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CHAPTER I

Introduction

In the late 1980s and early 1990s, physicists posited the existence of a Landau-

Ginzburg/Calabi-Yau (LG/CY) correspondence connecting two theories associ-

ated to a collection of polynomials. The theory on the Calabi-Yau side can be

understood mathematically as encoding the intersection theory— or, more specif-

ically, the Gromov-Witten invariants— of the complete intersection cut out by the

polynomials inside weighted projective space. The Landau-Ginzburg model, on

the other hand, studies the polynomials not as defining equations but as singular-

ities.

Although such models have long been well-understood in the physical context,

it was not until 2007, with the series of papers [25][26][27], that a precise defini-

tion of the Landau-Ginzburg model was proposed in mathematical terms. The

theory developed in those papers, known as Fan-Jarvis-Ruan-Witten (FJRW) the-

ory, applies to hypersurfaces cut out by a single quasihomogeneous polynomial.

Chiodo-Ruan proved in [11] that for the quintic polynomial W = x5
1 + · · · + x5

5,

FJRW theory indeed coincides in genus zero with the Gromov-Witten theory of

the corresponding hypersurface— that is, the genus-zero LG/CY correspondence

holds in that case. Later, Chiodo-Iritani-Ruan [9] generalized the genus zero cor-
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respondence to arbitrary Calabi-Yau hypersurfaces.

The primary goal of this thesis is to extend the results of [11] to certain com-

plete intersections. In order to accomplish this, it is necessary to generalize FJRW

theory, constructing a mathematical Landau-Ginzburg model associated to a col-

lection of singularities rather than just one. The theory we construct is a “hybrid”

model that combines aspects of FJRW theory and Gromov-Witten theory. Before

defining the hybrid model precisely, however, we will explain how FJRW theory

initially arose out of the study of a PDE known as Witten’s equation. The explo-

ration of these ideas will lead us to a perspective on the Landau-Ginzburg model

based on variation of GIT quotients, and from here we will see not only why an

LG/CY correspondence might be expected, but also how it should be generalized

to the hybrid setting.

1.1 Witten’s equation

Before Witten’s equation garnered the attention of mathematicians, a different

conjecture of Witten generated widespread excitement. This earlier conjecture re-

lates to the intersection theory on the moduli spaceMg,n of stable marked curves,

which can be encoded in the generating function

F(t0, t1, . . .) = ∑
g≥0,n≥1

2g−2+n>0

∑
d1,...,dn

∫
Mg,n

ψd1
1 · · ·ψ

dn
n

td1 · · · tdn

n!

for integrals of ψ classes.1 In 1991, Witten conjectured [49] that F satisfies a system

of differential equations called the Korteweg-de Vries (KdV) hierarchy, which can

be summarized by the equation

(1.1)
∂2F

∂t0∂t1
=

1
2

(
∂2F
∂t2

0

)2

+
1

12
∂4F
∂t4

0
.

1The class ψi is defined as c1(Li), where Li is the line bundle onMg,n whose fiber over a marked curve (C; x1, . . . , xn)
is the cotangent line to C at xi .
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The conjecture was proved by Kontsevich [40] shortly after its announcement.

When combined with the string equation and the initial value F = t3
0/6 + · · · ,

equation (1.1) uniquely determines all ψ integrals onMg,n.

At around the same time, Witten proposed a generalization [50] [51] of his con-

jecture, in which the moduli space of curves is enhanced to the moduli space of r-

spin structures, which parameterizes marked curves (C; x1, . . . , xn) together with

a line bundle L on C satisfying L⊗r ∼= ωC,log := ωC ⊗ O([x1] + · · · + [xn]). Ac-

cording to the conjecture, the intersection theory on this moduli space should be

governed by the more general nKdV hierarchy.

The r-spin moduli space can be understood as the space of solutions to the

equation

(1.2) ∂u + rur−1 = 0,

where u is a section of an orbifold line bundle L on a curve C. In particular, after

choosing a metric on C in order to induce an isomorphism L∨ ∼= L, the condition

that the two terms of equation (1.2) lie in the same space forces (C, L) to be an

r-spin curve. Although the study of solutions to equation (1.2) appears initially to

involve not just the underlying r-spin curve but the section u, the equation in fact

decouples into

(1.3) ∂u = 0, rur−1 = 0.

The second of these equations implies that u vanishes, so the moduli space of

solutions to (1.2) is simply the r-spin moduli space. The key ingredient in the

proof of this decoupling is the “Ramond vanishing” property of the r-spin theory,

which asserts that the intersection numbers over the r-spin moduli space vanish

away from components where L has nontrivial orbifold structure at every marked
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point; this property was conjectured by Witten and proved in [36] and [43]. We

will return to it repeatedly in what follows.

Because of the decoupling of equation (1.2) into (1.3), little attention was paid

by mathematicians to this equation despite their study of r-spin curves [33] [34]

[35] [36]. However, Witten continued to generalize his conjecture. He replaced

(1.2) with what is now called the Witten equation,

(1.4) ∂ui +
∂W
∂ui

= 0,

and he dubbed the theory of solutions to this equation the “Landau-Ginzburg

A-model”. Here, W = W(x1, . . . , xN) is an arbitrary quasi-homogeneous polyno-

mial, and ui is again a section of an appropriate orbifold line bundle.

The mathematical study of solutions to the Witten equation was eventually

taken up by Fan, Jarvis, and Ruan, who constructed a moduli space of solutions

and defined Gromov-Witten-type correlators by integrating certain cohomology

classes against a virtual cycle on the moduli space. The more general Witten con-

jecture, when placed in this framework, asserts that in certain cases, the generating

functions for these correlators should satisfy specific integrable hierarchies. More

precisely, the conjecture applies to ADE-type singularities:

An : W = xn+1, n ≥ 1;

Dn : W = xn−1 + xy2, n ≥ 4;

E6 : W = x3 + y4;

E7 : W = x3 + xy3;

E8 : W = x3 + y5.

There is also an ADE classification of integrable hierarchies, constructed in two

equivalent versions by Drinfeld-Sokolov [22] and Kac-Wakimoto [38]. These are



5

the hierarchies that the generating function of solutions to the Witten equation

were conjectured to satisfy, when W is of ADE type.

1.2 FJRW theory

In this section, we will give a brief account of FJRW theory. For more details,

see the papers [25] [26] [27], or for the special case of the quintic, see [11].

Let W be a quasi-homogeneous polynomial. That is, W ∈ C[x1, . . . , xN], and

there exist weights c1, . . . , cN ∈ Z>0 and a degree d such that

W(λc1 x1, . . . , λcN xN) = λdW(x1, . . . , xN)

for any λ ∈ C. We assume furthermore that W is nondegenerate, which means

that the weights are uniquely determined by W and that the hypersurface in

weighted projective space

{W = 0} ⊂ P(c1, . . . , cN)

is nonsingular.

By searching for line bundles L1, . . . , LN such that the two terms of (1.4) lie in

the same space when ui ∈ Γ(Li), Fan-Jarvis-Ruan arrived at the notion of a W-

structure. By definition, a W-structure on an orbifold stable curve2 C is a choice of

orbifold line bundles L1, . . . , LN and isomorphisms

ϕj : L⊗d
j
∼−→ ω

⊗cj
C,log for j ∈ {1, . . . , N}

that combine to give an isomorphism

Wi(L1, . . . , LN)
∼−→ ωC,log

2See [2] or Section 3.1 below for a precise definition of orbifold stable curve.
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for each monomial Wi of W. Here, inserting a line bundle into a monomial is

defined by ignoring the coefficient and treating powers of the variables as tensor

products on the line bundles. One further stability condition on the bundles is

needed to ensure that there is a good moduli space of W-structures: at each point

y ∈ C, the representation

ρy : Gy → (C∗)N

of the isotropy group at y on the fiber of
⊕N

i=1 Li is required to be faithful.3 A

curve together with a W-structure is referred to as a W-curve.

After specifying an appropriate notion of morphism between W-curves, The-

orem 2.2.6 of [27] shows that there is a smooth, compact Deligne-Mumford stack

Wg,n parameterizing W-structures on genus-g, n-pointed orbifold curves up to iso-

morphism.

The isotropy group Gxi at a marked point of a stable orbifold curve is always

cyclic, so one can associate to each marked point in a W-curve an element

γi = ρxi(1) ∈ (C∗)N

describing the action of the generator 1 ∈ Gxi on the fiber of
⊕N

i=1 Li over xi. This

element is referred to as the multiplicity at xi. Let

Wg,n(γ1, . . . , γn) ⊂ Wg,n

be the (open and closed) substack of W-curves in which the multiplicity at xi is γi.

It is straightforward to check (Lemma 2.1.17 of [27]) that these substacks must

have γi ∈ GW , where

GW := {(α1, . . . , αN) ∈ (C∗)N |W(α1x1, . . . , αNxN) = W(x1, . . . , xN)}
3In particular, this prevents one from giving points in C arbitrarily large isotropy groups, which would lead to a non-

compact moduli space.
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is the group of diagonal symmetries of W. This is the first indication that the

group GW is intimately connected to solutions of the Witten equation.

Having defined the moduli space Wg,n, which is the background data for solv-

ing the Witten equation, the next step is to construct a virtual cycle against which

to integrate. Fan-Jarvis-Ruan’s original construction is analytic in nature. It relies

on the observation that, because W has only a single, highly-degenerate critical

point at x = 0, solving the Witten equation is very difficult. It is much easier to

solve a perturbed equation associated to a polynomial W + W0 whose restriction

to the fixed point set Fix(γ) ⊂ CN for each γ ∈ G is a holomorphic Morse function

whose critical values have distinct imaginary parts. Such a W0 is called a strongly

regular perturbation.

Given a strongly regular perturbation, Fan-Jarvis-Ruan [26] construct a virtual

cycle on a different moduli space W s
g,n(γ1, . . . , γn) that admits a proper, quasi-

finite map to a component Wg,n(γ1, . . . , γn). However, the cycle depends on the

perturbation W0. It changes in a controlled way whenever W0 crosses a wall where

the imaginary parts of its critical values collide, described by a wall-crossing for-

mula in terms of Lefschetz thimbles— that is, elements in the relative homology

groups

HNγi
(CNγ , W+∞

γi
; C),

where

W+∞ = (ReW)−1(M, ∞)

for M � 0, and Nγ is the complex dimension of Fix(γ). Thus, even after pushing

forward from W s
g,n(γ1, . . . , γn) to Wg,n(γ1, . . . , γn), a virtual cycle that is indepen-
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dent of the perturbation will necessarily belong to

H∗(Wg,n(γ1, . . . , γn); Q)⊗
n

∏
i=1

HNγi
(CNγi , W+∞

γi
; C)GW .

Although computationally complicated, one important consequence of Fan-

Jarvis-Ruan’s construction of the virtual cycle is that it indicates what the state

space for FJRW theory must be. To obtain a number by integrating against the

virtual cycle, one must first pair it against elements α1, . . . , αn with

αi ∈ Hγi = HNγi (CNγi , W+∞
γi

; C)GW

to cancel the wall-crossing contributions. Thus, the state space of FJRW theory is

defined as

HW =
⊕

γ∈GW

Hγ.

In other words,HW is the Chen-Ruan cohomology H∗CR([C
N/GW ], W+∞; C).

Given α1, . . . , αn ∈ HW and integers l1, . . . , ln ≥ 0, an FJRW correlator is defined

as

〈τl1(α1), . . . , τln(αn)〉FJRW
g,n := cg,γ

∫
[Wg,n(γ1,...,γn)]vir

α1 · · · αn · ψl1
1 · · ·ψ

ln
n ,

where γ1, . . . , γn are determined by the fact that αi ∈ Hγi ⊂ HW , and the ψ classes

are defined by pullback via the forgetful map Wg,n → Mg,n. Here, cg,γ is a con-

stant depending on the genus and the orbifold decorations γ1, . . . , γn; it is needed

to ensure that the correlators define a Cohomological Field Theory, but we will

not bother specifying it here.

When all γi are “narrow”— that is, Fix(γi) = {0}— these definitions simplify

substantially. Then Hγi = C, and the choice of α1, . . . , αn amounts to a choice of

component of the moduli space in which the line bundles have prescribed non-

trivial multiplicity. Furthermore, on such components of the moduli space, the
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analytic construction of the virtual cycle can be replaced by an algebraic construc-

tion. In the generalization described in this thesis, we will restrict to the narrow

situation, which will allow us to circumvent some of the complications in Fan-

Jarvis-Ruan’s setup.

The genus-g FJRW invariants are encoded in a generating function

F g
FJRW(t) = ∑

n

1
n!
〈t(ψ1), . . . , t(ψn)〉FJRW

g,n ,

where t(z) = t0 + t1z + t2z2 + · · · is a general element of HW [z]. The Lagrangian

cone of FJRW theory is defined as

LFJRW = {(p, q) | p = dqF 0
FJRW} ⊂ T∗(HW [z]) ∼= HW((z−1)),

in which the variable q is related to t via the dilaton shift. See Section 3.1 of

[11] or Section 4.1.3 below for a more complete definition of LFJRW and its role in

Givental’s formalism.

A particularly important slice of the Lagrangian cone is given by the J-function,

JFJRW(t, z) = 1 · z + t + ∑
n

1
n!

〈
t(ψ), . . . , t(ψ),

φα

z− ψ

〉FJRW

0,n+1
φα,

in which φα runs over a basis for HW with dual basis {φα}. The definitions of

these objects all precisely mimic the corresponding definitions in Gromov-Witten

theory; an exposition in that setting can be found, for example, in [20].

All of the ideas described in this section (the moduli space of W-structures,

the state space, the correlators, and their generating functions) can be developed

more generally with respect to a choice of subgroup G ⊂ GW , under a certain

admissibility condition on G. In the theory for G, one considers only components

of Wg,n on which all of the multiplicities lie in G, and the state space is

HW,G =
⊕
γ∈G
Hγ.
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In particular, in this thesis we will restrict to the choice where G is equal to

(1.5) J =
〈(

e2πi c1
d , . . . , e2πi cN

d

)〉
⊂ GW .

One consequence of this restriction (Proposition 2.3.13 of [11]) is that the N line

bundles parameterized byHW,J are all tensor powers of a single bundle L.

1.3 The LG/CY correspondence for the quintic

As described in Section 1.1, the original motivation for FJRW theory was to

make sense of Witten’s ADE conjecture. This was accomplished (with a neces-

sary modification to the conjecture) in Corollary 6.1.4 of [27]. However, the fact

that Witten described the solutions to equation (1.4) as the “Landau-Ginzburg A-

model” suggests, motivated by predictions from physics, that it should also have

another mathematical function: it should fit into a Landau-Ginzburg/Calabi-Yau

correspondence. Framed in mathematical terms, this means that there should be

an “equivalence” of some form between the FJRW theory associated to a polyno-

mial W and the Gromov-Witten theory of the hypersurface XW := {W = 0} ⊂

P(c1, . . . , cN), assuming W satisfies a Calabi-Yau condition.

For the case where W = x5
1 + · · ·+ x5

5 is the quintic and FJRW theory is consid-

ered with respect to the group J defined in (1.5), Chiodo and Ruan [11] made this

equivalence precise and proved it at the level of genus-zero invariants. In their

formulation, the LG/CY correspondence involves proving two statements:

1. A state space isomorphism (sometimes called the cohomological LG/CY corre-

spondence), which is the statement that there is a degree-preserving isomor-

phismHW,J
∼= H∗(XW) under an appropriate grading on each.

2. The existence of a degree-preserving symplectic transformation U on the
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spaceHW,J((z−1)) ∼= H∗(XW)((z−1)) that maps the Lagrangian coneLFJRW ⊂

HW,J((z−1)) encoding genus-zero FJRW invariants to an analytic continua-

tion of the Lagrangian cone LGW ⊂ H∗(XW)((z−1)) encoding genus-zero

Gromov-Witten invariants.

Their proof is quite complicated, and in particular involves placing both Gromov-

Witten theory and FJRW theory in the context of mirror symmetry. It is only in the

B-model, the other side of the mirror, that a relationship between the two theories

is provided via an extra complex parameter on that side. Specifically, Chiodo-

Ruan exhibit I-functions (B-model generating functions) for both theories, and by

understanding the variable in the I-function as an analytic function as opposed to

a merely formal parameter, they relate the two I-functions via analytic continua-

tion.

Why, though, without making reference either to mirror symmetry or to the

physical justification, might one expect the FJRW theory of W = x5
1 + · · · + x5

5

and the Gromov-Witten theory of the quintic hypersurface to coincide? As a first

approximation toward explaining this fact mathematically, let us study only the

cohomological correspondence.

Consider a quotient
C5 ×C

C∗
,

where the coordinates are denoted x1, . . . , x5, p and C∗ acts by

λ(x1, . . . , x5, p) = (λx1, . . . , λx5, λ−5p).

Then the polynomial

W(x1, . . . , x5, p) = p · (x5
1 + · · ·+ x5

5)
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gives a well-defined map out of this quotient. The quotient itself, however, is

geometrically bad; it is not Deligne-Mumford and not even separated. To make

good geometric sense of the quotient, one should consider instead a GIT quotient

(C5 ×C) �θ C∗

associated to a choice of character θ ∈ HomZ(C
∗, C∗) ∼= Z of C∗. The sign of θ

leads to two distinct possible quotients:

θ > 0: The only unstable points are those with x = 0, so

(C5 ×C) �θ C∗ =

[
(C5 \ {0})×C

C∗

]
∼= OP4(−5).

θ < 0: The only unstable points are those with p = 0, so

(C5 ×C) �θ C∗ =

[
C5 × (C \ {0})

C∗

]
∼= [C5/Z5].

The polynomial W descends to give a map out of either of these quotients.

When θ < 0, the relative cohomology

H∗CR([C
5/Z5], W+∞

; C)

is precisely the state space of FJRW theory with respect to the group J ∼= Z5, where

as before, W+∞
= (ReW)−1(M, ∞) for M � 0. On the other hand, when θ > 0,

one can compute that

H∗(OP4(−5), W+∞
; C) ∼= H∗(P4, P4 \ X5; C) ∼= H∗(X5; C)

up to a degree shift, by deformation retraction and the Thom isomorphism. The

latter is the state space for the Gromov-Witten theory of the quintic, the vector

space from which insertions to Gromov-Witten invariants are drawn.
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Thus, by varying the parameter θ, the state spaces for FJRW theory and Gromov-

Witten theory arise in entirely analogous ways. This observation can in fact be

leveraged to prove the state space isomorphism [10], as we will explain in Chap-

ter II. Furthermore, an analogous observation can be made in families to motivate

the connection between the moduli spaces Wg,n andMg,n(XW , β) on the Landau-

Ginzburg and Calabi-Yau sides. We will hold off on explaining this moduli-level

dichotomy for the moment, however, returning to it in greater generality after

expanding the picture to allow for complete intersections.

1.4 The hybrid model

The work of theoretical physicists [50] suggests that a Landau-Ginzburg/Calabi-

Yau correspondence should apply not only to hypersurfaces in weighted projec-

tive space but to more general complete intersections. In physical language, the

Landau-Ginzburg side of the correspondence should be given by the gauged lin-

ear sigma model (GLSM), which generalizes the Witten equation to the gauged

Witten equation

∂A +
∂W
∂ui

= 0

∗FA = µ,

in which A is a connection on a certain principal bundle naturally associated to

the weighted projective space and µ is the moment map that arises out of viewing

the weighted projective space as a symplectic quotient.

In fact, under an appropriate mathematical theory of the gauged linear sigma

model, both the Gromov-Witten theory of the complete intersection and the cor-

responding Landau-Ginzburg theory can be viewed as GLSMs, and the Landau-
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Ginzburg/Calabi-Yau correspondence can be understood as a variation of the mo-

ment map [24]. This shows up in FJRW theory and the hybrid model as the varia-

tion of GIT mentioned in Section 1.3.

The general theory of GLSMs from a mathematical perspective remains a work-

in-progress by Fan-Jarvis-Ruan [24]. The content of this thesis can be understood

as a development of their model in the very special case of a complete intersection

of hypersurfaces of the same degree in weighted projective space. We will also

make a further restriction to the narrow sectors, which implies a decoupling of

the gauged Witten equation analogous to (1.3). Thus, as in the r-spin case, we will

not ultimately need to make reference to the gauged Witten equation in order to

define the theory.

A first step toward understanding the hybrid model associated to a collection

of polynomials is to mimic the ideas discussed at the end of Section 1.3, construct-

ing a GIT quotient out of which the collection of polynomials defines a map. As

in the case of the quintic, this will dictate the state space on the Landau-Ginzburg

side and illuminate its connection to the Gromov-Witten state space.

Let W1, . . . , Wr ∈ C[x1, . . . , xN] be a collection of quasihomogeneous polyno-

mials, all of weights c1, . . . , cN and degree d, defining a nonsingular hypersurface

XW ⊂ P(c1, . . . , cN). These polynomials can be combined into

W(x1, . . . , xN, p1, . . . , pr) = p1W1(x1, . . . , xN) + · · ·+ prWr(x1, . . . , xN),

which gives a map out of the quotient

CN ×Cr

C∗

if C∗ acts by

λ(x1, . . . , xN, p1, . . . , pr) = (λc1 x1, . . . , λcN xN, λ−d p, . . . , λ−d p).
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As in Section 1.3, there are two distinct ways to choose a character θ of C∗ to

interpret the above as a GIT quotient. If θ > 0, then the quotient is

(CN \ {0})×Cr

C∗
= OPN−1(−d)⊕r,

where we identify the bundle geometrically with its total space. If θ < 0, then the

quotient is
CN × (Cr \ {0})

C∗
= OP(d,...,d)(−1)⊕r,

where P(d, . . . , d) is the weighted projective space in which C∗ acts with weight

r in each of the r factors; in other words, it is a (nontrivial) Zd gerbe over the

ordinary projective space Pd−1.

One can check ([10], or Proposition 2.6.1 below in the special cases of interest

in this thesis) that

H∗(OPN−1(−d)⊕r, W+∞
; C) ∼= H∗(XW ; C),

after an appropriate degree shift; here, as above, W+∞
= (ReW)−1(M,+∞) for

M� 0. By analogy, then, the state space for the hybrid theory should be

Hhyb(W1, . . . , Wr) := H∗CR(OP(d,...,d)(−1)⊕N, W+∞
; C).

More explicitly, the Chen-Ruan cohomology of OP(d,...,d)(−1)⊕N is defined as

the cohomology of the inertia stack, and thus its components are indexed by λ ∈

C∗ with nontrivial fixed point sets. The only such elements are dth roots of unity.

If, furthermore, λ ∈ C∗ has λci 6= 1 for all i, then the corresponding component of

the inertia stack is simply

{0} × (Cr \ {0})
C∗

= P(d, . . . , d).

Since this is disjoint from W+∞
, each such λ yields a component of the hybrid

model state space isomorphic to H∗(P(d, . . . , d)) = H∗(Pr−1). These fairly simple
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components of the state space are called the narrow sectors, and play the most

important role in the cases considered in this thesis. For example, one case we

will study is the complete intersection X3,3 of two degree-3 hypersurfaces in P5,

for which one can check that

Hhyb(W1, W2) ∼= H∗(OP1(−1)⊕6, W+∞
)⊕ H∗(P1)⊕ H∗(P1).

Here, the last two summands are the narrow sectors.

Once the state space for the hybrid model is constructed, one must define a

moduli space over which insertions from the state space can be integrated. To

put it roughly, the moduli space associated to a collection of quasihomogeneous

polynomials W1, . . . , Wr as above will be defined as

M̃d
g,n(P

r−1, β) = {( f : C → Pr−1; x1, . . . , xn; L; ϕ)},

in which (C; x1, . . . , xn) is a marked orbifold curve, f is an orbifold stable map of

degree β, L is an orbifold line bundle, and ϕ is an isomorphism

ϕ : L⊗d ∼−→ f ∗
(
OPr−1(−1)

)
⊗ωC,log.

See Section 2.6.1 below for a more careful definition. Note that, just like the mod-

uli space of stable maps in Gromov-Witten theory, the hybrid moduli space has ψ

classes and evaluation maps evi : M̃d
g,n(P

r−1, β) → Pr−1 at each marked point.

Furthermore, just like the moduli space of W-structures, M̃d
g,n(P

r−1, β) has a de-

composition according to the weights of the actions of the isotropy groups Gxi on

the fibers of L. This decomposition indexes components of the moduli space by

elements of Zd, which also index the summands of the state space.

Thus, given a collection of elements α1, . . . , αn chosen from the narrow sectors

ofHhyb(W1, . . . , Wr) and nonnegative integers l1, . . . , ln, one obtains correlators in
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the hybrid model by viewing αi ∈ H∗(Pr−1) and integrating:

(1.6)

〈τl1(α1) · · · τln(αn)〉hyb
g,n,β = cg,m

∫
[M̃d

g,(m1,...,mn)
(Pr−1,β)]vir

ev∗1(α1)ψ
l1
1 · · · ev∗n(αn)ψ

ln
n ,

where cg,m is a constant (defined explicitly in Definition 3.5.3) and mi is defined as

the element of Zd indexing the sector of the state space from which αi is chosen.

To extend this definition to arbitrary insertions in Hhyb(W1, . . . , Wr), a correlator

is set to zero if any of its insertions is not narrow.

Of course, to make sense of (1.6), we will need to construct a virtual funda-

mental cycle on the narrow components against which to integrate. This will be

carried out in detail in Section 3.4, using the cosection construction developed

by Kiem-Li-Chang [39] [4]. The basic idea, which was first put into practice by

Chang-Li [4] for the Gromov-Witten theory of the quintic and by Chang-Li-Li [5]

for the corresponding FJRW theory, is to view M̃g,n(Pr−1, β) as a substack of a

certain noncompact moduli space

Sg,m,β =

{
(C; x1, . . . , xn; L; s1, . . . , sN; p1, . . . , pr)

∣∣∣∣∣ si∈H0(L), pj∈H0(P)
P⊗3⊗ωC,log is ample

p1,...,pr have no common zeroes

}
,

where

P = L⊗−d ⊗ωC,log

and m = (m1, . . . , mn) denotes the multiplicities of L. In particular, the conditions

on p1, . . . , pr show that they collectively define a map f : C → Pr−1, from which

perspective one has L⊗d ∼= f ∗O(−1) ⊗ ωC,log. An obstruction theory for Sg,m,β

is already known from Chang-Li’s work on moduli of sections [4]. From this ob-

struction theory on the larger moduli space, the cosection construction yields a

virtual cycle supported only on the locus where s1 = · · · = sN = 0, which is

precisely M̃d
g,(m1,...,mn)

(Pr−1, β).
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In addition to providing a construction of a virtual cycle on the hybrid moduli

space, the cosection technique is particularly useful for understanding why the

hybrid moduli space is defined as it is. Indeed, just as the state spaces for Gromov-

Witten theory and the hybrid model arise by choosing characters that give two

different stability conditions on a certain GIT quotient, the moduli spaces can be

constructed by choosing two different stability conditions on the moduli space

Sg,m,β.

Specifically, had we demanded that s1, . . . , sN rather than p1, . . . , pr define a sta-

ble map to projective space, then Sg,m,β would have parameterized maps f : C →

PN−1 together with the extra data of section pj ∈ f ∗O(−1)⊗ωC,log. Applying the

cosection construction yields a virtual cycle supported on a compact locus inside

this moduli space, and in this case, that locus consists of stable maps whose image

lands in the complete intersection XW ⊂ PN−1 and for which the sections pj all

vanish; that is, it coincides precisely with the moduli space of stable maps to XW.

Thus, the moduli spaces over which Gromov-Witten and hybrid invariants

are defined can also be viewed as arising from variation of a stability parameter.

However, we should mention that this dichotomy does not, at least at the current

moment, provide any way to prove the Landau-Ginzburg/Calabi-Yau correspon-

dence. One problem is that the virtual cycle on the Gromov-Witten side obtained

by the cosection construction does not obviously agree with the usual definition

of the virtual cycle for stable maps; Chang-Li proved in [4] that invariants for the

quintic threefold defined by way of the two competing virtual cycles agree up to

a sign, but no such result has yet been formulated for complete intersections.

Even with such a result, there is no obvious notion of compatibility between the

cosection-localized virtual cycles obtained from different stability conditions that
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would imply a correspondence between the resulting invariants. Some progress

toward understanding the LG/CY correspondence via variation of stability condi-

tion has been made by Ross-Ruan [45] and Clader-Marcus-Ruan-Shoemaker [17]

by placing both theories in the context of Ciocan-Fontanine-Kim’s stable quasimaps,

but a full understanding of this picture, especially the role of analytic continua-

tion, is yet to be achieved.

1.5 Statement of results

Let W1, . . . , Wr ∈ C[x1, . . . , xN] be a collection of quasihomogeneous polynomi-

als, all of weights c1, . . . , cN and degree d. Assume that the hypersurface XW cut

out by these polynomials is nonsingular and satisfies the Calabi-Yau condition

dr =
N

∑
i=1

ci.

The genus-zero Landau-Ginzburg/Calabi-Yau correspondence for the hybrid model

is the assertion that there is a degree-preserving isomorphism between the state

spaces Hhyb(W1, . . . , Wr) and H∗(XW), and that the Lagrangian cones Lhyb and

LGW encoding the two genus-zero theories are related by a linear transformation

and analytic continuation.

In this thesis, we prove that the correspondence holds whenever XW is a Calabi-

Yau threefold in ordinary, rather than weighted, projective space. This leaves only

three possibilities for XW : the quintic hypersurface X5 ⊂ P4, the intersection of

two cubic hypersurfaces X3,3 ⊂ P5, and the intersection of four quadrics X2,2,2,2 ⊂

P7. The first of these is the content of [11], while X3,3 and X2,2,2,2 represent new

results.

After verifying the state space isomorphism in these cases (Proposition 2.6.1),

the strategy for proving the relationship between the two Lagrangian cones is
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the same as in [11]: the Lagrangian cones are determined by the small J-functions

JGW(t, z) and Jhyb(t, z), and each of these is related to an I-function. On the Gromov-

Witten side, the definition of IGW and its relationship to JGW were shown in [28].

Explicitly, IGW is a hypergeometric series in the variable q = exp(t1
0), where

t0 = ∑ tα
0 ϕα and ϕ1 ∈ H2(X). Expanded in the variable H ∈ H∗(XW) corre-

sponding to the hyperplane class, IGW assembles the solutions to a Picard-Fuchs

equation. In our two cases of interest, the Picard-Fuchs equations are:[
D4

q − 36q
(

Dq +
1
3

)2(
Dq +

2
3

)2
]

IGW = 0

and [
D4

q − 28q
(

Dq +
1
2

)4
]

IGW = 0

for the cubic and quadric complete intersections, respectively, where Dq = q ∂
∂q .

There is a “mirror map”— that is, an explicit change of variables

q′ =
gGW(q)
fGW(q)

for C-valued functions gGW and fGW— under which the small J-function JGW

matches IGW :
IGW(q, z)
fGW(q)

= JGW(q′, z).

We provide an analogous story on the Landau-Ginzburg side for each of the

examples mentioned above. Using the machinery of twisted invariants developed

in [20], we construct a hybrid I-function in each case. These are:

(1.7) Ihyb(t, z) = ∑
d≥0

d 6≡−1 mod 3

ze(d+1+ H(d+1)
z )t

36b d
3 c

∏
1≤b≤d

b≡d+1 mod 3

(H(d+1) + bz)4

∏
1≤b≤d

b 6≡d+1 mod 3

(H(d+1) + bz)2
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for the cubic and

(1.8) Ihyb(t, z) = ∑
d≥0

d 6≡−1 mod 2

ze(d+1+ H(d+1)
z )t

28b d
2 c

∏
1≤b≤d

b≡d+1 mod 2

(H(d+1) + bz)4

∏
1≤b≤d

b 6≡d+1 mod 2

(H(d+1) + bz)4

for the quadric, where t = t + 0z + 0z2 + · · · lies in the degree-2 part of the

Landau-Ginzburg state space.

These I-functions are shown in Theorem IV.1 to lie on the Lagrangian cones

Lhyb for their respective hybrid theories. As in Gromov-Witten theory, the La-

grangian cone has a special geometric property that allows any function lying on

it to be determined from only the first two coefficients in its expansion in powers

of z. Using the expressions (1.7) or (1.8), one can write

Ihyb(t, z) = ω
hyb
1 (t) · 1(1) · z + ω

hyb
2 (t) + O(z−1)

for explicit C-valued functions ω
hyb
1 (t) and ω

hyb
2 (t) in either case. We therefore

obtain the following theorem:

Theorem I.1. Consider the hybrid model I-function (1.7) associated to a generic col-

lection of two homogeneous cubic polynomials in six variables, whose coefficients when

expanded in powers of H(i) span the solution space of the Picard-Fuchs equation[
D4

ψ − 32ψ−1
(

Dψ −
1
3

)2(
Dψ −

2
3

)2
]

Ihyb = 0

for Dψ = ψ ∂
∂ψ and ψ = e3t. This I-function and the hybrid J-function Jhyb associated

to the same collection of polynomials are related by an explicit change of variables (mirror

map)
Ihyb(t,−z)

ω
hyb
1 (t)

= Jhyb(t′,−z), where t′ =
ω

hyb
2 (t)

ω
hyb
1 (t)

.
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The analogous statement holds for the hybrid model I-function (1.8) associated to a

generic collection of four homogeneous quadric polynomials in eight variables, for which

the coefficients span the solution space of the Picard-Fuchs equation[
D4

ψ − 24ψ−1
(

Dψ −
1
2

)4
]

Ihyb = 0

with Dψ = ψ ∂
∂ψ and ψ = e2t.

The fact that the hybrid I-functions assemble the solutions to the specified

Picard-Fuchs equations is an easy consequence of the explicit expressions for these

functions. These equations are the same as the Picard-Fuchs equations for the cor-

responding Calabi-Yau complete intersections after setting q = 3−4ψ−1 or q =

2−4ψ−1, respectively. It follows that, if we use the state space isomorphism to

identify the state spaces in which the I-functions take values, then Ihyb and the an-

alytic continuation of IGW to the ψ-coordinate patch are both comprised of bases

of solutions to the same differential equation, and hence are related by a linear

isomorphism performing the change of basis.

A simple dimension count shows that all of the hybrid model correlators defin-

ing Lhyb can be computed via the string equation from the correlators appearing

in the small J-function. It follows from the relationship between Ihyb and Jhyb that

Ihyb also determines the entire cone. Thus, we arrive at the following corollary:

Corollary 1.5.1. For either the complete intersection X3,3 ⊂ P5 or X2,2,2,2 ⊂ P7, there is

a C[z, z−1]-valued degree-preserving linear transformation mapping Lhyb to the analytic

continuation of LGW near t = 0. That is, the genus-zero Landau-Ginzburg/Calabi-Yau

correspondence holds in these cases.
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1.6 Outline

We begin, in Chapter II, by establishing the necessary terminology on singu-

larities and defining the state space for the hybrid model. We then prove that in

the two cases of interest, this state space is isomorphic to the cohomology of the

corresponding complete intersection. In Chapter III, the quantum theory of the

Landau-Ginzburg model is developed for arbitrary complete intersections of the

same weights and degree in weighted projective space; that is, we define a mod-

uli space and construct a virtual cycle in order to specify correlators as integrals

over the moduli space. Here, the crucial ingredient is the cosection construction

of Kiem-Li-Chang, so we include a slight detour to explain their ideas. At the end

of Chapter III, we specialize to the two examples of interest, and in Chapter IV,

we place those two examples in the context of Givental’s quantization formalism,

proving that the Lagrangian cone encoding the hybrid theory can be obtained

from the Lagrangian cone encoding the genus-zero Gromov-Witten theory of pro-

jective space. This leads to the definition of the I-function and the proof of the

LG/CY correspondence for these two examples.



CHAPTER II

The Landau-Ginzburg state space

We begin with a fairly terse overview of some terminology related to singular-

ities, which can be found in greater detail in [27].

2.1 Quasihomogeneous singularities

The type of singularities for which FJRW theory, and more generally the hybrid

model, is defined are as follows.

Definition 2.1.1. A polynomial W ∈ C[x1, . . . , xN] is quasihomogeneous if there exist

positive integers c1, . . . , cN (known as weights) and d (the degree) such that

W(λc1 x1, . . . , λcN xN) = λdW(x1, . . . , xN)

for all λ ∈ C and (x1, . . . , xN) ∈ CN.

Let W1, . . . , Wr ∈ C[x1, . . . , xN] be a collection of quasihomogeneous polynomi-

als in N complex variables all having the same weights and degree.

Definition 2.1.2. The collection W1, . . . , Wr is called nondegenerate if

1. the charges qi := ci/d are uniquely determined by each Wj;

2. the only x ∈ CN for which all of the polynomials Wj and all of their partial

derivatives vanish is x = 0.

24
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The second condition implies that the hypersurface XW = {W1 = · · · = Wr =

0} ⊂ P(c1, . . . , cN) cut out by the polynomials is nonsingular. Furthermore, XW is

Calabi-Yau if

dr =
N

∑
i=1

ci.

All of the collections of quasihomogeneous polynomials considered in what fol-

lows will be assumed nondegenerate and Calabi-Yau.

Associated to such a collection is a group of symmetries. In order to define this

group, we will prefer to think of the Wi as together defining a polynomial

W(x, p) = p1W1(x) + · · ·+ prWr(x) ∈ C[x1, . . . , xN, p1, . . . , pr].

From this perspective, symmetries of the collection of polynomials are simply

symmetries of W in the sense of FJRW theory. Explicitly:

Definition 2.1.3. The group GW1,...,Wr of diagonal symmetries of a collection of quasi-

homogeneous polynomials of charges c1, . . . , cN and degree d is

GW1,...,Wr = {(α, β) ∈ (C∗)N × (C∗)r |

W(αx, βp) = W(x, p) for all (x, p) ∈ CN ×Cr}.

The group of diagonal symmetries always contains the subgroup

J = {(tc1 , . . . , tcN , t−d, . . . , t−d) | t ∈ C∗}.

This is the analogue of the group denoted 〈J〉 in FJRW theory.

As mentioned in Chapter I, there is an extra datum in the definition of FJRW

theory that will not be present in the current work: a subgroup G of the group

of diagonal symmetries containing J. The theory developed here corresponds to

the choice G = J. This, in particular, explains why the moduli space defined in
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Chapter III will parameterize powers of a single line bundle rather than allowing

N separate choices.

2.2 State space

Let W1, . . . , Wr ∈ C[x1, . . . , xN] be a collection of quasihomogeneous polynomi-

als of the same weights and degree. Associated to such a collection, the state space

of the hybrid theory is the following vector space:

(2.1) Hhyb(W1, . . . , Wr) = H∗CR

(
CN × (Cr \ {0})

J
, W+∞

; C

)
,

where W+∞
= (ReW)−1(M,+∞) for M � 0 and J acts by multiplication in each

factor.

As a vector space, Chen-Ruan cohomology is the cohomology of the inertia

stack, whose objects are pairs ((x, p), γ), where γ ∈ J, (x, p) ∈ CN × (Cr \ {0}),

and γ(x, p) = (x, p). The only elements of J with nontrivial fixed-point sets are

those of the form

(tc1 , . . . , tcN , 1, . . . , 1),

where t is a dth root of unity, so such elements index the components of the in-

ertia stack. These components are known as twisted sectors, and the component

corresponding to t = 1 is called the nontwisted sector.

2.3 Degree shifting

As is usual in Chen-Ruan cohomology, we should shift the degree. The grad-

ing on the state space, however, will be shifted somewhat differently from the

ordinary degree shift in Chen-Ruan cohomology.

Definition 2.3.1. Let γ = (e2πiΘγ
1 , . . . , e2πiΘγ

N , 1, . . . , 1) ∈ J be an element with non-

trivial fixed-point set, where Θγ
i ∈ {0, 1

d , . . . , d−1
d }. The degree-shifting number or
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age shift for γ is

ι(γ) =
N

∑
j=1

(Θγ
j − qj),

where qj are the charges defined in Definition 2.1.1.

Now, given α ∈ Hhyb(W1, . . . , Wr) from the twisted sector indexed by γ, we set

degW(α) = deg(α) + 2ι(γ),

where deg(α) denotes the ordinary degree of α as an element of the cohomology

of the inertia stack. This gives a grading onHhyb(W1, . . . , Wr).

2.4 Broad and narrow sectors

A twisted sector indexed by an element (tc1 , . . . , tcN , 1, . . . , 1) ∈ J will be called

narrow if there is no i with tci = 1. This condition ensures that the sector is sup-

ported on the suborbifold

{0} × (Cr \ {0})
J

⊂ CN × (Cr \ {0})
J

,

whose coarse underlying space is Pr−1. Since the above is disjoint from W+∞
,

the relative cohomology on these sectors is an absolute cohomology group, and

indeed, each narrow sector is isomorphic to H∗(Pr−1). A sector that is not narrow

will be called broad.

2.5 Cases of interest

For most of what follows, we will restrict to the cases mentioned in the intro-

duction, in which W1, . . . , Wr define a Calabi-Yau threefold complete intersection

in ordinary, rather than weighted, projective space. This leaves the following three

possibilities:
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1. r = 1, d = 5, N = 5 (quintic hypersurface in P4);

2. r = 2, d = 3, N = 6 (intersection of two cubics in P5);

3. r = 4, d = 2, N = 8 (intersection of four quadrics in P7).

The first case was handled in [11], while the second and third are considered in

this work.

In case (2), the state space is

H∗CR

(
C6 × (C3 \ {0})

C∗
, W+∞

; C

)
,

where C∗ acts via

(2.2) λ(x1, . . . , x6, p1, p2, p3) = (λ, . . . , λ, λ−3, λ−3, λ−3).

The orbifold in question1, then, is the total space of the orbifold vector bundle

OP(3,3) (−1)⊕6, where

OP(3,3) (−1) =
(C3 \ {0})×C

C∗

with C∗ acting with weights (3, 3, 3,−1). The only broad sector is the nontwisted

sector, while the twisted (narrow) sectors each contribute H∗(P1). Thus, the de-

composition of the state space into sectors is:

H∗(OP1(−1)⊕6, W+∞
)⊕ H∗(P1)⊕ H∗(P1).

A similar analysis shows that the state space in case (3) is

H∗(OP3(−1)⊕8, W+∞
)⊕ H∗(P3).

1If one considers P(3, 3) as arising via the root construction applied to P1 with its line bundleO(−1), this is the natural
third root of the pullback of O(−1) (see Section 2.1.5 of [37]).
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2.6 Cohomological LG/CY correspondence

In the two new cases mentioned above, we verify that the state space isomor-

phism, or cohomological LG/CY correspondence, holds. This is only a simple

special case of a general state space isomorphism for Calabi-Yau complete inter-

sections that will be proved in upcoming work of Chiodo and Nagel [10]. It was

discussed in a talk by J. Nagel at the Workshop on Recent Developments on Orb-

ifolds at the Chern Institute of Mathematics in July 2011 and communicated to the

author by A. Chiodo.

Proposition 2.6.1. Let W1(x1, . . . , x6) and W2(x1, . . . , x6) be homogeneous cubic poly-

nomials defining a complete intersection X3,3 ⊂ P6. Then the hybrid state space asso-

ciated to these polynomials is isomorphic to the Gromov-Witten state space of X3,3; that

is,

(2.3) H∗(OP1(−1)⊕6, W+∞
)⊕ H∗(P1)⊕ H∗(P1) ∼= H∗(X3,3).

Moreover, this isomorphism is degree-preserving under the degree shift (2.3.1) for the left-

hand side.

Similarly, there is a degree-preserving state space isomorphism for a collection of eight

quadrics defining a complete intersection X2,2,2,2 ⊂ P7:

H∗(OP3(−1)⊕8, W+∞
)⊕ H∗(P3) ∼= H∗(X2,2,2,2).

Proof. The three summands on the left-hand side of (2.3) have degree shifts −2, 0,

and 2, respectively. Thus, the narrow sectors contribute one-dimensional sum-

mands in degrees 0, 2, 4, and 6. By the Lefschetz hyperplane principle, this

matches the primitive cohomology of X3,3, so all that remains in the cubic case
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is to prove that

(2.4) Hk(OP1(−1)⊕6, W+∞
) ∼=


H3(X3,3) k = 7

0 otherwise.

Similarly, in the quadric case, the only statement that is not immediate is

Hk(OP3(−1)⊕8, W+∞
) ∼=


H3(X2,2,2,2) k = 11

0 otherwise.

The two arguments are entirely analogous and both elementary, so we describe

only the cubic case.

It is useful to replace W+∞
with a general fiber F of W; this is called a Milnor

fiber of W, and is homotopy equivalent to W+∞
. Furthermore, for our conve-

nience, we will write

O1 := OP(3,3)(−1)⊕6

and let O×1 denote the complement of the zero section in this bundle. Since we

will be working with ordinary cohomology and not Chen-Ruan cohomology for

orbifolds, we will identify O1 with its coarse underlying space OP1(−1)⊕6.

The basic observation is that there is another bundle,

O3 := OP5(−3)⊕2,

and the complement O×3 of the zero section in O3 is isomorphic to O×1 ; indeed,

they are precisely the same subset of the quotient

C6 ×C2

C∗

(where C∗ acts by λ · (x, p) = (λx, λ−3p)) on which neither x nor p vanishes. In

particular, we will sometimes think of F as lying inside O×1 and sometimes think

of it as lying inside O×3 , and this interplay will yield the claim.
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Having established the notation, consider first the case where k ≥ 4 in (2.4).

Then the long exact sequence of the pair (O1, F) is

Hk−1(O1)→ Hk−1(F)→ Hk(O1, F)→ Hk(O1).

The outer two terms are isomorphic to Hk−1(P1) and Hk(P1), respectively, so they

vanish for dimension reasons. It follows that

(2.5) Hk(O1, F) ∼= Hk−1(F).

Now, switch perspectives: consider F as a subset of O3. If π : O3 → P5 is the

projection map, then π−1(x) intersects F in an affine hyperplane if x /∈ X3,3, and it

is empty if x ∈ X3,3 . Since the affine hyperplane has trivial cohomology, it follows

that

H∗(F) ∼= H∗(P5 \ X3,3).

To compute the latter, consider the long exact sequence of the pair (P5, X3,3):

(2.6)

Hk(P5, P5 \X3,3)
i∗−→ Hk(P5)→ Hk(P5 \X3,3)→ Hk+1(P5, P5 \X3,3)→ Hk+1(P5).

The Thom isomorphism and Poincaré duality together imply that

Hk(P5, P5 \ X3,3) ∼= Hk−4(X3,3) ∼= H10−k(X3,3),

and Poincaré duality also implies that Hk(P5) ∼= H10−k(P
5). Under these iso-

morphisms, the map marked i∗ in (2.6) is induced by the inclusion X3,3 ↪→ P5.

In particular, by the Lefschetz hyperplane principle, i∗ is an isomorphism unless

k = 7. The same reasoning shows that the rightmost map in (2.6) is an isomor-

phism unless k = 6. At this point, an easy case analysis yields

Hk−1(F) ∼=


H3(X3,3) if k = 6

0 otherwise.
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Combined with equation (2.5), this proves the claim for k ≥ 4.

Finally, suppose that k ≤ 3. Then the long exact sequence of the triple F ⊂

O×1 ⊂ O1 gives

(2.7) Hk(O1,O×1 )→ Hk(O1, F)→ Hk(O×1 , F).

The first term is

Hk(O1,O×1 ) ∼= Hk−12(P1) = 0

by the Thom isomorphism. The third term is the same as Hk(O×3 , F), and the long

exact sequence of the triple F ⊂ O×3 ⊂ O3 gives

(2.8)

Hk(O3,O×3 )→ Hk(O3, F)→ Hk(O×3 , F)→ Hk+1(O3,O×3 )→ Hk+1(O3, F).

One has

Hk(O3,O×3 ) ∼= Hk−4(P1)

by the Thom isomorphism, and

Hk(O3, F) ∼= Hk−4(X3,3)

by the computation above. Thus, we can use the Five Lemma to compare (2.8) to

the long exact sequence of the pair (P1, X3,3), and this gives:

Hk(O×3 , F) ∼= Hk−4(P1, X3,3) = 0.

Returning to (2.7), we have shown that both of the outer terms vanish when k ≤

3, so Hk(O1, F) = 0 in this case. This completes the proof of the Proposition.



CHAPTER III

Quantum theory for the Landau-Ginzburg model

Similarly to FJRW theory, the hybrid model concerns curves equipped with a

collection of line bundles whose tensor powers satisfy certain conditions. How-

ever, the moduli problem of roots of line bundles is better-behaved with respect to

orbifold curves than smooth curves. For example, a line bundle may have no rth

roots at all on a smooth curve, if its degree is not a multiple of r on each compo-

nent; even worse, the number of roots may change within flat families of smooth

curves (see Section 1.2 of [7] for an example). Thus, the underlying curves of our

theory should be allowed limited orbifold structure.

3.1 Orbifold curves and their line bundles

We will follow the definition of orbifold curve given in [2].

Definition 3.1.1. An orbifold curve (or “balanced twisted curve”) is a one-dimensional

Deligne-Mumford stack with a finite ordered collection of marked points and at

worst nodal singularities such that

1. the only points with nontrivial stabilizers are marked points and nodes;

2. all nodes are balanced; i.e., in the local picture {xy = 0} at a node, the action

33
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of the isotropy group Zk is given by

(x, y) 7→ (ζkx, ζ−1
k y)

with ζk a primitive kth root of unity.

The second condition is required to ensure that all nodal orbifold curves arise

as degenerations of non-nodal curves.

The notions of stable maps and line bundles generalize from smooth curves to

their orbifold analogues; these definitions can be found, for example, in [2] and [7].

An orbifold curve C has a coarse underlying curve |C|, which, roughly speaking,

is the smooth curve obtained from C by forgetting the orbifold structure at special

points. There is a “coarsening” map

ε : C → |C|.

This is a flat morphism, so in particular, if L is a line bundle on C, one obtains a

coarse underlying bundle |L| := ε∗L via pushforward.

3.1.2 Multiplicities of orbifold line bundles

Let C be an orbifold curve and let L an orbifold line bundle on C. Choose a

node n of C with isotropy group Z` and a distinguished branch of n, so that the

local picture can be expressed as {xy = 0} with x being the coordinate on the

distinguished branch. Let g be a generator of the isotropy group Z` at the node

acting on these local coordinates by g · (x, y) = (ζ`x, ζ−1
` y).

Definition 3.1.3. The multiplicity of L at (the distinguished branch of) the node n

is the integer m ∈ {0, . . . , `− 1} such that, in local coordinates (x, y, λ) on the total

space of L, the action of g is given by

g · (x, y, λ) = (ζ`x, ζ−1
` y, ζm

` λ).
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In the same way, one can define the multiplicity of L at a marked point by the

action of a generator of the isotropy group on the fiber.

One extremely important property of the multiplicity is that it allows one to

determine the equation satisfied by the coarsening of L on each of its components

[7] [11]. Suppose that

ν : L⊗` ∼−→ ε∗N

is an isomorphism between a power of L and a line bundle pulled back from

the coarse curve |C| and Z ⊂ C is a non-nodal irreducible component of C. Let

m1, . . . , mk be the multiplicities of L at the nodes where Z meets the rest of C,

where in each case the distinguished branch is the one lying on Z. Let ε : C → |C|

be the coarsening map. If |L| = ε∗L, then we have an isomorphism

(3.1) ε∗ν : |L|⊗` → N ⊗O|Z|

(
−

k

∑
i=1

mi[pi]

)
,

where p1, . . . , pk are the images in |Z| of the points where Z meets the rest of C.

Since ε is flat, |L| is a line bundle; in particular, the fact that it has integral

degree can often be used to find constraints on the multiplicities of L. Conversely,

the multiplicities at all of the marked points and nodes of C, together with the

bundle |L| on |C|, collectively determine L as an orbifold line bundle. See Lemma

2.2.5 of [11] for a precise statement to this effect.

3.2 Moduli space

Let W1, . . . , Wr be a nondegenerate collection of quasihomogeneous polynomi-

als, each having weights c1, . . . , cN and degree d. Let d denote the exponent1 of the

group GW1,...,Wr ; i.e., the smallest integer k for which gk = 1 for all g ∈ GW1,...,Wr .
1In the examples of interest in this thesis, we will have d = d, but this is not necessarily the case in general.
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For each i, set

ci = ci
d
d

,

where as usual d is the degree of the polynomials Wi, and ci are the weights.

Definition 3.2.1. A genus-g, degree β Landau-Ginzburg stable map with n marked

points over a base T is given by the following objects:

L // (C , {Si})
f
//

π
��

Pr−1

T,

together with an isomorphism

ϕ : L ⊗d ∼−→ ωlog ⊗ f ∗O(−1),

where

1. C /T is a genus-g, n-pointed orbifold curve;

2. For i = 1, . . . , n, the substack Si ⊂ C is a (trivial) gerbe over T with a section

σi : T → Si inducing an isomorphism between T and the coarse moduli of

Si;

3. f is a morphism whose induced map between coarse moduli spaces is an

n-pointed genus g stable map of degree β;

4. L is an orbifold line bundle on C and ϕ is an isomorphism of line bundles;

5. For any p ∈ C , the representation rp : Gp → Zd given by the action of the

isotropy group on the fiber of L is faithful.

Definition 3.2.2. A morphism between two Landau-Ginzburg stable maps

(C /T, {Si}, f , L , φ)→ (C ′/T′, {S ′
i }, f ′, L ′, φ′)
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is a tuple of morphisms (τ, µ, α), where (τ, µ) forms a morphism of pointed orb-

ifold stable maps:

T

τ

��

C

µ

��

oo

""

Pr−1

T′ C ′oo

<<

and α : µ∗L ′ → L is an isomorphism of line bundles such that

φ ◦ α⊗d = δ ◦ µ∗φ′,

where δ : µ∗ωC ′ → ωC is the natural map.

Definition 3.2.3. The hybrid model moduli space is the stack M̃d
g,n(P

r−1, β) parame-

terizing n-pointed genus-g Landau-Ginzburg stable maps of degree β, up to iso-

morphism.

Before we prove that this is a proper Deligne-Mumford stack, a few remarks

are in order.

Remark 3.2.4. Landau-Ginzburg stable maps can be viewed as tensor products of

stable maps to P(d, . . . , d) and spin structures. Indeed, the datum of a stable map

to P(d, . . . , d) is equivalent to a map f : C → Pr−1 together with a dth root of the

line bundle f ∗O(1), while a spin structure on C is a dth root of ωlog.

Remark 3.2.5. Given the variation of GIT perspective mentioned repeatedly above,

it would in some sense be more natural to define Landau-Ginzburg stable maps

as maps to a weighted projective space P(d, . . . , d) instead of the coarse under-

lying Pr−1. In fact, though, this is equivalent to what we have done, since if

f : C → P(d, . . . , d) is an orbifold stable map and there exists a line bundle L
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on C such that L⊗d ∼= f ∗O(−1)⊗ ωlog, then f ∗O(−1) is forced to have integral

degree, which implies that f factors through a map to Pr−1.

Remark 3.2.6. In the case where r = 1, the above is not exactly the same as the

moduli space of W-structures in FJRW theory. However, Proposition 2.3.13 of [11]

shows that the map

M̃d
g,n(P

0, 0)→Wg,n,〈J〉

(C, f , L, ϕ) 7→ (C, (L⊗c1 , ϕc1), . . . , (L⊗cN , ϕcN))

is surjective and locally isomorphic to Bµd → B(µd)
N, so integrals over Wg,n,〈J〉

can be expressed as integrals over M̃d
g,n,(P

0, 0), and the correlators defined below

agree with those in FJRW theory.

Forgetting the line bundle L and the orbifold structure gives a morphism

ρ : M̃d
g,n(P

r−1, β)→Mg,n(P
r−1, β).

This map is quasifinite (see Remark 2.1.20 of [27]). Indeed, for any orbifold sta-

ble map f : C → Pr−1, any two choices of L such that L⊗d ∼= ωlog ⊗ f ∗O(−1)

differ by a choice of a line bundle N with an isomorphism ξ : N⊗d ∼= OC. The

set of isomorphism classes of such pairs (N, ξ) is isomorphic to the finite group

H1(C, Zd).

Proposition 3.2.7. For any nondegenerate collection of quasihomogeneous polynomials

W as above, the stack M̃d
g,n(P

r−1, β) is a proper Deligne-Mumford stack with projective

coarse moduli.

Proof. The proof follows closely that of Theorem 2.2.6 of [27] and uses repeatedly

the identification between orbifold line bundles on C and maps C → BC∗. Given
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(C, {σi}, f ) ∈ Mg,n(Pr−1, β), an element of ρ−1(C, {σi}, f ) is given by a map

L : C → BC∗

such that

BC∗

��
C

L
==

δ
// BC∗

commutes, where δ is the map corresponding to the line bundle f ∗O(−1)⊗ ωlog

and the vertical arrow is x 7→ xd.

Let CM → Mg,n(Pr−1, β) denote the universal family, and abbreviate M =

Mg,n(Pr−1, β). Let CW be the fiber product

CW

��

// BC∗

��
CM

δ // BC∗,

with the right vertical arrow as before. Note that CW is an étale gerbe over CM

banded by Zd, so it is a Deligne-Mumford stack.

Any Landau-Ginzburg stable map (C /T, {Si}, f , L , φ) induces a representable

morphism C → CW which is a balanced twisted stable map for which the ho-

mology class of the image of the coarse curve C is the class F of a fiber of the

universal curve CM → M. Furthermore, the family of coarse curves and maps

(C, {σi}, f ) → T gives rise to a morphism T →M, and we have an isomorphism

C ∼= T ×M CM. Thus, there is a basepoint-preserving functor

M̃d
g,n(P

r−1, β)→Hg,n(CW/M, F),

where the latter denotes the stack of balanced, n-pointed twisted stable maps of

genus g and class F into CW relative to the base stackM (see Section 8.3 of [2]).
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The image lies in the closed substack where the markings of C line up over the

markings of CM, and the functor given by the restricting to this substack is an

equivalence. Thus, the results of [2] imply that M̃d
g,n(P

r−1, β) is a proper Deligne-

Mumford stack with projective coarse moduli.

3.2.8 Decomposition by multiplicities

With the analogy to FJRW theory mentioned in Remark 3.2.6 in mind, one ob-

tains a decomposition of the hybrid moduli space just as in Proposition 2.3.7 of

[11]. In Wg,n,〈J〉, let γi ∈ Aut(W) give the multiplicities of L⊗c1 , . . . , L⊗cN at the ith

marked point. Then the condition that γi ∈ J implies that there exists e2πi mi
d ∈ Zd

such that e2πi
micj

d = e2πi
mi,j

d for all j, so γi is determined by mi ∈ {0, 1, . . . , d− 1}.

Let

M̃d
g,n(P

r−1, β) =
⊔

m1,...,mn∈Zd

M̃d
g,(m1,...,mn)

(Pr−1, β),

where M̃d
g,(m1,...,mn)

(Pr−1, β) is the substack in which the multiplicity of L⊗cj at the

ith marked point is mi,j ≡ micj mod d, or equivalently, the multiplicity of L at the

ith marked point is mi. The following terminology will be used later:

Definition 3.2.9. A marking or node is called narrow if all of the line bundles

L⊗c1 , . . . , L⊗cN have nonzero multiplicity mi,j ∈ Zd, and is called broad otherwise.

(In the literature, these situations are sometimes referred to as Neveu-Schwartz and

Ramond, respectively.)

Remark 3.2.10. It is no accident that this terminology coincides with that used for

sectors of the state space in Section 2.4. Indeed, elements of J index both sectors

of the state space and components of the moduli space, and the narrow sectors

of the state space correspond to components of the moduli space in which every

marked point is narrow.
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3.3 Cosection construction

In order to define a virtual cycle on the hybrid moduli space, we will make use

of the cosection technique developed in [39], [4], and [5]. Before turning to our

specific situation, let us say a few words about the method in general.

Given a moduli space X for which one desires a virtual cycle, the idea of the co-

section construction is to embed in X into a noncompact Deligne-Mumford stack

M whose obstruction theory we can understand more easily. For example, when

we apply the technique to the hybrid moduli space,M will parameterize curves

with a bundle and a collection of sections, and Chang-Li [4] have described a sim-

ple, explicit relative perfect obstruction theory on any stack of this form. The goal,

then, is to define a virtual cycle forM supported only on X.

3.3.1 Notation and statement of the cosection localization theorem

LetM be a Deligne-Mumford stack and let S be a smooth Artin stack with a

map

π :M→ S .

Suppose that there exists a relative perfect obstruction theory

φ : E• → L•M/S .

The relative obstruction sheaf, by definition, is ObM/S = h1((E•)∨).

It is possible to define an absolute obstruction sheaf, as well. To do so, consider

the distinguished triangle

π∗LS → LM → LM/S
δ−→ π∗LS [1].

The connecting map δ induces

(3.2) φ∨ ◦ δ∨ : π∗TS → TM/S [1]→ E[1].
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Let η = h0(φ∨ ◦ δ∨) : H0(π∗TS) → ObM/S . Then the absolute obstruction sheaf

is defined as

ObM = coker(η).

Equipped with this definition, we can state the cosection localization theorem:

Theorem III.1 (Kiem-Li [39]). Suppose that we have a “cosection”— that is, a map

σ : ObM|U → OM|U

defined and surjective on some open U ⊂M. Let D(σ) =M\U denote the degeneracy

locus of σ. Then there exists a “cosection-localized virtual cycle”

[M]vir
σ,loc ∈ A∗(D(σ))

that pushes forward to the ordinary virtual cycle under the inclusion of the degeneracy

locus.

We will sometimes speak loosely of a homomorphism

σ : ObM/S → OM

as a “cosection”. To ensure that such a map actually defines a cosection in the

sense of Theorem III.1, one must verify that σ ◦ η = 0, so that σ lifts to a homo-

morphism σ : ObM → OM.

3.3.2 Motivation

To understand the intuition behind the cosection construction, it is helpful to

compare it to the analogous notion of a localized Euler class. If V → M is a vector

bundle on a variety, the usual definition of the Euler class is given by refined self-

intersection of the zero section Z ⊂ M; that is, e(V) = 0!(Z). This definition falls
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apart when M is noncompact, but if s : M → V is a section with compact zero

locus, then one can define a “localized Euler class” by

es,loc(V) = 0!(Γs) ∈ A∗({s = 0}),

where Γs is the graph of s.

The cosection construction generalizes this idea from vector bundles to “bundle

stacks” of the form E = h1/h0(E•), where E• is an object in the derived category

ofM quasi-isomorphic to a two-term complex [E0 → E1] of vector bundles. The

role of the section is played in this context by a cosection

σ : h1(E•)→ OM

(possibly only defined over an open substack of M). Furthermore, rather than

trying to compute the refined intersection of the zero section with itself, as we did

when making sense of the Euler class, the virtual cycle should be the refined inter-

section of the zero section with the intrinsic normal cone cM ⊂ E. The goal is to

tweak this intersection so that the result lies in the cohomology of the degeneracy

locus D(σ) ⊂M.

Kiem-Li’s definition of the cosection-localized virtual cycle proceeds in two

main steps. First, they prove that if

E(σ) = E|D(σ) ∪ ker(σ|U)

contains the entire fiber of E over the degeneracy locus of σ and only the kernel of

σ in other fibers, then there is a “localized Gysin map”

s!
E,σ : A∗(E(σ))→ A∗(D(σ))

generalizing the usual Gysin map from the total space to the base of a bundle.

The basic idea of the localized Gysin map is to mimic the situation in which the
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degeneracy locus is a divisor (or at least when M can be replaced by a blowup

to make this the case), since in that situation, one can simply apply the ordinary

Gysin map A∗(E) → A∗(M) and then intersect with this divisor. The reduction

of the general case to this one is quite complicated, however; see Sections 2 and 3

of [39].

The second step of Kiem-Li’s definition is to prove that the intrinsic normal

cone is represented by an element of A∗(E(σ)). The cosection-localized virtual

cycle is then defined as s!
E,σ([cM]).

3.4 Virtual cycle

Now, let us apply the cosection construction to the present situation. Since the

hybrid model correlators will be defined as integrals over M̃d
g,(m1,...,mn)

(Pr−1, β),

it suffices to define a virtual cycle on each of these substacks. In fact, we will only

define the virtual cycle for the narrow components– that is, when mi,j 6= 0 ∈ Zd

for all i and j. This implies, in particular, that mi ≥ 1 for all i.

3.4.1 Construction of the virtual cycle

By passing to a partial coarsening, an element (C, f , L, ϕ) in one of the com-

ponents M̃d
g,(m1,...,mn)

(Pr−1, β) of the hybrid moduli space is equivalent to a tuple

(C, f , L, ϕ) in which f : C → Pr−1 is a stable map with orbifold structure only at

the nodes of C and ϕ is an isomorphism

L⊗d ∼= f ∗O(−1)⊗ωlog ⊗O
(
−

n

∑
i=1

mi[xi]

)
;

see (3.1) and Lemma 2.2.5 of [11]. In what follows, we will view elements of

M̃d
g,(m1,...,mn)

(Pr−1, β) from this perspective.

Consider the stack P parameterizing tuples (C, f , L, ϕ, s1, . . . , sN), in which
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(C, f , L, ϕ) ∈ M̃d
g,(m1,...,mn)

(Pr−1, β) and si ∈ H0(C, L⊗ci). This is in general not

proper; it should be viewed as the Landau-Ginzburg analogue of Chang and Li’s

moduli space of stable maps with p-fields [4]. In their paper, Chang and Li exhibit

a relative perfect obstruction theory on P relative to the Artin stack Dg param-

eterizing genus-g curves with a line bundle of fixed degree. While the present

situation also requires marked points, the same construction applies.

Namely, denote by Dg,n the moduli stack of genus-g, n-pointed curves with a

line bundle of fixed degree. Let LDg,n be the universal line bundle over Dg,n, let

πDg,n : CDg,n → Dg,n be the universal family, and let

PDg,n = L ⊗−d
Dg,n
⊗ωCDg,n /Dg,n ⊗O

(
n

∑
i=1

(1−mi)[xi]

)
.

Then P embeds into the moduli of sections of

Z = Vb(L ⊕N
Dg,n
⊕P⊕r

Dg,n
)

over Dg,n (see Section 2.2 of [4]), where Vb denotes the total space of a vector

bundle.

Similarly, over P , let L be the universal line bundle, π : CP → P be the

universal family, and P = f ∗O(1) = L ⊗−d ⊗ωCP/P ⊗O(∑n
i=1(1−mi)[xi]). The

tautological

si ∈ Γ(CP , L ⊗ci) and pj ∈ Γ(CP , P),

in which the latter are given by the pullbacks of coordinate sections of OPr−1(1),

combine to give a map CP → Vb
(⊕N

i=1 L ⊗ci
Dg,n
⊕P⊕r

Dg,n

)
×CDg,n

CP which is a sec-

tion of the projection map. Composing this with the projection to the first factor

yields an “evaluation map”

e : CP → Z .
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Using Proposition 2.5 of [4] and the canonical isomorphism

e∗Ω∨Z/CDg,n
∼=

N⊕
i=1

L ⊗ci ⊕P⊕r
Dg,n

,

one finds that there is a relative perfect obstruction theory

EP/Dg,n = R•π∗(L ⊗c1 ⊕ · · · ⊕L ⊗cN ⊕P⊕r).

Thus, we have ObP/Dg,n = R1π∗(
⊕N

i=1 L ⊗ci ⊕P⊕r). The polynomial W de-

fines a homomorphism

σ : ObP/Dg,n → OP .

To define σ, fix an element ξ = (C, f , L, ϕ, s1, . . . , sN) ∈ P and let pj = f ∗xj ∈

H0(C, f ∗O(1)), where xj ∈ H0(Pr−1,O(1)) are the coordinate functions. Take an

étale chart T → P around ξ with CT = CP ×P T. Then σ is defined in these local

coordinates as the map

H1(CT, L ⊗c1 ⊕ · · · ⊕L ⊗cN)⊕ H1(CT, P⊕r)→ C

given by sending (s̃1, . . . , s̃N, p̃1, . . . , p̃r) to

N

∑
i=1

ci

d
∂W
∂xi

(s1, . . . , sN, p1, . . . , pr) · s̃i −
r

∑
j=1

∂W
∂pj

(s1, . . . , sN, p1, . . . , pr) · p̃j.

The fact that this is canonically an element of C relies crucially on the fact that

mi ≥ 1 for all i. For example, ∂W
∂pj

(s1, . . . , sN, p1, . . . , pr) lies in

H0(L ⊗d) = H0 (P∨ ⊗ωCP/P ⊗∑(mi − 1)[xi]
)
↪→ H1(P)∨

by Serre duality.

The degeneracy locus of σ, which is the locus where the localized virtual cycle

will be supported, is the substack D(σ) of P on which the fiber of σ is the zero

homomorphism.
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Lemma 3.4.2. The degeneracy locus of σ is precisely M̃d
g,(m1,...,mn)

(Pr−1, β).

Proof. The hybrid moduli space M̃d
g,(m1,...,mn)

(Pr−1, β) embeds in P as the locus

where s1 = · · · = sN = 0, and it is clear that the fiber of σ is identically zero on

this locus. Conversely, if (s1, . . . , sN) 6= 0, then either (s1, . . . , sN) does not lie in

the common vanishing locus of the polynomials Wi, or there is some i for which

not every
∂Wj
∂xi

(s1, . . . , sN) vanishes. In the first case, if Wj(s1, . . . , sN) 6= 0, then one

can choose p̃j so that

Wj(s1, . . . , sN) · p̃j =
∂W
∂pj

(s1, . . . , sN, p1, . . . , pr) · p̃j 6= 0,

so taking all other p̃i’s and all s̃i’s to be zero shows that the fiber of σ over ξ is not

identically zero. In the second case, independence of the sections pj shows that

r

∑
j=1

pj
∂Wj

∂xi
(s1, . . . , sN) =

∂W
∂xi

(s1, . . . , sN, p1, . . . , pr) 6= 0.

Thus, there exists s̃i such that ∂W
∂xi

(s1, . . . , sN, p1, . . . , pr) · s̃i 6= 0, so again one can

choose all other s̃j’s and all p̃j’s to be zero to see that the fiber of σ over ξ is not

identically zero.

Remark 3.4.3. By studying σ a bit more carefully, one notices that it descends to

the obstruction theory of P relative toMg,n rather than Dg,n.2 To do so, consider

the deformation exact sequence

(3.3) TDg,n/Mg,n

τ−→ ObP/Dg,n → ObP/Mg,n
→ 0.

The deformation space TDg,n/Mg,n
parameterizes deformations of a line bundle

fixing the underlying curve, so its fiber over ξ is H1(C,OC). The map τ can be

viewed fiberwise as

τ = (τ1, τ2) : H1(C, f ∗OPr−1)→
N⊕

i=1

H1(L⊗ci)⊕ H1( f ∗O(1))⊕r.

2The following argument was suggested by H.-L. Chang in correspondence with Y. Ruan.
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Here, τ1 is the dual of the map
⊕N

i=1 H0(L⊗−ci ⊗ω)→ H0(ω) given by

(3.4) (q1, . . . , qN) 7→
N

∑
i=1

qisi,

and τ2 is dual to the map H0( f ∗O(−1)⊗ω)⊕r → H0(ω) given by

(u1, . . . , ur) 7→
r

∑
j=1

ujtj;

in other words, τ2 arises via the Euler sequence on Pr−1. Thus, with (3.3) in mind,

we can view ObP/Mg,n
as coker(τ). A straightforward argument using the quasi-

homogeneous Euler identity shows that the composition σ ◦ τ vanishes, and there-

fore σ descends to a cosection ObP/Mg,n
→ OP .

In order to apply Theorem III.1 to conclude the existence of a localized virtual

cycle, one must verify that σ lifts to an honest cosection, which should be a homo-

morphism σ : ObP → OP . Recall from (3.2) and the subsequent discussion that

the ObP is defined as the cokernel of the map

(3.5) q∗TDg,n → H1(TP/Dg,n)→ H1(EP/Dg,n) = ObP/Dg,n

given by h0(φP/Dg,n ◦ δ∨), in which φP/Dg,n is the relative perfect obstruction the-

ory for P and δ is a connecting homomorphism.

Lemma 3.4.4. The following composition is trivial:

H1(TP/Dg,n)→ ObP/Dg,n
σ−→ OP .

Therefore, σ lifts to σ : ObP → OP .

Proof. The proof of this fact follows closely that of Lemma 3.6 of [4]. First, we will

need a slightly different description of σ. Note that the polynomial W defines a

bundle homomorphism

h1 : Z = Vb

(
N⊕

i=1

L ⊗ci
Dg,n
⊕P⊕r

Dg,n

)
→ Vb(ωCDg,n /Dg,n).
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On tangent complexes, h1 induces

dh1 : Ω∨Z/CDg,n
→ h∗1Ω∨Vb(ωCDg,n /Dg,n )

.

Pulling back dh1 via the evaluation map e defined above, one obtains

e∗(dh1) : e∗Ω∨Z/CDg,n
→ e∗h∗1Ω∨Vb(ωCDg,n /Dg,n )

,

so applying R•πP∗ and taking first cohomology gives a map

ObP/Dg,n → OP ,

where we use the canonical isomorphisms

e∗Ω∨Z/CDg,n
∼=

N⊕
i=1

L ⊗ci ⊕P⊕r,

e∗h∗1Ω∨Vb(ωCDg,n /Dg,n )
∼= ωCP/P .

One can check explicitly in coordinates that this coincides with the homomor-

phism σ defined above.

Equipped with this description of σ, we are ready to prove the Lemma. Let

Cω = C(π∗ωCDg,n /Dg,n) be the direct image cone (see Definition 2.1 of [4]), which

parameterizes sections of ω on curves in Dg,n. This has a universal curve CCω =

CDg,n ×Dg,n Cω. Let

ε = W(s1, . . . , sN, p1, . . . , pr) ∈ Γ(CP , ωCP/P ),

which tautologically induces morphisms

Φε : P → Cω

and

Φ̃ε : CP → CCω .
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There are evaluation maps fitting into a commutative diagram of stacks of CDg,n as

follows:

CP e //

Φ̃ε
��

Z
h1
��

CCω

e′ // Vb(ωCDg,n /Dg,n).

Therefore, the following diagram of cotangent complexes is also commutative:

(3.6) π∗PTP/Dg,n

��

TCP/CDg,n
//

��

e∗Ω∨Z/CDg,n

dh1

��
π∗PΦ∗εTCω/Dg,n Φ̃∗εTCCω /CDg,n

// Φ̃∗εe′∗Ω∨Vb(ωCDg,n /Dg,n )/CDg,n
.

Applying R1πP∗ to the lower horizontal arrow yields the homomorphism

H1(Φ∗εTCω/Dg,n)→ Φ∗ε R1πCω∗ωCCω /Cω
,

which is the pullback via Φε of the obstruction homomorphism in the perfect ob-

struction theory for Cω overDg,n. As observed in Equation 3.13 of [4], this is trivial

since CCω → CDg,n is smooth.

Based on the new definition of σ given above, it is clear that the composite

whose vanishing we wish to show is obtained by applying R1πP∗ to the composi-

tion from the upper left to the lower right of (3.6). Since we have now shown that

the lower horizontal arrow becomes trivial, the proof is complete.

Combining Lemmas 3.4.2 and 3.4.4 with Theorem 1.1 of [39], one finds that P

admits a localized virtual cycle [P ]vir
loc supported on the degeneracy locus

M̃d
g,(m1,...,mn)

(Pr−1, β) ⊂ P

of σ.
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Definition 3.4.5. The virtual cycle of the stack M̃d
g,(m1,...,mn)

(Pr−1, β) is defined as

[M̃d
g,(m1,...,mn)

(Pr−1, β)]vir := [P ]vir
loc.

As was mentioned in the Introduction, it is helpful in understanding the LG/CY

correspondence to examine more closely the observation that P embeds into the

moduli space S of sections associated to the diagram

Vb(L ⊗c1
Dg,n
⊕ · · ·L ⊗cN

Dg,n
⊕P⊕r

Dg,n
) // CDg,n

��
Dg,n.

Specifically, P can be viewed as the substack of S in which the r sections of P

parameterized by S together define a stable map to Pr−1.

If, on the other hand, we had considered the substack of S in which the sections

of L ⊗c1 , . . . , L ⊗cN together define a stable map to P(c1, . . . , cN), then the resulting

moduli space would parameterize stable maps to this weighted projective space

together with sections

tj ∈ H0 ( f ∗O(−d)⊗ω⊗O
(
∑(1−mi)[xi]

))
for j = 1, . . . , r, assuming that the Gorenstein condition (3.8) is satisfied. The

cosection σ is still defined on this new moduli space, and its degeneracy locus is

the moduli space of stable maps to the complete intersection XW ⊂ P(c1, . . . , cN),

as Chang-Li prove in [4] for the case of the quintic.3

Remark 3.4.6. Because we have used the cosection construction as opposed to

the Witten top Chern class construction of [6] and [44], it is not clear that our
3In fact, much more is proved in [4], since even after showing that the degeneracy locus of the cosection is the moduli

space of stable maps to the quintic, it is not at all obvious that the cosection localized virtual cycle agrees with the usual
virtual cycle on this moduli space. Chang-Li prove that, after integrating, the two virtual cycles yield the same invariants
up to an explicit sign discrepancy.
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correlators agree in the case of the quintic with those defined in [11]. However,

the equivalence of all existing constructions of the FJRW virtual cycle is proved in

[5].

3.4.7 Virtual dimension

Let ξ = (C, f , L, ϕ, s1, . . . , sN) ∈ P . The virtual dimension of P/Dg,n at ξ is

h0(L⊗c1 ⊕ · · · ⊕ L⊗cN ⊕ f ∗O(1)⊕r)− h1(L⊗c1 ⊕ · · · ⊕ L⊗cN ⊕ f ∗O(1)⊕r),

and an easy Riemann-Roch computation using (3.1) shows that this equals

(N − r)(1− g) + rn−
n

∑
i=1

N

∑
j=1

cjmi,j

d
.

Since

vdim(Dg,n) = vdim(Dg,n/Mg,n) + vdim(Mg,n)

= (h0(OC)− 1) + 3g− 3 + n

= 4g− 4 + n,

we find that the virtual dimension of P/Mg,n at ξ equals

(3.7)

(N− r− 4)(1− g)+ (r+ 1)n−
n

∑
i=1

N

∑
j=1

cjmi,j

d
= vdim(Mg,n(P

r−1, β))+
N

∑
j=1

χ(L⊗cj).

3.4.8 Virtual cycle in genus zero

In genus zero, the definition of the virtual cycle simplifies substantially, under

the Gorenstein condition

(3.8) cj|d for all j.

Indeed, if this hypothesis is satisfied and L is a line bundle satisfying the re-

quirements of P , then the bundles L⊗cj have no global sections. To see this, one
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simply must compute the degree of such a line bundle using the fact that on each

irreducible component Z of the source curve C,

L⊗cj |⊗d/cj
Z

∼= ωlog ⊗ f ∗O(−1)⊗O
(
−

n

∑
i=1

mi,j[xj]

)
.

Here, the xj are the special points on Z and the mi,j are the multiplicities of L⊗cj

at those special points, and we are once again using that the multiplicities at all

marked points are nonzero. This equation implies that the degree of L⊗cj |Z is

negative, so if C is itself irreducible, it follows that L⊗cj has no global sections. If

C is reducible, the claim still follows by an easy inductive argument using the fact

that deg(L⊗cj |Z) < k − 1, where k is the number of points at which Z meets the

rest of C.

Because of this observation, P = M̃d
0,(m1,...,mn)

(Pr−1, β), and the cosection local-

ized virtual cycle is the same as the ordinary virtual cycle of M̃d
0,(m1,...,mn)

(Pr−1, β)

defined by way of the perfect obstruction theory indicated above. Furthermore,

abbreviating M̃ = M̃d
0,(m1,...,mn)

(Pr−1, β) and Y =M0,n(P
r−1, β), the smoothness

of the moduli space in this case implies that

[M̃]vir = ctop(ObM̃/Y) ∩ [M0,n(P
r−1, β)],

where [M0,n(P
r−1, β)] denotes the pullback of the fundamental class on Y to M̃

under the map that forgets L. Using the exact sequence

TM̃/Dg,n

∼−→ TY/Dg,n → ObM̃/Y → ObM̃/Dg,n
→ 0,

one finds that ObM̃/Y = R1π∗(T ⊗c1 ⊕ · · · ⊕ T ⊗cN), in which T is the universal

line bundle on M̃. Thus, we obtain the formula

[M̃]vir = ctop(R1π∗(T ⊗c1 ⊕ · · · ⊕ T ⊗cN)) ∩ [M0,n(P
r−1, β)]

for the virtual cycle in genus zero.
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3.5 Correlators

In analogy to Gromov-Witten theory, correlators will be defined as integrals

over the moduli space against the virtual cycle.

3.5.1 Evaluation maps and psi classes

The classes that we integrate will come from two places. First, there are evalu-

ation maps

evi : M̃d
g,n(P

r−1, β)→ Pr−1 i = 1, . . . , n,

given by (C, f , L, ϕ) 7→ f (xi), where xi ∈ C is the ith marked point. Therefore, we

can pull back cohomology classes on Pr−1 to obtain classes on the hybrid moduli

space.

Second, there are classes

ψi ∈ H2(M̃d
g,n(P

r−1, β))

for i = 1, . . . , n, defined in the same way as in Gromov-Witten theory. Namely, ψi

is the first Chern class of the (orbifold) line bundle whose fiber at a point of the

moduli space is the cotangent line to the orbifold curve at the ith marked point.

Note that this differs from the definition of ψi used in [11], in which the cotangent

line was always taken to the underlying curve; we will denote these “coarse” psi

classes by ψi. The two are related by

ψi = dψi.

3.5.2 Definition of correlators in the narrow case

We will only define correlators when all insertions are drawn from the narrow

sectors of the state space.
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Definition 3.5.3. Choose α1, . . . , αn ∈ Hhyb(W1, . . . , Wr) from the narrow sectors

and l1, . . . , ln ≥ 0. As explained in Section 2.4, each αi can be viewed as an element

of H∗(Pr−1). Each also defines an element γi ∈ J indicating the twisted sector

from which it is drawn, and we let mi ∈ {0, 1, . . . , d− 1} be such that

γi = (e2πi mic1
d , . . . , e2πi micN

d , 1, . . . , 1).

Define the associated hybrid model correlator 〈τl1(α1) · · · τln(αn)〉hyb
g,n,β to be

(3.9)
d(−1)D

deg(ρ)

∫
[M̃d

g,(m1,...,mn)
(Pr−1,β)]vir

ev∗1(α1)ψ
l1
1 · · · ev∗n(αn)ψ

ln
n ,

where

D =
N

∑
i=1

(
h1(L⊗ci)− h0(L⊗ci)

)
and deg(ρ) denotes the degree of the map

ρ : M̃d
g,(m1,...,mn)

(Pr−1, β)→Mg,n(P
r−1, β)

given by forgetting the W-structure and passing to the coarse underlying source

curve.

The strange-looking sign choice in this definition is a matter of convenience,

following equation (50) of [27]. In genus zero under the Gorenstein condition

(3.8), D is precisely the rank of the obstruction bundle and deg(ρ) = 1
d whenever

the substratum over which we are integrating is nonempty (see Equation (26) of

[27]). Thus, the above is equivalent in such cases to

d2
∫
[M̃d

0,m(Pr−1,β)]vir
ev∗1(α1)ψ

l1
1 · · · ev∗n(αn)ψ

ln
n ctop((R1π∗(T ⊗c1 · · · T ⊗cN))∨),

where m = (m1, . . . , mn).
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3.5.4 Broad insertions

The easiest way to extend the above theory to allow for broad insertions is to

set a correlator to zero if any of its insertions comes from a broad sector. In order

to ensure that the resulting theory satisfies the decomposition property required

of Cohomological Field Theories, though, it is necessary to verify a Ramond van-

ishing property. This holds whenever the Gorenstein condition (3.8) is satisfied.4

Proposition 3.5.5 (Ramond vanishing). Suppose that for all i and j, cj|d and mi,j 6= 0.

Let D ⊂ M̃d
0,m(Pr−1, β) be a boundary stratum whose general point is a source curve

with a single, broad node. Then

(3.10)
∫

D
ev∗1(α1)ψ

l1
1 · · · ev∗n(αn)ψ

ln
n ctop((R1π∗(T ⊗c1 ⊕ · · · ⊕ T ⊗cN))∨) = 0

for any a1, . . . , an ∈ Z≥0 and any φ1, . . . , φn ∈ H∗(Pr−1).

Proof. Let C = C1 t C2 be the decomposition of a fiber of π in D into irreducible

components, and let n be the node at which the components meet. Consider the

normalization exact sequence

0→ OC → OC1 ⊕OC2 → On → 0.

Tensor with L⊗c1 ⊕ · · · ⊕ L⊗cN and take the associated long exact sequence in co-

homology to obtain the following equality in K-theory:

R1π∗
(
⊕T ⊗cj

)
= R0π∗(⊕T ⊗cj |n) + R1π∗(⊕T ⊗cj |C1) + R1π∗(⊕T ⊗cj |C2).

Here, we use that H0(L⊗cj |Ci) = 0 for all i and j, as an easy degree computation

shows.
4The argument below was substantially simplified by a suggestion of A. Chiodo.
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The key point is that, since n is broad, orbifold sections of L⊗cj over n are the

same as ordinary sections over the coarse underlying curve. More precisely, let

N : D → C be the section of the universal curve defined by the node n. Then

ctop(R0π∗(⊕T ⊗cj |n)) = N∗ctop(⊕T ⊗cj),

and since (T ⊗cj)⊗d ∼= ω
⊗cj
log ⊗ f ∗O(−cj) for each j, the above equals

N

∏
j=1

1
d

(
ctop(ω

⊗cj
log |n) + ctop(N∗ f ∗O(−cj))

)
.

In this expression, ctop(ω
⊗cj
log |n) = 0, since the restriction of ωlog to the locus of

nodes is trivial. Furthermore, f ◦ N = evn, so we can rewrite the above as

N

∏
j=1

1
d

ev∗nctop(O(−cj)) =
1

dN ev∗nctop(O(−cj)
⊕N),

which is zero becauseO(−cj)
⊕N is an N-dimensional bundle on an r-dimensional

space and N > r.

It follows that one of the summands in the expression for R1π∗(⊕T ⊗cj) has

trivial top Chern class, so the integral in (3.10) vanishes.

Remark 3.5.6. This definition of the broad correlators seems initially ad hoc. How-

ever, analogously to Proposition 2.4.5 of [11], it is possible to unify the broad and

narrow cases in genus 0 into a single geometric definition by slightly modifying

the moduli space.

3.5.7 Multiplicity conditions

Certain tuples of multiplicities correspond to empty components of the moduli

space, so the resulting correlators clearly vanish. Indeed, (3.1) and the subsequent

discussion imply that if m1, . . . , mn are as in Definition 3.5.3, then the correlator
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〈τ1(φ1) · · · τn(φn)〉hyb
g,n,β vanishes unless

(3.11) 2g− 2 + n− β−
n

∑
i=1

mi ≡ 0 mod d.

This selection rule will be useful later.



CHAPTER IV

Proof of the correspondence in genus zero

In both Gromov-Witten theory and the hybrid model, the genus-zero theory

can be realized as a Lagrangian cone in a certain symplectic vector space. Be-

cause the genus-zero hybrid invariants are described via a top Chern class, they

fit into the framework of twisted invariants described in [20], and Givental’s quan-

tization formalism provides a tool for realizing them in terms of the correspond-

ing untwisted theory, which is essentially the Gromov-Witten theory of projective

space. The following section describes this process in detail and uses it to prove

the LG/CY correspondence in the two cases of interest.

4.1 Givental’s formalism

For the sake of expository clarity, we will describe the setup in the case of the

cubic singularities first, commenting briefly on the requisite modifications for the

quadric case at the end.

4.1.1 The symplectic vector spaces

It is convenient to modify the state space slightly, replacing the broad sector

with another copy of H∗(P1) to obtain

Hhyb = H∗0 (P
1)⊕ H∗1 (P

1)⊕ H∗2 (P
1).

59
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The subscripts denote the multiplicities to which the summands correspond. This

modification does not affect the correlators, since they vanish when any insertion

is broad. We will write φ(h) for an element φ ∈ H∗(P1) coming from the summand

H∗h (P
1).

This vector space is equipped with a nondegenerate inner product (or Poincaré

pairing), denoted ( , )hyb and defined as

(Θ1, Θ2)hyb = 〈τ0(Θ1) τ0(Θ2) 1(1)〉hyb
0,3,0.

The symplectic vector space we will consider is

Vhyb = Hhyb ⊗C((z−1)),

with the symplectic form Ωhyb given by

Ωhyb( f , g) = Resz=0

(
( f (−z), g(z))hyb

)
.

This induces a polarization Vhyb = V+hyb ⊕ V
−
hyb, where V+hyb = Hhyb ⊗ C[z] and

V−hyb = z−1Hhyb ⊗ C[[z−1]]. Thus, we can identify Vhyb as a symplectic manifold

with the cotangent bundle to V+hyb. An element of Vhyb can be expressed in Dar-

boux coordinates as ∑k≥0 qα
k φαzk + ∑`≥0 p`,βφβ(−z)−`−1, where {φα} is a basis for

Hhyb.

Analogously, there is a symplectic vector space on the Gromov-Witten side [11]

[20]. The restriction to narrow states is mirrored in that setting by the restriction

to cohomology classes pulled back from the ambient projective space, which are

the only ones that give nonzero correlators. Let HGW denote the vector space of

such classes:

HGW = Heven(X3,3) =
3⊕

h=0

[Hh]C,
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where H is the restriction to X3,3 of the hyperplane class on the ambient projective

space.1 The symplectic vector space VGW on the Gromov-Witten side is defined as

above, and the usual Poincaré pairing on HGW induces a symplectic form in the

same way.

4.1.2 The potentials

Defining the correlators in the hybrid theory as above, the generating function

for the genus-g invariants is

F g
hyb(t) = ∑

n,d

Qd

n!
〈t(ψ), . . . , t(ψ)〉hyb

g,n,d,

where t = t0 + t1z + t2z2 + · · · ∈ Hhyb[[z]]. These generating functions fit together

into a total-genus descendent potential

Dhyb = exp

(
∑
g≥0

h̄g−1F g
hyb

)
.

In the same way, one can define a generating function for the genus-g Gromov-

Witten invariants of the corresponding complete intersection,

F g
GW(t) = ∑

n,d

Qd

n!
〈t(ψ), . . . , t(ψ)〉GW

g,n,d,

where t = t0 + t1z + t2z2 + · · · ∈ HGW [[z]]. These, too, fit together into a total-

genus descendent potential DGW .

4.1.3 The Lagrangian cones

In the Gromov-Witten setting, the dilaton shift

qα
k = tα

k − 1 · z
1Of course, to be completely symmetric, we might want to add an additional two-dimensional summand to HGW , as

we did for Hhyb, and define the correlators to vanish if any insertion comes from this summand. Since we will not be doing
any computations on the Gromov-Witten side, we will ignore this asymmetry and leave HGW as above.
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makes F 0
GW into a power series in the Darboux coordinates qα

k , where 1 denotes

the constant function 1 in H0. In this way, the genus-zero Gromov-Witten theory

is encoded by a Lagrangian cone

LGW = {(q, p) | p = dqF 0
GW} ⊂ VGW ,

where we use the Darboux coordinates (q, p) defined above to identify VGW with

the cotangent bundle to its Lagrangian subspace V+GW . As proved in [20], LGW is

a Lagrangian cone whose tangent spaces satisfy the geometric condition

(4.1) zTfLGW = LGW ∩ TfLGW

at any point.

The same story holds in the hybrid model, but it is important to note that in the

dilaton shift

qα
k = tα

k − 1(1) · z,

the unit is the constant function 1 from the summand of the state space corresponding

to multiplicity-1 insertions. Under this dilaton shift, we again have that F 0
hyb is a

function of q ∈ V+hyb and hence we can define

Lhyb = {(q, p) | p = dqF 0
hyb} ⊂ Vhyb.

Since the hybrid theory also satisfies the string equation, dilaton equation, and

topological recursion relations, the same geometric condition holds for this cone

as for the Lagrangian cone of Gromov-Witten theory.

On either the Gromov-Witten or the hybrid side, we define the J-function

Jhyb/GW(t, z) = 1z + t + ∑
n,d

1
n!

〈
t, . . . , t,

φα

z− ψ

〉hyb/GW

0,n+1,d
φα,
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where φα ranges over a basis for Hhyb/GW with dual basis φα. In other words,

J(t,−z) is the intersection of the Lagrangian cone with the slice {−1z+ t+V−} ⊂

Vhyb/GW . It is a well-known consequence of (4.1) that this slice determines the rest

of the Lagrangian cone, so the J-function specifies the entire genus-zero theory.

4.1.4 Twisted theory

The strategy for determining Jhyb is to introduce parameters that will interpo-

late between the hybrid invariants and the ordinary Gromov-Witten invariants

of projective space. One can always define a multiplicative characteristic class

K0(X)→ H∗(X; C) by

x 7→ exp

(
∑
k≥0

skchk(x)

)
.

When sk = 0 for all k ≥ 0, the result is a constant map sending every K-class to

the fundamental class, while if we set

(4.2) sk =



−6 ln(λ) k = 0

6(k− 1)!
λk k > 0,

then the resulting class satisfies

exp

(
∑
k≥0

skchk(−[V])

)
= eC∗(V∨)6

for any vector bundle V equipped with the natural C∗ action scaling the fibers.

(The reason for passing to equivariant cohomology is to ensure that the above is

invertible.) We will typically denote

c(x) = exp

(
∑
k≥0

skchk(x)

)

when the parameters sk are taking unspecified values.



64

Extend the hybrid model state space to

Htw =
(

H∗0 (P
1)⊕ H∗1 (P

1)⊕ H∗2 (P
1)
)
⊗ R,

where

R = C[λ][[s0, s1, . . .]].

Then, for any φ1, . . . , φn ∈ Htw and a1, . . . , an ∈ Z≥0, define the corresponding

twisted hybrid invariant 〈τa1(φ1), . . . , τan(φn)〉twg,n,d by

3
deg(ρ)

∫
ρ∗[Mg,n(P1,d)]vir

ev∗1(φ1)ψ
a1
1 · · · ev∗n(φn)ψ

an
n c(Rπ∗T ),

where T denotes the universal line bundle on the universal curve over M̃3
g,n(P

1, d),

ρ : M̃3
g,m(P1, d) → Mg,n(P1, d) is as in Section 3.5.3. We will sometimes adopt

the notation of [20] and write the above as

〈τa1(φ1), . . . , τan(φn); c(Rπ∗T )〉g,n,d,

or more generally, write a cohomology class on the universal curve after a semi-

colon to indicate that it is part of the integrand but is neither a ψ class nor pulled

back from the target space.

Via these invariants, Htw is equipped with a pairing extending the pairing on

Hhyb:

(Θ1, Θ2)tw = 〈Θ1, Θ2, 1(1)〉tw0,3,0.

We can then set Vtw = Htw⊗C((z−1)), and this is a symplectic vector space under

the symplectic form induced by the twisted pairing. The definitions of the genus-g

potential, total descendent potential, and Lagrangian cone all generalize directly,

and we thus obtain the twisted Lagrangian coneLtw ⊂ Vtw. It is no longer obvious

that this is indeed a Lagrangian cone, but this will follow from Proposition 4.2.1.
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4.1.5 Untwisted theory

Let Vun denote the symplectic vector space obtained by setting sk = 0 for

all k ≥ 0, and similarly Hun and Lun. Note that Lun encodes the correlators

〈τa1(φ1), . . . , τan(φn)〉un
0,n,d, which are given by

3
deg(ρ)

∫
ρ∗[M0,n(P1,d)]vir

ev∗1(φ1)ψ
a1
1 · · · ev∗n(φn)ψ

an
n .

When the selection rule (3.11) is satisfied so that the component of the hybrid

moduli space over which we are integrating is nonempty, these are simply three

times the Gromov-Witten invariants of P1. In particular, the untwisted J-function

is known explicitly.

We will use the untwisted Lagrangian cone to determine the cone Lhyb. This

can be viewed as a two-step procedure. First, Lhyb can be obtained from Ltw by

taking a limit λ→ 0 and setting the parameters sk to the values in (4.2), so that

c(Rπ∗T ) = c(−R1π∗T ) = ctop((R1π∗T )∨)6,

which is what appears in the hybrid model correlators. Then, Proposition 4.2.1

demonstrates that Ltw can in turn be recovered from Lun.

4.1.6 The quadric singularities

All of the above is defined analogously in the other example of interest. In that

case,

Hhyb = H∗0 (P
3)⊕ H∗1 (P

3).

The hybrid Poincaré pairing is defined by the exact same formula, and we obtain

a symplectic vector space Vhyb = Hhyb ⊗ C((z−1)). The symplectic vector space

on the Gromov-Witten side is now VGW = HGW ⊗C((z−1)), where

HGW = Heven(X2,2,2,2) =
3⊕

h=0

[Hh]C
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and H is the restriction to X2,2,2,2 of the hyperplane class on P7. The genus-g

generating functions and total-genus descendent potentials on both the hybrid

and the Gromov-Witten side are defined just as before, and again the genus-0

theory on each side is encoded by a Lagrangian cone which is determined by the

slice cut out by a J-function.

A twisted theory is again introduced, though now the values of sk that give the

hybrid theory are

(4.3) sk =



−8 ln(λ) k = 0

8(k− 1)!
λk k > 0,

since the virtual class in genus 0 is ctop((R1π∗T )∨)8 in this case. The state space is

extended to

Htw = (H∗0 (P
3)⊕ H∗1 (P

3))⊗ R

for R = C[λ][[s0, s1, . . .]], and twisted hybrid invariants are defined as

2
deg(ρ)

∫
ρ∗[Mg,n(P3,d)]vir

ev∗1(φ1)ψ
a1
1 · · · ev∗n(φn)ψ

an
n c(Rπ∗T ),

for φ1, . . . , φn ∈ Htw and a1, . . . , an ∈ Z≥0. These permit the definition of the

twisted Poincaré pairing and hence the twisted symplectic vector space. When

λ → 0 and the parameters sk are set to the values in (4.3), we obtain the hybrid

theory for the quadric singularity, while the untwisted theory (when sk = 0 for all

k) gives two times the Gromov-Witten theory of P3.
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4.2 Lagrangian cone for the Landau-Ginzburg theory

Recall that the Bernoulli polynomials Bn(x) are defined by the generating func-

tion
∞

∑
n=0

Bn(x)
zn

n!
=

zezx

ez − 1
.

Proposition 4.2.1. (a) Let Vtw denote the symplectic vector space associated to the cubic

singularities W1(x1, . . . , x6), . . . , W3(x1, . . . , x6), and let ∆ : Vun → Vtw be the

symplectic transformation

∆ =
2⊕

`=0

exp

∑
k≥0
m≥0

sk
Bm(

`
3)

m!
exp(−H(`)

3 )k+1−mzm−1

 .

Then Ltw = ∆(Lun).

(b) Let Vtw denote the symplectic vector space associated to the quadric singularities

V1(x1, . . . , x8), . . . , V4(x1, . . . , x8), and let ∆ : Vun → Vtw be the symplectic trans-

formation

∆ =
1⊕

`=0

exp

∑
k≥0
m≥0

sk
Bm(

`
2)

m!
exp(−H(`)

2 )k+1−mzm−1

 .

Then Ltw = ∆(Lun).

Proof. We will prove part (a) of the Proposition; the proof of part (b) is almost

identical, so we will omit it. Our proof is modeled closely after that of Theorem

4.2.1 of [47], which in turn uses the main idea of Theorem 1’ of [20].

Let us begin by reducing the statement to something more concrete. According

to the theory of Givental quantization, the desired statement Ltw = ∆(Lun) will

be implied if we can demonstrate that Dtw = ∆̂(Dun). In fact, it suffces to show

that Dtw ≈ ∆(Dun), where the symbol ≈ denotes equality up to a scalar factor
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in R, since Ltw is a cone and hence is unaffected by scalar multiplication. Fur-

thermore, Dtw ≈ ∆(Dun) if and only if this holds after differentiating both sides

with respect to sk for all k. If Ck : Vun → Vtw denotes the infinitesimal symplectic

transformation2

Ck =
2⊕

`=0

(
∑

m≥0

Bm(
`
3)

m!
exp(−H(`)

3 )k+1−mzm−1

)
,

then we have ∆ = exp(∑k≥0 skCk), so Dtw ≈ ∆(Dun) is equivalent to the system

of differential equations
∂Dtw

∂sk
≈ ĈkDtw + CDun

for all k, where C is the cocycle coming from commuting the ẑ terms of ∆̂ past the

1̂/z term of Ĉk; see the discussion in Section 2 of [20]. Since we only seek equal-

ity up to a scalar factor, we can absorb the cocycle into the definition of Ck and

prove that ∂Dtw/∂sk ≈ ĈkDtw. We will use the orbifold Grothendieck-Riemann-

Roch (oGRR) formula3 (see Appendix A of [47] for the statement) to determine

∂Dtw/∂sk and identify it with an explicit expression for Ĉk.

Specifically, we have

(4.4)
∂Dtw

∂sk
= ∑

g,n,d

Qdh̄g−1

n!
〈t, . . . , t; chk(Rπ∗T ) c(Rπ∗T )〉g,n,dDtw,

and oGRR will be used to compute the contribution from chk(Rπ∗T ). As re-

marked in Section 7.3 of [47], the moduli stack M̃3
g,n(P

1, d) can be embedded in

a smooth stackM over which there exists a family U of orbicurves pulling back

to the universal family C over M̃3
g,n(P

1, d). Therefore, we lose no information

if we assume that the moduli stack itself is smooth, in which case ch(Rπ∗T ) =

2The fact that this transformation is infinitesimal symplectic is required for the quantization to be defined; it follows
from the same argument as in Lemma 4.1.3 of [47].

3An alternative, and perhaps shorter, proof can be obtained by passing to the coarse underlying curve and applying the
usual GRR formula, as in [12].
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c̃h(Rπ∗T ) and oGRR states that

(4.5) ch(Rπ∗T ) = Iπ∗(c̃h(T )T̃d(Tπ)).

This splits into several terms according to the decomposition of IC into twisted

sectors:

IC = C t
n⊔

i=1

(S
(1)

i tS
(2)

i ) t (Z (1) tZ (2)).

Here, S
(h)

i is the sector corresponding to the element h ∈ Z3 = {0, 1, 2} of the

isotropy group at the ith marked point and Z (h) is the sector corresponding to

the element h of the isotropy group at the substratum of nodes. Applying this

decomposition to the right-hand side of (4.5) shows that ch(Rπ∗T ) equals

π∗(ch(T )Td(Tπ)) +
n

∑
i=1

2

∑
`

π∗(c̃h(T )T̃d(Tπ)|S (`)
i
) +

2

∑
`=1

π∗(c̃h(T )T̃d(Tπ)|Z (`)).

The contribution from the nontwisted sector can be calculated via a computa-

tion nearly identical to that of Theorem 1’ of [20]; the result is:

π∗

(
ch(T )

(
Td∨(Ln+1)−

n

∑
i=1

si∗

[
Td∨(N∨i )
c1(N∨i )

]
+

+

ι∗

[
1

ψ+ψ−

(
Td∨(L+)

ψ+
+

Td∨(L−)
ψ−

)]
+

))
k

.

We have identified the universal family with M̃3
g,n+1(P

1, d)′, in which the prime

indicates that the last marked point has multiplicity 1. In the second term, si

denotes the inclusion of the divisor ∆i of the ith marked point and Ni denotes the

normal bundle of ∆i in C . In the third term, ι : Z′ → C is the composition of

the inclusion i : Z → C of the singular locus with the double cover γ : Z′ → Z

consisting of choices of a branch at each node; also, L± are the cotangent line

bundles to the two branches of a node and ψ± are the first Chern classes of these

line bundles.
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Accordingly, we can split chk(Rπ∗T ) into a codimension-0, codimension-1,

and codimension-2 term, and we compute each separately.

4.2.2 Codimension 0

Since T ⊗3 ∼= ωlog ⊗ f ∗O(−1), we have

ch(T ) = exp(K
3 ) exp(− f ∗H

3 ),

where K = c1(ωlog). Thus, the codimension 0 term of ch(Rπ∗T ) is

π∗(exp(K
3 ) exp(− f ∗H

3 )Td∨(Ln+1)).

The contribution from the codimension 0 term to (4.4), then, is Dtw times the fol-

lowing, in which the superscript • denotes invariants in which the last marked

point has multiplicity 1:

∑
g,n,d

Qdh̄g−1

n!

〈
t, . . . ; π∗

(
exp(K

3 ) exp(− f ∗H
3 )Td∨(Ln+1)

)
k+1

c(Rπ∗T )
〉

g,n,d

= ∑
g,n,d

Qdh̄g−1

n!

〈
π∗t, . . . ,

(
exp(K

3 ) exp(−H
3 )Td∨(Ln+1)

)
k+1 c(Rπ∗T )

〉•
g,n+1,d

= ∑
g,n,d

Qdh̄g−1

n!

〈
t− σ1∗

[
t
ψ

]
+

, . . . ,
(
exp(K

3 ) exp(−H
3 )Td∨(Ln+1)

)
k+1

〉tw,•

g,n+1,d
.

Now, under the identification of the universal family with M̃3
g,n(P

1, d)′, K is iden-

tified with ψn+1. Furthermore, ψn+1 vanishes on the image of each σi∗ with 1 ≤

i ≤ n, so the above is equal to

∑
g,n,d

Qdh̄g−1

n!
(exp(ψn+1

3 ) exp(−H
3 )Td∨(Ln+1))k+1; c(Rπ∗T )〉•g,n+1,d

− ∑
g,n,d

Qdh̄g−1

(n− 1)!
〈σ1∗

[
t
ψ

]
+

, . . . , (exp(−H
3 )k+1; c(Rπ∗T )〉g,n+1,d
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= ∑
g,n,d

Qdh̄g−1

(n− 1)!

〈
t, . . . ,

(
exp(ψ

3 ) exp(−H
3 )Td∨(Ln)

)
k+1

; c(Rπ∗T )
〉•

g,n,d

− ∑
g,n,d

Qdh̄g−1

(n− 1)!

〈
t, . . . , t, exp(−H

3 )k+1

[
t(ψ)

ψ

]
+

; c(Rπ∗T )
〉

g,n,d

− 1
2h̄

〈
t, t, (exp(ψ3

3 ) exp(−H
3 )Td∨(L3))k+1; c(Rπ∗T )

〉•
0,3,0

−
〈
(exp(ψ1

2 )) exp(−H
3 )Td∨(L1))k+1; c(Rπ∗T )

〉•
1,1,0

.

The last two summands are known respectively as the genus-zero and the genus-

one exceptional terms. Since ψ3 vanishes on M̃3
0,3(P

1, 0), the genus zero excep-

tional term equals

− 1
2h̄

(exp(−H
3 )k+1q, q)tw.

The rank of Rπ∗T is zero on M̃3
1,1(P

1, 0), so the genus-one exceptional term does

not depend on sk. It is easily computed, but it will yield only a scalar factor and

hence does not affect our present computation.

4.2.3 Codimension 1

Since K vanishes on the image of σi∗ for all i, we have ch(T |∆i
) = exp(− f ∗H/3).

Thus, the untwisted contribution to chk(Rπ∗T ) from the ith marked point is

−π∗

(
exp(− f ∗H

3 ) si∗
[

Td∨(N∨i )

c1(N∨i )

]
+

)
k
= −π∗si∗

(
exp(− f ∗H

3 )
[

Td∨(N∨i
c1(N∨i )

]
+

)
k

.

If σi : M̃3
g,n(P

1, d) → ∆i is the ith section, then we have σi∗σ
∗
i = id if the marked

point is broad and σi∗σ
∗
i = 3 · id if the marked point is narrow. Also, we have

f ◦ σi = evi, and Lemma 7.3.6 of [47] shows that σ∗i N∨i = Li. Since ev∗i is zero away

from the summand H∗mi
(P1) ⊗ R where mi is the multiplicity of the ith marked

point, the above can be rewritten as

− 1
ri

exp

(
−H(mi)

3

)[
Td∨(Li)

ψi

]
+

,
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where ri is 1 if the marked point is broad and 3 if it is narrow. Note that the

evaluation map in this expression has been suppressed as it will appear as an

insertion in twisted invariants.

If the marked point is narrow, there are also twisted sectors, which together

contribute

2

∑
m=1

π∗(c̃h(T )T̃d(Tπ)|S (m)
i

) =
2

∑
m=1

π∗si∗

(
∑0≤`≤1 e2πi m`

3 ch(T (`)|∆i)

1− e2πi−m
3 ch(N∨i )

)
,

where T (`) is the subbundle of T in which the isotropy group acts by e2πi `3 . This

is either all of T or is rank zero, depending on whether ` = mi, so we can write

the above as
1
3

exp
(
−H(mi)

3

)
∑

1≤m≤2

e2πi mmi
3

1− e2πi−m
3 eψi

,

where we have used σi as above and again suppressed the evaluation. It is straight-

forward to check (see Section 7.3.5 of [47]) that for each `,

(4.6) ∑
1≤m≤2

ζm`

1− ζ−meψi
=

3e`ψi

1− e3ψi
− 1

1− eψi
,

where ζ = e
2πi

3 . Applying this to the above twisted codimension-1 contribution

and adding it to the untwisted part, we obtain

− ∑
m≥1

exp(−H(mi)

3 )Bm(
mi
3 )

m!
ψ

m−1
i ,

which is also the total contribution from a broad marked point. In other words, if

Am is the operator on Htw given by

Am =
2⊕

`=0

exp(−H(`)

3 )Bm(
`
3),

then the total codimension-1 contribution to ∂Dtw/∂sk in either the broad or nar-

row case is

− ∑
g,n,d

Qdh̄g−1

(n− 1)!

〈(
∑

m≥1

Am

m!
ψ

m−1

)
k

t, . . . , t; c(Rπ∗T )
〉

g,n,d

Dtw.
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4.2.4 Codimension 2

The same exact proof as in [20] shows that the untwisted codimension-2 con-

tribution to chk(Rπ∗T ) can be expressed as

1
2

π∗ι∗

(
ch(T |Z)
ψ+ + ψ−

(
1

eψ+ − 1
− 1

ψ+
+

1
2
+

1
eψ− − 1

− 1
ψ−

+
1
2

))
.

To determine the twisted part, we must calculate the invariant and moving

parts of ι∗Tπ. These can be computed by pulling back the Koszul resolution of the

normal bundle of Z in C to the double cover Z′ (Section 7.3.7 of [47]), yielding the

exact sequence

(4.7) 0→ L+ ⊗ L− → L+ ⊕ L− → ι∗Tπ → OZ′ → OZ′ → 0.

Since the isotropy group acts by −1 on both L+ and L−, it acts trivially on their

tensor product and nontrivially on their direct sum. Thus, in K-theory we have

ι∗Tinv
π = −(L+ ⊗ L−)∨

and

ι∗Tmov
π = L∨+ ⊕ L∨−.

By oGRR, then, we compute the twisted codimension-2 contribution to chk(Rπ∗T )

to be the degree-k part of the following:

2

∑
m=1

π∗(c̃h(T )T̃d(Tπ)|Z (m))

=
1
2

2

∑
m=1

π∗ι∗

(
e2πi mmnode

3
exp(−H(mnode)

3 )

ψ+ + ψ−

eψ++ψ− − 1
(1− ζ−meψ+)(1− ζmeψ+)

)

=
1
2

2

∑
m=1

π∗ι∗

(
exp(−H(mnode)

3 )

ψ+ + ψ−

(
ζmmnode +

ζmmnode

ζ−meψ+ − 1
+

ζmmnode

ζmeψ− − 1

))
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Here, mnode is the locally constant function on Z′ giving the action of the isotropy

group at the node on T . The identity (4.6) can again be applied to simplify this

expression; if mnode 6= 0, then we obtain

1
2

π∗ι∗

(
exp(−H(mnode)

3 )

ψ+ + ψ−

(
−1 +

3emnode

e3ψ− − 1
− 1

ψ+
+

3e(3−mnode)ψ−

e3ψ− − 1
− 1

ψ−

))
,

which when added to the untwisted codimension-2 contribution is

3
2

π∗ι∗

(
exp(−H(mnode)

3 )

ψ+ + ψ−

(
∑

m≥2

Bm(
mnode

3 )

m!
ψ

m−1
+ +

Bm(1− mnode
3 )

m!
ψ

m−1
−

))
.

In fact, the same holds, via a slightly different computation, when mnode = 0.

Adding this to the untwisted part and using the identity Bm(1− x) = (−1)mBm(x),

one finds that the codimension-2 contribution to ∂Dtw/∂sk is Dtw times

(4.8)
1
2 ∑

g,n,d

Qdh̄g−1

n!

〈
t, . . . ; π∗ι∗

[
∑

m≥2

3rnode Am
m!

ψ
m−1
+ +(−1)mψ

m−1
−

ψ++ψ−

]
k−1

〉tw

g,n,d

,

in which rnode is 1 if the node is broad and 3 if it is narrow.

The idea at this point is to apply the same argument as in Appendix 1 of [20] to

decompose (4.8) into a sum over the moduli spaces corresponding to the two sides

of the node. It is important to notice, however, that the relevant decomposition

property in this setting is slightly different. Namely, if D̃ denotes the locus in

M̃3
g,n(P

1, d) of curves with a separating node in which the two branches have

genera gi, ni marked points, and degrees di (for i = 1, 2), then

3rnode

(
3

deg(ρ)

∫
D̃

ev∗1(φ1)ψ
a1
1 · · · ev∗n(φn)ψ

an
n c(Rπ∗T )

)

=

(
3

deg(ρ)

∫
M̃3

g1,n1+1(P
1,d1)
· · · c(Rπ∗T )

)(
3

deg(ρ)

∫
M̃3

g2,n2+1(P
1,d2)
· · · c(Rπ∗T )

)
,

where the integrands on the right-hand side depend on which marked points lie

on which components in D̃ and in all cases the integral is against the pullback of
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the virtual class under ρ. The proof of this equality is an application of the projec-

tion formula, using the fact that if ρD = ρ|D̃, then in the case where the node is

narrow one has deg(ρD) =
1
3 deg(ρ) due to the presence of an additional “ghost”

automorphism acting locally around the node as (x, y) 7→ (ζx, y). An analogous

computation shows the decomposition property for nonseparating nodes.

In particular, the factor of 3rnode appearing in (4.8) also appears in the decom-

position property for twisted correlators, so (4.8) can be expressed as

1
2 ∑

g1,g2
n1,n2
d1,d2

Qd1+d2 h̄g1+g2−1

n1!n2! ∑
r,s,α,β

〈
t, . . . , t, qα

r φαψ
r
+; c(Rπ∗T )

〉
g1,n1+1,d1

×

〈
qβ

s φβψ
s
−, t, . . . , t; c(Rπ∗T )

〉
g2,n2+1,d2

Dtw

+
1
2 ∑

g,n,d

Qdh̄g−1

n! ∑
r,s,α,β

〈
t, . . . , t, qα

r φαψ
r
+, qβ

s φβψ
s
−; c(Rπ∗T )

〉
g−1,n,d

Dtw,

where the q’s are determined by the requirement that ∑
r,s,α,β

qα
r φαψ

r
+⊗ qβ

s φβψ
s
− equals

(
∑

m≥2

Am

m!
ψ

m−1
+ + (−1)mψ

m−1
−

ψ+ + ψ−

)
k−1

∧ (gαβφα ⊗ φβ)

and gαβ is the inverse of the matrix for the twisted Poincaré pairing.

By Appendix C of [47], this equals

h̄
2
(∂⊗Ck ∂)Dtw

for

Ck =
2⊕

`=0
∑

m≥1

Bm(
`
3)

m!
exp(−H(`)

3 )k+1−mzm−1.
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4.2.5 Putting everything together

The sum of the codimension-1 and nonexceptional codimension-0 contribu-

tions is

∑
g,n,d

Qdh̄g−1

(n− 1)!
〈t, . . . , t, (exp(ψn

3 ) exp(−H
3 )Td∨(Ln))k+1; c(Rπ∗T )〉•g,n,dDtw

(4.9) − ∑
g,n,d

Qdh̄g−1

(n− 1)!
〈t, . . . , t, exp(−H

3 )k+1

[
t(ψ)

ψ

]
+

; c(Rπ∗T )〉g,n,dDtw

− ∑
g,n,d

Qdh̄g−1

(n− 1)!

〈(
∑

m≥1

Am

m!
ψ

m−1

)
k

t, . . . , t; c(Rπ∗T )
〉

g,n,d

Dtw.

Using that

exp(−H
3 )k+1

[
t(ψ)

ψ

]
+
=

2⊕
`=0

exp(−H(`)

3 )k+1

(
t(ψ)− t0

ψ

)
and

∑
m≥1

Am

m!
zm−1 =

2⊕
`=0

exp(−H(`)

3 )

(
e
`
3 z

ez − 1
− 1

z

)
,

we find that the sum of the second two terms in (4.9) is Dtw times

− ∑
g,n,d

Qdh̄g−1

(n− 1)!

〈[(
∑0≤`≤2 exp(−H(`)

3 )e
`
3 ψ

eψ − 1

)
k

t(ψ)

]
+

, . . . ; c(Rπ∗T )
〉

g,n,d

.

Also, keeping in mind that 1 ∈ H∗1 (P
1), we find that the contribution from the

remaining codimension-0 nonexceptional term is equal to

(exp(ψ/3) exp(−H/3)Td∨(Ln))k+1 =

(
exp(−H

3 )e
1
3 ψ

eψ − 1
ψ

)
k+1

=

[(
exp(−H

3 )e
1
3 ψ

eψ − 1

)
k

1ψ

]
+

=

[(
∑0≤`≤2 exp(−H(`)

3 )e
`
3 ψ

eψ − 1

)
k

1ψ

]
+

.
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Therefore, the sum of the codimension-1 and nonexceptional codimension-0 terms

is Dtw times

− ∑
g,n,d

Qdh̄g−1

(n− 1)!

〈[(
∑0≤`≤2 exp(−H(`)

3 )e
`
3 ψ

eψ − 1

)
k

q(ψ)

]
+

, . . . ; c(Rπ∗T )
〉

g,n,d

and the computation in Example 3.3 of [18] (reproducing a previous computation

of Coates-Givental) shows that this equals −∂CkDtw for Ck as above.

Combining everything and using the explicit description of quantized opera-

tors that can be found, for example, in Section 3.2 of [18], we have proved that

∂Dtw

∂sk
=

1
2h̄

Ωtw((Ckq)(−z), q(z))− ∂CkDtw +
h̄
2
(∂⊗Ck ∂)Dtw = ĈkDtw,

which is part (a) of the proposition.

The proof of part (b) is nearly identical and somewhat simpler, since there is

only one nontrivial twisted sector associated to each marked point and to the di-

visor of nodes, so we omit it.

4.3 LG and GW I-functions

As in [11], [19], and [20], one can define a certain hypergeometric modifica-

tion Itw of the untwisted J-function in such a way that the family ∆−1 Itw(t,−z)

lies on the untwisted Lagrangian cone Lun; in light of the above, it follows that

Itw(t,−z) ∈ Ltw. When we take a nonequivariant limit λ → 0 and set the param-

eters sk as in (4.2), we will obtain a family lying on Lhyb, and in fact, this family

will determine the entire cone just as the hybrid J-function does.

As usual, we will define Itw only in the case of the cubic singularities, com-

menting only briefly on how to apply the same procedure to define Itw in the

other case.
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4.3.1 Setup in cubic case

First, decompose Jun according to topological types, as in [19]. The topological

type of an element of some M̃3
g,n(P

1, d) is the triple Θ = (g, d, i), where g is the

genus of the source curve, d is the degree of the map, and i = (i1, . . . , in) gives

the multiplicities of the line bundle at each of the marked points. Let JΘ be the

contribution to Jun from invariants of topological type Θ, and write

Jun(t, z) = ∑
Θ

JΘ(t, z),

where the sum is over all topological types.4

Let us also fix some notation, again mimicking [19]. Set

s(x) = ∑
k≥0

sk
xk

k!

for any x ∈ V+tw. For a multiplicity h ∈ {0, 1, 2}, let

D(h) =
1

∑
α=0

tα
0,(h)

∂

∂tα
0,(h)

denote the dilation vector field on H∗h (P
1), where for t = t0 + t1z + t2z2 + · · · ∈

HGW [[z]] we write

ti = ∑
0≤α≤1
0≤h≤2

tα
i,(h)φ

(h)
i .

with {φ(h)
i } denoting a basis for H∗h (P

1). Also, set

Gy(x, z) = ∑
k,m≥0

sk+m−1
Bm(y)

m!
xk

k!
zm−1

for y ∈ Q and x ∈ Htw, where z denotes the variable in Vtw, as usual.

For each topological type Θ, let in be the multiplicity that is equal modulo 3 to

−in. Set

NΘ =
−2 + n− d−∑n−1

j=1 ij

3
+

in

3
.

4The z + t term in Jun(t, z) should be understood as contributing to the unstable topological types corresponding to
(g, n, d) = (0, 1, 0) and (0, 2, 0).
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Note that this is an integer, since it equals either

−2 + n− d−∑n
j=1 ij

3
= deg(|L|)

or deg(|L|) + 1 depending on whether in is zero or nonzero. Thus, we can set

MΘ =

∏
−∞<m≤NΘ

exp
(

s(−H(in)

3 + (m− in
3 )z)

)
∏

−∞<m≤0
exp

(
s(−H(in)

3 + (m− in
3 )z)

)
Note that these definitions of NΘ and MΘ are direct generalizations of those ap-

pearing in [19], and the same proof shows that the properties in Lemma 4.5 and

equations (12) and (13) of that paper still hold.

4.3.2 Quadric case

The definitions of s(x) and Gy(x, z) remain unchanged in the case of the quadric

singularities, while the dilation vector field on H∗h (P
3) changes only in that the

summation runs over a basis for H∗(P3), so 0 ≤ α ≤ 3. As for NΘ, we should

now take in to be equal to −in modulo 2, which is the same as setting in = in. The

resulting definition is:

NΘ =
−2 + n− d−∑n−1

j=1 ij

2
+

in

2
.

Similarly,

MΘ =

∏
−∞<m≤NΘ

exp
(

s(−H(in)

2 + (m− in
2 )z)

)
∏

−∞<m≤0
exp

(
s(−H(in)

2 + (m− in
2 )z)

)
Once again, the necessary properties of these expressions follow direct from the

analogues in [19].
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4.3.3 Twisted I-function

In either of the two cases under consideration, define

Itw(t, z) = ∑
Θ

MΘ(z) JΘ(t, z).

The hybrid I-function will be defined by putting sk to the values in (4.2), taking

λ → 0, specializing to multiplicity-1 divisor insertions with no ψ classes, and

multiplying by a factor.

Theorem IV.1. (a) For the cubic singularity, define

Ihyb(t, z) = ∑
d≥0

d 6≡−1 mod 3

ze(d+1+ H(d+1)
z )t

36b d
3 c

∏
1≤b≤d

b≡d+1 mod 3

(H(d+1) + bz)4

∏
1≤b≤d

b 6≡d+1 mod 3

(H(d+1) + bz)2
,

where t = t + 0z + 0z2 + · · · ∈ V+hyb and t ∈ H2
1(P

1). Then the family Ihyb(t,−z)

of elements of Vhyb lies on the Lagrangian cone Lhyb.

(b) For the quadric singularity, define

Ihyb(t, z) = ∑
d≥0

d 6≡−1 mod 2

ze(d+1+ H(d+1)
z )t

28b d
2 c

∏
1≤b≤d

b≡d+1 mod 2

(H(d+1) + bz)4

∏
1≤b≤d

b 6≡d+1 mod 2

(H(d+1) + bz)4
,

where t ∈ H2
1(P

3). Then the family Ihyb(t,−z) of elements of Vhyb lies on the La-

grangian cone Lhyb.

Remark 4.3.4. These I-functions have expressions in terms of the Γ function, which

can be useful for computations– see Section 4.4.

Proof. The proof mimics that of Theorem 4.6 of [19]. We will begin by proving that

Itw(t,−z) lies on Ltw for the cubic singularity, and then show how to obtain Ihyb
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from Itw. As usual, everything we say will carry over to the quadric case with

only minor modifications, so we omit the proof.

Using equations (12) and (13) of [19], it is easy to check that

MΘ(−z) = exp
(

G0

(
−H(in)

3 + in
3 z, z

)
− G0

(
−H(in)

3 + ( in
3 − NΘ)z, z

))
= exp

(
G in

3

(
−H(in)

3 , z
)
− G0

(
−H(in)

3 + ( in
3 − NΘ)z, z

))
.

Furthermore,

∆ =
3⊕

`=0

exp
(

G `
3

(
−H(`)

3 , z
))

.

Given that ∆(Lun) = Ltw, the desired statement is equivalent to the statement

∆−1 Itw(t,−z) ∈ Lun. Using Lemma 4.5(1) of [19] and the above expression for

MΘ(−z), this is equivalent to

∑
Θ

exp
(
−G1

3

(
−H(in)

3 + d
3 z− ∑n−1

j=1 (1−ij)

3 z, x
))

JΘ(t,−z) ∈ Lun.

Now, we can write
∑n−1

j=1 (1− ij)

3
=

n0

3
− n2

3
,

and Lemma 4.5(2) of [19] says that n0 and n2 act on JΘ in the same way, respec-

tively, as D(0) and D(2). Furthermore, −H(in)

3 + d
3 z acts on JΘ in the same way as

does−z∇
− H(in)

3

. So if D = 1
3 D(0)− 1

3 D(2), we can re-express the desired statement

as

(4.10) exp
(
−G 1

3

(
z∇− H

3
− zD, z

))
Jun(t, z) ∈ Lun,

where H = H(0) + H(1) + H(2).

Denote the expression in (4.10) by Js(t,−z). To prove that Js(t,−z) ∈ Lun is to

show that

Ej(Js(t,−z)) = 0
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for all j, where Ej are the functions Vun → Hun given by

(p, q) 7→ pj − ∑
n,d,α,h

Qd

n!
〈t, . . . , t, ψjφ

(h)
α 〉un

g,n+1,dφα,(h).

This is proved exactly as in [19]— namely, by induction on the degree of the terms

in Ej(Js)(t,−z) with respect to the variables sk under the convention that sk has

degree k + 1.

The terms of degree 0 vanish, as such terms are constant with respect to the sk

and vanish when all sk are 0 because J0 = Jun. Assume, then, that Ej(Js(t,−z))

vanishes up to degree n in the variables sk. To show that it vanishes up to degree

n + 1, we will show that ∂
∂si

Ej(Js(t,−z)) vanishes up to degree n for all i. We have

∂

∂si
Ej(Js(t,−z)) = dJs(t,−z)Ej(z−1Pi Js(t,−z)),

where

Pi = −
i+1

∑
m=0

1
m!(i + 1−m)!

zmBm(0)(−z∆− H
3
− zD)i+1−m.

The inductive hypothesis implies the existence of an element J̃s(t,−z) ∈ Lun that

agrees with Js(t,−z) up to degree n in the sk, and hence satisfies

∂

∂si
Ej Js(t,−z) = d J̃s(t,−z)Ej(z−1Pi J̃s(t,−z))

up to degree n in these variables. It suffices, then, to show that the right-hand side

of this equation is identically zero, or in other words that

Pi J̃s(t,−z) ∈ zTJ̃s(t,−z)Lun = Lun ∩ TJ̃s(t,−z)Lun.

Let T = TJ̃s(t,−z)Lun. Breaking Pi up into a sum of terms of the form

Cza(z∇− H
3
)b(zD)c

for a coefficient C and exponents a, b, and c, it suffices to show that z, z∇− H
3

, and

zD all preserve zT. In the first case, this is because zT = Lun ∩ T ⊂ T and hence
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z(zT) ⊂ zT. In the second case, the operator ∇− H
3

is a first-order derivative and

hence takes Lun to T; it follows that ∇− H
3

takes zT = Lun ∩ T ⊂ Lun to T also,

and hence z∇− H
3

takes zT to zT. The same argument applies to the operator zD,

so this completes the proof that Itw(t,−z) ∈ Ltw in the cubic case.

Now suppose we set sk as in (4.2), so that c(−V) = eC∗(V∨)6, and take a limit

λ→ 0. It is easy to check via the Taylor expansion of the natural logarithm that in

the cubic case, we get

MΘ(z) =
∏

−∞<m≤0

(
H(in)

3 + ( in
3 −m)z

)6

∏
−∞<m≤NΘ

(
H(in)

3 + ( in
3 −m)z

)6 .

Restrict t to allow only those insertions in H2
1(P

1) with no ψ classes; in this case,

NΘ =
−d− 1

3
+

in

3
,

which is always nonpositive, and in ≡ d + 1 mod 3. Thus, we obtain

MΘ(z) = ∏
0≤b< d+1

3
{b}={ d+1

3 }

(
H(d+1)

3
+ bz

)6

,

where we use the convention H(h) = H(h mod 3) if h ≥ 3. Notice that if d + 1 ≡ 0

mod 3, then one of the factors in the above product is b = 0, in which case the

product is 0 because H2 = 0. Thus, MΘ(z) vanishes in these cases.5

Set t = t0 + 0z + 0z2 + · · · . Since untwisted invariants are essentially Gromov-

Witten invariants of P1, we can compute JΘ(t, z) explicitly in every case where Θ

corresponds to a nonempty component of the moduli space. Indeed, Givental’s

Mirror Theorem for P1 states that

1 + ∑
d,α

Qd
〈

φα

z− ψ
, 1
〉

0,d
φα = ∑

d
Qd 1

((H + z) · · · (H + dz))2 .

5In fact, we already knew that this had to be the case, because the fact that Itw(t,−z) ∈ Ltw implies that Itw(t, z) differs
from the small hybrid J-function by a change of variables, and the hybrid invariants vanish if any insertion is broad.
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Using the string and divisor equations, then, one can show that

∑
Θ with degree d

JΘ =
3ze(

H(d+1)
z +d)t

((H(d+1) + z) · · · (H(d+1) + dz))2
.

Since all Θ with the same degree yield the same MΘ, namely

MΘ =
1

36b d
3 c

∏
1≤b≤d

b≡d+1 mod 3

(H(d+1) + bz)6,

we obtain a formula for Itw(t, z). Writing Θ = (0, d, (1, . . . , 1)) (with k 1’s) and

taking Q→ 1 as is done in the Gromov-Witten setting, the formula is

Itw(t, z) = ∑
d≥0

d 6≡−1 mod 3

3ze(
H(d+1)

z +d)t

36b d
3 c

∏
1≤b≤d

b≡d+1 mod 3

(H(d+1) + bz)4

∏
1≤b≤d

b 6≡d+1 mod δ

(H(d+1) + bz)2
.

Multiplying by 1
3 et, which preserves Lhyb because it is a cone, gives the function

Ihyb of the statement. An analogous computation shows that the hybrid I-function

in the quadric case is as stated.

Equipped with an explicit expression for the hybrid I-functions and having

proved that they lie on the respective Lagrangian cones Ltw, we are finally ready

to prove the main theorem of the thesis:

Proof of Theorem I.1. We have shown that Ihyb(t,−z) lies on the Lagrangian cone

Lhyb. The property (4.1) implies that the J-function is characterized by the fact

that Jhyb(t,−z) ∈ Lhyb together with the first two terms of its expansion in powers

of z:

Jhyb(t,−z) = −1(1)z + t + O(z−1).

Using the formula for Ihyb(t, z), it is not difficult to show that it can be expressed

as

Ihyb(t, z) = ω
hyb
1 (t) · 1(1) · z + ω

hyb
2 (t) + O(z−1)
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for C-valued functions ω
hyb
1 and ω

hyb
2 . These can be calculated explicitly, but the

computation is tedious and not strictly necessary to prove the LG/CY correspon-

dence, so we relegate it to a separate section (Section 4.4).

Having obtained such functions ω
hyb
i , we have

Ihyb(t,−z)

ω
hyb
1 (t)

= −1(1) · z +
ω

hyb
2 (t)

ω
hyb
1 (t)

+ O(z−1),

and this still lies on Lhyb because it is a cone. So by the uniqueness property of

Jhyb, we have

(4.11)
Ihyb(t,−z)

ω
hyb
1 (t)

= Jhyb(t′,−z), where t′ =
ω

hyb
2 (t)

ω
hyb
1 (t)

.

This is the change of variables relating the hybrid I-function and J-function.

As for the symplectic transformation matching Ihyb with the analytic continu-

ation of IGW , the comments in the Introduction show that it is sufficient to prove

that the hybrid I-function assembles the solutions to the Picard-Fuchs equation

(4.12)

[(
ψ

∂

∂ψ

)4

− ψ−1
(

ψ
∂

∂ψ
− 1

3

)2(
ψ

∂

∂ψ
− 2

3

)2
]

F = 0

for the cubic singularity, where ψ = e3t, or[(
ψ

∂

∂ψ

)4

− ψ−1
(

ψ
∂

∂ψ
− 1

2

)4
]

F = 0

for the quadric singularity, where ψ = e2t. As usual, we prove only the first of

these statements.

Split Ihyb into two parts corresponding to the two narrow summands of Htw,
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changing the variable of summation in each:

Ihyb(t, z) = ∑
d≥0

ze(3d+1+ H(1)
z )t

36d

∏
1≤b≤3d

b≡1 mod 3

(H(1) + bz)4

∏
1≤b≤3d

b≡0,2 mod 3

(H(1) + bz)2

+ ∑
d≥0

ze(3d+2+ H(2)
z )t

36d

∏
1≤b≤3d+1

b≡2 mod 3

(H(2) + bz)4

∏
1≤b≤3d+1

b≡0,1 mod 3

(H(2) + bz)2
.

The claim is that, when we set ψ = e3t, each of these summands separately satisfies

(4.12) as a cohomology-valued function. For the first summand, let Ψd be the

contribution from d:

Ψd = z
ψd+ 1

3+
H(1)

3z

36d

∏
1≤b≤3d

b≡1 mod 3

(H(1) + bz)4

∏
1≤b≤3d

b≡0,2 mod 3

(H(1) + bz)2
.

By computing the ratio Ψd/Ψd−1, it is easy to check that

(
H(d+1)

3z + d− 2
3

)4
Ψd−1 = 36ψ−1

(
H(d+1)

3z + d
)2 (H(d+1)

3z + d− 1
3

)2
Ψd.

But the operator ψ ∂
∂ψ acts on Ψd by multiplication by

(
H(d+1)

3z + d + 1
3

)
, so the

above can be expressed as(
ψ

∂

∂ψ

)4

Ψd−1 = 36ψ−1
(

ψ
∂

∂ψ
− 1

3

)2(
ψ

∂

∂ψ
− 2

3

)2

Ψd.

It follows that if one applies the Picard-Fuchs operator in (4.12) to the first sum-

mand of Ihyb(t, z), all but possibly the Ψ0 summand will be annihilated. In fact,

though, it is easy to see using the fact that H2 = 0 that Ψ0 is also killed. Thus,

the Picard-Fuchs equation holds for this summand, and an analogous argument

proves the same claim for the second summand.
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4.4 Explicit mirror map

In order to explicitly compute the change of variables (4.11), it is necessary to

find the coefficients of z1 and z0 in Ihyb(t, z). Let us do this first in the cubic case.

Using the identity

z`
Γ(1 + x

z + `)

Γ(1 + x
z )

=
`

∏
k=1

(x + kz),

one can rewrite Ihyb as

z ∑
d≥0

d≡−1 mod 3

e(d+1+ H(d+1)
z )tz−6〈 d

3 〉
Γ(H(d+1)

3z + d
3 +

1
3)

6

Γ(H(d+1)

3z + 〈 d
3 〉+

1
3)

6

Γ(H(d+1)

z + 1)2

Γ(H(d+1)

z + d + 1)2
.

It is easy to see from here that the only terms that contribute to the coefficient

of either z1 or z0 are those with d ≡ 0 mod 3. In particular, if we expand the

function

F(η) = ∑
d≥0

d≡0 mod 3

e(d+1+η)t Γ( η
3 + d

3 +
1
3)

6

Γ( η
3 + 〈 d

3 〉+
1
3)

6

Γ(η + 1)2

Γ(η + d + 1)2

in powers of η, then

ω
hyb
1 (t) = F(0) = ∑

d≥0
e(3d+1)t Γ(d + 1

3)
6

Γ(1
3)

6Γ(3d + 1)2

and

ω
hyb
2 (t) = F′(0) = ∑

d≥0
e(3d+1)t Γ(d + 1

3)
5

Γ(1
3)

6Γ(3d + 1)2

(
2Γ′(d + 1

3) + 2Γ(d + 1
3)ψ(1)

−2Γ(d + 1
3)ψ(

1
3)− 2Γ(d + 1

3)ψ(3d + 1) + tΓ(d + 1
3)

)
,

where ψ is the digamma function, the logarithmic derivative of Γ.

The same argument shows that in the quadric case, one has

ω
hyb
1 (t) = G(0) = ∑

d≥0
e(d+1)t (2d)!8(2d + 1)!4

48dd!8
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and

ω
hyb
2 (t) = G′(0) = ∑

d≥0
e(d+1)t Γ(d + 1

2)
6

Γ(1
2)

8Γ(2d + 1)4

(
4Γ′(d + 1

2) + 4Γ(d + 1
2)ψ(1)

−4Γ(d + 1
2)ψ(

1
2)− 4Γ(d + 1

2)ψ(2d + 1) + tΓ(d + 1
2)

)
,

where

G(η) = ∑
d≥0

d≡0 mod 2

e(d+1+η)t Γ( η
2 + d

2 +
1
2)

8

Γ( η
2 + 1

2)
8

Γ(η + 1)4

Γ(η + d + 1)4 .

4.5 The genus-zero correspondence

It follows from Theorem I.1 that Ihyb and the analytic continuation of IGW to the

ψ-coordinate patch are both comprised of bases of solutions to the same differ-

ential equation, so they are related by a linear transformation U performing the

change of basis. From here, the genus-zero LG/CY correspondence as stated in

Corollary 1.5.1 needs just one more observation: all of the correlators defining the

Lagrangian cone Lhyb are determined via the string equation, dilaton equation,

and dimension constraints from the correlators appearing in the small J-function.

This relies on the Calabi-Yau condition and the resulting simplification of the vir-

tual dimension formula.

For example, in the quartic case, one must have m1 = . . . = mn = 1 to obtain

nonzero correlators, in which case

vdim(M̃2
0,(1,...,1)(P

3, d)) = n

by formula (3.7). Thus, a correlator 〈τl1(α1) · · · τln(αn)〉hyb
0,n,d can only be nonzero if

degC(αi) + li = 1 for some i. If degC(αi) = li = 0, then one can apply the string

equation to reduce the number of marked points. If degC(αi) = 0 and li = 1,

then the dilaton equation will also reduce the number of marked points. The only
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remaining possibility is that degC(αi) = 1 and li = 0, so αi comes from the (real)

degree-two part of the state space. By repeatedly applying this argument, one can

ensure that all but at most one of the insertions has degree two with no ψ classes,

which is precisely the type of correlator appearing in the small J-function.

Thus, the entire Lagrangian cone Lhyb is determined by the small J-function, so

Theorem I.1 implies that it is determined by the I-function. An analogous com-

putation, using the fact that vdim(M0,n(XW , d)) = n for a Calabi-Yau complete

intersection XW , shows that LGW is determined by IGW . Since U takes Ihyb to the

analytic continuation of IGW , it follows that U takes Lhyb to the analytic continu-

ation of the Lagrangian cone LGW . This proves Corollary 1.5.1, establishing the

genus-zero LG/CY correspondence.
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