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CHAPTER I 

 

Introduction 

 

 

The objective of this research was to characterize damage progression – from crack initiation 

to final failure – in ceramic matrix composites (CMCs) by addressing (1) when (with respect to 

stress-strain behavior) and where (with respect to microstructure) cracks initiate; (2) the 

influence of microstructural parameters on crack propagation and accumulation; and (3) the 

appropriate characterization of toughness in these materials. Since damage in CMCs evolves in 

stages spanning several length scales, a multi-scale approach was adopted. Scanning electron 

microscopy was used to investigate crack initiation and propagation at microscopic length scales 

during the early stages of damage. Macroscopic imaging was used to investigate crack 

accumulation at large length scales during the latter stages of crack propagation. Each length 

scale revealed unique information about damage evolution, demonstrating the critical need for 

multi-scaling in a comprehensive damage analysis.    

1.1 Ceramic Matrix Composites 

A ceramic matrix composite (CMC) is a combination of a ceramic material (matrix) with 

a reinforcing phase, which is often another ceramic. The reinforcing phase can vary by geometry: 

examples are short fiber, whisker, and particulate. The matrix phase can vary by microstructure: 

examples are fully dense or intentionally porous. Both phases may vary by chemical 

composition/structure; oxide ceramic, non-oxide ceramic and glass are common CMC 
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components. The combination of parameters utilized – geometry, microstructure, and chemical 

composition – is driven by the engineering application of the composite. For example, 

continuous fiber reinforcements are impractical for applications that require small, complex 

shapes. This research is concerned only with CMCs reinforced with long, continuous ceramic 

fibers for use in high-temperature, structural applications. The material investigated was 

composed of silicon carbide (SiC) fibers coated with a boron nitride (BN) based interphase and 

immersed in a melt-infiltrated silicon/silicon carbide matrix. For brevity, they are referred to as 

SiC/SiC CMCs.  

Continuous fiber CMCs are desirable for high-temperature, structural applications 

because they possess excellent thermal properties (high-melting temperature, low thermal 

expansion) and respectable mechanical properties (high strength, high toughness). These 

properties may seem counterintuitive, as CMCs are composed of brittle monolithic ceramics with 

stochastic tensile strengths. A monolithic ceramic test specimen under a tensile load will fail 

when a sufficiently large flaw initiates a crack that unstably propagates through the gage section.  

Unlike monolithic ceramics, however, damage and failure in continuous fiber CMCs do not 

result from the propagation of a single crack. Instead, small cracks initiate throughout the matrix 

because shear at the fiber-matrix interface facilitates the transmission of applied load to the 

fibers. In the vicinity of a matrix crack, load is shed from the matrix to the fiber. Each crack 

grows stably until the matrix is saturated and no more matrix cracks develop. Because cracks 

flood the matrix prior to failure, a CMC can exhibit nominal strains that are orders of magnitude 

larger than its monolithic counterpart and, like a metal, it can exhibit non-linear deformation and 

non-catastrophic failure.  

The high toughness and non-linear deformation of continuous fiber CMCs result from a 

weakly bonded fiber-matrix interface. The fiber coating in the SiC/SiC system has a lower elastic 

modulus and lower tensile strength than both the fiber and matrix. This produces a weak fiber-

matrix interface that encourages cracks to propagate around fibers rather than through them, a 

phenomenon called crack deflection. Crack deflection allows fibers in the wake of crack to 

remain intact and exert fiber bridging tractions that prevent the crack from growing unstably. 

Above and below the fracture plane, portions of the fiber-matrix interface debond; the length 



3 
 

over which the interface debonds is known as the debond length. As a fiber is stretched, portions 

along the debond length slide against the matrix, dissipating energy as a result of frictional shear.  

Thus far two mechanisms of crack resistance have been discussed – crack deflection and 

frictional sliding. The toughness of CMCs is attributed to these mechanisms, as well as 

widespread cracking. This is best illustrated using the example of a unidirectional laminate 

loaded in tension with fibers oriented in the loading direction. As load is applied, the composite 

first deforms elastically, with deformation becoming non-linear at or after matrix crack initiation. 

Periodically spaced matrix cracks accumulate throughout the gage length of the laminate 

(generally oriented normal to the loading direction) up to a point of saturation, which is 

characterized by uniformly spaced matrix cracks. Fibers eventually fracture with continued 

loading; the distance between the fiber fracture location and the nearest crack plane is called the 

pullout length. Frictional sliding along this length dissipates energy, allowing for graceful 

failure.  

1.2 Background and Motivation for Damage Characterization 

At the present time, CMCs are ending a decades-long period of development and entering 

an ambitious new phase of application in commercial gas-turbine engines. Understandably, CMC 

manufacturers are protective of the innovative techniques they have developed to process and 

characterize (chemically and mechanically) these materials. It is for this reason that quantitative 

information and discussions of material processing and composition cannot be presented in this 

dissertation. General discussions of processing of SiC/SiC CMCs can be found in [1-4]. A 

review of early work characterizing damage and toughness in CMCs is discussed in the chapters 

that follow. Here I present a brief review of recent studies of melt-infiltrated SiC/SiC ceramic 

matrix composites and discuss the importance of understanding damage mechanisms in these 

materials. 

The material investigated was a melt-infiltrated (MI) SiC/SiC composite composed of 

SiC fibers, coated with boron nitride and embedded in a siliconized SiC matrix. In the melt-

infiltration process, a fiber preform is immersed in liquefied silicon, which reacts with carbon 

and organic binders in the preform to create a Si-SiC matrix. There are two methods of creating 

melt-infiltrated SiC/SiC CMCs, referred to in literature as prepreg and slurry casting. In prepreg 
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CMCs, SiC fibers are coated with BN via chemical vapor deposition, then run through a matrix 

slurry containing SiC, carbon, binders and solvents, before being wound into unidirectional 

preform tapes [1]. The tapes can be stacked to form a desired laminate architecture before being 

densified through infiltration of molten silicon. The silicon reacts with carbon in the preform to 

form a Si-SiC matrix. Slurry casting, on the other hand, involves infiltration of woven fiber 

preforms. Fibers in contact can fail simultaneously under load, weakening the composite. The 

prepreg method results in a more uniform distribution of fibers and a composite that exhibits 

comparable tensile strength as a slurry cast composite but with much fewer fibers, making it the 

more desirable method [1-2]. Further information on the two processes and mechanical 

performance of the two types of CMCs can be found in [1]. 

The fiber coating, or interphase, greatly influences the strength and toughness of the 

composite. Not only does the BN coating permit matrix crack deflection, which activates energy 

dissipating mechanisms that toughen the ceramic matrix, but it protects the fiber from chemical 

attack both during processing and when thermomechanically loaded in hot and humid 

environments [2]. If combustion gases penetrate the coating through a matrix crack, the SiC fiber 

may form a performance-degrading silica layer that can cause the fiber to chemically bond to the 

matrix [5] such that it can no longer deflect matrix cracks. Similarly, fibers in close contact may 

bond to each other if the coating that separates them reacts with oxygen to create liquid boria, 

resulting in simultaneous (rather than sequential) failure of both fibers [5]. Thus, the BN coatings 

provide protective barriers that can delay fiber attack. Furthermore, it has been shown that 

debonding at the coating-matrix interface leads to higher ultimate tensile strengths, higher failure 

strains and longer stress-rupture times [5-6]. For these reasons, debonding of the coating-matrix 

interface is preferred over debonding of the fiber-coating interface. Clearly the coating serves a 

vital role in toughening fibrous SiC/SiC CMCs. Consequently, investigation of damage evolution 

in coatings is a major component of this dissertation. 

In addition to energy dissipating effects along the fiber-matrix interface, fibrous CMCs 

exhibit tough, non-linear loading as a result of matrix crack accumulation. Understanding when 

and where matrix cracks initiate is critical to characterize damage evolution in an oxidizing 

combustion environment. Matrix cracks introduce pathways for oxygen to diffuse into the 

composite’s interior, which cause strength degradation [7-8]. Acoustic emission techniques have 
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been used to identify when cracks develop with respect to the state of stress in the material [7-9]. 

It was found that matrix cracks initiated in transverse lamina and unreinforced matrix regions of 

woven MI SiC/SiC CMCs [7]. Although dependent on composite architecture, interfacial shear 

stress, and elastic modulus, crack initiation (as detected by acoustic events) fell within a global 

strain range of about 500 to 1000 µε [7]. These findings suggest the load-bearing longitudinal 

fibers are protected from oxygen ingress in the early stages of loading. A similar acoustic 

emission study of woven MI SiC/SiC CMCs demonstrated that crack behavior varies with stress; 

microcracking dominates at low stresses (beginning with crack initiation in transverse plies 

occurring around 75 MPa) whereas through-thickness matrix cracks dominate at higher stresses 

(above the deviation from linearity in stress-strain curves) [8].  

The SiC/SiC system is a prime candidate for gas-turbine engine applications because it is 

lightweight, low porosity, strong at high temperature, tough, has low thermal expansion, is a 

good heat conductor, and is stable at high temperatures [1-2]. Furthermore, it has good shock, 

creep and oxidation resistance relative to other CMCs [1]. Their effectiveness as hot-section gas-

turbine engine components has been demonstrated in several studies [10-12]. It is well-

established that SiC/SiC CMCs are damage tolerant and exhibit graceful failure [2]; however, 

more comprehensive damage characterization is necessary to ensure that the material will safely 

perform under rigorous design specifications. While damage analyses of continuous fiber 

composites have been conducted for several decades [13-20], some of these analyses have been 

devoted to investigations of damage at the constituent length scale [18-20], but none have 

comprehensively characterized damage with sub-micron spatial resolution. Acoustic emission 

tests [7-9] can determine when matrix cracks initiate with respect to stress-strain behavior; 

however, they cannot pinpoint crack location with spatial resolution fine enough to detect 

damage in individual constituents. Acrylic replica testing [18] can detect positions of cracks on 

the surface of the material, but its ability to identify fine cracks at stresses well below the 

proportional limit (PL) is questionable (note that the proportional limit is defined in this work as 

the stress at which strain deviates from linear loading by 0.005%). It also requires that loading be 

temporarily interrupted as the replica cures, and thus cannot capture dynamic crack behavior. To 

the best of our knowledge, neither acoustic emission nor acrylic replica testing has been able to 

identify damage in coatings at low stresses. More sophisticated techniques are necessary to 
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determine when and where damage initiates and how it evolves during thermomechanical 

loading.  

Full-field deformation measurement techniques, such as digital image correlation (DIC), 

provide a reliable means of measuring damage at multiple length scales. DIC is length scale 

independent, meaning that sub-micron damage can be detected if images are captured at a 

sufficiently high magnification (as in scanning electron microscopy). Interrupted loading is 

necessary at microscopic length scales because of the raster-scan nature of electron microscopy, 

making it impossible to capture real-time crack advance. However, dynamic crack propagation 

and damage accumulation can be capture with DIC at larger length scales. This provides the 

capability to comprehensively characterize damage at all stages of evolution. 

This thesis investigates damage evolution at multiple length scales: constituent, lamina 

and laminate. Scanning electron microscopy and DIC are used to characterize crack initiation 

and propagation at the constituent and lamina length scales. Since the SiC/SiC CMCs are 

intended for use in ambient and high temperature environments, damage is investigated at 

ambient temperature and at 795° C. Damage is also investigated at the macroscale using digital 

cameras and lenses, with a focus on characterizing crack accumulation at and above the 

proportional limit. Damage behavior observed at each length scale is compared and contrasted. 

1.3 Organization 

Chapter II discusses techniques used to create DIC tracking patterns that maintain fidelity 

under thermo-mechanical loading. Chapter III examines toughening mechanisms in notched 

CMCs loaded in tension at 795°C. It addresses the challenges of in-SEM testing at elevated 

temperatures and the special considerations that need to be taken when interpreting DIC data 

from CMCs. Chapter IV presents a method of numerically computing toughness in CMCs using 

the J-integral. Techniques for reducing the impact of data variability on measurements of J are 

discussed. Traction-separation laws for unidirectional and cross-ply laminates are generated from 

J-derived resistance curves. Chapter V combines surface DIC data with post-test fractography to 

gain a three-dimensional perspective of crack behavior and identify factors that promote local 

crack initiation and propagation. Chapter VI examines damage evolution at the microscale and 

macroscale. It compares and contrasts the capabilities and limitations of both length scales and 
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discusses the significance of multi-scale analyses in characterizing damage in CMCs. Chapter 

VII summarizes significant findings and suggests ways to improve multi-scale experimental 

damage analyses. 
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Chapter II 

 

Techniques for Generating Tracking Patterns for Digital Image 

Correlation at Microscopic Length Scale 

 

 

2.1 Introduction 

Work in this dissertation relied heavily on the use of digital image correlation for 

measuring full-field deformation in thermo-mechanically loaded ceramic matrix composites. 

Under large applied loads, elastic deformation in the stiff ceramic constituents was very small 

(failure strains in SiC can be below 1000 µε), so maximizing the spatial resolution of 

deformation measurements was a necessity. Since DIC is independent of length scale, nano-scale 

deformations could be measured so long as the speckles of the tracking pattern were sufficiently 

small; nanoparticle (NP) tracking patterns were developed for sub-micron measurements.  

In addition to microscopic experimentation, macroscopic experimentation investigated 

widespread crack accumulation in CMCs. Nanoparticle speckles were unresolvable at 

macroscopic (> 1 mm) fields of view (FOV), so patterns were created with paint. The sections 

that follow discuss techniques for applying quality tracking patterns to mechanical test 

specimens at macroscopic length scales and microscopic length scales. Subsequent chapters 

address digital image correlation patterns; all were generated using the techniques described in 

Sections 2 and 3 of this chapter. 

Digital image correlation is a non-contact method of measuring deformation fields 

(displacement, rotation and strain) on the surface of a material. It accomplishes this by tracking 
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deformation in fiducial markers applied to a region of interest on the material. This requires that 

images are captured before and after mechanically loading the material. If a single imaging 

sensor is used, only in-plane deformation can be measured. If two imaging sensors are used, out-

of-plane deformation can be measured as well. A comprehensive review of the technique is 

provided in [1]. A brief discussion of DIC fundamentals is presented here to familiarize the 

reader with its capabilities and limitations. 

DIC discretizes a digital image of a reference surface (captured prior to mechanical 

loading) into an array of square sub-images (or subsets), then uses an iterative algorithm to 

identify the equivalent sub-images in digital images captured during or after deformation. The 

subsets need to be unique, such that any given subset in the reference image corresponds to only 

one subset in the deformed image. This often requires a tracking (or speckle) pattern to be 

applied to the surface that is imaged. The speckle pattern must be isotropic (no preferred spatial 

orientation) and non-periodic to prevent erroneous image registration [1]. Furthermore, the 

dimensions of each subset must be large enough that it samples several unique speckles, and 

each speckle must be large enough that is samples enough image pixels to be distinguishable 

from other speckles [1, 2]. Speckles that contain too few pixels can introduce aliasing, which 

manifests as noise in the deformation fields that resembles Moiré patterns [2]. It has been shown 

that speckle patterns that produce the most accurate correlations generally require that each 

speckle encompasses three by three pixels of a pixilated image [3]. 

The image matching algorithm works by determining the rigid body displacements, 

rotations, and deformation gradients that minimize a normalized cross-correlation function [1] 

     
∑  

√    
        (1) 

where    is the cost function, F represents grey-scale intensities of the reference image and G 

represents grey-scale intensities of the deformed image. Under complex deformation, a subset in 

the deformed image can take on a significantly different shape than its equivalent subset in the 

reference image; hence, polynomial shape functions are used to characterize the grey-scale 

intensity patterns of each subset [1]. The shape functions are essentially low-pass filters of the 

underlying displacement fields; thus, spatial resolution is constrained by the size of the subset 

[1]. Speckle patterns that permit small subsets are necessary to maximize spatial resolution of the 
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deformation fields. In many cases, changes in lighting and environmental effects may alter the 

grey-scale intensities in the deformed images. Scanning electron microscope images, for 

example, may brighten from one image to another as a result of specimen charging or darken as 

volatilized organic contaminants deposit on the surface. In these cases, the zero-mean normalized 

sum of squared differences (ZNSSD) is used in lieu of the normalized cross-correlation function 

as it is insensitive to scaling or shifts in grey-scale values [1]: 

      
    ∑ (

∑  ̅  ̅ 

∑  ̅ 
     ̅

∑  ̅  ̅ 

∑  ̅ 
 )       ̅))      (2) 

 The power of DIC is that it can resolve displacements with spatial resolution as low as 

0.01 pixels [1]. To achieve sub-pixel accuracy, the cost function is evaluated at non-pixel 

locations, which requires interpolating grey-scale values between pixels [1]. Interpolation can 

introduce error in the form of bias [1, 4]. It has been found, however, that this error is small (as 

small as 1/200
th

 of a pixel) for high-coefficient interpolation filters [1]. Gaussian noise in digital 

images also generates measurement bias; the magnitude of the error is dependent on the intensity 

of the noise [1, 2]. There exists a tradeoff between spatial resolution and accuracy; this tradeoff 

is regulated through optimization of DIC processing parameters (subset size, step size (i.e. the 

amount of subset overlap) and strain filters).  Studies have shown that smaller subset sizes offer 

better spatial resolution but introduce more error while smaller step sizes also improve resolution 

but generate noise [3, 5]. Taking derivatives of noisy displacement data to obtain strain results in 

large strain errors. It has been shown that applying a strain filter 150% of the subset size offers 

an optimum value of spatial resolution and accuracy [3].  

SEM images introduce additional sources of error, namely spatial and temporal 

distortion. Calibration techniques have been developed to identify and remove distortion 

associated with pixel drift from SEM raster scans and spatial distortion from the magnetic lenses 

[6-9]. The process of conducting DIC with SEM images has been termed SEM-DIC. With the 

exception of images collected at elevated temperatures (time at temperature did not permit 

collection of calibration images), distortion was removed using code developed in-house [9] or 

DIC software (VIC-2D) in the work presented throughout the dissertation.  

A major challenge of using DIC to measure strain fields in stiff materials like SiC is 

distinguishing bias (Gaussian noise, interpolation bias and aliasing) from real deformation. For 
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DIC measurements on the stiff materials tested in this work, strain errors often fell within the 

range of ± 1000 µε. Failure strains in monolithic ceramics like SiC fall within this noise window. 

At discontinuities in the material, DIC mistakenly reports unrealistically large strain magnitudes. 

For the case of cracks in stiff ceramics, DIC-measured strain in the vicinity of a crack faces may 

be orders of magnitude larger than the actual strain. The intensity of this strain error increases as 

the crack opening increases. The algorithm loses correlation in the vicinity of the crack faces if 

the crack opening grows too large. An example of a strain field in a CMC is provided in Figure 

2.1. Strain magnitudes are color-coded; magenta indicates strain values around zero while red 

indicates strain values much larger than the fracture strain of monolithic SiC. In Figure 2.1 (a), 

the stain fields have been filtered to remove noise. In Figure 2.1 (b), a smaller strain filter is 

applied, increasing spatial resolution but introducing bias. The sections that follow discuss 

techniques to generate DIC speckle patterns that produce high spatial resolution measurements 

that minimize bias. 
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Figure 2.1  Longitudinal strain fields captured with DIC at the tip of an edge notch CMC tensile 

coupon loaded vertically in the plane of the page. Strain magnitudes are color-coded; magenta 

indicates strains at or around zero, while red indicates strains orders of magnitude larger than the 

fracture stain. In (a), the strain fields have been filtered to remove noise at the expense of 

significantly reducing spatial resolution. In (b), the strain filter has been reduced, which results in 

bias that manifests as localized fluctuations in color from blue to purple. Although noisier, the 

higher spatial resolution of (b) provides a more accurate depiction of damage behavior in the 

material. 

2.2 Speckle Patterns for DIC at Macroscopic Length Scales 

The macroscopic length scale was characterized as having a field of view larger than 1 mm. 

At this scale, quality tracking patterns were obtained with an airbrush and paint. To ensure 

accurate measurement and avoid systematic errors that can occur in DIC (e.g. aliasing [2]), 

patterns were used only when they met several constraints, many of which are well established in 

DIC literature [1-3]: 

1. speckles diameters at least three image pixels in diameter (image resolution governed 

speckle size in physical space) 
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2. high contrast between speckles and background 

3. random but uniform distribution of speckles 

4. number of speckles per unit was high enough to use small DIC subsets, but low enough 

to provide high contrast under incandescent light 

Regarding the fourth constraint, larger speckles generally required a larger subset size, which 

reduced spatial resolution of the deformation measurements. A major challenge of patterning 

was to obtain a pattern that provided the greatest spatial resolution (this was true irrespective of 

length scale) and still provided sufficient contrast while meeting the three-pixel rule.  

Macoscopic speckle patterns were composed of black paint droplets (Golden Artist 

Colors, carbon black) on a white paint backdrop (Golden Artist Colors, titanium white). To 

ensure the speckles met the three-pixel criteria, they were measured using an optical microscope 

(Olympus BX51M) with an attached digital camera (Olympus UC50).  Note that the image 

resolution of the imaging device used for evaluating pattern quality must be the same as that 

used for experimentation. Paint droplets often overlapped, producing larger paint agglomerates. 

This was desirable for DIC, as the imperfect shapes formed by overlapping droplets made subset 

recognition easier.  

An Iwata Custom Micron-b airbrush was used to apply macroscopic patterns. For the 

smallest fields of view (1 mm), the black paint was diluted with a 1:1 ratio of distilled water and 

black paint; this was necessary to obtain small paint droplets (in physical space, droplets were 

between 10 and 50 µm in diameter). The paint brush was positioned perpendicular to the surface 

of the sample, 8 to 12 inches away. Air pressure was set to 60 psi and the flow rate was set to the 

lowest level (the flow rate knob was position half way between 0 and 1 on the Iwata Custom 

Micron-b). Figure 2.2 (a) shows an example pattern for an FOV slightly larger than 1 mm.  
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Figure 2.1  Speckle patterns for macroscopic DIC. Both patterns were created using paint and an 

airbrush. The black paint was dilute with water (1:1) to reduce speckle size. The FOV of (a) is 

smaller that of (b). For both patterns, the smallest attainable subset size was 41 x 41 pixels.  

The paint did not require dilution for FOVs larger than 1 mm. The flow rate was increased (level 

3 on the Iwata Custom Micron-b) and air pressure reduced (30 psi) to account for higher 

viscosity. Figure 2.2 (b) shows a pattern for an FOV several millimeters wide. 

2.3 Speckle Patterns for DIC at Microscopic Length Scales 

Patterns at microscopic length scales were designed exclusively for use in scanning 

electron microscope imagery; this encompassed fields of view below a millimeter. Digital Image 

Correlation, in conjunction with high-magnification images of CMCs loaded in-situ in an SEM, 

provided a means of measuring full-field strains and displacements in CMCs at spatial 

resolutions on order of their microstructure. High contrast, randomly dispersed, and isotropic 

tracking patterns were developed using three methods: (1) nanoparticle self-assembly, (2) 

nanoparticle (NP) drop casting, and (3) electron beam (e-beam) lithography.  NP self-assembly 

was used for FOVs below 100 µm and when control of the pattern’s location on the tensile 
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coupon was not a priority. NP drop casting was used for FOVs greater than 100 µm and when 

control of pattern location was a high priority (such as the tip of a notch).  

Although a procedure for generating e-beam lithography patterns for FOVs below 100 

µm was developed, e-beam patterns were not used in any mechanical tests because they were 

more costly and time consuming than NP patterning. However, the procedure is discussed 

because e-beam lithography may be the only possible way of developing very fine (FOVs less 

than 100 µm) patterns that maintain fidelity at high-temperature. Tungsten carbide nanopowder, 

for example, has a small thermal expansion coefficient and does not react with SiC carbide at 

temperatures above 800°C, making it excellent for high-temperature speckle patterns. However, 

it agglomerates too severely for small FOV patterns using the techniques discussed in this 

dissertation. E-beam lithography, which can create patterns with a wide range of high-

temperature metals and ceramics, would then be necessary.  

Surface finish greatly influenced the quality of the speckle patterns. NPs tended to 

agglomerate in scratches and other large defects, reducing the overall speckle density and 

introducing regions of sparse particle distribution as well as regions of severe agglomeration.  E-

beam patterns were particularly sensitive to surface topography; significant variations in 

topography resulted in incomplete or excessively dense patterns.  Before patterning, the CMC 

surfaces were polished to sub-micron finishes. The specimens were first lapped with a 10 µm 

metal-bonded diamond disc (purchased from 3M) to remove large grooves. Then they were 

polished with 9, 3 and 1 µm diamond polishing pastes (Buehler MetaDi) on firm polishing cloths 

(Buehler TexMet) until a sub-micron finish was attained. Lapping pressures and times were in 

accordance with Buehler’s polishing guide for CMCs [10]. 

2.3.1 Nanoparticle Deposition by Self-Assembly 

NP self-assembly was the preferred deposition technique when uniform coverage of the 

entire gage section of a tensile coupon was required. Self-assembled patterns covered every 

surface of the coupon; however, the dispersion of particles was patchy – some patches were 

densely populated with particles, some were sparsely populated. This method guaranteed that a 

good pattern could be located somewhere on the coupon, but there was no guarantee that a good 
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pattern would assemble in a pre-determined location. If control of the pattern location is 

mandatory, drop casting is the better technique. 

Silane patterning was conducted using a technique reported by Kammers [11]. After 

polishing, samples to be patterned were placed in an ultrasonic cleaner for 30 minutes to remove 

polishing residue; this was followed by rinses in methanol and deionized water. The samples 

were then immersed in a vial containing one part silane (3-

mercaptopropyl)methyl)dimethoxysilane) and four parts methanol for 24 hours. Upon removal, 

they were rinsed in a bath of methanol that was agitated with a magnetic stir rod for 60 minutes 

(the bath was replaced with fresh methanol after 30 min) to remove excess silane. This was 

followed by an identical rinse using deionized water. The samples were then placed in a vial of 

nanoparticles (NP size depended on FOV; 40 nm Au colloid was used for 50 µm FOV). 

Functional groups in the silane attach to Au NPs, promoting self-assembly [12, 13].  After 24 

hours, the samples were removed from the vial, rinsed with deionized water, and gently dried 

with low pressure air. The pattern density was inspected with an optical microscope. If the NP 

dispersion was sparse, the entire patterning process was repeated (minus ultrasonic cleaning) to 

increase the density of the pattern. 

Figure 2.3 shows an example of a self-assembled NP pattern on a SiC/SiC CMC imaged 

under an optical and scanning electron microscopes. 40 nm Au nanoparticles were used to 

construct the 50 µm FOV pattern.  
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Figure 2.3  Self-assembled 40 nm Au speckle patterns applied to SiC/SiC CMC. 50 µm FOVs 

are shown for equivalent locations using optical microscopy and scanning electron microscopy in 

secondary electron mode. Arrows point to equivalent locations of an NP agglomerate. 

2.3.2 Nanoparticle Deposition by Drop Casting 

Drop casting was used when control of the location of the pattern was required, such as at 

the tips of edge-notches. The technique was adopted from work done by Kammers [14]. Drop 

cast patterns were generated by depositing small (~1mm) beads of colloidal nanoparticles on the 

surface of a substrate using a micropipette (pipette sizes ranged from 0.5 µL to 25 µL depending 

on required surface coverage). This method was used for FOVs ranging from 250 to 500 µm and 

required larger NP colloids (100 to 150 nm). Figure 2.4 shows examples of Au NP drop cast 

patterns at high and low magnifications. Figure 2.4(a) was captured from the center of a drop 

cast pattern deposited on a SiC substrate. Figure 2.4(b) is a low magnification image of a pattern 

that was drop cast on the edge-notch of a SiC/SiC tensile coupon; it was designed for a 250 µm 

FOV.  



19 
 

 

Figure 2.2  Drop cast Au (150 nm) speckle patterns deposited on SiC substrates. The image in 

(a) was captured at the interior of the pattern. A low-magnification image of a drop cast pattern 

surrounding an edge notch is shown in (b). Both patterns were designed for 250 µm FOVs.  

The speckle patterns of Figure 2.4 have sufficient contrast, randomness, and uniformity 

for DIC. To get this uniformity, a dispersant was added to the NP suspension prior to drop 

casting. In the absence of a dispersant, the nanoparticles tend to migrate to the outer edge of the 

droplet (also known as the contact line), leaving a thick ring of nanoparticles at the boundary and 

a sparser distribution of particles in the interior. This phenomenon is known as the “coffee ring 

effect”, and has been attributed to capillary flows inside the droplet that are active during 

evaporation [15]. Agglomeration at the contact line was reduced by adding isopropyl alcohol 

(IPA) to the Au NP colloids (1:1 ratio of colloid and IPA). Two mechanisms were likely 

responsible for reducing the coffee ring effect: (1) IPA enhanced Marangoni flow in the 

evaporating droplet, which reduced capillary flow from the center of the droplet to the perimeter 

[15-19] and (2) the alcohol attached to NPs, acting as an intermediary to mitigate Coulombic 

interactions between adjacent particles [20].  Figure 2.5, shows two examples of agglomeration 

of Au NPs at the contact line of an evaporated droplet. The pattern densities in the center were 

reduced as a result of the coffee ring phenomenon. 
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Figure 2.3  Coffee ring effect illustrated for Au NPs deposited on polished alumina (left) and 

polished SiC (right) substrates. 

The Au NP patterning methods discussed up to this point were only practical for ambient 

temperature experiments. Experiments conducted at elevated temperatures required patterns that 

would maintain their fidelity up to 800°C; for these experiments, titanium and tungsten carbide 

(WC) speckle patterns were developed. Colloidal suspensions were created by mixing the 80 nm 

nanopowders in water. Because they were received as dry powder, the particles agglomerated 

severely when suspended in water. To reduce agglomeration, bicine (a pH buffer) was dissolved 

in the suspensions (22 mg of bicine and 3 mg of nanopowder in 1 ml of distilled water). The 

suspensions were then roll-milled for 24 hours at an intermediate speed. Patterns were drop cast 

immediately after milling using a 0.5 µL pipette. After the droplet evaporated (several minutes), 

the solidified bicine was burnt off by placing the substrate on a 300°C hot plate for several 

minutes. Figure 2.6 shows examples of high-temperature Ti and WC speckle patterns. 
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Figure 2.4  Drop cast high-temperature speckle patterns consisting of 80 nm (a) WC and (b) Ti 

nanopowder agglomerates. Roll milling and a pH buffer (bicine) prevented excessive 

agglomeration. 

2.3.3 Electron Beam Lithography 

The primary advantage of e-beam lithography over nanoparticle deposition is that it 

allows for total control of speckle size and distribution and can be scaled to accommodate 

various small-scale fields of view. Additionally, a large variety of materials (to include high-

temperate metals and ceramics) can be used for patterning. FOVs beyond 100 µm, however, are 

both expensive and time consuming, making NP deposition a more practical alternative.  

Electron beam lithography patterns were constructed with a Raith-150 e-beam system.  A 

random speckle pattern was generated in MATLAB then imported into the e-beam computer. 

The lithography process involved exposing an image of the speckle pattern into a thin layer of 

poly(methyl methacrylate), or PMMA, which was spin coated on the surface of the substrate to 

be patterned. During the exposure process, speckle locations are bombarded with a flux of 

electrons that destroys chemical bonds in the PMMA.  These areas preferentially dissolve when 

immersed in a chemical developer. The speckle pattern is essentially etched into the PMMA, 

leaving behind bare substrate upon which another material (e.g.  Au, Ti, various ceramics) can be 

evaporated.  The remaining unexposed PMMA was then dissolved in a solvent, leaving behind 

the speckle pattern. Figure 2.7 shows a magnified titanium e-beam pattern designed for a 50 µm 

FOV.  
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Figure 2.7  Titanium e-beam lithography pattern deposited on SiC. Pattern is of high contrast, 

randomly and uniformly distributed, and is reproducible. 

2.4 Conclusion 

Tracking patterns for digital image correlation were developed at multiple length scales. 

They contained speckles that were randomly and uniformly distributed and were of high contrast 

with the background. Patterns for fields of view larger than 1 mm were generated with paint and 

an airbrush. Paint viscosity, air pressure, and flow rate were varied to produce speckles for small 

and large macroscopic FOVs. Patterns for SEM imaging were generated using two nanoparticle 

deposition techniques: self-assembly and drop casting. NP self-assembly was used when very 

small FOVs (<100 µm) were needed and when location of the pattern on the test coupon was not 

a concern. Drop casting was used for larger microscopic FOVs (>100 µm) and when location of 

the pattern was a concern (e.g. patterning notch tips). Au nanoparticles were used for patterns 

intended for ambient temperature. Ti was used for high-temperature (800°C) patterning. 

Although they were not used in testing, WC patterns were designed for temperatures above 

800°C. Due to uncontrollable agglomeration, the use of Ti and WC patterns was constrained to 

FOVs hundreds of microns wide. E-beam lithography was investigated as a method to produce 

very small FOV (below 100 µm) higher temperature speckle patterns. The patterns were nearly 

perfect in quality and were repeatable. Although lithography was capable of producing ambient 

temperature patterns as well, the cost and time to generate the patterns in comparison to the 

relative simplicity and low-cost of NP drop casting and NP self-assembly rendered it impractical.    
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Chapter III 

 

Constituent Level Characterization of Damage in Ceramic Matrix 

Composites at High Temperature 

 

 

3.1 Introduction 

The next generation of high-temperature ceramic composite materials for use in 

aerospace applications will experience more rigorous thermo-mechanical loading than their 

superalloy counterparts currently in service.  Ceramic matrix composites (CMCs) are lighter than 

superalloys while maintaining their structural integrity at higher temperatures, qualities that are 

desirable for improving aircraft engine efficiency. The SiC/SiC materials system is relatively 

new; although there exist analytical and numerical models to predict its mechanical behavior at 

elevated temperature, experimental information is needed to validate these models.  

Unfortunately, grossly averaged macroscopic empirical data such as stress-strain curves alone do 

not fully explain the evolution of damage in composites.  Advanced experimental techniques are 

needed for vigorous validation of current models and to better understand the mechanisms of 

damage and toughening.  This chapter describes a novel approach to probe damage progression 

in CMCs at high temperatures and to lay a foundation for quantifying toughening mechanisms at 

the constituent scale for incorporation into damage models and product design. 
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3.2 Background 

Several researchers have investigated the micromechanics of deformation and fracture in 

ceramic matrix composites.  Marshall, Cox and Evans [1] attributed toughening in CMCs to 

regularly spaced matrix cracks bridged by uniaxially aligned fibers. They suggest that 

toughening during fracture is caused by debonding of the fiber-matrix interface followed by 

frictional sliding of the matrix over the debonded fiber during pullout.  As a result, fiber bridging 

tractions act to reduce the displacement between the crack faces and thus stresses at the crack tip. 

They proposed strain energy and stress intensity based analytical models suggesting that the 

steady state cracking stress depends on the composite microstructure. Budiansky, Hutchinson 

and Evans [2] likewise proposed an analytical model for weakly bonded fiber-matrix interfaces 

that predicts a critical stress for cracking based on the debond lengths of fibers that have been 

subjected to matrix cracks; here, toughening is attributed to frictional resistance at the debonded 

interface.  Zok [3] also suggested that toughening in CMCs can be attributed to fiber bridging 

tractions and fiber pullout, however, the degree of toughening is dependent on a characteristic 

bridging zone length behind the tip of a propagating crack.  When the bridging fibers located 

furthest from the crack tip fracture, the degree of toughening has reached a maximum. From a 

micromechanics perspective, fracture resistance depends on frictional sliding resistance at the 

fiber-matrix interface as well as the length of the intact fiber [3]. Although severable reputable 

analytical models exist to explain toughening in CMCs, little is known about crack nucleation 

and propagation. Full-field deformation measurements at the constituent scale will elucidate 

composite behavior for a better quantitative understanding of damage onset in CMCs. 

3.2.1 Small-Scale Digital Image Correlation 

Recall from Chapter II that digital image correlation is a non-contact method of 

measuring full-field deformations on the surface of a material. This experimental approach 

measures the relative displacements between features in a tracking pattern applied to the surface 

of a test specimen. During thermo-mechanical loading, images of the tracking pattern are 

captured sequentially and deformation fields are then generated from these images using a 

subset-matching algorithm.  Early work in DIC focused on optimizing its accuracy by removing 

the spatial distortions inherent in optical imaging equipment such as cameras [4-5].  Recently, 
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the development of methods for removing both spatial and temporal image distortions, coupled 

with advances in small-scale patterning, have expanded this approach to high magnification 

SEM imaging. For brevity, we refer the interested reader to [6-15] for details. The combination 

of SEM and DIC (termed here as SEM-DIC), with custom-developed patterning and distortion 

correction procedures, was used to investigate the small-scale mechanical behavior of a CMC.  

SEM-DIC measurement accuracy strongly depends on the tracking pattern quality.  

Several studies have addressed methods of generating high-contrast, isotropic and randomly 

distributed patterns on the surface of various materials at microscopic and macroscopic length 

scales [4-5, 16-17].  A successful means for small-scale patterning utilizes the self-assembly of 

gold and silver nanoparticles [11, 15, 18-20].  However, these metals are not suitable patterning 

mediums at elevated temperatures because of their relatively low melting temperatures. 

Alternatively, electron beam lithography can produce adequate patterns using a variety of 

temperature resistant metals and ceramics [12]. However, e-beam patterning requires a perfectly 

flat surface and tends to produce repetitive or pseudo-repetitive patterns that are detrimental to 

correlation accuracy. Additionally, for fracture investigations, uncertainty in the crack 

propagation path requires that the tracking pattern cover a generous portion of the tensile 

coupon.  Patterning large areas by electron beam lithography is time consuming and expensive, 

rendering this approach infeasible for fracture studies.  

For high temperature studies, a good alternative to the aforementioned patterning 

techniques is nanopowder (NP) deposition.  Materials such as titanium (Ti) and tungsten carbide 

(WC) have higher melting temperatures than gold and silver, making them preferable high-

temperature patterning mediums.  However, nanopowders naturally tend to aggregate both in 

powder form and in suspension.  While a limited amount of short-range aggregation can be 

beneficial for patterning, to prevent excessive agglomeration the particles must be stabilized in a 

colloidal dispersion.  Identifying dispersants, surfactants or stabilizers that minimize aggregation 

is critical.  WC has been shown to form a stable colloid in water alone [21], but incorporation of 

dispersants or buffers can further reduce aggregation [22-25].  Mechanical milling (roll-milling 

and sonication) enhances the effectiveness of dispersants by breaking down large clumps and 

agglomerates.   
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The combination of scanning electron microscopy and digital image correlation, referred 

to here as SEM-DIC, was used to quantitatively characterize CMC deformation at the constituent 

length scale. SEM-DIC has limitations: currently it is constrained to 2-D deformation mapping 

and its fastest frame rates are orders of magnitude slower than optical instruments. Working 

within these limitations, it is a unique and powerful approach for investigating heterogeneous 

deformations in multi-phase material at the constituent length scale. This approach, introduced in 

2007 [6-7], was recently used by researchers to probe microscale mechanical behavior in fiber-

reinforced composites [10, 26].  In 2012, Canal et al. found that larger DIC subsets (~36% of 

fiber diameter) did not accurately capture the sharp displacement gradients that exist at the fiber-

matrix interface as compared to smaller subsets (~18% of fiber diameter). At magnifications high 

enough that the subset size was below 20 percent of the fiber diameter, interface smoothing was 

sufficiently reduced such that the average strains computed in each constituent were qualitatively 

equivalent to what numerical models predicted; i.e., the average strains were smaller in 

transversely loaded fibers than in the matrix. However, the error between the finite element and 

DIC predictions was large (5700 µε and 23700 µε for the fiber and matrix respectively) [10].  

For both large and small magnifications, average strains in the composite matched what the 

researchers expected (to within 300 µε) based on the applied stress and known elastic constants.  

To date, DIC-characterization of CMCs has focused on either ambient temperature 

studies or studies conducted at elevated temperatures but at macroscopic fields of view [16-17]. 

In conducting a review of DIC measurement error on CMCs at macroscopic length scales, Rajan 

et al. [16] identified optimized subset sizes and strain-filter lengths for minimizing displacement 

and strain error. Utilizing SEM-DIC on ceramic composites in order to characterize deformations 

at the constituent length scale presents new and complex challenges. These stem from the fact 

that as the field of view decreases, it encompasses a lower density of matrix cracks.  Portions of 

the field of view (FOV) that fall outside of the process zone of a crack contain only elastic 

deformations.  The elastic strains in ceramics are low enough that noise and bias induced error 

can mask the strain measurements.  However, as long as caution is used to minimize potential 

sources of error, SEM-DIC is a remarkably useful tool for assessing deformation and damage in 

CMCs. 
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SEM-DIC has several advantages for the characterization of high temperature 

composites. First, thermal turbulence (heat haze) is a non-issue in the SEM vacuum environment.  

Novak [17] macroscopically characterized C-SiC CMCs at 1450° C in air, noting that a major 

challenge was minimizing heat haze and its detrimental effect on image distortion. Although 

spatial and temporal image distortions resulting from electron beam rastering should be 

considered when using SEM-DIC, these can be successfully accounted for [7-9, 11]. The SEM 

must also be appropriately shielded to contain thermal radiation; the importance of this is 

discussed in Section 3.3.  

3.3 Method  

3.3.1 Materials Preparation and Patterning 

Two 8-ply [0/90/0/90]s SiC/SiC composite laminates were machined into single edge-

notch tensile coupons with the dimensions shown in Figure 3.1(a). The composites were 

composed of SiC fibers immersed in a SiC matrix of similar modulus. The fibers were coated 

with boron nitride to provide a weak interface with the matrix. The individual lamina were 

approximately 200 microns thick, stacked on top of each other with a thin matrix layer (on the 

order of tens of microns) between plies. The outer longitudinal plies were partially lapped, 

resulting in variable ply thicknesses ranging between 100 and 200 microns.  Notches were cut 

with a Mager diamond wafering blade as shown in Figure 3.1(b).  Specimens were polished 

using 9, 3 and 1 micron diamond lapping films (Buehler) to prevent nanopowders from 

aggregating in rough surface features and to create a uniformly flat surface as currently required 

by SEM-DIC. To ensure uniform removal of material during lapping and polishing, the tensile 

coupons were encased in an acrylic sacrificial mold.  Upon completion of polishing, coupons 

were separated from the mold and agitated in a sonicator, in both water and ethanol, in 

preparation for patterning.  
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Figure 3.1  Dimensions of (a) tensile coupon and (b) edge notch. 

WC is an ideal material for patterning SiC at or above 1000°C because it does not react 

with the underlying substrate, although Ti forms well-dispersed patterns more readily. All tests 

were conducted at 795° C due to a stage heater limitation of 800° C. At this temperature, Ti can 

be used because it does not yet react with the underlying SiC to form a silicide, which degrades 

the pattern and can degrade the mechanical properties of the composite. The Ti NP suspension 

contained water and bicine; the bicine served as a pH buffer to stabilize the colloid.   Figure 3.2 

shows a SiC substrate coated with the Ti colloidal suspension.  The combination of roll milling 

and pH buffering broke up the heavily aggregated nanopowder. 
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Figure 3.2  High-temperature DIC tracking pattern for tests at 795° C, consisting of slightly 

aggregated 80 nm Ti nanopowder on a SiC substrate and applied by drop casting.  A greyscale 

pattern intensity histogram is shown in the upper left indicating good pattern quality.  

 

Tracking patterns were applied by drop casting approximately 0.5 microliter droplets of 

Ti nanopowder colloid onto the surface of the tensile specimen.  The colloidal suspension 

contained 22 mg of bicine and 3 mg of 80 nm titanium powder in 1 ml of distilled water.  The 

suspension was roll milled for 24 hours prior to drop casting to break up agglomerates.  

Deposition droplets were applied at the notch and throughout the width of the sample.  Upon 

evaporation, the sample was heated to 300° C on a hot plate to burn off the bicine.  The resulting 

tracking patterns for the two test coupons are shown in Figure 3.3.   
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Figure 3.3  Ti nanopowder tracking patterns for high temperature SEM-DIC experiments at a) 

500 and b) 800 micron fields of view.  In both images, the tip of the notch is located on the left 

hand side.  Variations in speckle density and the presence of a small number of abnormally large 

agglomerates is observed in both patterns. 

To confirm that the patterns were suitable for SEM-DIC, static image pair and rigid body 

translation images were captured in the SEM and post-processed to remove spatial and temporal 

image distortions with a combination of laboratory-developed code and commercial code (VIC-

2D digital image correlation software [27]).  For details on SEM-DIC distortion corrections, 

please see [7, 8, and 9]. After distortion correction, high frequency noise and spatial warping was 

significantly reduced but not eliminated. During testing (particularly in early loading in which 

grip ends of the coupon slip into and deform the compliant grips), rigid body motion generates 

displacement error in addition to that from noise and bias.   

Although CMC testing was conducted at high temperature, pattern suitability was tested 

at ambient temperature. This was acceptable as independent experiments determined that pattern 

quality did not degrade at high temperature.  Pattern quality is a critical factor in the accuracy of 

DIC-calculated displacement fields. Poor patterns can result in incomplete correlations and 

introduce irremovable variability in the deformation data.  In addition to error that can arise from 

poor-quality tracking patterns, there is inherent Gaussian noise in SEM images arising from 

multiple sources: mechanical vibrations, out-gassing and volatilization of foreign matter, and the 

statistical nature of electron interactions with the surface may all manifest as noise in DIC data.  
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3.3.2 High Temperature SEM-DIC 

High temperature testing was conducted in an FEI Quanta 3D scanning electron 

microscope using an in-situ tensile stage and heater (Figure 3.4a) purchased from Kammrath & 

Weiss.  In order to prevent thermal emissions from flooding the SEM scintillator, a double layer 

of tantalum heat shields with small apertures for beam access were fitted above the sample as in 

Figure 3.4b.  The importance of reducing thermal noise is illustrated in Figure 3.5.  CCD images 

of the load frame inside the SEM captured during testing at ambient temperature and 795° C 

show a dramatic reduction in radiation with heat shielding.   

 

Figure 3.4  CMC mounted in load frame and fitted with heater (a).  Double layer of tantalum 

heat shields with imaging aperature reduce thermal emissions (b). 

 

Figure 3.5  (a) Chamber views of load frame, with heater and thermal shielding attached, in 

SEM at 23° C and 795° C.   At 795° C (right), thermal radiation from the heater is evident in its 

glowing case, but is contained by the shielding.  (b) SEM and heat stage at 800° C with no 

thermal shielding. 
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In order to monitor the effect of stage heating and prevent damage to the SEM, four type-

K thermocouples were placed on the load cell, SEM stage, near the pole piece and near the 

EDAX detector.  The heater was comprised of a heating element encased in alumina upon which 

a steel thermocouple platen sat.  To improve the efficiency of heat transfer from the steel to the 

SiC tensile coupon under vacuum, a piece of compliant graphite foil was sandwiched between 

the two surfaces. 

A preliminary test, referred to here as “HT-1”, was conducted using a 500 µm FOV.  For 

a second test on a different tensile coupon, referred to as “HT-2”, an 800 µm FOV was used to 

ensure a sufficient amount of data for a J-integral calculation.  Each micrograph was 2048 x 

1768 pixels.  Images were captured in secondary electron mode using a 30 kV accelerating 

voltage and 2.6 nAmp beam current at a frame rate of 36.3 sec/frame, integrated four times.  

These parameters provided images with the highest contrast and lowest noise at the fastest 

imaging speed. A summary of test parameters is provided in Table 3.1. 

 

 

The samples were heated to 795° C and then mechanically loaded while held at 795±0.2 

°C.  The temperature was set five degrees underneath the built-in 800° C limit of the heater in 

order to buffer against any thermal fluctuations. Prior to heating, the samples were preloaded to 

100 N and then relaxed to 0 N to remove slack and prevent slippage during the initial loading 

phase of testing. The unloaded samples were heated to just under 800° C in temperature 

increments of 100° C.  During each temperature increment, the load was continuously adjusted to 

maintain 0 N as the sample and grips expanded. At 500° C and every 100° C increment 

thereafter, contrast, brightness and focus were adjusted to maintain a high quality image.  After 

the sample stabilized at 795° C, the LVDT was zeroed so that subsequent loading would start at 

zero displacement. To protect the proprietary nature of the test material, stress and strain values 

have been non-dimensionalized.   

FOV 

(µm)

Image Size 

(pixels)

Image Resolution 

(nm/pix)

DIC Subset 

(pixels)

Displacement 

Rate (µm/s)

Temperature 

(°C)

Duration of 

Test

HT-1 500 2048 x 1768 244 51 2 795
>1000 µm 

crack 

HT-2 800 2048 x 1768 391 51 2 795
Final 

fracture

Table 3.1:  Summary of Parameters for High Temperature Tensile Tests
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Although the tensile stage was operated in displacement control at 2 μm/s, loading was 

started and stopped at 50 N load increments so that the notch could be inspected frequently for 

crack initiation.  At each loading increment, the reading on the load cell was allowed time (one 

to two minutes depending on the applied load and state of cracking in the material) to stabilize 

prior to capturing an image. During the early stages of loading, the notch was imaged at higher 

magnifications at each loading increment in order to identify crack initiation. Upon crack 

initiation, load increments were increased slightly to allow a small amount of crack propagation 

through the FOV.  Once the crack cleared the FOV, the stage was shifted to the next speckle 

pattern ahead of the advancing crack. The sample was unloaded and a reference image was 

captured at a load of 0 N.  The sample was then reloaded and the process of capturing images of 

the advancing crack continued until final fracture. The load-hold-unload process is non-

reversible. Consequently, the reference image in the new FOV reflects a damaged state even 

though it is captured under no applied load. The deformation fields measured upon re-loading 

may not accurately reflect fracture behavior in a CMC loaded monotonically. Of the two tests, 

one (HT-2) was carried out to final fracture. Figure 3.6 shows the sequence of crack propagation 

across the tensile specimen and the corresponding longitudinal strain fields of test HT-2.  The 

undulating variations in color (magnitude of longitudinal strain) are attributed to Gaussian salt-

and-pepper noise and aliasing.  The DIC parameters chosen (51 pixel subset and 71 pixel strain 

filter) presented the best displacement resolution the pattern would permit without flooding the 

corresponding strain field overlay with noise.  The subset size was near that of the fiber diameter.   

 

Figure 3.6  Longitudinal strain fields during crack propagation in HT-2.  Each panel represents a 

shift in FOV as the crack propagates from left to right.  The far right panel shows final fracture.  

Arrows indicate loading axis. 
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3.4. Results and Discussion 

3.4.1 High Temperature Full-Field Deformations 

Figures 3.6 and 3.7 illustrate high-temperature, in-SEM, full-field quantitative maps of 

damage progression as a crack initiates at a notch and propagates through a CMC. Figure 3.7 

compares longitudinal strain fields measured at fracture initiation from the notches for both high 

temperature tests: (3.7a) uniaxial tension at 795° C in SEM at 500 µm FOV (test HT-1) and 

(3.7b) uniaxial tension at 795° C in SEM at 800 µm FOV (test HT-2).  Both test specimens are 

cross-ply layups with partially lapped outer longitudinal lamina. HT-1 contained exposed 

longitudinal fibers in the vicinity of the notch tip whereas HT-2 had a thin layer of matrix 

material. Although not presented for proprietary concerns, the load-displacement curves for the 

samples were similar. Fracture behavior at the notch tips, however, was quite different. Upon 

crack initiation in HT-2 (3.7b), a small region of elevated longitudinal strain (as indicated by 

forked blue lobes) in the process zone is observed immediately ahead of the crack tip.  In HT-1 

(3.7a) a much shorter crack appears upon initiation, and emanating from the crack tip are two 

forked lobes of strain in a larger process zone than of HT-2. Note that the strain values are scaled 

differently in Figure 3.7; the upper limit of (3.7b) is two times larger than the reference strain 

value, εyy, in (3.7a). This scaling scheme mitigates noise effects in the strain fields of (3.7b), but 

consequently reduces the spatial resolution of the strain field, which attenuates the strain signal 

at the forked strain lobes.  
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Figure 3.7  Illustration of different fracture behavior in HT-1 and HT-2. Cracks initiate (left) and 

propagate (right) in SiC/SiC composites at 795° C for FOVs of (a) 500 and (b) 800 microns.  

Longitudinal strain fields on left hand side correspond to the initial manifestation of surface 

matrix-crack at notch tip.  Although both (a) and (b) exhibit high-strain process zones ahead of 

the crack tip, that of (b) appears larger. Note the different strain magnitude bars for (a) and (b).  

DIC parameter selection greatly influences the extent of the damage detected.  Modifying 

DIC parameters for HT-1 (51 pixel subset and 375 pixel strain filter) as in (3.7a) effectively 

smoothed over smaller, discrete regions of high strain that revealed the presence of additional 

matrix cracks. To illustrate this difference, Figure 3.8 shows the evolution of longitudinal strain 

with load for test HT-1 for two distinctly different DIC parameter sets: Figure (3.8a) uses a 

subset of 51 pixels and strain filter of 375 pixels whereas Figure (3.8b) uses a subset of 51 pixels 

and a strain filter of 75 pixels. Although the strain fields of (3.8b) are substantially noisier than 

those in (3.8a), they reveal four distinct matrix cracks (indicated by red contours) evolving from 

the notch tip.  The larger strain filter of Figure (3.8a) averages these values and makes it appear 
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that two well-defined strain lobes emanate from the notch.  These lobes are likely process zones 

of distinct matrix cracks and not a continuous region of high elastic and plastic strain in the 

silicon carbide.  Further manipulation of the strain filter size (the subset size lower bound was 

constrained by the speckle size and distribution of the tracking pattern) applied to test HT-2 did 

not reveal additional matrix cracks.  The displacement resolution of HT-1 was inherently less 

than that of HT-2 because, all other parameters equal, it was obtained for a larger field of view.  

 

Figure 3.8  Longitudinal strain fields illustrating the smearing effect of strain filters.  Panels 

sequence indicates crack growth from left to right.  In (a) the strain filter is 7x the subset size 

whereas in (b) it is 1.5x the subset size.  The smaller strain filter does not mitigate artifacts of 

image noise and aliasing, however, it does reveal more damage, specifically multiple matrix 

cracks propagating from the notch tip, than the larger filter. The data filtering in (a) masks the 

real behavior of (b). 

It is beneficial to conduct analyses covering several tiers of noise filtering. In conducting both 

qualitative and quantitative analyses of damage in CMCs at small length scales, there appears to 

be no single combination of DIC parameters that yield optimal deformation field data. Over 

smoothing data can mask damage that would otherwise provide valuable insight into the 

mechanical behavior.  On the contrary, in the absence of sufficient filtering, high noise levels can 

mask real behavior, as was shown in Figure 3.8.  

Microscopically, the fracture behavior of HT-1 and HT-2 are quite different.  Whereas a 

single crack originates from the notch in HT-2, two cracks emanate from the notch in HT-1, one 

of which branches into two additional matrix cracks. Small variations in microstructure and 

loading conditions between the two samples may strongly influence when, where and how many 
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cracks initiate at the notch as well as how they propagate after initiation. A study of the 

probabilistic nature of this behavior warrants further investigation. 

3.4.2 High Temperature Damage Evolution  

 

Figure 3.9  Longitudinal strain fields depict debonding at the fiber-matrix interface in the outer 

longitudinal lamina of the CMC (a).  Fiber pullout lengths are of similar magnitude as debond 

lengths (b). 

Accurate characterization of debond lengths in fibrous composites can be used to 

determine crack bridging tractions, which in turn can be incorporated into cohesive zone laws for 

damage modeling. In Figure 3.9 (a), debonding of the matrix crack along the length of 

longitudinal fibers is shown in two instances during test HT-2 (delineated with double arrows), 

both with debond lengths of approximately 90 µm. Note that the exposed fibers were partially 

lapped and polished in order to prepare the specimen for testing; it is possible that the partial 

removal of fiber volume and damage to the exposed fibers may have influenced this debond 

length.  Post-fracture analysis of fiber pullout in the inner longitudinal ply nearest the coupon 

surface (Figure 3.9 (b)) revealed average pullout lengths of 72.7 ± 29.4 µm.  Although the 90 µm 

debond lengths of (Figure 3.9 (a)) fall within this size distribution, a single ply-level distribution 
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alone may not be reflective of the full distribution of pullout lengths through the thickness of the 

laminate.  Pullout data obtained from DIC may be most useful when applied to the assessment of 

local toughening behavior at the CMC surface. 

Fiber bridging tractions in the wake of a matrix crack strongly influence toughness [29]. 

As ceramic fiber strengths are stochastic, both intact fibers that straddle the crack and ultimately 

fracture at the crack plane, as well as pullout fibers that break some distance away from the crack 

plane, contribute to toughening.  In an effort to characterize the toughening contribution of 

surface fibers that fracture away from the crack plane, full-field strain data from HT-2 was 

segmented into individual bins comprised of microstructural features as illustrated in Figure 

3.10.   

 

Figure 3.10  Microstructure is segmented into fiber, fiber pullout, matrix, and crack bins.  Mean 

strains are computed for each bin. 

Mean fiber and mean fiber-pullout strains at each increment of crack propagation are 

plotted in Figure 3.11. Initial fiber breakage occurs in Fiber 1 (nearest the crack tip) at the third 

load increment, corresponding to a dip in the mean fiber strain and maximum in mean fiber 

pullout strain. After the crack is introduced into the fiber, subsequent mean strains in both the 

fiber and fiber pullout bins increase as a result of the exaggerated stains computed near the crack. 

Theses exaggerated strains are an artifact of DIC measurements across a discontinuity. The 

minimum values in the mean fiber strain may be due to relaxation in the fibers after fiber 
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fracture. In reality, average strain should plateau or decrease. However, the exaggerated DIC 

measurements at the newly formed discontinuity result in large average strains that increase as 

the fiber cracks open. Up until this point, the mean strains in both the fiber and the pullout region 

are approximately half the theoretical failure strain of the fiber (εf,u).  Although the strain data is 

highly variable, the mean strain levels are within the expected strain range for this type of fiber.   

 

Figure 3.11  Mean strains in fibers (computed from red and orange fiber bins) are plotted 

alongside their mean strains (computed from orange bins) in their corresponding pullout regions 

at each load increment.  Inset in panel “Inc 3” is a magnified view of the localized tensile strain 

in a longitudinal fiber at fiber fracture. 

The exaggerated strains that accompany fracture prevent using this strain data for a 

quantitative assessment fiber traction toughening. However, both fibers indicate a sharp 

transition in mean strain at the point of fiber fracture. At that point, the error bars are at a 

minimum. Although further investigation is needed, sharp transitions in mean strains computed 

from DIC data may be indicative of ceramic fracture. Note that the negative ranges of standard 

deviation are indicative of noise in the DIC data.  
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Full-field strain analyses imply the following at the onset of fiber fracture:  

(1) mean strains in the fiber increase during initial loading and then decrease to a 

minimum at fracture; 

 (2) although the standard deviation ranges are generally broad, they approach a 

minimum at fracture.   

Although strain errors were large, mean strain measurements in the fibers fell within the realm of 

their failure expected strain. Strain error must be acknowledged when conducting any 

deformation field analysis so that erroneous conclusions are not drawn from trends in the data 

set. 

3.4.3 Sources of Error in SEM-DIC 

Aberrations in the full-field displacement data exist that inevitably introduce error into its 

quantitative analysis. These may be attributed to several sources of noise and bias as defined in 

[30].  Noise in the DIC data is likely due to Gaussian noise inherent in the SEM images.  Sources 

of bias may be due to debris and large aggregates on the speckle pattern, degradation in SEM 

image contrast with time, and aliasing [30].   Gaussian noise was mitigated by utilizing 4x image 

integration for each SEM image capture. Image integration was used at the expense of individual 

pixel dwell time (reduced from 100 µsec to 10 µsec as a result of integration), which reduced 

image sharpness. Biasing effects were reduced using an optimized 8-tap interpolation filter in the 

correlation software [27].  Deformation data in the vicinity of debris and large aggregates was 

not used for quantitative analysis.  Aliasing may exist in portions of the pattern with speckles 

that encompass only a few pixels as the corresponding subsets have lower fill factors.  Aliasing 

effects were mitigated using a low-pass filter [27].   

Due to the aforementioned error associated with noise and biasing, it is necessary to 

conduct quantitative analyses of DIC-SEM data with great care and discretion. Differentiating 

displacements to get strain magnifies pre-existing fluctuations, resulting in strain errors that can 

have values equal to or larger than the material failure strain.  When a crack forms, it introduces 

an erroneously large displacement gradient that straddles both of its flanges. Consequently, the 

strain fields on either side of the crack may be several orders of magnitude larger than the actual 
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physical values.  The strain error may mask the real tensile strain in the material.  In Figure 3.12, 

double arrows point to the location of fiber fracture just before and after fiber breakage.  The 

DIC-measured strain values prior to fracture are near the known fracture strain value for the SiC 

fibers used in this material, indicating that DIC can resolve tensile strain in the ceramic up to 

fracture.  The same cannot be said with regard to the matrix; the significantly lower fracture 

strain of the matrix results in noise that can mask the tensile strain.  After the fiber fractures, the 

DIC-measured longitudinal strain increases by several orders of magnitude.  Although this can 

be helpful in identifying cracks that can otherwise go undetected, care must be taken not to use 

these strain measures for quantitative analysis. 

 

Figure 3.12  Evolution of fracture in fiber.  Double arrows point to position in fiber prior to and 

after fracture.  Magnitude of longitudinal strain prior to fracture, as measured by DIC, are on 

order of the fibers theoretical fracture strain. 

3.5 Conclusions 

A new experimental approach to investigate damage initiation and accumulation at the 

constituent length scale in ceramic matrix composites under high temperature and mechanical 

loading was evaluated.  Two SiC/SiC single edge-notch tensile coupons were loaded to final 

fracture at 795° C in a scanning electron microscope with proper shielding of sensitive SEM 

components.  SEM-DIC tests were conducted at two horizontal fields of view (500 and 800 µm) 

for deformation and fracture analyses. A colloidal system containing mechanically milled 
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titanium nanopowder, bicine and water was developed for use as a DIC tracking pattern that is 

stable at 795° C. The smaller FOV revealed a fluted process zone ahead of the tip of an initiating 

crack. Reducing the strain filter showed that this process zone consists of several distinct matrix 

cracks emanating from the notch at different angles.  The larger FOV captured deflection of a 

matrix crack propagating through longitudinal fibers. Although the finer resolution FOV 

revealed more matrix cracks at the notch tip, the larger resolution FOV captured full propagation 

up through final failure. 

In order to characterize the toughening contribution of fibers that fracture away from the 

crack plane, the full-field stain data was segmented into fibers and fiber pullout bins, and 

averaged strains were evaluated at each load increment.  Plots of strain versus load increment 

revealed noteworthy behavior at the onset of fiber fracture: (1) mean strains in the fiber increase 

during initial loading then decrease to a minimum at fracture; (2) although the standard deviation 

ranges are generally broad, they approach a minimum at fiber fracture.  Despite having large 

strain errors, mean strain measurements in the fibers were on par (at several thousand 

microstrain) with expected values based on the material’s Young’s modulus and failure strain.  

Strain error was attributed to Gaussian noise in the SEM images, as well as several types of 

pattern and noise induced error and systemic biasing.  Strain error must be acknowledged when 

conducting any deformation field analysis so that erroneous conclusions are not drawn from 

trends in the data set. 
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Chapter IV 

 

Experimental Assessment of Fracture Toughness in Ceramic Matrix 

Composites using the J-integral with Digital Image Correlation 

 

 

4.1. Introduction 

Toughness in fiber-reinforced CMCs is dependent on the complex interactions between 

the fibers, coatings and matrix. Constituent properties, residual stresses, interfacial sliding, 

bridging tractions and microcrack shielding all influence composite toughness, but quantifying 

the contribution of each mechanism is difficult and does not always account for their mutual 

influences. A rigorous means to characterize composite toughness is to use an approach capable 

of capturing the contribution of individual toughening mechanisms and their interactions. One 

such approach is through measuring the energy release rate, and subsequently stress intensity 

factors, by application of the J-integral. Given full-field measurements of displacement, J can be 

numerically evaluated along a contour that encircles the crack.  

  This chapter discusses two methods for evaluating J from full-field Digital Image 

Correlation (DIC) deformation data on materials that exhibit small elastic failure strains: (1) 

numerical integration over a line contour; and (2) Gaussian integration over an area contour. It is 

shown that both methods are sound under specific material and loading constraints, but are 

extremely sensitive to displacement data variability. For multiphase materials like CMCs, data 

smoothing is required to mitigate this variability and results in unrealistic data at and around 

phase interfaces and discontinuities. Additionally, the need for contour truncation near the crack 
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flange results in data loss and the introduction of measurement error. Furthermore, determining 

the exact onset of crack initiation with DIC data can be inaccurate. Consequently, defining 

fracture toughness from J-integral measurements derived from DIC data is somewhat arbitrary. 

While it has been suggested that the J-integral can be a valid means of measuring toughness in a 

matrix crack in a composite that exhibits large scale fiber bridging [1], the micro-scale 

investigations of damage in continuous fiber CMCs presented here suggest that microcracking is 

dispersed so widely throughout a CMC that it is not practical to calculate J over a single matrix 

crack in a CMC. This is because the integration paths would intersect discontinuities, rendering it 

fundamentally invalid. However, DIC smears deformation data across microcracks, which 

essentially transforms a surface full of very fine discontinuities (microcracks) into a surface of 

continuous elastic deformation. While the J-integral can be used for gross estimates of 

toughness, a more practical application is developing qualitative resistance curves that 

characterize toughening behavior in continuous fiber CMCs. 

Although the J-integral is too sensitive to data variability to quantify fracture toughness 

in a CMC with certainty, it is suitable for establishing an upper bound for fracture toughness and 

for assessing toughening behavior. For example, resistance curves generated via the J-integral 

may not provide stress intensity factors with well-defined error bounds, but they can be used to 

determine stresses and crack opening displacements near the critical fracture toughness. 

Additionally, the shapes of the resistance curves indicate how toughness evolves as the 

composites accumulate damage. The gradient of resistance curves can in turn be used to develop 

fiber-bridging laws, which may aid in damage models. 

4.2. Background 

In this work, the J-integral was evaluated from full-field DIC deformation data for three 

materials:  (1) a PMMA compact tension (CT) specimen loaded at ambient temperature and 

imaged at the macroscale; (2) an 6061 aluminum alloy single edge notch tensile coupon imaged 

at the macroscale; and (3) cross-ply SiC/SiC composites loaded at 800º C and imaged at the 

constituent level using scanning electron microscopy (SEM) as well as unidirectional SiC/SiC 

CMCs loaded at ambient temperature and imaged at the macroscale. The focus of this effort was 

to characterize fracture in SiC/SiC composites; however, validation of the approach with well-

characterized materials (PMMA and aluminum) was first required.  
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Recent studies have investigated using full-field deformation data from macroscopic DIC 

to characterize fracture in materials [2-8], but none attempt to characterize fracture at the 

constituent level under thermo-mechanical loading conditions similar to those encountered in 

service. An advantage of using the J-integral to evaluate toughness in composites is that it can be 

used when the application of linear elastic fracture mechanics is not permitted [1, 9-10]; for 

example, it is considered a valid measure of quantifying fracture toughness when there exists 

large scale fiber bridging behind the tip of a growing crack [1]. Furthermore, it does not require 

exact knowledge of the crack tip position as long as a contour can be drawn around the general 

tip location and beyond the plastic zone (the plastic zone size can readily be detected in full-field 

strain data). This is particularly beneficial for CMCs as the position of the crack tip at the surface 

of the material may not coincide with position of the tip sub-surface. Some studies fit 

experimentally-measured full-field displacements to an analytical closed-form expression of the 

stress intensity factor [5-8], while others incorporated deformation measurements directly into a 

numerical evaluation of the J-integral [2-4]. 

The J-integral is a measure of the strain energy release rate in a cracked material and is 

expressed, in the form of a line integral, as [9]: 

  ∫ (      
  

  
  )

 

 
         (1) 

where W is strain energy density, T is a stress traction vector defined with respect to the outward 

normal along the contour (Γ), u is displacement in the crack direction, x and y are spatial 

positions in the crack growth direction and normal direction, respectively, and ds is a unit 

element along the contour. The left hand term represents the strain energy density contribution 

and the right hand term represents traction and displacement contributions to the energy balance 

along a contour that encompasses the crack tip. When coupled with full-field displacements 

obtained from DIC, the J-integral presents a method of generating resistance curves from in-situ 

testing of a single specimen [9-10]. Crack lengths can be evaluated post-test by examining image 

data, nullifying the need to stop a test and inspect the sample for crack progression or to test 

multiple identical samples to varying extents of crack propagation. As the method is theoretically 

path independent, a simple rectangular contour can be defined around a crack tip and the J-

integral calculated using the DIC data that falls along that contour [2-3, 9-10].  The primary 
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disadvantage of this method is that it is not valid if the contour falls within a zone of plastic 

deformation or fiber bridging; thus, it is necessary to identify the size and location of the plastic 

zone ahead of the crack tip and ensure that the field of view (FOV) in which the J-integral is 

being evaluated is large enough to accommodate the contour.  

In theory, the J-integral can be a unique and valuable tool to characterize composite 

fracture at the constituent length scale because it indirectly captures the contribution of fiber-

bridging tractions. However, it must be used with caution, as it is only valid if the composite 

exhibits large scale bridging and if a contour can be drawn around the crack tip in such a way 

that it terminates beyond the fiber bridging zone and completely encircles the plastic zone around 

the tip. Presuming an accurate measurement of J can be determined, it can be used to establish a 

fiber-bridging law [1]: 

   )   
  

  
           (2) 

where σ represents the crack closing tractions exhibited by bridging longitudinal fibers. This 

calculation requires accurate computation of J at measured intervals of crack opening 

displacement, δ.  

In this paper, strain energy release rates (J) and stress intensity factors (K) are calculated 

for a crack growing in a thermo-mechanically loaded SiC/SiC composite by incorporating full-

field deformation data into a numerical computation of J. Two methods to compute J – using a 

line integral and an area integral - are investigated, each with its own unique benefits and 

disadvantages. The line integral is computationally simpler, which is useful for large sets of 

deformation data. In principal, the line integral is more sensitive to deformation data variability 

than the area integral because it samples less data points over a smaller region. Line integral and 

area integral algorithms based on work from Catalanotti and Becker [2-3], respectively, were 

applied to five categories of crack deformation data: (i) data analytically derived using 

Westergaard solutions for a center crack in an infinite plate of acrylic (PMMA) with a critical 

plane stress fracture toughness of 1 MPa m ; macroscopic DIC data for (ii) a crack in a PMMA 

tapered, double cantilever beam compact tension (DCB-CT) specimen (the specimen geometry 

results in a zone in which stress intensity factors should remain constant as the crack extends) 

(iii) an aluminum single edge notch tensile coupon; microscopic SEM-DIC data for (iv) cracks in 
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single edge notch cross-ply SiC/SiC CMC tensile coupons at 795º C and macroscopic DIC data 

for (v) SiC/SiC CMCs comprised of a single lamina of longitudinal fibers at ambient 

temperature. The following section discusses the analytical deformation fields in case (i) used to 

validate the algorithms, and the subsequent implementation of this analysis on experimental data.  

4.3 Analytical Validation: Line Integral and Area Integral 

In order to quantify the computational error in J and K before analyzing experimental 

data, the line and area integral methods were applied to analytical stress and displacement 

solutions near a crack tip. Graphical illustrations of the line and area contours, overlaid on 

vertical Westergaard displacement fields, are shown in Figure 4.1; note that the FOV contains 

only the right half of a center-cracked acrylic plate. Dark shades of blue correspond to negative 

displacements (down in the plane of the page), light shades of blue to positive displacements. 

The procedures used to validate the two methods are detailed in Sections 4.3.1 and 4.3.2, and the 

application of both methods to experimental data is described in Section 4.4. An assessment of 

the influence of variability in deformation data on the algorithm is presented in Section 4.6. 

 

Figure 4.1  Graphical illustration of a rectangular (a) line contour and (b) area contour overlaid 

on vertical displacement fields (dark blue shades indicate negative displacement). In (a), J is 

evaluated at each node and the line integral along the contour is evaluated numerically. In (b), J 

is evaluated at four Gauss points in each element and the area integral is evaluated over the outer 

and inner area contours using Gaussian integration. 
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4.3.1 Analytical Validation – Line Integral 

The calculation of J using the line integral applied to full-field (analytical) deformation 

data was path independent and accurate to less than 0.001% error. In this work, the line integral 

algorithm was validated using analytical expressions of the far-field Westergaard 

displacement/stress fields [10] generated for a center-cracked isotropic acrylic plate under equal 

biaxial tension. Full-field displacements (u) were calculated as: 

      
   

 
                  (3) 

      
   

 
         

          

where 1 and 2 indicate the principle axes. Functions φ and φ’ are the stress function and stress 

function derivative, respectively, for a center crack of length 2a in an infinite plate oriented in 

the 2 direction and subject to Mode-I loading: 

      √                     (4) 
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where         . The constant of integration in φ was disregarded as it represents rigid body 

motion. The constant   
   

   
 is used for the case of plane stress, ν is Poisson’s ratio, and µ is the 

shear modulus. The equations used to generate stress and strain fields were: 
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where    is the applied load (   
  

√  
) that produces a chosen fracture toughness (Kc) of 1 

MPa m  consistent with that of a brittle material; E and G are isotropic elastic and shear moduli.  

The J-integral was calculated using the analytically derived deformation data with a 

rectangular contour that enclosed the right half of the center crack. Fracture toughness values 

were computed point-by-point along each leg of the contour in a counter-clockwise fashion using 

a right handed coordinate system. At each point, deformation data was incorporated into an 

expression adopted from [2]: 
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      (7) 

where {σ} represents the  Westergaard-derived stresses, {ε} are the strains as given in (6b), n is 

the contour normal, n1 is the contour normal in the crack direction, and  {
  

   
} are the horizontal 

and vertical displacement gradients with respect to the direction of crack propagation calculated 

using the finite difference method. J was then converted to K as follows, 

   
  

 
            (8) 

where E is the Young’s modulus. Note that this relationship holds true only for isotropic 

materials; a conversion for anisotropic materials will be discussed in Section 4.4.2.  

Contour size and contour position were varied to confirm path independence and to 

determine how accurately the algorithm predicted fracture toughness. As illustrated in Figure 4.2 

below, the line integral was path independent and correctly measured J (J = 322.6 N/m) and K (K 

= 1 MPa m ). Three contour dimensions were analyzed: a large contour comprised of 1800 x 

1800 nodes, a smaller contour comprised of 900 x 900 nodes, and a 900 x 900 node contour 

shifted toward the crack tip by 50% of the half-crack length. For each, the measured value of 

fracture toughness was 1.0000 MPa m . The contour was truncated by one pixel either side of 

the crack flange; although this step is unnecessary for Westergaard data, it is required for 

experimental data as discussed in Section 4.4.1. Error associated with truncation and integration 

was less than 0.001%.    
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Figure 4.2  Assessment of path independency and accuracy of line integral (a) and area integral 

(b). In (a), line integral evaluations of fracture toughness over a large contour and small contour, 

irrespective of position, are 1.0000. In (b), area integral evaluations of fracture toughness vary 

slightly with position, ranging from 0.0007% to 0.0011% error as the left hand side of the 

contour is shifted toward the crack tip. 

4.3.2 Analytical Validation – Area Integral 

The area integral was path independent and accurate to within 0.0011% error. Error 

magnitude varied slightly with position and increased as the left hand side of the contour was 

translated toward the crack tip. However, the error was always within 0.0011% as depicted in 

Figure 4.2. It is attributed to contour truncation about the crack flange and is deemed negligible 

for assessing the validity of the area integral. As with the line integral, the Westergaard 

displacement solutions for equal biaxial tension were used as full-field deformation data to 

validate the algorithm.  
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From the Westergaard displacements (eqn 3), J was measured using the area integral 

approach of Li [11]. In this approach, two concentric (inner and outer) contours encircled the 

crack tip. Each contour was discretized into individual 4-node quadrilateral elements, where each 

node represented a data point from the displacement field. Each quadrilateral element was 3x3 

nodes in size with its central node lying along the contour path. When applied to DIC data, the 

separation between each node equaled the DIC step size (in units of image pixels). J was 

evaluated at each of four gauss points within each element and then summed. This process was 

applied to each element along the inner and outer contours.  

The area integral expression is given as: 

  ∫ [   
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For Gaussian integration, this can be expressed as: 
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The locations and displacements of points within each element are expressed in terms of nodal 

positions and displacements:    ∑      
 
     and    ∑      

 
    where i = 1,2, with i =1 

being the crack propagation direction and direction 2 is orthogonal to 1. NK are Lagrangian shape 

functions. Xi and ui are the nodal positions and Westergaard displacements respectively. Values 

of q at each Gauss point (GP) can fall within the range 0 to 1 and are incorporated into an 

expression of virtual crack extension as proposed by Li [11]: 
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The innermost nodes of the inner contour were set to one (q = 1) while the outermost nodes on 

the outer contour were set to zero (q = 0). Values of interior nodes were interpolated linearly 

between 0 and 1. The strain energy, W, was computed as 
 

 
 [ ̅]{ }){ } where [ ̅] is either the 

plane stress stiffness matrix for isotropic materials or the transformed laminate stiffness matrix 

for composite materials and { } is the engineering strain, whose components are expressed as a 

vector. Stress, { }, was computed from strain via the stiffness matrix. The weight functions used 

for Gaussian integration (eqn 10) are denoted    . In matrix and vector notation: 
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are nodal coordinates transformed into the crack coordinate system in physical space and 
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are nodal displacements (either analytically derived or measured by DIC) transformed into the 

crack coordinate system in physical space. The Jacobian matrix [H] used to transform between 

physical space and isoparametric space is 
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The stress vector and strain vectors are denoted as follows, where [ ̅] is the transformed stiffness 

matrix for the material: 
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  were then calculated as:  
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For validation purposes, the area integral was applied to two sets of analytically derived 

displacement data: (1) uniform longitudinal strains in an infinite sheet of PMMA under plane 

stress; and (2) a center-cracked infinite sheet of PMMA under plane stress longitudinal loading. 

The purpose of evaluating J in case (1) one was to demonstrate the effect of contour truncation 

on measurements of J, while the purpose of case (2) was to determine how accurately the J-

integral measured fracture toughness   

Small systematic error arose from the application of the area integral to the analytical 

displacement data in both cases, which is due to contour truncation. Findings from the 

application of the area integral to displacement fields generated by analytically imposing a 

uniform longitudinal strain on an infinite plate of PMMA (case 1) include: 

 Contour truncation introduces error due to the definition of the analytical mesh. For an 

illustrative example, consider a contour that is 101 nodes wide by 101 nodes tall with a 

crack that bifurcates the leftmost leg at the 51
st
 node. This leg of the contour must be 

truncated such that the (non-existent) crack data at the 51
st
 node is not sampled. As the 

contour is actually comprised of two concentric contours (see Fig 4.1 (b)), this 

effectively removes two nodes, and consequently two elements, from the leftmost leg but 

not from the rightmost leg. For the case of a uniform strain field, J=-0.2567 J/m
2
 at each 

element along the left leg while J=0.2567 J/m
2 

for each element along the right leg. The 

loss of two elements from the leftmost leg results in a net value for J=0.5134 J/m
2
, 

equating to a net K=0.0398 MPa m . Note that along the bottom and top contours, 

element values were nominally zero (average values ranged from a minimum of -7.4x10
-

18
 ± 4.4x10

-15
 J/m

2
 on the bottom inner contour to a maximum of 2.4 x10

-13
 ± 4.23 x10

-15
 

J/m
2
 on the top outer contour). Thus, while the area integral algorithm does generate 
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rounding errors (J along the top and bottom contours should be exactly zero), they are 

negligible; error is predominately attributed to contour truncation.  

Findings from the application of the area integral to Westergaard displacement fields from 

applying a longitudinal stress on a center-cracked, infinite plate of PMMA large enough to 

initiate crack growth (i.e. Jc = 322.5806 J/m
2
 and Kc = 1 MPa m ) include: 

 For contour sizes similar to that which could be reasonably expected for experimental 

data, error in computing the plane stress fracture toughness was ~0.0007%. For a 900 x 

900 node contour with its LHS located near the center of the edge crack (1/8
th

 of the half-

crack length right of center), the area integral measured J = 322.576 J/m
2
 (K = 0.999993 

MPa m ). This corresponded to a 0.001% error in J and a 0.0007% error in K. The same 

values of J and K were attained for a 1800 x 1800 node contour.  

 Error increased – slightly – as the contour boundary was shifted towards the crack tip. 

For example, when the area integral was computed along the 900 x 900 node contour 

shifted from the center of the crack toward the crack tip such that the left leg was situated 

halfway between the crack center and the crack tip, J=322.574 J/m
2
 and K=0.999989 

MPa m , corresponding to underestimates of 0.002% and 0.0011% respectively.   

 The primary source of error was contour truncation at the crack flange, which was small 

enough to neglect as only a few nodes of data were removed the contour. This is the case 

only for analytical deformation fields. Experimental deformation fields require more 

aggressive truncation and have noise, which is an additional source of error. Unlike in the 

case of a uniform displacement field, the contour truncation error was not constant for a 

non-uniform displacement field. This is because longitudinal and horizontal 

displacements abruptly changed along the length of the crack flange. Consequently, 

measured values of J and K in neighboring elements along the crack flange differed. As 

the position of the contour shifted along the crack flange, the magnitude of truncation 

error changed as J values in the elements that were removed changed. In experimental 

applications, it is always necessary to truncate the contour by removing elements in this 

manner to avoid the evaluation of J in an element containing displacement data at the 

crack.    
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4.4 Application of Line and Area Integrals to Experimental DIC Data  

4.4.1 Impact of Contour Truncation on Measurements of Toughness  

As discussed in Section 4.3, with experimental data, contour nodes in the vicinity of the 

crack flange contain unavoidable erroneous displacement/strain data. For the J-integral to remain 

valid as the crack grows, the contour must originate and terminate at the upper and lower crack 

flanges, and at a distance behind the crack tip that falls beyond the fiber bridging zone. 

Terminating the contour along the flanges of the notch ensures this criterion is met. In 

experimental deformation fields, however, the crack flanges fall within a region of unrealistically 

large strains. Thus, the contour was truncated above and below this region following an approach 

similar to that of Becker [3]. Longitudinal strain fields (εyy) were overlaid on each image to allow 

for the selection of a rectangular contour surrounding the crack tip that completely encircled the 

process zone. Two approaches were assessed to determine a proper amount of truncation: 

plotting, along the leg of the contour that crosses the crack flange, the (1) confidence interval and 

(2) longitudinal strain or vertical displacements. For case (2), if the strain filter applied to the raw 

DIC data was larger than the displacement, then longitudinal strains were plotted, and vice versa. 

A comparison of the two approaches is shown in Figures 4.3 and 4.4. Using strains/displacement 

for truncation is the only way to ensure that unrealistic deformation data is removed from the J-

integral computation and is the recommended method for experimental data.  

Plotting the confidence interval is illustrated in Figure 4.3. A contour encompassing a 

crack tip in a PMMA CT specimen was truncated by removing nodes with large uncertainty in 

DIC displacement measurements that fall within the Gaussian-shaped region of the curve. In 4.3 

(a), truncation points are defined from confidence values plotted along the left leg of the contour; 

all nodes that fall within the boundaries of these two points are removed from the original 

contour.  The equivalent points are then shown for longitudinal strains (plotted along the left leg) 

in 4.3 (b). The truncated contour is overlaid on a plot of the longitudinal strain field in 4.3 (c). As 

shown in 4.3 (b) and (c), even though nodes with high confidence values were removed, the 

terminal ends of the truncated contour still reside within a region of unrealistically large strain. 

The strains at the upper and lower truncation points, 8000 and 15000 µε respectively, are well 

beyond the regime of plastic deformation.  
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The second approach of truncation using longitudinal strains plotted along the left leg of the 

original contour is shown in Figure 4.4. In 4.4 (a), nodes with strains that reside within the 

Gaussian-shaped region of the contour are removed. The corresponding contour plot is overlaid 

on a longitudinal strain field in 4.4 (b). The truncation points each terminate at regions in which 

the longitudinal strains are less than 1000 µε, which are more reasonable values of strain near a 

crack flange. 
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Figure 4.4   Illustration of the strain approach to truncation.  In (a), truncation points are defined 

at the boundaries of the Gaussian-shaped region of the longitudinal strains plotted along the left 

hand leg of the contour. The truncated contour is overlaid on a plot of longitudinal strains in (b).  

Longitudinal strains at the termination points are below 1000 µε, which are reasonable values of 

strain near the crack flange of a CT specimen. 

 

The effect of truncation can be significant, particularly for materials with low fracture 

toughness. When evaluated with the J-integral, the contour in Figure 4.3 results in measured 

fracture toughness of 0.42 MPa mwhereas that of Figure 4.4 is 0.56 MPa m  (a 

comprehensive discussion of experimental evaluations of fracture toughness in PMMA is 

provided in Section 4.5.1). Truncation by confidence interval incorporates strains that are not real 

into the fracture toughness calculation and is not used in further analyses of fracture toughness. 

Truncating by longitudinal strain resulted in predictions closer to the range of published values. 

Note that truncation by longitudinal strain, however, has its own shortcomings. Real mechanical 

behavior exists within the Gaussian-shaped region. For materials such as CMCs that do not have 

well defined mechanical properties, establishing a cut-off (such as failure strain) to aid in the 

selection of truncation points is not possible. Consequently, truncating by removing excessive 

strain in along the contour introduces some additional error in the measurement. However, 

truncating the contour using longitudinal strain appears to be a reasonable approach that results 

in fracture toughness within the range of published values for PMMA, and was adopted in this 

work. 
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4.4.2 Experimental Application - Line Integral 

The line integral was evaluated using a custom-coded MATLAB routine that utilized the 

DIC-calculated displacement and strain fields for each image of the advancing crack. For the 

tested CMCs, the average stress was calculated using experimentally-measured strains and the 

transformed laminate stiffness matrix ([ ̅]), as described by Herakovic [12]. Integration was 

conducted numerically using the trapezoid rule over the contour   . Ply-level elastic moduli were 

computed using the concentric cylinder model [13-14].  

For all tests, when the crack deviated from its travel in a direction perpendicular to the 

loading axis, the image was rotated to orient the crack horizontally in its own coordinate system. 

A rectangular contour was then drawn around the crack in the rotated image and its transformed 

coordinates were recorded so that all J-integral calculations would be computed with respect to 

the crack coordinate system. The position of each data point, as well as the strain and 

displacement data at each point, were transformed into this new crack coordinate system as 

illustrated in Figure 4.5. 

 

Figure 4.5. J-integral contours prior to and after crack initiation, with the contour oriented in the 

direction of crack propagation. Displacement and strain data collected along angled contours 

must be transformed into the crack coordinate system. 

For the CMC test shown in Figure 4.5, the J-derived fracture toughness was evaluated in two 

ways (following eqn 7):  (1) by transforming deformation data into the crack coordinate system 
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as the crack path deviated from perpendicular to the loading axis; and (2) by assuming the crack 

path deviation was small enough to neglect Mode II contributions (i.e. no transformations were 

conducted). In addition to the J-integral measurements, stress intensity factors were also 

calculated using the following closed-form analytical expressions for single edge notch tensile 

specimens per [15]: 

    √    (
 

 
)         (21) 

 (
 

 
)  

√
  

  
     

  

   
  

  

[          (
 

 
)      (     

  

  
)
 
]    (22) 

where a is the total crack length, W is the width of the tensile coupon, B is the thickness of the 

coupon and P is the applied axial load. To account for composite orthotropy, equation (21) was 

multiplied by the following correction factor [16]: 

   )             )           )           )    (23) 

Where c is the notch half-width of the notches minor axis, b is the notch length; and ρ and λ are 

material parameters defined as: 
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Ey, Ex, Gxy, νxy, and νyx are the longitudinal and transverse tensile moduli, shear moduli, and 

Poisson’s ratios of the composite laminate respectively. The accuracy of equation (23) is ≤ 2% 

and is valid for the range of   within 0 ≤   ≤ 4. 

Laminate properties were derived from the reduced transformed stiffness matrix for a symmetric 

cross-ply laminate [12]. The stiffness ( [ ̅ ]) in each lamina oriented an angle (θ) 

counterclockwise from the transverse direction in the material coordinate system is given by:  
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The lamina engineering properties were derived via the concentric cylinder model [13] using 

known properties of the composite’s monolithic constituents. 

The stiffness of the symmetric laminate was computed as: 

[ ̅]  
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The laminate compliance was then: 

[  ]  [ ̅]            (31) 

such that the laminate engineering constants in (24) and (25) become: 
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J was evaluated along the contour length for each image and converted to the plane-stress stress 

intensity factor, K, using the expressions [17]: 
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where x and y correspond to principle directions (1 and 2), the elastic constants are laminate 

constants, and K is Mode-I. Plane stress was assumed because deformation data was collected 

from the surface of a thin specimen. The plane stress critical stress intensity factor (Kc) was 

computed from the image in which the crack initiated at the notch. For cases where the crack 

propagated at an angle other than perpendicular to the loading axis, the loading was mixed mode 

and thus J was a mixed-mode measure of toughness.  

4.4.3 Experimental Application - Area Integral 

The area integral was applied to experimental data in a similar manner to the line integral 

except that only displacement data was used in the computation (the line integral used both 

experimental displacements and their associated Lagrangian strains). Since it only required 

displacement data, the algorithm avoided incorporating the exacerbated noise common in 

experimental strain data. Stresses and strains were computed from DIC-obtained displacement 

data using the procedure described in section 4.3.2. Area contours truncated around the 

notch/crack flange are shown overlaid on longitudinal strain fields in Figure 4.6. The variability 

apparent in both strain fields is attributed to image noise and bias related to digital image 

correlation at these small length scales.  
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Figure 4.6  Area contours overlaid on longitudinal strain fields in (a) PMMA and (b) SiC/SiC 

CMC. In both cases, the contour was truncated on either side of the crack flange and extends 

beyond regions of plastic deformation. In (a), plastic deformation occurs at 2000 με. Strain 

values have been withheld for the CMC in (b). 

4.5  Fracture Characterization: Assessment of Line and Area Integrals 

Characterization of toughness for PMMA, Aluminum and SiC/SiC was attempted using 

the line and area integrals. For all materials, the line and area integrals exhibited a degree of path 

dependency attributed to contour truncation and DIC data variability. This path dependency was 

more pronounced in the brittle PMMA and SiC/SiC samples than in the 6061 Aluminum sample. 

Stress intensity factors measured for PMMA and Aluminum fell within or near the range of 

published values, however, the area integral measurements were slightly larger than the line 

integral measurements. R-curves generated for SiC/SiC using the J-integral approach followed a 

similar trend as those derived for SiC/SiC analytically using a closed form solution but were up 

to three times larger in magnitude.  

4.5.1   Fracture Characterization in Isotropic Materials 

4.5.1.a  Fracture Characterization: PMMA 

To assess algorithm accuracy when applied to experimental data, the line and area 

integrals were computed from DIC data collected for a tapered double-cantilever PMMA 

compact tension coupon and a single edge notched 6061 aluminum tensile specimen. In Section 
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4.4.1, it was shown that the J-integral measurement of fracture toughness is sensitive to contour 

truncation. This section demonstrates that the J-integral (both line and area) is path dependent 

when applied to experimental data, resulting in toughness measurements that vary in accuracy 

for contours of different dimensions and positions. However, while path dependency was 

attributed to contour truncation in the analytical analysis, path dependency is attributed to both 

contour truncation and data variability in experimental analyses. It is also shown that J-integral 

measurements of toughness and stress intensity factors change when filtering operations are 

applied to the input data.    

The tapered geometry of the PMMA CT specimen is intended to induce a 30 mm long 

region of constant stress intensity factors as the crack propagates [18]. As shown in Figure 4.7, 

both the line and area integrals generate nearly flat R-curves, indicating that both algorithms are 

capturing the constant-K behavior that is expected. The averaged area integral measurements 

were nearly twice as large as the averaged line integral:  K = 0.54 ± 0.01 MPa m  for the line 

integral and 0.96 ± 0.02 MPa m  for the area integral. Both these measurements were within the 

range of published measurements of the critical stress intensity factor (0.6 to 2.2 MPa m in 

plain strain or 0.56 to 2.07 MPa m in plane stress) [19] for PMMA. The line integral 

computation in Figure 4.7 incorporated unfiltered displacement data and filtered strain data while 

the area integral incorporated only unfiltered displacement data; this may explain the difference 

in magnitude between the two computations.  
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Figure 4.7. (a) Illustration of constant-K PMMA compact tension specimen and (b) R-curves as 

measured by line (red squares) and area (blue circles) integrals. The area integral stress intensity 

factors in (b) are larger the line integral values because the displacement data used in the area 

integral has not been filtered. 

Since variability in the DIC data, which takes the form of random noise and bias, had a 

significant impact on J-integral measurements (Figure 4.7), a parameter study was conducted to 

investigate the effect of noise reducing parameters (data filtering and DIC step size 

manipulation) on stress intensity measurements. The crack was assumed to be macroscopically 

straight for the parameter study, so data transformations were not conducted. This decision was 

justified since transforming data in the direction of local crack propagation at the crack tip did 

not significantly influence the J-integral measurements. This is shown in Figure 4.8, where line 

and area integrals were evaluated for the case of straight crack propagation (no data 

transformation was conducted) and for the case of local crack deviations (data was transformed 

in the direction of local crack propagation).  
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Figure 4.8  Line and area integrals are evaluated for the cases of:  (1) assumption of straight 

crack propagation and (2) transformation of deformation data in the direction of local crack 

propagation. Transforming data had no significant impact on the stress intensity factor 

measurements. 

Since the line integral algorithm incorporates the DIC-computed Lagrangian strains 

(unlike the area integral algorithm, which only incorporates displacements), the influence of 

strain smoothing on the line integral was first investigated. As shown in Figure 4.9(b), the 

examined filter sizes had little effect on stress intensity measurements in the line integral. 

However, note that while filtering operations do reduce noise (Figure 4.9 (a)), they come at the 

expense of reducing spatial resolution. As shown in Figure 4.9, strain data was smoothed by 

applying 5 and 15 node decay filters prior to evaluating the line integral. As the DIC subset size 

used to generate the deformation field data was 41 pixels and the DIC step size was 5 pixels, the 

two filtering operations smoothed the strain data over regions 61% and 180% of the subset size. 

In addition to the strain filters, 5 node and 15 node averaging filters were also applied to the 

displacement data. The filtered longitudinal strain fields are shown in Figure 4.9 (a) and the 

resulting stress intensity factors shown in Figure 4.9 (b). 
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Figure 4.9  In (a), longitudinal strain fields are plotted for less aggressive (5 node) and more 

aggressive (15 node) strain filtering. Truncated line integral contours are overlaid on the strain 

fields. In (b), R-curves generated from line integral measurements with 5 node and 15 node 

filtering schemes are plotted. The smaller filtering operations resulted in slightly higher stress 

intensity factors. 

Next, the sensitivity of both the line and area integrals to filtering displacement data was 

examined. Although toughness and stress intensity measurements for both the line and area 

integrals generally decreased as the amount of filtering increased, the area integral was more 

sensitive than the line integral. Also, increasing the filter size did not lead to convergence of the 

area and line integral R-curves. For this analysis, strain filtering (line integral only) was held 

constant at 15 nodes. The DIC subset size was 41 pixels and the step size was 5 pixels. Figure 

4.10 (a) through (c) show R-curves for 5, 15 and 30 node averaging filters applied to the 

displacement data. As the filter size increased from 15 to 30 nodes, the average stress intensity 

factor for the area integral dropped from 0.96 ± 0.02 MPa m  to 0.7 ± 0.04 MPa m  but only 

dropped from 0.55 ± 0.01 MPa m  to 0.52 ± 0.02 MPa m  for the line integral. When the 

displacement filter size was increased to 40 nodes, the average stress intensity as computed by 

the area integral dropped drastically to 0.24 ± 0.09 MPa m . The area integral is more sensitive 

to displacement filtering because its sole source of data input is displacements, whereas filtered 

strains serve as input data for the majority of the mathematical operations involved in computing 

the line integral.  



71 
 

 

Figure 4.10. R-curves for PMMA tapered DCB-CT sample as measured by line and area 

integrals after:  (a) 5 node, (b) 15 node and (c) 30 node averaging filters are applied to 

displacement data from DIC. The area integral is more sensitive to displacement smoothing than 

the line integral because it contains more mathematical operations on displacements.  

Noise can be reduced by increasing the DIC step size, because displacement data over the 

entire field of view is then interpolated between data points that are spaced further apart. A 

comparison of R-curves collected at two different step sizes is shown in Figure 4.11. In 4.11 (a), 

the step size over which DIC data was collected was 5 image pixels, or 1/8
th

 of the 41-pixel 

subset size. In 4.11 (b), the step size was 21 pixels, or ½ of the subset size. In (a) and (b), a 5 

node (25 pixel) averaging filter was applied to the displacement data. The larger step size 

resulted in lower measurements of toughness and stress intensity factor for both algorithms. The 

resistance curves in 4.11 (b)) exhibited a slight positive slope whereas those of 4.11 (b) were flat. 

This may be an artifact of the larger step size. A shortcoming of sampling fewer data points is 

that material deformation that occurs between data nodes goes undetected. If the DIC data mesh 

is too sparse, sharp changes in displacement at regions of the material that exhibit large 

deformation gradients will not be factored into the J computation. This, in turn, will affect the 

magnitude of J and K measurements and shape of resistance curves. 
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Figure 4.11. R-curves for PMMA tapered DCB-CT sample as measured by line and area 

integrals using (a) 5 pixel and (b) 21 pixel DIC step sizes. Stress intensity factors were lower for 

J-integrals evaluated using deformation data from the larger step size.   

The line and area integrals were both path dependent; as the size of the contour increased, 

the stress intensity factor decreased. The significance of this is that, even with relatively low-

noise DIC data, the supposedly path independent J-integral was in fact highly path dependent. 

This is attributed to a strong susceptibility of the J-integral to variability in the DIC data. To 

illustrate, Figure 4.12 depicts two different sized contours overlaid on a longitudinal strain field 

generated from DIC using a 41 pixel subset and 5 pixel step size. Line integral (4.12 (a)) and 

area integral (4.12 (b)) measurements were conducted using 15 node displacement (both 

integrals) and 15 node strain (line integral only) filtering operations. The smaller contour is 

100x100 pixels and the larger contour is 200x200 pixels. In 4.12 (a), increasing the line integral 

contour decreases the stress intensity factor by 11%. In 4.12 (b), increasing the area integral 

contour decreases the stress intensity factor by 7%. The smaller path lies closer to the plastic 

zone, which may account for the larger stress intensity. However, when the large contour was 

shifted right by just 5 nodes, stress intensity factor again dropped to 0.52682 MPa m  (-5.3%) in 

the line integral and 0.90371 MPa m  (-2.8%) in the area integral. The line and area integral 

both predicted critical stress intensity factors within the range of published values (0.56 to 2.07 

MPa m in plane stress), but the area integral was nearly double the line integral. It fell in the 

middle of this range and is expected to be a more accurate measure as it samples more data 
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points, making it less susceptible to variability than the line integral. A detailed analysis of 

variability and its impact on the J-integral is presented in Section 4.6. 

 

Figure 4.12. Stress intensity factors vary with contour size for both the (a) line integral and (b) 

area integral. Although the variations are small, the J-integral is path dependent. 

4.5.1.b  Fracture Characterization: Aluminum 

Toughness and stress intensity factors were evaluated for a single edge-notched 6061 

Aluminum tensile coupon. For all analyses, a DIC subset size of 55 pixels was used. The field of 

view was 21 mm (1600 image pixels). Figure 4.13 depicts the tensile specimen and DIC field of 

view. Given a Young’s modulus of 68.9 GPa and yield strength of 276 MPa [20], the strain at 

yield is about 4000 µϵ. Thus, contours were drawn in regions outside of 4000 µϵ. The published 

plane strain fracture toughness is 34 MPa m [21], or 32 MPa m for plane stress. As DIC 

measurements were taken on the surface, J-integral measurements of fracture toughness were 

plane stress. The J-integral was evaluated until the point where plastic zone size exceeded the 



74 
 

size of the largest contour that could be drawn. Because this occurred before a crack initiated 

from the notch tip, stress intensity factors were plotted with respect to crack opening 

displacement.   

 

Figure 4.13  Aluminum single edge notch tensile specimen loaded in uniaxial tension. 21 mm 

DIC field of view is overlaid on tensile specimen. Contour for line integral is plotted on 

longitudinal strain field. Note that the boundaries of the contour are outside of the plastic zone.  

Figure 4.14 shows plots of stress intensity factor versus crack opening displacement as 

derived from both the line and area integrals. Increasing the step size resulted in a slight drop in 

measured stress intensity factors (Figure 4.14(a)) while filtering the displacements had no 

significant impact on the stress intensity factors (Figure 4.14(b)). In 4.14 (a), the J-integral was 

measured from DIC data at step sizes of 5 pixels and 21 pixels (9% and 38% of the subset size, 

respectively). For the line integral only, strain filters of 21 and 5 nodes were applied to the 

smaller and larger step-sizes, respectively. No displacement filtering was conducted. In 4.14 (b), 

21 node displacement filters were applied to the 5 pixel step-size data (with 21 node strain 

filtering for the line integral). The lower sensitivity of J measurements to filtering in the 

aluminum than in PMMA is attributed to the more ductile aluminum having less noise than the 

relatively brittle PMMA.  

  In 4.14 (a) and (b), the area integral measurements grow increasingly larger than the line 

integral measurements as the crack opening increases. The area integral output is more sensitive 

to the magnitude of the displacement data that is input, even when the displacements are filtered. 
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Of the data that could be sampled, all occurred before a well-defined crack emanated from the 

notch. Thus, the curves in Figure 4.14 terminate at or prior to reaching fracture toughness.  

 

Figure 4.14  Plots of stress intensity factor versus crack opening displacement for the line and 

area integrals.  In (a), increasing the step size from 5 to 21 pixels resulted in a slight drop in 

stress intensity factors.  In (b), applying a (21 node) averaging filter to the displacement data 

prior to evaluating J had little to no effect on the stress intensity factors. 

4.5.2   Fracture Characterization: SiC/SiC 

Line and area integrals were used to evaluate fracture toughness for four SiC/SiC edge-

notched tensile coupons: (1) [0/90/0/90]s tensile coupons loaded in uniaxial tension at 800˚ C in 

SEM vacuum and (2) two ply unidirectional laminates loaded in uniaxial tension in the fiber 

direction at ambient temperature. Details of (1) and (2) are discussed in Sections 4.5.2.a and 

4.5.2.b, respectively.  For all CMC tests, resistance (R) curves were plotted as stress intensity 

factor versus crack opening displacement.  It is acceptable to replace J with K for the R-curves as 

fracture in ceramic materials exhibit local small scale yielding, which permits a direct correlation 

between J and K [22].Crack opening displacements were plotted rather than crack extension. 

Crack extension cannot be accurately characterized in a CMC because the crack tip position 

varies through the thickness of the material.  In fact, deducing the position of the crack tip on the 

surface of the material from DIC data is a circumspect technique.  To reduce noise, DIC data is 

filtered over several nodes of deformation data.  This reduces spatial resolution and consequently 

increases uncertainty in the crack tip position.  Reducing the filter sizes raises the noise signal, 
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which makes accurately distinguishing the crack tip from noise difficult.  It is also for this reason 

that no attempt is made in this work to define a single value of fracture toughness for the CMC. 

Determining the critical stress intensity to initiate fracture requires an accurate means of 

determining crack initiation, which in turn requires accurate identification of the crack tip.  For 

this reason, no attempt was made to define a single value of fracture toughness for the CMC; 

instead ranges of fracture toughness (plane stress) were established. 

4.5.2.a  Fracture Characterization: SiC/SiC [0/90/0/90]s at 795° C 

Line and area integrals were used to evaluate fracture toughness and crack resistance for 

two edge-notch cross-ply SiC/SiC CMCs loaded in uniaxial tension at 795° C in a SEM.  In 

addition to the J-integral calculations, stress intensity factors were computed using a closed form 

solution for orthotropic materials that incorporated experimentally measured loads and crack 

lengths.  For all three methods – line, area, and closed form - fracture toughness was measured as 

a function of crack length and plotted as resistance curves.  The closed-form solution represents a 

global measure of stress intensity assuming only a single crack exists in the material. On the 

other hand, the numerical (J-integral) methods represent localized, constituent-level measures of 

fracture toughness taken in the vicinity of a single crack. The numerical (J-integral) approach 

was conducted in two ways: (1) deviations of the crack path in any direction other than 

perpendicular to the loading axis  were  assumed to occur over a small enough length that the 

crack, as a whole, was treated as if it was a straight crack perpendicular to the loading axis; (2) 

deviations of the crack path were large enough that all position and deformation data was 

transformed into a crack coordinate system that was aligned with the local direction of crack 

propagation.  The latter case was expected to account for directional dependence on toughness in 

the anisotropic composites. Ultimately, transforming data into the crack coordinate system had 

no significant impact on toughness and stress intensity measurements. 

A schematic of the loading fixture and a plot of resistance curves derived from the closed 

form and J-integral methods for one of the first of two tensile tests are shown in Figure 4.15.  In 

4.15 (a), the CMC is shown mounted in the in-situ load/heating fixture prior to being placed in 

the SEM.  Attached to the CMC was a miniature tungsten resistance heater capable of heating to 

800º C.  To reduce noise from thermal emissions, tantalum heat shields with 6 mm apertures 

were placed above the sample. In 4.15 (b), resistance curves from the 795º C tensile test are 
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plotted alongside a closed form solution for stress intensity factors. The line integral and area 

integral curves show good shape agreement with the closed-form curve, but the magnitudes of 

the stress intensities are larger. It is not surprising that the closed form solution under predicts 

stress intensity in the CMC. By the time a single matrix crack has begun propagating, the 

composite contains several matrix cracks.  The closed form computation only incorporates the 

length of one of many cracks.  If the closed form K were converted to J, the resultant toughness 

would not accurately reflect the actual potential energy released in the material. On average, the 

line integral was 2.0 ± 1.2 times greater and the area integral was 3.7 ± 1.7 times greater than the 

closed form solution. The largest discrepancy occurred at the first two loading increments, where 

the noise to signal ratios were highest.  The area integral measurements are expected to be more 

accurate than the line integral since more data is sampled, making it less susceptible to 

variability. 
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Figure 4.15  (a) CMC mounted in mini tensile stage.  Attached to the bottom of the sample is a 

resistance heater capable of heating to 800⁰ C in the SEM.  (b) Experimental R-curves for 

SiC/SiC CMC at 795° C derived using a closed form analytical expression (black diamonds), 

line integral (red squares) and area integral (blue circles).  The analytical curve represents global 

measures of stress intensity for a single matrix crack, whereas the J-integral solutions are a 

measure of local stress intensity in the vicinity of the notch.  Note:  all stress intensity factors are 

normalized to a reference value, K. 

It is not certain whether the variation in magnitude between the J-integral resistance 

curves and the closed form resistance curve is a consequence of the closed form solution under-

predicting stress intensities or is an artifact of the localized nature of the J-integral measurement.  

Unlike the closed form solution, the J-integral measurements of toughness are derived from 

deformation data in the vicinity of a single matrix crack. While the J-integral provides a measure 

of toughness in a single matrix crack, it too is not reflective of toughness in the overall 

composite.  In the composite, potential energy released in the material results from the 

propagation of multiple cracks, not just a single crack.  However, because neighboring cracks 

mutually influence each other (e.g. load relaxation), the J-integral measurements of toughness 

capture the local effects of fiber-fiber interactions whereas the closed form solution does not.   
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Regarding accuracy of J-integral measurements, there are several sources of error that should 

be considered: 

 Contour truncation removed physical deformation data from the J-integral calculations.   

However, the nodes of data that were removed were in the vicinity of the crack flange; 

the actual deformation at those locations was likely too small to have a significant impact 

on the toughness measurements. 

 When data was transformed into the crack coordinate system, the contour was rotated 

into the crack growth direction.  To prevent the lower left leg of the contour from rotating 

out of the original FOV, the entire left leg had to be shifted toward the crack tip.  

Consequently, the LHS of the contour had to be truncated about the crack flange rather 

than the notch flange in order for the entire contour to remain within the FOV. This 

caused the truncation points to fall within a potential fiber-bridging zone, which would 

raise the toughness and stress intensity measurements. Whereas the notch flange is 

traction free, the crack flange (in the early stages of crack propagation) experiences 

closing tractions. However, at the truncation points on the contour remote from the flange 

faces, the deformation values in a contour that crosses the crack flange are probably close 

enough to the values in a contour that crosses the notch flange that the error introduced is 

small.   

 The crack length used to compute the analytical curve was measured directly from 

scanning electron micrographs, and did not take into account the effective length that 

could result from the presence of fine microcracking ahead of the crack tip.  If the 

effective length was larger, the values of K would also be slightly larger. 

  The SEM-DIC and DIC data contained unavoidable noise and bias error.  Filtering the 

deformation data considerably reduced this variability.  For the J-integral curves in 

Figure 4.15 (b), the deformation data was generated with a 41 pixel subset size, 2 pixel 

step size, 35 node strain filter (line integral only) and 35 node displacement filter (line 

and area integrals). Additionally, the data was transformed into the crack coordinate 

system.  This combination of parameters produced curves that best replicated the trend in 

the closed form solution. However, as is discussed in detail in Section 4.7, filtering 
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deformation data in CMCs may mask underlying damage and should be used with 

caution. 

The low-scatter line and area integral curves presented in 4.15 (b) reflect J-integral 

measurements after optimal data smoothing. Adjustments to the DIC step size and filtering 

schemes significantly impact the J-integral measurements.  In Figure 4.16, resistance curves for 

the line and area integrals using the same DIC parameters as 4.15 (b) are plotted with the closed 

form curve, this time with unfiltered displacement data.  In 4.16 (a) it is assumed that the crack is 

generally straight.  In 4.16 (b), data is transformed in the direction of the crack tip.  In both plots, 

the stress intensity factors generally increases with crack extension. As opposed to the curves of 

the filtered data in 4.15 (b), the stress intensity measurements in 4.16 (b) are erratic, sometimes 

increasing and other times decreasing with crack extension.  Measurements from the transformed 

data are lower than those of the straight crack data.  This may be due to the curves in 4.16 (a) 

incorporating both Mode I and Mode II fracture toughness contributions; the crack deviated at a 

4⁰ angle shortly after initiating from the notch.      

 

Figure 4.16  Unfiltered resistance curves generated from the line integral, area integral, and 

closed form solution.  In (a) the crack is assumed to be macroscopically straight; data is not 

transformed.  In (b), data is transformed into the local crack-tip coordinate system.  Curves from 

the unfiltered data of (a) and (b) behave erratically in contrast to the filtered data curves of 

Figure 4.15 (b).  This is attributed to variability in the displacement data.  Note:  all stress 

intensity factors are normalized to a reference value, K. 

Displacement filtering and changes in the DIC step size impacted the shape and 

magnitude of the resistance curves. Increasing the filter size reduced noise and bias, resulting in 
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reduced variability in the resistance curves and lower stress intensities. This is illustrated in 

Figure 4.17 (a), where R-curves generated from unfiltered displacement data with a 2 pixel step 

size are plotted against R-curves for displacement data that has been smoothed with a 35 node 

(70 pixel) averaging filter. In Figure 4.17 (b), the step size was increased from 2 pixels to 10 

pixels. For unfiltered data, increasing the step size did not reduce scatter in the curves.  However, 

applying a 5 node (50 pixel) averaging filter smoothed the R-curves such that they took the form 

of those in 4.15 (b). Note that Becker [3] measured J values close to analytical measurements 

using a modest filtering scheme (a step size 25% of the subset size) for 316 stainless steel.  

Becker did note that using too aggressive of a filtering scheme (e.g. a step size equal to the 

subset size) resulted in greater error because of the reduced spatial resolution that comes from 

filtering, but the error associated with DIC data variability was not addressed.  

 

Figure 4.17  Effect of displacement filtering and step size on stress intensity factors.  In (a), R-

curves generated from unfiltered data (squares) are plotted against r-curves generated from 

filtered displacement data (asterisks).   Increasing the step size reduced variability in the curves 

and stress intensity factors.  In (b), an increase in step size from 2 pixels to 10 pixels did not 

reduce scatter in the curves for unfiltered data (squares), but did reduce the disparity between the 

line and area integrals for filtered data (asterisks). Note:  all stress intensity factors are 

normalized to a reference value, K. 

To summarize, noise and bias in DIC data, contour size and position, and the amount of 

truncation are all factors that impact J-integral measurements in CMC DIC data. It has been 

shown that filtering deformation data (strain and displacement data for the line integral, 

displacement data only for the area integral) reduced fluctuations and scatter in the resistance 
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curves computed by the J-integral algorithms. A limitation of the J-integral that remains 

unresolved is the dependency of toughness measurements on the contour path, which is 

particularly problematic for materials with low failure strains. As an illustrative example, line 

integrals of various sizes were evaluated on data corresponding to a crack extension at 315 µm in 

Figure 4.18, using the same DIC parameters and filtering scheme as in Figure 4.15 (b).  In 4.18 

(a), the line contours were truncated about the notch tip to remove high intensity noise emanating 

from the notch from the J computation.  In 4.18 (b), the contour was truncated about the crack 

flange just ahead of the notch tip, which removed less data but resulted in contour termination 

within the fiber bridging zone.  In both 4.18 (a) and (b), the stress intensity factors increased as 

the contour size decreased and shifting the contour resulted in stress intensity fluctuations. It is 

not possible to definitively identify which of these predictions is most accurate since variability 

in the data is not uniform throughout the FOV. 
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Figure 4.18  Line integrals evaluated using large and small contours. Both (a) and (b) illustrate 

the path dependency of the J-integral when applied to DIC data for stiff materials. In (a), 

contours were truncated about the notch such that the contour terminated outside of the fiber 

bridging zone and excluded high intensity noise emanating from the notch tip. In (b), contours 

were truncated about the crack flange within the fiber bridging zone.   

The J-integral was applied to a set of DIC data for a second edge-notched cross-ply CMC 

tested at 795° C in the SEM.  Whereas the first test was imaged over a 783 µm FOV, the second 

test was imaged over a 500 µm FOV which contained partially exposed fibers.  For DIC, a 51 

pixel subset, 5 pixel step size and 75 node strain filter were utilized.  Prior to running the J-

integral algorithms, a 75 node averaging filter was applied to the displacement data.  R-curves 

for both tests are plotted against crack opening displacement for both tests in Figure 4.19 (a). At 

the largest crack opening displacements, the J and K measurements for the second test exhibited 

greater scatter because the process zone surrounding the notch began to merge with a region of 

artificially high strain surrounding a broken surface fiber that began to pullout along the fiber-
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coating interface.  These two regions are depicted in Figure 4.19 (b).  Up to this point, the R-

curves for both tests are in fairly good agreement, indicating that the J-integral measurements are 

consistent from one test to another. In the first test, the first crack observable from DIC data 

occurred at 1 µm of crack opening displacement, corresponding to stress intensity factor ranging 

from 1.8K (line integral) to 2.1K (area integral), implying that the plane stress fracture toughness 

in the CMC was at or below this range.  In the second test, cracking was detected at 0.5 µm crack 

opening displacement, corresponding to a plane stress fracture toughness at or below 0.45K (area 

integral). Because of the proximity of a surface fiber experiencing pullout in the second test as 

well as the presence of several exposed fibers within the FOV, the fracture toughness range as 

measured by the J-integral here is questionable.   

 

Figure 4.19  In (a), R-curves are plotted for two 795° C SEM tensile tests of edge-notched cross-

ply CMCs.  Up to 1.25 µm, the R-curves for both tests exhibit similar stress intensities.  At crack 

opening displacements above 1.25 µm, artificially large strains and displacement in the vicinity 

of a region of fiber pullout merge with the deformation field in the vicinity of the notch tip, 

resulting in unreliable measures of J and K.  This is illustrated in (b), where longitudinal strain 

fields are overlaid on the fracture image from Test 2 equating to a crack opening displacement 

greater than 1.25 µm. Note:  all stress intensity factors for CMC tests are normalized to a 

reference value, K. 

4.5.2.b  Fracture Characterization: Unidirectional CMC 

Using the line and area integrals, resistance curves were computed for two unidirectional 

SiC/SiC CMCs loaded in uniaxial tension under ambient environment.  The edge-notched tensile 

coupons each consisted of a double layer of longitudinally oriented fibers.  DIC data was 
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collected using a Grasshopper 5 megapixel CCD camera fitted with a 75 mm Tamron CCTV lens 

over a 6.5 mm (2048 pixel) FOV. For both data sets a DIC step size of 2 pixels was used. 

Smoothing was conducted using 35 node strain filters (line integral only), and 35 node 

displacement filters. A 45 pixel subset was used for DIC on the first data set and a 41 pixel data 

set for the second. During both tests, two cracks initiated and propagated from the notch. 

Consequently, stress intensities were plotted against crack opening displacement rather than 

crack extension and data was not transformed into a crack coordinate system. Resistance curves 

for the first data set are shown in Figure 4.20; inset in the figure are longitudinal strain fields 

corresponding to various lengths of crack opening displacement. The first cracks that can be 

detected by DIC occur at a crack opening displacement of 0.4 µm. At this COD, the stress 

intensity factors range between 0.9K (line integral) and 1.1K (area integral). The plane stress 

fracture toughness of the composite is estimated to be at or below this range of stress intensities. 

  

Figure 4.20.  Line and area integral derived resistance curves for the first of two uniaxial CMC 

laminate tension tests. Fibers are oriented in the loading direction. Two cracks initiated 

simultaneously from the notch tip, with final fracture ultimately dominated by the upper crack. 

Plane stress fracture toughness is attained at or below the range 0.9K to 1.1K. Note:  all stress 

intensity factors for CMC tests are normalized to a reference value, K. 
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Up to about 2 µm of crack opening displacement, the area and line integrals measured 

similar stress intensities. The area integral measurements were higher than line integral for all 

loading thereafter. This was also observed in the cross ply tests, and is attributed to the difference 

in filtering for the two integration methods. Although both displacements and strains are filtered 

in the line integral, a majority of the J computation incorporates filtered strain data. Filtering 

strains is preferable to filtering displacements, but this is not possible for the area integral; strains 

are computed it each Gauss point individually, then J immediately thereafter.   

Resistance curves for both tensile tests are plotted in Figure 4.21. Inset in Figure 4.21 are 

longitudinal strain fields for both test which correspond to a point at which cracks have initiated 

from the notch tips. Stress intensities for the first test were generally less than those of the first 

tests.  Both tests exhibited toughening behavior; the rate of increase in stress intensities 

decreased as crack opening displacement increased. As expected, area integral measurements 

were larger than line integral measurements. In the second test, crack initiation was detectable in 

DIC data at a crack opening displacement of 0.55 µm.  This corresponds to a plane stress fracture 

toughness value at or below the range 1.3K (line integral) to 1.5K (area integral). Combining the 

results from both tests, estimates of plane stress fracture toughness as computed by the J-integral 

fall within or below the range 0.9K to 1.5K. 
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Figure 4.21  Resistance curves derived from J-integral for longitudinal unidirectional laminate 

CMCs loaded in uniaxial tension. Inset are longitudinal strain fields corresponding to earliest 

detection of crack initiation at edge-notch. J-integral measures of fracture toughness were at or 

below the range 0.9K to 1.5K. Note:  all stress intensity factors for CMC tests are normalized to 

a reference value, K. 

4.5.2.c  Comparison of Results from Cross Ply and Unidirectional Laminates 

For both the high temperature cross-ply and ambient temperature unidirectional CMC 

tests, the range of critical stress intensity factors measured by the J-integral were close to 

published values of fracture toughness for monolithic reaction bonded silicon carbide. Again, 

fracture toughness estimates for the composite were defined as being at or below the J-derived 

stress intensity factor corresponding to the first crack initiation at the notch, as detected from 

DIC strain fields. However, fracture toughness may not be an appropriate metric for 

characterizing fracture behavior in the CMCs that were tested. Cracks initiated in the matrix at 

low stress intensities because the matrix is inherently stiff and brittle. The existence of these 

cracks, however, did not result in a change in slope in the stress-strain curves of the test coupons. 

Unlike their monolithic counterparts, the CMC cracks did not grow unstably under sustained 

loading after crack initiation. As evidenced in the R-curves in Figures 4.19 and 4.21, the stress 
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intensities grew larger as the cracks propagated, but the rate of growth decreased with crack 

propagation. This is attributed to fiber bridging in the crack wake. Fibers bridging the crack 

apply a traction that closes the crack faces. The applied stress intensity must increase to 

overcome these tractions [22]. Although the estimated range of fracture toughness in the 

composites was near that of the monolithic matrix, the cracks that initiated grew stably under 

continued loading. The SIF magnitudes were larger in the unidirectional resistance curves than in 

the cross-ply curves. This is because the unidirectional layups contained only longitudinal fibers, 

which are oriented in a more favorable direction for toughening than the transverse fibers in the 

cross-ply. 

The J-integral approach was adopted to characterize fracture toughness at the constituent 

level and is therefore not expected to generate results that are equivalent to a macroscale closed 

form solution of the stress intensity factor. One of the challenges of this new approach towards 

constituent level characterization of fracture toughness is the lack of a baseline to determine how 

much the constituent scale measurement should deviate from the macroscale.  It is expected that 

the macroscale measurement will be incorrect, as it assumes a single crack in a material that 

ultimately fails through the formation of multiple widespread matrix cracks. However, the J-

integral measurements at the constituent scale, while a promising new approach that provide 

more realistic depictions of the local fracture toughness, currently incorporate a significant 

amount of error. While displacement and strain error measurements (such as root mean square 

(RMS) and standard deviation) can be assigned to an area of interest over which DIC data has 

been collected [23], it cannot be assigned to each node of data individually. For example, 

displacement and strain errors for a set of test data can be determined by measuring the RMS 

error in DIC measurements generated for a static image pair. However, adding the RMS error 

bounds to each data point then using this modified data to evaluate J has no effect; the added 

error is uniform across the FOV and equates to nothing more than a rigid body translation. 

4.5.2.d   Experimentally Derived Bridging Zone Laws 

The J-integral can be used to generate a bridging law that measures the fiber bridging 

tractions, which collectively exert a closing stress on the faces of the crack flange, within the 

bridging zone [1, 24]. The fiber bridging stresses vary along the length of the crack flange, 

increasing with crack opening displacement. Fiber bridging laws were generated from line 
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integral measurements of the energy release rate, J, for the cross-ply Test 1 data as well as both 

unidirectional tests. For each data set, crack opening displacement was measured at the end of 

the fiber bridging zone (i.e. at the notch tip).  Using least squares regressions, power law curves 

were fitted to plots of crack opening displacement versus J for each data set. The derivative of 

each curve yields the fiber bridging stress as a function of crack opening displacement and 

constitutes a bridging law.   

Bridging laws for all three data sets are plotted in Figure 4.22. In each curve, the fibers 

have been normalized to the net section fracture stress of the test coupon. The bridging stresses 

in the cross-ply sample are larger, which is attributed to half of the laminates containing fibers 

oriented transverse to the loading axis; the cross-ply samples have a lower volume fraction of 

longitudinal fibers. Although transverse fibers contribute to bridging, that contribution is 

expected to be much less. The magnitude of the bridging tractions in the cross-ply exceeds the 

far-field fracture strength because the cumulative cross-sectional area of the longitudinal 

bridging fibers is much smaller than that of the laminate. 
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Figure 4.22  Fiber bridging laws for a cross-ply CMC tested at 795° C in the SEM (blue circles) 

and unidirectional laminates tested at ambient temperature (red squares and black diamonds). 

Bridging tractions are normalized to the net section stress at fracture of each test coupon. 

Bridging tractions represent stresses exhibited by fibers that act to close the faces of the crack 

flange. The local traction varies along the crack with crack opening displacement. 

4.6   Influence of Experimental Variability on the J-integral 

Variability in experimentally-obtained DIC deformation data strongly influences the J-

integral calculation.  This section examines the effect of variability on J through the addition of 

random noise to analytical Westergaard displacement data.  At each data point of the vertical and 

horizontal displacement fields, a random number was generated and added to the displacement 

value at that point, thus creating artificially added noise.  Upper and lower limits of the added 

noise varied between 0.1 and 10% of the analytical displacement value at a given location. For 

example, consider a node where the displacement value is 10 pixels and the noise range is 

chosen to be 10%. At that node, a random value ranging from -1 pixel to 1 pixel (-10% to 10% of 

10 pixels) is added as noise. Figure 4.23 shows full-field vertical displacements (V) plotted for 

0.1%, 1% and 10% added noise. The error in measuring toughness (J) increased as the magnitude 

of artificial noise increased.  In this case, the errors resulted in under predictions. Recall from the 
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experimental analyses, noise in DIC data resulted in over predictions which were reduced 

through filtering. For the 0.1% noise level in Figure 4.23 (a), error is less than 1%.  However, 

with each order-of-magnitude increase in noise level (4.23 (b) through (c)) the error becomes 

larger.   

 

Figure 4.23  Vertical displacement fields from Westergaard equations are modified to include 

random noise. Noise scaling increases from 0.1% to 10% taken clockwise from top left. Error in 

computing J substantially increases with noise. 

To better understand the high noise sensitivity of the J-integral, the manner in which 

noise from displacement data is amplified when that data is used to compute strain was first 

examined.  Figure 4.24 shows longitudinal strain profiles collected from the RHS contour leg in 

a set of analytical deformation data with varying levels of noise: (1) biaxial Westergaard solution 

with no noise, (2) biaxial Westergaard solution with added noise capped at ± 0.1% of the actual 

displacement values, and (3) biaxial Westergaard solution with added noise that has then been 

filtered with a 15 node displacement filter. The RHS contour was chosen because it provides a 
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considerable contribution to the J-integral; both the traction and strain energy terms are non-zero. 

The error in computing fracture toughness with the J-integral (in this case the area integral) for 

data sets (1), (2) and (3) is 0%, 0.17% and 0.02% respectively. Data filtering reduced noise by an 

order of magnitude.  

 

Displacement filtering is necessary to improve the accuracy of J-integral calculations 

from experimental data. For low noise levels such as the 0.1% of data set (2), the resultant error 

in fracture toughness was relatively small, as a 0.1% noise only produced a strain variability of 

1450 to 1800 µε along the right hand contour.  Figure 4.25 compares simulated noise in the 

biaxial Westergaard solution with actual DIC data from the PMMA DCB-CT specimen of 

Section 4.5.1a to illustrate the difference between noise in DIC data and the random noise added 

to the analytical data.  Longitudinal strain profiles are plotted along the RHS contour for (a) 

biaxial Westergaard solution with added noise capped at ± 0.1% and (b) DIC data with a step 

size of 5 pixels. The RHS contour of 4.25 (b) is 100 nodes long but spans 500 pixels because of 
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the 5 pixel step-size. Since the 5 pixel step size reduces the number of nodes sampled over a 

given range by a factor of 5, 4.25 (b) exhibits lower frequency noise than 4.25 (a).  However, the 

noise in 4.25 (b) spans a range of 2000 µε versus 350 µε. Since the noise amplitudes in the 

experimentally-obtained DIC displacement data were larger than the artificially induced noise 

amplitudes in the Westergaard displacements, their impact on measuring fracture toughness with 

the J-integral was greater.   

 

Figure 4.25  Longitudinal strain profiles plotted along RHS contours for case of (a) biaxial 

Westergaard solution with added noise capped at ± 0.1% of displacement values and (b) DIC 

data from PMMA DCB-CT specimen. The noise range in (a) spans 350 µε while that in (b) spans 

2000 µε.  Displacement/strain filtering in experimental data is necessary to improve the accuracy 

of J-integral fracture toughness measurements. 

Recall that in Figure 4.11, larger DIC step sizes smoothed the displacement data and 

reduced the influence of variability on the J-integral.  Doubling the step size from ¼ to ½ of the 

subset size reduced the magnitude of fracture toughness values by as much as 2%.  In Becker [3], 

a step size 25% of the subset size was used, presumably to filter displacement data and reduce 

noise.  In Figure 4.17, combining a larger step size with a moderate filtering scheme lowered the 

stress intensity factors and reduced scatter in the resistance curves (increasing step size alone did 

not improve scatter).   

For isotropic materials, manipulating the step size and filtering data appear to be valid 

techniques for improving the accuracy of the J-integral.  For characterizing fracture in a CMC, 

however, this approach is not practical.  The failure strains in ceramics are quite small, on the 

order of several hundred microstrain, which is often less than or equal to the magnitude of noise 
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and bias related error in DIC data.  If this noise is smoothed using large filters, the data points 

used in computing J are not indicative of material behavior.  Furthermore, CMCs fail by the 

accrual of fine matrix cracks.  Applying data smoothing operations to CMCs that fail by 

microcrack accumulation may introduce error into J-integral evaluations of fracture toughness 

and is discussed further in Section 4.7.   

4.7   Influence of Damage Mechanisms in CMCs on the J-integral 

Certain aspects of damage accumulation in CMCs render the line and area integral 

methods impractical, specifically: (1) the low fracture strain of the ceramic matrix and (2) the 

presence of widespread matrix cracking upon loading.   

In this work, the DIC data used in calculating J was collected over a continuous layer of 

matrix (with the exception of the lapped surface of Test 2 in Section 4.5.2.a), which presumably 

has a fracture strain that is nearly an order of magnitude smaller than the fiber fracture strain and 

is within the noise range of the DIC data.  To minimize noise effects, the data must be heavily 

smoothed, greatly reducing the spatial resolution of the displacement measurements. The 

displacement resolution in an 800 µm FOV is not sufficient to accurately measure elastic strains 

in the ceramic matrix. This presents a conundrum because using a FOV small enough to measure 

elastic strains would not permit defining a contour that extends beyond the crack tip process 

zone.   

Experimental evidence suggests that -- upon mechanical loading and prior to forming a 

well-defined matrix crack through the thickness of the laminate -- CMCs exhibit widespread 

microcracking, particularly in the vicinity of fiber-matrix interfaces. Figure 4.26 illustrates crack 

accumulation in a CMC tensile coupon loaded in uniaxial tension in a SEM. Images were 

captured in the inner and outer transverse plies of a [0/90/0/90]s SiC/SiC CMC at ambient 

temperature during interrupted loading. Even at applied stresses below the proportional limit of 

the material (and before initiation of a through thickness matrix crack), microcrack formation is 

observed to occur.    
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Figure 4.26  Full-field principle strain maps from images captured in-situ in an SEM on a CMC 

specimen loaded in uniaxial tension. 4.26 (a) and (b) show fiber clusters within a 50 micron FOV 

located in the outer and inner transverse lamina, respectively. 4.26 (c) shows a single fiber within 

a 30 micron FOV located in the outer transverse lamina. All three FOVs are located near the 

center of the gage section, nearly 13 mm from the location of final fracture. Note the onset of 

cracking at the fiber-matrix interface in (b) at an applied stress that is half the proportional limit 

(PL).   

At FOVs of several hundred microns, a J-integral contour very likely contains through-

thickness matrix crack(s) as well as artifacts of microcracking in the displacement data.  At the 

30 to 50 µm FOVs shown in Figure 4.26, fine microcracks are resolved with DIC.  However, at 

the larger FOV needed to apply the J-integral (recall that the contour must fully encircle the 

plastic zone and begin and terminate at a notch or crack flange that is free of fiber-bridging 

tractions), individual microcracks cannot be readily resolved. These microcracks represent 

discontinuities that may traverse the contour boundaries. The contour is no longer closed and 

plastic zones traverse its boundary, render the J-integral fundamentally invalid.   
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As the applied stress increases, multiple matrix cracks evolve.  As more matrix cracks 

form, the distance between cracks decreases until saturation crack spacing is reached. Crack 

spacing can be as small as hundreds of microns, as was the case for the experiments illustrated in 

Figure 4.27. If a contour encompasses multiple cracks, it cannot start and terminate at a single 

crack flange, again invalidating the J-integral. The presence of multiple matrix cracks may 

preclude the measurement of toughness, under the constraints established by Rice, for CMCs; 

there may inevitably be a point during loading when a matrix crack traverses the boundary of the 

contour. 

 

 

Figure 4.27  Full-field longitudinal strain maps for CMCs loaded in-SEM under uniaxial 

tension.  4.27 (a) and (b) show crack initiation from a notch during a tensile test at 795° C in a 

500 µm FOV. 4.27 (c) shows crack accumulation in a CMC during a tensile test at ambient 

temperature over a 250 µm FOV. In (a), DIC parameters were adjusted to smooth cracks 

emanating from the notch, giving the appearance of a continuous elastic deformation field.  In 

(b), the unadjusted data is shown where it is clear that several cracks emanate from the notch and 

a contour that fully encircles all discontinuities is not attainable.  In (c), a secondary crack is seen 

to appear within 100 µm of a matrix crack that initiated at a notch in an ambient temperature 

tensile test.  The secondary crack would likely traverse any contour drawn around the initial 

matrix crack. 

Additionally, it should be noted that the SEM is a 2-D imaging sensor; thus crack 

propagation is only observed on the surface of the laminate and local toughness is characterized 

using only surface measurements. CMCs are not homogeneous through their thickness, and local 

toughness computed from surface measurements likely does not reflect the local values of 

toughness at the same positions sub-surface.  
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4.8  Conclusions 

Two methods of characterizing crack resistance and fracture toughness in CMCs using 

the J-integral were investigated:  (1) numerical integration of a line contour and (2) Gaussian 

integration of an area contour.  The two methods were first validated by their application to 

analytically-derived deformation data in the form of uniform strain fields in an infinite plate and 

biaxial Westergaard displacement fields in a center-cracked plate.  Both methods were path 

independent and accurate. However, small systematic error that varied with contour size and 

position (up to 0.0011% error) was introduced when the contour was truncated about the crack 

flange. Error was attributed exclusively to contour truncation. 

After analytical validation, both methods were applied to deformation fields measured by 

DIC for PMMA and Aluminum tensile specimens to ensure the algorithms remained valid for 

experimental data.  Experimental data introduced a new source of error, namely variability in the 

forms of noise and bias. Variability was reduced through displacement filtering, strain filtering 

(line integral only), and DIC step size manipulation.  Data filtering was more effective than step 

size manipulation in improving the accuracy of J and K measurements. Both the line and area 

integrals measured fracture toughness in PMMA to within the range of published values for each 

material. Although a well-defined crack did not initiate at the notch before the plastic zone 

became too large to apply the J-integral, stress intensity factor measurements did approach plane 

strain fracture toughness values for aluminum.  Strain energy release rate and stress intensity 

measurements were greater for the area integral than for the line integral. This is attributed to the 

way data is filtered. In the line integral, strains and displacements are filtered.  For filters of 

equivalent size, strain filtering removes more noise than displacement filtering.  Filtering strains 

was not possible in the area integral, however, as strain is evaluated point-by-point. 

After analytical and experimental validation, the J-integral algorithms where used to 

estimate fracture toughness and generate resistance curves in SiC/SiC CMCs for two types of 

layup: (1) cross-ply single edge notched tensile coupons loaded in uniaxial tension under vacuum 

in an SEM at 795° C and (2) single edge notched unidirectional (i.e. fibers oriented along the 

loading axis) tensile coupons loaded in tension outside of the SEM at ambient temperature and 

pressure. Two tensile tests were conducted for each type of layup and resistance curves were 

generated using the J-integral algorithms. For the cross-ply laminates, J derived stress intensity 
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factors were plotted against a closed form expression for the stress intensity factor in an edge-

notch tensile coupon in an orthotropic material. J-integral derived stress intensity factors were 

larger than their closed form counterparts.  The closed form expression assumes a single crack in 

the material, which has been shown to not be the case for CMCs.  Stress intensity factors 

computed by the J-integrals characterized the local stress intensity in the vicinity of the notch 

and were reflected the influence that dynamic, wide-spread cracking in CMCs imparts locally on 

a crack. Resistance curves for both the cross ply and unidirectional laminates revealed 

toughening behavior. As crack opening displacement increased, K increased but the rate of 

increase grew smaller, indicating stable crack growth.  

Single-value assessments of fracture toughness could not be made for the CMCs. DIC 

data was used for assessing crack initiation from the edge notches; however, the resolution 

needed to detect cracks with confidence fell within the noise level of the DIC data. However, 

upper bounds (excluding error, which could not be quantified) for fracture toughness were 

established: for cross-ply coupons tested at 795⁰ C in the SEM, fracture toughness was with or 

below  the range 0.9K to 1.1K where K is an arbitrarily chosen reference value which is similar 

in magnitude to that of reaction bonded SiC. For the unidirectional laminates tested at 25 ⁰C 

outside of the SEM, fracture toughness was within or below the range 0.9 to 1.5K. As fracture 

toughness was based on the detection of matrix crack initiation, it is not unreasonable that the 

ranges were near that of a monolithic ceramic. They are not reflective of the composites 

performance after crack initiation. Unlike in monolithic ceramics, cracks in the composites grew 

stably under increased loading. 

Bridging laws were established for the cross ply and unidirectional laminates by fitting J 

and crack opening displacement data with power law curves. The derivative of each curve 

yielded fiber bridging tractions as a function of crack opening displacement, where crack 

opening displacement increased from the tip of the crack toward the end of the fiber bridging 

zone. The bridging tractions were large for a given COD in the cross ply layup than in the 

unidirectional layup.  

The reason two coupons were tested for each layup was to assess the consistency of the J 

and K measurements for a given material/layup. Although the measurements were consistent, 

consistency was not necessarily indicative of accuracy. Variability in DIC data results from noise 
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in image sensors and bias inherent in the correlation.  For isotropic materials, the influence of 

noise and bias can be reduced by using step sizes that are large with respect to the subset size at 

the expense of spatial resolution.  In multiphase materials such as CMCs, this method of data 

smoothing is impractical because it averages data across cracks and constituent interfaces.  

Furthermore, CMCs exhibit fracture strains on order of the strain error in DIC data. While 

smoothing data can mitigate noise, it may unintentionally eliminate actual fracture data.  

Microcracking in CMCs is widespread even at applied stresses below the proportional limit.  If 

these cracks or artifacts of these cracks in DIC data reside on the integration path, then the J-

integral is no longer valid.  Variability and widespread cracking thus render the J-integral as an 

impractical means of accurately measuring fracture toughness in CMCs. Gross estimates of 

toughness and stress intensity factors can be made only under the assumption that the limitations 

in the spatial resolution of the DIC data essentially transforms regions with fine microracking 

along the contour as a continuous regions of elastic deformation. However, the resistance curves 

do provide qualitative insight into toughening behavior in CMCs, specifically stresses and crack 

opening displacements at which critical fracture toughness is achieved and at which resistance 

curves begin to plateau.  If used with care and discretion, the J-integral is an effective method of 

characterizing fracture behavior in CMCs. 
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Chapter V 

 

Fractographic Observations in CMCs 

 

 

5.1  Introduction 

 Fiber reinforced ceramic matrix composites (CMCs) are often designed to fail in a 

distinctly different manner than their monolithic counterparts, where crack nucleation and 

propagation is widespread with many cracks evolving throughout the composite. When a 

ceramic material is loaded to failure, it usually breaks into several pieces, each with a newly 

formed fracture surface. In a single-constituent material, the fracture surface provides a 

comprehensive history of the events that led to final fracture which includes: the source or 

sources of crack nucleation, the speed at which it propagated, and the ultimate mode of failure.  

This is not necessarily the case for CMCs, because the fracture surface represents just one of 

numerous cracks that formed within the material. The surface in its entirety may not be the result 

of a single crack that nucleated, but a junction where several cracks converge.  

The propagation of individual cracks is influenced by the local stress state in the material, 

which can depend on several factors, including residual stresses from processing, flaws or 

inclusions in the matrix, the presence and distribution of matrix fibers, morphology and 

properties of fiber coatings, and the test environment. CMC failure is often too complex for a 

single fracture surface to provide a comprehensive history of failure; however, the fracture 

surface can provide insight into the paths of crack propagation through the microstructure. To 

some extent, fracture surfaces may also indicate features or events that triggered crack initiation 

or altered crack propagation.  

There is merit beyond academic curiosity to understanding how damage (i.e. cracks) 

evolves at the constituent level in CMCs. Fractographic analysis can assist in process control and 
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in identifying areas for material improvement. It may also aid in validating the predicted crack 

behavior in numerical damage models. This chapter applied principles of ceramic fractography 

to CMC fracture surfaces with the goal of understanding how cracks evolve in and navigate 

through the composite’s structure. 

 

5.2  Background 

Interpreting the complex fracture surfaces of CMCs requires an understanding of how the 

stress state and microstructure mutually influence crack initiation and propagation. Sometimes a 

fracture surface provides clues as to how a crack developed or the direction it traveled, but these 

clues are often embedded in a convoluted landscape of uninterpretable damage. Several 

publications provide a comprehensive guide for conducting fractography in ceramics [1-3], but 

little consideration is devoted to ceramic composites. This section discusses the basic principles 

of ceramic fractography that were extended to analyses of CMC fracture surfaces. 

Flaws and irregularities in ceramic materials can act as stress risers that initiate cracks or 

disrupt the local stress state enough to influence how and where cracks propagate. Examples of 

flaws and irregularities include voids, pores, irregular or large grains, inclusions, lakes or veins 

of free silicon, or defects at constituent interfaces (for composite materials) [1,3]. Machining, 

grinding and polishing induce small cracks that originate at the machined surface, can be several 

microns deep, and can be oriented parallel to or orthogonal to the machining direction [1,3]. 

Fracture surfaces in ceramics often contain features that reveal the history of failure.  

Fine grained ceramics contain three distinct topographical features at sources of crack initiation: 

(1) a smooth, often circular, mirror region surrounded by (2) a rougher mist region which itself is 

surrounded by (3) a very rough hackle region [3]. Although mirror and mist regions clearly 

delineate originations of fracture, they were difficult to identify in the SiC/SiC CMCs because 

the SiC/Si matrix grains were too coarse. On the other handle, analyses of readily visible hackle 

patterns indicated multiple sources of cracking along the fracture surface. This rendered 

pinpointing a single source of catastrophic failure through fractography infeasible; however, 

remnants of broken fibers did provide information regarding the mode of failure.  Long sections 

of fibers emanating from the fracture surface indicated failure was by tensile pullout and fiber 

rupture. Flat surfaces with little pullout (observed on tensile coupons loaded at elevated 
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temperature) indicated fast fracture throughout the composite and suggested that, among other 

causes, the fibers were susceptible to an oxidative environment prior to failure.   

There are different types of hackle, which can be identified as parallel but non-coplanar 

lines that may originate from a source of fracture and run in the local direction of crack 

propagation [3]. Velocity hackle lines indicate the point at which a propagating crack reached 

terminal velocity and the local direction of crack propagation [3]. Wake hackle appears as tails 

that extend in the local direction of crack propagation around singularities in the microstructure 

(such as fibers, inclusions or pores) that intercept the crack front [3].  Both velocity and wake 

hackle provide insight into the influence of local variations in the composite microstructure on 

crack propagation. Twist hackle, often referred to as river marks, manifest when a local variation 

in principal stress causes a propagating crack to split into several cracks on different planes 

oriented in the principal direction [3]. These can be traced back to local sources of fracture along 

the numerous crack planes that constitute a CMC’s fracture surface. Grinding hackle appears 

near cracks induced by machining and often contains serrations resembling shark’s teeth [3]. 

Their influence on crack initiation is prevalent at the tips of edge-notches, where the local stress 

is much larger than the far-field stress.  

Like hackle, Wallner lines can be used to determine the local direction of crack 

propagation. Wallner lines resemble ribs, and are formed by the interaction between a 

propagating crack and the elastic pulse that results from the crack front intercepting a singularity 

in the microstructure [3]. Cracks propagate in the direction of the bow of a Wallner line and 

might suggest how microstructure influences the local direction of crack propagation. Arrest 

lines appear as sharp lines on the fracture surface that indicate a point where a crack temporarily 

stopped before resuming propagation (possibly at a different orientation) [3]. They indicate a 

snapshot profile of the crack at that point in time [3]. When compared with deformation fields at 

equivalent locations on the surface, arrest lines tell us how a crack front transitions from one 

spatial orientation to another.  

5.3  Methods 

All fracture specimens evaluated were SiC/SiC CMCs. The SiC fibers were encased in 

boron nitride (BN). The matrix was melt infiltrated SiC that often contained unreacted carbon 

and veins/pools of free silicon. Three layups were investigated: [0/90/0/90]s cross-ply, 
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[0/matrix/0] longitudinal unidirectional and [90/m/90] transverse unidirectional. All coupons 

were tested in tension; several contained single edge-notches machined with a diamond saw 

blade. Refer to Sections (High-temp, J-integral, Damage) for specifics regarding dimensions of 

coupons and procedures for thermo-mechanical testing.  

Fracture surfaces were imaged optically and with a scanning electron microscope (SEM). 

Optical imaging was conducted with an Olympus BX51-M. SEM imaging was conducted with 

an FEI Quanta 3d dual beam microscope fitted with an EDAX energy dispersive spectroscopy 

system. EDAX was used to detect elemental composition of features of interest.  Both secondary 

electron (SE) and backscatter electron (BSE) detection modes were utilized for SEM imaging, 

the latter when it was necessary to distinguish between individual phases.  

Surfaces were first investigated as-fractured. Fracture debris often littered the surface. If 

it was severe enough to mask characteristic features like hackle, the surface was ultrasonically 

cleaned and re-imaged. SiC was sufficiently conductive that charging was negligible at field 

widths on the order of hundreds of microns. Higher magnifications, however, required sputter 

coating with a thin layer of gold prior to SEM imaging. 

A combination of full-field deformation data from the specimen surface with 

fractography on the interior fracture surfaces was used to assess processes that occurred within 

the sample during loading. In most cases, images of the specimen surfaces were captured during 

loading for post-test digital image correlation (DIC). The cross-ply coupons were loaded and 

imaged in-situ in the SEM while the unidirectional coupons were loaded and imaged outside of 

the SEM with a CCD (Point Grey GRAS model).  

 

5.4  Results and Discussion 

The objective of this work was to identify features of fracture surfaces in CMCs relevant 

to characterizing crack propagation over the entire thickness of the material. These observations 

can potentially be used to validate crack propagation behavior in 3D simulations. During fracture 

in CMCs, the stress state and microstructure in the proximity of an advancing crack are so 

complex that the resulting fracture surfaces are extremely difficult to interpret, particularly for 

composites with several laminas. In the following sections, fracture features consistently 

observed in several test samples are presented and, when feasible, theories are proposed as to the 

nature of the crack(s) at that feature. A simple case study for a unidirectional laminate loaded to 
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failure in tension is presented in Section 5.4.1 to introduce the reader to the fractography 

methods adopted for this study. In Section 5.4.2, modes of failure in the CMCs are discussed. 

The remaining sections are devoted to presenting characteristic features of fracture surfaces in 

CMCs and their relevance to crack initiation, crack propagation and modes of fracture. 

 

5.4.1  Case Study: Single edge-notched [0/m/0]s Unidirectional Laminate  

This case study examines a longitudinal coupon loaded monotonically to failure. Full-

field longitudinal strains measured from DIC indicate that at least two matrix cracks initiated 

from the notch and propagated in opposite directions. Ultimately, the upper crack arrested and 

the lower crack continued to propagate, as shown in Figure 5.1.  

 

Figure 5.1  Initiation of matrix cracks from notch of longitudinal laminate tensile coupon. The 

bottom crack dominated at failure. Three areas of interest were probed for fractographic analysis. 

Three areas of interest (AOIs) were probed along the fracture surface: (1) the notch, (2) the 

region where the bottom crack orients itself normal to the loading direction and (3) the region 

where there is a slight decrease in the magnitude of the strain field. These AOIs are depicted in 
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Figure 5.1. Figure 5.2 illustrates the perspective from which the notch (AOI 1) was initially 

imaged. Imaging at the notch tip from an angle as opposed to dead-on reduced the amount of 

material in the line-of-sight path of electrons from fracture surface to secondary electron detector 

in the SEM. 

 

From the fracture surfaces it appears that the matrix crack that initiates at the lower fillet 

of the notch originates from small flaws that resemble coarse zipper cracks (see [3]). This is 

depicted in Figures 5.3 and 5.4. In Figure 5.3, dashed arrows point to possible zipper cracks. 

Coarse hackle emanates from the flaws and along the crack front in the direction of crack 

propagation. Based on the observed hackle, the matrix crack that initiates at the notch is oriented 

such that the left hand side (side opposite of that imaged for DIC) of the crack front leads the 

right hand side (side that was painted and imaged for DIC).   
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Figure 5.3  Magnified image of top fracture surface.  Perspective is indicated on left hand side. 

Several flaws, likely zipper cracks induced by grinding the notch, emanate from the fillet. Coarse 

hackle emanates from the zipper cracks and along the crack front in the direction of crack 

propagation. The orientation of the hackle indicated that the crack front varied through the 

thickness of CMC, favoring left hand side (unimaged side) over the right hand side (painted and 

imaged side). 

Figure 5.4 shows a magnified image of the flaws that appear to be zipper cracks. Semi-

elliptical cracks emanate from the zipper cracks at a slightly different orientation than the zipper 

cracks; their surface normals are oriented in what is likely the local direction of maximum 

principal stress as the driving force for their formation is a complex stress field derived from a 

globally applied stress and proximity to the tips of the zipper cracks.  A matrix crack then 

emanates from these semi-elliptical cracks at yet a different orientation. It is not known if the 

semi-elliptical cracks originated from grinding the notch or initiated upon monotonic loading. 

However, the process of grinding a notch with a diamond saw induces subsurface damage in the 

matrix and leaves in its path a microscopically rough surface (for example, the machining groove 

in Figure 5.4). The top fracture surface was imaged as-fractured; hence the surface is littered 

with debris.  
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Figure 5.4  Features resembling zipper cracks located beneath a machining groove that resulted 

from grinding. Solid black arrows depict semi-elliptical cracks that initiate from the zipper-crack 

like features. Coarse hackle is present all the way up to the zipper cracks. Bright white features 

are fracture debris. Note the presence of one of several machining grooves that result from 

grinding a notch with a diamond saw. 

The mating half from the bottom surface is shown in Figure 5.5. It has identical fracture features 

as the top half (i.e. zipper cracks, elliptical flaws and hackle indicating local direction of crack 

propagation), indicating that fracture patterns on the top half were not artifacts of spalls. 
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AOI 2 (Figure 5.1) covers a region of the crack front where the crack orientation transitions from 

angled to normal to the loading direction. The fracture surface is not smooth and continuous in 

this transition region; rather, the crack orientation transitions in distinct steps. When the crack 

angle changes, it often leaves a mark that spans the width of the crack front. These marks are 

indicative of arrest lines. This is illustrated in Figure 5.6.  

 

Figure 5.6  Stepped surface of region where crack path transitions to an orientation normal to the 

loading direction. Inset at the top-left is a longitudinal strain field with a black arrow indicating 

the transition region. Features that resemble arrest lines are depicted with black dotted arrows. 

Note: this micrograph depicts the surface opposite of that on which the DIC deformation field 

(inset) was captured; the crack propagates from right to left. 

AOI 3 (Figure 5.1) covers an area of the crack front where the DIC-measured 

longitudinal strains are lower in magnitude than the strains immediately behind and ahead of it. 

Figure 5.7 shows the strain field and a micrograph corresponding to the equivalent position along 

the crack front. A large deviation in the crack path resembling a semi-circular divot is located at 

the patch of smaller strain. Recall from Figure 5.3 that hackle marks indicated the crack 
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originally propagated from the notch with the crack front oriented towards the thicker, painted 

side. Features of the fracture surface (the arrest line to the right and fiber tails to the left of the 

divot) in Figure 5.7 indicate that both before and after reaching the divot, the crack front was 

oriented towards the thicker lamina. However, the crack behaved differently within the divot; a 

new arrest line formed that favored no lamina.  

Here we present two possibilities for this patch of small strain:  

1) The local concentrations of fibers in the two lamina are not equivalent; there are more 

fibers in the painted lamina. Because the layup is not truly symmetric (i.e. one 

longitudinal lamina is thicker than the other), there is coupling between tension and 

bending which can influence the crack front orientation. This coupling results in 

complex variations in the local stress state. The crack temporarily arrests while a new 

crack forms ahead of the divot. The stresses redistribute at the divot, causing the local 

orientation of the crack front to divert from the original crack plane (thus forming the 

divot).  

2) The crack front approaches a matrix-rich region (fewer fibers and more uniform 

distribution), cracking more symmetrically as a result of a more favorable fiber 

distribution. Upon traversing this region (i.e. the divot), the crack front continues to 

propagate along its original direction. 

Although these explanations are speculative, the fact that sizeable anomalies in crack paths 

frequently occur is not; numerical modeling should capture this stochastic behavior. 



112 
 

 

Figure 5.7  Semi-circular deviation in crack path is preceded by features that resemble arrest 

lines. Black arrow in longitudinal strain field (inset top-right) points to DIC data corresponding 

to deviation in crack path. Orientation of arrest lines suggests that crack temporarily arrested at 

deviation while crack front near painted (imaged for DIC) surface was allowed to catch up with 

rear surface. Twist hackle (‘tails’ in wake of crack path at fibers) indicate that the crack front re-

orients itself after passing the deviation. 

5.4.2  Modes of Failure in Ceramic Matrix Composites 

The desired failure mode in a fiber reinforced laminated CMC is saturation matrix 

cracking with fibers bridging the matrix cracks, followed by extensive pullout after fiber 

fracture. The undesirable alternative is when matrix cracks slice clear through the fibers with no 

toughening by fiber pullout/sliding and bridging. This situation can arise in a high temperature 

oxidative environment if no environmental barrier is present to protect the composite. Under 

these conditions, oxygen penetrates the matrix cracks to attack and weaken the fibers, causing 

fracture in the crack plane.  

 Except for the transverse unidirectional laminate, all tensile coupons tested – 

longitudinally oriented unidirectional laminates tested at ambient temperature, and cross-ply 

laminates tested at ambient temperature and at 795 °C in a vacuum – exhibited extensive fiber 

pullout. This is evident in Figures 5.8 and 5.9. The ambient temperature and high temperature 
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tensile coupons of Figure 5.8 had short pullout lengths, ranging from tens to hundreds of 

microns. The pullout lengths of the unidirectional samples ranged from tens of microns to tens of 

millimeters. The larger pullout lengths of the unidirectional CMCs were consistent with the 

greater toughness they exhibited (when loaded in the fiber direction) over (see Chapter 4 -- 

Experimental Assessment of Fracture Toughness in Ceramic Matrix Composites using the J-

integral with Digital Image Correlation).  

 

Figure 5.8  SEM micrographs of crack propagation from notch and fracture surface at notch for 

in-SEM testing of (a) cross-ply laminate tested at ambient temperature and (b) cross-ply laminate 

tested at 795 °C. Fiber pullout is evident in the longitudinal laminas with pullout lengths ranging 

from microns to hundreds of microns.  
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Figure 5.9  SEM micrographs of (a) crack propagation path on surface and (b) fracture surface  

of a cross-ply laminate tested at 795 °C in a SEM. Fiber pullout is evident in the longitudinal 

laminas. Pullout lengths range from several microns to several millimeters. 

5.4.3  Observations from Fracture Surfaces in the Vicinity of Notch Tips 

From a macroscopic perspective (commonly taken by modelers), notch tips tend to look 

smooth. However, as evident in Figures 5.3--5.5 and described below, machining induces 

subsurface damage that can trigger crack initiation. Modelers should consider incorporating these 

flaws in their simulations if the computed crack behavior at the notch tip does not coincide with 

experiment.  

Figure 5.10 depicts machining cracks commonly observed at the notch tips of 

longitudinal unidirectional tensile coupons. Jagged features reminiscent of saw teeth emanate 

from the fillet of the notch and semi-elliptical features emanate from the saw teeth. Semi-

elliptical and circular cracks are prevalent at the notch tip in the unidirectional laminates and are 

readily identifiable because of the relatively large matrix layer in these layups. Figure 5.11 shows 

a variety of these flaws, many likely induced by machining the notch. 

Features resembling zipper cracks and semi-elliptical subsurface cracks (Section 5.4.1, 

Figures 5.4 and 5.5) may be artifacts of surface and subsurface damage induced by machining a 

notch with a diamond saw. These features were observed in both the longitudinal and cross-ply 

tensile coupons. 
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Figure 5.10  Example of subsurface damage likely induced by machining with diamond saw. On 

left, jagged features emanate from fillet of edge notch in a unidirectional laminate. On right, 

mating surface shows semi-elliptical cracks emanating from those same jagged features. 
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Figure 5.11  Additional examples of elliptical and circular cracks at notch tip (fillet) of 

longitudinal unidirectional tensile coupons.  

Similar subsurface features were observed in cross-ply laminates; semi-elliptical and 

circular cracks were prevalent. This is shown in Figure 5.12, where circular and elliptical 

features emanate from the notch into the material. In Figure 5.12(a), the laminate was tested at 

ambient temperature while 5.12(b) was tested at 795 ° C. Note that in both cases, the features lie 

directly beneath grooves induced by a diamond saw blade. 
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Figure 5.12  Semi-elliptical and circular cracks emanating from notch tips in cross-ply laminates 

loaded in tension in an SEM at (a) ambient temperature and (b) 795° C. In both (a) and (b), the 

cracks lie beneath machining grooves induced by cutting the notch with a diamond saw blade. 

5.4.4  Subsurface Behavior of Propagating Cracks 

The sub-surface deformation of CMCs is extraordinarily complex, and DIC-obtained 

measurements capture damage evolution only on the specimen surface. As illustrated in Figures 

5.13 and 5.14, measurements of a crack on the surface do not necessarily depict processes 

occurring beneath the surface. In Figure 5.13 a surface crack is tracked by digital image 

correlation propagating up and to the right. However, the fractograph shows that on the opposite 

surface, the crack propagated down and to the right (one sees both the DIC observed surface and 

the back edge of the opposite surface on the top half of the specimen in the fractograph.)  
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Figure 5.13  Fractograph of final fracture in single edge notched cross-ply laminate loaded in 

uniaxial tension. Inset is a longitudinal strain field measured with DIC. Cracks on the front and 

rear surfaces of the tensile coupon propagated at opposite angles with respect to the loading axis. 

Fracture observations from DIC must be interpreted with caution as they do not necessarily 

reflect subsurface behavior. Note that the front face of the fracture slopes upward while the back 

face slopes downward.  

In Figure 5.14, the subsurface crack path temporarily deviates from the surface crack 

path. In addition to the through-thickness crack, there are two sub-surface cracks propagating in 

the longitudinal direction.  
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Figure 5.14  Fractograph of crack propagation in longitudinal unidirectional laminate and 

corresponding longitudinal strain field measured with DIC. Direction of crack propagation below 

the surface deviates locally from that at the surface. Additionally, matrix cracks propagate in the 

loading direction.  

The tortuous topography of fracture surfaces is not solely attributable to a single matrix crack 

meandering about the laminate in multiple directions.  Fracture surfaces in CMCs are often 

comprised of multiple cracks, each propagating on different planes and intersecting at the 

fracture surface. Figure 5.15 shows examples of crack propagation on multiple planes. In Figure 

5.15a, cracks propagate on planes originating from flaws at the notch tip and from fibers in the 

longitudinal plies. In the Figure 5.15b, a fracture plane originates at the notch then deviates along 

a new plane that forms in a large pool of free silicon. 



120 
 

 

Figure 5.15  Examples of crack propagation along multiple planes in longitudinal unidirectional 

tensile specimens. In (a), fractures propagate along planes that originate at or near the notch tip 

and within each of the longitudinal plies. Arrows point towards source of crack initiation as 

indicated by the observed hackle/mist patterns. In (b) a matrix crack propagates along a plane 

that originates at the notch tip as well as along another plane within a large pool of free silicon.  

Full-field deformation measurements at the surface cannot detect the subsurface deviations from 

the initial propagation path.  

5.4.5 Crack Propagation in Longitudinal Lamina 

Conventional theories of damage evolution in CMCs assume that when a crack 

propagates through a fiber containing lamina, the crack front is deflected around individual 

longitudinal fibers if the matrix and fiber have a weak interface bond. These fibers then bridge 

the crack, debonding along the fiber/matrix interface for some distance on either side of the 

fracture plane.  In the laminated CMCs tested in this work, there was a distinct layer of matrix-

only material between laminas. It is often assumed that crack initiation originates in these layers 

and in transverse lamina, then propagates through the entire laminate. Fractographs can only be 

collected post-test, and therefore cannot always provide the sequence in which individual crack 

fronts initiated; however, they do suggest that initiation does not only occur in the transverse and 

matrix-rich layers. Figures 5.16 and 5.17 show examples of cracks that appear to have initiated in 

longitudinal plies in unidirectional and cross-ply laminates. In Figure 5.16, a matrix crack 

deflected vertically along longitudinal fibers. A new crack then originated in the longitudinal 

lamina as evidenced by the presence of hackle directed toward the fiber layer.  
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Figure 5.16  Hackle markings in the SiC matrix of a longitudinal unidirectional CMC indicate a 

new fracture surface originated in the longitudinal lamina.  

Figure 5.17 shows examples of cracks that appear to have initiated in longitudinal 

laminas within a cross-ply laminate that was loaded to failure at 795° C in an SEM. In Figure 

5.17 (a), hackle indicates a circular crack emanated from the longitudinal ply on a different crack 

plane than the neighboring transverse ply. Likewise, in Figure 5.17 (b) hackle markings run from 

fibers in a longitudinal ply to the adjoining matrix ply. It is possible that the primary crack that 

generated the fracture surface propagated through the matrix layer, but because fibers in the 

adjacent longitudinal ply were compressing the matrix material, the primary crack arrested 

laterally. At some point, stresses in the fiber layer became larger enough to initiate a crack in the 

fiber layer, which inevitably joined up with the primary matrix crack. 
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Figure 5.17  Apparent crack initiation in longitudinal laminas of a cross-ply ([0/90/0/90]s) CMC 

loaded in uniaxial tension at 795° C. In (a), a hackle emanates from longitudinal fibers adjacent 

to a transverse lamina. In (b), hackle emanates from longitudinal fibers adjacent to matrix-rich 

region. 

5.4.6 Wallner Lines in Transverse Unidirectional Laminates 

Wallner lines were not readily identifiable in longitudinal and cross-ply laminates. This 

may be due in part to the complex stress state induced by the fiber reinforcements. Fibers in 

transverse unidirectional laminates provide little reinforcement under a longitudinally applied 

tensile force. The SiC matrix supports the brunt of the load; consequently, the transverse 

laminate exhibits brittle behavior similar to a monolithic ceramic. It is perhaps for this reason 

that Wallner lines were readily identifiable only in a transverse unidirectional laminate loaded in 

tension. Figure 5.18 shows the Wallner lines that accompanied fracture in a transverse laminate. 

The source of fracture appears to be a flaw at the fiber-coating-matrix interface. Hackle points 

toward the flaw. Beyond the hackle, Wallner lines are observed. They may have formed as 

elastic pulses ahead of the crack front intersect flaws along the coatings in fibers that bound the 

matrix.  
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Figure 5.18  Micrograph of fracture surface in transverse unidirectional laminate loaded in 

tension in longitudinal direction. Hackle points towards potential source of crack initiation, 

which is flaw at matrix-coating interface. Wallner lines can be observed beyond hackle and 

coincide with regions of spalling in coatings of fibers that bound the matrix. 

5.4.7 Influence of Fibers on Crack Propagation 

The complex residual stresses introduced by thermal mismatch between the constituents 

(fiber, coating and matrix) of a CMC are not well understood. Theses stresses likely influence 

crack propagation and the resulting tortuous fracture surfaces. It has been reported that residual 

stresses in the vicinity of fibers are influenced by the fiber distribution, with radial compressive 

stresses exhibiting the most sensitivity to fiber distribution [4]. Specifically, it was noted that the 

variability in stress increased in the vicinity of fibers in contact with one another. This suggests 

that cracks emanating from fiber/coating/matrix interfaces may favor high-stress regions of 

clustered fibers.  It has also been reported that the fiber arrangement and distribution of matrix 

cracks both influence the local stress state in CMCs [5-6].  

The matrix of the SiC/SiC CMCs tested was fabricated through melt infiltration, leading 

to variations in microstructure particularly near the matrix-coating interface. Nanoindentation 
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was used to examine variations in matrix modulus as such variations can affect the local stress 

state. Figure 5.19 (a) shows nanoindent locations in the matrix of a cross-ply CMC. The average 

elastic modulus from the six indents was 330 GPa. The lowest measured modulus came from the 

indent located nearest a fiber (290 GPa). Indentations were also made in the matrix region 

around a single fiber as shown in Figure 5.19(b). The average modulus was 355 GPa and again 

the lowest modulus was in the region of matrix nearest the fiber (301 GPa). The significance of 

these measurements is that sharp variations in elastic modulus may alter the local stress state and 

influence crack propagation behavior around fibers. More measurements would be needed to 

definitively conclude that the local matrix modulus is reduced near fiber coatings. 

 

Figure 5.19  Nanoindent location in a cross-ply CMC matrix. In (a), the average elastic modulus 

measured from six indents was 330 GPa with the lowest modulus (290 GPa) at the indent nearest 

a fiber. In (b), moduli were measured in the matrix region along the perimeter of a fiber. The 

average modulus was 355 GPa with the lowest measurement (300 GPa) again located nearest the 

fiber. 

Longitudinal fibers may alter the stress field in adjacent matrix regions enough to 

influence the trajectory of a propagating crack. This is illustrated in Figure 5.20, which depicts a 

portion of the fracture surface of a longitudinal unidirectional laminate that failed in tension. 

Characteristic tails of wake hackle are present, indicating the local direction of crack propagation 

and suggesting that the orientation of the crack front was guided by fibers. Additional evidence 

of the impact of longitudinal fibers on the local stress field is evident in the tail orientations, 

which mimic the undulating distribution of the longitudinal fibers. 
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Figure 5.20  Wake hackle on the fracture surface of a longitudinal unidirectional laminate that 

failed in tension. The orientation of the tails of several hackle markings (circled in white) mimic 

the undulations in the distribution of longitudinal fibers. This suggests that the arrangement of 

fibers may influence the orientation of the crack front during propagation. 

5.5  Conclusions 

Fractography and full-field surface deformation analyses were combined to acquire a pseudo-

3D perspective of crack initiation and propagation in CMCs. Cross-ply and unidirectional 

laminated composites were simultaneously imaged and mechanically loaded to failure. 

Conventional ceramic fractography was adapted to CMCs to obtain an understanding of crack 

evolution sub-surface while DIC provided a qualitative image of crack propagation on the 

surface. Hackle and rivermarks on fracture surfaces suggested that: 

 machining with coarse tools (such as diamond saw blades) induces sub-surface cracking 

which can be sources of local initiation 

 crack initiation can occur in longitudinal lamina in cross-ply laminates 

 uneven distribution of fibers between opposite lamina in unidirectional laminates may 

influence the local direction of crack propagation. 

Nanoindentation indicated that the matrix elastic modulus was lower near fiber coatings. A larger 

sample size is needed to establish a definitive correlation between matrix modulus and proximity 

to fiber coatings. 
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Chapter VI 

On the Association between Microscopic and Macroscopic Damage 

Evolution in Ceramic Matrix Composites 

 

 

6.1  Introduction 

Ceramic matrix composites (CMC) have traits that are desirable for structural, high-

temperature engineering applications. The light weight, low thermal expansion coefficient, high 

thermal conductivity, large tensile strength and reputable toughness of a fiber reinforced silicon 

carbide-silicon carbide (SiC/SiC) composite, for example, makes it a prime candidate for gas 

turbine engine components. The SiC/SiC CMC belongs to a class of ceramic composites that can 

be characterized as having continuous fibers which are coated with a low-modulus material to 

provide a weak fiber-matrix interface. It is because of the weak interface that cracks propagate 

around fibers rather than through them, which allows the fibers to impart bridging tractions that 

make crack growth stable. The goal of this chapter is to convey the significance of incorporating 

multiple length scales in investigations of damage evolution in CMCs. Although several classes 

of CMC exist (short fiber, particle reinforced, porous matrix to name a few), the term “CMC” in 

this work refers to a continuous fiber ceramic composite with weakly bonded fiber-matrix 

interfaces.  

Early investigations of damage in continuous fiber CMCs initially focused on the simple 

case of crack initiation and propagation in a unidirectional laminate in tension. Aveston et. al. [1] 

developed an analytical model (ACK) that correlated matrix crack spacing with (a) first matrix 

cracking stress and (b) interfacial shear stress. If provided with empirical crack spacing data, the 
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model can predict composite properties (e.g. interfacial shear strength). This model assumed that 

the fiber-matrix interface was not bonded, but under a constant frictional shear stress [1-2].  The 

model was later updated to include bonded interfaces [3] and subsequent models were developed 

to account for weakly bonded interfaces that partially debond in the presence of a crack tip [2, 4-

5]. Solti [5] adopted a different modeling approach than Avetson, et. al. [1, 3] and Budiansky et. 

alt. [4] by using shear-lag micromechanics to predict mechanical behavior. The ACK model 

assumed cracks in longitudinal unidirectional laminates form only if matrix flaws exceed a 

critical length [6]. Citing analytical investigations of the influence of flaw size on crack initiation 

[7-9], Beyerle et. al. concluded that appreciable cracking occurs only for flaws that exceed the 

critical length [6].  

A shortfall of the ACK and similar models is that they do not account for all mechanisms 

of toughening in propagating matrix cracks that permit the CMC to fail in a non-catastrophic 

manner. Properties of the fiber-matrix interface dictate how cracks propagate in longitudinal 

unidirectional CMCs. A weakly bonded interface causes propagating cracks to deflect around 

fibers, leaving in their wakes partially debonded fiber-matrix interfaces [2]. Debonding at the 

interface initiates due to the region of high stress intensity at the crack tip. If the bond is too 

strong, debonding will not occur and the crack will cut through the fiber. It is of enough 

significance that some damage models are concerned solely with the mechanics of debonding at 

the fiber-matrix interface [10-11]. Crack deflection is partially responsible for the reputable 

toughness of continuous fiber CMCs, and several studies have analytically characterized this 

toughening effect [12-13]. Fibers that fracture at a distance remote from the plane of a matrix 

crack experience interfacial frictional shear along debonded regions of their fiber-matrix 

interfaces [2]. This is referred to as fiber pullout and is also partially responsible for graceful 

failure in CMCs. As with debonding, a fair amount of research has been devoted to the pullout 

process [14-17] 

The utility of the previously discussed damage models is in predicting material properties 

(e.g. matrix cracking stress, tensile strength and matrix crack density) of simple composite 

layups. Most require empirical data inputs and, as noted by Beyerle [6], the simplifying 

assumptions used to develop these models can result in unreliable predictions when applied to 

real materials. Alternative approaches have been taken that are broader in scope; they 
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characterize damage, from crack initiation to failure, by correlating experimental measurements 

of cracks with global stress-strain behavior [18-19].  

Using acrylic replica and acoustic emission techniques to investigate damage in a CAS/SiC 

longitudinal laminate, Sorenson [18] concluded that damage occurs in four progressive stages, 

each corresponding to unique behavior in stress-strain curves: (1) linear-elastic deformation (i.e. 

below the proportional limit (PL)), (2) initiation and accumulation of matrix cracks (at and above 

the PL), (3) interfacial sliding at debonded fibers (well beyond the PL) and (4) additional matrix 

cracks and fiber fracture (well above the PL and through failure). Although evidence of damage 

was observed near the upper limit of the first stage, matrix cracking did not occur until the 

second stage. Matrix cracking was most abundant in the second stage, approaching crack 

saturation at the upper limit. By the third stage, deformation was linear but with a reduced 

loading modulus. No cracking events were observed, load retention was attributed to debonding 

and frictional sliding. Additional matrix cracking, fracture of bridging fibers and final failure 

characterized the fourth stage. The behavior observed by Sorenson in CAS/SiC composites 

doesn’t necessarily reflect behavior in SiC/SiC CMCs of similar layup. The CAS/SiC composites 

have a much larger ratio of fiber stiffness to matrix stiffness than that of SiC/SiC and other non-

oxide CMCs. In this case, the SiC fibers not only toughen the glass composite, but increase its 

elastic modulus. However, the work of Sorenson provides valuable insight into damage behavior 

in stiff, fibrous composites. 

The Sorenson model provided illustrative insight into damage evolution in continuous 

fiber CMCs, but only considered the case of a unidirectional laminate. Investigating damage 

accumulation in cross-ply CAS/SiC (calcium aluminosilicate/silicon carbide) CMCs with optical 

microscopy, Daniel et. al. noted that damage initiated in transverse plies in the form of 

microcracks that extend radially from the fiber-matrix interface [20]. This event marked the first 

deviation from proportional loading in the laminate. With further loading, cracks developed 

along the fiber-matrix interfaces; this was accompanied by a drop in modulus. Eventually the 

radial and interfacial cracks merged, forming macroscopic matrix cracks. Matrix cracks 

accumulated in the transverse plies until they reached saturation spacing on the order of the 

lamina thickness. Matrix cracks did not develop in the longitudinal plies until after crack 
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saturation in the transverse plies. In short, their findings imply damage does not initiate until the 

PL.  

Using acoustic emission to monitor matrix crack initiation in woven SiC/SiC CMCs, 

Morscher found that matrix cracks develop during linear-elastic loading [21]. The discrepancy 

between the findings of Daniels and Morscher could be a result of differences in composite 

architecture. On the other hand, optical microscopy may have lacked the spatial resolution to 

detect damage in early stages of loading. This chapter discusses techniques to more reliably 

detect the onset of damage. The implication of early-stage cracking in CMCs is that it could 

provide a pathway for aggressive environmental attack of the fibers [2], which could be a major 

concern in hot sections of a gas turbine engine.  

This chapter adopts a different approach for investigating damage in CMCs. Rather than 

establishing discrete damage stages with respect to the stress-strain response like Sorenson did, 

damage is characterized with respect to three distinct length scales defined below. Combining 

high-magnification imaging with digital image correlation enabled damage detection at stresses 

well below the proportional limit. There were two primary objectives: 

(1) identify the capabilities and limitations at each length scale with regard to identifying 

damage in SiC/SiC CMCs 

(2) determine the implications, if any, that damage observed at microscopic length scales 

has on damage observed at the macroscopic length scale.  

It was found that fine cracks initiated in localized regions of fiber coatings at low stresses. Some 

of these cracks evolved into matrix cracks. Matrix crack propagation was dependent on the state 

of stress near the crack tip and the local microstructure. Some of these matrix cracks morphed 

into larger cracks. The density of large matrix cracks increased with load, reaching saturation 

prior to failure.  

6.2  Experimental Methods 

Cross-ply ([0/90/0/90]s) and longitudinal ([0/m/0]) SiC/SiC CMCs were mechanically 

loaded in a miniature load frame (Kammrath & Weiss GmBH) capable of operating in a 

scanning electron microscope (SEM) and micrographs were captured under load. Imaging was 
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conducted at three distinct length scales: (1) constituent length scale (FOV ≤ 100 µm), (2) lamina 

length scale (FOV several hundred microns wide) and (3) laminate length scale (FOV > 1 mm). 

The constituent and lamina level tests were conducted in an FEI Quanta 3d (SEM). Laminate 

level tests were imaged outside of the SEM with digital cameras (most experiments used a 5 

megapixel Grasshopper GRAS-50S5M charge-coupled device at 15 fps; one experiment utilized 

Photron FASTCAM SA1 high speed cameras at frame rates ranging from 50 to 1500 fps). 

Surface deformations were subsequently measured using Vic-2D DIC software. Figure 6.1 

depicts the set-up for in-situ tensile testing in the SEM. In Figure 6.1a, a CMC tensile coupon is 

mounted in the grips of a miniature load frame; it is configured such that the SEM images the 

edge of the coupon rather than the surface. The miniature load frame sits on a stage that is 

attached to the SEM door. The entire load frame then slides into the chamber of the SEM (shown 

in Figure 6.1b) upon shutting the door.  

 

Figure 6.1  Experimental set-up for in-situ testing in the SEM. In (a), a CMC tensile coupon is 

mounted in the grips of a miniature load frame that is attached to a door-mounted stage. The 
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grips are rotated 90 degrees to image the edge of the test coupon. In (b), the entire load frame is 

enclosed in the SEM. 

Digital image correlation requires that a high-contrast and uniformly dispersed speckle 

pattern be applied to the surface of the tensile coupon. For the constituent and lamina level tests 

this was accomplished using gold nanoparticles (NPs) with individual particle diameters ranging 

from 30 to 150 nm. Many tests were concerned only with imaging a localized field of view (such 

as fracture at the tip of notch). For these tests, 150 nm Au nanoparticles suspended in isopropyl 

alcohol were drop cast onto the surface. Most constituent-level tests, however, required imaging 

at several locations spread far apart along the gage section. This required quality patterns over a 

large swath of the coupon. Immersing silanized tensile coupons in a 30 nm Au colloidal 

suspension ensured this happened (please refer to Chapter 2 for patterning details). Patterns for 

the laminate level tests were applied with paint using an airbrush (Iwata Micron-b). This method 

produced speckles of a few microns in diameter. Figure 6.2 provides examples of nanoparticle 

speckle patterns applied to the edge of a tensile coupon. The NP patterns facilitate imaging at 

FOVs small enough to resolve deformation at the fiber-coating-matrix interface. 
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Figure 6.2  SEM micrographs of transverse fibers captured along the edge of a [0/90/0/90]s 

SiC/SiC CMC loaded in tension. Gold NP agglomerates covering the fibers permit measurement 

of full-field deformations using DIC. A larger scale micrograph of the cross-ply CMC depicts 

several longitudinal (0) and transverse (90) lamina.  

The term “proportional limit” is used extensively in this work. The proportional limit 

represents the first point in the stress-strain relation where loading is no longer proportional (i.e. 

a permanent deviation from linearity occurs). In most of the tensile tests conducted, a distinct 

deviation from linearity was not evident in load-displacement curves.  To normalize findings 

from each test, damage states are reported relative to a pre-established, single-valued 

proportional limit stress. Per the manufacturer, the PL stress for the SiC/SiC CMCs represents 

the intersection of the stress-strain curve with a line drawn parallel to the linear-elastic portion 

and with 0.05% strain offset.  
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6.3  Evolution of Damage in CMCs at Multiple Length Scales 

The subsections that follow examine damage (i.e. cracking) in the SiC/SiC CMCs at 

multiple length scales under monotonic and cyclic loading. Localizations in the full-field strain 

maps are indicative of cracking, as linear elastic deformation in the ceramic constituents was 

smaller than the spatial resolution of the DIC data. It is shown that observations from a single 

length scale are insufficient to characterize damage evolution. Therefore, deformation data was 

collected at both the microscale (constituent and lamina) and the macroscale (laminate). Damage, 

specifically crack initiation and propagation, was examined on the surface and edges of CMC 

laminates to gain multidimensional perspectives. Section 6.3.1 discusses crack initiation in 

microstructural constituents. Section 6.3.2 addresses crack propagation within individual lamina. 

Section 6.3.3 extends findings from the microscale to the accrual of damage at the macroscale. 

Section 6.3.4 discusses the mutual dependence of the micro and macro length scales in 

understanding damage evolution in the composite. 

6.3.1 Damage Evolution at the Constituent Length Scale 

Damage assessment at the constituent length scale was focused on determining where 

(with respect to microstructural features) and when (with respect to the global state of stress) 

cracks initiate. Indications of cracking (characterized by localized concentrations of high-

magnitude maximum principal strain) in the thicker regions of transverse fiber coatings in un-

notched tensile coupons were observed in DIC data well below the proportional limit. This is 

illustrated in the deformation maps of Figure 6.3, where apparent cracking is contained to small, 

localized areas (primarily tops and bottoms) of fiber coatings.  Strain localization occurs in areas 

of the fiber coating that are oriented perpendicular to the loading axis (tops and bottoms of 

fibers). 
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Figure 6.3  Full-field maximum principal strains overlaid on SEM images of transverse fibers at 

three load increments for a CMC loaded in tension. Frames (1) through (3) are below the 

proportional limit. Strains localize in regions of fiber coatings oriented along the loading axis, 

which is vertical in the plane of the page.  

Although strain localizations that appeared below the proportional limit were confined to 

the coating, some may serve as initiation sites for cracks that later developed in the matrix.  

Morscher [21] measured crack densities in woven-fiber SiC/SiC CMCs using acoustic emission 

and reported the appearance of low crack densities (<0.1 cracks per mm) at stresses just above 50 

MPa. Here, we detected strain localizations in coatings at lower stresses; the disparity between 

our findings and Morscher’s is small and could be due to: (1) the difference in composite 

architectures (Morsher’s woven versus our cross-ply) or (2) that damage in coatings did not 

register as acoustic events indicative of cracking in Morscher’s work.  
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The localized strain magnitudes intensified and became more widespread as the PL stress 

was approached. Again, strain localizations were prevalent in portions of coating that lay along 

the loading axis. This is apparent in the third frame of Figure 6.3, where every fiber coating 

(rather than a few) contains strain localizations and those that existed in earlier frames have 

intensified. Figure 6.4 shows strain localization in transverse fiber coatings for a separate tensile 

coupon for which SEM images were captured at a FOV that sampled many more fibers. The 

deformation behavior in the first three frames of Figure 6.4 mimic the behavior observed in 

Figure 6.3; that is, strain localizations appear in the coatings of nearly every fiber and, within 

each coating, are distributed primarily along the loading axis. By the fourth frame of Figure 6.4, 

that is above the proportional limit stress, strain localization in several adjacent fibers merge into 

a band that is indicative of a tunneling crack in the matrix.  

 

Figure 6.4  Full-field maximum principal strains overlaid on SEM images of transverse fibers at 

four load increments for a CMC loaded in tension. Frames (1) through (3) are below the 

proportional limit. Strains localize in regions of fiber coatings oriented along the loading axis.  

Frame (4) is captured after an unexpected drop in load that was likely due to cracking remote 

from the FOV. Localized strains in several adjacent fibers converge into a band of localized 

strain that is likely a tunneling crack. The applied stress has been normalized to the PL stress. 

For reasons that will not be addressed herein, the CMCs tested were in a state of residual 

stress, compressive in the matrix and tensile in the fibers. The magnitude of the residual stress 

relaxed if the material was held at elevated temperatures for extended periods of time. To assess 

the effect of residual stress on strain localization in transverse fibers, constituent scale 



137 
 

experiments were conducted on a CMC that was annealed to a state of minimum residual stress. 

As shown in Figure 6.5, the strain accumulation in the annealed material was not distinctly 

different from the as-received sample. One may expect the annealed material to exhibit disperse 

cracking at early stages of loading because of the relaxed compressive matrix stresses, but this 

was not observed. The annealed samples did not exhibit cracking (more disperse than the as-

received sample) until the later stages of loading. However, the DIC data for the annealed sample 

was noisier due to oxidation on the surface, which caused more pronounced charging (versus the 

as-received sample) after extensive imaging in the SEM. The appearance of widespread cracking 

may be an artifact of image noise. 
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Figure 6.5  Comparison of full-field strains in transverse lamina of as-received and annealed 

CMCs loaded in tension at. Both examples exhibit widespread (several fibers) strain localization 

in the fiber coatings. Strain localization is prominent in regions of the coatings aligned with the 

loading axis as well as in fibers in contact. 

An interesting finding from the constituent scale deformation monitoring is that, as 

applied load increased, the cracks at the fiber-coating-matrix interface grew to openings on the 

order of tens of nanometers. Using DIC displacement data, post-test virtual extensometers were 

placed across the coatings of selected fibers and their length was measured at each load 

increment as illustrated in Figure 6.6. In Figure 6.6 (a) it is shown that crack openings are larger 

in the direction of loading (vertical). In Figure 6.6 (b), it is shown that crack openings are larger 

for extensometers oriented in the loading direction as well as for extensometers between fibers in 

contact. These measurements of crack opening displacement at the fiber-coating-matrix interface 
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can be used in developing models of oxidation at cracks that propagate along the coating. 

Oxidation could be a significant concern if the environmental barrier coating that surrounds a 

CMC component were to become compromised in the hot section of a gas turbine; oxygen could 

travel through these channels and potentially degrade the fibers.  

 

Figure 6.6  Crack openings (as measured using virtual extensometers and DIC data) across the 

fiber-coating-matrix interface for SiC/SiC CMC loaded to failure in tension. In (a), crack 

openings are larger for extensometers oriented in the loading direction (vertical in the plane of 

the page). In (b), crack openings are largest for extensometers bridging fibers in contact and for 

extensometers oriented nearest the loading direction. At their greatest, crack openings are on the 

order of tens of nanometers. 

Up to this point, the discussion of damage evolution has considered only the case of 

monotonic loading. In service, however, CMCs experience cyclic loading (e.g. mechanical and 

thermal fatigue); hence, we investigated damage evolution in several CMCs under tensile dwell 
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fatigue (two minute dwells at ~75% of the PL stress).  During the initial loading cycle, strain 

localizations developed and grew in the transverse fiber coatings in the same manner as 

discussed for monotonic loading.  During cyclic loading, the intensity and dispersion of the strain 

localization grew with each fatigue cycle, ultimately approaching a steady state. The evolution of 

damage is illustrated qualitatively through full-field strain maps (Figure 6.7) and quantitatively 

in plots of crack opening across the fiber-matrix interface (Figure AppA1-AppA3). Steady state 

was reached between 10 and 20 fatigue cycles at the dwell stress. Upon unloading after ten 

fatigue cycles, there was residual damage at the fiber-coating interface.  

 

Figure 6.7  Strain maps are plotted on micrographs for two-minute tensile dwell fatigue cycles 

above proportional limit (PL). Above: fibers are sampled from a transverse ply; below: fibers are 

sampled from a longitudinal ply after (a) 10 cycles, (b) 10 cycles unloaded, (c) 20 cycles and (d) 

50 cycles. After 20 cycles, there is no apparent increase in the intensity and dispersion of the 

strain localization. Upon unloading after 10 cycles, there was residual damage at the fiber-

coating interface. 

For purposes of comparison, dwell fatigue results from the previously discussed annealed 

sample where compared with the as-received sample. As shown in Figure 6.8, there was no 

distinct difference in damage behavior between the two samples. Widespread cracking would be 

expected in the annealed sample because the compressive residual stress in the matrix that works 

to impede matrix crack propagation was reduced. Strain localization appeared more widespread 

in the annealed sample (i.e. strains localized in multiple regions of the fiber coatings); however, 

the image data from which strains were measured was noisier than the as-received image data, 
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likely due to charging that resulted from the electrically resistive oxide coating on the surface of 

the sample.  

 

Figure 6.8  Full-field strains collected from various areas of interests along the edges of tensile 

coupons during dwell fatigue for an as-received (top) and annealed (bottom) CMC. Images 

captured after 40 two-minute dwell cycles at a stress level below the proportional limit. Damage, 

as indicated by strain localizations, appears more widespread in the annealed sample than in the 

as-received sample; however, this may be noise in the DIC data that manifested as an artifact of 

charging in the SEM for the heavily-oxidized annealed coupon.  

During each dwell fatigue cycle, the samples were loaded to 75% of the PL stress, then the grip 

displacement was fixed, allowing load to relax over the course of the two-minute dwell.  Figure 

6.9 shows plots of the load-drop during each dwell cycle for the two samples. Again, the 

annealed sample exhibited the same behavior as the as-received sample; the load drops approach 

a bottom limit after 30 dwell cycles. 
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Figure 6.9  Load-drop during dwell cycles for as-received and annealed CMCs. Samples exhibit 

similar behavior: load drop approaches a minimum value after 30 cycles of tensile dwell fatigue. 

6.3.2  Damage Evolution at the Lamina Length Scale 

The transition from constituent to lamina marks a distinct difference in the information 

captured from deformation fields, and the applicability of this information to understanding 

damage evolution in CMCs.  While the constituent scale informed when and where cracks 

initiated in transverse and longitudinal fiber coatings, the lamina scale introduces more fibers 

into each FOV and thus facilitates analyses of crack propagation between fibers. This is 

illustrated in Figure 6.10, where matrix cracks evolve along the edge of a notched tensile coupon 

(the edge opposite of the notch is depicted in the strain fields). Between the second and third 

frames, the matrix crack at the bottom of the micrographs relaxes (despite an increase in the 

global applied force) as a neighboring crack (top-right in the fourth frame) develops; the 
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neighboring cracks influence each other. The larger FOV permitted observation of multiple 

matrix cracks but reduced the spatial resolution of deformation measurements. At this FOV, fine 

cracks in fiber coatings that were readily apparent at the constituent scale may go undetected.  

However, the increased number of experimental fiber observations is important because the 

focus of effort shifts primarily to understanding how coating morphology and fiber distribution 

influence crack propagation.   

 

Figure 6.10  Damage evolution as depicted in longitudinal strain fields sampled along the edge 

of a notched tensile coupon. Micrographs depict the edge opposite of the notched edge. 

Numbered locations in stress-strain space of (a) correspond to frames in (b). Despite an increase 

in global applied stress between the second and third frame, the matrix crack at the lower-left of 

each from relaxes as the matrix crack at the upper-right evolves.  

Beyond being useful for conducting statistical analyses, the intermediate-sized lamina 

scale is large enough to encircle a notch-tip; this permits high-magnification analyses beginning 

with crack initiation at a notch and continuing with crack propagation through the rest of the 

gage section. Longitudinal strain fields of a cross-ply CMC loaded in tension at 800 °C are 

depicted in Figure 6.11. In (a), the strains have been filtered to remove noise, but this also 

reduced the spatial resolution of the strain fields. In (b), minimal strain filtering has been applied 

so that the strain fields would reveal fine matrix cracks. It is clear that the lobes of localized 

strain in (a) are actually comprised of several neighboring cracks, some of which originate at the 

notch. These cracks would go undetected at larger length scales, which demonstrates the 

significance of analyzing deformation in CMCs at multiple length scales. For further information 

regarding high-temperature, small-scale deformation mapping, refer to Chapter 3. 
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Figure 6.11 Longitudinal strain fields emphasizing the significance of scale in analyses of 

damage evolution in CMCs. Panels sequence indicates crack growth from left to right.  The 

strains in (a) have been filtered more aggressively (> 4x) than those in (b) at the expense of 

spatial resolution. As a result of the effectively smaller length scale in (b), fine cracks originating 

at the notch are detectable. 

 Figure 6.12 depicts the usefulness of lamina-scale deformation fields in understanding how 

matrix cracks propagate through longitudinal lamina in a CMC. In Figure 6.12 (a), a matrix crack 

(imaged on the surface ply of a [0/90/0/90]s CMC) deflects along longitudinal fibers as it 

traverses the matrix. The deflection lengths in this FOV are on the order of tens of micrometers. 

It should be noted that the fibers on the surface have been partially lapped, which may influence 

the position and length of crack deflections along each fiber. A neighboring matrix crack is 

shown in Figure 6.12 (b). Inset is a magnified image of the lower crack, which is emerging at the 

tensile coupon surface. The crack, detected by DIC, is visually undetectable in the enlarged 

micrograph. At macroscopic length scales, DIC would not be able to detect this crack at the early 

stage of loading from which the SEM image was collected. The second crack likely originated as 

a subsurface crack in a transverse ply. A shortfall of 2D DIC is that it is strictly a surface 

technique which does not inform us of the sub-surface history of a crack.  
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Figure 6.12  Longitudinal strain fields of matrix cracks propagating through the outer 

longitudinal lamina of cross-ply CMC. In (a) the matrix crack deflects along longitudinal fibers 

as it traverses the lamina. In (b), a second matrix cracks emerges at the surface of the 

longitudinal lamina. An advantage of lamina-scale experimentation is that it can detect fine 

matrix cracks in the early stages of their evolution.  

6.3.3  Damage Evolution at the Laminate Length Scale 

In transitioning from the lamina scale to the laminate scale, spatial resolution is again 

reduced. However, effort shifts from understanding crack behavior with respect to 

microstructural features to macroscopically investigating damage accumulation in CMC 

structures. Consequently, this is the length scale at which damage in structural components is 

often analyzed. Macroscale deformation fields were used to qualitatively assess crack 

accumulation in CMC coupons as well as quantitatively characterize toughness and establish a 

fiber bridging law. 

The primary objective of laminate level tests was to observe the matrix crack population 

under mechanical loading. The behavior of propagating cracks was examined by subsequent 

analysis of DIC deformation fields. Figure 6.13 shows longitudinal strain fields for three separate 

tensile coupons loaded vertically in the plane of the page; (a) and (b) were imaged 

macroscopically while (c) was imaged microscopically. The three samples were of equivalent 
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layup ([0/90/0/90]s), but (b) and (c) had machined edge-notches. The longitudinal strain fields 

correspond to the stress state just prior to failure. In the un-notched tensile coupon of Figure 6.13 

(a), the matrix cracks accumulate at a slight angle (as much as 8° from the axis normal to the 

loading direction). Angled crack accumulation was not observed in the notched coupons. 

Although cracks often propagated from notches at angles that deviated from horizontal, they 

usually reoriented themselves to a direction normal to the loading axis. Although there was no 

characteristic distance from the notch at which reorientation occurred, it typically occurred 

before the crack propagated half way across the tensile coupon. 

 

Figure 6.13  Longitudinal strain fields at multiple length scales at applied stresses near the 

tensile strength. Loading is vertical in the plane of the page. Frames (a) and (b) depict crack 

accumulation at the laminate length scale in a finite width coupon (a) and an edge-notched 

coupon (b). The smallest resolvable crack spacing at the macroscale was 400 microns (a). The 

finite width coupon had a greater crack density than the notched coupon. The higher resolution 

deformation field of (c) shows that crack spacing can be as small as 180 microns.    

Macroscale DIC allows for measurements over a large region of the gage section but may 

not detect fine matrix cracks, which can lead to inaccuracies in analytical models that incorporate 

crack separation spacing in predictions of, for example, the ultimate stress [22] of the composite 

or shear stress at the fiber-matrix interface [22]. Most macroscopically observable crack 

separation distances were on the order of millimeters. The smallest measureable crack 

separations at the macroscale were 400 µm versus 200 µm on the microscale. Recall from Figure 

6.12, crack spacings as low as 100 µm have been detected in longitudinal lamina of cross-ply 

tensile coupons. Although the green, banded strain localizations in Figure 6.13 (c) are not as 

distinct as those in Figure 12 (b), they are indicative of cracks and not bias. Gaussian noise 
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would manifest as randomly dispersed strain peaks while interpolation bias and aliasing would 

resemble higher frequency, periodic bands. Additionally, the notched macroscopic tensile 

coupon (b) revealed fewer cracks at saturation than the un-notched coupon (a).  

It was found that the speed of a matrix crack varied along its propagation path. Crack 

velocity was measured at 1000 frames per second using high speed cameras and DIC to time and 

track matrix cracks in a cross-ply CMC. Variation in crack speed is shown in Figure 6.14, where 

a matrix crack initiates at an edge-notch and propagates normal to the loading direction at 0.007 

m/s. There is a brief pause in propagation for ~0.5 seconds, followed by the crack quickly 

shifting left along the loading axis.  After this shift, the crack resumes propagation normal to the 

loading axis at 0.001 m/s. After another brief interruption, the crack propagates to final fracture 

at an immeasurable speed. Inset in the figure is a longitudinal strain field corresponding to the 

stress state just prior to final fracture. The matrix crack that started at the notch has fully 

traversed the gage section and several small cracks have initiated along the edge opposite the 

notch. 
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Figure 6.14  Velocity of a matrix crack that initiates from a notch in a cross-ply CMC. Inset at 

upper-right is a longitudinal strain field captured just prior to final fracture. Crack speed varies 

during propagation. Initial propagation is slow (0.007 m/s). The crack then pauses and shifts left 

before continuing slow propagation (0.001 m/s). Velocity increases by several orders of 

magnitude at final fracture. 

A key advantage of macroscale full-field deformation fields is that they graphically 

depict the evolution of large cracks over broad fields of view. This is evident in Figure 6.15, 

which illustrates full-field maximum principal strains over the course of a single, fully reversed 

fatigue cycle, then continuing to final fracture. The sample had previously undergone 40 cycles 

of tensile dwell fatigue. Frames (1) and (3) of Figure 6.15 show macroscopic strain fields at 

compressive and tensile stresses equivalent in magnitude to the stress that was used during dwell 

fatigue. At this length scale, there appears to be no damage (cracks) in either the compressive or 

tensile strain maps. Recall from Figure 6.7, however, the strain localizations were present in 

transverse fiber coatings as well as in longitudinal fibers after 40 cycles of tensile dwell fatigue 

at this stress level. The macroscopic FOV does not capture this. Cracking is not apparent until 

Frame 4, which corresponds to an applied stress nearly twice as large as the dwell stress. By 

Frame 5, which was captured just prior to final fracture, the CMC was fully saturated with matrix 

cracks.   
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Figure 6.15  Evolution of damage in cross-ply CMC under fully reversed cycle. Sample had 

previously undergone 40 cycles of tensile dwell fatigue at an applied stress that near the upper 

bound of PL stress range. Macroscale detection of matrix cracks does not occur until well above 

the dwell stress. 

Matrix cracks in un-notched samples do not always evolve as continuous cracks that span 

the gage section, leaving fully bridged fibers in their wake. Figure 6.16 shows maximum 

principal strains at increasingly larger applied stresses, where black arrows point to bands of 

localized strain indicative of a matrix crack. The severity of localized strain increases more in the 

three regions along the crack indicated by the black arrows. The three strain locations merge into 

a continuous band only after the applied stress has reached 97% of the failure stress. An adjacent 

crack develops in a similar manner just below it. At the point of crack saturation (Figure 6.15, 

frame 5), several matrix cracks have evolved into bands of contiguous but not continuous strain 

localizations. This fracture behavior is unique to this particular CMC test coupon. It may be an 
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artifact of damage at the fiber-coating-matrix interface as a result of the compressive cycle or 

from the prior dwell cycling; however, a decisive explanation warrants further investigation.  

 

Figure 6.16  Matrix cracks in smooth bar samples do not always evolve as continuous cracks 

that span the gage section, leaving fully bridged fibers in their wake. For example, damage 

evolution is shown as applied stress approaches fracture stress. Sample had previously 

undergone 40 cycles of tensile dwell fatigue as well as a fully reversed compression-tension 

cycle. Matrix cracks manifest at the surface of the coupon at three distinct locations (indicated by 

black arrows). The strain localizations at each arrow broaden with applied stress, ultimately 

forming a band of localized strain.  

Experimental measurements of crack angles in unidirectional composites are valuable for 

numerical modelers looking to validate simulations. In addition to cross-ply laminates, damage 

accrual in longitudinal unidirectional layups ([0/m/0]) was investigated at the laminate scale. 

Chapters 4 and 5 presented macroscopic strain fields for several unidirectional laminates loaded 

to failure in tension. In each test, two cracks initiated from the notch tip as illustrated for three 

unidirectional tensile specimens in Figure 6.17. The angle between cracks (measured from the 

top crack to the bottom crack in the direction of crack propagation) varied from one sample to 

another, but all fell within the range of 100 to 136 degrees.  
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Figure 6.17  Initiation of angled cracks from notch tips of three different samples. The notches 

in (a) and (b) were cut perpendicular to the loading axis (which is vertical in the plane of the 

page). The former was shorter than the latter. The notch in (c) was cut at angle 15° clockwise 

from horizontal. 

6.3.4 Connecting Microscopic Damage to Macroscopic Damage 

The previously discussed constituent and lamina scales comprise the microscopic length 

scale, examined in the SEM. It is from these microscale experiments that we determined: 

1. Damage initiates in transverse fiber coatings prior to the applied stress reaching the 

proportional limit; it manifests as strain localizations which generate fine crack openings 

at the fiber-coating-matrix interface on the order of tens of nanometers. Strain 

localizations were observed primarily in fibers with thick coatings; however, we did not 

sample enough fibers at the constituent scale to establish a statistically significant trend. 

Strain localizations were also observed in partially lapped longitudinal fiber coatings; 

they were oriented in the loading direction. Fibers were sampled from interior and 

exterior lamina near the centers of the gage lengths of each CMC so that we could verify 

the assumption that damage was widespread within regions of the sample experiencing 

the largest net section stress. 

2. Matrix cracks have spacing as small as several hundred microns. These cracks are often 

too fine to be resolved at the macroscopic scale. 
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Extending the microscale findings to macroscopic analyses of damage accumulation showed 

that: 

1. Of the numerous fine matrix cracks that manifest stochastically at the microscopic scale, 

some develop into large matrix cracks that traverse the full width of the CMC structure 

(e.g. the gage width of tensile coupons). Future work could quantify this through:  (a) 

simultaneous data collection at the microscopic and macroscopic scales or (b) 

microscopic imaging of large amounts of gage section. 

2. Notches in tensile coupons introduce a complex stress state in the region surrounding the 

notch tips. Several cracks may initiate at the tip, as shown at the microscale; but often just 

a single crack (as in cross-ply laminates) or two cracks (as in unidirectional laminates) 

are detected at the macroscale. Those that go undetected are likely fine matrix cracks that 

have relaxed due to close proximity to the larger, detectable cracks. Their presence may 

still be significant, however, as they introduce a pathway for oxygen to intercept and 

degrade fibers. 

The significance of each length scale is summarized in Figures 6.19 and 6.20, where 

deformation fields for the annealed CMC are plotted at both the constituent (micro) and laminate 

(macro) length scales. On the left side of Figure 6.18, four solid black boxes are plotted on top of 

full-field maximum principle strains captured under load after 40 cycles of tensile dwell fatigue. 

On the right, maximum principle strains at positions corresponding to the four black boxes are 

plotted; they also were captured under load after 40 cycles of dwell fatigue, but in the SEM. The 

microstructures for these AOIs are encircled in black squares on an optical micrograph of the 

edge of the CMC tensile coupon. The applied stress during dwell fatigue cycles was 75% of the 

proportional limit stress. At this stress, the macroscopic strain field on the left side of Figure 6.18 

shows no clear evidence of damage. The microscopic strain fields on the right side, however, 

show substantial strain localization in both the transverse and longitudinal fiber coatings. Note 

that the microscopic and macroscopic strain fields were not captured simultaneously.  
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Figure 6.18  Comparison of damage evolution as-observed at microscopic and macroscopic 

length scales at the dwell stress. On the left is a macroscale deformation field along the edge of a 

cross-ply tensile. On the right are four microscale deformation fields corresponding to the 

positions (solid black boxes) on the macroscale field. The underlying structure of the laminate is 

indicated in the micrograph on the right. Macroscale measurements to do not capture damage in 

the microstructural constituents. 

Damage is not clearly evident in the macroscopic strain fields at applied stresses below 

the proportional limit; certain strain localizations look like noise at these stresses, but may be 

indicative of cracking. Figure 6.19 shows the evolution of damage in enlarged images of the 

edge of the annealed (and previously fatigued) CMC tensile coupon. The FOV is located at the 

center of the gage section. Figure 6.19 (a) shows the underlying microstructure under no applied 

load. Figure 6.19 (b) shows maximum principal strain fields at the same location (the edge is 

coated with paint for DIC) at the dwell stress. Figure 6.19(c) shows the strain fields just before 

failure. As applied stress approaches the failure stress, maximum principal strain fields show that 

a majority of the matrix cracks manifest in the right half of the laminate and propagate (through 

the thickness) towards the left half. The four microscale images in Figure 6.18 were sampled 
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from the left half of the laminate and, in Figure 6.18, correspond to locations where damage 

accumulated in the coatings below the proportional limit. But based on the progression of 

damage in Figure 6.19, damage in those coatings did not evolve into cracks with openings large 

enough to be detected at the macroscale; of the four microscale FOVs, only two were located on 

a band of high strain.  
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Figure 6.19  Macroscale view of damage progression along the edge of the annealed CMC 

tensile coupon. CMC previously underwent 40 cycles of dwell fatigue at σdwell. The solid black 

boxes correspond to locations where microscale the fields of view in Figure 6.18 . From the 

macroscale perspective, cracks initiate in right half of the laminate and propagate towards the left 

half. Of the four microscale FOVs, only two reside near a macroscale crack. This implies 

damage in coatings detected at the microscale at low stress does not always evolve into large 

matrix cracks detectable at the macroscale.  

6.4  Conclusions 

  Microscale investigations showed that damage in transverse fiber coatings occurred 

below the proportional limit. It was contained to small, localized areas of fiber coatings and 
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mostly situated along the loading axis. Strain localization magnitudes intensified and became 

more widespread as the PL stress was approached. Above the PL, strain localizations in several 

adjacent fibers merged into bands that were indicative of matrix cracks. Crack openings across 

the fiber-matrix interface were on the order of tens of nanometers and were largest in the loading 

direction. Similar experimentation was conducted on a sample that was annealed to relieve 

residual matrix stress. The annealed material showed no distinct difference in damage behavior 

from the as-received sample.  

Constituent level damage investigations during cyclic loading showed that the intensity 

and dispersion of strain localizations in fiber coatings grew with each fatigue cycle, ultimately 

approaching a steady state between 10 and 20 cycles. After only 10 fatigue cycles, residual 

damage was present in the fiber-coating interfaces. As with monotonic loading, there was no 

difference in damage behavior between annealed and un-annealed CMCs.  At the lamina scale, it 

was shown that patches of localized strain that appear continuous at that macroscopic length 

scale, such as strain lobes extending from notch tips, were actually comprised of several 

neighboring cracks.   

At the macroscale, it was shown that accumulation of matrix cracks is not readily 

apparent until well above the PL stress. Crack separation spacings measured at the macroscale 

were larger than at the microscale (400 µm versus 200 µm). High speed imaging of a notched 

sample showed that crack speed varied for a single matrix crack along its crack path. During 

stable growth, the crack speed was as low as 0.001 m/s. Tensile tests of notched, unidirectional 

laminates showed that two distinct matrix cracks initiate from notch tips. The angle between 

cracks ranged from 100 to 136 deg. Combining observations of damage in dwell fatigue from 

microscopic and macroscopic length scales, it was shown that strain localizations that appear 

below the PL at the microscale are not apparent at all at the macroscale, hence the need for 

multi-scale analyses. 

There are several ways to improve the quality of data from multi-scale experimentation. 

In our analyses, only surface damage was analyzed because 3D imaging resources were not 

available. Real composite laminates may experience significant amounts of out-of-plane 

deformation on free edges [2], which may impact damage behavior on the surface. Damage 

behavior on the surfaces is not necessarily indicative of damage behavior in the interior. This 
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issue could be resolved through the use of 3D deformation mapping of x-ray or CT scans. Spatial 

resolution and high cost are challenges that must be addressed for this approach to be feasible. 

Volumetric digital image correlation exists (Correlated Solutions, Inc). The spatial resolution of 

x-ray may be too low to resolve the fine coating damage detected in SEM images; however, it is 

sufficient for detecting large matrix cracks and characterizing their accumulation. 2D damage 

measurements could be improved by simultaneously collecting data at microscopic and 

macroscopic length scales. An example would be rigging an SEM with ports that permit SEM 

imaging and optical imaging simultaneously.  
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Appendix A 

Figures 6.A1-6.A2 are plots of crack opening across the fiber-coating-matrix interface for 

a CMC loaded in tensile dwell fatigue (refer to Section 6.3.1 for further details). Virtual 

extensometers (encircled in yellow on the maps of principal strain in the left micrographs in each 

figure) are plotted as a function of applied stress and number of dwell fatigue cycles. 

 

Figure 6.A1 Crack openings (as measured using virtual extensometers and DIC data) across the 

fiber-coating-matrix interface for SiC/SiC CMC loaded to failure in tension. Extension is plotted 

as a function of applied stress for the extensometers highlighted in yellow. Extensometers 

oriented along the loading axis (1a and 1b) exhibit positive extensions; those oriented along or 

nearly along the transverse axis (1c and 1d) experience compressive extension. 
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Figure 6.A2  Crack openings (as measured using virtual extensometers and DIC data) across the 

fiber-coating-matrix interface for SiC/SiC CMC loaded to failure in tension. Extension is 

positive for extensometers oriented along or nearly along the loading axis (2b and 2c). Extension 

is negligible for the extensometer oriented in the transverse direction (2a). 

 

Figure 6.A3  Crack openings (as measured using virtual extensometers and DIC data) across the 

fiber-coating-matrix interface for SiC/SiC CMC loaded to failure in tension. Extension is 

positive for extensometers oriented along the loading axis (3b and 3e). Extension is compressive 

for extensometers oriented in the transverse direction (3a, 3c, 3d and 3f). 
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CHAPTER VII 

 

Summary and Future Work 

 

 

7.1 Summary  

A multi-scale approach to characterize damage in continuous fiber SiC/SiC CMCs was 

presented. It began with a small-scale investigation of toughening mechanisms in notched, cross-

ply CMCs loaded in tension at 795°C. Toughening mechanisms such as crack deflection, 

multiple matrix cracking and fiber pullout were evident in longitudinal strain fields. Qualitative 

and quantitative analyses showed that caution must be used when interpreting DIC data in 

CMCs. Process zones at notch tips and crack tips appeared as continuous flutes of localized 

strain. However, filtering the strain data in the process zones showed that the apparently smooth, 

continuous flutes of localized strain consisted of several distinct matrix cracks emanating from 

the notch at different angles. Mean strains in longitudinal fibers were computed at each load 

increment using DIC data. The DIC-measured mean strains increased with load, then dropped at 

fiber fracture, indicating that SEM-DIC was able to resolve elastic deformation in individual 

fibers. Accuracy of the mean strain magnitudes was questionable as the noise and bias in the data 

resulted in large standard deviation ranges. Standard deviations were smallest where the noise-

to-signal ratio was lowest. Elastic strains in SiC matrix fell below the noise threshold and could 

not be accurately resolved.    

Toughness in unidirectional and cross-ply CMCs was characterized using two adaptations 

of the J-integral:  (1) numerical integration of a line contour and (2) Gaussian integration of an 
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area contour. Each method was validated analytically and experimentally using an isotropic, 

homogeneous material. The analytical validation confirmed that both methods were path 

independent and accurate; small systematic error (up to 0.0011% error) was introduced due to 

truncation of the contour about the crack flange. However, experimental DIC data introduced 

error in the calculation due to noise and bias. Accuracy of the J measurements was improved by 

filtering the DIC strain and displacement data. Both integrals (line and area) were used to 

calculate fracture toughness of PMMA validation samples to within the range of published 

values; the area integral routinely predicted slightly larger values than the line integral. The 

discrepancy between predictions of the two algorithms was attributed to the way data is filtered. 

The line integral used filtered strain and displacement data while the area integral used only 

filtered displacement data.  

Next, the validated algorithms were applied to SiC/SiC CMCs for two different layups: 

(1) cross-ply single edge notched tensile coupons loaded in uniaxial tension under vacuum in an 

SEM at 795 °C and (2) single edge notched unidirectional (i.e. fibers oriented along the loading 

axis) tensile coupons loaded in tension outside of the SEM at ambient temperature and pressure. 

The J-integral derived stress intensity factors were larger than those computed from closed form 

analytical expressions (which use stress and crack length as input). The analytical expression 

does not account for multiple matrix cracks; it assumes a single crack with a definitive length. 

The J-integral is computed over a domain that encompasses multiple matrix cracks; hence the 

difference in measurement. Resistance curves for both the cross-ply and unidirectional laminates 

revealed toughening behavior. As crack opening displacement increased, K increased but the rate 

of increase grew smaller, indicating stable crack growth.  

Plane stress fracture toughness could not be quantified with certainty because noise 

masked the onset of crack initiation at the notch tip. It was estimated that for cross-ply coupons 

tested at 795 ⁰C in the SEM, fracture toughness was within or below the range 0.9K to 1.1K, 

where K is an arbitrarily chosen reference value similar in magnitude to that of reaction bonded 

SiC. For unidirectional laminates tested at 25 ⁰C outside of the SEM, fracture toughness was 

within or below the range 0.9 to 1.5K. Bridging laws – derived from resistance curves -- for the 

cross ply and unidirectional laminates indicated that bridging tractions were larger in the cross 

ply layup than in the unidirectional layup.  
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Post-test fractography, analyzed in concert with full-field surface deformations, provided 

a subsurface perspective of crack evolution. Crack propagation on the surface did not always 

coincide with crack propagation sub-surface. This must be taken into consideration when 

analyzing damage behavior using DIC. Fractographs indicated that machining (e.g. cutting 

notches with a diamond saw) introduced flaws that initiated matrix cracks, and that fiber 

distribution may influence the local direction of crack propagation. Nanoindentation indicated 

the elastic modulus of the matrix near fiber coatings was smaller than the modulus in matrix-rich 

areas.  

Multi-scale investigations revealed characteristics of damage progression from crack 

initiation in fiber coatings through final failure. Damage initiated in transverse fiber coatings at 

stresses well below the proportional limit; it manifested as strain localizations in microscale full-

field strain data, which increased in magnitude and became more widespread as the PL was 

approached. Above the PL, localized strains merged into bands of strain indicative of matrix 

cracks. Macroscale analyses showed that matrix cracks accumulate until the matrix is saturated, 

at which point the smallest resolvable spacing between cracks was approximately 400 µm 

(nearly twice as large as the smallest resolvable crack spacings measured at the microscale). The 

velocity of a propagating crack (initiated from an edge notch) was measured with aid of DIC and 

high-speed macroscopic photography. The crack speed varied as it traversed the matrix, 

becoming unmeasurably large as it approached the far edge of the sample. Crack speeds were as 

low as 0.001 m/s under continuous loading in displacement control, which is remarkably low for 

a ceramic material, but expected for a tough CMC. 

Microscale damage investigations during cyclic loading (tensile dwell fatigue below the 

PL at ambient temperature) of un-modified and annealed crossply CMCs showed that the 

intensity and dispersion of damage in fiber coatings grew with each fatigue cycle. Damage 

approached a steady state between 10 and 20 cycles. Although residual stresses in the matrix of 

the annealed sampled were presumably lower than the un-modified sample, there was no 

discernable difference in damage behavior (under monotonic and cyclic loading). Coating 

damage went undetected when these experiments were repeated at the macroscale. This 

demonstrated the importance of investigating damage at several length scales. 
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7.2 Future Work 

Currently, DIC is constrained to measuring deformations only on the surface of a 

material. This presents two major problems when analyzing damage: (1) DIC data does not 

reveal sub-surface deformation and (2) conclusions drawn from DIC data must make simplifying 

assumptions about edge and free-surface effects. Chapters VI and VII addressed these problems 

through two techniques -- measuring deformation on orthogonal surfaces and comparing in-situ 

DIC measurements with post-test fractography. A better solution to this problem is volumetric 

DIC. Software now exists that uses x-ray and CT imagery (collected in-situ during mechanical 

loading) to measure 3D full-field deformations throughout the volume of a material (Correlated 

Solutions, Inc.). For CMCs, the challenge of volumetric DIC is in acquiring image data at spatial 

resolutions sufficient to identify matrix cracks. Although x-ray and CT scanners may not have 

sufficient spatial resolution to measure the fine matrix cracks characteristic of crack initiation, 

they could possibly resolve cracks above the proportional limit.    

A shortcoming of SEM-DIC is that it is too time consuming and resource intensive to 

analyze an entire gage section. A solution would be to automate the SEM-DIC process in such a 

way that a contiguous patchwork of small-scale images is collected over a large area. This would 

be particularly useful for a CMC since damage accumulates throughout the gage section. There 

are several challenges to automating SEM-DIC. Silicon carbide charges over time. The charging 

is not severe; however, contrast, brightness and focus have to be periodically adjusted in order to 

match speckle pattern attributes from test images to those of the reference image. An automated 

routine would have to account for this. If the working distance between the sample and the pole-

piece is not uniform over the entire gage section, images may lose focus. Utilizing automatic 

focus may resolve this issue. With the SEM (Quanta 3D) used in this work, auto focus was 

inconsistent and introduced noise in DIC results. Tensile coupons, especially stiff CMCs, relax in 

the grips slightly upon loading. An automated system would have to incorporate a delay to 

prevent imaging during relaxation.  

The high-temperature testing discussed in Chapter III was permissible only in a vacuum 

since humidity would corrode components in the heating element. Thermo-mechanical testing in 

a humid atmosphere (e.g. environmental mode in an SEM) would more closely simulate the 

service conditions of a SiC/SiC CMC. It could reveal important information about oxidation in 
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fine matrix cracks and in the coating, which are important in the event that an environmental 

protective coating is compromised in service. Environmental high-temperature testing would 

require a heating system that is resistant to corrosion. An auxiliary cooling system would be 

needed to ensure the stage and components in the SEM chamber do not overheat.  

A shortfall of spot heating with (e.g. with a button resistance heater or a laser) is that 

thermal gradients exist throughout the gage section. A better approach may be to encapsulate the 

tensile coupon in a resistance heating element material. For example, platinum could be 

evaporated on the outer surface of the gage section. Leads can be attached to the platinum so that 

it can be used as a heating element. If chemical reactions between the heating material and the 

CMC is a concern (e.g. platinum may react with SiC high temperatures), then alumina could be 

evaporated over the CMC first, followed by the platinum. Prior to evaporation, FOVs for DIC 

can be covered with a mask (such as PMMA). The mask can then be dissolved after evaporation. 

This thesis discussed the strengths and weaknesses of damage analyses at microscopic 

and macroscopic length scales. Future testing should take advantage of the strengths of each 

length scale to further the understanding of damage evolution under thermomechanical loads that 

replicate (as much as possible) the most extreme conditions in which CMCs may be utilized. It’s 

been shown that damage initiates in coatings at stresses well below the proportional limit at 

ambient temperature. It’s unknown whether the presence of fine coating cracks affect mechanical 

performance in an oxidizing environment; however, it is reasonable to assume that fine crack 

openings in the coating may expedite environmental attack of the fibers. Constituent scale SEM-

DIC in a humid atmosphere, at elevated temperature, under cyclic loading could be used to 

assess the significance of coating damage at stresses well below the proportional limit.   

Lamina scale SEM-DIC should investigate the effect of oxidation on fine matrix cracks 

that develop at stresses above coating crack initiation but below the proportional limit. The outer 

surfaces of the CMCs tested in this thesis were composed of partially lapped longitudinal plies. 

Experimental observations of damage and oxidation in exposed longitudinal fibers, however, 

may not accurately reflect the damage state in fibers fully immersed in matrix. Accurately 

characterizing damage in longitudinal fibers is critical as they contribute significantly to 

toughening. More meaningful data could be obtained from deformation data collected on the 

surfaces of cross-ply CMCs that have thin layers of matrix material covering the outer 
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longitudinal lamina. After thermomechanical testing, the thin matrix layer could be lapped to 

reveal the underlying microstructure.  DIC data could be superposed on the microstructure for 

damage analyses and EDAX could be used for oxidation analyses.  

Macroscopic damage investigations should focus on damage accrual in the vicinity of the 

proportional limit since, by then, matrix cracks are large enough to be detected. Macroscale tests 

are less time and resource intensive than microscale tests, so a larger volume of test data can be 

analyzed (large sample sizes are critical for CMCs due to their stochastic nature of failure). 

Dwell fatigue in this thesis was executed below the proportional limit. These tests should be 

repeated, but similar tests should be run at the proportional limit to capture damage behavior 

under the most severe conditions that a SiC/SiC CMC may experience in service. Resources 

permitting, macroscale testing in a hot and humid environment would best simulate extreme 

service conditions.  
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