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Abstract

Let X be a proper, geodesically complete CAT(0) space under a
proper, cocompact, and isometric action; further assume X admits a
rank one axis. Patterson’s construction gives a family of finite Borel
measures, called Patterson-Sullivan measures, on the boundary of X.
We use the Patterson-Sullivan measures to construct a finite Borel
measure (called the Bowen-Margulis measure) on the space of unit-
speed parametrized geodesics of X modulo the action. This measure
has full support and is invariant under the geodesic flow.
Although the construction of Bowen-Margulis measures for rank
one nonpositively curved manifolds and for CAT(−1) spaces is well-
known, the construction for CAT(0) spaces hinges on establishing
a new structural result of independent interest about geodesically
complete, cocompact rank one CAT(0) spaces: Almost no geodesic,
under the Bowen-Margulis measure, bounds a flat strip of any pos-
itive width. We also show that almost every point in the boundary
of X, under the Patterson-Sullivan measure, is isolated in the Tits
metric.
Finally, we identify precisely which geodesically complete, cocom-
pact rank one CAT(0) spaces are mixing. That is, we prove that the
Bowen-Margulis measure is mixing under the geodesic flow unless
X is a tree with all edge lengths in some discrete subgroup of the
reals. This characterization is new, even in the setting of CAT(−1)
spaces.
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CHAPTER 1

Introduction

CAT(0) spaces are a generalization of nonpositive curvature from Riemannian manifolds
to general metric spaces, defined by comparing geodesic triangles with triangles in Eu-
clidean space (see Section 4). Examples of CAT(0) spaces include nonpositively curved
Riemannian manifolds, Euclidean buildings, and trees. They share many properties with
nonpositively curved Riemannian manifolds. One key difference is that geodesics are not
globally determined from a small segment. Much is known about the geometry of CAT(0)
spaces (see, e.g., [4] or [9]); however, the ergodic theory of these spaces is less understood,
largely due to the lack of natural invariant measures. This thesis presents some results in
this direction. One of the main results of this thesis is to construct a generalized Bowen-
Margulis measure and precisely characterize mixing of the geodesic flow for this measure
in terms of the geometry of the space (Theorem 4). This construction is not an immediate
generalization from the manifold setting, but involves establishing two structural results of
independent interest for CAT(0) spaces admitting a rank one axis: First, almost every point
in ∂X, under the Patterson-Sullivan measure, is isolated in the Tits metric (Theorem 1).
Second, almost no geodesic, under the Bowen-Margulis measure, bounds a flat strip of any
positive width (Theorem 2).

Although the construction of a Bowen-Margulis measure is now standard in many non-
positively curved settings, its construction in the context of CAT(0) spaces is not an imme-
diate generalization of previous techniques. The main obstacle is the presence of flat strips.
In negative curvature (both Riemannian manifolds and CAT(−1) spaces), these strips do not
exist. In nonpositively curved Riemannian manifolds, their complement in the unit tangent
bundle is a dense open set; furthermore, they are Riemannian submanifolds, which have
their own volume form. However, in rank one CAT(0) spaces, a priori it might happen that
every geodesic bounds a flat strip; moreover, the strips themselves do not carry a natural
Borel measure. Our solution is to construct the Bowen-Margulis measure in two stages,
and to prove the necessary structural results between stages.
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There is a well-established equivalence between mixing of the Bowen-Margulis mea-
sure and arithmeticity of the length spectrum for CAT(−1) spaces (see [15] and [41]). How-
ever, the only known (geodesically complete) examples with arithmetic length spectrum are
trees. Roblin ( [41]) raised the question of what CAT(−1) spaces other than trees could be
non-mixing under a proper, non-elementary action. For compact, rank one nonpositively
curved Riemannian manifolds, Babillot ( [3]) showed that the Bowen-Margulis measure is
always mixing. Yet it is an open question whether the Bowen-Margulis measure is always
mixing for non-compact negatively curved manifolds with fundamental group that is not
virtually cyclic (see [41]). Theorem 4 shows that when the action is cocompact, trees are in
fact the only non-mixing (geodesically complete) examples—even in the CAT(0) setting.

We now describe these results and their context in more detail.

1.1 Mixing

Let X be a proper, geodesically complete CAT(0) space and Γ be a group acting properly
discontinuously, cocompactly, and by isometries on X. Assume X has a rank one axis—that
is, there is a geodesic in X which is translated by some isometry in Γ but does not bound a
subspace in X isometric to R× [0,∞). In this thesis, we construct a finite Borel measure,
called the Bowen-Margulis measure, on the space of unit-speed parametrized geodesics of
X modulo the Γ-action. This measure has full support and is invariant under the geodesic
flow. We show (Theorem 4) that the Bowen-Margulis measure is mixing (sometimes called
strong mixing), except when X is a tree with all edge lengths in cZ for some c > 0.

Mixing is an important dynamical property strictly stronger than ergodicity. It has been
used in a number of circumstances to extract geometric information about a space from
the dynamics of the geodesic flow. For example, in his 1970 thesis (see [34]), Margulis
used mixing of the geodesic flow on a compact Riemannian manifold of strictly negative
curvature to calculate the precise asymptotic growth rate of the number of closed geodesics
in such a manifold. Others have used similar techniques for other counting problems in
geometry (see, e.g., [20] and [36]). More recently, Kahn and Markovic ( [25]) used expo-
nential mixing (i.e., precise estimates on the rate of mixing) to prove Waldhausen’s surface
subgroup conjecture for 3-manifolds.

Roblin ( [41]) showed that for proper CAT(−1) spaces whose Bowen-Margulis measure
is not mixing, the set of all translation lengths of hyperbolic isometries (i.e., those isome-
tries that act by translation along some geodesic) in Γ must lie in a discrete subgroup cZ
of R. In this case one says the length spectrum is arithmetic. We remark that Roblin’s
theorem holds even when the Γ-action is not cocompact but non-elementary (that is, Γ is
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not virtually cyclic).
If the length spectrum of a proper CAT(−1) space is arithmetic, Roblin concludes that

the limit set is totally disconnected. The converse fails, as is easily seen from a tree with
edge lengths which are not rationally related. Moreover, ∂X totally disconnected does not
imply X is a tree. Ontaneda (see the proof of Proposition 1 in [37]) described proper,
geodesically complete CAT(0) spaces that admit a proper, cocompact, isometric action of
a free group—hence they are quasi-isometric to trees and, in particular, have totally dis-
connected boundary—yet are not isometric to trees. Ontaneda’s examples are Euclidean
2-complexes, but one can easily adapt the construction to hyperbolic 2-complexes instead.
Thus there are proper, cocompact, geodesically complete CAT(−1) spaces with totally dis-
connected boundary that are not isometric to trees. It is not at all clear, a priori, that one
cannot construct such an example where the length spectrum is arithmetic. But our char-
acterization of mixing shows that such non-tree examples cannot be constructed to have
arithmetic length spectrum.

Our characterization of mixing also applies when Γ acts non-cocompactly on a proper
CAT(−1) space X such that the Bowen-Margulis measure is finite and the Patterson-Sullivan
measures have full support on the boundary (see the Remark following Theorem 12.7). In
the general case of a non-compact action on a proper CAT(−1) space, however, the prob-
lem of characterizing when the length spectrum is arithmetic remains open ( [41]). Indeed,
even when Γ\X is a noncompact Riemannian manifold with sectional curvature ≤ −1 ev-
erywhere, it is an open question (see [15]) whether the length spectrum can be arithmetic
without Γ being virtally cyclic. The length spectrum is known to be non-arithmetic in a
few cases, however (see [15] or [41])—e.g. if Γ contains parabolic elements. For rank one
symmetric spaces, the length spectrum was shown to be non-arithmetic by Kim ( [29]).

1.2 Previous Constructions of Bowen-Margulis Measures

The Bowen-Margulis measure was first introduced for compact Riemannian manifolds of
negative sectional curvature, where Margulis ( [34]) and Bowen ( [7]) used different meth-
ods to construct measures of maximal entropy for the geodesic flow. Bowen ( [8]) also
proved that the measure of maximal entropy is unique, hence both measures are the same—
often called the Bowen-Margulis measure. Sullivan ( [42] and [43]) established a third
method to obtain this measure, in the case of constant negative curvature. Kaimanovich
( [26]) proved that Sullivan’s construction extends to all smooth Riemannian manifolds of
negative sectional curvature.

Sullivan’s method is as follows. First, one uses Patterson’s construction ( [39]) to obtain
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a family of finite Borel measures, called Patterson-Sullivan measures, on the boundary of
X. Although these measures are not invariant under the action of Γ, they transform in a
computable way (see Definition 3.5). Next, one constructs a Γ-invariant Borel measure
on the endpoint pairs of geodesics in X. Using this measure, one then constructs a Borel
measure on the space S X of unit-speed parametrized geodesics of X (for a Riemannian
manifold, S X can be naturally identified with the unit tangent bundle of X). Finally, one
shows that there is a well-defined finite Borel quotient measure on Γ\S X.

Other geometers have used Sullivan’s general method to extend the construction of
Bowen-Margulis measures to related classes of spaces. Our construction in the class of
CAT(0) spaces is in the same vein, and is especially inspired by work in two prior classes
of spaces: Knieper’s ( [30]), where Γ\X is a compact Riemannian manifold of nonpositive
sectional curvature, and Roblin’s ( [41]), where X is a proper CAT(−1) space but the Γ-
action is not necessarily cocompact.

1.3 Role of the Rank One Axis

Let µx be a Patterson-Sullivan measure on the boundary ∂X of X, and let GE ⊂ ∂X×∂X be
the set of endpoint pairs of geodesics in X. In order to construct Bowen-Margulis measures
by Sullivan’s method, we must construct a Γ-invariant Borel measure on GE , and this re-
quires (µx×µx)(GE) > 0. If X admits a rank one axis then this condition holds; furthermore,
µx has full support. On the other hand, if X does not admit a rank one axis, it is unclear
whether (µx×µx)(GE) > 0.

The existence of a rank one axis in a CAT(0) space forces the group action to exhibit
rather strong north-south dynamics (for a precise statement, see Lemma 4.9). This behavior
may well be generic for CAT(0) spaces. Indeed, Ballmann and Buyalo ( [5]) conjecture that
every geodesically complete CAT(0) space under a proper, cocompact, isometric group
action that does not admit a rank one axis must either split nontrivially as a product, or be
a higher rank symmetric space or Euclidean building. Moreover, this conjecture has been
proven (and is called the Rank Rigidity Theorem) in a few important cases, notably for
Hadamard manifolds by Ballmann, Brin, Burns, Eberlein, and Spatzier (see [4] and [11])
and for CAT(0) cube complexes by Caprace and Sageev ( [12]).

1.4 Flat Strips

Using the Γ-invariant Borel measure µ we construct on GE , the next step is to produce a
flow-invariant Borel measure (the Bowen-Margulis measure) on the generalized unit tan-
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gent bundle S X of X, called the space of geodesics of X by Ballmann ( [4]).
Our construction of Patterson-Sullivan measures on the boundary follows Patterson

closely. Constructing Bowen-Margulis measures, however, is much less straightforward.
Knieper ( [30]) does it for compact Riemannian manifolds of nonpositive sectional curva-
ture, where “most” geodesics do not bound a flat strip. Likewise, Bourdon ( [6]) accom-
plishes it for CAT(−1) spaces, where no geodesic bounds a flat strip. The novelty in our
construction is precisely that of dealing with the possible existence of flat strips for many
geodesics in rank one CAT(0) spaces.

More precisely, we first construct a Borel measure m of full support on GE×R and prove
(Proposition 8.3) that it descends to a finite Borel measure mΓ on the quotient Γ\(GE ×R).
This allows us to prove the following structural result.

Theorem 1 (Theorem 9.1). Let X be a proper, geodesically complete CAT(0) space and Γ

be a group acting properly discontinuously, cocompactly, and by isometries on X; further

assume X admits a rank one axis. Then µx-a.e. ξ ∈ ∂X is isolated in the Tits metric.

As a corollary, the equivalence classes of higher rank geodesics have zero measure
under m. In fact, m-a.e. geodesic bounds no flat strip of any positive width. More precisely,
we have the following.

Theorem 2 (Theorem 9.9). Let X and Γ satisfy the assumptions of Theorem 1. The set

ZE ⊆ GE of endpoint pairs of zero-width geodesics has full µ-measure. Thus m-almost no

equivalence class of geodesics contains a flat strip of positive width.

This result brings us back to the situation where “most” geodesics do not bound a flat
strip, which allows us to finally define Bowen-Margulis measures (also denoted m and mΓ)
on S X and Γ\S X.

1.5 Dynamical Results

The classical argument by Hopf ( [24]) is readily adapted to prove ergodicity of the geodesic
flow.

Theorem 3 (Theorem 9.16). Let X and Γ satisfy the assumptions of Theorem 1. The Bowen-

Margulis measure mΓ is ergodic under the geodesic flow on Γ\S X.

Ergodicity, although weaker than mixing, is still a very useful and important property
of a dynamical system. In fact, one of Sullivan’s motivations to study Patterson-Sullivan
measures was to characterize ergodicity of the geodesic flow on hyperbolic manifolds.
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Mixing is trickier to prove. When Γ\X is a compact Riemannian manifold, Babillot
( [3]) showed that mΓ is mixing on Γ\S X (the measure mΓ having been previously con-
structed by Knieper). However, it is easy to see that if X is a tree with only integer edge
lengths, then mΓ is not mixing under the geodesic flow; thus one cannot hope to show that
mΓ is mixing for every CAT(0) space. Nevertheless, we prove that every proper, cocom-
pact, geodesically complete CAT(0) space X, where mΓ is not mixing, is isometric to such
a tree, up to uniformly rescaling the metric of X.

Our proof starts by relating mixing to cross-ratios (see Definition 11.3 for the defini-
tion of cross-ratios; they are defined on the space of quadrilaterals QRE ⊂ (∂X)4, which
is defined in Definition 11.1). This part follows Babillot’s work ( [3]) for Riemanninan
manifolds. But CAT(0) spaces allow geodesics to branch, which makes the cross-ratios
more subtle; this can be seen in the difference among trees, where some are not mixing.
Consequently, in the second part of the proof, we shift focus from the asymptotic behavior
of ∂X to the local behavior of the links of points. Additionally, we relate mixing to the
length spectrum. This gives us the following characterization:

Theorem 4 (Theorem 12.7). Let X and Γ satisfy the assumptions of Theorem 1. The fol-

lowing are equivalent:

1. The Bowen-Margulis measure mΓ is not mixing under the geodesic flow on Γ\S X.

2. The length spectrum is arithmetic—that is, the set of all translation lengths of hyper-

bolic isometries in Γ must lie in some discrete subgroup cZ of R.

3. There is some c ∈ R such that every cross-ratio of QRE lies in cZ.

4. There is some c > 0 such that X is isometric to a tree with all edge lengths in cZ.

Note that if mΓ is not mixing, it also fails to be weak mixing because Γ\S X factors
continuously over a circle for the trees in Theorem 4.
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CHAPTER 2

Some Ergodic Theory Review

We begin by reviewing some ergodic theory.
A measurable space is a set X, equipped with a σ-algebra M of subsets of X. A set

A ⊆ X is said to be measurable if A ∈M. For measurable spaces X and Y , a map ψ : X→ Y

is measurable if the preimage of every measurable set is measurable.
A topogolical group is a group G, endowed with a Hausdorff topology under which the

multiplication and inverse maps are continuous. We are mostly interested in the cases G

countable and G = R. Note that the Borel σ-algebra of any topological group gives it a
natural measurable structure.

Let G be a topological group acting on a topological space X. The action is continuous

if the action map G×X→ X, given by (g, x) 7→ gx, is continuous (where G×X is given the
product topology). Note that if G is discrete, this is equivalent to saying the map x 7→ gx is
a homeomorphism for every g ∈G.

Now suppose G acts on a measurable space X. The action is measurable if the action
map G×X→ X is measurable (where G×X is given the product σ-algebra). Note that if G

is discrete, this is equivalent to saying the map x 7→ gx is measurable for every g ∈G.
Throughout this chapter, G will be a locally compact, second countable, topological

group, acting measurably on a measurable space X. (The relevant σ-algebra on G is its
Borel σ-algebra.)

Let µ be a measure on the measurable space X. A set of zero measure is called a null set,
and the complement of a null set is called conull. The measure class of µ is the equivalence
class of measures with the same null sets as µ.

For a measure µ on X, its pushforward by a measurable map ψ : X→ Y is the measure
ψ∗µ defined by (ψ∗µ)(A) = µ(ψ−1(A)) for all measurable A ⊆ X. If the group G acts measur-
ably on X and g∗µ = µ for all g ∈G, we say µ is invariant, or G preserves µ. If G preserves
only the measure class of µ, we say µ is quasi-invariant.

An invariant measure µ is ergodic if every G-invariant measurable set is either null or
co-null. If µ is only quasi-invariant, but every G-invariant measurable set is either null
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or co-null, we call µ quasi-ergodic. Ergodicity has various equivalent formulations; the
following standard proposition states a few.

Proposition 2.1. Let µ be a finite invariant measure on X. The following are equivalent:

1. µ is ergodic.

2. Every invariant measurable function is constant almost everywhere.

3. Every invariant L2 function is constant almost everywhere.

Moreover, if µ is invariant but not finite, we still have 1 <=> 2.

Proof. The implications (2) =⇒ (3) and (2) =⇒ (1) are trivial, and if µ is finite we have
(3) =⇒ (1) because χA ∈ L2(µ) for all measurable A ⊆ X. For (1) =⇒ (2), let f : X →

[−∞,∞] be measurable, and let R be the supremum of r ∈ [−∞,∞] such that f −1([−∞,r])
is a null set. Then f −1([−∞,r]) is conull for all r > R by 1, so both f −1([−∞,r)) and
f −1((r,∞]) are null sets by separability of [−∞,∞]. This proves (1) =⇒ (2).

One can also replace the invariant functions in Proposition 2.1 (including χA for invari-
ant sets A ⊆ X) by essentially G-invariant functions—functions f such that f (x) = f (gx)
a.e. for all g ∈G (see [45, Lemma 2.2.16]).

A finite invariant measure µ is mixing if, for every sequence gn →∞ in G and every
pair of measurable sets A,B ⊆ X, we have µ(gnA∩B)→ 1

µ(X)µ(A)µ(B).

Proposition 2.2. Let µ be an finite invariant measure on X. The following are equivalent:

1. µ is mixing.

2.
∫

(ϕ◦gn) ·ψdµ→ 1
µ(X)

∫
ϕdµ ·

∫
ψdµ for all ϕ,ψ ∈ L2(µ).

3. ϕ◦gn→ 0 weakly in L2(µ) for all ϕ ∈ L2(µ) with
∫
ϕdµ = 0.

We now restrict our attention to R-actions, also called flows, to state the famous ergodic
theorems (see [4, Appendix, Theorem 2.3]).

Definition 2.3 (Ergodic averages). For any measurable function f : X→ R, define AT f by
(AT f )(x) = 1

T

∫ T
0 f (φtx)dt.

Theorem 2.4 (Birkhoff’s Pointwise Ergodic Theorem). Let φt be a measurable flow on

X with finite invariant measure µ. For all f ∈ L1, AT ( f ) and A−T ( f ) converge a.e. to

φt-invariant L1 functions as T →∞; moreover, the limits are equal a.e.
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Theorem 2.5 (von Neumann’s Mean Ergodic Theorem). Let φt be a measurable flow on

X with finite invariant measure µ. For all f ∈ L2, both AT ( f ) and A−T ( f ) converge in L2

to πH( f ), the L2-projection of f onto the closed subspace H ⊆ L2(µ) of φt-invariant L2

functions, as T →∞.
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CHAPTER 3

Patterson’s Construction

First we construct Patterson-Sullivan measures on the boundary of fairly general spaces.
Their construction is standard (cf. e.g. [39], [42], [31], and [41]), and they have been
studied in a variety of contexts; we mention only a few. Patterson ( [39]) used them to
calculate the Hausdorff dimension of the limit set of a Fuchsian group. Albuquerque (
[2]) and Quint ( [40]) studied Patterson-Sullivan measures for the boundary of higher rank
(nonpositively curved) symmetric spaces. Ledrappier and Wang ( [32]) used Patterson-
Sullivan measures on the Busemann boundary of compact Riemannian manifolds—without
curvature assumptions—to prove a rigidity theorem for the volume growth entropy. Prior
to Ledrappier and Wang, Patterson’s construction was done on the visual boundary by
using the equivalence of the visual and Busemann boundaries in nonpositive curvature. We
extend Ledrappier and Wang’s approach to any proper metric space.

Standing Hypothesis. In this chapter, let X be a proper metric space, that is, a metric space
in which all closed metric balls are compact. Let Γ be an infinite group of isometries acting
properly discontinuously on X—that is, for every compact set K ⊆ X, there are only finitely
many γ ∈ Γ such that K∩γK is nonempty.

Remark. Since X is proper, requiring the Γ-action to be properly discontinuous is equivalent
to requiring that the Γ-action be proper—that is, every x ∈ X has a neighborhood U ⊆ X such
that U ∩γU is nonempty for only finitely many γ ∈ Γ (see Remark I.8.3(1) of [9]).

For p,q ∈ X, s ∈ R, the Dirichlet series

P(s, p,q) =
∑
γ∈Γ

e−sd(p,γq)

is called the Poincaré series associated to Γ.
Fix p,q ∈ X. Let Vt = {γ ∈ Γ | d(p,γq) ≤ t} and δΓ = limsupt→∞

1
t log |Vt|. One thinks

of |Vt| as measuring the volume of a ball in X centered at p of radius t, and of δΓ as the
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volume growth entropy of Γ\X under this measure. If Γ\X is a compact smooth Riemannian
manifold, δΓ is in fact the volume growth entropy (see [30], for instance).

Lemma 3.1. The Poincaré series P(s, p,q) converges for s > δΓ and diverges for s < δΓ.

That is,

δΓ = inf {s ≥ 0 | P(s, p,q) <∞} .

Furthermore, δΓ does not depend on choice of p or q.

Proof. If s > s′ > δΓ then there is some N > 0 such that es′t > |Vt| for t ≥ N. Let Ak =

{γ ∈ Γ | k−1 < d(p,γq) ≤ k}. Then

P(s, p,q) =
∑
γ∈Γ

e−sd(p,γq) =
∑
k∈Z

∑
γ∈Ak

e−sd(p,γq)

≤
∑
k∈Z

∑
γ∈Ak

e−s(k−1) =
∑
k∈Z
|Ak|e−s(k−1)

= C +
∑
k>N

|Ak|e−s(k−1),

for some C ≥ 0. But |Ak| ≤ |Vk| < es′k, so∑
k>N

|Ak|e−s(k−1) ≤
∑
k>N

es′k−sk+s ≤ es
∑
k>N

e(s′−s)k <∞,

and therefore P(s, p,q) <∞.
On the other hand, if s < s′ < δΓ then there is a sequence tn→∞ such that es′tn <

∣∣∣Vtn

∣∣∣.
Hence

∣∣∣Vtn

∣∣∣e−stn > e(s′−s)tn , and thus

P(s, p,q) = lim
t→∞

∑
γ∈Vt

e−sd(p,γq) ≥ lim
t→∞

∑
γ∈Vt

e−st

= lim
t→∞
|Vt|e−st = lim

tn→∞

∣∣∣Vtn

∣∣∣e−stn

≥ lim
tn→∞

e(s′−s)tn =∞.

Finally, let p,q, p′,q′ ∈ X, and let R = d(p, p′) + d(q,q′). Then

P(s, p′,q′) =
∑
γ∈Γ

e−sd(p′,γq′) ≥
∑
γ∈Γ

e−s[d(p′,p)+d(p,γq)+d(γq,γq′)]

=
∑
γ∈Γ

e−s[d(p′,p)+R] = e−sR
∑
γ∈Γ

e−sd(p,γq) = e−sRP(s, p,q)

11



and, by symmetric argument, P(s, p,q) ≥ e−sRP(s, p′,q′). Thus

e−sRP(s, p,q) ≤ P(s, p′,q′) ≤ esRP(s, p,q),

hence P(s, p′,q′) < ∞ if and only if P(s, p,q) < ∞. Since δΓ = inf {s ≥ 0 | P(s, p,q) <∞},
we see that δΓ is does not depend on p or q.

We will work only in the case that δΓ is finite. This assumption is quite mild, consider-
ing the following observation, the proof of which is standard. (Recall that the action is said
to be cocompact if there is some compact set K ⊆ X such that ΓK = X.)

Lemma 3.2. If Γ is finitely generated, then δΓ is finite. In particular, if X is connected, and

Γ acts cocompactly on X, then δΓ is finite.

Proof. Since Γ is quasi-isometric to its Cayley graph, if Γ is finitely generated, then it has
at most exponential volume growth. Furthermore, if X is connected and Γ acts cocompactly
on X, then Γ is finitely generated (see [9, I.8.10]).

Definition 3.3. Let X be a proper metric space. Write C(X) for the space of continuous
maps X→R, equipped with the compact-open topology (which is the topology of uniform
convergence on compact subsets). Fix p ∈ X, and let ιp : X→C(X) be the embedding given
by x 7→ [d(·, x)− d(p, x)]. The Busemann compactification of X, denoted X̄, is the closure
of the image of ιp in C(X).

If ξ ∈ X̄, then technically ξ is a function ξ : X → R. However, one usually prefers to
think of ξ as a point in X (if ξ lies in the image of ιp) or in the Busemann boundary,
∂X = X̄ r X, of X. Instead of working with the function ξ : X → R, we will work with
the Busemann function bξ : X×X→ R given by bξ(x,y) = ξ(x)− ξ(y). Note that bξ (unlike
ξ : X→ R) does not depend on choice of p ∈ X.

The Busemann functions bξ are 1-Lipschitz in both variables and satisfy the cocycle

property bξ(x,y) + bξ(y,z) = bξ(x,z). Furthermore, bγξ(γx,γy) = bξ(x,y) for all γ ∈ Isom X.

Lemma 3.4. Let X be a proper metric space. The space of 1-Lipschitz functions X → R
which take value 0 at a fixed point p ∈ X is compact and metrizable under the compact-open

topology. In particular, the Busemann boundary ∂X of X is compact and metrizable.

Proof. An explicit metric is given by d( f ,g) = supx∈X e−d(p,x) | f (x)−g(x)|. Compactness
follows by Ascoli’s Theorem (Theorem 47.1 in [35]).

For a measure µ on X and a measurable map γ : X→ X, we write γ∗µ for the pushfor-
ward measure given by (γ∗µ)(A) = µ(γ−1(A)) for all measurable A ⊆ X.

12



Definition 3.5. A family
{
µp

}
p∈X

of finite nontrivial Borel measures on ∂X is called a
conformal density if

1. γ∗µp = µγp for all γ ∈ Γ and p ∈ X, and

2. for all p,q ∈ X, the measures µp and µq are equivalent with Radon-Nikodym deriva-
tive

dµq

dµp
(ξ) = e−δΓbξ(q,p).

Condition (1) is equivalent to requiring that µp( f ◦ γ) = µγp( f ) for all f ∈ C(X), since the
Tietze Extension Theorem allows us to extend a continuous function f ∈C(∂X) to f ∈C(X).

Remark. A conformal density, as defined above, is often called a conformal density of

dimension δΓ in the literature.

The limit set Λ(Γ) of Γ is defined to be the subset of ∂X given by

Λ(Γ) = {ξ ∈ ∂X | γix→ ξ for some (γi) ⊂ Γ and x ∈ X} .

The support of a Borel measure ν on a topological space Z is the set

supp(ν) =
{
z ∈ Z | ν(U) > 0 for every neighborhood U of z ∈ Z

}
,

and a Borel measure ν is said to have full support if supp(ν) = Z (i.e., every nonempty open
set has positive ν-measure). If

{
µp

}
p∈X

is a conformal density, the support of µp does not
depend on p ∈ X, so the support of the conformal density is well-defined as supp(µp) for
any p ∈ X.

The proof of Theorem 3.6 uses the idea of weak convergence of measures on X. This
convergence is the same as weak-∗ convergence in C(X)∗; that is, a sequence of probabil-
ity measures (νn) on X converges weakly to a probability measure ν on X if and only if∫

f dνn→
∫

f dν for all continuous functions f : X→ R.

Theorem 3.6. Let Γ be an infinite group of isometries acting properly discontinuously on

a proper metric space X, and suppose δΓ <∞. Then the Busemann boundary of X admits

a conformal density with support in Λ(Γ).

Proof. Fix x ∈ X. First suppose that P(δΓ, x, x) diverges. (In this case, one says that Γ is of
divergence type.) For s > δΓ, define the Borel probability measure µx,s on X by

µx,s =
1

P(s, x, x)

∑
γ∈Γ

e−sd(x,γx)δγx,
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where δγx is the Dirac measure based at γx ∈ X. By the Banach-Alaoglu Theorem and
the Riesz Representation Theorem, there is a sequence sk ↘ δΓ such that µx,sk converges
weakly to some Borel probability measure µx on X. Note that supp(µx)⊆ ∂X, since µx,sk( f )→
0 for all compactly supported f ∈C(X); thus it is clear that supp(µx) ⊆ Λ(Γ) = ∂X∩Γx.

For p ∈ X, define µp by setting

µp( f ) =

∫
X

f (ξ)e−δΓbξ(p,x)dµx(ξ) (∗)

for all f ∈ C(X). We want to show that
{
µp

}
p∈X

is a conformal density. Condition (2) is
immediate from (∗) and the cocycle property of Busemann functions, so it remains to show
that γ∗µp = µγp for all γ ∈ Γ and p ∈ X. But, unraveling the definitions, we have

µp( f ) =

∫
X

f (ξ)e−δΓbξ(p,x)dµx(ξ)

= lim
k→∞

∫
X

f (ξ)e−skbξ(p,x)dµx,sk(ξ)

= lim
k→∞

∫
X

f (y)e−sk[d(p,y)−d(x,y)]dµx,sk(y)

= lim
k→∞

1
P(sk, x, x)

∑
γ∈Γ

f (γx)e−sk[d(p,γx)−d(x,γx)]e−skd(x,γx)

= lim
k→∞

1
P(sk, x, x)

∑
γ∈Γ

f (γx)e−skd(p,γx).

Hence for α ∈ Γ,

µαp( f ) = lim
k→∞

1
P(sk, x, x)

∑
γ∈Γ

f (γx)e−skd(αp,γx)

= lim
k→∞

1
P(sk, x, x)

∑
γ∈Γ

f (αγx)e−skd(αp,αγx)

= lim
k→∞

1
P(sk, x, x)

∑
γ∈Γ

( f ◦α)(γx)e−skd(p,γx) = µp( f ◦α),

which concludes the proof when Γ is of divergence type.
Now suppose that P(δΓ, x, x) converges. There is (see e.g. [39, Lemma 3.1]) a continu-

ous, nondecreasing function h : R→ (0,∞) such that h(t+a)
h(t) → 1 as t→∞ for all a ∈R, and

such that the modified Poincaré series

P̃(s, p,q) =
∑
γ∈Γ

e−sd(p,γq)h(d(p,γq))
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diverges for P̃(δΓ, x, x). For s > δΓ, define the Borel probability measure µx,s on X by

µx,s =
1

P̃(s, x, x)

∑
γ∈Γ

e−sd(x,γx)h(d(x,γx))δγx,

where δγx is the Dirac measure based at γx ∈ X. Again there is a sequence sk ↘ δΓ such
that µx,sk converges weakly to some Borel probability measure µx on X, and it is clear that
supp(µx) ⊆ Λ(Γ).

As in the case when Γ is of divergence type, define µp by (∗). Unraveling the definitions,
we now have

µp( f ) =

∫
X

f (ξ)e−δΓbξ(p,x)dµx(ξ)

= lim
k→∞

∫
X

f (ξ)e−skbξ(p,x)dµx,sk(ξ)

= lim
k→∞

∫
X

f (y)e−sk[d(p,y)−d(x,y)]dµx,sk(y)

= lim
k→∞

1

P̃(sk, x, x)

∑
γ∈Γ

f (γx)e−sk[d(p,γx)−d(x,γx)]e−skd(x,γx)h(d(x,γx))

= lim
k→∞

1

P̃(sk, x, x)

∑
γ∈Γ

f (γx)e−skd(p,γx)h(d(x,γx)).

Hence for α ∈ Γ,

µαp( f ) = lim
k→∞

1

P̃(sk, x, x)

∑
γ∈Γ

f (γx)e−skd(αp,γx)h(d(x,γx))

= lim
k→∞

1

P̃(sk, x, x)

∑
γ∈Γ

f (αγx)e−skd(αp,αγx)h(d(x,αγx))

= lim
k→∞

1

P̃(sk, x, x)

∑
γ∈Γ

( f ◦α)(γx)e−skd(p,γx)h(d(α−1x,γx))

= lim
k→∞

1

P̃(sk, x, x)

∑
γ∈Γ

( f ◦α)(γx)e−skd(p,γx)h(d(x,γx))
h(d(α−1x,γx))

h(d(x,γx))
.

But
∣∣∣d(α−1x,γx)−d(x,γx)

∣∣∣ ≤ d(x,α−1x), and h(t+a)
h(t) → 1 as t→∞ for all a ∈ R by choice

of h. Furthermore, since h is nondecreasing, this convergence occurs uniformly in a for
|a| ≤ d(x,α−1x). Thus for every ε > 0, we have 1− ε ≤ h(d(α−1x,γx))

h(d(x,γx)) ≤ 1+ ε for all but finitely
many γ ∈ Γ. Hence

(1− ε)µp( f ◦α) ≤ µαp( f ) ≤ (1 + ε)µp( f ◦α)
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for all ε > 0. This concludes the proof.

A conformal density constructed as in the proof of Theorem 3.6 is called a Patterson-

Sullivan measure on ∂X. We do not know that such a conformal density is independent of
the many choices we made. However, µx is a probability measure by construction.

Convention. Throughout this thesis, µx will always refer to a measure from a conformal
density

{
µp

}
p∈X

on ∂X.

It would be useful to know that supp(µp) = ∂X (for some, equivalently every, p ∈ X). If
X is a proper rank one CAT(0) space and Γ acts cocompactly, this turns out (Proposition 8.5)
to be equivalent to the existence of a rank one axis in X.
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CHAPTER 4

Rank of Geodesics in CAT(0) Spaces

A CAT(0) space X is a uniquely geodesic metric space of nonpositive curvature. More
precisely, the distance between a pair of points on a geodesic triangle 4 in X is less than
or equal to the distance between the corresponding pair of points on a Euclidean compar-

ison triangle—a triangle 4 in the Euclidean plane with the same edge lengths as 4. The
class of CAT(0) spaces generalizes the class of Riemannian manifolds with nonpositive
sectional curvature everywhere; it also includes trees, Euclidean and hyperbolic buildings,
and CAT(0) cube complexes—besides many other spaces.

We now recall some properties of rank one geodesics in CAT(0) spaces. We assume
some familiarity with CAT(0) spaces ( [4] and [9] are good references). The results in this
chapter are found in the existing literature and generally stated without proof. Proposi-
tion 4.10 is not in the literature as stated, but will not surprise the experts.

Standing Hypothesis. In this chapter, let Γ be a group acting properly, cocompactly, by
isometries on a proper, geodesically complete CAT(0) space X. Further suppose, for sim-
plicity, that |∂X| > 2.

Remark. Since X is geodesically complete, requiring |∂X| > 2 merely forces X not to be
isometric to the real line R or a single point, and Γ to be infinite.

For CAT(0) spaces, the Busemann boundary is canonically homeomorphic to the visual
boundary obtained by taking equivalence classes of asymptotic geodesic rays (see [4] or
[9]). Thus we will write ∂X for the boundary with this topology, and use either description
as convenient.

A geodesic in X is an isometric embedding v : R→ X. A subspace Y ⊂ X isometric to
R× [0,∞) is called a flat half-plane; note that half-planes are automatically convex. Call
a geodesic in X rank one if its image does not bound a flat half-plane in X. If a rank one
geodesic is the axis of an isometry γ ∈ Γ, we call it a rank one axis.

Angles are defined as follows: Let x ∈ X. For y,z ∈ X r {x}, the comparison angle

∠x(y,z) at x between y and z is the angle at the corresponding point x in the Euclidean
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comparison triangle 4 for the geodesic triangle 4 in X. If v and w are geodesics in X with
v(0) = w(0) = x, the angle at x between v and w is ∠x(v,w) = lims,t→0+ ∠x(v(s),w(t)). For
p,q ∈ X r {x}, the angle at x between p and q is ∠x(p,q) = ∠x(v,w), where v and w are
geodesics with v(0) = w(0) = x, v(d(x, p)) = p, and v(d(x,q)) = q.

The next proposition describes the extent to which angles are continuous.

Proposition 4.1 (Proposition II.9.2). Let X be a complete CAT(0) space.

1. For fixed p ∈ X, the function (x,y) 7→ ∠p(x,y), which takes values in [0,π], is contin-

uous at all points (x,y) ∈ X×X with x 6= p and y 6= p.

2. The function (p, x,y) 7→∠p(x,y) is upper semicontinuous at points (p, x,y) ∈ X×X×X

with x 6= p and y 6= p.

Now we define the angle between points of the boundary. For ξ,η ∈ ∂X, let ∠(ξ,η) =

supx∈X ∠x(ξ,η). Then ∠ defines a complete CAT(1) metric on ∂X (c.f. Section 10); this
metric induces a topology on ∂X that is finer (usually strictly finer) than the standard topol-
ogy. Two additional characterizations of ∠ are described in the following proposition.

For any geodesic v : R→ X, denote v+ = limt→+∞ v(t) and v− = limt→−∞ v(t).

Proposition 4.2 (Proposition II.9.8 in [9]). Let ξ,η ∈ ∂X and x0 ∈ X. Let v,w : R→ X be

geodesics with v(0) = w(0) = x0, v+ = ξ, and w+ = η. Then

1. ∠(ξ,η) is the increasing limit lims,t→∞∠x0(v(s),w(t)), and

2. ∠(ξ,η) is the increasing limit limt→∞∠v(t)(ξ,η).

The following is an important consequence of Proposition 4.2.

Corollary 4.3 (Corollary II.9.9 in [9]). If for some point x0 ∈ X we have ∠x0(ξ,η) =

∠(ξ,η) < π, then the convex hull of the geodesic rays σ : [0,∞)→ X and τ : [0,∞)→ X

issuing from x0 with σ+ = ξ and τ+ = η is isometric to a sector in the Euclidean plane R2

bounded by two rays which meet at an angle ∠(ξ,η).

The Tits metric, dT , on ∂X is the path metric induced by ∠ (which may take the value
+∞). The Tits boundary of X is ∂X, equipped with the Tits metric dT . We now state three
important results about the Tits metric; they all follow from Theorem II.4.11 in [4]. The
first tells us that dT and ∠ coincide for all short distances.

Lemma 4.4. If ∠(ξ,η) < π then dT (ξ,η) = ∠(ξ,η).
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Note that if ξ,η are the endpoints of a geodesic, then dT (ξ,η) ≥ ∠(ξ,η) = π. Whether
the inequality is strict or not depends on whether the geodesic is rank one, as the second
lemma describes.

Lemma 4.5. A pair of points ξ,η ∈ ∂X is joined by a rank one geodesic in X if and only if

dT (ξ,η) > π.

The third lemma shows that the Tits metric dT : ∂X × ∂X → [0,∞] is actually lower
semicontinuous with respect to the visual topology on ∂X.

Lemma 4.6. Suppose ξk→ ξ and ηk→ η in the visual topology on ∂X. Then

dT (ξ,η) ≤ limsup
k

dT (ξk,ηk).

A subspace Y ⊂ X isometric to R× [0,R] is called a flat strip of width R. The next
lemma is fundamental to understanding rank one geodesics in CAT(0) spaces. It implies,
in particular, that the endpoint pairs of rank one geodesics form an open set in ∂X×∂X.

Lemma 4.7 (Lemma III.3.1 in [4]). Let w : R→ X be a geodesic which does not bound a

flat strip of width R > 0. Then there are neighborhoods U and V in X̄ of the endpoints of w

such that for any ξ ∈U and η ∈ V, there is a geodesic joining ξ to η. For any such geodesic

v, we have d(v,w(0)) < R; in particular, v does not bound a flat strip of width 2R.

Now we turn to Chen and Eberlein’s duality condition from [13]. It is based on Γ-
duality of pairs of points in ∂X, introduced by Eberlein in [16].

Definition 4.8. Two points ξ,η ∈ ∂X are called Γ-dual if there exists a sequence (γn) in Γ

such that γnx→ ξ and γ−1
n x→ η for some (hence any) x ∈ X. Write D(ξ) for the set of

points in ∂X that are Γ-dual to ξ. We say Chen and Eberlein’s duality condition holds on
∂X if v+ and v− are Γ-dual for every geodesic v : R→ X.

The next lemma describes the hyperbolic dynamics associated to a rank one axis.

Lemma 4.9 (Lemma III.3.3 in [4]). Let γ be an isometry of X, and suppose w : R→ X is

an axis for γ, where w is a geodesic which does not bound a flat half-plane. Then

1. For any neighborhood U of w− and any neighborhood V of w+ in X there exists n > 0
such that

γk(XrU) ⊂ V and γ−k(XrV) ⊂ U for all k ≥ n.
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2. For any ξ ∈ ∂X r
{
w+}, there is a geodesic wξ from ξ to w+, and any such geodesic

is rank one. Moreover, for K ⊂ ∂X r
{
w+} compact, the set of these geodesics is

compact (modulo parametrization).

The next proposition summarizes the situation for rank one CAT(0) spaces (cf. Propo-
sition 7.5 and Proposition 8.5).

Proposition 4.10. Let Γ be a group acting properly discontinuously, cocompactly, and

isometrically on a proper, geodesically complete CAT(0) space X. Suppose X contains a

rank one geodesic, and that |∂X| > 2. The following are equivalent:

1. X has a rank one axis.

2. Every pair ξ,η ∈ ∂X is Γ-dual.

3. Chen and Eberlein’s duality condition holds on ∂X (that is, v− and v+ are Γ-dual for

every geodesic v : R→ X).

4. Γ acts minimally on ∂X (that is, every p ∈ ∂X has a dense Γ-orbit).

5. Some ξ ∈ ∂X has infinite Tits distance to every other η ∈ ∂X.

6. ∂X has Tits diameter ≥ 3π
2 .

Proof. (3) =⇒ (4) and (3) =⇒ (1) are shown in Ballmann (Theorems III.2.4 and III.3.4,
respectively, of [4]). (1) =⇒ (5) is an easy exercise using Lemma 4.9(2), while (5) =⇒

(6) and (2) =⇒ (3) are trivial. (6) =⇒ (1) is shown (with slightly better bounds for any
fixed dimension) in Guralnik and Swenson ( [22]). (4) =⇒ (2) follows immediately from
Corollary 1.6 of Ballmann and Buyalo ( [5]).

It remains to prove (1) =⇒ (4). Let p,q be the endpoints of a rank one axis, and let M

be a minimal nonempty closed Γ-invariant subset of ∂X. By Lemma 4.9(1), both p,q must
lie in M; thus M is the only minimal set. By Corollary 2.1 of Ballmann and Buyalo ( [5]),
the orbit of p is dense in the boundary. Since p ∈ M, this means the Γ-action is minimal on
the boundary.

A well-known conjecture of Ballmann and Buyalo ( [5]) is that, given the hypotheses
of Proposition 4.10, all the equivalent conditions in the conclusion hold.
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CHAPTER 5

Patterson-Sullivan Measures on CAT(0)
Boundaries

We make a few observations about Patterson-Sullivan measures for CAT(0) spaces.

Standing Hypothesis. In this chapter, let Γ be a group acting properly, cocompactly, and
by isometries on a proper, geodesically complete CAT(0) space X.

Definition 5.1. Define the r-shadow of y from x to be

Or(x,y) = {ξ ∈ ∂X | [x, ξ)∩B(y,r) 6= ∅} ,

where [x, ξ) is the image of the geodesic ray from x to ξ.

Lemma 5.2. Suppose x,y ∈ X and r > 0. Then

d(x,y)− r ≤ bξ(x,y) ≤ d(x,y)

for all ξ ∈Or(x,y).

Proof. The inequality on the right is just the 1-Lipschitz property of bξ. For the one on
the left, let z ∈ B(y,r) be a point on the geodesic ray [x, ξ) from x to ξ. Then bξ(x,y) =

bξ(x,z)− bξ(y,z) by the cocycle property of Busemann functions, so bξ(x,y) ≥ bξ(x,z)− r

by the 1-Lipschitz property of bξ. But bξ(x,z) = d(x,z) because z lies on [x, ξ). Thus
bξ(x,y) ≥ d(x,z)− r.

The next lemma is a version of Sullivan’s Shadow Lemma.

Lemma 5.3. For every r > 0, there is some Cr > 0 such that

µx(Or(x,γx)) ≤Cre−δΓd(x,γx)

for all x ∈ X and γ ∈ Γ.
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Proof. Unraveling the definitions, we have

µx(Or(x,γx)) = µx(γOr(γ−1x, x))

= µγ−1(Or(γ−1x, x))

=

∫
Or(γ−1x,x)

e−δΓbξ(γ−1x,x) dµx(ξ).

By Lemma 5.2, we obtain

µx(Or(x,γx)) ≤ µx(Or(γ−1x, x)) · eδΓ(r−d(γ−1x,x)).

But d(γ−1x, x) = d(x,γx), so

µx(Or(x,γx)) ≤ µx(X) · eδΓ(r−d(x,γx)).

Therefore, the lemma holds with Cr = µx(X) · eδΓr.

Call a subspace F of X a flat if F is isometric to some Euclidean n-space Rn.

Proposition 5.4. If δΓ > 0, then µx(∂F) = 0 for any flat F ⊂ X.

Proof. Let F ⊂ X be a flat. Fix x ∈ X; we may assume x ∈ F. By cocompactness of the
Γ-action, there is some R > 0 such that ΓB(x,R) = X. Now the spheres

S F(x,r) = {y ∈ F | d(y, x) = r}

in F based at x may be covered by at most p(r) R-balls in F, for some polynomial function
p : R→ R. But the center of each of these balls lies within distance R of some γx in X

(γ ∈ Γ). Thus
S F(x,r) ⊂

⋃
γ∈Ar

B(γx,2R),

where Ar ⊂ Γ has cardinality at most p(r). Now by Lemma 5.3, for every r > 0 we have

µx(∂F) ≤
∑
γ∈Ar

µx(O2R(x,γx)) ≤
∑
γ∈Ar

C2R · e−δΓd(x,γx) = C2R · e−δΓr |Ar| .

Since |Ar| ≤ p(r), we therefore have µx(∂F)≤C2R ·e−δΓr p(r) for all r > 0. But e−δΓr p(r)→ 0
as r→ +∞ because δΓ > 0 and p(r) is polynomial. Thus µx(∂F) = 0, as required.

On the other hand, we have the following result.
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Lemma 5.5. If δΓ = 0, then X is flat—that is, X is isometric to flat Euclidean n-space Rn

for some n.

Proof. Suppose δΓ = 0. Then Γ must have subexponential growth, so Γ is amenable. By
Adams and Ballmann ( [1, Corollary C]), X is flat.

The previous two results immediately give us the following corollary.

Corollary 5.6. If X is not flat, then µx is not atomic—that is, µx(ξ) = 0 for all ξ ∈ ∂X.
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CHAPTER 6

A Weak Product Structure

We now study the space S X of unit-speed parametrized geodesics in X. Much of our
work in later chapters depends on a certain product structure on this space, which we will
describe shortly.

Standing Hypothesis. In this chapter, let Γ be a group acting properly, cocompactly, by
isometries on a proper, geodesically complete CAT(0) space X. Assume that |∂X| > 2.

Let S X be the space of unit-speed parametrized geodesics in X, endowed with the
compact-open topology, and let R ⊂ S X be the space of rank one geodesics in S X. For
v ∈ S X denote v+ = limt→+∞ v(t) and v− = limt→−∞ v(t). Let

GE =
{
(v−,v+) ∈ ∂X×∂X | v ∈ S X

}
and

RE =
{
(v−,v+) ∈ ∂X×∂X | v ∈R

}
.

Note that RE is open in GE by Lemma 4.7, and the natural projection E: S X → GE is a
continuous surjection with R = E−1(RE), so R is open in S X.

There are many metrics on S X (compatible with the compact-open topology) on which
the natural Γ-action γ(v) = γ ◦ v is by isometries. For simplicity, we will use the metric on
S X given by

d(v,w) = sup
t∈R

e−|t|d(v(t),w(t)).

Lemma 6.1. Under the metric given above, S X is a proper metric space, and the Γ-action

on X induces a proper, cocompact Γ-action on S X by isometries.

Proof. Let π : S X → X be the footpoint projection π(v) = v(0). Clearly π is continuous
(1-Lipschitz, even); since X is geodesically complete, π is surjective. We will show that
π is a proper map, that is, π−1(K) is compact for any compact set K ⊂ X. So let K be
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a compact set in X. If (vn) is a sequence in π−1(K), then vn(0) ∈ K for all n, hence a
subsequence vnk → v ∈ S X by the Arzelà-Ascoli Theorem. But vnk(0)→ v(0) must be in K

by compactness of K, hence v ∈ π−1(K). Thus π is a proper map.
Since π is 1-Lipschitz, B(v,r) ⊆ π−1(B(v(0),r)) for any v ∈ S X and r > 0; thus S X is

proper because X is proper. Since only finitely many γ ∈ Γ have B(v(0),r)∩γB(v(0),r) 6=∅,
the same holds for π−1(B(v(0),r)). If K ⊂ X is compact such that ΓK = X then π−1(K) is
compact by properness of π, and if w ∈ S X then γw(0) ∈ K for some γ ∈ Γ, hence Γπ−1(K) =

S X; thus Γ acts cocompactly on S X.

For p ∈ X, define βp : ∂X×∂X→ [−∞,∞) by βp(ξ,η) = infx∈X(bξ + bη)(x, p).

Lemma 6.2. For any ξ,η ∈ ∂X, βp(ξ,η) is finite if and only if (ξ,η) ∈ GE . Moreover,

βp(ξ,η) = (bξ + bη)(x, p)

if and only if x lies on the image of a geodesic v ∈ E−1(ξ,η).

Proof. This is shown in the proof of implications (1) =⇒ (2) and (2) =⇒ (1) of Proposition
II.9.35 in [9].

Thus we may (abusing notation slightly) also write βp : S X→R to mean the map βp◦E;
that is, βp(v) = βp(v−,v+) = (bv− + bv+)(v(0), p).

Lemma 6.3. For any p ∈ X, the map βp is continuous on RE and upper semicontinuous on

∂X×∂X.

Proof. Continuity on RE first. Fix p ∈ X, and suppose (v−n ,v
+
n )→ (v−,v+). By Lemma 4.7,

we may assume that d(vn(0),v(0)) < R for some R > 0. So by the Arzelà-Ascoli Theorem,
we may pass to a subsequence such that vn→ u for some u ∈ S X. Then u must be parallel
to v, hence βp(u) = βp(v). Define cw : X→R by cw(q) = (bw− +bw+)(q, p). Thus cw(w(0)) =

βp(w) for all w ∈ S X. Since (v−n ,v
+
n )→ (v−,v+), we have cvn → cv uniformly on B(u(0),1),

and therefore
{
cvn

}
∪ {cv} is uniformly equicontinuous on B(u(0),1). Thus vn(0) → u(0)

gives us cvn(vn(0))→ cv(u(0)). But cv(u(0)) = cu(u(0)) = βp(u), and cvn(vn(0)) = βp(vn),
hence βp(vn)→ βp(u). Therefore, βp is continuous on RE .

Now semicontinuity on ∂X×∂X. Recall that βp(ξ,η) = infx∈X(bξ + bη)(x, p). Fix p ∈ X,
and note that for fixed x ∈ X, the map (ξ,η) 7→ (bξ+bη)(x, p) is continuous. But the infimum
of a family of continuous functions is upper semicontinuous.

For v ∈ S X, let Pv be the set of w ∈ S X parallel to v (we will also write w ‖ v). Let Xv be
the union of the images of w ∈ Pv. Recall ( [4] or [9]) that Xv splits as a canonical product
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Yv ×R, where Yv is a closed and convex subset of X with v(0) ∈ Yv. Call Xv the parallel

core of v and Yv the transversal of Xv at v.
If v is rank one, then Yv is bounded and therefore has a unique circumcenter (see [4,

Proposition I.5.10] or [9, Proposition II.2.7]). Thus we have a canonical central geodesic

associated to each Xv. Let RC denote the subset of central geodesics in R.
Now suppose vn→ v ∈ S X. Then bv−n → bv− and bv+

n
→ bv+ by coincidence of the visual

and Busemann boundaries. Furthermore, bv−n (vn(0), x)→ bv−(v(0), x) for all x ∈ X because
vn(0)→ v(0) while bv−n → bv− uniformly on B(v,1). This shows the map πx in the following
definition is continuous.

Definition 6.4. Let πx : S X → GE ×R ⊆ ∂X × ∂X ×R be the continuous map given by
πx(v) = (v−,v+,bv−(v(0), x)). Say that a sequence (vn) ⊂ S X converges weakly to v ∈ S X if
πx(vn)→ πx(v).

For a sequence that converges in S X, we will sometimes say it converges strongly to
emphasize that the convergence is not in the weak sense.

Note. Weak convergence does not depend on choice of x ∈ X.

Example 6.5. Consider the hyperbolic plane H2. Cut along a geodesic, and isometrically
glue the two halves to the two sides of a flat strip of width 1. Call the resulting space X. A
sequence vn of geodesics in X which converges strongly to one of the geodesics (call it v)
bounding the flat strip will also converge weakly to all the geodesics w parallel to v such
that w(0) lies on the geodesic segment orthogonal to the image of v. (See Figure 6.1.)

vw vn

Figure 6.1: The geodesics vn converge weakly to both v and w, but strongly to v only.

Let us now relate equivalence of geodesics in the product structure to the idea of stable
and unstable horospheres, and to the transversals of parallel cores.

Definition 6.6. For v ∈ S X, the stable horosphere at v is the set of geodesics

Hs(v) =
{
w ∈ S X | w+ = v+ and bv+(w(0),v(0)) = 0

}
.
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Similarly, the unstable horosphere is the set of geodesics

Hu(v) =
{
w ∈ S X | w− = v− and bv−(w(0),v(0)) = 0

}
.

Proposition 6.7. For v,w ∈ S X and x ∈ X, the following are equivalent:

1. πx(v) = πx(w).

2. w ∈ Hu(v) and v+ = w+.

3. w ∈ Hs(v) and v− = w−.

4. w ∈ Hs(v)∩Hu(v).

5. v ‖ w and w(0) ∈ Yv.

Proof. We may assume throughout the proof that v ‖ w. Since

(bv− + bv+)(v(0), x) = βx(v) = βx(w) = (bw− + bw+)(w(0), x),

we have bv−(v(0), x) = bw−(w(0), x) if and only if bv+(v(0), x) = bw+(w(0), x); this proves
the equivalence of the first four conditions. Recall ( [4, Proposition I.5.9], or [9, Theorem
II.2.14(2)]) that Yv is preimage of v(0) in Xv under the orthogonal projection onto the image
of v. Now orthogonal projection onto the image of v cannot increase either bv−(·, x) or
bv+(·, x) by [9, Lemma II.9.36], but βx(v) = βx(w) because v ‖ w. So for w(t0) ∈ Yv,

bv−(v(0), x) = bv−(w(t0), x) = bw−(w(t0), x) = t0 + bw−(w(0), x).

Thus πx(v) = πx(w) if and only if w(0) ∈ Yv (note w(t0) ∈ Yv for only one t0 ∈ R). This
concludes the proof.

We will write u ∼ v if v and w satisfy any of the equivalent conditions in the above
proposition. Clearly ∼ is an equivalence relation. Note that by Proposition 6.7, this relation
does not depend on choice of x ∈ X.

Lemma 6.8. If vn→ v weakly and v ∈R, then {vn(0)} is bounded in X.

Proof. Fix x ∈ X. Since v−n → v−, we have bv−n → bv− uniformly on compact subsets, and so
bv−n (v(0), x)→ bv−(v(0), x). On the other hand, we know that bv−n (vn(0), x)→ bv−(v(0), x) by
hypothesis, so

lim
n→∞

bv−n (v(0), x) = bv−(v(0), x) = lim
n→∞

bv−n (vn(0), x).
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Hence, by the cocycle property of Busemann functions,

lim
n→∞

(
bv−n (v(0),vn(0))

)
= lim

n→∞

(
bv−n (v(0), x)−bv−n (vn(0), x)

)
= 0.

Now let R > 0 be large enough so that v does not bound a flat strip in X of width R. By
Lemma 4.7, for all sufficiently large n there exist tn ∈ R such that d(vn(tn),v(0)) < R. Thus

|tn| =
∣∣∣bv−n (vn(tn),vn(0))

∣∣∣ =
∣∣∣bv−n (vn(tn),v(0))−bv−n (vn(0),v(0))

∣∣∣
≤ d(vn(tn),v(0)) +

∣∣∣bv−n (vn(0),v(0))
∣∣∣ < R + 1

for all sufficiently large n. In particular,

d(vn(0),v(0)) ≤ d(vn(0),vn(tn)) + d(vn(tn),v(0)) < |tn|+ R < 2R + 1.

Lemma 6.9. If vn → v weakly and v ∈R then a subsequence converges strongly to some

u ∼ v.

Proof. Fix x ∈ X. By Lemma 6.8, {vn(0)} lies in some compact set in X. Hence by the
Arzelà-Ascoli Theorem, passing to a subsequence we may assume that (vn) converges in
S X to some geodesic u. Then πx(u) = limπx(vn) by continuity of πx, while πx(v) = limπx(vn)
by hypothesis, and therefore u ∼ v.

Remark. Restricting πx to RC does not automatically give us a homeomorphism from RC

to RE×R. We get a topology on RC at least as course as the subspace topology, though. An
explicit example of the failure of πx to be a homeomorphism is as follows: Take a closed
hyperbolic surface, and replace a simple closed geodesic with a flat cylinder of width 1;
then there are sequences of geodesics that limit, weakly but not strongly, onto one of the
central geodesics in the flat cylinder.

From Lemma 6.9, we see that the continuous map πx|R is closed (that is, the image of
every closed set is closed). Thus πx|R is a topological quotient map onto RE ×R.

Let gt : S X → S X denote the geodesic flow; that is, (gt(v))(s) = v(s + t). Note that gt

commutes with Γ. Observe also that the geodesic flow gt descends to the action on GE ×R
given by gt(ξ,η, s) = (ξ,η, s + t), hence this is clearly an action by homeomorphisms. Using
Lemma 6.9, we obtain the following complementary observation.

Proposition 6.10. The Γ-action on R descends to an action on RE ×R by homeomorph-

isms.
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Proof. Suppose u ∼ v. Then γu ∼ γv follows from the trivial computation

bγu−(γu(0), x) = bu−(u(0),γ−1x) = bv−(v(0),γ−1x) = bγv−(γv(0), x).

Thus γ descends to a continuous map RE ×R → RE ×R by the universal property of
quotient maps. But then γ−1 also descends to a continuous map, and therefore Γ acts by
homeomorphisms on RE ×R.

We also have the following stronger result.

Proposition 6.11. The Γ-action on S X descends to an action on GE ×R by homeomorph-

isms.

Proof. Fix x ∈ X. First compute

πx(γv) =
(
γv−,γv+,bγv−(γv(0), x)

)
=

(
γv−,γv+,bv−(v(0),γ−1x)

)
=

(
γv−,γv+,bv−(v(0), x) + bv−(x,γ−1x)

)
.

Now recall ξn → ξ in ∂X if and only if bξn(·, p)→ bξ(·, p) uniformly on compact subsets,
for p ∈ X arbitrary. Hence if v−n → v− then bv−n (x,γ−1x)→ bv−(x,γ−1x). So suppose vn→ v

weakly in S X. Then

πx(γv) =
(
γv−,γv+,bv−(v(0), x) + bv−(x,γ−1x)

)
= lim

n→∞

(
γv−n ,γv+

n ,bv−n (vn(0), x) + bv−n (x,γ−1x)
)

= lim
n→∞

πx(γvn).

Thus γ descends to a continuous map GE ×R→ GE ×R. But then γ−1 also descends to a
continuous map, and therefore Γ acts by homeomorphisms on GE ×R.

Proposition 6.12. Let flip : S X → S X be the flip given by (flipv)(t) 7→ v(−t). Then flip |R
descends to a homeomorphism on RE ×R.

Proof. Observe that flipu∼flipv whenever u∼ v, so flip |R descends to the map flip(ξ,η, s) =

(η,ξ,βx(ξ,η)− s) on RE ×R. By Lemma 6.3, this map flip is continuous. Since it is its own
inverse, it is therefore a homeomorphism.
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CHAPTER 7

Recurrence

We now study some of the basic topological properties of the geodesic flow on S X. We
want to study these properties both on S X and its weak product structure GE ×R from the
previous chapter.

Standing Hypothesis. In this chapter, let Γ be a group acting properly, cocompactly, by
isometries on a proper, geodesically complete CAT(0) space X. Assume that |∂X| > 2.

Definition 7.1. A geodesic v ∈ S X is said to Γ-accumulate on w ∈ S X if there exist se-
quences tn→ +∞ and γn ∈ Γ such that γngtn(v)→ w as n→∞. A geodesic v ∈ S X called
Γ-recurrent if it Γ-accumulates on itself.

The definition given above describes forward Γ-recurrent geodesics. A backward Γ-
recurrent geodesic is a geodesic v ∈ S X such that flipv is forward Γ-recurrent. We will also
sometimes use the terms weakly and strongly, as in Definition 6.4, to specify the conver-
gence in Definition 7.1.

Recurrence is stronger than nonwandering:

Definition 7.2. A geodesic v ∈ S X is called nonwandering mod Γ if there exists a sequence
vn ∈ S X such that vn Γ-accumulates on v.

Note that v ∈ S X is Γ-recurrent if and only if its projection onto Γ\S X is recurrent under
the geodesic flow gt

Γ
on Γ\S X. Similarly, v ∈ S X is nonwandering mod Γ if and only if its

projection is nonwandering under the geodesic flow gt
Γ

on Γ\S X.
Eberlein ( [16]) proved the following result for manifolds of nonpositive curvature; it

describes duality in ∂X in terms of geodesics.

Lemma 7.3 (Lemma III.1.1 in [4]). If v,w ∈ S X and v+ ∈D(w−), then there exist (γn, tn,vn) ∈
Γ×R×S X such that vn→ v and γngtnvn→ w.
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Thus Eberlein observed (see [16] and [17]) for manifolds of nonpositive curvature that
v ∈ S X is nonwandering mod Γ if and only if v− and v+ are Γ-dual. This fact holds for
proper, geodesically complete CAT(0) spaces as well (the one direction is clear, and the
other follows from Lemma 7.3; see the discussion preceding Corollary III.1.4 in [4]).

Corollary 7.4. The geodesic v ∈ S X is nonwandering mod Γ if and only if v− and v+ are

Γ-dual.

We recall the situation for rank one CAT(0) spaces (cf. Proposition 4.10 and Proposi-
tion 8.5):

Proposition 7.5. Let Γ be a group acting properly discontinuously, cocompactly, and iso-

metrically on a proper, geodesically complete CAT(0) space X. Suppose X contains a rank

one geodesic. The following are equivalent:

1. X has a rank one axis.

2. The rank one axes of X are weakly dense in R.

3. Some rank one geodesic of X is nonwandering mod Γ.

4. Every geodesic of X is nonwandering mod Γ.

5. The strongly Γ-recurrent geodesics of X are dense in S X.

6. Some geodesic of X has a strongly dense orbit mod Γ.

Proof. (2) =⇒ (1) and (4) =⇒ (3) are immediate. By Proposition 4.10, X has a rank one
axis if and only if Chen and Eberlein’s duality condition holds, so (1)⇐⇒ (4)⇐⇒ (5) by
Corollaries III.1.4 and II.1.5 of [4], and (1) =⇒ (6) by Theorem III.2.4 of [4]. By Lemma
III.3.2 of [4], every rank one geodesic that is nonwandering mod Γ is a weak limit of rank
one axes; this proves (3) =⇒ (1) and (4) =⇒ (2).

We now prove (6) =⇒ (1). Let v ∈ S X have dense orbit mod Γ; by Lemma 4.7, v ∈

R. If (1) fails, then v+ cannot be isolated in the Tits metric on ∂X by Proposition 4.10.
Hence (v−,v+) cannot be isolated in GE , so v must be strongly Γ-recurrent. But we already
observed that (1)⇐⇒ (5).

We will work mainly with Γ-recurrence. The following basic result illustrates the power
of Γ-recurrence.

Lemma 7.6. Let v ∈ S X be a Γ-recurrent geodesic. Then every w ∈ S X with w+ = v+

Γ-accumulates on a geodesic parallel to v.
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Proof. Since v is Γ-recurrent, there exist sequences tn→+∞ and γn ∈Γ such that γngtn(v)→
v. So suppose w ∈ S X has w+ = v+. Since w+ = v+, the function t 7→ d(gtv,gtw) is bounded
on t ≥ 0 by convexity, hence

{
γngtnw(0)

}
is bounded, and passing to a subsequence we may

assume that γngtn(w)→ u ∈ S X. But then

d(v(s),u(s)) = lim
n→∞

d(γngtnv(s),γngtnw(s)) = lim
t→∞

d(gtv(s),gtw(s))

is independent of s ∈ R, and thus u is parallel to v.

Inspecting the proof, we see that we have actually shown the following.

Lemma 7.7. Suppose v,w ∈ S X have v+ = w+. If v Γ-accumulates on u ∈ S X, then w must

Γ-accumulate on a geodesic parallel to u.

We will need to deal with weak Γ-recurrence, so we revisit Lemma 7.6.

Lemma 7.8. Let v ∈R be a weakly Γ-recurrent geodesic. Then every w ∈ S X with w+ = v+

strongly Γ-accumulates on a geodesic u ∼ v.

Proof. By Lemma 6.9, v strongly Γ-accumulates on some u ∼ v. By Lemma 7.7, w must
strongly Γ-accumulate on some u′ ‖ u. But gtu′ ∼ u for some t ∈ R, so we may assume
u′ ∼ u.

As before, we have actually shown the following.

Lemma 7.9. Suppose v,w ∈ S X have v+ = w+. If v weakly Γ-accumulates on u ∈R, then

w must strongly Γ-accumulate on a geodesic parallel to u.

In fact, one has the following more general statement.

Lemma 7.10. Suppose v1,v2 ∈ S X are asymptotic, and v1 weakly Γ-accumulates on w1 ∈

R. Then there exist w2 ∈ R parallel to w1 and sequences tn → +∞ and γn ∈ Γ such that

γngtn(v1)→ u1 ∼ w1 and γngtn(v2)→ w2. Moreover,

d(w1(s),w2(s)) = lim
t→∞

d(v1(t),v2(t)) for all s ∈ R.

Furthermore, if v2 ∈ Hs(v1) then w1 ∼ w2.

Proof. Fix x ∈ X. Take a sequence (tn,γn) in R×Γ with tn→ +∞ such that γngtn(v1)→ w1

weakly. By Lemma 6.8,
{
γngtnv1(0)

}
is bounded. If v+

1 = v+
2 , the function t 7→ d(gtv1,gtv2) is
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bounded on t ≥ 0 by convexity, and thus
{
γngtnv2(0)

}
is bounded. Passing to a subsequence,

γngtn(v2)→ w2 ∈ S X. But then

d(w1(s),w2(s)) = lim
n→∞

d(γngtnv1(s),γngtnv2(s)) = lim
t→∞

d(gtv1(s),gtv2(s))

is independent of s ∈ R; hence w2 is parallel to w1.
Now if v2 ∈ Hs(v1) then

bw+
2
(w2(0), x) = lim

n→∞
bγngtnv+

2
(γn(gtnv2(0)), x)

= lim
n→∞

bv+
2
(v2(tn),γ−1

n x)

= lim
n→∞

bv+
1
(v1(tn),γ−1

n x)

= lim
n→∞

bγngtnv+
1
(γn(gtnv1(0)), x)

= bw+
1
(w1(0), x).

Since we know w1 ‖ w2, we have w1 ∼ w2 by Proposition 6.7.

Since convergence preserves distances between all vectors w′ ‖ w ∈ Hs(v), by passing
to a subsequence we expect convergence of Xw to an isometric embedding into Xv. This is
shown in the following lemma.

Lemma 7.11. Suppose w ∈ S X strongly Γ-accumulates on v ∈ S X. Then there are isometric

embeddings Xw ↪→ Xv and Yw ↪→ Yv, each of which maps w(0) 7→ v(0).

Proof. Let (tn,γn) ⊂ R×Γ be a sequence such that γngtnw→ v in S X. Then, in particular,
γngtnw(0)→ v(0) in X. So by the Arzelà-Ascoli Theorem, we may pass to a further subse-
quence such that the natural isometries Yw → γnYgtnw converge uniformly to an isometric
embedding ϕ of Yw into X. Since γngtn(w) → v, the map ϕ must extend to an isomet-
ric embedding of Xw into Xv. But ϕ must also isometrically embed Yw into Yv because
γngtnw(0)→ v(0).

Corollary 7.12. Let v ∈ R be weakly Γ-recurrent. Then for every w ∈ S X with w+ = v+,

there are isometric embeddings Xw ↪→ Xv and Yw ↪→ Yv.

Proof. By Lemma 7.8, w strongly Γ-accumulates on a geodesic u ∼ v. Since u ‖ v, we have
Xu = Xv and Yu = Yv. Now apply Lemma 7.11.

One immediate consequence of Corollary 7.12 is that if v ∈R is weakly Γ-recurrent with
Yv = {v(0)} and w+ = v+, then Yw = {w(0)}. Another is that any w ∈ S X with w+ = v+ (v ∈R
weakly Γ-recurrent) must have w ∈R. But we can do better than this second consequence.
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If v ∈R is weakly Γ-recurrent, then dT (v−,v+) =∞. For otherwise, since dT is a path
metric, there is some ξ ∈ ∂X such that π < dT (ξ,v+) < dT (v−,v+). By Lemma 4.5, there
is a geodesic w ∈ E−1(ξ,v+), and by Lemma 7.8, w weakly Γ-accumulates on v. But dT

is invariant under Isom X, so dT (v−,v+) ≤ dT (w−,w+) by Lemma 4.6. This contradicts our
choice of w, and the claim follows. In fact, we have shown that if v ∈ R is weakly Γ-
recurrent, then dT (ξ,v+) ∈ [0,π]∪ {∞} for every ξ ∈ ∂X. The next lemma improves on this
statement.

Lemma 7.13. If v ∈R is weakly Γ-recurrent, then v+ is isolated in the Tits metric—that is,

v+ has infinite Tits distance to every other point in ∂X.

Proof. Let v ∈ R be weakly Γ-recurrent. By Lemma 6.9, there is a sequence (tn,γn) in
R×Γ with tn→ +∞ and u ∼ v such that γngtn(v)→ u strongly; note u+ = v+. Let p = u(0)
and pn = v(tn). Suppose ξ ∈ ∂X has dT (ξ,v+) < π; in particular, ∠(ξ,v+) < π. Passing
to a subsequence, we may assume γnξ → η ∈ ∂X. Clearly γn pn → p, hence ∠p(η,v+) ≥
limsupn→∞∠γn pn(γnξ,γnv+) by upper semicontinuity (Proposition 4.1). But ∠pn(ξ,v+)→
∠(ξ,v+) because pn = v(tn) by Proposition 4.2. And γnv+→ v+, so ∠(η,v+)≤ liminfn→∞∠(γnξ,γnv+)
by lower semicontinuity (Lemma 4.6). Thus we have

∠p(η,v+) ≥ limsup
n→∞

∠γn pn(γnξ,γnv+)

= limsup
n→∞

∠pn(ξ,v+)

= ∠(ξ,v+)

= liminf
n→∞

∠(γnξ,γnv+)

≥ ∠(η,v+).

But then ∠p(η,v+) = ∠(η,v+) by definition of ∠, and so by Corollary 4.3 there is a flat
sector bounded by (p,η,v+).

Now the points pn = v(tn) lie in arbitrarily large balls of a flat half-plane bounded by
the image of v. By the Arzelà-Ascoli theorem, p = limγn pn lies on a full flat half-plane
bounded by the image of u = limγnv. But this contradicts the fact that u ∼ v ∈R.
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CHAPTER 8

Bowen-Margulis Measures

We now construct our first Bowen-Margulis measures. In this chapter, we put them on the
weak product structure GE ×R and its quotient under Γ. Near the end of Section 9, we will
finally be able to define Bowen-Margulis measures on S X and its quotient under Γ.

Standing Hypothesis. In this chapter, let Γ be a group acting properly, cocompactly, by
isometries on a proper, geodesically complete CAT(0) space X. Assume that |∂X| > 2, and
that X admits a rank one geodesic.

Lemma 6.3 allows us to define a Borel measure µ on GE by

dµ(ξ,η) = e−δΓβx(ξ,η)dµx(ξ)dµx(η),

where x ∈ X is arbitrary. It follows easily from the definitions that one has

dµ(ξ,η) = e−δΓβp(ξ,η)dµp(ξ)dµp(η)

for all p ∈ X. Thus µ does not depend on choice of x ∈ X and is Γ-invariant. We will,
however, need to prove that µ is nontrivial—that is, µ does not give zero measure to every
measurable set. We do this in Lemma 8.1, under the hypothesis that supp(µx) = ∂X.

Note that sets of zero µx-measure do not depend on choice of x ∈ X, so we may write
µx-a.e. and supp(µx) without choosing x ∈ X.

Lemma 8.1. If supp(µx) = ∂X, then GE ⊆ supp(µ).

Proof. Recall that RE is open in ∂X × ∂X, so RE ⊆ supp(µ). By Proposition 7.5(6), R is
dense in S X, so RE is dense in GE . Thus GE ⊆ supp(µ).

We want to use µ to create a Γ-invariant Borel measure on S X. Potentially, one might
do so on RC , but it is not clear how to ensure that the result would be Borel. We can do so
on the related space GE ×R, however.
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Definition 8.2. Suppose supp(µx) = ∂X. The Bowen-Margulis measure m on GE ×R is
given by m = µ×λ, where λ is Lebesgue measure on R.

By Proposition 6.11, Γ acts continuously (hence measurably) on GE ×R. Thus m is
Γ-invariant by Γ-invariance of µ; m is also gt-invariant. There is a simple way to push the
measure m forward modulo the Γ-action, which we describe in Appendix A. However, we
still need to show that the resulting measure mΓ is finite.

Remark. Clearly m is not finite. But neither is µ:

Fact. µ is not finite.

Proof. Let v ∈ S X be a rank one axis transated by γ ∈ Γ, and let U ⊂ ∂X be an open neigh-
borhood of v+ such that v− /∈ U. By Lemma 4.9, the sequence (γk(U ×U)) of open sets
(intersecting GE) contains a nested subsequence (γki(U ×U)) with intersection (v+,v+) ∈
∂X × ∂X r GE . Since µ is Γ-invariant, µ(U ×U) = 0 or ∞. But µ has full support, so
µ(U ×U) =∞.

Proposition 8.3. Suppose supp(µx) = ∂X, and let pr : GE ×R→ Γ\(GE ×R) be the canoni-

cal projection. There is a finite Borel measure mΓ on Γ\(GE ×R) satisfying both the follow-

ing properties:

1. For all Borel sets A ⊆ GE ×R, we have mΓ(pr(A)) = 0 if and only if m(A) = 0 if and

only if m(ΓA) = 0. In particular, Γ\(GE ×R) ⊆ supp(mΓ).

2. The geodesic flow gt
Γ

on Γ\(GE ×R), defined by gt
Γ
◦pr = pr◦gt, preserves mΓ.

Proof. Proposition A.11 gives us everything except that mΓ is finite. By Corollary A.12(1),
it suffices to show m(F)<∞ for some F ⊆ GE×R such that ΓF = GE×R. Now the Γ-action
on S X is cocompact by Lemma 6.1, so there is a compact K ⊂ S X such that ΓK = S X. Let
x ∈ X and F = πx(K). Then ΓF = GE ×R because ΓK = S X. We will show m(F) <∞.

Since F is compact by continuity of πx, we have F ⊆ GE × [−r,r] for some finite r ≥ 0;
thus it suffices to prove µ(E(K)) <∞. Let A = {v(0) ∈ X | v ∈ K}. By Lemma 6.2, βx(v) =

(bξ + bη)(v(0), x). Hence

βx(K) ⊆
{
(bξ + bη)(p, x) | (ξ,η) ∈ E(K) and p ∈ A

}
.

So |βx(K)| ≤ 2R, where R is the diameter of A in X, because the map p 7→ bζ(p, x) is 1-
Lipschitz for all ζ ∈ ∂X. Thus

µ(E(K)) =

∫
E(K)

e−δΓβx(ξ,η)dµx(ξ)dµx(η) ≤
∫

E(K)
eδΓ·2Rdµx(ξ)dµx(η) ≤ eδΓ·2R.
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Hence µ(E(K)) <∞, and therefore m(F) <∞. Thus mΓ is finite.

Remark. The measure mΓ is uniquely defined by property (†) of Proposition A.11.

The measure mΓ from Proposition 8.3 is called the Bowen-Margulis measure on Γ\(GE×

R). The following lemma is a simple consequence of Poincaré recurrence.

Lemma 8.4. Suppose supp(µx) = ∂X. Let W be the set of w ∈ S X such that w and flipw are

both weakly Γ-recurrent. Then µ(E(S XrW)) = 0.

Proof. Note mΓ is a finite gt
Γ
-invariant measure on Γ\(GE ×R), which has a countable

basis. So by Poincaré recurrence, the set WΓ of forward and backward recurrent points
in Γ\(GE ×R) has full mΓ-measure. Now W is Γ-invariant and projects down to WΓ in
Γ\(GE ×R), so m((GE ×R)r πx(W)) = 0 by Proposition 8.3(1). The result follows from
gt-invariance of W.

We conclude this chapter by extending Proposition 4.10 and Proposition 7.5.

Proposition 8.5. Let Γ be a group acting properly discontinuously, cocompactly, and iso-

metrically on a proper, geodesically complete CAT(0) space X. Suppose X contains a rank

one geodesic. The following are equivalent:

1. X has a rank one axis.

2. supp(µx) = ∂X.

3. (µx×µx)(RE) > 0.

4. Some rank one geodesic of X is weakly Γ-recurrent.

Proof. (2) =⇒ (3) is clear because RE is open; (3) =⇒ (4) is a corollary of Lemma 8.4. For
(1) =⇒ (2), recall (Proposition 4.10) that the Γ-action on ∂X is minimal if X has a rank one
axis; the claim follows immediately.

We now prove (4) =⇒ (1). Suppose v ∈R is weakly Γ-recurrent; we may assume v ∈

RC . By Lemma 6.9, we may find γngtn(v)→ u ∼ v, and the natural isometries Yv→ γnYgtnv

converge uniformly (on compact subsets) to an isometric embedding ϕ of Yv into Yu = Yv.
But v(0) is the centroid of Yv, and that is isometry-invariant, so we must have u = v. Thus
v is strongly Γ-recurrent, and therefore nonwandering mod Γ. Therefore, X has a rank one
axis by Proposition 7.5.
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CHAPTER 9

Properties of Bowen-Margulis Measures

We now are in a position to prove some important properties about the Bowen-Margulis
measures we constructed on GE ×R and Γ\(GE ×R). In Theorem 9.1, we use the Bowen-
Margulis measures to obtain a structural result about the Patterson-Sullivan measures. Then
(Theorem 9.9) we prove a structural result about S X. This theorem allows us to finally
define Bowen-Margulis measures on S X and Γ\S X. We end the chapter by showing that
the geodesic flow is ergodic with respect to the Bowen-Margulis measure on Γ\S X.

Standing Hypothesis. In this chapter, let Γ be a group acting properly, cocompactly, by
isometries on a proper, geodesically complete CAT(0) space X. Assume that |∂X| > 2, and
that X admits a rank one axis (not just geodesic).

By Lemma 8.4, we have weak recurrence almost everywhere. Our next theorem uses
Lemma 7.13 to capitalize on the prevalence of recurrence.

Theorem 9.1 (Theorem 1). Let X be a proper, geodesically complete CAT(0) space and Γ

be a group acting properly discontinuously, cocompactly, and by isometries on X; further

assume X admits a rank one axis. Then µx-a.e. ξ ∈ ∂X is isolated in the Tits metric.

Proof. Let Ω be the set of Tits-isolated points in ∂X, and let ξ ∈ ∂X. Find v ∈R the axis of
a rank one geodesic; we may assume v− 6= ξ. Then by Lemma 4.9, there is a geodesic w ∈R
with (w−,w+) = (v−, ξ). By Lemma 4.7, we have an open product neighborhood U ×V of
(v−, ξ) in RE .

Let W be the set of weakly Γ-recurrent geodesics in S X. Then µ((U ×V)rE(W)) = 0
by Lemma 8.4. So by Fubini’s theorem, there exists W+ ⊆ V such that µx(V rW+) = 0, and
µx({ζ ∈ U | (ζ,η) /∈ E(W)}) = 0 for every η ∈W+. Now by Lemma 7.13, if v ∈R is weakly
Γ-recurrent, then v+ is Tits-isolated. Hence W+ ⊆Ω.

Thus we have shown that every ξ ∈ ∂X has a neighborhood V such that µx(V rΩ) = 0.
The theorem follows by compactness of ∂X.
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Corollary 9.2. (µx×µx)(∂X×∂XrRE) = 0.

Proof. Let ξ ∈ ∂X be Tits-isolated. Then (ξ,η) ∈RE for all η ∈ ∂Xr {ξ}. Since µx({ξ}) = 0
by Corollary 5.6, we see that µx-a.e. η ∈ ∂X has (ξ,η) ∈ RE . The result follows from
Theorem 9.1 and Fubini’s theorem.

Observe that µ and µx × µx are in the same measure class (that is, each is absolutely
continuous with respect to the other), so µ(GE rRE) = 0. Thus almost no geodesic in X

(with respect to the Bowen-Margulis measure m on GE ×R) bounds a flat half-plane.
Our next goal (Theorem 9.9) is to show that almost no geodesic in X bounds a flat strip

of any width—that is, diamYv = 0 for almost every geodesic v. We will need a few lemmas,
the first of which describes the upper semicontinuity property of the map v 7→ Yv from S X

into the space of closed subsets of X (with the Hausdorff metric).

Lemma 9.3. If a sequence (vn) ⊂ S X converges to v ∈R then some subsequence of (Yvn)
converges, in the Hausdorff metric, to a closed subset A of Yv.

Proof. Let R be the diameter of Yv. By Lemma 6.1, the closed ball B in S X about v

of radius 2R is compact, so the space CB of closed subsets of B is compact under the
Hausdorff metric. For w ∈ S X, let P′w = {u ∈ S X | u ∼ w}. Eventually every P′vn

lies in B, so
some subsequence (P′vnk

) converges in CB. But every limit point of wn ∈ P′vn
must lie in P′v,

thus (Yvnk
) converges, in the Hausdorff metric, to a closed subset A of Yv.

The next lemma follows easily from Lemma 7.3.

Lemma 9.4. Suppose ψ : RE → S is a Γ-invariant function from RE to a set S such that

ψ is constant µ-a.e. on every product neighborhood U ×V ⊆RE . Then ψ is constant µ-a.e.

on RE .

Proof. Suppose U0×V0 is a nonempty product neighborhood in RE , and let Ω0 be a subset
of U0×V0 with µ((U0×V0)rΩ0) = 0 such that ψ is constant on Ω0. Fix v0 ∈ E−1(Ω0). We
will show that ψ(c) = ψ(E(v0)) for µ-a.e. c ∈RE .

Let U1×V1 be another nonempty product neighborhood in RE , and let Ω1 be a subset of
U1×V1 with µ((U1×V1)rΩ1) = 0 such that ψ is constant on Ω1. Let v1 ∈E−1(Ω1). Since X

has a rank one axis, by Lemma 7.3 we may find (γn, tn,wn) ∈ Γ×R×S X such that wn→ v1

and γngtnwn → v0. Thus γn(U1 ×V1) has nonempty intersection with U0 ×V0 for some
n. Since both sets are open and µ has full support, the intersection has positive measure.
Hence µ(Ω0∩γnΩ1) > 0, and therefore we may find c ∈ (Ω0∩γnΩ1). Then ψ(c) = ψ(E(v0))
on the one hand because c ∈ Ω0, but ψ(c) = ψ(E(v1)) on the other hand because c ∈ γnΩ1

and ψ is Γ-invariant.
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Thus we have shown that for every product neighborhood U1 ×V1 in RE , µ-a.e. c ∈

U1×V1 has ψ(c) = ψ(E(v0)). But ∂X×∂X is a compact metric space and therefore second
countable; thus the open set RE is covered by countably many product neighborhoods.
So by removing a set of measure zero from each, we have ψ(c) = ψ(E(v0)) for µ-a.e. c ∈

RE .

Remark. The function ψ in Lemma 9.4 is not required to be measurable. It suffices for ψ
to be constant on a set of full measure.

Now we combine Fubini’s theorem with Lemma 9.4.

Lemma 9.5. Suppose ψ : RE → S is a Γ-invariant map from RE to a set S . If Ω is a set of

full µ-measure in RE such that ψ((a,b)) =ψ((a,d)) =ψ((c,d)) for any (a,b), (a,d), (c,d) ∈Ω,

then ψ is constant µ-a.e. on RE .

Proof. Let U ×V be a product neighborhood in RE . By Fubini’s theorem, there exists a
subset A of U such that µx(U r A) = 0 and every a ∈ A has (a,b) ∈ Ω for µx-a.e. b ∈ V .
Let (a,b) ∈ (A×V)∩Ω; by choice of A there is some B ⊆ V such that µx(V r B) = 0 and
{a} × B ⊂ Ω. So take any (c,d) ∈ (A× B)∩Ω; then (a,d) ∈ (A× B)∩Ω by choice of B,
so (c,d), (a,d), (a,b) ∈ Ω. Hence ψ((c,d)) = ψ((a,d)) = ψ((a,b)) by hypothesis. Thus ψ is
constant across (A×B)∩Ω, which has full measure in U ×V , and Lemma 9.4 finishes the
proof.

Corollary 9.6. Suppose ψ : RE → S is a map from RE to a set S such that ψ is invariant

under both Γ and flip. If Ω is a flip-invariant set of full measure in RE such that ψ((a,b)) =

ψ((c,b)) for any (a,b), (c,b) ∈Ω, then ψ is constant µ-a.e. on RE .

We note here the following basic result about compact metric spaces.

Lemma 9.7 (Theorem 1.6.14 in [10]). A compact metric space cannot be isometric to a

proper subset of itself.

Lemma 9.8. The isometry type of Yv is the same for µ-a.e. (v−,v+) ∈RE .

Proof. Let W be the set of w ∈ R such that w and flipw are both weakly Γ-recurrent. If
u,v ∈W have u+ = v+, then by Corollary 7.12, we have isometric embeddings between the
compact metric spaces Yu and Yv, thus Yu and Yv are isometric by Lemma 9.7. Since Yv is
constant across Pv, we may therefore apply Corollary 9.6 to the map ψ taking c ∈RE to the
isometry type of Yc, with Ω = E(W) by Lemma 8.4.
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Let Z = {v ∈ S X | diam(Yv) = 0}, the set of zero-width geodesics. Let ZE = E(Z), the
set of (ξ,η) ∈ GE such that no v ∈ S X with (v−,v+) = (ξ,η) bounds a flat strip of positive
width. By semicontinuity of the map v 7→ Yv (Lemma 9.3), the width function v 7→ diam(Yv)
is semicontinuous on S X. Thus ZE ⊆ GE is Borel measurable.

Theorem 9.9 (Theorem 2). Let X and Γ satisfy the assumptions of Theorem 1. The set

ZE ⊆ GE of endpoint pairs of zero-width geodesics has full µ-measure. Thus m-almost no

equivalence class of geodesics contains a flat strip of positive width.

Proof. Let S ⊆ R be the preimage under E of the a.e.-set in RE from Lemma 9.8; then
πx(S) has full m-measure. Since S is weakly dense in R, by Lemma 6.9 and semicontinuity
of the map v 7→ Yv there is an isometric embedding Yu ↪→ Yv for every u ∈ S and v ∈ R.
Thus it suffices to show Z 6= ∅, for then S ⊆ Z , and ZE will have full µ-measure.

Recall (Proposition 8.5) that since X has a rank one axis, there is some w ∈ S X with
dense orbit in S X mod Γ; we claim w ∈ Z . Now by Lemma 7.11, every v ∼ w induces an
isometric embedding Yw ↪→ Yv that maps w(0) 7→ v(0). Since Yv = Yw, this map is an isom-
etry by Lemma 9.7, and therefore Isom(Yw) acts transitively on Yw. But the circumcenter
of Yw is an isometry invariant, hence Yw must be a single point. This proves the claim, and
the theorem follows.

It follows that (µx×µx)(∂X×∂XrZE) = 0 (cf. Corollary 9.2).
Let S ⊆Z be as in Theorem 9.9, with πx(S) having full m-measure in GE×R. Note that

every v ∈ S is weakly forward and backward Γ-recurrent by construction. Furthermore, S
is gt-invariant, and we may assume that S is invariant under Γ.

Lemma 9.10. If vn→ v weakly, and v ∈ Z , then vn→ v strongly.

Proof. Let v ∈Z , and suppose vn→ v. Take an arbitrary subsequence of (vn). By Lemma 6.9,
there is a further subsequence that converges strongly to some u ∼ v. By Theorem 9.9,
u = v. Thus we have shown that every subsequence of (vn) contains a further subsequence
that converges strongly to v. Therefore, vn→ v strongly.

Corollary 9.11. Every v ∈ S is strongly forward and backward Γ-recurrent.

Corollary 9.12. The restriction of πx to Z is a homeomorphism onto its image.

Proof. Fix x ∈ X. By definition, πx|Z is injective, hence bijective onto its image. Since πx

is continuous (that is, every strongly convergent sequence in Z is weakly convergent), it
remains to observe that πx|

−1
Z is continuous (that is, every weakly convergent sequence in

Z is strongly convergent) by Lemma 9.10.
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Definition 9.13. By Corollary 9.12, πx|Z maps Borel sets to Borel sets, hence we may view
m as a gt- and Γ-invariant Borel measure on S X by setting m(A) = m(πx(A∩Z)) for any
Borel set A ⊆ S X. We will write m for this measure on S X, and mΓ for the corresponding
finite Borel measure on Γ\S X.

Proposition 9.14. The Bowen-Margulis measure m on S X has full support.

Proof. For clarity, we write mdown for the measure m on GE ×R and mup for the measure
m on S X defined by mup(A) = mdown(πx(A∩Z)) for all Borel sets A ⊆ S X. Our goal is to
show that supp(mup) = S X.

Recall (Proposition 8.5) that since X has a rank one axis, there is some w0 ∈ S X with
dense orbit in S X mod Γ. By upper semicontinuity of the width function v 7→ diam(Yv)
on S X, we know w0 ∈ Z . Since the orbit of w0 ∈ Z is dense in S X mod Γ, it follows that
S X = Z .

We claim that Z ⊆ supp(mup). Since supp(mup) is closed, it suffices to show that Z ⊆
supp(mup). So let v ∈ Z and let U ⊆ S X be an open set containing v. Then U ∩Z is open
in Z by definition, so πx(U ∩Z) is open in πx(Z) because πx|Z is a homeomorphism. This
means πx(U ∩Z) = V ∩ πx(Z) for some open set V of GE ×R. But πx(v) ∈ V , so V is
nonempty. Recall (Lemma 8.1) that mdown has full support, so mdown(V) > 0. But πx(Z)
has full measure in GE ×R, and thus

mup(U) = mdown(πx(U ∩Z)) = mdown(V ∩πx(Z)) = mdown(V) > 0.

Hence v ∈ supp(mup), as claimed.
We have now shown S X ⊆ Z ⊆ supp(mup). Thus supp(mup) = S X.

Note that S and Z both have full m-measure in S X, but S has additional strong recur-
rence properties. For this reason, we will use S in the future.

In Proposition 7.5, we mentioned if X has some rank one axis, then the rank one axes
of X are weakly dense in R. We can now improve that result.

Corollary 9.15. The rank one axes of X are strongly dense in S X.

Proof. By Proposition 9.14, we know that the zero-width geodesics are dense in S X, hence
it suffices to prove that every v ∈R with diam(Yv) = 0 is a strong limit of rank one axes.
By Proposition 7.5, the rank one axes of X are weakly dense in R, so we have a sequence
(vn) of rank one axes such that vn→ v weakly. By Lemma 6.9, some subsequence of (vn)
converges strongly to some u ∼ v. But u = v because diam(Yv) = 0, thus v is a strong limit
of rank one axes.
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We now come to our third main theorem. For a group G acting measurably on a space
Z, a G-invariant measure ν on Z is ergodic under the action of G if every G-invariant
measurable set A ⊆ Z has either ν(A) = 0 or ν(Z rA) = 0. If G preserves only the measure
class of ν, and every G-invariant set has either zero or full ν-measure, ν is called quasi-

ergodic.

Theorem 9.16 (Theorem 3). Let X and Γ satisfy the assumptions of Theorem 1. The Bowen-

Margulis measure mΓ is ergodic under the geodesic flow on Γ\S X.

Proof. We use the classical argument by Hopf ( [24]) to show ergodicity. The goal is to
show that every gt

Γ
-invariant L2(mΓ) function is constant a.e. Let H ⊆ L2(mΓ) be the closed

subspace of gt-invariant functions. Since the subspace C(Γ\S X) of continuous functions on
Γ\S X is dense in L2(mΓ), the L2-projection πH onto H maps C(Γ\S X) to a dense subspace
of H. Thus it suffices to show that πH( f ) is constant a.e., for every continuous f : Γ\S X→

R.
Let f : Γ\S X → R be a continuous function, and let AT ( f ) be the ergodic average

(AT f )(v) = 1
T

∫ T
0 f (gtv)dt. Let f + = limT→∞AT ( f ) and f − = limT→∞A−T ( f ). Lift the maps

f , f +, f − to F,F+,F− : S X→ R, respectively, by precomposing with the canonical projec-
tion S X→ Γ\S X. By von Neumann’s mean ergodic theorem (see [19, Theorem 8.19], for
example), f + and f − exist and equal πH( f ) mΓ-a.e. Hence we may find a Γ-invariant Borel
subset Ω of S X with m(S X rΩ) = 0 such that F+(v) = F−(v) for every v ∈ Ω. We may
assume Ω ⊆ S, so every v ∈ Ω is forward and backward Γ-recurrent. We may also assume
Ω is gt-invariant because f + is gt-invariant.

Now suppose v ∈ S and w ∈ S X with w+ = v+. By Lemma 7.8, there are sequences
tn→ +∞ and γn ∈ Γ such that γngtn(w)→ v. Write wn = γngtn(w). Let ε > 0 be given; by
uniform continuity of F, there is some δ > 0 such that |F(a)−F(b)| < ε whenever a,b ∈ S X

have d(a,b)< δ. Find N > 0 such that d(wn,v)< δ for all n≥ N. Since w+ = v+, by convexity
we have d(gt(wn),gt(v)) ≤ d(wn,v) < δ for all n ≥ N and t ≥ 0. So by choice of δ, we have∣∣∣F(gtwn)−F(gtv)

∣∣∣ < ε for all n ≥ N and t ≥ 0. Thus

limsup
T→∞

|(AT F)(wn)− (AT F)(v)| ≤ ε

for all n ≥ N. But gtγn = γngt, so

|(AT F)(w)− (AT F)(wn)| =
1
T

∣∣∣∣∣∣
∫ T

0
F(gtw)dt−

∫ T

0
F(gt+tnw)dt

∣∣∣∣∣∣
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by Γ-invariance of F; then

|(AT F)(w)− (AT F)(wn)| =
1
T

∣∣∣∣∣∣
∫ T

0
F(gtw)dt−

∫ T+tn

tn
F(gtw)dt

∣∣∣∣∣∣
≤

1
T
·2 |tn| · sup

u∈S X
|F(u)|

for any given n. Hence

limsup
T→∞

|(AT F)(w)− (AT F)(wn)| = 0

for all n, and thus
limsup

T→∞
|(AT F)(w)− (AT F)(v)| ≤ ε.

But ε > 0 was arbitrary, so F+(w) = F+(v).
Thus, for every v ∈ S, we have shown that F+(w) = F+(v) for all w with w+ = v+. By

similar argument, F−(w) = F−(v) for all w with w− = v−. But F+ = F− on Ω ⊆ S, so we
may apply Lemma 9.5 with ψ(v−,v+) = F+(v).

Corollary 9.17. If f : S X → R is a measurable function that is both Γ- and gt-invariant,

then f is constant m-a.e.

Proof. By Γ-invariance, f descends to a measurable map fΓ : Γ\S X→R. By gt-invariance
of f , Theorem 9.16 forces fΓ to be constant mΓ-a.e. Thus f must be constant m-a.e. by
Proposition 8.3 (1).

It follows that the diagonal action of Γ on (GE ,µ) is ergodic. Since µ and µx×µx are in
the same measure class (see Corollary 9.2), the diagonal action of Γ on (∂X ×∂X,µx ×µx)
is quasi-ergodic. It follows that the Γ-action on (∂X,µx) is also quasi-ergodic.

44



CHAPTER 10

On Links

It is convenient here to recall a few properties of links in CAT(κ) spaces. CAT(κ) spaces,
like CAT(0) spaces, satisfy a triangle comparison requirement for small triangles, but the
comparison is to a triangle in a complete, simply connected manifold of constant curvature
κ. One may always put κ = 0 in this chapter, which will be the only case we use later in this
thesis.

We will begin with the definition of a link, and then give a proof of Proposition 10.6.
Lytchak ( [33]) states a version of this result when Y is CAT(1) and compact, but we need
to allow Y to be proper in place of compact.

Definition 10.1. Let Y be a CAT(κ) space and p ∈ Y . Write Σp for the space of geodesic
germs in Y issuing from p, equipped with the metric ∠p, and write Lk(p) (called the link

of p or the link of Y at p) for the completion of Σp (cf. [9] or [33]).

By Nikolaev’s theorem (Theorem II.3.19 in [9]), the link of p ∈ Y is CAT(1). Note also
that if Y is proper and geodesically complete, Σp is already complete.

Definition 10.2. Let Y be a CAT(κ) space and p ∈ Y . The tangent cone at p, denoted TpY ,
is the Euclidean cone on Lk(p), the link of p.

Lemma 10.3. Let Y be compact and the Gromov-Hausdorff limit of a sequence (Yi) of

compact metric spaces. Then any sequence of isometric embeddings σi : [0,1]→ Yi has a

subsequence that converges to an isometric embedding σ : [0,1]→ Y.

Proof. A subsequence of the spaces Yi, together with Y , may be isometrically embedded
into a single compact metric space. Apply the Arzelà-Ascoli theorem.

We recall the following result from [9], used there to prove Nikolaev’s theorem. Here
M2
κ denotes the complete, simply connected, Riemannian manifold of constant curvature κ

and dimension 2.
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Lemma 10.4 (Lemma II.3.20 in [9]). For each κ > 0 there is a function C : [0,Dκ)→ R
such that limr→0 C(r) = 1 and for all p ∈ M2

κ and all x,y ∈ B(p,r)

d(εx, εy) ≤ εC(r)d(x,y),

where εx denotes the point distance εd(p, x) from p on the geodesic [p, x].

One may find another proof of the following lemma in [10, Theorem 9.1.48].

Lemma 10.5. Let (Y,d) be a proper, geodesically complete CAT(κ) space, κ ∈ R, and let

p ∈ Y. Fix r > 0, and for t ∈ (0,1], let (Yt,dt) be the compact metric space (BY(p,rt), 1
t d).

Let (Y0,d0) be the closed ball of radius r about the cone point p̄ in the tangent cone TpY at

p. Then Yt→ Y0 in the Gromov-Hausdorff metric as t→ 0.

Proof. We may assume r > 0 is sufficiently small that Y1 is uniquely geodesic. For each
y ∈ Y , let σy : [0,1]→ Y be the constant-speed geodesic with σ(0) = p and σ(1) = y. For
t ∈ (0,1], let ρt : Y1 → Yt be the map ρt(y) = σy(t). Let ρ0 : Y1 → Y0 be the map sending
y to the point of TpX that is distance d(p,y) from the cone point p̄ and (for y 6= p) in the
direction of the germ of σy in the link.

For t ∈ [0,1] and y,z ∈ Y1, let ft(y,z) = dt(ρt(y),ρt(z)). Note that for y,z ∈ Y1 fixed,
ft(y,z)→ f0(y,z) as t→ 0. Now if κ ≤ 0, then convexity of the metric on Y gives us fs ≤ ft
for all s ≤ t. If κ > 0, it follows from Lemma 10.4 that fs ≤ C(t) · ft for all s ≤ t, where
C(t)→ 1 as t→ 0. Thus ft → f0 uniformly as t→ 0. Each ρt is surjective, so this proves
the lemma.

Proposition 10.6. For any proper CAT(κ) space Y, κ ∈ R, the following are equivalent:

1. Y is geodesically complete.

2. For every point p ∈ Y, the tangent cone TpY at p is geodesically complete.

3. For every point p ∈ Y, the link Lk(p) of p is geodesically complete and has at least

two points.

4. For every point p ∈ Y, every point in the link Lk(p) of p has at least one antipode—

that is, for every α ∈ Lk(p), there is some β ∈ Lk(p) such that d(α,β) ≥ π.

Proof. The implication (1) =⇒ (2) is clear from Lemmas 10.3 and 10.5. And (2) =⇒ (3) is
immediate from the fact that radial projection TpY→ Lk(p) is a bijective map on geodesics
(see the proof of Proposition I.5.10(1) in [9]). Since Y is CAT(κ), each component of

46



the link Lk(p) of p is CAT(1) and therefore has no geodesic circles of length < π; thus
(3) =⇒ (4).

Finally, we prove (4) =⇒ (1). Let r > 0 be small enough that geodesics in Y of length
< 3r are uniquely determined by their endpoints. It suffices to show that for p,q ∈ Y

with d(p,q) ≤ r, there is some y0 ∈ Y such that d(p,y0) = r and bq(y0, p) = d(y0, p) (re-
call bq(y0, p) = d(q,y0) − d(q, p)). So let fp(y) = bq(y, p). Let δ > 0, and define Aδ ={
y ∈ Y | fp(y) ≥ (1−δ)d(y, p)

}
. Since Y is proper and Aδ is closed, Aδ ∩ B(p,r) compact.

Thus some y = yδ ∈ Aδ∩B(p,r) maximizes fp on Aδ∩B(p,r). If d(p,y) < r then by (4) and
the density of Σp in Lk(p), some z ∈ Y with d(y,z)≤ r−d(p,y) satisfies fy(z)≥ (1−δ)d(z,y)>
0 (assume δ < 1). Since fp(z) = fy(z)+ fp(y) by the cocyle property of Busemann functions,
we obtain fp(z) > fp(y); furthermore, z ∈ Aδ by the triangle inequality. But this contradicts
the maximality of y, hence we must have d(p,y) = r. Now take a sequence δn→ 0 and let
y0 be a limit point of yδn . Then d(p,y0) = r and fp(y0) = d(y0, p), as required.
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CHAPTER 11

Cross-Ratios

Our proof of mixing of the geodesic flow on Bowen-Margulis measures is inspired by
Babillot’s treatment for the smooth manifold case ( [3]), which involves the cross-ratio for
endpoints of geodesics. So we will extend the theory of cross-ratios to CAT(0) spaces.

Standing Hypothesis. In this chapter, let Γ be a group acting properly, cocompactly, by
isometries on a proper, geodesically complete CAT(0) space X. Assume that |∂X| > 2, and
that X admits a rank one axis.

First we need to describe the space where cross-ratios will be defined.

Definition 11.1. For v−,w−,v+,w+ ∈ ∂X, call (v−,w−,v+,w+) a quadrilateral if there exist
rank one geodesics with endpoints (v−,v+), (w−,w+), (v−,w+), and (w−,v+). Denote the set
of quadrilaterals by QRE .

Definition 11.2. Let QSX =
{
(v,w) ∈ S X×S X | (v−,w−,v+,w+) ∈QRE

}
.

By Lemma 4.7, QSX is an open neighborhood of the diagonal in R×R.

Definition 11.3. For a quadrilateral (v−,w−,v+,w+), define its cross-ratio by

B(v−,w−,v+,w+) = βp(v−,v+) +βp(w−,w+)−βp(v−,w+)−βp(w−,v+),

for p ∈ X arbitrary.

Note that we removed reference to p ∈ X in writing B in Definition 11.3. This omission
is justified by the following lemma.

Lemma 11.4. The cross-ratio B(ξ,ξ′,η,η′) of a quadrilateral (ξ,ξ′,η,η′) does not depend

on choice of p ∈ X.

48



Proof. Let v0 ∈E−1(ξ,η), v1 ∈E−1(ξ,η′), v2 ∈E−1(ξ′,η′), and v3 ∈E−1(ξ′,η). By Lemma 6.2
and the definition of the cross-ratio,

B(ξ,ξ′,η,η′) =[bξ(v0(0), p) + bη(v0(0), p)] + [bξ′(v2(0), p) + bη′(v2(0), p)]

− [bξ(v1(0), p) + bη′(v1(0), p)]− [bξ′(v3(0), p) + bη(v3(0), p)]

for any p ∈ X. Using the cocycle property of Busemann functions, this gives us

B(ξ,ξ′,η,η′) =bξ(v0(0),v1(0)) + bη(v0(0),v3(0))

+ bη′(v2(0),v1(0)) + bξ′(v2(0),v3(0)),

which is independent of p ∈ X.

Definition 11.5. Define the cross-ratio of a pair of geodesics (v,w) ∈QSX by

B(v,w) = B(v−,w−,v+,w+).

Remark. One word of caution: We have followed the convention in the literature in our
ordering of terms in the cross-ratio of a quadrilateral. However, this means that the cross-
ratio of a pair of geodesics is not given by B◦(E×E), but rather by the map B◦τ◦ (E×E),
where τ is the map the flips that second and third components of (∂X)4.

The following proposition summarizes some of the basic properties of the cross-ratio
(cf. [23]). The proofs are straightforward.

Proposition 11.6. The cross-ratio on QRE is continuous and satisfies all the following.

1. B is invariant under the diagonal action of Isom X on (∂X)4,

2. B(ξ,ξ′,η,η′) = −B(ξ,ξ′,η′,η),

3. B(ξ,ξ′,η,η′) = B(η,η′, ξ, ξ′),

4. B(ξ,ξ′,η,η′) + B(ξ,ξ′,η′,η′′) = B(ξ,ξ′,η,η′′), and

5. B(ξ,ξ′,η,η′) + B(ξ′,η,ξ,η′) + B(η,ξ,ξ′,η′) = 0.

Property (4) above is called the cocycle property of the cross-ratio. We will not use the
curious property (5) later in this work.

We will now show (Lemma 11.9 below) that the translation length of any hyperbolic
isometry of X is given by some appropriately chosen cross-ratio, up to a factor of 2. For
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negatively curved manifolds, the result is known and due to Otal ( [38]). The proof outline
given by Dal’bo ( [14]) for Fuchsian groups extends readily to CAT(0) spaces; we include
the details of the proof for completeness.

Write `(γ) for the translation length `(γ) = infx∈X d(x,γx) of any γ ∈ Isom X. If there
is some x ∈ X such that d(x,γx) = `(γ), we say γ is hyperbolic. Then x = v(0) for some
geodesic v ∈ S X with γv = g`(γ)v. Such a geodesic v ∈ S X is called an axis of γ. For any
hyperbolic isometry γ ∈ Isom X, write γ+ = v+ and γ− = v− for some (any) axis v of γ.

Lemma 11.7. Let γ be a hyperbolic isometry of X. Then for all x ∈ X,

bγ−(x,γ−1x) = bγ−(γx, x) = bγ+(x,γx) = bγ+(γ−1x, x) = `(γ).

Proof. The statement holds for all x on an axis of γ. Since isometries fixing ξ ∈ ∂X preserve
the foliation of X by horospheres based at ξ, the statement must hold for all x ∈ X.

Lemma 11.8. Let γ be a hyperbolic isometry of X. Then

βx(γξ,γη) = βx(ξ,η) + (bξ + bη)(x,γ−1x)

for all ξ,η ∈ ∂X and x ∈ X.

Proof. Let v ∈ E−1(ξ,η). Using the definition of βx and the cocycle property of Busemann
functions,

βx(γξ,γη) = (bγv− + bγv+)(γv(0), x)

= (bv− + bv+)(v(0),γ−1x)

= (bv− + bv+)(v(0), x) + (bv− + bv+)(x,γ−1x)

= βx(ξ,η) + (bξ + bη)(x,γ−1x).

Lemma 11.9. Let γ be a hyperbolic isometry of X. Then

B(γ−,γ+,γξ,ξ) = 2`(γ)

for all ξ ∈ ∂X that are Tits distance > π from both γ− and γ+.

Proof. By Lemma 11.8,

βx(γ−,γξ)−βx(γ−, ξ) = βx(γ(γ−),γ(ξ))−βx(γ−, ξ) = (bγ− + bξ)(x,γ−1x)
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and
βx(γ+, ξ)−βx(γ+,γξ) = −(bγ+ + bξ)(x,γ−1x).

So

B(γ−,γ+,γξ,ξ) = (bγ− + bξ)(x,γ−1x)− (bγ+ + bξ)(x,γ−1x)

= bγ−(x,γ−1x)−bγ+(x,γ−1x)

= 2`(γ)

by Lemma 11.7.

In the case that X is a tree, Lemma 11.9 implies that B(QRE) contains all the translation
lengths of hyperbolic elements of Isom X. The following lemma implies, in particular, the
slightly stronger statement that if X is a tree (with no vertices of valence 2), then B(QRE)
contains all the edge lengths of X. We will use this fact in the proof of Lemma 12.6.

Lemma 11.10. Suppose the link of p,q ∈ X each has ≥ 3 components. Then there is some

(ξ,ξ′,η,η′) ∈QRE such that B(ξ,ξ′,η,η′) = 2d(p,q).

Proof. Let r = d(p,q), and let ρp : ∂X → Lk(p) and ρq : ∂X → Lk(q) be radial projection
onto the links of p and q. Find geodesics v,w ∈ S X such that

1. v(0) = w(r) = p and v(r) = w(0) = q,

2. ρp(v−),ρp(w+),ρp(v+) lie in distinct components of Lk(p), and

3. ρq(v+),ρq(w−),ρq(w+) lie in distinct components of Lk(q).

One easily computes B(v−,w−,v+,w+) = 2r.

By Lemma 11.9, we can calculate the translation length of any hyperbolic isometry of
X in terms of cross-ratios. The next lemma shows that we can calculate any cross-ratio in
QRE in terms of translation lengths of hyperbolic isometries of X. For negatively curved
manifolds, the result is due to Kim ( [28]) and Otal ( [38]). Our proof follows the one given
by Dal’bo ( [14]) for Fuchsian groups.

Lemma 11.11. Let g1,g2 ∈ Γ be rank one hyperbolic isometries with g−1 , g+
1 , g−2 , and g+

2 all

distinct. Then

B(g−1 ,g
−
2 ,g

+
1 ,g

+
2 ) = lim

n→∞

[
`(gn

1) + `(gn
2)− `(gn

1gn
2)
]
.
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Proof. By Lemma 4.9, gn
1gn

2 is hyperbolic for all sufficiently large n. Let ξn = (gn
1gn

2)+.
Then for all x ∈ X,

`(gn
1) + `(gn

2)− `(gn
1gn

2) = bg−1
(x,g−n

1 x) + bg−2
(x,g−n

2 x) + b(gn
1gn

2)−(x, (gn
1gn

2)−1x)

by Lemma 11.7. But this equals

bg−1
(x,g−n

1 x) + bg−2
(x,g−n

2 x) + bgn
2ξn(x,g−n

1 x) + bξn(x,g−n
2 x)

by the cocycle property of Busemann functions. So this equals[
βx(gn

1g−1 ,g
n
1gn

2ξn)−βx(g−1 ,g
n
2ξn)

]
+

[
βx(gn

2g−2 ,g
n
2ξn)−βx(g−2 , ξn)

]
,

by Lemma 11.8. This equals

βx(g−1 , ξn) +βx(g−2 ,g
n
2ξn)−βx(g−2 ,g

n
2ξn)−βx(g−2 , ξn),

which equals B(g−1 ,g
−
2 , ξn,gn

2ξn) by definition.
We now show ξn→ g+

1 and gn
2ξn→ g+

2 . Let U,V,U′,V′ ⊂ X be pairwise-disjoint neigh-
borhoods of g+

1 ,g
+
2 ,g
−
1 ,g
−
2 (respectively), and let x ∈ X. By Lemma 4.9, for all sufficiently

large n we have gn
1(U ∪V) ⊂ U, gn

2(U ∪V) ⊂ V , and gn
2x ∈ V . Hence (gn

1gn
2)kx ∈ U for all

k > 0, and therefore ξn = (gn
1gn

2)+ ∈ U for all sufficiently large n. Then gn
2ξn ∈ V for all

sufficiently large n, too. But this holds for arbitrarily small neighborhoods U,V of g+
1 ,g

+
2

(respectively), so ξn→ g+
1 and gn

2ξn→ g+
2 . Thus

lim
n→∞

[
`(gn

1) + `(gn
2)− `(gn

1gn
2)
]

= lim
n→∞

B(g−1 ,g
−
2 , ξn,gn

2ξn) = B(g−1 ,g
−
2 ,g

+
1 ,g

+
2 )

by continuity of the cross-ratio, which proves the lemma.

The next lemma describes how the cross-ratio detects, to some extent, the non-integrability
of the stable and unstable horospherical foliations.

Lemma 11.12. Suppose (ξ,ξ′,η,η′) ∈QRE . Let v0 ∈ E−1(ξ,η), and recursively choose v1 ∈

Hu(v0) with v+
1 = η′, v2 ∈ Hs(v1) with v−2 = ξ′, v3 ∈ Hu(v2) with v+

3 = η, and v4 ∈ Hs(v3) with

v−4 = ξ. Then v4 ∼ gt0v0, for t0 = B(ξ,ξ′,η,η′).

Proof. As in the proof of Lemma 11.4, we know

B(ξ,ξ′,η,η′) =bξ(v0(0),v1(0)) + bη(v0(0),v3(0))

+ bη′(v2(0),v1(0)) + bξ′(v2(0),v3(0)).
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But bξ(v0(0),v1(0)) = bη′(v1(0),v2(0)) = bξ′(v2(0),v3(0)) = bη(v3(0),v4(0)) = 0 by choice of
v1, . . . ,v4, so

B(ξ,ξ′,η,η′) = bη(v0(0),v3(0)) + bη(v3(0),v4(0))

= bη(v0(0),v4(0))

by the cocycle property of Busemann functions. On the other hand, v4 ‖ v0 by construction,
and so by Proposition 6.7, v4 ∼ gtv0 for the value t ∈ R such that bη(v0(t),v4(0)) = 0. But

bη(v0(t),v4(0)) = −t + bη(v0(0),v4(0)) = −t + B(ξ,ξ′,η,η′)

for all t, which shows v4 ∼ gt0v0 for t0 = B(ξ,ξ′,η,η′).

Lemma 11.13. The cross-ratio B is the continuous extension of the function

B(p, p′,q,q′) = d(p,q) + d(p′,q′)−d(p,q′)−d(p′,q)

on X4 to QRE .

Proof. Fix p ∈ X. For all z ∈ X, let hz(y) = bz(y, x) for y ∈ X. Define, for Q = (p, p′,q,q′) ∈
QRE∪X4,

d1(Q) = inf
y∈X

(hp(y) + hq(y))

d2(Q) = inf
y∈X

(hp′(y) + hq′(y))

d3(Q) = inf
y∈X

(hp(y) + hq′(y))

d4(Q) = inf
y∈X

(hp′(y) + hq(y)).

Now y ∈ X minimizes hp(y) + hq(y) if and only if y lies on a geodesic joining p to q in X.
So if Q ∈ X4, let y0 be an arbitrary point on the geodesic joining p to q in X, and we have

inf
y∈X

(hp(y) + hq(y)) = (d(p,y0)−d(p, x)) + (d(q,y0)−d(q, x))

= d(p,q)−d(p, x)−d(q, x).
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Similarly,

d2(Q) = d(p′,q′)−d(p′, x)−d(q′, x)

d3(Q) = d(p,q′)−d(p, x)−d(q′, x)

d4(Q) = d(p′,q)−d(p′, x)−d(q, x).

Thus B(Q) = d1(Q) + d2(Q)− d3(Q)− d4(Q) for Q ∈ X4. Hence we may define B on QRE

by B(Q) = d1(Q) + d2(Q)−d3(Q)−d4(Q) for all Q ∈QRE .
It now suffices, by symmetry, to show that d1 is continuous on QRE∪X4. So let

Q = (p, p′,q,q′) ∈ QRE∪X4; this gives us four geodesics with respective endpoints (p,q),
(p′,q′), (p,q′), and (p′,q). Note the footpoints of all four geodesics (or the whole geodesic
segment, if finite) lie in some ball B(x,r) about x ∈ X, so by Lemma 4.7 we may find neigh-
borhoods U,U′,V,V′ of p, p′,q,q′ and R > 0 such that every pair (ξ,η) ∈ (U∪U′)× (V∪V′)
is connected by a geodesic, and every such geodesic enters B(x,R). By properness of X,
the compact set K = B(x,R) is compact. Now take any sequence Qn→ Q; we may assume
each Qn ∈ U ×U′×V ×V′. If Qn = (pn, p′n,qn,q′n) then we must have (hpn ,hp′n ,hqn ,hq′n)→
(hp,h′p,hq,h′q) uniformly on K. Hence infK(hpn +hqn)→ infK(hp +hq). But infK(hp +hq) =

infX(hp +hq) = d1(Q) and infK(hpn +hqn) = infX(hpn +hqn) = d1(Qn) by choice of R since the
infimum is obtained at every point on the corresponding geodesic. Thus d1(Qn)→ d1(Q),
and B is continuous on QRE∪X4.
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CHAPTER 12

Mixing

We now establish mixing.

Standing Hypothesis. In this chapter, let Γ be a group acting properly, cocompactly, by
isometries on a proper, geodesically complete CAT(0) space X. Assume that |∂X| > 2, and
that X admits a rank one axis.

The following lemma, which we will not prove, comes from the results in the first
chapter of Babillot’s paper ( [3]). For context, recall that for a locally compact group G

acting measurably on a space Z, a finite G-invariant measure ν on Z is mixing under the
action of G if, for every pair of measurable sets A,B ⊆ Z, and every sequence gn→∞ in G,
we have ν(A∩gnB)→ ν(A)ν(B)

ν(Z) .

Lemma 12.1. Let (Y,B, ν, (Tt)t∈A) be a measure-preserving dynamical system, where (Y,B)
is a standard Borel space, ν a Borel measure on (Y,B) and (Tt)t∈A an action of a locally

compact, second countable, Abelian group A on Y by measure-preserving transformations.

Let ϕ ∈ L2(ν) be a real-valued function on Y such that
∫
ϕdν = 0 if ν is finite.

If there exists a sequence (tn) going to infinity in A such that ϕ ◦Ttn does not converge

weakly to 0, then there exists a sequence (sn) going to infinity in A and a nonconstant

function ψ in L2(ν) such that ϕ◦Tsn → ψ and ϕ◦T−sn → ψ weakly in L2(ν). Furthermore,

both the forward and backward Cesaro averages

A+
N2 =

1
N2

N2∑
n=1

ϕ◦Tsn and A−N2 =
1

N2

N2∑
n=1

ϕ◦T−sn

converge to ψ a.e.

Lemma 12.2. Let ψ : S X→ R be a measurable function. Suppose Ω ⊆RE is a set of full

µ-measure such that ψ is constant on both Hs(v)∩E−1(Ω) and Hu(v)∩E−1(Ω) for every

v ∈ E−1(Ω). Further suppose the map t 7→ ψ(gtv) is continuous for every v ∈ E−1(Ω). Then
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there is a set Ω′ ⊆ Ω of full µ-measure such that for every v ∈ E−1(Ω′), every nonzero∣∣∣B(v−,w−,v+,w+)
∣∣∣ is a period of t 7→ ψ(gtv), for (v−,w−,v+,w+) ∈QRE .

Proof. Let U ×U′×V ×V′ ⊆QRE be an arbitrary nonempty product neighborhood. Since
QRE is second countable, it suffices to show that the conclusion of the lemma holds for
a.e. (ξ,ξ′,η,η′) ∈ U ×U′×V ×V′. So let

Ω− =
{
ξ ∈ U | (ξ,η′) ∈Ω for a.e. η′ ∈ V′

}
Ω′− =

{
ξ′ ∈ U′ | (ξ′,η′) ∈Ω for a.e. η′ ∈ V′

}
Ω+ =

{
η ∈ V | (ξ′,η) ∈Ω and ξ′ ∈Ω′− for a.e. ξ′ ∈ U′

}
.

By Fubini’s theorem, Ω− has full measure in U and Ω′− has full measure in U′. Since
Ω∩ (Ω′−×V) has full measure in U′×V , Ω+ has full measure in V . Thus Ω−×Ω+ has full
measure in U ×V .

Let (ξ,η) ∈ Ω−×Ω+. Because η ∈ Ω+, a.e. ξ′ ∈ U′ has (ξ′,η) ∈ Ω and ξ′ ∈ Ω′−, so let ξ′

be such a point in U′. Because ξ ∈Ω− and ξ′ ∈Ω′−, a.e. η′ ∈ V′ has both (ξ,η′), (ξ′,η′) ∈Ω,
so let η′ be such a point in V′. Thus all four pairs (ξ,η), (ξ′,η), (ξ,η′), (ξ′,η′) lie in Ω.

Let v ∈ E−1(ξ,η). Follow the procedure in the statement of Lemma 11.12 to choose
v1, . . . ,v4 ∈R. Since all our geodesics lie in E−1(Ω) by construction, ψ(v) = ψ(v1) = ψ(v2) =

ψ(v3) = ψ(v4) by hypothesis. But v4 ∼ gt0v by Lemma 11.12, where t0 = B(ξ,ξ′,η,η′), so
ψ(gt0v) = ψ(v). Thus B(ξ,ξ′,η,η′) is a period of t 7→ ψ(gtv) for every v ∈ E−1(ξ,η).

Since µ has full support, there is a sequence (ξ′n,η
′
n) in RE converging to (ξ′,η′) such that

all four pairs (ξ,η), (ξ′n,η), (ξ,η′n), (ξ′n,η
′
n) lie in Ω. By continuity of B, either B(ξ,ξ′n,η,η

′
n)

is eventually constant at B(ξ,ξ′,η,η′), or the subgroup generated by
{
B(ξ,ξ′n,η,η

′
n)
}

is all of
R. This concludes the proof of the lemma.

Lemma 12.3. Either mΓ is mixing under the geodesic flow gt
Γ

on Γ\S X, or there is some

c ∈ R such that every cross-ratio B(v−,w−,v+,w+) of QRE lies in cZ.

Proof. Suppose mΓ is not mixing. Then there is a continuous function ϕ̄ on Γ\S X such
that ϕ̄ ◦ gt

Γ
does not converge weakly to a constant function. By Lemma 12.1, there is a

nonconstant function ψ̄0 on Γ\S X which is the a.e.-limit of Cesaro averages of ϕ̄ for both
positive and negative times.

Let ϕ : S X→R be the lift of ϕ̄ and let ψ0 : S X→R be the lift of ψ̄0. Note ϕ and ψ0 are
Γ-invariant, and there is a sequence tn→ +∞ such that

ψ0 = lim
N→∞

1
N2

N2∑
n=1

ϕ◦gtn = lim
N→∞

1
N2

N2∑
n=1

ϕ◦g−tn
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on a set Ω0 ⊆ S X of full measure. We may assume Ω0 ⊆ S.
Now for each α > 0, let ψα be the smoothing ψα(v) = 1

α

∫ α
0 ψ0(gsv)ds of ψ0. By Fubini’s

theorem, there is a set Ω′0 ⊆RE of full measure such that for every v ∈ E−1(Ω′0), we have
gtv ∈Ω0 for a.e. t ∈ R, and ψα(v) well-defined for all α > 0. Write Ω = E−1(Ω′0). Note that
for every v ∈Ω and every α > 0, the map t 7→ ψα(gtv) is not only well-defined but absolutely
continuous on all R.

We claim ψα0 is not constant a.e., for some α0 > 0. Otherwise, every α > 0 must have
ψα constant a.e. But then for every α > 0, by Fubini’s theorem we have a set Ω′α ⊆ Ω′0 of
full measure such that for every v ∈ E−1(Ω′α), the map t 7→ ψα(gtv) is constant a.e. on R.
By continuity, this map must be constant on all R. Note we may assume Ω′0 ⊆Ω′α for every
rational α > 0. So let v ∈Ω. For every rational α > 0, we have

ψα(v) =
1
2

(
ψ 1

2α
(v) +ψ 1

2α
(g

1
2αv)

)
= ψ 1

2α
(v).

Thus ψ2−k(v) does not depend on k ∈Z. But by Lebesgue density, ψ0(gtv) = limk→∞ψ2−k(gtv)
for a.e. t ∈ R. Hence ψ0(gtv) = ψ1(gtv) for a.e. t ∈ R. But v ∈ Ω was arbitrary, so ψ0 = ψ1

a.e. by Fubini’s theorem. Thus ψ0 is constant a.e., which contradicts our choice of ψ̄0.
Therefore, there is some α0 > 0 such that ψα0 is not constant a.e., as claimed. Write ψ=ψα0 .

Let f be the map taking v ∈ Ω to the closed subgroup of R generated by the periods of
the map t 7→ψ(gtv). Clearly f is both Γ- and gt-invariant. By Theorem B.5, f is measurable;
hence f is constant a.e. by Corollary 9.17. Replacing Ω by a smaller gt-invariant set if
necessary, we may therefore assume that f is constant everywhere on Ω. Now suppose
f (v) = R for every v ∈ Ω. Then for every v ∈ Ω, the map t 7→ ψ(gtv) must be constant by
continuity. Hence ψ must be gt-invariant a.e. By Corollary 9.17, ψ must be constant a.e.,
contradicting our choice of ψ. Thus there must be some c ≥ 0 such that f (v) = cZ for every
v ∈Ω.

Let

ϕ+
N =

1
N2

N2∑
n=1

ϕ◦gtn and ϕ−N =
1

N2

N2∑
n=1

ϕ◦g−tn .

Now ψ is the smoothed a.e.-limit of ϕ+
n , that is,

ψ(v) =

∫ α0

0
ψ0(gsv)ds =

∫ α0

0
lim

n→∞
ϕ+

n (gsv)ds,

for all v ∈ Ω. Since ϕ is bounded by compactness of Γ\S X,
{
ϕ+

n
}

is uniformly bounded.
Thus

ψ(v) = lim
n→∞

∫ α0

0
ϕ+

n (gsv)ds for all v ∈Ω.
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Similarly, ψ is the smoothed a.e.-limit of ϕ−n , so

ψ(v) = lim
n→∞

∫ α0

0
ϕ−n (gsv)ds for all v ∈Ω.

Set
ϕ̃+

n (v) =

∫ α0

0
ϕ+

n (gsv)ds and ϕ̃−n (v) =

∫ α0

0
ϕ−n (gsv)ds,

and let ψ+ = limsup ϕ̃+
n and ψ− = limsup ϕ̃−n . Since ψ = lim ϕ̃+

n = lim ϕ̃−n on Ω, we have
ψ = ψ+ = ψ− on Ω.

By uniform continuity of ϕ and strong recurrence of S, every v ∈ S has ψ+ constant
along Hs(v) and ψ− constant along Hu(v). Thus ψ|Ω is constant along every Hs(v) and
Hu(v). Since f = cZ on all Ω, applying Lemma 12.2 we see that, for a.e. (ξ,η) ∈RE , every
cross-ratio B(ξ,ξ′,η,η′) must lie in cZ.

Lemma 12.4. Suppose p ∈ X and ξ,η ∈ ∂X. Then βp(ξ,η) = 0 if and only if ∠p(ξ,η) = π.

Proof. Both statements are equivalent to the existence of a geodesic in X that joins ξ and η
and passes through the point p.

Lemma 12.5. Suppose all cross-ratios in QRE take values in a fixed discrete subgroup of

the reals. Then R = S X.

Proof. Suppose, by way of contradiction, that some v ∈ S X has dT (v−,v+) = π. Find ξ,η ∈
∂X isolated in the Tits metric such that ξ,η,v−,v+ are distinct. Since the set S is dense in
S X, there is a sequence vk → v such that v−k and v+

k both are isolated in the Tits metric for
every k. We may assume v−k ,v

+
k ∈ ∂Xr

{
ξ,η,v−,v+}, hence (v−k , ξ,v

+
k ,η), (v−k , ξ,v

−,η) ∈QRE .
Then

B(v−k , ξ,v
+
k ,η) = B(v−k , ξ,v

−,η)

for all k by discreteness and continuity of cross-ratios. Thus

βp(v−k ,v
+
k )−βp(ξ,v+

k ) = βp(v−k ,v
−)−βp(ξ,v−), (∗)

where p ∈ X is arbitrary.
Recall from Lemma 6.3 that βp : ∂X×∂X→ [−∞,∞) is upper semicontinuous on ∂X×

∂X. By Lemma 6.2, βp(ξ,v−) is finite but βp(v−,v−) = −∞, so we have

lim
k→∞

(βp(v−k ,v
−)−βp(ξ,v−)) = βp(v−,v−)−βp(ξ,v−) = −∞

by upper semicontinuity since v−k → v−. Thus βp(v−k ,v
−)→−∞. But

{
βp(ξ,v+

k )
}

is bounded
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because βp(ξ,v+
k )→ βp(ξ,v+) and βp is continuous on RE . Therefore, βp(v−k ,v

+)→−∞ by
(∗) and upper semicontinuity.

On the other hand, βp ◦E is continuous on S X. For if vk → v in S X, then (v−k ,v
+
k )→

(v−,v+) in ∂X, so (bv−k
+bv+

k
)→ (bv−+bv+) uniformly on compact subsets. Also, vk(0)→ v(0)

in X, so (bv−k
+bv+

k
)(vk(0), p)→ (bv− +bv+)(v(0), p). Thus βp(v−k ,v

+
k ) converges to βp(v−,v+).

Hence βp(v−k ,v
+
k ) must converge to βp(v−,v+), which is finite by Lemma 6.2; but this

contradicts βp(v−k ,v
+)→−∞. Therefore, R = S X.

We use Lemma 12.5 implicitly in the proof of the next lemma to guarantee (ξ,ξ′,η,η′) ∈
QRE whenever ξ,ξ′,η,η′ ∈ ∂X are distinct.

Lemma 12.6. Suppose all cross-ratios in QRE take values in a fixed discrete subgroup of

the reals. Then there is some c > 0 such that X is isometric to a tree with all edge lengths

in cZ.

Proof. Suppose all cross-ratios of X lie in aZ ⊂ R, for some a > 0. We will prove that the
link Lk(p) of p is discrete at every point p ∈ X. So fix p ∈ X, and let ρ : ∂X → Lk(p) be
radial projection.

For η ∈ ∂X, let Ap(η) =
{
ξ ∈ ∂X | ∠p(ξ,η) = π

}
. Clearly ρ(Ap(η)) is closed in Lk(p). We

claim every ρ(Ap(η)) is also open. For if ρ(Ap(η0)) is not open for some η0 ∈ ∂X, there is a
point ξ0 ∈ Ap(η0) and a sequence (ξk) in ∂X such that ∠p(ξ0, ξk)→ 0 but each ∠p(ξk,η0)< π.
For each ξk, choose ηk ∈ Ap(ξk). Passing to a subsequence, (ξk,ηk)→ (ξ′0,η

′
0) ∈ ∂X × ∂X.

By continuity of ∠p, we have ∠p(ξ′0,η
′
0) = limk→∞∠p(ξk,ηk) = π and ∠p(ξ0, ξ

′
0) = 0. Hence

∠p(ξ0,η
′
0) = ∠p(ξ′0,η

′
0) = π = ∠p(ξ0,η0) = ∠p(ξ′0,η0),

with the left- and right-most equalities coming from the triangle inequality. Thus

B(ξ0, ξ
′
0,η0,η

′
0) = βp(ξ0,η0) +βp(ξ′0,η

′
0)−βp(ξ0,η

′
0)−βp(ξ′0,η0)

equals zero by Lemma 12.4. By discreteness and continuity of cross-ratios, we have a
neighborhood U ×V of (ξ′0,η

′
0) in ∂X×∂X such that B(ξ0, ξ,η0,η) = 0 for all (ξ,η) ∈ U ×V .

Thus for large k, since (ξk,ηk) ∈ U ×V , we have B(ξ0, ξk,η0,ηk) = 0. But we know 0 =

βp(ξ0,η0) = βp(ξk,ηk), hence

0 = B(ξ0, ξk,η0,ηk) = −βp(ξ0,ηk)−βp(ξk,η0).

Both terms on the right being nonnegative, they must both equal zero. Hence we have
∠p(ξk,η0) = π, contradicting our assumption on ξk. Thus every ρ(Ap(η)) must be both open
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and closed in Lk(p).
It follows from the previous paragraph that no component of Lk(p) can contain points

distance ≥ π apart. But Lk(p) is geodesically complete by Proposition 10.6, and no closed
geodesic in Lk(p) can have length less than π because Lk(p) is CAT(1). Thus Lk(p) must be
discrete. Therefore X, being proper and geodesically complete, must be a metric simplicial
tree. So 2aZ includes all edge lengths of X by Lemma 11.10.

Lemmas 12.3 and 12.6 give us Theorem 4.

Theorem 12.7 (Theorem 4). Let X and Γ satisfy the assumptions of Theorem 1. The fol-

lowing are equivalent:

1. The Bowen-Margulis measure mΓ is not mixing under the geodesic flow on Γ\S X.

2. The length spectrum is arithmetic—that is, the set of all translation lengths of hyper-

bolic isometries in Γ must lie in some discrete subgroup cZ of R.

3. There is some c ∈ R such that every cross-ratio of QRE lies in cZ.

4. There is some c > 0 such that X is isometric to a tree with all edge lengths in cZ.

Proof. The case X =R is clear, so we may assume |∂X|> 2. Lemma 12.3 shows (1) =⇒ (3),
and Lemma 12.6 shows (3) =⇒ (4). If X is a tree with all edge lengths in cZ, then the
geodesic flow factors continuously over the circle, so mΓ is not even weak mixing; this
proves (4) =⇒ (1). Now supp(µx) = ∂X, so by Theorem 9.1, RE is dense in ∂X × ∂X.
Since the rank one axes are weakly dense in R by Proposition 7.5, every point (ξ,ξ′,η,η′) ∈
(∂X)4 is a limit of points (v−,w−,v+,w+) ∈ QRE , where v and w are rank one axes. Thus
Lemma 11.11 shows (2) =⇒ (3); meanwhile, (3) =⇒ (2) is immediate from Lemma 11.9.

Remark. Suppose Γ is a group acting properly discontinuously and by isometries (but not
necessarily cocompactly) on a proper, geodesically complete CAT(−1) space. In this case,
Roblin ( [41]) has constructed Bowen-Margulis measures on S X and Γ\S X; he has also
shown that mΓ is ergodic. If mΓ is finite and supp(µx) = ∂X, the proofs from Lemma 12.3
and Lemma 12.6 apply verbatim, with the exception that in the proof of Lemma 12.3,
one simply requires ϕ̄ to have compact support, and then ϕ is bounded. Thus we have
characterized mixing in this case also.
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APPENDIX A

Fundamental Domains and Quotient Measures

In this appendix, we describe a simple way to push forward a measure modulo a group
action. We use fundamental domains (see Definition A.1) for the group action; these sets
are allowed to have large (but still finite) point stabilizers on sets of large measure. We will
first consider general measure spaces, and then restrict to Borel measures on topological
spaces.

Consider, for example, the natural Z-action on R by translations. If we push forward
the Lebesgue measure λ on R directly, we get a measure λ∗ that only takes values 0 or
∞. However, in this case we have a fundamental domain for the action—an open set U =

(0,1)⊂R such that every t ∈R either has n+ t ∈U for exactly one n ∈Z, or n+ t ∈ ∂U = {0,1}
for some (two) n ∈ Z, and λ(∂U) = 0. Thus we may restrict λ to U and then push it forward.

However, requiring that fundamental domains only intersect each orbit at a single point
with trivial stabilizer makes finding fundamental domains difficult, or even impossible. For
instance, the natural action on Z ⊂ R of the standard ZoZ/2Z subgroup in Isom(R) has
nontrivial stabilizers at every point.

A.1 General Measure Spaces

Let G be a countable group acting measurably (that is, the map z 7→ gz is measurable for
every g ∈ G) on a measurable space (Z,M), and let ν be a G-invariant measure on Z. Let
pr : Z → G\Z be the canonical projection. Let G\M be the σ-algebra on G\Z given by
G\M =

{
pr(A) | A ∈M

}
. Notice that G permutes the σ-algebra M, with g ∈ G sending

A ∈M to gA = {gz ∈ Z | z ∈ A}. Hence G\M is naturally in bijective correspondence with
the σ-algebra MG = {A ∈M | gA = A for all g ∈G} of G-invariant subsets of Z. These sets
are all of the form GA, with A ∈M.

Our goal is to show (Proposition A.6) that, under fairly weak hypotheses, one can con-
struct a measure ν̂ on G\Z satisfying both the following properties:
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(†) Let A ⊆ Z be measurable and h : Z → [0,∞] be a G-invariant measurable function.
Define fA : Z→ [0,∞] by fA(z) = |{g ∈G | gz ∈ A}|. Both h, fA descend to measurable
functions h̄, f̄A : G\Z→ [0,∞], and we have∫

A
hdν =

∫
G\Z

(h̄ · f̄A) d̂ν.

(‡) For any ν-preserving map φ : Z → Z such that φ ◦ g = g ◦φ for all g ∈ G, the factor
map φG : G\Z→G\Z defined by φG ◦pr = pr◦φ preserves ν̂.

Observe that condition (†) allows us to reconstruct ν from ν̂, and allows us to transfer
information about ν to ν̂, and vice versa. Condition (‡) ensures that certain actions on Z

(such as the geodesic flow gt on GE ×R) will descend well to the quotient.
We begin by defining fundamental domains. Our definition allows more flexibility

than is typical in the literature; in particular, we do not require our fundamental domains
to be open (or closed), connected, or to project one-to-one onto G\Z almost everywhere.
However, we do need them to project onto G\Z almost everywhere finite-to-one, but not
uniformly so (that is, we do not require any uniform bound on the size of the fibers).

Definition A.1. Call a set F ⊆ Z a fundamental domain for the action if it satisfies both the
following conditions:

1. ν(Z rGF) = 0.

2. For every z ∈ F, there are only finitely many g ∈G such that gz ∈ F.

Let F be the collection of finite subsets of G, and let F1 the subcollection of finite
subsets of G containing the identity. For A ⊆ Z measurable and B ∈ F, define

ZA
B =

{
z ∈ Z | gz ∈ A if and only if g ∈ B

}
.

Since G is countable and

ZA
B =

(⋂
g∈B

g−1A
)
∩

( ⋂
h∈GrB

(Z rh−1A)
)
,

each ZA
B is measurable. Let ZA

∞ =
{
z ∈ Z | gz ∈ A for infinitely many g ∈G

}
; clearly ZA

∞ =

Z r
⋃

B∈FZA
B , so ZA

∞ is also measurable.
Note that if F is a fundamental domain, by condition (2) the collection

{
ZF

B

}
B∈F1

forms

a countable partition of F, and
{
ZF

B

}
B∈F

forms a countable partition of GF. Fundamental
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domains allow us to transfer all the information from ν to a smaller measure ν′ (= νF in the
following lemma), and reconstruct ν from pushing ν′ around by G.

Lemma A.2. Suppose F ⊆ Z is a fundamental domain. Then there is a measure νF on Z

with νF(Z rF) = 0 such that ν =
∑

g∈G g∗νF . Moreover, if ν(F) <∞ then νF is finite.

Proof. Define νF by

νF(A) =
∑
B∈F1

1
|B|
ν(A∩ZF

B )

for all measurable A ⊆ Z. Then for any measurable A ⊆ Z,

∑
g∈G

g∗νF(A) =
∑
g∈G

νF(g−1A) =
∑
g∈G
B∈F1

1
|B|
ν(g−1A∩ZF

B )

by definition. Because ν is G-invariant, we may rewrite this expression as

∑
g∈G
B∈F1

1
|B|
ν(A∩gZF

B ) =
∑
g∈G
B∈F1

1
|B|
ν(A∩ZBg−1) =

∑
g∈G

B∈F1g−1

1
|B|
ν(A∩ZF

B ).

But for each B ∈ F, we have B ∈ F1g−1 if and only if g ∈ B. Hence we may again rewrite
this expression as

∑
B∈F

1
|B|

∑
g∈B

ν(A∩ZF
B ) =

∑
B∈F

ν(A∩ZF
B ) = ν(A∩GF)

because
{
ZF

B

}
B∈F

is a countable partition of GF. Therefore,
∑

g∈G g∗νF(A) = ν(A) by condi-
tion (1) of Definition A.1.

Since
{
ZF

B

}
B∈F1

is a countable partition of F, it is clear from the definition of νF that
νF(ZrF) = 0. Moreover,

∑
B∈F1 ν(F∩ZF

B ) = ν(F). So νF(Z) = νF(F) ≤ ν(F), hence if ν(F)
is finite then so is νF(Z).

We can now show a version of condition (†) for ν′ such that ν =
∑

g∈G g∗ν′.

Lemma A.3. Suppose ν′ is a measure on Z such that ν =
∑

g∈G g∗ν′. Let A ⊆ Z be mea-

surable, and let fA : Z → [0,∞] be fA(z) = |{g ∈G | gz ∈ A}|. Then for any G-invariant

measurable function h : Z→ [0,∞],∫
A

hdν =

∫
Z
(h · fA)dν′.
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Proof. Note that fA =∞·χZA
∞

+
∑

B∈F |B|χZA
B
, using the usual measure-theoretic convention

that 0 ·∞ = 0. In particular, fA is measurable. The proof splits into two cases, depending
on whether or not ν(ZA

∞) = 0.
Suppose first that ν(ZA

∞) = 0. Then
{
ZA

B

}
B∈F1

partitions A, so

∫
A

hdν =
∑
B∈F1

∫
ZA

B

hdν =
∑
B∈F1

∑
g∈G

∫
ZA

B

hdg∗ν′

by hypothesis on ν′. By G-invariance of h, this expression equals

∑
B∈F1

∑
g∈G

∫
g−1ZA

B

hdν′ =
∑
B∈F1

∑
g∈G

∫
ZA

Bg

hdν′ =
∑
g∈G

∑
B∈F1g

∫
ZA

B

hdν′.

But B ∈ F1g if and only if g ∈ B, so∫
A

hdν =
∑
B∈F

∑
g∈B

∫
ZA

B

hdν′ =
∑
B∈F

|B|
∫

ZA
B

hdν′ =
∫

Z
(h · fA)dν′.

Suppose now that ν(ZA
∞) > 0. If

{
z ∈ ZA

∞ | h(z) > 0
}

has zero ν-measure, then we may set
h′ = h ·χZrZA

∞
, and we have∫

A
hdν =

∫
A

h′ dν =

∫
Z
(h′ · fA)dν′ =

∫
Z
(h · fA)dν′

by the previous paragraph. Otherwise, ν(
{
z ∈ A∩ZA

∞ | h(z) > 0
}
) > 0, so there exist some

δ,ε > 0 such that the set Uδ =
{
z ∈ A∩ZA

∞ | h(z) ≥ δ
}

has ν(Uδ) ≥ ε. Thus∫
Uδ

hdν =
∑
g∈G

∫
Uδ

hdg∗ν′ =
∑
g∈G

∫
g−1Uδ

hdν′

using our hypothesis on ν′. But
∫

Uδ
hdν > 0 by construction, so

∫
g−1

0 Uδ
hdν′ > 0 for some

g0 ∈G. Define the sets Ag (for g ∈G) by Ag = g−1
0 Uδ∩g−1Uδ. Now g−1

0 Uδ ⊆ ZA
∞, while h

and ZA
∞ are G-invariant, so every z ∈ g−1

0 Uδ is in Ag for infinitely many g ∈G. Equivalently,⋃
g∈GrB Ag = g−1

0 Uδ for all B ∈ F.
We claim ν(Uδ) =∞. For if not, then∑

g∈G

ν′(Ag) =
∑
g∈G

ν′(g−1
0 Uδ∩g−1Uδ) ≤

∑
g∈G

ν′(g−1Uδ) =
∑
g∈G

g∗ν′(Uδ) = ν(Uδ) <∞.

Hence there is some B ∈ F such that
∑

g∈GrB ν
′(Ag) < ε. But this means ν′(

⋃
g∈GrB Ag) <
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ν′(Uδ), which contradicts the fact that
⋃

g∈GrB Ag = Uδ for all B ∈ F. Therefore, we must
have ν(Uδ) =∞. Thus

∫
A hdν ≥

∫
Uδ
ε dν =∞, and

∫
Z
(h · fA)dν′ ≥

∫
g−1

0 Uδ

(h · fA)dν′ ≥ (ε ·∞) ν′(g−1
0 Uδ) =∞,

which proves
∫

A hdν =
∫

Z(h · fA)dν′.

It now follows that for G-invariant subsets A of Z, νF(A) does not depend on F.

Corollary A.4. Suppose E and F are two fundamental domains for the action, and let νE

and νF be the measures given by Lemma A.2. Then for all G-invariant subsets A of Z,

νE(A) = νF(A).

Proof. Let A ⊆ Z be G-invariant. By our definition of νE in Lemma A.2,

νE(A) =

∫
E

1
fE
χA dν

because conditions (1) and (2) of Definition A.1 force ν(ZE
∅) = 0 and ν(ZE

∞) = 0, respectively.
So

νE(A) =

∫
E

1
fE
χA dν =

∫
Z

1
fE
χA · fE dνF = νF(A)

by Lemma A.3, since A and fE are G-invariant.

We now prove a version of condition (‡) for νF coming from a fundamental domain.

Lemma A.5. Suppose F is a fundamental domains for the action, and let νF be the measure

given by Lemma A.2. Further suppose that φ : Z → Z is a ν-preserving map such that

φ◦g = g◦φ for all g ∈G. Then for all G-invariant subsets A of Z, φ∗(νF)(A) = νF(A).

Proof. Let A ⊆ Z be G-invariant, and adopt the notation from the proof of Lemma A.2. We
show first that φ−1F is a fundamental domain. Condition (1) is clear from the hypotheses
on φ. But

{
ZF

B

}
B∈F1

is a partition of F, so
{
φ−1ZF

B

}
B∈F1

is a partition of φ−1F. Since φ

commutes with the action of G, we have φ−1ZF
B = Zφ

−1F
B , and condition (2) follows. Thus

φ−1F is a fundamental domain.
Since φ−1F is a fundamental domain, by definition of νφ−1F we have

νφ−1F(φ−1A) =
∑
B∈F1

1
|B|
ν(φ−1A∩Zφ

−1F
B ) =

∑
B∈F1

1
|B|
ν(φ−1A∩φ−1ZF

B ).
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Now on the left side, νφ−1F(φ−1A) = νF(φ−1A) = φ∗(νF)(A) by Corollary A.4, and on the
right, ∑

B∈F1

1
|B|
ν(φ−1A∩φ−1ZF

B ) =
∑
B∈F1

1
|B|
ν(A∩ZF

B )

because φ preserves ν. This last expression is the very definition of νF(A), and thus we
have shown that φ∗(νF)(A) = νF(A).

Finally, we collect our results into a proposition that will give us a good quotient mea-
sure in general.

Proposition A.6. Let G be a countable group acting measurably on a measurable space

(Z,M), and let ν be a G-invariant measure on Z. Suppose the action admits a fundamental

domain. Then there is a unique measure νG on the quotient space (G\Z,G\M) such that

the following property holds:

(†) Let A ⊆ Z be measurable and h : Z → [0,∞] be a G-invariant measurable function.

Define fA : Z→ [0,∞] by fA(z) = |{g ∈G | gz ∈ A}|. Both h, fA descend to measurable

functions h̄, f̄A : G\Z→ [0,∞], and we have∫
A

hdν =

∫
G\Z

(h̄ · f̄A)dνG.

Moreover, νG satisfies the following property:

(‡) For any ν-preserving map φ : Z → Z such that φ ◦ g = g ◦φ for all g ∈ G, the factor

map φG : G\Z→G\Z defined by φG ◦pr = pr◦φ preserves νG.

Proof. Let F ⊆ Z be a fundamental domain, and let νF be the finite measure on Z con-
structed in Lemma A.2. Let pr : Z → G\Z be the canonical projection, and push νF for-
ward by pr to obtain a measure νG = pr∗(νF) on G\Z. Then νG satisfies condition (†) by
Lemma A.3. To prove uniqueness, suppose νG is a measure on G\Z that satisfies (†). For
any measurable A ⊆ Z, let h = 1

fF∩GA
χGA; then νG(pr(A)) =

∫
F∩GA hdν, which shows that

νG(pr(A)) is determined by (†), hence νG is unique. Since ν =
∑

g∈G g∗νF by Lemma A.2,
(‡) holds by Lemma A.5.

Notice that putting h = 1 in (†) gives us the following corollary.

Corollary A.7. If A ⊆ Z is a measurable set satisfying both ν(A) <∞ and ν(Z rGA) = 0,

then νG is finite.

Similarly, putting h = χGA in (†) gives us the next corollary.
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Corollary A.8. For all measurable A ⊆ Z, the following are equivalent:

1. νG(pr(A)) = 0.

2. ν(GA) = 0.

3. ν(A) = 0.

A.2 Topological Spaces

Let Z be a topological space, and B(Z) its Borel σ-algebra. From Corollary A.8 we see that
if ν is a Borel measure, then z ∈ supp(ν) if and only if νG(pr(U))> 0 for every neighborhood
U of z in Z. However, we cannot quite say that z ∈ supp(ν) if and only if pr(z) ∈ supp(νG).
This is because the Borel σ-algebra B(G\Z) on G\Z may not equal the quotient σ-algebra
G\B(Z) on G\Z.

For example, consider the natural action of the group G = Q on the space Z = R by
translations, with Borel σ-algebra B(R). Then Q\B(R) contains each Q-orbit of R, but
the Borel σ-algebra B(Q\R) on Q\R is trivial, comprising only ∅ and Q\R. Furthermore,
if ν is the counting measure on the subspace Q ⊂R, then {0} ⊂R is a fundamental domain;
thus even having a fundamental domain does not solve the problem.

However, the quotient σ-algebra G\B(Z) always contains the Borel σ-algebra B(G\Z)
on G\Z. Hence any measure constructed of G\B(Z) will define a measure on the Borel
σ-algebra of G\Z by restriction. (This measure is just the pushforward by the canonical
projection pr : Z→G\Z, which is continuous and therefore Borel).

Nevertheless, it is often convenient, when possible, to know that the Borel σ-algebra
B(G\Z) on G\Z coincides with the quotient σ-algebra G\B(Z). This is the case under cer-
tain hypotheses on the topologies of Z and G\Z. The next theorem follows from Theorem
2.1.14 and Theorem A.7 in [45] (due to Glimm ( [21]), Effros ( [18]), and Kallman ( [27])).

Theorem A.9. Let G be a locally compact, second countable group acting continuously on

a complete, separable metric space Z. If the G-orbit of every point in Z is locally closed in

Z, there is a Borel section G\Z→ Z of the canonical projection pr : Z→G\Z.

Remark. In the setting of Theorem A.9, the condition that every G-orbit is locally closed
in Z is equivalent to the condition that G\Z is T0. It is also equivalent to the action being
smooth—that is, that G\Z is countably separated.

Theorem A.9 gives us the following.
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Lemma A.10. Let G be a locally compact, second countable group acting continuously on

a complete, separable metric space Z. Let B(Z) and B(G\Z) be the Borel σ-algebras on

Z and G\Z, respectively. If every G-orbit is locally closed, then G\B(Z) = B(G\Z).

Proof. The inclusion B(G\Z) ⊆G\B(Z) is clear, since the images under pr of G-invariant
open sets of Z generate B(G\Z) but are also elements of G\B(Z). On the other hand,
suppose A ∈B(Z) is G-invariant. Then A = pr−1(pr(A)), although pr(A) is not necessarily
Borel. Let ι : G\Z → Z be the Borel section given by Theorem A.9. Since ι is Borel,
ι−1(A) = ι−1(pr−1(pr(A))) is Borel. But ι−1(pr−1(pr(A))) = pr(A) because ι is a section. Thus
pr(A) is Borel.

Proposition A.11. Let G be a countable group acting properly discontinuously and by

homeomorphisms on a proper metric space Z, preserving a Borel measure ν on Z. Then

there is a unique Borel measure νG on G\Z such that the following property holds:

(†) Let A ⊆ Z be Borel and h : Z → [0,∞] be a G-invariant Borel function. Define

fA : Z → [0,∞] by fA(z) = |{g ∈G | gz ∈ A}|. Both h, fA descend to Borel functions

h̄, f̄A : G\Z→ [0,∞], and we have∫
A

hdν =

∫
G\Z

(h̄ · f̄A)dνG.

Moreover, νG satisfies the following property:

(‡) For any ν-preserving map φ : Z → Z such that φ ◦ g = g ◦φ for all g ∈ G, the factor

map φG : G\Z→G\Z defined by φG ◦pr = pr◦φ preserves νG.

Proof. Recall that since Z is proper, requiring the G-action to be properly discontinuous
is equivalent to requiring that every z ∈ Z has a neighborhood U ⊆ X such that U ∩ gU

is nonempty for only finitely many g ∈ G (see Remark I.8.3(1) of [9]). Hence every G-
orbit is locally closed, and the stabilizer of ν-almost every point is finite. Furthermore,
any proper metric space is complete and separable. So the image of the Borel section
from Theorem A.9 is a fundamental domain. The rest follows from Proposition A.6 and
Lemma A.10.

Remark. From the proof, it is clear that Proposition A.11 holds under the weaker assump-
tions that G is a countable group acting by homeomorphisms on a complete, separable
metric space Z, preserving a Borel measure ν on Z, that every G-orbit is locally closed, and
that the stabilizer of ν-almost every point is finite.

Corollaries A.7 and A.8 give us the following.
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Corollary A.12. The measure νG from Proposition A.11 has the following properties:

1. If some Borel set F ⊆ Z satisfies ν(F) <∞ and ν(Z rGF) = 0, then νG is finite.

2. For all Borel sets A ⊆ Z, we have νG(pr(A)) = 0 if and only if ν(A) = 0 if and only if

ν(GA) = 0.

3. In particular, z ∈ supp(ν) if and only if pr(z) ∈ supp(νG).
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APPENDIX B

Measurability of the Period Map

Let Ω be a topological space admitting a continuous R-action. Our goal in this appendix is
to prove the following theorem.

Theorem (Theorem B.5). Suppose ψ : Ω→ R is a measurable function such that the map

t 7→ ψ(t ·w) is continuous for every w ∈Ω. Let F be the map taking each w ∈Ω to the closed

subgroup of R generated by the periods of the map t 7→ ψ(gtw). Then F is measurable.

Let C(R) denote the space of continuous functions f : R→R, endowed with the topol-
ogy of uniform convergence on compact subsets. Recall that C(R) has a basis of open sets
of the form

V( f ,K, ε) = {g ∈C(R) | | f (x)−g(x)| < ε for all x ∈ K} ,

where f ∈C(R), K ⊂ R is compact, and ε > 0.
We want to use the following proposition, with X = C(R) and G = R. Here Σ is the

space of closed subgroups of G, under the Fell topology.

Proposition B.1 (Proposition H.23 of [44]). Suppose (G,X) is a topological transformation

group with G locally compact, second countable, and X Hausdorff. Then the stabilizer map

σ : X→ Σ is a Borel map.

But first we need to establish continuity of the R-action we are considering on C(R).
Note that the following lemma fails to hold on the space of continuous functions f : R→R
with the topology of pointwise convergence, or with the topology of uniform convergence.
However, it does hold for C(R)—that is, with respect to the topology of uniform conver-
gence on compact subsets.

Lemma B.2. The action of R on C(R) given by (t · f )(x) = f (x + t) is continuous.

Proof. Let f ∈ C(R) and t ∈ R, and suppose V = V(t · f ,K, ε) for some ε > 0 and compact
subset K of R. We want to find a neighborhood W of (t, f ) in R×C(R) such that s ·g ∈ V
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for all (s,g) ∈ W. So let K′ = {x ∈ R | d(x,K) ≤ 1} and K′ = {x ∈ R | x + t ∈ K′}. Now f is
uniformly continuous on K′, so there is some δ ∈ (0,1) such that | f (x)− f (y)| < ε/2 for all
x,y ∈ K′ such that |x− y|< δ. Thus |(t · f )(x)− (s · f )(x)|< ε/2 whenever x ∈ K and |s− t|< δ.
Let U = V( f ,K′, ε/2), so |(s · f )(x)− (s ·g)(x)| < ε/2 whenever g ∈U and |s− t| < δ. Finally,
let W = (t−δ, t +δ)×U. Then for all (s,g) ∈W and x ∈ K, we have

|(t · f )(x)− (s ·g)(x)| ≤ |(t · f )(x)− (s · f )(x)|+ |(s · f )(x)− (s ·g)(x)|

< ε/2 + ε/2

= ε,

so s ·g ∈ V for all (s,g) ∈W, as required.

Hence the stabilizer map σ : C(R)→ Σ is a Borel map by Proposition B.1.
Now let ψ∗ : Ω→ C(R) be given by (ψ∗(ξ,η, s))(t) = ψ(ξ,η, s + t). Thus (ψ∗(w))(t) =

ψ(t ·w) = ψ ◦ gt. On the other hand, R acts on C(R) by (t · f )(x) = f (x + t). Therefore,
F = σ◦ψ∗, where σ : C(R)→ Σ is the stabilizer map.

Thus it suffices to show (and we will in Lemma B.4) that ψ∗ is measurable. To prove
this result we will use the following lemma.

Lemma B.3. There is a basis for C(R) consisting of countably many basic open sets of the

form V( f ,K, ε).

Proof. Let {pn}
∞
n=1 be the collection of polynomials pn : R→ R with rational coefficients.

Suppose f ∈C(R), K ⊂R is compact, and ε > 0. Let V = V( f ,K, ε). Find some positive inte-
ger m such that 1/m < ε/2 and K ⊆ [−m,m]. By the Weierstrass polynomial approximation
theorem, there is some positive integer n such that |pn(x)− f (x)| < 1/m for all x ∈ [−m,m].
Then the open set U = V(pn, [−m,m],1/m) contains f , and U ⊂ V . Thus the open sets of
the form V(pn, [−m,m],1/m), where m and n are positive integers, form a countable basis
for C(R).

Lemma B.4. The map ψ∗ : Ω→C(R) is Borel measurable.

Proof. By Lemma B.3, it suffices to show that ψ−1
∗ (V) is measurable for every open set V

of the form V = V( f ,K, ε).
First suppose that K = {x0}. Note in this case that

V = {g ∈C(R) | |g(x0)− y0| < ε} ,
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where y0 = f (x0). Thus, using only the definitions, we have

ψ−1
∗ (V) = {w ∈Ω | ψ∗(w) ∈ V}

= {w ∈Ω | |(ψ∗(w))(x0)− y0| < ε}

=
{
w ∈Ω |

∣∣∣ψ(gx0w)− y0
∣∣∣ < ε}

=
{
g−x0w ∈Ω | |ψ(w)− y0| < ε

}
= g−x0({w ∈Ω | |ψ(w)− y0| < ε})

= g−x0(ψ−1(B(y0, ε))).

Since ψ is measurable, and gx0 is continuous and therefore measurable, ψ−1
∗ (V) is therefore

measurable.
Now let K ⊂R be an arbitrary compact set. Since R is second countable, so is K; hence

K admits a countable dense subset A. On the other hand, continuous functions are deter-
mined by their values on any countable dense subset, so V( f ,K, ε) =

⋃∞
n=1

⋂
x∈A V( f , {x} , ε−

1/n). Thus ψ−1
∗ (V) is the countable union of countable intersections of sets of the form

ψ−1
∗ (V( f , {x} , ε−1/n)), which we showed were measurable in the previous paragraph. There-

fore, ψ−1
∗ (V) is measurable.

This completes the proof of our theorem.

Theorem B.5. Suppose ψ : Ω→ R is a measurable function such that the map t 7→ ψ(t ·w)
is continuous for every w ∈ Ω. Let F be the map taking each w ∈ Ω to the closed subgroup

of R generated by the periods of the map t 7→ ψ(gtw). Then F is measurable.
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(1990), no. 4, 361–393, Hyperbolic behaviour of dynamical systems (Paris, 1990).
MR 1096098 (92b:58176)

[27] Robert R. Kallman, Certain quotient spaces are countably separated. III, J. Func-
tional Analysis 22 (1976), no. 3, 225–241. MR 0417329 (54 #5385)

[28] Inkang Kim, Marked length rigidity of rank one symmetric spaces and their product,
Topology 40 (2001), no. 6, 1295–1323. MR 1867246 (2002m:53064)

[29] , Length spectrum in rank one symmetric space is not arithmetic, Proc. Amer.
Math. Soc. 134 (2006), no. 12, 3691–3696 (electronic). MR 2240684 (2007h:53076)

[30] Gerhard Knieper, On the asymptotic geometry of nonpositively curved manifolds,
Geom. Funct. Anal. 7 (1997), no. 4, 755–782. MR 1465601 (98h:53055)

[31] , The uniqueness of the measure of maximal entropy for geodesic flows on
rank 1 manifolds, Ann. of Math. (2) 148 (1998), no. 1, 291–314. MR 1652924
(2000b:37016)

[32] François Ledrappier and Xiaodong Wang, An integral formula for the volume entropy
with applications to rigidity, J. Differential Geom. 85 (2010), no. 3, 461–477. MR
2739810 (2012a:53068)

[33] A. Lytchak, Rigidity of spherical buildings and joins, Geom. Funct. Anal. 15 (2005),
no. 3, 720–752. MR 2221148 (2007d:53066)

[34] Grigoriy A. Margulis, On some aspects of the theory of Anosov systems, Springer
Monographs in Mathematics, Springer-Verlag, Berlin, 2004, With a survey by
Richard Sharp: Periodic orbits of hyperbolic flows, Translated from the Russian by
Valentina Vladimirovna Szulikowska. MR 2035655 (2004m:37049)

[35] James R. Munkres, Topology, Prentice Hall, Inc., 2000.

[36] Hee Oh and Nimish A. Shah, Equidistribution and counting for orbits of geometri-
cally finite hyperbolic groups, J. Amer. Math. Soc. 26 (2013), no. 2, 511–562. MR
3011420

[37] Pedro Ontaneda, Some remarks on the geodesic completeness of compact non-
positively curved spaces, Geom. Dedicata 104 (2004), 25–35. MR 2043952
(2005c:53047)
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[41] Thomas Roblin, Ergodicité et équidistribution en courbure négative, Mém. Soc.
Math. Fr. (N.S.) (2003), no. 95, vi+96. MR 2057305 (2005d:37060)

[42] Dennis Sullivan, The density at infinity of a discrete group of hyperbolic motions, Inst.
Hautes Études Sci. Publ. Math. (1979), no. 50, 171–202. MR 556586 (81b:58031)

[43] , Entropy, Hausdorff measures old and new, and limit sets of geometri-
cally finite Kleinian groups, Acta Math. 153 (1984), no. 3-4, 259–277. MR 766265
(86c:58093)

[44] Dana P. Williams, Crossed products of C∗-algebras, Mathematical Surveys and
Monographs, vol. 134, American Mathematical Society, Providence, RI, 2007. MR
2288954 (2007m:46003)

[45] Robert J. Zimmer, Ergodic theory and semisimple groups, Monographs in Mathemat-
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