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Abstract 

Microscale systems enable interrogation of biological mechanisms beyond the capacity of 

conventional macroscale techniques. The large surface-to-volume ratio of microscale platforms 

allows investigators to better control the spatial and temporal microenvironment presented to 

biological samples, manipulating samples at scales reminiscent of their native 

microenvironments. This research describes microscale technologies to advance the design, 

complexity, and control of tissue culture microenvironments in three areas – chemical 

stimulation, regulating cell culture dimensionality, and oxygen monitoring. These tools improve 

in vitro models to better emulate the native biological response.  

To regulate temporal patterns of biochemical stimulation I developed an autonomous 

microfluidic oscillator circuit that enables dynamic control of delivered fluids without external 

control signals. This work produced to (1) a practical system to modulate the duty cycle of an 

applied stimulus in a user-defined manner without requiring modification of the device itself; 

and (2) a method to couple multiple independent oscillators together to ensure uniformity of 

experimental parameters, such as frequency and duty cycle, across multiple devices. In other 

work, reproducibility of three-dimensional spheroid cultures was achieved by culture additives to 

generate increasingly complex, and robust microscale cultures. We also developed dispersible 
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microsensors for tissue culture oxygen measurements. When recreating physiologic 

microenvironments, it is critical to monitor and quantify the presence of oxygen. The untethered 

biocompatible oxygen sensors can be embedded or dispersed within diverse culture conditions 

for the real-time/continuous detection of oxygen in vitro. Dispersible microsensors were used to 

visualize the oxygen environment within in vitro tumor models, which allow for the informed 

generation of tumor models to more accurately capitulate the necessary oxygen environments.  
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1 Chapter 1: Introduction 

Animal studies of development, homeostasis, and disease mechanisms is a critical step in 

understanding, predicting and eventually controlling biological function in humans. However, 

such in vivo models can be expensive, highly variable, difficult to manipulate, and experimental 

results can often be confounded or challenging to interpret. Animals, are in the end, not humans. 

As a result, in the pharmaceutical industry for example, in vivo studies require exorbitant 

resources but often fail to translate promising in vitro results for drug compounds to clinically 

viable solutions[1].  

The other spectrum of understanding human biology is to use in vitro culture of human cells in a 

dish. While such systems can utilize actual human cells, static Petri dish culture is simply unable 

to capture the structural, mechanical, chemical, and communicative complexity of in vivo 

systems. A diversity of engineered tissue culture strategies have been generated to bridge this 

gap, and recent efforts have focused on making these models more relevant by recreating various 

aspects of the cellular microenvironment. Microengineered strategies have been implemented for 

the dynamic control and increased definition of the cellular microenvironment[3]. The resulting 

microscale systems are well-positioned for interrogating aspects of cellular biology due to the 

favorable cell-to-tissue level scaling domain[4].  

The objective of this thesis research was to develop microscale technologies to advance the 

design, complexity, and control of tissue culture microenvironments for improved biomedical 

research. Specifically, we cover three areas – stimulation, monitoring, and culturing 
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dimensionality – we believe tool sets are needed for the development of improved, surrogate in 

vitro models to better emulate the native biological response. Chapters II and III describe the 

development of microfluidic oscillators for recreating physiological fluid flows and for cellular 

interrogation. These microfluidic oscillators are developed for increased practicality and utility in 

a non-microtechnology lab setting. To this end, our work led toward (Chapter II) development of 

an approach through which the duty cycle of an applied stimulus could be defined by the end-

user without requiring modification of the device itself[5]; (Chapter III) coupling independent 

oscillators to ensure uniformity of experimental parameters, such as frequency and duty cycle, 

across multiple devices.  Part 2, comprised of Chapter IV and V, respectively covers the 

development of robust methods for 3D spheroid tissue generation, and stable micro-scale sensors 

for real-time, continuous monitoring of oxygen levels within a diversity of tissue culture 

microenvironments. Chapter IV focuses on the high-throughput, reproducible spheroid cultures 

using additive supplements in hanging drop plate arrays[6]. Chapter V describes the 

development of stable micro-scale sensors, or microsensors, to perform long-term, continuous, 

real-time monitoring of oxygen levels within a diversity of tissue culture microenvironments. 

Our work generated the robust microfluidic-based fabrication of biocompatible, dispersible, 

PDMS micro-bead sensors. Paired with a phase fluorimetric imaging modality, these 

microsensors demonstrated reliable measurements, easy incorporation into various cell culture 

platforms, and capacity as real-time oxygen sensors. These microsensors enabled the spatial 

mapping of oxygen in cell-patterned hydrogels, allowing us to demonstrate the effect culture 

systems have on oxygen levels within the tissue cultures.  
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2 Chapter 2: Predictable Duty Cycle Modulation through Coupled 

Pairing of Syringes with Microfluidic Oscillators  

2.1 Introduction 

Emerging interest in microfluidic machines that directly utilize fluidic energy to execute core 

operations has prompted the development of self-regulated machines that, by virtue of their 

autonomous operation, have also garnered much attention as potential platforms for basic 

biomedical research [1–3]. 

Biological and physiological systems are fundamentally regulated by oscillatory processes 

operating at discrete spatial and temporal scales. Our understanding of these systems, 

consequently, has benefited from the development of pulsatile stimulation techniques capable of 

manipulating the temporal dynamics of these processes and investigating the role of timing within 

them. Historically, the in vitro study of these processes in cultured cells was advanced primarily 

by two types of assays: one in which a single stimulus is bath-applied and later washed off (e.g., 

pulse-chase analysis [4,5], and BrdU “birth dating” [6]); and one in which a continuous long-

term temporal stimulation pattern is applied by way of an external control apparatus [7]. 

Advancements in microfluidic technology have catalyzed the translation of such assays, in 

parallel with the development of novel counterparts, to forms supported by these emerging 

micro-scale—“lab-on-a-chip”—platforms [8–11]. 

Microfluidic devices often emulate electronic circuitry and utilize integrated conduits and 

embedded valves to direct and manipulate fluid flows. The control systems underlying their 
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operation, however, have typically remained external from the fluidic devices themselves [12–

14]. An awareness that this rise in peripheral equipment cost may limit “next-generation” 

microfluidic systems has motivated the development of autonomous, pre-programmed, fluidic 

systems [1,12–17]. Foremost among these is the microfluidic oscillator [18]. 

Not unlike how electronic oscillators were among the first broadly adopted automated electrical 

circuits; self-oscillating microfluidic devices provide a simple, yet useful, first target for 

microfluidic automation [1,2] as evidenced by the growing body of literature describing 

experimental methods, wherein cells cultured within micro-devices are chemically stimulated in 

a pulsatile, rather than continuous, manner [8,10,19,20]. One such method for cellular 

interrogation modifies stimulation events by altering the duration of an applied stimulus and/or 

rest period; effectively manipulating the oscillation frequency and duty cycle of the stimulatory 

system [19]. Through this approach, it has been observed that different responses may be elicited 

from the same population of cells by manipulating these stimulatory parameters. 

The work presented here was motivated by the questions: how can a single microfluidic 

oscillator circuit be designed to best support multiple stimulatory frequencies and rest periods; 

and how can this be done in a manner that is easy to understand and perform by non-microfluidic 

experts? We have previously demonstrated the ability to alter oscillation frequency by modifying 

flow rate, and to alter duty cycle by modifying the device itself [1,2]. As the technical burden of 

repeatedly designing and fabricating different devices for each desired duty cycle is both difficult 

and tedious; we asked if a continuous and predictable modification of duty cycle could be 

achieved by simply modifying the syringes used to provide volumetric inflow. 

The challenge associated with modifying volumetric inflow rate lies in the effect this may have 

upon the threshold opening pressure of each valve [21]. Due to the complexity of the relationship 
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between volumetric flow rate and duty cycle, predicting the duty cycle resulting from a change in 

volumetric flow rate is not trivial. Additional challenges arise if two syringe pumps are used to 

generate differing volumetric inflows, owing largely to inherent pump-to-pump variability and 

general inflow rate unsteadiness that may produce unstable oscillations [22]. Here we report the 

predictable modulation of duty cycle using two syringes mounted upon a single syringe pump 

such that volumetric flow rate ratio and fluidic capacitance are coupled. This setup is 

advantageous in that it allows duty cycle to be considered simply as a function of the volumetric 

inflow rate ratio; requiring no modifications of the microfluidic circuit to robustly produce 

distinct duty cycles. 

2.2 Working Principle 

The microfluidic oscillator functions by converting two constant volumetric flow rate inflows to 

one oscillatory outflow through the activity of two normally-closed three-way valves that 

generate oscillations in fluid outflow through the alternate obstruction of each inflow (Fig. 2-1). 

Briefly, if we denote the two valves valve 1 and valve 2, and arbitrarily assume that valve 2 is 

initially in an open position—allowing fluid to flow across it; a portion of the outflow from valve 

2 will be diverted from its drain terminal to the gate terminal of valve 1. The gate terminal refers 

to the conduit leading to the region below the membrane valve unit. The accumulation of fluid 

within this region supplies the gate pressure of valve 1 (PG1); preventing the downward 

deflection of the membrane, and consequently preventing valve 1 from transitioning to an open 

position while PG1 exceeds the source pressure of valve 1 (PS1) generated by the accumulation of 

fluid in the portion of the valve upstream from the valve 1 gate. 

When PS1 has surpassed the sum of PG1 and the inherent pressure threshold of valve 1 (Pth1), 

determined by the specific mechanical properties of the membrane, the membrane is deflected 
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downward, and fluid is allowed to travel through valve 1. A portion of this outflow is then 

diverted from its drain terminal to the gate terminal of valve 2, as the outflow from valve 1 had 

been diverted previously, and supplies the gate pressure necessary to force the accumulation of fluid 

upstream of valve 2, until the difference between PS2 and PG2 has exceeded Pth2 (Fig. 2-1a,b). The 

coordination of these processes, resulting in the anti-synchronized opening and closing of both 

valve units, produces an oscillatory outflow (described in greater detail in previous work [2,21]). 

Functionally, as the gate pressure of the valve regulating one flow is itself regulated by the 

volumetric outflow rate across the other, we assume the following characteristic: 

𝑄𝑖𝑛 = 𝐶 ×
𝑑𝑃

𝑑𝑡
 (1) 

𝑄𝑖𝑛 = 𝐶 ×  
𝑃𝑡ℎ

𝑇𝑜𝑓𝑓
 (2) 

This expression, where Qin, C and P represent inflow rate, fluidic capacitance, and pressure 

respectively, may be expanded to describe the threshold-dependent mechanism underlying the 

functionality of the valves. Conceptually, the transition between a closed-to-open or open-to-

closed valve-state is governed by the values of Pth and PG set by the mechanical properties of the 

membrane and buildup of fluid pressure below the membrane (Fig. 2-1b), respectively, and the 

rate at which fluid pressure builds within the valve region above the membrane (PS) [2]. The 

relationship between inflow rate and capacitance, thus, may be used to determine duty cycle as a 

function of time: 

𝑇1

𝑇1 + 𝑇2
=

𝐶1 × 𝑃𝑡ℎ1

𝑄1

[𝑃𝑡ℎ1 ×
𝐶1

𝑄1
] + [𝑃𝑡ℎ2 ×

𝐶2

𝑄2
]
 (3) 
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Under symmetric flow conditions, Q1 ≅ Q2, where the mechanical properties of the membrane 

and valve compartments are preserved across both valves, the assumption is Pth1 ≅ Pth2 and C1 ≅ 

C2, allowing us to consequently define duty cycle solely as a function of volumetric flow rate. 

𝑇1

𝑇1 + 𝑇2
≈

𝑄1

𝑄1 + 𝑄2
 (4) 

Equation (4) depicts an attractive relationship that relates duty cycles simply to volumetric 

inflow ratios. By this definition, the introduction of asymmetry to the volumetric inflow rates of 

each fluid, Qi, would produce asymmetric duty cycles. However, in asymmetric conditions 

where Q1 ≠ Q2 (e.g., Q1 < Q2), the syringe supplying the greater volumetric inflow (Q2) will 

result in a greater threshold pressure for the valve regulating the lesser volumetric inflow, and 

consequently, Pth1 > Pth2. The presence of this asymmetry suggests that the use of two identical 

syringes, evacuated at asymmetric linear velocities, would rely upon a complex balance between 

Qin, C, and P such that the duty cycles produced may not be accurately modeled by Equation (4).  

One way to maintain the relationship shown in Equation (4) would be to modulate Ci together 

with Qi so that Pthi × Ci ≈ constant. One way to achieve this conveniently is by mounting two 

plastic syringes of different cross-sectional area on one syringe pump (Fig. 2-2), and utilizing the 

compliance of the syringe components [23] and resulting capacitive differences of the syringes 

[12]. Within the described system, as syringe outflow rate is a function of velocity and syringe 

cross-sectional area, and as both syringes are evacuated at the same linear velocity, we may 

further refine our definition of duty cycle as being a function of syringe diameter (Fig. 2-2b). By 

using syringes of different diameters, we apply Equation (4) and demonstrate predictability of 

duty cycle values as a function of the combination of syringes used (Table 2-1). 
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2.3 Materials and Methods 

Master Mold Fabrication 

Microfluidic oscillator master molds were fabricated upon 4″-silicon wafers using the negative 

photoresist, SU-8 (MicroChem, Newton, MA, USA). Following air-cleaning of the wafer, SU-8 

2075 photoresist was deposited on the wafer and spin-coated at 500 rpm (acceleration of 440 

rpm/s) for 10 s and at 2100 rpm (acceleration of 440 rpm/s) for 30 s. The coated wafer was then 

placed on a hotplate for pre-exposure baking at 65 °C for 5 min, 95 °C for 20 min and then 

allowed to gradually cool to room temperature by allowing it to remain on the hotplate after the 

plate was turned off. The SU-8 substrate was then exposed with conventional UV (~17 mJ/cm²) for 

30 s using a mask aligner (Hybrid Technology Group), and then placed on a hotplate for post-

exposure baking at 65 °C for 5 min, 95 °C for 10 min and then allowed to gradually cool to room 

temperature as before. Unexposed regions of photoresist were dissolved by repeatedly immersing the 

wafer in fresh SU-8 developer solution (MicroChem, Newton, MA, USA) for  

60 s intervals until all non-exposed/cross-linked regions of SU-8 were removed. The completed mold 

was then placed within a gravity convection oven (DX-400, Yamato Scientific America, Santa 

Barbara, CA, USA) for 15 min at 120 °C and, upon returning to room temperature, was treated 

(silanized) in a desiccator for 1 h in the presence of vaporized tridecafluoro-1,1,2,2-

tetrahydrooctyl-1-trichlorosilane (United Chemical Tech., Bristol, PA, USA). 

Microfluidic Oscillator Fabrication 

The microfluidic oscillator device consists of three polydimethylsiloxane (PDMS) layers 

assembled as previously described [1,2]. Briefly, the device features (100 μm height) were 

imprinted in the top and bottom layers, and a PDMS membrane (target thickness: 20 μm) was 

positioned between them (Fig. 2-1). 
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1:10 PDMS (Sylgard 184, Dow Corning, Midland, MI, USA) was poured onto the master mold 

and allowed to cure within a gravity convection oven at 60 °C for 6 h. The cured PDMS slab was 

then removed from the mold and cut into individual device layers. Concurrently, PDMS 

membranes were fabricated by spin-coating 1:10 PDMS onto glass slides pre-treated with silane 

as before. PDMS membranes were then cured within a gravity convection oven for 5 min at 120 

°C and 10 min at 60 °C. Prior to final assembly, a 2-mm biopsy punch was used to remove 

PDMS from the inlet and outlet ports of the top device layer. The bottom layer and membrane 

were then treated by plasma oxidation (Covance MP, FemtoScience, Hwaseong-si, Gyeonggi-do, 

South Korea) to facilitate bonding and, following bonding, were then placed in a gravity 

convection oven at 120 °C for 5 min and at 60 °C for 10 min. Thru-holes were then made in the 

membrane to allow fluid communication between the top and bottom device layers, using a 350-

μm biopsy punch (Ted Pella Inc., Redding, CA, USA). The top layer was then treated by plasma 

oxidation to facilitate bonding with the membrane-bottom layer assembly. Following treatment, 

but preceding bonding, the normally closed region of the top layer was “deactivated” by being 

brought into direct contact with an unoxidized PDMS “stamp”. Following final bonding, 

assembled devices were incubated for 2 min within a gravity convection oven at 120 °C. 
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Microfluidic Oscillator Testing and Data Processing 

Microfluidic oscillators were tested by connecting pressure sensors (Model 142PC05D, 

Honeywell, NJ, USA) at the device inlets via Tygon tubing (Saint-Gobain™ Tygon™ R-3603 

Clear Laboratory Tubing, Saint-Gobain Performance Plastics, Akron, OH, USA) to measure 

source pressure. Source pressure data was collected for both valves to quantify pressure buildup 

and release corresponding to fluid accumulation and evacuation, respectively, through the 

valves; our previous work highlighted the relationship between source pressure and drain pressure 

[24]. The occurrence of fluidic oscillations and the coincident timing of these oscillations relative to 

source pressure profiles were verified visually. All subsequent quantification and assessment, 

however, was performed using source pressure data. Data was obtained at a sampling rate of 

1000 Hz, every 100 data points were averaged (resulting in 1 data point per 100 ms), and stored 

using LabVIEW (National Instruments, Austin, TX, USA). Data was recorded for a minimum of 

four hours, of which the data acquired during the first hour for each condition was examined and 

discarded to ensure the volumetric flow and capacitance of the fluidic system had stabilized, and 

only the subsequent time (three hours) was assessed. Syringe pumps (Model KDS220, KD 

Scientific, Holliston, MA, USA and Model Fusion 200, Chemyx, Stafford, TX, USA) were used to 

provide constant volumetric flow to the device. One input, a 3 mL syringe (Syringe 1) remained 

connected to one inlet port for the entirety of the study, while the second (Syringe 2) was allowed 

to alternate between 3 mL, 10 mL, 30 mL and 60 mL plastic syringes (Becton, Dickinson and 

Company, Franklin Lakes, NJ, USA). The syringe pump was programmed with total volumetric 

inflow rates appropriate for each syringe pairing, such that Q2 ≥ Q1 and Q2 + Q1 = Qtotal. 

Voltage data were collected using LabVIEW and processed, in part, using the open-source 

peakdet [25]. 
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2.4 Results and Discussion 

Predictive Duty Cycle Control 

Using Equation (4), we calculated and experimentally measured duty cycle as a function of 

volumetric flow rate ratios achieved through the simple utilization of two plastic syringes of 

different cross-sectional area mounted on a single syringe pump (Table 2-1). The estimates 

generated by Equation (4) agreed with experimental observations. 

Highlighted values represent syringe combinations studied experimentally. The duty cycle values 

presented are calculated with respect to Syringe 2. Utilizing this system, we succeeded in 

achieving duty cycles ranging from 50% to 90% (Fig. 2-3a), reproducible across multiple 

devices (n = 3) (Fig. 2-3b). 

Mounting Syringes on Separate Syringe Pumps Produces Unstable Duty Cycles 

To verify that Equation (4) did not accurately predict duty cycles produced through the sole 

modification of volumetric flow rate; two identical syringes were mounted on two independent 

syringe pumps and tested for their ability to produce predictable duty cycles. Flow was initiated 

at a total volumetric flow rate of 20 μL/min, and the resulting duty cycles were recorded and 

analyzed. The duty cycles produced via this setup deviated from their predicted values and were 

unstable, appearing to shift sporadically from one oscillation pattern to another, interspersed by 

brief periods during which the oscillations would appear stable. This instability was also present 

at additional total volumetric inflow rates (data not shown), and ultimately affected the 

predictability of the duty cycles produced (Fig. 2-4). 

 



13 

The sources of the observed deviation and instability are likely two-fold. The deviation likely 

arises as a consequence of the asymmetric linear pressures experienced by each syringe that 

result in a change in relative Pth, but not in C; necessary for performing the reduction yielding 

Equation (4), and consequently, for the simplified and accurate prediction of duty cycle. The 

source of the observed instability at a specific flow rate ratio may be multifaceted; deriving from 

differences in manufacturing of the pumps themselves, differences in their calibration or age, and 

general unsteadiness inherently observed in syringe pumps [22,26]. As the presence of variability 

between syringe pumps is unavoidable, the use of multiple syringe pumps presents an inherent 

risk that predictability of the resulting duty cycle will be adversely effected due to an uncoupling 

between the pump-derived variability experienced by each individual syringe. Mounting multiple 

syringes upon a single syringe pump, however, ensures that each syringe experiences similar 

pump-derived variability. This coupling then ensures that slight instabilities in linear output are 

experienced simultaneously by both syringes; resulting in a predictable and stable duty cycle. 

Maximum Pressure Profile Remains Relatively Constant 

The use of asymmetric inflow rates generated by mounting two syringes of varying diameter 

onto a single syringe pump alters the pressure profiles generated from each valve (Fig. 2b). As 

we are unable to directly measure gate pressure within our experimental system, we use the 

previously established approximation, where 𝑃𝑆2 ≅ 𝑃𝐺1 and 𝑃𝑆1 ≅ 𝑃𝐺2 at the time of an open-to-

close transition [2]. By this approximation, we conclude the asymmetric Pth values observed, even 

under extreme asymmetric conditions (|𝑃𝑡ℎ1 − 𝑃𝑡ℎ2| < 2 kPa), are far below those reported in 

previous work (|𝑃𝑡ℎ1 − 𝑃𝑡ℎ2| < 55 kPa) utilizing asymmetric valve units [8]. 
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The Pmax values recorded for each valve under the examined flow conditions are equivalent 

under symmetric volumetric inflow rates, but diverge from these values as the asymmetry 

between the two inflow rates is increased (Table 2-2). 

Because the transition of each valve from a closed-to-open state is triggered by the accumulation 

of sufficient fluidic pressure (Pmax); the initial outflow velocity from each valve is higher (Qmax) 

relative to the stabilized baseline velocity subsequently achieved [24]. The lower Pmax values 

observed within this system, relative to values previously-reported [2], suggests a reduction in 

Qmax and, thus, in the magnitude of the transient fluctuation in flow velocity accompanying the 

transition of each valve from a closed-to-open state. Despite this reduction, as fluidic shear is 

known to influence the morphological and phenotypical properties of cultured cells and tissues, 

the mere presence of this fluctuation may nonetheless represent a parameter which must be 

considered when utilizing this device for the performance of biological analyses. 

A comparison of Pmax values across both valves in one device demonstrates Pmax values for valve 

1 increase relative to Pmax values for valve 2 in proportion to the degree of asymmetry between 

the inflow rate ratios across the two valves. All data presented is derived from one device, as 

inter-device variability led to differing absolute Pmax values across devices. Similar trends, 

however, were observed across all devices examined. 

Syringe Properties Influence Capacitance 

Syringe size has previously been shown to impact overall compliance in a syringe-driven system, 

where, independent of material and design, increases in syringe diameter are correlated with 

increases in syringe compliance [27]. This effect, underappreciated within the field of 

microfluidics, was observed within our experimental system (Fig. 2-5), and presented a source 
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for concern, as external capacitance could influence the period of the oscillatory output [24]. The 

good agreement between the duty cycles predicted by the simplified Equation (4) and the actual 

observed duty cycles are explained by looking at Equation (3), where there is an approximate 

inverse relationship between C and Pth observed under asymmetric inflow rates (described in 

greater detail below). 

Different Asymmetric Inflow Rates at Constant Total Volumetric Inflow Rate Produce Distinct 

Periods 

Previous work provides an approximation of the off-time for each valve that can be used to 

estimate oscillatory period [2], thereby assisting in contextualizing any observed shift in period: 

𝑡𝑜𝑓𝑓−𝑖 = (
𝐶

𝑄𝑖𝑛
) × 𝑃𝑡ℎ−𝑖 (5) 

We calculated Pth using experimental data collected under multiple inflow conditions. We found 

that under asymmetric flow regimes, Pth and C exhibit an inverse relationship, where Pth is 

higher for the valve experiencing the lower flow rate (valve 1), lower for the valve experiencing 

the higher flow rate (valve 2) and where the absolute difference between Pth (i.e., |𝑃th1 − 𝑃th2|) 

increases with the degree of asymmetry between the syringes used. As C is proportional to the 

size of a given syringe, it is consequently proportional to Qin, which increases with the size of the 

syringe used. This finding is in agreement with previous results reported for four-way valves, 

where an increase in volumetric inflow rate through one valve increases calculated Pth for the 

opposite valve [21]. 

From Equation (5), we infer that increasing Pth in conditions with lower Qin, will produce higher 

toff; and that as the asymmetry between the flow rate across each valve increases, toff will increase 
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for the valve with a lower inflow rate, producing larger oscillation periods. Using the averaged 

values of Pth and C for each respective syringe pairing, we approximated toff for both valves. We 

then compared the calculated period approximation with experimental data (Fig. 2-6), and 

observed that the relationship between volumetric flow rate and period is preserved. We limited 

the presented period data to one device, as all devices tested exhibited similar trends, with slight 

variations in absolute values. Such variations may originate from differences in device size (e.g., 

thickness of the PDMS membrane), fabrication procedure or material batch characteristics. In 

addition, larger standard deviations in the period, prominent at greater asymmetric inflow rates, 

may also originate from fluctuations in syringe pump pressure [26]. 

This observation highlights the utility of our approach and underscores the motivation for this 

work. Mounting two syringes of the same size on two independent syringe pumps and 

evacuating them at two different volumetric flow rates will produce changes in Pth, but not in C, 

introducing a source of complexity to the relationship between volumetric flow rate ratio and 

duty cycle. Practically, this would result in the inability to reduce down to Equation (4). 

However, by utilizing syringes of differing diameter, volumetric flow rate-dependent changes in 

Pth are counteracted, allowing one to perform straightforward prediction of duty cycle as a 

function of volumetric flow rate ratio. 

4.6. Estimating Rest and Stimulation Pulse Duration for Control of Rhythmic Stimulation 

The described microfluidic oscillator is designed to translate two independent fluid inputs into a 

single oscillatory fluid output. In practice, if one input contains a fluid stimulant, and the other a 

neutral “wash” solution, this system may be utilized to conduct biological experiments in which 

a population of cells (or tissue explant) cultured downstream is presented with this fluid 

stimulant at a fixed concentration, and for a pre-determined period of time—referred to as the 
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stimulation duration (D); followed by a “wash”—or rest period (R). The functional significance 

of the presented asymmetric operating technique is that it allows the user to dynamically control 

the duty cycle of this oscillatory outflow, and in doing so, to characterize biological responses to 

multiple stimulation regimes characterized by variations in D and R (e.g., fixed D separated by 

variable R). Within a biological context, control of these parameters is critical as both have been 

reported to elicit distinct cellular responses [19]. 

Within the context of the presented device system, D and R may be calculated as a function of 

relative inflow rates. To do so, C and Pth for each valve must be measured with respect to its 

corresponding syringe and input Qi values, respectively. Measurements of Pth for each valve 

must be conducted at two total volumetric inflow rates (we used 5 μL/min and 40 μL/min, the 

minimal and maximal total volumetric inflow rates, respectively) to approximate the linear 

relationship Pth−i = m × Qi + b. This relationship may then be used to approximate intermediate 

Pth−i values for different inflow rates, and for each syringe pairing. The Pth−i, C, and Qi values 

may then be used, in equation (5), to determine the off-time for each valve. The sum of the off-

times will estimate the periodicity of the device for a given syringe combination. By this method, 

a curve in general agreement with empirical data, and representing the periodicity as a function 

of the ratio between syringe diameters, may be generated (Figure 6). This curve may then be 

utilized to identify an appropriate total volumetric inflow to produce a desired D and R for the 

specific syringe combination being used. Conversely, this curve may also be utilized to identify 

the appropriate combination of syringes necessary to modify the length of D or R. 
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2.5 Conclusions 

The volumetric flow-regulated microfluidic oscillator system described herein greatly increases 

the versatility and utility of our previously described micro-machine as a tool for generating and 

delivering pulsatile stimulation. Furthermore, in allowing users to reliably produce a desired duty 

cycle through the simple manipulation of volumetric inflow rate, the system described greatly 

reduces the barrier for adoption otherwise presented by placing the burden for “programming” 

the device upon the end-user. Notably, the benefit of using one syringe pump to drive both 

syringes is that inherent syringe pump unsteadiness and subsequent inflow fluctuations are 

applied to both syringes simultaneously; negating their impact on duty cycle, and resulting in a 

more consistent and stable oscillation. 
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Figure 2-1: Schematic for experimental system 

Schematic for the experimental system. The three panels displayed represent the behavior of the 

microfluidic oscillator at three time points during operation under symmetric flow conditions. (a) 

Two fluids (blue and red) are introduced through two syringes mounted on a single syringe 

pump. The fluids enter the device at a constant rate, but are converted into an oscillatory outflow 

when passing through the valves. (b) A cross section of each valve unit at the time points 

displayed in panel A. Initially, the source pressure (PS1) is insufficient (PS1 < PG1 + Pth1) to 

displace the membrane downward, allowing the blue fluid to outflow. When the pressure has 

reached its maximum value (Pmax), the membrane is displaced (PS1 > PG1 + Pth1), allowing the red 

fluid to outflow until sufficient source pressure (PS2) has accumulated within the chamber above 

the opposite membrane (PS2 > PG2 + Pth2) allowing the blue fluid to outflow. (c) The time points 

within the pressure data time series corresponding to the valve and outflow profiles presented in 

panels a and b are indicated. A sample Pmax and Pth are also represented, as well as the 

relationship between inflow rate (Qi), internal capacitance (Ci), and external capacitance (Ce).  
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Figure 2-2: Schematic for generation of symmetric and asymmetric volumetric flow rates - 

changes in duty cycle and pressure profile produced as a function of syringe diameter 
(a) Two sample conditions where Syringe 1, (red), and Syringe 2, (blue), are mounted on a single 

syringe pump. The ratios illustrated are the symmetric 3 mL:3 mL (upper) and asymmetric 3 

mL:60 mL (lower). Within the experimental protocol , Syringe 1 was held constant in all pairings 

while Syringe 2 was varied to achieve symmetric (50%) and asymmetric (>50%) duty cycles; 

and total volumetric inflow rate remained constant. Experimentally generated pressure profile 

waveforms are presented against alternating background bands representing the fluid outflow 

profile. (b) Pressure profile and stimulation period for the four inflow ratio regimes. Pressure 

profiles were generated while the syringe pump was moving at a constant linear velocity such 

that the total volumetric inflow rate (the sum of the inflows supplied by each syringe) was 

maintained at a volumetric flow rate of 20 μL/min. The pressure profiles recorded (P) are 

presented above each trace representing the concentration of a fluidic stimulant ([S]) provided 

via Syringe 2, in the outflow.  
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Figure 2-3: Experimental duty cycles overlap predicted values; flow rate ratio manipulation 

stably and reproducibly regulates duty cycle across multiple devices. 
(a) Filled symbols represent duty cycle values observed and averaged across four syringe 

combinations and at five different total volumetric inflow rates. Unfilled blue circles represent 

predicted duty cycle values. All values are derived from time series data containing >6 

oscillations. Duty cycle values are plotted against the squared ratio between syringe diameter 

(Syringe 2:Syringe 1) to illustrate the general trend observed. (b) Duty cycle data collected from 

multiple devices (n = 3) is presented against the squared ratio between syringe diameter (Syringe 

2:Syringe 1). Filled symbols represent duty cycle values recorded and averaged across four 

syringe combinations for total volumetric inflow rates ranging from 5 to 40 μL/min. Unfilled 

circles represent theoretical (predicted) duty cycle values. All averaged values are derived from 

time series data containing >6 oscillations. Error bars represent the calculated standard deviation 

for all duty cycle values recorded from each of three devices for all tested inflow rate ranges.  
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Figure 2-4: Single syringe pump setup results in more robust duty cycle control than two 

pump setup. 

A minimum of 7 sequential oscillations were observed using two experimental setups (either 

comprised of a multiple syringes mounted upon a single pump or single syringes mounted upon 

multiple pumps) to identify reproducibility and consistency of duty cycle. The data presented 

was acquired using both experimental setups at a total volumetric inflow rate of 20 μL/min. Error 

bars represent the 95% confidence intervals for experimentally observed results. Two different 

syringe pump models were utilized in the multiple syringe pump setup.  
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Figure 2-5: Fluidic capacitance increases significantly with increasing syringe volume. 

Fluidic capacitance increases significantly with increasing syringe volume. Capacitance values 

were averaged for individual syringes using data collected at multiple volumetric flow rates 

(ranging from 10 to 40 μL/min). All values are derived from time series data containing >6 

oscillations, with five replicates (p < 0.0002). Error bars represent the 95% confidence intervals 

of all capacitance values obtain over multiple inflow rate ranges. 
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Figure 2-6: Asymmetric inflow rates produce markedly different periodicity, yet can be 

estimated relatively-well. 

Observed period values for each syringe combination demonstrate the range of periodicities 

generated for each of the four combinations tested. The estimated oscillatory period was 

calculated by applying Equation (5) for each syringe combination; values for C and Pth were 

derived from the minimal and maximal volumetric inflow rates tested, and were used to establish 

a linear relationship for Pth−i where Pth−i = m × Qi + b. Predicted period values (unfilled) were 

then compared to the averaged measured period values (filled). All values are derived from time 

series data containing >12 oscillations, and error bars represent 95% confidence intervals for 

experimentally observed results.  



27 

 
Syringe 1 Syringe 2 

Duty Cycle  

(Expected) 

Duty Cycle  

(Observed) 
Volume  

(mL) 

Diameter  

(mm) 

Inflow Rate  

(μL/min) 

Volume  

(mL) 

Diameter  

(mm) 

Inflow Rate  

(μL/min) 

3 8.66 15.33 1 4.78 4.67 23.35% - 

3 8.66 10.00 3 8.66 10.00 50.00% 48.71% 

3 8.66 6.80 5 12.06 13.20 65.98% - 

3 8.66 5.26 10 14.5 14.74 73.71% 74.59% 

3 8.66 3.40 20 19.13 16.60 82.99% - 

3 8.66 2.75 30 21.7 17.25 86.26% 86.00% 

3 8.66 1.90 60 26.7 18.10 90.48% 90.82% 

3 8.66 0.97 140 38.4 19.03 95.16% - 

Table 2-1: Syringe pairing combinations for differential duty cycles 

Different syringe pairings on a single syringe pump enables different duty cycles to be achieved, 

while maintaining a constant total volumetric inflow rate of 20 μL/min. Highlighted rows 

indicate those experimentally tested.  
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Total Volumetric  

Inflow Rate 

(μL/min) 

3 mL:3 mL 3 mL:10 mL 3 mL:30 mL 3 mL:60 mL 

Valve 

1  

(kPa) 

Valve 

2  

(kPa) 

Valve 

1  

(kPa) 

Valve 

2  

(kPa) 

Valve 

1  

(kPa) 

Valve 

2  

(kPa) 

Valve 

1  

(kPa) 

Valve 

2  

(kPa) 

20 3.30 3.34 3.49 3.32 3.51 2.76 3.67 3.04 

25 4.08 4.16 4.20 4.01 4.28 3.48 4.53 3.80 

30 4.77 4.92 5.03 4.83 5.20 4.28 5.44 4.58 

35 5.52 5.70 5.72 5.54 6.11 5.08 6.34 5.35 

40 6.31 6.52 6.52 6.29 6.98 5.86 7.18 5.94 

Table 2-2: Different syringe pairing combinations produce different maximum source 

pressures 

Larger maximum pressures observed in valve receiving smaller inflow rate. 
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3 Chapter 3: Capacitive coupling synchronizes autonomous 

microfluidic oscillators 

3.1 Introduction 

Efforts to minimize requirements for external controllers has led to the development of self-

regulating microfluidic circuits, which contain embedded controls for autonomous execution of 

preprogrammed fluidic operations [1–5]. Such transition to self-regulated microfluidic devices 

are envisioned to facilitate transfer of technology from microfluidic device developers to 

biological end users [6]. An autonomous fluid circuit type that is of general usefulness in biology 

are microfluidic oscillators that convert two constant input flows into alternating fluid flows to 

allow periodic delivery of chemicals or to mimic the pulsatile nature of biological fluid flows 

such as blood flow [1]. A key requirement for biological studies in general is the ability to 

perform duplicate and triplicate experiments with the same conditions as well as to perform 

control experiments, such as exposing a system to the same pulsed flow conditions but with and 

without the presence of a stimulant chemical in the solutions. Because of circuit-to-circuit 

variability that lead to slightly different oscillation characteristics, it is currently difficult to 

perform such required multiplicate and control experiments with multiple independent 

autonomous fluidic oscillator circuits.   

To minimize device-to-device variability between autonomous fluidic oscillators and to 

synchronize the frequency of the system, we explore coupled systems. First described by 

Huygens, in the classical case of periodic self-sustained oscillators, interactions or coupling 

between the individual systems leads to synchronized behaviors [7]. In this work we demonstrate 
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that two coupled microfluidic oscillators via a coupling capacitive unit, results in automatically 

synchronized oscillations.  As paired nonlinear oscillators have been shown to produce different 

behavior depending on the coupling strength between the individual subunits [8], we 

investigated, the “strength” or impact of our coupling element.  Consistent with theoretical 

understanding of synchronization, we observed that weak coupling results in synchronicity 

between similar frequency oscillators but non-coupled behavior and phase drift between 

oscillators with differing natural frequencies. Such non-coupling and phase drift could be 

overcome by increasing the capacitance in the coupling element. Theory states that overly strong 

coupling would quench each other, pulling each oscillator unit into a zero-amplitude standstill or 

“oscillation death” [9]. In our system, excessive capacitance is avoided by the shallowness of the 

capacitive unit where the flexible membrane, no matter how large, will be limited in their 

capacitive capability due to bumping into the chamber ceilings or floors. Thus, experimentally, 

we only observed oscillation death in very isolated conditions. This is convenient in allowing use 

of larger membrane coupling units to improve synchronization without significant worry of 

disrupting the oscillatory output. Simulations further show that the minimum coupling 

capacitance required is dependent on the internal capacitance of the microfluidic valve units used 

in the oscillators.  

3.2 Materials and methods 

Device Fabrication 

Methods used for microfluidic oscillators and coupling capacitor master mold fabrication were 

similar to those previously presented [10]. The microfluidic oscillator device consists of three 

polydimethylsiloxane (PDMS) layers assembled as previously described. Briefly, the device 

features (66 μm height) were imprinted in the top and bottom layers, and a PDMS membrane 
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(target thickness: 11 μm) was positioned between them. 1:10 PDMS (Sylgard 184, Dow Corning, 

Midland, MI, USA) was poured onto the master mold and allowed to cure within a gravity 

convection oven at 60 °C for 6 h. The cured PDMS slab was then removed from the mold and 

cut into individual device layers. Concurrently, PDMS membranes were fabricated by spin-

coating 1:10 PDMS onto glass slides pre-treated with silane as before. PDMS membranes were 

then cured within a gravity convection oven for 5 min at 120 °C and 10 min at 60 °C. Prior to 

final assembly, a 2-mm biopsy punch was used to remove PDMS from the inlet and outlet ports 

of the top device layer. The bottom layer and membrane were then treated by plasma oxidation 

(Covance MP, FemtoScience, Hwaseong-si, Gyeonggi-do, South Korea) to facilitate bonding 

and, following bonding, were then placed in a gravity convection oven at 120 °C for 5 min and at 

60 °C for 10 min. Thru-holes were then made in the membrane to allow fluid communication 

between the top and bottom device layers, using a 350-μm biopsy punch (Ted Pella Inc., 

Redding, CA, USA). The top layer was then treated by plasma oxidation to facilitate bonding 

with the membrane-bottom layer assembly. Following treatment, but preceding bonding, the 

normally closed region of the top layer was “deactivated” by being brought into direct contact 

with an unoxidized PDMS “stamp”. Following final bonding, assembled devices were incubated 

for 2 min within a gravity convection oven at 120 °C. Coupling capacitors were fabricated in the 

same fashion, except they did not require thru-holes to be punched within them, or have any 

region deactivated.  

Coupling simulations 

In the present study, commercial software (PLECS, Plexim GmbH, Switzerland) was used for 

the numerical simulation of the microfluidic oscillators and coupling capacitor. Based on electro-

hydraulic circuit analogy, microfluidic channels are simulated as electric resistors, flexible 
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membranes correspond to capacitors, and the flow rates are transformed into electric current. The 

input flow rates and coupling capacitance were adjusted according to the settings of each 

experiment. All other parameters used in the model were from experimental measurements [11]. 

Microfluidic Oscillator Testing and Data Processing 

Microfluidic oscillators were tested by connecting pressure sensors (Model 142PC05D, 

Honeywell, NJ, USA) at the device inlets via Tygon tubing (Saint-Gobain™ Tygon™ R-3603 

Clear Laboratory Tubing, Saint-Gobain Performance Plastics, Akron, OH, USA) to measure 

source pressure. Source pressure data was collected for valves with quantify pressure buildup 

and release corresponding to fluid accumulation and evacuation, respectively, through the valves. 

The occurrence of fluidic oscillations and the coincident timing of these oscillations relative to 

source pressure profiles were initially verified visually, all subsequent quantification and 

assessment, however, was performed using source pressure data. Data was obtained at a 

sampling rate of 1000 Hz, every 100 data points were averaged (resulting in 1 data point per 100 

ms), and stored using LabVIEW (National Instruments, Austin, TX, USA). Syringe pump 

(Model KDS220, KD Scientific, Holliston, MA, USA) was used to provide constant volumetric 

flow to the device. 3 mL syringes (Becton, Dickinson and Company, Franklin Lakes, NJ, USA) 

were connected to the inlet ports. Voltage data were collected using LabVIEW and processed to 

demonstrate oscillation frequency of the microfluidic oscillators tested.  

3.3 Results and discussions 

Two separate microfluidic oscillators, designed and fabricated with the same parameters when 

operated under the same infusion flow rate, e.g. 5 µL/min (Fig. 3-1a), are expected to execute 

equivalent operations. Yet, like any manufacturing process, inherent variability exists. Additional 

idiosyncrasies [10] arise due to the instabilities of syringe pump systems [12] and syringes [13]. 
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Combined, these parameters lead to device-to-device variability as shown experimentally for two 

presumably “identical” oscillators operated under “identical” conditions by a pressure change 

over time plot (Fig. 3-1b) and a phase portrait (Fig. 3-1c).  

In this work, we define microfluidic oscillator synchronization as the simultaneous switching by 

the valve units in each oscillator; where the opening and closing of the membrane valve is 

determined by the relative difference between the source minus gate pressure versus the 

threshold pressure [11]. Learning from electrical systems, we utilized various sizes of 

microfluidic capacitors (Table 1) [14], comprised of a flexible membrane that allows exchange 

of fluidic energy or pressure through it without passing of actual fluid (Fig. 3-2), to couple the 

two oscillators (Fig. 3-1d). With the incorporation of the microfluidic coupling capacitor we 

accomplished synchronized behavior with regards to pressure profiles between the two 

oscillators (Fig. 3-1f, g).  

As a key component in the coupled oscillators, the microfluidic capacitor consists of three 

components: two layers of PDMS and one piece of PDMS membrane (Fig. 3-2a, b). Each PDMS 

layer has one chamber with the dimension of a mm × a mm × 60 µm. “a” is variable from 1.5 mm 

to 2.0 mm, 2.2 mm, 2.5 mm and 3.0 mm (Table 3-1).. The length and width of the chamber were 

used to define the capacitor size, in our presented work. The PDMS membrane has a thickness of 

11 µm. It deforms when there is pressure difference between the upper chamber and lower 

chamber. Fluidic energy is transformed to elastic potential energy in the deformation.  

The liquid on the higher pressure side applies force on the liquid on the lower pressure side, 

increasing the pressure on the lower pressure side. Thus, the microfluidic capacitor can balance 

the pressure difference without fluid passing though (Fig. 3-2b). The microfluidic coupling 

capacitor’s fluidic capacitance can be derived by plate theory as  
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 𝐶 =  
6𝑤6(1−𝑣2)

𝜋4∗𝐸ℎ3
 (1) 

where w is membrane width (m), E is Young’s modulus of the membrane (N/m2), h is membrane 

height (m) and v is Poisson’s ratio of the membrane (dimensionless) [1].  

To study how the microfluidic capacitor synchronizes the oscillators, we use air bubbles as an 

indicator to visualize the interaction between the two coupled oscillators. Air bubbles were injected 

into the tubing between the valve and the microfluidic capacitor (Fig. 3-2c). The tubing was 

marked with for quantitative measurement of air bubble movement (Fig. 3-2d). Source pressure of 

the coupled oscillators, as well as the location of the air bubbles were recorded at the same time. 

As seen in Fig. 3-2e, the two oscillators synchronize when using the microfluidic capacitor. The 

location of the air bubbles reveal the pressure difference at the two sides of the microfluidic 

capacitor (Fig. 3-2f). As a consequence, the air bubble moves with the liquid in the tubing, leading 

to the deformation of the PDMS membrane in the microfluidic capacitor. This equates to the fluid 

on the higher pressure side translating force to the lower pressure side, resulting in oscillator valves 

to open and close almost simultaneously. Fig. 3-2g is the distance between the two air bubbles. 

The distance is not constant, indicating the microfluidic capacitor is capable of restoring and 

releasing fluidic engery by deformation. 

As the fluidic capacitance was increased, we found increased synchronization between the two 

coupled microfluidic oscillators (Fig. 3-3b, c). The measured oscillator valve pressures were 

implemented in eq 1, [15,16] to quantify the coupling strength afforded by different coupling 

capacitors. 

 sin
d

dt


     , (2) 
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Here ω is the natural frequency of the oscillator, ε is the coupling strength, and φ is phase 

difference of the two oscillators; for brief description and derivation of equation (2) for the 

analysis of phase synchronization for more in depth description see previous literature in 

oscillator locking and synchronization [15,16]. Using the empirical data, and assuming the 

equation goes to steady state (
𝑑𝜑

𝑑𝑡
 = 0), we determine the maximum coupling strength reached 

within our system.  

In addition to experimental studies, we performed simulations of the individual and coupled 

oscillators.  We have previously showed that electrical circuit simulation software can effectively 

capture features of microfluidic oscillators.  Here we simulate two “identical” oscillators 

exhibiting device-to-device variability as devices with differences in the phase of oscillation or 

with both differences in phase and frequency.  We could identify a minimum critical capacitance 

needed for effective coupling, which was dependent on the magnitude of the parasitic 

capacitance of the valves within the oscillators (Fig. 3-4). Simulations predicted that out of phase 

oscillations could be synchronized with a critical coupling capacitance of 1 x 10-14 m5/N (Fig. 4) 

but that oscillators that are both out of phase and with different frequencies from each other 

require a stronger coupling (e.g. 1×10-12). Most importantly, we show through simulations the 

size range of coupling capacitance needed relative to the parasitic capacitance of the oscillator 

valves and inflow rates into the valves. 

Table 3-1 shows experimental results of how larger capacitors result in increasing 

synchronization between oscillators. We characterized the behavior through both the pressure 

profiles of the valve units in each oscillator, as well as the phase portraits of these pressures. We 

found that by using smaller capacitors, such as the 1.5 mm x 1.5 mm capacitor, the oscillators 

become unstably synchronized (Fig. 3-3a). The coupled oscillators appear to have some 
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synchronicity, however, they shift in and out of this synchronized state, most likely indicating 

that the coupling strength of 0.0915 is insufficient to reach complete entrainment, but rather 

produces unstable synchronization. This is further reinforced when visualizing the phase portrait 

of P1 vs. P2, where a triangular pattern emerges, however this coordinated behavior seems to be 

unstable as the positioning of this pattern shifts through the entirety of the experimental data. 

Increasing the coupling capacitance, we see the stable synchronization between the oscillators 

(Fig. 3-3b, c), where the phase portrait of P1 vs. P2 shows a consistent triangular pattern with 

increasingly fixed positions with increasing coupling capacitance. The coupling strength for the 

larger microfluidic capacitors, 8.073 and 43.15, concomitantly increases with synchronized 

behavior of the oscillators.   

The microfluidic capacitor is capable of coupling the oscillators while preventing the liquid from 

passing through it, however, the presence of the elastic PDMS membrane may limit the extent of 

the force translated from one oscillator to the other. Implementing a direct connection may be 

experimentally unideal for cell based experiments, as the mixing of solutions may compromise 

experimental conditions when utilizing differing media compositions and biomolecule 

stimulants; however, considering the dynamics of our system, we identified that this would result 

in the strongest coupling behavior (Fig. 3-3d). Direct coupling of the oscillators with tubing 

results in the source pressure waveforms being tightly synchronized, overlapping more so than 

that seen with microfluidic capacitor coupling, reaching a maximum coupling strength of 45.307. 

Additionally, the phase portrait of P1 vs. P2 shows a diagonal pattern, indicating a high degree of 

entrainment between the two oscillators. Coupling also appeared to result in frequency 

stabilization, generally demonstrating a reduction in period variation with increasing coupling 

strength (Fig. 3-5). 
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In addition to oscillators that have even duty cycles (50% - 50% in terms of time valve open for 

each of the two valves of an oscillator) we analyzed synchronization between oscillators 

operated with asymmetric input flowrates that give asymmetric duty cycles[10]. Figure 3-6 

shows experiments using oscillators with asymmetric input flow rate combinations of: 1) 5 

µL/min flow rates into the coupled valve units via syringes B and D, and 2.6 µL/min into the 

non-coupled valve units via syringe A and C; 2) 2.6 µL/min flow rates into the coupled valve 

units via syringes B and D, and 5 µL/min into the non-coupled valve units via syringe A and C; 

3) non-paired input flow rates, with 5 µL/min input via syringes A and D, and 2.6 µL/min input 

via syringes B and C. When using combination 1 we achieved synchronization in all coupling 

conditions except when using the smallest microfluidic coupling capacitor, whereas the other 

two asymmetric input flowrate combinations only resulted in synchronized behavior when the 

oscillators were directly connected. We expect the inability to synchronize the oscillators in 

condition 2 and 3, is the insufficient energy translated via the fluidic capacitor.  

In biological experiments more than two microfluidic oscillators may be required to function in 

parallel, under the same oscillatory behavior. For example, in the study of cellular signal 

pathway architecture, parallel experiments might require oscillators outputting oscillatory flow 

with the same frequencies, but different concentrations. Figure 3-7a demonstrates the ability to 

scale oscillator coupling from two to four oscillators. The four oscillators are coupled by three 

capacitors with 3.0 mm chambers. All four oscillators have a constant input flow rate of 5 

µL/min. The pressure profiles of the oscillators demonstrate robust entrainment (Fig. 3-7b). 

These results demonstrate that the coupling phenomena, can be implemented when an array of 

synchronized oscillators are needed, as long as the coupling strength meets the minimum 

requirement for the system.  
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3.4 Conclusions 

In this work we demonstrate that multiple microfluidic oscillators can be coupled via fluidic 

capacitors to automatically synchronize their oscillations. Simulations identified a relationship 

between the internal capacitance of the microfluidic valve units and the coupling capacitors 

capacitance, such that a minimal critical capacitance needs to be used to generate sufficient 

coupling strength to synchronize the two oscillators. Microfluidic oscillators with asymmetric 

inflow pairings can also be synchronized, provided the oscillators are coupled through the valves 

receiving the larger inflows.  
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Figure 3-1: Coupled microfluidic oscillators results in synchronous behavior. 

(a) Schematic of two separate oscillators intended for parallel experiment. (b) Experimentally 

measured source pressure changes of the two separate oscillators over time (The valves 

connected to the syringe with red liquid are measured). (c) Oscillator pressure phase portrait of 

experimentally observed pressure profiles between oscillator 1 vs. oscillator 2 when the 

oscillators are not coupled. (d) Schematic of two oscillators coupled by a microfluidic capacitor. 

(e) Experimentally measured source pressure changes of the two coupled oscillators over time. 

(f) Oscillator pressure phase portrait of experimentally observed pressure profiles between 

oscillator 1 vs. oscillator 2 when the oscillators are coupled. All the oscillators in the experiment 

have a constant input flow rate of 5 µL/min from syringe pump. 
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Figure 3-2:Structure and characteristic response of the microfluidic capacitor. 

(a) Three dimensional view of the microfluidic capacitor. The microfluidic capacitor consists of 

two layers of PDMS and one PDMS membrane in the middle. (b) Cross-sectional views of the 

capacitor. The bottom chamber is connected to the oscillator 1 and the top chamber is connected 

to the oscillator 2. The PDMS membrane deforms when there is pressure difference between the 

two chambers. (c), (d) Air bubble is injected into the tubing as an indicator to reveal the 

interaction between the two oscillators. The tubing connected to the capacitor is marked with 

ruler to measure quantitatively the movement of the air bubbles. (e) The source pressure of the 

two oscillators. (f) The location of the air bubbles. (g) The location difference of the air bubbles. 

(e), (f) and (g) were recorded at the same time. 
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Figure 3-3: Increasing oscillator entrainment with increasing coupling strength. 

Source pressure profiles of oscillator 1 and 2 along with the associated coupling strength. Phase 

portrait, P1 vs. P2, presented under oscillator pressure profiles. (a) Separate oscillators. (b) 

Capacitor size = (1.5 mm) 2. (c) Capacitor size = (2.5 mm) 2. (d) Direct connection.  
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Figure 3-4: Critical coupling capacitance dependent on internal microfluidic oscillator valve 

capacitance. 

PLECS simulations of two out of phase, equivalent oscillators with identical frequencies coupled 

to identify minimal, or critical, coupling capacitance to induce synchronization of oscillators. 

Simulations of the coupled microfluidic oscillators, demonstrated that the critical coupling 

capacitance is dependent on the capacitance of the transistor-like valves in the microfluidic 

oscillator.  
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Figure 3-5: Period Stabilization with increased coupling strength. 

Period fluctuation over time was plotted for different coupling capacitor sizes demonstrating a 

stabilization effect when coupling the oscillators. An increase in stability and reproducibility of 

the same oscillation period, predominantly occurred with increasing coupling strength.  
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Figure 3-6: Asymmetric oscillator with adjustable duty cycles and their coupling strength 

under different conditions. 

(a) Asymmetric inflow via differential syringe size into coupled oscillators. (b) Coupling 

strength for different combinations of input flow rates. 
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Figure 3-7: Synchronization of more than two oscillators coupled by microfluidic capacitors. 

(a) Four oscillators coupled by three microfluidic capacitors. Each oscillator has a constant input 

flow rate of 5 µL/min. The microfluidic capacitor size is 3.0 mm. (b) Source pressure of the four 

oscillators over time. Pressure sensors are connected to the syringes with red liquid as shown in 

Fig. 4a. 
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Chamber length/width 

 (mm) 

Capacitance (m5/N) 

1.5 1×10-12 

2.0 1×10-11 

2.2 1×10-10 

2.5 1×10-9 

3.0 1×10-8 

Table 3-1: Capacitor size and its corresponding capacitance 
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4 Chapter 4: Media additives to promote spheroid circularity and 

compactness in hanging drop platform 

4.1 Introduction 

Conventional methods for high throughput screening have primarily utilized two-dimensional 

cell cultures in well plates. Recently, the trend has been shifting towards three-dimensional (3-D) 

drug screening, especially in cancer therapeutics, due to the unique characteristics of these 

culture platforms. These cell aggregates allow for increased cell-cell interactions such as 

adhesion and junctional connections, reduced proliferation rates more aligned with physiological 

growth rates, restricted and non-linear diffusion gradients resulting in non-uniform metabolic 

gradients [1]. Additionally, 3-D culturing is desirable as some cells have shown to lose their 

physiologic phenotypes and functions when cultured in two dimensional culture platforms, 

however, these phenotypes can be retrieved by culturing cells in 3-D emulating conditions [2]. 

Spheroid culture has also been applied to creating complex co-culture systems [3]. Multicellular 

spheroids represent an attractive platform because it provides a model of oxygen, metabolite, 

nutrient, and drug gradients observed in tumors due to non-uniform vascular perfusion in a 

radially symmetric architecture that is easier to reproduce and mathematically model. 

Multicellular spheroid models have been generated through various methods, and reviewed 

thoroughly in recent literature [4, 5]. One of the common methods described is the ‘hanging 

drop’ technique, in which cells are placed in a suspended drop of media and as a result of gravity 

and the meniscus incurred by the air-liquid interface, cells localize at the bottom of the hanging 

drop, typically resulting in intercellular aggregation and adherence. This method of generating 
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spheroids has been applied to fabricate 3-D tissues such as embryoid bodies, cancer tumor 

models, microlivers, microhearts, microcartilage [6-9]. Spheroid culture in hanging drops has 

garnered popularity as a high throughput tool supported by published systems and methods for 

more standardized, robust generation and maintenance of hanging drop cultures [6, 10, 11]. A 

major advantage of this system also extends from the ability to culture and image spheroids 

directly from the hanging drops over extended periods of time (weeks to months)[11], whereas, 

in 2-D cultures, cells grown on the culture surface eventually form a confluent monolayer and 

begin to slough off the surface as a sheet or clump.  

Requirements we believe critical to 3-D spheroid screening models are 1) tightly aggregated 

spheroids to facilitate physiologically relevant cell density, 2) the formation of diffusion 

gradients, and 3) tuneable and reproducible spheroid size based on initial seeding density. 

However, not all cell types have demonstrated spontaneous aggregation in spheroid cultures, 

resulting in loose aggregates, or disconnected, floating cells [12]. This phenomenon poses a 

barrier in testing different cell types, which may only be able to establish weak intercellular 

interactions, if any, resulting in an inability to form spheroids. In order to overcome this inability 

to coalesce, researchers have applied different methods to induce cellular aggregation in cells of 

interest [4, 5]. One such method is the inclusion of additives to 3-D cultures for improved 

spheroid formation. Both biological and synthetic additives have been successfully employed, 

with mechanisms varying between cross-linking agents [13, 14], adhesion stimulation [15], or 

rheological modifiers and crowding agents [16]. Supplementation of cross-linking agents has 

generally been done with extracellular matrix proteins, such as collagen, fibronectin and 

reconstituted basement membrane matrigel [12, 17]. Additional methods of using cross-linkers to 

improve spheroidal aggregation include the use of polymer nanospheres [13] or chemically 
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modifying cell surfaces via biotinylation and culturing in the presence of supplemented avidin 

[14]. Similar to using cross-linking agents, spheroid formation has also been accomplished by 

using β1-integrin-stimulating monoclonal antibodies [15]. Unlike supplements that directly 

tether or act as a tether to cells, certain additives have improved the formation of spheroids 

through rheological modification or as a crowding agent. Methylcellulose (MethoCel) has been 

applied to spheroid formation and even though the mode of action has not been conclusively 

determined, it has been attributed to MethoCel’s inert semi-solid gel like properties, or viscosity, 

or additionally crowding effect induced by the molecule [16, 18, 19]. The addition of MethoCel 

to hanging drop cultures has been solely applied [18] or co-supplemented with cross-linking 

additives, such as matrigel [17]; these modifications have shown improvement in cellular 

aggregation and formation of 3-D structures. Additionally, supplemented cultures demonstrated 

increased reliability and robustness for spheroid formation; however concentrations of 

supplemented MethoCel have not been characterized.  

In this study we aim to compare the individual and combined effects of two widely used 

additives (collagen and MethoCel) in hanging drop cultures to promote the circularity and 

compactness of 3-D spheroids for a variety of cell types. To focus exclusively on the impact of 

additives of spheroids within the context of high throughput screening, we used previously 

reported high throughput hanging drop array plates [6] coupled with a liquid handling robot to 

minimize sample variability, provide robust culturing conditions with minimal to no spreading, 

loss of shape, or rupturing of hanging drops as compared to the more commonly known inverted 

lid methodology[6]. Using finite element models we first demonstrate the importance of these 

two morphologic parameters in the establishment of radial transport gradients, a hallmark feature 

of spheroid models. We then compare the effects of different macromolecule thickening agents 
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in hanging drop cultures. Even though increasing viscosity results in a reduction of spheroid 

motion while imaging, we identify that modulating viscosity is not the sole requirement to 

induce spheroid formation, indicating the need to consider other molecular characteristics when 

selecting additives to promote spheroid morphology.  

4.2 Results and discussion  

Effects of spheroid geometry and physical characteristics on diffusion gradient    

Diffusion kinetics is a major factor that influences cellular responses in 3-D spheroids. Nutrients 

and waste byproducts face diffusion resistance as they enter or leave a spheroid, respectively. 

Additional compounds in the surrounding medium will similarly develop gradients as they 

penetrate the spheroid. The rate of diffusion and steepness of the diffusion gradient are primarily 

influenced by the circularity and compactness of a spheroid. Circularity refers to the symmetry 

of a spheroid, with an ideal equidistant symmetry from the center of the spheroid to any point on 

the surface. This ideal symmetry would result in a concentric diffusion gradient field; facilitating 

robust modeling of molecular diffusion into the spheroid. In contrast, elliptical 3-D cellular 

masses would result in an increase of surface area and a reduction of average distance from the 

long axis to the spheroid’s center of mass. As expected this was confirmed using a finite element 

model to compare oxygen diffusion into an ideal spheroid versus an ellipsoid of the same 

volume. Using oxygen diffusion coefficients[20] and consumption rates[21, 22] from the 

literature, the model predicted the presence of a hypoxic region in an ideal spheroid, whereas this 

region is absent in an ellipsoid of the same volume with a 2:1 deformed aspect ratio (Fig. 4-1a). 

This simulation shows that spheroid geometry has a direct effect on the physical characteristics 

of transport gradients. 
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Using the same approach we also estimated the effect of compactness on spheroid transport 

properties. Compactness refers to the degree of remodeling and density of a spheroid. As cells 

come into contact with each other, from the initial step of aggregation through spheroid 

formation, they can manipulate and secrete ECM proteins leading to reorganization and 

compaction.  Here we simulate the effect of compaction by modeling the steady-state 

concentration of oxygen in two spheroids with an identical number of cells, and hence identical 

overall oxygen consumption rate. The first is a reference spheroid with uniform oxygen 

consumption rate, compared to a compact spheroid half the diameter (1/8 the volume). In other 

words, the compact spheroid would have a specific volumetric oxygen consumption rate that is 

eight times higher than the reference spheroid to account for the loss of volume. Assuming 

similar oxygen diffusion kinetics for both spheroids, the model predicted a steep hypoxic 

gradient from the surface to the core of the compact spheroid compared to the reference spheroid 

(Fig. 4-1b). These simulations indicate that the uniformity, strength and steepness of a solute 

gradient within a spheroid are directly proportional to the circularity and compactness, or 

morphology, of a spheroid. The simulations support the notion that spheroid responses to small 

molecules can be impacted significantly by spheroid morphology. Therefore any meaningful 

comparisons between pharmacokinetics of different drugs must be conducted using spheroid 

models with similar, reproducible physical characteristics. 

Effect of additives on spheroid morphology in hanging drop cultures 

Additives in hanging drops can affect the speed, quality, longevity and robustness of spheroid 

formation. Many of the advantages of spheroid culture, including transport limitation and 

establishment of a nutrient gradient, are based on the assumption that cells form a compact and 

symmetrical spheroid mass. Here, we assessed MethoCel, an additive that does not adhere to 
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cells, in its ability to enhance spheroid formation. Unlike ECM proteins additives, such as 

collagen or fibronectin, MethoCel does not bias toward cell aggregation by acting as a 

scaffolding protein that binds multiple cells through surface receptors. However, given the 

widespread use of collagen as an aggregating/crosslinking agent in 3-D culture, we included it to 

serve as a comparison to MethoCell as well as assess the combined effects of collagen and 

MethoCel on spheroid formation using several cell lines.  

One challenge in assessing spheroid morphology is to determine a standardized metric that 

correlates with spheroid function. As demonstrated with finite element models, circularity and 

compactness have a significant impact on transport gradients within spheroids. To this end, we 

developed a visual comparison-based, 5-point scale to assess circularity and compactness of 

spheroids. The uneven brightness of spheroid and background caused by the curvature of 

hanging drop complicates the determination of the spheroid border necessary for computer image 

analysis. Circularity and compactness of each spheroid were scored by comparing phase-

contrasted micrographs to the 5-stages of development for each metrics (Fig. 4-6 and 4-7). The 

scores were generated blinded and independently by two researchers and the averages are 

presented as a gradient map (Fig. 4-2).  

We tested several tumor cell lines since these would be of most interest to drug screening 

applications. In agreement with previously observed results, spheroids generally become more 

circular and compact when supplemented with low concentration of collagen compared to 

unsupplemented control conditions [12]. Whereas high collagen concentrations had varied 

responses, primarily a negative impact on spheroid circularity and compactness and in some cell 

types (A549 and HeLa) completely abrogating single spheroid formation, similar to previously 

reported formation of small multi-spheroids within cultures containing higher concentrations of 
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matrigel [17]). In contrast, cells behave in a much more uniform fashion in the presence of 

MethoCel. For most cells tested (DU145, A549, HeLa, MDA-MB-231, MCF-7), the presence of 

MethoCel improved circularity and compactness of spheroids in a dose dependent manner with 

varying degrees of effectiveness. The exceptions were HEK293 cells, where circularity and 

compactness scores were high and favorable regardless of MethoCel addition, and PC3 cells, 

where MethoCel conferred almost no improvement. In MethoCel only culture, further addition of 

MethoCel combined with low concentration of collagen did not enhance spheroid morphology in 

a dose dependent manner, but instead caused no change or negatively impacted spheroid 

morphology. Finally, high collagen concentration combined with MethoCel lead to mixed results 

with no discernible trends.  

Like in most tissue constructs, cells remodel and reshape the spheroid over time. MethoCel 

demonstrated its ability in enhancing spheroid morphology in the acute phase of spheroid culture 

(2 days), but it was unclear whether such enhancement would be sustained over a long culture 

period. To test this we chose three tumor cell lines (MDA-MB-231, DU145 and PC3) to further 

examine the effects of MethoCel on monoculture spheroid formation over a period of 4 days. 

Spheroids consisting of either MDA-MB-231 or DU145 became more circular and compact from 

day 1 to 4 post seeding (Fig. 4-3). The addition of 0.24 mg/mL of MethoCel led to further 

enhancement over time when compared to cultures with no additives. Interestingly, PC3 spheroid 

morphology was minimally affected by culture time and presence of MethoCel. This finding 

suggests that the effectiveness of MethoCel may be cell-type dependent.   

Spheroid formation generally improved using collagen concentrations within the range 

previously described in the literature [12, 15, 23]. At higher concentrations, collagen led to 

formation of multiple spheroids instead of a single one as expected, reflecting previously 
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reported results in increased matrigel concentrations[17] and in some cases, we observed 

significant adhesion to the hanging drop plate and formation of an elongated cell mass. The latter 

may be caused by non-specific absorption of protein, including collagen, onto the hanging drop 

plate that leads to subsequent cell adhesion and nucleation around the rim of the plate.  

The final spheroid size in a hanging drop platform can be controlled by varying the initial cell 

seeding number in each droplet. The assumption is that higher initial cell numbers in a droplet will 

result in a larger spheroid, and this generally seems to hold true for different cell types [10] and 

additive concentrations we have tested (data not shown). However, at high collagen concentration, 

cells may form clusters to create multiple nucleation sites as they are settling, which in turn 

increases the likelihood of multi-spheroid formation [17]. Another aspect to consider is that some 

cell types have a natural tendency to form clusters of certain size irrespective of seeding density, 

especially in high ECM concentrations. This is seen in mammary epithelial cells, which form 

hollow acini with uniform size when seeded in Matrigel irrespective to cell quantity [24]. These 

factors should be considered if the goal is to generate single spheroid within each hanging drop.   

Viscosity mediated spheroid stability for improved imaging and analysis in hanging drop culture  

Among the many techniques to assess anti-tumor drug efficacy, microscopic imaging remains a 

commonly used modality due to its simplicity and compatibility with online, automated high 

throughput screening. However, the motion blur associated with the vibration of the microscope 

or sample movement within the hanging drop can limit the quality of images, especially for long 

exposures necessary in fluorescence imaging. The free-floating nature of spheroids within the 

hanging drop culture results in the lack of steadfastness or spheroid stability, resulting in motion 

blur artifacts which can limit the ability to automate imaging of these high throughput spheroid 

arrays. We went on to confirm that MethoCel additionally reduces motion artifacts during 
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microscopy of spheroids in hanging drops. By tracking spheroid movement and analyzing the 

center-of-mass path length we observed that as little as 0.024 mg/mL of MethoCel in medium is 

sufficient to reduce motion artifact in small or larger (25 and 500 cells, respectively) spheroids. 

In larger spheroids (500 cells), motion artifacts appeared to be slightly reduced as compared to 

smaller spheroids in the absence of MethoCel; however the stabilizing effect of MethoCel 

markedly reduced motion artifact in spheroids of both sizes tested (Fig. 4-4a). This secondary 

effect of MethoCel is particularly beneficial as it will improve the robustness to observe and 

image spheroids within the hanging drop culture. This is a significant finding as many of the 

clinically relevant hanging drop spheroid applications involve long-term culture of small (10 to 

50 cells), patient-derived cell population in spheroid formats, which could benefit from a method 

to both improve spheroid formation and facilitate imaging of samples while not disrupting the 

longevity of culturing. Addition of MethoCel also did not change droplet contact angle (Fig. 4-

4b) or evaporation rate (Fig. 4-4d) as compared to the control culture media, indicating that the 

motion dampening and subsequent spheroid stability was most likely conferred by viscosity as 

opposed to changes in Marangoni or thermo-convective flow profiles.  

It is not surprising that the increase in viscosity imparted by the presence of MethoCel would 

dampen external vibration and reduce the amount of forces transmitted to the spheroid for 

improved stability. Due to MethoCel’s viscosity mediated stabilization, and multiple descriptions 

eluding that its’ semi-solid, inert viscosity modulating properties maybe responsible for spheroid 

formation, we assessed other long chain macromolecules in their ability to achieve similar levels 

of spheroid stabilization, as well as their ability to promote spheroid formation. In fact we found 

other long chain macromolecules, including dextran (DEX), Ficoll and polyethylene glycol 

(PEG), supplemented to match 0.024% MethoCel viscosity (Fig. 4-4e) achieved similar level of 
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motion artifact reduction for spheroid imaging (Fig. 4-4c) and slightly reduced evaporation rates 

(Fig. 4-4c).  

Regardless of comparable viscosity, we identified that of the additives tested, MethoCel resulted 

in the most improved spheroid circularity and compactness in poor-spheroid forming cells, such 

as MDA-MB-231. Conversely, these macromolecule additives may interfere with spheroid 

formation, in a cell-type dependent manner, as noted when they are present in HEK293 spheroid 

culture. Specifically, even though all HEK293 cultures resulted in the formation of spheroids 

regardless of additives, each hanging drop culture with either PEG or DEX supplements resulted 

in the formation of multiple spheroids (Fig. 4-5). As previously discussed, multi-spheroids in a 

single droplet are non-ideal for screening applications, further indicating that regardless of 

viscosity modification there are secondary macromolecule effects necessary for robust promotion 

of spheroids in hanging drop cultures. Such factors may be crowding or “swelling” effects which 

could produce localization of ECM proteins [25, 26] or the aggregation of cells [27] within the 

hanging drop cultures. These phenomena have been demonstrated to result in mechanisms that 

should induce particle and cellular aggregation when using certain macromolecules as additives 

[27], one such macromolecule being MethoCel.  

4.3 Experimental procedures 

Cell culture 

Cells were cultured at 37 °C at5% CO2 using a culture medium composed of Dulbecco’s 

Modified Eagle’s Medium (DMEM) (Invitrogen) supplemented with 10% Fetal Bovine Serum 

(FBS) and 1% antibiotic-antimycotic. Cells were cultured in 100mm culture dishes until reaching 

~ 80% confluence and were then passaged using 0.25% Trypsin/EDTA (Gibco) to detach cells 

from plates prior to diluting and transferring them to the hanging drop plates. All cell lines were 
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obtained from ATCC. Cell lines cultured for spheroid formation were human embryonic kidney 

HEK 293 (ATCC CRL-1573), breast cancer MDA-MB 231 (ATCC CRM-HTB-26) and MCF7 

(ATCC HTB-22), lung cancer A549 (ATCC CCL-185), cervical cancer cells HeLa (ATCC CCL-

2), prostate cancer PC3 (ATCC CRL-1435) and DU145 (ATCC HTB-81). 

Spheroid Culturing and Assessment for Methyl Cellulose and Collagen Type I 

Prior to usage, a hydrophilic coating (0.1%, Pluronic F108, BASF Co., Ludwigshafen, Germany) 

is applied onto the entire hanging drop plate surface. The plate is subsequently UV sterilized 

before cell seeding. To form hanging drops, cell suspension solution is pipetted from the top side 

through the access holes with the end of each pipette tip inserted into the access hole to guide the 

sample liquid to the bottom surface. Spheroid formation was tested for the different cell types 

across multiple concentrations of A4M MethoCel (Dow Chemical, MI) and bovine type I 

collagen (Corning, NY). The following concentrations for collagen 0, 0.3%, 1.5% were paired 

with the following concentrations of MethoCel 0, 2, 10, 20% of stock MethoCel (1.2% w/v). 

These different conditions were assessed to determine spheroid formation as a result of the 

additives in the media. These combinations were assessed and used to generate a gradient map of 

increased spheroid formation. Samples were assessed and compared to the spheroid formation 

scale seen in Figure 4-6 and 4-7. 

Spheroid morphology scoring 

Brightfield images of spheroids were collected at 10x magnification and assigned scores based 

on circularity and compactness. These images were randomized and scored by blinded observers. 

Observers were given a series of images describing the criteria for each metrics and were asked 

to score each image out of a 5-point scale. These scores were averaged and tabulated with 
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gradient scale to allow visual comparison of the effects of medium additives across different cell 

lines.  

Viscosity measurement of medium with additives  

Solutions were prepared for viscosity testing using culture media composed of DMEM 

(LifeTechnologies, Carlsbad, CA) with 10% FBS and 1% antibiotic-antimycotic (Life 

Technologies, Carlsbad, CA) with the addition of the different additives. Viscosity testing was 

done on a total of five solution types, culture media as well as the four solutions with additives. 

Additives were placed into the culture media to match the viscosity of MethoCel 0.024% w/v in 

culture media. The following additives were used: Dextran 500K (Pharmacosmo), PEG 35K 

(Sigma), and Ficoll 40 (Sigma) to generate similar viscosity with the different additives. 

Viscosity testing was done using a 52501/0b ubbelohde viscometer, testing each sample 5 times 

to determine average viscosity. The viscosity was determined prior to using the solutions as a 

spheroid culturing solution. Upon using the different solutions, spheroid formation was assessed 

against each culture condition.  

Spheroid stability measurement 

The stabilizing effects of polymer additives in hanging drop spheroid culture were assessed by 

video analysis. Spheroids with initial cell seeding number of 25 or 500 cells were cultured in 

medium with or without polymer additives (MethoCel, PEG, DEX, or Ficoll) for 2 days. 

Polymer-supplemented media were formulated to have comparable viscosities and osmolarities 

(Figure 4E). Spheroids in hanging drop plates were imaged on a Nikon Eclipse Ti inverted 

microscope at 10x magnification for 10 seconds at a frame rate of 100 frame/sec. Using an open 

source cell tracking software [28], the recorded images were analyzed to determine the center of 
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mass of each spheroid. The stability of spheroid was defined as the cumulative path length using 

a template-matching based tracking method. Cumulative path length was calculated by summing 

the total distance covered by the center of mass over 10 seconds (1000 frames total). In cases 

where cells formed more than one spheroid, the largest one out of the group was measured.  

Oxygen depletion simulations 

Finite element simulations were conducted in a commercially available finite element package 

(Comsol v. 4.2; Burlington, MA).  To study the effect of spheroid shape on oxygen distributions, 

cells were assumed to consume oxygen equally throughout the cell aggregate.  Equivalent-volume 

(33.5 µL) spherical and ellipsoidal geometries were generated using a 2D axisymmetric model, 

and the ‘transport of diluted species’ module was used to model oxygen consumption and transport 

within the spheroid.  Appropriate parameters were selected based on values previously reported in 

the literature (diffusion coefficient D = 2 x 10-10 m2/s [20], oxygen consumption rate k = 3.09 x 

10-4 mol/(m3 s) [21, 22].  To adjust for oxygen consumption differences in loose spheroids, the 

volumetric oxygen consumption rate was reduced by a factor equivalent to the expanded volume 

of the spheroid.   

4.4 Conclusions 

The multicellular spheroid model has found applications in many fields of biomedical research 

and will play a major role in next-generation drug-screening platforms. Using computational 

modeling we have demonstrated that the morphologies of a spheroid expressed as circularity and 

compactness, are both important parameters that determine its transport characteristics. We found 

that the morphologies of a spheroid is a function of cell type but can also be affected by the 

presence of additives in culture medium. We investigated the effect of collagen, an adhesive ECM 

protein, and MethoCel, a cell repelling polysaccharide, on spheroid morphologies. For all cell 
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types tested, use of moderate amounts of an appropriate additive improved spheroid morphology. 

MethoCel was beneficial for all cells except PC3 cells. Collagen, at low concentration, was 

beneficial for all cells except HeLa cells. Combinations of MethoCel and collagen in medium 

yielded mixed results depending on the cell type, highlighting the importance of tailoring additive 

formulations for specific spheroid models. The additive formulation that was always better than 

no additive was a combination of a low concentration of Methocel (0.24 mg/mL) and collagen 

(28.2 μg/mL). To obtain the highest degree of morphology improvement, however, each cell type 

would have to be tested for a broader range of additive formulations. In addition, we tested other 

macromolecule –supplemented medium formulations with similar viscosity and osmolarity as 

MethoCel and saw no improvement in spheroid morphology. This finding implies that the spheroid 

enhancement property of MethoCel cannot be entirely attributed to medium thickening alone. 

Overall, our results are in agreement with others in the literature and suggest that additives may 

affect spheroid morphologies by other biophysical factors unrelated to medium viscosity, such as 

altering ECM availability in the peri-cellular space. 
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Figure 4-1: Computational models of oxygen gradients diffusion formed in a spheroid 

containing a constant number of cells with different circularity and compactness. 

A) The model predicts that as the spheroid elongates and becomes less circular, the average core-

to-surface distance decreases and the oxygen gradient decreases with the spheroid becoming 

more evenly saturated with oxygen. B) Similarly, modeling of a loose, non-compact spheroid 

demonstrates a shallower hypoxic gradient compared to a compact spheroid with the same 

number of cells due to the lower volumetric oxygen consumption rate.      
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Figure 4-2: Circularity and compactness of spheroids after two days in culture. 

Several common tumor cell lines were tested. Circularity and compactness were rated on a 5-

point scale by blinded observers (n=2). Final score represent the average of 5 spheroids cultured 

in identical conditions.  
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Figure 4-3: Changes in tumor spheroid morphologies over 3 days. 

The presence of MethoCel improved both acute and sustained spheroid circularity and 

compactness. Scale bar = 200 μm  
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Figure 4-4: Physical characterization of spheroids in hanging drop culture. 

A) Presence of MethoCel improved the stability of hanging drop cultures (25 and 500 cells 

spheroids), evident by the reduction of cumulative path length compared to no additive controls 

(* P<0.01). B) The presence of MethoCel did not change the contact angle and evaporation rate 

of medium, suggesting minimal difference in thermo-convective flow within hanging drop 

culture. C) Media containing DEX, PEG or Ficoll at comparable viscosity to medium with 

MethoCel led to similar level of motion artifact reduction compared to no additive control (25 

cells spheroids, * P<0.05). D) The presence of DEX, Ficoll and PEG led to slight reduction in 

evaporation rates compared to MethoCel supplemented medium (*P<0.05) E) Comparison of 

viscosity and osmolarity between media with different additives and control (10% FBS in 

DMEM).  
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Figure 4-5: Effects of polymer additive in spheroid formation. 

Media containing polymer additives (formulation in Figure 4E) were used to culture MDA-MB-

231 and HEK293 cells. The presence of MethoCel (E) improved spheroid morphology in non-

spheroid forming MDA-MB-231 cells. Other polymers (B, C and D) produced spheroids similar 

to control (A). In normally spheroid forming HEK293 cells (F), the presence of DEX (G) and 

PEG (I) led to the appearance of satellite bodies. MethoCel (J) and Ficoll (H) led to spheroids 

with normal morphologies. Scale bar = 200 μm  



70 

 

Figure 4-6: Scoring guide for circularity scores. 

Scoring guide given to blinded scorer for the assignment of circularity score. Scale bar = 200 μm 
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Figure 4-7: Scoring guide for compactness scores. 

Scoring guide given to blinded scorer for the assignment of compactness score. Scale bar = 200 

μm 
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5 Chapter 5: Dispersible oxygen microsensors map oxygen 

gradients in three-dimensional cell cultures. 

5.1 Introduction 

Three-dimensional (3D) cultures that utilize hydrogels1 or specialized culture vessels are 

increasingly used to elicit more physiological cellular responses compared to conventional 2D 

cultures2. Oxygen levels within these tissue cultures is an important regulator of cell function. 

Physiological oxygen levels in vivo, range from ~14% in the alveoli down to ~3% oxygen in 

some tissues3, and still lower levels in tissues with different pathologies, such as tumors, 

ischemia, and obesity4,5. To develop culture systems with oxygen tension profiles that portray the 

spatially and temporally dynamic oxygen environments in vivo, robust monitoring systems are 

needed to map oxygen levels within these increasingly complex in vitro tissue cultures. 

Historically, Clark electrodes or variations thereof have been employed as oxygen sensors6. 

These oxygen detectors are reliable but consume oxygen and can thus also alter the local 

concentration during measurements7. Miniaturized micro-electrodes can reduce such 

consumption and are able to fit within micropipettes8, but the need to pierce tissue constructs, 

limits the oxygen measurements to a singular point; where inserting an array, may both damage 

the tissue, as well as significantly alter the oxygen concentration throughout the tissue. Also the 

need for sensor electrodes and electrical connections make it difficult to handle/manipulate the 

sample with the embedded sensor7.  
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Optical sensors and luminophores have also been developed to study cellular oxygen 

microenvironments. Phosphorescent organometallic complexes are particularly useful due to 

their rich excited states, large shift between excitation and emission wavelength (Stokes’ shift), 

long decay lifetimes, high luminescence quantum yields and high stability in regards to oxygen 

sensing9. These complexes have been employed in different modalities/structures, such as nano-

particles10,11/-fibers12,13, thin films14,15, microplates16, and microbeads17,18. The majority of the 

cell culture work done with laboratory sensor systems in the various formats rely on intensity-

based measurements, which are easily affected by light path differences from culture vessels and 

optical attenuation by dense 3D cell cultures and hydrogels. Thin films, patches, and plates, such 

as the Ocean Optics neoFox® which utilize phase fluorimetry to measure oxygen, or microplates 

such as the Becton-Dickinson Biosensor® plates can utilize temporal (phase) based imaging 

techniques19. Unfortunately, these commercial sensor systems are too large to be placed within 

microscale tissue culture systems limiting these technologies to peripheral measurements.  

Here, we describe an optical oxygen microsensor fabricated by infusing PDMS microbeads 

with an oxygen-sensitive ruthenium dye that is non-toxic and provide real-time oxygen 

monitoring of cell culture of extended periods. The beads are used with phase fluorimetry, which 

uses oxygen lifetime-quenching instead of intensity-quenching to mitigate the drawbacks 

associated with intensity-based measurements20,21. We use the sensor beads to characterize peri-

cellular oxygen concentrations for cell spheroids cultured in microwells versus hanging drops. 

Because of the high stability and very small sensor-to-sensor variability, multiple microsensors 

could be dispersed throughout 3D cell cultures and hydrogel constructs to provide maps of the 

spatial distribution of oxygen levels without the need for multiple calibrations. We believe these 
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small and robust oxygen sensors will be useful for a variety of 3D cell culture, organ-on-a-chip, 

and tissue engineering applications where oxygen plays a key role in determining cell function. 

5.2 Methods and Materials 

Generation of PDMS beads 

PDMS beads were generated using microfluidic flow focusing devices typically used for droplet 

generation. Specifically, we used a 3-to-1 converging flow-focusing micro-channel (100 µm high 

channels) device to fabricate PDMS beads, however, the device design can be modified to 

generate beads of different sizes22. Microfluidic flow focusing devices used the same master 

fabrication, and PDMS layer preparation as previously presented23. PDMS layer, had inlets and 

outlets punched biopsy punches, prior to plasma bonding the PDMS layer onto a glass slide. 

Metal blunt end needle-tips (Jensen Global, Santa Barbara, CA, USA) were used to connect 

tubing into device; Tygon tubing (Saint-Gobain™ Tygon™ R-3603 Clear Laboratory Tubing, 

Saint-Gobain Performance Plastics, Akron, OH, USA) was inserted into continuous flow inlets, 

whereas PTFE Tubing (Cole-Parmer, Vernon Hills, IL, USA) was directly inserted into 

dispersive flow inlet. Inserted tubes and tips were sealed with uncured 1:10 – PDMS.  

After fabrication, devices were prepared for bead generation by applying corona treatment to the 

device, to enhance hydrophilicity of the microchannels; immediately after a surfactant solution 

of either 0.1% (w/v) Pluronic F108 (BASF Co., Ludwigshafen, Germany) or 0.5% (w/v) Sodium 

Dodecyl Sulfate (Sigma Aldrich, Saint Louis, MO, USA) in dH2O was flowed through tubing 

and channels. For flow focusing, the surfactant solution of 0.1% Pluronic F108 0.5% SDS was 

flowed through the side channels, to make up the continuous phase, and a 1:1 mixture of toluene 

and 1:10 PDMS pre-polymer solution (Sylgard 184, Dow Corning, Midland, MI, USA) was 

flowed through the middle channel, making up the dispersive phase. Flows were driven by two 
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distinct syringe pumps (KD Scientific, Holliston, MA, USA) to differentially modulate flow 

rates.  Flow rates were slowly ramped up and down in the continuous and dispersive flows, 

respectively.  Flow rate ramping steps for both continuous phase driving pumps and disperse 

phase driving pump are controlled carefully to minimize the time needed to initiate convergence 

of two liquid phases, and to maintain stable focusing flow in the microchannel device. 

The low surface energy of the surfactant solution helps to maintain the PDMS micro-droplets in 

the outlet reservoir after they have been formed.  After being collected at the outlet reservoir into 

glass scintillation vials, the PDMS microdroplets were cured at 60 ºC overnight, forming solid 

PDMS microspheres.  In experimental observations, the size of the cured PDMS microspheres 

do not change significantly compared to the pre-cured microdroplets (data not shown).  

Infusion of Ruthenium into PDMS for O2 Sensing 

Post fabrication, beads were washed with dH2O. dH2O solution was removed, and 5mg/mL of 

tris(4,7-diphenyl-1,10-phenanthroline) ruthenium(II) dichloride (Alfa Asar, Ward Hill, MA, 

USA) in dichloromethane (Sigma, Saint Louis, MO, USA) was introduced into the scintillation 

vial. Beads were allowed to incubate in the ruthenium-dicholoromethane solution for 24 hours at 

room temperature, in the dark. The majority of ruthenium-dicholoromethane solution was 

removed from the scintillation vial, and 5 mg/mL of ruthenium in isopropanol was applied onto 

the beads for 30 minutes to dilute out the dichloromethane (at least 1:4 dilution). The isopropanol 

was then removed, and the beads were washed with dH2O to remove organic solvents. Final 

washes were done in 0.1% Pluronic F108 to minimize bead sticking.  

Calibration of PDMS Microsensors 
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Phase-shift measurements (phase fluorimetry) were taken of the oxygen microsensing beads 

using a microscope with a fluorescence attachment connecting a monochromatic 455 nm 5 W 

LED light source (Mightex Systems, CA) to excite the beads in a pulsatile manner. The LED was 

driven by a function generator (33220A, Agilent Technology, Inc., CA, USA), with a square 

wave at a 100 kHz frequency and 50% duty cycle. A 590 long pass filter was used, to minimize 

extraneous noise; silicon PIN photodiode with preamplifier (PDA36A, Thorlabs, Inc., NJ, USA) 

was used to capture fluorescent emission. The PIN photodiode, was set at a gain of 30 dB, and 

was connected to a lock-in amplifier (SR830, Stanford Research System, Inc., Sunnyvale, CA, 

USA) for output signal assessment and comparison. The system is controlled by a personal 

computer with LabVIEW graphic user interface program for operation with data acquisition 

through a GPIB interface (LabView and GPIB-USB-HS, respectively, National Instruments, Co., 

Austin, TX, USA). A schematic similar to the setup used in this work can be seen in previously 

published work24. Beads were measured at 21% (room air), 15%, 10%, 5%, 2.5% and 0% O2; 

measurements were taken by flowing in a pre-mixed N2 and O2 gas composition (Cryogenic 

Gases Inc., Detroit, MI, USA) into a custom-made purging chamber, except when equilibrating 

with air, which was allowed to equilibrate to ambient conditions. Beads responded and stabilized 

≤ 10 seconds of gas flow into the purging chamber (specific time dependent on bead size), for 

calibration a minimum of a minute of gas flow was used. All measurements also captured 

intensity data for beads, which was used for the intensity based measurements.  

Cell Culture  

All cells, Human Embryonic Kidney 293T (HEK 293T) cells(ATCC® CRL-1573™); Human 

Bone Marrow Stroma (HS-5) cells (ATCC® CRL-11882™); Human Epithelial Adenocarcinoma 

MDA-MB-231-eGFP cells used were cultured with Dulbecco’s modified Eagle medium (Gibco, 
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Carlsbad, CA, USA) supplemented with 10% fetal bovine serum (FBS) and 1% antbiotic-

antimycotic. Medium was refreshed every 2 to 3 days and cells passaged, using 0.25% 

Trypsin/EDTA (Gibco, Carlsbad, CA, USA) when sub-confluent, 70~80%.  

Cytotoxicity assessment was done with HS-5 cells.  HEK 293T cells were used for spheroid 

cultures. MDA-MB 231 cells with constitutively expressed eGFP were used for cell-laden 

hydrogel work, to assess cell generated oxygen gradients.  

 

Assessing Live/Dead (Cytotxicity)  

HS-5 cells were cultured with beads for 36 hours and 120 hours, on tissue culture plates 

(Corning, NY). Impact of ruthenium loaded microbeads on cell viability was assessed using the 

LIVE/DEAD cytotoxicity kit (Invitrogen, Waltham, MA, USA). Samples were washed with 

dPBS (Gibco, Carlsbad, CA, USA), and then incubated with a 2 µM calcein AM and 4 µM 

ethidium homodimer in dPBS for 30 minutes before aspirating and washing with dPBS. Images 

were collected around and away from beads using a digital camera (Canon EOS Rebel T3i, 

Canon, Japan), and then analyzed either by imageJ or counting manually. 

Assessing oxygen levels generated by spheroids in different culture formats 

Spheroids were generated using high-throughput hanging drop array plates25 using culture 

methods recently presented26. Prior to usage, a hydrophilic coating was applied onto the entire 

hanging drop plate surface by soaking the plate overnight in 0.1%, Pluronic F108. The plate was 

then dried and UV sterilized before cell seeding. To form hanging drops, 25 µL of a cell 

suspension solution of 2.0 x 105 HEK 293T cells/mL was pipetted from the top side through the 

access holes with the end of each pipette tip inserted into the access hole to guide the sample 

liquid to the bottom surface. Media was supplemented with A4M MethoCel (Dow Chemical Co., 
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Auburn Hills, MI, USA) at 0.024% (w/v). Spheroids were formed over 24 hours, at this time 

microsensors were either placed into hanging drops with spheroids, or within round bottom 96 

well plate wells. Round bottom wells were then filled with 1, 5, 10 or 50 spheroids. Microsensors 

were also placed in media only hanging drops and round bottom wells as controls. Spheroids 

were monitored a minimum of 18 hours in the different culture formats.  

 

Mapping oxygen distribution in cell pattered hydrogels 

A more complete protocol to generate a spatially-patterned cell laden collagen hydrogel, 

surrounded by a cell-free collagen hydrogel was previously described27. Briefly the spatial 

patterning was done by coating PDMS onto a glass slide, which was then covered with 

polyacrylamide. The polyacrylamide coating was selectively oxidized using a protective mask 

and applying plasma oxidation (Covance MP, FemtoScience, Hwaseong-si, Gyeonggi-do, South 

Korea). Trypsinized MDA-MB-231 e-GFP cells were mixed with the oxygen microsensors and 

neutralized type I bovine collagen (BD Biosciences, San Jose, CA, USA), to create a suspension 

of 1.0 x 107 cells/mL and 2,000 beads/mL in 2 mg/mL of collagen; 8 µL of the suspension was 

dispensed onto the adhesive pattern, and allowed to polymerize for 45 minutes at 37 °C. The 

overlaying gel was made up to create a suspension of oxygen microsensors 200 beads/mL in 2.5 

mg/mL collagen, 250 µL were dispensed over the polymerized core region, and incubated at 37 

°C for 1 hour to polymerize the overlaying gel. 2 mL of cell culture media were added to each 

well and the samples were cultured at 37 °C. Microsensor distance from the center of the cell-

laden region was used to map oxygen levels throughout the 3D tissue culture after 24 hours of 

culturing (steady state).  
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5.3 Results  

Generation of oxygen microsensors 

Dispersible microsensors were generated by first successfully producing PDMS microbeads 

using a microfluidic flow focusing system (Figure 1a), generation of monodispersed beads 

(Figure 1b,c) was possible with the appropriate flow rates; where modification of bead size could 

be accomplished by modifying device architecture22 (i.e. aperture of dispersive flow), or ratio of 

continuous and dispersive flow rates28. Changing flow rate can generate differing size beads, but 

may also lead to an increase in bead polydispersity. PDMS beads were successfully infused with 

ruthenium (Figure 1d).  

Microsensor calibration and lifespan assessment 

Ruthenium infused microbeads demonstrated luminescent differences as oxygen was modified 

between 0% and 21% in our calibration chamber (Figure 2a, b), indicating oxygen sensing 

capability. These microsensors were calibrated using two modalities: intensity-based quenching 

and phase fluorimetry, (Figure 2 a, and c, respectively). Consistent with previous work with 

other intensity-based calibration curves published14,17 significant variations exist in calibration 

curves (using Stern-Volmer relationship), particularly at higher oxygen levels. Phase shift 

measurements (Figure 2C) presented minimal variation at the different oxygen levels measured. 

These experiments were repeated across 5 batches of fabricated beads, demonstrating reliable 

and consistent measurement capabilities. 

To determine the working-/shelf-life of our sensors, we assessed stability of the phase 

fluorimetry signal for months after fabrication. Phase fluorimetery is independent of oxygen 

based changes in intensity levels, however, this imaging method does require sufficient intensity 
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to detect the optical signal. Reduction of the signal intensity overtime for one bead is presented 

(Figure SI 2) against the respective phase shift measurements. Additionally the average reduction 

of beads exposed to light in ambient room conditions for one week, demonstrated a drop in 

intensity by ~ 22.5% whereas the phase fluorimetry measurements had an average fluctuation of 

~ 2.4% (Table SI 1). As long as the signal intensity for microsensors was above the detection 

threshold limit, we demonstrated reproducible phase shift measurements for up to one year 

(Figure 2d) when cycling between the two extremes of interest: normoxic (21% O2) and anoxic 

(0% O2).  

Microsensor cell culture compatibility 

Microsensor cell biocompatibility was assessed by performing live/dead assay on cells cultured 

with microsensors to identify any cytotoxic effects. We exposed multiple cell types to our 

microsensors and did not see any changes that indicated concerns for cell viability. We 

specifically quantified cell viability culturing with HS-5 cells at 36 hours (Figure SI 1), and at 

120 hours (data not shown) and saw no appreciable cell death in the HS-5 or in the other cell 

cultures.  

Oxygen monitoring in different spheroid culture platforms 

Dispersible oxygen microsensors were used to compare two different spheroid culture formats, 

hanging drops and 96 well round bottom plates. Oxygen levels were measured after 18 hours 

when culturing a single HEK 293T spheroid (5.0 x 103 cells/spheroid) in these two culture 

formats. Spheroids in hanging drop cultures did not change oxygen levels in the media as 

compared to media controls (hanging drop or round bottom well), whereas oxygen levels around 

spheroids in round bottom wells were lower (Figure 3a). Since a significant drop in oxygen was 
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measured in the microwell even with just a single spheroid, the platform was further interrogated 

for effects with multiple spheroids. As seen in Figure 3a, more spheroids (e.g. one, five, ten, and 

fifty) resulted in lower steady-state (18 hr) oxygen levels. Figure 3b shows the ability to perform 

real-time, continuous monitoring of pericellular oxygen concentrations as well as the spheroid 

number-dependence (1, 5, or 50 spheroids) of the rate of decrease in oxygen concentration.  

Oxygen gradient mapping of 3D hydrogel cultures 

Oxygen microsensors were also integrated into micropatterned cell-laden hydrogel constructs27 

(Figure 4a, b). Using phase fluorimetry, we mapped oxygen from hypoxic levels of 0.5% O2 

within the interior of the cell laden region to higher oxygen levels in the cell-free regions with a 

discontinuity point between the cell-laden/cell-free border (Figure 4c).  

5.4 Discussion 

Importance of oxygen not only as an essential cell substrate for cell survival and growth but also 

as a regulatory molecule that induces different gene expression and function in cells, together 

with a recent increase in the use of 3D cell culture platforms has led to a need for new oxygen 

sensors that are non-toxic to cells, non-tethered, microscale, and reliable. This need has led to 

development of a variety of microscale optical oxygen sensors. Similar size oxygen sensors, 

composed of PDMS partially or in whole, have previously been reported but relied solely on 

fluorescence intensity oxygen measurements.17,18 Intensity-based measures are generally less 

accurate and reliable due to sensor production heterogeneity that lead to inherent intensity 

differences, photobleaching over time, and variable light attenuation unavoidable in most 3D cell 

and hydrogel cultures. Even ratiometric imaging with an oxygen-insensitive reference dye 

present challenges as photobleaching properties will be different and the emission spectra will be 
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different resulting in differential signal attenuation of signal from each dye, thus skewing the 

ratiometric relationship and consequently oxygen measurements. 

In contrast, phase fluorimetric measurements at a given temperature20,24 are only impacted by the 

molecular response to oxygen within the sensors. This eliminates inconsistencies that arise from 

optical path variability inherent to 3D tissues.29 Indeed our microsensors demonstrate much 

tighter reproducibility across the physiological range of oxygen concentration (Figure 2c) using 

phase fluorimetry compared to intensity-based measurements. Further the microsensors retained 

the tightly reproducible oxygen measurement function for up to a year (Figure 2d). The longevity 

of these microsensors should suffice for the duration of most in vitro tissue culture experiments. 

The reproducibility and tightness of the phase fluorimetry measures extend across different 

beads, over different batches, as well as the longevity of the measurement systems reminiscent of 

commercial patch and film systems which are typically much larger and difficult to disperse in 

3D cultures. 

After validating their robustness, we used the microsensors to evaluate different 3D cell cultures. 

We observed higher oxygen levels (similar to no cell controls) in hanging drop spheroid cultures, 

whereas round bottom microwell cultures showed significantly lower oxygen levels at 18 hours. 

We attribute these differences the distance between the spheroids and the air-liquid interface (0 

mm for the hanging drops and 6 mm for the microwells). Because of the less efficient oxygen 

transfer rate of microwells, an increase in cell mass (number of spheroids) led to even lower 

steady-state oxygen levels (Figure 3a) some of which approach hypoxic/anoxic levels30–32. We 

also mapped the oxygen profile (Figure 4c) for a micropatterned cell-laden hydrogel culture 

(Figure 4a, b). This demonstrates the accuracy and versatility of the sensor and its ability to 
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measure hypoxic to normoxic to ambient air levels of oxygen in 3D cell cultures. The method 

may also be useful as a method for assessing oxygen uptake rate of cells in 3D hydrogel cultures. 

 

5.5 Conclusions 

Accurate measurement and mapping of oxygen gradients in 3D cell cultures present new 

challenges for an old category of biosensors. Utilizing the temporal-domain over intensity-based 

optical oxygen measurements, phase fluorimetry drastically reduced measurement errors and 

uncertainties that arise from heterogeneity in microsensor fabrication, signal decay over time, 

and the attenuation and scattering effects that may be present when imaging in tissues and 

hydrogels. The biocompatibility and small size of the microsensors allowed convenient 

dispersion of the sensors within different 3D cell culture formats to assess their oxygen levels. 

The accuracy of the microsensors were demonstrated by mapping the oxygen concentrations in a 

micropatterned cell-laden hydrogel and showing clear discontinuities in the oxygen gradient 

between the cell-laden and cell-free regions. We envision these microsensors and optical 

detection protocols to be useful in a broad range of culture systems such as bioreactors, organoid 

cultures, and 3D organ-on-a-chip systems.   
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Figure 5-1: Microbead generation to produce microsensors. 

A) Flow focusing schematic demonstrating a dispersive flow of PDMS-toluene with surfactant 

solution in the continuous flow, with the inset as an image of the dripping behavior within the 

device. B) Dripping behavior generated monodispersed beads; C) monodispersed bead size is 

quantified over 100 beads. D) Beads were infused with tris(4,7-diphenyl-1,10-phenanthroline) 

ruthenium(II) dichloride to generate optical oxygen microsensors.   
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Figure 5-2: Oxygen responsivity of microsensors. 

A) Intensity-based quenching calibration curve in response to different oxygen levels plotted 

according to Stern-Volmer relationship (Io/I-1), error bars presented are standard deviation. B) 

Intensity change of a microsensor as a reponse to different oxygen levels; error bars presented 

are standard deviation (n=20). C) Phase fluorimetry calibration curve; error bars presented are 

standard deviation, however, they cannot be seen (n=20). D) Phase fluorimetry demonstrates 

stability in phase shift between normoxic and anoxic conditions, data from (n = 5) beads 

monitored over the course of one year.  
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Figure 5-3: Oxygen Levels as  a function of cell mass and culture vessel. 

A) Microsensors were placed into 96 round-bottom well plate wells with 0 (media control), 1, 5, 

10, or 50 spheroids or into hanging drops with one spheroid, or just media (control). Samples 

were observed over 18 hours, with the stabilized oxygen values presented for 18 hours. Oxygen 

measurements were averaged per sample well together regardless of microsensor position in 

regards to cell mass to generate an oxygen level per well, n = 4 well samples assessed per 

condition.  B) Oxygen levels monitored after mixing media, in an effort to increase oxygen 

distribution, and watch oxygen consumption over time, demonstrating real-time continuous 

measurement capability of microsensors. Continuous oxygen measurements were presented for 

microsensors on the periphery of the cell mass.  
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Figure 5-4: Mapping cell-generated oxygen gradients. 

A) Side view schematic of the chronological process for spatial patterning, where a cell-laden 

hydrogel core is enveloped by a cell-free overlaying gel. Microsensors are dispersed within the 

two hydrogel regions. B) Top down view of spatial pattern. C) Oxygen measurements 

throughout the 3D tissue culture, cell-laden/-free border is demarcated by the dotted line at 925 

µm.  
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Figure 5-5: Microsensors demonstrate no cytotoxicity. 

Live/dead stain for HS-5 cells cultured with microsensors for 36 hours, quantified percent 

viability present for microsensor treated samples or control samples.  
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Figure 5-6: Microsensor intensity reduction over 35 days compared to phase shift signal data. 

All data was collected from one bead at 21% oxygen, in ambient conditions, microsensor was 

exposed to intermittent light as it was kept in microscopy room.  
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 Intensity Reduction Phase Shift Change 

Average % 

Difference 22.5226132 2.39619997 

Standard 

Deviation 14.9849286 1.26419388 

Table 5-1: Percent intensity reduction and percent phase shift fluctuations of microsensors 

Percent intensity reduction and percent phase shift fluctuations of microsensors after one week of 

light exposure. Percent difference between day 1 and day 7, were determine for n = 15 

microsensors.  
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6 Chapter 6: Conclusions and Future Direction:  

6.1 Summary 

An enduring challenge for translating technological or therapeutic innovations from preclinical 

studies into clinical use is the misinterpretation or lack of translatability of preclinical data from 

cell culture and animal models [1]. For example, the drug development process has become 

increasingly inefficient with billion dollar investments required to fill pharma drug development 

pipelines. These inefficiencies of therapeutic innovations stem from various areas, one of which 

is the model systems being used to collect the data. Recently there has been a substantial interest 

in the development of complex in vitro surrogate systems. The possibility of producing these 

systems has been fuelled in large part by novel micro-engineering toolsets and tissue engineering 

advances. The development of engineered tissues as model systems has partially bridged the gap, 

between in vitro and in vivo models, and recent efforts have focused on making these models 

more relevant by creating an organ-like microenvironment. Microengineered strategies provide a 

number of unique advantages and benefits in studying organ biology. The ability to pattern 

relatively large surfaces with subcellular resolution features allows precise control over various 

aspects of the cellular microenvironment, while maintaining the size necessary to allow for 

complex interactions between system components. These microscale systems are made to mimic 

sufficient native microenvironmental cues to induce the tissue cultures within them to behave in 

a manner representative of an organ or complex tissue system, achieving in vitro surrogate model 

systems [2].  
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The development of these surrogate model systems is highly dependent on various aspects, such 

as their adoptability, reproducibility, scalability, and manufacturability. Furthermore, as these 

surrogate models are still being designed and developed, it is critical to effectively characterize 

them such that they can quickly evolve into enabling technologies for preclinical research. This 

dissertation research contributed to developing microscale toolsets to enhance the ability to 

manipulate, control, and monitor the cellular microenvironment within microfluidic devices and 

microscale tissue cultures. These toolsets provide the integration of readily quantifiable and 

biologically meaningful measurement capabilities into these microfluidic systems. The described 

work was focused on microscale tissue culture enhancing technologies; however, a large effort in 

all our presented technologies, previously understated, was to produce highly reproducible and 

easily translatable systems. Specifically this led to robust predictability, easy implementation, 

simple tunability of the systems, or a combination of these parameters for each technology 

presented.  

In Chapter 2 we describe the ability to elicit distinct duty cycles from the same self-regulating 

microfluidic oscillator device without needing to redesign the device architecture [3]. Biological 

and physiological systems are fundamentally regulated by oscillatory processes operating at 

discrete spatial and temporal scales, such that this work results in improved usability of 

previously described microfluidic oscillators. We reported a novel approach to realize this using 

the coordinated modulation of input volumetric flow rate ratio and fluidic capacitance ratio. The 

demonstration of this user-defined duty cycle control uses a straightforward experimental system 

where fluid inflow to the oscillator is provided by two syringes (of symmetric or asymmetric 

cross-sectional area) mounted upon a single syringe pump applying pressure across both syringes 

at a constant linear velocity. This produces distinct volumetric outflow rates from each syringe 
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that are proportional to the ratio between their cross-sectional areas. The difference in syringe 

cross-sectional area also leads to differences in fluidic capacitance; this underappreciated 

capacitive difference allows us to present a simplified expression to determine the microfluidic 

oscillators duty cycle as a function of cross-sectional area. The significance of this work, 

provides the end-user a simple method to produce predictable and robust duty cycles within self-

regulating microfluidic oscillator.  

In Chapter 3, we provide a practical solution to problems of variability between identically-

designed autonomous microfluidic oscillators. Device-to-device oscillation variability arises due 

to inconsistencies in fabrication, materials, and operation conditions. This work demonstrates, 

experimentally and theoretically, that by coupling these devices via an appropriate capacitive 

unit, these microfluidic oscillators can be synchronized. The size and characteristics of the 

capacitive link needed and the range of input flow rate differences that can be synchronized are 

also characterized. Interestingly, in addition to synchronization, the oscillation stability of each 

coupled oscillator also improves upon oscillator coupling. As long as the coupling strength meets 

the minimum requirement for a system, it is also possible to couple and synchronize an array of 

more than two oscillators. The ability to synchronize multiple autonomous oscillators is a first 

step towards enhancing their usefulness as tools for biomedical research applications where 

multiplicate experiments with identical conditions are required.  

In Chapter 4, we provide a low cost, improvement on standardizing three-dimensional spheroid 

tissue cultures [4]. We discuss the role that circularity and compaction has on spheroids, and 

demonstrate the impact MethoCel and collagen additives in the culture media can contribute to 

more compact and circular spheroid morphology. Furthermore, we demonstrate that improved 

spheroid formation is not a simple function of increased viscosity of the different macromolecule 
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additives, suggesting that other macromolecular characteristics contribute to improved spheroid 

formation. Of the various macromolecular additives tested for hanging drop culture, MethoCel 

provided the most desirable spheroid formation. These results indicate, the low cost 

macromolecular supplement, can improve the reproducibility of compact, circular spheroids, 

which contributes to standardizing and increasing the fidelity of the desired gradient profiles in 

these drug screening three-dimensional tissue cultures.  

In Chapter 5, we describe the development of dispersible PDMS microbeads infused with 

oxygen sensitive ruthenium dye, to be used as optical oxygen microsensors. These oxygen 

microsensors are biocompatible and because of their size and geometric configuration can be 

readily dispersed into different tissue culture vessels or in vitro generated 3D tissues. Using 

phase fluorimetry as the imaging modality allows the microsensors to be used as real-time, 

continuous oxygen microsensors, circumventing the optical interference of different culture 

platforms, as well as the issues that intensity-dependent measurements would have with 

continuous monitoring, i.e. photobleaching. We demonstrate the use of our developed 

microsensors to measure in vitro oxygen levels in different culture formats, observing oxygen 

depletion in media surrounding different cell aggregate masses. We also demonstrated the utility 

of the microsensors by mapping the oxygen profile of a spatially-patterned cell laden 3D 

hydrogel. These microsensors have the potential of being implemented into culture systems such 

as bioreactors, organoid cultures, and 3D organ-on-a-chip systems.   
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6.2 Limitations 

The work presented in this dissertation covered a broad range of technologies focused on 

improving in vitro cultures and analytical assessment of these tissues culture systems. The 

technologies described, specifically microfluidic oscillators (Chapters 2 and 3) and oxygen 

microsensors (Chapter 5), are still in the process of being developed and consequently still have 

limitations associated with them. In this section we highlight the limitations of these technology 

platforms to elucidate potential obstacles to the reader, and ideally producing new ideas and 

work for the future trajectory of these technologies. We chose to not focus on limitations of 

technologies presented in Chapter 4, low cost, improvement on standardizing three-dimensional 

spheroid tissue cultures, because this work was in large part only limited to the amount of cells 

and supplement types we tested to improve the reproducible generation of three-dimensional 

spheroid tissue cultures. We identified this as a challenge for scaling multiplicate experiments, 

such that researchers can identify the best supplement formulation for their experimental designs, 

not specifically a technical challenge limiting the technologies utility and implementation. 

Microfluidic self-regulated circuits, and specifically microfluidic oscillators, provide a platform, 

which researchers and industrial developers can design devices based on preset principles similar 

to electronic circuits, however, there are several gaps of knowledge in this hydro-electronic 

analogy that need to be filled in order to further the pre-design process of these microfluidic 

circuits. First, not all components are fully characterized to fully identify how the fluidic 

components respond to system feedback, or complex feedback loops. Additionally, the dynamic 

range of the components is not yet known and needs to be determined to understand what the 

margin of error tolerated by devices such that they can perform as designed. Currently, this limits 

our ability to adequately design and fabricate these self-regulated devices, as well as consider 
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building modular components that can interact together, similar to electronics. Recent work has 

gone on to characterize external capacitors [5], the role of normally closed valves and the 

associated pressure thresholds of the valves [6–8]. However, there is still a gap in understanding 

of the components, limiting the ability to produce more complex circuits while increase the 

fidelity between the theoretical models and the empirical results.  

Within this dissertation we only present constant-volumetric flow rate-driven oscillators, these 

systems are driven by fluctuating input pressures, limiting the ability to have parallel output 

flows with different flow-switching periods. This is because the input pressures of the flow-

driven oscillators connected in parallel fluctuates synchronously, such that parallel output flows 

with different flow-switching suffer severe crosstalk or are just not possible with devices in their 

current forms, limiting the ability to scale these devices into more complex systems. 

Additionally, current devices are limited in the type of chemical, output signals they would 

present to cells, where the stimulant concentration profiles are square waves. These waveforms 

are not present in oscillatory biochemical processes, where in vivo waveforms tend to be more 

similar to sinusoidal waveforms. The current concentration square-wave profiles may 

recapitulate timing of periods or stimulant exposure, however, they still lack concentration 

ramping of a stimulant as seen in vivo, which would be captured by sinusoidal waveforms, or at 

a minimum triangular or saw-tooth waveforms.  

Finally, all devices used were made manually in small batches, however, for this technology 

platform to grow, more sophisticated fabrication techniques are needed to ensure proper 

alignment of individual layers, uniform thickness of elastic membranes, and consistent feature 

dimensions. Beyond the reproducibility, the size of batch fabrication needs to increase in scale. 

Achieving these criteria, we would maximize the translation of these technologies into more 
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laboratory settings. Furthermore, material properties such as stiffness and stickiness, especially 

important for valve units, have a direct effect on how the fluid pressurizes and depressurizes 

features in the valve components. PDMS was used in our work, because it is an ideal material for 

prototyping in the lab, however, its material properties change over time, resulting in differential 

mechanical properties depending on the time since fabrication of the device. PDMS stickiness 

also changes over time if static but will differentially change when exposed to proteins or water 

for extended periods of time. Shifts in mechanical properties of the devices, generally in the 

membranes, limit the longevity of these devices to perform in a time-independent manner. This 

requires the identification and incorporation of new materials for these systems to become 

sufficiently reliable within research setting beyond the first few weeks after fabrication. Finally 

moving away from PDMS would minimize specific issues within cell culturing, which are the 

evaporation of water through nanoporous PDMS [9], and also the incorporation of PDMS 

oligomers into cellular membranes [10].  

The developed dispersible oxygen microsensors, provided a technology for oxygen 

measurements for different cell culture environments and also within three-dimensional hydrogel 

tissue cultures. Currently the system is limited due to the efficiency of the fabrication process, 

there is a reasonable loss (~25%) of microsensors during fabrication. Additionally, infusing a 

high-level of ruthenium, such that all microsensors generated would remain functional for a 

minimum of one year would be ideal. This high-level infusion would also enhance our ability to 

produce smaller microsensors, as smaller microsensors (< 25 µm) generally don’t generate 

enough signal to capture via our photo-detection setup. Generation of brighter, smaller sensors 

would increase the diversity of culture systems our microsensors could be incorporated into. 

Finally, by improving the infusion technique, using brighter sensors, would allow us to measure 
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in more culture platforms, as well as in thicker in vitro generated tissues and potentially within 

small animals.  

The distribution of the microsensors is generally done passively by adding them into the different 

cultures via media. Active placement has been done manually, but is time consuming and 

inefficient. Developing an active method to easily array or move the microsensors would allow 

researchers to array in beads to the desired configurations, increasing the potential of mapping 

different culture vessels, without worrying about the vessels geometry and microsensor settling.  

The oxygen measurement system has a minor limitation for translating our microsensor 

technology to more labs, due to the hardware being uncommon in most biology labs, restricting 

the ease of translation.  
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6.3 Future work 

The next steps for technologies in this dissertation is additional validation and adoption on a 

larger scale, and into a diverse range of research labs. Considering areas of growth for 

microfluidic oscillators and microsensors, applications into biological systems is a priority. 

However, both of these technologies have exciting next generation extensions beyond increasing 

their application in wet lab settings.  

Seven next steps that I see as key areas for further development of the microfluidic actuators are 

the following: 1) Generation of new concentration signal waveforms; 2) Producing tunable 

velocity profiles across cells, allowing researchers to tune shear stress applied to cells without 

limiting the performance of microfluidic actuators; 3) Further developing and characterizing 

coupling mechanisms and connection systems between different microfluidic units, and 

understanding the feedback and influence of connecting these units with each other; 4) 

Increasing the complexity of function (i.e. built in timing delays, multi-functional units) via 

modular combination of microfluidic units; 5) Begin developing new electrohydraulic 

components parallel to the development of electronic systems such as a memristor [11,12] fluidic 

analog; 6) Enhancing the user-friendliness of these systems and generating a how-to guide for 

other researchers to support the translation of these devices out of microtechnology labs and into 

biomedical research; 7) Introduction of new materials to improve fidelity of theoretical responses 

over time, and in device to device variability.  

The different directions for the future work of the microactuators are not mutually exclusive, and 

could be investigated in combination. If given the opportunity to continue advancing this work, I 

would pursue steps 1), 3), 4) for microfluidic actuators. Generating new wave forms (1) such as 

sinusoidal, or even sawtooth waveforms would allow recapitulation of a more physiological 
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stimulus profile. Step 3) I believe is critical to accomplish step 4), by not having an informed 

understanding of different interactions between microfluidic units, the ability to develop 

interacting modules would be greatly limited. By accomplishing both step 3) and 4) the barrier to 

translate these microactuators would be reduced by having defined components that could be 

“clicked” together to produce a desired output. Successful implementation of steps 3) and 4) 

would produce a microfluidic systems with high utility for biologists with a low barrier of 

adoption. With this development, I envision step 6) to be an obvious progression that would arise 

because of the expected utility of these modular units.  

Future work building off of the developed oxygen microsensors, could be focused in six 

directions: 1) Improved efficiency in the fabrication process; 2) Incorporation into a more 

diverse set of tissue cultures; 3) Assess the ability of the microsensors to work within 

larger/thicker tissue constructs; 4) Implant them within tumor precursors or regenerative 

scaffolds into mice and assess the ability to track oxygen changes within the tissues and then 

confirm the corresponding blood vessel formation; 5) Implement microsensors within oxygen 

modulating microfluidic culture systems to assess aerotaxis of cancer (or other) cells, to monitor 

oxygen levels and respective cell migration response; 6) Develop microsensors to measure 

secondary targets, such as but not limited to nitrogen oxide, glucose, glutamine, or pH.  

Similar to the microfluidic actuators, the different directions for the future work of the 

microsensors are not mutually exclusive, and could be investigated in combination. If given the 

opportunity to continue advancing the microsensors, I would pursue directions 4) and 5). The 

ability to use the oxygen microsensors to assess responses within in vivo tissues, would satisfy 

direction 3), while providing us a technology to build in vitro tissues, assess their oxygen profiles 

prior to implantation, and then monitor the response of vascularization, within these implants. 
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Assuming we could retrieve the tissues for further assessment, this could be a highly useful tool 

to assess real-time the implant integration into the host, this would be especially useful within the 

regenerative medicine field. Direction 5) provides a unique area, the migratory response of cells 

to oxygen, which seems to have limited studies. By employing discrete, validated microsensors, 

we could have real-time continuous verification of the in vitro oxygen levels, while monitoring 

the cellular migratory response. I specifically envision doing this work with an oxygen 

controlling microfluidic platform, similar to those recently published [13,14]. 

Collectively this continued research with microfluidic actuators and microsensors would further 

enhance these tools for the microenvironmental control and monitoring of in vitro (and 

potentially in vivo) model systems. By further validating them or progressing them forward as 

discussed in future work, I expect they could reach broader audiences and improve in vitro 

model systems.  
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