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ABSTRACT

all men count with you, but none too much:
Information Aggregation and Learning in Prediction Markets

by

Sindhu Kutty

Chair: Jacob D. Abernethy

Prediction markets are markets that are set up to aggregate information from a pop-

ulation of traders in order to predict the outcome of an event. In this thesis, we

consider the problem of designing prediction markets with discernible semantics of

aggregation whose syntax is amenable to analysis. For this, we will use tools from

computer science (in particular, machine learning), statistics and economics. First,

we construct generalized log scoring rules for outcomes drawn from high-dimensional

spaces. Next, based on this class of scoring rules, we design the class of exponential

family prediction markets. We show that this market mechanism performs an aggre-

gation of private beliefs of traders under various agent models. Finally, we present

preliminary results extending this work to understand the dynamics of related mar-

kets using probabilistic graphical model techniques.

We also consider the problem in reverse: using prediction markets to design ma-

chine learning algorithms. In particular, we use the idea of sequential aggregation

from prediction markets to design machine learning algorithms that are suited to

situations where data arrives sequentially. We focus on the design of algorithms for
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recommender systems that are robust against cloning attacks and that are guaranteed

to perform well even when data is only partially available.
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CHAPTER I

Introduction

1.1 The Backstory

Consider the following question: can we harness collective human intelligence to

predict the outcome of future events with a high degree of accuracy?

The problem of predicting future outcomes has wide applicability and the idea

of harnessing the “wisdom of crowds” has been explored even in popular culture

(Surowiecki , 2005). Consider, for instance, the following prediction problems. A

government might want to assess the probability of outbreak of an infectious disease

in the country, or a campaign manager might want to have a current assessment of the

likelihood of her candidate’s success, or a company may want to assess the likelihood

of timely product delivery. Depending on these assessments, the organizations might

decide to act differently. For instance, the government might want to shore up its

supply of vaccines, the campaign might want to reassess its strategies (like choosing

an appropriate vice president) or the company might want to revise its delivery date.

To understand how the wisdom of crowds might help us make these estimates, let’s

take a closer look at the first of these examples.

Suppose that we are charged with predicting the probability of an outbreak this

year (of a particular magnitude) of the disease du jour. There are many parties who

have information of interest to us including the media, doctors, people in the aviation
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industry, people who have flown to an area with the disease, people who know (of)

such people etc. We are now living in a world where communication is easier than

ever and subsequently we have the means to contact the relevant individuals and

collect their responses. However, it’s one thing to have the ability to access stated

opinions and quite another to be privy to internal beliefs and have a sense of the

aggregate opinion – and, in fact, part of the problem is to define aggregation more

precisely.

Perhaps it is not surprising that one way to incentivize participation is to have

people “put their money where their mouth is”. That is, provide a financial incentive

for truthful participation. But what mechanism should we use for this? It has been

observed that financial markets prove to be surprisingly good predictors. For instance,

orange juice futures turn out to be a better predictor of future weather (yes, the

weather !) than statistical data (for a fascinating analysis of this see Roll (1984)). So

it came to pass that economists started asking why not set up markets whose goal,

rather than consequence, is information aggregation with a view to prediction.

Prediction markets are market mechanisms where you can trade on your perceived

likelihood of an event. The market issues contracts (called securities) that correspond

to each outcome of the event; going back to the disease example, this could correspond

to a contract that pays off some amount if the outbreak comes to pass this year and

nothing otherwise. The market will also set some price on this contract. Clearly,

if you believe that the disease outbreak is imminent, you would want to buy this

contract if your expected payoff is more than the current price. To make this easier

to reason about, the contract is usually set up to pay off $1 if the event occurs and

$0 otherwise1. This allows us to interpret prices as probabilities; the price at which

a (risk neutral) trader would be indifferent between buying and selling this security

would exactly match his belief probability of the event occurrence.

1these are called Arrow-Debreu securities
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Notice that, while we have argued that the price would correspond to a risk neutral

trader’s belief, we have said nothing about aggregation process which, by the way, is

the main point of the market mechanism! Also, an astute reader would have noticed

that if we propose to issue a security for each outcome, we are restricting ourselves

to scenarios with finite (and a reasonable number of) outcomes. Clearly, these are

pressing issues and, excitingly, ones that we explore here.

Because of complicated anti-betting laws and uncertain legal ramifications, pre-

diction markets haven’t been as widely deployed as they are applicable. Corporate

prediction markets are known to be increasingly used to assess viability of projects

and timeliness of software delivery (Cowgill et al., 2009); typically these markets are

run within the firm using play money (see, for instance, Bell (2009) for an analy-

sis of legal ramifications of running corporate prediction markets). Iowa Electronic

Markets2 allow the public to trade on political outcomes (among other things) using

(a limited amount of) real money. Since these markets are run by the University of

Iowa Tippie College of Business and the markets are run for educational and research

purposes, the IEM has been granted conditional legal status by the US government3.

Robin Hanson, among others, made the case for deploying prediction markets more

widely both for information aggregation as well as to study what works and what

doesn’t (Hanson, 1999). But, as scientists, we are not satisfied in simply knowing

that these markets work well, but also why they do, whether these results are repeat-

able and to what degree. In other words, we would like to build a model to explain

the process and thence construct sound prediction market machinery from the ground

up.

It has been known since the 1950s (Brier , 1950) that it is possible to incentivize a

single person to truthfully report his belief (the context again, believe it or not, was

2available at https://tippie.uiowa.edu/iem/
3it received no-action letters from the Division of Trading and Markets of the Commodity Futures

Trading Commission

3
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the weather!). Hanson (2003a) had the brilliant insight of using these proper scoring

rules sequentially in order to allow elicitation from groups of people. Due to some

desirable properties (for instance, the way LMSR responds to bets on conditional

probabilities), Hanson particularly advocated the use of the logarithmic scoring rule

which in its sequential prediction market variant is called the Logarithmic Market

Scoring Rule (LMSR) (Hanson, 2007).

This sequential formulation of LMSR turns out to be equivalent (under mild con-

ditions) to a more natural cost function based market maker (Hanson, 2007; Chen

and Pennock , 2007). In this case, the market maker charges traders for buying shares

of issued contracts, which are themselves Arrow-Debreu securities, using a potential

function evaluated on the total number of shares of all securities purchased thus far.

More generally, Chen and Vaughan (2010) established a one-to-one correspondence

between strictly proper market scoring rules and convex cost-function-based mar-

ket makers. In a surprising twist, Abernethy et al. (2013) showed that, in fact, if

you design your market maker axiomatically to satisfy some intuitive and desirable

properties, you must actually price your securities using cost functions.

In this thesis, we focus on building cost-function-based prediction markets. We

design a prediction market mechanism (over possibly infinite outcome spaces) us-

ing tools from statistics and under various models of trader behavior, including risk

aversion and budget constraints. We show that, under reasonable assumptions, the

behavior of rational traders can be understood as the result of implementing a learn-

ing algorithm on their private beliefs. Similarly, the market state can be interpreted

as a distribution over the outcome space. Of particular interest is the market equi-

librium: the market state at which no trader is motivated to make any more trades.

Interestingly, our market design results in a market equilibrium that corresponds to

a weighted mixture of traders’ private beliefs. We draw connections between the ag-

gregation of data performed by learning algorithms and the information aggregation

4



done in prediction markets. We are also able to tease out a surprising correspondence

between financial exposure in a market and privately held beliefs.

Let’s go back to the running disease example. In fact, the same sets of people

in a neighboring country (doctors, media, travelers, etc.) may also have relevant

information. Suppose the government of this neighboring country has also been sim-

ilarly obsessed with estimating the probability of an outbreak in the first country

using prediction markets. This exposure to different trading populations might lead

to different estimates – how should they be collated? We consider this problem as

the interactions between markets. That is, we consider scenarios where markets for

predicting the outcome of a single event were deployed in multiple venues. Suppose

now, that the neighboring country actually deployed a separate prediction market to

estimate the probability of an outbreak at home. In this case, the markets are not on

the same event, but on related ones; the probability of outbreak in a country would

affect the probability of the outbreak in its neighbors (borders being what they are).

Is this effect something that can be accurately quantified? How should markets on

related events be designed? Should trades in one market be reflected in related ones?

If so, how? We explore these questions in this thesis.

We also consider how ideas from prediction markets may be incorporated into

designing learning algorithms for social computing. Consider internet-based recom-

mendation systems like those in the movie rental service provider Netflix, Inc.4 and

the electronic commerce company Amazon.com, Inc.5, or the crowd-sourced reviews

for restaurants and other local businesses in Yelp6. Nearly everyone has had a moment

where a review for a product or service appears suspiciously gushing or otherwise ob-

viously fake. How does one weed out these fake reviewers? A clever attack on these

systems is the cloning attack where one of these fake reviewers artificially boosts their

4available at https://www.netflix.com/
5available at http://www.amazon.com/
6available at http://www.yelp.com/
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standing in the system by copying previous reviews and then exploiting their repu-

tation to later mislead the recommendation system. We use the idea of sequential

aggregation from prediction markets to design new algorithms for these internet-based

recommendation and forecasting systems. We identify that on the one hand, these

domains have genuine, helpful and informative forecasters whose information is cru-

cial for accurate predictions; on the other hand, there may also be malicious agents

who provide strategically misleading predictions to the system. The domain also

allows for erratically arriving information and possible non-availability of feedback.

We present a model that captures the major characteristics of this domain and use

a prediction market metaphor to design and analyze high performance algorithms in

this model.

1.2 Structure of the thesis

In the next chapter, we provide some background and a brief overview of the

models and results discussed in this thesis.

In Chapter III we define a scoring rule-based prediction market mechanism for

belief aggregation. Background for this chapter is covered in Sections 2.1 and 2.2.

We provide results on modeling interactions between prediction markets in Chap-

ter IV using graphical models.

In Chapters V and VI we design online learning algorithms for recommender

systems; we provide a brief review of these systems in Section 2.4.

We end the thesis by summarizing our results and by outlining avenues for further

exploration in Chapter VII.

1.3 Summary of Contributions

We now highlight the main contributions of this thesis.
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Maximum Entropy Scoring Rules When you are faced with making a prediction

about a (reasonably sized) finite outcome space, you are free to construct a

scoring rule that elicits the entire distribution and score people accordingly. But

what if you intend to predict the outcome of an event from a high-dimensional

or even infinite outcome space? Jacob Abernethy, Sébastien Lahaie, Rahul

Sami and I show that arguably, under such circumstances, the generalization

of the proper log scoring rule to general statistics and outcome spaces can be

constructed from exponential families (Abernethy et al., 2014b). Exponential

family distributions are a class of distributions that arise out of picking the

maximum entropy distribution that agrees with agent beliefs. Intuitively, these

maximum entropy distributions maximize uncertainty in (or assume the least

about) the data. This is striking; it means that the agents are free to have

any belief distribution but that in order to maximize their score they will be

incentivized to be truthful about the expected value of the statistics under that

belief.

Exponential Family Markets Based on these proper scoring rules, we design a

class of cost-function-based prediction markets over possibly infinite outcome

spaces using tools from statistics. We analyzed the market evolution under var-

ious models of trader behavior, including risk aversion and budget constraints

(Abernethy et al., 2014b) and showed that, under reasonable assumptions, the

behavior of rational traders can be understood as the result of implementing a

learning algorithm on their private beliefs. Similarly, the market state can be

interpreted as a distribution over the outcome space. Our market design results

in a market equilibrium that corresponds to a weighted mixture of traders’ pri-

vate beliefs. The semantics of prices at equilibrium in binary outcome prediction

markets have been analyzed before (Wolfers and Zitzewitz , 2006; Manski , 2004).

In our more general exponential family market, we drew connections between

7



the aggregation of data performed by learning algorithms and the equilibrium

market state. We were also able to tease out a correspondence between financial

exposure in a market and privately held beliefs.

Graphical Models for Prediction Markets We are interested in explicitly char-

acterizing the interaction between markets on the same and on related events by

drawing on results from graphical models. In one instance, we are able to show

that a trader in such a market behaves as if he were implementing a learning

algorithm, even though his incentives are purely financial.

Learning Algorithms for Recommender Systems One of the challenges in rec-

ommender systems is to implicitly identify the non-informative or malicious

agents so that the recommendations can be based on the truly informative

agents’ predictions. This domain also allows for erratically arriving informa-

tion. Additionally the true outcome is not always revealed to the algorithm.

We cast this as a general online learning problem that captures the information

as arriving sequentially, the agents as either stochastic processes or adversarial

entities and feedback as only conditionally available and design an algorithm

that makes recommendation predictions that are nearly accurate.

8



CHAPTER II

Background

This chapter provides some of the technical background for the ideas we explore

in this thesis. We start with the core concept – that of prediction markets.

2.1 Prediction Markets

Prediction markets are markets that allow traders to bet on contracts (also known

as securities) whose value depends on the outcome of some future event. For example,

to predict the outcome of a presidential election one could imagine a contract that

pays off $1 if the Republican candidate wins the election and $0 otherwise. The

price on this contract, which could vary between $0 and $1, can be interpreted as the

probability of that candidate winning the election.

The reason that we typically think of prediction markets as representing aggregate

information of a population is tied to the observation that any trader who believes

that the probability of an outcome is p for a security that pays off $1 should be

willing to buy (respectively sell) a security priced at less (respectively more) than

p. It stands to reason then that if the market is “stationary” then the traders have

somehow reached a consensus at probability p.

The prediction market could be implemented in a number of ways including as con-

tinuous double auctions, pari-mutuel markets and automated market makers (see, for
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instance Pennock and Sami (2007), for details). If you design your automated market

maker to satisfy some intuitive axioms like path independence and no-arbitrage, it

turns out that the pricing rule can always be defined in terms of a cost function that

takes the number of outstanding shares of all securities as argument.

Cost Function Prediction Market One popular form of the prediction market

mechanism for finite outcomes is the logarithmic market scoring rule (LMSR) (Han-

son, 2003b). In this case, the market maker issues a contract associated with each of n

outcomes; each of these contracts pays off $1 iff the associated outcome i ∈ {1, . . . , n}

occurs and nothing otherwise. The market state is defined by the total number of out-

standing shares of each security that have been purchased so far in the market. If the

current market state is q = (q1, . . . , qn) for n securities and a trader wishes to purchase

δ security shares in this market, the automated market maker implementing the log

market scoring rule will charge C(q+δ)−C(q) dollars, where C(q) = log
∑n

i=1 exp qi.

In this case, ∇C(q) gives you the instantaneous price of the securities. This price

can be interpreted as a predicted distribution on the outcomes. Typically this price

corresponds to the last trader’s belief in this market, who is assumed to update his

belief to incorporate all previous trades in the market. In this thesis, we present a

cost function based market maker that demonstrably performs belief aggregations of

all traders in the market.

2.2 Exponential Families of Distributions

We will now switch gears to talk about a popular family of probability distributions

that turn out to be instrumental in generalizing the LMSR mechanism we described

above. Suppose we are given access to empirical averages of some function of data. A

natural question to ask is if we can find a distribution whose expected statistics match

these observations. Exponential family distributions arise as the unique solution to
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match these while maximizing (the Shannon entropy notion of) uncertainty. The

exponential family of distributions includes many of the commonly used distributions

including the Gaussian, the multinomial, the Poisson, etc.

Consider the Gaussian distribution on a single real variable x. Typically the

distribution is parameterized in terms of mean µ and variance σ2. If we instead

define natural parameters θ =
(
µ
σ2 ,

−1
2σ2

)
, and a vector function φ(x) := (x, x2), we see

that the probability density function of the Gaussian

pµ,σ(x) =
1√

2πσ2
exp−(x− µ)2

2σ2

can be rewritten as

pθ(x) = exp(θ · φ(x)− ψ(θ)) (2.1)

where ψ(θ) is a normalization term (that does not depend on the data x) that ensures

that the pdf integrates to 1. Thus

∫
x

exp(θ · φ(x)− ψ(θ)) dx = 1

Or ψ(θ) = log

∫
x

exp(θ · φ(x)) dx

It turns out that Equation 2.1 describes the general form of exponential family

distributions. Here ψ(θ) is called the log partition function and φ(x) are the sufficient

statistics. Recall that a statistic is just a function of the data. If the data is drawn

from some distribution parameterized by θ then a statistic is called sufficient if no

other statistic that can be computed from the data gives you more information about

θ. For instance, the number of heads in a set of Bernoulli trials gives you a everything

you need in order to compute a distribution on the trial outcomes. In particular, if

there are n trials and k heads, it is not necessary to know exactly when the heads
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occurred in order to compute the probability of that sequence (which is always 1

(nk)

regardless of the success probability or the particular order of the sequence.).

It turns out that an equivalent alternate parameterization of exponential family

distributions is via its mean parameters µθ := Ex∼pθ [φ(x)]. The mean parameters can

be obtained via differentiation of the log partition function; that is, for any θ we have

∇ψ(θ) = µθ. We describe exponential families in greater detail in Chapter III. For

now, we will look at Bayesian updates in exponential families which provides a way

to reason about estimating natural parameters given access to data points.

2.2.1 Bayesian Updates in Exponential Families

Parameter estimation involves specifying a particular value or distribution over

values of parameters given access to data points.

Example: Estimating the Bias of a Coin

Consider the following simple example. Suppose we want to estimate the proba-

bility of heads p on a coin toss. One way would be to provide a maximum likelihood

estimate of the probability p after a number of independent trials T as

number of heads in T trials

T
=
h

T

This is the frequentist view of parameter estimation. Another way to estimate pa-

rameters would be to assume a prior distribution on p, say π(p). The posterior

distribution on p, π(p|h), would then be determined by the number of heads h we

saw in T trials as well as the prior distribution. In fact, Bayes theorem allows you to

compute the posterior distribution as follows:

Pr(p|h) =
Pr(h|p) Pr(p)

Pr(h)
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Pr(h) the probability of observing h heads in T tosses can be viewed as a nor-

malization constant since it is independent of p, which can be seen as having been

marginalized out. So the posterior distribution can be written as

Pr(p|h) ∝ Pr(h|p)π(p)

Since we are considering the probability of heads in a coin toss, it is reasonable

to assume a Binomial form on the likelihood function Pr(h|p). Note that Pr(h|p) is

a function of p with a particular value for h. Thus,

Pr(h|p) = Bin(h|p) =

(
T

h

)
ph(1− p)T−h

It turns out that given a likelihood function, for particular choices of the form of

the prior distribution, the posterior distribution will have the same functional form.

This functional form is then called the conjugate prior of the likelihood function.

For the Binomial distribution the conjugate prior is the Beta distribution, which is

defined as follows (Diaconis and Ylvisaker , 1979).

Betaα,β(x)
def
=

Γ(α + β)

Γ(α)Γ(β)
xα−1(1− x)β−1

where the gamma function Γ(x)
def
=
∫∞

0
ux−1e−udu. The parameters α and β are

called hyperparameters because they control the distribution of the parameter to be

estimated p.

Thus if π(p) = Betaα,β(p), then the posterior distribution on p when there have

been T coin tosses with h heads is

Pr(p|h) = Betaα′,β′(p)
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where α′ = α + h and β′ = β + (T − h).

Both Binomial and Beta distributions are particular forms of exponential family

distributions. One nice feature of the exponential family of distributions is that the

family of conjugate priors are themselves members of the exponential family.

Conjugate Priors in Exponential Families

Let p(x; θ) denote a probability density function of an exponential family with

sufficient statistic φ : X → Rd, where θ is the natural parameter:

p(x; θ) = exp [〈θ, φ(x)〉 − ψ(θ)] ,

and

ψ(θ) = log

∫
X

exp〈θ, φ(x)〉dx.

Here 〈θ, φ(x)〉 represents the inner product of the vectors θ and φ(x).

The family of conjugate priors is also an exponential family and takes the form

p(θ;n, ν) = exp
[
〈nν, θ〉 − nψ(θ)− ψ̂(ν, n)

]
.

This prior distribution is the distribution on the natural parameters θ on the

distribution on X . The sufficient statistics of the prior distribution are a function of

θ defined as ψ̂(θ) = (θ,−ψ(θ)). The natural parameters of the prior distribution are

(nν, n) where n ∈ R and ν ∈ Rd. The function ψ̂(ν, n) normalizes the pdf so that it

integrates to 1 and is convex in (nν, n). It is helpful to think of the prior as being

based on a phantom sample of size n and mean ν. The justification for this is that

Eθ [Ex [φ(x)|θ]] = Eθ [∇ψ(θ)] = ν.

For a proof see Diaconis and Ylvisaker (1979).
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Suppose we draw a sample X = (x1, . . . , xm) of size m, and denote the empirical

mean by µ[X] =
∑m

i=1 φ(xi). The posterior distribution is then

p(θ|X) ∝ p(X|θ)p(θ|n, ν) ∝ exp [〈µ[X] + nν, θ〉 − (m+ n)ψ(θ)] ,

and so the posterior mean is

mµ[X] + nν

m+ n
. (2.2)

Thus the posterior mean is a convex combination of the prior and empirical means,

and their relative weights depend on the phantom and empirical sample sizes.

2.2.2 Graphical Models

Exponential family distributions are used widely and across a number of fields,

but they have found prominent usage for probabilistic models that involve several

variables with complex codependence relationships. These relationships are captured

efficiently using (probabilistic) graphical models. Exponential family distributions

are especially amenable to analysis using graphical models (Wainwright and Jordan,

2008). In Chapter IV we will model the interaction between related prediction markets

using graphical models. We will show how the exponential market mechanism allows

you to precisely characterize the effect of a trade in a market on a related market. We

will also draw connections to learning algorithms for markets with latent variables.

2.3 Exponential Family Prediction Markets

Recall that the LMSR market maker is defined on finite outcome spaces. Using

the exponential family distributions, we design a class of continuous outcome space

market makers that demonstrably perform meaningful aggregations. We detail this

work in Chapter III.

The log partition function ψ(θ) of the exponential family distribution can be used
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to define a generalized LMSR cost function. If you further define securities whose

payoffs correspond to the sufficient statistics φ(x) then the outstanding share vector

corresponds exactly to the natural parameters of the exponential family. This means

that the market state now defines an exponential family distribution over the outcome

space. In terms of the market semantics, the mean parameters of the distribution may

be interpreted as the instantaneous prices of the securities.

Modeling Trader Behavior We analyze trader interactions with the market under

various models of their behavior.

• Typically, traders interacting with prediction markets are assumed to be risk

neutral. Thus, they continue buying (or selling) shares in this market until the

cost of purchase of a security exactly matches its payoff. We can use concave

utility functions to describe risk aversion in traders. We will focus on the

exponential utility function which grows as the negative exponential in wealth;

the degree of risk aversion is a parameter of this utility function. We will show

that an exponential utility trader moves the market state to a mixture of the

current state and his belief. In fact, as the trader grows more risk averse, the

final state stays closer to the current market state.

• We could also consider Bayesian traders who treat the current market estimate

as a prior and compute the likelihood function based on their own private data

to move the market state so as to maximize their expected payoff. These traders

essentially move the market state to the corresponding maximum a posteriori

estimate on the natural parameters of the posterior distribution.

• If traders have budget constraints, then it will affect how far they can move

the market state to match their beliefs. We will analyze the interaction of both

malicious and informative budgeted traders in the market. We characterize a
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malicious trader as one who moves the market state arbitrarily (as opposed to

matching his own private belief). We are interested in analyzing the accuracy of

the market as characterized by the negative logarithmic loss of the prediction.

In this market, change in budget of a trader is exactly the (myopic) loss he

induces in the market. Further, an informative trader with positive budget,

who moves the market state closer to the true distribution from which the

outcome is drawn, can expect to make a profit. Over participation in multiple

exponential family markets, we can show that total incremental loss due to a

malicious trader is bounded by his initial budget.

• The market evolution when there are multiple traders who have exponential

utility is particularly striking. The market at equilibrium would essentially

correspond to the average of the agent beliefs weighted by their risk aversion

parameters. There is also a surprising equivalence between beliefs and trades

in this market. An exponential utility trader engaging in a trade in this market

can be thought of as essentially updating his belief. This means that the cost

function market exposes a deep connection between beliefs and financial trans-

actions: an agent with some exposure in the market is in effect equivalent to an

agent with a different belief.

2.4 Learning in Recommender Systems

In Chapters V and VI of this thesis, we focus on the model of machine learning,

called online learning. In batch machine learning, the algorithm designer has access

to training data against which the algorithm’s learning takes place. The algorithm’s

performance is then measured on predictions made against test data. In contrast,

in online learning both learning and prediction proceed simultaneously. Learning

proceeds in rounds, and in each of t = 1, 2, . . . , T rounds the goal of the algorithm is
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to predict based on its input and then learn from feedback obtained on its predictions.

Typically, this feedback is in terms of a loss function that measures how much the

algorithm’s prediction differed from the actual outcome. Often in online learning,

it is not possible to characterize this outcome as being generated from a stationary

stochastic distribution. The outcome is then said to be adversarially generated. This

is in contrast to the traditional statistical models where the outcome is the realization

of a stationary statistical process (Cesa-Bianchi and Lugosi , 2006). In this case the

properties of the distribution may be estimated from the data and the risk may be

defined as the expected difference between the losses due to the predicted value and

true outcome.

The lack of this simplifying stochastic assumption on outcomes not only makes

prediction harder, but it is also unclear how to measure the performance of an algo-

rithm in this setting. Consider, for instance, a simple model where the algorithm’s

prediction and actual outcome are both binary with an adversarially generated out-

come. Consider a loss function that simply counts the number of mistakes of the

algorithm over all rounds. This simple 0/1 loss measure per round is called a mis-

take bound model (Littlestone and Warmuth, 1994). Any algorithm can be shown

to behave badly when measured in this model using simple worst case analysis. In

fact, in this case, an unbiased coin toss would provide the best performance, giving

an expected loss of T/2, where expectation is taken with respect to the random coin

toss. This motivates the need for a better measure of performance in this model.

2.4.1 Online Learning with Expert Advice

In order to provide a more meaningful benchmark, we move to a model that

provides comparators against which to measure the algorithm’s performance.

In this model, the algorithm has access to expert advice in terms of additional

information to aid in its predictions. The algorithm is provided with an input in the
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form of advice from experts who are typically assumed to have unforgeable identities.

The algorithm makes its prediction by either combining or choosing amongst this

advice usually based on historical performance of the experts. In this case, we measure

regret as the loss of the algorithm against the loss of some predefined benchmark,

which is typically the best expert in hindsight or some fixed optimal weighted average

of the experts’ advice. The goal of the algorithm is to minimize regret. Throughout

this exposition we assume that there are T rounds in total and n experts.

We take note of one peculiarity of this definition of regret. In this case, the

comparison is not against the best expert or combination of experts in each round

but rather across all rounds in hindsight. Again let us consider the mistake bound

model. If we allow our benchmark to vary as the best expert in each round, any

algorithm can incur ≥ T (1− 1/n) expected regret. This could be achieved by simply

assigning minimal (i.e., 0) loss to the expert who has least probability (i.e., ≤ 1/n)

of being chosen (Blum and Mansour , 2007a).

Now that we have established that our goal in online learning with expert advice

is to do (almost) as well as the best expert in hindsight, let us consider a simple

problem in this model. Keeping with the mistake bound model, suppose we have a

scenario where the best expert in hindsight makes no mistakes. In their seminal work,

Littlestone and Warmuth (1994) use the Halving Algorithm for this scenario. The

Halving Algorithm utilizes a majority vote strategy as proposed in Angluin (1988).

In every subsequent round, all those experts that have made a mistake in previous

rounds are eliminated. This guarantees a regret, which in this case is also a true

loss, of O(log n). If we now modify the model so as to allow the best expert to

make mistakes, the same strategy will not work. The key insight in Littlestone and

Warmuth (1994) however, is that we can replace this binary view of expert errors

(‘one mistake and you’re out’ !) by a more flexible notion of weights on experts.

These weights essentially concretize the trustworthiness of an expert’s advice based on
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their historical performance when compared against the true outcomes. The resulting

algorithm guarantees a regret of O(log n). Note that this regret is logarithmic in the

number of experts and independent of the number of rounds.

So far, we have only considered models where the comparator was a single best ex-

pert. The next class of comparators is using a combination of expert advice as bench-

mark. In particular, Littlestone et al. (1991) use the best fixed linear combination

of expert advice as benchmark. The key idea here is that rather than implementing

weight updates on each expert in isolation, their weights are adjusted as a function

of their marginal impact on the algorithm prediction; updating more aggressively for

worse algorithm predictions. This allows them to achieve a bound of O(log n).

2.4.2 Online Learning Models for Recommender Systems

The models of online learning that we have proposed in Chapters V and VI were

motivated by internet applications, especially recommender systems.

Consider an application where the expert advice arrives sequentially. This means

that some dishonest experts may imitate the advice of earlier informative ones. It

also means that the advice of later experts cannot be copied by earlier ones. In such

applications, weeding out such cloning attacks is crucial to preserving the integrity

of the system. Particularly, we want to weed out experts who may look artificially

informative by cloning informative agents during initial rounds, and may exploit this

trust in later rounds, thus causing large loss to the algorithm.

In particular, we consider the following recommendation problem in Chapter V:

Consider a system that has to predict how attractive each of a set of items will be to a

target user (or group of users). The system has access to advice from a set of experts,

some of whom may actually be controlled by an attacker. Not all experts provide

predictions on every item, and they need not provide them in a fixed order for every

item. Importantly, the system has limited access to feedback on recommendations:
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items that are not recommended highly might never be inspected by the target user.

In Chapter V, we formally model this problem, and develop a prediction market-based

learning algorithm for it. A full-information version of this problem has been studied

by Resnick and Sami (2007). The algorithm we present is similar in structure to their

algorithm (Resnick and Sami , 2007), but modified to get around the limitations of the

partial monitoring feedback model. This chapter considers a myopic view of regret:

we do not account for earlier dishonest experts misleading later informative ones.

More formally, we assume that the aggregation of advice of a sequence of experts is

lossless in that no information is lost in this aggregation. Note that this still allows

for loss due to cloning, or bad predictions from malicious experts; however this is a

strong assumption that we relax in our later work. We show that the algorithm we

develop can achieve a myopic regret bound of O(n
√
T log T ) as opposed to the regret

bound of O(n) in the full feedback case.

Motivated by real-world considerations of active attackers and passive community

members, our model features a hybrid of adversarial attackers and stochastic com-

munity members. Since we separately bound damage caused by adversarial attackers

and the information lost from informative members, we may be able to use this to our

advantage. In particular, considerations of the experts’ incentives to enter the system

may drive the trade-off: it may be reasonable to assume that potential attackers will

not enter the system unless they have significant influence. In this case, we might

seek to keep the damage bound under this limit, while minimizing the information

loss.

Prediction Market-based Learning Algorithms In internet applications, data

can be modeled as arriving sequentially. We will now make a case for constructing

prediction market-based learning algorithms in these settings.

Expert forecasts and recommendations in internet settings present the following
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challenges: First, the motives of the individual experts are not always known. Some

forecasters may provide best-effort forecasts, but in some cases the experts may have

vested interests in manipulating the system. For such attackers, it is often easy to

create a sizeable number of clones in order to manipulate the system. Thus a single

malicious identity may control multiple experts. We argue that, for these domains,

the best formal model of the set of experts is neither purely adversarial, nor purely

stochastic, but a hybrid of the two. For experts with unknown motives, assuming

that their advice is governed by a stochastic generative process would be unrealistic.

On the other hand, for genuine best-effort experts, a stochastic model of predictions

and associated loss is appropriate, and may lead to stronger performance guarantees.

Second, for any given item, advice from different experts often arrive haphazardly

over time, and not all experts produce forecasts for each item. Critically, later fore-

casters may have access to information from earlier forecasts about the same event

or item. Such a setting is vulnerable to cloning attacks, where a potentially harmful

expert imitates the advice of a genuine, informative one. While this may be modeled

by treating all experts as potentially adversarial, this adversarial model overlooks the

fact that attackers cannot depend on future honest ratings. Thus the adversarial

model may be too conservative for this scenario.

Further, a prediction may need to be made before all of the experts have reported

their advice. As noted earlier, partial availability of expert advice is handled in prior

work by modeling sleeping experts, who may be inactive in certain rounds. However,

these algorithms cannot distinguish between genuine forecasters and clones, even

though the clones are forced to make forecasts later than the genuine forecasters they

copy.

Algorithms based on prediction markets are attractive for the particular features

of the domains we are interested in, because of the following reasons: First, traders’

budgets allow us to control the total net impact of a single identity. By coupling
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traders’ payoffs to the effects of their actions, and limiting their effect so that their

budget is never negative, we can provide worst-case bounds against adversarial fore-

casters. Second, in a setting with honest agents but stochastic outcomes, a budget-

proportional betting scheme (the Kelly criterion (Kelly , 1956)) leads to exponential

growth in traders’ budgets (in expectation), and thus the small initial budgets are

not crippling to honest agents in the long run. Prediction markets can thus be nat-

urally applied to the sequential forecasting setting. Traders’ profits are based on the

extent to which they change forecasts, thus ensuring that merely cloning previous

information is not profitable.

Our approach involves designing a learning algorithm by tracking a budget for each

trader, and simulating a prediction market. For each input, the algorithm carries out

a simulated trade on the forecasters’ behalf, and then later updates the budgets by

treating received feedback as the prediction market outcomes.

We begin in the next chapter by presenting results on the design of cost function

based prediction markets using exponential family distributions.
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CHAPTER III

Exponential Family Markets

3.1 Introduction

In this chapter, we present generalized log market scoring rules based on exponen-

tial family distributions. We derive a class of cost function based market mechanisms

from these scoring rules. This chapter is based on joint work with Jacob Abernethy,

Sébastien Lahaie and Rahul Sami (Abernethy et al., 2014b).

Prediction markets are aggregation mechanisms that allow market prices to be

interpreted as predictive probabilities on an event. Each trader in the market is

assumed to have some private information that he uses to make a prediction on the

outcome of the event. Traders are allowed to report their beliefs by buying and selling

securities whose ultimate payoff depends on the future outcome. This will affect the

state of the market, thus updating the predictive probabilities for the event. Further,

since the trades are executed sequentially, the trader may observe all past trades in

the market and update his private beliefs based on this information. In this sense the

market prices, which are in effect the prices at which the marginal trader is willing

to buy or sell the available securities, can be interpreted as an aggregate “consensus

probability forecast” of the event in question.

One popular form of prediction markets is the market scoring rule (Hanson,

2003a). A market scoring rule considers all trades as a single chronological sequence.
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Traders earn rewards proportional to the incremental reduction in prediction loss

(measured by the negative log of the prediction probability) caused by their trades

in comparison to the previous trade. In other words, their rewards depend on the

change in market probabilities caused by their trade, as well as on the eventual out-

come. Thus, each trader has an incentive to minimize the prediction loss. In this

format, the market maker who runs the market can suffer an overall loss, but Hanson

(2003a) showed that, for market scoring rules on finite outcome spaces, the loss of

the market maker can be bounded.

Much of the work on prediction market design has focused heavily on structural

properties of the mechanism: incentive compatibility, the market maker loss, the

available liquidity, the fluctuations of the prices as a function of the trading volume,

to name a few. Absent from much of the literature is a corresponding semantics of the

market behavior or the observed prices. That is, how can we interpret the equilibrium

market state when we have a number of traders with diverse beliefs on the state of

the world? How is the market an aggregation mechanism? Do price changes relate

to our usual Bayesian notion of information incorporation via posterior updating?

In this chapter we show that a number of classical statistical tools can be lever-

aged to design a prediction market framework in the mold of exponential family

distributions ; we show that this statistical framework leads to a number of attractive

properties and interpretations. Common concepts in statistics—including entropy

maximization, log loss, and Bayesian inference—relate to natural aspects of our class

of mechanisms. In particular, the central objects in our market framework can be

interpreted via concepts used to define exponential families:

• the market’s payoff function corresponds to the sufficient statistics of the dis-

tribution;

• the vector of outstanding shares in the market corresponds to the natural pa-

rameter of the distribution;
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• the market prices correspond to mean parameters ;

• the market’s cost function corresponds to the distribution’s log-partition func-

tion.

We start in Section 3.2 by reviewing exponential family distributions and some

of their relevant properties. We then provide an overview of scoring rules and cost

function prediction markets. In Section 3.5 we discuss scoring rules based on expo-

nential family distributions, and we show how the framework leads to a variety of

scoring rules for continuous outcome spaces. We turn our attention to market design

in Section 3.6 and give a full description of our proposed mechanisms. In addition to

showing the syntactic relationship between exponential families and prediction mar-

kets, we explore a number of rich semantic implications as well. In particular, we

show that our formulation allows us to analyze the evolution of the market under

various trader models:

• In Section 3.11 we analyze the expected payoff of both linear utility and expo-

nential utility traders in this market.

• Trader behavior varies depending on how they assimilate information; for exam-

ple, should we consider our agents as Bayesians or frequentists. In Section 3.7

we consider traders that use a conjugate prior to update their beliefs, and we

study how their trades would affect the market state.

• In Section 3.8 we consider risk-averse agents that optimize their bets according

to exponential utility. In this case we can characterize precisely how a sin-

gle trader interacts with the market, as well as the equilibrium reached given

multiple traders; the latter result is achieved via a potential game argument

as detailed in Section 3.10. The eventual market state is a weighted combina-

tion of traders’ beliefs and the initial state; the weights are proportional to risk

aversion parameters.
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• Surprisingly we are able to characterize the correspondence between trader be-

liefs and financial transactions in this market. In particular, we are able to show

that a trader with prior exposure in the market can be understood as having

updated his private belief. This means that the cost function market exposes a

deep connection between beliefs and financial transactions: an agent with some

exposure in the market is in effect equivalent to an agent with a different risk

attitude. We provide details in Section 3.9.

• In Section 3.12 we consider budget-limited traders who are constrained in how

much they influence the market. We analyze the market under these circum-

stances; we are able to show that traders with good information can expect

to profit and their influence over the market state increases over time whereas

malicious traders have limited impact on the market.

A note about play-money markets: Even in prediction markets set up with play-

money, risk aversion is plausible since it captures the fact that a trader high on the

leaderboard may not want to risk her standing with large late trades. Further, in such

markets especially, budget constraints are key since they help alleviate the problem

that traders can easily manipulate prices with unreasonable trades. Our results are

therefore particularly relevant in markets with play-money.

3.1.1 Related Work.

The notion of an exponential family distribution is fundamental to this work.

For comprehensive introductions to these distributions, see (Barndorff-Nielsen, 1978;

Wainwright and Jordan, 2008). Exponential families are intimately tied to the notions

of log loss and entropy, but can be generalized to other types of convex losses and

information as shown by Grünwald and Dawid (2004), who also make a connection

to scoring rules.
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Scoring rules are a measure of prediction accuracy, and we are concerned here with

scoring rules for statistic expectations, typically over infinite outcome spaces. Such

rules have been characterized by Savage (1971); see also (Abernethy and Frongillo,

2012; Gneiting and Raftery , 2007; Lambert et al., 2008). Our rules are of course

special cases of this characterization, but it appears the range of elegant scoring rules

that arise from exponential families has not been appreciated. Indeed, Gneiting and

Raftery (2007) observe that specific instances of scoring rules for continuous outcomes

are lacking, and survey various possibilities. Closer to our work, Lambert et al. (2008)

characterize the properties of probability distributions that are elicitable and provide

a representation theorem for such properties.

In a seminal paper, Hanson (2003a) showed how to form a prediction market based

on a sequentially-shared scoring rule, and specifically proposed the logarithmic market

scoring rule (LMSR) based on log loss for finite outcome spaces (Hanson, 2007). The

markets we introduce are direct generalizations of the LMSR to continuous outcomes,

but take the form of cost-function based markets as introduced by Chen and Pennock

(2007). Gao et al. (2009) and Chen et al. (2013) also consider extending various market

makers to infinite outcome spaces.

Prediction markets are known to perform well in practice (Pennock and Sami ,

2007; Pennock et al., 2001). However, a sound theory for interpreting trader be-

havior and market prices is an ongoing area of study (Wolfers and Zitzewitz , 2006;

Manski , 2004). At one extreme, agents are assumed myopic and risk-neutral, imply-

ing they move the market state to their belief (Chen and Vaughan, 2010). At the

other extreme, agents are strategic and the market fully incorporates all informa-

tion (Ostrovsky , 2012). Strategic behavior in prediction markets has been previously

addressed (Chen et al., 2010; Dimitrov and Sami , 2008). The aggregation properties

of market mechanisms have also been explored from a machine learning perspec-

tive (Storkey , 2011). More closely related to our work, Frongillo and Reid (2013) also
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touch upon the statistical interpretations of prediction market costs and payoffs from

the viewpoint of exponential families.

One of the aims of this work is to understand the behavior of cost-function pre-

diction markets with risk-averse agents, a subject which has received only limited

attention; the only work we are aware of is (Frongillo et al., 2012, Sec. 3.1). How-

ever, risk aversion is a fundamental component of mathematical finance and portfolio

optimization, and there are close connections between the notion of a cost function

and that of a convex risk measure (Föllmer and Schied , 2002; Föllmer and Knispel ,

2011). Indeed, they arise from the same axioms as noted by Othman and Sandholm

(2011). We see the potential to draw more on the mathematical finance literature

to take into account risk aversion, as prediction markets can be viewed simply as

single-period financial markets (Föllmer and Schied , 2004, Part I).

Another goal of this work is to characterize the market state at equilibrium and

its relationship to trader beliefs. Market based belief aggregation is considered ex-

tensively by Pennock and Wellman (Pennock , 1999; Pennock and Wellman, 1997).

His work analyzes equilibrium in a market with Arrow-Debreu securities priced via

a Walrasian auction. The equilibrium prices in the market are shown to correspond

to the arithmetic and geometric means of the individual trader beliefs depending on

the risk aversion model of the trader when the securities are on mutually exclusive

events.
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3.2 Exponential Family Distributions

We let p(x;µ) be the maximum entropy distribution with expected statistic µ.

Specifically, it is the solution to the following program:1

min
p∈P

F (p) s.t. Ep[φ(x)] = µ, (3.1)

where the objective function is the negative entropy of the distribution, namely

F (p) =

∫
x∈X

p(x) log p(x) dν(x).

Note that the explicit set of constraints in (3.1) are linear, whereas the objective is

convex. We let G :M→ R be the optimal value function of (3.1), meaning G(µ) is

the negative entropy of the maximum entropy distribution with expected statistics µ.

It is well-known that solutions to (3.1) are exponential family distributions; see,

for instance Wainwright and Jordan (2008). These are distributions whose densities

with respect to ν take the form

p(x; θ) = exp(〈θ, φ(x)〉 − T (θ)). (3.2)

The density is stated here in terms of its natural parametrization θ ∈ Rd, where θ

arises as the Lagrange multiplier associated with the linear constraints in (3.1). The

term T (θ) essentially arises as the multiplier for the normalization constraint (the

1We assume that the minimum is finite and achieved for all µ ∈ M. Some care is needed to
ensure this holds for specific statistics and outcome spaces. For example, taking outcomes to be
the real numbers, there is no maximum entropy distribution with a given mean µ (one can take
densities tending towards the uniform distribution over the reals), but there is always a solution if
we constrain both the first and second moments.
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density must integrate to 1), and so ensures that (3.2) is normalized:

T (θ) = log

∫
X

exp〈θ, φ(x)〉 dν(x). (3.3)

The function T is known as the log-partition or cumulant function corresponding to

the exponential family. Its domain is Θ = {θ ∈ Rd : T (θ) < +∞}, called the natural

parameter space, and we assume throughout that it is nonempty.2 The exponential

family is regular if Θ is open—almost all exponential families of interest, and all those

we consider in this work, are regular. The family is minimal if there is no α ∈ Θ such

that 〈α, φ(x)〉 is a constant over X (ν-almost everywhere); minimality is a property

of the associated statistic φ, usually called the sufficient statistic in the literature.

What exactly is a sufficient statistic? A statistic is just a function of the

data. If the data is drawn from some distribution parameterized by θ then a statistic

is called sufficient if no other statistic that can be computed from the data gives you

more information about θ. For instance the number of heads in a set of Bernoulli

trials gives you everything you need in order to compute a joint distribution on the

trial outcomes. In particular if there are n trials and k heads, it is not necessary to

know exactly when the heads occurred in order to compute the probability of that

sequence (which is always 1

(nk)
regardless of the success probability or the particular

order of the sequence.).

Some commonly studied distributions that are in fact exponential families include

the binomial, beta, Poisson, exponential, and normal distributions; the sufficient

statistics and parametrizations for the normal will be covered in Section 3.5.2.

2This may impose additional conditions on the choice of base measure ν in certain special cases.
For instance, if the density over R is known to have unit variance and statistic φ(x) = x, then one

uses the base measure ν(x) = e−x2/2 leading to a normal distribution with fixed variance (Barndorff-
Nielsen, 1978).
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3.2.1 Some Properties of Exponential Families

We will now rederive, for completeness, some interesting results about exponential

families. For a more complete treatment, see Wainwright and Jordan (2008).

Theorem 3.2.1. The log partition function

T (θ) = log

∫
X

exp〈θ, φ(x)〉 dν(x)

is convex

Proof. First we will show that E[φ(x)] = ∇T(θ) and var[φ(x)] = ∇2T (θ)

∇T (θ) = ∇ log

∫
exp[φ(x)θ] dx

=

∫
φ(x) exp[φ(x)θ] dx∫

exp[φ(x)θ] dx

=

∫
φ(x) exp

(
φ(x)θ − log

∫
exp[φ(x)θ] dx]

)
dx

= E[φ(x)]
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∇2T (θ) = ∇
∫
φ(x) exp[φ(x)θ] dx

exp[T (θ)]

=
exp[T (θ)]∇

(∫
φ(x) exp[φ(x)θ] dx

)
(exp[T (θ)])2

−
∫
φ(x) exp[φ(x)θ] dx∇

(∫
exp[φ(x)θ] dx

)
(exp[T (θ)])2

=
∇
(∫

φ(x) exp[φ(x)θ] dx
)

exp[T (θ)]
−
∫
φ(x) exp[φ(x)θ] dx∇

(∫
exp[φ(x)θ] dx

)
(exp[T (θ)])2

=

∫
φ(x)φ(x)T exp[φ(x)θ − T (θ)] dx

−
∫
φ(x) exp[φ(x)θ] dx

(∫
φ(x) exp[φ(x)θ] dx

)
(exp[T (θ)])2

=

∫
φ(x)φ(x)T exp[φ(x)θ − T (θ)] dx

−
∫
φ(x) exp[φ(x)θ − T (θ)] dx

(∫
φ(x) exp[φ(x)θ − T (θ)] dx

)
= Eθ[φ(x)φ(x)T]− (Eθ[φ(x)]Eθ[φ(x)])

= var[φ(x)]

Note that var[φ(x)] ≥ 0. Since the Hessian of T (θ) is always positive-semidefinite,

it follows that it is convex. �

Consider the convex conjugate of the log partition function, T ∗(µ) defined as

T ∗(µ) = sup
θ
θ · µ− C(θ)

This supremum is obtained at the value of θ for which µ = ∇T (θ); that is the natural

parameter θ for which µ = Ep(·|θ)[φ(x)] is the mean parameter. Rewriting,

T ∗(Epθ [φ(x)]) = θ · Ep(·|θ)[φ(x)]− T(θ) (3.4)
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Thus, the mean parameters are the dual variables to the natural parameters.

Theorem 3.2.2. The value of the convex conjugate of the log partition function is

the negative entropy of the exponential family distribution obtained from backward

mapping the mean parameters.

Proof. To see this, we note that for p(x) = exp{θ · φ(x)− C(θ)}

−H(p) =

∫
x

p(x) log p(x) dx

=

∫
x

p(x)[θ · φ(x)− T (θ)] dx

= θ ·
∫
x

p(x)[φ(x)] dx−
∫
x

p(x)T (θ) dx

= θ · Ep[φ(x)]− T(θ)

As shown in equation 3.4, this is exactly the expression for the dual of the cost

function of the exponential family market maker. �

Theorem 3.2.3. Negative differential entropy−H(p)
def
=
∫
x
p(x) log p(x)dx is unbounded

from above for an exponential family distribution.

Proof. Note that, for an exponential family distribution

H(p) = −
∫
x

p(x) log p(x)dx

= −
∫
x

p(x)[β · φ(x)− T (β)]dx

= −β · E[φ(x)] + T(β)

If the range of φ(x) is unbounded, the negative differential entropy is unbounded as

well. �
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The following proposition collects the relevant results on regular exponential fam-

ilies; proofs may be found in Wainwright and Jordan (2008, Prop. 3.1–3.2, Thm.

3.3–3.4) and see also Banerjee et al. (2005a, Lem. 1, Thm. 2). A convex function

T is of Legendre type if it is proper, closed, strictly convex and differentiable on the

interior of its domain, and limθ→θ̄‖∇T (θ)‖ = +∞ when θ̄ lies on the boundary of the

domain.

Proposition III.1. Consider a regular exponential family with minimal sufficient

statistic. Let T ∗ denote the convex conjugate of T , which here can be evaluated as

T ∗(µ) = supθ∈Θ〈θ, µ〉−T (θ). Similarly, G∗(θ) = supµ∈M〈θ, µ〉−G(µ). The following

properties hold:

1. T and G are of Legendre type, and T = G∗ (equivalently G = T ∗).

2. The gradient map ∇T is one-to-one and onto the interior of M. Its inverse is

∇G which is one-to-one and onto the interior of Θ.

3. The exponential family distribution with natural parameter θ ∈ Θ has expected

statistic µ = Ep[φ(x)] = ∇T (θ).

4. The maximum entropy distribution with expected statistic µ is the exponential

family distribution with natural parameter θ = ∇G(µ).

3.2.2 Example: The Gaussian Distribution

Consider the normal distribution N (µ, σ) where µ is the mean and σ2 is the

variance of the distribution as usual.

Log partition function and parametrizations

The natural parameters βββ = (β1, β2) can be written in terms of µ and σ as

β1 =
µ

σ2
, β2 =

−1

2σ2
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and the log partition function is

T (βββ) = − β2
1

4β2

− 1

2
log(−2β2)

Alternately, the log partition function can be written in terms of its variance and

mean as µ2

2σ2 + log σ. Also note that the mean parameters are µ and µ2 + σ2.

Convex conjugate of the log partition function

We will now derive an expression for the dual of the log partition function for

the Gaussian distribution. In this case, β is a 2-dimensional vector. Let β =

β1

β2


and µ =

µ1

µ2

. Rewriting the the expression for a normal distribution allows us to

determine the natural parameters and the closed form expression for the log partition

function. Since the gradient of the log partition function defines a one-to-one mapping

to the mean parameters, we have

µµµ = ∇T (βββ)

= ∇
(
− β2

1

4β2

− 1

2
log(−2β2)

)

=

 − β1
2β2

β2
1

4β2
2
− 1

2β2


Note that µ2 = µ2

1− 1
2β2

. Thus, βββ can be written in terms of µµµ as follows: β1 = µ1
µ2−µ21

and β2 = 1
2(µ21−µ2)

. The dual of the log partition function T ∗(µµµ) = supβββ βββ · µµµ − T (βββ)

may be expressed solely in terms of the mean parameters. To see this, observe that

there is a closed form expression for T (βββ) in terms of βββ which itself can be expressed

in terms of µµµ. This leads to the following closed form expression for the dual of the
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log partition function:

T ∗(µ) = −1

2
− 1

2
log(µ2 − µ2

1)

3.3 Scoring Rules and Market Scoring Rules

As far back as the 1950’s researchers were interested in the question of incen-

tivizing truthful reporting from agents (Brier , 1950) by assigning numerical scores

to them based on their forecasts of future events. In fact it can be shown that the

certain scoring rules like the quadratic and log scoring rules would require an agent

to truthfully report his belief, if he is to maximize his expected score. Such scoring

rules where the report that maximizes expected score is in fact the belief of the agent,

are called proper scoring rules. It turns out that there are in fact a class of scoring

rules that have this property. In this chapter we will study one of these in detail.

A key insight by Hanson (2003a) was that we could leverage this property of proper

scoring rules to not only elicit information from one agent but also pool opinions from

a crowd. He proposed a sequential mechanism where the score assigned to an agent

is the difference between his score and the preceding agent’s score. Trades are done

through a central authority called a market maker.

3.4 Cost Function Prediction Market

It turns out that if you take an axiomatic approach to construct the market

maker, you arrive at an alternate formulation of the market mechanism called the

cost function-based prediction market. In this setup, the market maker decides to

issue a finite number of securities each of which is guaranteed to pay off some amount

dependent on the outcome of the event under consideration. We call this the payoff

function and we represent it as φ(x) where x is the revealed outcome and the dimen-

sionality of the range of φ matches the number of issued securities. Thus, when an
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outcome x is revealed, one share of the security i pays off the amount given by the ith

dimension of φ(x). The market maker sets prices for the securities based on some po-

tential function that takes as input the total number of shares of each of the securities

collectively held by the trading population. This potential function is called the cost

function C(·) of the prediction market and the cost to a trader of purchasing q shares

when the current market state is q0 is given by C(q+q0)−C(q0). When the outcome

is revealed the trader will thus make a net profit of q · φ(x)− (C(q + q0)− C(q0))

In a prediction market, an agent’s expected belief µ is elicited indirectly through

the purchase and sale of securities. Under this approach, each component i of the

statistic φ is interpreted as the payoff function of a security; that is, a single share of

security i pays off φi(x) when x ∈ X occurs. Thus if the vector of shares held by the

agent (her portfolio) is δ ∈ Rd, where entry δi corresponds to the number of shares of

security i, then the payoff to the agent when x occurs is the inner product 〈δ, φ(x)〉.

To be concrete, in the classic finite-outcome case the statistic has a component

for each outcome x such that φx(x
′) = 1 if x′ = x and 0 otherwise. Therefore

the corresponding security pays 1 dollar if outcome x occurs. (These are known as

Arrow-Debreu securities.)

The standard way to implement a prediction market in the literature, due to Chen

and Pennock (2007), is via a centralized market maker. The market maker maintains

a convex, differentiable cost function C : Rd → (−∞,+∞], where C(θ) records the

revenue collected when the vector of outstanding shares is θ. The cost to an agent

of purchasing portfolio δ under a market state of θ is C(θ + δ)− C(θ), and therefore

the instantaneous prices of the securities are given by the gradient ∇C(θ).

A risk-neutral agent will choose to acquire shares up to the point where, for each

share, expected payoff equals marginal price. Formally, if the agent acquires portfolio
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δ, moving the market state vector to θ′ = θ + δ, then we must have

Ep[φ(x)] = ∇C(θ′). (3.5)

In this way, by its choice of δ, the agent reveals that its expected belief is µ = ∇C(θ′).

We stress that this observation relies on the assumptions that 1) the agent is risk-

neutral, 2) the agent does not incorporate the market’s information into its own

beliefs, and 3) the agent is not budget constrained. We will examine relaxations of

each assumption in later sections.

3.5 Generalized Log Market Scoring Rule

Suppose that an agent holds a belief in the expected value of some function of the

random variable x. The maximum entropy distribution that is consistent with these

beliefs is an exponential family distribution.

We consider a measurable space consisting of a set of (mutually exclusive, exhaus-

tive) outcomes X together with a σ-algebra F . An agent or expert has a belief over

potential outcomes taking the form of a probability measure absolutely continuous

with respect to a base measure ν.3 Throughout we represent the belief as the cor-

responding density p with respect to ν. Let P denote the set of all such probability

densities.

We are interested in eliciting information about the agent’s belief, in particular

expectation information. Let φ : X → Rd be a vector-valued random variable or

statistic, where d is finite. The aim is to elicit µ = Ep[φ(x)] where x is the random

3Recall that a measure P is absolutely continuous with respect to ν if P (A) = 0 for every A ∈ F
for which ν(A) = 0. In essence the base measure ν restricts the support of P . In our examples ν will
typically be a restriction of the Lebesgue measure for continuous outcomes or the counting measure
for discrete outcomes.
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outcome. A scoring rule is a device for this purpose. Let

M =
{
µ ∈ Rd : Ep[φ(x)] = µ, for some p ∈ P

}
be the set of realizable statistic expectations. Unless otherwise mentioned, all integrals

including expectations are taken with respect to base measure ν, which is therefore

implicit in many of the formulas. A scoring rule S : M× X → R ∪ {−∞} pays

the agent S(µ̂, x) according to how well its report µ̂ ∈ M agrees with the eventual

outcome x ∈ X . The following definition is due to Lambert et al. (2008).

Definition III.2. A scoring rule S is proper for statistic φ if for each µ ∈ M and

p ∈ P with expected statistic µ, we have for all µ̂ 6= µ

Ep[S(µ, x)] ≥ Ep[S(µ̂, x)]. (3.6)

Given a proper scoring rule S, any affine transformation S̃(µ, x) = aS(µ, x) + b(x) of

the rule, with a > 0 and b an arbitrary real-valued function of the outcomes, again

yields a proper scoring rule termed equivalent (Dawid , 1998; Gneiting and Raftery ,

2007). Throughout we will implicitly apply such affine transformations to obtain

the clearest version of the scoring rule. We will also focus on scoring rules where

inequality (3.6) is strict to avoid trivial cases such as constant scoring rules.

Classically, scoring rules take in the entire density p rather than just some statistic,

and incentive compatibility must hold over all of P . When the outcome space is large

or infinite, it is not feasible to directly communicate p, so the definition allows for

summary information of the belief.

Note that Definition III.2 places only mild information requirements on the part

of the agent to ensure truthful reporting. Because condition (3.6) holds for all p

consistent with expectation µ, it is enough for the agent to simply know the latter

and not the complete density to be properly incentivized. However, the agent must
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also agree with the support of the density as implicitly defined by base measure ν.

3.5.1 Proper Scoring from Maximum Entropy

Our starting point for designing proper scoring rules is the classic logarithmic

scoring rule for eliciting probabilities in the case of finite outcomes. This rule is

simply S(p, x) = log p(x), namely we take the log likelihood of the reported density

at the eventual outcome. To generalize the rule to expected statistics rather than full

densities, we consider a subset of densities D ⊆ P . If D and M are bijective, then

we say thatM parametrizes D and write p(· ;µ) for the density mapping to µ. Given

such a family parametrized by the relevant statistics, the generalized log scoring rule

is then

S(µ, x) = log p(x;µ). (3.7)

Even though the log score is only applied to densities from D, according to Defini-

tion III.2 it must work over all densities in P . It turns out this is possible if D is

chosen appropriately, drawing on a well-known duality between maximum likelihood

and maximum entropy (Grünwald and Dawid , 2004).

Proper Log Scoring

We are now in a position to analyze the log scoring rule under exponential family

distributions. From our discussion so far, we have that an exponential family density

can be parametrized either by the natural parameter θ, or by the mean parameter

µ, and that the two are related by the invertible gradient map µ = ∇T (θ). We will

write p(x; θ) or p(x;µ) given the parametrization used.

The following observation is crucial. Let p̃ ∈ P be any arbitrary density with

expected statistic µ, let p(· ;µ) be the exponential family with the same expected
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statistic, and let µ̂ ∈M be an alternative report. Then from (3.2) we have

Ep̃[log p(x; µ̂)] = Ep(·;µ)[log p(x; µ̂)] = 〈θ̂, µ〉 − T (θ̂), (3.8)

where θ̂ = ∇G(µ̂) is the natural parameter for the exponential family with statistic

µ̂. Note that the expected log score does not depend on the entire maximum entropy

distribution but just its expected statistic µ. This is how we can achieve proper

scoring according to Definition III.2.

Theorem III.3. Consider the logarithmic scoring rule S(µ, x) = log p(x;µ) defined

over a set of densities D parametrized by M. The scoring rule is proper if and only

if D is the exponential family with statistic φ, where µ = Ep(x;µ)[φ(x)].

Proof. Let µ, µ̂ ∈ M be the agent’s true belief and an alternative report, and let

p ∈ P be a density consistent with µ. Let θ = ∇G(µ) and θ̂ = ∇G(µ̂), and note that

µ = ∇T (θ). We have

Ep[log p(x;µ)]− Ep[log p(x; µ̂)] = 〈θ, µ〉 − T (θ)− 〈θ̂, µ〉+ T (θ̂)

= T (θ̂)− T (θ)− 〈θ̂ − θ, µ〉

= T (θ̂)− T (θ)− 〈θ̂ − θ,∇T (θ)〉. (3.9)

The latter is positive by the strict convexity of T , which shows that the log score

is proper. For the converse, assume the defined log score is proper. By the Savage

characterization of proper scoring rules for expectations (see Abernethy and Frongillo

(2012, Thm. 11)), we must have S(µ, x) = G(µ)−〈∇G(µ), µ−φ(x)〉 for some strictly

convex function G. Let T = G∗, so that ∇G = ∇T−1, and let θ = ∇G(µ). Then the
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above can be written as

log p(x;µ) = G(µ)− 〈∇G(µ), µ− φ(x)〉

= 〈θ, µ〉 − T (θ)− 〈θ, µ− φ(x)〉 = 〈θ, φ(x)〉 − T (θ),

which shows that p(x;µ) takes the form of an exponential family.

It has been understood since (McCarthy , 1956; Savage, 1971) that scoring rules

for densities and expectations can be characterized in terms of an underlying convex

function. The generalized log scoring rule of Theorem III.3 obtains by applying the

modern characterization of Abernethy and Frongillo (2012, Thm. 11) to the optimal

value function G (negative maximum entropy). Banerjee et al. (2005b, Thm. 6) prove

a similar result by showing a bijection between exponential families and Bregman

divergences.

The notion of a Bregman divergence in fact provides further intuition for the

result. Note that (3.9) is the definition of the Bregman divergence with respect to

strictly convex function T , written DT . Therefore we have

Ep[log p(x;µ)]− Ep[log p(x; µ̂)] = DT (θ̂, θ) = DG(µ, µ̂),

where the last equality is a well-known identity relating the Bregman divergences of

T and T ∗ = G as proved below.

Proposition III.4. Let f be a convex function and f ∗ be its conjugate dual. Let

x1, x2 and y1, y2 be the corresponding dual variables. Then

Df (x1, x2) = Df∗(∇f(x2),∇f(x1))

where D is the Bregman Divergence.
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Proof. First note that from definition

f ∗(∇f(x)) = x · ∇f(x)− f(x)

Df∗(∇f(x2),∇f(x1)) = f ∗(∇f(x2))− f ∗(∇f(x1))−∇f ∗(∇f(x1))(∇f(x2)−∇f(x1))

= x2 · ∇f(x2)− f(x2)− x1 · ∇f(x1) + f(x1)

−∇f(x2)∇f ∗(∇f(x1)) +∇f(x1)∇f ∗(∇f(x1))

= x2 · ∇f(x2)− f(x2)− x1 · ∇f(x1) + f(x1)− x1∇f(x2) + x1∇f(x1)

= f(x1)− f(x2)−∇f(x2)(x1 − x2)

�

The equation states that the agent’s regret from misreporting its mean parameter

does not depend on the full density p, only the mean µ.

3.5.2 Examples: Moments over the Real Line

Theorem III.3 leads to a straightforward procedure for constructing score rules

for expectations. Define the relevant statistic, and consider the maximum entropy

(equivalently, exponential family) distribution consistent with the agent’s reported

mean µ. The scoring rule compensates the agent according to the log likelihood

of the eventual outcome according to this distribution. The interpretation is that

the agent is only providing partial information about the underlying density, so the

principal first infers a full density according to the principle of maximum entropy, and

then scores the agent using the standard log score. We stress that the exponential

families framework is a tool in the construction of scoring rules at this point; we are

not actually modeling any agent’s belief via an exponential family.

An advantage of this generalization of the log score is that, for many domains
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(multi-dimensional included) and expectations of interest, it leads to novel closed-

form scoring rules. By examining the log densities of various exponential families,

we can for instance obtain scoring rules for several different combinations of the

arithmetic, geometric, and harmonic means, as well as higher order moments. The

following examples illustrate the construction. Here, we have used µ and σ for the

true mean and variance and µ̂ and σ̂ for the elicited mean and variance respectively

(and Σ̂ for the covariance matrix of the multivariate normal).

Example III.5. As a base measure we take the counting measure over the finite

set {1, 2, . . . , d}, and we consider the statistic φ(i) ∈ {0, 1}d that maps outcome i to

the unit vector with component i equal to 1. The expectation of φ(i) is simply the

entire probability distribution p, which is a multinomial distribution (an instance of

an exponential family). We recover the standard log scoring rule S(p̂, i) = log p̂(i).

Example III.6. As a base measure we take the Lebesgue over the real numbers R.

We are interested in eliciting the mean µ and variance σ2, so as a statistic we take

φ(x) = (x, x2) for which Ep[φ(x)] = (µ, µ2 + σ2). The max entropy distribution for a

given mean and variance is the Gaussian, whose log density gives the scoring rule

S((µ̂, σ̂2), x) = −(x− µ̂)2

σ̂2
− log σ̂2. (3.10)

Again, we stress that this scoring rule elicits the mean and variance of any density

over R, not just those of a normal distribution. The construction easily generalizes

to a multi-dimensional outcome space by taking the log density of the multivariate

normal:

S((µ̂, Σ̂), x) = −(x− µ̂)′Σ̂−1(x− µ̂)− log |Σ̂|. (3.11)

Here the statistics being elicited are the mean vector µ and the covariance matrix Σ.

These scoring rules have been studied by Dawid and Sebastiani (1999) as rules that

only depend on the mean and variance of the reported density. They note that these
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rules are weakly proper (because they do not distinguish between densities with the

same first and second moments), but do not make the point that knowledge of the

full density is not necessary on the part of the agent.

In the above, Example III.6 illustrates an important point about parametrizations

of the elicited expectations. The variance σ2 cannot be written as E[φ(x)] for any φ.4

Instead one must use the first two uncentered moments E[x] and E[x2]. These are in

bijection with µ and σ2, so the resulting scoring rule can be re-written in terms of

the latter. Therefore, it is possible to elicit not just expectations but also bijective

transformations of expectations.

3.6 Exponential Family Markets

In a single-agent setting, a scoring rule is used to elicit the agent’s belief. In

a multi-agent setting, a prediction market can be used to aggregate the beliefs of

the agents. In his seminal paper Hanson (2003a) introduced the idea of a market

scoring rule, which inherits the appealing elicitation and aggregation properties of

both in order to perform well in thin or thick markets. In this section, we adapt

the generalized log scoring rule to a market scoring rule which leads to markets with

simple closed-form cost functions for many statistics of interest.

In the remainder of this chapter we focus on the following cost function, which

arises from the generalized logarithmic market scoring rule (LMSR):

C(θ) = log

∫
x∈X

exp〈θ, φ(x)〉 dν(x). (3.12)

This is exactly the log-partition function (3.3) for the exponential family with suf-

ficient statistic φ, and we recover the classic LMSR using outcome indicator vec-

4This is an intuitive (but far from formal) explanation for the fact that the dimension of the
message space, or elicitation complexity, for eliciting the variance is at least 2 (Lambert et al., 2008).

46



tors as statistics. Because an agent would never select a portfolio with infinite

cost, the effective domain (i.e., the possible vectors of outstanding shares) of C is

Θ = {θ ∈ Rd : C(θ) < +∞}, which gives an economic interpretation to the natural

parameter space of an exponential family.

The correspondence between the cost function (3.12) and the log-partition func-

tion (3.3) suggests the following interpretation. The market maker maintains an

exponential family distribution over the state space X parametrized by share vectors

that lie in Θ. When an agent buys shares, it moves the distribution’s natural pa-

rameter so that the market prices matches its beliefs, or in other words the market’s

mean parametrization matches the agent’s expectation.

There is a well-known duality between scoring rules and cost-function based mar-

kets (Abernethy et al., 2013; Hanson, 2003a). In our context, recall from (3.8) that

Ep̃[log p(x; µ̂)] = 〈θ̂, µ〉 − T (θ̂)

where p̃ is the agent’s belief and µ̂ the agent’s report. The expected log score from

reporting µ̂ is exactly the same as the expected payoff from buying portfolio of shares

θ̂ = ∇C(µ̂) (assuming an initial market state of 0), as 〈θ̂, µ〉 is the expected revenue

and T (θ̂) is the cost. As in Section 3.5 this reasoning relies on the assumption of

risk-neutrality, not on any specific form for the agent’s belief.

3.6.1 Example: Gaussian Market

For the normal distribution N (µ, σ), the natural parameters βββ = (β1, β2) can be

written in terms of µ and σ as

β1 =
µ

σ2
, β2 =

−1

2σ2
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and the log partition function is

T (βββ) = − β2
1

4β2

− 1

2
log(−2β2)

Alternately, the log partition function can be written in terms of its variance and

mean as µ2

2σ2 + log σ. Also note that the mean parameters of the Gaussian are µ and

µ2 +σ2; thus the price of the securities correspond to the mean and sum of the square

of the mean and variance of the Gaussian.

Note that because of the peculiarity of the cost function of the Gaussian market

maker, the second dimension of the share vector is always negative for a valid dis-

tribution. Thus, the security corresponding to this dimension always has more share

sold than bought.

3.6.2 Loss of the market maker

The loss of the exponential family market maker can be written in terms of the

conjugate dual of the cost function. First we derive an expression for the conjugate

dual C∗ in terms of the primal variables. Recall the definition of the conjugate dual:

C∗(µ) = sup
q
q · µ− C(q)

The supremum is achieved at q′ such that ∇C(q′) = µ. So we may rewrite:

C∗(∇C(q′)) = sup
q
q · ∇C(q′)− C(q)

This supremum is achieved at q such that ∇C(q′) = ∇C(q). One such value of q is

q′. So we have

C∗(∇C(q′)) = q′ · ∇C(q′)− C(q′)

Also, recall that ∇C∗(∇C(q)) = q for the exponential family market.
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Let q0 be the initial and qf the final market state. Then if µ is the expected value of

the outcome sufficient statistics (i.e.the mean parameter) under the true distribution,

the loss of the exponential family market maker can be written as φ(x)(qf − q0) −

C(qf )+C(q0) where φ(x)(qf−q0) is the net payoff to the traders, and −C(qf )+C(q0)

is the net cost charged to the traders. This can be rewritten as:

φ(x)(qf − q0)− C(qf ) + C(q0) = φ(x)(qf − q0)− qf∇C(qf )

+C∗(∇C(qf )) + q0∇C(q0)− C∗(∇C(q0))

= qf (φ(x)−∇C(qf )) + C∗(∇C(qf ))

−q0(φ(x)−∇C(q0))− C∗(∇C(q0))

= −C∗(∇C(q0)) + C∗(φ(x))− q0(φ(x)−∇C(q0))

+C∗(∇C(qf ))− C∗(φ(x)) + qf (φ(x)−∇C(qf ))

= C∗(φ(x))− C∗(∇C(q0))

−∇C∗(∇C(q0))(φ(x)−∇C(q0))

−[C∗(φ(x))− C∗(∇C(qf ))

−∇C∗(∇C(qf ))(φ(x)−∇C(qf ))]

= DC∗ [φ(x),∇C(q0))]−DC∗ [φ(x),∇C(qf ))]

Remark. Recall that the LMSR is essentially a special case applied to a multinomial

distribution. The LMSR is known to have bounded (log n) market maker loss. Thus,

while in general the exponential family LMSR does not guarantee bounded market

maker loss, for some special cases it can.

Example: Loss of the Gaussian Market Maker Let’s now work out the loss

for the Gaussian market maker. Let µi denote the mean and σi the variance of the
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Gaussian. First note that for a Gaussian market for mean parameters

 µ1

µ2
1 + σ2

1


and

 µ2

µ2
2 + σ2

2

, we have

DC∗


 µ1

µ2
1 + σ2

1

 ,

 µ2

µ2
2 + σ2

2


 = C∗


 µ1

µ2
1 + σ2

1


− C∗


 µ1

µ2
1 + σ2

1




−∇C∗


 µ2

µ2
2 + σ2

2



 µ1 − µ2

µ2
1 + σ2

1 − µ2
2 − σ2

2


= − log

σ1

σ2

−

 µ2
σ2
2

− 1
2σ2

2

 ·
 µ1 − µ2

µ2
1 + σ2

1 − µ2
2 − σ2

2


= − log

σ1

σ2

−
µ2(µ1 − µ2)− 1

2
(µ2

1 − µ2
2 + σ2

1 − σ2
2)

σ2
2

= log
σ2

σ1

+
σ2

2 − σ2
1

2σ2
2

+
(µ1 − µ2)2

2σ2
2

So the Gaussian market maker loss is

DC∗ [φ(x),∇C(q0))]−DC∗ [φ(x),∇C(qf ))] = log
σ0

σx
+
σ2

0 − σ2
x

2σ2
0

+
(µx − µ0)2

2σ2
0

−

[
log

σf
σx

+
σ2
f − σ2

x

2σ2
f

+
(µx − µf )2

2σ2
f

]

= log
σ0

σf
+

(x− µ0)2

2σ2
0

− (x− µf )2

2σ2
f

Here we have used the fact that µx = x and σx = 0.

Remark. Thus, all other values being the same, a trader who decreases the predicted

variance contributes to a loss for the market maker. Also, a trader who moves the

predicted mean closer to the actual outcome increases the market maker loss. In
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other words, the market maker pays for increased predicted accuracy and/or reduced

predicted uncertainty.

3.7 Bayesian Traders with Linear Utility

In the standard model of cost-function based prediction markets, a sequence of

myopic, risk-neutral agents arrive and trade in the market (Chen and Pennock , 2007;

Chen and Vaughan, 2010). As we saw in Section 3.4, such a trader moves the prices

to its own expectation µ. However, this means that the market does not perform

meaningful aggregation of agents’ beliefs, as the final prices are simply the final agent’s

expectation.

In this section we examine the aggregation behavior of the market when agents are

Bayesian and take into account the current market state when forming their beliefs.

This requires more structure to their beliefs. For this and the following sections, we

will assume that agents have exponential family beliefs.

Recall that, we are interested in eliciting the sufficient statistics of the data. We

assume that the outcome is drawn from an exponential family distribution; the pre-

diction market is set up as before with the cost function corresponding to the log

partition function and the payoff function corresponding to the sufficient statistics.

Thus, the market state provides an estimate on the natural parameter of the distri-

bution from which the outcome is drawn. Additionally, we assume that the market

also makes public the total number of traders that have traded in the market.

The goal is to aggregate information from risk neutral agents who have a belief

distribution over the natural parameters. This prior distribution is updated by the

agents based on the current market state, They also each have to access to the empir-

ical mean of sufficient statistics based on a fixed number m of data points. Assuming

a conjugate prior, both the prior and posterior belief distributions on the natural
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parameters are also an exponential family distributions.

The exponential families framework is well-suited to reasoning about Bayesian

updates. As before let the data distribution be given by p(x; θ) = exp(〈θ, φ(x)〉−T (θ))

where T is the log partition function and φ are the sufficient statistics. Instead of

direct beliefs about the data distribution, the agent maintains a conjugate prior over

the parameters θ. Every exponential family admits a conjugate prior of the form

p(θ;nν, n) = exp(〈nν, θ〉+ nT (θ)− ψ(ν, n)).

Note that this is also an exponential family with natural parameter (nν, n) where ν ∈

Rd and n is a positive integer. The sufficient statistic maps θ to (θ, T (θ)), and the log

partition function ψ is defined as the normalizer as usual. For a complete treatment

of exponential families conjugate priors, see for instance (Barndorff-Nielsen, 1978).

Now Diaconis and Ylvisaker (1979, Thm. 2) and Jewell (1974) have shown that

Eθ∼(nν,n)Ex∼θ[φ(x)] = ν, (3.13)

meaning that ν = nν/n is the posterior mean. Thus, it is helpful to think of the prior

as being based on a phantom sample of size n and mean ν. Suppose now that the agent

observes an empirical sample with mean µ̂ and size m. By a standard derivation (see

Diaconis and Ylvisaker , 1979), the posterior conjugate prior parameters become nν ←

nν +mµ̂ and n← n+m, and the posterior expectation (3.13) evaluates to

nν +mµ̂

n+m
. (3.14)

Thus the posterior mean is a convex combination of the prior and empirical means,

and their relative weights depend on the phantom and empirical sample sizes.

Consider Bayesian agents maintaining an exponential family conjugate prior over
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the data model’s natural parameters (equivalently, the expected security payoffs).

Each agent has access to a private sample of the data of size m with mean statistic µ̂.

If n agents have arrived before to trade, then the current market prices µ correspond

to the phantom sample, and the phantom sample size is nm. After forming the

posterior (3.14) with these substitutions, the (risk-neutral) agent purchases shares δ

to move the current market share vector to ∇C(θ + δ) = nν+µ̂
n+1

. As a result, the final

market prices under this behavior are a simple average of the agent’s mean parameters

and the initial market prices. We note that to facilitate such belief updating, the

market should post the number of trades since initialization in which case updates

would proceed as follows.

Suppose the current market state is θ and i traders have traded in the market when

trader i+1 with prior belief distribution p(θ; bi0) enters the market. Here bi0 = (nνi, n).

This trader also has access to private information in the form of empirical sufficient

statistics µ̂i from m data points. Recall from Proposition III.1 that natural parameter

θ corresponds to expected statistics ∇T (θ). Thus, he updates his belief as p(θ; bi)

where b = (mµ̂+mi∇T (θ) + nνi, n+mi+m).

Suppose the trader wishes to maximize his expected payoff. Then the number of

shares δi that he purchases when the current market state is θ is given by

arg max
δi

Eθ∼bi
Ex∼θ [δiφ(x)− T(δi + θ) + T(θ)]

But, from Equation 3.13 we have Eθ∼bEx∼θ[φ(x)] = nν+mµ̂+mi∇T(θ)
n+m(i+1)

. To obtain the

maximum, we set the gradient of the above expression with respect to δi to 0. Thus,

we have for the optimal number of shares δ∗i

∇T (δ∗i + θ) =
nν +mµ̂+mi∇T (θ)

n+m(i+ 1)

Thus, from Proposition III.1 we have that for an exponential family prediction market,
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the final market state is given by

∇G
(
nν +mµ̂+mi∇T (θ)

n+m(i+ 1)

)

where G is the convex conjugate of T . Thus, the final market state is a convex

combination of prior, posterior and market means. Notice that this value of the

natural parameter corresponds to its maximum a posteriori (MAP) estimate.

3.8 Risk-Averse Traders with Exponential Utility

In this section we relax the standard assumption that agents in the market are

risk-neutral. We show that with sufficient extra structure to the agents’ beliefs and

utilities, the market performs a clean aggregation of the agents’ beliefs via a simple

weighted average. Assume that the agent has an exponential utility function for

wealth w:

Ua(w) = −1

a
exp(−aw). (3.15)

Here a controls the risk aversion: the agent’s aversion grows as a increases, and as

a tends to 0 we approach linear utility (risk-neutrality). Specifically, a is the Arrow-

Pratt coefficient of absolute risk aversion, and exponential utilities of the form (3.15)

are the unique utilities that exhibit constant absolute risk aversion (Varian, 1992,

Chap. 11).

Theorem III.7. Suppose an agent has exponential utility with coefficient a and ex-

ponential family beliefs with natural parameter θ̂. In the generalized LMSR market

with current market state θ, the agent’s optimal trade δ moves the state vector to

θ + δ =
1

1 + a
θ̂ +

a

1 + a
θ. (3.16)

Proof. Let δ be the vector of shares the agent trades. The payoff given eventual
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outcome x is then δφ(x)− C(δ + θ) + C(θ). The utility for this payoff is

U(δφ(x)− C(δ + θ) + C(θ)) = −1

a
exp(−aδφ(x) + aC(δ + θ)− aC(θ)).

Taking the expected utility, we obtain

E [U(δφ(x)− C(δ + θ) + C(θ))]

=

∫
X

−1

a
exp(−aδφ(x) + aC(δ + θ)− aC(θ)) exp[θ̂φ(x)− T (θ̂)] dx

= −1

a

∫
X

exp[(θ̂ − aδ)φ(x) + aC(δ + θ)− aC(θ))− T (θ̂)] dx

= −1

a
exp[aC(δ + θ)− aC(θ)) + T (θ̂ − aδ)− T (θ̂)]

∫
X

exp[(θ̂ − aδ)φ(x)− T (θ̂ − aδ)] dx

= −1

a
exp[aC(δ + θ)− aC(θ)) + T (θ̂ − aδ)− T (θ̂)]

∫
X

p(x; θ̂ − aδ) dx

= −1

a
exp[aC(δ + θ)− aC(θ)) + T (θ̂ − aδ)− T (θ̂)]

= U

(
−C(δ + θ) + C(θ))− 1

a
T (θ̂ − aδ) +

1

a
T (θ̂)

)

The second-last equality follows from the fact that
∫
X p(x; θ̂−aδ) dx = 1. Since utility

U is monotone increasing, it is maximized by maximizing its argument −C(δ + θ) +

C(θ) − 1
a
T (θ̂ − aδ) + 1

a
T (θ̂) which is a concave function of δ by convexity of C and

T . The optimality condition for the argument is

∇
(
−C(δ∗ + θ)− 1

a
T (θ̂ − aδ∗)

)
= 0

∇C(δ∗ + θ) = −a1

a
∇T (θ̂ − aδ∗)

∇C(δ∗ + θ) = ∇T (θ̂ − aδ∗) (3.17)

Here the gradient is with respect to the share purchase δ. Now in the exponential

family market, C is the log-partition function of the corresponding exponential family
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and C = T . Then (3.17) can be solved by equating the arguments. This leads to

δ∗ = (θ̂ − θ)/(1 + a), which moves the share vector to θ + δ∗ = 1
1+a

θ̂ + a
1+a

θ.

We stress that the aggregation in Theorem III.7 arises directly from the agents’

choice of trades. The market maker does not need to know the risk aversion param-

eters. Note that as a tends to 0 we approach risk neutrality and the agent moves

the share vector all the way to its private estimate θ̂. As a grows larger (the agent

grows more risk averse) the agent makes smaller trades to reduce it exposure, and

the final state stays closer to the current state θ. Update (3.16) implies that, under

the conditions of the theorem, a market that receives a sequence of myopic traders

aggregates their natural parameters in the form of an exponentially weighted moving

average. The final market estimates (i.e., prices) are obtained by applying ∇T to this

average.

3.9 Repeated Trading and the Effective Belief

In previous sections we analyzed trader behavior assuming it is his first entry into

the market. We now pose the question: how will a trader reason about a possible

future investment when the trader holds an existing portfolio? In the context of a

trader possessing an exponential family belief together with exponential utility, we

show that we can explicitly analyze how an agent incorporates an existing portfolio.

The key conclusion is that a trader will reason about a future investment simply as

though he had updated his belief and had no prior investment.

Suppose an exponential utility agent has exponential family belief parametrized

by natural parameter θ̂. Based on this belief, let δ1 be the vector of shares the agent

has purchased on first entry in the market. On a subsequent entry into this market
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with market state θ′, his optimal purchase δ∗2 is given by the solution of

arg max
δ2

Ex∼p(x;θ̂)U [〈δ1 + δ2, φ(x)〉 − C(δ1 + θ) + C(θ)− C(δ2 + θ′) + C(θ′)] .

Then if θ′′ = θ̂ − aδ1 is the effective belief, the trader’s optimal purchase is given by

δ2 = (θ′′ − θ′)/(1 + a), moving the share vector to θ′ + δ2 = 1
1+a

θ′′ + a
1+a

θ′, which is a

convex combination of the effective belief and the current market state.

Theorem III.8. Suppose an exponential utility maximizing trader with utility param-

eter a who has belief θ̂ makes a purchase δ in a market. On subsequently re-entering

the market, he will behave identically to an exponential utility maximizing trader with

belief θ̂ − aδ and no prior exposure in the market.

Theorem III.8 implies that financial exposure can be equivalently understood as

changing the privately held beliefs.

3.10 Equilibrium Market State for Exponential Utility Agents

We have shown that every exponential-utility maximizing trader picks the share

vector δ so that the eventual market state can be represented as a convex combination

of the current market state and the natural parameter of his (exponential family) belief

distribution. In this section we will compute the equilibrium state in an exponential

family market with multiple such traders.

We draw on a well-known result from game theory regarding the class of potential

games. We say a function f(~x) is at a local optimum if changing any coordinate of ~x

does not increase the value of f .

Theorem III.9 (Monderer and Shapley (1996)). Let Ui(~δ) be the utility function of

the ith trader given the strategy profile ~δ = (δ1, . . . , δi, . . . , δn). Assume there exists a
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potential function Φ(~δ) such that, for any ~δ and δ′i,

Ui(~δ)− Ui(~δ−i, δ′i) = Φ(~δ)− Φ(~δ−i, δ
′
i).

Then ~δ is a pure-strategy Nash equilibrium if and only if ~δ is a local optimum for Φ(·).

Proof sketch: If ~δ is a local optimum of Φ(·), then for any ~δ′, Φ(~δ) − Φ(~δ′) ≥ 0

and hence Ui(~δ) ≥ Ui(~δ−i, δ
′
i) or ~δ is a Nash equilibrium. The other direction can be

similarly argued.

In the exponential family market, the cost function C is identical to the log par-

tition function T defined in (3.3). Let ~δ be the matrix of share vectors purchased by

every trader in the market at equilibrium. Let θ be the initial market state, θ̂i the

natural parameter of trader i’s belief distribution, and ai his risk aversion parameter.

Define a potential function as Φ(~δ) = T (θ +
∑

i δi) +
∑

i
1
ai
T (θ̂i − aiδi). Rather

than working directly with the utilities of every trader, we will work with the log of

their utility values since the potential function analysis still applies for any monoton-

ically increasing transformation of the traders’ utility functions. Now the log-utility

of trader i is

Ui(~δ) = −T (θ +
∑

j δj) + T (θ +
∑

j 6=i δj)−
1
ai
T (θ̂i − aiδi) + 1

ai
T (θ̂i).

We can now apply Theorem III.9, hence the equilibrium state is obtained by jointly

maximizing Φ(~δ) for each δi:

∇δiΦ(~δ) = ∇T
(
θ +

∑n
j=1 δj

)
−∇T (θ̂i − aiδi) = 0.
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This leads to the following expression for the final market state.

θ +
n∑
j=1

δj =
θ +

∑n
i=1

(
θ̂i
ai

)
1 +

∑n
i=1

1
ai

We see that the equilibrium state is a convex combination of the initial market state

and all agent beliefs, with the latter weighted according to risk tolerance.

3.11 Expected Payoff in the Exponential Family Market

Linear Utility Traders The agent’s expected profit from moving the share vector

from θ to θ′ is

〈θ′ − θ, µ〉 − C(θ′) + C(θ)

= C(θ)− C(θ′)− 〈θ − θ′,∇C(θ)〉

= DC(θ, θ′) = DC∗(µ
′, µ),

recalling that DC(·, ·) is the Bregman divergence based on the cost function C(·) (3.9).

Now Banerjee et al. (2005b) have observed (among others) that the Kullback-Leibler

divergence between two exponential family distributions is the Bregman divergence,

with respect to the log-partition function, between their natural parameters.

Theorem 3.11.1.

KL(Pβ1 , Pβ2) = DT (β2, β1)

where Pβ1 and Pβ2 are exponential family distributions with natural parameters β1

and β2 respectively and T (·) is the log partition function.
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Proof.

KL(Pβ1 , Pβ2) =

∞∫
−∞

Pβ1(x) ln
Pβ1(x)

Pβ2(x)
dx

=

∞∫
−∞

Pβ1(x)(lnPβ1(x)− lnPβ2(x)) dx

= (β1 − β2)

∞∫
−∞

Pβ1(x)φ(x) dx

+(T (β2)− T (β1))

∞∫
−∞

Pβ1(x) dx

= (β1 − β2)∇T (β1) + T (β2)− T (β1)

= DT (β2, β1)

�

The agent’s expected profit is therefore the KL divergence between the market’s

implied expectation and the exponential family corresponding to the agent’s expec-

tation.

Exponential Utility Traders Let θ be the current market state. We have shown

that an exponential utility trader with belief distribution parametrized by β will move

the market state to θ′ = 1
1+a

β + a
1+a

θ. Therefore, the trader’s expected net payoff is
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given by

Ex∼Pβ [C(θ)− C(θ′)− (θ − θ′)φ(x)]

= T (θ)− θEx∼Pβ [φ(x)]− (T(θ′)− θ′Ex∼Pβ [φ(x)])

= T (θ)− θ∇T (β)− (T (θ′)− θ′∇T (β))

= T (θ)− T (β)−∇T (β)(θ − β)− (T (θ′)− T (β)−∇T (β)(θ′ − β))

= DT (θ, β)−DT (θ′, β)

≥ 1

a
DT (θ′, β) ≥ 0

The second to last inequality holds since DT (θ′, β) is convex in θ′ and we have:

DT (θ′, β) = DT

(
1

1 + a
β +

a

1 + a
θ, β

)
≤ 1

1 + a
DT (β, β) +

a

1 + a
DT (θ, β)

=
a

1 + a
DT (θ, β)

Thus, a trader who moves the market state can expect his profit to be positive and

at least 1
a
DT (θ′, β).

3.12 Budget-limited Aggregation

In this section, we consider the evolution of the market state when traders are

budget-limited. We assume that the traders trade in multiple instances of the market.

That is, after the initial setup and trades, the outcome is revealed and the traders are

paid off. Then, the market runs again with the same set of traders and the outcome

drawn from a (possibly different) exponential family distribution. The goal of this

section is to analyze how the budgets of traders evolve under these circumstances. As

before, the market price is interpreted as a probability density over the outcome space
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and the share vector as the natural parameter of an exponential family distribution.

Consistent with the connections drawn in Section 3.5 and throughout, we measure

the error in prediction using the standard log loss.

We show that traders with faulty information can only impose a limited amount

of additional loss to the market’s prediction. Further, since informative traders ex-

perience an expected increase in budget, they will eventually be unconstrained and

allowed to carry out unrestricted trades. Taken together, this means that while the

market suffers limited damage from ill-informed traders, it is also able to make use

of all the information from informative traders in the long run.

Budget-limited trades Let α be the budget of a trader in the market. Suppose

that with infinite budget, the trader would have moved the market state from θ to

θ̂, where θ̂ represents his true belief. Now suppose further that α < C(θ̂) − C(θ);

that is, the trader’s budget disallows purchasing enough shares to move the market

state to his belief. In this case, we want to budget-limit the trader’s influence on the

market state.

Let the current market state be given by θ and let the final market state be

θ′ = λθ̂ + (1 − λ)θ where λ = min
(

1, α

C(θ̂)−C(θ)

)
. The cost to the trader to move

the market state from θ to θ′ is at most his budget α and is called his budget-limited

trade. We note here that it is not clear that this is the trader’s optimal budget limited

trade. In fact, under some circumstances it is known that moving along the straight

line is not optimal (Fortnow and Sami , 2012).

Note that while an uninformative trader is unconstrained in his belief, the infor-

mative trader’s belief corresponds to the parameter of the true distribution.

Limited Damage We will now quantify the error in prediction that the market

maker might have to endure as a result of ill-informed entities entering the market.

We assume that these entities trade in multiple instances of the market; thus the
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exposure of the market maker is over several rounds. The log loss function for θ

shares held is defined as L(θ, x) = − log p(x; θ) = C(θ)− 〈θ, φ(x)〉.

Lemma III.10. The loss induced on the market by an uninformative trader is bounded

by his initial budget.

Proof. First consider the change in budget of a trader i over multiple rounds of the

prediction market. Let his budget at rounds t and t− 1 be αti and αt−1
i respectively.

The change in budget for trader i moving the market state from θ to θ′ with outcome

xt is

αti − αt−1
i = C(θ)− C(θ′)− (θ − θ′)Tφ(xt) = L(θ, xt)− L(θ′, xt) = ∆t

i

Here ∆t
i is called the myopic impact of a trader i in round t. Thus, the myopic impact

captures incremental gain in prediction due to the trader in a round and is equal to

the change in his budget in that round.

Since the market evolves so that the budget of any trader never falls below zero,

the total myopic impact in T rounds caused due to trader i is

∆i :=
T∑
t=1

∆t
i =

T∑
t=1

(αti − αt−1
i ) = αTi − α0

i ≥ −α0
i

An interesting aspect of Lemma III.10 is that the log loss can be quantified in the

same units as the traders’ budgets.

Budget of Informative Traders We now characterize the expected change in

budget for an informative trader.

Lemma III.11. Let θ be the current market state. Suppose that an informative trader

with belief distribution parametrized by θ̂ moves the market state to the budget-limited
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state θ′ = λθ̂+(1−λ)θ. Then, the expectation (over the trader’s belief) of the trader’s

profit is strictly positive whenever his budget is positive and his belief differs from the

previous market position θ.

Proof. Let C be the log partition function T of the belief distribution. The payoff is

given by the sufficient statistics φ(x). Then the trader’s expected net payoff is given

by

Ex∼Pθ̂
[C(θ)− C(θ′)− (θ − θ′)φ(x)] = T (θ)− θ∇T (θ̂)− (T (θ′)− θ′∇T (θ̂))

= DT (θ, θ̂)−DT (θ′, θ̂) ≥ λDT (θ, θ̂) ≥ 0

where DT (·, ·) is the Bregman divergence based on T . The second to last inequality

holds since DT (θ′, θ̂) is convex in θ′ and we have:

DT (θ′, θ̂) = DT

(
λθ̂ + (1− λ)θ, θ̂

)
≤ λDT (θ̂, θ̂) + (1− λ)DT (θ, θ̂) = (1− λ)DT (θ, θ̂)

A trader who adjusts the market state may expect profit of at least λDT (θ, θ̂).

We note one important aspect of Lemma III.11: the expectation is taken with

respect to each trader’s belief at the time of trade, rather than with respect to the

true distribution. This is needed because we have made no assumptions about the

optimality of the traders’ belief updating procedure. If we assume that the traders’

belief formation is optimal, then this growth result will extend to the true distribution

as well.

Given a continuous density the probability a trader will form exactly the same

beliefs as the current market position is 0, and thus, each trader will have positive

expected profit on almost all sequences of observed samples and beliefs. This result

suggests that, eventually, every informative trader will have the ability to influence

the market state in accordance with his beliefs, without being budget limited.
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Notice that Lemma III.11 only required that the market state to which the trader

moves be representable as a convex combination of the current market state and

his belief. This means that the result holds for exponential utility traders aiming

to maximize their utility by Theorem III.7. In this case, the trader who moves the

market state can expect his profit to be positive and at least 1
a
DT (θ, θ̂) where a is

the exponential utility parameter. When the cost function is adjusted to Cλ with an

inverse liquidity parameter λ (Section 3.8), the trader receives expected payoff of at

least 1
a
DT (λθ, θ̂).

3.13 Discussion and Conclusion

The log partition function of the exponential family distribution can be used to

define a generalized LMSR cost function. If you further define securities whose payoffs

correspond to the sufficient statistics then the outstanding share vector corresponds

exactly to the natural parameters of the exponential family. This means that the

market state now defines an exponential family distribution over the outcome space.

It turns out that the dual variables of the natural parameters are the expected values

of the sufficient statistics. In terms of the market semantics, these may be interpreted

as the instantaneous prices of the securities. For instance, for a Gaussian market, these

values would correspond to the first and second moments of the outcome variable.

The market evolution when traders have exponential utility is particularly striking.

The market would essentially correspond to the average of the agent beliefs weighted

by their risk aversion parameters at equilibrium. There is also a surprising equivalence

between beliefs and trades in this market. An exponential utility trader engaging in

a trade in this market can be thought of as essentially updating his belief.

We have shown that the equilibrium market state in our prediction market mech-

anism is a risk-tolerance-weighted average of the natural parameters of the traders

and the market maker, with the more risk tolerant traders contributing more to the

65



market state. This result is quite natural, but appears to crucially depend on the

synergy between exponential families and exponential utility. Based on recent promis-

ing results (Hu and Storkey , 2014; Othman and Sandholm, 2011), Jacob Abernethy,

Rafael Frongillo and I advocate using risk measures, previously used predominantly

in financial mathematics, as a way to analyze trading decisions made by agents in pre-

diction markets (Abernethy et al., 2014a). For instance, Frongillo and Reid (Frongillo

and Reid , 2014) show that the equilibrium result we attained in exponential family

markets extends to risk-tolerance families of arbitrary risk measures: if the market

maker is risk-constant and traders seek to minimize their own risk measure, then

the equilibrium state is again the weighted average of trader beliefs. Thus, using risk

measures to characterize trader behavior appears to be a promising avenue for further

exploration.
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CHAPTER IV

Prediction Markets for Multiple Events

4.1 Introduction

In the previous chapter, we explored a deep connection between the seemingly

disparate concepts of exponential family distributions and cost function prediction

markets. In this chapter, we exploit this connection to develop prediction markets

for multiple events using graphical models. A graphical model (GM) provides a way

to efficiently encode interdependencies among jointly distributed variables especially

when conditional (in)dependencies exist. It is helpful to think of a graphical model in

terms of syntax and semantics. The graph itself is the syntax and the semantics are

the values you assign to the individual pdfs and the corresponding joint distributions.

We are interested in studying the interaction between prediction markets and

graphical models.

1. First, we consider a simple case of two prediction markets set up on the same

outcome space. In this case, the market makers may have different market

states based on the population of traders in each market. We ask, how should

such market makers communicate with each other to resolve any potential dis-

crepancies.

2. Now suppose we set up a single market on multiple outcomes. How should a
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trader reason about trading only on outcomes relevant to him?

3. We then generalize our first question as follows. Suppose we have separate mar-

kets on related events. Is there some formally characterizable communication

between the market makers that recognizes this relationship and reflects it in

their market states?

4.1.1 Related Work

Using graphical models for representing aggregate beliefs have been considered

by Pennock and Wellman (Pennock and Wellman, 2005). Their results focus on

characterizing the structure of the aggregate belief for a particular structure of agent

beliefs. Amos Storkey has shown that the equilibrium price can be modeled as a

probabilistic graphical model when individual agents are knowledgeable about some

subset of variables (Storkey , 2011). Recently, Frongillo and Reid have modeled agent

behavior using risk measures (Frongillo and Reid , 2014). They outline future work

based on modeling networks of agents graphically and characterizing their equilibrium

state. Prediction Market models based on graphical models have also been considered

by Sun et al. (2012, 2013). They use graphical models to efficiently compute the assets

held by a trader in combinatorial prediction markets.

4.2 Multiple Markets on a Single Event

To illustrate the need for understanding the relationship between related market

makers, we first examine the case with two market makers who have (currently)

disjoint sets of traders. A potential arbitrager may then exploit the discrepancy

between the market states, making a guaranteed profit from the resulting surplus.

We would like to formally characterize the behavior of an arbitrager who purchases

shares to maximize profit. This surplus can then potentially be split fairly amongst
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the market makers thus eliminating the arbitrage opportunity.

An arbitrager purchasing δ shares in one market with current share vector m1 and

selling it in the other market with current share vector m2 would make a profit of

−[C(m1 + δ)− C(m1) + C(m2 − δ)− C(m2)]

To maximize his profit the arbitrager sets δ = m1+m2

2
which would give a net profit

to the arbitrager. Note that the arbitrager has zero exposure in either market. In

general, if m2 > m1, any price in the interval (C(m1+m2

2
)−C(m1), C(m2)−C(m1+m2

2
))

paid from the second market maker to the first would leave both market makers in

at least as good a position as if an arbitrager made his optimal trade.

4.3 Partially Informed Traders

For this and the following sections, we are interested in developing market makers

for multiple, possibly correlated events. In this section, we consider a joint market

over multiple variables.

Typically, one assumes that traders in a prediction market have a belief on the

entire event space (or some statistic of the outcome, which is a function of the event

space). We can imagine scenarios where this is not necessarily the case. In this

section, we aim to characterize the interaction of traders with the Exponential Family

Market when they have access to some part of the data. For this we first recall the

Expectation Maximization Algorithm on exponential family distributions.

4.3.1 The Expectation Maximization Algorithm

The EM algorithm applies when you have some observed and some unobserved

variables. Let X be the set of unobserved and Y = y the set of observed variables
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that are jointly distributed as an exponential family

p(X, Y ) = exp{θTφ(X, Y )− ψ(θ)}

Thus, taken together, these variables represent the actual outcome and p(X, Y ) de-

fines the joint distribution on the outcome space. To compute the incomplete log

likelihood, notice p(X, y) = exp{θTφ(X, y)− ψ(θ)}, so that the conditional distri-

bution,

p(X|Y = y) ∝ p(X, y) ∝ exp{θTφ(X, y)}

Normalizing we’d have p(X|Y = y) = exp{−ψy(θ)} exp{θTφ(X, y)} where exp{−ψy(θ)} =

1∫
X p(X,y)

or

ψy(θ) = log

∫
X

exp{θTφ(X, y)} dx

So we can write p(X|Y = y) = exp{θTφ(X, y) − ψy(θ)} where θ are the natural pa-

rameters, ψy(θ)} is the log partition function and φ(X, y) are the sufficient statistics.

Now to maximize the incomplete log likelihood. The idea is to marginalize

out the unobserved variables. So

l(θ; y) : = log

∫
X

exp{θTφ(X, y)− ψ(θ)} dx

= log

exp{−ψ(θ)}
∫
X

exp{θTφ(X, y)}

 dx

= −ψ(θ) + log

∫
X

exp{θTφ(X, y)} dx

l(θ; y) = ψy(θ)− ψ(θ)

Now we can rewrite the incomplete log likelihood using convex analysis. Since
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ψy(θ) = supµy θ · µy − ψ∗y(µy) we can write

l(θ; y) = ψy(θ)− ψ(θ)

= sup
µy

θ · µy − ψ∗y(µy)− ψ(θ)

≤ θ · µy − ψ∗y(µy)− ψ(θ) := L(µy, θ)

The EM algorithm can then be seen as coordinate ascent on L(µy, θ). Note that

this isn’t the same as the incomplete log likelihood.

E Step µt+1
y = arg maxµy L(µy, θ

t)

M Step θt+1 = arg maxθ L(µt+1
y , θ)

Note that

µt+1
y = arg max

µy
L(µy, θ

t)

= arg max
µy

θt · µy − ψ∗y(µy)− ψ(θt)

= arg max
µy

θt · µy − ψ∗y(µy)

which means µt+1
y = Eθt [(φ(X, y))] hence this is the Expectation step.

Note also that in the second equation above, the argmax makes this equivalent to

directly working on the incomplete log likelihood so this step increases the incomplete

log likelihood as well (since there’s no slack).

Thus, if you look at the EM algorithm in the context of exponential families, you

can look at the expectation step as maximizing the mean parameter for a likelihood

function, and the maximization step as maximizing the natural parameter for that

mean parameter.
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4.3.2 Market Semantics of the Expectation Maximization Algorithm

Let us formalize the problem of a partially informed trader that was introduced

at the start of this section.

Suppose the prediction market is set up with a cost function of C(θ) where as

before C(·) is the log partition function of an exponential family distribution param-

eterized by θ. Let the payoff be given by φ(x, y). Suppose now that a trader in this

market has access to the actual values of y = Y . In this case, the optimal trade of

this trader will be given by (θ′ − θ) where θ is the current market state and θ′ is the

solution to

arg max
θ′
{(θ′ − θ) · E[φ(x, y)]− (C(θ′)− C(θ))}

Since the trader is indifferent to the variables x and he has a certain belief that y = Y ,

the expectation of φ(x, y) would be given by E[φ(x,Y)] =
∫
X Pr(x,Y|θ)φ(x,Y). That

is, the trader forms his belief about the expected payoff of the contracts based on the

revealed variables y and the current market state θ.

This leads to the following interesting observation.

Remark IV.1. Consider an exponential family market on variables X ∪Y . Suppose a

trader, who has access to the realized values of Y = y, forms his beliefs on the payoff of

securities based on the current market state and values y. Then the trader’s optimal

trade effectively performs an iteration of the Expectation Maximization algorithm in

this market.

4.4 Multiple Markets on Multiple Events

In this section, we set up a separate market for each of the correlated variables

where the dependencies between the variables is encoded using a graphical model.

We consider a case where the relationship between these variables can be charac-

terized by a chain.
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x1 x2 xn· · ·

We can thus factorize the joint density as follows.

p(x) = exp

{
〈θ,x〉+

1

2
〈〈Θ,xxT 〉〉 − ψ(θ,Θ)

}
∝ exp

{∑
i

θixi +
1

2

∑
i

∑
j

Θijxixj

}

Here θ = Λµ where Λ is the precision matrix and Θ = −Λ with the additional

constraint that Θij = 0 whenever (vi, vj) 6∈ E and θ. This constraint follows from

the Hammersley-Clifford theorem. This is the parametrization of the Gaussian in

exponential family form. Note that for this to be a valid distribution we require that

Θ ≺ 0 i.e., Θ is a negative definite matrix or its eigenvalues are less than 0. For the

chain, every row of Θ will only contain at most 3 non-zero elements.

Example 4.4.1. For instance for a 5 node graph, this would be

p(x) ∝ exp

{
5∑
i=1

θixi +
1

2

5∑
i=1

Θiix
2
i +

4∑
i=1

Θi,i+1xixi+1

}

Given this relationship between dependent variables, can we quantify the effect that

a trade in one market has on the predictive probabilities of events in a dependent mar-

ket? More formally, how does a shift in securities of x1 affect the marginal distribution

of x3. Let’s use the fact that the marginal distribution is actually parametrized simply

by µ3 and Σ33. We also use the fact that we have an expression for the natural param-

eters in terms of the mean and precision matrix to compute the marginal distribution

as follows. First note that Θ = −1
2
Σ−1 and θ = Σ−1µ. Note that µ3 ∝ (Θ−1 · θ)3.

Let’s represent buying δ shares in the first dimension as e1 · δ where ei is the vector
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with zeroes in all but the ith dimensions.

The new value of the x3’s mean is now µ′3 ∝ (Θ−1 ·(θ+e1 ·δ))3 = (Σ ·(θ+e1 ·δ))3 =

µ3 + σ31δ. The Sherman-Morrison formula (Sherman and Morrison, 1950) gives a

way to compute the new covariance matrix when there is change an element of the

precision matrix. In the following let u = v = (10 . . . 0)

(Λ + uvT )−1 = Σ− ΣuvTΣ

1 + vTΣu

= Σ− (Σu)(Σu)T

1 + σ11

= Σ− (σ11 . . . σn1)(σ11 . . . σn1)T

1 + σ11

= Σ− M

1 + σ11

. where the matrix M is given by Mij = σ1iσ1j. This means that the the new

covariance matrix for a purchase of δ shares is given by

Σ′ij = Σij −
δσ1iσ1j

1 + δσ11

Thus we are able to exactly characterize the shift in the marginal distribution

of a variable due to trades in a market of a separate (possibly indirectly) dependent

variable!

4.5 Single Market on Multiple Events

In this section, we consider a joint market over multiple variables and develop a

model, based on Gaussian Mean Random Fields, to characterize trading over some

subset of variables.
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4.5.1 A GMRF Market Maker

A graphical model (GM) is a representation of a joint probability distribution

over a collection of random variables usually represented as nodes on a graph and

encoding the dependencies using edges between these nodes. A particular type of

GM is the Gaussian Mean Random Field (GMRF) where each of the nodes is a

Gaussian random variable. The joint distribution turns out to be a Gaussian also.

This joint distribution needs to satisfy the Markov properties of the graph which in

essence encodes conditional independence relationships. Our goal is to construct and

analyze a market on dependent variables based on a GMRF.

Imagine we are given an undirected graph G = (V,E) and that each vertex vi ∈ V

corresponds to some random variable xi. Let the corresponding multivariate variable

x = (x1, . . . , xm)T be distributed as a multivariate normal (MVN). We abuse notation

slightly and refer to both the vertices and the corresponding variables as xi.

For this to be a valid GMRF, x will also have to respect the following equivalent

Markov properties of G:

Pairwise independence : xi ⊥ xj | x−ij if {i, j} 6∈ E and i 6= j

Local independence : xi ⊥ x−i,ne(i) | xne(i)∀i ∈ V

Global independence : xA ⊥ xB | xC for all disjoint sets A,B,C where C separates

A and B, A,B 6= ∅.

The Automated Market Maker We now define a joint market maker for mul-

tiple correlated variables, where the (in)dependence relationships are encoded by a

Gaussian Markov Random Field. The sufficient statistics for the corresponding MVN

are given by the vector

(xi, x
2
i ,∀vi ∈ V ;xixj, ∀(vi, vj) ∈ E)

75



First we set up the securities whose payoffs correspond to the sufficient statistics

of the model. This turns out to be

(x,xx>)

Then we define the cost of purchasing securities based on a potential function as

C(q1,Q2) = −1

4
q>1 Q−1

2 q1 −
1

2
log | − 2Q2|

Recall that the share vector (q1,Q2) corresponds to the number of outstanding shares

of securities that pay off x and xx> respectively. This corresponds to the natural

parameters of the MVN and can also be written in terms of the mean vector and

covariance matrix as q1 = Σ−1µ and Q2 = −1
2
Σ−1. This means that the marginal

distribution of any variable in this market can be directly obtained by a simple ma-

trix inversion and matrix vector product since the marginal distribution of the ith

component is simply the Gaussian parametrized by the mean µ(i) and variance Σii.

Now we analyze the behavior of a trader in this market who may be aware of only

some of the variables in this market. Such a trader should be able to represent his

belief in this market by purchasing only those securities whose payoff depends only

on the variables relevant to him.

For instance, the optimal trade of a trader who is only interested in x1 is obtained

as a solution to the following equations:

∇
q
(1)
1
C(q1,Q2) = m

∇
Q

(1)
2
C(q1,Q2) = m2 + v2

where m and m2 + v2 are his expected values of x1 and x2
1. This is equivalent to
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solving the minimization problem,

min
q
(1)
1 ,Q

(1)
2

{
C(q1,Q2)−mq

(1)
1 − (m2 + v2)Q

(1)
2

}

For a 2× 2 covariance matrix and 2-D mean vector we can explicitly compute these

values as follows.

C(q1, q2, q3, q4, q5) = −1

4
(q1 q2)

 q3 q4

q4 q5


−1 q1

q2

− 1

2
log

∣∣∣∣∣∣∣
−2q3 −2q4

−2q4 −2q5

∣∣∣∣∣∣∣
= −1

4
(q1 q2)

 q3 q4

q4 q5


−1 q1

q2

− 1

2
log(4q3q5 − 4q2

4)

Now, (q1 q2)

 q3 q4

q4 q5


−1 q1

q2

 = (q1 q2)
1

q3q5 − q2
4

 q5 −q4

−q4 q3


 q1

q2


=

1

q3q5 − q2
4

(q5q
2
1 − 2q1q2q4 + q3q

2
2)

So, ∇q1C(q1, q2, q3, q4, q5) =
q2q4 − q5q1

2(q3q5 − q2
4)

= m

q1 =
q2q4 + 2m(q3q5 − q2

4)

q5

∇q3C(q1, q2, q3, q4, q5) = m2 + v2

If a probability distribution satisfies the Markov properties of a given graph, then

it can shown that its density factorizes in terms of functions of the variables in the

cliques of the graph. That is

p(x) =
1

Z

∏
C

ψC(xC)

where Z is the normalization constant, ψC are potential functions dependent on C

the maximal cliques of the graph.
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4.6 Conclusion

In this chapter, we have analyzed interactions between concurrently run prediction

markets. We have identified the surplus that arises due to discrepancies in identical

markets run in different venues. We have also been able to precisely characterize the

effects of trades in a market on dependent markets. We have analyzed the behav-

ior of partially informed traders and shown a surprising correspondence to learning

algorithms.

While we have explored market interactions for a particular structure of dependen-

cies between variables, it remains to be seen whether these results are generalizable to

arbitrary relationships. We are also interested in characterizing the market semantics

of other learning algorithms (especially message passing algorithms) in these graphs.
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CHAPTER V

Myopic Regret Sequential Learning with Partial

Feedback

5.1 Introduction

Many online ranking, recommendation, and personalization systems rely on input

from multiple forecasters or experts. Combining multiple forecasters’ inputs appro-

priately is the central goal of a rich machine learning literature, but these internet

domains present a unique set of challenges to effective aggregation. In this chapter,

we introduce a new learning model that captures some of the characteristic features

of this forecast setting, and we present a technique to construct efficient learning algo-

rithms for this class of problems. Parts of this chapter were accepted for presentation

as Kutty and Sami (2010).

Internet-based Recommender Systems Expert forecasts and recommendations

in internet settings present the following challenges: First, the forecasters may be a

mix of best-effort forecasters and attackers with vested interests. We use a hybrid

stochastic-adversarial model to capture this peculiarity. Second, as a consequence of

forecast inputs arriving haphazardly over time, the algorithm not only has to be able

to provide prediction based on partial availability of expert forecasts, but also detect
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and mitigate the effect of cloning attacks.

In this chapter, we describe a technique to develop machine learning algorithms for

forecast aggregation systems based on the metaphor of a prediction market. Prediction

markets are markets that allow traders to bet on securities whose value depends on a

future event. One form of prediction markets, is a market scoring rule where traders

earn rewards proportional to the reduction in “loss” (measured using a proper scoring

rule) caused by their trades. Our approach involves designing a learning algorithm

by tracking a budget for each trader, and simulating a prediction market.

Prediction Market based Learning Algorithms based on prediction markets are

attractive for the particular features of the domains we are interested in, because of the

following reasons: First, traders’ budgets allow us to control the total net impact of a

single identity. By coupling traders’ payoffs to the effects of their actions, and limiting

their effect so that their budget is never negative, we can provide worst-case bounds

against adversarial forecasters. Second, in a setting with honest agents but stochastic

outcomes, a budget-proportional betting scheme (the Kelly criterion (Kelly , 1956))

leads to exponential growth in traders’ budgets (in expectation), and thus the small

initial budgets are not crippling to honest agents in the long run. Third, betting

protocols have been used before in machine learning algorithms, for the reasons above

(see, e.g., Shafer and Vovk (2001)). Prediction markets are a natural extension of

betting protocols to the sequential forecasting setting. Traders’ profits are based on

the extent to which they change forecasts, thus ensuring that merely cloning previous

information is not profitable.

In this chapter, we develop an algorithm that provides a weak performance guar-

antee that we call myopic regret. This notion of regret captures loss due to damage

from dishonest experts and loss of information from honest experts. However, this

regret does not capture loss due to a dishonest expert’s predictions affecting later
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honest experts’ inputs. This algorithm is based on work by Resnick and Sami (2007)

that introduced the notion of manipulation resistance in recommendation systems.

5.2 Problem Statement

The goal of a recommendation system is to provide item recommendations for a

target user from a set of items. To facilitate this recommendation, the algorithm

has access to the item ratings of other users (called raters) in the system. Thus,

the problem can be defined as that of predicting a label for every item based on

input from other users in the system. Note that in this case the target user is fixed

and irrelevant to a particular instance of the algorithm. The labels are assumed to be

binary ∈ {0, 1} and the input from the raters is in the interval [0, 1] and is interpreted

as the probability of an outcome of 1. Since all the ratings on a particular item are not

available simultaneously, the recommender system takes sequentially arriving ratings

as input produces a prediction as output. At some point the target user rates the

item. The algorithm uses this as feedback on the quality of predictions provided by

both itself and the raters.

In this scenario, the recommender system can be manipulated by malicious raters

that imitate helpful raters and thus artificially boost their perceived reliability. The

manipulation resistance layer defined by Resnick and Sami Resnick and Sami (2007)

is a way of weighting the sequence of predictions on a single item produced by the

recommender system due to each additional rating. Over a finite number of items

in the system, this layer renders the recommender system provably manipulation

resistant – in the sense that the loss incurred due to malicious raters is limited as is

the information lost from honest ones.

We extend this work as follows. First, we cast the problem in a generalized online

learning context. We provide a justification for using a prediction market approach

for machine learning algorithms. Additionally, we study a setting where the true label
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or outcome is not always known. Thus, we define a model and related analysis for

this limited feedback setting.

Related Work The idea of making it prohibitive for attackers to enter the system

is related to results on cloning-proof voting schemes that work when there is a small

cost to creating an account Wagman and Conitzer (2008). In other prior work Yu

et al. (2009) specifically consider a system to thwart cloning attacks in recommender

systems. They do not consider a sequential ordering on the experts; further, unlike

our model, their model assumes a strong similarity between the actual outcomes and

the forecasts of at least one expert. In Awerbuch and Kleinberg (2008), a generalized

multi-armed bandit model of recommendation is studied where there are multiple

users selecting an arm in each round. The users form coalitions allowing them to

exchange information; however, some of these users are dishonest. The actions de-

scribe the choice of a source of recommendations, and the quality of the actions is

allowed to change over time. The goal of the algorithm is to minimize the total cost

incurred by honest agents. They achieve a regret of O(T 3/4n log4 n). However, none of

these models explicitly capture the sequential nature of information or offer a hybrid

stochastic-adversarial analysis of the experts. Further, our work benchmarks our al-

gorithms against the optimal combination of experts. We call the previous algorithms

where all experts provide predictions on every round insomniac algorithms following

the nomenclature in Freund et al. (1997). In this section we will focus on a model

that extends the insomniac model to allow so-called specialists or sleeping experts.

This is a model of online learning with expert advice, where the experts are allowed

to abstain from giving their predictions. The motivation for this model comes from

various real-world scenarios where the goal is to combine the predictions of learning

algorithms that are trained for particular kinds of input instances, e.g., in document

classification or rating agencies. These algorithms may choose not to provide pre-
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dictions on instances that are not their specialty. Additionally, some of the experts

may be adversarial agents, who may provide their input strategically. One of the key

questions to address in this case is what a reasonable benchmark would be. Directly

applying that the usual best expert/combination does not work per se – what, for

instance, would ‘best’ really mean in this case? Current literature deals with this in

the following ways.

Kleinberg et al. (2008) deal with a best expert-type scenario. They set up the

problem so that there is no exogenous outcome being predicted. Instead, the experts

are viewed as actions and the goal is to pick the best action in each round. Each

expert incurs a loss in each round. At the end of each round, the algorithm either

observes the entire loss vector (full feedback) or only the loss of the expert they

choose (partial feedback). They benchmark their algorithm against the best ordering

of experts; the prediction in each round is compared against the best awake expert in

that round. They analyze their algorithm in two scenarios: one where the loss on the

experts are generated stochastically and the other where it is generated adversarially.

In the stochastic case with full feedback, their regret is dependent on the inverse

of the difference in expert loss means. In the partial feedback setting there is an

additional multiplicative factor of log T . Both of these algorithms are variants on the

respective insomniac versions. In the fully adversarial case, the bounds they achieve

are O(
√
Tn log n) and O(

√
Tn2 log n).

The goal in Freund et al. (1997) is to compare against a best linear combination

of awake experts. They provide a general reduction from an insomniac algorithm to

a sleeping version. However their bound weights the regret in each round by the total

weight of awake experts in that round. Thus, in a case where a majority of high-

weight experts are asleep, the actual regret of the algorithm is allowed to be high

even though the accounted regret falls within the given bounds. This type of bound

may be relevant in scenarios where the total weight of the awake experts affects the
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significance of a round.

Partial availability of expert advice is one way in which the algorithm is forced to

work with incomplete or missing information. In this section, we consider another set-

ting where the algorithm receives limited information. In this variant, the algorithm

receives feedback on its performance only in certain situations. Partial availability of

feedback has been modeled in one of two ways. In the first case, the outcome is itself

only revealed to the algorithm under certain conditions. In the other, the algorithm’s

goal is to choose between actions in each round, and its feedback is restricted to the

action that is chosen in that round. The challenge in both these cases is to make

good predictions with strong guarantees while dealing with this lack of information.

In prior work partial feedback has been studied as the Apple Tasting problem

Helmbold et al. (1992). The problem is set up as the task of inspecting and either

accepting or rejecting apples from a basket. Maximal loss is incurred when either

a bad apple is accepted or a good apple is rejected. To model partial feedback,

their model specifies that ‘accept’ always receives feedback, but a ‘reject’ never does.

The goal is to minimize loss in this setting. Their solution relies on an underlying

insomniac learning algorithm with a known mistake bound. Their loss is bounded

with respect to this algorithm’s bounds.

In this chapter, we consider the effect of partial feedback on a model where the

goal is to do almost as well as the optimal combination of expert advice rather than

the more restrictive mistake bound model. Partial feedback in our model is defined so

that the outcome is revealed every time the prediction exceeds a predefined threshold

and is not guaranteed to be revealed otherwise. In other words, if the prediction

exceeds the threshold, the outcome is revealed with probability 1, and if not, the

outcome is revealed with some probability < 1. We show that our algorithm achieves

a regret bound of O(n
√
T log T ).
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5.3 Model

We provide the highlights of this model below. First some notation. Let N be

the total number of experts. Let M be the total number of rounds. Let L(·, ·) be the

loss function that takes as input the true label ∈ {0, 1} (or equivalently {LO, HI})

and a prediction ∈ [0, 1]. The loss function is convex and has range ∈ [0, 1]. Here we

focus on the quadratic loss function.

We define σ(N) as a permutation of the set {1, . . . , N}. Let the sequence E =

〈e1, . . . , en〉 ⊆ σ(N). Thus, the length of E is |E| = n ≤ N . For a, b ∈ E,

• we say a � b if a precedes or is equal to b in the sequence E

• we say a = b v 1 if a immediately precedes b in the sequence E

Model

For a round i ∈ {1, . . . ,M}:

1. Nature selects the ith label ∈ {LO, HI} according to some known

prior p0. Here p0 is interpreted as the probability of HI.

2. E ⊆ σ(N) is stochastically picked from some unknown distribution.

This defines the sequence of participating experts.

3. For every participating expert j ∈ 〈e1, . . . , en〉

(a) j provides a prediction rj to some aggregation process

(b) The aggregation outputs qj which is a function of all qe where

e � j

(c) PFIL-Pred takes qj as input and produces q̃j as output

4. If q̃en ≥ qcutoff , the label li is revealed to PFIL-Rep
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5.4 Algorithm

The Partial Feedback Influence Limiter has two modules. The first PFIL-Pred

makes updated influence limited predictions based on the sequential output of the

aggregation process. This module is called at n times in each round. PFIL-Rep

updates the reputation of the experts based on their incremental informativeness

once feedback int he form of the true label has been received. This module is called

only once at the end of each round.

We will now describe the modules for The Partial Feedback Influence Limiter:

Partial Feedback Influence Limiter

Parameters:

λ: for all experts e ∈ {1, . . . , N}, initialize reputations at round 1, Re ← e−λ

p0: known prior, q̃0 ← p0

PFIL-Pred (qj):

For a round i ∈ {1, . . . ,M}:

Parameter: ε: parameter for the biased coin

Internal state: q̃jv1: output from previous call

1. Compute influence limited prediction

(a) βij ← min(1, εRj)

(b) q̃j ← (1− βij)q̃jv1 + βijqj

2. toss a biased coin with Pr(heads) = ε

if (q̃j < qcutoff and heads) output qcutoff

else output q̃j
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PFIL-Rep (qj, l
i):

For a round i ∈ {1, . . . ,M}:

Internal state: heads: outcome of biased coin from PFIL-Pred

Rj: current reputation of expert j

ε: parameter for the biased coin from PFIL-Pred

1. if q̃j ≥ qcutoff

update reputation Rj ← Rj + βij[L(li, q̃jv1)− L(li, qj)]

2. if q̃j < qcutoff and heads

update reputation Rj ← Rj +
βij [L(li,q̃jv1)−L(li,qj)]

ε

5.5 Myopic Regret

In this section we will compute the total myopic regret of the algorithm as a

function of the loss induced by dishonest experts and the loss of information from

honest experts due to influence-limiting. This regret does not account for loss due to

imperfect aggregation.

5.5.1 Limited Damage

The limited damage theorem says that the algorithm is secure against cloning

attacks when the number of clones is finite and bounded. Note that since an attacker

has no control over ε, that part of the algorithm cannot be used in an attack.

Proposition V.1. For any iteration of the algorithm Rj is always non-negative. That

is, Rj ≥ 0. Similary for βij.

Proof. For Rj ≥ 1/ε ≥ 1, βij = 1 and Rj ≥ 0. For Rj < 1/ε, βij = εRj and either

Rj ≥ Rj(1− ε) ≥ 0 or Rj ≥ 0.
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Let ∆i
j denote expert j’s myopic impact on round i i.e., the reduction in prediction

loss.

Proposition V.2. The reduction of incremental prediction loss (i.e., impact of player

j on round i’s prediction) is at least the expected change in his reputation on i’s

prediction, i.e.,

∆i
j ≥ E[∆Ri

j]

for a fixed value of βij.

Note that impact of a expert is defined as the incremental gain that the expert

causes. Thus, it is the improvement in prediction due to the expert.

Proof.

∆i
j

def
= L(li, q̃jv1)− L(li, q̃j)

= L(li, q̃jv1)− L(li, (1− βij)q̃jv1 + βij q̃j)

≥ L(li, q̃jv1)− (1− βij)L(li, q̃jv1)− βijL(li, q̃j)

= βij[L(li, q̃jv1)− L(li, q̃j)] = Ec[∆Ri
j]

where Ec[∆Ri
j] is the expected value of the change in reputation over the random coin

tosses.

Let Bj be a distribution over the sequence (β1
j , . . . , β

m
j ) as generated during m

iterations for expert j and the outcome of the random coin tosses have distribution

c.

Proposition V.3. Expected net decrease in incremental prediction error due to j

over all rounds,

E[∆j] ≥ −e−λ
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Proof. Since Rj ≥ 0 and the initial value of Rj = e−λ, Rj can reduce by at most this

much over all rounds and the expectation of change in Rj can never be less than this.

EBj
[∆j] = EBj

[
∑

i

∆i
j]

≥ EBj
[
∑

i

Ec[∆Ri
j]]

= EBj
[Ec[
∑

i

∆Ri
j]] = EBj

[Ec[∆Rj]]

≥ EBj
[−e−λ]

= −e−λ

where EBj
[∆j] is the expected value of reduction in prediction loss over m rounds over

the distribution Bj on (β1
j , . . . , β

m
j ).

Using the fact that budget changes are tied to the actual increase or decrease in

loss due to an expert, we immediately get the following result:

Theorem V.4. (Limited Expected Damage) If an attacker controls η experts, the

total expected increase in prediction loss is at most ηe−λ over all rounds where the

expectation is over the random coin tosses of the algorithm. This result is with respect

to an adversarial model of experts whose forecasts may be arbitrarily chosen.

5.5.2 Limited Expected Information Loss

In this model, each expert j is assumed to have some private information that tells

him something about the the world. Specifically, the expert sees the world as divided

into disjoint and complete subsets where any two elements in a particular subset are

indistinguishable to him. The reported predictions of all experts and a realization

of the features of a round will define a particular state of the world. Obviously the

world actually exists in a particular state. A stochastic assumption on these states

says that each round is drawn iid from a distribution on these states. This will allow
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us to define informativeness of a user with respect to the refinement of partitions

that she induces. Note that a smaller subset does not always mean a more accurate

prediction i.e., the probability that the target will like the round does not necessarily

always grow towards the actual label. Since we are assuming that each round is either

liked (HI) or disliked (LO), and the identification of the partition is correct, we can

accurately predict the probability that an round that lies in this component is liked.

This is ideal; we would like to say that the algorithm does not differ too much from

this ideal – i.e., not too much information is lost due to discounting some of the

experts’ recommendations.

First define informativeness as:

I(π̂j|π̂jv1)
def
=

∑
ω∈Ω

pω[L(l(ω), qjv1(ω))− L(l(ω), qj(ω))]

=
∑
s∈π̂j

ps[qj(s){L(HI, qjv1(s))− L(HI, qj(s))}

+(1− qj(s)){L(LO, qjv1(s))− L(LO, qj(s))}]

=
∑
s∈π̂j

psD(qj(s)||qjv1(s))

where D(q||r) = q[L(HI, r)−L(HI, q)]+(1− q)[L(LO, r)−L(LO, q)]. Here qj(s)

is the probability that the target outcome will be HI in state s as identified by the

information received from experts 1, 2, . . . , j i.e., s is a component of π̂j and qj(s) is

the fraction of rounds in s that are labelled HI. Note that at this stage, it is not known

exactly which component of π̂j the true state of the world lies in. This is reflected

in the informativeness by summing over all possible states. This, of course, means

that where you are in the sequence could change an expert’s informativeness. Thus,

we would need to assume that an expert cannot conspire to change the sequence. In

other words, this bound assumes that the attackers are passive in this sense. Note

that the damage bound does not require this. We do not need to assume the same

sequence over all rounds, since the stochastic assumption can include in the state of
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the world all possible sequences of predictions as well. If the expert could pick where

he occurs in the sequence he could use the probability distribution on the states of

the world to compute the optimal placement in the sequence so as to maximize his

informativeness in each round.

Now consider the growth of Rj, in each iteration. Rj is updated as:

Ri
j ← Ri−1

j + βij[L(li, q̃jv1)− L(li, qj)]

where q̃jv1 is the prediction based on previous experts and qj is j’s prediction. Thus,

j’s reputation grows differently when the expert is influence limited than when he is

not.

Consider a fixed round i and βj.

Case 1 Rj ≥ 1/ε

In this case, βj = min(1, εRj) = 1. Thus, if expert j causes the prediction of a

component to change from u to q, the reputation is updated with probability q as

Ri
j ← Ri−1

j + [L(HI, u)− L(HI, q)]

and with probability 1− q as

Ri
j ← Ri−1

j + [L(LO, u)− L(LO, q)]

Thus, j can expect the change in his reputation to be:

E[Ri
j −Ri−1

j ] = q[L(HI, u)− L(HI, q)] + (1− q)[L(LO, u)− L(LO, q)]

= D(q||u)

Case 2 Rj < 1/ε
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In this case, βj = min(1, εRj) = εRj and the expert is influence limited. The

reputation is updated with probability q as

Ri
j ← Ri−1

j (1 + ε[L(HI, u)− L(HI, q)])

and with probability 1− q as

Ri
j ← Ri−1

j (1 + ε[L(LO, u)− L(LO, q)])

Note that if q̃iter < qcutoff , with probability 1− ε, Rj remains unchanged and the

following equations still hold. Thus,

E[logRi
j] = logRi−1

j + q log(1 + ε[L(HI, u)− L(HI, q)])

+(1− q) log(1 + ε[L(LO, u)− L(LO, q)])

= logRi−1
j + GFε(q||u)

where

GFε(q||u)
def
= q log(1 + ε[L(HI, u)− L(HI, q)])

+(1− q) log(1 + ε[L(LO, u)− L(LO, q)])

and the expectation is over the random coin tosses and q. This is the change expected

once the component is fixed. Averaging over all components, we have

EGFε(π̂j||π̂jv1)
def
=
∑
s∈π̂j

psGFε(qj(s)||qjv1(s))
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Note that for MSE loss, and with u = q + y and q = 1− q

GFε(q||u) = q log(1 + ε[(1− (q + y))2 − (1− q)2])

+(1− q) log(1 + ε[(q + y)2 − q2])

= q log(1 + ε[(q − y))2 − q2]) + q log(1 + ε[2qy + y2])

= q log(1 + ε[y2 − 2qy]) + q log(1 + ε[y2 + 2qy])

Lemma V.5. For the quadratic scoring rule (MSE) loss, for all q, u ∈ [0, 1], GFε(q||u) ≥
εD(q||u)

2
.

Proof. Key observation: GFε(q||u) = GF (q||u) for ε = 1 and

GFε() is a concave function1.

First consider the function log(1 + εc) for constant (wrt ε) c. Observe that the

second derivative is

δ2

δε2
log(1 + εc) =

δ

δε

(
c

1 + εc

)
=

−c2

(1 + εc)2

which is negative for any real value of c.

Thus, the second derivative (wrt ε) of GFε(q||u):

δ2

δε2
GFε(q||u) =

δ2

δε2
(
q log(1 + ε[y2 − 2qy]) + q log(1 + ε[y2 + 2qy])

)
≤ 0 (for any q and u)

1A function f is concave iff for x, y in the domain of f and 0 ≤ t ≤ 1 f(tx + (1 − t)y) ≥
tf(x) + (1− t)f(y)
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In other words, GFε(q||u) is a concave function of 0 ≤ ε ≤ 1 and thus,

GFε(q||u) ≥ εGF1(q||u) + (1− ε)GF0(q||u)

= εGF (q||u) + (q + q) log 1

= εGF (q||u) + 0

≥ εD/2

The last inequality was proved in Resnick and Sami (2007). We will also need the

following lemma for Theorem V.8.

Lemma V.6. For the quadratic loss function, for all q, u ∈ [0, 1], and for any t ≥ 1,

GFt(q||u) ≥ 0 where

GFt(q||u)
def
= [q log(t+ L(HI, u)− L(HI, q)) +

(1− q) log(t+ L(LO, u)− L(LO, q))]− log t

This was proved in Resnick and Sami (2007). We will reproduce the proof here

for completeness. It is easy to see that GF ′t(y) ≥ 0, which is sufficient to show that

GFt(q||u) is nonnegative, because GFt(q, q) = 0.

Lemma V.7. Suppose π̂j and π̂jv1 are two partitions such that π̂j is a refinement of

π̂jv1. For each state ω, let qj(ω)
def
= E(l(ω)|π̂j) be the optimal prediction function

given partition π̂j. Let u(ω) be any function that is constant on each component of

π̂jv1. Then,

EGFε(qj||u) ≥ ε

2
I(π̂j||π̂jv1)

in the quadratic loss model.
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Proof. For simplicity, we prove the result assuming for a single component sjv1 of

π̂jv1; the stated result follows easily by averaging over all such components.

Suppose component sjv1 ∈ π̂jv1 has been identified. Corresponding to sjv1, there

is some set S of components of π̂j, such that ∪s∈S s = sjv1. Now since u is constant

on each component of π̂jv1, we can define u = u(ω) for ω ∈ sjv1.

Let qjv1
def
= E(l(ω)|π̂jv1) be the optimal prediction for ω ∈ sjv1 (recall that this

is constant over sjv1) and qj(s)
def
= qj(s), s ∈ S, i .e. qj(s) is the optimal prediction

for a state in s.

Recall that we have assumed that sjv1 (and hence S) has been identified. Thus

we may define ps as the probability of component s, so that
∑

s∈S ps = 1. These

probabilities are assumed to be common knowledge (stochastic assumption).

Now,

EGFε(π̂||u) =
∑
s∈S

psGFε(qj(s)||u) (by definition)

≥ (ε/2)
∑
s∈S

psD(qj(s)||u) (from Lemma 5)

≥ (ε/2)
∑
s∈S

psD(qj(s)||qjv1) (see note below)

= (ε/2)I(π̂j||π̂jv1) (by definition)

Note: This inequality follows from the fact that qjv1 is the optimal prediction given

information π̂jv1, i.e., it minimizes expected loss among all functions u that are

constant on components of π̂jv1, where the expectation is over the probabilities ps.If

u is not optimal, D(qj(s)||u) can only go up in expectation (over components s).

We can use the fact that trades are proportional to current budgets to prove a

result on the expected growth of reputation among honest experts, thereby bounding

the information lost from these experts:
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Theorem V.8. (Limited Expected Information Loss) Suppose expert j has made

predictions for m rounds. Let hj denote the expected reduction in prediction loss due

to j’s prediction. Then, for all sufficiently large m, expert j’s expected reputation

(with MSE loss) is bounded below by

E(Rj) ≥ mhj − (2λ/ε) + (2/ε) log ε− (2/ε) log[mhjε− 2λ+ 2 log ε]

Here the expectation is with respect to a stationary distribution on the forecasts of

honest experts.

Proof. As discussed above, the reputation of an informative expert j grows in two

phases. Here we show that while εRj is below 1, it tends to grow exponentially.

Once the reputation hits 1/ε, εRj grows linearly. To this end, we define a function

G : <+ → <:

G(x) = x+ 2 log x

We observe that G(x) is increasing, invertible, and concave. Also, note that for the

initial value of the reputation,

G(εRj) = G(εe−λ)

= εe−λ + 2 log(εe−λ)

= εe−λ + 2 log ε+ 2 log(e−λ)

> −2λ+ 2 log ε

Now, let G
(i)

denote the expected value of G(εRj) after rounds 1, 2, · · · , i. G(0)
=

G(εe−λ).

Claim: G
(i+1) ≥ G

(i)
+ εh

Consider the distribution of G(εRj) after i rounds. Let g be any possible value in

this distribution. We show that, conditioning on G(εRj) = g after round i, the
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expected value of G after round i + 1 is at least g + εh. Note that E(G(εRj)) =

E(εRj) + 2E(log εRj). When εRj > 1, we will show that εRj increases by εh in

expectation. When εRj ≤ 1, we will show that 2 log εRj increases by εh in expectation.

In either case, the other term does not decrease in expectation.

Case (i) : g < 1. In this case, εRj + 2 log εRj < 1, and so εRj < 1 and j is

influence limited. Consider the logarithmic term 2 log x in G(x). The experts before

j have combined information represented by the partition π̂jv1; thus, none of them

could have distinguished between two states in the same component of π̂jv1. Thus,

the predictions on round i just before j’s prediction is a function that is constant on

components of π̂jv1. The influence-limited prediction q̃jv1 is therefore also a function

that is constant on π̂jv1. Thus, by Lemma V.7, the expected increase in the log εRj

term from the ith to the i+1st round is at least εh/2. Since log is a monotonically in-

creasing function, the linear term also increases in expectation. Thus, the expectation

of G after i+ 1 rounds must be at least g + εh.

Case (ii) : g ≥ 1 In this case, εRj ≥ 1 and j has full credibility with βj = 1. By

the same argument as in case (i), the previous predictions q̃jv1 is a function that is

constant on π̂jv1. Thus, as shown, Rj increases in expectation by D(π̂j||π̂jv1). By

definition of informativeness I(π̂j||π̂jv1), the expected value of εRj increases by at

least εh. By lemma V.6, with t = εRj ≥ 1, the expected value of the logarithmic

term does not reduce. Thus, in this case too, the expected value of G after i + 1

rounds must be at least g + εh.

As this is true conditioned on any value of g, it must be true in expectation. Thus,

G
(i+1) ≥ G

(i)
+ εh, and hence, G

(m) ≥ G
(0)

+mεh > mεh− 2λ+ 2 log ε.

For

m ≥ 1 + 2λ− 2 log ε

εh

we have mεh− 2λ+ 2 log ε ≥ 1 and thus, log[εmh− 2λ+ 2 log ε] ≥ 0.
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Setting r = εmh− 2λ+ 2 log ε− 2 log[εmh− 2λ+ 2 log ε], we see that

G(r) = r + 2 log r

= r + 2 log[εmh− 2λ+ 2 log ε− 2 log(εmh− 2λ+ 2 log ε)]

≤ r + 2 log[εmh− 2λ+ 2 log ε] (since log(εmh− 2λ+ 2 log ε) ≥ 0)

= mhε− 2λ+ 2 log ε < G
(m)

= G(E(εRj))

As G is an increasing function, it follows that E(εRj) ≥ r = mhε−2λ−2 log(mhε−2λ)

and

E(Rj) ≥ mh− (2λ/ε)− (2/ε) log[mhε− 2λ]

Tying this result to that of Proposition V.2, we have that the expected reduction in

prediction loss due to expert j over m rounds is at least mh−(2λ/ε)−(2/ε) log[mhε−

2λ], where the expectation is over the distribution on j’s influence limit (i.e., βj), the

random coin tosses and the stochastic assumption on the rounds. Note that if the

expert were not influence limited (had βj always been 1), the expected impact would

have been mh. Thus, at most (2λ/ε) + (2/ε) log[mhε− 2λ] units of information have

been lost to accommodate influence limiting from a expert j.

5.5.3 Bounded Myopic Regret

In addition to the loss of information due to influence limiting, we also incur a

loss of at most 1 for those rounds i for which expert predictions are ignored and a

boosted probability of qcutoff is reported. Thus, if we assume ψ to be the probability

of the event that q̃j < qcutoff then the probability that boosted probability is output

by the algorithm is ψε. Then, the gain in prediction over all rounds and all experts
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in an execution of the algorithm is at least

(1− ψε)
n∑
j=1

[mhj − (2λ/ε)− (2/ε) log[mhε− 2λ]]− ψε

Picking ε = 1/
√
m gives us a myopic bound of O(m1/2 logm) per round. Intu-

itively, this choice of ε allows us to minimize regret while maximizing information

gained.

As noted earlier, this notion of regret is myopic in that it fails to capture the

effect that dishonest predictions have on later honest experts’ predictions. In other

words, we do not capture the loss due to aggregating dishonest predictions in making

predictions attributed to honest experts.

Combining these two results we obtain the following regret bound:

Corollary V.9. The Partial Feedback Influence Limiter achieves an asymptotic regret

bound of

O(n
√
m logm) for an appropriate choice of algorithm parameters ε and λ where regret

is measured with respect to the expected reduction in prediction loss due to n experts

across m rounds.

5.6 Discussion and Extensions

5.6.1 Alternative Feedback Models

In this chapter, we considered a model in which feedback is not always available

when the predicted probability of a ‘1’ label is below a threshold. This is natural in a

setting where ‘1’ is interpreted as the high-value prediction. However, there may be

other natural models of partial feedback under different circumstances. For example,

feedback may be expected whenever the probability placed on any single label is high;

alternatively, it may be expected only when the probability is not concentrated on
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any one label. Our technique can be extended directly to these alternative models of

feedback.

5.6.2 Betting Protocols and Prediction Markets

The use of a betting analogy is a powerful tool in online learning algorithms: the

state of the algorithm is represented as a capital process, such that the transition

between states (i.e., changes in capital) can be represented as bets Shafer and Vovk

(2001), Vovk et al. (2005). In models that require a hybrid of worst-case and expected-

case analysis, such as the one we have presented and analyzed here, betting models

are particularly attractive as a way to combine both objectives:

1. The allocation of initial budgets, together with a non-negative capital con-

straint, provide a framework to prove worst-case bounds across all possible

evolutions of the system, as long as we can tie the variable to be bounded to

the outcome of a bet with variable stakes.

2. We can use wealth-proportional betting strategies, scaled according to the Kelly

criterion Kelly (1956), to prove results in expected growth of capital under

stochastic informativeness assumptions, while respecting the non-negative cap-

ital constraint.

Prediction markets are markets that allow traders to bet on securities whose value

depends on a future event; for example, on the Iowa Electronic Market, the outcome

of a presidential election. One of the key motivations of using prediction markets as

a forecasting tool is that the provide an incentive to acquire additional information

and improve the current market forecast. One form of prediction markets, which is

rapidly gaining in popularity, is the market scoring rule Hanson (2003b). In a market

scoring rule, traders earn rewards proportional to the reduction in “loss” (measured

using a proper scoring rule) caused by their trades; in other words, the difference in
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the loss of forecasting based on market price after their trade as compared to the

market price after the previous trade. The reputation update rule in Algorithm 2

roughly implements a market scoring rule: An expert wagers a fraction of her current

reputation in a market to forecast the label of the current round. This technique

translates the advantages of a betting/capital process model of online learning to a

setting with sequential forecasts.

5.6.3 Limitations of the Technique

In the discussion above, we have higlighted the advantages of using the sequence

information if available, through a weight-update algorithm based on sequential bet-

ting. Here, we remark that there are some situations in which it may be better to

move away from a sequential structure, or ignore the sequence information even when

available. One danger of using the sequence information is that, as the first contribu-

tor of a piece of information is disproportionately rewarded, it could create incentives

to race if information is public and freely accessible. Hence, if the genuine experts

are more passive than the attackers, they may command a smaller share of the total

weight over time. If information is public but costly, this may still occur, but there is

a countervailing advantage that the genuine expert community has been spared the

cost of acquring information.

5.7 Conclusion

In this chapter, we presented a model and an algorithm that uses a sequence of

expert advice to make predictions on the class label of a data point under partial

monitoring conditions. Our main technique involves a reputation system based on

incremental information received from the experts. We showed that for particular

choices of algorithm parameters, we are able to achieve O(n
√
m logm) regret. We

also considered separate information loss and damage bounds, and argued for the
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utility of such a dual analysis. Different choices of the algorithm parameter allow us

to shrink one bound at the expense of the other. This can be exploited with specific

domain knowledge to thwart attacks from malicious entities. We also considered

other solutions to this problem using existing techniques and identified cases where

our algorithm performs better.

In our model for analyzing information loss, we have assumed that every addi-

tional advice received is aggregated perfectly with advice received before. In the next

chapter we relax this assumption and prove a nonmyopic regret bound.
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CHAPTER VI

Bounded Regret Sequential Learning of

Exponential Families

6.1 Introduction

In Chapter V, we presented an algorithm based on a prediction market metaphor

that gave a myopic regret bound of O(n
√
m logm) for a partial feedback setting; this

regret bound does not account for loss due to imperfect aggregation of information.

In this chapter we develop a new algorithm that satisfies a stricter definition of regret;

in particular the algorithm we study here learns exponential family distributions in

a hybrid stochastic-adversarial setting with sequentially arriving data. Parts of this

chapter were accepted for presentation as Kutty and Sami (2011).

Similar to other learning algorithms, the advice of an expert is combined in accor-

dance with his past performance when making a prediction. The difference here is that

we use the notion of budgets (mapped to ‘influence’ here) and budget-proportional

betting. This allows us to port the advantages of prediction markets to a learning

environment. Our focus is the following hybrid model: a stochastic process generates

data sequentially and a Byzantine adversary is allowed to inject noise at any point

during this process. A prediction market-based model provide a natural way to cap-

ture this scenario and hence provide better bounds. It also allows for composability.
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By this we mean that although the reliability of the experts needs to be the same

across all rounds, the distribution being learned can vary. We also require that the

distribution be a member of an exponential family. This approach also allows for

partial aggregation and thus not all experts are required to make predictions in every

round. The ability to deal with experts abstaining from giving advice in every round

has been studied previously as ‘sleeping experts’ or ‘specialists’. The particular ad-

vantage with our approach is that we are able to provide partial aggregations as we

receive more information.

We develop a modular framework for the construction of algorithms based on

prediction markets. The first module, the Influence Limiting and Scoring module, is

domain independent; it performs a budget update and determines the influence of an

expert based on his current budget. The second, domain-specific module, called the

Weighted Trade Market module, will map updates of the learned forecast to trades

in a prediction market.

We demonstrate the applicability of this framework by using it to construct an

algorithm for a general problem: learning proceeds in sequence of rounds. In each

round, a sequence of datapoints is received from multiple experts. The experts com-

prise adversarial attackers as well as honest experts with stochastic samples of data.

The stochastic process is assumed to be modeled by an exponential family with a dif-

ferent parameter in each round whose value is revealed at the end of every round. The

goal of the algorithm is to predict the stochastic distribution generating the data sam-

ples by evaluating the reliability of the sources; ideally the algorithm learns to discount

the noisy samples provided by the adversarial experts while completely incorporating

the legitimate samples provided by the honest ones in its prediction. Existing methods

that do not explicitly handle sleeping experts yield trivial bounds when experts sleep

strategically. Our algorithm achieves a regret bound of O(a log(1+e−r)+b log(1+er))

where r is an algorithm parameter and a is the number of honest experts and b is
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the number of dishonest experts. We compare this algorithm to existing methods for

handling sleeping experts in Section 6.8.

Related Work The connection between machine learning and prediction markets

is an active area of research. Chen and Vaughan (2010) and Abernethy et al. (2011)

have previously explored the connection to learning algorithms to inform the design

and understanding of prediction markets. In particular, Chen and Vaughan (2010)

consider the correspondence between prediction markets with market scoring rules

and the Follow the Regularized Leader algorithm proposed by Kalai and Vempala

(2005) and thus provide insight into the aggregation mechanism of a prediction mar-

ket. Abernethy et al. (2011) use convex optimization techniques to design efficient

markets. Storkey (2011) has considered machine learning algorithms, particularly

aggregation methods, and has shown how to interpret these algorithms as prediction

markets using appropriately defined utility functions. Lay and Barbu (2010) set up

and simulate a prediction market to aggregate multiple classifiers and provide an

interpretation for the resultant prices. They measure the performance of their algo-

rithm experimentally. To the best of our knowledge, the use of prediction markets

to construct bounded regret algorithms in sequential advice settings has not been

previously explored.

For problems where the number of dishonest experts dominate the number of

honest ones, our bound is comparable to Littlestone et al. (1991); in others it is

slightly worse. However, our algorithm allows for the experts to sleep strategically

which makes the resulting problem more challenging. The only other prior work

that has a similar model is Freund et al. (1997); unlike our bound, however, their

regret bound is weighted so that all rounds do not have the same significance in

computing regret. Azoury and Warmuth (2001) consider learning exponential family

distributions in a traditional online model (without experts) and provide worst case
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loss bounds relative to using an offline algorithm. Dekel et al. (2008) are concerned

with eliciting truthful advice from self-interested agents who each believe in different

true distributions. Thus, rather than comparing against a particular true distribution,

they use the average of all agent’s beliefs as a benchmark.

6.2 Definitions and Notation

Exponential Families and Conjugate Priors Recall that a member of an ex-

ponential family F , Pβββ ∈ F assigns a probability density (with respect to some base

measure) over x defined over a space X as follows:

Pβββ(x) = eβββ.φφφ(x)−ψ(βββ)

Note that X could be a multi-dimensional space.

Here, the set of parameters βββ is drawn from some space B. ψ(βββ) is the log partition

function and φφφ(x) is the vector of sufficient statistics.

We will consider the problem of determining the value of the natural parameter

βββ in a Bayesian setting. In this setting, a prior distribution on all possible values

of βββ ∈ B is known. Sequentially arriving data x ∈ X drawn according to Pβββ(x) is

provided to the algorithm based on which it updates the distribution on B. This

posterior distribution on B is the prediction output by the algorithm.

In Bayesian probability theory, if the posterior distribution is of the same form

as the prior probability distribution, the prior is called a conjugate prior. This is

desirable for analytic convenience. It is known Diaconis and Ylvisaker (1979) that

the corresponding member of the conjugate prior exponential family F∗ defined on

βββ ∈ B has the form

P ∗b(βββ) = eb·βββ
∗−ψ∗(b)

where ψ∗ is the log-partition function, b is the natural parameter and the sufficient
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statistics are βββ∗ = (βββ,−ψ(βββ)).

Expert identities We assume that the datapoints arrive sequentially from sources

called experts. These experts have identities in {1, . . . , N}. We assume throughout

that these identities are non-forgeable. The set of expert identities is partitioned into

the set of honest experts H and the adversarial experts H.

Partial permutation of participating experts Learning in our model occurs in

rounds. In each round, the set of experts that participate and the order in which they

provide their datapoints may vary. To formalize this, we define a partial permutation

Ek that identifies the experts who participate in a round k. Ek also fixes the order

in which they participate. Ek is picked adversarially.

Define σ(N) as a permutation of the set {1, . . . , N}. Let the sequence Ek =

〈e1, . . . , eNk〉 ⊆ σ(N). Thus, the length of Ek is |Ek| = Nk ≤ N .

• For a, b ∈ Ek, we say a � b if a precedes or is equal to b in the sequence Ek

• For a, b ∈ Ek, we say a = b v 1 if a immediately precedes b in the sequence Ek

• For Ek = 〈e1, . . . , eNk〉 ⊆ σ(N), we call 〈e1, . . . , en〉 with n ≤ Nk a prefix of

Ek, 〈ea1 , . . . , ean〉 a subsequence of Ek if the indices ai are in strictly increasing

order and 〈ean′ , . . . , ean〉 a substring of Ek if the indices ai are consecutive natural

numbers.

Structure of a round In each round k, an adversarially picked sequence Ek of

length Nk ≤ N is given. Based on Ek the algorithm is given a sequence of possibly

noisy datapoints x̃k = (x̃
(e1)
k , . . . , x̃

(eNk )

k ) ∈ XNk . These samples x̃
(ei)
k are drawn ad-

versarially if the identity ei ∈ H. If ei ∈ H the sample is drawn from Pβββk for some

βββk ∈ B. βββk is itself drawn according to a known prior distribution P ∗0 ∈ F∗. βββk is
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revealed to the algorithm at the end of every round. The goal of the algorithm is to

predict a distribution Qk over B so as to minimize the loss log [Qk(βββk)].

Attack strategies for adversarial samples In this model, we restrict the power

of attackers by prescribing an attack model that captures the fact that while attackers

can modify the honest data by adversarially injecting new data into the sequence, the

data injected can only depend on honest data that is revealed earlier.

Let A(ei)
k be the attack strategy for a round k with parameter ei ∈ H. Then

A(ei)
k is a function that depends on the datapoints (x̃e1k , . . . , x̃

(eiv1)
k ). The parameter

(ei) specifies both the identity and position of the attacker in the sequence. A(ei)
k

has access to all historical data from rounds (1, 2, . . . , k − 1), including realized data

(βββ1,βββ2, . . . ,βββk−1), the reputations of all the experts at the start of the kth round, etc.

The only relevant constraint is that A(ei)
k must be independent of future data. We

denote by Ak the collective attack strategies for all attack identities for round k.

Apart from being independent of future data, the attack datapoints are completely

arbitrary, and the attacker is free to choose the timing of her data as well as their

content. This is captured by the fact that the partial permutation of participating

experts is adversarially determined. Thus, this notion of an attack strategy admits

non-myopic attacks as well: the attacker may inject a datapoint before anticipated

honest data, not because of the immediate effect of the spurious data, but because

of the eventual damage it will cause after further honest data us added. Indeed, the

data may be injected to improve an identity’s reputation on future rounds, whence it

can cause greater damage.

We will also include the adversarial choice of the sequence of participating experts

in an attack strategy for a particular round.

Notation For a round k and sequence of participating experts Ek:

• For every ei ∈ H, let x
(ei)
k be their reported datapoints. We define xk = (x

(ei)
k ).
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Thus, xk is the sequence of datapoints (x
(ei)
k ) received for round k from the

honest experts alone. We call this the honest sequence.

• We will use xk ∼ Tk as shorthand to indicate that the true parameter βββk is drawn

according to the hyperdistribution P ∗0 and each (x
(ei)
k ) is drawn from Pβββk . Note

that this sequence of (x
(ei)
k ) defines a posterior distribution conditioned on only

the honest datapoints. We will denote by xik ∼ Tk the posterior distribution

defined by only the honest datapoints up to and including x
(ei)
k .

• The honest sequence xk is distinct from what we call the extended data sequence

x̃k = (x̃
(ei)
k ) for ei ∈ Ek. This is because x̃k contains both honest datapoints as

well as the attack datapoints provided to the algorithm in round k. Particularly,

the number of datapoints included in the sequence xk may be less than the

number Nk of participating experts in round k.

• Let Z be the algorithm that receives the noisy sequence x̃k as input in round

k. The probability distribution as predicted by Z

Qk ← Z[x̃k]

• Let Z be an omniscient version of Z that knows the identities of the honest

experts. Z produces a prediction based solely and entirely on the datapoints

submitted by those experts. Specifically, Z performs a Bayesian update based

on the prior and the datapoints received from the honest experts alone.

• Let Qk be the distribution predicted by Z. Thus, this is the optimal prediction

given the data.

Qk ← Z[x̃k]
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• To refer to the prediction made by Z based on a prefix of length i ≤ Nk, we use

Qk,i ← Z[x̃1, . . . , x̃i]

Thus, Qk,i is the predicted probability distribution by Z on the kth round after

datapoints from the first i experts in the extended data sequence x̃k have been

received.

• We use Gik to refer to the incremental gain. This is just the difference in gain

between the predictions that the ith and the (i− 1)st datapoint in the extended

sequence x̃k induced. Here βββk is the true value of the parameter as revealed

eventually.

Gik = log[Qk,i(βββk)]− log[Qk,(i−1)(βββk)]

Note that since the algorithm does not know a priori the number of participating

experts, it stands to reason that it should be able to produce a prediction based

on an input sequence of any size from 1 to N .

6.3 Model

We provide a high-level summary of the model below.

For an round k ∈ {1, . . . ,M} the round proceeds as follows:

1. Nature selects βββk ∼ P ∗0 ∈ F∗. This prior distribution P ∗0 may be

different for each round.

2. An adversary selects Ek ⊆ σ(N). This defines the sequence of partic-

ipating experts. Let the participating experts be ei ∈ 〈e1, . . . , eNk〉.

Note that the number of experts that provide a prediction in round

k, |〈e1, . . . , eNk〉| ≤ N . Each ei is such that either ei ∈ H or ei ∈ H.
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3. An adversary picks an attack strategy Ak.

4. For every ei ∈ H,

x̃
(ei)
k ∼ Pβββk ∈ F

5. For every ei ∈ H,

x̃
(ei)
k ← A(ei)

k (x̃1, . . . , x̃k−1,βββ1, . . . ,βββk−1, x
e1
k , . . . , x

(eiv1)
k )

6. Let x̃k = (x̃
(ei)
k ) for ei ∈ 〈e1, . . . , eNk〉. Thus, this sequence includes

the datapoints from every participating expert.

7. The algorithm Z takes x̃k as input and predicts a distribution over

B as Qk ∈ F∗.

8. The true parameter value βββk is revealed and the algorithm’s loss is

log [Qk(βββk)]

Regret Rather than simply minimizing the worst case loss log [Qk(βββk)] in each

round (any reasonable algorithm will perform poorly if given honest but unlikely

samples), the goal of the algorithm is to minimize a hybrid stochastic-adversarial

notion of regret, defined below.

Definition VI.1. The regret of algorithm Z is defined as the maximum, over all

possible honest sets H, all possible attacks A, and all prior distributions ∈ F∗ and

the corresponding xi ∼ Ti, of the reduction in total log score over all rounds relative

to the omniscient algorithm Z that knows H.

Reg(Z) = max
H,{Ti},A

{
M∑
k=1

E(x1,x2,..xk)∼(T1,T2,...Tk) [log Qk(βββk)− logQk(βββk)]

}

Note that, in the regret definition, the expectation was taken over all possible

values of
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(x1,x2, . . . ,xk), and not just over xk. The reason for this is that the state of the

algorithm during round k (including, for example, budget, reputation, or influence

values) may depend on the outcomes of earlier rounds. For a particular round k, we

may refer to regret of the algorithm Z under attack A as

Regk(A) = E(x1,x2,..xk)∼(T1,T2,...Tk) [log Qk(βββk)− log Qk(βββk)]

6.4 Algorithm

For every round k, the algorithm’s goal is to make a prediction on the distribution

over βββk given (possibly noisy) samples x̃k = (x
(ei)
k ) for ei ∈ Ek with x

(ei)
k ∈ X .

The algorithm we propose is composed of two modules: the Weighted Trade Mar-

ket module and the Influence Limits and Scoring module. We provide the operational

highlights of the two modules for a round k ∈ {1, . . . ,M} and expert i ∈ Ek.

Note that for the first round influence yi1 is computed as yi1 = eri1
1+eri1

where ri1 is

an algorithm parameter. Recall that the known prior distribution P ∗0 (βββ) ∈ F∗ defined

on βββ ∈ B has the form

P ∗0 (βββ) = eb0·βββ∗−ψ∗(b0)

where ψ∗ is the log-partition function, b0 is the value of the natural parameter of the

prior distribution and the sufficient statistics are βββ∗ = (βββ,−ψ(βββ)).

6.4.1 Weighted Trade Market (WTM) module

The Weighted Trade Market (WTM) module is called every time an expert pro-

vides a prediction. This module updates its predictions sequentially and hence is

called multiple times in each round. It is also called once at the end of every round

when the value of the true parameter βββk is revealed. It then updates the gain due to

each of the participating experts.
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Highlights: WTM module

Given: i’s datapoint x
(i)
k and influence yik ∈ [0, 1]

Find: output to environment: updated forecast Qk

output to ILS module: incremental gain Gik

Parameter: D

Algorithm:

1. To compute the updated forecast Qk:

• First the hyperparameter is updated as

bi = biv1 + yik(φφφ(x
(i)
k ), 1)

• This corresponds to the following distribution over βββk

Qk(βββk) = P ∗bi(βββk)

2. For every expert i, incremental gain Gik is computed once the true parameter

βββk is revealed:

Gik =
log(P ∗bi(βββk))− log(P ∗biv1

(βββk))

D

Here D is a scaling constant that depends on the range of βββ∗k = (βββk,−ψ(βββk)).

We will now detail how the parameter D is picked. Suppose that we are given

an exponential family F such that |φφφ(x)| lies within (0, 1). Let D′ > 0 denote

a sufficiently large range such that for βββk ∼ P ∗0 , |βββ∗k| < D′. This implies that
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for any βββ∗, β̂ββ∗ satisfying this property, and any x,

|(φφφ(x), 1)βββ∗ − β̂ββ∗| ≤ |
√

2βββ∗ − β̂ββ∗| ≤ (
√

2 + 1)D′
def
= D (6.1)

This D is the scaling parameter we use in the WTM.

6.4.2 Influence Limiting and Scoring (ILS) module

The Influence Limiting and Scoring (ILS) module is called at the end of every

round when the value of the true parameter βββk is revealed. It then computes the

updated influence value of each of the participating experts.

This module has a parameter, α, that is determined based on the smallest constant

c for which the WTM bounded variance property (defined in Section 6.6) is satisfied;

setting α = min 1
8
, 1

4c
is adequate.

Highlights: ILS module

Given: incremental gain Gik and influence yik from current round

internal state rik

Find: updated internal state: ri(k+1)

output to WTM module: influence for the next round yi(k+1) ∈ [0, 1]

Parameter: α

Algorithm:

1. Compute the variance-normalized gain based on the output incremental gain
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Gik for expert i of the WTM for the current round k

gik =
1

yik
αGik

2. The current internal state of the module is rik. This is updated as:

ri(k+1) = rik + S(gik)

where the scoring function S(g) is defined as:

S(g)
def
= g − 3

4
g2

3. Compute influence yi(k+1) = e
ri(k+1)

1+e
ri(k+1) .

Figure 6.1 captures the dependencies of the various variables defined in this module.

These variables perform the following functions in the analysis:

yik Gik

gik

ri(k+1)

rik

yi(k+1)

S(gik)

[from WTM]

[internal state of ILS]

Figure 6.1: ILS variable dependencies

• yik = erik
1+erik

is simply the sigmoid or logistic function. This along with the

bounded gain property allows us to limit the movement due to any one expert.
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• S(g)
def
= g − 3

4
g2 allows us to keep the growth in reputation as strictly concave

• Defining reputation as ri(k+1) = rik + S(gik) allows us to keep the updates

additive.

6.5 An Example

Here is a specific example to illustrate our model and algorithm. Suppose that

we are forecasting popularity for a sequence of movies. Each movie’s has a true

quality β within a bounded range [0, 1] with high probability. Honest agents see

previews, and perceive a sample from a normal distribution with mean β and known

constant variance say 1. This family of distributions is an exponential family with

φφφ(x) = x and parameter β with a suitable base measure; Wainwright and Jordan

(2008). The conjugate family is the set of all normal distributions over β. A specific

conjugate distribution is indexed by a pair b = (nz, n); this distribution has mean z

and variance 1
n
. For any new movie, we begin with a prior distribution P that has

some hyperparameters b0; we denote its mean by z0 and its precision by n0.

Suppose we receive a report x1 from agent 1. Bayesian update (without in-

fluence limits) would lead us to update the hyperparameters to b′ = b + (x1, 1);

these hyperparameters correspond to the Bayesian posterior. Eventually, we ob-

serve the true parameter β. Subsequently, we would compute the gain of agent 1 as

logPb′(β) − logPb(β). For an honest agent, the expected gain is the KL-divergence

between the two distributions, which is equal to

0.5

[
log

n0 + 1

n
− 1

n0 + 1
+

(x1 − z0)2n0

(n0 + 1)2

]

We can take expectations over x1; E(x1 − z0)2 = 1
n0

+ 1, as x1 is the sum of the

mean β (which has prior variance 1/n0) and an independent deviation with variance

1. With this, the expected gain is seen to be log(1 + 1
n0

). Likewise, we can also
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calculate the variance of gain in terms of n0, and verify that the variance is less than

twice the expected gain (c ≤ 2). As n0 and z0 were arbitrary, this holds for all honest

agents. These are the conditions under which our regret bound holds, as we will see

in Section 6.7.

In this setting, movie boosters may try to create fake accounts to push their

favorite movies. Our algorithm would guard against this by changing the update to

b′ = b + y1(x1, 1), where y1 is the influence of agent 1. The influence values would

change over time. Our regret bound would hold, in expectation over honest agents’

signals, for any attack strategy. Importantly, this does not require any assumptions

about the fraction of honest agents, their frequency of reporting, the distribution of

agents on different items, etc.

6.6 Properties of the WTM

The WTM defined in Section 6.4.1 satisfies the following properties which will be

used in the proofs of our main theorems. Here Ĝik is the incremental gain due to

expert i on round k when her influence yik = 1. We call this her gain of unlimited-

influence.

6.6.1 Bounded Gain

Property 1 – bounded gain: |Gik| ≤ yik

This property shows that the influence value effectively limits the range of feasible

gains. This also implies that for yik ≤ 1, |Gik| ≤ 1 and for influence yik = 0, Gik = 0.

The proof follows from the definition of the scaling factor D.
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Proof.

Gik =
log(P ∗bi(βββk))− log(P ∗biv1

(βββk))

D

=
bi · βββ∗ − ψ∗(bi)− (biv1 · βββ∗ − ψ∗(biv1))

D

=
(bi − biv1) · βββ∗ − (ψ∗(bi)− ψ∗(biv1))

D

We know, bi = biv1 + yik(φφφ(x
(i)
k ), 1)

So, Gik =
yik(φφφ(x

(i)
k ), 1) · βββ∗ − (ψ∗(bi)− ψ∗(biv1))

D

Rewriting, with by = biv1 + y(φφφ(xi), 1) we have

Gik =

yik∫
y=0

(φφφ(x
(i)
k ), 1) · βββ∗ −∇ψ∗(by)

D
dy

=

yik∫
y=0

(φφφ(x
(i)
k ), 1) · βββ∗ − EP∗by

[βββ∗]

D
dy

The last equality follows from (Wainwright and Jordan, 2008, Prop.3.1) which

states that the gradient of the log partition function at a point is equal to the expected

value of the sufficient statistics with expectation taken with respect to the probability

distribution at that point.

Now from choice of D as defined in Equation 6.1 we have that

|(φφφ(x
(i)
k ), 1) · βββ∗ − EP∗by

[βββ∗]| ≤ D

Thus,

|Gik| ≤
yik∫

y=0

dy = yik

6.6.2 Concave Gain

Property 2 – concave gain: Gik ≥ yikĜik
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Proof. First note that for a concave function f(·), we have

f(tx+ (1− t)y) ≥ tf(x) + (1− t)f(y)

We can rewrite the gain as a function of the influence yik as G(yik). Then concavity

of G(·) in yik would imply

G(1 · yik + 0) ≥ yikG(1) + 0 =⇒ Gik ≥ yikĜik

To show concavity of Gik, we will consider the terms constituting the gain sepa-

rately. Then if each term is concave, then Gik is the sum of two concave functions

and is itself concave. Recall that

Gik = G(yik) =
yik(φφφ(x

(i)
k ), 1) · βββ∗ − (ψ∗(bi)− ψ∗(biv1))

D

The first term
yik(φφφ(x

(i)
k ),1)·βββ∗
D

is linear in yik. The second term (ψ∗(bi)−ψ∗(biv1))
D

.

Notice that ψ∗(biv1) is constant with respect to yik. Now ψ∗(bi) is convex in bi

because it is the log partition function. Since bi = biv1 + yik(φφφ(xi), 1) and biv1 is

constant with respect to yik, ψ
∗(bi) is also convex in yik. Thus, −ψ∗(bi) is concave

in yik. Hence, the net gain is concave in yik.

6.6.3 Bounded Variance

Property 3 – bounded variance: Var[Ĝik] ≤ cE[Ĝik]

That is, there exists a universal positive constant c that bounds the variance of a

honest expert i’s gain as a multiple of her expected unlimited-influence gain. While

we have a complete proof of this property for the Gaussian family of distributions,

we do not yet have a general proof. As such we treat this property as a requirement
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on the particular exponential family being considered.

Bounded variance for a univariate Gaussian By definition

Nm,v2(x) =
1√

2πv2
exp

{
−(x−m)2

2v2

}

For known variance v2 and unknown mean m, the conjugate prior of a normal dis-

tribution is itself normal. For simplicity of exposition we use v2 = 1. Let µ0 and σ2
0

be the mean and variance of the prior distribution on m. Thus m is itself distributed

as Nµ0,σ2
0
(m). Given a single input x(i), the posterior distribution on m is given by

Nµi,σ2
i
(m) where

µi =
1

σ2
0 + 1

µ0 +
σ2

0

σ2
0 + 1

x(i)

and

1

σ2
i

=
1

σ2
0

+ 1

Proof of Bounded Variance. Want: V ar[Ĝik] ≤ cE[Ĝik] or equivalently

E[Ĝ2
ik]− (E[Ĝik])2 ≤ cE[Ĝik]

Let us now consider each of these terms. In the equalities below, we have used the

following facts.

E[(m− µi)
2] = σ2

i

E[m] = µi
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E[Ĝik] = E

[
−(m− µi)

2

2σ2
i

− log
√

2πσ2
i +

(m− µ0)2

2σ2
0

+ log
√

2πσ2
0

]
=

σ2
i + (µi − µ0)2

2σ2
0

+
1

2
log(1 + σ2

0)− 1

2

Ĝ2
ik =

{
−(m− µi)2

2σ2
i

+
(m− µ0)2

2σ2
0

+
1

2
log(1 + σ2

0)

}2

=
(m− µi)4

4σ4
i

+
(m− µ0)4

4σ4
0

+
1

4
[log(1 + σ2

0)]2

+
1

2

[
(m− µ0)2

σ2
0

log(1 + σ2
0)− (m− µi)2

σ2
i

log(1 + σ2
0)− (m− µ0)2(m− µi)2

σ2
0σ

2
i

]

Let us now consider each of these terms separately. In the equalities below, we

have used the following known facts about the moments of the normal distribution.

E[(m− µi)
4] = 3σ4

i

E[m− µi] = E[(m− µi)
3] = 0

E[m4] = µ4
i + 6µ2

iσ
2
i + 3σ4

i

E[m3] = µ3
i + 3µiσ

2
i

E[m2] = µ2
i + σ2

i

E[
(m− µi)

4

4σ4
i

] =
3σ4

i

4σ4
i

=
3

4
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E[
(m− µ0)4

4σ4
0

] = E[
((m− µi) + (µi − µ0))4

4σ4
0

]

=
3σ4

i + (µi − µ0)4 + 6(µi − µ0)2σ2
i

4σ4
0

E[(m− µ0)2] = σ2
i + (µi − µ0)2

E[(m− µi)
2] = σ2

i

E[(m− µ0)2(m− µi)
2] = E[(m2 + µ2

0 − 2mµ0)(m2 + µ2
i − 2mµi)]

=
(µi − µ0)2 + 3σ2

i

σ2
0

Putting it together, we have,

E[Ĝ2
ik] = E[

(m− µi)
4

4σ4
i

] + E[
(m− µ0)4

4σ4
0

] +
1

4
[log(1 + σ2

0)]2

+
1

2

log(1 + σ2
0)

σ2
0

E[(m− µ0)2]− log(1 + σ2
0)

2
E[

(m− µi)
2

σ2
i

]− E[
(m− µ0)2(m− µi)

2

2σ2
0σ

2
i

]

=
3

4
+

3σ4
i + (µi − µ0)4 + 6(µi − µ0)2σ2

i

4σ4
0

+
1

4
[log(1 + σ2

0)]2

+
(σ2

i + (µi − µ0)2)

σ2
0

log(1 + σ2
0)

2
− log(1 + σ2

0)

2
− (µi − µ0)2 + 3σ2

i

2σ2
0
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Now from the expression for E[Ĝik] derived earlier, we have

(E[Ĝik])2 =

(
σ2
i + (µi − µ0)2

2σ2
0

+
1

2
log(1 + σ2

0)− 1

2

)2

=
σ4
i + (µi − µ0)4 + 2σ2

i (µi − µ0)2

4σ4
0

+
1

4
(log(1 + σ2

0))2 +
1

4

−1

2
log(1 + σ2

0) +
(σ2

i + (µi − µ0)2) log(1 + σ2
0)

2σ2
0

− σ2
i + (µi − µ0)2

2σ2
0

Getting back to the bounded variance property, we see that

E[Ĝ2
ik]− (E[Ĝik])2 =

2σ4
i + 4σ2

i (µi − µ0)2

4σ4
0

+
1

2
− σ2

i

σ2
0

=
1

2(1 + σ2
0)2

+
(µi − µ0)2

σ2
0(1 + σ2

0)
+

1

2
− 1

1 + σ2
0

and

E[Ĝik] =
σ2
i + (µi − µ0)2

2σ2
0

+
1

2
log(1 + σ2

0)− 1

2

=
1

2(1 + σ2
0)

+
(µi − µ0)2

2σ2
0

+
1

2
log(1 + σ2

0)− 1

2

For readability we use M = (µi − µ0)2 and a = σ2
0. Note that M,a ≥ 0. Thus,

E[Ĝ2
ik]− (E[Ĝik])2 − cE[Ĝik] =

1

2(1 + a)2
+

M

a(1 + a)
+

1

2
− 1

1 + a

−c
(

1

2(1 + a)
+
M

2a
+

1

2
log(1 + a)− 1

2

)
(6.2)

Let us now consider the group of terms in Equation (6.2) that include M . We see
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that:

M

a(1 + a)
− cM

2a
= M

(
1

a(1 + a)
− c

2a

)
= M

(
1− (c/2)− (ac/2)

a(1 + a)

)
≤ 0 (for c ≥ 2)

Let us define the remaining terms of Equation (6.2) as

f(a) =
1

2(1 + a)2
+

1

2
− 1

1 + a
− c

(
1

2(1 + a)
+

1

2
log(1 + a)− 1

2

)

Note that

f(0) =
1

2
+

1

2
− 1− c

(
1

2
+

1

2
log(1)− 1

2

)
= 0

and

f ′(a) = − 1

(1 + a)3
+

1

(1 + a)2
+

c

2(1 + a)2
− c

2(1 + a)

=
1

(1 + a)3

(
a− ac

2
− a2c

2

)
≤ 0 (for c ≥ 2)

Thus, so long as c ≥ 2, f(a) is a decreasing function of a for a ≥ 0. Since f(0) is

negative for c ≥ 2, f(a) ≤ 0 for all a ≥ 0.

Thus E[Ĝ2
ik]− (E[Ĝik])2 − cE[Ĝik] ≤ 0 for a choice of c ≥ 2.

6.6.4 Damage Reduction

Property 4 – damage reduction: The additional loss induced by an attack

is lower (in expectation) after additional honest datapoints have been received. We

formalize this in Theorem VI.7 in Section 6.7.3.
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6.7 A Non-Myopic Regret Bound

Based on the properties of the WTM, we prove a regret bound for our algorithm

in this section. We construct the bound in three parts. We first consider a simplified

setting in which attackers only inject datapoints after honest experts. In this setting,

we can bound the worst-case total damage that the attack data causes, relative to

the forecasts without attack. We can also bound the expected information loss from

honest experts, relative to the omniscient algorithm that gives them full influence.

The third component of our proof is a regret bound for the general case that equals

the sum of the damage and information loss bounds. The key ingredient in moving

to the general case is in using the damage-reduction property to show that the worst

case is in fact when attack data arrive last.

6.7.1 Limited Damage

First, consider a setting with all attack data arriving after honest data. Thus,

we can think of each attack datapoint as causing some damage (negative incremental

gain) to the prediction made so far. We will bound the total incremental gain of a

single attacker below. However, because the definition of gain is based on the change

in loss, the theorem directly extends to the case of any number of successive reports

by attackers.

Theorem VI.2. Consider any sequence of rounds and sequences of reported data-

points on those rounds. For any expert i, the net incremental gain due to that expert

is bounded below in terms of i’s initial reputation ri1:

M∑
k=1

Gik ≥ −
1

α
log(1 + eri1)

Proof sketch Recall that the reputation of an expert is updated additively as

some function of the incremental gain in each round. The crux of the proof involves
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showing that a function of reputation (that we call budget) is concave in the variance-

normalized gain. This is then related to the incremental gain of an expert.

Proof of Limited Damage. To prove this formally, we recall some definitions. For a

round k and expert i, whose reputation at the beginning of the round is rik, we have:

• Gik =
log(P ∗bi

(βββk))−log(P ∗bi−1
(βββk))

D

• yik = erik
1+erik

• α is the parameter of the ILS module; α = min 1
8
, 1

4c

• gik = 1
yik
αGik

• S(g)
def
= g − 3

4
g2 where g is the value of the variance normalized gain

• ri(k+1) = rik + S(gik)

For ease of analysis, we define a budget function as B(r)
def
= log(1 + er) where r is a

reputation value. Note that by definition B(r) ≥ 0. Restated in terms of the budget

function, we want to show
M∑
k=1

Gik ≥ −
1

α
B(ri1)

The budget function B(ri(k+1)) = B(rik + S(gik)) can be seen as a function of gik.

We will now show that B(ri(k+1)) is concave in gik. This follows from the fact that

d2B(ri(k+1))

dg2
≤ 0 as shown below. Here g is the variance-normalized gain variable that

has value gik in this round.

• Let y(r) be the influence value for reputation r. Taking derivatives, we observe

that B′(r) = y(r), and y′(r) = y(r)/(1 + er).
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• We evaluate the second derivative of B(r) at r = ri(k+1)

dB(ri(k+1))

dg
= y(ri(k+1))

dri(k+1)

dg
= y(ri(k+1))

dS(gik)

dg
(since rik is constant wrt g)

= y(ri(k+1))[1− 1.5gik]

d2B(ri(k+1))

dg2
=

[
(1− 1.5gik)

y(ri(k+1))

1 + eri(k+1)
(1− 1.5gik)− 1.5y(ri(k+1))

]
≤ y(ri(k+1))

[
(1− 1.5gik)

2 − 1.5
]

• The bounded gain property of the WTM requires that |Gik| ≤ yik. By choice

of parameter we have α ≤ 1
8
. Thus, we have |gik| = | 1

yik
αGik| ≤ 1

8
.

• Thus,
d2B(ri(k+1))

dg2
≤ 0, and hence B(r) is a concave function of g.

Since the reputation changes as g, we observe that B(r) is a function of g and at

r = rik, g = 0. Thus, it follows from concavity in g that:

B(ri(k+1)) ≤ B(rik) + gik
dB

dg
|g=0 ⇒ B(ri(k+1))−B(rik) ≤ gikyik (6.3)

Now,

α
M∑
k=1

Gik =
M∑
k=1

gikyik ( by definition of gik)

≥
M∑
k=1

[B(ri(k+1))−B(rik)] (by eqn. 6.3)

= [B(riM)−B(ri1)] ≥ −B(ri1) (by non-negativity of budget)

Thus, we have
M∑
k=1

Gik ≥ −
1

α
B(ri1)

as required.
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Note that the proof would go through even without the parameter α (i.e., based

solely on the concavity of the budget function in terms of Gik/yik). This parameter

becomes relevant only in the information loss bound.

6.7.2 Information Loss Bound

In this section, we consider a setting with all attack data arriving after honest

data. We will now analyze the loss due to influence limiting honest datapoints. To

this end, we use a concept of informativeness defined below.

Definition VI.3. The informativeness hik of expert i on round k is defined as:

hik = Exk∼Tk
[
log[Qk,i(βββk)]− log[Qk,(i−1)(βββk)]

]
Thus, the informativeness of an expert i in round k, hik is the incremental gain

attributed to i by the omniscient algorithm Z. The informativeness provides us with a

benchmark for the incremental gain obtained from an expert i; if the sum of expected

incremental gains under an algorithm is equal to the sum of informativeness hik over

all honest i, then the algorithm would be optimally using the received data.

We define expected information lost from expert i as

ILi =
M∑
k=1

(
hik − E(x1,x2,..xi

k)∼(T1,T2,...Tk)[Gik]
)

The concave gain property of the WTM states that the incremental gain Gik ≥

yikĜik where Ĝik is the incremental gain due to expert i on round k when her influence

yik = 1. By the damage reduction property, we can show that any influence-

limiting on earlier experts only increases the incremental gain of an expert; this is

shown in Lemma VI.10. Thus

E(x1,x2,..xk)∼(T1,T2,...Tk)[Ĝik] ≥ hik
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Note that since rik is independent of the datapoints in this round, yik and Ĝik are

independent random variables.

From this, we obtain an alternate expression that is an upper bound on the infor-

mation loss:

ILi =
M∑
k=1

(
hik − E(x1,x2,..xi

k)∼(T1,T2,...Tk)[Gik]
)

≤
M∑
k=1

(
hik − E(x1,x2,..xi

k)∼(T1,T2,...Tk)[yikĜik]
)

≤
M∑
k=1

(
hik −

(
E(x1,x2,..xi

k)∼(T1,T2,...Tk)[yik]E(x1,x2,..xi
k)∼(T1,T2,...Tk)[Ĝik]

))
≤

M∑
k=1

E(x1,x2,..xi
k)∼(T1,T2,...Tk)[y(rik)]hik

The intuition behind the bound on information loss we show subsequently is as

follows: Suppose that, in each round, the expected gain was some fixed quantity

h. Suppose further that the realized score was exactly the expected gain, so that

rik = ri1 + (k − 1)h. Then, the expected information loss, over a very large number

of items, would be approximately
∫∞
ri1
y(x)dx = − log(y(ri1)) = log(1 + e−ri1) where

we have introduced a change of variable with x denoting the range of values for rik.

In other words, the logistic function approaches 1 at a fast enough rate that the total

deficit is bounded.

For the actual bound, we need to handle several complications. Firstly, the score

S(g) is not a linear function of the gain Ĝik, and the expected score is lower than the

expected gain. Second, the realized score is not the same as the expected score, and so

we need to handle the full distribution of possible values of rik, and use concentration

results to bound the loss. Finally, we need to take into account the fact that different

rounds k have different expected gains hik.

In order to prove the information loss bound, first we show that the mean and
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variance of the score S(gik) are “well-behaved” under certain conditions on E[Gk]

and Var[Gk]. When we apply this lemma in Lemma VI.5, we will show that these

conditions do indeed hold.

Lemma VI.4. Suppose that Gk
def
= Gik

yik
where Gik is the incremental gain of expert

i in round k and yik is his influence. Suppose further that Gk has mean hik and

variance is at most chik. That is,

E[Gk] ≥ hik and Var[Gk] ≤ chik

If gik = αGk and S(gik) = gik − 3
4
g2
ik as defined earlier, then

E[S(gik)] ≥
3α

4
hik and Var[S(gik)] ≤ 0.5E[S(gik)]

Proof. First we bound E[S(gik)]. Recall that by choice α = min(1
8
, 1

4c
). Consider two

cases, based on the value of E[Gk].

Case 1: E[Gk] ≥ 0.5 The bounded gain property asserts | 1
yik
Gik| ≤ 1. This implies

that E[G2
k] ≤ 1. Also note, 2E[Gk] ≥ 1.

Thus,

E[S(gik)] = E[S(αGk)] = αE[Gk]− 3α2

4
E[G2

k]

≥ αE[Gk]− 3α2

4
2E[Gk] = αE[Gk][1− 1.5α]

≥ αE[Gk][1− 1.5

8
]

≥ 3α

4
E[Gk]

≥ 3α

4
hik
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Case 2: E[Gk] ≤ 0.5 We note that E[G2
k] = E[Gk]

2 +V ar[Gk] and V ar[Gk] ≤ chik.

Now,

E[S(gik)] = E[S(αGk)] = αE[Gk]−
3

4
α2E[G2

k]

≥ αhik −
3

4
α2[E[Gk]

2 + V ar[Gk]]

≥ αhik −
3

4
α2[

1

4
+ chik]

≥ αhik −
3

4
α2chik

≥ αhik −
3

4
α2 1

4α
hik (since α ≤ 1/4c)

≥ 3α

4
hik

Next, we consider the variance of S(gk). We bound it using a result due to

Tang and See (Tang and See, 2009, Prop. 2) that states that if |f ′(x)| ≤ a, then

Var(f(x)) ≤ a2Var(x). Also, recall that Var[ax] = a2Var[x] for a constant a.

We see that S ′(gik) = 1− 1.5gk. The bounded gain property asserts | 1
yik
Gik| ≤ 1.

This implies 1
yik
Gik ≥ −1 and hence gk ≥ −α. Thus, S ′(gik) = 1− 1.5gk ≤ 1 + 1.5α.

Var[S(gk)] ≤ (1 + 1.5α)2α2chik = (cα)(1 + 1.5α)2αhik

≤ 1

4
(1 + 1.5α)2αhik

≤ 1

4
(
19

16
)2αhik < 0.36αhik <

3αhik
8

(6.4)

Thus, Var[S(gk)] ≤ 0.5E[S(gk)].

Lemma VI.5. Let ri1 denote the initial reputation. Let Hik =
∑k

t=1 hit. Denote

y(r) = 1− y for reputation r and associated influence y. For any k , we must have:

E[y(rik)] ≤ e−
αHik

8 + y(ri1 +
3αHik

8
)
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Proof. We will need Lemma VI.4 for this proof. First, we will show that the conditions

of the lemma hold. That is, for Gk
def
= Gik

yik
,

E[Gk] ≥ hik and Var[Gk] ≤ chik

Then, Lemma VI.4 says that

E[S(gik)] ≥
3α

4
hik and Var[S(gik)] ≤ 0.5E[S(gik)]

By definition hik is the gain of an honest expert when no honest expert is influence

limited. By the damage reduction property, we can show that any influence-

limiting on earlier experts only increases the incremental gain Ĝik of an expert; this

is shown in Lemma VI.10. Further, from the concave gain property, we have

Gik
yik
≥ Ĝik. Thus, E[Gk] = E[Gik

yik
] ≥ E[Ĝik] ≥ hik.

Now consider Var[Gik]. By definition,

Gik =
yik(φφφ(x

(i)
k ), 1) · βββ∗ − (ψ∗(bi)− ψ∗(biv1))

D

Since (ψ∗(bi)−ψ∗(biv1))
D

is not dependent on the outcome βββk,

Var[Gik] = Var

[
yik(φφφ(x

(i)
k ), 1) · βββ∗

D

]

Thus,

Var[Gk] = Var

[
Gik

yik

]
= Var

[
(φφφ(x

(i)
k ), 1) · βββ∗

D

]
= Var[Ĝik]

But Var[Ĝik] is identical to the variance when no expert is influence limited. This

follows from the fact that the variance is independent of biv1. Thus, by the bounded

variance property,

Var[Gk] = Var[Ĝik] ≤ chik
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First, we note that rik = ri1 +
∑k

t=1 S(git) by definition. Thus the expected value

of rik is

E[rik] = ri1 +
k∑
t=1

E[S(git)] ≥ ri1 +
k∑
t=1

3α

4
hit = ri1 +

3αHik

4

where the inequality follows from Lemma VI.4.

We split the domain of possible values of rik into two components [−∞, ri1+ 3αHik
8

)

and [ri1 + 3αHik
8

,∞]. Then, we have:

E[y(rik)] =

ri1+
3αHik

8∫
rik=−∞

Pr(rik)y(rik) +

∞∫
rik=ri1+

3αHik
8

Pr(rik)y(rik)

< Pr(rik < ri1 +
3αHik

8
) + y(ri1 +

3αHik

8
)

∞∫
rik=ri1+

3αHik
8

Pr(rik)

≤ Pr(rik < ri1 +
3αHik

8
) + y(ri1 +

3αHik

8
)

where in the first inequality we have used the following facts: y(rik) ≤ 1 and the

function y() is monotonically decreasing.

Now, to bound the term Pr(rik − ri1 < 3αHik
8

), we use Bennett’s concentration in-

equality Bennett (1962). This inequality states that for independent random variable

X1 . . . Xk that all have expected value 0, if for all t, |Xt| ≤ a, and
∑k

t=1 Var[Xt] = kσ2,

then for any d ≥ 0,

Pr(
k∑
t=1

Xt > d) ≤ exp

(
kσ2

a2
h

(
ad

kσ2

))

where h(x) = (1 + x) log(1 + x)− x. Note that h(1) > 0.38

Note that the gain in each round k is independent of previous and subsequent
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rounds. Thus, the change in reputation

rik − ri1 =
k∑
t=1

S(git)

and is the sum of independent random variables. Define a new random variable for

each t,

Xt = E[S(git)]− S(git)

Note that Xt are also independent random variables and further

E[Xt] = 0 and |Xt| ≤ 1

By inequality (6.4) established in Lemma VI.4, we have
∑k

t=1 Var[S(git)] ≤ 3αHik
8

.

Thus,
k∑
t=1

Var[Xt] ≤
3αHik

8

If we bound

Pr

(
k∑
t=1

Xt >
3αHik

8

)
= Pr

[
k∑
t=1

S(git) <

(
k∑
t=1

E[S(git)]−
3αHik

8

)]

then we will have a bound on Pr(rik − ri1 < 3αHik
8

) since by Lemma VI.4, we have

E[S(git)] ≥ 3α
4
hit.

By Bennett’s inequality,

Pr

(
k∑
t=1

Xt >
3αHik

8

)
≤ exp

{
−3αHik

8
∗ h(1)

}
≤ exp

{
−αHik

8

}
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Recall that expected information lost from expert i is defined as

ILi =
M∑
k=1

(
hik − E(x1,x2,..xk)∼(T1,T2,...Tk)[Gik]

)
We can prove the information loss bound as:

Theorem VI.6. Let ri1 denote the initial reputation assigned to expert i. Fix a

sequence of rounds, and the datapoints submitted by experts prior to i’s datapoint on

each round. Then, the information lost from expert i is bounded above by:

ILi ≤ D

[
2 +

8

α
+

8

3α
log(1 + e−ri1)

]

Proof. Recall that from the concave gain property and the damage reduction

property of the WTM, we obtain an alternate expression that is an upper bound on

the information loss:

ILi ≤
M∑
k=1

E(x1,x2,..xk)∼(T1,T2,...Tk)[y(rik)]hik

Recall that we define Hik =
∑k

t=1 hit. Let k be the lowest round such that Hik ≥ 1.

Note that Hik ≤ 2 since each expert can have gain at most 1 per round. Also note

that for all k, y(rik) ≤ 1. Then, accounting for all information up to round k as lost,

we have

ILi ≤ 2 +
M∑
k=k

E(xk...xk)∼(Tk,...Tk)[y(rik)]hik

Now, consider a given k ≥ k. By lemma VI.5, this can be bounded by the sum:

ILi ≤ 2 +
M∑
k=k

e−
αHik

8 hik +
M∑
k=k

y(ri1 +
3αHik

8
)hik

In each of the two sums, the terms are monotonically decreasing. Moreover, the
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maximum hik is 1. Let H be the value of Hik at k. Thus, we can bound the sums by

integrals, as:

ILi ≤ 2 +

∞∫
H=H

e−
α(H−1)

8 dH +

∞∫
H=H

y(ri1 +
3α(H − 1)

8
)dH

The two integrals have closed-form solutions:

∫
e−

α(H−1)
8 dH =

−8

α
e−

α(H−1)
8

and ∫
y(ri1 +

3α(H − 1)

8
)dH =

8

3α
log

[
y(ri1 +

3α(H − 1)

8
)

]
Substituting these functions, and setting the range of the integrals to (0,∞), we get:

ILi ≤ 2 +
8

α
+

8

3α
log(1 + e−ri1)

6.7.3 A Combined Regret Bound

We can now use the damage reduction property of the WTM to bound the total

regret in a system with honest set H under any attack A.

The damage reduction property of the WTM implies that the worst case in terms

of loss suffered by the algorithm is when all attacks arrive after honest data. We

formally state and prove the damage reduction property below.

Theorem VI.7. (damage reduction property):

Let P ∗0 ∈ F∗ be the prior distribution on βββ with natural parameter b0. Let φφφ(x)

denote an observation of sufficient statistics, with x ∈ X drawn according to π(x).
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Then, if P ∗x (βββ) with natural parameter bx denotes the posterior hyperdistribution after

observing φφφ(x); we must have bx = b0 +(φφφ(x), 1) Diaconis and Ylvisaker (1979). We

say that P ∗0 is unbiased with respect to π, if for any βββ, we have P ∗0 (βββ) = EπP
∗
x (βββ).

Consider a vector a (the entries of a may be positive or negative). a can be

interpreted as a movement on the natural parameter of the hyperdistribution due to

an attacker. Let P̃0 denote the hyperdistribution if the attack is carried out on the

prior. The natural parameter of P̃0 is given by: a0 = b0 + a. Likewise, let P̃x denote

the hyperdistribution with natural parameter ax = bx + a.

Then, as long as P ∗0 is unbiased with respect to π, the following holds:

K(P ∗0 ||P̃0) ≥ Eπ

[
K(P ∗x ||P̃x)

]
(6.5)

In other words: the damage induced by a fixed vector of securities a purchased

at the initial distribution P ∗0 is greater than the expected error of the same vector of

securities after an additional informative observation x.

To prove this property, we first prove two relevant lemmas.

Lemma VI.8. Let P ∗0 ∈ F∗ denote an initial distribution. Suppose that φφφ(x) denote

an observation of sufficient statistics, distributed according to a distribution π(x).

Then, let P ∗x denote the posterior hyperdistribution after conditioning on x; we must

have the corresponding natural parameter bx = b0 + (φφφ(x), 1). The given P ∗0 and

π must be such that P ∗0 is unbiased with respect to π: For any βββ, we must have

P ∗0 (βββ) = EπP
∗
1 (βββ).

For any vector a of the same dimension as βββ∗, the vector of sufficient statistics,

the variance of a · βββ∗ at P ∗0 is at least as high as the expected variance at P ∗x :

VarP ∗0 (a · βββ∗) ≥ Ex
[
VarP ∗x (a · βββ∗)

]
Proof. The condition that P ∗0 is unbiased implies that we can treat P ∗0 as a joint
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distribution over φφφ(x) and βββ∗: P ∗0 (φφφ(x),βββ∗)
def
= π(x)P ∗x (βββ∗) has marginal distribution

P ∗0 (βββ∗) on βββ∗.

Now, treating a · βββ∗ and φφφ(x) as two random variables, we can use the stan-

dard result from probability theory (see, e.g., (Gut , 1995, p.39)) on the conditional

variance:

VarP ∗0 (a · βββ∗) = ExVar(a · βββ∗|φφφ(x)) + Varx[E(a · βββ∗|φφφ(x))]

The second term on the right hand side is non-negative, so we get:

VarP ∗0 (a · βββ∗) ≥ ExVar(a · βββ∗|φφφ(x)) = Ex
[
VarP ∗x (a · βββ∗)

]

The next ingredient of the proof of Theorem VI.7 is to express the KL-divergence

induced by a in terms of an integral over variances. This differential relationship is

implicit in the literature on exponential families, but we include a self-contained proof

for clarity and completeness:

Lemma VI.9. Given any two distributions P, P̃ ∈ F∗ such that bP̃ = bP + a, the

KL divergence can be expressed as follows:

K(P ||P̃ ) =

1∫
t=0

t∫
u=0

VarP ∗u [a · βββ∗]dudt

(Here, P ∗u denotes the distribution with natural parameter coordinates bP ∗u = bP+ua.)
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Proof. We can prove this result by repeated differentiation:

d

du
K(P ||P ∗u ) = − d

du

∫
βββ∗

P (βββ∗) logP ∗u (βββ∗)dβββ∗

= −
∫
βββ∗

P (βββ∗)
d

du
[logP ∗u (βββ∗)]dβββ∗

= −
∫
βββ∗

P (βββ∗)
d

du
[bP ∗u · βββ

∗ − ψ∗(P ∗u )]

= −
∫
βββ∗

P (βββ∗)[a · βββ∗]dβββ∗ +
d

du
ψ∗(P ∗u )

= −a ·mP + a ·mP ∗u

In the last step, we used the definition of mP , the expected value of βββ∗ under P and

the well-known fact that the gradient of ψ∗P ∗u is mP ∗u .

Differentiating a second time, we get:

d2

du2
K(P ||P ∗u ) =

d

du
[−a ·mP + a ·mP ∗u ]

= a · d
du

mP ∗u

Now, we expand mP ∗u by definition:

a · d
du

mP ∗u = a · d
du

∫
βββ∗

βββ∗P ∗u (βββ∗)dβββ∗

= a ·
∫
βββ∗

βββ∗
d

du
P ∗u (βββ∗)dβββ∗

By definition of P ∗u (βββ∗) = exp[bP ∗u .βββ
∗ − ψ∗(P ∗u )], we have:

d

du
P ∗u (βββ∗) = P ∗u (βββ∗).[

d

du
bP ∗u .βββ

∗ − d

du
ψ∗(P ∗u )] = P ∗u (βββ∗) · [a · βββ∗ − a.mP ∗u ]

139



Thus,

a · d
du

mP ∗u = a ·
∫
βββ∗

βββ∗[a · βββ∗ − a ·mP ∗u ]P ∗u (βββ∗)dβββ∗)

=

∫
βββ∗

(a · βββ∗)2P ∗u (βββ∗)dβββ∗ − (a ·mP ∗u )

∫
βββ∗

a · βββ∗dβββ∗

=

∫
βββ∗

(a · βββ∗)2P ∗u (βββ∗)dβββ∗ − (a ·mP ∗u )2

Finally, observing that EP ∗u (a ·βββ∗) = a ·mP ∗u , the RHS is observed to be, by definition,

VarP ∗u (a · βββ∗).

Integrating, and observing that the LHS is 0 when u = 0, we have:

[−a ·mP + a ·mP ∗t
] =

t∫
u=0

VarP ∗u (a · βββ∗)du

Integrating a second time, and again observing that K(P ||P ∗t ) = 0 when t = 0, we

have:

K(P ||P̃ ) =

1∫
t=0

t∫
u=0

VarP ∗u [a · βββ∗]dudt

Now, we can return to the proof of Theorem VI.7:

Proof of Theorem VI.7. The proof follows from a careful application of Lemma VI.8

to the decomposition given in Lemma VI.9. We seek to prove:

K(P ∗0 ||P̃0) ≥ Eπ

[
K(P ∗x ||P̃x)

]
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By Lemma VI.9, this is equivalent to proving:

1∫
t=0

t∫
u=0

VarP ∗u [a · βββ∗]dudt ≥ Eπ

1∫
t=0

t∫
u=0

VarP ∗xu [a · βββ∗]dudt

where P ∗xu is the distribution with bP ∗xu = bP ∗x + ua.

It is therefore sufficient to prove that, for every u ∈ (0, 1),

VarP ∗u [a · βββ∗]− EπVarP ∗xu [a · βββ∗] ≥ 0 (6.6)

Consider any fixed value of u. Based on the conjugate prior nature of F∗, if we started

with prior belief P ∗0 and observed a value a with weight u, the posterior distribution

would be P ∗u . Then, conditioning P ∗u on a further observation of φφφ(x) would yield the

posterior distribution P ∗xu, because P ∗xu is the distribution obtained by conditioning

P ∗0 on observing φφφ(x) and a with weight u. Here, we have used the property of

Bayesian updating that the order of observation does not affect the final posterior.

We can also verify that

P ∗u (βββ∗) = P ∗0 (βββ∗|ua observed) =

∫
x

P ∗0 (βββ∗,φφφ(x)|ua observed)

=

∫
x

π(x)P ∗0 (βββ∗|ua observed,φφφ(x) observed) =

∫
x

π(x)P ∗xu(βββ
∗)

Thus, the conditions of Lemma VI.8 are satisfied; using this result, we have that,

for every value of u, equation 6.6 is satisfied.

In other words: the damage induced by a fixed vector of securities a purchased

at the initial distribution P ∗0 is greater than the expected error of the same vector of

securities after an additional informative observation x.
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A new representation of datapoint sequences For analytic purposes, we will

want to represent the sequence provided to the algorithm more explicitly. This will

allow us to reorder the sequence in a way that makes it easier to analyze.

Recall that in a round k, the sequence of participating experts is denoted as

Ek = 〈e1, . . . , eNk〉 ⊆ σ(N). In order to analyze the effect of influence limiting of

datapoints from honest experts and datapoints from attackers, we specify a different

representation of the sequence of datapoints x̃k = (x̃
(ei)
k ) for ei ∈ 〈e1, . . . , eNk〉 received

by the algorithm in round k. This is solely for ease of analysis and doesn’t affect the

actual method by which the data sequences are generated.

First we consider honest datapoints. Consider a datapoint x̃
(ei)
k , received from an

honest expert ei ∈ H when the current natural hyperparameter coordinates are biv1.

For succinctness we call this datapoint xi. The optimal use of xi would be to update

the coordinates additively with (φφφ(xi), 1). In actuality, because of influence limiting,

the update is bi = biv1 + yik(φφφ(xi), 1); in other words, there is an influence limit on

the update. Noting that bi = [biv1 + (φφφ(xi), 1)] − yik(φφφ(xi), 1), we can think of the

effect of influence limiting as involving an attack with negatively weighted data. Thus,

the effect of influence-limited update can be modeled as fully updating by the data

xi, followed by updating based on negatively-weighted data. Let xi denote this latter

half; in other words, xi corresponds to updating the natural parameter coordinates

by adding (−yikφφφ(xi),−yik). We can think of this negatively weighted datapoint as

introduced by a phantom expert. Thus for every honest expert ei ∈ H there is an

corresponding phantom expert. We call the set of phantom experts H and refer by ei

the expert corresponding to ei in this set.

Next we consider attack datapoints. Let xk = 〈x1 . . . xn〉 denote the subsequence

of x̃k consisting of all and only honest datapoints. Our analysis only involves the

aggregate effects of all attack identities, and the aggregate sum of all attackers’ in-

fluences. Thus, any substring of attack datapoints in x̃ may be replaced by a single
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weighted datapoint. Let di denote the weighted attack datapoint that is injected after

xi, with the understanding that the di depends on (x1, . . . , xi). Note that the weight

can capture the effect of influence limiting of the attackers as well, and so we do not

need to separately model influence limiting of attackers. Note also that this weight

may in fact be zero to signal no attack between to consecutive honest datapoints.

We call the corresponding meta-expert ẽi. Note that ẽi possibly combines multiple

identities from H.

Thus, the extended sequence x̃k can now be rewritten as x̃k = 〈x1x1d1x2x2d2 · · ·xnxndn〉

where (x1, ..., xn) is the subsequence of honest datapoints in x̃. We modify the no-

tation for incremental gain slightly and denote by G(ei, x̃k), G(ei, x̃k) and G(ẽi, x̃k)

the incremental gains due to the datapoints xi, xi, di respectively in the sequence

x̃ where ei ∈ H, e ∈ H and ẽ ∈ H and the current round is k. Here the expecta-

tion is taken over the posterior distribution determined by the prior P ∗0 and honest

datapoints (x1, . . . , xn).

In our analysis we may need to refer to the regret of our algorithm under particular

attacks. In that case, we will parameterize regret in a round k with respect to an

attack strategy A as Regk(A) to make this connection explicit. We will also consider

a reordering of the sequence x̃k to analyze regret of the algorithm. Specifically, we

consider the reordering x̃′k obtained from x̃k as

x̃′k = x1x2x3 . . . xnx1d1x2d2 . . . xndn

Here, di depends only on (x1, · · · , xi). The sequence x̃′k has the property that all

the honest data are fully accounted for before the attack or influence-limit datapoints

are received. We call this new attackA′. Note that A′ does not necessarily correspond

to any feasible combination of attack data and influence limits, because xi has a

negative weight, unlike a real attack datapoint. However, we are using A′ purely for
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formal analysis of gain and regret, and so this does not matter.

Thus, the regret of our algorithm in a round k given attack A′ is equal to the total

error introduced after the optimal update, which is the negative of the sum of gains

of all attack and influence-limit datapoints.

Regk(A′) = −E(x1,x2,..xk)∼(T1,T2,...Tk)

∑
ei∈H

G(ei, x̃
′
k) +

∑
ẽi∈H

G(ẽi, x̃
′
k)


We will now show that each honest expert has a higher expected gain under A

than under A′.

Lemma VI.10. Let

x̃k = 〈x1x1d1x2x2d2 . . . xi−1xi−1di−1 xixidi xi+1xi+1di+1 . . . xnxndn〉

be the sequence as input to the algorithm. Let

x̃′k = 〈x1x2 . . . xi−1xixi+1 . . . xnx1d1x2d2 . . . xi−1di−1 xidi . . . xndn〉

be a reordering with all attacks coming after honest datapoints have been fully ac-

counted for. Let G(ei, x̃k) and G(ei, x̃
′
k) be the respective incremental gains attributed

to expert ei for each of these sequence in round k. Recall that xk is the subsequence

of x̃k consisting of all and only honest datapoints. If

∆i,k
def
= G(ei, x̃k)−G(ei, x̃

′
k)

then

∀i : ei ∈ H, Exi
k∼Tk

[∆i,k] ≥ 0

Proof. We will consider a particular honest expert ei ∈ H. We will define progressive
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reorderings of the sequence in order to show that the statement of the lemma holds.

Recall that the actual sequence as input to the algorithm is x̃k. Construct a new

sequence x̃Ak defined as

x̃Ak = 〈x1x2 · · ·xi−1x1d1x2d2..xi−1di−1 xi xidixi+1xi+1di+1 · · ·xnxndn〉

We are interested in the position of xi in the sequence. Recall that this is the datapoint

received from honest expert ei.

Now, construct a new sequence x̃Bk , defined as

x̃Ak = 〈x1x2 · · ·xi−1 xi x1d1x2d2..xi−1di−1xidixi+1xi+1di+1 · · ·xnxndn〉

Again note the position of xi in the sequence.

We note the following relationships between the incremental gain attributed to ei

in the sequences defined above.

• G(ei, x̃k) = G(ei, x̃
A
k )

This is because the prefix of x̃k and x̃Ak before the datapoint xi appears in each

sequence is exactly

〈x1x2 · · ·xi−1x1d1x2d2..xi−1di−1〉

The equality follows from the definition of incremental gain.

• E[G(ei, x̃
A
k )] ≥ E[G(ei, x̃

B
k )]

Recall that each xjdj corresponds to a weighted update to the natural hyperpa-

rameter. Let a
def
= x1d1x2d2...xi−1di−1. Note that this is a substring of both x̃Ak

and x̃Ak and that they differ only in the relative position of the update a and the

datapoint xi. Further, the datapoints in a are independent of xi. We assume

that the prior is accurate and we observe therefore that the updates correspond-
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ing to x1, x2, . . . , xi represent accurate Bayesian updating. Thus, we find that

the conditions of Theorem VI.7 are satisfied. E[G(ei, x̃
A
k )] ≥ E[G(ei, x̃

B
k )] follows

as a consequence.

• G(ei, x̃
B
k ) = G(ei, x̃

′
k)

This is because the prefix of x̃′k and x̃Ak before the datapoint xi appears in each

sequence is exactly 〈x1x2 · · ·xi−1〉. The equality follows from the definition of

incremental gain.

Thus, Exi
k∼Tk

[G(ei, x̃k)] ≥ Exi
k∼Tk

[G(ei, x̃
′
k)] or Exi

k∼Tk
[∆i,k] ≥ 0

Next, we need to tackle the gains of the influence limit and attack datapoints. We

denote by A the attack strategy that yields the sequence x̃k as input to the algorithm.

We define the unaccounted regret URk(A) as the regret solely due to influence limits:

URk(A) = Regk(A) + E(x1,x2,..xk)∼(T1,T2,...Tk)

∑
ei∈H

G(ei, x̃k)

Intuitively, the unnaccounted regret is of interest because the remainder of the regret

– the attackers’ gains – can be bounded in terms of the attackers’ initial budgets,

as in Theorem VI.2. Note that although the total regret does not depend on the

particular sequence of datapoints, the unaccounted regret does. This is because the

gains attributed to each attack identity may be different in different sequences.

Lemma VI.11. Recall that for each ei ∈ H, there is a corresponding ei ∈ H. Let x̃k

be the input extended sequence for round k. ∆i,k is the difference in incremental gain

due to reordering as defined in Lemma VI.10. Let URk(A) be the unaccounted regret

of round k under attack A. Then, URk(A) may also be written as:

URk(A) = −E(x1,x2,..xk)∼(T1,T2,...Tk)

∑
ei∈H

[G(ei, x̃k) + ∆i,k]
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Proof. Recall that Regk(A) is the regret of the algorithm in round k under attack

A. We note that, for any given x, the final prediction of the algorithm is the same

under both attacks A and A′, because the order of the updates does not matter. It

follows that, for given influence limits yik, Regk(A) = Regk(A′). Given the definition

of Regk(A′), we have:

Regk(A) = Regk(A′) = −E(x1,x2,..xk)∼(T1,T2,...Tk)

∑
ei∈H

G(ei, x̃
′
k) +

∑
ẽi∈H

G(ẽi, x̃
′
k)


Substituting this into the definition of unaccounted regret we have,

URk(A) = −E(x1,x2,..xk)∼(T1,T2,...Tk)

∑
ei∈H

G(ei, x̃
′
k) +

∑
ẽi∈H

G(ẽi, x̃
′
k)−

∑
ei∈H

G(ei, x̃k)


(6.7)

Further, from the fact that the total expected gain is the same under A and A′,

we have:

E(x1,x2,..xk)∼(T1,T2,...Tk)

∑
ei∈H

G(ei, x̃
′
k) +

∑
ei∈H

G(ei, x̃
′
k) +

∑
ẽi∈H

G(ẽi, x̃
′
k)



= E(x1,x2,..xk)∼(T1,T2,...Tk)

∑
ei∈H

G(ei, x̃k) +
∑
ei∈H

G(ei, x̃k) +
∑
ẽi∈H

G(ẽi, x̃k)


Rearranging, we have

URk(A) = −E(x1,x2,..xk)∼(T1,T2,...Tk)

∑
ei∈H

G(ei, x̃
′
k) +

∑
ẽi∈H

G(ẽi, x̃
′
k)−

∑
ẽi∈H

G(ẽi, x̃k)


(from Equation (6.7))

= −E(x1,x2,..xk)∼(T1,T2,...Tk)

[∑
ei∈H

G(ei, x̃k) +

(∑
ei∈H

G(ei, x̃k)−
∑
ei∈H

G(ei, x̃
′
k)

)]

= −E(x1,x2,..xk)∼(T1,T2,...Tk)

[∑
ei∈H

G(ei, x̃k) + ∆i,k

]
(by defintion of ∆i,k)
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Next, we bound the total gain of the influence limiting identities ei ∈ H by relating

them to the gain of the corresponding honest entities ei ∈ H.

Lemma VI.12. Fix reputation values, and hence influence values yik. Then, for each

ei ∈ H and corresponding ei ∈ H,

Exk∼Tk
G(ei, x̃k) ≥ −yikExk∼Tk

[G(ei, x̃
′
k) + ∆i,k]

Proof. Consider the sequence x̃k. Recall that the consecutive pair of “datapoints”

xixi is a model for the influence-limited report by expert ei ∈ H. By the concavity

of the gain function, we have:

G(ei, x̃k) +G(ei, x̃k) ≥ yikG(ei, x̃k)

This implies that G(ei, x̃k) ≥ −yikG(ei, x̃k).

By definition of ∆i, we have G(ei, x̃k) = G(ei, x̃
′
k) + ∆i and we are done.

Putting together Lemma VI.11 and Lemma VI.12, we get the following bound on

URk(A):

Lemma VI.13.

URk(A) ≤ E(x1,x2,..xk)∼(T1,T2,...Tk)

∑
ei∈H

yikG(ei, x̃
′
k)

Proof. From Lemma VI.11 and Lemma VI.12, we get:

URk(A) ≤ E(x1,x2,..xk)∼(T1,T2,...Tk)

∑
ei∈H

yikG(ei, x̃
′
k) +

∑
ei∈H

(yik − 1)∆i,k
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By Lemma VI.10, each ∆i,k ≥ 0. Further, 0 ≤ yik ≤ 1. Thus,
∑

ei∈H(yik− 1)∆i,k ≤ 0

and the lemma statement follows.

This allows us to show that the regret can be bounded by the sum of the damage

and information loss bounds. Recall that the hybrid stochastic-adversarial notion of

regret of algorithm Z is defined as

Reg(Z) = max
H,{Ti},A

{
M∑
k=1

E(x1,x2,..xk)∼(T1,T2,...Tk) [log Qk(βββk)− logQk(βββk)]

}

Equivalently, the regret can be defined in terms of the incremental gains, as:

Reg(Z) = max
H,{Ti},A


M∑
k=1

E(x1,x2,..xk)∼(T1,T2,...Tk)

 ∑
i∈H∪H

Gik −
∑
i∈H

hik


Theorem VI.14. The regret of the conjugate-prior algorithm is bounded by:

D

∑
i∈H

[
2 +

8

α
+

8

3α
log(1 + e−ri1)

]
+
∑
i∈H

1

α
log(1 + eri1)


Proof. Consider any given attack A. By lemma VI.13, the regret in round k is

bounded by:

Regk(A) ≤ E(x1,x2,..xk)∼(T1,T2,...Tk)

∑
ei∈H

yikG(ei, x̃
′
k) +

∑
ei∈H

−G(ei, x̃k)

Summing over all rounds k from 1 to M , we have:

Reg(A) ≤ E(x1,x2,..xk)∼(T1,T2,...Tk)

∑
k

∑
ei∈H

yikG(ei, x̃
′
k) +

∑
k

∑
ei∈H

−G(ei, x̃k)


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By Theorem VI.6, and using un-scaled log loss, the first sum is bounded by

∑
ei∈H

D

[
2 +

8

α
+

8

3α
log(1 + e−ri1)

]

By Theorem VI.2, and using un-scaled log loss, the second sum is bounded by∑
ei∈H

D
α
B(ri1).

Thus, putting these two together, we have:

Reg(A) ≤ D

∑
i∈H

[
2 +

8

α
+

8

3α
log(1 + e−ri1)

]
+
∑
i∈H

1

α
B(ri1)



6.8 Discussion and Conclusion

In this chapter, we have defined a new model of learning which models the se-

quential nature of advice availability. We analyze expert behavior in a hybrid model

to capture the fact that some experts behave essentially as stochastic generative pro-

cesses and others may exhibit adversarial behavior. We defined a natural notion of

regret in this model and proved a regret bound for our algorithm. This notion of

sequentially arriving expert advice has not been exploited in previous online learn-

ing models, to the best of our knowledge. Further, the hybrid stochastic-adversarial

analysis is unique in the way that it models expert behavior. Thirdly, our model

illustrate how using a prediction market metaphor can inform the weight updates on

experts to yield non-trivial regret bounds.

Comparison to sleeping expert models: Partial availability of expert advice

has been studied in prior work. In statistics, lack of information is usually modeled

as ‘missing data’ (see for instance Little and Rubin (1986)), but it is usually under
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the assumption of stochasticity rather than in an adversarial model. In online learn-

ing literature, this feature has been studied previously as ‘predictors that specialize’

Freund et al. (1997) or ‘sleeping experts’ Blum and Mansour (2007b); Kleinberg et al.

(2008); Kanade et al. (2009). We can highlight the difference between our sequen-

tial scoring and other models that treat agents’ reports on an item as simultaneous

through the following attack scenario. Suppose that there is one honest agent and n

attack identities; the honest agent rates item 1, and the attack raters copy the honest

agent’s report on this item. Subsequently, each of the n + 1 raters rates a different

item. A model that ignored the timing of ratings would have to treat each agent

symmetrically, whereas our sequential gain would give a greater score to the honest

agent on the first item, and hence suffer less in the future. Our regret analysis shows

that, if the attacker decided to rate before the honest agent on item 1, she would do

even worse because she could not predict the honest agent’s report.

On the flip side, our algorithm would reward an earlier honest agent more than

a later honest agent in expectation, and hence, may create races between strategic

informed agents.

Some unanswered questions: One important direction for future work is to prove

general bounds on the variance in terms of the expected gain. We would conjecture

that a bound of c = 2 holds for general exponential families, but we do not yet have

a proof. One further modification that is possible in the model is if eventually we

only observe one sample x∗ from the distribution instead of the true βββ. It will be

interesting to characterize all exponential families for which we could still prove the

regret bound.

151



CHAPTER VII

Conclusions and Future Work

In this thesis, we have looked at prediction markets from two points of view. On

the one hand, we designed a prediction market mechanism that incentivizes participa-

tion financially and provides a probability estimate on the event outcome. We showed

that this mechanism can be shown to perform a machine learning algorithm on the

private beliefs of traders in the market. On the other hand, we used a prediction

market metaphor to design machine learning algorithms for social computing. We

will now briefly list the specifics of our contributions.

7.1 Summary of Contributions

Exponential Family Prediction Markets We defined an automated market maker

derived from a generalized log market scoring rule. We showed that we can de-

sign these mechanisms using exponential family distributions, a popular and

well-studied class of probability distributions used in statistics. We showed a

range of benefits of defining the mechanism in this way. We drew connections

between the information aggregation of market prices and the belief aggregation

of learning agents that rely on exponential family distributions. We developed

a natural analysis of the market behavior as well as the price equilibrium under

the assumption that the traders exhibit risk aversion according to exponential
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utility. We also considered similar aspects under alternative models, such as

budget-constrained traders.

Interaction between Prediction Markets We proposed a technique to determine

the surplus resulting from running multiple markets on the same event and

showed how the market makers might split this surplus. We also designed and

analyzed the effect of trades in one market on another market on a related

variable. We found that we are able to precisely characterize the effect of such

trades using graphical models. We were also able to characterize the interaction

of a trader with the market when the trader is partially informed. Interestingly,

the optimal trader behaves in accordance with the updates in the EM algorithm.

Myopic Learning with Partial Feedback We used the recommender system set-

ting to model a learning problem. The particular challenge here was to extract

as much information as possible from informative sources while limiting damage

from malicious ones. We accomplished this using a hybrid sequential analytic

technique based on prediction markets under partial feedback from the environ-

ment. Under these conditions and a restricted definition of regret we showed

that this algorithm has a regret bound of O(n
√
T log T ) for T rounds and n

experts.

Bounded Regret Sequential Learning of Exponential Families We showed that

learning the parameters of an exponential family using conjugate priors in an

adversarial noise setting can be done with regret bounded as O(a log(1 + e−r) +

b log(1 + e−r)) where r is an algorithm parameter and a+ b is the total number

of experts. We also proposed an abstract architecture that can be used to apply

this setting and analysis to any problem that satisfies certain properties.
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Future Directions

Prediction markets are an emerging form of financial markets whose goal is to use

the power of collective human intelligence to efficiently and accurately forecast future

events. There is mounting evidence that prediction markets are better predictors

than other techniques like polling and statistical estimates (Hanson, 1999). But, as

scientists, we are not satisfied in simply knowing that these markets work well, but

also why they do, whether these results are repeatable and to what degree. In other

words, we would like to build a model to explain the process and thence construct

sound prediction market machinery from the ground up. There seem to be several

avenues of further exploration leading from the work done in this thesis. We list a

few below.

Risk Measures to Model Trader Behavior We have shown that the equilibrium

market state in our prediction market mechanism is a risk-tolerance-weighted

average of the natural parameters of the traders and the market maker, with

the more risk tolerant traders contributing more to the market state. This

result is quite natural, but appears to crucially depend on the synergy between

exponential families and exponential utility. Based on recent promising results

(Hu and Storkey , 2014; Othman and Sandholm, 2011), Jacob Abernethy, Rafael

Frongillo and I advocate using risk measures, previously used predominantly in

financial mathematics, as a way to analyze trading decisions made by agents

in prediction markets (Abernethy et al., 2014a). For instance, Frongillo and

Reid (Frongillo and Reid , 2014) show that the equilibrium result we attained in

exponential family markets extends to risk-tolerance families of arbitrary risk

measures: if the market maker is risk-constant and traders seek to minimize

their own risk measure, then the equilibrium state is again the weighted average

of trader beliefs. Is it possible that modeling trader behavior using risk measures
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would allow us to generalize our other results from agents with exponential

family beliefs to arbitrary beliefs?

Market Interactions Based on Graphical Models In this thesis, we have demon-

strated the applicability of graphical models as a tool for formalizing the inter-

actions between markets on multiple, possibly interrelated, events. There are

various inference algorithms, called message passing algorithms, that run ef-

ficiently on graphical models by exploiting the structure of the graph. If we

design markets based on graphical models, it seems likely that these messages

have particular significance as trades amongst market makers. Can this be es-

tablished more precisely? We have been able to specify market mechanisms for

multiple events based on graphical models that represent the interdependence

of these events. If traders are assumed to have knowledge of only some of these

events, we have shown that their optimal trades can be understood in terms of

the Expectation Maximization algorithm. If you have several such traders, can

the equilibrium state also be precisely determined?

Manipulation in Prediction Markets There has been some work (both theoret-

ical and experimental) on studying manipulation in binary outcome markets

(Dimitrov and Sami , 2010; Chen et al., 2010; Jian and Sami , 2012). How-

ever, these results have been largely negative. In particular, it is possible under

certain information structures of the traders for some traders to profit by ei-

ther strategically delaying trading or bluffing. However, the equilibrium market

state under these conditions has not yet been characterized completely. In ex-

ponential family markets under exponential family beliefs, we have been able to

exactly specify the effect of a trade on the trader’s private belief. Is it possible

to specify an optimal sequence of trades based on the updated belief of the

trader? What effect would this have on the manipulation resistance of these
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markets?

Designing and analyzing social computing systems based on theoretical foundations

from statistics, economics and computer science will lead to a better understanding

and more sound designs of social computing mechanisms in general and prediction

markets in particular. This is crucial in bridging the current gap between theory and

practice in this area.
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