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ABSTRACT

A bi-level multi-objective algorithm with a bounded multi-variate conjugate
gradient method

by

Hong Yoon Kim

Chair: Prof. Nickolas Vlahopoulos

Recent growth in computational power has enabled engineers to analyze and to syn-

thesize increasingly more complex systems. The field of Naval Architecture and Ma-

rine Engineering is no exception to this trend, and various optimization techniques

have been applied to synthesize ship designs and offshore structures with greater

complexity.

Designing any complex system requires engaging many areas. Thus, it is neces-

sary for engineers from multiple disciplines, such as hydrodynamics, structures, etc.,

to collaborate. Although this increased collaboration across multiple disciplines has

yielded tremendous benefit, it makes the design process substantially more difficult.

Engineers must communicate frequently across all the disciplines, and they can no

longer design in isolation. Therefore, efficient algorithms that are capable of facili-

tating interaction across multiple engineering disciplines are required.

Moreover, the collaboration across multiple disciplines tends to increase the size of

the optimization problems. When multiple disciplines are considered, more elements

of the system have to be accounted with greater accuracy. As a result, size of engi-
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neering optimization problems has increased exponentially in recent years. However,

many classical optimization algorithms are not suited to solve optimization problems

with a large number of design variables (large-scale).

The goal of this research is to create a flexible multidisciplinary optimization algo-

rithm that is capable of solving large-scale optimization problem by improving known

optimization techniques. First, a new bi-level multi-objective optimization algorithm

is developed. Engineering systems are designed in a distributed environment where

multiple departments design each respective sub-system. However, these departments

often have mutually conflicting objectives, and it is necessary to measure the trade-

off between different objectives that the system needs to achieve. The new bi-level

multi-objective optimization framework finds the trade-off of multiple objectives in

a distributed environment. The performance of the new algorithm is demonstrated

by solving two multi-objective numerical problems and identifying successfully the

Pareto front.

A numerical optimization method called ‘Conjugate Gradient (CG) method’ is

modified to solve optimization problems with a large number of design variables. The

CG method is known for its low memory requirement and strong convergence prop-

erties. It is one of the earliest large-scale optimization algorithms; the modifications

are made to improve its computing time and the rate of convergence for large-scale

optimization problems. The performance of the modified CG method is compared

with a standard CG method in three numerical problems. The modified Conjugate

Gradient is shown to increase the rate of convergence in some cases.

In the last phase of research, the bi-level multi-objective optimization algorithm

and the modified conjugate gradient method are combined to create a multi-disciplinary

optimization capability suitable for solving problems with a large number of design

variables.

A structural multi-objective analysis of a beam is conducted for demonstrating

xi



the utility of the new algorithm and its ability to consider many design variables.

Technical details and a discussion of the results are presented.

xii



CHAPTER I

Introduction

The profession of engineering revolves around engineers’ abilities to design and to

build new products. In the past, the engineers heavily relied on legacy designs and

empirical (heuristic) methods. As the performance requirements of the new products

become more demanding, engineers are often required to design complex systems

in absence of legacy designs and empirical methods. Thus, computer analysis tools

are integrated into the design processes for exploring the design space of complex

engineering systems. However, the synthesis and the decision making process still

presents big challenges due to the high number of design variables and constraints,

the inter-dependency of engineering disciplines, and the presence of mutually com-

peting objectives [5; 44]. Therefore, a sound design synthesis methodology is required

to guide such design process. The main body of the dissertation contains research

that improves algorithms in two areas of engineering optimization: multi-disciplinary

optimization (MDO) and numerical optimization [27]. In the last phase of the re-

search, the improvements in each respective area are combined to create a MDO

algorithm that is capable of solving a multidisciplinary optimization problem with a

large number of design variables.
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1.1 Multidisciplinary optimization

Multi-disciplinary optimization (MDO) technology synthesizes a design by cre-

ating a mathematical framework that encompasses multiple aspects of an engineer-

ing system [1]. MDO has emerged as an important engineering field that focuses

on optimization strategies for complex engineering systems, and it has been found

useful in many industries. Many known MDO architectures, such as Bi-Level Inte-

grated System Synthesis (BLISS) [58; 59], Multi-Objective Collaborative Optimiza-

tion (MOCO) [60], are distributed, multi-level, and multi-objective. A distributed

MDO architecture decomposes an engineering design problem into multiple disci-

plines, and these disciplines exchange information until a satisfactory design is found.

This decomposition is inspired by industry practices in which the design of a system

is determined by multiple engineering groups. For instance, ship design involves mul-

tiple engineering groups such as hydrodynamics, structure, survivability, etc. Each

engineering group controls its own design procedures and uses in-house expertise to

solve its engineering problems. Thus, creating a uniform decision making environ-

ment is challenging. A distributed MDO algorithm allows each discipline to use its

own analysis and optimization tools, and it does not require a uniform computational

environment. In addition, the computational load of the MDO problem is distributed

among multiple disciplines; this is advantageous when a concentrated computational

power is difficult to achieve [44].

A computation sequence and information flow of an MDO algorithm must be care-

fully considered. Many of current MDO architectures, such as BLISS [58], Collab-

orative Optimization (CO) [60], Enhanced Collaborative Optimization (ECO) [55],

Concurrent Subspace Optimization (CSSO) [57], and Analytical Target Cascading

(ATC) [33], use hierarchical structures to organize an MDO problem. In a hierar-

chical structure, MDO problems are decomposed into multiple levels reflecting the

hierarchy of components in a real engineering system. For instance, a landing gear of

2



an airplane has multiple smaller components, such as tire, hydraulics, etc. The design

of individual components is not independent of a larger component, and vice versa. A

hierarchical optimization propagates information from a higher level to lower levels.

Once the computation at the lowest level is completed, the results are sent back to the

higher levels. This process repeats until the convergence at the top level is achieved.

This structure provides a clear computation sequence and information flow [33].

Multi-Objective (MO) optimization is necessary when a MDO problem contains

mutually competing objectives. Multi-Objective MDO optimizes all objectives simul-

taneously rather than optimizing one objective at a time. In contrast to a single-

objective optimization, which finds a single optimal point, the goal of multi-objective

optimization is to find a set of multiple Pareto optimal points, which is called ‘Pareto

front’. An improvement of one objective of a Pareto optimal point cannot be achieved

without sacrificing the performance of another objective, and the set of all Pareto op-

timal points comprises the ‘Pareto front’. Identifying the Pareto front is more useful

than a determining single optimal point when there exist mutually competing objec-

tives [41; 42; 43].

1.2 Numerical optimization

Engineers aim to design a system with maximum utility. Although finding an

optimal design is of great interest in practical applications, it is often difficult to

identify a design with an optimal utility using elementary calculus techniques. Thus,

finding such solution requires iterative numerical algorithms. The field of numeri-

cal optimization deals with mathematic formulations and performances of iterative

algorithms. As numerical optimization becomes more prevalent, numerical optimiza-

tion algorithms are required to solve large-scale problems (i.e. problems with a large

number of design variables). Many classical numerical optimization algorithms are

ill-suited for large-scale applications. Thus, many algorithms are adapted to handle

3



large-scale problems in recent years [49].

A typical numerical optimization algorithm starts with an initial guess, and it

generates a sequence of candidate solutions until a satisfactory solution is found. In

general, numerical algorithms can be categorized into two major branches: gradient-

based optimization and heuristic (derivative-free) optimization. Gradient-based opti-

mizations use gradient (and Hessian) of the objective function and of the constraints

to find an optimal point. Heuristic optimizations are used when the gradient of the

objective function is not readily available or when design variables are not continu-

ous [26].

One of the earliest attempts of the gradient-based optimization is the ‘steepest

decent’ method. The algorithm searches along the gradient evaluated at the most

recent candidate to find the optimal function value. Although the algorithm is in-

tuitive, the slow rate of convergence made the ‘steepest decent’ method impractical.

Therefore, many alternatives are proposed to increase the rate of convergence. Some

known gradient-based optimization algorithms includes Newton’s method [48], quasi-

Newton’s method [69], and Conjugate Gradient (CG) method [26].

Newton’s method uses both gradient and Hessian matrix (a matrix that contains

partial derivative of second order) to find an optimal solution. In theory, Newton’s

method has one of the fastest rates of convergence. However computing the Hessian

matrix, especially with a large number of design variables, is computationally expen-

sive. To circumvent the difficulty of finding the Hessian matrix, the quasi-Newton’s

method is proposed. Quasi-Newton’s method estimates the Hessian matrix of the

objective function as opposed to computing the exact value of Hessian matrix at each

iteration. Quasi-Newton’s method is considered one of the most successful optimiza-

tion algorithms, and it has revolutionized the field of numerical optimization since its

inception [49].

The Conjugate gradient (CG) method is considered to be the first successful large-

4



scale optimization method. In contrast to the ‘steepest decent’ method, CG method

searches along the eigenvectors of the objective function’s contour to reduce the num-

ber of iterates. This approach is shown to increase the rate of convergence with

relatively low memory requirement. CG method has been successfully implemented

in commercial optimization software [63]. Because of the algorithm’s historical suc-

cess in large-scale optimization, it has chosen as a main optimizer in the main body

of work.

min {f(x) : x ∈ Rn} , lb ≤ x ≤ ub (1.1)

Recently, numerical optimization algorithms are adapted to solve box-constrained

optimization problems as shown in Eqn. 1.1. Solving box-constrained optimization

problems is important because many practical problems can be converted into this

form. In addition, many constrained optimization algorithms, such as augmented

Lagrangian or penalty schemes, treats Eqn. 1.1 as a sub-problem [66]. Development

of efficient algorithms to solve large-scale box-constrained optimization problems has

been an important engineering optimization topic [18; 32].

1.3 Contribution and overview

This dissertation is the result of three distinctive but interrelated phases of re-

search. First is the development of a bi-level multi-objective MDO algorithm. The

new algorithm contains a novel multi-objective transformation method that can ac-

commodate the global and local design variable decomposition. In this way, the

improvements of each objective can be measured without bias. The proposed algo-

rithm is demonstrated by solving two multi-objective problems. The performance

of the algorithm is compared with other multi-objective algorithms and with Monte

Carlos solutions.
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Then, the development of modified the CG method for large-scale, box-constrained

optimization problem is pursued. The modifications to the CG method accelerates the

rate of convergence for optimization problem with a large number of box constraints.

It also circumvents scaling issues commonly observed in the CG method. The modifi-

cations are implemented and tested with three numerical optimization problems with

varying degrees of complexity. Once again, the modified algorithm is compared with

a standard CG method to demonstrate utility of the modified CG method.

In the last phase of the research, the bi-level multi-objective algorithm is merged

with the modified CG method to create a bi-level multi-objective optimization al-

gorithm. The new algorithm is capable of solving multi-objective, large-scale, box-

constraints optimization problems with global and local design variables. A structural

multi-objective analysis of a beam is conducted for demonstrating the utility of the

new algorithm and its ability to consider a large number of design variables.

Chapter 2 through Chapter 5 contain technical information relevant to the new

research. Chapter 6 through 8 present the new research in each one of the three

aforementioned technical areas.

1.4 Nomenclature

()0: Functions or variables that are shared by more than one discipline

()î: Functions or variables that apply only to îth discipline

()∗: Functions or variables at their optimal value

x: Vector of design variables

x(k): k
th element of design variables x

xk: k
th iteration of design variables x

x0̂: Vector of global design variables

xî: Vector of local design variables for îth discipline

xî
0̂
: Vector of global design variables corresponding to îth discipline optimum design

6



variables

(xî
0̂
, xî)

∗: Vector of optimum design variables for îth discipline objective function

fî(x0̂, xî): î
th discipline objective function

f ∗
î
: îth discipline optimum value

cî: Vector of îth disciple constraints

ceqî: Vector of îth disciple equality constraints

fsys(x0̂ · · ·xk̂): system level objective function

U : Utopia point, vector of all discipline optimum value [f ∗
1̂
, f ∗

2̂
, · · · , f ∗

k̂
]〈〈

a · b
〉〉

: a dot product of two vectors a and b.

There are few overlapping standard notations of xi. Here, we introduce variations of

xi.

� x(i) : ith element of the design variables, x

� xî : Vector of îth discipline local design variables.

� xi : ith iteration of the design variables, x

7



CHAPTER II

Multi-objective optimization

The process of optimizing a vector of objective functions is called multi-objective

optimization (MOO) or vector optimization. Many engineering design problems have

multiple objectives; these objectives are often mutually conflicting. For instance, a

ship design often needs to achieve both maximum stability and minimal resistance. In

general, ships with wide beams have good stability, but high resistance. On the other

hand, ships with narrow beams have low resistance, but they are not as stable. When

there are multiple competing objectives, finding trade-off relationships among the

objectives is more important than finding one ‘optimal’ point. This trade-off among

multiple objectives is represented by constructing the ‘Pareto front’ of the problem.

The ‘Pareto front’ is a collection of all ‘Pareto optimal’ points. Each one represents

a design configuration for which no objective can be improved without sacrificing the

performance of any other objective [51]. Multi-objective optimization is a sub-field of

optimization that focuses on identifying Pareto front of optimization problems [41; 42;

43]. In this chapter, various methods to find the Pareto optimal points are discussed.

The first section of the chapter introduces mathematic notations and basic concepts

of multi-objective optimization. Then, a review of the main existing multi-objective

optimization methods is presented.
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2.1 Definition of a multi-objective optimization problem

The general multi-objective optimization problem is defined as follows:

min
x∈Rn

F(x) = [f1̂(x), f2̂(x), · · · , fk̂(x)] (2.1a)

subject to

c(x) ≤ 0 x ∈ I (2.1b)

where multi-objective optimizer identifies a set of ‘Pareto’ optimal solutions. Here, we

use î to indicate ith objective function. The formal mathematic definition of Pareto

optimal is

Definition II.1. Pareto Optimal: A point x∗ ∈ Rn, is Pareto optimal iff there does

not exist another point, x ∈ Rn, such that F(x) ≤ F(x∗), and fî(x) < fî(x
∗) for at

least one function.

In constrained optimization problems with at least one active constraint, all Pareto

optimal points lie on the boundary of the feasible space [41]. Often, algorithms

provide solutions that may not be Pareto optimal for practical application. Methods

for determining Pareto optimality of a point are given in Benson [6], Brosowski and

da Silva [8]. Miettinen [47] summarizes the work of Benson [6] with the following

common simple test point x∗:

min
x∈Rn,δ≥0

k̂∑
î=1

δî (2.2)

subject to

fî(x) + δî, î = 1̂, 2̂, · · · , k̂ (2.3)

If all δî = 0, then x∗ is a Pareto optimal point.
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To find a Pareto optimal point, many optimizers reduce a distance to an ideal

case where all objectives attain its respective optimal value. This ideal case is called

a Utopia point (U) [65].

Definition II.2. Utopia point: A point, U ∈ Zk, is a utopia point iff for each

î = 1̂, 2̂, · · · k̂, Uî = min
x
{fî(x) | x ∈ Rn}

where Zk is a kth dimensional feasible set.

In general, U is not feasible. The next best thing is a solution that is as close

as possible to the utopia point. The precision mathematic definition of closeness is

open to interpretation. A popular definition of closeness is a Euclidean distance to

U . The Euclidean distance to the U (N(x)) is defined as follows:

N(x) = |F(x)− U | =
{ k̂∑

î=1

[fî(x)− Uî]
2
} 1

2
(2.4)

However, it is not necessary to restrict the definition of closeness to the case

of a Euclidean distance [64]. Especially when the objectives are in different units,

minimizing N(x) is biased toward reducing the objective function that is on the

greatest order of magnitude. Thus, the Euclidean distance alone is insufficient in

many MO problems. To accurately measure the closeness to the Utopia point, the

function values are often transformed to be non-dimensional.

2.1.1 Function transformations

Here, some common function transformation methods are presented. The first

approach is given as follows [54]:

f trans
î

=
fî(x)

fmax
î

(2.5)
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which results in a non-dimensional objective function with an upper limit of one (or

negative one) and an unbounded lower limit assuming that fmax
î
6= 0.

There are two approaches for determining fmax
î

. One can define fmax
î

such that

fmax
î

= max
1̂≤ĵ≤k̂

fî(x
∗
ĵ
), where (x∗

ĵ
) minimizes ĵth objective function. Subsequently, x∗

ĵ
is

a vertex of the Pareto optimal set in the design space whereas fî(x
∗
ĵ
) is a vertex of

the Pareto optimal set in the objective space. An alternative to Eqn. 2.5 is given as

follow [50; 56; 65]:

f trans
î

=
fî(x)− f ∗

î

f ∗
î

(2.6)

This approach also provides a non-dimensional objective function. However, in this

case, the lower value of f trans
î

is restricted to zero, while the upper value is unbounded.

Eqn. 2.6 is often referred to as the relative deviation or fractional deviation. Com-

putational difficulties can arise not only if the denominator is zero but also if it is

negative. Consequently, one assumes that the denominator is positive, or uses its

absolute value. A variation of Eqn. 2.6 is proposed by Koski and Silvennoinen [35]

and Chen et al [11]:

f trans
î

=
fî(x)

f ∗
î

, f ∗
î
> 0 (2.7)

This approach yields non-dimensional objective function values with a lower limit of

one. The most robust approach to transforming objective functions, regardless of

their original range, is given as follows [34; 54]:

f trans
î

=
fî(x)− f ∗

î

fmax
î
− f ∗

î

. (2.8)

This approach is commonly referred to as normalization. In this case, f trans
î

gen-

erally has values between zero and one, depending on the accuracy and method with

which fmax
î

and f ∗
î

are determined.
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2.2 Weighted methods

The methods presented in this section allow the user to specify preferences, which

may be articulated in terms of goals or the relative importance of different objectives.

Most of these methods incorporate parameters, which are coefficient, exponents, con-

straint limits, etc. that can either be set to reflect preferences, or be continuously

altered to represent the complete Pareto optimal set.

2.2.1 Weighted global criterion method

One of the most common general scalarization methods for multi-objective opti-

mization is the global criterion method in which all objective functions are combined

to form a single utility function (fmo). In this way, multi-objective problems can be

solved with many known single objective optimization algorithms. One of the most

general utility functions is expressed in its simplest form as the weighted exponential

sum:

fmo =
∑k̂

î=1̂wî [fî(x)]p, fî(x) > 0 ∀î, (2.9a)

fmo =
∑k̂

î=1̂[wî fî(x)]p, fî(x) > 0 ∀î (2.9b)

The most common extensions of Eqn. 2.9 [71; 72; 10] are

fmo =
{∑k̂

î=1̂wî [fî(x)− f ∗
î
]p
} 1

p
, (2.10a)

fmo =
{∑k̂

î=1̂w
p

î
[fî(x)− f ∗

î
]p
} 1

p
. (2.10b)

where w = [w1̂, w1̂, · · · , wk̂] is a vector of weights typically set by the decision-

maker such that
∑k̂

î=1̂wî = 1 and wî > 0 ∀ î. As with most methods that involve
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objective function weights, setting one or more of the weights to zero can result in

weak Pareto optimality where Pareto optimality may be achievable. In general, the

value of weights reflects the relative importance of the objectives.

2.2.2 Weighted sum method

The most common approach to multi-objective optimization is the weighted sum

method:

fmo =
k̂∑
î=1

wîfî(x). (2.11)

This is a form of Eqn. 2.9 with p = 1. If all of the weights are positive, the minimum

of Eqn. 2.11 is sufficient for Pareto optimality. However, the formulation does not

provide a necessary condition for Pareto optimality [73].

The processing of selecting non-arbitrary weights can be inefficient. Consequently,

many methods have been developed to systematically select weights, and survey of

such methods are provided by Eckenrode [17], Hobbs [29], and Hwang and Yoon [31].

A satisfactory selection of weights can be difficult, and it does not guarantee that the

final solution will be acceptable. Varying the weights does not consistently necessarily

result in an even distribution of Pareto optimal points and an accurate, complete

representation of the Pareto optimal set [46]. Thus, an adaptive weights varying

method has been proposed to mitigate the deficiency. The most glaring weakness of

the weighted sum approach is that it is impossible to obtain points on non-convex

portions of the Pareto optimal set. Das and Dennis [13] and Messac et al [45] give

theoretical reasons for this deficiency.

2.2.3 Exponential weighted criterion

In response to the inability to capture points on non-convex portions of the Pareto

optimal surface in the weighted sum method, Athan and Papalambros [4] propose the

exponential weighted criterion, as follows:
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fmo =
k̂∑
î=1̂

(epwî − 1)epfî(x), (2.12)

Although large values of p can lead to numerical overflow, minimizing Eqn. 2.12

provides a necessary and sufficient condition for Pareto optimality.

2.2.4 Weighted product method

This approach is used for functions with different orders of magnitude to have

similar significance while avoiding having to transform the objective functions [7; 21]:

fmo =
k̂∏
î=1̂

[fî]
wî , (2.13)

where wî is the weights assigning the relative importance of the objective functions.

However, this approach has not been used extensively, and the characteristic of the

weights are unclear. The low adaptation could be the result of potential nonlinearities

and consequent computational difficulties [41].

2.3 Non-weighted method

Often the decision-maker cannot concretely define the relative importance of the

objectives. This section describes methods that do not require any weights, which

represent the decision maker’s preferences. The fundamental idea behind most of

non-weighted methods is the use of an exponential sum or objective products. These

methods form a single objective function fmo.

2.3.1 Non-weighted global criterion method

Non-weighted global criterion method is analogous to its respective weighted

method counterpart. This section presents three types of different non-weighted
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global criterion method. The Non-weighted objective sum method is equivalent with

optimizing Eqn. 2.11 with p = 1 and wî = 1 ∀ î. In fact, this is a special case of

weighted sum method. The general principle to find a Pareto optimal point using

the weighted sum method is discussed in depth in the previous section. The Non-

weighted min-max method is derived by excluding weights in Eqn. 2.11, and using

p = inf. Then, Eqn. 2.9 yields an Linf-norm, which does not necessarily yield a

Pareto optimal point. Non-weighted distance to Utopia point method measures how

similar the solution is to the ideal solution without assigning weights. One notable

example of such method is ‘the technique for order preference by similarity to ideal

solution’ (TOPSIS) [37]. It seeks not only a point that is as close as possible to the

utopia point but also a point that is as far away as possible from the worst case

possible. The utopia point is the positive ideal solution, and the worst solution is the

negative ideal solution.

2.4 Multi-objective genetic algorithm

A Genetic Algorithm (GA) is a heuristic algorithm that resembles evolutionary

processes in biology. In each iteration (generation), multiple candidates (population)

are evaluated. The best performing candidates (elites) proceed to the next iteration

along with newly-generate candidates that are similar to elites. Multi-objective GA

was inspired by the fact that GA evaluates multiple candidates at any given time.

By adding the closeness as a measure of fit among the elites, multi-objective GA [14]

aims to find a set of solutions that are Pareto optimal to one another when analysis

is completed.
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2.5 Discussion

The utility of MO formulation depends on the characteristics of each MO problem,

and there is no single formulation that works well for every MO problem. In practice,

various concepts of MO are combined to define a MO objective function. Defining a

proper MO objective function is not a trivial task, and it requires a sound mathematic

decision. In this work, the MO function is constructed by combining three elements:

distance to Utopia point (2.4), function normalization (2.8), and the weighted sum

(2.11). The full description of the MO formulation is described in Chapter 6.
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CHAPTER III

Multi-level optimization

Multi-level optimization has been developed to organize complex Multidisciplinary

Design Optimization (MDO). MDO synthesizes a design by creating a mathematical

framework that encompasses multiple aspects of an engineering system. MDO has

emerged as an important technical area that focuses on optimization strategies for

complex systems.

To ease optimization effort, ‘distributed’ MDO algorithms are developed to decom-

pose an engineering design problem into multiple sub-problems. The decomposition

is inspired by industry practices in which the design of a system is determined by

multiple engineering groups. For instance, ship design is synthesized by collabora-

tion of multiple engineering groups such as hydrodynamics, structure, survivability,

etc. In distributed MDO algorithms, each engineering group controls its own design

procedures and uses in-house expertise to solve its engineering problems. In this way,

engineering design can be distributed across multiple engineering groups [44]. How-

ever, when a MDO problem is decomposed to multiple sub-problems, computation

sequence and information flow must be carefully coordinated to synthesize the final

design. One of the most common ways to organize the MDO problem is to emu-

late the hierarchical structure of the decision making processes. The final design of

an engineering system requires a synthesis of works from multiple departments; a
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central authority (upper management) usually facilitates such synthesis by examin-

ing various trade-offs. Multi-level optimization deals with the MDO decomposition

method, computational sequences, and proper treatment of global design variables

and constraints in a hierarchical design process.

This chapter contains a brief summary of known multi-level optimization algo-

rithms: Collaborative Optimization (CO) [55], Concurrent Subspace Optimization

(CSSO) [57], Analytical Target Cascading (ATC) [33], and BLISS [58]. A general

MDO problem definition and notation is introduced first, then the various multi-level

algorithms are described.

3.1 Multi-level optimization and notation

In general, multi-level optimization has a single objective function (f), which is

often called system level objective function. Here, we assume that the problem is de-

composed to k̂ disciplines. Global design variables (x0̂) is a subset of design variables

x which appears at more than one disciplines. Local design variables (xî) is a subset

of design variables x which appears at only one discipline (̂i). The coupling variables

(y) are a set of variables that must be computed within discipline analyses. The

coupling variables are not design variables, but it can be seen as design parameters,

which are functions of design variables, y(x0̂, x1̂, ..., xk̂). For instance, the center of

gravity of a ship is not a design variable; however, it is an important parameter that

is used in other engineering disciplines, such as ship motion prediction and structural

load analysis. In the final ship configuration, the center of the gravity must agree

across all engineering disciplines.

Different multi-level optimization algorithms handle global design variables, local

design variables, and coupling variables differently, and the algorithms have differ-

ent strategies to achieve consistency of the global design variables and the coupling

variable across multiple disciplines. A general multi-level mathematic optimization is
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defined as follows:

min
x0̂,x1̂,···xk̂

f(x0̂, x1̂, · · · , xk̂, y) (3.1a)

subject to

c0̂(x0̂, x1̂, · · ·xk̂, y) ≤ 0 (3.1b)

cî(x0̂, xî, y) ≤ 0 ∀ î = 0̂, · · · , k̂ (3.1c)

3.2 Collaborative optimization

Collaborative optimization (CO) [55] is a multi-level method which allows the dis-

ciplines to perform independent optimization problems. The collaborative optimiza-

tion includes a system level optimization statement with compatibility constraints to

ensure that x0̂ are consistent across multiple disciplines. The top level optimization

statement is defined as follows:

min
x0̂,x1̂,···xk̂

f(x0̂, x1̂, · · · , xk̂) (3.2a)

subject to

J∗
î

= 0 ∀ î = 0̂, · · · , k̂ (3.2b)

Jî represents the interdisciplinary compatibility of discipline î, and J∗
î

is the solution

to
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min
x0̂,x1̂,···xk̂

Jî =
k∑
î=0

(xî − x
t
î
)2 +

k∑
î=0

(yî − y
t
î
)2 +

k∑
ĵ 6=î

(yĵ ,̂i − y
t
ĵ,̂i

)2 (3.3a)

subject to

J∗
î

= 0 ∀ i = 1, · · · , k (3.3b)

c(x0̂, x1̂, · · ·xk̂, yî(x0̂, x1̂, · · · xk̂, yĵ ,̂i)) ≤ 0 (3.3c)

CO utilizes target values (denoted with superscript t) for the design variables that

are used in the system. CO attempts to achieve consistency of design variables and

coupling variables across the multiple disciplines by minimizing discrepancy between

the target values and the actual values. Thus, a solution to the Eqn. 3.3 (J∗
î

= 0)

implies that local design variables and coupling variables are consistent across all

disciplines.

The use of target values allows the disciplines to optimize more independently

which resembles real engineering development processes in a distributed environment.

However, solutions to the compatibility constraint (J∗) is often difficult to find. When

the compatibility constraint is not found, the disciplines will not agree on the global

properties. Thus, CO often leads to non-convergent solutions, and it is also known

to have comparatively high computational cost to other known methods.

3.3 Concurrent subspace optimization

Unlike CO, which requires a solution to compatibility equation, concurrent sub-

space optimization (CSSO) [57] uses an approximation for the coupling variables (ỹ).

Using the approximation for the coupling variables (ỹ) can accelerate the system

optimization significantly. However, the approximation model must be constructed

prior to the optimization. The construction of such model can be computationally
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expensive. The system level optimization problem is defined as follows:

min
x0̂,x1̂,···xk̂

f(x0̂, x1̂, · · · , xk̂, ỹ) (3.4a)

subject to

c0̂(x0̂, x1̂, · · · , xk̂, ỹ) ≤ 0 (3.4b)

where ỹ is the approximation for the coupling variables y. The discipline optimization

problem for discipline î is defined as follows:

min
x0̂,xî

f(x0̂, xî, yî(x0̂, xî, ỹĵ), ỹĵ) (3.5a)

subject to

cî(x0̂, xî, yî(x0̂, xî, ỹĵ), ỹĵ) ≤ 0 (3.5b)

where x0̂ is held constant and ỹĵ is the approximation for the coupling variables from

the other disciplines. The convergence of y and ỹ is not always guaranteed, and the

performance of the overall optimization is sensitive to the fidelity of the approximation

model [57].

3.4 Analytical target cascading

Analytical target cascading (ATC) [33] is a multi-level hierarchical method that

is designed to propagate target values across the multiple levels. ATC minimizes the

discrepancy between the target value (T) and the response values from the system
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analysis (R). The system level objective function is defined as follows:

min
x∈R
||T−R(x)|| (3.6a)

subject to

c(x) ≤ 0 (3.6b)

Similar to CO, the target values are used.

The formulation of ATC includes optimizations in three levels: supersystem, sys-

tem, and subsystem (disciplines). The supersystem (subscript “sup”) level optimiza-

tion minimizes the different between the supersystem level response Rsup and thetar-

get values Tsup. The system level constraints include the system design constraints

(csup), and the tolerance constraints which include the deviation tolerance εR and

εy. The deviation tolerances are supersystem-level design variables that coordinate

the responses and the coupling variables; when the optimization had converged the

deviation tolerances should reach zero to achieve consistency. The supersystem opti-

mization statement is defined as follows:

min
x,y,εR,εy

||Tsup −Rsup(x)||+ εR + εy (3.7a)

subject to

k̂∑
î=1

||Rs,̂i −RL
s,̂i
|| ≤ εR (3.7b)

csup(xsup) ≤ 0 (3.7c)

where the superscript ‘L’ indicates target values determined from the system level

optimization. The subscript ‘s’ indicates elements evaluated at the system optimiza-

tion.

The system level optimization coordinates the supersystem and subsystem (disci-
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pline) optimizations. The system level optimization problem is defined as follows:

min
xs,ys,yss,εR,εy

||Rs −RU
s ||+ ||ys − yUs ||+ εR + εy (3.8a)

subject to

k̂∑
î=1

||Rss,̂i −RL
ss,̂i
|| ≤ εR (3.8b)

k̂∑
î=1

||yss,̂i − y
L
ss,̂i
|| ≤ εy (3.8c)

cs(xs, ys) ≤ 0 (3.8d)

where the subscript ‘ss’ indicates the subsystem level and the superscript ‘U ’ indicates

the targets from the supersystem level.

The subsystem optimization minimizes the difference between the values of re-

sponses and linking variables at the subsystem level and system target values. The

subsystem optimization statement is defined as follows:

min
xss,yss

||Rss −RU
ss||+ ||yss − yUss|| (3.9a)

subject to

css(xss, yss) ≤ 0 (3.9b)

In ATC, targets values are propagated to multiple levels. The capability to handle

multiple objective functions with target values and the use of deviation tolerances (ε)

greatly enhances the degree of freedom at each level. However, achieving consistency

is shown to be difficult in some application using ATC [33].
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3.5 Bi-level integrated system synthesis

Bi-level integrated system synthesis (BLISS) [58] is a single objective multi-level

method with a system level optimization and multiple discipline optimizations. The

algorithm optimizes the system level objective function (f), and the optimization

problem is decomposed to two levels (bi-level). The system level optimization opti-

mizes its objective function with respect to global design variables (x0̂).

min
∆x0̂

f(x0̂, x1̂, · · · , xk̂) = f0 +
df

dx0̂

∆x0̂ (3.10a)

subject to

lbx0̂ ≤ x0̂ + ∆x0̂ ≤ ubx0̂ (3.10b)

lb∆x0̂
≤ ∆x0̂ ≤ ub∆x0̂

(3.10c)

where ∆ indicates an incremental step and lb and ub indicate the lower and upper

bounds of the design variables.

On the other hand, each discipline optimization optimizes with respect to local

design variable, (xî) while treating the global design variable (x0̂) constant. The disci-

pline level optimization does not optimize the objective function (f), but it optimizes

a function that measures the influence of xî on the system level objective function.

The discipline objective function is a weighted sum of the local design variable (xî)

weighted by an approximation for the derivative of f with respect to xî. The discipline

optimization statement is defined as follows:

min
∆xî

(
df

d∆xî

)>
∆xî (3.11a)

subject to

cî(xî + ∆xî, x0̂, y) ≤ 0 (3.11b)
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where the discipline î is assumed to have access to the coupling variables (y) from all

disciplines. If the coupling variables are not accessible, response functions or estimate

models of y are required.
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CHAPTER IV

Conjugate Gradient method

The Conjugate Gradient (CG) method is a class of numerical optimization al-

gorithms. The CG method was proposed four decades ago [28], and many variants

of CG methods have been developed since. The properties and convergence of CG

methods have been well-documented. Because of its robust theoretical justification

and historical successes, the CG method is selected as the foundations of the research

in this areaThis chapter provides in-depth discussion of the CG method [2; 26].

THe CG method encompasses many fundamental concepts of the numerical op-

timization. Thus, the basics of the numerical optimization are reviewed first. Then,

the detail description of CG method is presented. Much of this chapter is a brief

summary of an excellent numerical optimization textbook written by Nocedal and

Wright [49].

4.1 Introduction to numerical optimization

Optimization problems appear often in engineering design therefore, finding op-

timal solutions to those problems is extremely valuable. Many of these optimization

problems are too difficult to solve analytically. Thus, iterative numerical optimization

methods are used to find an optimal solution. This chapter explains basic concepts

of numerical optimization.
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4.2 Mathematical formulation

The standard mathematic notations are defined as follows:

� x is the vector of design variables ;

� f(x) is the objective function, a scalar function of x;

� c(x) are the constraint functions, which are scalar functions of x that define

certain equations and inequalities that x must satisfy.

The optimization problem can be written as follows:

min
x∈Rn

f(x) (4.1a)

subject to

ceq(i)(x) = 0 i ∈ ε (4.1b)

c(i)(x) ≤ 0 i ∈ I (4.1c)

where I and ε are sets of indices for equality and inequality constraints respectively.

Without loss of generality, only inequality constraints (4.1c) are considered for the re-

mainder of the thesis because equality constraints (4.1b) are identical to two identical

inequality constraints with opposite signs.

4.3 Fundamentals of constrained optimization

For unconstrained optimization problem (i.e., c(x) = ∅), the optimality conditions

are

� Necessary conditions: A local optimum, x∗ has ∇f(x∗) = 0 and ∇2f(x∗) ≥ 0
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� Sufficient conditions: Any point, x∗ at which ∇f(x∗) = 0 and ∇2f(x∗) ≥ 0.

is a strong local optimum

Analogous conditions for a constrained optimization problem is called Karush-

Kuhn-Tucker (KKT ) condition. KKT condition is a set of mathematic equations

that the solution (x∗) must satisfy when the objective function value, f(x), cannot

improve along every feasible direction in the neighborhood of x. It is necessary to

introduce Lagrange function of constrained optimization problem as KKT condition

is expressed as a function of Lagrange function. The Lagrange function of a general

constrained optimization problem is defined as follows:

L(x, λ) = f(x)−
∑
i∈I

λ(i)c(i)(x). (4.2a)

where λ(i) is a Lagrange multiplier for a corresponding constraint function c(i). Then,

KKT condition is defined as follows:

∇xL(x∗, λ∗) = 0 (4.3a)

c(i)(x
∗) ≤ 0 ∀ i ∈ I, (4.3b)

λ∗(i) ≥ 0 ∀ i ∈ I, (4.3c)

λ∗(i) c(i)(x
∗) = 0 ∀ i ∈ I. (4.3d)

KKT condition is the necessary and sufficient first order condition for an optimum

solution of f(x). Each Lagrange multiplier λ(i) indicates the sensitivity of the op-

timal objective value f(x∗) to the presence of the constraints c(i). Many numerical

optimization algorithms for constrained problems find a solution (x∗, λ∗) to Eqn. 4.3,

and there are two main branches of gradient-based numerical optimizations that find

solution of Eqn. 4.3. The ‘line-search’ methods finds a search direction and an optimal

step iteratively in sequence. On the other hand, ‘trust-region’ methods find a search
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direction and an optimal step simultaneously within a region where the quadratic

model of the objective function can be trusted.

4.4 Line-search methods

The line-search methods start with an initial guess x0, then the optimizer updates

the value of x until converge criteria are satisfied. In one iteration of a line-search

method, the algorithm decides a search direction (dk) first. Then, it decides how far

to move along the direction. The iteration is given by

xk+1 = xk + αk dk, (4.4)

where xk refers to current kth iteration of design variable x, and the positive scalar αk

is called the step length. The effectiveness of line-search algorithms are determined

by effective choices of both the direction (dk) and the step length (αk).

Most line search algorithms required dk to be a decent direction; the function

value must decrease along the search direction ( d>k∇fk < 0). In most line-search

algorithms, the search direction has a form of

dk = −B−1
k ∇fk, (4.5)

where Bk is a symmetric and nonsingular matrix. Different choices of Bk corresponds

to different line-search methods: steepest decent, Newton’s method, quasi-Newton’s

method, and CG method. As mentioned, line-search algorithms have two major

components: step length selection method and search direction computation method.

29



4.5 Selection of step length

The performance of step length (αk) selection methods is critically important to

the overall performance of line-search algorithm. It is impossible to have a well-

performing line-search algorithm with poor step length selection algorithms. Finding

an optimal step length requires solving a minimization problem as shown in Eqn. 4.6.

min
α>0

φ(α) = f(xk + αdk) (4.6)

where the step length is strictly greater than zero (α > 0).

4.5.1 Step length selection convergence condition

There exists many convergence conditions for one dimension step length search al-

gorithm. Two popular convergence conditions, the Wolfe condition and the Goldstein

condition, are presented in this section. The Wolfe conditions [67; 68] is consist of

two mathematic inequalities, The first inequality ensures that the choice of αk should

sufficiently reduce the function value.

f(xk + αdk) ≤ f(xk) + c1α∇f>k dk (4.7)

for some constant c1 ∈ (0, 1). In other words, the reduction in f should be propor-

tional to both the step length αk and the directional derivative ∇f>k dk. Eqn. 4.7 is

called sufficient decrease condition or often called Armijo condition.

The second inequality ensures that the step length is reasonably big. In practice,

the sufficient decrease condition alone cannot ensure that the algorithm is making

reasonable progress because all α that is sufficiently small satisfy Eqn. 4.7. To re-

move unacceptably small step lengths, the second inequality, curvature condition, is

introduced.
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∇f(xk + αkdk)
>dk ≥ c2∇f>k dk (4.8)

for some constant c2 ∈ (c1, 1), where c1 is the constant from Eqn. 4.7. Note that left-

hand-side of Eqn. 4.8 is equal to the derivative (φ′(αk)), so the curvature condition

ensures that the slope of φ at αk is greater than c2 times the initial slope φ′(0). In

this way, the algorithm rejects α that is too small.

Combining both Eqn. 4.7 and Eqn. 4.8, we have Wolfe condition

f(xk + αdk) ≤ f(xk) + c1α∇f>k dk, (4.9a)

∇f(xk + αkdk)
>dk ≥ c2∇f>k dk, (4.9b)

Like the Wolfe conditions, the Goldstein conditions ensure that the step length α

achieves sufficient decrease but it not too small. The Goldstein conditions can also

be stated as a pair of inequalities as shown in Eqn. 4.10

f(xk) + (1− c)αk∇f>k dk ≤ f(xk + αkdk) ≤ f(xk) + cαk∇f>k dk, (4.10)

with 0 < c < 1/2.

A disadvantage of the Goldstein conditions is that the first inequality may exclude

all minimizers of φ. However, the Goldstein and Wolfe conditions have much in

common. The Goldstein conditions are often used in Newton-type methods, but they

are not well suited for quasi-Newton methods that maintain a positive definite Hessian

approximations.

Recently, Hager and Zhang [26] proposed a new convergence conditions called
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approximate Wolfe conditions.

αg>k dk ≤ g>k+1dk ≤ (2δ − 1)g>k dk, (4.11)

where 0 < δ < 1/2 and δ < α < 1. The approximate Wolfe conditions are used in

efficient, high accuracy implementations of step length selection algorithms. Although

there is no convergence theory for the approximate Wolfe conditions, the performance

is often much better in practice than that of the Wolfe condition.

4.5.2 Step length selection algorithms

One dimensional search algorithm determines the optimal step length that satisfies

the convergence conditions, such as Eqn. 4.9 and Eqn. 4.10. Backtracking method

starts with an initial guess α0, which is sufficiently large, then it reduces the step

length by a contraction factor ( 0 < ρ < 1) until the sufficient decrease condition

(4.7) is satisfied. Backtracking method starts with a sufficiently large initial guess α0

to remove the curvature condition (4.8), which ensures a sufficiently large step length

of αk. Once an acceptable step length is found, the algorithm is terminated [22]. In

Newton and quasi-Newton methods, the initial step length α0 is typically set to 1 ,

but other methods can take different value. In practice, the contraction factor (ρ) is

often allowed to vary at each iteration of the line search.

Algorithm 1 Backtracking Line Search

Choose α0 > 0, ρ ∈ (0, 1), C ∈ (0, 1); Set α← ᾱ;
while f(xk + αdk) ≤ f(xk) + Cα∇f>k dk do

α← ρ α;
end while
return αk = α

The bi-section search method is a one-dimension search method that searches a

suitable step length (α∗) within a search space α∗ ∈ [0, αmax]. Bi-section starts with

an initial interval [0, αmax] and divide the interval into two halves, (i.e. [0, αmax

2
] and
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[αmax

2
, αmax]). By comparing function value at extreme points of each interval, bi-

section search method selects one interval that is more likely to contain the optimal

value. The halving of the search space continues iteratively until a step length that

satisfies convergence conditions is found. The bi-section search is guaranteed to con-

verge, but it converges slowly. The golden section search method is similar to the

bi-section search method. It starts with an initial interval α∗ ∈ [0, αmax], and it uses

the positive golden ratio to reduce the search interval.

4.6 Steepest decent

As mentioned above, most line-search algorithms compute a search direction in a

form of Eqn. 4.12

dk = −B−1
k ∇fk, (4.12)

In the steepest descent method, Bk is the identity matrix I. Thus, the search

direction dk is identical to −∇f(xk). Although this is an intuitive choice of a search

direction, it exhibits poor rate of convergence due to zigzaging behaviors near the op-

timum. Consider when the objective function is quadratic and when the line searches

are exact. Suppose that

f(x) =
1

2
x>Qx− b>x, (4.13)

where Q is symmetric and positive definite. The gradient is given by ∇f(x) = Qx− b

and the minimizer x∗ is the unique solution of the linear system Qx = b.

The step length αk that minimizes f(xk −α∇fk) can be computed by setting the

derivative, with respect to αk, to zero.

f(xk − α∇fk) =
1

2
(xk − α∇fk)>Q(xk − α∇fk)− b>(xk − α∇fk) (4.14)
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By setting the derivative to zero,

αk =
∇f>k ∇fk
∇f>k Q∇fk

(4.15)

Subsequently,

xk+1 = xk −
(
∇f>k ∇fk
∇f>k Q∇fk

)
∇fk (4.16)

To quantify the rate of convergence, introduce the weighted norm ||x||2Q = x>Qx,

then

1

2
||x− x∗||2Q = f(x)− f(x∗), (4.17)

Theorem IV.1. When the steepest descent method with exact line search (4.15) is

applied to the strongly convex quadratic function, the error norm satisfies

||xk+1 − x∗||2Q ≤
(
λn − λ1

λn + λ1

)2

||xk − x∗||2Q, (4.18)

where 0 < λ1 ≤ λ2 ≤ · · ·λn are the eigenvalues of Q

The proof is given by Luenberger [40]. In general, as the condition number κ(Q) =

λn/λ1 increases, the zigzag behavior becomes more pronounced in the steepest decent

method. Eqn. 4.18 is a worst-case bound, but it gives an accurate indication of the

behavior of the algorithm when n > 2.

Theorem IV.2. Suppose that f : Rn → R is twice continuously differentiable, and

that the iterates generated by the steepest-descent method with exact line searches

converges to a point x∗ at which the Hessian matrix ∇2f(x∗) is positive definite. Let

r be any scalar satisfying

r ∈
(
λn − λ1

λn + λ1

, 1

)
(4.19)

where 0 < λ1 ≤ λ2 ≤ · · ·λn are the eigenvalues of ∇2f(x∗). Then for all k sufficiently
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large,

f(xk+1)− f(x∗) ≤ r2[f(xk)− f(x∗)] (4.20)

Theorem IV.2 shows that the steepest method can have an unacceptably slow rate

of convergence even if the Hessian is reasonably well conditioned. In practice, the

steepest descent method is not popular because of its slow rate of convergence.

4.7 Newton’s method

In the Newton’s method, Bk is the exact Hessian ∇2f(xk).

Bk = ∇2f(xk), dk =
∇fk
−∇2fk

. (4.21)

Since the Hessian matrix ∇2fk may not always be positive definite, dk may not always

be a descent direction. To find a global minimum, modifications to Newton’s method

search direction is required. There are various modification techniques. In general,

the modified Hessian is obtained by adding either a positive diagonal matrix or a full

matrix to the true Hessian (∇2f(xk)).

Bk = ∇2f(xk) + Ek (4.22)

where Ek = 0 if ∇2f(xk) is sufficiently positive definite; Otherwise, Ek is chosen to

ensure that Bk is sufficiently positive definite.

Theorem IV.3. Suppose that f is twice differentiable and that the Hessian ∇2f(x)

is Lipschitz continuous in a neighborhood of a solution x∗ at which the sufficient

conditions are satisfied. Consider the iterations xk+1 = xk + dk, where dk is given by

(4.21). Then
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1. if the starting point x0 is sufficiently close to x∗, the sequence of iterates con-

verges to x∗;

2. the rate of convergence of {xk} is quadratic; and

3. the sequence of gradient norms {||∇fk||} converges quadratically to zero.

A proof of Thm. IV.3 can be found in [49]. The theorem shows that the con-

vergence of the Newton’s method is known to be significantly faster than that of

the steepest decent method, but computation advantage is hard to achieve when

the Hessian matrix of the objective function is not available in explicit equations.

Computing the Hessian matrix numerically becomes prohibitively expensive as the

number of the variables increases [69]. Thus, the Hessian matrix is often estimated

in quasi-Newton’s methods.

4.8 Quasi-Newton’s method

In quasi-Newton method, Bk is an approximation to the Hessian matrix (∇2f(x))

that is updated at every iteration to reduce the computational load of finding Hessian

matrix at every iteration. To simplify the notation, the following terms are defined

first.

sk = xk+1 − xk = αkdk (4.23)

yk = ∇fk+1 −∇fk (4.24)

ρk =
1

y>k sk
(4.25)

Hk = B−1
k , inverse of Bk (4.26)
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4.8.1 DFP method

DFP updating formula is named after three contributors: Davidon, Fletcher and

Powell. It was originally proposed by Davidon in 1959, and it was implemented and

popularized by Fletcher and Powell [49].

Bk+1 =
(
I − ρkyks>k

)
Bk

(
I − ρksky>k

)
+ ρkyky

>
k (4.27)

Hk+1 = Hk −
Hkyky

>
k Hk

y>k Hkyk
+
sks
>
k

y>k sk
(4.28)

Although DFP updating formula is effective, it was superseded by the BFGS

formula, which is considered to be the most effective of all quasi-Newton methods.

4.8.2 BFGS method

BFGS method, named after its discoverers: Broyden, Fletcher, Goldfarb, and

Shanno.

Bk+1 = Bk −
Bksks

>
k Bk

s>k Bksk
+
yky

>
k

y>k sk
(4.29)

Hk+1 = (I − ρksky>k )Hk(I − ρkyks>k ) + ρksks
>
k (4.30)

In theory, Newton’s method converges more rapidly, but its cost per iteration usually

higher because the computation of the Hessian matrix. If explicit closed formula of

the Hessian matrix is not available, quasi-Newton’s method often converges faster in

practice.

BFGS method requires the user to choose the initial approximation H0, but there

is no one formula that works well for all problems. Even if the initial Hessian approx-

imation (H0) is wrong, the Hessian approximation tends to correct itself within a few

steps. The DFP method is less effective in correcting bad Hessian approximations,

and this property is believed to be the reason for its poorer practical performance.
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The self-correcting properties of BFGS hold only if an adequate line search is per-

formed. Please note that DFP and BFGS updating are duals of each other, in the

sense that one can be obtained from the other by the interchanges s ↔ y, B ↔ H.

This insight led to development of a new class of quasi-Newton method called Broyden

class.

4.8.3 Broyden class

Broyden class is a family of Bk updating methods specified by the following general

formula:

Bk+1 = Bk −
Bksks

>
k Bk

s>k Bksk
+
yky

>
k

y>k sk
+ φk(s

>
k Bksk)vkv

>
k , (4.31)

where φk is a scalar parameter and

vk =

[
yk
y>k sk

− Bksk
s>k Bksk

]
. (4.32)

.

When φk = 0, Bk+1 is identical to Bk+1 of BFGS method (Bk+1 = BBFGS
k+1 ), and

when φk = 1, Bk+1 is identical to Bk+1 of DFP method (Bk+1 = BDFP
k+1 ) and Eqn. 4.31

can be rewritten as a linear combination of BFGS and DFP.

Bk+1 = (1− φk)BBFGS
k+1 + φk B

DFP
k+1 . (4.33)

Positive definiteness of the Hessian approximations is preserved in DFP and BGFS

when s>k yk > 0, and Eqn. 4.33 implies that the same property will hold for the Broyden

family if 0 ≤ φk ≤ 1. Therefore, a restricted Broyden class, which is obtained by

restricting φk to the interval [0, 1], has gained much attention. However, the best

update formula does not alway belong to the restricted Broyden class; allowing φk to

be negative has a superior performance to the BFGS method in some cases.
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4.9 Trust region methods

Here, key concepts of the trust region methods are presented. Unlike the line-

search methods, trust-region methods select the search direction (dk) and the step

length (αk) simultaneously. Trust-region methods construct a quadratic model of

the objective function around the current iterate. Then, it chooses a solution that

approxmiates the minimum of the quadratic model within a ‘trust’ region where

the model accurately represents the real objective function. If the solution is not

acceptable, the algorithm reduces the size of the region and finds a new minimum.

The size of the trust region is critical to the effectiveness of each step. If the region

is too small, then the algorithm misses on more aggressive step that can move the

iterate closer to the minimum of the objective function. If too large, the quadratic

model might not represent the objective function accurately. In practice, the size of

the trust region is determined according to the performance of the algorithm during

previous iterations. If the model is reliable to produce good steps and to predict

the behavior of the objective function along these steps, the size of the trust region

may be increased to allow more ambitious steps. A failed step implies that the

model is inadequate to represent the objective function over the current trust region.

Subsequently, the size of the ‘trust’ region may be reduced after a failed step.

The model function (mk) is the Taylor-series expansion of the objective function

(f) around the current iterate (xk). Moreover, mk is based on the Taylor-series

expansion of f around xk.

f(xk + p) = fk + g>k p+
1

2
p>∇2f(xk + tp)p, (4.34)

where fk = f(xk) and gk = ∇f(xk), and t is some scalar in the interval (0,1). By

using an approximation Bk to the Hessian in the second-order term, mk is
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mk(p) = fk + g>k p+
1

2
p>Bkp, (4.35)

The solution p∗k of (4.36) is the minimizer of mk in the ball of radius ∆k.

min
p∈Rn

mk(d) = fk + g>k d+
1

2
p>Bkp (4.36a)

such that

||P || ≤ ∆k (4.36b)

where ∆k is the trust-region radius. || · || is the Euclidean norm.

As mentioned above, the size of the trust region affects the performance of the

trust-region algorithm. The choice of the trust region radius, ∆k, is based on the

agreement between the model function mk and the objective function f at previous

iterations. Given a step pk, a ratio between actual reduction and predicted reduction

is

ρk =
f(xk)− f(xk + pk)

mk(0)−mk(pk)
=

actual reduction

predicted reduction
(4.37)

Note that since the step pk is obtained by minimizing the model mk over a region

that includes p = 0, the predicted reduction will always be nonnegative. Hence, if

ρk is negative, the new objective value f(xk + pk) is greater than the current value

f(xk), so the step must be rejected. On the other hand, if ρk is close to 1, there is

good agreement between the model mk and the function f over this step, so it is safe

to expand the trust region for the next iteration.

4.10 Conjugate Gradient method

Conjugate Gradient (CG) method is a class of algorithms that solves unconstrained

optimization problems. CG method is one of the most successful numerical optimiza-

tion methods, and the linear conjugate gradient method was proposed by Hestenes
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and Stiefel in the 1950s [28] as an iterative method for solving linear systems with

positive definite coefficient matrices. CG method was expanded to solve nonlinear

equation by Fletcher and Reeves [20] in the 1960s.

The basic notion of CG method is to search along the eigenvectors of the ob-

jective function contour. As mentioned above, the steepest decent method exhibits

the zigzagging behavior, which slows down the rate of convergence. The zigzagging

behavior can be avoided by searching along the eigenvectors of the objective function

contour. CG method numerically generates the sequence of search directions that are

conjugated to one another. Because all other search directions in previous iterates

are conjugate to one another, CG method only requires the previous search direction

(dk−1) to compute a new search direction (dk) [49]. This property allows the algo-

rithm to function with low memory; and CG method is one of the earliest known

methods for solving large-scale nonlinear optimization problems effectively.

For the remainder of the section, the nonlinear CG method is discussed with

greater detail. The nonlinear CG methods solve nonlinear unconstrained optimization

problems shown in Eqn. 4.38.

min {f(x) : x ∈ Rn} , (4.38)

where f : Rn → R is a continuously differentiable function, bounded from below.

The nonlinear CG method starts with an initial guess x0 ∈ Rn, then it generates a

sequence of xk as:

xk+1 = xk + αkdk (4.39)

where the steplength (αk > 0) is obtained by the step length selection algorithms

outlined in Section 4.5.2 , and the search direction (dk) is generated by the following
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rule: 
d0 = −g0

dk = −gk + βk dk−1

(4.40)

where gk is the ∇f(xk).

Different CG methods correspond to different choices of βk. Many CG methods

are known, and an excellent survey of various CG methods is given by Hagar and

Zhang [26]. Table 4.1 summarizes equations to compute different βk of many known

CG methods.

Table 4.1: Summary of βk update method [26]

Method Equation Year

Hestenes and Stiefel βHSk =
g>k+1yk

d>k yk
1952

Fletcher-Reeves βFRk =
‖gk+1‖2

‖gk‖2
1964

Daniel βDk =
g>k+1∇2f(xk)dk

d>k∇2f(xk)dk
1967

Polak-Ribiere-Polyak βPRPk =
g>k+1yk

‖gk‖2
1969

Conjugate-Descent βCDk =
‖gk+1‖2

−d>k gk
1987

Liu-Storey βLSk =
g>k+1yk

−d>k gk
1991

Dai-Yuan βDYk =
‖gk+1‖2

d>k yk
1999

Hagar-Zhang βNk =

(
yk − 2dk

‖yk‖2

d>k yk

)
gk+1

d>k yk
2005

Let ‖ · ‖ denote the Euclidean norm, and yk−1 := gk − gk−1

All 8 choices for the update parameter in Table 4.1 are equivalent with an exact

line search if the objective function (f) is a strongly convex quadratic. For non-

quadratic objective functions, each choice of update parameter results in difference

performance. Fletcher-Reeves [20], Dai-Yuan [12], and Conjugate-Descent [19] meth-
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ods have strong convergence properties, but jamming diminishes their performances

in practice. Polak-Ribiere-Polyak [52; 53] and Liu-Storey [39] methods have weaker

convergence properties, but they often perform better. Recently, various hybrid con-

jugate gradient methods [3; 38] are proposed to have advantages of both kinds of CG

methods. Touati-Ahmed and Store [61] suggested the following hybrid method:

βk =


βPRPk if 0 ≤ βPRPk ≤ βFRk

βFRk otherwise

(4.41)

Thus, when the iterations jam, the PRP update parameter is used. By the same

motivation, Hu and Storey [30] suggested to take

βk = max{0,min{βPRPk , βFRk }}. (4.42)

In an effort to extend the allowed choices for the PRP update parameter, while

retaining global convergence, Nocedal and Gilbert [23] suggest taking

βk = max{−βFRk ,min{βPRPk , βFRk }}. (4.43)

‘CG DESCENT’ method, proposed by Hagar and Zhang [26], is one of the best

performing CG methods known to date.

βθk = βHSk − θk
(
‖yk‖2g>k+1dk

(d>k yk)
2

)
, (4.44)

where θk ≥ 0. A truncated version of ‘CG DESCENT’ method is proposed to obtain

global convergence for general nonlinear functions.

βθ+k = max{βNk , ηk}, ηk =
−1

‖dk‖min{η, ‖gk‖}
, (4.45)
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where η > 0 is a constant.

4.11 CG method with penalty functions

As mentioned above, CG method can only solve unconstrained optimization prob-

lems. Penalty function method converts constrained optimization to unconstrained

optimization problems, so that CG method can be used in constrained optimization

problems [63]. Many commercial optimization software combines CG method with

penalty function to find a solution to constrained optimization problems. The basic

idea of penalty function is to create a Pseudo objective function (Ψ(x)) by adding

constraints violation as penalty [62].

Ψ(x) = f(x) + p(x) (4.46)

where p(x) is the penalty function. p(x) = 0 implies that the x is a feasible solution

with no constraint violation.

An optimal solution of Eqn. 4.46 with p(x) = 0 implies that such solution is both

optimal and feasible. The performance of penalty function method depends on choice

of p(x). The following terms are introduced to simplify the notation.

c+
(i)(x) := max(0, c(i)(x)) (4.47)

4.11.1 Exterior penalty method

The exterior penalty adds the square of the penalty violation. Here, the penalty

function p(x) is defined as follows:

p(x) = rk

m∑
i=1

c+
(i)(x)2 (4.48)
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The subscript k indicates the current iteration of the numerical optimization (i.e., kth

iteration of the optimization).

If f(x) and c(i)(x) are continuous and twice-differential, then the contour of pseudo

objective function (Ψ(x)) is also continuous and twice-differentiable. In general, the

penalty multiplier (rk) starts with a small value. The value of the multiplier increases

as the optimization process continues. In this way, constraints violation is more

severely penalized as the optimization is getting closer to the convergence.

4.11.2 Interior penalty method

Interior penalty method drives the design away from the boundaries of the con-

straints as it approaches the boundaries from the negative side. Here, the penalty

function p(x) is defined as follows:

p(x) = rk

m∑
i=1

−1

c(i)(x)
(4.49)

rk is initially a large number, and it decreases as the optimization progresses. The

penalty value gets arbitrarily bigger as c(i) approaches zero, and the value of c(i) cannot

be identical to zero. In interior penalty method, the converged solution always resides

within the feasible space (i.e, c(i) < 0).

A log barrier is an alternative form of Eqn. 4.49. The log barrier method defines

that penalty term as follows:

p(x) = rk

m∑
i=1

−log[c(i)(x)] (4.50)

Similar to the interior penalty method, the penalty term gets arbitrarily bigger as

c(i) approaches zero. The log barrier method is recommended when the problem is

numerically better conditioned.

In practice, the interior penalty method is difficult to use. The method requires
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the optimizer to start from a feasible point (x0), and all subsequent iterations (xk)

must stay within the feasible domain. This is hard to attain in a problem where it is

difficult to identify a feasible domain. Moreover, the interior penalty method intro-

duces singularities at c(i) = 0. Singularities are undesirable in numerical computations

because they often cause overflow.
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CHAPTER V

Box-constrained optimization

A box-constrained optimization problem is a class of optimization problems with

upper and lower bounds of the design variables. Many practical engineering prob-

lems are box-constrained problems, and many constrained optimization algorithms,

such as augmented Lagrangian or penalty schemes, treat box-constrained problems as

sub-problems [66]. Thus, efficient algorithms to solve box-constrained optimization

problems have a significant practical application [18; 32].

A typical constrained optimization algorithm computes an optimal set of design

variables and a set of Lagrange multipliers (x∗, λ∗) that satisfy the KKT condition.

When each design variables has upper and lower bounds, there exist twice as many

Lagrange multipliers as the number of design variables. Subsequently, the size of

constrained optimization grows quickly as the number of design variables increases.

Hence, a modification is required to handle the box-constraints efficiently.

This chapter introduces the projected gradient method and its convergence prop-

erty. The projected gradient method is a well-recognized search direction modification

algorithm that solves box-constrained optimization problems. The algorithm and a

convergence analysis of the algorithm is presented in this chapter, and the conver-

gence analysis is the result of Calamai and More’s work [9]. In the original paper,

Calamai and More proved the convergence properties of projected gradient in the
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‘steepest decent’ method with the Wolfe conditions first. Then, the proof is extended

to any line-search algorithm with a decent direction.

5.1 Projected gradient method

The box constrained problem is defined as follows:

min
x∈Rn
{f(x) : x ∈ Ω} (5.1)

Ω = {x ∈ Rn : lb ≤ x ≤ ub} (5.2)

Given an inner product norm || · || and a nonempty closed convex set Ω, the

projection into Ω is the mapping P : Rn → Ω defined by

P (x) = argmin{||z − x|| : z ∈ Ω} (5.3)

For the remainder of the text, P (x) denotes the projection of x into Ω. Given the

projection P into Ω, the gradient projection algorithm is defined by

xk+1 = P (xk + αk∇f(xk)) (5.4)

where αk > 0 is the steplength, and ∇f is the gradient of f with respect to the inner

product associated with the norm || · ||.

5.2 Convergence analysis of the projected gradient method

The convergence analysis of the projected gradient method is organized as follows.

Basic properties of gradient projection operators are proven first, then the projected

gradient method’s convergence properties are proven assuming that each step length

satisfies the Wolfe conditions at each iterate. In the analysis of the projected gradient
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method, it is assumed that Ω is a nonempty closed convex set and that mapping

f : Rn → R is continuously differentiable on Ω. Given an iterate xk in Ω, the

steplength αk is obtained by search the path.

xk(α) := P (xk − α∇f(xk)), (5.5)

where P is the projection into Ω. Given a step αk > 0, the next iterate is defined

by xk+1 = xk(αk) where αk is chosen to satisfy the Wolfe conditions, which can be

rewritten as follows:

f(xk+1) ≤ f(xk) + µ1

〈〈
∇f(xk) · xk+1 − xk

〉〉
(5.6)

αk ≥ γ1 or αk ≥ γ2ᾱk > 0 (5.7)

f(xk(ᾱk)) > f(xk) + µ2

〈〈
∇f(xk) · xk(ᾱk)− xk

〉〉
(5.8)

where
〈〈
x · y

〉〉
denotes a dot product of two vectors x and y. Here, the Wolfe

condition is identical to the one in Chapter IV. However, the notation is modified

to be consistent with the original Calamai and More’s paper [9]. The analysis of the

gradient projection method requires some basic properties of the projection operator.

Lemma V.1. Let P be the projection into Ω.

1. If z ∈ Ω, then
〈〈
P (x)− x · z − P (x)

〉〉
≥ 0 for all x ∈ Rn

2. P is monotone operator, that is,
〈〈
P (y)− P (x) · y − x

〉〉
≥ 0 for x, y ∈ Rn. If

P (y) 6= P (x), then strict inequality holds.

3. P is a non-expansive operator, that is, ||P (y)−P (x)|| ≤ ||y−x|| for x, y ∈ Rn.

Lemma V.1 provides additional information on projections.

〈〈
∇f(xk) · xk − xk(α)

〉〉
≥ ||xk(α)− xk||2

α
, α > 0. (5.9)
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In particular, this implies that

〈〈
∇f(xk) · xk − xk+1

〉〉
≥ ||xk+1 − xk||2

αk
(5.10)

Note that part 2 of Lemma V.1 implies that

〈〈
∇f(xk) · xk − xk+1

〉〉
≥ ||xk+1 − xk||2

αk
(5.11)

Lemma V.2. Let P be the projection into Ω. Given x ∈ Rn and d ∈ Rn, the function

φ defined by

φ(α) =
||P (x+ αd)− x||

α
, α > 0, (5.12)

is non-increase (antitone).

Proof. Let α > β > 0 be given. If P (x + α d) = P (x + β d) then φ(α) ≤ φ(β), so

only consider the case P (x+ α) 6= P (x+ βd). If
〈〈
v · u− v

〉〉
> 0, then

||u||
||v||

≤
〈〈
u · u− v

〉〉〈〈
v · u− v

〉〉 (5.13)

Let

u = P (x+ αd)− x, v = P (x+ βd)− x, (5.14)

then the first part of Lemma V.1 implies that

〈〈
u · u− v

〉〉
≤ α

〈〈
d · P (x+ αd)− P (x+ βd)

〉〉
, (5.15)

and that 〈〈
v · u− v

〉〉
≥ β

〈〈
d · P (x+ αd)− P (x+ βd)

〉〉
. (5.16)

Moreover, since α > β and P (x+αd) 6= P (x+βd), the second part of Lemma V.1
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shows that 〈〈
d · P (x+ αd)− P (x+ βd)

〉〉
> 0. (5.17)

Hence
〈〈
v · u− v

〉〉
> 0.

The convergence analysis of the gradient projection method is presented next.

In the following result, it is assumed that {xk} is bounded but assume that ∇f is

uniformly continuous.

Theorem V.3. Let f : Rn → R be continuously differentiable on Ω, and let {xk} be

the sequence generated by the gradient projection method. If f is bounded below on Ω

and ∇f is uniformly continuous on Ω then

lim
k→∞

||xk+1 − xk||
αk

= 0. (5.18)

Proof. Assume that there is an infinite subsequence K0 such that

||xk+1 − xk||
αk

≥ ε > 0, k ∈ K0 (5.19)

First note that if k ∈ K0, then

||xk+1 − xk||2

αk
≥ ε max{εαk, ||xk+1 − xk||}, (5.20)

and that since {f(xk)} converges, {∇f(xk), xk − xk+1} also converges to zero. Hence

lim
k∈K0,k→∞

αk = 0 and lim
k∈K0,k→∞

||xk+1 − xk|| = 0. (5.21)

Set x̄k+1 := xk(ᾱk) and βk := min(αk, ᾱk) where ᾱk satisfies Eqn. 5.6. Lemma V.2

implies that

||xk(βk)− xk||2

βk
≥ βk

( ||xk+1 − xk||
αk

)( ||x̄k+1 − xk||
ᾱk

)
(5.22)
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and since ||xk+1 − xk|| ≥ εαk and αk ≥ γ2ᾱk for k ∈ K0, obtain that

||xk(βk)− xk||2

βk
≥ ε min{1, γ2}||x̄k+1 − xk||. (5.23)

This inequality, together with Eqn. 5.9 and Eqn. 5.11 imply that for k ∈ K0,

min{
〈〈
∇f(xk) · xk − xk+1

〉〉
,
〈〈
∇f(xk) · xk − x̄k+1

〉〉
}

≥ ε min{1, γ2}||x̄k+1 − xk||. (5.24)

Use Eqn. 5.24 to obtain the desired contradiction. Since {
〈〈
∇f(xk) ·xk−xk+1

〉〉
}

converges to zero. Eqn. 5.24 implies that {||x̄k+1 − xk|| : k ∈ K0} converges to zero.

Thus, the uniform continuity of ∇f shows that if

ρx(α) :=
f(xk)− fk(xk(α))〈〈
∇f(xk) · xk − xk(α)

〉〉 (5.25)

then

|ρx((̄α)k)− 1| ≤ o(||x̄k+1 − xk||)〈〈
∇f(xk) · xk − xk+1

〉〉 (5.26)

Hence, Eqn. 5.24 establishes that ρk(ᾱk) > µ2 for all k ∈ K0 sufficiently large.

This is the desire contradiction because Eqn. 5.8 guarantees that ρk(ᾱ) < µ2

Note that in Theorem V.3 the assumption that f is bounded below on Ω is only

needed to conclude that {f(xk)} converges, and hence, that {
〈〈
∇f(xk) ·xk−xk+1

〉〉
}

converges to zero. The assumption that ∇f is uniformly continuous is used to con-

clude that

|f(x̄k+1)− f(xk)−
〈〈
∇f(xk) · x̄k+1 − xk

〉〉
= o(||x̄k+1 − xk||). (5.27)

These observations lead to the following result.
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Theorem V.4. Let f : Rn → R be continuously differentiable on Ω and let {xk}

be the sequence generated by the gradient projection method defined by Eqn. 5.6 and

Eqn. 5.7. If some subsequence {xk : k ∈ K} is bounded then

lim
k∈K,k→∞

||xk+1 − xk||
αk

= 0 (5.28)

Moreover, any limit point of {xk} is a stationary point of Eqn. 5.1.

Proof. Assume that there is an infinite subsequence K0 ⊂ K such that

||xk+1 − xk||
αk

≥ ε > 0, k ∈ K0, (5.29)

and reach a contradiction as in the proof of Theorem V.3. The only difference is

that since {xk : k ∈ K} is bounded, {f(xk)} converges and K0 can be chosen so

that {xk : k ∈ K0} converges. Hence, continuity of ∇f is sufficient to show that

ρk(ᾱk > µ2 for all k ∈ K0 sufficiently large.

Assume now that {xk} has a limit point x∗. A short computation shows that first

part of Lemma V.1 implies that for any z ∈ Ω

αk
〈〈
∇f(xk) · xk+1 − z

〉〉
≤

〈〈
xk+1 − xk · z − xk+1

〉〉
≤

〈〈
xk+1 − xk · z − xk

〉〉
≤ ||xk+1 − xk|| ||xk − z||.

(5.30)

Hence,

〈〈
∇f(xk) · xk − z

〉〉
≤
〈〈
∇f(xk) · xk − xk+1

〉〉
+
||xk+1 − xk||

αk
||xk − z|| (5.31)

Since {f(xk)} converges, Eqn. 5.6 implies that {
〈〈
∇f(xk) ·xk−xk+1

〉〉
} converges

to zero, and thus the above inequalities shows that
〈〈
∇f(xk) · x∗ − z

〉〉
≤ 0. This
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establishes that x∗ is a stationary point of the problem of Eqn. 5.1.

It was shown that limit points of the gradient projection algorithm are stationary

when αk satisfies Eqn. 5.6 and Eqn. 5.8. In this section, this result is improved by

showing that the sequence of projected gradients converges to zero provided that

steps {αk} are bounded.

The definition of the projected gradient requires some notions from convex anal-

ysis. Assume that Ω is a nonempty closed convex set in Rn and that f : Rn → R is

continuously differentiable on Ω. A direction v is feasbile at x ∈ Ω if x + τv belongs

to Ω for all τ > 0 sufficiently small. The tangent cone T (x) is defined as the closure

of the cone of all feasible directions. The projected gradient ∇Ωf(x) uniquely. Also

note that for an arbitrary set Ω, the tangent cone at x ∈ Ω can also be defined as the

set of all v ∈ Rn such that

v = lim
k→∞

xk − x
βk

(5.32)

for some sequence {xk} in Ω converging to x, and some sequence of positive scalars

{βk} converging to zero. It is not difficult to show that both definitions lead to the

same tangent cone when Ω is convex.

Lemma V.5. Let ∇Ωf(x) be the projected gradient of f at x ∈ Ω.

1. −
〈〈
∇f(x) · ∇Ωf(x)

〉〉
= ||∇Ωf(x)||2 .

2. min {
〈〈
∇f(x) · v

〉〉
: v ∈ T (x), ||v|| ≤ 1} = −||∇Ωf(x)||.

3. The point x ∈ Ω is a stationary point of Eqn. 5.1 if and only if ∇Ωf(x) = 0.

Proof. First, establish the part 1 of the lemma. Since T (x) is a cone, and since

∇Ωf(x) belongs to T (x), the part 1 of Lemma V.1 shows that if λ ≤ 0 then

〈〈
∇Ωf(x) +∇f(x) · (λ− 1)∇Ωf(x)

〉〉
≥ 0. (5.33)
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Setting λ = 0 and λ = 2 in this inequalities yields part 1. Then, prove part 2 by

noting that if v ∈ T (x) and ||v|| ≤ ||∇Ωf(x)|| then

||∇Ωf(x) +∇f(x)||2 ≤ ||v +∇f(x)||2 ≤ ||∇Ωf(x)||2 + 2
〈〈
∇f(x) · v

〉〉
+ || (5.34)

This inequality and part 1 yield part 2. Here, the part 3 is proven. Note that if the

point x is a stationary point then

〈〈
∇f(x) · z − x

〉〉
≥ 0, z ∈ Ω (5.35)

If v is a feasible direction at x then x+ τv belongs to Ω for some τ > 0 and hence

setting z = x+ τv yields
〈〈
∇f(x) · v

〉〉
≥ 0 for all v ∈ T (x), and thus 2 implies that

∇Ωf(x) = 0. Conversely, if ∇Ωf(x) = 0 then 2 implies that
〈〈
∇f(x) · v

〉〉
for all

v ∈ T (x), and since z − x ∈ T (x) for any z ∈ Ω, this shows that x is a stationary

point of Eqn. 5.1.

Part 2 of Lemma V.1 justifies the definition of the projected gradient by showing

that ∇Ωf(x) is a steepest descent direction for f . This result will be used repeatedly

in the convergence analysis of the gradient projection method.

At first glance, part 3 of Lemma V.1 suggests that an iterative scheme for Eqn. 5.1

should drive ∇Ωf(xk) to zero. However, this may not be possible because ∇Ωf can

be bounded away from zero in a neighborhood of a stationary point.

Theorem V.6. Let f : Rn → R be continuously differentiable on Ω, and let {xk}

be the sequence generated by the gradient projection method defined by Eqn. 5.6 and

Eqn. 5.7 with

αk ≤ γ3 (5.36)

for some constant γ3. If f is bounded below on Ω and ∇f is uniformly continuous on
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Ω then

lim
k→∞
||∇Ωf(xk)|| = 0 (5.37)

Proof. Let ε > 0 be given and choose a feasible direction vk with ||vk|| ≤ 1 such that

||∇Ωf(xk)|| ≤ −
〈〈
∇f(xk) · vk

〉〉
+ ε (5.38)

Now note that part 1 of Lemma V.1 shows that for any zk+1 ∈ Ω

αk
〈〈
∇f(xk) ·xk+1−zk+1

〉〉
≤
〈〈
xk+1−xk ·zk+1−xk+1

〉〉
≤ ||xk+1−xk|| ||xk+1−zk+1||.

Since vk is a feasible direction, zk = xk + τkvk belongs to Ω for some τk > 0. Thus

the above inequality and Theorem V.3 show that

lim sup
k→∞

−
〈〈
∇f(xk) · vk+1

〉〉
≤ 0. (5.39)

Since αk is bounded above, Theorem V.3 shows that {||xk+1 − xk||} converges to

zero, and thus use the uniform continuity of ∇f to conclude that

lim sup
k→∞

−
〈〈
∇f(xk) · vk+1

〉〉
≤ 0. (5.40)

The choice of vk guarantees that

lim sup
k→∞

||∇Ωf(xk+1)|| < ε, (5.41)

and since ε > 0 is arbitrary, this proves the result.

A variation on Theorem V.6 is established to conclude the analysis. In this result,

the assumptions that f is bounded below on Ω and that ∇f is uniformly continuous

on Ω are replaced by the assumption that some subsequence of {xk} is bounded.
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Theorem V.7. Let f : Rn → R be continuously differentiable on Ω, and let {xk} be

the sequence generated by the gradient projection method defined by Eqn. 5.6, Eqn. 5.7,

and Eqn. 5.36. If some subsequence {xk : k ∈ K} is bounded, then

lim
k∈K,k→∞

||∇Ωf(xk+1)|| = 0. (5.42)

Proof. Assume that there is an infinite subsequence K0 ⊂ K and an ε0 > 0 such that

||∇Ωf(xk+1)|| ≥ ε0, k ∈ K0. (5.43)

Since {xk : k ∈ K} is bounded, choose K0 so that {xk : k ∈ K0} converges. The

proof proceeds as in Theorem V.6 except that ] Theorem V.4 is used instead of

Theorem V.3. Thus,

lim sup
k∈K0,k→∞

||∇Ωf(xk+1)|| ≤ ε (5.44)

for any ε > 0. This contradicts (3.3) for ε < ε0, and thus establishes the result.

5.3 Extension to conjugate gradient method

In the previous section, the convergence property of projected gradient method is

shown when coupled with the steepest decent method. Now, this result is extended to

CG method. Assume that Ω is an arbitrary nonempty closed convex set, and assume

that the gradient projected conjugate gradient method choose xk+1 by either

� Condition 1. xk+1 = P (xk − αk∇f(xk)) where αk satisfies Eqn. 5.6, Eqn. 5.7,

and Eqn. 5.36.

� Condition 2. xk+1 ∈ Ω such that f(xk+1) ≤ f(xk).

Let a set KPG be a set of iterates k which generate xk+1 by the projected gradient

method.
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Theorem V.8. Let f : Rn → R be continuously differentiable on Ω, and let {xk} be

the sequence generated by the projected gradient conjugate gradient method such that

xk+1 satisfies Condition 1 and Condition 2. Assume that KPG is infinite. If some

subsequence {xk : k ∈ K} with K ⊂ KPG is bounded then

lim
k∈K,k→∞

||∇Ωf(xk+1)|| = 0. (5.45)

Moreover, any limit point of {xk : k ∈ KPG} is a stationary point of Eqn. 5.1.

Proof. Only outline of the proof is presented here.

lim
k∈K,k→∞

||xk+1 − xk||
αk

= 0 (5.46)

holds if

� {xk} satisfies Condition 1 and Condition 2.

� f satisfies the assumptions of Theorem V.4.

� K is an infinite subset of KPG

Since Eqn. 5.46 holds, the arguments used in the proofs of Theorem V.6 and

Theorem V.7 yield

lim sup
k∈K,k→∞

−
〈〈
∇f(xk+1) · vk+1

〉〉
≤ 0. (5.47)

Since vk+1 is any feasible vector with ||vk+1|| ≤ 1, this implies that for any ε > 0

lim sup
k∈K,k→∞

||∇Ωf(xk+1)|| ≤ ε. (5.48)

Hence Eqn. 5.45 holds as desired.

This shows that the convergence analysis is valid for the projected gradient con-

jugate gradient method. In the main body of the dissertation, the projected gradient
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method is integrated to CG method to solve box-constrained optimization problems.
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CHAPTER VI

A bi-level multi-objective algorithm

In this chapter, a new bi-level multi-objective algorithm is presented. The new

algorithm is created by combining strengths of known algorithms. The new algorithm

uses a bi-level structure to decompose an optimization problem, and a new multi-

objective function transformation method is proposed to accommodate the presence of

global and local design variables in the bi-level structure. The utility of the algorithm

is evaluated by solving two multi-objective optimization algorithms.

6.1 Bi-level structure

The algorithm presented in this chapter follows a bi-level hierarchy that contains

several discipline level optimizations and a single system level optimization. Each dis-

cipline optimization pursues improvement of its own objective function while meeting

all corresponding performance expectations which are stated as constraints. The sys-

tem level optimization consolidates the design by using information from the discipline

level optimizations, their objective functions, and their constraints. At the system

level, all discipline level objective functions are combined using a multi-objective met-

ric for generating the system level objective function. In this manner, a consolidated

and balanced design is identified. All discipline level constraints are combined and

considered as system level constraints during the optimization. Thus, the final design
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is feasible based on all discipline level performance expectations.

The set of all design variables from all disciplines is decomposed into local and

global design variables. The design variables which are encountered only in a single

discipline comprise the local design variables, while design variables which are used

by two or more disciplines are the global design variables. All discipline level opti-

mizations adjust the values of the local design variables and the system optimization

determines the values for the global design variables. This decomposition reduces the

number of design variables determined at the system level. At the same time control

of the local design variables is shifted to several discipline level optimizations. Since

the values of the global design variables are determined only at the system level, there

are no consistency issues for the values assigned to them (i.e. different disciplines do

not have an opportunity to assign different values to the shared design variables).

6.1.1 Discipline level

Each discipline has its own objective function (fî(x0̂, xî)), constraints (cî(x0̂, xî)),

and upper and lower bounds for local design variables (lbî ≤ xî ≤ ubî). The global

design variables (x0̂) are treated as constant in the discipline level optimizations.

min
xî

(fî(x0̂, xî)) (6.1a)

subject to

cî(x0̂, xî) ≤ 0 (6.1b)

lbî ≤ xî ≤ ubî (6.1c)
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6.1.2 System level

A multi-objective metric is used for combining the objective functions from all the

disciplines when defining the system level objective function (fsys). Lower (lb0̂)and

upper bound (ub0̂) are considered for the global design variables. The constraints

from all discipline level optimizations (cî(x0̂, xî) ≤ 0 ∀ î) are imposed as constraints

in the system level optimization to satisfy all the discipline level constraints [27]. The

system optimization statement is defined as follows:

min
x0̂

fsys(x0̂, x1̂, · · ·xk̂) (6.2a)

subject to

cî(x0̂, xî) ≤ 0 ∀ î (6.2b)

csys(x0̂, x1̂, · · · , xk̂) ≤ 0 (6.2c)

lb0̂ ≤ x0̂ ≤ ub0̂ (6.2d)

6.2 Multi-objective function transformation

When defining a system level objective function, multiple concepts from multi-

objective function transformation is used. It finds a compromised solution by min-

imizing a scaled Euclidean distance to the Utopia point. The Euclidean distance is

required to be scaled because the optimizer favors the objective function with the

largest order of magnitude without proper scaling. The relative importance of each

objective is decided by a user, and the Pareto front can be found by running opti-

mizations multiple times with varying weights. Then, exponential function is used to

enhance the performance of the objective function.
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The system level objective function is defined as follows:

fsys = exp

 k̂∑
î=1

wî

(
fî(x0̂, x1̂, · · ·xk̂)− f ∗î

prrî

)2
 (6.3)

An upper-lower bound transformation and the weighted sum approach are used for

defining the multi-objective function of the system level optimization. The distance

from the Utopia point is used in the definition of the system level objective function.

The Utopia point is determined by the infeasible ideal case where every objective in

MDO problem attains its optimal value ([(f1̂)∗(f2̂)∗ · · · (fk̂)∗])). When each objective

is scaled using the upper and lower bound approach, then minimizing the distance to

the Utopia point can identify both convex and non-convex Pareto fronts [42; 43]. This

concept has been well explored not only in the field of Multi-Objective optimization,

but also in the field of decision making [31; 37]. The upper-lower bound method is

considered to be one the most robust multi-objective function transformation method.

Exponential terms are used in the multi-objective function when accounting for

the difference between the values of each objective function at the current design point

vs. the value of the objective function at the utopia point. It has been demonstrated

that the use of exponential terms improves the performance of the multi-objective

optimizations when finding a non-convex Pareto front [4].

The Euclidean distance to the Utopia point (fî(x0, xî)− (fî)
∗ ) is scaled using an

upper-lower-bound approach. The need for proper scaling factors (prrî) arises when

the objective functions (fî) are in different orders of magnitude. Without proper

scaling, the optimizer favors the improvement in the objective function with the

highest order of magnitudes. Therefore, each objective has to be properly scaled for

the system level optimizer to measure the improvement in each objective function

without bias [43].

The basic notion of the upper-lower-bound approach is to scale each objective by
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the difference between its highest value on the Pareto front (upper bound) and its

optimum value (lower bound). This upper bound is called Zenith point (Zî), and prr

is the difference between the Zenith point and the objective optimal value (fî)
∗.

prrî = Zî − (fî)
∗ (6.4)

In this work, the Zenith point is set equal to the highest value that an objective

function acquires at the optimal points of all other disciplines (i.e., evaluating ith

objective function at jth objective optimal design variable). The conventional upper-

lower bound method considers no local variables across multiple disciplines. When

there are no local variables, the calculation of the Zenith point of the ith objective is

straight forward:

Zî = max
[
fî(x

1̂
0) · · · fî(x

k̂
0)
]

(6.5)

The method is expanded to accommodate a bi-level structure, which includes

local design variables. In the presence of local design variables, identifying the Zenith

point for the objective function of each discipline is a two-step process. First, each

discipline optimization is conducted multiple times with respect to both global and

local variables resulting in a set of optimal variables for each discipline (xi0, x
∗
î
). Then,

each discipline optimization is conducted with respect to only the local variables while

the global design variables are set equal to each one of the other disciplines optimal

global variables (i.e., the ith discipline optimization is conducted multiple times, and

each time the global design variables are set to be equal to the optimal values of

the jth discipline, xj0). The corresponding value for the objective function becomes

(fi(x
j
0, x

j
i ). Then, the Zenith point is determined as:

Zî = max
[
fî(x

1̂
0̂
, x1̂

î
), fî(x

2̂
0̂
, x2̂

î
), · · · fî(x

k̂
0̂
, xk̂

î
)
]

(6.6)

64



6.3 Computational flow

In this algorithm, the Utopia point is computed first. Then, the prrî values are

evaluated for each discipline using Eqn. 6.4. The latter along with the Utopia point are

needed for calculating the multi-objective function in the system level optimization,

Eqn. 6.3.

Figure 6.1: Flow of the Algorithm

Once the MDO analysis starts, all discipline optimizations are executed at ev-

ery system level iteration. The system level optimization provides the values for the
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global design variables to the discipline optimizations, and each discipline optimiza-

tion returns the optimal set of values for the local design variables (xî), and the

optimal value for the corresponding objective function based on Eqn 6.1. The sys-

tem level optimizer updates the global design variables based on the performance of

the previous iteration. The process repeats until the system level optimization sat-

isfies convergence criteria. In this manner, the system level optimization (Eqn. 6.2)

is solved. The weights (wî) assign relative importance of the objectives (Eqn. 6.3).

By changing the weights, the system level optimizer converges on a different point of

the Pareto front. In all analytical examples presented, the total sum of the weights

is equal to 1. (
∑k̂

î=1 wî = 1)

6.4 Numerical examples

In order to demonstrate the utility of the algorithm, two MDO problems are solved.

They are based on analytical optimization problems from the literature. In both cases,

the Pareto front is also computed using Monte Carlo simulations for demonstrating

convergence of the new algorithm on the Pareto front. The first MDO problem is cre-

ated by designating the geometric programming optimization [33], and the Golinski

speed reducer optimization [24] as each one of the two discipline optimizations of the

MDO. Analyses are performed twice, first by considering all the design variables to be

continuous and then by using mixed design variables. The second MDO problem is a

multi-objective version of the Sellar collaborative optimization [57]. It demonstrates

that new algorithm can consider collaborative optimizations as discipline level opti-

mization. A computer with the following spec was used for all optimizations: Intel

Core i7-3770 CPU @ 3.40 GHz (8 CPUs) and 16 GB RAM.
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6.4.1 GG problem

Two analytical optimization problems from the literature are combined and des-

ignated as discipline optimizations in order to generate a MDO analysis that can

be solved by the new bi-level multi-objective algorithm. The original geometric pro-

gramming optimization statement was utilized for demonstrating the utility of the

Target Cascading Method [33]. It has six inequality constraints, four equality con-

straints, and fourteen design variables. Similarly, the Golinski speed reducer optimiza-

tion [24] has eleven inequality constraints, seven design variables and was proposed

as a benchmark optimization problem to compare and contrast various optimization

methods. These two optimizations are unrelated physically; they are designated as

discipline optimization because the optimal values for their objective function ex-

hibit different orders of magnitude. Thus, the performance of the upper-lower bound

transformation utilized in the definition of the system level objective function can be

tested. When the two optimizations are combined for defining the MDO statement,

three design variables from each discipline are designated as global design variables

(x0̂ = [u1, u2, u3]). This results into eleven local design variables (x1̂ = [s1, · · · , s11])

for discipline 1 (i.e. the geometric programming optimization); and four local de-

sign variables (x2̂ = [t1, t2, t3, t4]) for discipline 2 (i.e. the Golinski speed reducer

optimization).

The structure of the MDO analysis, the definitions of the constraints, and the ob-

jective functions are included in Fig. 6.2 along with the ranges for the global and the

local design variables. Analysis is performed first by considering continuous values

for all design variables. The corresponding utopia point and the plausible reduction

ranges which are used in the upper-lower bound transformation are summarized in

Table 6.1. Please note that the equality constraints are denoted as ceq(x) and in-

equality constraints are denoted as c(x). The differences in the magnitudes of the

objective functions exhibited by two disciplines at the utopia point ( (f1̂)∗ ≈ 17.7,
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Figure 6.2: GG problem Statement

(f2̂)∗ ≈ 2.57 ·103 ) is balanced when the multi-objective system function is defined by

dividing the terms that include each objective function with the plausible reduction

range (prr1 ≈ 2.68, prr2 ≈ 1.81 · 103).

î xî
0̂

x∗
î

fî prrî

1̂ [0.70, 0.82, 0.82]
[2.90, 3.04, 2.40, 0.81,
2.80, 0.89, 0.99, 0.79,
1.28, 1.77, 1.52]

17.7 2.68

2̂ [0.43, 0.76, 0.78] [3.60, 0.70, 3.34, 5.29] 2.59 · 103 1.81 · 103

Table 6.1: GG problem single optimization result of continuous variable

The MATLAB fmincon gradient optimizer was employed for driving the disci-

pline and the system level optimization. The Pareto front is also evaluated through a

Monte Carlo simulation and plotted in Fig. 6.3. The Monte Carlo simulation evalu-

ated 10,000 vectors of global design variables that are chosen randomly. The discipline

optimizers attempted to find corresponding optimal local design variables. The sim-

ulation lasted 622 seconds; it identified 5,919 feasible points and created a convex
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Figure 6.3: GG problem optimization result

Pareto front with 480 non-dominated points.

Analysis is performed by considering four different sets of weights (w1̂& w2̂) in

the definition of the system level objective function. The optimization results are

presented in Fig. 6.3 as design points in the space defined by the values of the objective

functions from the two disciplines. The four pairs of value used for the weights are

also presented in Fig. 6.3.

As anticipated, the optimal solutions that are identified using different sets of

weights converge to different locations of the Pareto front. When higher weight is

allocated to the first discipline, then the optimal point gravitates towards points

on the Pareto front that exhibit lower values for the objective function of the first

discipline. By running a series of optimizations with varying set of weights (w1̂ &

w2̂), the algorithm can identify points on the Pareto front.
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6.4.2 GG problem with an integer variable

The structure of the bi-level MDO algorithm can accommodate mixed design

variables if a genetic algorithm is used for driving each optimization instead of a

gradient solver. In order to demonstrate this capability, the GG problem is converted

into one with mixed design variables. Specifically, the global design variable u2 is

converted to a discrete design variable that can acquire any one from ten discrete

values of [0.73, 0.74, 0.75, 0.76, 0.77, 0.78, 0.79, 0.80, 0.81, 0.81, 0.82, 0.83].

Optimization analyses are performed using the MATLAB genetic algorithm func-

tion ‘ga’ with the default setting and population size of 50 and 200. The computa-

tional time increases significantly when replacing the gradient solver with the genetic

algorithm in MATLAB. A Monte Carlo simulation was also performed for determin-

ing the Pareto front. The simulation time was 1250 seconds and 268 Pareto were

identified from 10,000 sets of global design variables. The Pareto fronts when consid-

ering mixed or continuous design variables are similar but not identical. The results

from the MDO analysis that uses a population size of 50 are presented in Fig. 6.4

and the results from a population size of 200 are presented in Fig. 6.5.
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Figure 6.4: Mixed-Integer optimization result w/ population 50

Figure 6.5: Mixed-Integer optimization result w/ population 200
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6.4.3 Sellar problem

The original Sellar problem, shown in Eqn. 6.7a, is a minimization problem with

three design variables [s1s2s3] and two inequality [c0̂,(1)c0̂,(2)] constraints. Two coupled

variables [t1 t2] participate in defining the constraints. t1 is a function of [s1 s2 s3 t2]

while t2 is a function of [s1 s2 t1]. Thus, there is no closed-form expression of t1 and

t2.

min
s1,s2,s3

fobj = s2
3 + s2 + t1 + e−t2 (6.7a)

subject to (6.7b)

c0̂,(1)(x) =
t2
24
− 1 ≤ 0 (6.7c)

c0̂,(2)(x) = 1− t1
3.16

≤ 0 (6.7d)

t1(s1, s2, s3, t2) = s2
1 + s2 + s3 − 0.2 t2 (6.7e)

t2(s1, s2, t1) =
√
t1 + s1 + s2 (6.7f)

[0, 0, 0] ≤ [s1, s2, s3] ≤ [10, 10, 10] (6.7g)

In the past, the Sellar problem has been used [25] to demonstrate the performance

of a Collaborative Optimization (CO) algorithm comprised of a nested optimization

with an inner and outer loop. The inner loop optimization was utilized for determin-

ing the values of the coupled parameters and the outer loop optimization was utilized

for minimizing the objective function. The original Sellar problem is modified in this

application in order to generate a multi-objective statement. All design variables

are considered as global design variables. A multi-objective function is created and

minimized at the system level optimization (similar to the outer loop of the collab-

orative optimization) while the values of the coupled parameters are determined at

the discipline level of the bi-level structure (similar to the inner loop of the collabo-
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Figure 6.6: MO Sellar Problem Statement

rative optimization). In this manner, it is demonstrated how the bi-level algorithm is

versatile enough to solve a typical collaborative optimization problem with coupled

parameters. The multi-objective version of the Sellar problem has a small Pareto

front that is challenging to identify. Thus, the utility of the multi-objective function

transformation is demonstrated.

î xî
0̂

fî prrî

1̂ [1.97, 0.00, 0.00] 3.18 12.5

2̂ [1.78, 0.34, 0.43] 3.16 0.04

3̂ [0.00, 0.00, 3.52] 1.78 2.12

Table 6.2: MO Sellar problem single objective optimization result

Fig. 6.6 presents the flow chart of the modified Sellar problem. At the system level

the multi-objective function combines three performance metrics (f1̂ = fobj, f2̂ =

t1, f3̂ = t2). The upper bounds (ub) for the design variables, and the inequality
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constraints (c0̂(x)) are identical to the original Sellar problem. There are three global

design variables [s1, s2, s3], and two new local variables (x1̂ = [f̄2̂, f̄3̂]) are introduced

to compute f2̂ and f3̂. The local variables are the best estimate of f2̂ & f3̂. The

discipline level optimization in the bi-level structure minimizes the Error between

[f̄2̂, f̄3̂] and [f2̂, f3̂] to obtain values for [f2̂, f3̂]. This sub-optimization loop to compute

coupled variables is identical to ‘collaborative optimization,’ (i.e., computing f ∗
1̂

is

identical to the original Sellar (CO) and the solution from multi-objective method is

compared with a published ‘collaborative optimization’ to highlight the effectiveness

of multi-objective transformation method.)

The utopia point and the prrs are summarized in Table 6.2. The prrs exhibit sub-

stantially different values. This indicates that the upper-lower bound transformation

is important for identifying the Pareto front. An optimization analysis is conducted

by assigning equal weight to all three objective functions. The optimal solution con-

verges on the Pareto front. The latter is evaluated using a Monte Carlo simulation

which evaluated 248,625 points and created a Pareto front with only 113 points. The

small ratio of Pareto front points over the total number of evaluation points is an

indication of the small Pareto front exhibited by this optimization problem.

Fig. 6.7 through Fig. 6.9 present three two-dimensional projections of the Pareto

front along with results of the optimization analysis. The optimization results either

converge on the Pareto front (Fig. 6.8) or provide an optimum that exhibits a slight

improvement compared to the non-dominated solutions identified by the Monte Carlo

simulation (Fig. 6.7 and Fig. 6.9).

The optimum results from OpenMDAO [25] are also included in Fig. 6.7 through

Fig. 6.9 as another point of reference. OpenMDAO uses Collaborative Optimization

(CO) to minimize f1̂. As expected, the published results exhibit a better performance

for f1̂ but worse for f3̂ compared to the results obtained by the algorithm. A detailed

summary of the results is presented in Table 6.3. The difference between the two
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solutions at each one of the three performance metrics is presented as a percentage

of the prr.

Published Data Algorithm Result Change in Value (% of prr)
f1̂ 3.18 5.51 18.6%
f2̂ 3.16 3.16 0%
f3̂ 3.76 3.48 -13.4%

Table 6.3: MO Sellar Problem Result with equal weights

Figure 6.7: Numerical Pareto front of the Sellar problem f1̂ vs. f2̂
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Figure 6.8: Numerical Pareto front of the Sellar problem f1̂ vs. f3̂

Figure 6.9: Numerical Pareto front of the Sellar problem f2̂ vs. f3̂
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6.5 Conclusion

The structure of a bi-level optimization algorithm that identifies a single consol-

idated optimum solution while considering multiple disciplines with individual ob-

jectives and constraints is presented. Global and local design variables comprise the

parameters which are controlled by the system level and the discipline level optimiza-

tions, respectively. Both continuous and discrete design variables can be considered.

The new algorithm simultaneously optimizes multiple objectives by creating a system

level multi-objective function. It minimizes the distance to the utopia point in order

to find a solution on the Pareto front, and it uses an upper-lower bound approach to

scale all objective functions.

Optimization problems from the literature are utilized for creating three new

multi-discipline optimization statements solved by the bi-level multi-objective algo-

rithm. In all cases, the solution converges on the Pareto front. Different weights can

be used for converging at different points of the Pareto front. The latter is evaluated

for each optimization using a Monte Carlo simulation.
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CHAPTER VII

A modified CG method

In this chapter, modifications are introduced to improve the performance of the

CG method. Then, the utility of new modifications is demonstrated by comparing

it with a baseline algorithm, which is a Fletcher-Reeves CG method with exterior

penalty.

7.1 Baseline algorithm

‘Fletcher-Reeves’ CG method (βFR = ‖gk‖2/‖gk−1‖2) is chosen as a baseline algo-

rithm. The baseline algorithm converts constrained optimization problems to uncon-

strained optimization problems using ‘exterior penalty method.’ At each iteration,

the algorithm uses the ‘golden section line search’ to find a step length (αk).

7.1.1 Exterior penalty method

If constraints exist, such as box constraints (lb ≤ x ≤ ub), inequality constraints

(c(i)(x) ≤ 0 ), penalty terms are added to the objective function to create a pseudo-

objective function (Ψ(x)). In this way, a constrained problem is converted to an

unconstrained problem. One of the simplest penalty function method is the ‘exterior

penalty method.’ As seen in Eqn. 7.1, it adds the square of constraint violation

to the objective function. This method has been integrated with Fletcher-Reeves
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nonlinear conjugate gradient method to solve large-scale constrained optimization

problems [62].

min
x

Ψ(x) = f(x) +
n∑
i=1

p(i)

(
max(0, lb(i) − x(i))

2 + max(0, x(i) − ub(i))
2
)

+
m∑
j=1

q(j) max(0,−c(j)(x))2 (7.1)

p(i) = box constraint penalty multipliers

q(j) = constraint penalty multipliers

It minimizes a pseudo-objective function (Ψ(x)) to find a feasible optimal point, and

it follows a procedure outlined in Algorithm 2.

Algorithm 2 Nonlinear conjugate gradient method

Define Ψ(x)
Initialize the algorithm: x0 and d0 = −g0

while not converged do
Compute βk using Table 4.1
Compute dk = −gk + βkdk−1

Line search αk = argmin
αk>0

f(xk + αkdk)

Update xk+1 = xk + αkdk
Update k := k + 1

end while
return xk+1, Ψ(xk+1)

To converge at a feasible optimal point, the optimizer needs to reduce both the

objective function and penalty terms. If the penalty terms are much smaller than

the objective function, it favors the reduction of the objective function value while

ignoring feasibility. On the other hand, the optimizer may terminate prematurely at

a sub-optimal point if the penalty terms become too big. Therefore, it often requires

calibration of penalty multipliers (p(i), q(j)), such that Ψ(x) has a good balance of

optimality and feasibility. This calibration can be challenging especially when the

relation between the objective function and the penalty terms are not known.

79



7.2 Bounded search direction update method

CG methods update the input variables by finding a step length along the search

direction (xk+1 = xk + αkdk). If there exist zeros in the search direction (dk), the

input variables which correspond to the zeros do not change regardless of a choice of

step length (αk). The bounded search direction update method uses the projected

gradient method to insert zeros to the search direction (dk).

Input variables that violate the upper (lower) bounds are identified at each it-

eration. These variables are called box-constraints violating variables. Then, the

box-constraints violating variables are fixed to the bounds (i.e., {x : x ≥ ub} =

ub and {x : x ≤ lb} = lb). If the corresponding search direction is positive for

{x : x ≥ ub} (negative for {x : x ≤ lb}), then the search direction is set to zero.

The following terms are defined first for clarity of explanation.

ubxk : indices of input variables such that xk(ubxk) ≥ ub(ubxk)

lbxk : indices of input variables such that xk(lbxk) ≤ lb(lbxk)

dk(ubxk) : a vector of search direction corresponds to x(ubxk)

dk(lbxk) : a vector of search direction corresponds to x(lbxk)

In the algorithm, the *new steps are implemented as follows:

1. dk = −gk + βkdk−1

2. *Modify search directions to zero.

note that ubxk and lbxk are found in step 5.

{dk : dk(ubxk) > 0} = 0

{dk : dk(lbxk) < 0} = 0
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3. αk = argmin
αk≥0

f(xk + αkdk)

4. xk+1 = xk + αkdk

5. *Identify input variables that violate lb and ub

{xk(ubxk+1) : xk+1 ≥ ub}

{xk(lbxk+1) : xk+1 ≤ lb}

6. *Fix the values of input variables to lb and ub.

xk+1(ubxk+1) = ub(ubxk+1)

xk+1(lbxk+1) = lb(lbxk+1)

7. k := k + 1

With these new steps, the input variables are guaranteed to stay within the box

constraints. Subsequently, penalty terms for the box-constraints are no longer re-

quired. The entire procedure is outlined in Algorithm 3.

7.3 Multi-variate step length method

The baseline algorithm finds a ‘single step length’ (αk) for all input variables. In

‘multi-variate step-length’ method, the input variables are partitioned into multiple

regions (xk = x1
k ∪ x2

k ∪ x3
k ∪ x4

k]) according to the magnitude of corresponding search

direction as shown in Eqn. 7.2.
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Algorithm 3 Bounded search direction update method

* denotes new steps.
*1 Modify dk
*2 Find xk+1 that violate l̄b and ūb.
*3 Modify xk+1

Define Ψ(x)
Initialize the algorithm: x0 and d0 = −g0

while not converged do
Compute βk using Table 4.1
Compute dk = −gk + βkdk−1

*1a Modify {dk : dk(ubxk) > 0} = 0
*1b Modify {dk : dk(lbxk) < 0} = 0
Compute αk = arg min

αk>0
f(xk + αkdk)

Update xk+1 = xk + αkdk
*2 Identify ubxk+1 and lbxk+1

*3a Modify xk+1(ubxk+1) = ub(ubxk+1)
*3b Modify xk+1(lbxk+1) = lb(lbxk+1)
update k := k + 1

end while
return xk+1, Ψ(xk+1)



x1
k : dk > c1

x2
k : c1 ≥ dk > ε

x3
k : −ε > dk ≥ −c2

x4
k : −c2 > dk


where c1, c2 > 0 and 1 >> ε > 0

The ‘multi-variate steplength method’ uses vector search methods to find steplength

for each region (ᾱk = [α1
k, α

2
k, α

3
k, α

4
k]). Finding a vector of step length is equivalent

of modifying a search direction as shown in Eqn. 7.2.
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



x1
k

x2
k

x3
k

x4
k


+



α1
k

α2
k

α3
k

α4
k





d1
k

d2
k

d3
k

d4
k




=





x1
k

x2
k

x3
k

x4
k


+ α̂k



η1
kd

1
k

η2
kd

2
k

η3
kd

3
k

η4
kd

4
k




(7.2)

where [α1
k · · ·α4

k]
> = α̂k[η

1
k · · · η4

k]
>

To find a vector of step lengths, two multi-variate step length methods, sequential

and simultaneous methods, are proposed. The sequential method solves a line search

optimization for each region sequentially as shown in Eqn. 7.3.

min
0≤αj

k≤αmax

Ψ (xk + αjkd
j
k) for all j = 1, · · · , n (7.3a)

ᾱk = [α1
k, · · · , αnk ], xk+1 = xk + ᾱkdk (7.3b)

The simultaneous method uses the ‘bounded Nealder-Mead simplex method’ to

find a vector of step length. The bounded Nelder-Mead simplex method is a heuristic

vector search method. It expands and contracts the size a simplex in the search space

to find the minimum within the search bound (0 ≤ αk ≤ αmax). The lower bound

(0 ≤ αk) is required because a negative step implies that it searches the opposite of

the search direction. The upper bound is also required because the algorithm diverges

when the search area becomes too large.

The original Nelder-Mead simplex method imposes no bounds. Thus, the variable

transformation method is required to ensure that the Nelder-Mead simplex method

stays within the bounds. The bounds (0 ≤ αjk ≤ αmax) are implemented using a

variable transformation method shown in Eqn. 7.4. ᾱk has a maximum value of αmax,

and a minimum value of zero. [15; 36]. The variables are transformed as shown in
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Eqn. 7.4.

ᾱk = αmax

(
sin(z̄k) + 1

2

)
(7.4)

The Nealder-Mead simplex method solves for z̄k as shown in Eqn. 7.5.

z̄k = arg min
zk

f(xk + ᾱk(z̄k)dk) (7.5)

The procedure of the multi-variate steplength method is outlined in Algorithm 4.

Algorithm 4 Multi-variate steplength method

* denotes new steps.
*1 Partition xk and dk
*2 Find ᾱk

Define Ψ(x)
Initialize the algorithm: x0 and d0 = −g0

while not converged do
Compute βk using Table 4.1
Compute dk = −gk + βkdk−1

*1 Partition the input variable
*2a Perform golden sectioin search sequentially
for i=1:n do

Find αik = arg min
0≤αi

k≤αmax

f(xk + αikdk)

end for
*2b Perform Bounded Nelder-Mead search

Find ᾱk = αmax
sin(z̄k) + 1

2
, z̄k = arg min

z̄k
f(xk + ᾱk(z̄k)dk)

Update xk+1 = xk + ᾱkdk
Update k = k + 1

end while
return xk+1, Ψ(xk+1)

7.4 Numerical examples

The utility of the new elements are evaluated by solving three constrained prob-

lems with varying degrees of difficulties. The problem descriptions and optimization

results are presented in this section. Each problem is solved in multiple cases to
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compare and to contrast with the ‘baseline’ algorithm. All problems exhibit a large

number of design variables.

The termination criteria are

1. maximum iteration kmax = 100

2. ||gk|| ≤ 10−6

3. ||dk|| ≤ 10−6

4. |ψk+1 − ψk| ≤ 10−6

where || · || is the maximum absolute component of a vector.

The penalty terms multipliers are fixed at constant, and the box-constraints

penalty terms are removed when solving the problems with the bounded search di-

rection update method. In the ‘multi-variate steplength method’, c1 and c2 are equal

to 0.4 while ε is fixed at 10−6.

The objective function values are non-dimensionalized. ‘1’ is equal to Ψ(x0)

whereas ‘0’ is equal to the minimum. The unbounded single steplength method is

the ‘baseline’ algorithm, and the following abbreviations are used

1. UNB = Unbounded (with box constraints penalty terms)

2. BND = Bounded search direction update method

3. Seq. = Sequential multi-variate steplength

4. Sim. = Simultaneous multi-variate steplength

All codes are written in MATLAB and run with a computer with the following

spec: Intel CoreTM i7-3770 CPU @ 3.40 GHz (8 CPUs) with 16GB of RAM.
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7.4.1 500 sine problem

The objective function of the problem is comprised of 500 sine functions. It has

500 bounded design variables (0 ≤ x ≤ 2π) with no equality and inequality con-

straints. At the global optimum, 158 design variables are equal to 0 while 179 design

variables are equal to 2π.

The objective function is

f(x) =
500∑
i=1

A(i) sin(ω(i)x(i) + b(i)) (7.6)

0 ≤ x(i) ≤ 2π for all i = 1, · · · , 500

The pseudo-objective function with the penalty terms is

Ψ(x) = f(x) +
500∑
i=1

p(i) (max(0,−x(i))
2 + max(0, x(i) − 2π)2) (7.7)

where p(i) is the box-constraints penalty multiplier for x(i).

As seen in Fig. 7.1, the rate of convergence improves with the bounded search

direction update method. It converges to lower Ψ(x) than the unbounded method

with fewer number of iteration. This improvement can be attributed to the fact that

the optimal solution contains many variables on the bounds.
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Figure 7.1: 500 Sine result Ψ(x) vs. iteration

As seen in Table 7.1, the bounded method eliminates the box-constraints violation,

and it reduces the number of function evaluations, the number of iterations, and the

computational time.

Table 7.1: 500 sine optimization result
unbounded bounded

Single Seq. Sim. Single Seq. Sim.
Non-dim Ψ(x) value 0.142 0.159 0.144 6.22 · 10−5 0 3.66 · 10−4

Box constraints violation 0.461 0.913 0.413 0 0 0
Number of Ψ(x) evaluation 1864 2796 2401 1836 2577 2338
Time (sec) 1.96 3.24 2.71 1.87 2.89 2.56
Number of Iteration
where non-dim Ψ(x) < 0.1

> 100 > 100 > 100 8 6 9

The ‘multi-variate method’ does not have a significant effect on the 500 sine prob-

lem. The solutions obtained by single , sequential, and simultaneous methods are

similar. The 500 sine problem is well-scaled for the single step length method. When

a problem is well-scaled for a single step length method, the multi-variate step length
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methods show no merit.

7.4.2 Electrons on Sphere (EOS)

EOS problem finds the lowest potential energy configuration of np point charges

on a conducting sphere [16] as seen in Fig. 7.2.

Figure 7.2: Optimal distribution of electrons, np = 100 [16]

The design variables are the location of each np point charge in rectilinear coor-

dinate system x̄ = [x(i) y(i) z(i)]. Given np point charges, 3np design variables exist.

Every point charges are on the surface of a unit sphere (i.e, x2
(i) + y2

(i) + z2
(i) = 1), and

the box constraints for each design variables is −1 ≤ x(i), y(i), z(i) ≤ 1. This prob-

lem has been used in one of the benchmark study to evaluate the utility of various

optimization algorithms [16].

The potential energy for np points (x(i), y(i), z(i)) is defined as

f(x, y, z) =

np−1∑
i=1

np∑
j=i+1

(
(x(i) − x(j))

2 + (y(i) − y(j))
2 + (z(i) − z(j))

2
)−1

2 (7.8)

The constraints on the np points are

x2
(i) + y2

(i) + z2
(i) = 1 for all i = 1, · · · , np (7.9a)

−1 ≤ x(i), y(i), z(i) ≤ 1 for all i = 1, · · · , np (7.9b)
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The pseudo-objective function with the penalty terms is

Ψ(x, y, z) = f(x, y, z) +

np∑
i=1

r(i)(x
2
(i) + y2

(i) + z2
(i) − 1)2 (7.10)

+

np∑
i=1

px(i)(max(0, x(i) − 1)2 + max(0,−x(i) − 1)2)

+

np∑
i=1

py(i)(max(0, y(i) − 1)2 + max(0,−y(i) − 1)2)

+

np∑
i=1

pz(i)(max(0, z(i) − 1)2 + max(0,−z(i) − 1)2)

where r(i) is the equality constraint penalty multiplier, and px(i) , py(i) , pz(i) are the box

constraint penalty multipliers.

The unbound method and the bounded method produce identical sequences of xk

as seen in Fig. 7.3. The equality constraints (x2
(i) +y2

(i) +z2
(i) = 1) contains x(i), y(i), z(i)

within the box constraints (−1 ≤ x(i), y(i), z(i) ≤ 1). Thus, the bounded method has

no effect on the result.

The ‘multi-variate step length method’ performs better than the baseline algo-

rithm. The EOS problem is poorly scaled for the single-step length line search method.

The magnitude of the search direction (dk) is on the order of 105, and the line search

method finds a small step length that is on order of 10−10. As a result, the single step

length method stalls at a sub-optimal point. Both multi-variate step length meth-

ods circumvent the scaling issue, and the optimization process continues beyond the

sub-optimal point that the single step length method stalls at.

As seen in Table 7.2, both multi-variate step length methods require more numbers

of function evaluation than the single step length method. Especially, the simulta-

neous method requires 6 times more function evaluations than the single step length

method. However, the simultaneous method requires the fewest number of iterations
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Figure 7.3: EOS result Ψ(x) vs. iteration, np = 1000

to converge at the minimum. Explicit gradient equations for the pseudo-objective

function is available for this problem. Thus, computing the gradient at every itera-

tion is relatively inexpensive. However, when the gradient has to be computed using

numerical methods, such as finite difference, reducing the number of iteration can

reduce the computational cost.

Table 7.2: EOS optimization result

Single Seq. Sim.

Non-dim Ψ(x) value 0.789 2.48 · 10−03 0

Box constraints violation 0 0 0

Number of Ψ(x) evaluation 302 342 1885

Time (sec) 76.3 80.1 187

Number of Iteration

where non-dim Ψ(x) < 0.1
> 100 22 9
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7.4.3 Cantilevered Beam

The cantilevered beam depicted in Fig. 7.4 and Fig. 7.5 is designed for minimum

material volume. The design variables are the width, b(i), and height, h(i), of each of

the N segments.

Figure 7.4: Cantilevered beam cross section [62]

Figure 7.5: Cantilevered beam [62]

Given N segments, there are 2N design variables. The beam is subject to stress

limits (σ̄) at the left end of each segment. The problem solves for a minimal volume

of the beam with 4 constraints.

1. The bending stress (σ(i)) has to be less than or equal to the maximum bending

stress (σ̄ = 14, 000 N/cm2).

2. The height of a beam section (h(i)) cannot be greater than 20 times of the width

(b(i)) of the beam section.

3. The width of a beam section has to be greater than 3 cm.

4. The height of a beam section has to be greater than 10 cm.
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The height of any segment does not exceed twenty times of the width (h(i) ≤ 20b(i)) [62],

and a complete optimization statement is defined as follows:

V (b, h) =
N∑
i=1

b(i)h(i)l(i) (7.11a)

subject to

σ(i)

σ̄
− 1 ≤ 0 i = 1, · · · , N (7.11b)

h(i) − 20b(i) ≤ 0 i = 1, · · · , N (7.11c)

b(i) ≥ 3 i = 1, · · · , N (7.11d)

h(i) ≥ 10 i = 1, · · · , N (7.11e)

The pseudo-objective function with the penalty terms is

Ψ(b, h) = V (b, h)

+
N∑
i=1

pb(i)(max(0,−b(i) + 3)2) +
N∑
i=1

ph(i)(max(0,−h(i) + 10)2)

+
N∑
i=1

qα(i)
(max(0,

σ(i)

σ̄
− 1)2) +

N∑
i=1

qbh(i)(max(0, h(i) − 20b(i))
2) (7.12)

pb(i) , ph(i) are the box constraint penalty multipliers, and qα(i)
, qbh(i) are the inequality

constraint penalty multipliers. The bending moment at the left end of segment (M(i)),

the corresponding maximum bending stress (σ(i)), and the second moment of area

(I(i)) are computed as shown in Eqn. 7.13.

M(i) = P

[
L+ l(i) −

i∑
j=1

l(j)

]
(7.13a)

σ(i) =
M(i)h(i)

2I(i)

(7.13b)

I(i) =
b(i)h

3
(i)

12
(7.13c)
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The cantilevered problem is poorly scaled for the single steplength method. The

magnitude of the search direction (dk) is on order of 103, and the line search finds a

small steplength (αk) that is on order of 10−5. As a result, single steplength method

shows unsatisfactory rate of convergence as seen in Fig. 7.6.

Figure 7.6: Cantilevered result Ψ(x) vs. iteration, N = 2000

Although the ‘multi-variate steplength method’ increases the the number of func-

tion evaluation as shown in Table 7.3, it mitigates the scaling issue and converge at

lower Ψ(x) value with fewer number of iterations. Reducing the number of iteration

is advantageous when computing the gradient of Ψ(x) is expensive.

The ‘bounded method’ is shown useful in this problem. It eliminates the box

constraints violation, and it reduces the number of function evaluations. When the

bounded method is coupled with the simultaneous method, it converges to the mini-

mum with the fewest number of iteration.
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Table 7.3: Cantilevered beam optimization result
unbounded bounded

Single Seq. Sim. Single Seq. Sim.
Non-dim Ψ(x) value 0.532 0.379 1.93 · 10−2 0.819 0.313 0
Box constraints violation 2.00 · 10−8 4.30 · 10−4 4.55 · 10−5 0 0 0
Number of Ψ(x) evaluation 1844 4889 5335 1882 2428 5347
Time (sec) 18.2 32.9 35.6 19.2 22.6 37.6
Number of Iteration
where non-dim Ψ(x) < 0.1

> 100 > 100 69 > 100 > 100 31

7.5 Conclusion

The ‘bounded search direction update method’ and the ‘multi-variate step length

method’ are introduced to improve the performance of CG method. Three constrained

optimization problems are solved to evaluate effectiveness of the new methods. For

each problem, algorithms with new methods are compared with the ‘baseline algo-

rithm,’ which is Fletcher-Reeves CG method with exterior penalty terms.

The ‘bounded search direction update method’ inserts zeros to the search direc-

tion to contain the input variable within the box-constraints. It eliminates the box-

constraints penalty terms and improves the rate of convergence when the optimal

solutions contains many variables on the bounds.

The ‘multi-variate step length method’ partitions the input variables into multiple

regions to mitigate scaling issues observed in CG method. The sequential method

solves the line search algorithm for each region sequentially while the simultaneous

method finds a vector of step length using the bounded Nelder-Mead simplex method.

The multi-variate step length method outperforms the single step length method when

the problem is poorly scaled for the single step length method. Although it requires

more numbers of function evaluation, it converges at a lower Ψ(x) with fewer numbers

of iterations.
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CHAPTER VIII

Solving a bi-level multi-objective optimization

with a large number of design variables

In this chapter, the bi-level multi-objective algorithm is coupled with the bounded

nonlinear CG methods for handling a large number of design variables. Two analytical

problems are presented for demonstrating new capability. A simple multi-objective

box-constrained optimization is solved first to demonstrate that the algorithm can

handle large-scale box-constraints problems. Then, a multi-objective example is gen-

erated based on the static analysis of a beam. The detail problem description and

the optimization results are presented and are discussed. All codes are written in

MATLAB and are executed with a computer with the following specs: Intel i7-3770

CPU @ 3.40 GHz (8 CPUs) with 16GB of RAM. The convergence criteria that are

used in all numerical optimization simulations are

1. maximum iteration kmax = 100

2. ||gk|| ≤ 10−6

3. ||dk|| ≤ 10−6

4. |ψk+1 − ψk| ≤ 10−6

where || · || is the maximum absolute component of a vector.
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8.1 Multi-objective problem based on analytical functions

Three functions which have been utilized in the literature [70] for testing box-

constrained optimization algorithms are combined for generating single multi-objective

optimization problem. The three functions (f1̂, f2̂, f3̂) are defined in Eqn. 8.1. Each

function is considered as the objective function of an optimization statement. Three

disciplines are formed; they share global design variables (x0̂), and each has its own

local design variables (x1̂, x2̂, x3̂). The numerical optimization is performed with

N = 500, resulting in total 2000 design variables.

f1̂(x0̂, x1̂) =
N∑
j=1

4(x0̂,(j) − 5)2 + (x1̂,(j) − 6)2 (8.1a)

f2̂(x0̂, x2̂) =
N∑
j=1

(x2̂.(j) − x2
0̂.(j)

)2 + 10 (1− x0̂.(j))
2 (8.1b)

f3̂(x0̂, x3̂) =
N∑
j=1

1000(x3̂,(j) − x2
0̂,(j)

)2 + (2− x0̂,(j))
2 (8.1c)

−1 ≤ x0̂, x1̂, x2̂, x3̂ ≤ 11 ∀ j = 1, · · · , N (8.1d)

8.1.1 Multi-objective formulation

The optimal solution of each objective is computed first to obtain f ∗
î
, Zî, prrî,

which are required to construct a system level objective function (fsys). The numerical

values of f ∗
î
, Zî, prrî are summarized in Table 8.1. The third objective (f3̂) is on the

greatest order of magnitude among three objectives Without proper scaling of each

objective, the algorithm would favor reduction in f3̂. Zî and prrî are identical in this

problem because the optimal function values (fî) are zero. (prrî = Zî − fî).
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î f ∗
î

(xî0)∗ (xî
î
)∗ Zî = prrî

1 0 5 ∀ j = 1 · · ·N 6 ∀ j = 1 · · ·N 32,000

2 0 1 ∀ j = 1 · · ·N 1 ∀ j = 1 · · ·N 192,500

3 0 2 ∀ j = 1 · · ·N 4 ∀ j = 1 · · ·N 112,504,500

Table 8.1: Single objective optimization result, N = 500

Once the numerical values of f ∗
î
, Zî, prrî are obtained, fsys is constructed as shown

in Eqn. 8.2.

fsys = exp

 3̂∑
î=1̂

wî

(
fî(x0, xî)− f ∗î

prrî

)2
 (8.2)

A complete system level optimization statement is defined as follows:

min
x0̂

fsys(x0̂, x1̂, x2̂, x3̂) (8.3a)

subject to

−1 ≤ x0̂ ≤ 11 (8.3b)

x1̂, x2̂, x3̂ = constant

The discipline level optimization statement for each î = {1, 2, 3} is defined as follows:

min
xî∈RN

fî(x0̂, xî) (8.4a)

subject to

−1 ≤ xî ≤ 11 (8.4b)

x0̂ = constant
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Once the system level optimization is initialized, the algorithm iterates the system

and the discipline level optimizations until system level converges.

8.1.2 Optimization result

The multi-objective function (fsys) is solved multiple times with varying combi-

nations of weights (w1̂, w2̂, w3̂). The weights assign relative importance among the

objectives. Total 171 weights are used, and the algorithm finds 170 Pareto optimal

points. The Pareto front, identified by the algorithms, is plotted in Fig. 8.1 through

Fig. 8.4.

Figure 8.1: 3D scatter plot of the Pareto front
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Figure 8.2: 2D projection of the Pareto front, f1̂ vs. f2̂

Figure 8.3: 2D projection of the Pareto front, f1̂ vs. f3̂

99



Figure 8.4: 2D projection of the Pareto front, f2̂ vs. f3̂

Even though three objectives are on different orders of magnitudes, the bi-level

multi-objective algorithms constructs a Pareto front rapidly. This implies that the

‘upper-lower bound’ multiple objective transformation method is effective for this

problem. 171 system level objective optimizations lasts 299.2 seconds with a mean

computation time of 1.75 seconds and with a standard deviation of 5.07 seconds.

More information about the computation time is summarized in Table 8.2.

Sum Mean Stdev Min -
2.99E+02 1.75E+00 5.07E+00 4.51E-01 sec.

1st quartile 2nd quartile 3rd quartile Max -
6.43E-01 9.35E-01 1.23E+00 3.73E+01 sec.

Table 8.2: Computation time of three-objective problem

8.2 A multi-objective problem based on a beam static anal-

ysis

The cantilevered problem presented in Chapter VIII is modified for multiple load-

ing conditions. Each loading represents a different operation requirements and com-
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prises a separate discipline. The two loading conditions are: a cantilever beam with

a point load in the middle and a simply supported beam with distributed load across

the beam. Moreover, the constraints of the problem are more restrictive. The bend-

ing stress safety factor is increased to 3 as opposed to 1, and the height of the beam

section cannot be greater than 4 times of the width. Thus, the constraints of the

multi-objective beams are:

1. The bending stress (σ(i)) has to be less than or equal to 1/3 of the maximum

bending stress (σ̄ = 14 kN/cm2).

2. The height of a beam section (h(i)) cannot be greater than 4 times of width

(b(i)) of the beam section.

3. The width of a beam section has to be greater than 3 cm.

4. The height of a beam section has to be greater than 10 cm.

8.2.1 Multiple loading conditions

A multi-objective problem is composed for designing a beam that is optimized for

multiple loading conditions such that a balanced solution is achieved. Two loading

conditions are considered:

1. Load P = 100 kN applied in the middle of cantilevered beam at (x = L
2
).

M1̂(x) =


P (1

2
L− x) if 0 ≤ x ≤ L

2

0 if L
2
≤ x ≤ L

(8.5)

The equation for the maximum stress at each cross section is:

σ1̂(i) =
M1̂(x)h(i)

2I(i)

, where I(i) =
b(i)h

3
(i)

12
(8.6)
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Figure 8.5: Loading Condition 1, Cantilevered Beam

2. Linearly increasing distributed load w0 = 0 and wL = 2P
L

, where P = 350 kN

on simply supported beam.

M2̂(x) =
P

3L2
(x3 − L2x) (8.7)

The equation for the maximum stress at each cross section is:

σ2̂(i) =
M2̂(x)h(i)

2I(i)

, where I(i) =
b(i)h

3
(i)

12
(8.8)

Figure 8.6: Loading Condition 2, Simply Supported Beam

The moment distribution of two loading conditions can be seen in Fig. 8.7. The

first half of the beam design is subjected to bending moments from both loading

conditions (M1̂,M2̂). The second half of the beam is subjected to bending moments

from only one loading condition (M2̂).
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Figure 8.7: Bending moment distribution at different loading conditions

In a multi-objective formulation, the design variables which correspond to the first

half of the beam are global design variables (x0̂ = {b(i) ∪ h(i) : x ≤ 250 cm}), and

the design variables corresponding to the second of half of the beam are local design

variables (x1̂,2̂ = {b(i) ∪ h(i) : x > 250 cm}).

8.2.2 Multi-objective formulation

To construct a multi-objective objective function, the optimal solutions for each

loading conditions
[
(x1

0̂
, x∗

1̂
) (x2

0̂
, x∗

2̂
)
]

are computed first. The solution for loading
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condition 1 is obtained by solving the following optimization statements.

min
b,h

Ψ1̂ = V (b, h)

+
N∑
i=1

q1̂α(i)
·max (0,

3σ1̂,(i)

σ̄
− 1)2

+
N∑
i=1

qbh(i) ·max(0, h(i) − 4b(i))
2 (8.9a)

subject to

3 ≤ b(i) i = 1, · · · , N (8.9b)

10 ≤ h(i) i = 1, · · · , N (8.9c)

Figure 8.8: b(i) of optimal beam design under loading condition 1
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Figure 8.9: h(i) of optimal beam design under loading condition 1

Figure 8.10: x vs. Moment (M1̂,(i)) and sectional moment of inertia (I(i))

The solution for loading condition 2 is obtained by solving the following optimization
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statement.

min
b,h

Ψ2̂ = V (b, h)

+
N∑
i=1

q2̂α(i)(max(0,
3σ2̂,(i)

σ̄
− 1)2) (8.10a)

+
N∑
i=1

qbh(i)(max(0, h(i) − 4b(i))
2) (8.10b)

subject to

3 ≤ b(i) i = 1, · · · , N (8.10c)

10 ≤ h(i) i = 1, · · · , N (8.10d)

Figure 8.11: b(i) of optimal beam design under loading condition 2
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Figure 8.12: h(i) of optimal beam design under loading condition 2

Figure 8.13: Plot of x vs. Moment, M2̂,(i), and sectional moment of inertia, I(i)

The optimizer finds solutions that have sectional moment of inertia (I(i)) correlat-
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ing well with the bending moment distribution (M(i)). When the beam is optimized

for the loading condition 1, the height and the width in the second half of the beam

go to the minimum value (h(i) = 10, b(i) = 3) since the beam does not support any

bending moment. When the beam is optimized for the loading condition 2, it has

the lowest sectional moment of inertia at two ends (i = 0, 500) of the beam. The

sectional moment of inertia gradually increases as it approach mid-section where the

bending moment increases. Using the optimization results above, following discipline

objective functions are defined to measure the deviation from its respective optimal

design (x0̂î , x
∗
î
). The discipline level objective functions are defined as follows:

f1̂(x0̂, x1̂) =
(
x0̂ − x1̂

0̂

)2

+
(
x1̂ − x∗1̂

)2

+
N∑
i=1

qα1̂(i)
·max

(
0,

3σ1̂(i)

σ̄
− 1

)2

+
N∑
i=1

qbh(i) ·max
(
0, h(i) − 4b(i)

)2
(8.11)

f2̂(x0̂, x2̂) =
(
x0̂ − x2̂

0̂

)2

+
(
x2̂ − x∗2̂

)2

+
N∑
i=1

qα2̂(i)
·max

(
0,

3σ2̂(i)

σ̄
− 1

)2

+
N∑
i=1

qbh(i) ·max
(
0, h(i) − 4b(i)

)2
(8.12)

where the penalty term multipliers (qα1̂(i)
, qα2̂(i)

, qbh(i)) are fixed at 0.5% of the initial

volume of the beam ( 0.005 · V (x0) = 56.26). To construct the system level objective

function, f ∗
î
, prrî, Zî are computed first. The numerical value of the parameters are

summarized in Table 8.3.

The system level objective function is defined as follows:
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fsys(x0̂, x1̂, x2̂) = exp

(
w1̂

(
f1̂(x0̂, x1̂)− f ∗

1̂

prr1̂

)2

+ w2̂

(
f2̂(x0̂, x2̂)− f ∗

2̂

prr2̂

)2
)

(8.13)

î f ∗
î

Zî prrî
1̂ 4.34E+03 1.61E+05 1.56E+05

2̂ 1.16E+02 1.56E+05 1.56E+05

Table 8.3: System level objective function parameters

A complete system level optimization statement is defined as follows:

min
x0̂=[b(i),h(i)]

fsys(x0̂, x1̂, x2̂) (8.14a)

subject to

3 ≤ b(i) i = 1, · · · , N
2

(8.14b)

10 ≤ h(i) i = 1, · · · , N
2

(8.14c)

x1̂, x2̂ = constant (8.14d)

Corresponding ĵth discipline level optimization statements are defined as follows:

min
xĵ=[b(i),h(i)]

fĵ(x0̂, xĵ) (8.15a)
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subject to

3 ≤ b(i) i =
N

2
+ 1, · · · , N (8.15b)

10 ≤ h(i) i =
N

2
+ 1, · · · , N (8.15c)

x0̂ = constant (8.15d)

8.2.2.1 Discussion and result

The system level objective function is optimized with varying weights w1̂ =

[0, 0.2, 0.4, 0.6, 0.8, 1]. Converged solutions are Pareto optimal to one another

as seen in Fig. 8.14. When there is a large number of design variables, it is often

difficult to identify a Pareto front using brute force methods. Identifying a set of

Pareto optimal provides valuable insights to the feasible design configuration of the

beam, because the true Pareto front can be estimated by interpolating the converged

solutions. A convex shape emerges when the solutions are interpolated.

When the system level objective function is optimized with varying weights, the

system level optimization converges at different locations; the converged solutions

are consistent with the physical interpretation of the weights distribution. When

w1̂ > w2̂, the system level solution is closer to the optimal solution under loading

condition 1 and vice versa.

110



Figure 8.14: Converged solutions of multi-objective beam

On average, each simulation lasts 4.29 · 103 seconds. Four system level opti-

mizations last total 1.71 · 104 seconds. The time required for each optimization is

summarized in Table 8.4.

Sum Mean Stdev w1̂ = 0.2 w1̂ = 0.4 w1̂ = 0.6 w1̂ = 0.8 -
1.71E+04 4.29E+03 4.06E+0.2 4.52E+03 4.52E+03 3.58E+03 4.52E+03 sec.

Table 8.4: Time required to complete system level optimizations

The sectional moment of inertia of the converged solutions are plotted in Fig. 8.15.

Once again, the cross sectional moment of inertia of the beam correlates well with

physical interpretation of the weights distribution.
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Figure 8.15: I(i) of the converged solutions

8.3 Summary

The bi-level multi-objective algorithm with the bounded nonlinear conjugate gra-

dient method is presented for large-scale box-constrained optimization problems. The

utility of the new algorithm is demonstrated by solving two numerical examples. The

first problem is a large-scale box-constrained optimization problem with three objec-

tives, which demonstrate different orders of magnitude. The system level optimization

with varying weights identifies a Pareto front with evenly distributed Pareto optimal

solutions. The second problem is a beam design optimization problem under two load-

ing conditions. The algorithm also identifies a Pareto front with evenly-distributed

Pareto optimal points. The successful identification of Pareto fronts in both prob-

lems implies that the proposed algorithms are effective in finding Pareto fronts of

large-scale box-constrained optimization problems.
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CHAPTER IX

Conclusion

9.1 Thesis contributions

In the first phase of this research, a new bi-level multi-objective algorithm is

created by combining the strengths of known algorithms. It can provide solutions

to complex multidisciplinary optimization problems. It decomposes an optimization

problem into smaller problems by a global and local decomposition method, and a

new multi-objective transformation method is proposed to accommodate the bi-level

structure. The new algorithm is found to be effective when tested with two numeri-

cal optimization problems as it identified a Pareto front of each respective problem.

The first problem is composed by combining two benchmark optimization problems:

geometric programming problem and Golinski speed reducer problem; the second

problem is a multi-objective version of the Sellar problem, which has extremely nar-

row Pareto front. In both cases, the new algorithm converges onto the neighborhood

of a numerical Pareto front constructed by Monte Carlos simulation.

In the second phase of the research, two upgrades were completed in the CG

method for solving box-constrained optimization problems with a large number of

design variables. The first development implemented the gradient projected method,

thus creating a bounded search direction update method. In this manner, the CG

method no longer requires solving a constrained optimization with box constraints
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Lagrange multipliers. The bounded search direction update method is of great util-

ity especially when the optimal solution contains many design variables on upper

and lower bounds because the bounded search direction update method significantly

accelerates the rate of convergence.

A multi-variate step length method is the other modification method considered;

it finds a vector of step length that performs betters than a uniform step length. The

multi-variate step length method is found to be less sensitive to such scaling issues

that cause CG method to stall at sub-optimal points. When the problem does not

have a scaling issue; it does not show any merit while increasing computational cost

significantly.

Lastly, the modified CG method is integrated in the bi-level multi-objective MDO

algorithm for creating the ability to handle a large number of design variables during

the MDO analysis. The latter capability is demonstrated by solving two numerical

examples with up to 2000 design variables. One of the two problems conducts the

structural design of a beam under multiple loading conditions. The correctness of the

results is demonstrated through comparisons with the expected analytical solutions.

9.2 Future research

The following are recommendations for future research. In principle, the new bi-

level algorithm can be extended to arbitrarily large number of levels. In fact, it is

possible for an engineering optimization problem to exhibit several hierarchical levels.

The performance of the bi-level algorithm with additional levels of optimization is not

well understood. Learning how the algorithm behaves with larger number of levels will

be useful. If the performance deteriorates too significantly, then engaging surrogate

models can be considered for mitigating the increased computational burden.

The development implemented in the CG method were only tested against the

Fletcher-Reeves CG method. Although computational advantages of the modified
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CG method are identified, its computational advantage over alternative CG methods

was not tested. A comparative performance study of alternative CG methods is

recommended.

The partition scheme in the multi-variate step length method is heuristic. It is

suspected that the partition scheme can be improved by insights from trust-region

methods. The multi-variate step length method modifies the search direction and

finds a step length simultaneously; this is similar to how the trust-region algorithm

determines both the search direction and the step length simultaneously. A further

investigation in the partition scheme is recommended.

The vector search algorithm used in the simultaneous multi-variate search algo-

rithm is the bounded Nelder-Mead algorithm. Although the bounded Nelder-Mead

algorithm performs reasonably well, alternative vector search methods can be consid-

ered.
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