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ABSTRACT

Developments in Stochastic Fuel Efficient Cruise Control and Constrained Control
with Applications to Aircraft

by

Kevin K. McDonough

Chair: Ilya V. Kolmanovsky

The dissertation presents contributions to fuel-efficient control of vehicle speed and

constrained control with applications to aircraft.

In the first part of this dissertation a stochastic approach to fuel-efficient vehicle speed

control is developed. This approach encompasses stochastic modeling of road grade and

traffic speed, modeling of fuel consumption through the use of a neural network, and the

application of stochastic dynamic programming to generate vehicle speed control policies

that are optimized for the trade-off between fuel consumption and travel time. The fuel

economy improvements with the proposed policies are quantified through simulations and

vehicle experiments. It is shown that the policies lead to the emergence of time-varying

vehicle speed patterns that are referred to as time-varying cruise. Through simulations

and experiments it is confirmed that these time-varying vehicle speed profiles are more

fuel-efficient than driving at a comparable constant speed. Motivated by these results,

a simpler implementation strategy that is more appealing for practical implementation is

also developed. This strategy relies on a finite state machine and state transition threshold
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optimization, and its benefits are quantified through model-based simulations and vehicle

experiments. Several additional contributions are made to approaches for stochastic mod-

eling of road grade and vehicle speed that include the use of Kullback-Liebler divergence

and divergence rate and a stochastic jump-like model for the behavior of the road grade.

In the second part of the dissertation, contributions to constrained control with appli-

cations to aircraft are described. Recoverable sets and integral safe sets of initial states of

constrained closed-loop systems are introduced first and computational procedures of such

sets based on linear discrete-time models are given. The use of linear discrete-time models

is emphasized as they lead to fast computational procedures. Examples of these sets for

aircraft longitudinal and lateral aircraft dynamics are reported, and it is shown that these

sets can be larger in size

compared to the more commonly used safe sets. An approach to constrained maneuver

planning based on chaining recoverable sets or integral safe sets is described and illus-

trated with a simulation example. To facilitate the application of this maneuver planning

approach in aircraft loss of control (LOC) situations when the model is only identified at

the current trim condition but when these sets need to be predicted at other flight condi-

tions, the dependence trends of the safe and recoverable sets on aircraft flight conditions

are characterized. The scaling procedure to estimate subsets of safe and recoverable sets

at one trim condition based on their knowledge at another trim condition is defined. Fi-

nally, two control schemes that exploit integral safe sets are proposed. The first scheme,

referred to as the controller state governor (CSG), resets the controller state (typically an

integrator) to enforce the constraints and enlarge the set of plant states that can be recov-

ered without constraint violation. The second scheme, referred to as the controller state

and reference governor (CSRG), combines the controller state governor with the reference

governor control architecture and provides the capability of simultaneously modifying the

reference command and the controller state to enforce the constraints. Theoretical results

that characterize the response properties of both schemes are presented. Examples are re-

xv



ported that illustrate the operation of these schemes on aircraft flight dynamics models and

gas turbine engine dynamic models.
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CHAPTER 1

Introduction

This dissertation addresses two different topics. The first topic, discussed in Chapters 2, 3,
and 4, is stochastic fuel-efficient control of vehicle speed. The second topic, discussed in
Chapters 5, 6, and 7, is constrained control with aircraft applications.

1.1 Stochastic fuel-efficient cruise control

In the United States, corporate average fuel economy (CAFE) standards have been man-
dated to rise substantially by the year 2025 [1]. Because of both this mandate and the
world-wide consumer desire to have fuel-efficient vehicles, much research is being pur-
sued in the area automotive fuel-efficiency improvements. The pathways to better fuel
economy include, but are not limited to, the use of light-weight materials, new engine ar-
chitectures [2], more-efficient combustion technologies [3, 4], and vehicle speed optimiza-
tion [5–9]. It is this final pathway, through vehicle speed optimization, which is of main
interest in this dissertation. Note that since vehicles are tested on prescribed federal drive
cycles, the drive cycle fuel economy may not be improved by changes in vehicle speed
profiles. However, according to [10], customer fuel economy improvements, that are pos-
sible through vehicle speed optimization, can be credited to an automotive manufacturer
depending on the fraction of vehicles utilizing a specific fuel-efficient technology.

1.1.1 Vehicle speed control and optimization

Much of the past work in the area of vehicle speed control has been done on conventional
cruise control, adaptive cruise control (ACC), cooperative adaptive cruise control (CACC),
platooning, and string stability. As a sample of related literature, in [11], a method of
collision avoidance in a platoon of vehicles is presented. References [12–14] examine
the problem of string stability in a platoon of vehicles while [14] specifically develops a
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decentralized approach for ensuring string stability in a platoon of vehicles. Reference
[15] examines the stability and impact of human driven vehicles on ACC. Reference [16]
presents an overview of some of these different developments.

More recently, interest has been growing in the optimization of ACC for fuel efficiency.
Much of the past research in vehicle speed optimization for fuel efficiency has been done
within a deterministic framework. To this end, it is assumed that all necessary information
about present and future driving conditions (e.g., traffic conditions, road geometry, driver
behavior) is accessible on board the vehicle. References [17–20] implement methods of de-
terministic dynamic programming in order to produce fuel-efficient vehicle speed profiles.
In [18,19], dynamic programming is used in conjunction with a preview of upcoming road
grade to produce fuel-efficient speed profiles for heavy trucks. These references report an
average reduction in fuel consumption of 3.5% in vehicle tests while substantially reducing
the gear shifts in the heavy trucks. An interesting point in these works is that they used a
kinetic-energy approach and aimed at suppressing oscillations in vehicle speed. In [20], a
cloud computing approach was proposed to handle the large dynamic programming prob-
lem that results when all available information (e.g., traffic data and road geometry, traffic
signals) is used. The optimized vehicle speed profile and vehicle trajectory is then relayed
to the driver through an advisory application. In real vehicle testing, fuel consumption
reductions of 5-15% have been reported with this approach.

In references [21–27], model predictive control techniques have been considered which
use previews of upcoming road geometry and traffic information in order to reduce fuel
consumption. In [21], a fuel consumption reduction of 11.36% in simulation is reported
through consideration of road grade only. In [22], the model predictive control approach
is used to reduce fuel consumption while also minimizing tracking error in a vehicle-
following scenario. In that work, the authors report a reduction in fuel consumption of
2.2% in highway driving simulations and 5.9% in city driving simulations.

References [23–26] use vehicle-to-vehicle (V2V) communication in conjunction with
model predictive control to improve fuel economy. In [23], the host vehicle (i.e., the vehicle
running the model predictive control scheme) follows a simulated vehicle with a specifi-
cally programmed standard speed profile (in this case, it is the FTP75 speed profile) while
the simulated lead vehicle provides a preview of its speed and the road geometry to the
host vehicle via V2V communication. Fuel economy improvements in the range of 16-
20% for the host vehicle are reported over the fuel economy of the preceding vehicle in
both simulation and engine dynamometer testing (but have yet to be confirmed through
vehicle testing). In [24–26], V2V communication relays speed information to the host ve-
hicle running the model predictive control scheme; however, the host vehicle is given the
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option of altering its following distance. Depending on the allowable distance margin and
the length of the preview, the authors of [24–26] report fuel economy increases between
10-20% in simulation and dynamometer bench testing.

Another deterministic approach to vehicle speed optimization exploits a periodically
varying vehicle speed pattern often referred to as pulse and glide— (PnG) or periodic
cruise. In 1976, Elmer Gilbert, by applying results in periodic optimal control theory to a
vehicle model, suggested that such periodic cruise profiles would be fuel-efficient, see [28].
In his work, Gilbert develops a rationale for periodic cruise based on decomposing the prob-
lem into four sub-problems and demonstrating that under the appropriate assumptions the
periodic cruise speed profile is more efficient than a constant speed profile.

More recent works [29–31] also discuss the fuel-saving benefits of periodic vehicle
speed profiles, where such profiles are determined through physics based approaches. The
engine map and dynamics of the vehicle are considered to find suitable operating condi-
tions and establish a periodic speed profile between them, while supervisory logic is used
to maintain and handle disturbances to the periodic profile. Based on the simulations, the
projected fuel-economy benefits of periodic speed profiles range from 33% to 77% as com-
pared to driving at a constant speed equal to the average speed of the periodic speed profile.
PnG speed profiles have also been discussed in the hyper-mileage community [32].

Stochastic approaches to the optimization of vehicle speed have also been proposed
in [8, 9, 27]. In [27], a stochastic model predictive control scheme is considered in which
the driver inputs are modeled by a Markov chain and a receding horizon optimal control
problem is solved online based on model approximation and quadratic programming, which
is a computationally expensive approach. In [8], stochastic drift counteractive optimal con-
trol (SDCOC) is applied to adaptive cruise control and hybrid vehicle control. In [9], the
road grade and traffic speed are treated stochastically and a speed profile is stochastically
optimized to reduce fuel consumption. This preliminary work provided the motivation for
the developments in this dissertation. Note also that much work has been done on stochastic
dynamic programming for hybrid electric vehicle energy management and gear shift opti-
mization [33–36]. In these applications, wheel power demand is treated as stochastic and
modeled by a Markov chain model; however, vehicle speed optimization is not considered.

In this dissertation, road grade and traffic speeds are modeled stochastically, as in
[8, 9, 37–39] (see [40, 41] and references therein for stochastic modeling techniques and
applications). The treatment of traffic speed as a stochastic variable is natural because local
traffic behavior near a vehicle’s location cannot be deterministically predicted (e.g., a vehi-
cle may be stuck behind a slow moving truck). The treatment of road grade as a stochastic
variable deserves an explanation. If a route is known, road grade can be predicted by pre-
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view systems such as electronic horizon or V2V communication. However, implementation
of these preview systems entails additional cost and reliability issues to which the automo-
tive industry is especially sensitive. Our approach to modeling road grade stochastically
avoids the need for preview systems and allows the use of stochastic dynamic program-
ming to generate control polices that do not require on-board optimization (and hence are
computationally easier to implement and to certify). Another motivation for the stochastic
approach is that the control policies can be generated specifically for an individual driver’s
typical commute.

Once the stochastic models are generated for road grade and traffic speed, in the form
of Markov chain models, a cost function that accounts for expected fuel consumption, ex-
pected travel time, and relative distance to traffic is considered and used within the stochas-
tic dynamic programming (SDP) framework [42] to produce fuel-efficient cruise control
policies.

Through the development and subsequent testing of these policies, an interesting be-
havior emerged. When a simulated host vehicle implementing an SDP policy followed
another vehicle traveling at a relatively constant speed, the policy would direct the host
vehicle to oscillate its speed around the lead vehicle’s speed. This oscillating behavior is
similar to the PnG behaviors discussed in [29–31]. An important distinction between our
work and that described in [29–31] is that in our case, PnG type behaviors emerged as a
result of applying SDP policies and were not initially assumed to be fuel-efficient.

Simulation data suggest that PnG type speed profiles were more efficient than driving at
a constant speed with our results indicating a potential improvement up to 18% depending
on the host vehicle speed [43, 44]. SDP control polices were then developed for a test
vehicle and experimentally tested. The results of the vehicle tests indicated that the time-
varying PnG strategy is more efficient than driving at a constant speed with an average
increase in fuel economy of 4.51% (a maximum of 11.58%) while observing an average
reduction in average speed within the 2 mph range, [45]. This translates to an average fuel
economy improvement of 2.74% if the fuel economy increase due to speed reduction is
accounted for.

A sensitivity analysis of the fuel-economy benefits of the SDP policies to changes in
cost function parameters and Markov chain model grid selection has been completed more
recently and its results are also included in this dissertation. The results suggest that the
policies are not highly sensitive to changes in either the cost function parameters or Markov
chain model grid selection; however, better choices of cost function parameters may exist
than those which were originally selected. A more exhaustive sensitivity analysis is left to
future work when more data can be collected.
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Because the generation of SDP policies can be time consuming and the tuning of the
polices can be unintuitive for a typical calibrator in the automotive industry, an alternative
control methodology, referred to as rule based cruise control (RBCC), was developed for
the practical implementation of the PnG behavior, [46]. The RBCC scheme utilizes a finite
state machine that controls transitions between different phases of the PnG speed profile
(i.e., normal, glide, recover, and bleed) through the use of thresholds and logic applied to
vehicle speed and average predicted road grade. A similar structure is developed and tested
within a simulation environment in [31]. However, in [31] the algorithm is different; a grade
preview is required and only simulation results are presented. In our work, we optimize
the transition thresholds through Monte-Carlo simulations and present both simulation and
vehicle testing results.

1.1.2 Stochastic modeling of road grade and traffic speed

The first part of this dissertation also describes developments made in the stochastic mod-
eling of road grade and traffic speed. These include the similarity assessment between
Markov chain models of road grade and traffic speed using the Kullback-Liebler (KL) di-
vergence and divergence rate and a novel approach to modeling road grade using a stochas-
tic jump process.

Markov chain model similarity assessments are made between models learned for dif-
ferent times of day, driving types, and locations. It is shown that the KL divergence rate
can be used to successfully categorize Markov chain models of road grade based on the
location of the collected data (i.e., city versus highway road geometries) and Markov chain
models of vehicle speed based on the style of the driver (i.e., passive or active).

Similarity assessment can also be applied to the online learning of Markov chain mod-
els. Using techniques presented in [38], Markov chain models of road grade have been
successfully learned in real-time on board a vehicle [47], while it was demonstrated in
simulation that, with the appropriate sensors, Markov chain models for traffic speed can
also be learned. To decide when a model has been sufficiently learned (i.e., it does not
substantially change over a given time or distance segment), the KL divergence is used to
measure the similarity of the currently learned Markov chain model to a model from the
current learning cycle at a given number of steps in the past. When the KL divergence
between these two models is sufficiently small, this indicates that the model learning may
be terminated.

The fuel-efficient vehicle speed optimization described above is performed off-line.
Ideally, a set of Markov chain models would be developed that represent a large range
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of driving conditions and their corresponding SDP policies would be stored on board for
vehicle use. To select the appropriate policy for a given region, the statistics of the given
region must be compared to those used to generate the stored policies. Given the ability to
learn Markov chain models online, the learned models can be compared to those stored in
a database and the most similar Markov chain model and its corresponding policy can be
selected and used.

Because transition probability matrices of Markov chain models for road grade and
traffic speed are nearly diagonal [48], indicating that the prediction will likely yield the
current value as the next value, a novel approach to modeling road grade is introduced
in this dissertation. This novel approach models road grade as a stochastic jump process.
This process predicts the distance over which a positive or negative step change in road
grade is likely to occur. It is shown that for prediction horizons less then 20 meters, this
stochastic jump process produces predictions that are more accurate than the Markov chain
method. Online learning techniques discussed in [38, 47] are then modified and applied to
the online learning of the stochastic jump process. This learning algorithm is illustrated by
simulations.

1.2 Constrained control with applications to aircraft

The second part of this dissertation covers developments and advances in constrained con-
trol motivated by the need to develop control schemes which handle aircraft loss of control
(LOC) situations [49,50]. In particular, our interest is in constraint handling aspects of such
problems.

The loss of control is an issue that causes many aviation accidents; however, separat-
ing LOC events from other factors can be difficult, [49, 51–53]. In a highly cited work,
Wilborn [54] defines an LOC event statistically (based on a large study of aviation acci-
dents jointly performed by NASA and the Boeing Company [55]) as an excursion from
three or more critical envelopes: the adverse aerodynamics envelope, the unusual attitude
envelope, the structural integrity envelope, the dynamic pitch control envelope, and the
dynamic roll envelope. These envelopes are essentially a collection of aerodynamic, struc-
tural, and control constraints. As more constraints are violated, it becomes more difficult
to recover the aircraft to safe operating conditions. In a separate way, albeit related, ref-
erences [53, 56, 57] define LOC events from a strictly control perspective using analytical
control techniques. In all cases, though, violation of aerodynamic, structural, and control
constraints is agreed to be a major cause of LOC events.

The work in the second part of this dissertation will address two main topics. The first
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topic centers around the use, calculation, and estimation of safe, recoverable, and inte-
gral safe sets. These sets are motivated by the aircraft LOC prevention considerations and
are developed specifically with aircraft applications in mind. In particular, a constraint-
admissible aircraft maneuver planning procedure that exploits these sets is presented and
illustrated with an example. Scaling transformations are then developed in order to facili-
tate the approximation of these sets at different flight conditions when the aircraft dynamics
have changed (e.g., due to aircraft wing icing or actuator malfunction).

The second topic focuses on the development, theory, and application of two novel
control schemes for constrained systems: the controller state governor (CSG) and the con-
troller state and reference governor (CSRG). The CSG was developed as an add-on to a
nominal aircraft control scheme using integral action. The CSRG subsequently evolved
from the CSG by combining it with the reference governor [58–62].

1.2.1 Safe, recoverable, and integral safe sets

The idea of a safe set is not unique to our work or to the definition used in our work. We
define safe sets as sets of initial conditions for linear, discrete-time, closed-loop systems
from which the ensuing closed-loop trajectories are constraint-admissible. That is, an initial
state within a safe set will yield a closed-loop trajectory, using a given nominal controller,
that satisfies constraints. The term safe set is also used in [53,56,57,63–70] but its meaning
is different as it describes a set of reachable states without constraint violation given an
initial condition of the nonlinear aircraft dynamics. References [63–65] develop methods
that combine hybrid control and set theory to produce these safe sets, which are subsets of
the aircraft’s complete dynamic (accelerating) and trim (steady-state) flight envelope.

In [53, 56, 57], the notion of a safe set as a set of constraint-admissible reachable states
is approached from a rigorous control standpoint. To this end, developments are presented
to handle cases such as stall [56] and actuator impairment [53, 57]. In [68, 70], the idea
of a maneuvering envelope is introduced. This maneuvering envelope is similar to a safe
set as it characterizes a set of safe conditions in which to operate. It is different, though,
because it is the intersection of constraint-admissible forward and backward reachable sets
over a given time horizon from an initial condition. In all cases, these sets are calculated
using partial differential equations (PDEs) and require significant computational resources.
Thus, this approach may require the anticipation of malfunctions for the aircraft and may
not present an easily adaptable method to be implemented in real time on board an aircraft.

To tackle this problem with computational tractability, NASA Ames researchers have
taken the approach of decomposing the nonlinear aircraft dynamics into fast and slow dy-
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namics. They then used an aerodynamic model that is linear in identification parame-
ters [71–73], and implemented a probability based model identification algorithm [74] to
produce a tractable problem for calculating a maneuvering envelope that can be solved on
board the aircraft. By decomposing the aircraft dynamics, and essentially neglecting the
fast dynamics, a maneuvering envelope (like that described in [70]) over a relatively short
time horizon can be quickly computed. Also, through the implementation of the model
identification algorithm, the maneuvering envelope can be updated online as changes to
the model occur due to changes in aerodynamics. This approach has undergone promising
testing within a flight simulator with flight crews.

Our work in the area of computing safe sets for LOC prevention [75–77] has focused
on the use of linearized aircraft models at given trim conditions. Besides simplifying the
on-board computations, the reliance on the discrete-time linearized aircraft models is mo-
tivated by the consideration that in an LOC scenario it is unlikely that large alterations in
the aircraft’s flight conditions will be attempted. Instead it is more likely that a progression
of several small changes/transitions through trim state space will be executed. Further-
more, if the constraints are affine and the system model is linear discrete-time, the safe sets
computed are polyhedral and are easily storable and manipulable [58, 59, 78, 79].

The safe sets are defined in this work as sets of initial states from which ensuing closed-
loop trajectories of the system satisfy constraints for all future times. Many papers exist
discussing the properties of these kinds of sets. See, for example, the book [80] and papers
[58, 78, 81–84].

We extend the notion of safe sets to that of recoverable sets and integral safe sets. Re-
coverable sets are defined for the nominal closed-loop system extended with an additional
auxiliary subsystem, the output of which modifies the control signal. A plant state is recov-
erable if there exists a state of the auxiliary subsystem such that the pair of plant and aux-
iliary states is constraint-admissible; i.e., the subsequent response satisfies the constraints.
An integral safe set is a set of all plant states for which there exists a resettable nominal
feedback controller state such that the pair is constraint-admissible; i.e., the subsequent
closed-loop response satisfies the constraints. The primary advantage of this approach is
that the computation of recoverable and integral safe sets reduces to that of safe sets in
a larger dimensional space, moreover, the computational complexity can be adjusted by
varying the order of the auxiliary subsystem or retaining only certain controller states for
reset. Thus, the computations of these sets may be feasible on board an aircraft in LOC
situations based on identified linear models.

After defining safe, recoverable, and integral safe sets, we demonstrate how these sets
can be used to plan constraint-admissible trajectories through the trim envelope. For in-
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stance, if the current aircraft state is in a safe set of the next desired trim condition, then a
constraint-admissible trajectory exists for the aircraft between these two trim states. This
approach is similar to [60, 85], which considers spacecraft applications. The recoverable
and integral safe sets can be used similarly to safe sets for maneuver planning as we will
subsequently demonstrate.

We also develop methods by which safe and recoverable sets can be scaled in order
to approximate safe and recoverable sets at unexplored trim conditions. This is useful if
aerodynamic changes are occurring (e.g., wing icing), thus causing the linearized models to
change. By implementing a model identification technique, (we implemented retrospective
cost model refinement (RCMR) in [76]) the local linear model can be identified. Then,
through scaling transformations calculated off-line for the nominal system, scaled subsets
of safe or recoverable sets at unexplored trim conditions of the altered aircraft dynamics
can be estimated [75].

A related area to LOC research is fault detection and fault tolerant control, see [86].
References [87–90] present recent developments in this area. In [89], approaches are pre-
sented that take advantage of decomposed fast and slow dynamics to produce new control
schemes online that are tolerant to various faults. References [87, 88, 90] all use different
methods to predict changes to the aircraft flight envelope given information on changes in
the system. In [76], we explore a fault signature detection technique in which pertinent
information about aircraft stability derivatives is gleaned from the identified linear model
and used to estimate changes in global aerodynamic parameters.

While much of the work described in the second part of this dissertation is strongly mo-
tivated by the aircraft LOC problem, it is applicable to constrained systems more generally.

1.2.2 The controller state governor and the controller state and refer-
ence governor

Two novel control schemes for systems with constraints, the controller state governor
(CSG) and the controller state and reference governor (CSRG), are introduced, and rel-
evant analyses of stability and convergence are presented in Chapter 7 of this dissertation.
These control schemes take advantage of resettable controller states to generate constraint-
admissible trajectories, reduce closed-loop system energy, and improve performance.

The CSG and CSRG are motivated by reference governors. The reference governor is
an add-on control scheme for enforcing pointwise-in-time state and control constraints in
well-designed linear and nonlinear closed-loop systems, see [58–62] and references therein.
Reference governors accomplish this by modifying the reference commands to the nominal
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closed-loop system whenever the danger of constraint violation occurs. The closed-loop
system states and the modified reference are maintained in the maximum output admissible
set (i.e., in the safe set) or its subset. The projection of this maximum output admissible
set gives the constraint-admissible domain of attraction, that is the set of all closed-loop
system states that are recoverable without constraint violation.

In systems that employ dynamic controllers, an additional opportunity exist which is to
reset the controller states. Dynamic compensators are broadly used, in particular, to pro-
vide integral control action [91]. Resetting dynamic controller states has been previously
exploited to improve performance in nonlinear control, see [92–94], though resetting dy-
namic controller states does not appear to have been broadly used for enforcing constraints.
Notable exceptions are [58] where the state of the auxiliary reference generating subsystem
(rather than nominal controller) is reset and [95] where the state is decomposed for the pur-
pose of improving actuator coordination. The main benefits of resetting the controller states
are enlarging the constraint-admissible domain of attraction and improving performance.
The CSG and CSRG were first introduced in our publications [77, 96].

1.3 Major contributions and relevant publications

1.3.1 Major contributions

The major contributions of this dissertation are summarized as follows.

Fuel-efficient cruise control

1. The development and testing, both in simulation and in vehicle, of stochastic dy-
namic programming (SDP) policies for vehicle speed control that accounts for sta-
tistical patterns in road grade and traffic speed. While SDP has been applied to other
automotive problems in the past, the use of SDP to generate vehicle speed control
policies for cruise control and quantifying their benefits in realistic simulations and
experimental testing is novel. As these policies do not require preview nor on-board
optimization, they are attractive to practitioners. In vehicle-following scenarios, they
also lead to time-varying vehicle speed oscillations, that we refer to as time-varying
cruise or pulse and glide (PnG). PnG strategies are not in themselves novel, how-
ever, demonstrating the conclusion that they can emerge from the application of SDP
policies in novel.

2. The demonstration both in simulation and in vehicle that time-varying speed profiles,
when adequately controlled, can be more fuel-efficient than driving at a constant
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speed with the same average value as that of the time-varying speed profile.

3. The development of novel categorizers of Markov chain models for road grade and
traffic speed based on the KL divergence rate. Also, the development of a conver-
gence metric for the online learning of Markov chain models for road grade and
traffic speed based on the KL divergence.

4. The development of a stochastic jump process prediction method for step changes in
road grade.

Constrained control with aircraft applications

1. The development of recoverable and integral safe sets based on discrete-time lin-
ear models that can be computed quickly and used in constraint-admissible aircraft
maneuver planning.

2. The scaling procedure of safe, recoverable, and integral safe sets between differ-
ent flight conditions to facilitate constraint-admissible aircraft maneuver planning in
LOC situations.

3. The development of the CSG and CSRG schemes for constrained control, including
stability and finite-time convergence proofs.

1.3.2 Relevant publications

The following is a list of relevant publications on the different topics addressed in this
dissertation.

Fuel-efficient cruise control

1. McDonough, K., D’Amato, A., Mullen, J., Petersen, C., Kolmanovsky, I., & Filev,
D. Transition Threshold Optimization for a Rule Based Automotive Cruise Control.
In Decision and Control (CDC), Conference on, 2014.

2. McDonough, K., Kolmanovsky, I., Filev, D., Szwabowski, S., Yanakiev, D., & Miche-
lini, J. Stochastic Fuel Efficient Optimal Control of Vehicle Speed. Optimization and

Optimal Control in Automotive Systems (pp. 147-162). Springer International Pub-
lishing, 2014.

3. McDonough, K., Kolmanovsky, I., Filev, D., Yanakiev, D., Szwabowski, S., & Miche-
lini, J. Stochastic dynamic programming control policies for fuel efficient vehicle
following. In American Control Conference (ACC), 2013 (pp. 1350-1355).
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4. McDonough, K., Kolmanovsky, I., Filev, D., Yanakiev, D., Szwabowski, S., & Miche-
lini, J. Stochastic dynamic programming control policies for fuel efficient in-traffic
driving. In American Control Conference (ACC), 2012 (pp. 3986-3991).

5. Kolmanovsky, I., McDonough, K., & Gusikhin, O. Estimation of fuel flow for telematics-
enabled adaptive fuel and time efficient vehicle routing. In ITS Telecommunications

(ITST), 2011 11th International Conference on, 2011 (pp. 139-144).

United States Patent

1. Filev, D. P., Kolmanovsky, I., McDonough, K., Szwabowski, S. J., Michelini, J. O.,
Yanakiev, D., & Abou-Nasr, M. ”On-board real-time speed control setpoint variation
using stochastic optimization.” U.S. Patent 8,930,116, issued January 6, 2015.

Stochastic modeling of road grade and traffic speed
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ing Markov chain models of driving conditions using onboard learning. In Cybernet-
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probability models. In Control Applications (CCA), 2011 IEEE International Con-
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aircraft flight control systems. AIAA Sci-Tech Conference, AIAA 2015-1995, 2015.
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1.4 Dissertation outline

This dissertation is divided into two parts. The first part encompasses Chapters 2, 3, and
4, and develops advancements in the area of automotive fuel-efficient cruise control. The
second part encompasses Chapters 5, 6, and 7, and develops advances in the area of con-
strained control motivated by aircraft applications.

Chapter 2 develops an SDP approach to the optimization of vehicle speed and includes
results from both simulations and in-vehicle testing. The longitudinal vehicle dynamics
model is presented in Section 2.1 with an explanation that the control input in our version
of fuel-efficient cruise control alters the set-point of the vehicle’s nominal cruise control.
Section 2.2 develops the Markov chain modeling techniques for the stochastic treatment of
the operating environment (i.e., the road grade and traffic speeds). Section 2.3 develops the
cost-function used in the stochastic optimization and defines each of its ingredients. The
SDP methodology used to generate the on-average optimal control policies is presented
in Section 2.4. Simulation and vehicle testing results are presented in Sections 2.5 and
2.6, respectively. Finally, this chapter ends with a control policy sensitivity analysis with
respect to cost-function weights and Markov chain model grid selection in Section 2.7.

Chapter 3 presents the rule based cruise control (RBCC) architecture, the threshold
optimization method, and simulation and vehicle testing results. Section 3.1 provides the
problem formulation on which the RBCC scheme is based. Section 3.2 develops the struc-
ture and defines each of the four states used in the RBCC finite state machine. Section
3.3 develops the Monte-Carlo simulation based optimization procedure used to determine
RBCC transition thresholds. Finally, this chapter ends with a presentation of the simulated
and vehicle testing results in Section 3.4.

Chapter 4 describes the developments in stochastic modeling and stochastic model cat-
egorization. Section 4.1 develops a method of using the Kullback-Liebler (KL) divergence
and divergence rate to categorize stochastic models based on important attributes such as
location of model data (i.e., city or highway), driving time (i.e., rush-hour or off peak),
and driving style (i.e., passive or active). A stochastic jump process approach to modeling
the road grade is presented in Section 4.2. A comparison of the Markov chain model and
stochastic jump model grade prediction methods is presented in Section 4.3. This chapter
ends with a presentation of online learning techniques developed for Markov chain models
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and stochastic jump models in Section 4.4.
The second part of this dissertation is organized as follows. Chapter 5 introduces the

safe, recoverable, and integral safe sets in Sections 5.1, 5.2, and 5.3, respectively. This is
followed by a comparison of these sets in Section 5.4 based on an aircraft model. This
chapter also includes a description of a maneuver planning technique that uses safe, recov-
erable, or integral safe sets in Section 5.5 and provides a simple example presented that
utilizes integral safe sets to that end. This chapter ends with Section 5.6, which discusses
safe and recoverable set dependence on flight condition, auxiliary system selection for the
generation of recovery sequences, recovery sequence horizon, and the treatment of additive
set-bounded disturbances.

Chapter 6 introduces the scaling transformations used to estimate safe and recoverable
sets at unexplored trim conditions. Two scaling transformations, scalar and vector, are
considered in Sections 6.1 and 6.2 with numerical results presented in Section 6.3 with two
examples: scalar scaling transformations over a grid of trim conditions and an aircraft icing
example. Finally, this Chapter ends with the presentation of another safe set estimation
technique based on set sensitivity to changes in aerodynamic parameters in Section 6.4.

Chapter 7 introduces, defines, and derives theoretical properties of the CSG and CSRG.
Two examples are considered: an aircraft flight control example and a gas turbine engine
control example. The CSG and analysis of stability under dynamic controller state reset is
presented in Section 7.1. The CSRG and an analysis of finite-time convergence is presented
in Section 7.2. Remarks discussing relevant connections between the CSRG and LQ-I
control as well as a brief introduction into potential extensions of the CSRG to nonlinear
systems are found in Section 7.3. Finally, Chapter 7 ends with a constrained aircraft flight
example in Section 7.4 and a constrained gas turbine engine example in Section 7.5.

Concluding remarks and future work discussion end this dissertation in Chapter 8.
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CHAPTER 2

Modeling, Optimization, and Results for
Fuel-Efficient Cruise Control

This chapter addresses the development of stochastic dynamic programming (SDP) based
vehicle speed control polices. The models used for SDP control policy generation include
the longitudinal vehicle dynamics model, the stochastic models of road grade and traffic
speed, and the vehicle fuel consumption model.

The models are designed to predict the vehicle states at the next spatial step given cur-
rent vehicle states. Thus, the models are discrete models, but in a spatial sense and not in
a temporal sense. The reason for spatially modeling the states as opposed to temporally
modeling the states is that we choose to treat traffic conditions and the driving environment
as being spatial and not temporal. For instance, the road grade changes spatially over a
drive. Also, traffic speeds may be treated as spatially distributed, for instance, certain areas
(such as those near highway exit and entrance ramps) consistently move slower than other
areas. Thus, given a distance segment of length ∆s, and values of road grade, traffic (ref-
erence) speed, host vehicle speed, and relative distance between vehicles at the beginning
of the current segment, the models that we employ produce the values of these variables at
the start of the next distance segment.

The desired control policies provide the next set-point for the vehicle’s nominal speed
controller based on the current state of the system, given by current vehicle speed, current
traffic speed, current road grade, and relative distance to the preceding traffic vehicle, see
Figure 2.1. Note that no deterministic preview of future grade or driving conditions is
required.

This Chapter is organized as follows. After the, longitudinal vehicle dynamics model
is addressed in Section 2.1 and the stochastic modeling of road grade and traffic speed
is addressed in Section 2.2, the cost function, and its ingredients, used for the optimiza-
tion is presented in Section 2.3. Next, the SDP methodology is discussed in Section 2.4.
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Figure 2.1: A schematic of the fuel-efficient speed control architecture.

Section 2.5 discusses the simulation results. These results are broken into two testing sce-
narios: in-traffic in which traffic speeds change and vehicle-following where the traffic
speed is assumed to be constant. Next follows the vehicle experimentation results for the
vehicle-following case in Section 2.6. Finally a sensitivity analysis of the control policies
is presented in Section 2.7.

2.1 Longitudinal vehicle dynamics

A simplified model for longitudinal vehicle dynamics has been adopted for control policy
generation. The controlled vehicle is referred to as the host vehicle, and its velocity is
denoted by v. The reference speed, or traffic speed, denoted as vt, represents either the
local traffic speed or the speed of the preceding (lead) vehicle depending on the scenario
being considered. Finally, the relative distance between the vehicles is denoted by ρ. The
traffic speed, host vehicle speed, and relative distance values one distance segment ahead
are denoted by v+

t , v+, and ρ+.
The host vehicle speed is updated according to one of the following dynamic equations,

v+ = vt + u, (2.1)

or
v+ = v + u, (2.2)

where u is a control input that is an offset from either the current traffic speed, vt, or the
current host vehicle speed, v. In the initial simulations, (2.1) was used. However, for the
vehicle experiments, (2.1) was replaced with (2.2) as it improved drivability and passenger
comfort.
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An approximate model for relative distance dynamics is defined by

ρ+ = ρ+
(
(v+ − v) + (v+

t − vt)
)
∆T, (2.3)

where
∆T =

2∆s

v+
t + vt

, (2.4)

is (approximately) the time to travel the road segment of length ∆s. A distance segment
length of ∆s = 30 m was used to generate control policies in the simulation case studies.
To provide faster control updates, ∆swas reduced to 15 m when generating control policies
for the vehicle experiments.

In both the experimental vehicle testing and the computer simulations, a set-point speed,
v+, was provided to existing speed controllers. These existing controllers were relied upon
to execute the necessary changes in speed.

2.2 Stochastic models of traffic speed and road grade

Transitions in traffic speed and road grade are modeled using Markov chains. Stochastic
modeling of driving conditions has been previously employed in hybrid electric powertrain
management, [35], and for our preliminary work in [9]. Transition probabilities are defined
for changes in traffic speed, vt, and road grade, θ, over a road segment of length ∆s,

P(v+
t |vt), P(θ+|θ), (2.5)

with values of vt and θ quantized to values on a discrete grid, vt ∈ {0, 1, · · · , 36} m/s,
θ ∈ {−6,−5, · · · , 5, 6} %.

The identification of the transition probabilities has been performed from sixteen data
sets collected on board the same vehicle used for the vehicle experiments. The vehicle has
been driven along a route on and around M-39 (mixed highway and city driving), in north-
bound and southbound directions, during different times of day (in rush hour traffic and
off-peak hours traffic) and with the driver emulating two different driving styles (passive
and active). Transition probability models have been identified using the relation,

P(xj | xi) ≈
Nxi,xj

Mxi

, (2.6)

where (2.6) is the approximate transition probability of a variable x ∈ {vt, θ} from a dis-
crete state xi to state xj ,Nxi,xj is the number of transitions from state xi to state xj observed
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Figure 2.2: A surface plot of road grade (left) and traffic vehicle speed (right) transition
probabilities.

in the data, and Mxi is the total number of transitions out of state xi. Figure 2.2 illustrates
the transition probability matrices learned based on one of the data sets. Note the near
diagonal character of the model suggesting that continuing with the same speed and grade,
i.e., v+

t = vt and θ+ = θ, is most likely. On the right side of Figure 2.2, one can observe
more off-diagonal entries at lower traffic speeds as it takes a longer time for a vehicle to
travel the distance segment and thus more time is available to accelerate to different speeds.

Assuming that θ and vt are independent, it follows that

P(θ+, v+
t |θ, vt) = P(v+

t |vt)P(θ+|θ). (2.7)

Remark: For the modeling of traffic speed as a stochastic variable, a multi-model
approach where several transition probability models (TPMs) in the form of Markov chains
and SDP policies are developed for different traffic types (i.e., rush hour traffic versus off-
peak hour traffic) and road types may be used. The Kullback-Liebler (KL) divergence
can be used to establish similarity between currently observed transition probabilities and
transition probability models that have been stored and for which the corresponding SDP
policy is available. The SDP policy for the best matching TPM is then switched to for
the on-board use. References [47, 48], as well as Chapter 4, discuss an evolving models
approach where multiple models are generated to cover the drives of interest.

In the development of the SDP control policies in this chapter, the Markov chain models
are exclusively used. However, Chapter 4 discusses another approach to stochastically
modeling road grade.

For the in-traffic simulation results presented in Section 2.5.1, five Markov chain mod-
els were used. One model was used for the prediction of road grade, θ, and this model was

18



generated using concatenated data from all of the road grade data from the M-39 drives.
Four different vehicle speed Markov chain models were developed for the prediction of
traffic speed. Traffic speed data was collected during different times of the day (rush hour
and off-peak time) and using two different driving styles (passive and active) during both
times of the day, this information is presented in Table 4.1. Thus, Markov chain models
were generated from concatenated data for passive driving during rush hour, passive driving
during off-peak time, active driving during rush hour, and active driving during off-peak
time. An SDP policy for each of these four combinations of road grade (one model) and
traffic speed (four models) Markov chain models was generated. When the traffic analog
speed profile was selected, the appropriate traffic speed Markov chain model was also se-
lected, see Table 4.1. For instance, if the traffic analog were traveling according to drive 6,
the active driving during rush hour Markov chain model was used.

2.3 Cost Function and its ingredients

The SDP problem formulation uses an incremental cost function of the general form,

R = W̄f + λT̄t + φ(ρ), (2.8)

where the ingredients are the expected fuel consumption, W̄f , over the road segment of
length ∆s, the expected segment travel time, T̄t, and the relative distance constraint viola-
tion penalty, φ(ρ).

The ingredients of the cost function are now discussed.

2.3.1 Fuel consumption

The general model for the fuel consumption is of the form,

Wf = Wf (v, v
+, θ, θ+), (2.9)

where v and θ are the vehicle speed and the road grade, respectively, at the beginning of the
current road segment of length ∆s, while v+ and θ+ are the vehicle speed and road grade,
respectively, at the beginning of the next road segment.

For the simulation case studies, a model of (2.9) was developed based on a single hidden
layer neural network and has the form,

Wf = σ2(w2σ1(w1unn + b1) + b2), (2.10)
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Figure 2.3: Example of the training and testing data for the neural network model of the
fuel flow based on CarSim data. Note only a small sample of the 7,000 data points was
selected in each plot for clarity.

where σ1 and σ2 are the hyperbolic and linear activation functions, respectively, w1 and w2

are the corresponding vectors of weights, b1 and b2 are the corresponding vectors of biases,
and unn = (v, v+, v+ − v, θ, θ+)T is the model input vector. The neural network was
trained using Bayesian regularization back propagation (on the MATLAB neural network
toolbox, [97]) applied to data from the sixteen vehicle drives replicated in the CarSim
simulation environment, [98]. Roughly 14, 000 data points were used to generate the neural
network (7, 000 to train and 7, 000 to test). See Figure 2.3 which demonstrates suitable
accuracy is achieved through this neural network approach.

For the experimental vehicle testing, a physics-based fuel consumption model repre-
sentative of the 2007 Ford Edge experimental vehicle was provided by the Ford Motor
Company. Note that both models account for gear shifts and torque converter lock/unlock
events.

The expected value of fuel consumption used in the incremental cost function (2.8) has
the form

W̄f = Ev+,θ+ [Wf (v, v
+, θ, θ+)]. (2.11)
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2.3.2 Travel time

The travel time of a road segment of length ∆s is approximated as

Tt(v, v
+) =

2∆s

v + v+
. (2.12)

The expected value of travel time used in the incremental cost function (2.8) has the form,

T̄t = Ev+ [Tt(v, v
+)]. (2.13)

2.3.3 Distance constraint violation penalty

The penalty function for the distance constraint violation in (2.8) has one of the following
forms. The first form,

φ(ρ) =


κ if ρ > ρmax,

κ if ρ < ρmin,

0 else,

(2.14)

was used for the simulations while the second form,

φ(ρ) =


(κeρ−ρmax − κ) if ρ > ρmax,

(κeρmin−ρ − κ) if ρ < ρmin,

0 else,

(2.15)

was used for the vehicle experiments. In the above, [ρmin, ρmax] is the desired interval
in which the distance is to be maintained and κ > 0 is a parameter. The value of κ =

10 was used to generate SDP policies for fuel-efficient vehicle-following using (2.14) in
simulations and κ = 0.005 was used to generate the SDP policies for the vehicle-following
vehicle experiments using (2.15). These values of κ were selected after some initial tuning.
Values of ρmin = 3 m and ρmax = 10 m were used for the simulations with (2.14) while
values of ρmin = 5 m and ρmax = 15 m were used for the vehicle experiments using (2.15).
A switch was made from (2.14) to (2.15) in order to eliminate discontinuities within the
cost function.

Note that the minimum distance constraint is imposed to prevent the host vehicle from
colliding with a preceding vehicle, while the maximum distance constraint is imposed to
improve driving comfort and reduce the impact of the host vehicle actions on the flow
of traffic around it. While it is true that imposing the maximum distance constraint does
not guarantee that there will be no impact on following traffic, we assert that the smaller
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the maximum distance is the less impact there will be on following traffic. However, as
the distance constraint becomes more constrictive, the potential fuel economy gains may
be reduced. Similar arguments and constraints have been posed in [23, 24, 26] to reduce
impact on the following traffic.

No attempt has been made to take advantage of drag reduction in close following,
though in principle such a possibility can be realized by prescribing a small value for ρmax.
Also, no attempt has been made to use asymmetric penalty factors in (2.14) or (2.15) and
equally weight both relative distance extremes as both extremes are important for the safety
of the host vehicle and surrounding traffic. These developments are left to future work.

2.4 Stochastic dynamic programming

SDP was used to generate best-on-average control policies, [42]. For the incremental cost
(2.8), the stochastic optimal control problem that SDP solves is of the form

J = E
[ ∞∑
k=0

qkR(v(k), θ(k), ρ(k))

]
→ min

u∈U
, (2.16)

subject to the models in Section 2.3 where 0 ≤ q < 1 is a discount factor introduced to
guarantee that the cost is finite and the set U denotes the set of feasible control values. In
(2.16), the value of q = 0.96 was used in order to approximate the average cost.

We use the value iteration approach [40, 42] to solve the SDP problem. Under the
standard assumptions, the following iterations converge as n → ∞ to the value function
V ∗(vt, v, θ, ρ),

Vn+1(vt, v, θ, ρ) = min
u∈U

Qn(vt, v, θ, ρ, u), (2.17)

Qn(vt, v, θ, ρ, u) = (2.18)

R(vt, v, θ) +
∑
θ+,v+t

qVn(v+
t , v

+, θ+, ρ+)P(v+
t , θ

+ | vt, θ),

V0(vt, v, θ, ρ) = 0. (2.19)

The value iterations are performed numerically using standard griding techniques. The
value iteration was terminated once

max || Vn+1 − Vn ||≤ Cth

was satisfied. For all presented results, a value of Cth = 10−4 was used.
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Once the optimization was terminated, the optimal control policy, U∗, is selected as the
minimizer of (2.18)

U∗(vt, v, θ, ρ) ∈ arg min
u∈U

Q(vt, v, θ, ρ, u).

The selected control policy, U∗, is then implemented directly without interpolation through
addition according to either (2.1) or (2.2).

In the in-traffic driving scenario, there were a total of 3, 198 state and control combi-
nations (with 7 possible control values, u ∈ {−3,−2, ..., 3} m/s). For this scenario, it is
assumed that φ(ρ) = 0, thus eliminating ρ as a state in the optimization. This assumption
is made due to the curse of dimensionality that plagues, in general, the SDP approach, [42].
If, for instance, ρ were included in the optimization, this raises the total number of states to
around 67, 000. Running this full optimization, though, is presently being considered for
future work.

However, ρ is included as a state for the vehicle-following simulations and the vehicle
tests. In these cases, the traffic speed is assumed to be constant which reduces the total state
space, allowing for the addition of relative distance as a state. For the vehicle-following
simulations, there are 1, 911 state and control combinations with 7 possible control values.

For vehicle testing, the optimization was similar to that done for the vehicle-following
scenario. This optimization included 819 state and control combinations with 3 feasible
control values (u ∈ {−2, 0, 2} mph)

2.5 Simulation case studies

To quantify the fuel economy benefits of the SDP policies, simulation case studies were
implemented in a simulation environment based on CarSim and MATLAB/Simulink. The
CarSim software package provides vehicle models and the capability of programming the
road geometry over which the simulations will occur. The modification of desired vehi-
cle parameters is then performed in Simulink, see Figure 2.4, which can be linked with
CarSim. For the following simulations, two vehicles are simulated using the same CarSim
models over a virtual M-39 constructed from the collected vehicle data. One of the sim-
ulated vehicles, the traffic analog vehicle, is programmed to follow a prescribed vehicle
trajectory of any one of the sixteen data collection runs (the in-traffic driving scenario) or a
set constant speed (the vehicle-following scenario). The second simulated vehicle, referred
to as the host vehicle, is programmed to respond to the traffic analog vehicle according to
the SDP policy for the respective scenario. The SDP policy is executed in Simulink. The
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SDP policies were generated to prescribe the offset relative to traffic speed in (2.1),

u ∈ {−3,−2,−1, 0, 1, 2, 3} m/s .

The metrics used to evaluate the results are the percent fuel economy improvement
(PFEI) and percent difference in average vehicle speed (PDAS). They are defined by

PFEI =
mpgh −mpgt

mpgt
× 100, PDAS =

v̄h − v̄t
v̄t

× 100, (2.20)

where mpgt, v̄t are, respectively, the fuel economy and the average speed of the traffic
analog vehicle, while mpgh, v̄h are, respectively, the fuel economy and the average speed
of the host vehicle. Positive values of PFEI indicate the fuel economy improvements of
the host vehicle over the traffic analog vehicle and positive values of PDAS indicate faster
average speed of the host vehicle as compared to the traffic analog vehicle.

2.5.1 In-traffic driving

For the in-traffic driving scenario, the traffic analog is programmed to follow the sixteen
data collection drives. In the problem we are solving, we are minimizing the cost (2.16)
with

R = W̄f + λT̄t, (2.21)

where W̄f is given by (2.11) and T̄t is given by (2.13). The minimization is performed
with respect to the control input u ∈ {−3,−2,−1, 0, 1, 2, 3} m/s where the progression of
traffic speed, vt, and road grade, θ, described by Markov chain models (2.5) and (2.7) and
vehicle dynamics described by (2.1).

The value of the weight λ = 0.002 in (2.8) was chosen after some tuning. We assumed
φ(ρ) ≡ 0 in (2.8) at the stage of generation of SDP policies. As a result, the SDP policy is
independent of the relative distance, ρ, which simplified its off-line computation and online
implementation. When evaluating this SDP policy, two case studies of non-porous traffic
and porous traffic were considered.

2.5.1.1 Non-porous traffic

In the non-porous traffic case, the host vehicle was not able to pass the traffic analog vehicle
and the brakes would be activated in the simulation to ensure no collision occurred. The
non-porous traffic represented the worst case for the evaluation of SDP policy. The results
based on our sixteen drives are summarized in Figure 2.5. For the non-porous traffic case,
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Figure 2.4: Schematic of the Simulink control architecture.
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Figure 2.5: Left: The percent fuel economy increase for the in-traffic driving case study in
the non-porous traffic case. Right: The percent difference in average speed.

the average improvement in mpg is 2.97% with an average drop in average speed of 0.78%.
Slight positive values of the average speed difference on the right of Figure 2.5 for some of
the drives indicate that the host and traffic analog vehicles ended up closer together at the
end of the simulation than when the simulation was started.

Figure 2.6 compares the vehicle speed time histories of the traffic analog vehicle and
host vehicle for drive number 6 where the largest fuel economy improvement has been
observed. The speed of the host vehicle with the SDP policy has fewer and smaller abrupt
changes and an overall “smoothed-out” character, for large accelerations and decelerations.
This conclusion is also confirmed by examining the vehicle speed traces for other drives.

2.5.1.2 Porous traffic

In the porous traffic case, the host vehicle is able to follow the SDP policy freely passing
or being passed by the traffic analog vehicle if needed. This case is consistent with the
cost function used for SDP policy generation and represents the best case scenario when
vt corresponds to the average traffic speed but no actual vehicle hinders the host vehicle’s
progress. The results based on the sixteen drives are shown in Figure 2.7. For the porous
traffic case, the SDP policy achieved simultaneous improvement in mpg (average improve-
ment is 5.67%) and an increase in average speed (average increase is 5.38%).

Note that in the non-porous traffic case, the average speed for many of the simulations
is lower than the traffic analog vehicle. Though one can argue that some of the fuel econ-
omy improvement can, in principle, be due to this reduction, it is clear from the porous
traffic case results that simultaneous increases in average speed and fuel economy are also
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Figure 2.6: The time histories of the traffic analog vehicle (dotted) and the host vehicle
(solid) speeds for the simulation 6 in the non-porous traffic case.

0 2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

16

18

Simulation Number [ ]

P
F

E
I [

%
]

0 2 4 6 8 10 12 14 16 18
0

1

2

3

4

5

6

7

8

9

10

11

Simulation Number [ ]

P
D

A
S

 [%
]
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Table 2.1: Fuel economy improvement broken down between traffic conditions and traffic
type.

Traffic Condition Traffic Type Percent Improvement in mpg
Rush Hour Porous 8.98
Rush Hour Non-Porous 2.20
Off-Peak Porous 2.39
Off-Peak Non-Porous 3.73

feasible.

2.5.1.3 Rush hour versus off-peak traffic conditions

Table 2.1 compares the average results over rush hour simulations (drives 1, 2, 5, 6, 9,
10, 13, 14) and off-peak traffic conditions (drives 3, 4, 7, 8, 11, 12, 15, 16). In both the
porous and non-porous cases, some fuel savings, as compared to the traffic analog vehicle,
come from smoothing the accelerations and a reduction in the amount of vehicle braking.
This observation is consistent with the results that in the non-porous case the host vehicle
performs better than traffic during off-peak times while in the porous case the host vehicle
does better during rush-hour times. However, in the porous case when the traffic is traveling
at a relatively constant speed, time-varying cruise patterns begin to emerge from the host
vehicle around the traffic analog vehicle’s constant speed. This phenomenon is discussed
in the next section.

2.5.2 Optimal vehicle-following

The vehicle-following scenario is now considered. In the problem we are solving, we are
minimizing the cost (2.16) with

R = W̄f + λT̄t + φ(ρ), (2.22)

where W̄f is given by (2.11), T̄t is given by (2.13), and φ(ρ) is given by (2.14). The min-
imization is performed with respect to the control input u ∈ {−3,−2,−1, 0, 1, 2, 3} m/s
where traffic speed, vt ∈ {45, 50, 55, 60}mph, is held constant, road grade, θ, described by
the Markov chain model in (2.5) and vehicle dynamics described by (2.1).

For this case, separate SDP policies with φ(ρ) defined by (2.14), κ = 10, and λ = 0.012

in (2.8) were generated for each of four values of vt. Furthermore, the cases of uniformly
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zero grade along the route and non-zero grade modeled stochastically, as in the in-traffic
scenario, were considered separately. The SDP policies are functions of ρ, v, and θ (in the
non-zero grade case) and prescribe the offset u in (2.1). Note that the zero grade policies
result from deterministic dynamic programming. The zero grade policies were simulated
using a flat road profile with the same length as the M-39 grade profile while the non-zero
grade policies were simulated with the M-39 grade profile.

As is seen in Figure 2.8, the vehicle-following SDP policies improve the fuel economy
at all four of the tested speeds. This improvement is attributed to a time-varying oscillation
of the host vehicle speed induced by the SDP policies, see Figures 2.9-2.10. The time-
varying behavior has been observed in both non-zero grade (Figure 2.9) and zero grade
(Figure 2.10) simulated drives. The oscillating patterns in non-zero grade simulation be-
come more regular in the zero grade case. The fuel flow during sharp acceleration exceeds
the fuel flow of the lead vehicle, but is less during the deceleration phase. This results in a
lower overall fuel consumption, seen in the right side of both Figures 2.9 and 2.10 of the
host vehicle compared to the lead vehicle. Due to the distance constraint, average vehicle
speeds of the host and lead vehicles are nearly the same.

The fuel improvement mechanism of the time-varying oscillations differs from that of
acceleration smoothing. The acceleration smoothing limits the magnitude of the accelera-
tions based on prediction of the lead vehicle velocity. It keeps the host vehicle from braking
as much as traffic, potentially also avoiding unnecessary down shifts and torque converter
unlocks. With the time-varying oscillations, the lead vehicle is assumed to be at a constant
and known speed, and the control policy takes advantage of differences in efficiency be-
tween operating points in the engine map, and of efficiently executed transients, to reduce
fuel consumption.

It should be noted that the time-varying oscillations were observed in a diminished form
in the in-traffic scenario when the traffic analog vehicle would travel at a relatively constant
speed for an extended period of time. However, in the vehicle-following case, the oscilla-
tions in vehicle speed were quite distinct. We also note that fuel efficiency improvements
with time-varying vehicle speed profiles were demonstrated in [29–31]. In these cases,
these time-varying profiles were assumed to be fuel efficient and, as such, were sought out.
However, in our case the time-varying patterns emerged as a result of implementing SDP
policies and were not initially sought out.
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Figure 2.8: Fuel economy improvement with SDP policies in the vehicle-following scenar-
ios. The blue (first) set of bars are for the non-zero grade policies and the yellow (second)
set of bars are for zero grade.
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Figure 2.9: Left: Time history of traffic analog vehicle speed (dashed) and host vehicle
(solid) for a part of the drive with non-zero grade. Right: Fuel consumption versus distance
traveled of traffic analog vehicle speed (dashed) and host vehicle (solid).
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Figure 2.10: Left: Time history of traffic analog vehicle speed (dashed) and host vehicle
(solid) for a part of the drive with zero grade. Right: Fuel consumption versus distance
traveled of traffic analog vehicle speed (dashed) and host vehicle (solid).

2.6 Vehicle experiments

The experimental testing of the fuel-efficient vehicle-following scenario was performed in
a 2007 Ford Edge. The tests were performed along the M-39 highway portion of the same
route used for data collection. For the implementation, the vehicle speed set-point fed to the
vehicle cruise controller was bypassed with the output of SDP policy running on a dSPACE
RTI 1005 board, see Figure 2.11 for a similar test vehicle setup. The testing was restricted
to vehicle-following scenario, where the traffic vehicle driving at a constant speed was
implemented as a virtual vehicle (in software) while the host vehicle was the experimental
vehicle. This implementation permitted testing with the single available vehicle which did
not have a radar nor adaptive cruise control. The vehicle was driven over the same route
at least twice whenever testing was performed, once with the regular cruise control and
the others with the SDP policy. This was done in order to reduce errors due to day-to-day
fluctuations in fuel economy and to make accurate assessments of fuel economy benefits or
detriments.

After preliminary testing, to improve driver/passenger comfort, the SDP policies were
regenerated to prescribe the offset to the current host vehicle speed, v, (see (2.2)) rather
than to the traffic vehicle speed, vt, and restricted the offset values to a small range u ∈
{−2, 0, 2} mph to prevent large speed change requests. We additionally constrained u by
adding to U the constraint 50 ≤ v + u ≤ 60. A value of λ = 0.012 was used with the
distance constraint penalty (2.15) with κ = 0.005 in the cost (2.8).

To summarize the formulation, the optimization problem we are solving is to minimize
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Figure 2.11: A similar vehicle setup what was used in the 2007 Ford Edge experimental
vehicle.

the cost
R = W̄f + λT̄t + φ(ρ), (2.23)

where W̄f is given by (2.11), T̄t is given by (2.13), and φ(ρ) is given by (2.15). The
minimization is performed with respect to the control input u ∈ {−2, 0, 2} mph where
traffic speed, vt = 54 mph, is held constant, road grade, θ, described by the Markov chain
model in (2.5) and vehicle dynamics described by (2.2).

Over 12 drives on M-39 (half in northbound and half in southbound direction) with
vt = 54 mph, the average fuel economy improvement of 4.51% with a maximum of 11.58%
and a minimum of -3.28% was recorded. The maximum and minimum were observed on
the same day during which there was a strong wind that may have skewed the results.
Without these outliers, the average fuel economy improvement was 5.38%.

Figure 2.12 shows the results of vehicle experiments for one of the drives. An oscillat-
ing pattern, a similar pattern to that in Subsection 2.5.2, clearly emerges in the experimental
vehicle speed. The difference in the character of the response is attributed to changes in
SDP problem formulation that were made to improve vehicle drivability and to the slow
and asymmetric (between acceleration and deceleration) response of the nominal cruise
controller to the set-point provided by the SDP policy. Also, due to the nominal cruise con-
troller response (unmodeled at the stage of generating SDP control policies), the average
speed of the host vehicle was below the lead vehicle average speed. The distance ρ com-
puted by a limited integrator in our implementation was thus saturated at the upper bound,
ρmax, during the tests.
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Figure 2.12: Left: Time history of vehicle speed from vehicle testing. Right: Cumulative
flow of the host vehicle (solid) versus traffic vehicle (dashed).

The average speed difference over all 12 drives is −1.95 mph. To account for the
increased fuel economy due to a lower average speed, test drives were performed using the
standard cruise control set to 50, 52, and 54 mph in order to build a relationship between a
reduction in average speed and increase in fuel economy. The resulting relationship is, on
average, a 0.49% reduction in fuel consumption for every percent drop in average speed.
This results in a corrected fuel consumption improvement of 2.74% when considering all
of the tests and an improvement of 3.61% when not considering the outliers.

2.7 Sensitivity analysis of the SDP policy results

Two sensitivity analyses are presented in this Section. The first is SDP policy sensitivity
to changing weights in the cost function (2.8). The second is SDP policy sensitivity to
changes in the Markov chain model grid selection.

2.7.1 Sensitivity to cost function parameters

A sensitivity analysis was performed over a range of λ for the in-traffic simulation scenario
and over a range of λ and κ for the vehicle-following simulation scenario.

For the in-traffic scenario, different policies were generated for different values of λ
with λ ∈ {0, 0.002, 0.004, 0.006, 0.008, 0.01, 0.012, 0.014, 0.016, 0.018, 0.02}. Each pol-
icy was tested over the sixteen simulation test runs, under the porous traffic assumption,
and the results were statistically analyzed and summarized in Figure 2.15. The policies
were generated using Markov chain models for road grade and vehicle speed that concate-
nated all of the available data. This was done intentionally to test the effects of changing
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the cost weights with no other changing factors between the simulations.
The results of the sensitivity analysis are in Figure 2.15. In this figure, positive values

indicate better-on-average fuel economy. To generate the values in Figure 2.15, each of the
sixteen test runs were simulated with each of the different λ policies, producing a set of
PFEIs and PDASs (produced 176 values for both PFEI and PDAS), see Figure 2.13
for the specific results for test run 5.

Then, for the ith test run, the average percent fuel economy improvement, PFEI∗i ,
and average percent difference in average speed, PDAS∗i , over the different λ policies
was calculated excluding the λ = 0 policy results. This produces a mean fuel economy
improvement for the ith test run over all the different values of λ used to generate control
policies.

Then, for the ith test run, the percent difference in PFEI and PDAS from PFEI∗i

and PDAS∗i for each λ policy result is calculated so that the results are normalized for the
given test run, see Figure 2.14 for the specific results for test run 5 while noting that the
values now represent a percent difference from the mean of the values in Figure 2.13.

This process produces a set of values for each test run that demonstrates how much the
change in λ affects change in PFEI and PDAS relative to the average result for that test
run. The average and standard deviation of these percent differences is then calculated for
each λ policy and reported as µ in Figure 2.15 with standard deviation σ.

Percent differences from the mean were calculated for each test run because the raw
PFEIs between the different test runs varied widely (though in every case a fuel economy
improvement was observed similar to Figure 2.7). To simplify the presentation of the
results, and to understand the effects of changes in λ on average for all of the drives, these
variations were eliminated. Also, the λ = 0 policy was excluded when averaging the results
because, in each case, it was a large outlier due to the fact the policies are intrinsically
different when λ = 0 in that they do not consider travel time in the cost.

As is seen in Figure 2.15, the calculated µ and µ ± σ for the PFEI (on the left) are
within a ±10% bound, with the cost being dominated by travel time for λ ≥ 0.01, with
the exception of the results for λ = 0 and µ − σ for λ = 0.002. However, when λ = 0

and travel time is not considered within the cost function, the results can vary greatly. This
is primarily due to the difference in speed profiles (results seen on the right side of Figure
2.15). Also seen in both plots in Figure 2.15 is less variability in results as λ increases and
the cost function becomes dominated by the consideration of travel time.

Figure 2.15 also demonstrates that the selection of λ = 0.002 was not the best choice.
This is because at λ = 0.002, the average percent difference from mean PFEI is less
than zero. This means that, for the ith test run with λ = 0.002, it is likely the PFEI was
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Figure 2.13: PFEI of in-traffic driving scenario for drive number 5 over a spread of different
λ weights.

less than the mean, PFEI∗i , for that test run. Thus, a different choice in weighting value
(perhaps λ = 0.004 judging from Figure 2.15) would have produced, on average, higher
PFEI across the sixteen test runs.

For the vehicle-following scenario, different policies were generated for different values
of λ and κwith λ ∈ {0.002, 0.006, 0.01} and κ ∈ {10−6, 5×10−6, 10−5, 5×10−5, 10−4, 5×
10−4, 10−3, 5 × 10−3, 10−2, 5 × 10−2, 0.1, 0.5, 1, 5, 10, 50, 100} using the smooth relative
distance constraint penalty (2.15). The results presented are the actual PFEI and PDAS
specifically for the case when vt = 55 mph. Three lines are plotted over the span of κ, one
for each of the tested values of λ.

In Figure 2.16, it is seen that over a large range of κ the results do not greatly vary for
both PFEI and PDAS. The greatest deviations occur for all λ between κ = 10−4 and
κ = 5 × 10−4. For κ > 0.1, the cost function becomes dominated by the relative distance
constraint penalty. It should be noted that the PDAS plot on the right side of Figure 2.16
indicates that there is no significant change in the average vehicle speeds between the traffic
analog vehicle and the host vehicle over all values of λ and κ that were tested.

2.7.2 Sensitivity to Markov chain model grid selection

A sensitivity analysis was performed over five different grid selections for the road grade
Markov chain model in the vehicle-following driving scenario. These grid selections are
based on changes in road grade of 0.25%, 0.5%, 1%, 1.5%, and 2%. This results in five
different Markov chain models with properties listed in Table 2.2.

Figures 2.17 and 2.18 show the results of this analysis for vehicle-following policies
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Figure 2.14: Adjusted PFEI of in-traffic driving scenario for drive number 5 over a spread
of different λ. These results are the percent difference from the mean PFEI from Figure
2.13.
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Figure 2.15: Left: The percent difference in fuel economy improvement statistics over the
sixteen test drives with varying λ. Right: The percent difference in change in average
vehicle speed statistics over the sixteen test drives with varying λ.
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Table 2.2: The five Markov chain models used for model sensitivity analysis

Model Grid Selection States Optimization States
1 0.25 θ ∈ {−6,−5.75,−5.5, ..., 5.75, 6}% 7203
2 0.50 θ ∈ {−6,−5.5,−5, ..., 5.5, 6}% 3675
3 1 θ ∈ {−6,−5,−4, ..., 5, 6}% 1911
4 1.5 θ ∈ {−6,−4.5,−3, ..., 4.5, 6}% 1323
5 2 θ ∈ {−6,−4,−2, ..., 4, 6}% 1029

calculated with λ = 0.006 and κ = 5× 10−4 using distance constraint penalty (2.15) with
vt = 55 mph. Figure 2.17 presents the PFEI for each of the different models. As is seen,
the resultant PFEIs are all between 15-16%. Figure 2.18 presents the PDAS for each of the
different models. Note that these results are in percent and thus are very similar.

This analysis was performed on the vehicle-following scenario only due to its initial
lower dimensional state space. Future work will include a thorough sensitivity analysis of
policy dependence on Markov chain model for the in-traffic driving scenario.

A different model sensitivity experiment can also be considered, that is, sensitivity to
changes in modeling data. However, an analysis such as this would have to wait until a
wide range of data can be collected (e.g., mountain driving, winter weather driving, etc).
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Figure 2.17: PFEI for the vehicle-following scenario with respect to different Markov chain
models, see Table 2.2.
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Figure 2.18: PDAS for the vehicle-following scenario with respect to different Markov
chain models, see Table 2.2.
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CHAPTER 3

A Practical Implementation Strategy of
Time-Varying Fuel-Efficient Cruise Patterns

In Chapter 2, a stochastic dynamic programming (SDP) methodology for improving fuel
economy through the control of vehicle speed is developed. SDP policies induced time-
varying vehicle speed profiles that improved fuel economy. We refer to this behavior as
time-varying cruise. The time-varying cruise pattern was observed in the porous-traffic case
of the in-traffic driving scenario discussed in Subsection 2.5.1 and in the vehicle-following
scenario discussed in Subsection 2.5.2. This pattern, seen in Figure 2.12, emerges when
the traffic speed is relatively constant. In these cases, the SDP policy guides the vehicle in
a series of accelerations and decelerations–a ”pulse and glide” (PnG) pattern.

In this chapter, the time-varying cruise pattern is modeled and realized using a finite
state machine (FSM). This is done in an effort to simplify the in-vehicle implementation of
the strategy that induces time-varying cruise patterns and make it more appealing to calibra-
tion engineers in the automotive industry. With a FSM, each state represents a phase of the
time-varying cruise pattern and provides a practical structure from which implementation
can be straight forward. This strategy is referred to as rule based cruise control (RBCC).

The RBCC has four states. These states are normal, glide, recover, and bleed. In the
normal state, the nominal cruise control is used to maintain a constant speed. In the glide
state, the vehicle speed set-point is lowered to a minimum allowed value and the vehicle
coasts to this speed while the vehicle transmission is in neutral. The recover state is the
acceleration from the lowest allowed speed to the highest allowed speed. The bleed state
occurs when it is not efficient to glide (particularly when there is a large positive grade)
and instead a constant torque level is held in order to reduce the speed loss and stave off
the recover state. Figure 3.1 provides examples of speed profiles in different RBCC states.

This chapter is organized as follows. The RBCC design problem is discussed in Sec-
tion 3.1. The FSM structure will be presented and described, along with the thresholds
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Figure 3.1: Examples of the vehicle speed profiles in the four RBCC states.

that govern the transitions between FSM states in Section 3.2. The method by which the
transitions between the FSM states are optimized is described in Section 3.3. Results from
the simulations and vehicle experiments with the RBCC are described in Section 3.4. Un-
like the SDP policies in the previous chapter, the set-point set by the driver through the
cruise control input is considered to be the maximum speed, i.e., the host vehicle will never
exceed the driver set speed.

3.1 Rule based cruise control problem formulation

Consider a fuel consumption model of the form,

fc(k) = G(v(k), vt, u(k), θ(k)), (3.1)

where fc(k) is the instantaneous fuel consumption at time instant k, v(k) is the instanta-
neous vehicle speed, vt is the driver selected cruise control set-point, u(k) is the modifica-
tion to driver selected cruise control set-point with the commanded speed, consistent with
(2.1), as vt + u(k), and θ(k) is the instantaneous road grade. The constraint u(k) ≤ 0 is
imposed so that the commanded speed does not exceed vt. Note that the continuous dy-
namics are determined by the vehicle and the nominal cruise controller and are treated as
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being discretely sampled.
Two baseline fuel consumption calculations are referenced throughout this chapter. The

first is the result of u(k) ≡ 0, that is, v(k) ≡ vt. The resulting fuel consumption over a
route driven at a constant speed of vt is fc,t. The second is a result of v(k) ≡ vave where
vave is the average speed of a vehicle speed profile induced by the RBCC strategy, with
a resulting fuel consumption over a route of fc,ave. The objective is to develop a control
strategy that maximizes the cost function,

fc,dyn =

fc,ave −
n∑
k=0

fc(k)

fc,t
× 100. (3.2)

The cost function (3.2) quantifies the dynamic fuel consumption improvement (DFCI).
Specifically, (3.2) is a percent improvement over the baseline fc,t along a route with horizon
n, but discounts fuel economy improvement due to a change in the average vehicle speed
and indirectly penalizes large deviations of vehicle speed from the cruise control set-point.

Note that if fc,dyn > 0, the RBCC strategy is more fuel-efficient than traveling at
v(k) = vave. If, in addition, fc,t ≥ fc,ave, then the RBCC strategy is more fuel-efficient
than traveling at v(k) = vt. Also note that the distinction is made between vave and vt,
where vt is the maximum allowed speed set by the driver while vave is the average speed
the vehicle travels using the RBCC strategy.

3.2 Rule based cruise control

In this section, the structure and state transitions of the FSM are described. Within each
state, two outputs are commanded, they are the speed offset command, u(k), and neutral
command, n(k) ∈ {0, 1}. For the neutral command, n(k) = 0 indicates the vehicle is in
gear at a time instant k and n(k) = 1 indicates the vehicle is in neutral. The FSM is shown
graphically in Figure 3.2 with its four states. Let x(k) be the state of the FSM with outputs
u(k) and n(k) described as

x(k + 1) = f(Ax(k), x(k)),

u(k) = h1(x(k)),

n(k) = h2(x(k)),
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Figure 3.2: Allowed state transitions in the finite state machine for Rule Based Cruise Con-
trol (RBCC). Not shown are the transitions from a given state to itself which is a possibility
in all states.

where x(k) ∈ {N ,G,B,R} and

Ax(k) ⊂ A = {vd, vr, θ̄NG, θ̄NB, θ̄BR},

are the set of parameters defining thresholds that dictate the state transitions. Here vd is the
maximum deviation from the cruise control set-point vt, vr is the recovery speed, θ̄NG is
the normal to glide grade transition threshold, θ̄NB is the neutral to bleed grade transition
threshold, and θ̄BR is the bleed to recovery grade transition threshold. Furthermore, assume
that (vt − vr) < vd.

The mappings f(Ax(k), x(k)), h1(x(k)), and h2(x(k)), are defined for each state as
follows.

3.2.1 Normal state - N
The normal cruise state of the RBCC holds a speed set-point determined by the driver. In
the normal state, allowable state transitions are

x(k + 1) = f(AN ,N )

=


G, if dsdpl = 1

B, if dsdph = 1

N , if ds(1− (1− dpl)(1− dph)) = 0

,
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where AN = {vr, θ̄NG, θ̄NB},

dpl =

{
1, if θ̄(k) ≤ θ̄NG

0, if θ̄(k) > θ̄NG
,

dph =

{
1, if θ̄(k) ≥ θ̄NB

0, if θ̄(k) < θ̄NB
,

ds =

{
1, if vt − v(k) ≤ vr

0, if vt − v(k) > vr

, (3.3)

and where θ̄(k) is the average predicted grade over the horizon k . . . , k+ r. An autoregres-
sive grade prediction method, developed by Ford Motor Company (see appendix A or [46]),
was used to generate θ̄(k) for the results presented in this chapter.

The alteration to the cruise control set-point is

u(k) = h1(N ) = ∆v(k − 1),

and the neutral command is

n(k) = h2(N ) = 0.

3.2.2 Glide state - G
The glide state allows the vehicle to naturally decelerate while in neutral. In the glide state,
allowable state transitions are

x(k + 1) = f(AG,G) =

{
R, if ds = 1

G, if ds = 0
,

where AG = {vd}, and

ds =

{
1, if vt − v(k) ≥ vd

0, if vt − v(k) < vd

.
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The alteration to the cruise control set-point is

u(k) = h1(G) = v(k)− vt,

and the neutral command is

n(k) = h2(G) = 1.

Here, u(k) is designed such that v(k) = v(k) so that the vehicle naturally decelerates.

3.2.3 Bleed state - B
The bleed state holds an engine torque level to reduce vehicle speed loss, particularly on
large grades. In the bleed state, allowable state transitions are

x(k + 1) = f(AB,B)

=


N , if dsh = 1

R, if (1− dsl)(1− dp) = 0

B, if (1− dsh)(1− dsl)(1− dp) = 1

,

where AB = {vd, vr, θ̄BR},

dsh =

{
1, if vt − v(k) < vr

0, if vt − v(k) ≥ vr

,

dsl =

{
1, if vt − v(k) ≥ vd

0, if vt − v(k) < vd

,

and

dp =

{
1, if θ̄ ≤ θ̄BR

0, if θ̄ > θ̄BR
.

The alteration to the cruise control set-point is

u(k) = h1(B) = F1(FPI(q)(τB − τ(k))

−F2v(k)) + v(k)− vt,
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where τB is the desired bleed torque, τ(k) is an estimate of engine torque, and F1 and F2

are known cruise control parameters used to linearize u(k) to the τ(k) control path. FPI(q)

is a proportional plus integral (PI) controller used to track the desired torque τB.
The neutral command is

n(k) = h2(B) = 0.

3.2.4 Recover state -R
The recover state accelerates the vehicle to vr, the recover speed. The nominal cruise
control has an allowed variance in the control of the speed. That is, the nominal cruise
control system will keep the vehicle speed within vt −∆v ≤ v(k) ≤ vt + ∆v. The value
of vr is slightly less than vt and recovering to this speed is intended to put the vehicle
speed within the allowed variance of the nominal speed controller. In the recover state, the
allowable state transitions are

x(k + 1) = f(AR,R) =

{
N , if ds = 1

R, if ds = 0,
,

where AR = {vr},

ds =

{
1, vt − v(k) ≤ vr

0, vt − v(k) > vr

.

The alteration to the cruise control set-point is

u(k) = h1(R) = F1(FPI(q)(τR(k)− τ(k))

−F2v(k)) + v(k)− vt,

τR(k) =

{
s(θ̄(k)), x(k) 6= R,
τR(k − 1), x(k) = R,

s(θ̄) =


τmin, mRθ̄ + bR < τmin,

mRθ̄ + bR, τmin ≤ mRθ̄ + bR ≤ τmax,

τmax, mRθ̄ + bR > τmax,

where τmin and τmax are the minimum and maximum desired engine torque values, respec-
tively. The parameters mR and bR define the optimal recovery torque, which is a trade off
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between time to recover speed and fuel consumption during recovery. These values are
vehicle specific and known. The neutral command in the recovery state is

n(k) = h2(R) = 0.

3.3 Optimization

The state transitions in the finite state machine in Section 3.2 are dependent on six threshold
parameters. These parameters are tuned to maximize the cost (3.2) subject to driver comfort
considerations. The tuning guidelines and the off-line, model-based optimization procedure
are now described.

The first parameter is the normal cruise set-point speed, vt. The RBCC varies vehicle
speed in a neighborhood below this value. As in conventional adaptive cruise control sys-
tems, vt limits the maximum speed the vehicle will reach and is set according to posted
speed limits or driver comfort.

The second parameter is the speed at which the vehicle speed is considered to be re-
covered, vr. The value of vr is set manually depending on the performance of the nominal
cruise controller observed in vehicle experiments.

The third parameter is the maximum allowed drift speed from the set-point speed, vd.
Its value is determined as a result of the optimization but its range is restricted by consider-
ations of the driver comfort. If the vehicle slows down too much with respect to the driver
set-point speed, the driver may become uncomfortable or the vehicle may start impeding
the traffic flow.

The fourth, fifth, and sixth parameters are the road grade related parameters θ̄NG , θ̄NB,
and θ̄BR. These three parameters and vd are determined through the optimization.

The optimization problem is to determine the threshold parameter vector,

p =
[
vd θ̄NG θ̄NB θ̄BR

]T
, (3.4)

such that, for given values of vr and vt, the cost function (3.2) is maximized. Since the
route, grade, and initial state of the RBCC machine are not known a priori, several speed
and grade profiles are considered, and the average value of the cost (3.2) is maximized.

The approach to computing the average cost from the different speed and grade profiles
consists of three steps. In the first step, grade profiles over sample routes are used to
generate a statistical model of the grade in the form of a Markov chain. In this work a
sample route based on M-39 highway in Michigan, which has a notable periodic grade,
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was used. Techniques exemplified in the previous work [43–45, 47] and Chapter 2 were
exploited to infer the transition probability matrix (TPM) of the Markov chain.

In the second step, a series of Nθ ×Nx×NMC Monte Carlo simulations are performed
that are organized as follows. For each initial grade, θ(0), and for each initial state of the
RBCC machine, x(0), NMC grade profiles are generated at random using the statistical
model of the grade from the first step. Each simulation is run until a full cycle of state
transitions of the RBCC machine is executed.

In the third step, the resulting values of the cost (3.2), denoted by f̄
x(0),θ(0)
c,dyn,i (p), i =

1, · · · , NMC , are first averaged to yield the expected value of the cost (3.2) conditional to
chosen θ(0), x(0) and p:

f̄
x(0),θ(0)
c,dyn (p) =

1

NMC

NMC∑
i=1

f̄
x(0),θ(0)
c,dyn,i (p), (3.5)

and then averaged with respect to θ(0) and x(0). For the latter averaging, the distribution
of θ(0) is inferred from the steady state grade distribution as implied by the grade statistical
model, while the distribution of x(0) is assumed to be uniform. This leads to expressions,

f̄
x(0)
c,dyn(p) =

Nθ∑
i=1

f̄
x(0),θi
c,dyn (p)P(θ(0) = θi), (3.6)

where P(θ(0) = θi) denotes the probability that the initial grade θ(0) takes one of Nθ given
values θi, and

f̄c,dyn(p) =
1

Nx

Nx∑
i=1

f̄xic,dyn(p), (3.7)

where xi, i = 1, · · · , Nx, denote the possible values of x(0).
The average cost function f̄c,dyn(p) is maximized with respect to p subject to range

constraints on p. The optimization is performed using an adaptive mesh search algorithm.
As a result, look up tables of parameters vd, θ̄NG , θ̄NB, and θ̄BR are produced as functions
of the given vt and vr. Note that this optimization is performed off-line and the online
implementation of the RBCC logic and these look-up tables is straightforward.

3.4 Simulations and vehicle testing results

Results are now presented for the simulation and vehicle testing. A model of the experi-
mental vehicle representing vehicle and engine dynamics was used to perform the threshold
optimization and assess fuel consumption benefits. This model was provided by Dr. Dimi-
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Table 3.1: The case studies and thresholds used.

case study vd θ̄NG θ̄NB θ̄BR
1 6 -1.5 0.5 -1
2 3.58 1.67 -1.68 1.5
3 3.9 1.4 -1.4 2.5

tar Filev and his research group at the Ford Motor Company. The experimental vehicle has
a naturally aspirated engine and uses neutral and its highest gear during testing. The results
presented are for the specific case where vt = 55 mph and vr = 54.5 mph for the same
route along M-39 that was used in Chapter 2 for vehicle testing.

Three test case studies are considered. Case study 1 is a validation test with parameter
values chosen heuristically for initial testing of the RBCC structure. Case study 2 is based
on the threshold optimization which was performed over the intervals vd ∈ [3, 4] mph,
θ̄NG ∈ [1, 2]%, θ̄NB ∈ [−2,−1]%, and θ̄BR ∈ [1, 2]%. Case study 3 is based on threshold
optimization over the intervals vd ∈ [3, 4] mph, θ̄NG ∈ [1, 2]%, θ̄NB ∈ [−2,−1]%, and,
θ̄BR ∈ [−2, 3]. Note that the interval for θ̄BR was relaxed from case study 2 to case study
3 in an effort to improve results. Table 3.1 provides the values of the thresholds obtained
after optimizations and used for each case study.

In all three case studies for vehicle testing, Ford’s autoregressive grade prediction, see
[46] or Appendix A, was used to generate grade predictions over a prediction horizon r.
For the simulation results, a preview of the grade was fed into the algorithm as the predicted
grade in order to produce a benchmark for the vehicle testing. The differences in vehicle
testing and simulation results are due to model error.

3.4.1 Simulation results

The simulations were performed for case studies 2 and 3. Case study 1 was not evaluated
in the simulations and was only used to validate the RBCC strategy in the vehicle. For case
study 2, an average speed of 52.38 mph was observed with a DFCI of 3.30%. For case
study 3, the average speed was 52.15 mph and the DFCI was 3.54%. As can be observed,
changing the intervals over which the optimization is performed did not produce signif-
icantly different simulated DFCI results, though this was not the case during the vehicle
testing.

Figures 3.3 and 3.4 show the speed profiles of the vehicle under the RBCC scheme
for case studies 2 and 3 as well as the RBCC machine states, where 10 corresponds to the
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Figure 3.3: Simulation speed profile and RBCC states for case study 2.

normal cruise state, 20-25 are glide states, 30 is bleed state, and 40 is recover state. We note
that for the implementation, the glide state was broken into a set of sub-states to generate
a smooth transition in and out of neutral and, as such, states 20-25 correspond to the entire
glide state.

Figures 3.5 and 3.6 provide examples of the grade profile and RBCC speed profile
appropriately overlaid with the threshold values for case study 2. In Figure 3.6, it is seen
that the vehicle speed drops below vt−vd. This is because vt−vd is the lowest commanded
speed, however, due to the dynamics of the nominal speed controller the vehicle speed may
drift below the lowest commanded speed when it is passing from glide to recover. This
phenomenon was also observed during the vehicle testing.

3.4.2 Test vehicle results

Vehicle tests were performed during the Fall of 2013 along the M-39 route. At the begin-
ning of each test the vehicle was driven long enough to sufficiently warm the engine and
transmission. Because M-39 has an average positive grade in the northbound direction,
baseline drives were conducted in both directions at 55 mph to eliminate any effects due to
the direction.

The vehicle testing results from all three case studies are summarized in Table 3.2.
In Table 3.2, ”NB” denotes the northbound direction and ”SB” denotes the southbound
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Figure 3.4: Simulation speed profile and RBCC states for case study 3.
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study 2.
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Figure 3.6: A section of the speed profile generated under the RBCC strategy overlaid with
the thresholds from case study 2.

direction. As is observed, the RBCC strategy in case study 2 performs better than the
RBCC strategy in case study 1, though it still maintains the primarily one-directional ben-
efit observed with the heuristic threshold parameters. Case study 3 was then performed to
eliminate this one-directional benefit. Though case study 3 eliminates the one-directional
benefit, the overall benefit in the northbound direction is reduced.

In Chapter 2, stochastic dynamic programming (SDP) was used to develop a control
policy that produces oscillations in the vehicle speed similar to the RBCC strategy. The
SDP strategy was implemented on the same testing platform and tests were conducted on
the same stretch of M-39. The SDP strategy produced an average DFCI of 2.74% for all
vehicle tests. This is compared to an average of 2.99% in case study 2 and an average of
2.52% in case study 3 for RBCC (which do take advantage of neutral gear glides). The
results are of similar magnitude in both cases, and improved upon in case study 2, while
also benefited from a reduction in the overall complexity required to develop and implement
the strategies. Note that four test drives were conducted for each case study to test RBCC
and twelve test drives were conducted to produce the SDP strategy average.
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Table 3.2: DFCI Results from Vehicle Testing

case study NB fc,dyn NB vave SB fc,dyn SB vave

1 3.43% 50 mph -0.23% 51 mph
2 5.47% 52 mph 0.50% 52 mph
3 2.81% 51 mph 2.22% 50 mph
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CHAPTER 4

Advances in the Stochastic Modeling of Road
Grade and Vehicle Speed for Fuel-Efficient

Cruise Control

This chapter addresses additional topics in the area of stochastic modeling of road grade
and vehicle speed. Specifically, several novel developments in the use of the Kullback-
Liebler (KL) divergence and divergence rate for categorizing and similarity assessment of
traffic speed and road grade profiles, the use of a stochastic jump process to predict step
changes in road grade, and the validation of online learning techniques of Markov chain
models and stochastic jump models of road grade are reported.

This chapter is organized as follows. Section 4.1 demonstrates the use of the KL diver-
gence rate to assess Markov chain model similarity. Section 4.2 discusses a novel stochastic
jump process based approach to predicting road grade. Section 4.3 compares the stochas-
tic jump grade prediction technique to the standard Markov model approach. Section 4.4
discusses methods of performing online learning of both the Markov chain and stochastic
jump process prediction models.

4.1 Assessing the similarity of Markov chain models using
a divergence technique

To practically implement a system based on stochastic control polices as in Chapter 2 or
stochastically tuned finite state machines as in Chapter 3 for different road geometries and
traffic patterns, a way of assessing the statistical similarity of different regions’ terrain
and traffic patterns is desirable. The basic motivation is that a stochastic control policy
generated for one region may be used for another statistically similar region.
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A symmetric version of the Kullback-Liebler (KL) divergence, referred to as the Jensen-
Shannon divergence [99], and divergence rate allow for a statistical assessment of the
similarity of different Markov chain models. The KL divergence between two Markov
chains, [100], P and Q is

DM
KL(P || Q) =

∑∑
[P (xj | xi)] log

(
P (xj | xi)
Q(xj | xi)

)
, (4.1)

where P (xj | xi) and Q(xj | xi) denote the transition probabilities. In (4.1), we assume
that the entries in Q are greater than zero if the corresponding entries of P are greater than
zero. If Q does not satisfy this property, we replace Q in (4.1) with

Qreg = (1− ε)Q+ ε

(
1

n

)
E, (4.2)

where ε is a parameter between 0 and 1 (we use ε = 0.0001), n is the number of states in
the Markov chain model, and E is an n× n matrix of ones.

The KL divergence has three properties:

1. The KL divergence is always non-negative

2. DM
KL(P || Q) = 0 iff P = Q

3. DM
KL(P || Q) 6= DM

KL(Q || P ) in general

A symmetric KL divergence [99] can be defined as

DM
KL,S(P || Q) =

1

2

(
DM
KL(P || Q) +DM

KL(Q || P )
)
. (4.3)

The KL divergence rate between two Markov chains [100], P and Q is

RM
KL(P || Q) =

∑∑
[P (xj | xi)P ∗(xj)] log

(
P (xj | xi)
Q(xj | xi)

)
, (4.4)

where P ∗ is the steady-state probability distribution of P which is assumed to exist and is
determined as an eigenvector corresponding to the eigenvalue of 1, i.e., from

(P ∗)TP = (P ∗)T . (4.5)

As in (4.1), Q is replaced in (4.4) with (4.2) under the same conditions.
The KL divergence rate, like the KL divergence, is non-negative, zero only when taken

between two identical models, and is not necessarily symmetric. Similarly, a symmetric
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KL divergence rate can be defined as

RM
KL,S(P || Q) =

1

2

(
RM
KL(P || Q) +RM

KL(Q || P )
)
. (4.6)

The KL divergence rate can be shown to be bounded as the dimension of the Markov chain
increases and it generalizes the KL divergence to the case when one cannot assume that the
samples used to generate the models are independent, see [100].

To illustrate the use of the KL divergence rate to assess the model similarity and evaluate
its classification ability, data over sixteen highway and eight city drives were collected and
analyzed. The data were used to generate Markov chains using two approximations. The
first approximation is that the road grade and vehicle speed are piecewise constant and
change to the new values only at the end of distance intervals of length ∆s. Thus, spatial
discretization of the road grade profile is employed consistent with Chapter 2, i.e.,

x̄(s) =
x(s) + x(s+ ∆s)

2
, (4.7)

for sk ≤ s ≤ sk+1, sk+1 = sk+∆s, where x is the continuous profile and x̄ is the piecewise
constant profile.

The second approximation is that the constant values of road grade or vehicle speed
within each distance segment belong to a given set of discrete values of road grade, Θ, or
vehicle speed, V . The constant grade values, θ̄, over distance segments, ∆s, are mapped to
discrete values θ∗ ∈ Θ using

θ∗ ∈ arg min
θ̂∈Θ
|θ̄ − θ̂|, (4.8)

where θ∗ is the selected discrete value in Θ that is closest θ̄. Similarly, the constant vehicle
speed values are mapped by

v∗ ∈ arg min
v̂∈V
|v̄ − v̂|. (4.9)

Based on the piecewise-constant road grade and vehicle speed profiles and using (2.6),
Markov chains are generated from the data and the similarity of these chains is assessed
using the symmetric KL divergence rate (4.6), see Figures 4.1 through 4.5. In these figures,
Markov chains from individual drives are compared to Markov chains that are represen-
tative of a particular aggregate characteristic (i.e., highway diving, rush hour traffic, city
terrain, etc). These aggregate Markov chains are generated from selected data from the
appropriate data collection drives. Table 4.1 provides the description of each of the data
collection drives. The results presented are for ∆s = 30 m, Θ = {−6,−5, . . . , 6} % and
V = {1, 2, . . . , 36} m/s.
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In the following, P is used to denote a Markov chain used for road grade prediction
while PV is used to denote a Markov chain used for traffic speed prediction.

Figure 4.1 shows the KL divergence rate between each of the road grade Markov chains
for the data collection runs and the city, PC , and highway, PHW , aggregate Markov chains.
Note that the highway Markov chains are more similar to the highway aggregate and the
city Markov chains are more similar to the city aggregate (indicated by lower values of the
KL divergence rate). This figure demonstrates that the KL divergence rate can be used to
distinguish between and categorize different grade profiles.

Figures 4.2 and 4.3 present the KL divergence rate between traffic speed Markov chains
of individual drives and aggregate Markov chains for rush hour, PVRH , and off peak,
PVOP , driving times. Figure 4.2 shows the results for highway driving and indicates that
there is not a strong ability to differentiate between traffic speed patterns based on KL
divergence rate for highway drives. However, looking at Figure 4.3, which presents the
results for city driving, a stronger ability to differentiate between rush hour and off-peak
driving based on KL divergence rate is observed.

Figures 4.4 and 4.5 show the KL divergence rate between Markov chains from indi-
vidual drives and aggregate Markov chains for different driving styles of active, PVAc, and
passive PVPa driving. For both city and highway driving, as can be observed from these
figures, the KL divergence rate provides a good differentiation between different driving
styles. This indicates that this method can be used to distinguish between different driving
styles. This also indicates that it may be more useful to predict the behavior of a single
vehicle based on the driver’s behavior as opposed to the flow of traffic as a whole based on
the time of day.

4.2 Stochastic jump process for road grade prediction

This section introduces a novel technique for predicting road grade through the use of a
stochastic jump process which models stochastically the distance over which a step change
in the road grade occurs. The development of a new model is motivated by the observation
that the Markov chains generated for road grade prediction are nearly diagonal. This has
a rate limiting effect (the next value of the road grade cannot be too far from the current
value). Though the diagonal Markov chains may reflect the statistical properties of the road
grade transitions, the predicted grade profile may lag the actual road geometry.

The stochastic jump model prescribes a probability that a step change in road grade
with a magnitude of ∆θ occurs within a given distance interval. To develop the model, a
uniform mesh of discrete distance values, s = {s1, s2, ...sm}, sk+1 > sk, is first chosen.
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Figure 4.1: KL divergence rate between road grade Markov chains and aggregate road
grade Markov chains for highway and city driving.
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Figure 4.2: KL divergence rate between traffic speed Markov chains of individual drives
and highway aggregate traffic speed Markov chains for off-peak and rush hour traffic times.
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Figure 4.3: KL divergence rate between traffic speed Markov chains of individual drives
and city aggregate traffic speed Markov chains for off-peak and rush hour traffic times.
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Figure 4.4: KL divergence rate between traffic speed Markov chains of individual drives
and highway aggregate Markov chains for active and passive driving styles.
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Figure 4.5: KL divergence rate between traffic speed Markov chains of individual drives
and city aggregate Markov chains for active and passive driving styles.
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Table 4.1: Time of Day, Type of Driving, and Location

Drive Number Location Time of Day Type
1 Highway Rush Hour Active
2 Highway Rush Hour Active
3 Highway Off Peak Active
4 Highway Off Peak Active
5 Highway Rush Hour Active
6 Highway Rush Hour Active
7 Highway Off Peak Passive
8 Highway Off Peak Passive
9 Highway Rush Hour Passive

10 Highway Rush Hour Passive
11 Highway Off Peak Passive
12 Highway Off Peak Passive
13 Highway Rush Hour Passive
14 Highway Rush Hour Passive
15 Highway Off Peak Active
16 Highway Off Peak Active
17 City Off Peak Active
18 City Off Peak Active
19 City Rush Hour Active
20 City Off Peak Active
21 City Off Peak Passive
22 City Rush Hour Passive
23 City Off Peak Passive
24 City Off Peak Passive

Then the road grade data are segmented into distance segments ρ1, ρ2, ..., ρn. The average
grade is found within these segments and then using the quantized set of grade values Θ

and (4.8), the average grade values are replaced with the closest value, θ∗ ∈ Θ. These
approximations produce a piecewise constant grade profile approximation which consists
of discrete step changes in the road grade.

4.2.1 Stochastic jump model

The stochastic jump process is modeled as two jump models [101],

P+(s = sj | θ0), (4.10)

P−(s = sj | θ0),
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where sj ∈ S = {s1, s2, ..., sm} is a discrete set of distances, P+(s = sj | θ0) is the
probability that the first jump of +∆θ in road grade occurs at a distance s = sj from the
position of last change, ρ, for an initial grade θ0, and P−(s = sj | θ0) is the probability
that the first jump of −∆θ in road grade occurs at a distance s = sj from the position of
last change, ρ, for an initial grade θ0. The position of last change, ρ, is used to indicate
from where the measuring of the distances will start. It is referred to as the position of last
change because it is the last position that a step change in road grade was observed.

It is important note that the road grade data used in this section and the following sec-
tions is based upon effective road grade, calculated from changes engine load, as opposed
to road grade calculated from changes in altitude, which was used in the previous sec-
tions. As such, the effective road grade (seen in Figure 4.9) is lower in magnitude and thus
Θ = {−3,−2.5, ..., 3}% in this and the following sections with ∆θ = 0.5%. While this is
an important change to note, it does not inherently change the value of the results.

4.2.2 Stochastic jump model identification

With the continuous grade versus distance profile mapped into the discrete states, the dis-
tances between step changes are counted and the frequencies of the transitions of ±∆θ are
determined with an individual model for each direction. The probability that at a given
initial grade, θk, and a certain distance, s+

j ∈ S, a positive transition will occur is

P+(s = s+
j | θk) =

N+

k,s+j

M+
k

, (4.11)

and given a certain distance, s−j ∈ S, a negative transition will occur is

P−(s = s−j | θk) =
N−
k,s−j

M−
k

, (4.12)

where N+

k,s+j
and N−

k,s−j
are, respectively, the number of positive and negative step changes

in the road grade observed at a specific distance s+
j ∈ S, s−j ∈ S for a given grade value

θk ∈ Θ observed in a grade profile and M+
k and M−

k are, respectively, the total number
of positive and negative step changes for all values in S for a given grade value θk ∈ Θ

observed in a grade profile. See Figure 4.6 for an example. In this Figure, the black dotted
line is the continuous grade profile, the solid blue line is the piecewise constant profile, and
the important values are indicated with labeled dashed red lines. The value ρ is the position
of last change from which the distance measurements s+

j and s−j are being made.
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Figure 4.6: Example of the stochastic jump process identification procedure.

Because the jump process is modeled using two stochastic jump processes, two prob-
ability distributions exist for each value of road grade (an up and a down distribution).
However, there are two exceptions to this. For θk = min Θ there is no transition probabil-
ity distribution for a negative step change and for θk = max Θ there is not distribution for
a positive step change. This is to ensure θ+ ∈ Θ.

Figures 4.7 and 4.8 provide examples of the cumulative distribution functions for the
positive step change and negative step change, respectively, jump processes for an initial
grade of 0% with S = {0, 5, ..., 50} m and ∆θ = 0.5%. Note that these cumulative distri-
bution functions are similar to the cumulative distribution functions for Poisson processes.

4.2.3 Prediction using the stochastic jump process

The stochastic jump processes are used for predicting the road grade in the following way.
Given a current position ρ with an initial road grade θ, the next position, ρ+, and next grade
θ+ are defined as

ρ+ = ρ+ f(θ), (4.13)

θ+ =

θ + ∆θ if s̄+(θ) < s̄−(θ),

θ −∆θ if s̄−(θ) ≤ s̄+(θ),

where
f(θ) = min{s̄+(θ), s̄−(θ)}, (4.14)

62



0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Distance s [m]

P
(x

≤
s)

Figure 4.7: An example of the data generated jump process for a positive step in grade with
an initial grade θ = 0%

and

s̄+(θ) = E[s+ | θ], (4.15)

s̄−(θ) = E[s− | θ],

where E[s+ | θ] and E[s− | θ] are the expected distances over which a positive or negative
step change, respectively, will occur. This is repeated until a predicted grade profile exists
over the desired prediction horizon, ∆s.

4.3 Grade prediction comparison

In the following section, a comparison of prediction accuracies of the stochastic jump pro-
cess and the Markov chain method will be presented. The example data used was collected
on a 21 km stretch of northbound M-39 with the test vehicle traveling at an average speed
of 88 KPH. Figure 4.9 shows this grade data for this example that was used to generate
both the Markov chain and jump process distributions.

The Markov grade prediction is generated as expected value of next grade given the
current grade for the Markov chain,

θ+ = E[θ+ | θ]. (4.16)

This value of θ+ is then constant over the entire prediction horizon ∆s.
The prediction accuracy is assessed by calculating the mean absolute error (MAE) be-
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Figure 4.8: An example of the data generated jump process for a negative step in grade
with an initial grade θ = 0%

tween each of the prediction methods and the real data for different values of the prediction
horizon ∆s ∈ {10, 15, . . . , 50}m with ∆θ = 0.5% for the stochastic jump process method.
Figure 4.10 provides example profiles of these prediction methods for ∆s = 15 m overlaid
with real data. Figure 4.11 shows the accuracies of each of the prediction methods. The
jump process is more accurate up to 20 m, however, after this, the Markov chain method is
more accurate.

4.4 Online learning of traffic patterns and road grade

The previous sections use off-line learning to generate the stochastic models. The online
learning of Markov chain models is also of interest (see [38, 47]), as well as the capability
of performing quick comparisons between Markov chain models using the KL divergence
to determine if a new model needs to be learned or if the current model is sufficient, see
[47, 48]. This section will briefly discuss how the online learning of Markov chain models
is performed and then will introduce a similar learning method and convergence analysis
to be applied to the online learning of the stochastic jump models.

During off-line learning of Markov chain models, frequencies of transitions from a
given state, xi, to all other possible states, xj , are counted and transition probabilities are
estimated. This process, based on equation (2.6), is modified to an online version using the
following observations.
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Figure 4.9: The grade data used to generate the stochastic grade prediction example
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Figure 4.10: The real road grade data overlaid with the Markov and jump predictions. Note
that neither prediction produces gross deviations from the real data
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Figure 4.11: An example of the data generated stochastic jump process for a down step in
grade with an initial grade θ = 0%

Equation (2.6) can be rewritten as

T (xj | xi) =
Nxi,xj(k)/k

Mxi(k)/k
=
Fxi,xj(k)

F0,xi(k)
, (4.17)

where Fxi,xj(k) is the mean frequency of transition events from state xi to state xj at an
instant k and F0,xi(k) is the mean frequency of transition events out of state xi at time k.
If k is set equal to the time it takes to collect a set of data, or equivalently the number of
discrete samples collected in a set of data, then (4.17) reduces to (2.6).

Define a transition event flag from state xi to state xj at time k to be fxi,xj(k) (i.e,
fxi,xj(k) = 1 if the event occurs at the time instance k and fxi,xj(k) = 0 otherwise) and the
transition event flag out of state xi at time k to be f0,xi(k). Then,

Fxi,xj(k) =
1

k

k∑
t=1

fxi,xj(t), (4.18)

F0,xi(k) =
1

k

k∑
t=1

f0,xi(t).
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These equations can be rewritten in a form suitable for online learning as,

Fxi,xj(k) = (1− φ)Fxi,xj(k − 1) + φ(fxi,xj(k)), (4.19)

F0,xi(k) = (1− φ)F0,xi(k − 1) + φ(f0,xi(k)).

In (4.19), φ = 1
k
. Following [38], φ can be modified to a constant value, φ ∈ (0, 1], which

represents a constant forgetting factor thereby emphasizing newer data over older data.
Using (4.17)-(4.19), a Markov chain model can be learned online as data are collected,

see [38]. To test whether or not the learned Markov chain model has converged, the KL
divergence as defined for Markov chains, (4.1), is used.

Reference [47] demonstrates this procedure online in vehicle tests. This work also
shows that similarly, comparing current models with previous models, in conjunction with
an appropriate forgetting factor φ, a system implementing this learning strategy can auto-
matically distinguish between and learn separate models when appropriate.

Like the learning of Markov chains, jump processes can also be learned online. Equa-
tions (4.11) and (4.12) similarly can be rewritten recursively and applied to online learning.
The recursive form of (4.11) is

F+
θ(k),sj

(k) = (1− φ)F+
θ(k),sj

(k − 1) + φ(f+
θ(k),sj

(k)), (4.20)

F+
0,θ(k)(k) = (1− φ)F+

0,θ(k)(k − 1) + φ(f+
0,θ(k)(k)).

Above, F+
θ(k),sj

(k) is the mean frequency of positive step change from θ(k) at distance sj ,
f+
θ(k),sj

(k) is the event flag of a positive step change from θ(k) at distance sj , F+
0,θ(k)(k) is

the mean frequency of positive step changes from θ(k), and f+
0,θ(k)(k) is the event flag of

a positive step change in grade from θ(k). As before, if a positive step change from θ(k)

at a distance of sj occurs at time (k), then f+
θ(k),sj

(k) = 1 and if a positive step change
from θ(k) occurs at time k, then f+

0,θ(k)(k) = 1. The similar expression for a negative step
change in grade is

F−θ(k),sj
(k) = (1− φ)F−θ(k),sj

(k − 1) + φ(f−θ(k),sj
(k)), (4.21)

F−0,θ(k)(k) = (1− φ)F−0,θ(k)(k − 1) + φ(f−0,θ(k)(k)). (4.22)

As more data are used to learn the Markov chain and stochastic jump models online,
the frequencies of transitions converge to their true values (i.e., the values found from off-
line learning). To test this convergence, the current learned model can be compared with
an older learned model from ∆k steps in the past via the symmetric KL divergence (4.3).
If the models are suitably similar, that is the KL divergence is below a selected threshold,
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then the models have not changed substantially over the ∆k horizon and can be said to have
converged [47].

For Markov chain model learning, convergence is said to occur when

DM
KL,S

(
P (k) || P (k −∆k)

)
≤ γM , (4.23)

for γM ≥ 0 with P (k) denoting the current learned Markov chain model at time k and
P (k −∆k) denoting the learned Markov chain model ∆k steps in the past.

To calculate the KL divergence between two jump distributions, P and Q, the KL di-
vergence for Poisson distributions is used,

DP
KL(P || Q) = λQ − λP + λP log

(
λP
λQ

)
, (4.24)

where λP and λQ are the expectations of distribution P and distribution Q respectively.
The Poisson process KL divergence still possesses the same properties as the Markov

chain KL divergence. For the purpose of comparing the Markov chain model learning and
the stochastic jump process learning, we define a summed symmetric Poisson process KL
divergence as

DP
KL,S(k,∆k) =

2(Nθ−1)∑
i=1

1

2

(
DP
KL(Pi(k) || Pi(k −∆k)) +DP

KL(Pi(k −∆k) || Pi(k))
)
,

(4.25)
with a convergence criterion defined as

DP
KL,S(k,∆k) ≤ γP , (4.26)

where γP ≥ 0, Pi(k) is the current ith learned stochastic jump model, and Pi(k − ∆k) is
the ith learned stochastic jump model ∆k steps in the past. The thresholds γM and γP are
selected based on the desired sensitivity of the learning convergence [47].

Because there are 2(Nθ−1) stochastic jump distributions (Nθ is the number of elements
in Θ, 2 because there exists a set for both up and down transitions, and subtract one from
each of the up and down transitions because the transitions are limited such that the road
grade profile is constrained to be piecewise in Θ) the summed symmetric KL divergence
presented for the jump distributions is the sum of all 2(Nθ − 1) divergences between each
individual current distribution and its ∆k-steps-in-the-past distribution. This is done in
order to produce a single value that can be easily plotted. It should be noted that this value
will still approach zero as all 2(Nθ − 1) distributions converge.
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The results summarizing the online learning capabilities of Markov chain and stochastic
jump process models will now be presented. Figures 4.12 and 4.13 present examples of the
probability distributions learned recursively over one data set using the above methods,
Figure 4.12 is the learned Markov chain model and Figure 4.13 is the learned jump process
for a positive step change from 0% road grade. These Figures present the distributions at
the end of the data set with all points used in the learning. Note the similarity between
Figures 4.12 and 4.13 and Figures 2.2 and 4.7.

Figure 4.14 shows how the KL divergence of the two models decreases over the course
of the learning cycle with ∆k = 20 steps. Note, the section before 5000 m in Figure 4.14
is where the bulk of the learning occurs, demonstrated by the many changes in the value
of KL divergence for both models. Also note that though both are plotting KL divergence,
the value of the KL divergence for the jump process has much larger values in the initial
learning phase than the Markov models. This is not as meaningful as the fact that both
values being plotted tend to zero as more data are used for learning.

Figure 4.15 shows the mean absolute error from the predictions made while learning
the Markov chain and jump processes online. The predictions near the beginning of the
learning cycle are poor, but as learning continues, the predictions become more accurate.

This section demonstrates that both the grade predicting Markov chains and jump pro-
cesses can be learned online and used throughout the learning cycle. As to be expected, the
accuracy of the models is low at the beginning of the learning cycle, but improves through-
out the learning cycle. It should be noted that the online learning of Markov chain models
was successfully demonstrated in an experimental vehicle in [47]. Future work will be to
implement the learning of the stochastic jump process on board an experimental vehicle
and to also apply the stochastic jump process modeling to the prediction of traffic speed.
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Figure 4.12: Surface plot of an online learned Markov chain model. Note the similarities
between this and Figure 2.2
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Figure 4.13: An online learned stochastic jump process for a positive step change from 0%
road grade. Note the similarities between this and Figure 4.7.
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Figure 4.14: The trend of the KL divergence for both the Markov chain and stochastic jump
processes throughout the learning cycle. As expected, the KL divergence tends to decrease
and approaches a small value near zero–this is indicative of model convergence.
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grade. Note how the mean absolute error decreases over the learning cycle.
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CHAPTER 5

Safe, Recoverable, and Integral Safe Sets with
Aircraft Applications

This chapter discusses safe sets and introduces recoverable and integral safe sets for linear,
discrete-time systems in Sections 5.1-5.3. A comparison of these three sets for linearized
aircraft lateral and longitudinal dynamics is presented in Section 5.4. The application of
these sets to aircraft maneuver planning is described in Section 5.5. Further examples
of recoverable sets for different choices of auxiliary subsystem, in cases of additive set-
bounded disturbances, and at different flight conditions are considered in Section 5.6.

We consider the following linear discrete-time open-loop system,

x(k + 1) = Ax(k) +Bu(k),

y(k) = Cx(k) +Du(k), (5.1)

with imposed output constraints,
Gy(k) ≤ g. (5.2)

Define the output constraint set, Y , as

Y = {y : Gy ≤ g}. (5.3)

Note that (5.1)-(5.3) can represent a discrete-time model of open-loop linearized aircraft
dynamics. The output constraints, (5.2), in that case, are generated from consideration of
the flight envelope, the control constraints, and the assumptions made for the region of
validity of the linearized model.
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5.1 Safe set

Consider the open-loop system (5.1) with output constraints (5.2). Allow the loop to be
closed with a stabilizing feedback control of the form,

u(k) = −Kx(k), (5.4)

such that

x(k + 1) = ACLx(k), (5.5)

y(k) = CCLx(k),

where ACL = A− BK and CCL = C −DK, is now the closed-loop system. In practice,
the controller can be any stabilizing feedback controller, however, in this dissertation an
LQR control architecture will be exclusively used. The safe set, O∞, for this system [58] is
then defined as the set of all initial conditions such that the ensuing closed-loop trajectories
are output constraint admissible. That is,

O∞ = {x(0) ∈ Rn : y(k) = CCLA
k
CLx(0) ∈ Y, ∀k ≥ 0}. (5.6)

If ACL is Schur, (CCL, ACL) is observable, 0 ∈ int Y , and Y is compact, then O∞ is
positively-invariant, finitely-determined, and is a polytope (bounded polyhedron) [58]. Fi-
nite determination means that there exists t∗ such that O∞ = Ot for all t ≥ t∗, where

Ot = {x(0) ∈ Rn : y(k) = CCLA
k
CLx(0) ∈ Y, for k = 0, · · · , t}, (5.7)

or, equivalently,

O∞ = Ot∗ = {x(0) ∈ Rn : GCCLA
k
CLx(0) ≤ g, for k = 0, · · · , t∗}. (5.8)

In practice, t∗ is usually comparable to the settling time of the closed-loop system. Note
also that not all the constraints forming O∞ in (5.8) are necessary as many are redundant
and can be eliminated. The advantage of eliminating the redundant constraints is that the
storage memory requirements are reduced, and subsequent computations involving O∞

are simplified. Simpler subsets that closely approximate O∞ can be generated by also
eliminating the almost redundant constraints and applying a pull-in transformation [102].
For the generalizations of the safe sets to systems with additive set-bounded disturbances,
see reference [79] and references therein and for systems with polytopic uncertainty, see
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reference [83] and references therein. For nonlinear systems, see [103] and references
therein.

The computational algorithm used to calculate safe sets in this dissertation is adapted
from [83]. See Appendix B for a description. This algorithm has been implemented in
MATLAB.

Note that O∞ is dependent on the choice of the nominal controller (5.4).

5.2 Recoverable set

We note that x(0) /∈ O∞ may be recoverable (i.e., the closed-loop response from x(0) can
be made to satisfy constraints) if (5.4) is modified. Hence, consider now the controller (5.4)
augmented with an external signal, v(k),

u(k) = −Kx(k) + v(k). (5.9)

This leads to the closed-loop system of the form

x(k + 1) = ACLx(k) +Bv(k),

y(k) = CCLx(k) +Dv(k). (5.10)

We refer to v(k) as the recovery sequence.
Define the viability set, V∞ [71, 104], for (5.10) with constraints (5.2) as the set of all

initial conditions, x(0), for which there exists a sequence v(·) that enforces the constraints,
i.e.,

V∞ = {x(0) : ∃v(·) such that y(k) ∈ Y ∀k ≥ 0}. (5.11)

Clearly, O∞ ⊂ V∞, the sequence v(·) is specific to each initial condition, x(0), and V∞
can be much larger than O∞. Unfortunately computing V∞ can be very involved which
motivates the approximation we now discuss.

To develop an inner approximation to V∞, we assume that the recovery sequence is
generated by an auxiliary system of the form,

v(k) = ĉ+ Ĉx̂(k),

x̂(k + 1) = Âx̂(k),
(5.12)

where Â is a Schur (asymptotically stable) matrix and x̂ is the n̂-vector state of the auxiliary
system. A version of the safe set for (5.10) and (5.12) with constraints (5.2) is referred to
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as Oext
∞ and is defined as,

Oext
∞ = {(x(0), ĉ, x̂(0)) ∈ Rn+p+n̂ : y(k) ∈ Y, ∀k ≥ 0}, (5.13)

where n is the dimension of x, p is the dimension of ĉ and u, and n̂ is the dimension of x̂.
The recoverable set, R∞, is defined as a projection of Oext

∞ on the plant coordinates,

R∞ = {x(0) ∈ Rn : ∃ĉ, x̂(0) such that (x(0), ĉ, x̂(0)) ∈ Oext
∞ }. (5.14)

Note that since the constraints (5.2) are affine, both Oext
∞ and R∞ are polyhedral. We

note that if Oext
∞ fails to be finitely-determined an arbitrarily close inner approximation of

Oext
∞ which is positively-invariant can be shown to exist [79]. We assume Oext

∞ is finitely-
determined in the subsequent discussions noting that it can be replaced by a finitely-
determined approximation if not. Note also that the recoverable set (5.14) is positively-
invariant for (5.10) and (5.12).

From the computational standpoint, generatingOext
∞ andR∞ can be accomplished using

the conventional safe set computations and projection methods, Appendix B, for which
tools and software already exist.

Given x(0) ∈ R∞, computing an appropriate ĉ and x̂(0) for which constraints are
enforced reduces to a problem of the type,

1

2
ĉTĉ+

1

2
x̂(0)TPx̂(0)→ min

ĉ,x̂(0)
,

subject to (x(0), ĉ, x̂(0)) ∈ Oext
∞ ,

(5.15)

where P = PT > 0. The minimization in (5.15) aims at preserving the operation with the
nominal controller and avoiding the unnecessary use of recovery sequence. Computation-
ally, (5.15) is a quadratic programming problem. By using 1 or∞ norms in (5.15) instead
of quadratic penalties, a closely related linear programming formulation can be obtained.
Once x̂(0) and ĉ are determined, the execution of (5.12) yields a recovery sequence for a
given x(0).

Several choices exist for the selection of the auxiliary dynamics (5.12), including the
shift register and the Laguerre’s sequence generators. These choices are motivated by
related developments in the extended command governor case [105] and in the model-
predictive control case [106]. When utilizing the shift register, the recovery sequence be-
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comes equal to ĉ after H + 1 steps and Â and Ĉ have the form

Â =


S̄1 0 · · · 0

0 S̄2 · · · 0
...

... . . . ...
0 0 · · · S̄p

 , Ĉ =


T̄1 0 · · · 0

0 T̄2 · · · 0
...

... . . . ...
0 0 · · · T̄p

 , (5.16)

with

S̄i =



0 1 0 · · · 0

0 0 1 · · · 0
...

...
... . . . ...

0 0 · · · · · · 1

0 0 · · · · · · 0


∈ R(H+1)×(H+1), T̄i =

[
1 0 · · · · · · 0

]
∈ R1×(H+1),

(5.17)
with the number of blocks in Â and Ĉ being equal to the number of control channels being
utilized.

When using Laguerre’s sequence generators, Â and Ĉ have the form (5.16) and S̄i and
T̄i have the following structure,

S̄i =



αL β −αLβL α2
LβL · · ·

0 αL βL −αLβL · · ·
0 0 αL βL · · ·
0 0 0 αL · · ·
...

...
...

...
...


, T̄i =

√
βL

[
1 −αL α2

L −α3
L · · ·

]
,

(5.18)
where βL = 1−α2

L, 0 ≤ αL ≤ 1 are selectable parameters. The choice αL = 0 corresponds
to the shift register. Numerical examples suggest that low dimensional Laguerre’s sequence
generators for αL 6= 0 are capable of producing a rich set of recovery sequences.

To incorporate the auxiliary dynamics with the nominal closed-loop dynamics, note
that

u(k) = −Kx(k) + v = −Kx(k) + ĉ+ Ĉx̄(k),

where K is the stabilizing feedback gain and thus,

u(k) =
[
−K I Ĉ

]x(k)

ĉ

x̂(k)

 . (5.19)
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Therefore, when one constructs Oext
∞ with the inclusion of a nominal controller, the

state vector becomes x(k)

ĉ

x̂(k)

 ,
with

Aext =

A B BĈ

0 I 0

0 0 Â

 , Cext=

[
C D DĈ

−K I Ĉ

]
, (5.20)

used in place of the nominal A and C. The second row of Cext is introduced to handle the
constraints imposed on the control.

5.3 Integral safe set

Practical controllers frequently employ integral action to guarantee offset-free tracking of
constant reference commands and asymptotic rejection of constant input disturbances. Sup-
pose the closed-loop system has the following form,

x(k + 1) = Ax(k) +Bu(k),

xI(k + 1) = CIx(k) + xI(k), (5.21)

where
u(k) = −K1x(k)−K2xI(k). (5.22)

The controller with an integral action can be designed using a variety of techniques such
as LQ-I and will be assumed to give an asymptotically stable closed-loop system of the
following form,

x̄(k + 1) = Āx̄(k),

ȳ(k) = C̄x̄(k), (5.23)

where

x̄(k) =

[
x(k)

xI(k)

]
, (5.24)

with

Ā =

[
A−BK1 −BK2

CI I

]
(5.25)
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and C̄ appropriately defined for the output.
The constraints have he form ȳ(k) ∈ Ȳ where

Ȳ = {ȳ : Ḡȳ ≤ ḡ}. (5.26)

The integral safe set, OI
∞, is then defined as the set of initial plant and controller states,

x̄(0), such that the ensuing closed-loop trajectories are constraint-admissible. That is,

OI
∞ = {x̄(0) ∈ Rn+p : C̄Ākx̄(0) ∈ Ȳ ,∀k ≥ 0}. (5.27)

If Ā is Schur, (C̄, Ā) is observable, 0 ∈ int Ȳ , and Ȳ is compact, (5.27) is positively-
invariant, finitely-determined and is a polytope [58].

We define

RI
∞ = {x(0) : ∃xI(0) such that (x(0), xI(0)) ∈ OI

∞}, (5.28)

as the projection of OI
∞ onto the plant states. Finding a suitable xI(0) for a given x(0) ∈

RI
∞ can be posed as a quadratic programming problem, see subsequent chapters.

5.4 Comparison of safe, recoverable, and integral safe sets

The sets O∞, OI
∞, and Oext

∞ can be used to generate a constraint-admissible trajectory for a
given x(0) ∈ O∞, RI

∞, or R∞, respectively.
The practical use of Oext

∞ and OI
∞ is similar. In the former case, a polyhedral represen-

tation of Oext
∞ needs to be stored or computed on board and then a quadratic programming

problem, of the form (5.15), is solved to determine the initial state of the auxiliary subsys-
tem and the recovery sequence. In the latter case, a polyhedral representation of OI

∞ needs
to be stored or computed on board and then a quadratic programing problem is solved with
respect to the controller state to determine the value to which the controller state needs to
be set so as to enforce constraints.

Clearly, O∞ ⊆ R∞, O∞ ⊆ RI
∞, R∞ ⊆ V∞, and RI

∞ ⊆ V∞, however, RI
∞ * R∞,

nor R∞ * RI
∞ in general. We expect that as n̂ increases in the shift register case, R∞

approaches V∞ in the Hausdorff norm sense but the proof of this conjecture, under suitable
assumptions, is left to future research.

To demonstrate the differences in the sets, consider the following aircraft examples.
These examples are generated using the scaled NASA generic transport model (GTM) [107,
108]. The trim condition for which the following results are calculated is at an altitude of
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h0 = 800 ft, airspeed of U0 = 118.15 ft
s (70 knots), sideslip angle β0 = 0 rad, flight path

angle γ0 = 0 rad, and yaw rate ψ̇0 = 0 rad
s .

In the following, the states of the linear models are deviations from the trim conditions
at which the nonlinear model is linearized. For the lateral dynamics, the states are devia-
tions in side-slip angle, ∆β, roll rate, ∆p, body-fixed vertical axis rotation, ∆r, and roll
angle, ∆φ, with angles in rad and rates in rad

s . The control inputs for the lateral dynamics
are deviations in the nominal control input of the aileron, ∆δa, in rad and the rudder, ∆δr,
in rad. For the longitudinal dynamics, the states are deviations in longitudinal airspeed,
∆u, angle of attack, ∆α, pitch rate, ∆q, and pitch angle, ∆θ, with airspeed in ft

s , angles in
rad, and angular rates in rad

s . The control inputs for the longitudinal dynamics are deviations
in the nominal control input of the elevator, ∆δe, in rad and the throttle, ∆δT , in percent
throttle.

The lateral continuous-time linear model at the chosen trim condition is
∆̇β

∆̇p

∆̇r

∆̇φ

 =


−0.5229 0.0861 −0.9852 0.2374

−90.5885 −6.2736 2.0861 0

29.1873 −0.4833 −1.4043 0

0 1 0.0857 0




∆β

∆p

∆r

∆φ

 (5.29)

+


−0.0002 0.0031

−0.9174 0.2321

−0.0523 −0.4436

0 0


[

∆δa

∆δr

]
,

and the longitudinal model is given by
∆̇u

∆̇α

∆̇q

∆̇θ

 =


−0.0665 −11.4608 0.1439 −32.1740

−0.0035 −2.4714 0.9514 0

−0.0090 −43.9070 −3.4738 0

0 0 1 0




∆u

∆α

∆q

∆θ

 (5.30)

+


−0.0435 0.1424

−0.0043 −0.0001

−0.7662 0.0192

0 0


[

∆δe

∆δT

]
.

Discrete-time models are generated with a time step of Ts = 0.1 seconds. To generate
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OI
∞ for the lateral model, CI in (5.21) is set to

CI,lat =
[
0 0 0 1

]
. (5.31)

To generate OI
∞ for the longitudinal model, the integrator is applied to the error in flight

path angle, γ = −α + θ, thus CI in (5.21) is set to

CI,lon =
[
0 −1 0 1

]
. (5.32)

A comparison is now made between the projections of the sets O∞, R∞, and RI
∞ onto

∆p–∆φ plane for lateral dynamics and the ∆u–∆θ plane for longitudinal dynamics. For
this comparison, the recovery sequences used to produce R∞ are generated using a shift
register for the auxiliary dynamics (5.12) with H = 3. The nominal controller, (5.4), and
K1 and K2 in (5.22) were designed using discrete-time LQ techniques and tuned for good
transient response. The value of K in (5.4) and K1 in (5.22) were made the same. The
values for K1 and K2 for the lateral dynamics were

K1 =

[
1.4888 −0.3021 −0.8550 −2.1804

0.4416 −0.2362 −1.2210 −2.1287

]
,

K2 =

[
−0.0680

−0.0684

]
,

and for the longitudinal dynamics K1 and K2 were

K1 =

[
0.7565 25.4919 −2.1734 −33.0973

0.3818 −5.2650 −0.0921 4.3783

]
,

K2 =

[
−0.3770

−0.9132

]
.
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The constraints for the lateral linearized system in (5.2) are

−0.2618 ≤ ∆β ≤ 0.2618,

−0.2618 ≤ ∆p ≤ 0.2618,

−0.2618 ≤ ∆r ≤ 0.2618, (5.33)

−1.0472 ≤ ∆φ ≤ 1.0472,

−0.5236 ≤ ∆δa ≤ 0.5236,

−0.5236 ≤ ∆δr ≤ 0.5236,

where ∆β, ∆φ, ∆δr, and ∆δa are in rad and ∆p and ∆r is in rad
s . The constraints for the

longitudinal linearized system used are

−20 ≤ ∆u ≤ 20,

−0.0987 ≤ ∆α ≤ 0.1456,

−0.2618 ≤ ∆q ≤ 0.2618, (5.34)

−0.6981 ≤ ∆θ ≤ 0.6981,

−0.5236 ≤ ∆δe ≤ 0.5236,

−20 ≤ ∆δT ≤ 20,

where ∆u is in ft
s , ∆α, ∆θ and ∆δe are in rad, ∆q is in rad

s , and ∆δT is in percent throttle.
Figures 5.1 and 5.2 show projections of O∞, R∞, and RI

∞ onto selected coordinates
for lateral and longitudinal dynamics, respectively. From Figure 5.1, it is clear the RI

∞ is
substantially larger than R∞ (while O∞ is a subset of both). However, in Figure 5.2, R∞
has a larger area than RI

∞, but not substantially larger (while O∞ is again a subset of both).
Utilizing MATLAB running on a laptop with a 2.66 GHz Intel Core 2 Duo processor

and 4 GB of RAM, O∞ and OI
∞ can be computed in about 0.5 seconds. However, to

compute R∞ with H = 3 on the same laptop requires roughly 5 seconds (and subsequently
the calculations for R∞ with H = 6 requires about 30 seconds). All sets were calculated
using the techniques described in Appendix B.
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Figure 5.1: Projections ofO∞,R∞, andRI
∞ onto the ∆p–∆φ plane for the lateral linearized

model. Note that RI
∞ is substantially larger than R∞ and takes less time to compute.
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linearized model. Note that RI
∞ and R∞ are similar in size (though R∞ is slightly larger)

while RI
∞ takes less time to compute.
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Figure 5.3: Example of the connectivity condition such that a transition from Xn
eq to Xn+1

eq

is allowed.

5.5 Aircraft maneuver planning using safe, recoverable,
and integral safe sets

The safe, recoverable, and integral safe sets can be used in aircraft maneuver planning to
determine a sequence of trim points that can be safely followed by the aircraft. In the case
of safe sets, the condition for connectivity and safe transition between trim points can be
expressed as

Xn
eq −Xn+1

eq ∈ int On+1
∞ , (5.35)

where Xn
eq, X

n+1
eq denote the nth and (n + 1)th equilibrium states of the nonlinear closed-

loop system, respectively, and On+1
∞ denotes the safe set corresponding to the linearized

closed-loop model at Xn+1
eq , see Figure 5.3. With the controller commands corresponding

to the nth trim point, X(t) converges to Xn
eq and (5.35) ensures that the (n + 1)th trim

condition can be commanded and achieved without violating the constraints.
Note also that in (5.35), int On+1

∞ can be replaced with int Rn+1
∞ or int RI,n+1

∞ with the
same implications. If Rn+1

∞ replaces On+1
∞ in (5.35), i.e.,

Xn
eq −Xn+1

eq ∈ int Rn+1
∞ , (5.36)

then a recovery sequence is necessary to achieve the commanded trim condition without
violating constraints. The actual recovery sequence is computed by solving (5.15) with
x(0) = X(t) − Xn+1

eq , where X(t) is the current state, and Oext
∞ = Oext,n+1

∞ corresponds
to Rn+1

∞ . Note that neither the knowledge of the actual recovery sequence, nor Oext,n+1
∞ , is

required at the maneuver planning stage to determine a safe sequence of trim points based
on condition (5.36). A similar discussion applies to the case when the integral safe sets are
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used for maneuver planning with (5.35) being replaced by

Xn
eq −Xn+1

eq ∈ int RI,n+1
∞ . (5.37)

Reference [60], see also [75, 85], exemplifies a similar approach based on safe sets in
the case of spacecraft relative motion control while enforcing debris avoidance and thrust
limit constraints. It uses a condition of the form (5.35) to compute a connectivity graph
and then perform a graph search to determine the path between the origin and destination.
Here, we generalize the approach of [60] to the one based on recoverable and integral safe
sets which allows significantly more trim conditions to be connected.

Note that O∞, R∞, and RI
∞ can be replaced by their subsets in (5.35), (5.36), (5.37),

respectively. Thus, in principle, the knowledge of the sets O∞, R∞, and RI
∞ is not required

and the knowledge of their subsets is sufficient.
We will now present an example of constraint-admissible aircraft maneuver planning

via RI
∞. Towards this end, we consider a longitudinal aircraft dynamics model. Note that

a longitudinal trim condition is uniquely defined by prescribing an airspeed, U0, flight path
angle, γ0, altitude, h0, and ψ̇ = constant (in this case, zero).

The constrained aircraft maneuver planning problem reduces to a graph search to iden-
tify a sequence of connected, i.e., satisfying (5.37), trim points leading from the initial trim
state to the final trim state.

The execution of the flight path proceeds as follows. Let i(k) ∈ {1, · · ·N} designate
the index of the currently commanded trim point. Suppose the operation is currently with
the trim point index, i(k) = i−, i.e., the commanded trim point is X i−

eq . At a time instant,
k, we check if the condition (5.37) is satisfied, or equivalently if the condition[

X(k)−X i+
eq

xI(k)

]
∈ OI,i+

∞ , (5.38)

where i+ = min{i−+ 1, N}, can be satisfied by a selection of the integrator state, xI(k) ∈
Rp. If a feasible solution exists, then the switch i(k) = i+ is made, resulting in an up-
date to the current trim condition and feedback control gains, while the integrator state is
appropriately reset to the feasible value thereby found. We note that OI

∞ sets used in the
above procedure are based on local (linearized) models at various trim points. Approaches
to account for the effects of nonlinearities will be considered in the future work.

The following example illustrates this procedure. The desired transition is from an
initial trim condition of h0

0 = 800 ft, U0
0 = 151.90 fps (90 knots), and γ0

0 = 0.0873 rad (5
deg) to hN0 = 800 ft, UN

0 = 151.90 fps (90 knots), and γN0 = −0.0873 rad (−5 deg). This
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Figure 5.4: The time histories of aircraft states as the aircraft transitions through the se-
lected trim points. The transitions between selected trim points occur at time instants des-
ignated by vertical dashed lines.

transition is not allowed initially due to imposed constraints. However, if intermediate trim
points are added with γ1

0 = 0.0698 rad (4 deg), γ2
0 = 0.0524 rad (3 deg), γ3

0 = 0.0349 rad
(2 deg), γ4

0 = 0.0175 rad (1 deg), γ5
0 = 0 rad (0 deg), γ6

0 = −0.0175 rad, γ7
0 = −0.0349

rad, γ8
0 = −0.0524 rad, and γ9

0 = −0.0698 rad, thus N = 10, this allows for the desired
transition to occur with a constraint-admissible trajectory.

Figures 5.4 and 5.5 show the state and control trajectories of this transition. Note that
these Figures plot absolute values (i.e., not values relative to a trim condition) of the states
and the control. The red vertical dashed lines show at what time instants the switch has
occurred to a new trim condition. The first switch occurs at k = 0 as the aircraft begins
its transition from its initial trim of γ0

0 = 5 deg to the next trim of γ1
0 = 4 deg. Note that

in these Figures, the integrator state is reset at each time instant and this accounts for the
vertical jumps in the integrator state plot in Figure 5.5.

It should be noted that the original transition from γ0 = 5 deg to γ0 = −5 deg may
have actually been safe in that the aircraft would not experience ill effects by making this
transition. However, because our models are local models and the constraints that are
imposed reflect this, this transition was deemed to be not constraint admissible.

We note that references [71,74] produce sets of forward and backward reachable states
based on nonlinear aircraft models. To make the computation time feasible on board an
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Figure 5.5: The elevator and thrust control inputs, flight path angle γ, and integrator state
trajectories as the aircraft transitions through the selected trim points. Note the vertical
jumps in the integrator state (bottom right) plot indicate the integrator state reset. The
transitions between selected trim points occur at time instants designated by vertical dashed
lines.
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aircraft (they report around 4 to 5 seconds), these sets are computed for a relatively short
time horizon using the slow aircraft dynamics, while neglecting the fast aircraft dynamics,
and considering flight envelope constraints. In our case we focus on quick and computa-
tionally inexpensive local estimates that consider flight envelope and linear model validity
constraints. While both can be performed iteratively on board an aircraft as dynamics and
constraints change, they produce different, albeit similar, sets of safe states. A possible
comparison could be made between the maneuverability envelopes in [71, 74] and a union
of safe, recoverable, or integral safe sets over all interconnected trim conditions according
to the criteria (5.35), (5.36), (5.37), respectively. This graph would describe, or approxi-
mate, which trim conditions are connected based on the above analysis for the entire known
flight envelope. This analysis is left to future work and publications.

As stated above, the described safe, recoverable, and integral safe sets, along with the
associated maneuver planning example, were developed for linearized models of the scaled
NASA GTM. While the results indicate that this procedure works for the linearized mod-
els, this procedure needs to be tested and validated on the nonlinear aircraft model. This
analysis is left for future work.

5.6 Further examples of safe and recoverable sets for air-
craft dynamics

This section will discuss the properties of safe and recoverable sets including the effects
of set-bounded disturbances on safe and recoverable sets, the dependence of recoverable
sets on the trim condition for which they are calculated, and auxiliary system and recovery
sequence length selection.

Subsections 5.6.1 and 5.6.2 compare the shapes and sizes of safe and recoverable sets
at different flight conditions, different recovery horizons, and different recovery sequence
generators. This provides important insights and the motivation behind the scaling trans-
formations presented in the next chapter. Subsection 5.6.3 demonstrates how the safe and
recoverable sets change under additive set-bounded disturbances.

We consider the linearized aircraft dynamics based on the NASA GTM [107, 108], see
also Appendix C. The nominal trim condition for which the linearization is generated is
defined by U0 = 515.55 ft

s , h0 = 1000 ft, α0 = 5 deg, β0 = 0 rad, and ψ̇0 = 0 rad
s .
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The lateral model is
∆β̇

∆ṗ

∆ṙ

∆φ̇

 =


0.1646 0.0033 −1.0018 0.0625

−10.5393 −3.0745 0.5421 0

2.7760 0.0174 −0.6265 0

0 1 0 0




∆β

∆p

∆r

∆φ

 (5.39)

+


−0.0059 −0.0728

7.3283 1.6432

0.0226 −2.2790

0 0


[

∆δr

∆δa

]
,

and the longitudinal model is
∆u̇

∆α̇

∆q̇

∆θ̇

 =


−0.0102 −9.7264 −1.4988 −32.2

−0.0004 −0.9992 0.9617 0

0.0016 −2.4752 −0.7972 0

0 0 1 0




∆u

∆α

∆q

∆θ

 (5.40)

+


4.4286 3.33

−0.0856 0

−3.3372 0

0 0


[

∆δe

∆δT

]
,

with the same state and control definitions from Section 5.4.
The continuous time models are transformed to discrete-time models with a time step

of Ts = 0.2 sec. A stabilizing controller is designed using discrete-time linear quadratic
regulator (DLQR) theory. The weighting matrices used in the DLQR problem are diagonal,
and chosen as Qlon = diag([0.001, 0, 0, 10]) and Rlon = I for the longitudinal system and
Qlat = diag([1, 0, 0, 1]) and Rlat = I for the lateral system. The controller has the form

u = −Kx+ v

where x, u, are the state and control vectors of the lateral and longitudinal aircraft models
((5.39) or (5.40), respectively) and v is the output of the auxiliary subsystem (5.12).
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The constraints imposed on the lateral dynamics are

−0.1745 ≤ ∆β ≤ 0.1745,

−0.0873 ≤ ∆p ≤ 0.0873,

−0.0873 ≤ ∆r ≤ 0.0873,

−0.3491 ≤ ∆φ ≤ 0.2491,

−0.2618 ≤ ∆δa ≤ 0.2618,

−0.3491 ≤ ∆δr ≤ 0.3491, (5.41)

and the constraints imposed on the longitudinal dynamics are

−50 ≤ ∆u ≤ 50,

−0.0349 ≤ ∆α ≤ 0.2094,

−0.0873 ≤ ∆q ≤ 0.0873,

−0.6981 ≤ ∆θ ≤ 0.6981,

−0.4363 ≤ ∆δe ≤ 0.4363,

−20 ≤ ∆δT ≤ 20. (5.42)

5.6.1 Recoverable set examples for aircraft dynamics

Recoverable sets depend on the selection of recovery sequence length and recovery se-
quence generation mechanism. These issues will now be examined.

Figures 5.6 and 5.7 show projections of safe and recoverable sets for H = 1, H = 2,
and H = 3 for the lateral and longitudinal dynamics, respectively. In these figures, note
that as H increases, so does the size of R∞. Also note that R∞ approaches a maximum set
as H increases which corresponds to the original constraints. It took a total of 0.58 sec to
compute the longitudinal and lateral safe sets, 1.89 sec to compute the H = 1 recoverable
sets, 3.55 sec to compute the H = 2 recoverable sets, and 6.96 sec to compute the H = 3

recoverable sets. The computations were performed using MATLAB code based on the
work of Pluymers et al [83], see Appendix B, running on a laptop with a 2.66 GHz Intel
Core 2 Duo processor and 4 GB of RAM. Note that these computing times are small. The
ability to compute recoverable sets fast is attractive from a practical standpoint. This ability
is facilitated by our use of discrete-time linear models and restricting recovery sequences
to those that can be generated by a low dimensional auxiliary subsystem.

Figures 5.8-5.9 demonstrate the difference in recoverable sets for the above trim con-
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Figure 5.6: Projections of O∞ and R∞ onto the ∆β–∆r plane. Note that as H increases,
so does R∞.
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Figure 5.7: Projections of O∞ and R∞ onto the ∆u–∆θ plane. Note that as H increases,
so does R∞.
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Figure 5.8: The difference between using a shift register (S R) and Laguerre’s sequence
generator (L S) for H = 1 and H = 2 recoverable sets with the longitudinal dynamics
projected onto the ∆u–∆θ plane. Note the Laguerre’s sequence generator produces larger
set in general than the shift register.

dition when a Laguerre’s sequence generator (5.18) is used to augment the nominal system
instead of the shift register. Note that while the recoverable sets are similar, the recoverable
sets generated using the Laguerre’s sequence are generally larger. For the computations,
αL = 0.5 in (5.18).

5.6.2 Recoverable set dependence on flight condition

The recoverable sets are dependent on the flight condition for which they are being cal-
culated. The dependence on flight condition comes primarily from two sources. The first
source is the dependence of the matrix entries on the dynamic pressure, pd = 1/2ρU2

0 ,
see equations summarized in Appendix C. The second source is in the dependence of the
stability derivatives on Mach number and angle of attack.

Figures 5.10 and 5.11 demonstrate the effect that different flight conditions have on the
recoverable sets. A large difference in altitude, 1000 ft to 20000 ft has less of an effect
than a moderate change in speed, 500 ft

s to 800 ft
s . This is reasonable when considering the

dependence of the dynamic pressure on the density and speed: Though pd is dependent on
the air density ρ, it also depends on the square of the airspeed U0. Hence, changes in U0

affect the dynamic pressure more than changes in ρ. Table 5.1 summarizes four different
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Figure 5.9: The difference between using a shift register (S R) and Laguerre’s sequence
generator (L S) for H = 1 and H = 2 recoverable sets with the lateral dynamics projected
onto the ∆β–∆φ plane. Note the Laguerre’s sequence generator produces larger set in
general than the shift register.

flight conditions (FC1, FC2, FC3, FC4) for which the computations of the recoverable sets
for the shift register implementation and H = 1 were performed.

5.6.3 Set-bounded disturbance effects on safe sets

The safe and recoverable set approach presented above can be modified to account for addi-
tive set-bounded disturbances, see reference [79]. To describe briefly the main ingredients,
in the case of additive set-bounded disturbances/uncertainties, the system has the following
form

x(k + 1) = ACLx(k) +BWw(k) +Bv(k) (5.43)

y(k + 1) = CCLx(k) +DWw(k) +Dv(k),

where the values of w are members of the known disturbance set, W . Under these distur-
bances, (5.6) becomes

O∞ = {x(0) ∈ Rn : y(k) ∈ Y, ∀k ≥ 0 and ∀w ∈ W}, (5.44)
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Figure 5.10: Projections of longitudinal recoverable sets with H = 1 at different flight
conditions.
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Figure 5.11: Projections of lateral recoverable sets for H = 1 at different flight conditions.
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Table 5.1: Table of flight conditions used in Figures 5.10 and 5.11.

Flight Condition h[ft] u0[ft
s

] α0[deg]
1 1000 500 4
2 1000 800 4
3 20000 500 4
4 20000 800 4

where

y(k) = CCLA
k
CLx(0) +

k−1∑
t=0

CCLA
(k−t−1)
CL BWw(t) +DWw(k) (5.45)

+
k−1∑
t=0

CCLA
(k−t−1)
CL Bv(t),

whereW is a bounded set of possible disturbances values and v is the output of the auxiliary
system (5.12). Figures 5.12 and 5.13 demonstrate the effects of set-bounded disturbances
for H = 1 recoverable sets for the flight condition U0 = 500 ft

s , h0 = 1000 ft, and α0 =

2 deg. For Figure 5.12, the bounded disturbance occurs in the ∆u state and for Figure
5.13 the bounded disturbance occurs in the ∆p state. Note that in Figure 5.13, though this
projection does not include the ∆p state, the disturbance effects are still observed.

The technique used to calculate the set-bounded disturbance recoverable sets is de-
scribed in Appendix B.
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Figure 5.12: The effects of additive set-bounded disturbances on H = 1 recoverable sets.
Note that as the disturbance increases in size, the recoverable set decreases.
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Figure 5.13: The effects of additive set-bounded disturbances on H = 1 recoverable sets.
Note that as the disturbance increases in size, the recoverable set decreases.
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CHAPTER 6

Scaling Between Safe and Recoverable Sets at
Different Flight Conditions

This chapter discusses approaches to estimating safe and recoverable sets at unexplored
trim conditions through the use of scalar (Section 6.1) and vector (Section 6.2) scaling
transformations. Numerical results are presented in Section 6.3 with two examples. A
simple sensitivity technique that can be used for quick adjustment of the safe or recoverable
set representation in response to changes in model parameters is considered in Section 6.4.
Similar scaling approaches can be developed for integral safe sets, but we do not consider
this explicitly in this chapter.

If parameters of the system model change, it is of interest to develop simple com-
putational procedures to predict changes in safe and recoverable sets so that they can be
incorporated into the maneuver planning scheme of the type considered in the previous
chapter. Scaling transformations provide a method of estimating safe and recoverable sets
at unexplored trim conditions once model parameters have changed and these parameter
changes have been identified. Thus, an approach based on scaling transformations that can
be applied to safe or recoverable sets computed at one flight condition to predict subsets of
safe or recoverable sets at another flight condition is considered in this chapter.

The scaling transformation is applied to a safe or recoverable set at one flight condition
to guarantee that the scaled set is a subset (not necessarily positively-invariant) of the safe
or recoverable set at another flight condition. The scaling transformation is developed
conservatively off-line and stored for on-board use so that it can be applied irrespective of
degradation or damage conditions. The use of progressively more conservative scalings
depending on the damage assessment index can also be considered. Note if damage or
aircraft model parameters change, trim states may change as well. Estimating changes in
trim states is considered in [76] but not included in this dissertation.

In the following, we consider two polyhedral recoverable sets, each computed for a
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different flight condition. The first is described by the set of linear inequalities

G1y ≤ g1, (6.1)

where G1 ∈ Rm×ny , and g1 ∈ Rm and has a set of n1 vertices organized into an ny × n1

matrix, V1. The second is described by the set of linear inequalities

G2y ≤ g2, (6.2)

where G2 ∈ Rk×ny , and g2 ∈ Rk and has a set of n2 vertices organized into an ny × n2

matrix, V2. We assume that the origin is in the interior of both (6.1) and (6.2). The objective
is to determine a scaling transformation such that (6.1) is guaranteed to be inside (6.2).
Thus, if the polyhedron (6.1) is known and a scaling transformation is known, subsets of
(6.2) can be computed without actually computing (6.2).

Two methods of scaling are now discussed. The first method is scalar scaling, while the
second is vector scaling.

6.1 Scalar scaling

For the scalar scaling, a scalar, λ > 0, is applied to the polytope (6.1). The scalar scaling
transformation is expressed as

Tscalar : x→ λx. (6.3)

To ensure that the scaled polytope is inside (6.2) it is necessary and sufficient to ensure
that the vertices of (6.1) are mapped inside (6.2), i.e.,

G2λV1i ≤ g2, i = 1, . . . , n1. (6.4)

The optimal scaling factor, λ∗, is the largest value of λ for which (6.4) is satisfied. It can
be computed as

λ∗ = min
i,j

[
max

[
g2j

G2jV1i

, 0

]]
. (6.5)

In (6.5), G2j denotes the jth row of G2, V1i denotes the ith column of V1, g2j denotes the j
element of g2, and 1 ≤ i ≤ n1, 1 ≤ j ≤ k.
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6.2 Vector scaling

For the vector scaling transformation, scalars, λ1 > 0, · · · , λny > 0, scale each coordinate
individually so that

Tvector : x = (x1, · · · , xny)→ (λ1x1, · · · , λnyxny). (6.6)

Note that

Tvector =

ny∑
k=1

λkTk, (6.7)

where Tk is a diagonal matrix with the (k, k) element equal to 1 and all other elements
being zero.

To ensure that the polytope (6.1), after the transformation (6.7), is inside (6.2) it is
necessary and sufficient to ensure that the vertices of (6.1) are mapped inside (6.2), i.e.,

ny∑
k=1

λk(G2TkV1) ≤ g2. (6.8)

The optimal vector transformation is determined by maximizing

J =

ny∑
k=1

λk → max, (6.9)

subject to the constraints
λk ≥ 0, k = 1, · · · , ny, (6.10)

and subject to the constraint (6.8). The problem (6.8)-(6.10) is a linear programming prob-
lem.

6.3 Numerical examples

Two numerical examples will now be presented. The first is an example of scalar scaling
transformations calculated for a grid of trim conditions. The second is a simple aircraft
icing example.

6.3.1 Scalar scaling over a grid of trim conditions

In this example, the scalar scaling transformations (6.3) from a single trim condition to a
grid of trim conditions is considered. The initial longitudinal trim condition is at an airspeed
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Figure 6.1: λ for scalar scaling transformations from the longitudinal trim condition of
U0 = 800 ft

s , h0 = 30000 ft, and α0 = 2 deg to all others in the trim condition grid.

U0 = 800 ft
s , an altitude h0 = 30000 ft, and an angle of attack α0 = 2 deg and the grid is

defined for each of the following combinations of trim conditions: U0 ∈ {400, 450, ..., 800}
ft
s , h0 ∈ {15000, 20000, ..., 30000} ft, with α0 = 2 deg. Figure 6.1 presents the scalar
scaling transformation factors, λ, from the original trim condition to all others within the
grid. Note that the value of λ for the scaling transformation from U0 = 800 fps, h0 = 30000

ft, and α0 = 2 deg to itself is exactly 1.
Tables of scaling transformations (for both the scalar and vector scalings), similar to

what is presented in Figure 6.1, can be calculated off-line and stored for on-board use.
Linear interpolation can be used to generate scaling transformations between the grid points
or, alternatively, a neural network [97] can be constructed where the inputs are the current
trim condition and the objective trim condition to be scaled whilst the output is the scaling
factor or factors. To utilize the neural network, a dataset of scaling factors would have to
be calculated and used as training/testing data for the neural network.

Consider now a scenario where an aircraft is experiencing some malfunction and that
an on-board path planning algorithm exists. Also assume that this aircraft has the capability
of real-time linear model identification. In the case of emergency path planning, the aircraft
can then use the on-board identification algorithm to identify the current linear model. A
safe, recoverable, or integral safe set would then be calculated for this identified model
and using the off-line generated scaling transformations (like those in Figure 6.1) and the
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appropriate transition criterion ((5.35), (5.36), or (5.37) for safe, recoverable or integral
safe sets, respectively), a connected graph of trim conditions between which safe transitions
exist can be generated. A graph search algorithm can then be applied to find a path through
this graph to get as close to the desired trim condition as possible.

6.3.2 Aircraft icing example

In this subsection, an aircraft icing example is presented. Two trim conditions are identified
and scaling (both scalar and vector) transformations are calculated off-line for the nominal
H = 1, Oext

∞ sets. These scaling transformations are then applied to H = 1, Oext
∞ sets

calculated for the iced aircraft dynamics.
The effects of wing icing are modeled as reduced lift and increased drag [109, 110].

That is, the coefficients of lift, CL, and drag, CD, are altered in order to reflect increased
drag and decreased lift consistent with wing icing. To do this, each stability derivative
that is a component of the lift force or the drag force and appears in the linear models is
multiplied by a factor so that

CL,new = 1/2CL,nom, CD,new = 2CD,nom.

Figures 6.2 and 6.3 and Tables 6.1 and 6.2 show the results of computing the scaling
transformations between the Oext

∞ sets for two different flight conditions with the nominal
H = 1, Oext

∞ sets. These sets were calculated using the linearized GTM model, Appendix
C, with constraints (5.41) and (5.42). In these figures, original indicates the set to be scaled,
objective indicates the set to which the original set is being scaled, scalar indicates the
scalar transformation is being used, and vector indicates the vector scaling transformation
is being used. The first condition, labeled as 1 in Tables 6.1 (scalar scaling results) and 6.2
(vector scaling results), is U0 = 500 ft

s , h0 = 1000 ft, and α0 = 2 deg and the second flight
condition, labeled as 2 in Tables 6.1 and 6.2, is U0 = 580 ft

s , h0 = 1000 ft, and α0 = 2 deg.
For the longitudinal dynamics, the optimal scalar scaling factor, given in Table 6.1, is

small and produces estimated H = 1, Oext
∞ sets that are conservative. This is assumed

to be due to the auxiliary states introduced to in the H = 1, Oext
∞ set formulation and

their interaction with constraints. The phenomenon, however, is not observed in the lateral
dynamics.

Figure 6.4 presents the changes in the H = 1, Oext
∞ set for the changed dynamics in the

∆u–∆θ and ∆u–∆α planes. The observed variation, particularly in the ∆u–∆θ plane, is
consistent with what physically occurs when an aircraft experiences an increase in drag and
a decrease in lift. The aircraft must pitch more at lower deviations from nominal airspeed
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Figure 6.2: Example of longitudinal H = 1, Oext
∞ sets scaled from an original H = 1, Oext

∞
set to an objective H = 1, Oext

∞ set. Note that scalar scaling in this case is conservative
where as the vector scaling is significantly better.
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Figure 6.3: Example of lateral H = 1, Oext
∞ sets scaled from an original H = 1, Oext

∞
set to an objective H = 1, Oext

∞ set. Note that both scalar and vector scaling produce
decent approximations in this case. Also note that the vector scaling comes pretty close to
replicating the objective set in some examples.
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Figure 6.4: Examples of how the icing affects the H = 1, Oext
∞ sets in the ∆u–∆θ plane

(left) and the ∆u–∆α plane (right). Note the icing is more predominately seen in the
∆u–∆θ plane than in the ∆u–∆α plane.
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Table 6.1: Examples of optimal scaling parameters λ∗

Motion Original Objective λ∗

Longitudinal 1 2 0.3210
Longitudinal 2 1 0.3695

Lateral 1 2 0.6087
Lateral 2 1 0.9688

Table 6.2: Examples of optimal scaling parameters λ̂∗

Motion Original Objective λ̂∗

Longitudinal 1 2 [0.6792, 0.3346, 1.000, 0.8251,
0.6390, 0.5099, 0.8209, 0.8255]

Longitudinal 2 1 [0.6553, 0.9570, 1.000, 0.5092,
0.8470, 0.8765, 0.7584, 0.7619]

Lateral 1 2 [0.7384, 1.0000, 1.0000, 0.7861,
0.6840, 0.6567, 0.7005, 0.6660]

Lateral 2 1 [0.9803, 1.0000, 0.9851, 0.9203,
1.0639, 1.0869, 0.9692, 0.9712]

(−∆u direction) to avoid constraint violation.
Figure 6.5 provides the results of the scalings. The scalings that are used to perform

these transformations are the scalings calculated for the nominal dynamics and found in
Tables 6.1 and 6.2. Also note that with the performed transformation, the scaled H = 1,
Oext
∞ sets are within the actual calculated H = 1, Oext

∞ sets.
This approach is dependent on the validity of the assumption that the linear model

changes due to icing can be identified and that these identified changes can be translated to
changes at other trim conditions. While this assumption will not hold for the entire flight
envelope, it is plausible to assume that it will hold for small transitions in trim condition
space. Icing largely effects the aerodynamics which are dependent on aircraft altitude,
airspeed, and attitude. Small changes in these states should not dramatically change how
the aircraft is responding under the icing conditions (assume the ice accretion is not too
rapid). However, testing this approach on a nonlinear aircraft system with a valid icing
model should be performed and is left for future work.
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Figure 6.5: Scaling of the icing scenario H = 1, Oext
∞ sets
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6.4 Sensitivity technique to predict changes in safe and re-
coverable sets

Given that the recoverable set computation reduces to the computation of the safe set, Oext
∞ ,

we consider the safe set computations in more detail. The constraints forming the safe set,
O∞, are of the form (5.2), i.e.,

GCCLA
k
CLx(0) ≤ g, (6.11)

defined for different values of k.
Suppose that the matrix ACL is a function of an nθ-vector parameter, θ, and suppose

that the current estimate, θ̂, of this parameter has deviated from a nominal value, θ∗. Then,
for small differences between θ̂ and θ∗ we can approximate the constraints (6.11) as(

GCCLA
k
CL(θ∗) +GCCL(kAk−1

CL (θ∗))

nθ∑
i=1

∂ACL
∂θi

(θ∗)(θ̂i − θ∗i )
)
x(0) ≤ g. (6.12)

The expression (6.12) indicates that the bounds of the inequalities defining O∞ can be
simply tightened or relaxed to accommodate the effect of parameter changes.

The approach based on (6.12) is applied only to the non-redundant constraints in the
representation of O∞ for θ = θ∗. In principle, large deviations of θ̂ from θ∗ can lead
to a change in redundancy status of the constraints, which is not accounted for by this
technique. This approach, with minor modifications, is applicable to estimating changes in
integral safe sets.

Figure 6.6 illustrates this predictive method. In these examples, θ is the vector of stabil-
ity derivatives CL0, CLu, CLα, CLq, CD0, CDu, CDα, CDq. In Figure 6.6, all of the stability
derivatives associated with lift are decreased by the given percent and all of the stability
derivatives associated with drag are increased by the given percent thereby emulating the
effects of icing. Note that for small percent changes, the predicted recoverable set is fairly
close to the actual set, but this changes quickly as the percent difference increases. These
figures are for the H = 1 recoverable set at the flight condition U0 = 500 ft

s , h0 = 1000 ft,
and α0 = 2 deg as in Subsection 6.3.1.
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Figure 6.6: Examples of the accuracy of the sensitivity technique. Top left 2% change, Top
right 10%, bottom 50% change. Note for large parameter changes, accuracy is poor.
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CHAPTER 7

Controller State and Reference Governor with
Aircraft Applications

In this chapter, we consider two classes of control schemes that reset controller states: the
controller state governor for constrained stabilization problems and controller state and ref-
erence governor for constrained set-point tracking problems. See Figure 7.1 which shows
the schematics of a controller state and reference governor that responds to a reference
command r̄(t) by modifying r(t) and resetting the controller state xI(t) based on the plant
state estimate, x̂(t) to ensure that the constraints y(t) ∈ Y are enforced. Subsequently,
both schemes will be described, conditions will be provided under which they guaran-
tee constraint enforcement and desirable convergence properties, and application-oriented
simulation examples to demonstrate their benefits will be reported.

The development of these two control schemes is motivated by the desire to mitigate
aircraft loss of control (LOC) situations. LOC, according to [54], is the violation of three
or more critical envelopes. These critical envelopes are described by state, control, and
structural constraints. Reference governors are add-on control schemes that augment well-
designed, closed-loop systems and guarantee constraint enforcement. Aircraft have nu-
merous constraints that can be more effectively enforced by enhancing reference governor
techniques with the capability to reset dynamic controller states. Thus, constraints, like
those that generate the critical envelopes, are more easily enforced without substantially
changing the existing control architecture.

Section 7.1 introduces the controller state governor (CSG) for constrained stabilization
problems and includes a proof of the maintenance of stability under controller state reset.
Section 7.2 introduces the controller state and reference governor (CSRG) and includes a
proof of finite-time convergence to a desired reference using the control scheme. Section
7.3 discusses the implications of the controller state and reference governor in conjunction
with an LQ-I control scheme and nonlinear implementation. Finally, Section 7.4 presents
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Figure 7.1: Controller state and reference governor schematic.

a constrained aircraft flight control example and Section 7.5 presents a constrained gas
turbine engine control example.

7.1 Controller state governor

The controller state governor resets controller states in discrete-time linear closed-loop
systems with constraints,

x̄(k + 1) = Āx̄(k), (7.1)

where the state x̄ consists of the plant states, x(k), and resettable controller states, xI(k),

x̄(k) =

[
x(k)

xI(k)

]
. (7.2)

The matrix Ā is assumed to be Schur (exponentially stable), i.e., eigenvalues of Ā are
strictly inside the unit disk in the complex plane. The constraints are imposed on the output
of the system (7.1),

y(k) = C̄x̄(k), (7.3)

and have the form,
y(k) ∈ Y = {y ∈ Rny : Gy ≤ g}, (7.4)

where Y is a given compact and convex polytope with 0 ∈ int Y specified by a set of affine
inequalities.

Example: Consider a linear discrete-time system which operates with the conventional
proportional-plus integral controller of the form,

x(k + 1) = Ax(k) +Bu(k),

xI(k + 1) = CIx(k) + xI(k), (7.5)
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where x(k) ∈ Rn, xI(k) ∈ Rm, and u(k) ∈ Rp is given by

u(k) = −K1x(k)−K2xI(k). (7.6)

The control gains K1 and K2 are obtained based on the infinite horizon LQR formulation
in which the cost function,

JLQ-PI(k) =
1

2

∞∑
k=0

x̄T (k)Qx̄(k) + uT (k)Ru(k), (7.7)

is minimized. The weights Q and R in (7.7) satisfy the usual assumptions, Q = QT ≥ 0,
R = RT > 0. The resulting closed-loop system has the form (7.1) with

Ā =

[
A−BK1 −BK2

CI I

]
, (7.8)

x̄(k) =

[
x(k)

xI(k)

]
. (7.9)

Assuming that the feedback controller (7.6) is stabilizing, Ā is Schur. The integral state xI
is a part of the controller and hence is resettable.

As in Chapter 5, a set of initial plant and integral states, x̄(0), for which the closed-loop
trajectories of (7.1) satisfy the constraints is defined by

OI
∞ = {x̄(0) : C̄Ākx̄(0) ∈ Y ∀k ≥ 0}. (7.10)

Under the assumptions that the pair (C̄, Ā) is observable, Ā is Schur, Y is given by (7.4),
compact, and 0 ∈ int Y , OI

∞ is a positively-invariant polytope defined by a finite number
of affine inequalities [58].

As in [92], the reset of the controller states is based on the approach of decreasing the
closed-loop energy as defined by a Lyapunov function. For a linear system (7.1), a natural
choice is

V (x̄(k)) = x̄(k)TPx̄(k), (7.11)

where P = PT > 0 is the positive-definite symmetric matrix satisfying the following
Lyapunov equation

ĀTPĀ− P +QL = 0, (7.12)

and where we assume that QL = QT
L > 0. To satisfy constraints and guarantee recur-
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sive feasibility, the state xI(k) is reset based on the solution of the following quadratic
programming problem:

x∗I(k) = arg min
xI(k)

V (x̄(k))

subject to x̄(k) = [x(k)T, xI(k)T]T ∈ OI
∞.

(7.13)

The following theorem states that the integrator reset scheme enforces constraints, as-
sures recursive feasibility and guarantees closed-loop asymptotic stability:

Theorem 1 Consider the discrete-time system (7.1) with a resettable controller state based

on (7.13). Under the above assumptions, if a feasible solution to (7.13) exists at the initial

time instant k = 0, then the solution exists for all future times k ≥ 0, and the constraints

(7.4) are enforced for all k ≥ 0. Furthermore, the closed-loop system with the reset is

asymptotically stable at the origin and x̄∗(k)→ 0 as k →∞.

Proof: Define
˜̄x(k + 1) = Āx̄∗(k), (7.14)

with

x̄∗(k) =

[
x(k)

x∗I(k)

]
, ˜̄x(k + 1) =

[
x̃(k + 1)

x̃I(k + 1)

]
. (7.15)

Due to the positive invariance of OI
∞, ˜̄x(k + 1) ∈ OI

∞ if x̄∗(k) ∈ OI
∞ and a feasible choice

for xI(k + 1) is to set it to x̃I(k + 1). Thus problem feasibility at time k = 0 implies its
feasibility for all k ≥ 0. Since x̄∗(k) ∈ OI

∞, the constraints in (7.4), i.e., GC̄x̄∗(k) ≤ g,
are satisfied.

The stability follows from the observation

V (x̄∗(k)) ≥ V (˜̄x(k + 1)) ≥ V (x̄∗(k + 1)),

which implies that V (x̄(0)) ≥ V (x̄∗(0)) ≥ V (˜̄x(1)) ≥ V (x̄∗(1)) ≥ · · · ≥ V (x̄∗(k)) for all
k ≥ 0. To prove convergence, note that

V (x̄∗(k + 1))− V (x̄∗(k))

≤ V (˜̄x(k + 1))− V (x̄∗(k))

= ˜̄x(k + 1)TP ˜̄x(k + 1)− x̄∗(k)TPx̄∗(k)

= x̄∗(k)T ĀTPĀx̄∗(k)− x̄∗(k)TPx̄∗(k)

= x̄∗(k)T (ĀTPĀ− P )x̄∗(k)

= −x̄∗(k)T (QL)x̄∗(k), (7.16)
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and hence

V (x̄∗(k))− V (x̄∗(0)) ≤ −
k−1∑
i=0

x̄∗(i)TQLx̄
∗(i) ≤ 0. (7.17)

Therefore,

V (x̄∗(0)) ≥ V (x̄∗(0))− V (x̄∗(k))

≥
i−1∑
k=0

x̄∗(k)TQLx̄
∗(k). (7.18)

for all i. Hence the series
∑∞

k=0 x̄
∗(k)TQLx̄

∗(k) is convergent. Since QL > 0, it follows
that lim

k→∞
x̄∗(k) = 0.

7.2 Controller state and reference governor

The controller state and reference governor (CSRG) applies to tracking closed-loop systems
of the form,

x̄(k + 1) = Āx̄(k) + B̄r(k), (7.19)

y(k) = C̄x̄(k) + D̄r(k),

where r(k) ∈ Rq is the reference command modified by the the governor, B̄ ∈ R(n+m)×q,
and D̄ ∈ Rp×q. The state x̄(k) is of the form (7.9) and is composed of resettable compo-
nents, xI , and non-resettable components, x. For instance, (7.19) may result from replacing
the integrator dynamics in (7.5) by

xI(k + 1) = xI(k) + CIx(k)− r(k). (7.20)

Let r̄ denote the nominal reference command to the controller state and reference governor.
See Figure 7.1.

The matrix Ā is assumed to be Schur, and let x̄e = Hr denote the equilibrium state
corresponding to a constant command r(k) ≡ r.

Consider the set

Or
∞ = {(x̄(0), r) : (C̄H + D̄)r ∈ (1− ε)Y,

r(k) = r ∀k ≥ 0⇒ y(k) ∈ Y ∀k ≥ 0},
(7.21)

where ε > 0 is sufficiently small. The set Or
∞ is the set of all initial states, x̄(0), and
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constant reference commands r that lead to responses satisfying the constraints. For tech-
nical reasons [102], the set of admissible constant commands, r, is tightened slightly from
(C̄H + D̄)r ∈ Y to

(C̄H + D̄)r ∈ (1− ε)Y. (7.22)

The technique used to calculate Or
∞ is described in Appendix B.

The controller state and reference governor resets xI(k) and determines r(k) based on
the minimization of the following cost function

J(x̄(k), r(k)) = ‖x̄(k)− x̄e(k)‖2
P + ‖r(k)− r̄(k)‖2

Γ, (7.23)

where for a matrix M , ‖z‖2
M = zTMz, Γ = ΓT > 0 and P = PT > 0 satisfies the

Lyapunov equation (7.12) with QL > 0. The optimization problem is a quadratic program
similar to (7.13),

(x̄∗(k), r∗(k)) = arg min
xI(k),r(k)

J(x̄(k), r(k)) (7.24)

subject to (x̄(k), r(k)) ∈ Or
∞, x̄(k) = [x(k)T, xI(k)T]T

The convergence properties of the controller state and reference governor are charac-
terized by the following result:

Theorem 2 Suppose that r̄ is a constraint-admissible constant reference command with

(Hr̄, r̄) ∈ Or
∞. Consider the discrete-time system (7.19) with xI(k) and r(k) determined

based on (7.24). Under the above assumptions, if a feasible solution to (7.24) exists at the

initial time instant k = 0, the solution exists for all future times k ≥ 0, and the constraints

(7.4) are enforced for all k ≥ 0. Furthermore, the closed-loop system equilibrium at Hr̄ is

asymptotically stable, and there exists a finite k∗ such that r(k) = r̄ for k ≥ k∗.

Proof: The proof follows similar steps as the proof found in [88] for the extended
command governor case. Define,

J∗(k) = ‖x̄∗(k)− x̄∗e(k)‖2
P + ‖r∗(k)− r̄‖2

Γ, (7.25)

where (x̄∗(k), r∗(k)) are the solutions to (7.24) and x̄∗e(k) = Hr∗(k). Define also

J̃(k) = ‖Āx̄∗(k − 1) + B̄r∗(k − 1)− x̄∗e(k − 1)‖2
P

+‖r∗(k − 1)− r̄‖2
Γ,

(7.26)

which corresponds to evaluating the cost on a feasible (feasible by positive invariance prop-
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erties ofOr
∞ for constant commands) solution, (Āx̄∗(k−1)+B̄r∗(k−1), r∗(k−1)). Since

P satisfies (7.12) with QL > 0, it follows that J̃(k) ≤ J∗(k − 1) and, hence,

J∗(k) ≤ J̃(k) ≤ J∗(k − 1).

Consequently, J∗(k) is a monotonically non-increasing sequence, hence it converges J∗(k)→
J∗op ≥ 0 as k →∞.

We exploit the following result:
Lemma 1 ( [88]): Suppose Z ∈ Rq is closed and convex, zs ∈ Rq, Q ∈ Rq×q > 0, and

z∗ = arg minz∈Z ‖z − zs‖2
Q. Then

‖z − z∗‖2
Q ≤ ‖z − zs‖2

Q − ‖z∗ − zs‖2
Q ∀z ∈ Z.

Considering x̄∗(k), r∗(k) as the minimum norm projection on a closed and convex set
Or
∞, and applying Lemma 1, it follows that

‖Āx̄∗(k − 1) + B̄r∗(k − 1)− x̄∗(k)‖2
P + ‖r∗(k − 1)− r∗(k)‖2

Γ

≤ J̃(k)− J∗(k).
(7.27)

Since J̃(k)−J∗(k)→ 0 as k →∞, it follows that Āx̄∗(k− 1) + B̄r∗(k− 1)→ x̄∗(k) and
r∗(k) − r∗(k − 1) → 0 as k → ∞. Hence, x̄∗(k) = Āx̄∗(k − 1) + B̄r∗(k − 1) + ε1(k −
1), r∗(k) = r∗(k−1)+ε2(k−1), with ε1(k)→ 0, ε2(k)→ 0 as k →∞. Since Ā is Schur,
it follows that x̄∗(k) → Hr∗(k). If J∗op > 0, based on (7.25) r∗(k) does not converge to r̄,
yet (x̄∗(k), r∗(k)) ∈ intOr

∞. Assuming, without loss of generality, that Γ = I , consider

r̃(k) = r∗(k) + δ
r̄ − r∗(k)

||r̄ − r∗(k)|| .

It can be shown, utilizing properties of Or
∞, (7.22), and x̄∗(k) → Hr∗(k) as k → ∞, that

there exists δ > 0 such that (x̄∗(k), r̃(k)) is feasible for all k sufficiently large. Moreover,
J(x̄∗(k), r̃(k)) < J(x̄∗(k), r∗(k)) which contradicts x̄∗(k), r∗(k) being the optimal solu-
tion unless r∗(k) = r̄. The proof of the latter assertion follows by demonstrating, based on
the Taylor series expansion, and with H.O.T. denoting Higher Order Terms, that for δ > 0
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small,
J(x̄∗(k), r̃(k))− J(x̄∗(k), r∗(k))

= ∇rJ(x̄∗(k), r∗(k))[r̃(k)− r∗(k)] +H.O.T.

= 2(x̄∗(k)−Hr∗(k))P (−H)(r̃(k)− r∗(k))

+2(r̃(k)− r∗(k))T(r̃(k)− r∗(k)) +H.O.T,

where in the first term the coefficient 2(x̄∗(k)−Hr∗(k))P (−H) multiplying (r̃(k)−r∗(k))

converges to 0 as k →∞ while the second term dominates and gives the decrease in J for
large k as 2(r̃(k)− r∗(k))T(r̃(k)− r∗(k)) = −2δ||r∗(k)− r̄||

7.3 Remarks

7.3.1 Linear quadratic proportional plus integral controller

Consider the stabilization problem for system (7.5) with the linear quadratic proportional
plus integral controller (7.6) minimizing the cost (7.7) and with the constrained output
(7.3). Note that in the unconstrained case, the optimal cost is given by

J =
1

2
x̄(k)T P̂ x̄(k), (7.28)

where P̂ is the solution of the Discrete-Time Algebraic Riccati Equation (DARE). By Bell-
man’s optimality principle, the control u(k), generated by (7.6), minimizes the following
cost

J+ =
1

2
x̄(k + 1)T P̂ x̄(k + 1) +

1

2
u(k)TRu(k). (7.29)

One approach to implementing the controller state governor in the constrained case is to
minimize the same cost (7.29) with respect to xI(k) subject to the constraint

x̄(k) = [x(k)T, xI(k)T]T ∈ OI
∞.

After algebraic manipulations and omitting terms that do not depend on xI , it follows that
minimizing (7.29) is equivalent to minimizing

J̃+ =
1

2
xI(k)T (F T

2 P̂F2 + ST2 RS2)xI(k) + (F T
1 P̂F2 + ST1 RS2)xI(k), (7.30)

where

F1 =

(
Ax(k)−BK1x(k)

CIx(k)

)
, F2 =

(
−BK2

I

)
, S1 = K1x(k), S2 = K2.
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The constrained minimization of (7.30) can be performed by an on-board quadratic pro-
gramming solver or explicitly using multi-parametric programming techniques [111], giv-
ing a feedback law for the integrator state,

x∗I(k) = U∗(x(k)). (7.31)

Note that in absence of disturbances, the optimization problem needs to be solved only
once at k = 0. Indeed, by positive invariance properties of OI

∞, if x̄∗(k) ∈ OI
∞, then the

one step ahead propagated state,

˜̄x(k + 1) = Āx̄∗(k),

is feasible and the resulting x̃I(k + 1) coincides with x∗I(k + 1) due to the special choice
of the cost function in (7.30). Thus the controller state is reset once and then the optimal
action of the unconstrained linear quadratic optimal controller is recovered.

Consider now the design of a linear quadratic proportional-plus-integral controller for
set-point tracking. For a linear system model given by,

x(k + 1) = Ax(k) +Bu(k),

yr(k) = Crx(k).
(7.32)

and tracking error defined as
e(k) = Crx(k)− r, (7.33)

where r is the set-point, the so called rate-based model is defined as

e(k + 1) = C(x(k + 1)− x(k)) + e(k) = C∆x(k) + e(k),

∆x(k + 1) = x(k + 1)− x(k) = A∆x(k) +B∆u(k),
(7.34)

where
∆x(k) = x(k + 1)− x(k), ∆u(k) = u(k + 1)− u(k).

The linear-quadratic proportional-plus-integral controller has the form,

∆u(k) = KIe(k) +KP∆x(k), (7.35)

and minimizes the cost,

J =
1

2

∞∑
k=0

e(k)TQee(k) + ∆u(k)TR∆u(k).
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For implementation, (7.35) is re-written as

u(k) = Kpx(k) +KIxI(k), xI(k + 1) = xI(k) + e(k), (7.36)

where xI(k) is the state of the integrator.
Based on the solution, P , of the DARE and Bellman’s optimality principle, (7.35) min-

imizes the cost

J+ =
1

2

(
e(k + 1)

∆x(k + 1)

)T

P

(
e(k + 1)

∆x(k + 1)

)
+

1

2
∆u(k)TR∆u(k). (7.37)

Omitting terms that do not depend on xI(k) or r, minimizing J+ is equivalent to minimiz-
ing

J̃+(x̄(k), r) =
1

2
xI(k)T(FT

2 PF2 + ST
2 RS2)xI(k)+

1
2
rT(LT

1 PL1 + LT
2RL2)r + rT(LT

1 PF2 + LT
2 )xI(k)+

FT
1 PF2xI(k) + ST

1 RS2xI(k) + FT
1 PL1r + ST

1 RL2r,

(7.38)

where

F1 =

(
CrAx(k) + CrBKPx(k)

Ax(k) +BKPx(k)− x(k)

)
,

F2 =

(
CrBKI

BKI

)
,

S1 = (KICr +KPA+KPBKP −KP )x(k), S2 = KPBKI ,

L1 =

(
−I
0

)
, L2 = −KI .

The controller state and reference governor can now be defined by replacing the cost
(7.23) with the cost

J(x̄(k), r(k)) = J̃+(x̄(k), r) + ‖r(k)− r̄(k)‖2
Γ. (7.39)

Formally, (7.39) has a different form that (7.23).

7.3.2 Nonlinear systems

The proposed approach of resetting the state of the dynamic controller is applicable to
nonlinear systems, [112]. Consider, for instance, the problem of stabilization to the origin.
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Suppose the model of the open-loop system has the form,

x(k + 1) = f(x(k), u(k)), (7.40)

and the controller is given by

u(k) = U(x(k), xI(k)), (7.41)

xI(k + 1) = g(x(k), xI(k)),

with the resettable dynamic controller state xI(k). Let the constraints be given by

y(k) = h(x(k)) ∈ Y.

Let x̄(0) = [xT(0), xT
I (0)]T and

OI
∞ = {x̄(0) : y(k) ∈ Y ∀k ≥ 0}.

Note that OI
∞ is positively-invariant.

Let V (x̄) be a Lyapunov function verifying asymptotic stability of the closed-loop sys-
tem. To satisfy constraints and guarantee recursive feasibility, the state xI(k) can be reset
based on the solution of the optimization problem,

x∗I(k) = arg min
xI(k)

V (x̄(k))

subject to x̄(k) = [x(k)T, xI(k)T]T ∈ OI
∞.

(7.42)

Following the same line of reason as in Section 7.1, a result similar to Theorem 1 can be
obtained. The main challenge from a computational standpoint is obtaining OI

∞. Note
that OI

∞ can be replaced by its positively invariant subset S which may be constructed as
a constraint-admissible sublevel set of V . The use of non positively invariant subsets, S,
of OI

∞ is also possible; in this case, (7.42) may become infeasible at certain time instants
(feasibility at the initial time needs to be assumed), in which case the update (7.41) can
simply be applied at these time instants. The stability is still maintained with such an
approach. The use of non-positively invariant subsets of OI

∞ can lead to computational
simplifications.
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7.4 Constrained aircraft flight control

In this example of implementing the CSRG for aircraft flight control, the linearized models
and constraints in Section 5.4 are used. The control architecture is designed as follows.

For the lateral model, CI in (7.20) is selected as

CI,lat =

[
0 0 0 1

0 0 1 0

]
, (7.43)

and for the longitudinal model,

CI,lon =

[
0 −1 0 1

1 0 0 0

]
. (7.44)

To generate a stable closed-loop controller, an LQR problem is formulated with the fol-
lowing weights: Qlat = diag([1 1 1 1 100 100]),Rlat = diag([1 1]),Qlon = diag([1 1 1 1 100 100]),
and Rlon = diag([1 1]).

For both the lateral and longitudinal dynamics, B̄ is of the form

B̄ =



0 0

0 0

0 0

0 0

−1 0

0 −1


, (7.45)

C̄ is the identity, and D̄ = 0. The cost function (7.23) was developed for both the longitu-
dinal and lateral closed-loop dynamics. In each case, P is the solution to (7.12), QL = I ,
for the respective closed-loop dynamics and Γ = I . The imposed constraints are the same
as found in Section 5.4.

The selected initial conditions were x̄(0)lon = [6, 0.1, 0.1,−0.1, 0, 0]T with the two
references set initially to zero and x̄(0)lat = [0, 0, 0.2, 1, 0, 0]T with the two references set
initially to zero. In both cases, r̄ = 0. Figures 7.2 through 7.4 provide the results for
the lateral dynamics and Figures 7.5 through 7.7 provide the results for the longitudinal
dynamics. Note that in both cases, the trajectories of r(t) converge to zero in finite time. In
Figures 7.2 and 7.5, which are projections of various sets onto two-dimensions, a set labeled
as ”OI

∞, xI(0) = 0” is displayed. This set is the projected cross section of OI
∞ when the

integrator is initially zero. Figures 7.2-7.4 show the lateral state trajectories and control and
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Figure 7.2: Projection of the lateral OI
∞, OI

∞ with xI(0) = 0, and Or
∞ sets in the ∆β–∆φ

plane with sample state trajectory.

reference time histories while Figures 7.5-7.7 show the same for the longitudinal dynamics.
Note that OI

∞ ⊂ Or
∞ in both Figures 7.2 and 7.5.

7.5 Constrained gas turbine engine control

The gas turbine engine model has two states, the fan speed (Nf ) and the core speed (Nc),
and a single control input which is the fueling rate (Wf ). The linearization of the gas turbine
engine model of [113] at the altitude of 20000 ft, 0.5 Mach and 60 percent PLA was used
for the simulations. The constraints are imposed on the Low Pressure Compressor (LPC)
and the High Pressure Compressor (HPC) surge margins such that they cannot decrease
below 2.5 percent, and the engine fueling rate has to be maintained above 0.1 to avoid the
combustion blowout. The linearized continuous-time model used is[

˙∆Nf

˙∆Nc

]
=

[
−1.7980 0.7177

0.1503 −1.6692

][
∆Nf

∆Nc

]
+

[
704.3

1401.4

]
∆Wf , (7.46)
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Figure 7.3: Lateral state trajectories of the sample trajectory in Figure 7.2.
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Figure 7.4: Lateral reference and control time histories of the sample trajectory in Figure
7.2.
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Figure 7.6: Longitudinal state trajectories of the sample trajectory in Figure 7.5.
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Figure 7.7: Longitudinal reference and control time histories of the sample trajectory in
Figure 7.5.

with
CI =

[
1 0

]
. (7.47)

The model was converted to discrete-time with the sampling period of Ts = 0.1 sec.
The LQ-I tracking controller of the form (7.36) was designed for Wf to track a fan-

speed set-point, r̄. The weights used were Q = diag([1, 0, 0]) and R = 1000.
Figure 7.8 illustrates a substantial increase in the size of the set of recoverable values

of Nc(0) and Nf (0) if the integrator state can be reset freely versus if it is set to 0. The
domain of recoverable states in the former case is that of the controller state and reference
governor and is much larger than that of the reference governor alone in the latter case.

Figures 7.9-7.13 illustrate the response of the closed-loop system with the controller
state and reference governor. The constraints are strictly enforced by appropriately set-
ting the initial value of the integrator (Figure 7.10), and finite time convergence of r(t)
to constraint-admissible values of r̄ is observed. Note that the initial state is such that
initializing xI(0) = 0 will lead to responses violating constraints.
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Figure 7.11: The time history of the LPC surge margin (solid) and constraint (dashed).
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Figure 7.12: The time history of the HPC surge margin (solid) and constraint (dashed).
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Figure 7.13: The time history of the engine fueling rate (solid) and constraint (dashed).
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CHAPTER 8

Summary, Conclusions, and Future Work

8.1 Summary and conclusions

This dissertation presented developments and advancements in the area of automotive fuel-
efficient cruise control and in the area of constrained control with aircraft applications.

• A stochastic dynamic programming (SDP) approach to the optimization of vehicle
speed control policies was developed. Results for both simulation and in-vehicle
testing were presented indicating that SDP policies can produce vehicle speed pro-
files that reduce, on average, fuel consumption. In particular, in following a vehicle
moving at constant speed under relative distance constraints, these policies have led
to time-varying vehicle speed profiles. These time-varying speed profiles resemble
periodic cruise or pulse and glide (PnG) strategies reported in previous literature and
were validated as being more fuel efficient than driving at a constant average speed
in our actual vehicle experiments.The vehicle testing demonstrated an average fuel
economy improvement of 4.51% (with benefit reduced to 2.74% if average speed
reduction is accounted for) over twelve drives, with a maximum improvement of
11.58%.

• The rule based cruise control (RBCC) scheme was developed and the method by
which its transition thresholds are optimized was defined. The RBCC was tested
through simulation and vehicle experiments. It was shown that by breaking the time-
varying speed profiles into four distance phases (normal, glide, recover, and bleed)
and mapping these phases into states of a finite state machine, a practical imple-
mentation for a time-varying, PnG like, cruise strategy can be achieved. The RBCC
vehicle tests demonstrated an average dynamic fuel economy improvement (a fuel
economy metric that discounts the fuel economy gained from driving at a slower
average speed) of 2.76% with a maximum of 5.47%.
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• Procedures for stochastic modeling of traffic conditions (road grade and traffic speed)
and methods for stochastic model characterization were developed. It was shown that
Markov chain models of road grade and traffic speed can be categorized, using the KL
divergence rate, based on attributes of the data including where it was collected and
the driving style of the vehicle operator. Also, a novel technique for predicting step
changes in road grade modeled as a stochastic jump process was demonstrated. This
prediction method is more accurate when the prediction horizon is less than or equal
to 20 meters as compared to the Markov chain model prediction method. Finally, it
was demonstrated that the Markov chain models and the stochastic jump models can
be learned online and the KL divergence can be used to test model convergence.

• Recoverable and integral safe sets were introduced, defined, and developed for air-
craft applications. A comparison of projections of safe, recoverable, and integral safe
sets demonstrated that larger constrained domains of attraction are available through
the use of recoverable and integral safe sets. An aircraft maneuver planning exam-
ple demonstrated the utility of integral safe sets for producing constraint-admissible
trajectories through an aircraft’s trim envelope.

• Two scaling transformations that exploit scalar and vector scaling, respectively, were
developed for safe, recoverable, or integral safe sets. These transformations were
motivated by the need for fast estimation of safe, recoverable, and integral safe sets at
different trim conditions during a loss of control event. These scaling transformations
were demonstrated through an aircraft icing example which suggested that they can
be useful to estimate subsets of other trim conditions’ recoverable sets.

• The controller state governor (CSG) and controller state and reference governor
(CSRG) control schemes were developed for control of systems with constraints.
These control schemes take advantage of a resettable controller state (e.g., an inte-
grator state) to enforce constraints, reduce closed-loop system energy, and improve
system performance. The CSRG additionally uses an adjustable reference for con-
straint enforcement which further increases the constrained domain of attraction. A
proof of maintenance of stability under dynamic controller reset for the CSG was
presented and a proof of finite-time convergence of the CSRG was also presented.
Two aircraft examples were used to demonstrate the effectiveness of these control
schemes.
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8.2 Future work

Many opportunities for future work exist motivated by the developments in this dissertation.

8.2.1 Stochastic fuel-efficient cruise control

• Simultaneous treatment of traffic speed, road grade, and relative distance between

vehicles as states in the SDP. Due to computational reasons, we have been able to
generate the control policies for only two less general cases. It is of interest to
generate a single control policy, potentially using approximate dynamic program-
ming [114].

• Extending the generated SDP policies and their analysis to a large geographical

area, possibly the entire United States. The current developments were limited by
available data around M-39 near Dearborn, Michigan. Future research needs to ex-
tend the area of coverage of the policies and provide insight into sensitivity to ge-
ographical areas. To this end, road topographical information databases and traffic
speed measurements from multiple sources can be utilized to help produce the nec-
essary information for the stochastic models.

• The application of the SDP and RBCC techniques on hybrid and electric power-

trains. The integration of vehicle speed control into hybrid electric vehicle energy
management and integrated powertrain control more generally may lead to further
fuel economy improvements. As an example, the pulsing of the engine appears to
produce better fuel economy (hence the PnG behaviors). However, vehicle accelera-
tion and increased aerodynamic drag reduce the improvements. If the engine pulsing
can be used to charge a energy storage device (batteries perhaps) while the vehicle
speed is maintained, and then the energy storage device discharges energy on the
down slope of the pulse, it may be possible to generate an engine pulsing behavior
that is more fuel-efficient without altering the vehicle speed outside of the normally
allowed variance using standard cruise control.

• The application of the stochastic jump prediction method to model step changes in

traffic speed. By using the stochastic jump process to predict step changes in road
grade, improved prediction accuracies were obtained for prediction horizons less than
20 meters as compared to the Markov chain model prediction method. It is expected
that similar results may be obtained for the short distance traffic speed prediction. It
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is also of interest to understand how to incorporate these jump process models into
SDP optimization of vehicle speed control policies.

8.2.2 Constrained control with aircraft applications

• Completing additional case studies for specific aircraft impairments where recov-

erable and integral safe sets are used for planning a constraint-admissible aircraft

trajectory. Such case studies may consider wing icing or rudder jam simulations.

• Further research on the CSG and CSRG. In particular, similar stability and conver-
gence results in the case of nonlinear systems appears tractable.

• Developing procedures for fast construction of recoverable and integral safe sets for

certain classes of nonlinear systems. The focus in this dissertation has been on ex-
ploiting discrete-time linear models. Extending the results to the case when the model
also includes a nonlinearity by taking advantage of bounds on the nonlinearities and
of convex optimization techniques appears feasible following related developments
in the literature, see, e.g., [115].

• The formulation of safe, recoverable, and integral safe sets to include the full twelve

dimensional aircraft dynamics model so that objects and obstacles can be included as

constraints. This could be of particular interest in the integration of unmanned aerial
systems (UAS) into the existing airspace for the purpose of mitigating collisions
between UAS and other aircraft.

• The formulation of recoverable integral sets and associated control schemes. In this
case, the recovery sequences would be implemented in conjunction with resettable
controller state and adjustable references. We expect that this extension is relatively
straight forward theoretically and computationally but may produce practical advan-
tages, e.g., increase constrained domains of attraction.

• Convergence properties of R∞ to V∞. We hypothesize that as the dimensionality of
the auxiliary subsystem grows (in particular, in the shift register case) the recoverable
set R∞ will converge to the viability domain, V∞, in the Hausdorff norm sense. The
analysis of this convergence and the derivation of specific results is left to future
work.

• Perform nonlinear aircraft simulations using the CSG/CSRG with gain scheduling

and compare these results with the nonlinear maneuvering envelopes. While the
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boundaries of the safe, recoverable, and integral safe sets we generate have been
confirmed by linearized model simulations, confirming these boundaries by nonlin-
ear simulations, and comparing these boundaries with maneuvering envelopes like
those found in [71, 74], is left to future work [116].
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APPENDIX A

Auto-Regressive Grade Prediction Technique

In this appendix, the auto-regressive grade prediction method, developed by Dr. Tony
D’Amato of the Ford Motor Company, used in Chapter 3 for forecasting road grade, θ(k),
r-steps into the future is presented. Assume the road grade propagates according to

θ(k + 1) = δ(k)φ(k),

where δ(k) ∈ R1×n is a vector of model parameters, and φ(k) ∈ Rn is a vector of previous
grades from time k − n+ 1 to k.

Next, let r, a positive integer, be the width of the prediction horizon. Then the measure-
ment θ(k + r), is obtained in state space form as

θ(k + 1)
...

θ(k − n+ 2)

 = A(k)φ(k), (A.1)

where

A(k) =

[
δ(k)

A12

]
∈ Rn×n,

reflects the measurement dynamics, and

A12
4
= [I 0] ∈ R(n−1)×n.

Next, it follows from A.1 that the road grade at k + r is

θ(k + r) =
[

1 0 · · · 0
] r∏
i=1

A(k + i− 1)φ(k). (A.2)
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Assuming that A(k) evolves slowly over time, i.e., for i = 1, . . . , r, A(k+ i) ≈ A(k), and
A.2 is rewritten as

θ(k + r) ≈
[

1 0 · · · 0
]
Ar(k)φ(k).

The objective is then to obtain an estimate, Â(k), of A(k) in order to calculate the
estimate ˆθ(k + r) of the future road grade measurement θ(k + r).

Let θ̂(k) be an estimate of the road grade θ(k), then

θ̂(k + r) =
[

1 0 · · · 0
]
Âr(k)φ(k),

where

Â(k) =

[
δ̂(k)

A12

]
∈ Rn×n,

and δ̂(k) ∈ R1×n is an estimate of δ(k). We compute δ̂(k) using the recursive least squares
update

δ̂(k)
4
= δ̂(k − 1) + β(k)[δ̂(k − 1)φ(k − 1)− θ(k − 1)] (A.3)

·[φTP (k − 1)φ(k − 1) + λ]−1

·φT(k − 1)P (k − 1),

where P (0) ∈ Rn×n is symmetric positive definite, λ ∈ (0, 1] is the forgetting factor, β(k)

is either 1 or 0 to enable or disable updates of the form

P (k) = λ−1P (k − 1)− β(k)λ−1P (k − 1)φ(k − 1) (A.4)

·[φTP (k − 1)φ(k − 1) + λ]−1

·φT(k − 1)P (k − 1).

We initialize P (0) = αI , where α > 0.
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APPENDIX B

Computation of Invariant Sets

This appendix describes the methods used to compute the safe, recoverable, integral safe,
set-bounded disturbance safe/recoverable, and reference integral safe sets. Three methods
will be described. The first, in Section B.1, is adapted from [83] and is used to calculate
safe, recoverable, and integral safe sets. The second, in Section B.2, is adapted from [79]
and is used to calculate the safe set under additive set-bounded disturbances (the distur-
bance safe/recoverable set). The final method, in Section B.3, is used to calculate the
reference integral safe set and was used in [96].

B.1 Calculation of safe, recoverable, and integral safe sets

The calculation of safe, recoverable, and integral safe sets is now described. The following
generically describes the process for the calculation of a safe set resulting from constrained
closed-loop dynamics, but the process is the same for the closed-loop dynamics considered
for Oext

∞ and OI
∞. The following technique is adapted from [83], but note that this is not the

only method for calculating safe, recoverable, and integral safe sets.
Consider a closed-loop system of the following form

x(k + 1) = Ax(k) (B.1)

y(k) = Cx(k)

where A models the stable closed-loop dynamics of the system and y(k) is the output with
x(k) ∈ Rnx and y(k) ∈ Rny . We constrain y(k) ∈ Y with Y being the output constraint
set defined as

Y = {y(k) : Gy(k) ≤ g}, (B.2)

with G ∈ RnG×ny and g ∈ RnG .
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The following algorithm calculates a positively-invariant constraint-admissible set of
initial conditions, x(0), which is referred to as a safe set.

1. Set the initial values of Ay and by to

Ay = GC by = g.

2. Initialize the counter index i = 1.

3. Perform the following steps iteratively while i < nG

A) Select row i from Ay and by:

a = Ay,i, b = by,i

B) Check whether adding any constraints of the form aCAx(0) ≤ b to Ay and by
would constrict the size of O∞ by solving the following LP

c = max
x(0)

aACx(0)− b (B.3)

such that Ayx(0) ≤ by.

If c > 0, then add the constraints aCAx(0) ≤ b to Ay and by as follows:

Ay =

[
Ay

aCA

]
, by =

[
by

b

]
. (B.4)

C) Increment i : i = i+ 1.

4. Eliminate redundant constraints.

B.2 Calculation of disturbance safe sets

In this section, we discuss the calculation of set-bounded disturbance safe/recoverable sets
described in Section 5.6.3. The algorithm described in this section is adapted from [79].

Consider the linear, discrete-time system with additive set-bounded disturbances

x(k + 1) = Ax(k) +Bw(k) (B.5)

y(k) = Cx(k) +Dw(k)
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where x(k) ∈ Rn, w(k) ∈ Rm, y(k) ∈ Rp, A, B, C, and D are appropriate size, and
w ∈ W denotes that the disturbance, w, belongs to the compact set W . We constrain the
output y ∈ Y where

Y = {y(k) : Gy(k) ≤ g}, (B.6)

with G ∈ RnG×ny and g ∈ RnG .
We seek the set, O∞, defined as

O∞ = {x(0) ∈ Rn : y(k) ∈ Y, ∀k ≥ 0 and ∀w ∈ W}, (B.7)

where

y(k) = CAkx(0) +
k−1∑
t=0

CA(k−t−1)Bw(t) +Dw(k). (B.8)

This is the set of all initial conditions such that under all disturbances w ∈ W , the set is
positively invariant.

In this section, we will utilize the Minkowski set subtraction defined for two sets U ∈
RN and V ∈ RN as

U ∼ V = {z ∈ RN : z + v ∈ U ∀ v ∈ V }. (B.9)

Let
Y0 = Y ∼ DW,

Yk = Y ∼ DW ∼ · · · ∼ CAk−1BW,

for k ≥ 1, and

Ok = {x(0) ∈ Rn : CAtx(0) ∈ Yt, t = 0, . . . , k},

which can be recursively rewritten as

Yk+1 = Y ∼ CAkBW, Y0 = Y ∼ DW, (B.10)

and

Ok+1 = Ok

⋂
{x ∈ Rn : CAk+1x ∈ Yk+1, }, (B.11)

O0 = Γ = {x : Cx ∈ Y0}.
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Thus, O∞ is equivalent to

O∞ =
∞⋂
k≥0

Ok. (B.12)

In practice, an intersection of infinite sets is difficult. However, [79] goes on to prove that
O∞ is finitely-determined at a time k∗ ≥ 0, thus

O∞ =
k∗⋂
k≥0

Ok. (B.13)

For a proof of this, see [79].
The following algorithm is used to calculate O∞.

1. Set k = 0 and O0 = Γ = {x ∈ Rn : Cx ∈ Y ∼ DW}. If O0 = ∅, set O∞ = ∅,
k∗ = 0 and stop.

2. If not stopped, determine Yk+1 by (B.10). If Yk+1 = ∅, set O∞ = ∅, k∗ = k + 1, and
stop.

3. If not stopped, determine Ok+1 by (B.11). If Ok+1 = ∅, set O∞ = ∅, k∗ = k+ 1, and
stop.

4. If not stopped and if Ok+1 = Ok, set O∞ = Ok, k∗ = k, eliminate redundant
constraints, and stop.

5. If not stopped, replace k by k + 1 and return to step 2.

B.3 Calculation of reference integral safe sets

This section describes the calculation of Or
∞ from Section 7.2.

Consider the reference tracking closed-loop system of the form,

x̄(k + 1) = Āx̄(k) + B̄r(k), (B.14)

y(k) = C̄x̄(k) + D̄r(k),

where r(k) ∈ Rq is the reference command, B̄ ∈ R(n+m)×q, and D̄ ∈ Rp×q. The state x̄(k)

is of the form (7.9) composed of resettable components, xI , and non-resettable components,
x, with

xI(k + 1) = xI(k) + CIx(k)− r(k), (B.15)
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and let r̄ denote the nominal reference command.
The matrix Ā is assumed to be Schur, and let x̄e = Hr denote the equilibrium state

corresponding to a constant command r(k) ≡ r.
Consider the set

Or
∞ = {(x̄(0), r) : (C̄H + D̄)r ∈ (1− ε)Y,

r(k) = r ∀k ≥ 0⇒ ȳ(k) ∈ Y ∀k ≥ 0},
(B.16)

where ε > 0 is sufficiently small and Y is defined the same as (7.4). The set Or
∞ is the

set of all initial states, x̄(0), and constant reference commands, r, that lead to responses
satisfying the constraints.

A similar argument can be made for finite-determination of the reference integral safe
sets as was made for the set-bounded disturbance safe/recoverable sets. Thus, in the fol-
lowing, if kmax ≥ k∗ is selected to be sufficiently large, the calculation procedure described
below will converge onto the true set.

The calculation of this set is accomplished using the following procedure.

1. Initialize H0 = G and h0 = g, with G and g from (7.4). Initialize kmax ≥ 0 and
counter index k = 1.

2. While k < kmax repeat the following step

A)

Hk =

[
Hk−1

H
(
C̄(I − Ak)(I − A)−1B̄ + D̄

)] , hk =

[
hk−1

g

]
. (B.17)

3. Eliminate redundant constraints.

4. Or
∞ is then polytope described by Hkmaxx(0) ≤ hkmax .
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APPENDIX C

Scaled NASA Generic Transport Model

This appendix presents the information regarding the scaled NASA generic transport model
(GTM), [107,108]. The GTM is designed to be scaled representation of a typical transport
aircraft such as the Boeing 757 or Airbus A320. In this dissertation, two versions of the
model were used. The first version, used in Sections 5.1–5.5 and Chapter 7, is a high-
fidelity Simulink model. It was linearized about several trim conditions, the necessary
information was then saved into databases and used to develop the results in those chapters.

The second model, used in Section 5.6 and Chapter 6, uses a database of aerodynamic
coefficients calculated using the VorView software package [117] for the scaled NASA
GTM aircraft. These aerodynamic coefficients were then used to generate the linear models
using equations (C.1)-(C.8). These equations are linearizations of the nonlinear aircraft
dynamics and can be found in many books describing aircraft dynamics such as [118].

The longitudinal equations are:

∆̇u =
−pdS
mU0

(2CD0 + CDu)∆u+
pdS

m
(CL0 + CDα)∆α +

pdSc

2mU0

CDq∆q (C.1)

−g∆θ +
pdS

m
CDδeδe +

Tmax
m

δth,

∆̇α =
−pdS
mU2

0

(2CL0 + CLu)∆u+
−pdS
mU0

(CLα + CD0)∆α (C.2)

+(1− pdSc

2mU2
0

CLq)∆q −
pdS

mU0

CLδeδe,

∆̇q =
pdSC

IyyU0

(2Cm0 + Cmu)∆u+
pdSc

Iyy
Cmα∆α (C.3)

+
pdSc

2

2IyyU0

Cmq∆q −
pdSc

Iyy
CLδeδe,

138



∆̇θ = ∆q. (C.4)

The lateral equations are:

∆̇β =
−pdS
mU0

(CD0 + CEβ)∆β +
−pdSb
2mU2

0

CEp∆p (C.5)

+(
pdSb

2mU2
0

CEr − 1)∆r − pdS

mU0
CEδaδa−

pdS

mU0
CEδrδr,

∆̇p− Ixz
Ixx

∆̇r =
pdSb

Ixx
Clβ∆β +

pdSb
2

2IxxU0

Clp∆p+
pdSb

2

2IxxU0

Clr∆r (C.6)

+
pdSb

Ixx
Clδaδa+

pdSb

Ixx
Clδrδr,

∆̇r − Ixz
Izz

∆̇p =
pdSb

Izz
Cnβ∆β +

pdSb
2

2IzzU0

Cnp∆p+
pdSb

2

2IzzU0

Cnr∆r (C.7)

+
pdSb

Izz
Cnδaδa+

pdSb

Izz
Cnδrδr,

∆̇φ = ∆p. (C.8)
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