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ABSTRACT

Estimation and Inference for High-Dimensional Gaussian Graphical Models with
Structural Constraints

by

Jing Ma

Co-Chairs: Professor George Michailidis and Professor Kerby Shedden

This work discusses several aspects of estimation and inference for high-dimensional

Gaussian graphical models and consists of two main parts.

The first part considers network-based pathway enrichment analysis based on in-

complete network information. Pathway enrichment analysis has become a key tool

for biomedical researchers to gain insight into the underlying biology of differen-

tially expressed genes, proteins and metabolites. We propose a constrained network

estimation framework that combines network estimation based on cell- and condition-

specific high-dimensional Omics data with interaction information from existing data

bases. The resulting pathway topology information is subsequently used to provide

a framework for simultaneous testing of differences in expression levels of pathway

members, as well as their interactions. We study the asymptotic properties of the

proposed network estimator and the test for pathway enrichment, and investigate its

small sample performance in simulated experiments and illustrate it on two cancer

data sets.

The second part of the thesis is devoted to reconstructing multiple graphical mod-

xii



els simultaneously from high-dimensional data. We develop methodology that jointly

estimates multiple Gaussian graphical models, assuming that there exists prior infor-

mation on how they are structurally related. The proposed method consists of two

steps: in the first one, we employ neighborhood selection to obtain estimated edge

sets of the graphs using a group lasso penalty. In the second step, we estimate the

nonzero entries in the inverse covariance matrices by maximizing the corresponding

Gaussian likelihood. We establish the consistency of the proposed method for sparse

high-dimensional Gaussian graphical models and illustrate its performance using sim-

ulation experiments. An application to a climate data set is also discussed.
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CHAPTER I

Introduction

1.1 Gaussian Graphical Models

Graphical models are probabilistic ones that capture conditional dependence re-

lationships between a set of random variables. Specifically, the random variables

are represented by the nodes of a graph, while its edges reflect the relationships

amongst themselves. An important class of such models is the Gaussian one, where

the random variables are assumed to be jointly normally distributed. For this model,

conditional independence relationships between variables are captured through the

zero entries of the inverse covariance matrix (or precision matrix). Specifically, let X

be a p-dimensional multivariate normal random vector where

X = (X1, . . . , Xp) ∼ N (µ,Σ).

For 1 ≤ i 6= j ≤ p, Xi and Xj is said to be conditionally independent given all the

remaining variables if the corresponding entry in the precision matrix Ω = Σ−1 is

zero. Denote by G = (V,E) the underlying graph. An edge between the nodes Xi

and Xj in the graph implies that they are conditionally dependent, and corresponds

to a non-zero entry in the precision matrix. To identify the graph, one only needs to

select the corresponding inverse covariance matrix.
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Earlier work on the problem includes Dempster (1972a), where thresholding to

zero of the elements of the precision matrix is employed in a low-dimensional setting,

thus achieving a balance between the fit and the cost. When the number of variables

p is relatively small, Drton and Perlman (2004) suggest pairwise hypothesis testing

of the partial correlation to select a model with conservative overall confidence level.

Their approach requires the sample covariance matrix to be positive definite and

is not appropriate in high-dimensional settings where the number of variables p is

much larger than the number of observations n. More recently, there has been a

large amount of work on estimating Gaussian graphical models (GGM) from high-

dimensional data subject to sparsity constraints, an attractive feature that reduces

the number of parameters to be estimated and produce more interpretable results.

1.1.1 Nodewise Regression

Meinshausen and Bühlmann (2006) introduced a penalized regression model to

estimate the skeleton (edge set) of the underlying graph. Specifically, for each node

i = 1, . . . , p in the graphical model, consider the optimal prediction of the random

variable Xi as a linear combination of the remaining variables:

θi = arg min
θi∈Rp:θii=0

E
(
Xi −

∑
j 6=i

θijXj

)2

,

where θij (j 6= i) are the regression coefficients. The matrix (θij) is determined by

the inverse covariance matrix Ω = (ωij). Specifically, it holds that θij = −ωij/ωii,

for all j 6= i. The set of nonzero coefficients of θi is thus the same as the set of

nonzero entries in the row vector of ωij (j 6= i), which defines the set of neighbors of

node i. Using an l1-penalized regression, the authors estimated the neighborhood for

each node and combined the estimates to obtain the underlying graph. They further

established that the nodewise regression approach yields consistent estimation of the
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skeleton (edge set) of sparse high-dimensional graphs, under the regime p = O(nα)

and the neighborhood stability condition.

1.1.2 Penalized Maximum Likelihood Estimation

Work on penalized log-likelihood approaches includes Yuan and Lin (2007), Baner-

jee et al. (2008) that employed the following objective function:

min
Ω�0
{tr(Σ̂Ω)− log det(Ω) + λ

∑
i 6=j

|ωij|}, (1.1)

where Σ̂ is the empirical covariance matrix and λ the regularization parameter. The

l1 penalty leads to desired sparsity, provided that an appropriate penalty parameter

is chosen. Friedman et al. (2008) developed a simple and fast algorithm Graphical

lasso, which uses a block coordinate descent approach to solve (1.1).

Parallel to algorithmic work there has been a large body of theoretical work estab-

lishing norm consistency and model selection consistency properties of the proposed

estimator. For the solution Ω̂ to the problem (1.1), Rothman et al. (2008) established

that its convergence rate in the Frobenius norm is O(
√
‖Ω−‖0 log p/n) for appropri-

ately chosen λ, where ‖Ω−‖0 represents the number of non-zero off-diagonal entries in

Ω. Raskutti et al. (2009) studied sufficient conditions for model selection consistency,

i.e. the `1-regularized Gaussian maximum likelihood estimator of (1.1) recovers the

edge set of the underlying graph with high probability, under the incoherence condi-

tion on the Fisher information of the model.

1.1.3 Covariance Estimation based on Undirected Graph

The work by Zhou et al. (2011) combines the nodewise regression approach with

the idea of thresholding and maximum likelihood refitting to estimate the covariance

matrix and its inverse. The proposed method consists of the following two steps:
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• Infer the edge set Ê through the regression coefficients θ̂ij, where θ̂ij are esti-

mated using the threshold lasso algorithm (Zhou, 2010).

• Refit the model via maximum likelihood

min
Ω�0
{tr(Σ̂Ω)− log det(Ω),

subject to the constraints in Ê.

It is argued that the first step requires a much weaker restricted eigenvalue condition

(Bickel et al., 2009) for consistent recovery of the edge set, i.e. the conditional depen-

dency relationships among variables, compared to the neighborhood stability condi-

tion (Meinshausen and Bühlmann, 2006). The proposed method is further shown to

yield fast convergence rates with respect to the operator and Frobenius norm for the

covariance matrix and its inverse.

1.1.4 Sparse Partial Correlation Estimation

In the case of Gaussian graphical models, the partial correlation ρij between node

i and j is ρij = −ωij/
√
ωiiωjj. Thus, ρij is nonzero if and only if ωij is nonzero, or

equivalently, node i and j are conditionally dependent given all the remaining ones.

Moreover, the partial correlation coefficient quantifies the correlation/interaction be-

tween two variables while conditioning on others. Peng et al. (2009) introduced

SPACE that directly estimates the partial correlations by taking into account the

symmetric nature of the problem. Their approach aims at solving the following opti-

mization

min
Ω

{
1

2

p∑
i=1

‖Xi −
∑
j 6=i

ρij

√
ωjj
ωii

Xj‖2
2 + λ

∑
1≤i<j≤p

|ρij|

}
,

which, after proper rearrangement of variables, becomes the `1 regularized lasso prob-

lem.
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1.1.5 Applications of GGM

Gaussian graphical models have found applications in diverse fields including anal-

ysis of Omics data (Perroud et al., 2006; Pujana et al., 2007; Putluri et al., 2011), as

well as reconstruction of gene regulatory networks (Wille et al., 2004; Dehmer and

Emmert-Streib, 2008, chapter 6).

An interesting and important application that requires the knowledge of the un-

derlying network is Network-based Gene Set Analysis (NetGSA) (Shojaie and Michai-

lidis , 2009, 2010). In biomedical research, a pathway is defined as a set of functionally

related genes, proteins or metabolites. Pathway enrichment analysis has become a

key tool for biomedical researchers to gain insight into the underlying biology of

differentially expressed genes, proteins and metabolites. It reduces complexity and

provides a system-level view of changes in cellular activity in response to treatments

and/or progression of disease states. Methods that use pathway network information

have been shown to outperform simpler methods that only take into account pathway

membership. However, despite significant progress in understanding the association

amongst members of biological pathways, and expansion of data bases containing in-

formation about interactions of biomolecules, the existing network information may

be incomplete or inaccurate, and is not cell-type or disease condition-specific. The

work in Chapter II allows researchers to perform pathway enrichment analysis based

on the incomplete biomolecular interactions in databases.

1.2 Outline

Chapter II discusses network-based pathway enrichment analysis with incomplete

network information. We propose a method that explicitly incorporates external

structural information, available in carefully curated biological databases, in the

widely used Gaussian graphical model. The resulting estimates are then incorpo-
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rated into Network-based Gene Set Analysis (NetGSA), which provides a rigorous

statistical framework for simultaneous testing of differences in expression levels of

pathway members as well as their interactions, sometimes referred to as differential

network biology (Ideker and Krogan, 2012).

In the second part, we consider the computational aspect of NetGSA. The main

bottleneck in applying the NetGSA methodology arises from the estimation of mixed

effects linear parameters – specifically the variance components – for thousands of

variables. We develop efficient computational methods for estimation of these pa-

rameters based on a profile likelihood approach and thus allow researchers to tackle

much larger scale problems, involving thousands of genes as opposed to a few hundred

that was the case with the previously available algorithm.

Chapter III studies joint structural estimation of multiple graphical models, mo-

tivated from an important application in biomedical research. For example, gene net-

works for different subtypes of a certain disease share common patterns; i.e. there are

shared common links, as well as shared absence of links between the models (subtypes’

networks). While separate estimation of individual models without taking the known

pattern into consideration ignores the common structure, estimating one single model

would mask the differences that could prove critical in understanding subtypes. The

available approaches usually assume that all graphical models are globally related.

However, in many settings different relationships between subsets of the node sets

exist between different graphical models; such an application is discussed in Section

3.5. We introduce a method that allows one to specify complex substructures from

external knowledge. Using the framework of Gaussian graphical models, we formulate

the problem as jointly estimating the dependence relationships between the nodes,

encoded in the inverse covariance matrices, subject to the substructure constraints.

Theoretical analysis indicates the proposed approach recovers consistently the shared

and individual structures with faster convergence rate compared to existing methods,

6



under some technical conditions. Moreover, a thresholded variation of the proposed

estimator outperforms existing methods even when the prior substructures are slightly

misspecified.
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CHAPTER II

Network-Based Pathway Enrichment Analysis

with Incomplete Network Information

2.1 Background

Recent advances in high throughput technologies have transformed biomedical re-

search by enabling comprehensive monitoring of complex biological systems. By pro-

filing the activity of different molecular compartments (genomic, proteomic, metabolomic),

one can delineate complex mechanisms that play a key role in biological processes or

the development of distinct phenotypes. These technological advances have been

accompanied by methodological ones, the most notable being adopting a systems

perspective in analyzing such systems. Pathway analysis represents a key component

in the analysis process, and has been used successfully in generating new biologi-

cal hypotheses, as well as in determining whether specific pathways are associated

with particular phenotypes. Examples include analysis of pathways involved in initi-

ation and progression of cancer and other complex diseases (Cui et al., 2006; Wilson

et al., 2010), discovering novel transcriptional effects and co-regulated genes (Palom-

ero et al., 2006; Huarte et al., 2010; Green et al., 2011), and understanding the basic

biological processes in model organisms (Gottwein et al., 2007; Baur et al., 2006;

Houstis et al., 2006). See Huang et al. (2008) for additional examples of applications.
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Pathway analysis methods have evolved since the seminal work by Subramanian

et al. (2005) that vastly popularized the approach. As pointed out in the review paper

by Khatri et al. (2012), earlier techniques such as over-representation analysis (Al-

Shahrour et al., 2005; Beißbarth and Speed , 2004), and gene set analysis (Subramanian

et al., 2005; Efron and Tibshirani , 2007) treat each pathway as a set of biomolecules.

These methods assess whether members of a given pathway have higher than expected

levels of activity, either by counting the number of differentially active members, or

by also accounting for the relative rankings of pathway members and/or the mag-

nitude of their associations with the phenotype. On the other hand, more recent

and statistically powerful methods take into consideration the interactions between

the biomolecules. These interactions are increasingly available from carefully curated

biological databases, including the Kyoto Encyclopedia of Genes and Genomes (Kane-

hisa and Goto, 2000), Reactome (Joshi-Tope et al., 2003), RegulonDB (Huerta et al.,

1998) and BioCarta (Nishimura, 2001).

A network topology based method that exhibits superior statistical power in iden-

tifying differential activity of pathways was proposed in Shojaie and Michailidis (2009,

2010). The Network-based Gene Set Analysis (NetGSA) method also allows testing

for potential changes in the network structure under different experimental or disease

conditions. However, it requires a priori knowledge of interactions of the members of

pathways, which despite rapid progress remains highly incomplete and occasionally

unreliable (see e.g. Zaki et al. (2013) and references therein). Moreover, existing

network information often determines molecular interactions in the normal state of

the cell, and does not provide any insight into condition/disease-specific alterations

in interactions amongst components of biological systems.

On the other hand, increased availability of large sample collections of high-

dimensional Omics data (e.g. from The Cancer Genome Atlas, http://cancergenome.nih.gov/),

coupled with the development of network estimation techniques based on graphical
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models (Lauritzen, 1996) offers the possibility to validate and complement existing

network information, and to obtain estimates of condition-specific molecular inter-

actions in the cell. Such an approach for leveraging existing knowledge to enhance

the analysis of low signal-to-noise biological datasets was advocated in Ideker et al.

(2011).

The first contribution of this paper is the development of an efficient algorithm

for constrained network estimation, together with establishing the consistency of the

obtained estimates, as a function of existing network information. Estimation of high

dimensional networks subject to hard (or soft) constraints on conditional dependence

relationships among random variables represents a canonical problem in the context

of graphical models, and the proposed method for addressing this problem is of inde-

pendent interest. By incorporating the condition specific network estimates from the

proposed method into the NetGSA framework we also provide a rigorous statistical

framework for assessing alterations in biological pathways, sometimes referred to as

differential network biology (Ideker and Krogan, 2012).

A second objective of this study is to scale up the NetGSA estimation algorithm

to very large size networks. The main bottleneck in applying the NetGSA method-

ology arises from the estimation of mixed effects linear parameters – specifically the

variance components – for thousands of variables. We develop efficient computational

methods for estimation of these parameters based on a profile likelihood approach.

In particular, we employ a Cholesky factorization of the covariance matrices to speed

up matrix inversions, and use it to develop an efficient algorithm based on Newton’s

method with backtracking line search (Boyd and Vandenberghe, 2004, page 487) for

step size selection. To supply reliable starting points for this algorithm, we further

develop an approximate method-of-moment-type estimator.

This study is strongly motivated by our work on metabolic profiling of cancer and

the identification of enriched pathways. Unlike gene expression data, identification
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and measurement of metabolites by mass spectrometry techniques is challenging, re-

sulting in reliable measurements for a few hundred metabolites, and hence incomplete

coverage of the underlying biochemical pathways. The small number of metabolites

in each pathway, and the incomplete coverage of the metabolites particularly hinders

the application of over-representation and gene set analysis methods in this setting.

In our experience, only topology-based pathway enrichment techniques, such as Net-

GSA, are capable of reliably delineating pathway activity, as illustrated in Section 2.5.

The remainder of the paper is organized as follows. Section 2.2 presents net-

work estimation based on a Gaussian graphical model under external information

constraints and establishes the consistency of the method, while Section 2.3 discusses

scaling up the algorithm for the NetGSA mixed effects linear model to large scale

networks. The performance of the developed methodology is evaluated in Section 2.4

and is illustrated on two real data sets in Section 2.5. Section 2.6 concludes the

chapter with some discussions. Technical details and additional simulation results

are provided in Section 2.8, 2.9, 2.10 and 2.11, respectively.

2.2 Network Estimation Under External Information Con-

straints

Gaussian graphical models (Lauritzen, 1996, Chapter 5) are widely used in biolog-

ical applications to model the interactions among components of biological systems

(Dehmer and Emmert-Streib, 2008, chapter 6). Specifically, the partial correlation

structure corresponding to a molecular network can be represented by an undirected

graph G = (V,E) with V and E being the set of nodes (biomolecules) and edges

(interactions), respectively. The edge set E corresponds to the p× p precision, or in-

verse covariance, matrix Ω, whose nonzero elements ωii′ refer to edges between nodes

i and i′, and indicate that i and i′ are conditionally dependent given all other nodes in
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the network. Further, the magnitude of the partial correlation Aii′ = −ωii′/
√
ωiiωi′i′

determines the strength (positive or negative) of the conditional association between

the respective nodes.

As discussed in Section 2.1, the availability of large collections of samples for

different disease states and biological processes together with carefully curated in-

formation of biomolecular interactions enables the estimation of network structures

within the setting of Gaussian graphical models. However, the presence of this ex-

ternally given network information provides a novel and unexplored modification of

the corresponding network estimation problem. Denote by Ec the set of node pairs

not connected in the network, i.e. ωii′ = 0. Then, the external information can be

represented by the following two subsets

E1 = {(i, i′) ∈ E : i 6= i′, ωii′ 6= 0}, E0 = {(i, i′) ∈ Ec : i 6= i′, ωii′ = 0}.

In words, E1 contains known edges, while E0 contains node pairs where it is known

that no interaction exists between them. The external information available in E1

does not imply exact knowledge of the magnitude of ωii′ nor Aii′ .

Suppose we observe an m × p data matrix Z = (Z1, . . . ,Zp), where each row

represents one sample from a p-variate Gaussian distribution N (0,Ω−1). Our goal

is then to estimate the network structure, or equivalently the precision matrix Ω,

subject to external information encoded in E1 and E0. It follows immediately that

the partial correlation A = Ip −D−1/2ΩD−1/2, where D = diag(Ω) and Ip is the p-

identity matrix. When E1 = E and E0 = Ec, the problem becomes that of covariance

selection (Dempster , 1972b), which has been studied extensively in the literature.

However, to the best of our knowledge, the problem of estimating Ω (and the partial

correlation matrix A) when E1 and E0 only contain partial information has not been

investigated before.
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In this section, we assume that the m observations used for estimating condition-

specific networks are separate from those used for pathway enrichment analysis (high-

lighted by the use of Zi’s and m to denote the random variables and sample size,

respectively). However, our theoretical analysis in the next section indicates that

when sample sizes are large enough, network estimation can be performed using the

same set of samples used for pathway enrichment. The framework proposed in this

section reduces the potential bias in small sample settings, and takes advantage of

the additional publicly available samples, in lieu of reliable network information. On

the other hand, while this problem is seemingly similar to matrix completion (Candes

and Recht , 2009; Cai et al., 2010), the two problems are fundamentally different in

nature. In particular, the goal of matrix completion is to complete the remaining en-

tries from the partially observed m× p matrix Z, under some structural assumptions

on Z, such as low-rankness (Candes and Recht , 2009). On the other hand, in the

setting of graphical models, the entries of the adjacency matrix are estimated based

on observations on the nodes of the graph.

In biological settings, both the structure of the network, as well as strengths of

associations may be condition-specific. Therefore, we need to accurately estimate the

nonzero entries in Ω to recover both the structure of the network and the strength

of associations between nodes. In the absence of any external information, the `1-

penalized negative log-likelihood estimate of Ω is obtained by solving

arg min
Ω�0

{
tr(ΩΣ̂)− log det Ω + λ‖Ω‖1

}
, (2.1)

wherein Σ̂ is the empirical covariance matrix of the data, ‖Ω‖1 =
∑

i 6=i′ |ωii′ | denotes

the `1 norm of the parameters, and λ is the regularization parameter. In the pres-

ence of external information, the problem can be cast as the following constrained
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optimization one

min
Ω�0

{
tr(ΩΣ̂)− log det Ω

}
, (2.2)

subject to

∑
i 6=i′, (i,i′)/∈E0∪E1

|ωii′| ≤ t, ωii′ = 0, (i, i′) ∈ E0, ωii′ 6= 0, (i, i′) ∈ E1.

In the following, we present a two-step procedure to solve the constrained op-

timization problem (2.2). The proposed approach combines the neighborhood se-

lection (Meinshausen and Bühlmann, 2006) with constrained maximum likelihood

estimation. It exploits the fact that the estimated neighbors of each node using

neighborhood selection coincide with the nonzero entries of the inverse covariance

matrix (Friedman et al., 2008). Specifically, in neighborhood selection (Meinshausen

and Bühlmann, 2006), the structure of the network is estimated by finding the opti-

mal set of predictors when regressing the random variable Zi corresponding to node

i ∈ V on all other variables, using an l1-penalized linear regression. The coefficients

for this optimal prediction θi are closely related to the entries of the inverse covariance

matrix: for all i′ 6= i, θii′ = −ωii′/ωii. The set of nonzero coefficients of θi is thus the

same as the set of nonzero entries in the row vector of ωii′ (i′ 6= i), which defines the

set of neighbors of node i.

Let J i1 and J i0 denote the set of (potential) neighbors of node i for which external

information is available: J i1 is the set of nodes which are known to be in the neighbor-

hood of i, and J i0 is the set of nodes which are known to be not connected to i. Let Z−i

denote the submatrix obtained by removing the ith column of Z. Assume all columns

of Z are centered and scaled to have norm 1. Denote by Sp+ the set of all p×p positive

definite matrices and SpE = {Ω ∈ Rp×p : ωii′ = 0, for all (i, i′) /∈ E where i 6= i′}. The

proposed algorithm proceeds in two steps.
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(i) Estimate the network structure Ê. For every node i, find

θ̂i = arg min
θi∈Rp:θii=0

1

m
‖Zi − Z−iθi‖2

2 + 2λ
∑
i′ 6=i

ti′ |θii′ |, (2.3)

where the penalty weights ti′ = 0, i′ ∈ J i1; ti′ = ∞, i′ ∈ J i0 and ti′ = 1

elsewhere. An edge (i, i′) is estimated if θ̂ii′ 6= 0 or θ̂i′i 6= 0.

(ii) Given the structure Ê, estimate the inverse covariance matrix Ω̂ by

Ω̂ = arg min
Ω∈Sp+∩S

p

Ê

{
tr(Σ̂Ω)− log det Ω

}
. (2.4)

Remark II.1. In this algorithm, the first step estimates the coefficients θi for optimal

prediction, such that penalization respects the external information constraints. In

practice, one can adjust the weights ti′ (i′ 6= i) to allow for uncertainty in the amount

of information available regarding the network of interest. The second step focuses on

estimation of the magnitude of nonzero entries in the precision matrix Ω, conditional

on the estimated network topology. The optimization problems in both steps are

convex and can be solved efficiently using existing software.

The proposed estimator enjoys nice theoretical properties under certain regulatory

conditions. Before presenting the main result, we introduce some additional notations.

Let Σ0 be the covariance matrix in the true model and Ω0 = Σ−1
0 . For i = 1, . . . , p,

let si = ‖θi‖0 − |J i1|, where ‖θi‖0 = #{i′ : θii′ 6= 0} is the l0 norm. Hence, si

represents the number of nonzero coordinates after excluding the known ones in each

regression. Write s = max
i=1,...,p

si and S =
∑p

i=1 ‖θi‖0. For a subset J ⊂ {1, . . . , p}, let

ZJ be the submatrix by removing the columns whose indices are not in J . We make

the following assumptions.
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Assumption II.2. There exist φ1, φ2 > 0 such that

0 < φ2 ≤ φmin(Σ0) ≤ φmax(Σ0) ≤ 1/φ1 <∞.

And there exists ς2 > 0 such that for all i, var(Zi | Z−i) = 1/ω0,ii ≥ ς2.

Assumption II.3. Let J and J̃ be disjoint subsets of {1, . . . , p}. Denote by PJ the

projection matrix onto the column space of ZJ . There exists κ(s) > 0 such that

min
|J̃ |≤s

min
δ∈Rp

‖δJ̃c‖1≤3‖δJ̃‖1

‖(Ip −PJ)Zδ‖2√
m‖δJ̃‖2

≥ κ(s) > 0. (2.5)

Assumption II.2 is a regulatory condition that explicitly excludes singular or

near-singular covariance matrices. Assumption II.3 is adapted from the restricted

eigenvalue assumptions in Bickel et al. (2009) to allow for presence of external in-

formation on relevant indices in the subset J . For example, if J = J i1 and J̃ =

{1, . . . , p}\{{i} ∪ J}, then (2.5) says that the eigenvalues of the projected matrix

(Ip − PJ)Z on the restricted set {δ ∈ Rp : |J̃ | ≤ s, ‖δJ̃c‖1 ≤ c0‖δJ̃‖1} are bounded

away from 0.

Let 0 ≤ r < 1 represent the percentage of available external information, which is

defined as (|E0|+ |E1|)/{p(p− 1)/2}. Next, we state our main result.

Theorem II.4. Suppose Assumption II.2 and Assumption II.3 with κ(2s) are satis-

fied. For constants c1 > 4 and 0 < k1 < 1, assume also that

16c1

√
(1− r)S log(p− rp)

m
≤ k1φ1κ

2(2s), (2.6)

where S is the total number of nonzero parameters excluding the diagonal. Consider

Ω̂ defined in (2.4). Then, with probability at least 1 − p2−c21/8, under appropriately
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chosen λ, we have

‖Ω̂− Ω0‖2 ≤ ‖Ω̂− Ω0‖F = O

(√
S log(p− rp)

m

)
. (2.7)

Remark II.5. The convergence rate in (2.7) indicates an improvement of the order

of {S log(1− r)−1/m}1/2 in the presence of external information. The assumption

in (2.6) is a regulatory condition that ensures the positive definiteness of Ω0 when

restricted to the estimated edge set under the chosen λ. The proof utilizes techniques

from Bickel et al. (2009) and Zhou et al. (2011) and is given in Section 2.8.

Let A0 be the partial correlation matrix in the true model, i.e. A0 = Ip −

D
−1/2
0 Ω0D

−1/2
0 , where D0 = diag(Ω0). The following corollary is an immediate result

of Theorem II.4.

Corollary II.6. Let assumptions in Theorem II.4 be satisfied. Assume further that

S = o(m/ log(p − rp)). For Ω̂ defined in (2.4), let Â be the corresponding partial

correlation matrix. Then, with probability at least 1 − p2−c21/8, under appropriately

chosen λ, we have

‖Â−A0‖2 = o(1).

Remark II.7. The result in Corollary II.6 implies that under certain regulatory con-

ditions, the error in the condition-specific network estimate Â is negligible. This

proves essential for establishing power properties of NetGSA with estimated network

information, as shown in the next section. The proof of Corollary II.6 is available in

Section 2.8.

The tuning parameter λ in the first step of the proposed algorithm is important

in selecting the correct structure of the network, which will further influence the

magnitude of the network interactions in the second step. Accurate estimation of

these magnitudes are crucial for topology-based pathway enrichment methods. We
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propose to select λ via cross validation to minimize the squared prediction error from

all p regressions. Specifically, the cross validation score for the ith regression (2.3) is

defined as

CVi(λ) =
m∑
j=1

{Zji − Zj,−iθ̂i(j)}2,

where θ̂i(j) is the estimated regression coefficient vector after removing the jth sample

of (Zi,Z−i). We minimize CV(λ) =
∑p

i=1 CVi(λ) to select the optimal λ.

2.3 NetGSA with Estimated Network Information

In this section, we discuss how (condition-specific) estimates of bimolecular inter-

actions from Section 2.2 can be incorporated into the NetGSA framework to obtain

a rigorous inference procedure for both pathway enrichment and differential network

analysis. To this end, we formally define the NetGSA methodology based on undi-

rected Gaussian graphical models and address estimation of variance parameters in

the corresponding mixed linear model framework in Section 2.3.1 and present an

updated algorithm that significantly improves computational speed and stability of

the method. In Section 2.3.2, we discuss how the constrained-network estimation

procedure of Section 2.2 can be combined with the updated estimation procedure of

Section 2.3.1 to rigorously infer differential activities of biological pathways, as well

as changes in their network structures.

2.3.1 Efficient Estimation of Model Parameters

Consider p genes (proteins/metabolites) whose activity levels across n samples

are organized in a p× n matrix D. In the framework of NetGSA, the effect of genes

(proteins/metabolites) in the network are captured using a latent variable model

(Shojaie and Michailidis , 2010). Denote by Y an arbitrary column of the data matrix,

and decompose the observed data into signal, X, plus noise, ε, i.e. Y = X + ε.
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The latent variable model assumes that the signal X follows a multivariate normal

distribution with partial correlation matrix A. Decompose the signal as X = Λγ

such that γ ∼ Np(µ, σ2
γIp) and Λ is the lower triangular matrix that satisfies ΛΛT =

(Ip −A)−1.

Assume that γ and ε are independent and ε is also normally distributed; specif-

ically, ε ∼ Np(0, σ2
εIp). The NetGSA model can be summarized in vector notation

as

Y = Λγ + ε. (2.8)

The NetGSA methodology allows for more complex models, including time course

observations. For expositional clarity, we present the methodology in the setting of

two experimental conditions and consider the general case where A(k) 6= A(k′). Let

Y
(k)
j (j = 1, . . . , n; k = 1, 2) be the jth sample in the expression data under condition

k (jth column of data matrix D), with the first n1 columns of D corresponding

to condition 1 (control) and the remaining n2 = n − n1 columns to condition 2

(treatment). Denote by Λ(k) the influence matrix and µ(k) the mean vector under

condition k. The NetGSA framework considers a latent variable model of the form

Y
(1)
j = Λ(1)µ(1) + Λ(1)γj + εj, (j = 1, . . . , n1),

Y
(2)
j = Λ(2)µ(2) + Λ(2)γj + εj, (j = n1 + 1, . . . , n).

Here, γj is the vector of (unknown) random effects, and εj is the vector of random

errors. They are independent and normally distributed with mean 0 and variances

σ2
γIp and σ2

εIp, respectively.

Inference in NetGSA requires estimation of the mean parameters µ(1) and µ(2),

which depend on estimates of the variance components σ2
γ and σ2

ε. In practice, the

variance components can be estimated via maximum likelihood or restricted max-

imum likelihood, which can be computationally demanding for large networks. To
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ensure stability, the earlier version of the NetGSA considered profiling out one of

the variance components and implemented an algorithm from Byrd et al. (1995),

which uses a limited-memory modification of the Broyden–Fletcher–Goldfarb–Shanno

quasi-Newton method to optimize the profile log-likelihood. However, the above im-

plementation has a few issues. The first issue is its high computational cost due to

the inefficient evaluation of matrix inverses and determinants. Moreover, the algo-

rithm from Byrd et al. (1995) requires finite values of the objective function within

the supplied box constraints, which is often not satisfied, even after the constraints

are adjusted to be within a small range of the optimal estimate. This is particularly

the case when the underlying networks are large. To extend the applicability of the

NetGSA, we consider using Newton’s method for estimating the variance parameters

based on the profile log-likelihood (see Section 2.10 for more details) to improve both

the computational efficiency and stability. In particular, we make the following two

key improvements for implementation of Newton’s method.

First, it is clear that Var(Y
(k)
j ) = σ2

ε

{
Ip + τΛ(k)(Λ(k))T

}
= σ2

εΣ
(k), where τ =

σ2
γ/σ

2
ε. Since the profile log-likelihood as well as its gradient and Hessian matrix with

respect to τ all depend on Σ(k) (k = 1, 2) and their inverses, we choose to invert from

their Cholesky decompositions Σ(k) = UTU, where U is an upper triangular matrix.

The inversion of the triangular matrices results in significant speedup and the inverses

of the original matrices can then be computed as (Σ(k))−1 = (U−1)(U−1)T . In the

meantime, we also simplify the calculation of determinant of Σ(k) since det(Σ(k)) =

det(U)2, which is necessary for evaluating the profile log-likelihood.

Second, quality of the starting point as well as step sizes will both affect con-

vergence of Newton’s method. To select a good starting point, we use a method-of-

moment-type estimate of the variance components. Specifically, denote the residuals

Rj = Y
(k)
j −Λ(k)µ̂(k) for j = 1, . . . , n, where µ̂(k) is the estimate of µ(k). Assume that

there is a single variance σ2
ε that applies to all εj (j = 1, . . . , n) and variances of γj

20



are different. The variance of Rj can be decomposed as (σ2
γ)j +σ2

ε. We then take the

minimum of Var(Rj) as the estimate of σ2
ε and average of the remaining variances as

the estimate of σ2
γ . Their ratio is used as the initial value for τ . The approximation

runs very fast and does not add much computational cost to the method. To find

the appropriate step sizes, we use backtracking line search as described in Boyd and

Vandenberghe (2004, page 464).

With the above two modifications, Newton’s method is then implemented to op-

timize the profile log-likelihood and returns an estimate of τ . Estimates of σ̂2
γ and

σ̂2
ε follow immediately (see Section 2.10). Once estimates of the variance components

are available, one can derive estimates of the mean parameters µ̂(1) and µ̂(2) similarly

as in Shojaie and Michailidis (2009, 2010).

2.3.2 Joint Pathway Enrichment and Differential Network Analysis Using

NetGSA

To test for pathway enrichment with NetGSA, let b be a row binary vector deter-

mining the membership of genes in a pre-specified pathway P . Shojaie and Michailidis

(2009) show that the contrast vector (Searle, 1971) ` = (−bΛ(1) · b,bΛ(2) · b) – with

· denoting the Hadamard product – satisfies the constraint 1T` = 0 and tests the

enrichment of pathway P . The advantage of this contrast vector is that it isolates

influences from nodes outside the pathways of interest. Let β be the concatenated

vector of means µ(1) and µ(2). The null hypothesis of no pathway activity vs the

alternative of pathway activation then becomes

H0 : `β = 0, H1 : `β 6= 0. (2.9)

This general framework allows for test of pathway enrichment in arbitrary subnet-

works, while automatically adjusting for overlap among pathways. In addition, the
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above choice of contrast vector ` accommodates changes in the network structure.

Such changes have been found to play a significant role in development and initia-

tion of complex diseases (Chuang et al., 2012), and NetGSA is currently the only

method that systematically combines the changes in expression levels and network

structures, when testing for pathway enrichment. However, the applicability of the

existing NetGSA framework (Shojaie and Michailidis , 2009, 2010) is limited by the

assumption of known network structure. Here we show that NetGSA with estimated

network information provides a valid inference framework for pathway enrichment

and differential network analysis.

The significance of individual contrast vectors in (2.9) can be tested using the

following Wald test statistic

TS =
`β̂

SE(`β̂)
, (2.10)

where SE(`β̂) represents the standard error of `β̂ and β̂ is the estimate of β. Both

` and SE(`β̂) depend on the underlying networks, which are estimated using data

from the two experimental conditions. Under the null hypothesis, TS follows ap-

proximately a t-distribution whose degrees of freedom can be estimated using the

Satterthwaite approximation method (Shojaie and Michailidis , 2010).

For k = 1, 2, let Z(k) of dimension mk × p be the data matrix under condition k.

Denote Sk the number of nonzero off-diagonal entries in the partial correlation matrix

A
(k)
0 from the true model, and rk the percentage of external information. We obtain

the following result.

Theorem II.8. Let assumptions in Theorem II.4 be satisfied and Sk = o(mk/ log(p−

rkp)) under each condition k (k = 1, 2). Consider the inverse covariance matrices

Ω̂(k) estimated from (2.3) and (2.4) of Section 2.2. Then the test statistic in (2.10)

based on the corresponding networks Â(k) is an asymptotically most powerful unbiased

test for (2.9).
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Remark II.9. Theorem 2.1 of Shojaie and Michailidis (2010) says that NetGSA is

robust to uncertainty in network information. Specifically, Shojaie and Michailidis

(2010) show that if the error in network information ∆
A

(k)
0

= Â(k) − A
(k)
0 satisfies

‖∆
A

(k)
0
‖2 = oP(1), then NetGSA is an asymptotically most powerful unbiased test

for (2.9). The result in Theorem II.8 establishes this property for (partially) esti-

mated networks using the consistency of our proposed network estimation procedure

in Theorem II.4 and Corollary II.6. A detailed proof can be found in Section 2.8.

2.4 Simulation Results

We present two experiments to demonstrate the performance of the proposed

network estimation procedure, as well as its impact on NetGSA. We refer readers

to Section 2.11 for additional simulation scenarios – in particular settings with large

number of variable p – and discussions.

Our first experiment is based on a undirected network of size p = 64. There are

8 subnetworks, each corresponding to a subgraph/pathway of 8 members. Under the

null, all subnetworks have the same topology, which was generated from a scale-free

random graph, and all nodes have mean expression values 1. To allow for interactions

between subnetworks, there is 20% probability for subnetworks to connect to each

other. Under the alternative, the proportion of nodes that have mean changes of

magnitude 1 is 0%, 40%, 40% and 50% for subnetwork 1–4. The same applies to

subnetworks 5–8.

Our second experiment considers a network of size p = 160 with a similar design,

except that there are 20 members in each subnetwork. Mean expression values for all

nodes are the same under the null. Under the alternative, we allow 0%, 40%, 60%

and 80% of the nodes to have mean changes of magnitude 0.3 for subnetworks 1–4.

Subnetworks 5–8 follow the same pattern. Here an important comparison is to see

whether NetGSA is able to detect small but coordinated changes in mean expression
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levels.

In both experiments, we also allowed the structures in subnetworks 5–8 under the

alternative to differ from their null equivalent by 10% to simultaneously test pathway

enrichment and differential network structure. Fig. 2.1 shows the slight modification

in the topology for subnetworks 5–8, from the null to the alternative hypothesis in

the second experiment.
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Figure 2.1: A graph showing the varying structure of pathways 5–8 from null (left)
to alternative (right) in Experiment 2. Dashed lines represent edges that
are present in only one condition.

To illustrate how external information about the network structure facilitates the

estimation, we let the percentage of information r vary from 0 to 1. When r is less

than 1, we estimated the adjacency matrices using the proposed two-step procedure

and filled in the nonzero edges with the estimated weights. When full knowledge of

the network topology is given (r = 1), one only needs to apply the second step to

estimate the edge weights. Table 2.1 compares the estimated networks with the true

model under several deviance measures based on 200 replications, with a sample size

m = 40 for experiment 1 and m = 100 for experiment 2. The Matthews correlation

coefficient exhibits a clear increasing trend, while the Frobenius norm loss a clear

decreasing trend, both indicating the improvement in estimation when the percentage

of external information r increases.
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Table 2.1: Deviance measures for network estimation in experiment 1 and 2. FPR(%),
false positive rate in percentage; FNR(%), false negative rate in percentage;
MCC, Matthews correlation coefficient; Fnorm, Frobenius norm loss. The
best cases are highlighted in bold.

p = 64 p = 160
r FPR(%) FNR(%) MCC Fnorm FPR(%) FNR(%) MCC Fnorm

Null
0.0 10.80 9.83 0.42 0.76 5.74 1.49 0.41 0.41
0.2 9.69 10.54 0.44 0.73 5.08 1.50 0.53 0.38
0.8 3.52 4.72 0.67 0.46 1.77 0.98 0.64 0.22

Alternative
0.0 10.04 8.62 0.44 0.68 4.72 1.01 0.45 0.37
0.2 9.02 8.37 0.46 0.65 4.15 1.28 0.47 0.35
0.8 3.13 2.78 0.70 0.40 1.46 0.62 0.68 0.20

Next, we evaluated the performance of NetGSA in detecting pathway enrichment

by comparing it with Gene Set Analysis (Efron and Tibshirani , 2007), which tests

either a competitive or self-contained null hypothesis. While a self-contained null

hypothesis permutes the samples and compares the gene set in the pathway with itself,

a competitive null hypothesis permutes the genes and compares the set of genes in the

pathway with a set of genes not in the pathway. Gene Set Analysis recommends using

the competitive null approach to take into consideration the distribution of individual

gene set scores, which are used to determine the test statistics.

Table 2.2 and 2.3 present, respectively, the estimated powers for each pathway

in the two experiments from 200 replicates, given the differences in mean expression

levels and/or subnetwork structures described above. Here we used 16 samples for

each condition in experiment 1 and 40 in experiment 2, which are different from the

datasets used for network estimation. The powers were calculated as the proportion of

replicates that show differential changes, based on the false discovery rate controlling

procedure in Benjamini and Hochberg (1995) with a q-value of 0.05. For NetGSA, we

looked at scenarios when there is 20% and 80% external structural information, and

used the estimated networks to detect enrichment for each pathway. We also included

the scenario when the exact networks with correct edge weights are provided, in which
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Table 2.2: Powers based on false discovery rate with q∗ = 0.05 in experiment 1.
0.2/0.8 refer to NetGSA with 20%/80% external information; E refers
to NetGSA with the exact networks; T refers to the true power; GSA-
s/GSA-c refer to Gene Set Analysis with self-contained/competitive null
hypothesis in 1000 permutations, respectively. True powers are highlighted
in bold.

p = 64
Pathway 0.2 0.8 E T GSA-s GSA-c

1 0.03 0.03 0.01 0.05 0.07 0.00
2 0.20 0.14 0.04 0.14 0.10 0.00
3 0.50 0.56 0.60 0.78 0.59 0.01
4 0.83 0.75 0.93 0.98 0.70 0.22
5 0.35 0.37 0.08 0.13 0.09 0.00
6 0.49 0.37 0.34 0.47 0.28 0.00
7 0.71 0.71 0.87 0.92 0.67 0.07
8 0.73 0.68 0.85 0.91 0.60 0.07

case only the variance components and mean expression values are estimated from the

mixed linear model. True powers for each pathway were calculated when all unknown

parameters were substituted with their corresponding known values. As shown in

Table 2.2 and 2.3, results from NetGSA with the exact networks agree with the true

powers in both experiments, reflecting low powers for pathways 1 and 2, slightly

higher powers for 5 and 6 due to change of pathway topology, high powers for 3 and

4 due to change of mean expression levels and highest powers for pathways 7 and 8

for both changes in mean and structure. When the exact networks are unknown, we

can still see improvement in estimating powers for pathways 2, and 3 in experiment

1, and for pathways 2, 3, 4, and 5 in experiment 2 as the percentage of external

information increases from 20% to 80%. Comparing the estimated powers for the

same pathway in the two experiments also confirms our hypothesis that NetGSA is

able to identify large changes in only a few genes of the pathway, as well as weak but

coordinated changes in the pathway. In contrast, Gene Set Analysis with competitive

null approach fails to identify most of the differentially expressed pathways. Gene Set

Analysis with self-contained null hypothesis recognizes mostly correctly the pathways
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Table 2.3: Powers based on false discovery rate with q∗ = 0.05 in experiment 2.
0.2/0.8 refer to NetGSA with 20%/80% external information; E refers
to NetGSA with the exact networks; T refers to the true power; GSA-
s/GSA-c refer to Gene Set Analysis with self-contained/competitive null
hypothesis in 1000 permutations, respectively. True powers are highlighted
in bold.

p = 160
Pathway 0.2 0.8 E T GSA-s GSA-c

1 0.01 0.02 0.02 0.05 0.06 0.07
2 0.45 0.35 0.20 0.22 0.34 0.03
3 0.58 0.60 0.72 0.73 0.81 0.00
4 0.64 0.67 0.88 0.94 0.94 0.05
5 0.68 0.55 0.26 0.32 0.12 0.03
6 0.73 0.71 0.62 0.66 0.34 0.01
7 0.79 0.77 0.98 0.99 0.88 0.01
8 0.83 0.81 0.99 1.00 0.95 0.10

that are significantly differentially expressed, although with lower powers for pathways

3, 4, 7 and 8 in experiment 1 and 6 in experiment 2.

Finally, to evaluate the computational efficiency of NetGSA with the updated

algorithm based on Newton’s method, we compared it with the earlier version of

NetGSA implemented with an algorithm from Byrd et al. (1995). Four different

scenarios were considered, including the two experiments described above and another

two from Section 2.11.The comparison was based on the average elapsed time of

NetGSA in 100 replicates. All timings were carried out under R version 3.0.2 on a

Intel Xeon 2.00 GHz processor. Table 2.4 presents the results. In general, we see

NetGSA with the updated algorithm runs significantly faster (two times or more)

than the previous implementation. The updated implementation is also more stable

in terms of evaluating the profile log-likelihood and its gradient, which is especially

important when the underlying network is large. In contrast, the earlier version with

the method from Byrd et al. (1995) failed to run successfully for large p because the

gradient of the profile log-likelihood was evaluated to be infinite within the supplied

box constraints.
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Table 2.4: Timings (in seconds) for NetGSA. Density (%) refers to density of studied
networks in percentage; Newton’s method refers to NetGSA implemented
with Newton’s method; L-BFGS-B refers to NetGSA implemented with
the method of Byrd et al. (1995).

p Density (%) (1) Newton’s method (2) L-BFGS-B Ratio of (2) to (1)
64 3.42 0.23 0.40 1.74
160 1.29 1.87 7.08 3.79
160 5.16 1.53 6.34 4.14
400 1.13 22.61 NA NA

2.5 Applications to Genomics and Metabolomics

In this section, we discuss applications of the proposed NetGSA to genomic and

metabolomic data to demonstrate its potential in revealing biological insights. The

metabolomics data set (Putluri et al., 2011) examines changes in the metabolic pro-

file between 58 cancer and adjacent benign tissue specimens through an untargeted

mass spectrometry data acquisition strategy. There are two groups of tissue speci-

mens, with 31 samples from the cancer class and 28 from the benign class. The total

number of metabolites detected is 63. Here we focused on estimating the network

of metabolic interactions, enhanced by information gleaned from the Kyoto Encyclo-

pedia of Genes and Genomes (Kanehisa and Goto, 2000). To select the estimated

networks for both conditions, we performed 5-fold cross validation. We also tested

for differential activity of biochemical pathways extracted from the Kyoto Encyclo-

pedia of Genes and Genomes using the same set of data. Shown in Table 2.5 are

estimated p-values after false discovery rate correction with a q-value of 0.01 for the

significant pathways selected from NetGSA. These identified pathways include those

that describe altered utilization of amino acids and their aromatic counterparts, as

well as metabolism of fatty acids and intermediates of tricarboxylic acid cycle (TCA)

which were followed up for biological insights in the original study Putluri et al.

(2011). Among all the selected pathways, fatty acid biosynthesis and phenylalanine,
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tyrosine and tryptophan biosynthesis were not identified by Gene Set Analysis with

the self-contained null hypothesis. On the other hand, Gene Set Analysis with the

competitive null (the recommended setting) failed to report any pathway as being sig-

nificantly enriched. This again confirms our hypothesis that incorporating pathway

topology information allows sophisticated enrichment methods in detecting important

regulatory pathways.

Table 2.5: p-values for the pathways in the metabolomics data, with false discov-
ery rate correction at q∗ = 0.01. NetGSA refers to Network-based
Gene Set Analysis; GSA-s/GSA-c refer to Gene Set Analysis with self-
contained/competitive null hypothesis in 3000 permutations, respectively.

Pathway NetGSA GSA-s GSA-c
Fatty acid biosynthesis < 0.001 1.000 1.000
Purine metabolism 0.009 0.009 0.612
Pyrimidine metabolism 0.001 < 0.001 0.395
Glycine, serine and threonine metabolism < 0.001 0.001 0.672
Tryptophan metabolism < 0.001 < 0.001 0.338
Phenylalanine, tyrosine and tryptophan biosynthesis 0.002 1.000 1.000
beta-Alanine metabolism < 0.001 < 0.001 0.338
Aminoacyl-tRNA biosynthesis 0.004 < 0.001 0.458
ABC transporters 0.004 < 0.001 0.624

For the second application, we consider data from Subramanian et al. (2005),

which consists of gene expression profiles of 5217 genes for 62 normal and 24 lung

cancer patients. We excluded genes that are not present in the 186 pathways from

the Kyoto Encyclopedia of Genes and Genomes data base as well as those which do

not have recorded network information, which leaves us with 1416 genes. We then

performed 5-fold cross validation to estimate the underlying interaction networks for

both normal and lung cancer conditions based on the external topology information

from the BioGRID Database.

To test for pathway enrichment, we considered a subset of pathways from the

Kyoto Encyclopedia data base that describe signaling and biochemical mechanisms

and restricted their membership to be at least 5, so that Gene Set Analysis could be
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applicable. This reduces the number of pathways tested to 61. Table 2.6 presents the

p-values for the significant pathways identified from all three methods based on false

discovery rate correction at 0.001, sorted with respect to results from using NetGSA.

It turns out that Gene Set Analysis does not consider any of the pathways as differ-

entially active, whichever null hypothesis is used. In comparison, the small p-values

from NetGSA suggest these 15 pathways could be of interest for further investiga-

tion. Of particular biological interest is the identification of the TGF-beta signaling

pathway, that has been linked to biological mechanisms for onset and progression of

lung cancer (see e.g. Ischenko et al. (2014) and references therein).

Table 2.6: p-values for the pathways in the microarray data, with false discov-
ery rate correction at q∗ = 0.001. NetGSA refers to Network-based
Gene Set Analysis; GSA-s/GSA-c refer to Gene Set Analysis with self-
contained/competitive null hypothesis in 3000 permutations, respectively.

Pathway NetGSA GSA-s GSA-c
Glycolysis / Gluconeogenesis < 0.001 0.360 0.520
Citrate cycle (TCA cycle) < 0.001 0.457 0.357
Fructose and mannose metabolism < 0.001 0.308 0.408
Galactose metabolism < 0.001 0.404 0.466
Alanine, aspartate and glutamate metabolism < 0.001 0.404 0.565
Tyrosine metabolism < 0.001 0.483 0.441
beta-Alanine metabolism < 0.001 0.404 1.000
Glutathione metabolism < 0.001 0.283 0.357
Ether lipid metabolism < 0.001 0.338 0.379
ErbB signaling pathway < 0.001 0.035 0.249
TGF-beta signaling pathway < 0.001 0.404 0.518
VEGF signaling pathway < 0.001 0.360 0.441
NOD-like receptor signaling pathway < 0.001 0.308 0.427
RIG-I-like receptor signaling pathway 0.001 0.308 0.357
B cell receptor signaling pathway < 0.001 0.338 0.441

2.6 Discussion

This chapter introduces a constrained network estimation method for incorpo-

rating externally available interaction information based on high-dimensional Omics
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data. Under mild assumptions on sample sizes, the proposed approach yields reliable

condition-specific estimates for the underlying networks, and can also conveniently

accommodate uncertainty in external information. In our simulations, we notice

that the proposed two-step procedure is more robust than the one-step constrained

maximum likelihood estimation (a functionality offered in the R-package glasso) in

recovering the partial correlations, because the latter requires sophisticated specifica-

tion of tuning parameters to satisfy the positive definiteness property of the estimate

while taking into consideration the structural constraints.

Another alternative for recovering the underlying network is to use space (Peng

et al., 2009) that utilizes the symmetric nature of the partial correlation matrix. By

incorporating the external structural information, the original lasso problem becomes

a generalized lasso and can be solved by existing software.

In the framework of NetGSA, it is recommended that the expression data D

for testing pathway activity and the data Z for estimating the partial correlation

networks are two separate data sets in order to reduce potential bias. It is important

to have sufficient samples in Z for reliable estimation of the underlying networks. The

expression data D can be of a much smaller size compared to Z. The choice of Λ

as the Cholesky factor of the covariance matrix is mainly for interpretation purpose.

One can also permute the nodes in the network and obtain similar results on testing

for gene set enrichment.

As detailed in Shojaie and Michailidis (2010), the NetGSA methodology is a gen-

eral framework that can be extended to situations where more than two experimental

conditions are considered. The underlying networks can be the partial correlations

among variables of interest, as discussed in the current context, and can also be

the physical interactions among different components of the system. The updated

NetGSA algorithm enables pathway enrichment analysis at a much larger scale, sig-

nificantly enhancing the applicability of the method.
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2.7 Software

The proposed method has been implemented in the R-package netgsa available

on CRAN.

2.8 Proof of Theorem II.4

To prove our main results, we need some additional notations. Define Ω̃0 =

diag(Ω0) + Ω0,E∩Ê, where E and Ê are the true and the estimated edge set, respec-

tively. By definition, Ω̃0 and A0 will be different at position (i, i′) only when the

edge (i, i′) is falsely rejected. We first derive an upper bound for the size of Ê and

‖Ω̃0 − Ω0‖F . To do this, we show that the regression problem (2.3) is essentially a

lasso problem, and then invoke the oracle inequalities from Theorem 7.2 of Bickel

et al. (2009). To simplify the notation, we drop the superscript i for sets J0, J1 in the

ith regression, but they should be understood as J i0, J
i
1, respectively.

Let J̃ = V \{{i} ∪ J0 ∪ J1} represent the set of indices for which there is no

information available. Denote by PJ1 = ZJ1(Z
T
J1

ZJ1)
−1ZT

J1
the projection onto the

column space of ZJ1 . The following lemma is needed in the proof of Theorem II.11

below.

Lemma II.10. For i = 1, . . . , p, denote ξi = Zi−
∑

i′ 6=i θii′Zi′, where θi is the optimal

prediction coefficient vector in the ith regression. Consider the event

Fi :=

{
Z : ‖ZT

J̃
(Ip −PJ1)ξ

i/m‖∞ ≤
c1

2

√
log(p− rp)
mA0,ii

}

with a constant c1 > 4, where ω0,ii is the ith diagonal element of the true inverse

covariance matrix Ω0. Define the event F =
⋂p
i=1Fi. Then P(F) > 1− p2−c21/8.

The proof of Lemma II.10 will be provided shortly. Denote by Λmax the maximal

eigenvalue of ZTZ/m. Conditional on event F , we have the following results on
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controlling the size of Ê and the Frobenius norm of the deviance, ‖Ω̃0 − Ω0‖F .

Theorem II.11. Suppose all conditions in Theorem II.4 are satisfied. Then on event

F , for appropriately chosen λ, we have

|Ê| ≤ 64Λmax

κ2(s)
(1− r)S + rS, (2.11)

and

‖Ω̃0 − Ω0‖F ≤ c3

√
S log(p− rp)

m
≤ k1φ1, (2.12)

where c3 = 16c1

√
1− r/κ2(2s).

Remark II.12. The result indicates that the cardinality of the estimated edge set is

upper bounded by a function of r, the percentage of the external information. The

bound for |Ê| also depends on the restricted eigenvalue κ(s), which is necessarily

positive by the assumption that κ(2s) > 0. Two extreme cases occur when (i) r = 0,

i.e. we do not observe any information, thus reducing problem (2.3) to the original

neighborhood selection in Meinshausen and Bühlmann (2006); (ii) r = 1, i.e. the

exact network topology is known and hence Ê = E. On the other hand, the upper

bound for ‖Ω̃0 − Ω0‖F decreases as r increases, i.e. when more external information

becomes available. However, since the coefficients also need to be estimated, this

deviance always stays positive, even when r = 1.

Proof of Theorem II.11. Recall that PJ1 is the projection matrix onto the column

space of ZJ1 . Let Ỹ = (Ip−PJ1)Zi be the projection of Zi onto the orthogonal space

of ZJ1 and Z̃ = (Ip −PJ1)ZJ̃ . With some algebra, the problem (2.3) is equivalent to

solving

min
θJ̃

1

m
‖Ỹ − Z̃θJ̃‖

2
2 + 2λ‖θJ̃‖1, (2.13)

which is a lasso problem. It suffices to focus mainly on the set J̃ , as false positive

and negative errors will only occur on this set.
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To apply Theorem 7.2 of Bickel et al. (2009), we also need to bound the maximum

eigenvalue of the matrix Z̃T Z̃/m. Consider the eigendecomposition of the projection

Ip − PJ1 = UDUT , where D is the diagonal matrix composed of eigenvalues and U

is orthogonal. As Ip − PJ1 is also a projection matrix, the diagonals of D are either

0 or 1. It then follows that

φmax(Z̃T Z̃/m) = φmax(ZT
J̃
UDUTZJ̃/m) ≤ φmax(ZT

J̃
UUTZJ̃/m)

≤ φmax(ZT
J̃
ZJ̃/m) ≤ Λmax.

Recall si is the number of nonzero coordinates after excluding the known ones in

each regression and s = maxi s
i. Under the assumption that κ(2s) > 0, we also have

that κ(si) ≥ κ(s) > 0 for si ≤ s. Let θ̂i
J̃

be the lasso estimator in (2.13) with

λ = c1

{
log(p− rp)
mω0,ii

}1/2

(2.14)

for c1 > 4. Conditioned on event F , we can invoke Theorem 7.2 of Bickel et al. (2009)

and obtain simultaneously for all i,

‖θ̂i,J̃‖0 ≤
64Λmax

κ2(s)
si, (2.15)

and

‖θ̂i,J̃ − θi,J̃‖2 ≤
16c1

ω0,iiκ2(2s)

√
si log(p− rp)

m
. (2.16)

Combining (2.15) with the number of known edges si1 as given in J i1, we get

|Ê| ≤
p∑
i=1

{‖θ̂i,J̃‖0 + |J i1|} ≤
64Λmax

κ2(s)

p∑
i=1

si +

p∑
i=1

si1.

The upper bound in (2.11) follows immediately, since by definition the number of

known and unknown edges are
∑p

i=1 s
i
1 = rS and

∑p
i=1 s

i = (1− r)S, respectively.
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To control ‖Ω̃0 −Ω0‖F , recall that for every i, ω0,ii′ = −θii′ω0,ii. Using the bound

in (2.16), we have

‖Ω̃0 − Ω0‖2
F =

p∑
i=1

∑
i′∈J(θi)∩J(θ̂i)c

(θii′ω0,ii)
2 =

p∑
i=1

ω2
0,ii

∑
i′∈J(θi)∩J(θ̂i)c

|θii′ − θ̂ii′|2

≤
p∑
i=1

ω2
0,ii‖θi,J̃ − θ̂iJ̃‖

2
2 ≤

{
16c1

κ2(2s)

}2
(1− r)S log(p− rp)

m
.

The last inequality in (2.12) follows from condition (2.6) in Theorem II.4.

Proof of Lemma II.10. For every i, it is easy to verify that ξi is normally distributed

with mean 0 and variance 1/ω0,iiIm. Define random variables Υii′ = (ω0,ii/m)1/2ZT
i′ξ

i

for i 6= i′. Then, ZT
i′Zi′/m = 1 implies that Υii′ ∼ N (0, 1). Let λ be defined as in

(2.14). Using the fact that |ZT
i′ (Ip−PJ1)ξ

i/m| is stochastically smaller than |ZT
i′ξ

i/m|

for all i′ ∈ J̃ and an elementary bound on the tails of Gaussian distributions

P(F c) ≤
p∑
i=1

∑
i′∈J̃

P
(
{|ZT

i′ (Ip −PJ1)ξ
i/m| > λ/2}

)
≤

p∑
i=1

∑
i′∈J̃

P
(
|Υii′ | > (mω0,ii)

1/2λ/2
)
≤

p∑
i=1

∑
i′∈J̃

exp
{
−mω0,iiλ

2/8
}

≤ p(p− rp) exp
{
−c2

1 log(p− rp)/8
}
≤ p2−c21/8.

Therefore, P(F) > 1− p2−c21/8.

With Lemma II.10 and Theorem II.11, we are ready to prove our main results in

Theorem II.4. The following proof is adapted from Zhou et al. (2011).

Proof of Theorem II.4. Consider Â defined in (2.4). It suffices to show that on the

event F

‖Ω̂− Ω̃0‖F = O
(
{S log(p− rp)/m}1/2

)
,
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since by triangle inequality and Theorem II.11, we can conclude

‖Ω̂− Ω0‖F ≤ ‖Ω̂− Ω̃0‖F + ‖Ω̃0 − Ω0‖F ≤ O
(
{S log(p− rp)/m}1/2

)
.

Denote Σ̃0 = Ω̃−1
0 , which is positive definite since by Theorem II.11,

φmin(Ω̃0) ≥ φmin(Ω0)− ‖Ω̃0 − Ω0‖2 ≥ φmin(Ω0)− ‖Ω̃0 − Ω0‖F ≥ φ1 − k1φ1 > 0.

(2.17)

Given Ω̃0 ∈ Sp+ ∩ S
p

Ê
, define a new convex set:

Um(Ω̃0) = {B− Ω̃0 | B ∈ Sp+ ∩ S
p

Ê
} ⊂ Sp

Ê
.

Let

Q(Ω) = tr(ΩΣ̂)− tr(Ω̃0Σ̂)− log det Ω + log det Ω̃0.

Since the estimate Ω̂ minimizes Q(Ω), ∆̂ = Ω̂− Ω̃0 minimizes G(∆) = Q(∆ + Ω̃0).

The main idea of this proof is as follows. For a sufficiently large M > 0, consider

sets

T1 = {∆ ∈ Um(Ω̃0), ‖∆‖F = Mrm}, T2 = {∆ ∈ Um(Ω̃0), ‖∆‖F ≤Mrm},

where

rm = {S log(p− rp)/m}1/2.

Note that T1 is non-empty. Indeed, consider Bε = εΩ̃0 for ε = Mrm/‖Ω̃0‖F . Then

Bε = (1 + ε)Ω̃0 − Ω̃0 ∈ Um(Ω̃0), hence Bε ∈ T1. Denote by 0̄ the matrix of all zero

entries. It is clear that G(∆) is convex, and G(∆̂) ≤ G(0̄) = Q(Ω̃0) = 0. Thus if we

can show that G(∆) > 0 for all ∆ ∈ T1, the minimizer ∆̂ must be inside T2 and hence

36



‖∆̂‖F ≤Mrm. To see this, note that the convexity of Q(Ω) implies that

inf
‖∆‖F =Mrm

Q(Ω̃0 + ∆) > Q(Ω̃0) = 0.

There exists therefore a local minimizer in the ball {Ω̃0 + ∆ : ‖∆‖F ≤ Mrm}, or

equivalently, for ∆̂ ∈ T2, i.e. ‖∆̂‖F ≤Mrm.

In the remainder of the proof, we focus on

G(∆) = Q(∆ + Ω̃0) = tr(∆Σ̂)− log det(∆ + Ω̃0) + log det Ω̃0. (2.18)

Applying a Taylor expansion to log det(Ω̃0 + ∆) in (2.18) gives

log det(Ω̃0 + ∆)− log det Ω̃0

=
d

dt
log det(Ω̃0 + t∆)

∣∣
t=0

∆ +

1∫
0

(1− t) d
2

dt2
log det(Ω̃0 + t∆)dt

=tr(∆Σ̃0)− vec(∆)T


1∫

0

(1− t)(Ω̃0 + t∆)−1 ⊗ (Ω̃0 + t∆)−1dt

 vec(∆), (2.19)

where vec(∆) denotes the vectorized ∆, and ⊗ is the Kronecker product. For ∆ ∈ T1,

let K1 be the integral term in (2.19), and define

K2 = tr
{

∆(Σ̂− Σ0)
}
, K3 = tr

{
∆(Σ̃0 − Σ0)

}
.

We can then write

G(∆) = K1 + tr(∆Σ̂)− tr(∆Σ̃0) = K1 +K2 −K3.

Next, we bound each of the terms K1, K2 and K3 to find a lower bound for G(∆).

First consider K2. Since the diagonal elements of Σ̂ and Σ0 are the same after
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scaling,

|K2| ≤ |
∑
i 6=i′

(Σ̂ii′ − Σ0,ii′)∆ii′ |.

By Lemma A.3 of Bickel and Levina (2008), there exists a positive constant c2 de-

pending on φmax(Σ0) such that

max
i 6=i′
|Σ̂ii′ − Σ0,ii′ | ≤ c2{log(p− rp)/m}1/2,

with probability tending to 1. Let ∆+ = diag(∆) be the matrix of diagonal elements

of ∆, and write ∆− = ∆−∆+. Then, K2 is bounded by

|K2| ≤ c2{log(p− rp)/m}1/2‖∆−‖1. (2.20)

For K3, we can use the upper bound for ‖Ω̃0 − Ω0‖F in (2.12), and the lower bound

for φmin(Ω̃0) in (2.17), to write,

|K3| ≤ ‖∆‖F‖Σ̃0 − Σ0‖F ≤ ‖∆‖F
‖Ω̃0 − Ω0‖F

φmin(Ω̃0)φmin(Ω0)
(2.21)

≤ ‖∆‖F
c3{S log(p− rp)/m}1/2

(1− k1)φ2
1

. (2.22)

The second inequality in (2.21) comes from the rotation invariant property of Frobe-

nius norm, i.e.

‖Σ̃0 − Σ0‖F = ‖Σ0(Ω0 − Ω̃0)Σ̃0‖F ≤ φmax(Σ0)‖Ω0 − Ω̃0‖Fφmax(Σ̃0).

Using (2.12), we can also obtain an upper bound for the maximum eigenvalue of Ω̃0:

φmax(Ω̃0) ≤ φmax(Ω0) + ‖Ω̃0 − Ω0‖2 ≤ φmax(Ω0) + ‖Ω̃0 − Ω0‖F ≤
1

φ2

+ k1φ1.
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Since rm → 0, there exists a sufficiently large k2 > 0 such that for ∆ ∈ T1,

‖∆‖2 ≤ ‖∆‖F = Mrm <
1

φ2

k2.

Following Rothman et al. (2008, Page 502, proof of Theorem 1), a lower bound for

K1 can be found as

K1 ≥ ‖∆‖2
F/{2(φmax(Ω̃0) + ‖∆‖2)2}

≥ ‖∆‖2
F/{2 (1/φ2 + k1φ1 + k2/φ2)2} =

φ2
2

2(1 + k1φ1φ2 + k2)2
‖∆‖2

F . (2.23)

Combining (2.20), (2.22) and (2.23),

G(∆) ≥ φ2
2

2(1 + k1φ1φ2 + k2)2
‖∆‖2

F − c2{log(p− rp)/m}1/2‖∆−‖1

− c3{S log(p− rp)/m}1/2

(1− k1)φ2
1

‖∆‖F .

For ∆ ∈ T1, applying Cauchy-Schwarz inequality yields

‖∆−‖1 ≤ (|Ê|)1/2‖∆−‖F .

We thus have

G(∆) ≥ φ2
2

2(1 + k1φ1φ2 + k2)2
‖∆‖2

F − c2{|Ê| log(p− rp)/m}1/2‖∆−‖F

− c3

(1− k1)φ2
1

{S log(p− rp)/m}1/2‖∆‖F

≥ ‖∆‖2
F

{
φ2

2

2(1 + k1φ1φ2 + k2)2
− c2

M
{|Ê|/S}1/2 − c3

M(1− k1)φ2
1

}
> 0,

for M sufficiently large.
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Proof of Corollary II.6. Under the assumptions in Theorem II.4, we have

‖∆Ω0‖ = ‖Ω̂− Ω0‖2 = OP
(
{S log(p− rp)/m}1/2

)
= oP(1).

Therefore the partial correlation matrix corresponding to Ω̂ can be written as

Â = Ip − D̂−1/2Ω̂D̂−1/2 = A0 + D
−1/2
0 Ω0D

−1/2
0 − (D̂)−1/2Ω̂D̂−1/2 = A0 + ∆A0 ,

where

∆A0 = D
−1/2
0 Ω0D

−1/2
0 − (D̂)−1/2Ω̂D̂−1/2

= D
−1/2
0 (Ω0 − Ω̂)D

−1/2
0 + D

−1/2
0 Ω̂

(
D
−1/2
0 − D̂−1/2

)
+
(
D
−1/2
0 − D̂−1/2

)
Ω̂D̂−1/2.

(2.24)

Next we show that each of the summands on the right hand side of (2.24) has `2 norm

oP(1) and conclude thus ‖∆A0‖2 = oP(1).

By Assumption 2, the diagonal entries of Ω0 satisfy ω0,ii ≥ φmin(Ω0) ≥ φ1 for all

i = 1, . . . , p. Thus, ‖D−1/2
0 ‖2 = maxi ω

−1/2
0,ii ≤ φ

−1/2
1 . It follows that

‖D−1/2
0 (Ω0 − Ω̂)D

−1/2
0 ‖2 ≤ ‖D−1/2

0 ‖2
2‖Ω0 − Ω̂‖2 = oP(1).

For the remaining two terms, first notice that ‖D0−D̂‖2 ≤ ‖D0−D̂‖F ≤ ‖Ω0−Ω̂‖F =

oP(1). Therefore,

‖D−1/2
0 − D̂−1/2‖2 = max

i=1,...,p
|ω−1/2

0,ii − ω̂
−1/2
ii | = max

i=1,...,p

∣∣∣∣∣ω
1/2
0,ii − ω̂

1/2
ii

ω
1/2
0,ii ω̂

1/2
ii

∣∣∣∣∣
= max

i=1,...,p

∣∣∣∣∣ ω0,ii − ω̂ii
ω

1/2
0,ii ω̂

1/2
ii (ω

1/2
0,ii + ω̂

1/2
ii )

∣∣∣∣∣ ≤ φ−1
1 (φ1 − oP(1))−1/2‖D0 − D̂‖2,
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where the last inequality comes from that fact that

min
i
|ω̂ii| = min

i
|ω̂ii − ω0,ii + ω0,ii| ≥ min

i
|ω0,ii| −max

i
|ω̂ii − ω0,ii| ≥ φ1 − oP(1).

Hence, ‖D−1/2
0 − D̂−1/2‖2 = oP(1). Note further,

‖Ω̂‖2 = ‖Ω̂− Ω0 + Ω0‖2 ≤ ‖Ω0‖2 + ‖Ω̂− Ω0‖2 = ‖Ω0‖2 + oP(1)

is bounded above. It follows thus,

‖D−1/2
0 Ω̂

(
D
−1/2
0 − D̂−1/2

)
‖2 ≤ ‖D−1/2

0 ‖2‖Ω̂‖2‖D−1/2
0 − D̂−1/2‖2 = oP(1),

‖
(
D
−1/2
0 − D̂−1/2

)
Ω̂D̂−1/2‖2 ≤ ‖D−1/2

0 − D̂−1/2‖2‖Ω̂‖2‖D̂−1/2‖2 = oP(1).

This completes the proof.

2.9 Proof of Theorem II.8

The following proof of Theorem II.8 adapts from that of Theorem 2.1 in Shojaie

and Michailidis (2010).

Proof of Theorem II.8. Consider the special case where the row vector b = 1T , i.e.

the whole network is tested as one pathway. The general case when b 6= 1T follows

from a similar argument.

For the partial correlation A0
(k) (k = 1, 2) defined in Section 2.3.2, it holds that

Λ(k)(Λ(k))T = (Ip −A0
(k))−1 =

∑∞
t=0(A0

(k))t. Hence

Λ̂(k)(Λ̂(k))T =
∞∑
t=0

(Â(k))t =
∞∑
t=0

(A0
(k))t +

∞∑
t=1

t∑
u=1

(
t

u

)
(A0

(k))t−u(∆A0
(k))u

= Λ(k)(Λ(k))T + ∆Λ(k) .
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For Â(k) defined under the assumptions in Theorem II.4 and II.8, we have ‖∆A0
(k)‖2 =

oP(1) by Corollary II.6. Thus, ‖∆Λ(k)‖2 = oP(1).

Using results from Shojaie and Michailidis (2010), the test statistic in (3.12) can

be written as

TS =
b(Ȳ(2) − Ȳ(1))√

σ̂2
γ

[
b
{

1
n1

Λ̂(1)(Λ̂(1))T + 1
n2

Λ̂(2)(Λ̂(2))T
}

bT
]

+ σ̂2
ε

(
1
n1

+ 1
n2

)
bbT

,

where Ȳ(k) is the mean expression of genes in the experimental condition k. Shojaie

and Michailidis (2010) show that TS is an asymptotically most powerful unbiased

test for (3.11) when the correct network information is provided. Therefore, to es-

tablish the result in Theorem II.8, it suffices to show that the denominator of TS is

a consistent estimator.

In the following, we first consider the log-likelihood lF (ϑ; Λ̂) based on the esti-

mated networks Λ̂ = (Λ̂(1), Λ̂(2)) and correct variance components ϑ = (σ2
γ , σ

2
ε). We

then establish that the maximum likelihood estimator ϑ̂Λ̂ →P ϑ as Λ̂(k)(Λ̂(k))T →P

Λ(k)(Λ(k))T for both k. Hence the denominator of TS is consistent and TS is an

asymptotically most powerful unbiased test for (3.11).

Let Ŵ(k) = σ2
γΛ̂(k)(Λ̂(k))T + σ2

εIp for k = 1, 2. Up to a constant, the negative

log-likelihood

lF (ϑ; Λ̂) =
n1

2n
l(ϑ; Λ̂(1)) +

n2

2n
l(ϑ; Λ̂(2))

with

l(ϑ; Λ̂(1)) = log det(Ŵ(1)) +
1

n1

n1∑
j=1

RT
j (Ŵ(1))−1Rj,

l(ϑ; Λ̂(2)) = log det(Ŵ(2)) +
1

n2

n∑
j=1+n1

RT
j (Ŵ(2))−1Rj,

where Rj = Y
(1)
j − Ȳ(1) (j = 1, . . . , n1) and Rj = Y

(2)
j − Ȳ(2) (j = 1 +n1, . . . , n). We
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treat l(ϑ; Λ̂(1)) first. In particular, we can approximate l(ϑ; Λ̂(1)) using its one-term

Taylor expansion around W(1)

l(ϑ; Λ̂(1)) = l(ϑ; Λ(1)) + tr
[
∇W(1)l(ϑ; Λ(1))T∆W(1)

]
+ o(‖∆W(1)‖2

2),

where ∇W(1)l(ϑ; Λ(1)) is the gradient of l(ϑ; Λ(1)) with respect to W(1) and

∇W(1)l(ϑ; Λ(1)) = (W(1))−1 − n−1
1

n1∑
j=1

(W(1))−1RjR
T
j (W(1))−1.

Let Γ = ∆W(1)/‖∆W(1)‖2 and denote

g(ϑ) = tr
[
∇W(1)l(ϑ; Λ(1))TΓ

]
= tr

[
(W(1))−1Γ

]
− n−1

1

n1∑
j=1

RT
j (W(1))−1Γ(W(1))−1Rj.

then

l(ϑ; Λ̂(1)) = l(ϑ; Λ(1)) + g(ϑ)‖∆W(1)‖2 + o(‖∆W(1)‖2
2).

Using von Neumann’s trace inequality (Mirsky , 1975), we can bound the first term

in g(ϑ) by

∣∣ tr [(W(1))−1Γ
]∣∣ ≤ p∑

i=1

ς[i]((W
(1))−1)ς[i](Γ)

≤ pς[1]

(
(σ2
γΛ(1)(Λ(1))T + σ2

εIp)
−1
)
ς[1](Γ)

= p
1

φmin(σ2
γΛ(1)(Λ(1))T + σ2

εIp)
ς[1](Γ),

where ς[i](A) denotes the ith largest singular value of A. By construction, ς[1](Γ) = 1

and φmin(σ2
γΛ(1)(Λ(1))T + σ2

εIp) ≥ σ2
ε. Hence | tr[(W(1))−1Γ]| ≤ p/σ2

ε. On the other
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hand, with probability tending to 1,

n−1
1

n1∑
j=1

RT
j (W(1))−1Γ(W(1))−1Rj ≤ ‖(W(1))−1Γ(W(1))−1‖2n

−1
1

n1∑
j=1

RT
j Rj

≤ ‖(W(1))−1‖2
2‖Γ‖2n

−1
1

n1∑
j=1

RT
j Rj = σ−4

ε E(‖Rj‖2
2),

where the last step follows from the strong law of large numbers. This implies that

g(ϑ) is bounded for nontrivial σ2
ε. Note also ∆W(1) = Ŵ(1)−W(1) = σ2

γ{Λ̂(1)(Λ̂(1))T −

Λ(1)(Λ(1))T} = σ2
γ∆Λ(k) . Hence g(ϑ)‖∆W(1)‖2 = g(ϑ)σ2

γ‖∆Λ(k)‖2 = oP(1). Therefore

l(ϑ; Λ̂(1)) = l(ϑ; Λ(1)) + oP(1), and similarly one can show that l(ϑ; Λ̂(2)) = l(ϑ; Λ(2)) +

oP(1). They together imply that

lF (ϑ; Λ̂) = lF (ϑ; Λ) + oP(1).

Now conditioning on the event {lF (ϑ; Λ̂) = lF (ϑ; Λ)}, the estimate of the variance

components is ϑ̂ = arg minϑ lF (ϑ; Λ). Since lF (ϑ; Λ) is convex with respect to ϑ, M-

estimation results in Haberman (1989) imply that P(ϑ̂ = ϑ) = 1 and hence ϑ̂→P ϑ as

Λ̂(k)(Λ̂(k))T →P Λ(k)(Λ(k))T for both k. It follows immediately that the denominator

of the test statistic TS is a consistent estimator as Λ̂(k)(Λ̂(k))T →P Λ(k)(Λ(k))T for

both k. This concludes the proof.

2.10 Derivation for Newton’s Method

The implementation of Newton’s method requires the gradient and the Hessian of

the objective function, i.e. the profile log-likelihood. Here we provide details about

how to calculate the gradient and Hessian based on the profile log-likelihood when

profiling out σε. The derivation follows similarly when profiling out σγ .

Let N = np be the total number of observations for all genes. Recall that for

k = 1, 2, Σ(k) = Ip+ τΛ(k)(Λ(k))T with τ = σ2
γ/σ

2
ε. The residuals Rj = Y

(k)
j −Λ(k)µ̂(k)
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for j = 1, . . . , n, where µ̂(k) is the estimate of µ(k). Given the observations Y1, . . . ,Yn

(with the first n1 samples from condition 1 and the remaining n2 = n − n1 samples

from condition 2), the nonconstant part of the “full” log-likelihood lF is

lF (σε, τ | Y1, . . . ,Yn) =− 1

2

{
n1 log det(σ2

εΣ
(1)) + n2 log det(σ2

εΣ
(2))
}

− 1

2
σ−2
ε

{
n1∑
j=1

RT
j (Σ(1))−1Rj +

n∑
j=n1+1

RT
j (Σ(2))−1Rj

}
,

Similarly, the nonconstant part of the log-likelihood using restricted maximum likeli-

hood is

lR(σε, τ | Y1, . . . ,Yn) = lF (σε, τ | Y1, . . . ,Yn)

− 1

2
log det

{
n1σ

−2
ε (Λ(1))T (Σ(1))−1Λ(1)

}
− 1

2
log det

{
n2σ

−2
ε (Λ(2))T (Σ(2))−1Λ(2)

}
.

To simplify the computation, we solve for σ2
ε as a function of τ . The maximum

likelihood estimate of σ2
ε is

σ̂2
ε =

1

N

{
n1∑
j=1

RT
j (Σ(1))−1Rj +

n∑
j=n1+1

RT
j (Σ(2))−1Rj

}
, (2.25)

whereas its restricted maximum likelihood estimate is given by

σ̂2
ε =

1

N − 2p

{
n1∑
j=1

RT
j (Σ(1))−1Rj +

n∑
j=n1+1

RT
j (Σ(2))−1Rj

}
. (2.26)

Substituting σ2
ε with the corresponding estimate, we obtain the profile log-likelihood

pF (τ | Y1, . . . ,Yn) = −1

2
(n1 log det Σ(1) + n2 log det Σ(2))

− 1

2
N log

{
n1∑
j=1

RT
j (Σ(1))−1Rj +

n∑
j=n1+1

RT
j (Σ(2))−1Rj

}
, (2.27)
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for maximum likelihood, and

pR(τ | Y1, . . . ,Yn) = −1

2
(n1 log det Σ(1) + n2 log det Σ(2))

− 1

2
(N − 2p) log

{
n1∑
j=1

RT
j (Σ(1))−1Rj +

n∑
j=n1+1

RT
j (Σ(2))−1Rj

}

− 1

2
log det

{
n1(Λ(1))T (Σ(1))−1Λ(1)

}
− 1

2
log det

{
n2(Λ(2))T (Σ(2))−1Λ(2)

}
, (2.28)

for restricted maximum likelihood.

As Σ(k) (k = 1, 2) are the only terms that depend on τ , we first look at the

derivatives of

log det Σ(k), RT
j (Σ(k))−1Rj, log det{(Λ(k))T (Σ(k))−1Λ(k)},

with respect to τ . Denote

B(k) = (Σ(k))−1dΣ(k)

dτ
(Σ(k))−1, H(k) = (Λ(k))T (Σ(k))−1Λ(k).

Then

d log det(Σ(k))

dτ
= tr

{
(Σ(k))−1dΣ(k)

dτ

}
,

d2 log det(Σ(k))

dτ 2
= tr

{
−(B(k))T

dΣ(k)

dτ
+ (Σ(k))−1d

2Σ(k)

dτ 2

}
,

d RT
j (Σ(k))−1Rj

dτ
= −RT

j B(k)Rj,
d2 RT

j (Σ(k))−1Rj

dτ 2
= −RT

j

dB(k)

dτ
Rj,

d log det H(k)

dτ
= −tr

{
(H(k))−1(Λ(k))TB(k)Λ(k)

}
,

d2 log det H(k)

dτ 2
=− tr

{
(H(k))−1(Λ(k))TB(k)Λ(k)(H(k))−1(Λ(k))TB(k)Λ(k)

}
− tr

{
(H(k))−1(Λ(k))T

dB(k)

dτ
Λ(k)

}
,
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where

dB(k)

dτ
= −(Σ(k))−1

{
2
dΣ(k)

dτ
(Σ(k))−1dΣ(k)

dτ
− d2Σ(k)

dτ 2

}
(Σ(k))−1.

Given the covariance Σ(k) (k = 1, 2) defined in Section 3, we can further simplify the

above derivatives and obtain

d log det Σ(k)

dτ
= tr

{
H(k)

}
,

d2 log det Σ(k)

dτ 2
= −tr

{
H(k)H(k)

}
,

d RT
j (Σ(k))−1Rj

dτ
= −RT

j (Σ(k))−1Λ(k)(Λ(k))T (Σ(k))−1Rj

d2 RT
j (Σ(k))−1Rj

dτ 2
= 2RT

j (Σ(k))−1Λ(k)H(k)(Λ(k))T (Σ(k))−1Rj,

d log det H(k)

dτ
= −tr

{
H(k)

}
,

d2 log det H(k)

dτ 2
= tr

{
H(k)H(k)

}
.

With the above quantities, one can then calculate the gradient and Hessian of the

profile log-likelihood pR for restricted maximum likelihood and use Newton’s method

to obtain an estimate of τ . Estimate of σ̂2
ε is calculated from (2.26), and σ̂2

γ = τ̂ σ̂2
ε.

Estimation with maximum likelihood follows similarly by applying Newton’s method

to pF and utilizing (2.25).

2.11 Additional Simulation Results

To benchmark the performance of the proposed network estimation procedure as

well as NetGSA, we carried out another two experiments, which we describe as the

third and fourth experiment following the earlier two in Section 2.4. These are also

the two experiments we mentioned when comparing the running time of NetGSA with

different variance estimation algorithms.

Our third experiment considers a undirected network with p = 160. The simula-
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tion design is similar to that in experiment 2, except that each of the 8 subnetworks

has a denser structure. Specifically, there are 80 edges connecting the 20 genes in each

subnetwork under the null. The probability of an interaction between subnetworks

is 0.3. Under the alternative, there is an increase of 0.6 in mean expression values

for varying proportions of genes (0%, 30%, 50% and 90%) for pathways 1–4 and 5–8.

Moreover, half of the interactions in the latter four subnetworks disappear.

The fourth experiment is about networks of size p = 400, which also illustrates

that the proposed method scales well with the size of the networks based on im-

plementation of the updated optimization algorithm. Again the topology is similar

to previous scenarios so that it consists of 20 subnetworks, each corresponding to a

pathway with 20 genes. The probability of an interaction between pathways is also

0.3. All subnetworks have the same topology and were generated as scale-free random

graphs such that there are 40 edges linking the 20 genes. We then divided the 20

subnetworks into two groups, with the first 10 in the first group, and the last 10 in

the second group. Under the null, mean expression values for all subnetworks were

set to be 1. Under the alternative, the first 6 subnetworks in each group remained to

have the same mean expression values, but 20%, 30%, 30% and 40% of genes in the

last four subnetworks had 0.5 unit higher expression values, respectively. In addition,

subnetwork structure for the second group under the alternative differed from their

null equivalent by 22.5%. This experiment is also of interest because we created a

setting where there are enough pathways in order for the permutation based Gene

Set Analysis to calibrate the number of permutations required.

Table 2.7 presents the deviance measures for estimating the networks with 200

replicates and sample sizes of 300 for both p = 160 and p = 400, when varying lev-

els of external information are available. In both experiments, we see performance

improvement in Matthews correlation coefficient and Frobenius norm loss as the struc-

tural information of the networks r increases. Under the alternative of p = 160, the
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slightly better performance in terms of Frobenius norm loss is due to the sparser

network structure relative to the null.

Table 2.7: Deviance measures for network estimation in experiment 3 and 4. FPR(%),
false positive rate in percentage; FNR(%), false negative rate in percentage;
MCC, Matthews correlation coefficient; Fnorm, Frobenius norm loss. The
best cases are highlighted in bold.

p = 160 p = 400
r FPR(%) FNR(%) MCC Fnorm FPR(%) FNR(%) MCC Fnorm

Null
0.0 7.78 4.75 0.59 0.65 2.87 5.85 0.51 0.38
0.2 6.81 5.03 0.61 0.63 2.44 8.15 0.53 0.37
0.8 2.60 4.41 0.78 0.49 0.81 5.63 0.74 0.25

Alternative
0.0 5.60 2.95 0.61 0.46 2.58 5.74 0.53 0.36
0.2 4.72 3.67 0.64 0.45 2.18 7.95 0.56 0.35
0.8 1.47 3.68 0.83 0.34 0.70 5.91 0.76 0.24

Table 2.8 shows the estimated powers after correcting for false discovery rate in the

third experiment with p = 160. While Gene Set Analysis with the competitive null

hypothesis tends to suggest that none of the pathways is significantly differentially ex-

pressed under the alternative, its equivalent with the self-contained null overestimates

powers for most pathways. In comparison, NetGSA with exact network information

slightly underestimates, but mostly correctly the significance of each subnetwork.

Moreover, the differences in powers between each pair of pathways (1 and 5, 2 and 6,

3 and 7, as well as 4 and 8) indicate that the topologies for each pair are different,

since both had the same amount of changes in mean expression values. When the

exact networks are unknown, we see improvement in detected powers for pathway 3,

4 and 8 as the structural information increases from 20% to 80%, which suggests that

a small amount of external knowledge is beneficial for making reliable inference using

the network-based method.

The estimated powers after correcting for false discovery rate in experiment 4 are

shown separately in Table 2.9, as there are 20 pathways with varying parameters.

When the exact networks with the correct partial correlation coefficients are known,
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Table 2.8: Powers based on false discovery rate with q∗ = 0.05 in experiment 3.
0.2/0.8 refer to NetGSA with 20%/80% external information; E refers
to NetGSA with the exact networks; T refers to the true power; GSA-
s/GSA-c refer to Gene Set Analysis with self-contained/competitive null
hypothesis in 1000 permutations, respectively. True powers are highlighted
in bold.

p = 160
Pathway 0.2 0.8 E T GSA-s GSA-c

1 0.04 0.04 0.04 0.05 0.12 0.00
2 0.52 0.50 0.44 0.54 0.69 0.00
3 0.64 0.70 0.80 0.87 0.95 0.00
4 0.72 0.76 0.97 0.99 0.99 0.00
5 0.55 0.52 0.12 0.17 0.48 0.00
6 0.48 0.50 0.20 0.25 0.43 0.00
7 0.60 0.54 0.52 0.64 0.78 0.00
8 0.70 0.72 0.80 0.88 0.91 0.00

NetGSA returns estimated powers that match the true powers very well, with high

powers for pathways 8, 9 and 10 which have significant changes in mean expression

values, moderately high powers for pathways 11–16 that have significant changes in

structures and high powers for pathways 17–20 with both changes. When there is 20%

external information on the underlying pathway topology, NetGSA is able to identify

mostly correctly the powers for pathway 7, 9, 10, and 17–20, with slight overestima-

tion for other pathways. However, the overall trend suggests that pathways 11–16

have higher powers than 1–6, which is consistent with the true power. There is also

improvement when 80% structural information is known, although the improvement

is minor compared to the amount of structural information required. In comparison,

Gene Set Analysis with the self-contained null hypothesis also performs well in rec-

ognizing correctly the differentially expressed pathways. On the other hand, Gene

Set Analysis with the competitive null is still not able to identify any differential ex-

pression among all 20 pathways. The conflicting results from Gene Set Analysis with

different null hypotheses also raise concerns as to which version to choose in practice.
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Table 2.9: Powers based on false discovery rate with q∗ = 0.05 in experiment 4.
0.2/0.8 refer to NetGSA with 20%/80% external information; E refers
to NetGSA with the exact networks; T refers to the true power; GSA-
s/GSA-c refer to Gene Set Analysis with self-contained/competitive null
hypothesis in 1000 permutations, respectively. True powers are highlighted
in bold.

p = 400
Pathway 0.2 0.8 E T GSA-s GSA-c

1 0.05 0.06 0.05 0.05 0.08 0.00
2 0.38 0.27 0.00 0.05 0.08 0.00
3 0.56 0.41 0.01 0.05 0.04 0.00
4 0.53 0.46 0.02 0.05 0.06 0.00
5 0.54 0.40 0.02 0.05 0.02 0.00
6 0.62 0.56 0.03 0.05 0.10 0.01
7 0.82 0.74 0.99 0.99 0.97 0.00
8 0.62 0.70 0.42 0.48 0.51 0.00
9 0.77 0.85 1.00 1.00 1.00 0.00
10 0.94 0.94 1.00 1.00 1.00 0.00
11 0.81 0.70 0.29 0.47 0.67 0.00
12 0.71 0.75 0.36 0.47 0.68 0.00
13 0.71 0.78 0.31 0.47 0.65 0.00
14 0.73 0.80 0.32 0.48 0.62 0.00
15 0.79 0.67 0.30 0.47 0.62 0.00
16 0.79 0.64 0.33 0.48 0.68 0.00
17 0.86 0.90 1.00 1.00 1.00 0.00
18 0.84 0.73 0.93 0.97 1.00 0.00
19 0.88 0.86 1.00 1.00 1.00 0.00
20 0.93 0.94 1.00 1.00 1.00 0.06
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CHAPTER III

Joint Structural Estimation of Multiple Graphical

Models

3.1 Background

As discussed in Chapter I, there has been a lot of work on estimating a single

graphical model. More recently, the focus has shifted to joint estimation of multiple

graphs due to the availability of heterogeneous data (see discussion in Guo et al.

(2011)). Guo et al. (2011) introduced a joint estimation method by adding a hierar-

chical penalty to the log-likelihood and is thus able to recover both the common and

the individual zeros in the precision matrices. Danaher et al. (2014) proposed a joint

graphical lasso to estimate multiple related graphical models by maximizing the log-

likelihood with generalized fused lasso or group lasso penalties, which can be solved

efficiently by a standard alternating directions method of multipliers algorithm (Boyd

et al., 2011). Both joint estimation methods rely on the assumption that there exists

only a single common structure across all graphs. Peterson et al. (2014) introduced a

Bayesian approach that links the estimation of the graphs via a Markov random field

prior for common structures. Further, a spike-and-slab prior is placed on the param-

eters that measures the similarity between graphs, thus relaxing the assumption on

sharing of structures across all graphs. Recent work by Zhu et al. (2014) investigates
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the joint estimation problem by pursuing the element-wise clustering of the network

structure over multiple graphs using a truncated `1 penalty on the pairwise differences

between the precision matrices.

Despite recent advances in joint estimation algorithms, theoretical properties of

the resulting estimators have not been fully investigated. For example, Guo et al.

(2011) discussed asymptotic properties of the resulting estimator by establishing re-

covery results of the common zeros across multiple precision matrices, which is the

focus of their method. Zhu et al. (2014) focused mainly on consistent estimation of

the entry-wise clustering structures with a brief mention of consistency of precision

matrices in a special temporal setting; however, no theoretical guarantees are pro-

vided for more general settings. Finally, many papers only present algorithms for

joint estimation of the Gaussian graphical models under consideration, but no theo-

retical properties of the estimates (e.g. Chiquet et al. (2011); Danaher et al. (2014);

Mohan et al. (2014)).

In this chapter, we investigate estimation of multiple graphical models under com-

plex structural relationships, assuming that there exists prior information on their

specification. In many applications, such information is available and may come from

prior knowledge in the literature of relationships among different node subsets of the

graphical models under consideration, or from clustering of all graphs. The approach

allows sharing common sub-graph components between different models and does not

require sharing of values for the same element across multiple inverse covariance ma-

trices. The proposed method, called JSEM (Joint Structural Estimation Method),

leverages structured sparsity patterns as illustrated in Section 3.2 and is a two-step

procedure. In the first step, we infer the sparse graphical models by incorporating the

available structure through a group lasso penalty. In the second step, we maximize

the Gaussian log-likelihood subject to the edge set constraints obtained from the pre-

vious step. We establish that the proposed estimator is consistent and establish a
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fast rate of convergence with respect to the Frobenius norm for the estimated inverse

covariance matrices. We also establish the graph selection consistency property of

JSEM under appropriately specified structured sparsity. When the structured spar-

sity pattern is slightly misspecified, we provide a modified estimator that reduces the

number of false positive edges identified due to prior information misspecification.

The numerical work shows that JSEM exhibits superior performance in controlling

both the number of false positive and false negative edges compared to available

methods. Moreover, JSEM is computationally appealing as the number of graphs

increases. Finally, we illustrate the method on a real data set dealing with climate

modeling, where the structural relationships between the various graphical models

reflects geographical information. Our results highlight the different roles forcing

factors on climate play at different regions of the United States.

In summary, we develop a very general method for the problem of joint estima-

tion of multiple Gaussian graphical models. The method can incorporate detailed

structural information regarding relationships between subsets of the graphical mod-

els, while in the absence of such information reduces to the group graphical lasso

procedure of Danaher et al. (2014). Further, we rigorously establish the consistent

recovery of the edge sets for JSEM, under suitable regularity conditions. Finally, a

modified estimator allows consistent recovery even in the presence of misspecification

of the structural relationships, thus further enhancing the applicability of JSEM.

This chapter is organized as follows. Section 3.2 discusses the structural rela-

tionships model used in this work and present the estimation procedure. Section 3.3

presents the theoretical properties of the proposed method, followed by simulation

studies in Section 3.4 and a real data analysis on climate modeling in Section 3.5.

We conclude with a discussion in Section 3.6. Most details of the theoretical analysis

and proofs are relegated to Section 3.7 and 3.8.
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3.2 The Joint Structural Estimation Method

Suppose we are interested in estimating K Gaussian graphical models from their

corresponding K data sets, assuming that the models exhibit complex relationships

between their edge sets. The data in the k-th model are organized in a nk× p matrix

Xk = (Xk
1, · · · ,Xk

p), where each row represents one observation from N (0,Σk), k =

1, . . . , K. Without loss of generality, we assume the observations from each model are

centered and standardized. For ease of presentation, it is assumed in the following that

the sample size nk = n for all k = 1, . . . , K, but the modeling framework can easily

accommodate unequal sample sizes. Our goal is to estimate jointly Ωk = (Σk)−1

for all k, under the assumption that the K corresponding graphs are related via

a structured sparsity pattern G . For example, consider climate models capturing

relationships between climate forcing variables defined over a pre-specified spatial

domain. Models that belong to the same climate zone may exhibit greater similarity

in their graph structures than those from different zones. Thus, one can define G

based on their spatial locations. Figure 3.1 gives an illustration of the structured

sparsity among four graphical models in terms of their adjacency matrices. This

pattern indicates that sharing of structures may occur at different subsets of the edge

set, which motivates us to develop a joint estimation method that can incorporate

this rich and complex structural information.

1 2 3 4

Figure 3.1: Image plots of the adjacency matrices for all four graphical models. The
black color represents presence of an edge. The structured sparsity pat-
tern is encoded in G = {(1, 2), (3, 4), (1, 3), (2, 4)}, i.e. each pair of graph-
ical models in G share a subset of edges.
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3.2.1 An Illustrative Example

We first illustrate how to extend the idea of neighborhood selection (Meinshausen

and Bühlmann, 2006) to multiple graphical models using the example in Figure 3.1.

For k = 1, . . . , K, let (θkij)p×p be the matrix of regression coefficients in graph k and θki

the vector of all θkij (j 6= i) for node i = 1, . . . , p. Unless otherwise stated, all vectors

are assumed to be column vectors. For node i in a single graph k, neighborhood

selection suggests estimating the coefficients θki by

min
θki

1

n
‖Xk

i −Xk
−iθ

k
i ‖2 + 2λ

∑
j 6=i

|θkij|,

where Xk
−i is Xk with the ith column removed, ‖·‖ represents the standard Euclidean

norm and λ is the regularization parameter. To achieve joint estimation, consider the

following regularized regression problem

min
Θi

1

n

K∑
k=1

‖Xk
i −Xk

−iθ
k
i ‖2 + 2Pλ(Θi), (3.1)

where K = 4,Θi = (θ1
i , . . . ,θ

K
i ) and Pλ(Θi) is a regularization term to be determined

next. Note that each column of Θi represents the regression coefficients from one

graphical model and each row of Θi corresponds to the four coefficients at the same

(i, j) pair.

The penalty Pλ(Θi) is chosen based on information from the structured sparsity

pattern G in Figure 3.1. Specifically, depending on j relative to i, we can group the

coefficients in the jth row of Θi as

(θ1
ij, θ

2
ij︸ ︷︷ ︸

θ
[1,2]
ij

, θ3
ij, θ

4
ij︸ ︷︷ ︸

θ
[3,4]
ij

) or (θ1
ij, θ

3
ij︸ ︷︷ ︸

θ
[1,3]
ij

, θ2
ij, θ

4
ij︸ ︷︷ ︸

θ
[2,4]
ij

)
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and set Pλ(Θi) to be the group lasso penalty

∑
j 6=i

∑
g=[1,2],[3,4]

λgij‖θ
[g]
ij ‖ or

∑
j 6=i

∑
g=[1,3],[2,4]

λgij‖θ
[g]
ij ‖.

The group lasso penalty forces the two coefficients in each group to be zero or nonzero

at the same time, leading to the same structure for graphical models belonging to the

same group.

The solution Θ̂i to (3.1) for i = 1, . . . , p can then be used for graph selection.

3.2.2 The General Case

Denote the structured sparsity pattern by G = ∪
1≤i<j≤p

G ij, where the union is over

all p(p−1)/2 pairs of potential edges. Each G ij is a partition of the set {1, 2, · · · , K}

and consists of prior knowledge on the structural similarity for the (i, j)th pair across

models. For example, G ij = {(1, 2), (3, . . . , K)}means that the graphs 1 and 2 exhibit

the same structure at (i, j), whereas the remaining ones behave the same at (i, j). It

is possible for all graphs to have the edge (i, j) or not have the edge (i, j) at the same

time, but we do not impose this restriction. Therefore the pattern G allows a more

flexible structural relationships among multiple graphical models.

For 1 ≤ i < j ≤ p and a group g ∈ G ij, denote by θ
[g]
ij the vector

(
θkij
)
k∈g, a

concatenation of all regression coefficients from graphs in g. The grouping for the

regression coefficients (θ1
ij, . . . , θ

K
ij ) is determined by G ij. Under correctly specified

G , all coefficients in the same group should be zero or nonzero simultaneously. For

k = 1, . . . , K, let Ek = {(i, j) : 1 ≤ i < j ≤ p, θkij 6= 0} be the set of undirected edges

in graph k. Denote by Sp+ the set of all positive definite matrices of size p × p and

SpE = {Ω ∈ Rp×p : ωij = 0, for all (i, j) /∈ E where i 6= j}.

The Joint Structural Estimation Method (JSEM) proceeds in the following two

steps.
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(1) For k = 1, . . . , K, we infer the sparse graphs Êk through the following group

lasso estimator, i.e. for i = 1, . . . , p,

min
Θi

1

n

K∑
k=1

‖Xk
i −Xk

−iθ
k
i ‖2 + 2

∑
j 6=i

∑
g∈G ij

λgij‖θ
[g]
ij ‖. (3.2)

Êk is estimated to be the set {(i, j) : max(θ̂kij, θ̂
k
ji) 6= 0}.

(2) We refit the model by

min
Ωk∈Sp+∩S

p

Êk

K∑
k=1

{tr(Σ̂kΩk)− log det(Ωk)}. (3.3)

Note that problems (3.2) and (3.3) are both convex and can thus be solved by

available convex optimization algorithms. In this work, we use the R-package grpreg

(Breheny and Huang , 2009) for implementation of the group lasso penalized opti-

mization (3.2) and glasso (Friedman et al., 2008) for solving (3.3).

3.2.3 Choice of Tuning Parameters

Like any other penalty-based method, JSEM requires selecting the tuning param-

eters λgij for all p regressions in (3.2). For our purpose, it suffices to use the same λ

for all 3-tuples (i, j, g), which significantly simplifies the computation. In simulations,

we generate a validation dataset and select λ by maximizing the log-likelihood on the

validation data using Ω̂k
λ (k = 1, . . . , K) estimated from the training data. In practice,

we recommend using the Bayesian information criterion (bic) coupled with stability

selection (Meinshausen and Bühlmann, 2010; Shah and Samworth, 2012) to select

graphical models that are both stable and interpretable. Specifically, for a given λ,

we define bic for the proposed method as

bic(λ) =
K∑
k=1

{
tr(Σ̂kΩ̂k

λ)− log det(Ω̂k
λ) +

log(nk)

nk
dfk

}
,
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where Ω̂k
λ (k = 1, . . . , K) are the estimated precision matrices from the data and the

degrees of freedom dfk = #{(i, j) : i < j, ω̂kλ,ij 6= 0}. The optimal tuning parameter

is thus λ∗ = arg minλ bic(λ).

3.3 Theoretical Results

In this section, we establish the theoretical properties of JSEM; specifically, the

norm consistency of the estimated inverse covariance matrices, as well as the con-

sistent recovery of the edge sets of the various graphical models under consideration

based on the structured sparsity pattern G .

3.3.1 Estimation Consistency

Under the pattern G , the set {(j, g) : j 6= i, g ∈ G ij} defines a partition of the

index set Ni
(p−1)K in Gi groups, where Ni

(p−1)K = {(j, k) : j 6= i, k = 1, . . . , K} and

1 ≤ Gi ≤ (p−1)K. Let J(Θi) = {(j, g) : j 6= i, g ∈ G ij,θ
[g]
ij 6= 0} be the set of nonzero

groups in the ith regression. We assume an overall sparsity at the group level, i.e.

the size of J(Θi) is si << Gi. Let

G0 = max
i=1,...,p

Gi, s0 = max
i=1,...,p

si, S0 =

p∑
i=1

si,

and |g| be the size of the group g with |gmax| = maxg∈G |g|.

Let M(p,K) represent the set of all p × K matrices. For ∆ = (δ1, . . . , δK) ∈

M(p,K) and a group g ⊂ {1, . . . , K}, denote by δ
[g]
j the vector composed of all δkj for

which k ∈ g. Write J = {J(Θ1), . . . , J(Θp)}, the collection of sets of nonzero groups

in all p regressions. For any J ∈ J , denote ∆J the nonzero matrix in M(p,K),

which has the same coordinates as ∆ on J and zero elsewhere. Let J c denote the

complement of the index set J . Write 0̄ the zero matrix in M(p,K). We make the

following assumptions.
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A1: For 0 < s < G0, there exists κ = κ(s) > 0, such that

min
J∈J ,|J |≤s

min
∆∈FJ

∑K
k=1 ‖Xkδk‖2/n

‖∆J‖2
F

≥ κ2(s), (3.4)

where for i satisfying J(Θi) = J , FJ is defined as

FJ = {∆ : ∆ ∈M(p,K)\{0̄},
∑

(j,g)∈Jc

λgij‖δ
[g]
j ‖ ≤ 3

∑
(j,g)∈J

λgij‖δ
[g]
j ‖}.

A2: For every k = 1, . . . , K and i = 1, . . . , p, Var(Xk
i ) = 1. Further, there exist

constants c0, d0 such that for every k,

0 < 1/c0 ≤ φmin(Σk
0) ≤ φmax(Σk

0) ≤ 1/d0 <∞.

Assumption A1 is a generalization of the Restricted Eigenvalue assumption for the

Lasso in Bickel et al. (2009) to the group lasso setting in our problem and requires

the super design matrix diag(X1, . . . ,XK) to be well conditioned over the restricted

set of vectors.

The equal variance requirement in assumption A2 can be easily achieved by ap-

propriate scaling of the data. The second part of the assumption explicitly excludes

singular or nearly singular covariance matrices and guarantees that Ωk
0 exists for every

model k = 1, . . . , K.

Now we are ready to state our main result.

Theorem III.1. Consider Ω̂k (k = 1, . . . , K) defined in (3.3). Let Assumption A1

with s = 2s0 and Assumption A2 be satisfied. For every regression defined in (3.2),

choose

λgij =
2√
nd0

(√
|gmax|+

π√
2

√
q logG0

)
, (3.5)
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with q > 1. Then with probability at least 1− 2pG1−q
0 , we have

1

K

K∑
k=1

‖Ω̂k − Ωk
0‖F ≤ O

(√
S0

nK

{√
|gmax|+

π√
2

√
q logG0

})
, (3.6)

where G0 is the maximum number of groups in all regressions, S0 is the total number

of relevant groups and |gmax| is the maximum group size.

Note the rate in (3.6) improves over estimating each precision matrix separately

as long as the sparsity pattern G is appropriately specified and nontrivial, i.e. there

exists structural similarity among the considered graphical models. For example, if

all K graphs share the same structure, then |gmax| = K and G0 = p− 1. Thus JSEM

achieves a convergence rate of the order of

O

(√
S0

n

{
1 +

π√
2

√
q log(p− 1)

K

})
.

In contrast, separate estimation of Ωk is known to be of the order of

O

√∑
k

‖Ωk,−‖0 log p/(nK)

 ,

where ‖Ωk,−‖0 denotes the number of nonzero off-diagonal entries in Ωk and
∑

k

is a short notation for
∑K

k=1. Thus JSEM has a lower estimation error rate than

separate estimation if S0 � ‖Ωk,−‖0, where � means that the expressions on both

sides are of the same order. On the other hand, the rate in (3.6) could be worse if the

sparsity pattern G is highly misspecified such that the number of nonzero parameters

S0 >
∑

k ‖Ωk,−‖0.
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3.3.2 Graph Selection Consistency

To understand how JSEM performs in selecting the edge sets of the graphical

models, it suffices to focus on each of the group lasso estimation problems (3.2) as

consistent graph selection relies on consistent variable selection in all p regressions.

Unlike the sign consistency in the lasso setting (Zhao and Yu, 2006), variable selection

properties with a group lasso penalty are much more complicated because the latter

selects whole groups rather than individual variables (see Basu et al. (2012) and

the discussion therein). The Basu et al. (2012) paper offers a generalization and

introduces the notion of direction consistency for the group lasso. Specifically, for a

nonzero vector ξ, its direction vector is defined as D(ξ) = ξ/‖ξ‖ and D(0) = 0. An

estimator Θ̂i of (3.2) is direction consistent at rate αn if for a sequence of positive

real numbers αn → 0,

P(‖D(θ̂
[g]
ij )−D(θ

[g]
0,ij)‖ < αn, ∀ (j, g) ∈ J(Θ0,i); θ̂

[g]
ij = 0, ∀ (j, g) /∈ J(Θ0,i))→ 1,

as n, p → ∞. In general, direction consistency does not guarantee sign consistency,

especially when there are multiple members within one group. However, if the group

is selected, all the members within the group are selected, which is sufficient for joint

neighborhood selection for each node and subsequent selection of graphs. Motivated

by the above idea, we establish the graph selection consistency property of JSEM in

Theorem III.2, which can be conveniently modified to adjust for the misspecification

in the prior information G . Before we present the main result, we need more notations.

Consider the group lasso estimation problem (3.2) for node i. For simplicity, we

discuss the estimation consistency properties with a common tuning parameter λ for

all (j, g). For k = 1, . . . , K, denote Xk
Ik

the n × |Ik| sub-matrix consisting of all

relevant variables from the kth model. In other words, for all j ∈ Ik, there exists a

group g 3 k such that (j, g) ∈ J(Θ0,i). Note the dependency of each index set Ik
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on i is made implicit here for notational convenience. Further, let ξk ∈ R|Ik| be a

vector indexed by Ik. The following assumption adapts the Uniform Irrepresentability

Condition (IC) in Basu et al. (2012) to our setting:

A3: There exists a positive constant η such that for all ξ = ((ξ1)T , . . . , (ξK)T )T ∈

R
∑

k |Ik| with max
(j,g)∈J(Θ0,i)

‖ξ[g]
j ‖ ≤ 1 and all (j, g) /∈ J(Θ0,i)

(∑
k∈g

[
(Xk

j )
TXk

Ik

{
(Xk

Ik
)TXk

Ik

}−1
ξk
]2
)1/2

≤ 1− η. (3.7)

Note the group level constraint (3.7) is required to hold for all p regressions and is

less stringent than the IC for the selection consistency of lasso.

Theorem III.2. Let Assumption A1 with s = s0, A2 and A3 be satisfied. Assume

further that the sparsity pattern G is correctly specified. For every regression defined

in (3.2), choose

λ ≥ max
i,(j,g)/∈J(Θ0,i)

1

η

1√
nd0

(√
|g|+ π√

2

√
q logG0

)
, (3.8)

αn ≥ max
i,(j,g)∈J(Θ0,i)

1

κ(s0)

1

‖θ[g]
0,ij‖

{
λ

√
s0

κ(s0)
+

1√
nd0

(√
|g|+ π√

2

√
q logG0

)}
, (3.9)

with q > 1. Then with probability at least 1− 4pG1−q
0 , we have simultaneously for all

i

1. θ̂
[g]
ij = 0, for all (j, g) /∈ J(Θ0,i),

2. ‖θ̂[g]
ij − θ

[g]
0,ij‖ < αn‖θ[g]

0,ij‖, and hence ‖D(θ̂
[g]
ij )−D(θ

[g]
0,ij)‖ < 2αn for all (j, g) ∈

J(Θ0,i).

Further, if αn < 1, then with the same probability,

Êk = {(i, j) : 1 ≤ i < j ≤ p, max(θ̂kij, θ̂
k
ji) 6= 0} (3.10)
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estimates correctly the true edge set Ek
0 for all k = 1, . . . , K.

Note the choice of λ in (3.8) is of the same order as the tuning parameter required

for estimation consistency in Theorem III.1. With the above choice of λ, αn can be

chosen to be of the order ofO(
√
s0(
√
|gmax|+

√
logG0)/

√
n). A proof of Theorem III.2

can be found in the Section 3.8.

The results in Theorem III.2 are stated under appropriately specified G . When G

is misspecified, it is possible that not all the members within a group have nonzero

effects. However, the group lasso penalty may fail to exclude members with actual

zero effect within the misspecified group, leading to the recovery of spurious edges.

The following result implies that the property of direction consistency helps identify

influential members within a group, i.e. those with noticeable nonzero effects.

Corollary III.3. Let Assumption A1 with s = s0, A2 and A3 be satisfied. For every

regression defined in (3.2), choose λ and αn as in Theorem III.2. Define

θ̂k,thrij = θ̂kij1{θ̂kij/‖θ̂
[g]
ij ‖ > 2αn}, ∀ k ∈ g, ∀ (j, g) ∈ J(Θ0,i).

If for all g ∈ G ,min
k∈g

θk0,ij/‖θ
[g]
0,ij‖ > 2αn, then with probability at least 1− 4pG1−q

0 ,

Êk,thr = {(i, j) : 1 ≤ i < j ≤ p,max(θ̂k,thrij , θ̂k,thrji ) 6= 0}

estimates correctly the true edge set Ek
0 for all k = 1, . . . , K.

The result in Corollary III.3 implies immediately that JSEM with an additional

thresholding step on the estimated direction vectors D(‖θ̂[g]
ij ‖) can be applied to

reduce false discoveries and thus improve selection of the edge sets under moderate

level of misspecification of the structured pattern G .
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3.4 Performance Evaluation

We present three simulation studies to evaluate the performance of JSEM. The

first study considers a single common structure across all graphical models, while the

second one features a more complex structured sparsity pattern. Other methods com-

pared include the separate estimation method Glasso, where the Graphical lasso by

Friedman et al. (2008) is applied to each graphical model separately, joint estimation

by Guo et al. (2011), denoted by JEM-G, and the Joint Graphical Lasso denote by

Joint Graphical Lasso (JGL) by Danaher et al. (2014). Our results show that JSEM

outperforms competing methods in both settings, even when the structured pattern

is moderately misspecified. The third study compares JSEM with its thresholded

version under misspecified G using the experimental settings of the first two studies.

3.4.1 Simulation Study 1

In our first simulation, we consider K = 5, with each graphical model comprising

of p = 100 variables. The covariance matrices Σk (k = 1, . . . , K) are constructed

as follows: we first generate a scale-free network with edge set E0 as the common

structure shared across all graphs, shown in the left panel of Figure 3.2. To generate

the edge set Ek, we randomly pick a pair of (i, j), i < j such that (i, j) /∈ E0 and

add it to Ek. This procedure is repeated ρ|E0| times for each k, where ρ is a positive

number corresponding to the ratio of individual edges to common ones. In this

example, we take ρ = 0.1 to allow a high level of structural similarity across graphs.

Thus, all graphical models have the same degree of sparsity, with 108 or 2.2% of

all possible edges present. Note that due to the sparse structure of each graph, the

proportion of shared non-edges (i.e. common zeros in the adjacency matrices) among

all models is 98%. Given the edge set Ek, we then construct the inverse covariance

matrix with the nonzero off-diagonal entries in Ωk being uniformly generated from

the [−1,−0.5] ∪ [0.5, 1] interval. The positive definiteness of Ωk is guaranteed by
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setting the diagonal elements to be |φmin(Ωk)| + 0.1. The covariance matrix Σk is

then determined by

Σk
ij = (Ωk)−1

ij /
√

(Ωk)−1
ii (Ωk)−1

jj .

By construction, each Σk corresponds to the correlation matrix for the kth graphical

model. The sparsity pattern supplied for JSEM is G = {1, . . . , K}, i.e. assuming

all graphical models share the same structure. Thus, the parameter ρ indicates the

amount of pattern misspecification as compared to the true edge set structure.
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Figure 3.2: Simulation study 1: left panel shows the image plot of the adjacency ma-
trix corresponding to the shared structure across all graphs. Each black
cell indicates presence of an edge. The right panel shows the ROC curves
for sample size nk = 50: Glasso (dotted), JEM-G (dotdash), GGL (solid),
FGL (dashed), JSEM (longdash).

To compare the overall performance of all methods, we generate nk = 50 samples

from each k = 1, . . . , K and compute the average false positive and true positive rates

of the estimated inverse covariance matrices over a fine grid of tuning parameters from

20 replications. This gives the ROC curves as shown in the right panel of Figure 3.2.

JGL provides two options for constraining the similarity among multiple graphical

models, i.e. GGL and FGL, corresponding to the group graphical lasso and fused
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lasso regularization, respectively. Since each of the two methods in JGL requires two

tuning parameters, one for controlling the sparsity of individual graph and the other

for controlling the similarity across all graphs, we compute the ROC curves over a fine

grid of the sparsity regularization parameter while fixing the similarity regularization

at four different levels (from low to high similarity), and plot the one that has the

largest value of area under the curve (AUC). In this simulation, it turns out that

GGL performs the best when there is only regularization on the similarity, i.e. a

group lasso penalty on the same entry across all K inverse covariance matrices, which

we expect to behave close to JSEM we propose. In the right panel of Figure 3.2, the

ROC curve for GGL falls slightly below that of JSEM. In comparison, FGL does not

perform as well. The best curve we get from FGL shows some advantage over the

separate estimation Glasso, but mostly falls below curves from other joint estimation

methods. JEM-G performs well and is very competitive compared to GGL and JSEM

for very low false positive and high true positive rates, but starts falling behind when

the false positive rate is greater than 5%. In this example, JSEM performs the best

with the highest ROC curve throughout the domain.

Next, we computed the estimators from different methods on a training dataset

with nk = 50 samples for each k = 1, . . . , K, using the tuning parameters selected

by maximizing the log-likelihood of a separate validation dataset generated from the

same distribution and of the same size. Results are summarized in table 3.1, which

compares the estimated inverse covariance matrices with the population version in

the true model based on 50 replications under falsely discovered edges (FP), falsely

deleted edges (FN), structural hamming distance (SHD), F1 score (F1) and Frobenius

norm loss (FL). F1 score measures the accuracy of a test by summarizing information

from both FP and FN, where it reaches its best value at 1 and worst at 0. The results

indicate that although GGL and FGL are good at identifying true edges (low FN),

they tend to produce a high number of false positives. In comparison, the proposed
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method JSEM achieves a balance and obtains the highest F1 score, as well as the

lowest Frobenius norm loss. The JEM-G performs slightly worse, but still well above

the other three methods.

Table 3.1: Performance of different regularization methods for estimating graphical
models in Simulation Study 1: average FP, FN, SHD, F1 and FL (SE) for
sample size nk = 50. The best cases are highlighted in bold.
Method FP FN SHD F1 FL
Glasso 411(9) 36(2) 447(9) 0.24(0.01) 0.63(0.01)
JEM-G 24(3) 29(3) 53(5) 0.75(0.02) 0.32(0.03)
GGL 1482(24) 6(1) 1488(24) 0.12(0.002) 0.55(0.01)
FGL 653(16) 20(2) 674(17) 0.21(0.01) 0.60(0.01)
JSEM 21(5) 24(3) 45(6) 0.79(0.03) 0.27(0.02)

3.4.2 Simulation Study 2

In our second study, we consider a more structured pattern with K = 10 graphs.

Each graphical model contains p = 50 variables. Figure 3.3 shows heatmaps of the

adjacency matrices of the 10 models.

1 3 5 7 9

2 4 6 8 10

Figure 3.3: Simulation study 2: image plots of the adjacency matrices from all graph-
ical models. Graphs in the same row share the same connectivity pattern
at the bottom right block, whereas graphs in the same column share the
same pattern at remaining locations.
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This pattern is constructed as follows: we first generate the adjacency matrices

corresponding to five distinct p-dimensional scale-free networks, so that the adjacency

matrices in each column of the plot are the same. Next, we replace the connectivity

structure of the bottom right diagonal block of size p/2 by p/2 within each adjacency

matrix with that of another two distinct p/2-dimensional scale-free networks, so that

graphical models in each row exhibit the same connectivity pattern, but across rows

behave differently in the bottom right block of their adjacency matrices. Note that by

replacing the connectivity structure among the second half of nodes, the relationships

between the first half and the second half of nodes are also altered. In summary, this

structured pattern illustrates how different subsets of the edge set across multiple

graphical models can be similar, as well as exhibit differences in their topologies; to

the best of our knowledge, such complex relationships have not been studied in the

literature. In this setting, the proportion of shared non-edges (common zeros in the

precision matrices) among all graphical models is about 60%.

Once the adjacency matrix or equivalently the edge set Ek is constructed, we gen-

erate the covariance and inverse covariance matrices similarly to our first simulation

study. We also study the effect of misspecification in the input sparsity pattern by

varying ρ = 0, 0.2, 0.4, 0.6, 0.8, 1.

At each level of pattern misspecification, we generate nk = 100 independent sam-

ples for each k = 1, . . . , K and compare the ROC curves from different methods

based on 20 replications in Figure 3.4. Again, the ROC curves for GGL and FGL are

optimized first with respect to the similarity regularization in terms of AUC. When

ρ < 0.6, the results show a superior performance of JSEM, since it effectively in-

corporates available prior information across the various graphical models. JEM-G

also yields a reasonably high ROC curve by taking advantage of the shared non-edges

among all models. When ρ ≥ 0.6, JSEM starts suffering from the large amount of

pattern misspecification and behaving not much better than even the separate esti-
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mation method Glasso, which is the case for other joint estimation methods as well.

In all cases, GGL and FGL behave about the same or worse than Glasso, due to the

complex edge set structures shared only within subsets of all graphical models.
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Figure 3.4: Simulation study 2: ROC curves for sample size nk = 100: Glasso (dot-
ted), JEM-G (dotdash), GGL (solid), FGL (dashed), JSEM (long-dash).
The misspecification ratio ρ varies from (left to right): 0, 0.2, 0.4 (top row)
and 0.6, 0.8, 1 (bottom row).

We then compare the performance of different methods in identifying the true

graphs and estimating the inverse covariance matrices at the optimal choice of tuning

parameters. Table 3.2 shows the deviance measures between the estimated and the

true inverse covariance matrices based on 50 replications for varying levels of pattern

misspecification. In all cases, GGL and FGL have low FN, but very high FP, thus

resulting in low F1 scores. For ρ < 0.6, JSEM gives a much better control over false

positives and yields the highest F1 score and lowest Frobenius norm loss. JEM-G

is also very competitive in controlling false positive edges and comes next in overall
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performance. When ρ ≥ 0.6, the advantage of using a joint estimation method begins

to diminish due to the large amount of misspecification and separate estimation is

recommended.

Table 3.2: Performance of different regularization methods for estimating graphical
models in Simulation Study 2: average FP, FN, SHD, F1 and FL (SE) for
sample size nk = 100. The best cases are highlighted in bold.

ρ Method FP FN SHD F1 FL

0

Glasso 300(4) 26(1) 326(5) 0.41(0.005) 0.54(0.01)
JEM-G 120(4) 31(1) 152(4) 0.59 (0.01) 0.38(0.02)
GGL 640(10) 8(1) 648(9) 0.29 (0.003) 0.56(0.01)
FGL 519(9) 16(1) 535(9) 0.31(0.004) 0.61(0.01)
JSEM 55(3) 28(2) 83(4) 0.73(0.01) 0.30(0.01)

0.2

Glasso 319(5) 34(1) 352(5) 0.43(0.004) 0.52(0.01)
JEM-G 168(5) 42(2) 210(5) 0.54(0.01) 0.36(0.01)
GGL 523(6) 18(1) 541(6) 0.35(0.003) 0.54(0.01)
FGL 503(9) 23(1) 526(10) 0.35(0.01) 0.61(0.01)
JSEM 107(4) 40(2) 147(5) 0.63(0.01) 0.33 (0.01)

0.4

Glasso 302(4) 44(2) 346(5) 0.46(0.01) 0.49(0.01)
JEM-G 213(6) 53(2) 266(6) 0.51(0.01) 0.37(0.01)
GGL 536(5) 21(1) 558(6) 0.38(0.003) 0.50(0.01)
FGL 490(9) 31(1) 521(9) 0.38(0.005) 0.58(0.01)
JSEM 165 (5) 49(2) 214(5) 0.57(0.01) 0.35(0.01)

0.6

Glasso 316(4) 49(2) 364(4) 0.49(0.004) 0.47(0.01)
JEM-G 262(6) 58(2) 319(6) 0.51(0.01) 0.36(0.01)
GGL 542(6) 25(2) 566(6) 0.41(0.003) 0.48(0.01)
FGL 476(8) 38(2) 514(8) 0.42(0.004) 0.59(0.004)
JSEM 206(5) 56(2) 261(6) 0.56(0.01) 0.37(0.01)

0.8

Glasso 338(4) 49(2) 387(4) 0.51(0.003) 0.46(0.01)
JEM-G 263(4) 65(2) 327(5) 0.53(0.01) 0.38(0.01)
GGL 589(5) 22(1) 611(5) 0.43(0.002) 0.49(0.01)
FGL 466(7) 44(2) 510(7) 0.45(0.004) 0.60(0.004)
JSEM 240(4) 64(2) 304(5) 0.55(0.01) 0.39(0.01)

1.0

Glasso 331(5) 61(2) 392(5) 0.52(0.005) 0.46(0.01)
JEM-G 257(6) 83(2) 340(5) 0.53(0.01) 0.38 (0.01)
GGL 576(6) 29 (1) 605(6) 0.45(0.003) 0.49(0.01)
FGL 454(9) 55(2) 509(9) 0.46(0.01) 0.60(0.005)
JSEM 259(5) 75(2) 334(6) 0.54(0.01) 0.40(0.01)

While evaluating the performance in estimating multiple graphical models, we

notice that GGL and FGL are very computationally demanding compared to JEM-G
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and JSEM; especially FGL due to the fused penalty when the number of models K

is large. This might limit their applicability in practice.

3.4.3 Simulation Study 3

Finally, we illustrate how direction consistency helps improve the estimation of

graphical models using the previous two experimental settings. Table 3.3 presents the

performance of thresholded JSEM when G is moderately misspecified with individual

to common ratio ρ = 0.3, based on 50 replications. The tuning parameter λ is chosen

via maximum likelihood over a separate validation dataset. At the optimal λ, the

within group thresholding parameter αn = n−0.25/2 is again selected via maximum

likelihood. Note that we use a larger sample size nk = 200 in both settings to

ensure that the Uniform IC required for direction consistency holds. The advantage

of thresholding within groups is obvious in both settings, where the thresholded JSEM

significantly reduces the number of false positive edges with only a small loss in the

presence of false negative edges. One may notice the slight increase in Frobenius norm

loss for thresholded JSEM, which is likely due to the increased false negative edges.

Nevertheless, the thresholded version of JSEM obtains higher F1 scores, indicating

an overall improvement in the structural estimates of all graphs.

Table 3.3: Performance of JSEM and thresholded JSEM with misspecified groups
(ρ = 0.3): average FP, FN, SHD, F1 and FL (SE) for sample size nk = 200.
The better cases are highlighted in bold.

K = 5, p = 100 K = 10, p = 40
G = {1, 2, 3, 4, 5} G as in Figure 3.3

Method FP FN SHD F1 FL FP FN SHD F1 FL

JSEM 76(6) 15(1) 91(6) 0.71 0.15 51(3) 4(0.4) 55(3) 0.71 0.19
ThJSEM 32(4) 21(1) 54(4) 0.80 0.16 36(2) 6(0.5) 41(2) 0.76 0.20
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3.5 Application to Climate Modeling

To illustrate the performance of our joint estimation method in inferring real-world

networks, we apply JSEM on a climate dataset to study climate forcing at multiple

locations in North America. Recent assessments from the Intergovernmental Panel on

Climate Change (IPCC, Stocker et al., 2013) indicate multiple lines of evidence for cli-

mate change in the past century and these changes have caused significant impacts on

natural and human systems. One common approach towards understanding the cli-

mate system has been attribution studies of detected changes to internal and external

forcing mechanisms (such as solar radiation, greenhouse gases, etc.) using simulated

climate models. Lozano et al. (2009) used spatial-temporal modeling to study the

attribution of climate forcing mechanisms from observed data. In this work, we pro-

vide an alternative to learn the complex interactions among climate forcing factors

exhibited across different climate zones based on observed data.

The data we use in this study data come from multiple sources and are collected

under different resolutions for varying lengths of time periods. Specifically, the sources

we consider include:

(1) CRU: Climate Research Unit provides monthly climatology data (http://www.

cru.uea.ac.uk/cru/data) for 10 surface variables including mean tempera-

ture (TMP), diurnal temperature range (DTR), maximum temperature (TMX),

minimum temperature (TMN), precipitation (PRE), vapor pressure (VAP),

cloud cover (CLD), rainday counts (WET), potential evapotranspiration (PET)

and frost days (FRS) from 1901 to 2013 at the 0.5 degree latitude and longitude

resolution. Note these high-resolution gridded datasets are constructed using

not only directly observed data, but also derived and estimated values with

well-known formulae wherever the observed data are not available (see details

in Harris et al. (2014)).
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(2) NASA: The Goddard Earth Sciences Data and Information Services Center

(GES DISC) from the National Aeronautics and Space Administration (NASA)

has collected aerosol measurements using Moderate Resolution Imaging Spec-

troradiometer (MODIS) on satellites. The dataset obtained from Terra satellite

consists of monthly average aerosol optical depth (AER) at the 1 degree latitude

by 1 degree longitude resolution from March 2000 to August 2014.

(3) NCDC: The National Solar Radiation Database (NSRDB) 1991-2010 (a collab-

orative project between The National Renewable Energy Laboratory (NREL)

and the National Climatic Data Center (NCDC)) provides statistical summaries

for solar data (ftp://ftp.ncdc.noaa.gov/pub/data/nsrdb-solar/) from 860

different locations across the United States. The locations are recorded using

their latitude, longitude and altitude. We used measurements for global hori-

zontal solar radiation (SOL) at 242 class I stations that have high-quality data.

(4) NOAA: The climate data center of National Oceanic and Atmospheric Admin-

istration (NOAA) has archived the trace gases data, including carbon diox-

ide (CO2), carbon monoxide (CO), methane (CH4) and hydrogen (H2), from

170 worldwide stations (http://www.esrl.noaa.gov/gmd/dv/ftpdata.html).

These datasets consist of measurements spanning different time periods, with

CO2 ranging from 1968 to 2013 (the longest) and H2 from 1992 to 2005 (the

shortest). In addition, they come with relatively low resolution compared to

other variables due to the limited number of stations.

To ensure compatibility and consistency among multiple data sources, we per-

formed the following pre-processing:

(1) Normalization: We first transformed each dataset into monthly observations

in a standard format including longitude, latitude, altitude (when available),
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date, variable, value, unit, and source. We focus on a 54-month time period

from January 2001 to June 2005 where data for all variables are available.

(2) Interpolation and smoothing: We interpolated the monthly data from NCDC

and NOAA onto a common 2.5 by 2.5 degree grid for North America using thin

plate splines. Since the data from CRU and NASA were provided for a finer

resolution grid, thin plate splines were used to first interpolate the data onto

a grid of the same resolution as the source data. Then we performed spatial

averaging to get data on the common 2.5 by 2.5 degree grid.

(3) Seasonality and autocorrelation: We reduced the short-term autocorrelation by

aggregating the time series for each variable at each location into bins of 3-month

intervals and taking first differences on the quarterly data. The resulting data,

which consists of 17 measurements, are assumed to be independent samples for

the corresponding variable at the specified location.

Next, we randomly select K = 27 locations spanning all types of climate from the 2.5

by 2.5 degree grid of North America (see Figure 3.5). This gives us an n× p matrix

at each of the 27 locations, corresponding to n = 17 observations for the p = 16

variables on climate forcing. At each location, the conditional dependency network

is of dimension p× p, which has 16× 15/2 = 120 edges to be inferred.

Our goal is to infer the conditional dependency networks for all locations simul-

taneously based on available spatial information, obtained from the classification of

climate zones in Kottek et al. (2006). Specifically, it is assumed that AER and SOL

have one common connectivity pattern with other variables in the geographical south

of North America and another common pattern in the north. The definition of the

south and north is given in Figure 3.5. Variables on greenhouse gases (CO2, CO, CH4

and H2) are assumed to interact with other variables (except AER and SOL) in the

same fashion within each of the four climate groups, i.e. midlatitude desert, semiarid
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steppe, humid subtropical and humid continental. The connectivity patterns among

all remaining variables are assumed to be the same within each of the six distinct

climate zones in Figure 3.5.

● ●

●

●

●

●

●

●

●

Midlatitude Desert
Semiarid Steppe (hot arid)
Semiarid Steppe (cold arid)
Humid Subtropical
Humid Continental (hot summer)
Humid Continental (warm summer)

Figure 3.5: The selected 27 locations based on climate classification. The solid line
separates the south and north of North America and corresponds to lati-
tude 39 N.

Since there is no separate validation data available, we used bic on the normalized

data to select the tuning parameter λ for the proposed JSEM. At the optimal λ,

we applied our method coupled with complementary pairs stability selection (Shah

and Samworth, 2012) to identify the interaction networks at the 27 locations. To

perform stability selection, we run our method 50 times on two randomly drawn

complementary pairs of size 8 and 9, and kept only edges that are selected over 70%

of the time.

Figure 3.6 shows the estimated networks at the six distinct climate zones. Al-

though we do not impose the assumption on sharing of a single common structure

across all locations, there are common edges (solid) identified for all climate zones,

reflecting key features of climate forcing regardless of the location. Such relationships
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are consistent with how the corresponding climate forcing variables are defined as

well as how the data are collected (Harris et al., 2014). The Midlatitude and Semi-

arid Steppe climate zones have an edge between DTR and CLD, indicating that they

are correlated conditional on all other variables. Similar relationships have also been

found over drier regions in Zhou et al. (2009). In addition, we notice that the inferred

networks at neighboring climate zones are more similar, such as Semiarid Steppe (hot

arid and cold arid), or Humid Continental (hot summer and warm summer), whereas

those with dramatically different climate show significantly different connectivity pat-

terns. These common and individual interactions can prove critical in understanding

the mechanisms of climate forcing, and facilitate decision making in maintaining the

best environmental results.
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Figure 3.6: Estimated climate networks at the six distinct climate zones using JSEM,
with edges shared across all locations solid and differential edges dashed.

As a comparison, we also applied other joint estimation methods JEM-G and

GGL on the same data. Here we do not present the result from FGL due to the
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extremely high computational cost caused by the fused penalty with a large K.

For each of JEM-G and GGL, we used bic on the normalized data to select

the optimal tuning parameters and coupled each method with complementary pairs

stability selection (Shah and Samworth, 2012) to infer the related climate networks.

As in the case of JSEM, we run each method 50 times on two randomly drawn

complementary pairs of size 8 and 9 and kept only edges that are selected above

a certain threshold. The selection probability used for JSEM is 70%. However, as

the two simulation studies both indicate JEM-G and GGL tend to produce higher

false positives, especially GGL, we increased the probability threshold for JEM-G and

GGL to 90% and 100%, respectively. The results are shown in Figure 3.7 and 3.8.
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Figure 3.7: Estimated climate networks at the six distinct climate zones using
JEM-G, with edges shared across all locations solid and differential edges
dashed.

One can see clearly that the estimated networks between JEM-G and GGL exhibit

quite different connectivity patterns from those inferred from JSEM. In particular,

the results from GGL seem to suggest strong conditional dependence structure among
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Figure 3.8: Estimated climate networks at the six distinct climate zones using GGL,
with edges shared across all locations solid and differential edges dashed.

a subset of variables, which distinguishes itself from JEM-G and JSEM. On the other

hand, the results from JEM-G and JSEM are more similar. For example, common

edges identified using JEM-G, such as TMN–TMP, TMP–TMX, PRE–WET, also

show up under JSEM. The common edge between CLD and CO2 is found at all

locations except Midlatitude Desert under JSEM, whereas the edge between PET

and SOL identified using JSEM exists everywhere except at Semiarid Steppe (cold

arid) under JEM-G. Note although JEM-G does not require external information on

the structural relationships across graphs, the inferred networks respect roughly the

spatial pattern of all climate zones. For instance, Humid Continental (hot summer

and cool summer) are more similar.
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3.6 Discussion

This work introduced a joint structural estimation method that incorporates a pri-

ori known structural relationships between multiple graphical models. Under appro-

priately specified sparsity patterns, the proposed method borrows information across

models wherever there is sharing of structures or substructures, leading to improved

performance in network estimation. Further, when the structured sparsity pattern is

moderately misspecified, we establish that an additional step of hard thresholding on

the estimated groups of coefficients obtained from the penalized regression modeling

employed helps control the type-I error introduced by the misspecification. In prac-

tice, if not all entry-wise structural relationships across multiple graphical models are

available, it is recommended to add restrictions at mainly edge pairs that are likely to

share the same structures instead of providing a highly misspecified structured spar-

sity pattern. Therefore, the proposed method works well in situations where there is

a large number of graphical models, but external similarity information is available

only for sub-components of the models.

3.7 Proof of Theorem III.1

For convenience, we shall use
∑

k as a short notation for
∑K

k=1 throughout the

proof when it is clear.

The first lemma is borrowed from (Basu et al., 2012, Lemma A.2). We state the

result here for completeness. Please refer to their paper for proof of the lemma.

Lemma III.4. Let Zk×1 ∼ N (0,Σ). Then for any t > 0, the following inequalities

hold:

P
(
|‖Z‖ − E‖Z‖| > t

)
≤ 2 exp

(
− 2t2

π2‖Σ‖

)
, E‖Z‖ ≤

√
k
√
‖Σ‖.

To prove the rate of convergence in Theorem III.1, we look at three key steps:

nodewise regression in subsection 3.7.1, selecting the edge set in 3.7.2 and maximum
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likelihood refitting in 3.7.3.

3.7.1 Regression

For j 6= i, g ∈ G ij, k ∈ g, let εki = Xk
i −

∑
j 6=i θ

k
0,ijX

k
j . Denote ζkij = 〈εki ,Xk

j 〉/n

and ζ
[g]
ij = (ζkij)k∈g ∈ R|g|. Consider the random event A =

⋂
i,j 6=i,g

Agij, where Agij =

{2‖ζ [g]
ij ‖ ≤ λgij}. The next lemma provides a concentration bound for the random

event A used in the proof of Theorem III.1.

Lemma III.5. Consider the random event A =
⋂

i,j 6=i,g
Agij, where Agij = {2‖ζ [g]

ij ‖ ≤

λgij}. For each combination of (i, j 6= i, g), choose

λgij ≥ max
k∈g

2√
nωk0,ii

(√
|g|+ π√

2

√
q logG0

)
. (3.11)

where q > 1 and G0 is the maximum number of groups in all regressions. Then

P(A) ≥ 1− 2pG1−q
0 .

Proof of Lemma III.5. By Bonferroni inequality, P(Ac) ≤
∑

i,j 6=i,g
P({Agij}c). For any

3-tuple of (i, j 6= i, g), it suffices to find an upper bound for P({Agij}c). Denote

Ψk
j = (Xk

j )
TXk

j/n and Φk
j = Xk

j (X
k
j )
T/n, both of rank 1. The eigendecomposition of

Φk
j is Φk

j = QkVk(Qk)T , where Qk is the orthogonal matrix whose columns are the

eigenvectors of Φk
j and Vk is the diagonal matrix whose diagonal elements are the

corresponding eigenvalues. It is clear that the only non-zero eigenvalue of Φk
j is given

by γkj = ‖Xk
j‖2/n = 1. Let Qk

1 be the eigenvector corresponding to γkj . Therefore

‖ζ [g]
ij ‖2 =

∑
k∈g

(
ζkij
)2

=
∑
k∈g

1

n2
(εki )

TXk
j (X

k
j )
T εki =

1

n

∑
k∈g

(εki )
TQkVk(Qk)T εki ,

=
1

n

∑
k∈g

(εki )
TQk

1γ
k
j (Qk

1)T εki =
1

n
‖Z [g]‖2,
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where Z [g] = (Zk)k∈g with Zk = (Qk
1)T εki . By definition of εki , Var(Zk) = 1/ωk0,ii and

Var(Z [g]) is a diagonal matrix with the diagonal (1/ωk0,ii)k∈g. Note that the indepen-

dence of Zk and Zk′ (k 6= k′) comes from the fact that εki and εk
′
i are independent.

Therefore

P({Agij}c) = P(‖Z [g]‖/
√
n > λgij/2) = P(‖Z [g]‖ − E‖Z [g]‖ >

√
nλgij/2− E‖Z [g]‖).

Applying Lemma III.4,

P({Agij}c) ≤ P(|‖Z [g]‖ − E‖Z [g]‖| >
√
nλgij/2− E‖Z [g]‖)

≤ 2 exp

{
− 2

π2‖Var(Z [g])‖

(√
nλgij
2
− E‖Z [g]‖

)2
}
.

Choose λgij such that the right-hand side of above inequality is less than 2G−q0 for

some positive parameter q. Then

λgij ≥
2√
n

(
E‖Z [g]‖+

π√
2

√
q logG0

√
‖Var(Z [g])‖

)
,

and is satisfied if

λgij ≥ max
k∈g

2√
nωk0,ii

(√
|g|+ π√

2

√
q logG0

)
.

With the above choice of λgij,

P(Ac) ≤
p∑
i=1

∑
j 6=i

∑
g∈G ij

P({Agij}c) ≤ 2pG1−q
0 ,

or equivalently, P(A) ≥ 1− 2pG1−q
0 .
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By Lemma III.5, if we choose λgij as

λgij ≥ max
k∈g

2√
nωk0,ii

(√
|g|+ π√

2

√
q logG0

)
(3.12)

with q > 1, then P(A) ≥ 1− 2pG1−q
0 . The next theorem establishes oracle bounds for

Θ̂i −Θ0,i under the chosen λgij.

Theorem III.6. For i = 1, . . . , p, consider the problem (3.2) and choose λgij as

in (3.12). Let Θ̂i be the solution to problem (3.2). If Assumption A1 holds with

κ2 = κ2(s0), then for any solution Θ̂i of problem (3.2), we have on the event A

∑
j 6=i,g∈G ij

‖θ̂[g]
ij − θ

[g]
0,ij‖ ≤

16

κ2λmin

∑
(j,g)∈J(Θ0,i)

(λgij)
2, (3.13)

M(Θ̂i) ≤
64φmax

κ2λ2
min

∑
(j,g)∈J(Θ0,i)

(λgij)
2, (3.14)

where λmin = min
i,j 6=i,g∈G ij

λgij,M(Θ̂i) = |J(Θ̂i)| and φmax is the maximal eigenvalue of

(Xk)TXk/n for all k = 1, · · · , K. If, in addition, Assumption A1 holds with κ2(2s0),

then for any solution Θ̂i of problem (3.2) we have that

‖Θ̂i −Θ0,i‖F ≤
4
√

10

κ2(2s0)

∑
(j,g)∈J(Θ0,i)

(λgij)
2

λmin
√
si

. (3.15)

Remark III.7. By Assumption A2, ωk0,ii ≥ φmin(Ωk
0) = φ−1

max(Σk
0) ≥ d0 for all i, k.

Thus, (3.12) implies that we can choose λgij = λmax as

λmax =
2√
nd0

(√
|gmax|+

π√
2

√
q logG0

)
, (3.16)

with q > 1 for all 3-tuples (i, j, g). Then we can rewrite the oracle inequalities in
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(3.14) and (3.15) as

M(Θ̂i) ≤
64φmax

κ2
si, (3.17)

‖Θ̂i −Θ0,i‖F ≤
8
√

10

κ2(2s0)
√
d0

(√
|gmax|+

π√
2

√
q logG0

)√
si
n
. (3.18)

Proof of Theorem III.6. For all Θi ∈M(p− 1, K), by an adaptive argument of Lemma

3.1 of Lounici et al. (2011), it is straightforward to verify the following:

K∑
k=1

1

n
‖Xk
−i(θ̂

k
i − θk0,i)‖2 +

∑
j 6=i

∑
g∈Gij

λgij‖θ̂
[g]
ij − θ

[g]
ij ‖

≤
K∑
k=1

1

n
‖Xk
−i(θ

k
i − θk0,i)‖2 + 4

∑
(j,g)∈J(θi)

λgij min
(
‖θ[g]

ij ‖, ‖θ̂
[g]
ij − θ

[g]
ij ‖
)
, (3.19)

{∑
k∈g

〈n−1Xk
j ,X

k
−i(θ̂

k
i − θk0,i)〉2

}1/2

≤
3λgij

2
, (3.20)

M(Θ̂i) ≤
4φmax

λ2
min

K∑
k=1

1

nk
‖Xk
−i(θ̂

k
i − θk0,i)‖2, (3.21)

where λmin and φmax are defined in Theorem III.6.

Let ∆ be a matrix in M(p,K) such that δkj = θ̂kij − θk0,ij for j 6= i and δki = 0 for

all k. We would like to first find an upper bound for B2, where

B2 :=
∑
k

1

n
‖Xk
−i(θ̂

k
i − θk0,i)‖2 =

∑
k

1

n
‖Xkδk‖2.

By the inequality (3.19) with Θi = Θ0,i, we have, on the event A, that

∑
j 6=i

∑
g∈G ij

λgij‖δ
[g]
j ‖ ≤ B2 +

∑
j 6=i

∑
g∈G ij

λgij‖δ
[g]
j ‖ ≤ 4

∑
(j,g)∈J(Θ0,i)

λgij‖δ
[g]
j ‖. (3.22)
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Therefore

∑
(j,g)∈J(Θ0,i)c

λgij‖δ
[g]
j ‖ ≤ 3

∑
(j,g)∈J(Θ0,i)

λgij‖δ
[g]
j ‖,

and ∆ ∈ F , the restricted set defined in Assumption A1. Under Assumption A1 with

κ = κ(s0),

B2 ≥ κ2‖∆J‖2
F = κ2

∑
(j,g)∈J(Θ0,i)

‖δ[g]
j ‖2. (3.23)

Combing (3.22), (3.23) and Cauchy-Schwarz inequality, we have

B2 ≤ 4
∑

(j,g)∈J(Θ0,i)

λgij‖δ
[g]
j ‖ ≤4

{ ∑
(j,g)∈J(Θ0,i)

(λgij)
2
}1/2( ∑

(j,g)∈J(Θ0,i)

‖δ[g]
j ‖2

)1/2

(3.24)

≤4
{ ∑

(j,g)∈J(Θ0,i)

(λgij)
2
}1/2B

κ
,

or equivalently

B2 =
∑
k

1

n
‖Xk
−i(θ̂

k
i − θk0,i)‖2 ≤ 16

κ2

∑
(j,g)∈J(Θ0,i)

(λgij)
2. (3.25)

For the inequality (3.13), by (3.22), Cauchy-Schwarz inequality and (3.25),

∑
j 6=i

∑
g∈G ij

‖δ[g]
j ‖ ≤

1

λmin

∑
j 6=i

∑
g∈G ij

λgij‖δ
[g]
j ‖ ≤

4

λmin

∑
(j,g)∈J(Θ0,i)

λgij‖δ
[g]
j ‖

≤ 4

λmin

{ ∑
(j,g)∈J(Θ0,i)

‖δ[g]
j ‖2

}1/2{ ∑
(j,g)∈J(Θ0,i)

(λgij)
2
}1/2

≤ 4

λmin

B

κ

{ ∑
(j,g)∈J(Θ0,i)

(λgij)
2
}1/2

≤ 16

κ2λmin

∑
(j,g)∈J(Θ0,i)

(λgij)
2.
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(3.14) follows readily from (3.21) and (3.25)

M(Θ̂i) ≤
4φmax

λ2
min

B2 ≤ 64φmax

κ2λ2
min

∑
(j,g)∈J(Θ0,i)

(λgij)
2.

Finally, we prove (3.15). Let J0 = J(Θ0,i) and J1 denote the set of indices in J c0

corresponding to the si largest values of λgij‖δ
[g]
j ‖. The dependence of J0 and J1 on i

is made implicit here for clarity. Let J01 = J0 ∪ J1. So |J01| ≤ 2si. Let (j`, g`) be the

index of the `th largest element of the set {λgij‖δ
[g]
j ‖ : (j, g) ∈ J c0}. Then

λg`ij`‖∆
[g`]
ij`
‖ ≤

∑
(j,g)∈Jc

0

λgij‖δ
[g]
j ‖

`
.

Combining with the fact that ∆ ∈ F , we have on the event A,

∑
(j,g)∈Jc

01

(
λgij‖δ

[g]
j ‖
)2

≤
∑

(j,g)∈Jc
0

(
λgij‖δ

[g]
j ‖
)2

≤
∞∑

`=si+1

(∑
(j,g)∈Jc

0
λgij‖δ

[g]
j ‖
)2

`2

≤ 1

si

( ∑
(j,g)∈Jc

0

λgij‖δ
[g]
j ‖
)2

≤ 9

si

( ∑
(j,g)∈J0

λgij‖δ
[g]
j ‖
)2

≤ 9

si

∑
(j,g)∈J0

(λgij)
2‖∆J0‖2

F ≤
9

si

∑
(j,g)∈J0

(λgij)
2‖∆J01‖2

F .

It follows immediately that

λ2
min

∑
(j,g)∈Jc

01

‖δ[g]
j ‖2 ≤ 9

si

∑
(j,g)∈J0

(λgij)
2‖∆J01‖2

F .
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Hence

‖Θ̂i −Θ0,i‖2
F =

∑
j 6=i

∑
g∈G ij

‖δ[g]
j ‖2 = ‖∆J01‖2

F + ‖∆Jc
01
‖2
F

≤‖∆J01‖2
F +

9

siλ2
min

∑
(j,g)∈J0

(λgij)
2‖∆J01‖2

F

≤ 10

siλ2
min

∑
(j,g)∈J0

(λgij)
2‖∆J01‖2

F . (3.26)

On the other hand, (3.24) implies that

B2 ≤ 4
{ ∑

(j,g)∈J0

(λgij)
2
}1/2

‖∆J0‖F ≤ 4
{ ∑

(j,g)∈J0

(λgij)
2
}1/2

‖∆J01‖F .

Under Assumption A1 with s = 2s0, we have

B2 ≥ κ2(2s0)‖∆J01‖2
F .

So

‖∆J01‖2
F ≤

B2

κ2(2s0)
≤ 4

κ2(2s0)

{ ∑
(j,g)∈J0

(λgij)
2
}1/2

‖∆J01‖F ,

which implies

‖∆J01‖F ≤
4

κ2(2s0)

{ ∑
(j,g)∈J0

(λgij)
2
}1/2

.

Plugging the above in (3.26), we obtain

‖Θ̂i −Θ0,i‖2
F ≤

{
4
√

10

κ2(2s0)

}2{∑
(j,g)∈J0(λ

g
ij)

2

λmin
√
si

}2

,

or equivalently

‖Θ̂i −Θ0,i‖F ≤
4
√

10

κ2(2s0)

∑
(j,g)∈J(Θ0,i)

(λgij)
2

λmin
√
si

.
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3.7.2 Selecting Edge Set

Given the estimates Θ̂i (i = 1, . . . , p), define Êk as in (3.10) the estimated set

of edges in graph k = 1, . . . , K. For every k, let Ω̃k = diag(Ωk
0) + Ωk

0,Ek
0∩Êk and

Σ̃k = (Ω̃k)−1. Let

Cbias =
8
√

10c0

κ2(2s0)
√
d0

.

The following corollary is an immediate result of (3.17) and (3.18).

Corollary III.8. Consider Êk (k = 1, . . . , K) selected in (3.10). Suppose all con-

ditions in Theorem III.1 are satisfied. Choose λgij = λmax as defined in (3.16) with

q > 1. Then we have on the event A

|Êk| ≤ 64φmax

κ2(s0)
S0, k = 1, . . . , K, (3.27)

and

1

K

∑
k

‖Ω̃k−Ωk
0‖F ≤

1√
K

{∑
k

‖Ω̃k−Ωk
0‖2

F

}1/2

≤ Cbias

√
S0

nK

(√
|gmax|+

π√
2

√
q logG0

)
,

(3.28)

where G0 is the maximum number of groups in all p regressions, S0 is the total number

of relevant groups, and |gmax| is the maximum group size.

Remark III.9. The bound in (3.27) says that the cardinality of the estimated set of

edges is at most of the order of S0 and proves essential in controlling the error rate

of the maximum likelihood estimate Ω̂k in the refitting step. Further, the second

inequality in (3.28) implies

{∑
k

‖Ω̃k − Ωk
0‖2

F

}1/2

≤ τ1d0,
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provided the sample size n satisfies for 0 < τ1 < 1,

n ≥ S0

(√
|gmax|+

π√
2

√
q logG0

)2(
Cbias

τ1d0

)2

. (3.29)

It follows immediately that on the event A, Ω̃k is positive definite for all k = 1, . . . , K.

Indeed, by Assumption A2,

φmin(Ω̃k) ≥ φmin(Ωk
0)− ‖Ω̃k − Ωk

0‖ ≥ φmin(Ωk
0)− ‖Ω̃k − Ωk

0‖F

≥ φmin(Ωk
0)−

{∑
k

‖Ω̃k − Ωk
0‖2

F

}1/2

≥ (1− τ1)d0 > 0. (3.30)

In addition, we have an upper bound for the maximum eigenvalue of Ω̃k,

φmax(Ω̃k) ≤ φmax(Ωk
0) + ‖Ω̃k − Ωk

0‖ ≤ φmax(Ωk
0) + ‖Ω̃k − Ωk

0‖F

≤ φmax(Ωk
0) +

{∑
k

‖Ω̃k − Ωk
0‖2

F

}1/2

≤ c0 + τ1d0 <∞. (3.31)

Proof of Corollary III.8. By definition, ωk0,ij = −θk0,ijωk0,ii for all j 6= i and k =

1, . . . , K. Further, under Assumption A2, ωk0,ii ≤ φmax(Ωk
0) = φ−1

min(Σk
0) ≤ c0 for

all i, k . Therefore

∑
k

‖Ω̃k − Ωk
0‖2

F =
∑
k

p∑
i=1

∑
j∈J(θ0,i)∩J(θ̂i)c

(θk0,ijω
k
0,ii)

2

=

p∑
i=1

∑
j∈J(Θ0,i)∩J(Θ̂i)c

∑
g∈G ij

∑
k∈g

(θk0,ijω
k
0,ii)

2

≤ c0
2

p∑
i=1

∑
j∈J(Θ0,i)∩J(Θ̂i)c

∑
g∈G ij

‖θ[g]
0,ij‖2

≤ c0
2

p∑
i=1

∑
j 6=i

∑
g∈G ij

‖θ[g]
0,ij − θ̂

[g]
ij ‖2.
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Under Assumption A1 with s = 2s0, applying Theorem III.6 with λgij = λmax in (3.16),

∑
j 6=i

∑
g∈G ij

‖θ[g]
0,ij − θ̂

[g]
ij ‖2 ≤

{
4
√

10

κ2(2s0)
λmax

}2

si.

Therefore,

∑
k

‖Ω̃k − Ωk
0‖2

F ≤

{
4
√

10c0

κ2(2s0)
λmax

}2 p∑
i=1

si =

{
4
√

10c0

κ2(2s0)
λmax

}2

S0.

It follows immediately that

1

K

∑
k

‖Ω̃k − Ωk
0‖F ≤

1√
K

{∑
k

‖Ω̃k − Ωk
0‖2

F

}1/2

≤ 4
√

10c0

κ2(2s0)
λmax

√
S0

K

≤ Cbias

√
S0

nK

(√
|gmax|+

π√
2

√
q logG0

)
.

To bound the estimated edge set Êk, notice if there exists (i, j, k) such that θ̂kij 6= 0,

then θ̂
[g]
ij 6= 0, where g 3 k. Hence M(θ̂ki ) ≤ M(Θ̂i) for all k. By (3.14), the upper

bound for Êk is thus

|Êk| ≤
p∑
i=1

M(θ̂ki ) ≤
p∑
i=1

64φmax

κ2(s0)λ2
min

∑
(j,g)∈J(Θ0,i)

(λgij)
2 =

64φmax

κ2(s0)

p∑
i=1

si ≤
64φmax

κ2(s0)
S0.

3.7.3 Refitting

Proof of Theorem III.1. Let

rn = Cbias

√
S0

n

(√
|gmax|+

π√
2

√
q logG0

)
.

90



In view of Corollary III.8, it suffices to show that

∑
k

‖Ω̂k − Ω̃k‖2
F ≤ O

(
r2
n

)
,

since by Cauchy-Schwarz inequality,

1

K

∑
k

‖Ω̂k − Ω̃k‖F ≤
1√
K

{∑
k

‖Ω̂k − Ω̃k‖2
F

}1/2

,

and by triangle inequality,

1

K

∑
k

‖Ω̂k − Ωk
0‖F ≤

1

K

∑
k

‖Ω̂k − Ω̃k‖F +
1

K

∑
k

‖Ω̃k − Ωk
0‖F .

For k = 1, . . . , K, let ∆k = Ωk − Ω̃k ∈M(p, p) and ∆̂k = Ω̂k − Ω̃k. Let

Q(Ω) =
∑
k

{
tr(Σ̂kΩk)− log det(Ωk)− tr(Σ̂kΩ̃k) + log det(Ω̃k)

}
.

Since (Ω̂k)Kk=1 minimizes Q(Ω), (∆̂k)Kk=1 minimizes G(∆) = Q(Ω̃ + ∆).

For k = 1, . . . , K, define a sequence of convex sets

Un(Ω̃k) = {Γ− Ω̃k|Γ ∈ Sp+ ∩ S
p

Êk
}.

The main idea of the proof is as follows. For a sufficiently large M > 0, consider

the set

Tn = {(∆1, . . . ,∆K) : ∆k ∈ Un(Ω̃k),
∑
k

‖∆k‖2
F = Mr2

n}.

It is clear that G(∆) is a convex function and G(∆̂) ≤ G(0) = 0. Thus if we can

show inf∆∈Tn G(∆) > 0, the minimizer ∆̂ must be inside the ball defined by Tn.

That is
∑

k‖∆̂k‖2
F ≤ Mr2

n. To see this, note that the convexity of Q(Ω) implies that

inf∆∈Tn Q(Ω̃ + ∆) > Q(Ω̃) = 0. There exists therefore a local minimizer in the ball

91



{Ω̃k + ∆k :
∑

k‖∆k‖2
F ≤Mr2

n}, or equivalently,
∑

k‖∆̂k‖2
F ≤Mr2

n.

In the remainder of the proof, we focus on

G(∆) =
∑
k

{
tr(Σ̂k∆k)− log det(Ω̃k + ∆k) + log det(Ω̃k)

}
.

Applying Taylor expansion to the logarithm terms in the above equation, we have

log det(Ω̃k + ∆k)− log det(Ω̃k)

= tr(Σ̃k∆k) + vec(∆k)T


1∫

0

(1− t)(Ω̃k + t∆k)−1 ⊗ (Ω̃k + t∆k)−1dt

 vec(∆k),

where ⊗ is the Kronecker product, and vec(∆k) is ∆k vectorized to match the di-

mensions of the Kronecker product. Therefore, we can rewrite G(∆) = L1−L2 +L3,

with

L1 =
∑
k

tr
{

(Σ̂k − Σk
0)∆k

}
,

L2 =
∑
k

tr
{

(Σ̃k − Σk
0)∆k

}
,

L3 =
∑
k

vec(∆k)T


1∫

0

(1− t)(Ω̃k + t∆k)−1 ⊗ (Ω̃k + t∆k)−1dt

 vec(∆k).

Next we bound each term separately.

Recall for every k, Σk
0 and Σ̂k represent the correlation and the sample correlation

matrix, respectively. Since φmax(Σk
0) ≤ 1/d0 for all k, by Lemma 14 of Zhou et al.

(2011) [see details on page 3003],

P
{
|σ̂kij − σk0,ij| ≥ t

}
≤ exp

(
− 3nt2

10{1 + (σk0,ij)
2}

)
≤ exp

(
− 3nt2

20

)
, (3.32)
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for 0 ≤ t ≤ {1 + (σk0,ij)
2}/2. Thus if we choose for some c1 > 0

t = c1

√
1

K

√
1

n

(√
|gmax|+

π√
2

√
q logG0

)
,

then max
k,i6=j

|σ̂kij−σk0,ij| ≤ t with probability tending to 1, provided that the sample size

satisfies

n ≥ 4c2
1

K

(√
|gmax|+

π√
2

√
q logG0

)2

. (3.33)

Write ∆k = ∆k,+ + ∆k,− such that ∆k,+ is the diagonal matrix which has the same

diagonal elements as ∆k and ∆k,− consists of the off-diagonal elements. Then

|L1| ≤
∑
k

∑
i 6=j

|σ̂kij − σk0,ij||∆k
ij| ≤ c1

√
1

nK

(√
|gmax|+

π√
2

√
q logG0

)∑
k

‖∆k,−‖1

≤ c1

√
1

n

(√
|gmax|+

π√
2

√
q logG0

)
max
k
|2Êk|1/2

(∑
k

‖∆k‖2
F

)1/2

≤ 8
√

2c1

√
φmax

Cbiasκ(s0)
rn

(∑
k

‖∆k‖2
F

)1/2

.

To bound the second term, since φmin(Ω̃k) (k = 1, . . . , K) is bounded below by

(3.30),

|L2| ≤
∑
k

|〈Σ̃k − Σk
0,∆

k〉| ≤
∑
k

‖Σ̃k − Σk
0‖F‖∆k‖F ≤

∑
k

‖∆k‖F
‖Ω̃k − Ωk

0‖F
φmin(Ω̃k)φmin(Ωk

0)

(3.34)

≤ 1

(1− τ1)d0
2

(∑
k

‖∆k‖2
F

)1/2(∑
k

‖Ω̃k − Ωk
0‖2

F

)1/2

≤ rn

(1− τ1)d0
2

(∑
k

‖∆k‖2
F

)1/2

,

where the last inequality in (3.34) comes from the rotation invariant property of the

Frobenius norm.

Finally we bound L3. Suppose for a small constant 0 < τ2 < 1 such that τ1+τ2 < 1,

93



the sample size n satisfies

n ≥MS0

(√
|gmax|+

π√
2

√
q logG0

)2(
Cbias

τ2d0

)2

, (3.35)

then
√
Mrn ≤ τ2d0. By (3.31), φmax(Ω̃k) is bounded above by c0 + τ1d0. Therefore

for ∆ ∈ Tn,

φmax(Ω̃k + ∆k) ≤ c0 + τ1d0 + ‖∆k‖ ≤ c0 + τ1d0 + ‖∆k‖F

≤ c0 + τ1d0 +
(∑

k

‖∆k‖2
F

)1/2

≤ c0 + (τ1 + τ2)d0,

φmin(Ω̃k + ∆k) ≥ (1− τ1)d0 − ‖∆k‖ ≥ (1− τ1)d0 − ‖∆k‖F

≥ (1− τ1)d0 −
(∑

k

‖∆k‖2
F

)1/2

≥ (1− τ1 − τ2)d0 > 0.

For Ω̃k and ∆k defined above, Zhou et al. (2011) showed that Ω̃k + t∆k � 0, t ∈ [0, 1],

for all k = 1, . . . , K on the event A. Thus, following similar arguments as in Rothman

et al. (2008, page 502), we have

|L3| ≥
1

2

∑
k

φ2
min(Ω̃k + ∆k)−1‖∆k‖2

F =
1

2

∑
k

φ−2
max(Ω̃k + ∆k)‖∆k‖2

F

≥ 1

2(c0 + τ1d0 + τ2d0)2

∑
k

‖∆k‖2
F .

Combining the above three bounds, we thus have

G(∆) ≥ |L3| − |L1| − |L2|

≥ 1

2(c0 + τ1d0 + τ2d0)2

∑
k

‖∆k‖2
F −

8
√

2c1

√
φmax

Cbiasκ(s0)
rn

(∑
k

‖∆k‖2
F

)1/2

− rn

(1− τ1)d0
2

(∑
k

‖∆k‖2
F

)1/2

≥Mr2
n

{
1

2(c0 + τ1d0 + τ2d0)2
− 8c1

√
2φmax

Cbiasκ(s0)

1√
M
− 1

(1− τ1)d0
2
√
M

}
> 0,
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for M sufficiently large.

3.8 Proof of Theorem III.2

Consider the group lasso estimator Θ̂i defined in (3.2). Since the problem (3.2) is

a special case of the generic group lasso in Basu et al. (2012), we adapt their results

in Theorem 4.1 to our design.

Proof of Theorem III.2. Let Xi be the block diagonal matrix composed of all variables

but Xk
i (k = 1, . . . , K). Without loss of generality, suppose Xi = (Xi,(1),Xi,(2)) such

that

Xi,(1) = diag(X1
I1
, . . . ,XK

IK
)

is the sub-matrix consisting of all relevant variables. Denote the Gram matrix

C =
1

n
X T
i Xi =

C11 C12

C21 C22


with C11 = X T

i,(1)Xi,(1)/n and C22 = X T
i,(2)Xi,(2)/n. C12 and C21 are also defined

accordingly.

Now consider interchanging the columns of Xi such that

X̃i = Xi diag(R1, R2) = (Xi,(1)R1,Xi,(2)R2) = (X̃i,(1), X̃i,(2)),

where the columns of X̃i,(1) and X̃i,(2) are ordered in groups of variables. Here Rl is the

product of elementary column switching matrices and satisfies R−1
l = RT

l (l = 1, 2).

Note R1 ∈M(
∑

k |Ik|,
∑

k |Ik|). Based on X̃i, we can define C̃11, C̃21 and C̃22 similarly

as above. The advantage of using X̃i as the design matrix is that it orders the variables

based on the grouping structures, and is in the form of the generic group lasso design

in Basu et al. (2012). It is thus more straightforward to adapt their results using X̃i.
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With the above notations, the Uniform IC in Assumption A3 is equivalent to

saying for all ξ = ((ξ1)T , . . . , (ξK)T )T ∈ R
∑

k |Ik| with max
(j,g)∈J(Θ0,i)

‖ξ[g]
j ‖ ≤ 1 and all

(j, g) /∈ J(Θ0,i)

‖
[
C̃21(C̃11)−1ξ̃

]
[j,g]
‖ ≤ 1− η, (3.36)

where ξ̃ = RT
1 ξ. It remains to select λ and αn to ensure that the direction con-

sistency results hold simultaneously for all i with probability tending to 1. For any

(j, g) ∈ J(Θ0,i), denote (C̃11)−1
[j,g] the diagonal block in C̃−1

11 corresponding to the group

(j, g). By Theorem 4.1 of Basu et al. (2012), it suffices to find the upper bounds for

‖C̃−1
11 ‖, ‖(C̃11)−1

[j,g]‖, ‖(C̃22)[j,g]‖ and substitute the constant variance σ with the appro-

priate bound for Var(Xk
i |Xk

−i) = 1/ωk0,ii (k = 1, . . . , K).

By definition and the fact that Xk are centered and standardized, (C̃11)[j,g] is the

identity matrix of size |g| × |g|. It follows that

1 = φ−1
min((C̃11)[j,g]) ≤ φmax((C̃11)−1

[j,g]) = ‖(C̃11)−1
[j,g]‖ ≤ ‖(C̃11)−1‖, (3.37)

where the last step is obtained by applying Courant minimax principle since 0 ≺

(C̃11)−1
[j,g] � (C̃11)−1. Similarly, for any (j, g) /∈ J(Θ0,i), (C̃22)[j,g] is the identity matrix

and

‖(C̃22)[j,g]‖ = 1. (3.38)

Moreover, the variance for the random design in our problem

Var(Xk
i |Xk

−i) = 1/ωk0,ii ≤ 1/d0, ∀ k (3.39)

by Assumption A2.

It remains to find an upper bound for ‖C̃−1
11 ‖. Under Assumption A1 with s = s0,
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if we set ∆ ∈ F such that δ
[g]
j = 0 for any (j, g) /∈ J(Θ0,i), then

∑
k ‖Xkδk‖2/n

‖∆J(Θ0,i)‖2
F

=
ξTC11ξ

ξTξ
,

where ξ = ((ξ1)T , . . . , (ξK)T )T ∈ R
∑

k |Ik| such that each ξk corresponds to the nonzero

part of δk. If we choose ∆ such that ξ is the eigenvector corresponding to the smallest

eigenvalue of C11, then

κ2(s0) ≤
∑

k ‖Xkδk‖2/n

‖∆J(Θ0,i)‖2
F

=
ξTC11ξ

ξTξ
= φmin(C11).

Since R−1
1 = RT

1 , C11 and C̃11 are similar (i.e. there exists a non-singular matrix P

such that P−1C11P = C̃11) and thus share the same set of eigenvalues. Therefore

φmin(C̃11) ≥ κ2(s0) and

‖C̃−1
11 ‖ ≤ κ−2(s0). (3.40)

Combining the upper bounds in (3.37), (3.38), (3.39) and (3.40), Theorem 4.1 of

Basu et al. (2012) implies that if we select λ and αn as in (3.8) and (3.9), respec-

tively, the direction consistency results follow by considering the union bound on all

probabilities made across i = 1, . . . , p.

Further, if αn < 1, the direction consistency property of Θ̂i implies exact recovery

of all nonzero entries in the inverse covariance matrices, provided that the sparsity

pattern G is correctly specified. In other words, the set in (3.10) estimates correctly

the true edge set Ek
0 for all k.

This completes the proof.
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Meinshausen, N., and P. Bühlmann (2010), Stability selection, Journal of the Royal
Statistical Society: Series B (Statistical Methodology), 72 (4), 417–473.

Mirsky, L. (1975), A trace inequality of john von neumann, Monatshefte für Mathe-
matik, 79 (4), 303–306.

Mohan, K., P. London, M. Fazel, D. Witten, and S.-I. Lee (2014), Node-based learning
of multiple gaussian graphical models, The Journal of Machine Learning Research,
15 (1), 445–488.

Nishimura, D. (2001), Biocarta, Biotech Software & Internet Report: The Computer
Software Journal for Scient, 2 (3), 117–120.

Palomero, T., et al. (2006), Notch1 directly regulates c-myc and activates a feed-
forward-loop transcriptional network promoting leukemic cell growth, Proceedings
of the National Academy of Sciences, 103 (48), 18,261–18,266.

Peng, J., P. Wang, N. Zhou, and J. Zhu (2009), Partial correlation estimation by joint
sparse regression model, Journal of the American Statistical Association, 104 (486),
735–746.

Perroud, B., J. Lee, N. Valkova, A. Dhirapong, P.-Y. Lin, O. Fiehn, D. Kültz,
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