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Abstract 
Travel and trade activities have caused the worldwide spread of invasive species 

possibly resulting in ecological disruption. Rats (Rattus spp.) are one of the most 

widespread invasive species as their broad diet allows them to take advantage of 

various food sources. On island ecosystems, rats are thought to increase predation 

pressure on native flora and fauna, compete with native species for resources, and 

alter island characteristics such as nutrient availability. Rat eradication projects are 

becoming a common means to restore island communities; however, management 

is labor intensive and expensive. This makes it critical that eradication efforts are 

studied to determine effectiveness and target sites for management.  

This project evaluates the short-term impact of rat eradication on 15 islands 

supporting rats in the Aegean Sea (Greece): seven control and eight treatment sites. 

On each site, I collected baseline data on all levels of the islands food-web: 

vegetation biomass, invertebrate biomass and diversity, lizard density, and seabird 

abundance. Rats were then eradicated from all treatment islands using Brodifacoum 

baits. The same set of ecological data were collected one year following rat removal 

and changes were compared using control islands to correct for annual variation. 

I found minimal changes in ecosystem condition following rat removal. I speculate 

that sites with a long period of rat colonization have lost species susceptible to rats 

and do not rapidly respond to eradication. Most study sites likely supported rats for 

many years. However, one treatment site was colonized by rats for only one year. 

This site shows a higher degree of positive change when compared to averages for 

control sites and other eradication islands. While more research is needed, it is 

possible that species vulnerable to rats persist on sites with a short period of rat 

colonization allowing for a quick recovery following eradication. It is also possible 

that, in the Aegean, one year is insufficient time for sites to respond to eradication. 
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Introduction 

Human activities have resulted in the intentional or unintentional introduction of 

numerous species outside of their natural ranges. In situations where these species 

become established in new habitats, they have the potential to alter ecosystems 

through increased competition with and predation on native taxa. Such invasive 

species are considered by the International Union for the Conservation of Nature 

(IUCN) to be a threat to multiple taxa around the world (Hilton-Taylor, 2009). 

However, overall effects on biodiversity are unclear and possibly dependent on the 

scale at which impacts are considered as invasive species have been found to 

decrease, increase, or have no effect on biodiversity (Murphy and Romanuk, 2014; 

Sax et al., 2002; Sax, 2003; Vellend et al., 2013). 

 

Rats (Rattus spp.) are thought to be one of the most widespread exotic mammals. 

The spread of rats to new habitats, particularly isolated islands, dates back at least 

3,000 years and has often been the result of shipping activities (Atkinson, 1985). 

Today, rats are found on over 80% of the world’s major islands and island groups 

(Atkinson, 1985).   

 

Rats have a broad diet allowing for the avoidance of density-dependent feedbacks 

with the decline of any one prey species (Atkinson, 1985; St. Clair, 2011). 

Rats have been found to feed on vegetation roots, leaves, bark, fruit, and seed 

(Allen et al., 1994; Shiels and Drake, 2011). Rats are also known to utilize 

invertebrate populations such as arthropods and terrestrial mollusks as a prey 

source (Cole et al., 2000; Lydeard et al., 2004). Furthermore, direct predation and 

competition for invertebrate prey sources is thought to have bottom-up impacts on 

the rest of the food-web affecting species such as resident reptiles (McCallum, 1986; 

Gasc et al., 2010).  

 

On islands in particular, rats are believed to be one of the primary threats to nesting 

seabirds (Croxall et al., 2012). Rats have been found to prey on seabird eggs, chicks, 

and even adults (Jones et al., 2008). Their widespread occurrence in seabird 

breeding habitat makes them a likely contributor to the observed decline in seabird 
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populations (Jones et al., 2008). Decline of seabird colonies may have secondary 

effects on the rest of the island ecosystem as the birds import nutrients in the form 

of guano, fish scraps, and carcasses from the sea to the terrestrial environment 

(Fukami et al., 2006; Mulder et al. 2009). For instance, in a study on 11 islands in the 

Gulf of California, it was found that islands receiving guano input generally exhibited 

higher nutrient levels and greater plant productivity than sites without seabirds 

(Wait et al., 2003). 

 

To deal with the conservation issues presented by invasive rodents, government 

agencies as well as non-governmental organizations are beginning to initiate 

eradication programs. However, eradication is both expensive and labor-intensive 

with cost and effort dependent on the size of the eradication site, mitigation 

required to protect non-target species, eradication method, site accessibility, and 

local regulations (Howald et al., 2007).  

 

Furthermore, uncertainties remain with regard to the management of invasive 

species. For example, on seabird dominated islands, it is unclear if removing rats 

from a site where the colony has collapsed will result in the return of seabirds and 

subsequent restoration of the ecosystem (Mulder et al., 2009). It is also possible 

that the species composition of sites with longstanding invasions may shift towards 

taxa which are less affected by a particular invasive (Strayer et al., 2006). As a result, 

removing rats could only have limited effects especially on islands where rats have 

already caused susceptible native taxa to become locally extinct. This makes it 

necessary to monitor ongoing rat control efforts to assess ecological effects and 

determine the best use of management dollars. 

 

In the past, many rat eradication monitoring efforts have focused on a single species 

of conservation concern or component of the island system rather than on entire 

ecosystem effects (Whitworth et al., 2005; St. Clair et al., 2011; Allen et al., 1994). 

Studies also tend to assess rat and eradication impacts by comparing sites of varying 

rat status such as those where rats have been removed with rat-free and invaded 



7 
 

sites rather than conducting before-and-after evaluations (St. Clair et al., 2011; 

Fukami et al., 2006).   

 

The current project is designed to take advantage of a current large scale rat 

eradication operation to assess all levels of the island food-web on multiple islands 

before and one year after rat removal. Data will be compared across several 

treatment islands before and after rat eradication while using control sites to 

correct for annual variation. I predict that after rat eradication, increases will be 

visible throughout the island food-web as a result of a lack of rat predation on 

primary producers, primary consumers, and secondary consumers. Bottom up 

effects may also contribute to such increases as a lack of rat predation on plant 

matter will result in an increase in vegetation biomass leading to  greater 

invertebrate biomass and lizard density. Furthermore, I predict that the lack of rat 

predation pressure on nesting seabirds after eradication will result in greater 

seabird abundance. This may restore the transfer of nutrients from the marine 

environment to the terrestrial island system. This increase in nutrient availability 

could then result in further increases in vegetation productivity reinforcing bottom-

up effects on the food-web (Figure 1).  

 

Figure 1: Typical Aegean study island food-web 
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Materials and Methods 

Study Sites 
I conducted this study in the NE Mediterranean Basin (Aegean Sea, Greece) (Figure 

2).  I worked on 15 rat-invaded islands uninhabited by humans off the coast of 

Greece and ranging in size from 0.005-2.71 km2 (Figure 2,Error! Reference source 

not found.). These islands are located in six different regions or clusters named for 

the nearest large island (Skyros, Andros, Naxos, Paros, Schinoussa, Amorgos). While 

evidence is sparse, zooarchaeological data suggest that rats have been present in 

the Mediterranean for at least 2,000 years (Ruffino and Vidal, 2010). Historical 

records and genetic evidence suggest that R. rattus was transported via shipping 

activities; however, the warm Mediterranean climate may have also facilitated 

additional rat dispersal without human assistance (McCormick, 2003). Based on this, 

I assume that the majority of study islands have had a long history (greater than one 

year) of rat presence. The one exception is the island of Panagia where early surveys 

conducted by the Hellenic Ornithological Society (HOS, a Greek nonprofit 

organization) revealed the absence of rats until the summer of 2011.  

 

All sites are located in the same climatic zone (thermo-Mediterranean climate) with 

humid yet arid (<590mm precip. annually) conditions (Gikas and Tchobanoglous, 

2009). Local vegetation generally consists of a low, sclerophyllous, scrubby plant 

community called ‘phrygana’ (Vogiatzakis and Griffiths, 2008). Dominant taxa 

typically include thyme (Coridothymus capitatus), Phoenicean juniper (Juniperus 

phoenicea) and lentisc (Pistacea lentiscus). Study islands are rocky with shallow soil 

profiles. Top native predators are generally resident populations of wall lizards 

(Podarcis erhardi or P. gaigeae; Lacertidae) found on all islands with the exception 

of Filitzi. 
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Figure 2: Study site locations. Bolded font represents island cluster. 

 

 

Most of the islands in this study are used as nesting habitat by resident seabirds. 

The Aegean Sea harbors several species of breeding seabirds including the 

Audouin’s Gull (Larus audouinii), Yellow-legged Gull (Larus michahellis), European 

Shag (Phalacrocorax aristotelis), Cory’s Shearwater (Calonectis diomedea), and 

Yelkouan Shearwater (Puffinus yelkouan). Audouin’s gull is a rare medium-sized 

ground-nesting seabird occurring only in the Mediterranean Sea and Atlantic Coast 
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of Morocco that has been the focus of extensive conservation efforts.  The Yellow-

legged gull is instead the most common gull species with a wide distribution in the 

SW Palearctic and a breeding focus in the Mediterranean Sea Basin. The shags which 

belong to the (P. a. desmarestii) sub-species are large seabirds that breed at low 

densities along rocky coastlines and islets. Cory’s and Yelkouan shearwaters are 

pelagic seabirds that are colonial burrow-nesters on remote islets of the 

Mediterranean and East Atlantic (Fric et al., 2012).  

 

Eleonora’s falcons (Falco eleonarae) nest on two of the study islands. This species 

breeds solely in the Mediterranean, Canary Islands, and northwest Africa with the 

majority (>80%) of the global population nesting in the Aegean Sea region (Kassara 

et al., 2012). Eleonora’s falcons, which hunt migrant fall songbirds, are unique 

among European birds because they breed in the fall. Nesting in synchrony, 

members of a colony match breeding activities to coincide with the wave of 

passerines moving southward across the Aegean Sea region (Kassara et al., 2012; 

Walter, 1979).  Of the islands included in this study, Panagia and Exo Podia support 

the only two significant nesting colonies of Eleonora’s Falcon. 

Rat Eradications 
Rat eradications were conducted on seven islands while eight other islands served 

as control sites (Figure 2, Appendix 1). On eradication islands, HOS staff deployed 

2.5g pellets containing cereals, wax, and the second generation anticoagulant 

Brodifacoum (Taylor and Thomas, 1989). Pellets were placed inside plastic tubes to 

minimize bait exposure to non-target species and laid out on the island in a grid. 

Bait stations were monitored daily unless inclement weather restricted travel. The 

rate of bait removal was recorded and any pellets eaten were replaced. Rats were 

considered to have been eradicated once bait removal from stations ceased 

completely. Stations were monitored for one week following the last sign of rat 

activity to confirm eradication (Appendix 1). Eradication was generally achieved two 

to three weeks after the initial deployment of bait.  Following rat eradication, 

permanent bait stations were placed on the island containing 10g bait blocks to 

prevent reinvasion and to monitor for future rat activity. Rat eradication success 

was also evaluated using sticks soaked in peanut oil, snap traps, and tracking 
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tunnels (Jakob Fric, pers. comm., 2014; Gillies and Williams, 2013; Taylor and 

Thomas 1989). Several months after eradication, presence or absence of rats was 

further confirmed on all islands by placing three 19x13.5x4.5 cm aluminum trays 

containing 600g sand mixed with 50g whole sunflower seed on each island for 

11.8±0.19 days in 2012 and 12.85±0.20 days in 2013. Rat presence was determined 

from the presence of seed husks and rat feces in the trays.  

 

Eight control islands were included in the study; these sites support rat populations 

that were not eradicated. Control sites were used to account for inter-annual 

variation unrelated to treatment (rat removal) that may have confounded the 

response variables and masked eradication effects.  

 

To evaluate the impacts of rat eradication on islands, I determined changes on all 

trophic levels in the island ecosystem following rat removal (Figure 1Error! 

Reference source not found.).  This was done by collecting data on multiple 

ecosystem variables (vegetation biomass, snail abundance, invertebrate biomass, 

invertebrate diversity, lizard density, and seabird abundance) and comparing 

changes in each after eradication. Data was collected before and after rat removal 

on all islands with the exception of those in the Amorgos cluster where baseline 

data were collected late. Baseline data were collected in June 2012 on all four 

islands in this area. The three treatment sites in the Amorgos cluster were 

eradicated prior to this, in Feb 2012 (Gramvousa and Psalida), and November 2011 

(Kisiri). 

Vegetation 
To quantify the effects of rats on island vegetation, plant biomass baseline data 

were collected on all study sites (March-July 2012); identical sampling was repeated 

post-eradication (May-June 2013). Where feasible, I attempted to match each 2013 

island visit close to the date of the previous 2012 sampling. 

 

For each island, plant biomass was assessed by sampling 3-5 sites (depending on 

island size) of representative vegetation. At each site, I established two abutting 80x 

80 cm sampling squares with similar vegetation composition and cover. To quantify 
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vegetation changes, I sampled one of the squares before and one after the 

eradication. During sampling, vegetation was clipped to ground level and all live and 

dead plant material was collected. The plant material was then dried and weighed 

(Guitérrez, J. and Meserve, 2000). Vegetation from islets in the Skyros cluster was 

dried in an oven for 60oC for 48 hours in 2012 and in 2013. All other vegetation was 

dried in the sun and during inclement weather, under heating lamps.  

Invertebrates 
Island arthropod communities were assessed by placing pitfall traps on all islands 

during baseline (March-July 2012) and post eradication (May- June 2013) sampling 

(St. Clair et al., 2011). Plastic cups approximately 7 cm wide and 11 cm deep were 

sunk under bushes into the ground, so that the lip of the cup was flush with the 

surface of the soil. Each cup was filled 2/3 with ethylene glycol due to its dual 

qualities as a preservative and its low rate of evaporation (Schmidt et al., 2006). The 

traps were then loosely covered with rocks to allow entrance of invertebrates but 

protect traps from being disturbed by non-target vertebrates. Invertebrates that fell 

into the cup were collected upon a return visit to the islands (12.75± 0.91 days in 

2012 and 12.85±0.79 days in 2013). All collected invertebrates were, counted, dried 

and weighed to obtain biomass measurements. Biomass measurements were 

corrected for duration of sampling by dividing by the number of sampling days.  

Invertebrates were identified to order and a Shannon-Wiener diversity index was 

calculated.   

Snails 
Snails are a critical component of Aegean island species communities (Welter-

Schultes and Williams, 1999). They are thought to be an important prey item for rats 

but are not commonly collected in pitfall traps (Chiba, 2010). To determine effects 

of rats on snail populations, I counted all live snails found within each 80X80cm 

vegetation plot at the time I collected plant biomass.  

Secondary Consumers, Wall Lizards 
Wall lizards (Podarcis sp.) are the top predators on all study islands. I determined 

wall lizard density along 100m transects before and after the eradication.  Transects 
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were walked slowly and quietly and all lizards seen or heard were recorded (Buckley 

and Roughgarden, 2006). All transects were walked during March-July.  

Seabird Sampling 
All baseline seabird abundance data were collected prior to eradication from 2007-

2012. Seabird colony sizes were estimated using adult bird counts or recording 

active nests (Fric et al., 2012). Nest or pair counts were converted to individuals by 

multiplying by 2. I considered all seabird data together as the dataset was not large 

enough to consider individual species effects (seabird data shown in Appendix ). 

Data were categorized as pre- or post-eradication for analysis. 

Eleonora’s falcon colony monitoring 
Long-term focal sampling of an Eleonora’s falcon colony was conducted on the 

island of Panagia by HOS.  

 

During multiple visits in the fall of each year (2006-2013 with the exception of 2009 

and 2010), HOS biologists scoured the island and determined number of active nests 

and reproductive success. During a routine visit in the summer of 2011, rats were 

discovered on the island, which is located <100m from the larger, inhabited island of 

Andros. The island was therefore included in the eradication program and the full 

suite of island ecology baseline data were collected in March 2012 with the 

eradication taking place in the same month.  

 

 Falcon reproductive activities are typically assessed over a series of three visits, 

with the first in late August or early September to count active nests. A second visit 

is done to determine how many birds hatched from the nests and a third visit to see 

how many hatchlings survive to fledgling. Breeding success is then calculated as the 

number of fledglings divided by the number of active nests in each year (Jakob Fric, 

Pers. Comm.).  I have included the findings from HOS surveys in Error! Reference 

source not found.. 

Statistical Analysis 
 I compared ecological changes from pre-to post-eradication in rat eradication 

islands relative to control islets using linear mixed models.  This approach allowed 
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for the analysis of multiple sample plots nested within island sites. The following 

model was developed and run separately for each variable measured (vegetation 

biomass, invertebrate biomass, invertebrate diversity, snail biomass, snail count, 

lizard density, and seabird abundance).  

Variable Measured~ Island Status+ Year+ Island Status*Year+ (1|Island) 

Island status reflects the status of a site as either control or eradication while Year 

represents the timing of a measurement (before or after treatment). The Island 

Status* Year interaction allows us to compare the change on eradication islands 

before and after eradication with the change on control islands before and after 

eradication ie. this tests whether control=eradication. A random effect for Island, 

(1|Island), was included as data collected within the same island were not 

independent. If data were not normally distributed, a natural log transformation 

was applied.  

As previously stated, the baseline data on four Amorgos islets (Gramvousa, Psalida, 

Kisiri) were collected after eradication. To investigate the sensitivity of the 

conclusions to the Amorgos islets, the analyses were repeated excluding all islets in 

the Amorgos cluster.  

All analyses were run in R 2.14.2 (R Development Core Team, 2012). The lme4 and 

languageR packages were used in the linear mixed model analysis (Bates et al., 

2012; Baayen, 2011). 

 

Results 

Success of Eradication 
Occurrence of rat feces in seed trays was significantly different between control and 

eradication islands (p<0.01, Pearson’s Chi-squared test, n=37). No rat feces were 

found on any treatment islands where trays were deployed after eradication. Seed 

tray data was not available for the Andros islets; however, on Panagia in the Andros 

cluster, rat absence was confirmed using the other methods (chewing sticks, snap 
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traps etc.). On the Andros control island (Kriopidima), continued rat presence was 

found in the form of freshly chewed plant seeds (Jakob Fric, Pers. Comm., 2014). 

Collectively, these results suggest that eradication efforts were successful. 

Vegetation Biomass 
There was no significant difference in the change in vegetation biomass (pre- vs. 

post eradication) when analyzing the entire dataset (Eradication islands changed 

from 310±47g to 464±65g, while control islands from 330±55g to 353±64g; p=0.16, 

t=1.42, linear mixed model, n=127). When removing the Amorgos islets from the 

analysis, a marginally significant difference was detected between control and 

eradication islands (Eradication islands changed from 279±68g to 521±93g, while 

control islands changed from 312±62g to 316±70g; p=0.06, t=1.943, linear mixed 

model, n=95). Specifically, a significant increase in vegetation biomass was detected 

following eradication on treatment islands (p=0.02, t=2.28, linear mixed model, 

n=95) while no such significant change was detected on control islands (p=0.78, t=-

0.28, linear mixed model, n=95, Figure ).  

 

  

Figure 3: Vegetation biomass excluding the Amorgos islets  
e=eradication, c=control islands, Baseline= before eradication, After=after eradication 

a          a                      a 

b 
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Invertebrate Biomass and Diversity 
When considering the entire dataset, the change in invertebrate biomass before 

and after rat eradication did not differ between control and eradication islands 

(p=0.5, t=0.63, linear mixed model, n=125). These results did not change when 

repeating the analysis without the Amorgos islets (p=0.66, t=0.44, linear mixed 

model, n=98).  

 

There was also no significant difference in invertebrate diversity before and after 

eradication when analyzing the entire dataset (p=0.26, t=-1.14, linear mixed model, 

n=122) or when repeating the analysis without the Amorgos islets (p=0.23, t=-1.21, 

linear mixed model, n=95).  

 

When looking specifically at snail count, there was no significant difference in the 

change observed before and after eradication on control versus eradication islands 

(p=0.44, t=0.78, linear mixed model, n=71). This treatment effect is also not 

significant when the analysis is repeated without the Amorgos islets (p=0.76, t=0.31, 

linear mixed model, n=45).  

Lizard Density 
I found no significant difference in lizard density before and after eradication 

between eradication and control islands, irrespective of whether the entire dataset 

was analyzed (p=0.69, t=0.41, linear mixed model, n=56) or when the analysis was 

repeated without the Amorgos islets (p=0.59, t=0.54, linear mixed model, n=37).  

Seabird Abundance 
There was no significant difference in change in seabird abundance before and after 

eradication on control vs. eradication islands (p=0.66, t=0.45, linear mixed model, 

n=100).  Because seabird data were available before 2011, pre-eradication data 

were available for the Amorgos sites and so it was not necessary to repeat this 

analysis without the Amorgos islands.  
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Variable Amorgos Outcome p value t value n 

Vegetation 
Biomass Included control=eradication 0.16 1.42 127 

Vegetation 
Biomass Excluded 

 -control≠eradication 

control=0, eradication>0 
0.06  
 0.78, 0.02 

1.94 
-0.28, 2.28 95 

Invertebrate 
Biomass Included control=eradication 0.53 0.63 125 

Invertebrate 
Biomass Excluded control=eradication 0.66 0.44 98 

Invertebrate 
Diversity Included control=eradication 0.26 -1.14 122 

Invertebrate 
Diversity Excluded control=eradication 0.23 -1.21 95 

Snail Count Included control=eradication 0.44 0.78 71 

Snail Count Excluded control=eradication 0.76 0.31 45 

Lizard 
Density Included control=eradication 0.69 0.41 56 

Lizard 
Density Excluded control=eradication 0.59 0.54 37 

Seabird 
Abundance Included control=eradication 0.65 0.45 100 

 

Table 1: Summary of linear mixed model statistics 

 

Discussion 

I found only relatively minor shifts across species communities following rat 

eradication on treatment islands (Table 1). When comparing each variable alone, I 

detected very few significant differences in ecosystem condition between 

eradication and control islands in the change from pre- to post-eradication.  This is 

unexpected as other studies show recovery in vegetation cover, invertebrate 

abundance, reptiles, and seabirds following rat removal (Allen et al. 1994; St. Clair et 

al., 2011; Towns, 1991; Whitworth et al., 2005, Towns et al., 2006). Only vegetation 

biomass increased marginally on eradication islands. This change was detected only 

when excluding the Amorgos islands.   
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It is possible that the lack of significant vegetation recovery when looking at the 

entire dataset may be caused by an immediate onset of recovery prior to the 

delayed collection of baseline data on the Amorgos islands. This would have created 

an artificially elevated baseline against which post-eradication measurements were 

not differentiated. 

 

It is also probable that the weak rat removal effects may the result of the short 

sampling period. One year after treatment may not be enough time for vegetation 

and other ecosystem variables to recover following rat removal. This could 

particularly be the case in the arid systems of the Cycladic islands where vegetation 

growth is slow.  Furthermore, bottom up effects of rats on higher trophic levels 

should be expected to be delayed relative to direct consumptive effects. Indeed in 

this study the only (marginally significant) effects I found were in plants, with no 

detectible effects on primary and secondary consumers (invertebrates and lizards 

respectively).  It is therefore important for future similar projects to continue 

monitoring over several years to better quantify long-term effects of rat eradication.  

 

Furthermore, sites with long-standing invasions may also have lost species that are 

particularly susceptible to rat activity. As a result, there may not be rapid recovery 

following eradication as only species able to coexist with rats remain. For instance, 

in the case of vegetation, the remaining species may be less palatable and slow 

growing as resources are invested into chemical defenses, woody structures, and 

thorns to deter predation (Yang et al., 2012). However, more research into the 

species composition of the islands is needed to confirm this.  

 

The island of Panagia, where rats were present for a short time, shows higher 

average change across all variables than combined averages for control or other 

eradication  sites (Appendix ). It is possible that on this site, species vulnerable to 

rats were suppressed but not extirpated allowing Panagia to rebound quickly 

following rat removal.  
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 The hypothesis that invading rats have long-term effects on island ecosystems is 

supported by previous studies, which demonstrate that introduced species have the 

capacity to alter community composition.  For instance, invasive zebra mussels 

(Dressena polymorpha) have been shown to cause phytoplankton communities to 

shift towards cyanobacteria in Lake Huron (USA) (Vanderploeg et al, 2001). In 

Australia, the introduction of cattle to savanna has led to a shift in vegetation 

composition from grasses to less palatable woody species (Sharp and Whittaker, 

2003). A study in the Balearic Islands determined that vegetation composition was 

correlated with rat presence with some plant species favored and others depressed 

(Palmer and Pons, 2001). Lastly, a study in the Aleutian Islands demonstrated that 

rats have the capacity to indirectly alter species composition through predation. Rat 

predation on seabirds resulted in a reduction in seabird predation on grazing 

invertebrates leading to a shift in intertidal community composition from algae- to 

an invertebrate- dominated system (Kurle et al., 2008).  However, it should be noted 

that my study includes only one site with a short period of rat colonization. More 

research using multiple sites of varying periods of rat colonization is needed. 

 

Findings for two ecosystem variables in this study, snail abundance and seabird 

abundance, should be interpreted with caution. First, the lack of change observed in 

snail populations is unexpected. Out of all major taxonomic groups, mollusks have 

the greatest documented extinctions with nonnative predators such as rats cited as 

a major cause in the decline of native land snails (Lydeard et al., 2004). Rats in the 

Aegean readily consume snails: the most obvious marker of rat presence on the 

islands included in this study was the occurrence of preyed-upon snail shells. It is 

probable that the apparent lack of recovery in snail populations following rat 

eradication could be attributed to their unusual clumped distribution pattern. Snails 

on the study islands follow an extreme aggregation behavior where most of the 

population is concentrated in a few locations. Gastropods have been found to use 

chemoreception to cluster together around food sources and gather during 

breeding and aestivation periods (Croll, 1983; Fratini et al., 2001). These 

pronounced levels of spatial heterogeneity meant that my datasets had high levels 

of variance making it difficult to detect experimental treatment effects. More 
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comprehensive sampling would be needed on the study islands to determine rat 

impacts on snail populations.  

 

Additionally, the lack of consistent effect of rat removal on Aegean seabirds may be 

attributable to the life history characteristics of the main bird species we focused on 

in this study. In other parts of the world, rats have been found to have negative 

impacts on seabirds through the predation of eggs, chicks, and occasionally adults 

(Seto and Conant, 1996; Jones et al., 2006; Jones et al., 2008). In many cases, the 

removal or control of rats results in increases in seabird populations and breeding 

success (Rayner et al. 2007; Imber et al.; 2000; Igual et al., 2006; Jouventin et al.; 

2003). In contrast to these studies, we found at best a mixed effect of rats on 

Aegean seabirds. We did not detect any obvious effects of rat eradication on the 

most common species of seabirds (gulls and shags). Much of this lack of effect is 

likely attributable to the size-specific effects of rats on seabirds. A recent review of 

the literature reveals that the vulnerability of a seabird colony to rat predation is 

often species-specific. A meta-analysis by Jones et al. showed that smaller burrow-

nesting seabirds are more susceptible to rat predation, whereas larger species such 

as gulls (Laridae) or shags (Phalacrocorax sp.) are less so (Jones et al., 2008). Three 

of the four focal seabird species in this study are larger-bodied and are thus 

expected to be resistant to rat predation. The last species, Cory’s shearwater, is 

considered to be somewhat susceptible to rats (Martin et al. 2000) though it is 

possible that the lack of clear results may be simply attributable to the challenges of 

accurately surveying shearwater populations and the short duration of this study. 

 

The Hellenic Ornithological Society observed a decline in Eleonora’s falcon nesting 

and breeding success on Panagia following rat invasion and an increase following rat 

removal (Appendix 3).  Rats have been found to prey on the eggs of ground nesting 

birds including Eleonora’s falcons (Walter, 1979). Though, it is important to note 

that no control islands were used here and one cannot draw any statistical 

conclusions off this small set of data on Panagia. However, it is possible that the 

most immediate way to evaluate the impact of rats on seabirds is not via surveys of 

adult birds but rather through careful determination of breeding success similar to 



21 
 

the data collected on Eleonora’s falcon.  For instance, Cory’s Shearwater breeding 

success has been found to mirror periods of rat control in a study on the Chafarinas 

Islands (Spain). While rates of egg predation did not vary with rat control; chick 

mortality was found to be high before rat control and low following management 

(Igual et al., 2006). Future work should consider quantifying seabird breeding 

success and nesting habits when evaluating rat impacts particularly over the short 

term. Furthermore, studies should consider the possibility that rat predation on 

intact seabird eggs may vary across islands, as it has been shown to be a learned 

behavior and could vary across populations (Prieto et al., 2003). 

 

In conclusion, the lack of consistent ecosystem response to rat eradication is 

possibly due to the short monitoring period of this study and changes in community 

composition on sites with long-standing invasion that favors species resistant to rat 

impacts.  I recommend that future studies extend monitoring over several years and 

consider the duration of rat presence and island community composition where 

possible. 
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Appendices 

Appendix 1 

Summary of Project Data (1) 

  

Island Status 
Eradication 
Date 

Eradication 
Confirmation 

Island 
Area 
(km2) 

Time 
Period 

Vegetation 
Biomass 
(mean±SE) (g) 

Invertebrate 
Biomass 
(mean±SE)(g/day) 

Invertebrate 
Diversity 
(mean±SE)(SWDI) 

Gramvousa e Feb-12 Y 0.820 Before 273.8 ± 75.8 (5) 0.014±0.010 (3) 0.645±0.359 (3) 

   (Amorgos) 
    

After 185 ± 51.3 (5) 0.017±0.008 (5) 1.331±0.089 (5) 

Kisiri e Nov-11 Y 0.016 Before 378.3± 129.12 (3) 0.005±0.001 (2) 1.375±0.098 (2) 

   (Amorgos) 
    

After 560.7± 163.3 (3) .008±.001 (3) 1.355±0.060 (3) 

Nikouria c NA NA 2.751 Before 432.6±91.5 (5) 0.142±0.034 (5) 0.914±0.093 (5) 

   (Amorgos) 
    

After 560.2±119.6 (5) 0.051±0.028 (4) 1.353±0.124 (4) 

Psalida e Feb-12 Y 0.032 Before 384.7±129.6 (3) 0.011±0.009 (2) 1.040±0.005 (2) 

   (Amorgos) 
    

After 476.7±94.8 (3) .005±0.001 (3) 1.042±0.180 (3) 

Kriopidima c NA NA 0.005 Before 397.7±51.8 (3) 0.002±0.002 (3) 0.487±0.487 (2) 

   (Andros) 
    

After 425.8±71.9 (3) 0.012±0.005 (5) 1.543±0.102 (5) 

Panagia e Mar-12 Y 0.012 Before 230.8±45.0 (4) 0.002±0.001 (3) 0.368±0.201 (3) 

   (Andros) 
    

After 626.0±139.6 (4) 0.049±0.0.033 (4) 1.025±0.325 (4) 

Mando c NA NA 0.043 Before 367.4±126.3 (5) 0.036±0.006(5) 0.928±0.164 (5) 
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Island Status 
Eradication 
Date 

Eradication 
Confirmation 

Island 
Area 
(km2) 

Time 
Period 

Vegetation 
Biomass 
(mean±SE) (g) 

Invertebrate 
Biomass 
(mean±SE)(g/day) 

Invertebrate 
Diversity 
(mean±SE)(SWDI) 

   (Naxos) 
    

After 644.0±190.1 (5) 0.024±0.020 (5) 0.934±0.201 (5) 

         

Filitzi c NA NA 0.183 Before 206.0±45.6 (5) 0.003±0.001 (7) 0.476±0.196 (7) 

   (Paros) 
    

After 117.5±46.7 (4) 0.004±0.002 (4) 0.956±0.138 (4) 

Gaidouronisi e May-12 Y 0.144 Before 95.2±23.9 (5) 0.019±0.006(7) 0.819±0.155 (7) 

   (Paros) 
    

After 318.6±139.9 (5) 0.070±0.0.056 (4) 0.9016±0.247 (5) 

Ovriokastro e Aug-12 Y 0.116 Before 90.6±21.3 (5) 0.004±0.001 (6) 0.723±0.250 (6) 

   (Paros) 
    

After 167.0±56.0 (5) 0.006±0.002 (5) 0.567±0.278 (5) 

Agriloussa c NA NA 0.088 Before 109.0±59.5 (5) 0.011±0.009 (5) 0.440±0.440 (4) 
   
(Schinoussa) 

    
After 77.0±31.8 (5) 0.005±0.003 (5) 0.798±0.250 (5) 

Aspronisi c NA NA 0.043 Before 655.3±161.8 (3) 0.169±0.143 (3) 0.250±0.201 (2) 
   
(Schinoussa) 

    
After 721.0±445.8 (3) 0.008±0.005 (3) 0.643±0.028 (3) 

Fidousa c NA NA 0.632 Before 412.8±297.9 (5) 0.0152±0.011 (5) 0.174±0.174 (5) 
   
(Schinoussa) 

    
After 168±75.1 (5) 0.001±0.001 (5) 0.413±0.169 (5) 

Exo Podia e Nov-12 Y 0.138 Before 760.9±39.8 (5) 6.872±1.587 (5) 0.018±0.018 (5) 

   (Skyros) 
    

After 994.7±119.0 (5) 0.531±0.073 (5) 0.152±0.101 (5) 
Agios 
Ermolaos c NA NA 0.005 Before 144.2±44.7 (3) 0 (1) 0 (1) 

   (Skyros) 
    

After 170.2±21.5 (3) 0.017±0.017 (3) 0.187±0.187 (3) 
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Summary of Project Data (2) 

Island Status 
Eradication 
Date 

Eradication 
Confirmation 

Island 
Area 
(km2) 

Time 
Period 

Snail Count 
(mean±SE)(indiv.) 

Snail Biomass 
(mean±SE)(g) 

Gramvousa e Feb-12 Y 0.820 Before 0 (5) 0 (5) 

   (Amorgos) 
    

After 2.8±1.960 (5) 0.268±0.235 (3) 

Kisiri e Nov-11 Y 0.016 Before 2.667±2.667 (3) 0.856±0.856 (3) 

   (Amorgos) 
    

After 4.667±4.177 (3) 2.186±1.953 (3) 

Nikouria c NA NA 2.751 Before 0.200±0.200 (5) 0.035±0.035(5) 

   (Amorgos) 
    

After 0.200±0.200 (5) 
0.0142±0.0142 
(5) 

Psalida e Feb-12 Y 0.032 Before NA NA 

   (Amorgos) 
    

After NA NA 

Kriopidima c NA NA 0.005 Before NA NA 

   (Andros) 
    

After NA NA 

Panagia e Mar-12 Y 0.012 Before NA NA 

   (Andros) 
    

After NA NA 

Mando c NA NA 0.043 Before 2±1.760 (5) 0.660±0.063 (5) 

   (Naxos) 
    

After 4.2±2.973 (5) 0.221±0.173 (5) 

Filitzi c NA NA 0.183 Before NA NA 

   (Paros) 
    

After NA NA 

Gaidouronisi e May-12 Y 0.144 Before 0 (5) 0 (5) 

   (Paros) 
    

After 2.6±1.29 (5) 2.1218±1.198 (5) 

Ovriokastro e Aug-12 Y 0.116 Before NA NA 
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Island Status 
Eradication 
Date 

Eradication 
Confirmation 

Island 
Area 
(km2) 

Time 
Period 

Snail Count 
(mean±SE)(indiv.) 

Snail Biomass 
(mean±SE)(g) 

   (Paros) 
    

After NA NA 

Agriloussa c NA NA 0.088 Before NA NA 
   
(Schinoussa) 

    
After NA NA 

Aspronisi c NA NA 0.043 Before 0 (3) 0 (3) 
   
(Schinoussa) 

    
After 0.333±0.333 (3) 1.645±1.645 (3) 

Fidousa c NA NA 0.632 Before 0.600±0.600 (5) 
0.0552±0.0552 
(5) 

   
(Schinoussa) 

    
After 1.200±0.800 (5) 0.0738±0.053 (5) 

Exo Podia e Nov-12 Y 0.138 Before 0.250±0.250 (4) 0.027±0.027  (4) 

   (Skyros) 
    

After 0.4±0.245 (5) 0.137±0.115 (5) 
Agios 
Ermolaos c NA NA 0.005 Before NA NA 

   (Skyros) 
    

After NA NA 
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Summary of Project Data (3) 

 

Island Status 
Eradication 
Date 

Eradication 
Confirmation 

Island 
Area 
(km2) 

Time 
Period 

Lizard Density 
(mean±SE)(indiv./100m) 

Seabird 
Abundance 
(Individuals all 
species)  

Seabird Species 
Found     (shag: s, 
yellow legged 
gull;y, Cory's 
shearwater: c, 
Audouin’s gull: a) 

Gramvousa e Feb-12 Y 0.820 Before 2.333±0.333 (3) 10±10 (2) s, y 

   (Amorgos) 
    

After 2.333±0.667 (3) 1 (1) a 

Kisiri e Nov-11 Y 0.016 Before 0 (1) 49±24.705 (3) a, y 

   (Amorgos) 
    

After 2±1 (2) 24± 12.741 (3) s, a, y 

Nikouria c NA NA 2.751 Before 6.75±0.854 (4) NA NA 

   (Amorgos) 
    

After 8±1.154 (3) NA NA 

Psalida e Feb-12 Y 0.032 Before 0 (1) 
26.750±20.629 
(3) s,a, y 

   (Amorgos) 
    

After 1±1 (2) 18.5±18.5 (2) y 

Kriopidima c NA NA 0.005 Before 7.5±1.5 (2) 0 (1) 0 

   (Andros) 
    

After 2.5±2.5 (2) 31.5±23.5 (2) y 

Panagia e Mar-12 Y 0.012 Before 15.5±6.5 (2) 29±29 (2) s, y 

   (Andros) 
    

After 18.5±1.5 (2) 97.5±22.5 (2) y 

Mando c NA NA 0.043 Before 5.5±0.5 (2) NA NA 

   (Naxos) 
    

After 5.5±1.5 (2) NA NA 

Filitzi c NA NA 0.183 Before NA 318±15.567 (2) s, y 

   (Paros) 
    

After NA 159 (1) s, y 

Gaidouronisi e May-12 Y 0.144 Before 7.5±0.5 (2) 224±37.541 (3) s, y 
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Island Status 
Eradication 
Date 

Eradication 
Confirmation 

Island 
Area 
(km2) 

Time 
Period 

Lizard Density 
(mean±SE)(indiv./100m) 

Seabird 
Abundance 
(Individuals all 
species)  

Seabird Species 
Found     (shag: s, 
yellow legged 
gull;y, Cory's 
shearwater: c, 
Audouin’s gull: a) 

   (Paros) 
    

After 6±0 (2) 50 (1) y 

Ovriokastro e Aug-12 Y 0.116 Before 3.5±3.5 (2) 242±49.487 (3) s, y, c 

   (Paros) 
    

After 3±0 (2) 104 (1) s, y, c 

Agriloussa c NA NA 0.088 Before 8 (1) 40 (1) y 

   (Schinoussa) 
    

After 12.5±1.5 (2) 42 (1) y 

Aspronisi c NA NA 0.043 Before 12 (1) 230(1) y 

   (Schinoussa) 
    

After 8±4 (2) 200 (1) y 

Fidousa c NA NA 0.632 Before 0.5±0.5 (2) NA NA 

   (Schinoussa) 
    

After 2±1 (2) NA NA 

Exo Podia e Nov-12 Y 0.138 Before 4.5±2.5 (2) 97.333±0.882 (3) s, y 

   (Skyros) 
    

After 9 (1) 10 (1) s, y 
Agios 
Ermolaos c NA NA 0.005 Before 9 (1) 4 (1) s, y 

   (Skyros) 
    

After 12±1 (2) 20 (1) y 
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Appendix 2 

Raw Seabird Data1 

  

Island Status Eradication Year Shag 
Audouin's 
Gull 

Yellow 
Legged 
Gull 

Corys 
Shearwater 

Gramvousa 
(Amorgos) e pre 2010 0 0 0 NA 

Gramvousa 
(Amorgos) e pre 2011 4 0 16 NA 

Gramvousa 
(Amorgos) e post 2013 0 1 0 NA 

Kisiri 
(Amorgos) e pre 2007 0 0 0 NA 

Kisiri 
(Amorgos) e pre 2009 0 68 0 NA 

Kisiri 
(Amorgos) e pre 2010 0 78 1 NA 

Kisiri 
(Amorgos) e post 2011 1 34 10 NA 

Kisiri 
(Amorgos) e post 2012 0 1 0 NA 

Kisiri 
(Amorgos) e post 2013 0 26 0 NA 

Nikouria 
(Amorgos) c pre   NA NA NA NA 

Nikouria 
(Amorgos) c post   NA NA NA NA 

Psalida 
(Amorgos) e pre 2007 0 20 0 NA 

Psalida 
(Amorgos) e pre 2009 0 0 0 NA 

Psalida 
(Amorgos) e pre 2010 0 0 0 NA 

Psalida 
(Amorgos) e pre 2011 17 0 70 NA 

Psalida 
(Amorgos) e post 2012 0 0 0 NA 

                                                           
1
 NA designates a lack of observation or sites where a species was never found to be present. 

Under status c=control, e=eradication site. All seabirds are recorded as individuals.  
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Island Status Eradication Year Shag 
Audouin's 
Gull 

Yellow 
Legged 
Gull 

Corys 
Shearwater 

Psalida 
(Amorgos) e post 2013 0 0 37 NA 

Kriopidima 
(Andros) c pre 2009 NA NA 0 NA 

Kriopidima 
(Andros) c post 2012 NA NA 55 NA 

Kriopidima 
(Andros) c post 2013 NA NA 8 NA 

Panagia 
(Andros) e pre 2009 8 NA 50 NA 

Panagia 
(Andros) e pre 2010 0 NA 0 NA 

Panagia 
(Andros) e post 2012 0 NA 75 NA 

Panagia 
(Andros) e post 2013 0 NA 120 NA 

Mando 
(Naxos) c pre   NA NA NA NA 

Mando 
(Naxos) c pre   NA NA NA NA 

Filitzi   
(Paros) c pre 2010 5 NA 300 NA 

Filitzi   
(Paros) c pre 2011 9 NA 340 NA 

Filitzi   
(Paros) c pre 2012 0 NA 300 NA 

Filitzi   
(Paros) c post 2013 5 NA 154 NA 

Gaidouronisi 
(Paros) e pre 2010 0 NA 150 NA 

Gaidouronisi 
(Paros) e pre 2011 2 NA 270 NA 

Gaidouronisi 
(Paros) e pre 2012 0 NA 250 NA 

Gaidouronisi 
(Paros) e post 2013 0 NA 50 NA 

Ovriokastro 
(Paros) e pre 2010 5 NA 200 0 
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Island Status Eradication Year Shag 
Audouin's 
Gull 

Yellow 
Legged 
Gull 

Corys 
Shearwater 

Ovriokastro 
(Paros) e pre 2011 1 NA 180 0 

Ovriokastro 
(Paros) e pre 2012 10 NA 200 130 

Ovriokastro 
(Paros) e post 2013 0 NA 90 14 

Agrilou 
(Schinoussa) c pre 2012 NA NA 40 NA 

Agrilou 
(Schinoussa) c post 2013 NA NA 42 NA 

Aspronisi 
(Schinoussa) c pre 2012 NA NA 230 NA 

Aspronisi 
(Schinoussa) c post 2013 NA NA 200 NA 

Fidousa 
(Schinoussa) c pre   NA NA NA NA 

Fidousa 
(Schinoussa) c post   NA NA NA NA 

Ag. 
Ermolaos 
(Skyros) c pre 2010 1 NA 3 NA 

Ag. 
Ermolaos 
(Skyros) c post 2013 0 NA 20 NA 

Exo Podia 
(Skyros) e pre 2009 37 NA 59 NA 

Exo Podia 
(Skyros) e pre 2010 28 NA 71 NA 

Exo Podia 
(Skyros) e pre 2012 17 NA 80 NA 

Exo Podia 
(Skyros) e post 2013 2 NA 8 NA 

 

 

  



37 
 

 

Appendix 3 

Eleonora’s Falcon Data from the Hellenic Ornithological Society 

 

Year 2006 2007 2008 2011 2012 2013 

Nesting Sites Checked 57 63 86 70 100 100 

Active Nests 55 59 73 34 69 74 

Percent Active    
(Active Nest/Nesting 
Sites Checked)*100 96.49 93.65 84.88 48.57 69 74 

Fledglings (individuals) 65 70 95 32 95 104 

Breeding Success 
(fledglings/nest) 1.18 1.19 1.30 0.94 1.38 1.41 
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Appendix 4 

Average change on islands of varying eradication periods: 
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Average Change 

Island Category n Change in 
Vegetation (g) 

Change in invertebrate 
biomass (g/day) 

Change in Invertebrate 
Diversity (H) 

Change in lizard density 
(individuals/100m) 

Average change in seabird 
abundance (individuals) 

Control 8 19.84±54.15 - 0.03±0.02 0.39±0.11 0.18±1.33 -27.9±34.31 

Delayed Eradication 6 119.87±49.60 -1.05±1.06 0.12±0.12 0.92±0.87 -73.60±29.00 

Rapid Eradication 1 395.2 0.05 0.657 3 68.5 

The average change across plots was calculated for each island by taking the difference between the island pre-eradication average and island 

post-eradication average. These values were then averaged by island category and one standard error from this mean was calculated 


