem to understand the quotient.

Thus the purpose of the theory of algebras with straightening law (ASL) is to give

a (non-monomial) B-basis for A which shares many of the properties of the classical

monomial basis and under certain hypotheses one can have that the quotient inherits

these properties. One of the important features of such a basis is that we have a

partial ordering on its elements.

We have proved that given a basis Π for an ASL and ξ P Π we can replace ξ in

the basis by a B-linear combination of the elements of Π which form a chain in Π

ending in ξ. Then the new set is again a basis for A as an ASL. That is, we have a

B-linear change of basis for the algebra with the induced partial ordering and which

preserves the property of being an ASL.

As an application to our result, we prove that the off-diagonal (respectively all)

entries of the commutator matrix XY ´Y X, as in Chapter 3, are part of the basis for

R “ KrX, Y s as an ASL. However, we do not know if the quotient is an ASL. If this

was the case, we could try to approach Conjecture I.8 (a), (b) with the methods of the

theory of algebras with straightening law. In fact, part (a) would follow immediately.

Let us define the set-up in which we shall work in the coming chapters. All rings
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will be assumed commutative Noetherian with identity. The notation pR,m, Kq shall

mean that R is a local ring with the unique maximal ideal m and the residue field

K “ R{m. The m-adic completion of R is denoted by pR . By dimension of the ring

we shall mean its Krull dimension. Given an ideal I of R, by VpIq we denote the

algebraic set defined by the ideal I. In particular, if R is a finitely generated affine

K-algebra, then we can think of VpIq as the set of common zeros of the generators

of I. Also, if f P R, then VpIqf represents the set of common zeros of elements of I

on which f does not vanish.



CHAPTER II

Introduction and preliminaries

The goal of this chapter is to define the necessary prerequisite material which is

used in the thesis. This includes the notions of tight and plus closure of ideals and

local cohomology theory.

2.1 Tight closure

In this section we discuss the notion of tight closure of ideals and modules.

Throughout this section, unless otherwise stated, let R be a Noetherian ring of

positive prime characteristic p and let I be an ideal of R. Let q denote a variable

power of p and I rqs the ideal generated by qth powers of elements in I. Let also R˝

denote the set of all elements of R not in any of the minimal primes of the ring.

Definition II.1. An element r P R is in the tight closure I˚ of I if there exists

c P R˝ such that crq P I rqs for all q sufficiently large.

The following proposition shows that this is in fact a closure operation:

Proposition II.2. Let I Ď J be ideals of R. Then

(1) I Ď I˚ Ď Rad I.

(2) pI˚q˚ “ I˚
.

8
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(3) I˚ Ď J˚
.

For more of the basic properties of tight closure see [HH90] Proposition 4.1.

Once a closure operation is defined, it is natural to start asking questions about

rings with the property that every ideal (in a certain class) is closed and/or if the clo-

sure operation commutes with localization. The following definitions were introduced

to address them for tight closure.

Definition II.3. A ring R is said to be weakly F -regular if every ideal of R is tightly

closed.

Definition II.4. A ring R is F -regular if every localization of R is weakly F -regular.

Definition II.5. A local ring R is F -rational if every ideal generated by a system

of parameters is tightly closed. A ring is called F -rational if every localization at a

maximal ideal is F -rational.

Clearly, F -regularity implies weak F -regularity and the latter implies F -rationality.

One of the nicest examples of F -regular rings, as one might expect, are regular rings,

see [HH90] Theorem 4.6.

Theorem II.6 ([HH90]). Let pR,m, Kq be a local excellent ring or a homomorphic

image of a Gorenstein ring. If R is F -rational then it is Cohen-Macaulay and normal.

Sometimes making a problem more general makes its solution more approachable.

This works quite well in the tight closure theory when one extends the theory to

modules. Let us now define the relevant notions.

In characteristic p there is a natural ring endomorphism FR : R Ñ R defined by

r Ñ rp. It is called the Frobenius endomorphism. We shall omit the subscript R in

the notation FR whenever it is clear form the context over which ring we take the

Frobenius. When R is reduced, the map is isomorphic to Rp Ñ R and R Ñ R1{p,
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where Rp “ trp | r P Ru and R1{p “ tr1{p | r P Ru. Naturally, we can take e-fold

iterated Frobenius endomorphism F e and we can get an identification F epRq “ R.

Although, R and F epRq are isomorphic as rings, they are not isomorphic as R-

modules. If M is an R-module, then via a base change, F epMq “ F epRq bR M is a

left F epRq module with r ¨ pr1 b mq “ rp
e
r1 b m “ r1 b rm.

Let N Ď M be finitely generated R-modules. Let q “ pe. Denote by N rqs the

image of the map N b F epRq Ñ M b F epRq. For every element u P N , its image in

N rqs we shall denote by uq. In fact, N rqs is the R-span of all such uq. We also have

that F epM{Nq – F epMq{N rqs and, in particular, FRpR{Iq “ R{I rqs.

Definition II.7. An element u P M is in the tight closure N˚
M of N in M if there

exists c P R˝ such that cuq P N rqs for all q sufficiently large.

We shall omit the subscript M in the notation N˚
M , whenever it is clear from the

context what the ambient module is.

Tight closure of modules extends the corresponding notion for ideals and has basic

properties similar to those of the ideals.

Proposition II.8. Let N Ď M Ď Q be finitely generated modules over R. Then

(1) N Ď N˚
M .

(2) N˚
M is an R-module.

(3) pN˚
Mq˚

M “ N˚
M .

(4) N˚
M Ď N˚

Q and N˚
Q Ď M˚

Q.

(5) u P N˚
M in M if and only if its image ū P 0˚

M{N in M{N .

(6) I˚N˚
M Ď pINq˚

M .
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The next theorem allows us to reduce to the local case when studying weak F -

regularity and shows that if every ideal of R is tightly closed, then so are all submod-

ules of finitely generated R-modules. Moreover, in the local case the tight closure of

ideals is completely determined by those primary to the maximal ideal.

Theorem II.9 ([HH90]). The following are equivalent for a Noetherian ring R of

prime characteristic p ą 0

(1) R is weakly F -regular.

(2) Every submodule of a finitely generated R-module is tightly closed.

(3) For every maximal ideal m Ď R, Rm is weakly F -regular.

(4) Every ideal primary to a maximal ideal is tightly closed.

(5) For every maximal ideal m Ď R and tItu a descending sequence of irreducible

m-primary ideals cofinal with the powers of m, I˚
t “ It in Rm for all t.

The following notion of a test ideal is central to the study of tight closure of ideals.

Definition II.10. The test ideal of R is defined to be τpRq “ Ş
NĎMpN :R N˚

Mq

where the intersection is taken over all finitely generated R-modules N Ď M .

Theorem II.11 ([HH90] Proposition 8.3 (f)). Let pR,m, Kq be a reduced local ring.

Then τpRq “ Ş
IĎRpI : I˚q, where the intersection is taken over all ideals of R or

equivalently over all irreducible m-primary ideals.

Lemma II.12 ([Nag72] Theorem 18.1). Let A Ñ B be a flat ring homomorphism.

Let I and J be ideals of A such that J is finitely generated. Then pI :R JqS “ IS :S

JS.

Theorem II.13 (Persistence [HH94a] Theorem 6.24). Let A Ñ B be a homomor-

phism of Noetherian rings of prime characteristic p ą 0. Let N Ď M be finitely
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generated A-modules and let w P M be an element of M in N˚
. Suppose also that B

is a complete local ring. Then 1 b w is in the tight closure of the image of B b N in

B b M .

Definition II.14. A map of R-modules S Ñ T is said to be pure if for every R-

module M , the induced map M b S Ñ M b T is injective.

The following notion was first defined in the works of M. Hochster and J.Roberts,

[HR74], [HR76] and was extensively studied by Fedder and Watanabe, see [Fed97]

and [FW89].

Definition II.15. A ring R is F -pure if the Frobenius endomorphism F is pure.

Remark II.16. If R is F -pure, then F : R Ñ R is injective and hence R is necessarily

reduced.

The Frobenius endomorphism can be used to define another closure operation,

namely the Frobenius closure.

Definition II.17. An element u P R is in IF , the Frobenius closure of an ideal I, if

there exists q such that urqs P I rqs.

It is indeed a closure operation, and properties similar to those in Proposition II.2

can be easily verified. The following are obvious but important properties of F -pure

rings.

Theorem II.18. Suppose R is F -pure. Then every ideal of R is Frobenius closed.

Theorem II.19. A weakly F -regular ring is F -pure.

Remark II.20. There are rings which are F -pure but not F -rational and vice versa,

[Wat88], [Wat91].
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2.2 Plus-closure

In this section we look into the notion of plus-closure, nice properties of which we

shall utilize in order to attack the problem on the localization of weakly F -regular

rings.

Definition II.21. Let R be an integral domain. Then by R` we shall denote the

integral closure of R in the algebraic closure of its fraction field, it is called the

absolute integral closure of R.

Definition II.22. Let I be an ideal of an integral domain R. Then I` “ IR` Ş
R

is the plus-closure of I.

Unlike the tight closure of ideals, the operation of plus-closure commutes with

localization.

Theorem II.23 ([HH92] Lemma 6.5). Let U be any multiplicative system in a com-

mutative ring R. Then I`pU´1Rq “ pU´1pIRqq`
.

However, the following result shows that for parameter ideals tight closure does

commute with localization.

Definition II.24. Elements x1, . . . , xn P R are called parameters, if their images

form a part of a system of parameters in every local ringRP ofR such that x1, . . . , xn P

P .

Definition II.25. An ideal I Ď R is called a parameter ideal if it is generated locally

(at each maximal ideal) by parameters.

Theorem II.26 ([Smi94] Theorem 5.1). Let R be a locally excellent Noetherian

domain of characteristic p ą 0. Let I be a parameter ideal. Then I˚ “ I`
.
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Here is a very interesting characterization of rings where this closure operation is

equal to the identity closure.

Theorem II.27 ([Hoc73]). Let R be a Noetherian ring of positive characteristic p.

Then every ideal I of R is plus-closed if and only if R splits from its every module-

finite extension.

Rings as in the above theorem are called splinters.

We shall return to the defined closure operations once we give preliminaries for

the machinery we shall need in order to attack our problem.

2.3 Local cohomology

The purpose of this section is to define necessary notions from the theory of local

cohomology that are going to be used throughout this thesis. For a more detailed

treatment of the material and the proofs of statements see [BH98].

In this section let R denote a Noetherian commutative ring with identity without

any restrictions on the characteristic.

2.3.1 Local cohomology modules

Let I be an ideal of R and M be any R-module. Then we have natural surjective

maps R{I t`1 Ñ R{I t for all t P N. Hence, we get induced maps

ExtRi pR{I t`1,Mq Ñ ExtRi pR{I t,Mq

for all i P N, where Extp ,Mq is the right derived functor of HomRp ,Mq.

Definition II.28. Hi
IpMq “ limÝÑt

ExtRi pR{I t,Mq is the ith local cohomology module

of M with support at I.
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The following proposition summarizes some of main properties of the local coho-

mology modules that we are going to use.

Proposition II.29. The following is true for all R-modules M and for all i P N

(1) Let I and J be ideals of R with the same radical, then H
i
IpMq “ H

i
JpMq.

(2) Every element of H
i
IpMq is killed by a power of I.

(3) H
0

I pMq “ Ť
tě1

AnnM I t.

(4) If I is generated by n elements up to radical, then H
i
IpMq “ 0 for all i ą n.

(5) If N Ñ M is a map of R-modules, then there exists an induced map H
i
IpNq Ñ

H
i
IpMq.

(6) If 0 Ñ N Ñ M Ñ Q Ñ 0 is s short exact sequence of R-modules, then there is a

long exact sequence of local cohomology

. . . Ñ H
i
IpQq Ñ H

i`1

I pNq Ñ H
i`1

I pMq Ñ H
i`1

I pQq Ñ . . .

Local cohomology modules with support at a maximal ideal are of particular

interest due to their properties which allow us to reduce our study to a local and/or

complete case.

Proposition II.30. Let m denote a maximal ideal of R and let M be an R-module

(1) H
i
mpMq – H

i
mRm

pMmq.

(2) If pR,m, Kq is a local ring, then H
i
mpMq – H

i
m pRpM bR

pRq, where pR is the m-adic

compeletion of R.

When a ring R is Cohen-Macaulay, the local cohomology modules have especially

nice properties, which in fact characterize the property of being a Cohen-Macaulay

local ring.
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Theorem II.31. Let pR,m, Kq be a local Cohen-Macaulay ring of Krull dimension

d. Then H
i
mpMq “ 0 for all i ‰ d and is nonzero for i “ d. Moreover, let x1, . . . , xd

be a system of parameters for R and It “ pxt
1
, . . . , xt

dqR for all positive integers t.

Then H
d
mpMq – limÝÑt

R{It where the direct limit system is injective and the maps

R{It Ñ R{It`1 are defined by multiplication by x1 . . . xd.

2.3.2 Injective hulls and Matlis duality

Definition II.32. Let φ : N Ñ M be a homomorphism of finitely generated R-

modules. It is said to be essential if one of the following three equivalent conditions

holds

(a) Every nonzero submodule of M has a nonzero intersection with φpNq.

(b) Every element of M has a nonzero multiple in φpNq.

(c) For every R-module homomorphism θ : M Ñ Q, if θ ˝ φ is injective then φ is

injective.

Definition II.33. Let pR,m, Kq be a local ring and let M be an R-module. Then

the socle, SocM , of M is AnnM m.

Example. SocM Ď M is an essential extension.

Below are the basic important properties of essential extensions

Proposition II.34. Let M , N and Q be R-modules.

(1) The identity map on M is an essential extension.

(2) If N Ď M Ď Q, then N Ď Q is essential if and only if N Ď M and M Ď Q are

essential.

(3) If N Ď M , then there exists a maximal submodule N 1
such that N Ď N 1

is

essential.
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One can prove that every module has a maximal essential extension, which is in

fact an injective module.

Theorem II.35. Let M be an R-module. Then there exists a maximal essential

extension of M , and it is unique up to non-canonical isomorphism. Moreover, it is

injective as an R-module.

Such an extension is called an injective hull of M and denoted by ERpMq.

Injective hulls of prime cyclic modules R{P are the building blocks for injective

modules, more precisely we have the following proposition.

Proposition II.36. Let E be an injective R-module. Then E “ ‘ERpR{P q for

varying prime ideals P of R. And all such ERpR{P q are indecomposable.

It is natural in commutative algebra to reduce our study to the local case, and

injective hulls of prime cyclic modules behave quite well in this respect.

Lemma II.37. For every prime ideal P of R:

(a) ERpR{P q – ERP pRP {PRP q.

(b) AssERpR{P q “ tP u and every element of the injective hull is killed by a power

of P .

Therefore, an injective hull of a residue field of a local ring is of particular interest.

So for the rest of the section let us assume that pR,m, Kq is a local ring and let

E “ ERpKq. The following theorem summarizes important properties of E.

Theorem II.38. Let pR,m, Kq be a local ring.

(1) ERpKq – E pRpKq.

(2) If S “ R{I for an ideal I Ď R, then ESpKq – AnnE I.
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(3) pR – HomRpE,Eq.

(4) E has DCC as an R-module.

(5) Let tItu be a descending chain of irreducible ideals of R cofinal with the powers

of m. Then E – limÝÑt
R{It, where the maps R{It Ñ R{It`1 are injective.

(6) If R is Gorenstein of dimension d, Hd
mpRq – E.

The concept of Matlis duality was first defined by E.Matlis in the 1950s and has

proved to be a very powerful tool in studying local cohomology modules.

Definition II.39. Let M be an R-module. Then the Matlis dual M_ of M is

HomRpM,Eq.

Remark II.40. HomRp , Eq is an exact covariant functor.

Theorem II.41 (Matlis duality). Let pR,m, Kq be a complete local ring and M be

an R-module.

(1) If M has ACC, then M_
has DCC. If M has DCC, then M_

has ACC. In

either case, the obvious map M Ñ M__
is an isomorphism.

(2) As a functor from the set of R-modules to itself,
_
gives an anti-equivalence

of categories of modules with ACC and DCC.

2.3.3 Canonical modules

Definition II.42. Let pR,m, Kq be a Cohen-Macaulay ring of dimension d. Then a

finitely generated module ω is called a canonical module of R if ω_ – Hd
mpRq.

Remark II.43. There may not exist a canonical module for an arbitrary ring R and

there are such examples. However, if the ring is complete, there is always one, namely

the Matlis dual of Hd
mpRq.
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Here are some useful properties of the canonical modules.

Theorem II.44. Let pR,m, Kq be a Cohen-Macaulay ring of dimension d.

(1) A finitely generated R-modules ω is a canonical module for R if and only if pω

is a canonical module for pR.

(2) If ω and ω1
are canonical modules for R, then ω – ω1

.

(3) A canonical module ωR for R is a torsion-free Cohen-Macaulay module of di-

mension d.

(4) R is Gorenstein if and only if ωR – R.

(5) For every prime ideal P of R, if ω is a canonical module, then ωP is a canonical

module for RP .

(6) If R is a domain which has a canonical module, then there exists a pure height

one ideal J Ď R such that the canonical module for R is isomorphic to J as an

R-module.

Moreover, in the situation of the above theorem in part (6), we have that the

quotient R{J has particularly nice properties.

Lemma II.45 ([BH98] Proposition 3.3.18). Let R be a Cohen-Macaulay ring with

a canonical module isomorphic to an ideal J . Then R{J is a Gorenstein ring of

dimension d ´ 1.

Furthermore, it is known that sometimes good properties of R{J can be lifted

back to R, see [Ene03], [DSNB].

Lemma II.46 ([Ene03] Corollary 2.9). Let pR,m, Kq be an F -finite Cohen-Macaulay

local domain such that there exists an ideal J Ď R isomorphic to the canonical module

of R. Suppose that R{J is F -rational. Then R is F -regular.



CHAPTER III

Tight closure and localization problems

3.1 Quasi-parameter ideals

In this section we define the notion of quasi-parameter ideals and then use it to

give a sufficient condition for weak F -regularity.

First, let us define the set-up in which we shall work throughout this section.

Assumption III.1. Let pR,m, Kq be a Cohen-Macaulay local domain of Krull di-

mension d with a canonical module ω. Let J denote a pure height one ideal of R

such that J – ω.

Notation III.2. Let x1, . . . , xd´1 P R be part of a system of parameters in R that

also form a system of parameters for R{J , and let xd P J be such that tx1, . . . , xdu

is a system of parameters for R. Let It “ pxt
1
, . . . , xt

d´1
qR ` xt

dJ Ď R and let

At “ pxt
1
, . . . , xt

d´1
qR ` J . Notice that xt

d At Ă It Ă At.

Next we give the following definition of quasi-parameter ideals.

Definition III.3. Let R be as in Assumption III.1 and let x1, . . . , xi be part of a

system of parameters for R whose images form part of a system of parameters in R{J ,

then we call px1, . . . , xiq`J a quasi-parameter ideal for J . All the pxt
1
, . . . , xt

iq`J are

also quasi-parameter ideals for J . If i “ d ´ 1, then we say that px1, . . . , xd´1q ` J

20
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is a full quasi-parameter ideal for J . If R is a Gorenstein local ring, then J is a

principal ideal and all the quasi-parameter ideals are simply parameter ideals.

To make use of our definition we shall study the properties of quasi-parameter

ideals At in connection with those of It.

Lemma III.4. Let R be as in Assumption III.1 and let It be ideals defined as in

Notation III.2. Then the sequence of ideals It “ pxt
1
, . . . , xt

d´1
qR ` xt

dJ Ď R is a

descending sequence of irreducible ideals cofinal with the powers of the maximal ideal

m of R.

Proof. Clearly, It Ď mt are all m-primary, so for every t there is a large enough power

of m contained in It . Moreover, for every t ą 0, R{It are Gorenstein 0-dimensional,

hence the irreducibility of It.

Remark III.5. The socle of R{It is one dimensional. Let ut be its generator. Hence,

Kut Ď R{It is an essential extension and every nonzero ideal of R{It contains ut.

Remark III.6. Since xt
1
, . . . , xt

d is a system of parameters for R, we have injective

maps R{It Ñ R{It`1 defined by multiplication by x1 . . . xd. Moreover, if u is a socle

generator for R{I1, then px1 . . . xdqt´1u is a socle generator for R{It.

Thus if one wants to prove that R is a weakly F -regular ring, it is necessary

and sufficient to show that I˚
t “ It for all t ą 0, see Theorem II.9. Moreover, the

following lemma allows us to reduce the problem to another family of ideals, namely

quasi-parameter ideals At, which is relatively easier to handle.

Lemma III.7. Let R be as in Assumption III.1 and let It and At be ideals as in

Notation III.2. If all of the ideals At “ pxt
1
, . . . , xt

d´1
qR ` J are tightly closed in R

then so are all the It for all t ą 0.



22

Proof. Since xt
dAt Ď It, we have a well defined homomorphism of R modules

θ : R{At ÝÑ R{It

given by multiplication by xt
d. In fact, it is injective. Let z P R and suppose xt

dz P It.

Then there is an element j P J such that pz ´ jqxt
d P pxt

1
, . . . , xt

d´1
q. Since x1, . . . , xd

form a regular sequence in R, z P pxt
1
, . . . , xt

d´1
q ` J “ At.

Let u be a socle generator in R{ppx1, . . . , xd´1q ` Jq. Then ut “ px1 ¨ ¨ ¨ xd´1qt´1u

is a socle generator in R{ppxt
1
, . . . , xt

d´1
q ` Jq. We claim that px1 . . . xd´1qt´1xt

du is a

socle generator in R{It. For every element r P m, we have that

rpx1 . . . xd´1qt´1xt
du “ rθppx1 . . . xd´1qt´1uq “ θprpx1 . . . xd´1qt´1uq “ 0

and, since θ is injective, px1 . . . xd´1qt´1xt
du R It.

Since R{It is a 0-dimensional Gorenstein ring, to prove the lemma it is sufficient to

show that px1 . . . xd´1qt´1xt
du R ppxt

1
, . . . , xt

d´1
qR ` xt

dJq˚, see Remark III.5. Suppose

to the contrary that px1 . . . xd´1qt´1xt
du P ppxt

1
, . . . , xt

d´1
qR ` xt

dJq˚, then there exists

c P R˝ such that for all q " 0

cpx1 . . . xd´1qqt´qxqt
d u

q P pxtq
1
, . . . , xqt

d´1
qR ` xqt

d J
rqs,

pcpx1 . . . xd´1qqt´quq ´ jqqxqt
d P pxtq

1
, . . . , xqt

d´1
qR,

for some jq P J rqs.

Since xqt
1
, . . . , xqt

d form a regular sequence in R,

cuq
t “ cpx1 . . . xd´1qqt´quq P pxtq

1
, . . . , xqt

d´1
qR ` J rqs.

Hence, ut P ppxt
1
, . . . , xt

d´1
qR ` Jq˚ “ pxt

1
, . . . , xt

d´1
qR ` J .

This is a contradiction with the fact that ut is a socle generator modulo At.

The next result is an immediate consequence of the previous lemma.
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Theorem III.8. Let R be as in Assumption III.1 and let tAtut be full quasi-parameter

ideals defined as in Notation III.2. If every full quasi-parameter ideal for J , i.e., ev-

ery At, is tightly closed in R then R is weakly F -regular.

In fact, we conclude a stronger statement.

Theorem III.9. Let R be as in Assumption III.1. Suppose that for every quasi-

parameter ideal of R, tight closure commutes with localization. Suppose also that R

is weakly F -regular. Then R is F -regular.

Proof. Let Q be a prime ideal of R of height h. If J Ę Q, then JRQ “ RQ and

RQ is Gorenstein. Choose x1, . . . , xh P Q part of a system of parameters in R

such that their images form a system of parameters in RQ. By Theorem II.26,

px1, . . . , xhq˚RQ “ ppx1, . . . , xhqRQq˚. Hence, RQ is F -rational and, therefore, is F -

regular. Now assume that J Ď Q. Choose x1, . . . , xh´1 P Q part of a system of

parameters for R whose image form part of a system of parameters in RQ and R{J .

Then pxt
1
, . . . , xt

h´1
q ` J are quasi-parameter ideals for J . Hence ppxt

1
, . . . , xt

h´1
q `

Jq˚RQ “ ppxt
1
, . . . , xt

h´1
q ` JqRQq˚. Finally, by Theorem III.8, RQ is weakly F -

regular.

We would have that tight closure of quasi-parameter ideals commutes with local-

ization if tight closure agrees with plus-closure for quasi-parameter ideals. Thus we

have a natural question.

Question III.10. Let R be as in Assumption III.1. Is it true that for all quasi-

parameter ideals of R tight closure agrees with plus-closure?
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3.2 Comparison of 0˚
ERpKq and 0˚

ER{J pKq

For a local ring pR,m, Kq, properties of 0˚
ERpKq play an important role in the study

of localization problems of tight closure. In this section we use the notion of quasi-

parameter ideals to reduce the study of 0˚R in ERpKq to 0˚R in ER{JpKq, where J

shall denote an ideal of R isomorphic to the canonical module.

First, we define the hypothesis on the ring R which we shall assume throughout

the section.

Assumption III.11. Let pR,m, Kq be a Cohen-Macaulay excellent local domain of

Krull dimension d with the canonical module ωR and let J Ă R be a proper ideal of

R isomorphic to ωR. Let E denote the injective hull ERpKq. Recall that J has pure

height one in R and R{J is a Gorenstein ring of dimension d ´ 1.

We shall also use the following notation.

Notation III.12. Let x1, . . . , xd´1 P m be part of a system of parameters in R so

that their images form a system of parameters for R{J . Let xd P J be such that

tx1, . . . , xd´1, xdu is a full system of parameters for R. Let It “ pxt
1
, . . . , xt

d´1
q ` xt

dJ

and At “ pxt
1
, . . . , xt

d´1
q ` J for all positive integers t.

Important! Unless otherwise stated, all the tight closure operations performed

in this section are over the ring R.

Lemma III.13. Let R be as in Assumption III.11 and let It and At be ideals defined

as in Notation III.12. Then xd
t At Ă It Ă At Ă It : xd

t . Moreover, the following are

well defined injective homomorphisms of R-modules

(1)

R{At
¨xt

d �� R{It
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(2)

A˚
t {At

¨xt
d �� I˚

t {It

(3)

R{It
¨px1...xdq

�� R{It`1

(4)

I˚
t {It

¨px1...xdq
�� I˚

t`1
{It`1

(5)

R{At
¨px1...xd´1q

�� R{At`1

(6)

A˚
t {At

¨px1...xd´1q
�� A˚

t`1
{At`1

Proof.

(1) Since xt
dAt Ď It, we have a well defined homomorphism of R modules R{At ÝÑ

R{It given by multiplication by xt
d. Let z P R and suppose xt

dz P It. Then there is

an element j P J such that pz ´ jqxt
d P pxt

1
, . . . , xt

d´1
q. Since x1, . . . , xd form a regular

sequence in R, z P pxt
1
, . . . , xt

d´1
q ` J “ At.

(2) Let z P A˚
t , then there exists c P R˝ so that czq P Arqs

t “ pxtq
1
, . . . , xtq

d´1
q ` J rqs for

all q " 0. Therefore, cpxt
dzqq P pxtq

1
, . . . , xtq

d´1
q ` xtq

d J
rqs “ I rqs

t . Thus z P I˚
t .

(3) Since px1 . . . xdqIt Ď It`1, we have a well defined homomorphism of the quotients.

Let z P R and suppose that px1 . . . xdqz P It`1 “ pxt`1

1
, . . . , xt`1

d´1
q`xt`1

d J . Then there

exist an element j of J such that px1 . . . xd´1z ´ xt
djqxd P It`1 “ pxt`1

1
, . . . , xt`1

d´1
q.

Recall that x1, . . . , xd form a regular sequence on R. Therefore, px1 . . . xd´1qz P

pxt`1

1
, . . . , xt`1

d´1
q`xt

dJ . Working modulo xt
dJ , we get that px̄1 . . . x̄d´1qz̄ P px̄t`1

1
, . . . , x̄t`1

d´1
q.

Hence, z̄ P px̄t
1
, . . . , x̄t

d´1
q and z P It.
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(4) Let z P I˚
t , then there exists c P R˝ such that czq P I rqs

t “ pxtq
1
, . . . , xtq

d´1
q ` xtq

d J
rqs

for all q sufficiently large. Hence cpx1 . . . xdzqq P pxpt`1qq
1

, . . . , xpt`1qq
d´1

q ` xpt`1qq
d J rqs “

I rqs
t`1

and x1 . . . xdz P I˚
t`1

.

(5) Use the facts that R{J is Gorenstein and x1, . . . , xd´1 form a regular sequence on

R{J .

(6) Let z P A˚
t , then there exists c P R˝ such that czq P Arqs

t “ pxtq
1
, . . . , xtq

d´1
q ` J rqs

for all q sufficiently large. Hence cpx1 . . . xd´1zqq P pxpt`1qq
1

, . . . , xpt`1qq
d´1

q ` J rqs “ Arqs
t`1

and x1 . . . xd´1z P A˚
t`1

.

Lemma III.14. Let R be as in Assumption III.11 and let It and At be ideals defined

as in Notation III.12. The following two diagrams of R-modules and injective R-

modules homomorphisms commute

R{At
¨xt

d ��

¨px1¨...¨xd´1q
��

R{It
¨px1...xdq
��

R{At`1 ¨xt`1
d

�� R{It`1

A˚
t {At

¨xt
d ��

¨px1...xd´1q
��

I˚
t {It

¨px1...xdq
��

A˚
t`1

{At`1 ¨xt`1
d

�� I˚
t`1

{It`1

and induce a commutative diagram of direct limits

limÝÑt
A˚

t {At
��

��

limÝÑt
I˚
t {It

��
Hd´1

m pR{Jq – limÝÑt
R{At

�� ERpKq – limÝÑt
R{It

Proof. The proof is clear from the previous lemma.
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Notation III.15. Let R be as in Assumption III.11 and let It and At be ideals

defined as in Notation III.12. Let WJ “ limÝÑt
A˚

t {At and W “ limÝÑt
I˚
t {It.

Remark III.16. WJ – 0˚Rfg
ER{JqpKq and W – 0˚Rfg

E .

Proof. First observe that Hd´1

m pR{Jq – ER{JpKq, since R{J is Gorenstein. It is

sufficient to show that 0˚Rfg
E Ď W . Let z P 0˚Rfg

E , then there exists a finitely

generated submodule N Ď E such that z P 0˚
N . Moreover, since the direct limit

system defining E is injective, N Ď R{It for t " 0. Hence z P 0˚R{It . Finally by

properties of tight closure z P I˚
t {It. The proof for WJ is similar.

The next theorem is due to J. Stubbs and it will help us to compare the tight

closure of 0 in E and ER{JpKq.

Theorem III.17 ( [Stu08]). Let pR,m, Kq be a complete local ring and let V be an

Artinian R-module. Let M be the Matlis dual of V and let I define the non-finite

injective dimension locus in M . If u P 0˚
V , then u P 0˚

AnnV It for all t sufficiently

large.

We shall use the injective hull E as the Artinian module in Stubbs’s theorem.

Its Matlis dual is R. When the ring R is not Gorenstein, it does not have a finite

injective dimension over itself. For any prime ideal P Ď R, RP is Gorenstein if and

only if it has a finite injective dimension over itself if and only if JRP – RP for

all choices of J isomorphic to the canonical module. Moreover, for all r P J , we

have that Rr is Gorenstein. Hence J is contained in the ideal defining the non-finite

injective dimension locus for R.

Theorem III.18. Let pR,m, Kq be a Cohen-Macalay complete local domain with the

canonical module ωR. If u P 0˚R
ERpKq, then there exists a choice of an ideal Ju – ωR
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such that u P 0˚R
ER{Ju pKq over R.

Proof. Let E denote the injective hull ERpKq.

Let I denote the ideal defining the non-finite injective dimension locus for R. Then

for any proper ideal J – ωR, we have that J Ď I. Let J be any ideal of R isomorphic

to ωR. By Stubbs’s theorem, there exists a natural number n such that if u P 0˚
E,

then u P 0˚
AnnE In . Moreover, 0˚

AnnE In Ď 0˚
AnnE Jn . Let a be any nonzero element in

Jn. Then, since aJ Ď Jn, we have that u P 0˚
AnnE aJ . Recall that ER{JpKq – AnnE J .

Therefore, u P 0˚
ER{paJqpKq. Since aJ – J – ωR, we have the result.

It is known that E has DCC as an R-module. If, in addition, 0˚
E is of finite length,

then we have the following corollary.

Corollary III.19. Let 0˚
E be a module of finite length. Then 0˚

E – 0˚
ER{J pKq for some

J – ω.

Proof. Let u1, . . . , um be a generating set of 0˚
E as an R-module. Then there exist

natural numbers n1, . . . , nm such that ui P 0˚
AnnE Ini for all 1 ď i ď m. Take n “

maxtni | 1 ď i ď mu. Then we have that 0˚
E Ď 0˚

AnnE In . Finally, let a P Jn for any

J – ωR. Then 0˚
E Ď 0˚

ER{paJqpKq. Hence the result.

We always have that 0˚R
ER{J pKq Ď 0˚R

E Ď E for all choices of J – ωR. Therefore, we

may form
ř

J–ωR
0˚R
ER{J pKq inside E. Denote

ř
J–ωR

0˚R
ER{J pKq by O˚

E. Thus we have

that O˚
E Ď 0˚

E. By applying the above theorem we get that O˚
E “ 0˚

E.

Furthermore, we are motivated to give the following definition.

Definition III.20. Let pR,m, Kq be a Noetherian local ring of positive prime char-

acteristic p. Let I be the defining ideal of the non-finite injective dimension locus of

R and let E denote the injective hull of K over R. We say that R is amenable if 0˚
E

is an R-module of finite length.
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Remark III.21. Corollary III.19 holds for an amenable Cohen-Macaulay complete

local domain.

It is a natural question if Stubbs’s theorem has analogue for finitistic tight closure.

This leads us to the following definition.

Definition III.22. Let pR,m, Kq be a Noetherian local ring of positive prime char-

acteristic p. Let I be the defining ideal of the non-finite injective locus of R and let

E denote the injective hull of K over R. Then we say that R is finitistically amenable

if 0˚fg
E – 0˚fg

AnnE It for all t sufficiently large and 0˚
E has finite length as an R-module.

Immediately, we get a result whose proof is identical to that of the Theorem III.18.

Theorem III.23. Let pR,m, Kq be a finitistically amenable Cohen-Macaulay com-

plete local domain with the canonical module ωR. Then there exists a choice of an

ideal J Ă R isomorphic to ωR so that 0˚Rfg
ERpKq – 0˚Rfg

ER{J pKq.

Therefore, the modules we have defined earlier, W and WJ , are in fact the same

for some choice of J when the ring R has nice properties.

Corollary III.24. Let R be a finitistically amenable ring with the hypotheses defined

as in Assumption III.1 and in Notation III.2. Then W – WJ for some choice of

J – ωR.

Proof. Recall that W – 0˚fg
E and WJ – 0˚fg

ER{J pKq, see Remark III.16. Then apply

Theorem III.23.

We have that R is weakly F -regular if and only if all the ideals tItu are tightly

closed in R, and the fact that all the ideals tAtu are tightly closed is a sufficient

condition. Hence we have the following result.
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Corollary III.25. Let R be as in Assumption III.1. Then W “ 0 if and only if

WJ “ 0 for all choices of J .

3.3 The J-test ideal

In this section we develop a notion of the J-test ideal which arises naturally in

the course of working on the Conjecture I.2 stated in Chapter I. Let us define the

condition on a ring R which we use in this section.

Assumption III.26. Let pR,m, Kq be Cohen-Macaulay complete local normal do-

main of Krull dimension d with the canonical module ωR. Let J be an ideal of R

isomorphic to ωR.

Let x1, . . . , xd´1 P R be part of a system of parameters in R that also form a

system of parameters for R{J , and let xd P J be such that tx1, . . . , xdu is a system

of parameters for R. Let At “ pxt
1
, . . . , xt

d´1
qR ` J be full quasi-parameter ideals for

J . Then we have that R{At is a Gorenstein ring for all t, as well as R{J .

As before, let WJ “ limÝÑt
A˚

t {At.

Throughout this section the operation of tight closure is performed over R.

Definition III.27. Let R be any Noetherian ring of characteristic p ą 0. Let B

be an ideal of R. Then the B-test ideal of R is τBpRq “ Ş
BĎIpI :R I˚q, where the

intersection is taken over all ideals of R containing B.

We are primarily interested in the case when R is a ring as in Assumption III.26

and J Ă R is an ideal isomorphic to the canonical module ωR.

The next result shows that it is sufficient to consider quasi-parameter ideals for

J in order to define τJpRq.
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Lemma III.28. Let R be a ring and tAtu be a sequence of full quasi-parameter ideals

defined as in Assumption III.26. Then τJpRq “ Ş
tpAt : A

˚
t q.

Proof. Clearly, τJpRq Ď Ş
tpAt : A

˚
t q. Suppose that there exists c P Ş

tpAt : A
˚
t q ´

τJpRq, hence, there exist an ideal A of R and an element u P A˚ ´A, so that cu R A.

Choose an ideal B of R maximal with respect to the property B Ě A and cu R B.

Then R{B is a module of finite length and the image ū of u belongs to every nonzero

ideal of R{B and spans its socle. Therefore, R{B ū – Kū ãÑ R{B is an essential

extension of R-modules. Then R{B Ď ER{JpKq – Ť
t R{At. Finally, we get that

R{B ãÑ R{At for all t " 0 and ū corresponds to a socle element of R{At. Thus

u P A˚
t and cu P At for all t " 0, which contradicts our choice of B.

Next we shall relate the notions of WJ and τJpRq. In fact, we show that the J-test

ideal is the annihilator of WJ .

Consider Hd´1

m pR{Jq – limÝÑt
R{ppxt

1
, . . . , xt

d´1
q ` Jq “ limÝÑt

R{At which is an injec-

tive direct limit system and is defined by multiplication by x1 . . . xd´1. Every element

η P limÝÑt
R{At can be thought as an equivalence class rz ` Ats for some z P R, where

rz`Ats “ rw`Ass for s ě t if and only if px1 . . . xd´1qs´tz´w P As. Moreover, since

R{J is Gorenstein, Hd´1

m pR{Jq – ER{JpKq.

Recall that WJ “ limÝÑt
A˚

t {At is a submodule of Hd´1

m pR{Jq. It is also an injective

direct limit system defined by multiplication by x1 . . . xd´1, see Lemma III.13. Simi-

larly, every element η P WJ can be represented by its equivalence class rz ` Ats, for

some z P A˚
t .

We do not have a natural action of the Frobenius endomorphism FR on Hd´1

m pR{Jq.

However, we can define an endomorphism which has properties very similar to that

of the Frobenius.
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Lemma III.29. Let R be as in Assumption III.26. Let Ψ : Hd´1

m pR{Jq Ñ H
d´1

m pR{Jq

be such that if η “ rz ` Ats P H
d´1

m pR{Jq, then Ψpηq “ rzp ` Apts. Then

(a) Ψ is a well-defined endomorphism of H
d´1

m pR{Jq.

(b) WJ is Ψ-stable submodule of H
d´1

m pR{Jq, i.e., ΨpWJq Ď WJ .

Proof.

(a) Suppose that rz ` Ats “ rw ` Ass P Hd´1

m pR{Jq with s ě t. Then

px1 . . . xd´1qs´tz ´ w P As .

Hence

ppx1 . . . xd´1qs´tz ´ wqp P Arps
s Ď Aps .

Thus

rzp ` Apts “ rwp ` Apss.

(b) For every η “ rz ` Ats P WJ there exists c P R˝ such that czq P Arqs
t Ď Aqt for

all q " 0. Equivalently, cpzpqq P Arqs
pt for all q sufficiently large. Thus, zp P A˚

pt and

F pηq “ rzp ` Apts P WJ .

Similar to the notion of an F -stable ideal in [Smi94], we define Ψ-ideals as follows.

Definition III.30. For a ring R as in Assumption III.26, let I Ď R be an ideal. Then

we say that it is a Ψ-ideal if Ann
H

d´1
m pR{Jq I is a Ψ-stable submodule of Hd´1

m pR{Jq.

We also get a characterization of Ψ-ideals analogous to the Lemma 4.6 in [Smi94].

Lemma III.31. Let R be a ring and tAtu be a sequence of quasi-parameter ideals

defined as in Assumption III.26. Let I be an ideal of R. Then I is a Ψ-ideal if and

only if for any z P R if Iz Ď A1, then Izp Ď Ap.
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Proof. For an element η “ rz ` A1s in Hd´1

m pR{Jq, Iη “ rIz ` A1s “ 0 if and

only if Iz Ď A1. Hence, η P Ann
H

d´1
m pR{Jq I. Then I is a Ψ-ideal if and only if

Ψpηq “ rzp ` Aps is killed by I.

The next lemma is analogous to Proposition 4.8 in [Smi94].

Lemma III.32. Let R be a ring and tAtu be a sequence of quasi-parameter ideals

defined as in Assumption III.26. If I is a Ψ-ideal of R, then for any prime ideal P

of R, IRP is a Ψ-ideal of RP .

Proof. The proof is similar to that of Proposition 4.8 in [Smi94]. We use the criterion

from the previous lemma to prove the statement.

First let P be a prime ideal of R of height h such that J Ę P . Then JRP “ RP .

IRP is a Ψ-ideal if Ann
H

h´1
PRP

pRP {pJRP qq I is Ψ- stable in Hh´1

PRP
pRP {pJRP qq. However,

Hh´1

PRP
pRP {pJRP qq “ 0.

Let P be a prime ideal of R of height h such that J Ď P . Let x1, . . . , xd´1 P R

be such that they form a part of a system of parameter ideals for R and a system

of parameters for R{J and such that images of x1, . . . , xh´1 P P form part of a

system of parameters for RP and a system of parameters for RP {JRP . Let B “

px1, . . . , xh´1q ` J . Then BRP is a quasi-parameter ideal of RP .

Let z{1 P RP such that IRP z Ď BRP . Then since R is a domain, there exists an

element f P R ´ P such that fIz Ď B. Hence

fIz Ď px1, . . . , xh´1, x
N
h , . . . , x

N
d´1

q ` J

for all N ě 0. Since I is a Ψ-ideal, by Lemma III.31 we have that

Ipfzqp Ď pxp
1
, . . . , xp

h´1
, xNp

h , . . . , xNp
d´1

q ` J.
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Therefore,

Ipfzqp Ď
8č

N“0

ppxp
1
, . . . , xp

h´1
, xNp

h , . . . , xNp
d´1

q ` Jq.

Finally, we have that

Ipfzqp Ď pxp
1
, . . . , xp

h´1
q ` J.

Hence apply Lemma III.31 again to get the desired result.

Remark III.33. As a submodule of Hd´1

m pR{Jq, WJ has DCC over R.

Consider the Matlis dual of WJ .

W_
J “ HomRpWJ , Eq “ HomplimÝÑ

t

A˚
t {At, Eq “ limÐÝ

t

pA˚
t {Atq_ “ limÐÝ

t

R{pAt :R A˚
t q.

Here we used the facts that if M Ď E, then M_ – R{AnnR M and R{At Ď E.

Moreover, since the direct limit system defining WJ is injective, the inverse limit

system of W_
J is surjective and hence At`1 : A

˚
t`1

Ď At : A
˚
t for all t ą 0. Therefore,

W_
J “ R{

č

tą0

pAt :R A˚
t q.

Thus we have the following lemma.

Lemma III.34. Let R be as in Assumption III.26. Then W_
J “ R{τJpRq.

Corollary III.35. Let R be a ring defined as in Assumption III.26. If every ideal

of R containing J is tightly closed then R is weakly F -regular.

The next result is a weaker version of similar statements in [Ene03] and [DSNB],

see Lemma II.46.

Corollary III.36. Let R be a ring defined as in Assumption III.26. If R{J is weakly

F -regular, then so is R.
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Proof. Observe first that, by persistence, τpR{Jq Ď τJpRqpR{Jq, then the result is

immediate.

Moreover, combining with the results we obtained in the previous sections, we

have the following theorem.

Theorem III.37. Let R be as in Assumption III.26. Suppose also that R is finitis-

tically amenable. Then there exists a choice of J such that τJpRq “ τpRq.

Proof. Use the facts that W – WJ for some choice of J and the test ideals are

annihilators of W and WJ respectively.

Our next goal is to show that if we assume that R is locally F -regular in addition

to hypotheses in Assumption III.26, then WJ has finite length as an R-module.

The following result shows that if the tight closure of quasi-parameter ideals com-

mutes with localization, then the J-test ideal commutes with localization.

Lemma III.38. Let R be a ring as in Assumption III.26. Let P be a prime ideal of

height h and J Ď P . Choose x1, . . . , xh´1 P P so that they form a system of parameters

for RP {JRP and a part of system of parameters in R and in R{J . Suppose that for

all prime ideals P ‰ m and parts of a system of parameters as above, the following

holds for all t ą 0

ppxt
1
, . . . , xt

h´1
q ` Jq˚RP “ ppxt

1
, . . . , xt

h´1
q ` JRP q˚R{P

.

Then τJpRqRQ “ τJRQpRQq for every prime ideal Q of R.

Proof. First assume that J Ę Q, then JRQ “ RQ and τJRQpRQq “ RQ. On the other

hand, J Ď τJpRq, so τJpRqRQ Ě JRQ “ RQ.

Now consider the case when J Ď Q. Choose x1, . . . , xh´1 P Q as in the statement

of the lemma, where htQ “ h. Let Bt “ pxt
1
, . . . , xt

h´1
q ` J be ideals of R. We have
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that τJRQpRQq “ Ş
tpBt RQ :RQ pBt RQq˚q “ Ş

tpBt RQ :RQ B˚
t RQq “ Ş

trpBt :R

B˚
t qRQs. Let c P τJpRq “ Ş

IĚJpI : I˚q, then cB˚
t Ď Bt for all t. Therefore,

c{1 P pBt :R B˚
t qRQ for all t and c{1 P τJRQpRQq. So, τJpRqRQ Ď τJRQpRQq.

Now let us prove the opposite inclusion. Recall that W_
J “ R{τJpRq, hence

τJpRq “ AnnR W_ “ AnnR W . Therefore,

τJpRqRQ “ pAnnR W_q bR RQ “

“ AnnRQpW_ bR RQq “

“ AnnRQpW_ bR RQq_Q “

“ AnnRQpHomRQpW_ bR RQ, ERQpRQ{QRQqqq “

“ AnnRQpHomRpW_, ERpR{Qqq bR RQq “

“ AnnRQpHomRpR{τJpRq, EpR{Qqq bR RQq “

“ AnnRQ AnnEpR{QqpτJpRqRQq.

We also have that τJRQpRQq “ AnnRQ limÝÑt

pBt RQq˚

Bt RQ
“ AnnRQ limÝÑt

B˚
t RQ

Bt RQ
.

To show that τJRQpRQq Ď τJpRqRQ it is equivalent to prove that

AnnRQ limÝÑt

B˚
t RQ

Bt RQ
Ď AnnRQ AnnEpR{QqpτJpRqRQq

and therefore, since ERQ{JRQ
pRQ{QRQq Ď ERQpRQ{QRQq, it is sufficient to prove

that

limÝÑt

B˚
t RQ

Bt RQ
Ě AnnERQ{JRQ

pRQ{QRQqpτJpRqRQq.

For simplicity of notation, let E 1 denote ERQ{JRQ
pRQ{QRQq. Let c{1 P τJpRqRQ

and η P AnnE1pτJpRqRQq Ď E 1 – Hh´1

QRQ
pRQ{JRQq – limÝÑt

RQ{Bt RQ. We know that

WJ is a Ψ-stable submodule of Hd´1

m pR{Jq, hence AnnR WJ “ τJpRq is a Ψ-ideal

of R by definition. Based on Lemma III.32, τJpRqRQ is a Ψ-ideal of RQ, hence we
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have AnnE1pτJpRqRQq is an F -stable submodule of E 1 and F epηq P AnnE1pτJpRqRQq.

Finally, we get that pc{1qF epηq “ 0 in E 1 for all e ą 0. Suppose that η “ rz{1`Bt RQs

with z P R. Then pc{1qF epηq “ rczq{1`Btq RQs “ 0, so czq P Brqs
t for all q “ pe ą 0.

Since c ‰ 0, c P R˝ and z{1 P B˚
t RQ. Thus, η P limÝÑt

B˚
t RQ

Bt RQ
.

Theorem III.39. Let R be a ring as in Assumption III.26. Suppose that for every

prime ideal P ‰ m of R, the local ring RP is weakly F -regular. Then WJ has finite

length as an R-module.

Proof. Since R is complete, it suffices to show that the Matlis dual W_
J is a module

with DCC over R.

SinceWJ is a module with DCC over R, its dual satisfies ACC. Therefore, to prove

the theorem It is sufficient to show that W_
J is supported only at the maximal ideal

m. Let P Ď R be a prime ideal of height h containing J and choose x1, . . . , xh´1 P P

so that px1, . . . , xh´1q ` J is a quasi-parameter ideal for J. Then by persistence of

tight closure we have that ppxt
1
, . . . , xt

h´1
q ` Jq˚RP Ď ppxt

1
, . . . , xt

h´1
q ` JRP q˚R{P .

By our assumption, RP is weakly F -regular, so ppxt
1
, . . . , xt

h´1
q ` JRP q˚R{P “

ppxt
1
, . . . , xt

h´1
q `JqRP , hence ppxt

1
, . . . , xt

h´1
q `Jq˚RP “ ppxt

1
, . . . , xt

h´1
q `JRP q˚R{P .

Therefore, by the above lemma τJpRqRQ “ τJRQpRQq for all prime ideals Q of R.

Moreover, τJpRqRQ “ RQ for all Q ‰ m. Since W_
J “ R{τJpRq, we have that

pW_
J qQ “ RQ{τJRQpRQq “ 0 for for all Q ‰ m.

Corollary III.40. Let pR,m, Kq be a complete Cohen-Macaulay local ring. Suppose

that for every prime ideal P ‰ m of R, the local ring RP is weakly F -regular. Then

the J-test ideal τJpRq is m-primary. Moreover, if R is finitistically amenable, then

the test ideal of R is m-primary.
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Proof. We have that for all J – ωR, τJpRq “ AnnR WJ and τpRq “ AnnR W .

Moreover, WJ – W for some choice of J in case R is amenable.

3.4 Big ideals

In the theory of tight closure we study rings which have the property that every

ideal is tightly closed and it is equivalent to the property that every submodule

of a finitely generated module is tightly closed. Then one might ask the following

question. Can one characterize finitely generated modules such that all submodules

are tightly closed? We shall see that this reduces, in a sense, to the study of ideals

I of R such that every submodule of R{I is tightly closed over R, which we refer to

as big ideals.

Theorem III.41. Let R be a Noetherian commutative ring of positive prime charac-

teristic p. Let M be a finitely generated R-module. Suppose that for every submodule

N of M , N˚
M “ N . Then every ideal of R{AnnR M is tightly closed over R.

Proof. Throughout this proof all tight closure operations are taken over the ring R.

First observe that if M1 and M2 are finitely generated R-modules with the prop-

erty that every submodule is tightly closed then M1 ‘ M2 has this property as well.

Let N Ď M1 ‘ M2 be any submodule. We have a short exact sequence

0 Ñ M1 ` N Ñ M1 ‘ M2 Ñ M2{pN
č

M2q Ñ 0.

Hence M1 ` N is tightly closed in M1 ‘ M2. Next, we have a short exact sequence

0 Ñ N Ñ M1 ` N Ñ M1{pN
č

M1q Ñ 0.

Therefore, N is tightly closed in M1 ` N and hence in M1 ‘ M2.
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Now let M be a finitely generated R-module with the property as in the statement

of the lemma. Let u1, . . . , uk be generators of M . Then we have a short exact

sequence

0 Ñ AnnM R Ñ R Ñ M‘k Ñ 0

such that

r Ñ ru1 ‘ . . . ruk

Then R{AnnM R ãÑ M‘ and every R-submodule of R{AnnM R is tightly closed

over R.

Therefore, we can focus on rings R{I in which every ideal is tightly closed over

R.

The next natural question one might ask: if we have a quotient ring with the

property as above, is R{I weakly F -regular? The answer is no. Take R “ Krx, y, zs

the polynomial ring over a fieldK. Let I “ px3`y3`z3q be an ideal of R. Then every

ideal of R{I is tightly closed since R is regular, but R{I is not weakly F -regular.

However, we might ask this question. Let I be an ideal of R such that every ideal

of R{I is tightly closed. Does there exist an ideal J of R contained in I such that

R{J is weakly F -regular? In the above example, we have that J “ p0q works.

Remark III.42. If I has the property that every ideal of R{I is tightly closed over R,

then every ideal in R containing I is tightly closed in R.

Remark III.43. The question can be positively answered for a Cohen-Macaulay com-

plete local normal domain. If I – ωR, then J “ p0q, see Corollary III.36.

Corollary III.36, originally proved by F. Enescu in a more general setting and gen-

eralized even further by A. De Stefani and L. Nunez-Betancourt, leads to a question:
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for an F -regular ring R, does there exist an ideal J – ωR such that R{J is F -regular.

Unfortunately, the answer is no, as an example in [DSNB] shows.



CHAPTER IV

Nearly commuting and commuting matrices

4.1 Introduction and preliminaries

In this chapter we study algebraic sets of pairs of matrices such that their com-

mutator is either nonzero diagonal or zero. We also consider some other related

algebraic sets. Let us define relevant notions.

Let X “ pxijq1ďi,jďn and Y “ pyijq1ďi,jďn be n ˆ n matrices of indeterminates

over a field K. Let R “ KrX, Y s be the polynomial ring in txij, yiju1ďi,jďn and let

I denote the ideal generated by the off-diagonal entries of the commutator matrix

XY ´Y X and J denote the ideal generated by the entries of XY ´Y X. The ideal I

defines an algebraic set of pairs of matrices with nonzero diagonal commutator and

is called an algebraic set of nearly commuting matrices.

Let uij denote the pi, jqth entry of the matrix XY ´ Y X. Then I “ puij | 1 ď i ‰

j ď nq and J “ puij | 1 ď i, j ď nq.

Theorem IV.1 ([Ger61]). The algebraic set of commuting matrices is irreducible,

i.e., it is a variety. Equivalently, RadpJq is prime.

The following result is due to Knutson [Knu05], when the characteristic of the

field is 0, and to H.Young [You11] in all characteristics.

Theorem IV.2 ([Knu05], [You11]). The algebraic set of nearly commuting matrices

41
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is a complete intersection, with the variety of commuting matrices as one of its

irreducible components.

Theorem IV.3 ([Knu05], [You11]). When K has characteristic zero, I is a radical

ideal.

A. Knutson in his paper [Knu05] conjectured that VpIq has only two irreducible

components and its was proved in all characteristics by H.Young in his thesis, [You11].

Theorem IV.4 ([You11]). If n ě 2, the algebraic set of nearly commuting matrices

has two irreducible components, one of which is the variety of commuting matrices

and the other is the so-called skew component. That is, I has two minimal primes,

one of which is RadpJq.

Let P “ RadpJq and let Q denote the other minimal prime of I, i.e., RadpIq “

P
Ş

Q.

The following conjecture was made in 1982 by M. Artin and M. Hochster.

Conjecture IV.5. J is reduced, i.e., J “ P .

It was answered positively by Mary Thompson in her thesis in the case of 3 ˆ 3

matrices.

Theorem IV.6 ([Tho85]). R{J is a Cohen-Macaulay domain when n “ 3.

The following known results will show that the properties of varieties defined by

P and Q are closely related.

Definition IV.7 ([HU87]). Let I and J be two ideals in a Cohen-Macaulay ring A.

Then I and J are said to be linked, if there is a regular sequence α “ α1, . . . , αk in

I
Ş

J such that α : I “ J and α : J “ I.
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Lemma IV.8. Let A be a Noetherian Cohen-Macaulay ring and let I be a radical

ideal of A generated by a regular sequence and with the primary decomposition I “

P
Ş

Q. Then I : P “ Q and I : Q “ P , i.e., P and Q are linked.

Proof. Clearly, PQ Ď I. Hence we need only to show that I : P Ď Q and I : Q Ď P .

Let z P I : P , then Pz P I Ď Q. Then since P Ę Q, z P Q. I : Q Ď P can be proved

similarly.

For more properties of linkage see [HU87].

The next theorem is due to C. Peskine and L. Szpiro and it shows that quotients

by ideals which are linked share certain nice properties. We shall make use of this

result later in the chapter when we discuss F -regularity of the variety of commuting

matrices and the skew-component.

Theorem IV.9 ([PS74]). In the situation of the above lemma, A{P is Cohen-

Macaulay if and only if A{Q is Cohen-Macaulay, in which case the corresponding

canonical modules are ωA{P – pP `Qq{P and ωA{Q – pP `Qq{Q. Hence, A{pP `Qq

is Gorenstein of dimension dimA ´ 1.

Now let us go back to algebraic sets of nearly commuting matrices and their

irreducible components. First, let us take a look at what we have when n “ 1, 2.

When n “ 1, everything is trivial. More precisely, I “ P “ Q “ Krx11, y11s.

When n “ 2, without loss of generality we may replace X and Y by X ´ x22In

and Y ´ y22In respectively. Here In is the identity matrix of size n. Denote x1
11

“

x11 ´ x22, y1
11

“ y11 ´ y22. Then the generators of I are 2 by 2 minors

u12 “

ˇ̌
ˇ̌
ˇ̌
ˇ

x1
11

x12

y1
11

y12

ˇ̌
ˇ̌
ˇ̌
ˇ
, u21 “ ´

ˇ̌
ˇ̌
ˇ̌
ˇ

x1
11

x21

y1
11

y21

ˇ̌
ˇ̌
ˇ̌
ˇ
.
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The diagonal entries of XY ´ Y X are

u11 “

ˇ̌
ˇ̌
ˇ̌
ˇ

x12 x21

y12 y21

ˇ̌
ˇ̌
ˇ̌
ˇ
, u22 “ ´

ˇ̌
ˇ̌
ˇ̌
ˇ

x12 x21

y12 y21

ˇ̌
ˇ̌
ˇ̌
ˇ
.

Then J is the ideal generated by size 2 minors of

»

—–
x1
11

x12 x21

y1
11

y12 y21

fi

ffifl and therefore,

J “ P is prime. We also have that Q “ px1
11
, y1

11
q. Moreover, I “ P

Ş
Q is radical

and P ` Q “ x12y21 ´ x21y12 is prime.

We have that

pu12u21qp´1 “ px1
11
y12 ´ x12y

1
11

qp´1px1
11
y21 ´ x21y

1
11

qp´1 “
p´1ÿ

α“0

p´1ÿ

β“0

p´1qα`β

ˆ
p ´ 1

α

˙ˆ
p ´ 1

β

˙
px1

11
qα`βpy1

11
q2pp´1q´α´βxp´1´α

12
yα
12
xp´1´β
21

yβ
21
.

Therefore, pu12u21qp´1 has a monomial term px1
11
y1
11
x12y21qp´1 with coefficient p´1qp´1.

Since I rps : I “ pu12u21qp´1`I rps, R{I is F -pure, see Fedder’s criterion Lemma IV.12.

Furthermore, determinantal rings R{P , R{Q, R{pP `Qq are F -regular, see [HH94b].

Therefore, for the rest of the chapter we shall use the following notations.

Notation IV.10. Let n ě 3 be an integer. Let X “ pxijq1ďi,jďn and Y “ pyijq1ďi,jďn

be nˆn matrices of indeterminates over a field K. Let R “ KrX, Y s be the polyno-

mial ring in txij, yiju1ďi,jďn and let I denote the ideal generated by the off-diagonal

entries of the commutator matrix XY ´ Y X and J denote the ideal generated by

the entries of XY ´ Y X. Let P denote the radical of J and Q be the other minimal

prime of RadpIq.

4.2 F -purity

In this section we show that the coordinate ring of the algebraic set of pairs

of matrices with a diagonal commutator is F -pure in the case of 3 by 3 matrices.
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Moreover, we also prove that it implies the corresponding fact for its irreducible

components, the variety of commuting matrices and the skew-component, and their

intersection.

First we state two lemmas due to R. Fedder and this includes a criterion for F -

purity for finitely generated K-algebras and which has a particularly convenient form

for complete intersections.

Lemma IV.11 (Fedder [Fed97]). Let S be a regular local ring or a polynomial ring

over a field. If S has characteristic p ą 0 and I is an unmixed proper ideal (homo-

geneous in the polynomial case) with the primary decomposition I “ Şn
i“1

Ai, then

I rps : I “ Şn
i“1

pArps : Aq.

Lemma IV.12 (Fedder’s criterion [Fed97]). Let pS,mq be a regular local ring or a

polynomial ring over a field and its homogeneous maximal ideal. If S has character-

istic p ą 0 and I is a proper ideal (homogeneous in the polynomial case), then S{I

is F -pure if and only if I rps : I Ć mrps
.

Next result is a straightforward consequence of the above two lemmas. It will

prove to be quite useful for us.

Lemma IV.13. Let S be a regular local ring or a polynomial ring over a field.

Suppose that S has characteristic p ą 0 and I is an ideal of S (homogeneous in the

polynomial case). Suppose also that S{I is F -pure and I “ Şn
i“1

Ai is the primary

decomposition. Then S{pAi1 ` . . .Aimq is F -pure for all 1 ď i1 ă ... ă im ď n and

for all 1 ď m ď n.

Proof. Observe first that pAi1 ` . . .Aimqrps :S pAi1 ` . . .Aimq Ě Şm
j“1

pArps
ij

: Aijq Ě
Şn

i“1
pArps

i : Aiq “ pI rps : Iq. The rest is immediate from Lemma IV.11 and Lemma IV.12.
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The above lemma is closely related to results on compatibly split ideals, cf [ST12].

Immediately we get the corresponding result for our algebraic set.

Corollary IV.14. Suppose that the coordinate ring of the algebraic set of nearly

commuting matrices R{I is F -pure. Then R{P , R{Q and R{pP ` Qq are F -pure.

Next, we use Fedder’s criterion to show F -purity of R{I in case when n “ 3.

Theorem IV.15. Let K be a field of characteristic p ą 0 and let n “ 3. Let R be a

ring as in Notation IV.10. Then R{I is F -pure.

Proof. Recall that I is generated by a regular sequence tuij|1 ď i ‰ j ď nu. There-

fore, I rps : I “ pś
1ďi‰jďn u

p´1

ij qR ` I rps. Thus by Fedder’s criterion it is sufficient to

prove that
ś

1ďi‰jďn u
p´1

ij R mrps. We show this by proving the following claim.

Claim. If µ “ x12x13x21x23x31x33y11y12y23y31y32y33, then µp´1 is a monomial term

of
ś

1ďi‰jď3
up´1

ij with a nonzero coefficient modulo p.

Proof. We compute the coefficient of µp´1. It can be obtained by choosing a monomial

from every uij in the following way:

u12 : p´x12y11qα1px13y32qβ1

u13 : p´x23y12qα2px12y23qβ2p´x13y11qγ2px13y33qδ2

u21 : p´x31y23qα3px21y11qβ3px23y31qγ3

u23 : px23y33qα4p´x33y23qβ4

u31 : p´x21y32qα5px33y31qβ5p´x31y33qγ5px31y11qδ5

u32 : px31y12qα6p´x12y31qβ6px33y32qγ6

Then the exponents Ast and Bst of each xst and yst respectively are

A12 “ α1 ` β2 ` β6

A13 “ β1 ` γ2 ` δ2

A21 “ β3 ` α5

A23 “ α2 ` γ3 ` α4

A31 “ α3 ` γ5 ` δ5 ` α6

A33 “ β4 ` β5 ` γ6
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B11 “ α1 ` γ2 ` β3 ` δ5

B12 “ α2 ` α6

B23 “ β2 ` α3 ` β4

B31 “ γ3 ` β5 ` β6

B32 “ β1 ` α5 ` γ6

B33 “ δ2 ` α4 ` γ5

In addition, denote

C12 “ α1 ` β1,

C13 “ α2 ` β2 ` γ2 ` δ2,

C21 “ α3 ` β3 ` γ3,

C23 “ α4 ` β4,

C31 “ α5 ` β5 ` γ5 ` δ5,

C32 “ α6 ` β6 ` γ6.

Our goal is to find all nonnegative integer tuples α “ pα1, . . . , α6q, β “ pβ1, . . . , β6q, γ “

pγ2, γ3, γ5, γ6q, δ “ pδ5, δ6q such that Ast “ p ´ 1, Bst “ p ´ 1 for all 1 ď s, t ď 3 and

Cij “ p ´ 1 for all 1 ď i ‰ j ď 3.

Notice that the linear system does not have a nonzero determinant: the sum of

the first 12 equations is twice the sum of the rest 6 equations. Therefore, there is

not a unique solution.

The above linear system can be solved using standard methods from linear algebra

and has the following solution

»

——–

α
β
γ
δ

fi

ffiffifl “

»

——–

a b d p ´ 1 ´ b ´ a ` d a p ´ 1 ´ b
p ´ 1 ´ a p ´ 1 ´ a ´ b p ´ 1 ´ a a ` b ´ d p ´ 1 ´ a ´ b ` d b

´ a ´ c a ´ d ´ b ` a ´ d ´ c 0
´ c ´ ´ c ´ a ´

fi

ffiffifl

where column vector rα, β, γ, δs represents the matrix of solutions and a, b, c, d are

elements of the field K.

Since we look for nonnegative integer solutions we must have that a “ c and

a, b ě d and a ` b ď p ´ 1. Hence we have that
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»

——–

α
β
γ
δ

fi

ffiffifl “

»

——–

a b d p ´ 1 ´ b ´ a ` d a p ´ 1 ´ b
p ´ 1 ´ a p ´ 1 ´ a ´ b p ´ 1 ´ a a ` b ´ d p ´ 1 ´ a ´ b ` d b

´ 0 a ´ d ´ b ´ d 0
´ a ´ ´ 0 ´

fi

ffiffifl

Therefore, the coefficient of µp´1 is the sum of expressions of the form

p´1qα1`α2`γ2`α3`β4`α5`γ5`β6ppp ´ 1q!q6{pα1! . . . α6!β1! . . . β6!γ2!γ3!γ5!γ6!δ5!δ6!q

where α “ pα1, . . . , α6q, β “ pβ1, . . . , β6q, γ “ pγ2, γ3, γ5, γ6q, δ “ pδ5, δ6q run over

all solutions of the linear system above. That is,

pp´1q{2ÿ

d“0

ÿ

a,běd, a`bďp´1

p´1qa´d

ˆ
p ´ 1

a

˙
2
ˆ
p ´ 1

b

˙
2
ˆ

p ´ 1

a ` b ´ d

˙
2
ˆ
p ´ 1 ´ b

a

˙ˆ
a ` b ´ d

b

˙ˆ
b

d

˙

which modulo p is equivalent to

pp´1q{2ÿ

d“0

ÿ

a,běd, a`bďp´1

p´1qa´d

ˆ
p ´ 1 ´ b

a

˙ˆ
a ` b ´ d

b

˙ˆ
b

d

˙

It is also can be written as

pp´1q{2ÿ

d“0

ÿ

a,běd, a`bďp´1

p´1qa´d

ˆ
p ´ 1 ´ b

a

˙ˆ
a ` b ´ d

a ´ d b ´ d d

˙

or
p´1ÿ

b“0

bÿ

d“0

p´1´bÿ

a“d

p´1qa´d

ˆ
p ´ 1 ´ b

a

˙ˆ
a ` b ´ d

b

˙ˆ
b

d

˙

The following lemma shall show that the above expression is equal to 1 for all values

of p. In fact, for this purpose p does not have to be prime.

Lemma IV.16. Let Cm “ řm
b“0

řb
d“0

řm´b
a“d p´1qa´d

`
m´b
a

˘`
a`b´d

b

˘`
b
d

˘
. Then Cm “ 1

for all m ě 1.

Proof. We shall prove a stronger statement.
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Claim. Let Bm,b “ řb
d“0

řm´b
a“d p´1qa´d

`
m´b
a

˘`
a`b´d

b

˘`
b
d

˘
. Then for all m ě 1

Bm,b “

$
’&

’%

0 if 0 ď b ď m ´ 1;

1 if b “ m.

Proof. First observe that Bm,m “ řm
d“0

ř
0

a“dp´1qa´d
`
m´b
a

˘`
a`b´d

b

˘`
b
d

˘
“ 1 and Bm,0 “

řm
a“0

p´1qa
`
m
a

˘
“ 0. Hence we may assume that 0 ă b ă m.

Let Am,b,d “ řm´b
a“d p´1qa

`
m´b
a

˘`
a`b´d

b

˘
, then Bm,b “ řb

d“0
p´1qd

`
b
d

˘
Am,b,d. Consider

the difference

Am,b,d ´ Am,b,d`1 “
m´bÿ

a“d

p´1qa
ˆ
m ´ b

a

˙ˆ
a ` b ´ d

b

˙
´

m´bÿ

a“d`1

p´1qa
ˆ
m ´ b

a

˙ˆ
a ` b ´ d ´ 1

b

˙
“

p´1qd
ˆ
m ´ b

d

˙
`

m´bÿ

a“d`1

p´1qa
ˆ
m ´ b

a

˙
p
ˆ
a ` b ´ d

b

˙
´

ˆ
a ` b ´ d ´ 1

b

˙
q “

Using Pascal’s identity, we get

p´1qd
ˆ
m ´ b

d

˙
`

m´bÿ

a“d`1

p´1qa
ˆ
m ´ b

a

˙ˆ
a ` b ´ d ´ 1

b ´ 1

˙
“

m´bÿ

a“d

p´1qa
ˆ
m ´ b

a

˙ˆ
a ` b ´ d ´ 1

b ´ 1

˙
“

m´1´pb´1qÿ

a“d

p´1qa
ˆ
m ´ 1 ´ pb ´ 1q

a

˙ˆ
a ` pb ´ 1q ´ d

b ´ 1

˙
.

Thus we have that

Am,b,d ´ Am,b,d`1 “ Am´1,b´1,d for all m ´ 1 ě b ě d ` 1 and d ě 0.

Therefore,

Bm´1,b´1 “
b´1ÿ

d“0

p´1qd
ˆ
b ´ 1

d

˙
Am´1,b´1,d “

b´1ÿ

d“0

p´1qd
ˆ
b ´ 1

d

˙
pAm,b,d ´ Am,b,d`1q “

b´1ÿ

d“0

p´1qd
ˆ
b ´ 1

d

˙
Am,b,d ´

b´1ÿ

d“0

p´1qd
ˆ
b ´ 1

d

˙
Am,b,d`1 “
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b´1ÿ

d“0

p´1qd
ˆ
b

d

˙
b ´ d

b
Am,b,d ´

bÿ

d“1

p´1qd´1

ˆ
b ´ 1

d ´ 1

˙
Am,b,d “

b´1ÿ

d“0

p´1qd
ˆ
b

d

˙
b ´ d

b
Am,b,d `

bÿ

d“1

p´1qd
ˆ
b

d

˙
d

b
Am,b,d “

b´1ÿ

d“1

p´1qd
ˆ
b

d

˙
Am,b,d ` Am,b,0 ` p´1qbAm,b,b “

bÿ

d“0

p´1qd
ˆ
b

d

˙
Am,b,d “ Bm,b.

Thus we have that Bm´1,b´1 “ Bm,b for all m ě 1 and m ´ 1 ě b ě 1.

In case m “ 1, we only have B1,0 “ 0. Finally, use induction on m to conclude

that Bm,b “ 0 for all m ě 1 and m ´ 1 ě b.

Thus, Cm “ řm
b“0

Bm,b “ 1.

Finally, we complete the proof of Theorem IV.15. We have that
ś

1ďi‰jďn u
p´1

ij R

mrps and R{I is F -pure when n “ 3.

Corollary IV.17. Let R be a ring as in Notation IV.10. When n “ 3, R{P,R{Q

and R{pP ` Qq are F -pure Cohen-Macaulay rings and R{pP ` Qq is Gorenstein.

Corollary IV.18. Let R be a ring as in Notation IV.10. Then P ` Q is radical

when n “ 3.

Remark IV.19. We shall prove in the next section that the radical of P `Q is prime,

which will imply that P ` Q is prime when n “ 3. In particular, we shall have that

R{pP ` Qq is a domain when n “ 3.

4.3 Irreducibility of P ` Q

In this section we prove that the intersection of the variety of commuting matrices

and the skew-component is irreducible. But first we need to define some notions.
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Definition IV.20. Let X be an n by n matrix of indeterminates. Then DpXq is an

n by n matrix whose ith column is defined by the diagonal entries of X i´1 numbered

from upper left corner to lower right corner. Let PpXq denote the determinant of

DpXq.

Theorem IV.21 ([You11]). PpXq is an irreducible polynomial.

Remark IV.22. PpXq “ PpX ´ aIq, where a P K and I P MnpKq is the identity

matrix.

The next two lemmas are due to H. Young. They give us the connection between

the variety defined by PpXq and the algebraic set of nearly commuting matrices.

Lemma IV.23 ([You11]). Given an nˆn matrix A, if there exists a matrix B such

that rA,Bs is a non-zero diagonal matrix, then PpAq “ 0.

Lemma IV.24 ([You11]). There is a dense open set U in the variety defined by

PpXq where for every point A in U , there exists a matrix B such that rA,Bs is a

nonzero diagonal matrix.

The following notion of a discriminant is of significant importance in matrix the-

ory. We use it in this section in order to reduce our study to the case when commuting

matrices have a particularly simple characterization.

Definition IV.25. Let A P MnpKq. Then the discriminant ∆pAq of A is the

discriminant of its characteristic polynomial. That is, ifK contains all the eigenvalues

λ1, . . . , λn of A, then ∆pAq “ ś
1ďiăjďnpλi ´ λjq2.

Fact. Let A P MnpKq be a matrix such that ∆pAq ‰ 0, or equivalently, A

has distinct eigenvalues. Then a matrix B commutes with A if and only if B is a

polynomial in A of degree at most n ´ 1, see Theorem 3.2.4.2 [HJ85].
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Remark IV.26. PpXq is an irreducible polynomial of degree npn´ 1q{2 and ∆pXq is

a polynomial of degree npn´1q. Moreover, when n ě 3, PpXq does not divide ∆pXq.

This can be proved by showing that there exists a matrix A with the property that

PpAq “ 0 while ∆pAq ‰ 0. For example, for this purpose one can use the following

matrices.

En “

»

————————————–

0 1 0 . . . 0 0

0 0 1 . . . 0 0

. . . . . .

0 0 0 . . . 0 1

1 0 0 . . . 0 0

fi

ffiffiffiffiffiffiffiffiffiffiffiffifl

if p � n, and rEn “

»

—–
0 0

0 En´1

fi

ffifl, otherwise.

The characteristic polynomials are xn ´ 1 for En and xpxn´1 ´ 1q for rEn.

Our next goal is to show that ∆pXq is not in any of the minimal primes of P `Q.

We do it by proving that the dimension of R{pP ` Qq drops when we kill ∆pXq.

Now lets us define the set-up which we need to state and prove our next result.

Let m be an integer such that m ď n. Fix a partition ph1, . . . , hmq of n, that is,

choose positive integers h1, . . . , hm such that h1 ` . . . ` hm “ n. Let Ji be an upper

triangular Jordan form of a nilpotent matrix of size hi. For each hi there are finitely

many choices of Ji. Let J “ pJ1, . . . , Jmq and let Ii denote the identity matrix of size

hi.

For anym-tuple λ “ λ1, . . . , λm of distinct elements ofK, let Jpλq “ Jpλ1, . . . , λmq

be a matrix such that for all 1 ď i ď m, the blocks λiIi`Ji are on the main diagonal.

That is, Jpλq is the direct sum of matrices λiIi ` Ji.

Let Λ “ tpλ1, . . . , λmq P Am |λi ‰ λj for all 1 ď i ‰ j ď mu. It is an open subset
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of Am and therefore is irreducible and has dimension m. Let

WJ “ tA P MnpKq | A is similar to some Jpλ1, . . . , λmq with λ1, . . . , λm P K distinctu.

Let cJ denote the dimension of the set of matrices that commute with Jpλq, for

some λ. This number is independent of the choice of λ, since Jpλq commutes with a

matrix A if and only if A is a direct sum of matrices Ai such that each Ai has size

hi and Ai commutes with Ji. Moreover, cJ is the dimension of the set of invertible

matrices that commute with Jpλq, for some λ.

Lemma IV.27. The dimension of WJ is n2 ´ cJ ` m.

Proof. Define a surjective map of algebraic sets

GLnpKq ˆ Λ Ñ WJ

such that

pU, λ1, . . . , λmq Ñ U´1Jpλ1, . . . , λmqU.

Fix λ “ pλ1, . . . , λmq. Then

θ´1pJpλqq “ tU P GLnpKq |U´1JpλqU “ Jpλqu “ tU P GLnpKq | JpλqU “ UJpλqu,

that is, it is the set of all invertible matrices commuting with Jpλq.

Let M “ U´1JpλqU P WJ and let V P θ´1pMq. Then U´1JpλqU “ V ´1JpλqV

and Jpλq “ pUV ´1q´1JpλqpUV ´1q. Hence, V P θ´1pJpλqqU . Therefore, θ´1pJpλqq

and θ´1pMq have the same dimension. Since the dimension of WJ is the dimension

of GLnpKq ˆ Λ minus the dimension of a generic fiber θ´1pJpλqq, we have that the

dimension of WJ is n2 ´ cJ ` m.

Moreover, the set of pairs of matrices pA,Bq P MnpKq ˆ MnpKq such that A and

B commute has dimension pn2 ´ cJ ` mq ` cJ “ n2 ` m ď n2 ` n.
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Now we are ready to prove the following lemma.

Lemma IV.28. Let X “ pxijq be an n by n matrix of indeterminates over a field

K. Let S “ KrXs and let P “ detDpXq. Then the discriminant ∆pXq of X is not

in any of the minimal primes of the ideal pPqR.

Proof. We prove the lemma by showing that the dimension of R{pP `Qq drops when

we kill ∆pXq. This is done by proving the claim below.

Claim. The dimension of the set W “ tpA,Bq P MnpKq ˆ MnpKq| rA,Bs “

0, ∆pAq “ 0, PpAq “ 0, PpBq “ 0u is at most n2 ` n ´ 2.

Proof. Let V “ tpA,Bq P MnpKq ˆ MnpKq| rA,Bs “ 0, ∆pAq “ 0u and Vm “

tpA,Bq P V | A has m distinct eigenvalues u. Then we have that dimVm “ n2 ` m

and V “ Ťn´1

m“1
Vm. Therefore, dimV ď n2 ` n ´ 1. Notice that since ∆pAq “ 0,

m ď n ´ 1.

Similarly, let Wm “ tpA,Bq P W | A has m distinct eigenvalues u. Then W “
Ťn´1

m“1
Wm. For each value of m, Wm Ď Vm. Therefore, the dimension of W is at

most n2 ` n ´ 1. Moreover, W is a closed subset of V defined by the vanishing

of PpXq and PpY q. To prove the lemma we need to show that dimW cannot be

n2 ´ n´ 1. We do this by showing that W ‰ V . In other words, we show that there

are pairs of matrices pA,Bq P V but not in W , i.e., either PpAq ‰ 0 or PpBq ‰ 0.

Let A P MnpKq be a matrix with distinct eigenvalues λ “ λ1 “ λ2, λ3, . . . , λn.

Then A is similar to a Jordan matrix in two possible forms.
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Case 1. A is similar to J “

»

————————————–

λ 0 0 0 . . . 0

0 λ 0 0 . . . 0

0 0 λ3 0 . . . 0

. . . . . . . . .

0 0 0 0 . . . λn

fi

ffiffiffiffiffiffiffiffiffiffiffiffifl

Take B “ diagpa1, . . . , anq be a diagonal matrix with distinct entries on the diago-

nal. Then rA,Bs “ 0 and PpBq “ ś
1ďiăjďnpai´ajq ‰ 0. Hence dimW ď n2`n´2.

Case 2. A is similar to J “

»

————————————–

λ 1 0 0 . . . 0

0 λ 0 0 . . . 0

0 0 λ3 0 . . . 0

. . . . . . . . .

0 0 0 0 . . . λn

fi

ffiffiffiffiffiffiffiffiffiffiffiffifl

Write J “

»

—–
J0 0

0 J1

fi

ffifl, where J0 “

»

—————–

λ 1 0

0 λ 0

0 0 λ3

fi

ffiffiffiffiffifl
and J1 “

»

————————–

λ4 0 . . . 0

0 λ5 . . . 0

. . .

0 0 . . . λn

fi

ffiffiffiffiffiffiffiffifl

.

Take an n by n block-diagonal matrix U “

»

—–
U0 0

0 U1

fi

ffifl such that U0 “

»

—————–

0 0 a

b c 0

0 d e

fi

ffiffiffiffiffifl

and U1 P Mn´3pKq are invertible matrices with abcde ‰ 0.

Then U´1 “

»

—–
U´1

0
0

0 U´1

1

fi

ffifl and U´1JU “

»

—–
U´1

0
J0U0 0

0 J1

fi

ffifl.
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Our goal is to show that PpU´1JUq ‰ 0. First, we shall prove it for the case of 3

by 3 matrices, i.e., for U´1

0
J0U0.

Observe that PpU´1

0
J0U0q “ PpU´1

0
J0U0 ´ λIq “ PpU´1

0
pJ0 ´ λIqU0q.

Denote M “ U´1pJ ´ λIqU and M0 “ U´1

0
pJ0 ´ λIqU0.

We have that

U´1

0
“ 1{pabdq

»

—————–

ce ad ´ac

´be 0 ab

bd 0 0

fi

ffiffiffiffiffifl

and

M0 “ U´1

0
pJ0 ´ λIqU “ 1{pabdq

»

—————–

bce ce2 ´ acdpλ3 ´ λq ´acepλ3 ´ λq

´b2e ´bce ` abdpλ3 ´ λq abepλ3 ´ λq

b2d bcd 0

fi

ffiffiffiffiffifl
.

Moreover,

M2

0
“ 1{pabdq2

»

—————–

0 ´a2bcd2pλ3 ´ λq2 ´a2bcdepλ3 ´ λq2

0 pabdpλ3 ´ λqq2 a2b2depλ3 ´ λq2

0 0 0

fi

ffiffiffiffiffifl
.

In particular, the diagonal diagpM i
0
q “ p0, pλ3 ´ λqi, 0q for all i ě 2. Then

PpM0q “ det

»

—————–

1 bce 0

1 ´bce ` pλ3 ´ λq pλ3 ´ λq2

1 0 0

fi

ffiffiffiffiffifl
“ bcepλ3 ´ λq2 ‰ 0.

Finally,
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PpMq “ det

»

————————————————–

1 bce 0 0 . . . 0

1 ´bce ` λ3 ´ λ pλ3 ´ λq2 pλ3 ´ λq3 . . . pλ3 ´ λqn´1

1 0 0 0 . . . 0

1 λ4 ´ λ pλ4 ´ λq2 pλ4 ´ λq3 . . . pλ4 ´ λqn´1

. . . . . . . . .

1 λn ´ λ pλn ´ λq2 pλn ´ λq3 . . . pλn ´ λqn´1

fi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffifl

“

Subtract the third row from every other row

“ det

»

————————————————–

0 bce 0 0 . . . 0

0 λ3 ´ λ pλ3 ´ λq2 pλ3 ´ λq3 . . . pλ3 ´ λqn´1

1 0 0 0 . . . 0

0 λ4 ´ λ pλ4 ´ λq2 pλ4 ´ λq3 . . . pλ4 ´ λqn´1

. . . . . . . . .

0 λn ´ λ pλn ´ λq2 pλn ´ λq3 . . . pλn ´ λqn´1

fi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffifl

“

Subtract from the ith row pλi ´ λq{bce times the first row, for all i ‰ 1, 3:

“ det

»

————————————————–

0 bce 0 0 . . . 0

0 0 pλ3 ´ λq2 pλ3 ´ λq3 . . . pλ3 ´ λqn´1

1 0 0 0 . . . 0

0 0 pλ4 ´ λq2 pλ4 ´ λq3 . . . pλ4 ´ λqn´1

. . . . . . . . .

0 0 pλn ´ λq2 pλn ´ λq3 . . . pλn ´ λqn´1

fi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffifl

“
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“ bce det

»

————————–

pλ3 ´ λq2 . . . pλ3 ´ λqn´1

pλ4 ´ λq2 . . . pλ4 ´ λqn´1

. . .

pλn ´ λq2 . . . pλn ´ λqn´1

fi

ffiffiffiffiffiffiffiffifl

“

“ bcepλ3 ´ λq2pλ4 ´ λq2 ¨ ¨ ¨ pλn ´ λq2 det

»

————————–

1 λ3 ´ λ . . . pλ3 ´ λqn´3

1 λ4 ´ λ . . . pλ4 ´ λqn´3

. . .

1 λn ´ λ . . . pλn ´ λqn´3

fi

ffiffiffiffiffiffiffiffifl

“

“ bce
nź

i“3

pλi ´ λq2
ź

3ďiăjďn

pλi ´ λjq.

The final expression for the determinant is nonzero.

Thus we have that ∆pXq is not in any minimal primes of P ` Q.

Next we observe that P `Q has no minimal primes of height larger than one over

P and Q. First we need the following theorem due to Hartshorne.

Theorem IV.29 ([Har62] Proposition 2.1). Let A be a Noetherian local ring with

the maximal ideal m. If SpecpAq ´ tmu is disconnected, then the depth of A is at

most 1.

Lemma IV.30. Let P and Q be ideals as in Notation IV.10. Then every minimal

prime of P ` Q has height n2 ´ n ` 1.

Proof. Suppose that there exists a minimal prime ideal T of P ` Q of height at

least htpIq ` 2. Localize at T . Then pP ` QqpR{IqT is T pR{IqT -primary. Moreover,

VpP q and VpQq are disjoint on the punctured spectrum SpecppR{IqT q ´ tT pR{IqT u.

However, the above theorem shows that this is not possible.
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Now we prove that P ` Q has only one minimal prime.

Theorem IV.31. Let P and Q be as in Notation IV.10. Then VpP ` Qq is irre-

ducible, i.e., RadpP ` Qq is prime.

Proof. Let U be a dense open subset in the algebraic set defined by PpXq as in

Lemma IV.24. Let A P MnpKq be such that PpAq “ 0. Suppose that A P U .

Then by Lemma IV.24 there exists a matrix B such that pA,Bq is in the skew-

component of the algebraic set of nearly commuting matrices, that is pA,Bq P VpQq.

Let Krts be a polynomial ring in one independent variable t. Fix any f P Krts. Then

pA, cB ` fpAqq P VpQq for all c P K ´ t0u. Since Q defines a closed set, we must

have that pA, fpAqq P VpQq, i.e., when c “ 0 as well. Since U is a dense subset in

VpPpXqq, pA, fpAqq P VpQq for all A P VpPpXqq. Recall that f was an arbitrary

element of Krts.

Now assume also that ∆pAq ‰ 0. Then every matrix B that commutes with A is

a polynomial in A of degree at most n ´ 1. Thus

VpP q∆pXq “ tpA, fpAqq |∆pAq ‰ 0 and f is a polynomial of degree at most n ´ 1u.

Moreover, since VpP ` Qq Ă VpP q, every element of VpP ` Qq∆pXq is of the form

pA, fpAqq, where PpAq “ 0 and f is a polynomial of degree at most n ´ 1.

Identify polynomials f P Krts of degree at most n ´ 1 with An. Then we can

consider a map

VpPpXqq ˆ An Ñ VpP ` Qq∆pXq

such that

pA, fq Ñ pA, fpAqq.

Moreover, this map is a bijective morphism. Therefore, VpP ` Qq∆pXq is irre-

ducible. If VpP `Qq is not irreducible, then its nontrivial irreducible decomposition
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will give us a nontrivial irreducible decomposition of VpP `Qq∆pXq. Thus the result.

Corollary IV.32. Let P and Q be as in Notation IV.10. Then, when n “ 3, P `Q

is prime.

4.4 The ideal of nearly commuting matrices is a radical ideal

In this section we prove that I is a radical ideal in all characteristics. We know

that RadpIq “ P
Ş

Q. To prove the result it is sufficient to show that I becomes

prime or radical once we localize at P or Q.

Theorem IV.33. The defining ideal of the algebraic set of nearly commuting ma-

trices is radical.

Proof. For simplicity of notation, let P denote PpXq.

We have that KrXs Ş
P “ p0q, since otherwise every f P KrXs Ş

P must vanish

when we set X “ Y . Therefore, W “ KrXs ´ t0u is disjoint from P and hence from

I. Localize at P . Then we have an injective homomorphism of KrX, Y s{I-modules

pKrX, Y s{IqP ãÑ pKpXqrY s{IqP – pLrY s{IqP ,

where L “ KpXq and now I is an ideal generated by n2 ´ n linear equations in

the entries of Y with coefficients in L. We can always choose at least n variables

yij, pi, jq P Λ, and write the rest of them as L-linear combinations of the chosen ones.

Thus pKrX, Y s{IqP ãÑ Lryijspi,jqPΛ and IKrX, Y sP is prime.

Next observe that KrXs Ş
Q “ pPq. Clearly, P Ď Q. To prove the other direc-

tion, let f P KrXs Ş
Q be nonzero. Then by Lemma IV.23, f P pPq. In other words,
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for all A P MnpKq such that A P VpQq and such that there exists a matrix B with

the property that rA,Bs is nonzero diagonal, then PpAq “ 0.

Therefore, we have an injective homomorphism of KrX, Y s{I-modules

pKrX, Y s{IqQ ãÑ pV rY s{IqQ,

where V “ KrXspPq is a discrete valuation domain. Then generators of I become

linear polynomials in the entries of Y with coefficients in V . Let B be the matrix

of coefficients of this linear system such that its rows are indexed by pi, jq for 1 ď

i ‰ j ď n and columns are indexed by ph, kq for all 1 ď h, k ď n. Then B has an

entry xih in the pi, hq, ph, kq spot, has an entry ´xkj in the pi, jq, pi, kq spot, and zero

everywhere else. Let y1, . . . , yn2 denote the entries of Y such that ypi´1qn`j “ yij. In

V rY s, I is generated by the entries of the matrix

B

»

————————–

y1

y2

. . .

yn2

fi

ffiffiffiffiffiffiffiffifl

.

By doing elementary row operations over V , we can transform B into a diagonal

matrix C. This gives new generators of I. To prove that IV rY s is radical, it is

sufficient to show that the diagonal entries in C have order at most one in V . To

this end it reduces to show that C has rank n2 ´ n and the ideal generated by the

minors of C of size n2 ´ n cannot be contained in P2V . But then it is sufficient to

prove this for the original matrix B. Hence it suffices to show:

Claim.

(1) The submatrix B0 of B obtained from the first n2 ´n columns has nonzero deter-

minant in V .
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(2) The determinant of B0 is in pPq ´ pP2q.

Proof.

(1) It is sufficient to prove the first part of the claim over KpXq “ fracpV q, i.e., after

we invert P . Hence in S, since X and Y nearly commute, they must commute, see

Lemma IV.23. Moreover, X is a generic matrix, hence its discriminant is nonzero

and is not divisible by P . Thus X has distinct eigenvalues and Y is a polynomial in

X of degree at most n ´ 1. Write B “ rB0|B1s, then our equations become

B0

»

————————–

y1

y2

. . .

yn2´n

fi

ffiffiffiffiffiffiffiffifl

` B1

»

————————–

yn2´n`1

yn2´n`2

. . .

yn2

fi

ffiffiffiffiffiffiffiffifl

“ 0.

Notice that B0 is invertible if and only if for every choice of the values for

ryn2´n`1, . . . , yn2s there is a unique solution for the above equation.

Furthermore, the bottom rows of X0, X, . . . , Xn´1 are linearly independent for a

generic matrix X. This is true because it even holds for the permutation matrix

E “

»

————————————–

0 1 0 . . . 0 0

0 0 1 . . . 0 0

. . . . . .

0 0 0 . . . 0 1

1 0 0 . . . 0 0

fi

ffiffiffiffiffiffiffiffiffiffiffiffifl

for which the bottom rows of E0, E, . . . , En´1 are the standard basis vectors ei for

1 ď i ď n.

Thus, given any bottom row ρ of Y , there exist α0, . . . , αn´1 P KpXq such that ρ

equals the bottom row of α0 ` α1X ` . . . ` αn´1Xn´1. That is, such Y is uniquely
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determined by the entries of its bottom row. Therefore, B0 is invertible in KpXq.

(2) First, let us show that detB0 P P . For any matrix A in an open dense subset

defined by P , there exists a matrix A1 such that the commutator rA,A1s is a nonzero

diagonal matrix, see Lemma IV.24 . Hence, for all c P K ´ t0u and for all f P KrXs

polynomials of degree at most n ´ 1, pA, cA1 ` fpAqq P I. Therefore, the space of

solutions of B ¨

»

————————–

y1

y2

. . .

yn2

fi

ffiffiffiffiffiffiffiffifl

“ 0 has dimension n ` 1, which is a contradiction since

we showed that it must be n. Therefore, the minors of B must vanish whenever P

vanishes.

Now let us put grading on the entries of X and Y . Let deg xij “ deg yij “ i ´ j.

Then their products XY and Y X and sums have this property as well: deg pXY qij “

i´j and deg pX`Y qij “ i´j. Therefore, so does the commutator matrix XY ´Y X.

In fact, any polynomial in X and Y has this property. Notice that the diagonal

entries have degree 0, thus P has degree 0. However, this is not the case for the

determinant of the matrix B0. The nonzero entry corresponding to pi, jq, ph, kq has

degree i ´ j ` h ´ k. Therefore, if a product of the entries is a nonzero term of

the determinant of B0, then its degree is
ř

1ďi‰jďn

ř
1ďhďn

ř
1ďkănpi ´ j ` h ´ kq “

ř
1ďi‰jďnpi´jq`ř

1ďh,kďnph´kq´ř
1ďhďnph´nq “ 0`0´p1´n`2´n`. . . p´1qq “

npn ´ 1q{2 ‰ 0 for all n ě 2. Hence B0 cannot be a K-scalar multiple of a power of

P . That is, when we factor out P from the minors of B, the remaining expression is

not divisible by P .

Now we are ready to finish our discussion. We have that C is a diagonal matrix of

maximal rank with entries in V and its submatrix C0 has the determinant in P ´P2.
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More precisely, I is generated by the following equations.

»

————————————–

v11 0 0 . . . 0 0 0 . . . 0

0 v22 0 . . . 0 0 0 . . . 0

. . . . . . . . .

0 0 0 . . . vn2´n´1,n2´n´1 0 0 . . . 0

0 0 0 . . . 0 vn2´n,n2´n 0 . . . 0

fi

ffiffiffiffiffiffiffiffiffiffiffiffifl

»

————————–

y1

y2

. . .

yn2

fi

ffiffiffiffiffiffiffiffifl

,

where only one of the vij P V is divisible by P , the rest are units in V . Then

V rY s{I – V rzs{pzPq is reduced. Finally, pR{IqQ ãÑ pV rY s{IqQ. Hence IRQ is

radical and therefore is prime.

4.5 F -regularity

In this section we state a conjecture that the variety of commuting matrices VpP q,

the skew-component VpQq and their intersection VpP ` Qq are F -regular. We show

that when R{P is Cohen-Macaulay it is sufficient to have F -regularity of R{pP `Qq

in order to prove the conjecture. Furthermore, we discuss various ways to attack the

problem.

Conjecture IV.34. Let R be as in Notation IV.10. Then R{P , R{Q and R{pP `Qq

are F -regular.

The following lemma allows us to reduce the above conjecture to F -regularity of

R{pP ` Qq.

Lemma IV.35. Let R be a Noetherian local or N-graded ring of prime characteristic

p ą 0 and let I be an ideal (homogeneous in the graded case) generated by a regular

sequence. Let P and Q be ideals of R of the same height such that P and Q are linked
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via I “ P
Ş

Q. Let R{P be Cohen-Macaulay. Suppose that R{pP ` Qq is F -regular

(or equivalently, F -rational). Then R{P and R{Q are F -regular.

Proof. By [PS74], R{Q is Cohen-Macaulay and has the canonical module isomorphic

to pP `Qq{Q. Similarly, the canonical module of R{P is pP `Qq{P . Then R{pP `Qq

is Gorenstein, hence it is F -rational if and only if it is F -regular.

Recall that a graded ring R is F -regular if and only if Rm is F -regular, [LS99].

Then R{pP ` Qq is F -rational if and only if its localization at the homogeneous

maximal ideal is F -rational. Then by applying Lemma II.46 we get that R{pP ` Qq

is F -rational implies that so are R{P and R{Q.

Thus if we want to prove that the variety of commuting matrices and the skew

component are F -regular, it is sufficient to prove the statement for their intersection.

Of course we need to know whether R{P is Cohen-Macaulay.

There are few ways to achieve F -regularity of R{pP `Qq. There exists a criterion

similar to Fedder’s criterion for F -purity, Lemma IV.12. It is due to D. Glassbrenner,

[Gla96], who proved the following result.

Theorem IV.36. Let pS,mq be an F -finite regular local ring of positive characteristic

p. Let I be an ideal of S and let s P R˝
be such that Rs is regular. Then S{I is strongly

F -regular if and only if there exists a positive integer e such that spI rpes : Iq Ę mrpes
.

One direction that one might be interested in pursuing is to give a criterion for

F -regularity of R{P , R{Q and R{pP ` Qq similar to that of Lemma IV.13. That is,

we want to have a certain condition on I which will imply F -regularity of our rings.

However, one needs to be cautious, since R{I cannot be F -regular itself.

Another possible way to show that R{pP ` Qq is F -regular utilizes a result due

to M. Hochster and C. Huneke, see [HH94b] Corollary 7.13, which is the following.
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Theorem IV.37. Let R be a finitely generated N-graded Gorenstein K-algebra with

homogeneous maximal ideal m such that R0 “ K. Suppose that dimR “ d ě 2.

Then the following are equivalent.

(1) R is F -regular.

(2) Localization of R at any prime except m is F -regular, there is an ideal generated by

a homogeneous system of parameters such that it is Frobenius closed and apRq ă 0,

where the a-invariant of R is maxti | rHd
mpRqsi ‰ 0u.

Thus if we want to use the above theorem to prove F -regularity of R{pP ` Qq

when n “ 3, then we only need to show that R{pP `Qq is locally F -regular. This is

true because we already know that it is F -pure when n “ 3. As for the a-invariant,

we have a result which insures that apR{pP ` Qqq ă 0. However, we again need to

rely on the fact that R{P and R{Q are Cohen-Macaulay.

Lemma IV.38. Let R be a Noetherian N-graded ring. Let M,M 1,M2
be finitely gen-

erated Z-graded Cohen-Macaulay R-modules such that dimM “ dimM2 “ dimM 1 ´

1. Suppose that 0 Ñ M 1 Ñ M Ñ M2 Ñ 0 is a short exact sequence and apMq ă 0.

Then apMq, apM2q are negative.

Before we prove the lemma let us state some properties of a-invariants, see [HH94b]

Section 7.4.

Lemma IV.39. Let R be a Noetherian N-graded ring such that R0 “ K. Then

(1) Let S be a polynomial ring Krx1, . . . , xns and I be a homogeneous ideal of S

generated by a regular sequence f1, . . . , fm. Let R “ S{I. Then apRq “ řm
i“1

degfi ´
řn

i“j deg xj.

(2) Let hpzq be a rational function whose expansion is a Hilbert-Poincaré series of

R,
ř8

i“1
dimKrRsi. Then apRq “ deg hpzq, where the degree of a rational function
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fpzq{gpzq is deg fpzq ´ deg gpzq. Moreover, if R has dimension d, then hpzq “

fpzq{p1 ´ tqd, where fpzq P Zrzs.

Now we can prove the lemma.

Proof. Let dimM 1 “ d. SinceM 1,M,M2 are Cohen-Macaulay, their Hilbert-Poincaré

series are of the form F pzq{p1´ tqd, Gpzq{p1´ tqd´1 and Hpzq{p1´ tqd´1 respectively

and F,G,H are polynomials with positive integer coefficients.

Since 0 Ñ M 1 Ñ M Ñ M2 Ñ 0 is a short exact sequence, we have that

Gpzq{p1 ´ tqd´1 “ F pzq{p1 ´ tqd ` Hpzq{{p1 ´ tqd´1.

Equivalently,

Gpzqp1 ´ tq “ F pzq ` Hpzqp1 ´ tq.

By hypothesis, apM 1q ă 0, therefore, deg Gpzq ă d ´ 1. However, the leading

coefficient of Gpzqp1 ´ tq is negative. Hence it should come with a contribution

from a leading coefficient of Hpzqp1 ´ tq. Then deg G “ deg H ă d ´ 1. Also,

deg F pzq ď deg Gpzqp1 ´ tq ă d. Thus, apMq ă 0 and apM2q ă 0.

Next we apply Lemma IV.38 to our situation.

Lemma IV.40. Let R be as in Assumption IV.10. Suppose that R{P is Cohen-

Macaulay, which is true when n “ 3. Then apR{P q, apR{Qq and apR{pP ` Qq are

negative.

Proof. We have the following short exact sequence of R-modules.

0 Ñ R{I Ñ R{P ‘ R{Q Ñ R{pP ` Qq Ñ 0

Since I is generated by a regular sequence, apR{Iq “ 2pn2 ´ nq ´ 2n2 “ ´2n ă 0,

see Lemma IV.39 (1). By Lemma IV.9, R{Q is Cohen-Macaulay and R{pP ` Qq



68

is Gorenstein of dimension dimR{P ´ 1. Therefore, by Lemma IV.38 we have that

R{P,R{Q and R{pP ` Qq have negative a-invariant.

4.6 Conjectures

Here we list the conjectures we have developed in the course of working on the

algebraic set of nearly commuting matrices and its irreducible components.

Conjecture IV.41. R{I is F -pure for all n ě 4.

The above conjecture can be solved by proving the following one.

Conjecture IV.42. Let µ “
śn

i“1,j“1 xijyijśn´1
i“1 xiiyi,n´i`1¨xn,n´1¨yn´1,1

.

Then µp´1 is a monomial term of
ś

1ďi‰jďn u
p
ij with the coefficient equal to 1

modulo p.

Remark IV.43. The above monomial can be obtained taking the product of all the

variables and dividing by the variables according to the following pattern: denote by

‹ the variable to be divided out.

X “

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌

‹ x12 . . . x1,n´2 x1,n´1 x1n

x21 ‹ . . . x2,n´2 x2,n´1 x2n

. . . . . .

xn´2,1 xn´2,2 . . . ‹ xn´2,n´1 xn´1,n

xn´1,1 xn´1,2 . . . xn´1,n´2 ‹ xn´1,n

xn,1 xn,2 . . . xn,n´2 ‹ xn,n

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌

,
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Y “

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌

y11 y12 y1,3 . . . y1,n´1 ‹

y21 y22 y2,3 . . . ‹ y2n

. . . . . .

yn´2,1 yn´2,2 ‹ . . . yn´2,n´1 yn´2,n

‹ ‹ yn´1,3 . . . yn´1,n´1 yn´1,n

yn,1 yn,2 yn,3 . . . yn,n´1 yn,n

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌

Conjecture IV.44. R{pP ` Qq is F -regular for all n ě 3.

Remark IV.45. In the case when n “ 2 the conjecture is true.

Conjecture IV.46. Let X be a matrix of indeterminates of size n over a field K.

Let PpXq be the irreducible polynomial as in Definition IV.20. Then KrXs{PpXq is

F -regular.

Conjecture IV.47. The following is a regular sequence on R{I and hence a part of

a system of parameters on R{J and R{Q.

xst ´ yt,θps,tq, x1n, xnn, x11 ´ y2n

for all 1 ď s, t,ď n and where θps, tq “

$
’&

’%

ps ` tqmod n, if s ` t ‰ n;

n, if s ` t “ n.

Remark IV.48. The conjecture was verified by using Macaulay2 software when n “

3, 4 over K “ Q and in some small prime characteristics.

In the case when n “ 3, this is equivalent to the following identifications of vari-

ables in matrices X and Y



70

X “

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

x11 x12 0

x21 x22 x22

x31 x32 0

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

, Y “

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

x31 x11 x21

x22 x32 x12

0 x22 0

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

.

Conjecture IV.49. Let Z Ď tuij | 1 ď i ‰ j ď nu be any subset of cardinality at

most n2 ´n´1. Let IZ be the ideal of R generated by the elements of Z. Then R{IZ

is F -regular. In particular, IZ is a prime ideal.

4.7 Appendix

We devote this section to interesting computational observations we have obtained

using Macaulay2, a computer algebra system, [GS], while working on the proof of F -

purity of the coordinate ring R{I of the algebraic set of nearly commuting matrices

of size 3.

Recall that we used Fedder’s criterion, Lemma IV.12, to prove F -purity of R{I

in the case of 3 by 3 matrices. This was done by exhibiting a nonzero monomial

term of
ś

1ďi‰jďn u
p´1

ij such that it is not in mrps. The term given in the proof turns

out to be a rather nice one as our computations on Macaulay2 show. In particular,

it has coefficient 1 modulo p for all values of characteristic p. However, there are

terms which appear to work in many but not all characteristics. We want to give

one example of such a term.

Let µ “ x11x12x21x22x31x32y11y12y13y21y22y23. It is the product of all the entries

of X except for the last column and all the entries of Y except for the last row. As

in the proof for F -purity given earlier in this chapter, we first look at all possible

ways to obtain µp´1 in
ś

1ďi‰jďn u
p´1

ij . We then solve a linear system of equations
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associated with all the choices. Then we have that the coefficient of µp´1 modulo p

is equal to
ÿ

0ďa`bďp´1

aÿ

c“0

ˆ
p ´ 1 ´ b

a

˙
2
ˆ
a

c

˙
2

.

Unfortunately, this seems to be zero for many values of p. The table below gives

the coefficient of µp´1 in
ś

1ďi‰jďn u
p´1

ij for prime values of p ă 1000.

p coefficient of µp´1

2 0

3 1

5 0

7 0

11 3

13 0

17 2

19 4

23 0

29 0

31 0

37 0

41 -5

43 14

47 0

53 0

59 -23

61 0

p coefficient of µp´1

67 -5

71 0

73 4

79 0

83 -8

89 -32

97 3

101 0

103 0

107 36

109 0

113 -15

127 0

131 62

137 36

139 67

149 0

151 0

p coefficient of µp´1

157 0

163 4

167 0

173 0

179 -34

181 0

191 0

193 -95

197 0

199 0

211 -15

223 0

227 -8

229 0

233 -32

239 0

241 -47

251 36
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p coefficient of µp´1

257 -128

263 0

269 0

271 0

277 0

281 43

283 -82

293 0

307 -72

311 0

313 100

317 0

331 14

337 -141

347 36

349 0

353 -159

359 0

367 0

373 0

379 -72

383 0

389 0

p coefficient of µp´1

397 0

401 36

409 75

419 -95

421 0

431 0

433 145

439 0

443 -8

449 -32

457 219

461 0

463 0

467 -34

479 0

487 0

491 -200

499 196

503 0

509 0

521 36

523 -125

541 0

p coefficient of µp´1

547 -72

557 0

563 -226

569 57

571 -87

577 2

587 36

593 -269

599 0

601 -288

607 0

613 0

617 283

619 57

631 0

641 -159

643 -72

647 0

653 0

659 324

661 0

673 100

677 0
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p coefficient of µp´1

683 -285

691 43

701 0

709 0

719 0

727 0

733 0

739 -322

743 0

751 0

757 0

761 -128

769 -285

773 0

787 139

p coefficient of µp´1

797 0

809 36

811 -178

821 0

823 0

827 -392

829 0

839 0

853 0

857 345

859 -72

863 0

877 0

881 324

883 4

p coefficient of µp´1

887 0

907 100

911 0

919 0

929 129

937 219

941 0

947 -47

953 -142

967 0

971 3

977 36

983 0

991 0

997 0



CHAPTER V

Algebras with straightening law

5.1 Introduction and preliminaries

Definition V.1. Let A be a commutative ring and let R be an A-algebra. Let

Π Ď R be a finite subset with a partial order ď, called a poset for short. Then R is a

graded algebra with straightening law (ASL) over A on Π if the following conditions

hold:

pH0q R “ ‘iě0Ri is a graded A-algebra such that R0 “ A, Π consists of homogeneous

elements of positive degree and generates R as an A-algebra.

pH1q The products ξ1 . . . ξm, where m P N, ξi P Π and ξ1 ď . . . ď ξm, are linearly

independent. They are called standard monomials.

pH1q (Straightening law) For all incomparable ξ, ν P Π, the product ξν has a rep-

resentation ξν “ ř
aµµ where 0 ‰ aµ P A and µ is a standard monomial,

satisfying the following condition: every µ contains a factor ζ P Π such that

ζ ď ξ, ζ ď ν. It is allowed that ξν “ 0, the sum
ř

aµµ being empty.

Lemma V.2 ([BV88] Proposition 4.1). Let R be an ASL over A on Π. Then every

monomial µ “ µ1 . . . µk in elements of Π is an A-linear combination
ř

λ aλλ of

standard monomials, such that every standard monomial λ on the right hand side
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has a factor λ1 ď µ1, . . . , µn and ωpµq ď ωpλq with ωpµq “ ωpλq if and only if µ is

standard (and hence µ “ λ).

5.2 Change of basis for a graded algebra with straightening law

In this section we shall prove that given a basis for an ASL we can obtain a new

one with an induced partial order by a certain linear transformation which preserves

the property of being an ASL.

For the rest of the section assume the following hypothesis on R.

Let R be a graded algebra with straightening law on a finite poset pΠ,ďq over a

commutative ring A. Let ξ1 ă ξ2 P Π be homogeneous elements of the same degree.

Let u “ cξ1 ` ξ2, where c P A. Define a partial order ď on Σ “ Π
Ťtuu extending

ď on Π such that if µ, ν P Π ´ tξ2u, µ ă u if and only if µ ă ξ2 and u ă ν if and

only if ξ2 ă ν. Let Π1 “ Σ ´ tξ2u “ Π
Ťtuu ´ tξ2u be a poset with the partial order

induced from Σ.

Definition V.3. For an element ξ P Σ first define αpξq “ |tδ P Σ : ξ ď δu|. Then

let ωpξq “ 3αpξq and ωpξ1 ¨ ¨ ¨ ξnq “ řn
i“1

ωpξiq.

Definition V.4. For an element ξ P Σ define rk ξ “ maxtk P N : there is a chain ξ “

ξk ą ξk´1 ą . . . ą ξ1, ξi P Πu. For a subset Ω Ď Σ let rk Ω “ maxtrk ξ : ξ P Ωu.

Lemma V.5. Every monomial µ “ µ1 . . . µt in elements of Π1
can be written as an

A-linear combination of standard monomials in Π1
, i.e., µ “ ř

τ aττ , where τ is a

standard monomial in Π1
, and such that τ has a factor ζ ď µ1, . . . , µt.

Proof. We shall prove a slightly more general statement: every monomial in elements

of Σ is an A-linear combination of standard monomials in Π1. If µ “ µt
1
and µ1 is

minimal in Σ, then µ1 ‰ ξ2 and the lemma holds.
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Let µ be a monomial in elements of Σ. If u does not divide µ, then it is a monomial

in Π. Then by Lemma V.2, it is a linear combination of standard monomials in

Π. If none of them have ξ2 as a factor, then they are also standard monomials in

Π1. Otherwise, replace ξ2 by u ´ cξ1. Thus it is sufficient to consider monomials

µ “ µ1 ¨ ¨ ¨µrumµs ¨ ¨ ¨µt with µ1, . . . µr, µs, . . . , µt P Π1 ´ tuu and m ě 1.

If µ is standard, then we are done. So assume that µ is not standard.

Then

µ “ µ1 ¨ ¨ ¨µrpcξ1 ` ξ2qmµs ¨ ¨ ¨µt “
m´1ÿ

j“0

ˆ
m

j

˙
cjµ1 ¨ ¨ ¨µrξ

j
1
ξm´j
2

µs ¨ ¨ ¨µt ` µ1 ¨ ¨ ¨µrξ
m
2
µs ¨ ¨ ¨µt.

Since ξ1 ă ξ2, ωpξ1q ą ωpξ2q. Therefore, ωpµq ă ωpµ1 ¨ ¨ ¨µrξ
j
1
ξm´j
2

µs ¨ ¨ ¨µtq for

all j ă m and ωpµq “ ωpµ1 ¨ ¨ ¨µrξm2 µs ¨ ¨ ¨µtq. Since µ is not standard, so is not

µ1 “ µ1 ¨ ¨ ¨µrξm2 µs ¨ ¨ ¨µt. Therefore by Lemma V.2, it is a linear combination
ř

aλλ

of standard monomials in Π with a larger weight such that λ has a factor λ1 P Π

and λ1 ď µ1, . . . , µr, ξ2, µs, . . . , µt. Then by decreasing induction on the values of ω

we can write λ as a linear combination of standard monomials in Π1 which have a

factor ζ P Π1 such that ζ ď λ1. Also, by decreasing induction on the values of ω each

of the summands µ1 ¨ ¨ ¨µrξ
j
1
ξm´j
2

µs ¨ ¨ ¨µt “ ř
bττ is linear combination of standard

monomials in Π1 such that τ has a factor τ 1 P Π1 and τ 1 ď µ1, . . . , µr, ξ1, µs . . . , µt.

Thus the desired result.

Theorem V.6. R is an ASL over A on Π1
.

Proof. The first two conditions pH0q and pH1q are immediate from the corresponding

properties of R as an ASL on Π. Let us prove the remaining condition pH2q.

Let λ, ν P Π1 be incomparable. By the previous lemma, λν “ ř
bττ where each

τ is a standard monomial in elements of Π1 and has a factor τ 1 P Π1 such that
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τ 1 ď λ, ν.

Corollary V.7. Let R be a graded algebra with straightening law on a finite poset

pΠ,ďq over a commutative ring A.

For n ě 2 and m ě 1 let

ξ11 ă . . . ă ξ1n

. . . . . . . . .

ξm1 ă . . . ă ξmn

be homogeneous elements in

Π such that elements in each row have the same degree and either rows are pairwise

disjoint or the maximal elements in each row do not occur in other rows.

Let ui “ ci1ξi1 ` . . .` ci,n´1ξi,n´1 ` ξin, where ci1, . . . , ci,n´1 P A for all 1 ď i ď m.

Define a partial order ď on Σ “ Π
Ťtuiumi“1

extending ď on Π such that if µ, ν P

Π ´ tξinu, µ ă ui if and only if µ ă ξin and ui ă ν if and only if ξin ă ν. Let

Π1 “ Σ ´ Ťtξinumi“1
be a poset with the partial order induced from Σ. Then R is an

ASL on Π1
over A.

Proof. Induct on n andm. Case when n “ 2 andm “ 1 comes from the Theorem V.6.

5.3 Application to algebraic sets of nearly commuting and commuting
matrices

Let X “ pxijq1ďi,jďn and Y “ pyijq1ďi,jďn be nˆn matrices of indeterminates over

a field K. Let R “ KrX, Y s be the polynomial ring in txij, yiju1ďi,jďn. As in Chapter

2 let I be the ideal generated by the off-diagonal entries of the commutator matrix

XY ´Y X and let J be the ideal generated by the entries of XY ´Y X. Let uij denote

the pi, jqth entry of the matrix XY ´Y X. Then I “ puij | 1 ď i ‰ j ď nq. Moreover,

uij “ řn
k“1

xikykj ´ řn
k“1

yikxkj “ řn
k“1

pxikykj ´ xkjyikq “ řn
k“1

det

ˇ̌
ˇ̌
ˇ̌
ˇ

xik xkj

yik ykj

ˇ̌
ˇ̌
ˇ̌
ˇ
.
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Notice that every minor of the form

ˇ̌
ˇ̌
ˇ̌
ˇ

xik xkj

yik ykj

ˇ̌
ˇ̌
ˇ̌
ˇ
occurs as one of the summands

of uij for 1 ď i, j ď n. Moreover, for all i ‰ j there are n2pn ´ 1q of such minors in

total. Also, there are n2 ´ n “ npn ´ 1q generators uij of I each being a sum of n

minors. Therefore, all the minors that occur as summands of the generators of I are

distinct.

Write R “ K

»

—–
x11 x12 . . . x21 x22 . . . xnn

y11 y12 . . . y21 y22 . . . ynn

fi

ffifl, where the npk ´ 1q ` lth

column is the column vector rxkl, ykls.

Let Z “

»

—–
x11 x12 . . . x21 x22 . . . xnn 1 0

y11 y12 . . . y21 y22 . . . ynn 0 1

fi

ffifl.

Let Π be a set of all 2ˆ2 minors of Z partially ordered in the following way: each

minor can be represented by a pair rk ls, for some 1 ď k ‰ l ď n ` 2, and we say

that rk ls ď rs ts if and only if k ď s and l ď t.

Therefore, each 2 by 2 minor

ˇ̌
ˇ̌
ˇ̌
ˇ

xkl xst

ykl yst

ˇ̌
ˇ̌
ˇ̌
ˇ
of Z corresponds to rnpk ´ 1q ` l nps´

1q ` ts.

In particular, uij “ řn
k“1

det

ˇ̌
ˇ̌
ˇ̌
ˇ

xik xkj

yik ykj

ˇ̌
ˇ̌
ˇ̌
ˇ

“ řn
k“1

rnpi ´ 1q ` k j ` npk ´ 1qs.

Notice that the summands of uij increase by r1 ns as k increases.

Proposition V.8 ([BV88] Theorem 4.11). Let R “ KrX, Y s be defined as above.

Then R is an algebra with straightening law on Π over K.

For all 1 ď i ‰ j ď n, 1 ď k ď n, let ξpkq
ij “ rnpi ´ 1q ` k j ` npk ´ 1qs,

then uij “ řn
k“1

ξpkq
ij . Moreover, ξp1q

ij ă . . . ă ξpnq
ij . Define a partial order ď on

Σ “ Π
Ťtuiju1ďi‰jďn extending ď on Π such that if µ, ν P Π ´ tξpnq

ij u, µ ă uij if and
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only if µ ă ξpnq
ij and uij ă ν if and only if ξpnq

ij ă ν. Let Π1 “ Σ ´ Ťtξpnq
ij u1ďi‰jďn be

a poset with the partial order induced from Σ.

Proposition V.9. The polynomial ring R “ KrX, Y s is a graded ASL on Π1
over

K.

Proof. First notice that ξpkq
ij “ ξptq

rs if and only if i “ r, j “ s, k “ t, i.e., the sets

of summands of uij are disjoint for distinct pairs of pi, jq. Therefore, we may apply

Corollary V.7 and get the desired result.

Now let us consider the elements tuiiuni“1
“ řn

k“1
det

ˇ̌
ˇ̌
ˇ̌
ˇ

xik xkj

yik ykj

ˇ̌
ˇ̌
ˇ̌
ˇ
on the diago-

nal of XY ´ Y X. We do not have disjointness of the sets of summands. Each

ξpkq
i “ det

ˇ̌
ˇ̌
ˇ̌
ˇ

xik xkj

yik ykj

ˇ̌
ˇ̌
ˇ̌
ˇ
occurs precisely twice: in uii and with negative sign in ukk. In

particular, the largest terms ξpnq
i in every uii also occur in unn. Therefore, if we only

consider tuiiu1ďiăn, then the largest terms appear only once.

Recall that trpXY ´ Y Xq “ 0, hence unn “ ´u11 ´ . . .´ un´1,n´1 can be omitted

from the list of generators of J .

Define a partial order ď on Σ1 “ Π1 Ťtuiiu1ďiăn extending ď on Π1 such that if

µ, ν P Π1 ´ tξpnq
i u, µ ă uii if and only if µ ă ξpnq

i and uii ă ν if and only if ξpnq
i ă ν.

Let Π2 “ Σ1 ´ Ťtξpnq
i u1ďiăn be a poset with the partial order induced from Σ1.

Proposition V.10. R is a graded ASL on Π2
over K.

Proof. Follows from Proposition V.9 and Corollary V.7.
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271–302.

[Sin99] A. Singh, Q-Gorenstein splinter rings of characteristic p are F-regular, Mathematical
Proceedings of the Cambridge Philosophical Society 127 (1999), 201–205.

[Smi94] K. Smith, Tight closure of parameter ideals, Invent. Math. 115 (1994), 41–60.

[ST12] K. Schwede and K. Tucker, A survey of test ideals, Progress in Commutative Algebra 2,
Closures, Finiteness and Factorization, Walter de Gruyter GmbH and Co. KG Berlin
(2012), 39–99.

[Stu08] J. Stubbs, Potent elements and tight closure in Artinian modules, Ph.D. thesis, University
of Michigan, 2008.

[Tho85] M. Thompson, Topics in the ideal theory of commutative Noetherian rings, Ph.D. thesis,
University of Michigan, 1985.

[Wat88] K.-i. Watanabe, Study of F-purity in dimension two, Algebraic geometry and commutative
algebra, vol. II, Kinokuniya, Tokyo, 1988, pp. 791–800.

[Wat91] , F-regular and F-pure normal graded rings, J. Pure Appl. Algebra 71 (1991),
no. 2-3, 341–350.

[You11] H. Young, Components of algebraic sets of commuting and nearly commuting matrices,
Ph.D. thesis, University of Michigan, 2011.


