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ABSTRACT

Essays in Identification and Estimation of Entry Games with Symmetry of
Unobservables

by

Yu Zhou

Chair: Daniel Ackerberg

The first chapter studies semiparametric point identification and estimation of com-

plete information entry games and proposes a root-n consistent estimator. The pro-

posed method focuses on a two-player entry game using an example of discount retail-

ers, where the potential profit of one retailer depends on the actions of its competitor,

and the unobserved heterogeneities of the two retailers can be correlated. These two

features lead to two challenges in identification and estimation: multiple equilibria

and endogeneity. To address these two challenges, this paper provides a new identi-

fication and estimation strategy under a symmetry condition on unobservables. This

new identification procedure requires neither an equilibrium selection rule of multi-

ple equilibria nor parametric distributional assumptions on unobservables to solve

the endogeneity problem. It also requires a weaker support condition than that in

the existing literature. Following the identification argument, this paper proposes a

semiparametric two-step estimation procedure using plug-in kernel estimators. Given

the symmetry assumption, this paper shows that the proposed estimator is root-n

consistent, unlike existing estimators for this model.
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The second chapter considers a Monte Carlo simulation study for complete infor-

mation entry games. The purpose of this study is to provide evidence consistent with

the root-n consistency of the semiparametric estimator proposed by Zhou (2014a) and

to compare this proposed estimator with an existing parametric estimator. The results

are consistent with the proposed estimator being root-n consistent, as predicted by

Zhou (2014a). In addition, the parametric estimator outperforms the semiparametric

estimator with lower biases and variances when the model is correctly specified. When

the model is incorrectly specified, the parametric estimator is inconsistent, while the

semiparametric estimator is consistent.

The third chapter applies existing parametric estimation methods and a new semi-

parametric estimation method by Zhou (2014a) to entry games of discount retailers.

Using data on Kmart’s and Walmart’s entry decisions in 1997 across counties in the

U.S., this paper finds that, with a caveat for the possible misspecification of the la-

tent function, semiparametric and parametric estimators give similar estimates. This

result informally suggests that normality seems to be a reasonable approximation for

the distribution of unobservables in the discount retailing industry.
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CHAPTER I

A Theoretical Perspective

1.1 Introduction

This paper studies identification and estimation of static entry games of complete

information. Entry games have been widely applied to a variety of topics, such as

airline competition, technology adoption and location choices of discount retailers.1

The previous literature primarily assumes a parametric distributional assumption on

unobservables. Very recent studies (Berry and Tamer (2006), Khan and Nekipelov

(2012), Fox and Lazzati (2013), Kline (2012), and Dunker, Hoderlein, and Kaido

(2013)) relax the distributional assumption on unobservables and focus on a semi-

parametric approach. However, relaxation of the distributional assumption poses a

challenge to identification and estimation. These recent semiparametric methods use

identification strategies that rely on having a set of observables with a small proba-

bility mass. A consequence of this is that estimators derived from these identification

strategies have a rate of convergence that is slower than n−1/2, provided that the

observables have the finite variance.2 This paper introduces a symmetry condition on

1Airlines competition (Berry (1992) and Ciliberto and Tamer (2009)); technology adoption
(Manuszak and Cohen (2004), Ackerberg and Gowrisankaran (2006) and Ryan and Tucker (2012));
location choices of discount retailers (Jia (2008) and Ellickson, Houghton, and Timmins (2013)).

2Note that
√
n-consistency corresponds to the n−1/2 rate of convergence. Loosely speaking, the

rate of convergence is a measure of how faster the standard error will decline to zero when we increase
the sample size.
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unobservables and provides a new identification and estimation strategy from which

we can derive an estimator that converges at rate n−1/2. For illustrational purpose,

we consider the entry decisions faced by Kmart and Walmart throughout this paper.

Consider a simple two-player static entry game of complete information, with

markets i = 1, ..., n; two discount retailers p = 1(Kmart), 2(Walmart); and the payoffs

given by

Y ∗1i = Z1iβ + ∆1Y2i + ε1i; (1.1)

Y ∗2i = Z2iβ + ∆2Y1i + ε2i;

Ypi =

 1, if Y ∗pi ≥ 0

0, otherwise
for p = 1, 2;

where (Y ∗1i, Y
∗

2i) is a vector of latent profitability in market i for the discount retailers;

(Z1i, Z2i) is a vector of firm-market specific observed characteristics; and εi = (ε1i, ε2i)

is a vector of unobserved characteristics with an unknown distribution. We allow for

the correlation between ε1i and ε2i. In this type of entry game, the discount retailers

will enter a particular market (Ypi = 1) only if it is profitable to do so (Y ∗pi ≥ 0). Under

the assumption of complete information, each discount retailer knows (Yip, Zip, εip) for

both firms (p = 1, 2), while the econometrician knows only (Yip, Zip) for p = 1, 2 .

Our objective is to recover the model parameters using data on discount retailers’

entry decisions and the observed characteristics.

Model (1.1) captures two channels of interdependence between the entry decisions

of the two discount retailers—channels that are important to consider when applying

this model to empirical work. First, the model explicitly permits strategic interaction

between retailers. This interaction is captured by the coefficients (∆1,∆2), which

can be interpreted as a decline in the potential profitability of a discount retailer due

to the entry of its competitor. These competition effects are the key parameters of

interest in this paper and of great importance for understanding market structure,

2



market regulation, and antitrust analysis. Second, the model also allows for correlated

unobserved heterogeneity. For example, unobserved shocks in the market common

to both firms could exist, which leads to the correlation between the unobservables.

Failure to account for this correlated unobserved heterogeneity may lead to a false

inference about the competition effects. However, allowing for strategic interaction

creates a methodological difficulty: multiple equilibria. This means that for some

realizations of the unobservables, the entry game model predicts two different entry

outcomes. At the same, allowing for the correlated unobserved heterogeneity creates

another difficulty: endogeneity. Therefore, the two channels of interdependence create

two difficulties in identification and estimation.

To address these two difficulties, this paper constructs a semiparametric iden-

tification strategy under an additional shape restriction on the distribution of the

unobservables: a “radial symmetry” condition. With this additional assumption, we

are able to identify the parameters of interest using the choice probabilities of the

unique entry outcomes, while relaxing the support condition on observables used by

the existing literature.

Estimation can be directly constructed from the identifying restriction, where the

objective function takes a form similar to the nonlinear least square estimation. It

has been shown that the leading term of the estimator derived from this objective

function takes the form of a U-statistic, as discussed in Powell, Stock, and Stoker

(1989), Newey (1994), Imbens and Ridder (2009). These studies show that if the

U-statistic can be written as an average of the plug-in kernel component, the rate of

convergence of such an estimator is determined by the components that are averaged

over. We note that the U-statistic in our estimator can be written as the average of

a kernel regression estimator of the choice probability, and we show that since our

estimator averages over all components of the covariates, it results in
√
n-consistency

of the model parameters. Beyond the asymptotic properties, we also derive a higher-

3



order mean squared error approximation for the estimator that is used to compute

an optimal bandwidth choice.

1.1.1 Literature Review

This paper is related to two strands of research: the entry game literature in indus-

trial organization and the literature on semiparametric identification and estimation

of discrete choice models in econometrics.3 Below, we present a brief overview of the

relevant literature in these two fields in order to provide a more detailed comparison

of their respective approaches to the method proposed in the present paper.

Entry Games. This paper is related to the broader literature on entry games

of complete information.4 Early works, including seminal papers by Bresnahan and

Reiss (1990, 1991a,b) and Berry (1992), used simulation-based estimators to recover

the model parameters. These estimators rely on parametric assumptions to model

endogeneity directly. In addressing the multiple equilibria problem, Bresnahan and

Reiss (1990, 1991a,b) and Berry (1992) focused on the fact that the number of firms

in markets is unique despite the existence of the multiple Nash equilibria.

While relying on parametric assumptions, more recent work attempts to explic-

itly examine multiple equilibria, using the equilibrium selection mechanism to gain

identifying power of model parameters. This is accomplished using three possible

approaches. The first approach is to specify a particular equilibrium selection mech-

anism to recover the model parameters, as used in Ackerberg and Gowrisankaran

(2006). The second approach is to consider two extreme equilibrium selection mech-

anisms to place a bound on the model parameters. This bound gives the largest

3To some extent, this paper is also related to peer effects literature in labor economics, including:
Manski (1993), Moffitt et al. (2001), Carrell, Sacerdote, and West (2011), Card and Giuliano (2013),
and Huang (2013) and others. In addition, Bjorn and Vuong (1984) and Soetevent and Kooreman
(2007) study labor force participation. Brock and Durlauf (2001) discuss social interaction.

4In parallel, the literature on entry games with incomplete information includes Sweeting (2006),
Aradillas-Lopez (2012), De Paula and Tang (2012), Wan and Xu (2012), and Lewbel and Tang
(2013) and others.
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possible identified parameter set that contains the parameter values for any equi-

librium selection rule (e.g., Ciliberto and Tamer (2009), Chernozhukov, Hong, and

Tamer (2007), Romano and Shaikh (2010), Pakes, Porter, Ho, and Ishii (2011), and

Andrews and Barwick (2012)). Introduced more recently, a third way involves explic-

itly identifying and estimating the equilibrium selection mechanism to address the

multiple equilibria (Bajari, Hong, Krainer, and Nekipelov (2010) and Bajari, Hong,

and Ryan (2010)). Each of these three methods has its own merits in terms of com-

putation and estimation, and this is still an ongoing area of research.

Another stream of literature for entry games has relaxed parametric assumptions

on the distribution of unobservables, that is, they adopt semiparametric identification

and estimation strategies. The first to use this approach was Tamer (2003), whose

results were based on an identification at infinity argument.5 More recently, Khan

and Nekipelov (2010, 2012), and Fox and Lazzati (2013) have suggested tracing the

distribution of unobserved characteristics and recovering the model parameters from

the identified error distribution. Kline (2012) proposes combining identification at

infinity and maximum score estimation to recover the model parameters.

While these semiparametric approaches have made a significant contribution to

the literature, Khan and Nekipelov (2012) show that an identification strategy built

on the conditions used in these studies cannot lead to an estimator with n−1/2 rate of

convergence, which is a property that the semiparametric literature often attempts to

attain. The key reason for this impossibility result is that the identification of model

primitives built on these conditions relies on either extreme values of observables

in identification at infinity, or the identification relies on a set of observables with

possible small probability mass at the tails, referred to as ”thin set identification”

5Early work for the simultaneous discrete choice models for other context with an identification
at infinity argument is Heckman (1978).
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(Khan and Tamer (2010)).6,7

To reconcile the problem faced in the recent entry game studies, we develop a new

identification and estimation strategy based on a shape restriction, on the distribution

of unobserved characteristics. This shape restriction is referred to as radial symmetry

(sometimes referred to as central symmetry). Radial symmetry permits a large class

of distributions, including but not limited to those commonly used in parametric ap-

proaches, such as the bivariate normal distribution, the bivariate Laplace distribution,

the bivariate symmetric logistic distribution and more general elliptically contoured

distribution. Importantly, our additional symmetry assumption allows us to relax

the support condition of observables used in the existing literature. Intuitively, this

assumption allows us to identify the model parameters by identifying the point of

symmetry. The symmetric point can be identified using data ”nearby” the symmetry

point. More specifically, for a given set of parameters and error distribution, we need

only bounded support for the excluded variables to achieve identification. Of course,

since this bounded support depends on the parameters and error distribution, which

are unknown, it would be inappropriate to call this a bounded support condition.

Specifically, one could find a particular parameter vector and the distribution of un-

observables such that any portion of the real line would be needed as part of the

support. One might describe our necessary support condition as “bounded condi-

tional on parameters”. Using this additional assumption and identification strategy

allows us to construct a new estimator that converges at the rate n−1/2, unlike the

existing literature. We show this by using a U-statistic analysis, similar to Powell,

Stock, and Stoker (1989), Newey (1994), and Imbens and Ridder (2009). This result

6The method used in Kline (2012) is more closely related to the discussion in Khan and Tamer
(2007) on the the maximum score estimation.

7The broader literature, initiated by Chamberlain (1986), Heckman (1990), Andrews and Schaf-
gans (1998) and, more recently,Khan and Nekipelov (2012), has concluded that point identification
based on identification at infinity or thin set identification will lead to a estimator with a slower
rate of convergence than n−1/2, provided that the observables have the finite variance. Such results
can be found in single-agent (Chamberlain (1986)) and single-agent with two decisions (Heckman
(1990), Andrews and Schafgans (1998)) as well as two-agent models (Khan and Nekipelov (2012)).
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in our two-agent entry game context is consistent with recent findings by Jochmans

(2011) (in a triangular context) and Chen, Khan, and Tang (2013) (for a single-agent

model without endogeneity but with heteroskedasticity), who also used symmetry to

obtain n−1/2 convergence results.

Semiparametric Identification and Estimation in Discrete Choice Models (or more

general Limited Dependent Variable Models). This paper is also related to the broader

literature on semiparametric identification and estimation of discrete choice models.

Econometrically, a discrete game generalizes a standard single-agent discrete choice

model by allowing for the agents’ decisions to be interrelated. There are five popular

approaches to the semiparametric identification and estimation of single-agent mod-

els with discrete choice or limited dependent variables: Maximum Score Estimation

(Manski (1985)), Rank Correlation Estimation (Han (1987)), Pairwise-difference Es-

timation (Honoré (1992) and Ahn and Powell (1993)), Single-index Model Estimation

(Ichimura (1993)) and Special Regressor (Lewbel (1998, 2000)). These five estima-

tion approaches should be viewed as complements rather than substitutes as these

methods adopt different assumptions. In the discrete game context, Fox and Lazzati

(2013) follow the special regressor approach, while Kline (2012) follows the maxi-

mum score approach. Different from these studies, the present paper combines the

rank correlation and pairwise-difference approaches. To outline our approach, we will

give a detailed review of only the rank correlation estimation and pairwise-difference

approaches.

Rank correlation estimation began with the Maximum Rank Correlation approach

proposed by Han (1987), which follows the rank correlation statistic of Kendall (1938).

The idea behind this approach is that the rank ordering of the deterministic latent

payoff component matches the rank ordering of the choice probabilities only when one

correctly specifies the model parameters up to a scale. Following this idea, Cavanagh

and Sherman (1998) generalize maximum rank correlation estimation and propose

7



a new class of rank estimator called monotonic rank (MD) estimation. Since their

work, rank correlation estimation has been widely used in the literature, including

Chen (1999a,b) (in a single agent model), Abrevaya (2000) (in a generalized fixed

effect regression model), and Abrevaya, Hausman, and Khan (2010) (in a triangular

simultaneous discrete choice model).

Pairwise-difference estimation is similar to differencing panel models with fixed

effects, where variations within “pairwise comparisons” or “matched pairs” can be

used to construct an estimator. The approach typically follows a two-step estima-

tion procedure, first eliminating the nuisance components by differencing pairwise

observations with approximately equal nuisance components, and second by recov-

ering the other model parameters. The approach has been applied to a variety of

models: truncated and censored models (Honoré (1992), Ahn and Powell (1993), and

Honoré and Powell (1994)), panel models (Kyriazidou (1997), Abrevaya (1999), Hu

(2002), and Honoré and Hu (2004)), as well as the sample selection model with het-

eroskadasticity (Chen and Khan (2003)). Recently, Honoré and Powell (1997) apply

the idea to the general nonlinear model; Aradillas-Lopez, Honoré, and Powell (2007)

extend a semilinear model to allow general nonparametric components depending on

the conditional expectation; Hong and Shum (2010) use the pairwise-difference idea

to estimate dynamic optimization problems; and Aradillas-Lopez (2012) provides a

pairwise-difference estimation procedure for incomplete information games.

Overlapping with the rank correlation estimation and pairwise-difference liter-

ature, another stream of literature explores the identification power of symmetry

conditions. Typically, the symmetry condition creates restrictions between pairs of

observations, which can provide an additional source of identification power. Powell

(1986), Honoré, Kyriazidou, and Udry (1997), and Hu (2002) and others use symme-

try in the context of censored and truncated models. Lee (1996) uses symmetry in

a model with a discrete endogenous regressor. Chen (1999a,b) uses symmetry in a

8



discrete choice model; Chen and Zhou (2010) in a sample selection model. Other stud-

ies examining the identification power of symmetry include Chen and Zhou (2010),

Newey (1991), Cosslett (1997), Bai and Ng (2001), and Chen, Khan, and Tang (2013).

The present paper contributes to this general literature by combining rank cor-

relation estimation and pairwise-difference estimation and providing a new pairwise-

difference rank estimation procedure under the symmetry condition. A key obser-

vation is that in the discrete game context, it is hard to construct an estimator by

directly using the rank-ordering property or a pairwise difference. To resolve this

challenge, we do both; that is, we take differences on observations and then construct

a rank estimation procedure on the differences. While the idea of combining these is

not new (Abrevaya (1999, 2003)), to the best of our knowledge, we are the first to do

so for discrete games.8

The remainder of the paper is organized as follows. Section 1.2 introduces a new

strategy for identifying competition effects in entry games. Section 1.3 describes an

estimation procedure constructed from this novel identification approach. Section 1.4

concludes. Appendix A.1 extends the analysis to a richer model with multivariate

observables and heteroskedasticity. Appendices A.2 and A.3 collect the proofs for the

theorems for identification and estimation, respectively. An online supplementary

appendix (Appendix S) gives proofs for Lemmas in Appendices A.1, A.2 and A.3.

1.2 Identification

This section illustrates our identification strategy in the simple two-player entry

game discussed in Section 1.1. In the two-player entry game, the entry decisions of

8The discussion above is to some extent related to a broader literature on the endogeneity problem
in the nonlinear model. Blundell and Powell (2003) provide a excellent survey of the nonlinear
endogeneity problem with the continuous regressor. Studies of the discrete endogeneous regressor
in the triangular discrete choice models include Newey and Powell (2003), Chesher (2005), Chesher
(2010), Vytlacil and Yildiz (2007), Bhattacharya, Shaikh, and Vytlacil (2008), Imbens and Newey
(2009), and Shaikh and Vytlacil (2011).
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players 1 and 2, in market i, are represented by (Y1i, Y2i) ∈ {0, 1}2. Given this, we have

four possible entry outcomes: (0, 0), (0, 1), (1, 0) and (1, 1). In addition, we restrict

attention to a scalar observed characteristic, Zpi, for each player p and each market

i.9 We use the distance from a store to its headquarters as the scalar observable

in the discount retailers’ entry game context. We further normalize the coefficient

(β1, β2) = (−1,−1), as this model is only identified up to scale. Throughout the

paper, we use uppercase letters to denote random variables and lowercase letters to

denote their realizations. Furthermore, we use boldface to denote vectors. Let Y i,

Zi and εi denote (Y1i, Y2i), (Z1i, Z2i), (ε1i, ε2i), respectively. The random vectors Y i,

Zi and εi take values in the sets SY , SZ and Sε, where SY = {0, 1}2, SZ ⊆ R2, Sε =

R2. In particular, we assume that the following regularity conditions hold.

Assumption R (Random Sampling): An independent and identically distributed

(i.i.d.) sample {Y i,Zi, εi} n
i=1 is drawn from the population.

Assumption R restricts our analysis to an i.i.d. sample and assumes that firms

make independent decisions across markets. This assumption is crucial to establishing

our identification method.10

Assumption S (Sign): ∆1 < 0,∆2 < 0.

Assumption S requires prior knowledge of the sign of the competition effects.

Under Assumption S, entry outcomes (0, 0) and (1, 1) are uniquely predicted by the

model. We will use the choice probabilities of these two unique equilibria to identify

the parameters of interest. Though the model tends to generate the multiplicity of

the equilibrium for (1, 0) and (0, 1), we will show later that it does not affect our

identification strategy. As a final remark, the identification presented below can also

9In Appendix A.1, we extend the analysis to multivariate observed characteristics.
10This assumption may be not realistic for some applications, as discussed in Ellickson and Misra

(2011). We will leave possible extensions to future work.
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be applied to the case with ∆1 > 0,∆2 > 0 (for more details on the unique equilibria

in this case, see Tamer (2003)).

Assumption ER (Exclusion Restriction): Suppose that

(i) (Z1i, Z2i) is independent of (ε1i, ε2i);

(ii) the scalar covariate Zpi enters only the payoff function of player p, but not

the payoff function of the other player.

Assumption ER requires that each firm has an exogenous observed characteristic

affecting its own profitability which does not directly affect the profitability of its

rival. Assumption ER is commonly used in the existing literature since without it,

identification is extremely difficult to obtain.11 In the entry game example, variables

that shift the fixed cost of one player but not the other will satisfy Assumption ER.

In the discount retailing industry context, Jia (2008) assumes that the distance from

a store to its headquarters is such a fixed cost shifter. We will also use this fixed cost

shifter in our empirical application.

Assumption RS (Radial Symmetry): The distribution of the unobserved char-

acteristics (ε1, ε2) is continuous over the support Sε and radially symmetric around

(α1, α2); that is, fε(ε1, ε2;α1, α2) = fε(2α1 − ε1, 2α2 − ε2;α1, α2).12

Assumption RS means that any two realizations of (ε1i, ε2i), radiating equal dis-

tances in opposite directions from the symmetric point, have the same density. The

symmetry point does not need to be known, and we treat the symmetry point as an

additional set of parameters that we identify along with competition effects. Note

that symmetry implies E (ε1) = α1 and E (ε2) = α2, where α1 and α2 are the re-

11The literature that uses the exclusion restriction includes Berry and Tamer (2006), Ciliberto and
Tamer (2009), Bajari, Hong, and Ryan (2010), Khan and Nekipelov (2012), and Fox and Lazzati
(2013).

12The terminology used here follows Nelsen (1993). Alternatively, this type of symmetry is also
called the central symmetry in Serfling (2006).
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spective means of the respective marginal distributions. A large class of distributions

commonly used in empirical applications satisfy this condition, including the bivariate

normal and the bivariate Laplace allowing arbitrary correlations.13 In future work,

we plan to develop a specification test for this condition.

1.2.1 Identification Strategy

This subsection provides restrictions necessary to identify the parameters of in-

terest. Given that ∆1 < 0,∆2 < 0, entry decisions (0, 0) and (1, 1) are uniquely

predicted by the model. At any point (z1, z2), we can define a set of realizations

of unobservables, A0 (z1, z2), such that if (ε1, ε2) is an element of that set, neither

firm would choose to enter the market. Analogously, at any point (z1, z2), we can

define a set of realizations of unobservables A1 (z1, z2; ∆1,∆2), such that if (ε1, ε2) is

an element of this set, both firms would choose to enter the market. Formally, A0 is

defined as follows

A0 (z1, z2) = {(ε1, ε2) : ε1 < z1, ε2 < z2} ;

and similarly, A1 (z1, z2; ∆1,∆2) is defined as follows

A1 (z1, z2; ∆1,∆2) = {(ε1, ε2) : ε1 ≥ z1 −∆1, ε2 ≥ z2 −∆2} .

We can illustrate these two regions in Figure 1.1, similar to Bresnahan and Reiss

(1991a), Tamer (2003), and Ciliberto and Tamer (2009).

Now, integrating fε(ε1, ε2;α1, α2) over either A0 (z1, z2) or A1 (z1, z2; ∆1,∆2) yields

the probability that neither firm will enter the market or both firms will enter the

market, respectively, given the value of observed variables. We refer to these proba-

bilities as the conditional choice probabilities (CCP), which can be formally defined

13Also, all elliptically-contoured distributions satisfy radial symmetry.
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Figure 1.1: The integral region.

using the standard threshold crossing structure as follows:

Pr [(0, 0) | (Z1i, Z2i) = (z1, z2)] = Pr (ε1i < z1, ε2i < z2)

=

∫
A0(z1,z2)

fε(ε1, ε2;α1, α2)d (ε1, ε2) ;

Pr [(1, 1) | (Z1i, Z2i) = (z1, z2)] = Pr (ε1i ≥ z1 −∆1, ε2i ≥ z2 −∆2)

=

∫
A1(z1,z2;∆1,∆2)

fε(ε1, ε2;α1, α2)d (ε1, ε2) .

Note that Pr [(0, 0) | (Z1i, Z2i) = (z1, z2)] depends on the symmetric point (α1, α2),

and Pr [(1, 1) | (Z1i, Z2i] = (z1, z2)) depends on both (α1, α2) and the competition ef-

fects (∆1,∆2). Our identification strategy proceeds in two steps: (i) identifying the

symmetric point (α1, α2) from Pr [(0, 0) | (z1, z2)], and (ii) given (α1, α2), identifying

the competition effects (∆1,∆2) from Pr [(1, 1) | (z1, z2)].14 To develop the intuition

behind our identification strategy, we present a graphical illustration before proceed-

ing to the formal derivation.

14Note that because α and ∆ enter Pr [(1, 1) | (Z1i, Z2i) = (z1, z2)] additively, one cannot recover
(∆1,∆2) directly from this probability.
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1.2.1.1 Identifying Restriction for the Symmetric Point

To identify the symmetric point (α1, α2), we use the choice probability of no entry,

that is, Pr [(0, 0) |z1, z2] (=Pr [(0, 0) | (Z1i, Z2i) = (z1, z2)]). The goal of our analysis

is to find a restriction on choice probabilities for the same unique equilibrium (0, 0)

across different locations, such that this restriction holds only at the true (α1, α2). In

particular, the identifying restriction can be constructed in the following three steps.

First, consider two values for the observed variables (z1, z2) and (z̃1, z̃2), where

z1 < z̃1 and z2 < z̃2. Then, consider values of the observables that combine one

element from each of those values, that is, (z1, z̃2) and (z̃1, z2). Define

R0 (z, z̃) = R0 (z1, z2, z̃1, z̃2) ≡ {(ε1, ε2) : z1 < ε1 < z̃1, z2 < ε2 < z̃2}

where z = (z1, z2) and z̃ = (z̃1, z̃2). We will now construct the probability of observ-

ing (ε1, ε2) in the region R0 (z1, z2, z̃1, z̃2),

Pr ((ε1, ε2) ∈ R0 (z1, z2, z̃1, z̃2))

= Pr ((ε1, ε2) ∈ A0 (z1, z2)) + Pr ((ε1, ε2) ∈ A0 (z̃1, z̃2))

−Pr ((ε1, ε2) ∈ A0 (z1, z̃2))− Pr ((ε1, ε2) ∈ A0 (z̃1, z2))

= Pr [(0, 0) | (z1, z2)] + Pr [(0, 0) | (z̃1, z̃2)]− Pr [(0, 0) | (z1, z̃2)]− Pr [(0, 0) | (z̃1, z2)]

≡ B0 (z, z̃;α) .

The intuition here is that the set R0 (z1, z2, z̃1, z̃2) can be decomposed as a combination

of the sets A0 (z1, z2), A0 (z̃1, z̃2), A0 (z1, z̃2) and A0 (z̃1, z2), which is shown in Figure

1.5, with the assumption that (α1, α2) = (0, 0). This probability is equal to the linear

combination of the choice probabilities given four values of observables.

Importantly, each of the four choice probabilities that are used in constructing

B0 (z, z̃;α) can be obtained directly from the data, that is, we can recover the prob-
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Figure 1.2: A0 (z̃1, z̃2)\A0 (z1, z2)

Figure 1.3: A0 (z1, z̃2)\A0 (z1, z2)
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Figure 1.4: A0 (z̃1, z2)\A0 (z1, z2)

Figure 1.5: R0 (z1, z2, z̃1, z̃2)
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ability of (ε1, ε2) lying in the rectangular area R0 (z1, z2, z̃1, z̃2) by adding and sub-

tracting choice probabilities from the data.15 Pr [(0, 0) | (z1, z2)], for example, can be

recovered by considering the proportion of locations in the data, with the observed

variable value (z1, z2) for which the outcome (0, 0) is observed.

Next, we utilize our symmetry assumption (Assumption RS). For the true sym-

metric point given by (α1, α2), consider the values of observed variables that are

reflected through the symmetry point, as follows:

(2α1 − z1, 2α2 − z2) , (2α1 − z̃2, 2α2 − z̃2) , (2α1 − z1, 2α2 − z̃2) , (2α1 − z̃1, 2α2 − z2) .

These are the original four locations reflected through the symmetry point. Following

from the above, we can construct

R0 (2α− z, 2α− z̃) and B0 (2α− z, 2α− z̃;α) ;

with the four new locations. The rectangle R0 (2α− z, 2α− z̃) is the reflection of

R0 (z, z̃) through the symmetry point. We illustrateR0 (z, z̃) andR0 (2α− z, 2α− z̃)

in Figure 1.6 with the assumption that (α1, α2) = (0, 0).

Finally, Assumption RS then implies that the density of each point (ε1, ε2) in

R0 (z, z̃) is equal to the density of its reflected point (2α1 − ε1, 2α2 − ε2) inR0 (2α− z, 2α− z̃).

Hence,

B0 (z, z̃;α) = B0 (2α− z, 2α− z̃;α) .

Now, we formalize our discussion in Lemma I.1.

15R0 (z1, z2, z̃1, z̃2) = [A0 (z̃1, z̃2) \A0 (z1, z2)] \ [(A0 (z̃1, z2) \A0 (z1, z2)) ∪ (A0 (z1, z̃2) \A0 (z1, z2))].
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Figure 1.6: Identifying restriction for (α1, α2)

Lemma I.1. For any two vectors z = (z1, z2), z̃ = (z̃1, z̃2) ∈ Sz, consider

Z1 = (z1, z2) ; Z5 = (2α1 − z1, 2α2 − z2) ;

Z2 = (z̃1, z̃2) ; Z6 = (2α1 − z̃1, 2α2 − z̃2) ;

Z3 = (z1, z̃2) ; Z7 = (2α1 − z1, 2α2 − z̃2) ;

Z4 = (z̃1, z2) ; Z8 = (2α1 − z̃1, 2α2 − z2) .

Given that Assumptions R, S and ER hold, define

B0 (z, z̃;α) = Pr[(0, 0) |Z1] + Pr[(0, 0) |Z2]− Pr[(0, 0) |Z3]− Pr[(0, 0) |Z4];

B0 (2α− z, 2α− z̃;α) = Pr[(0, 0) |Z5] + Pr[(0, 0) |Z6]− Pr[(0, 0) |Z7]− Pr[(0, 0) |Z8].

By Assumption RS, we have

B0 (z, z̃;α)−B0 (2α− z, 2α− z̃;α) = 0. (1.2)

Lemma I.1 gives us our fundamental identifying restriction on (α1, α2), which we
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will use to define our identification definition later.

Next, we will apply the same procedure to derive the identifying restriction for

the competition effects.

1.2.1.2 Identifying Restriction for the Competition Effects

The strategy for identifying the competition effects (∆1,∆2) is analogous to the

one above but focuses on the equilibrium (1, 1) rather than (0, 0) that is used in iden-

tifying the symmetry point. More specifically, we use the choice probability of entry to

identifying (α1 + ∆1, α2 + ∆2), that is, Pr [(1, 1) |z1, z2] (= Pr [(1, 1) | (Z1i, Z2i) = (z1, z2)]),

and since we have already identified (α1, α2), so that we can recover (∆1,∆2).

First, consider four values as above, (z1, z2) , (z̃1, z̃2) , (z1, z̃2) and (z̃1, z2), where

z1 < z̃1 and z2 < z̃2. Define

R1 (z, z̃) = R1 (z1, z2, z̃1, z̃2)

≡ {(ε1, ε2) : z1 −∆1 < ε1 < z̃1 −∆1, z2 −∆2 < ε2 < z̃2 −∆2} ,

where z = (z1, z2) and z̃ = (z̃1, z̃2). The probability of observing (ε1, ε2) in the region

R1 (z, z̃) is given by

Pr ((ε1, ε2) ∈ R1 (z, z̃))

= Pr ((ε1, ε2) ∈ A1 (z1, z2; ∆1,∆2)) + Pr ((ε1, ε2) ∈ A1 (z̃1, z̃2; ∆1,∆2))

−Pr ((ε1, ε2) ∈ A1 (z1, z̃2; ∆1,∆2))− Pr ((ε1, ε2) ∈ A1 (z̃1, z2; ∆1,∆2))

≡ Pr [(1, 1) | (z1, z2)] + Pr [(1, 1) | (z̃1, z̃2)]− Pr [(1, 1) | (z1, z̃2)]− Pr [(1, 1) | (z̃1, z2)]

≡ B1 (z, z̃;α,∆) .

Next, we use the symmetry condition (Assumption RS) again, for the symmetric

points plus the competition effects given by (α1 + ∆1, α2 + ∆2). Now, we also consider
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four combinations of observables, which are given by

(2 (α1 + ∆1)− z1, 2 (α2 + ∆2)− z2) , (2 (α1 + ∆1)− z̃1, 2 (α2 + ∆2)− z̃2) ,

(2 (α1 + ∆1)− z1, 2 (α2 + ∆2)− z̃2) , (2 (α1 + ∆1)− z̃1, 2 (α2 + ∆2)− z2) .

These four points are then reflected through the symmetry point. For z1 < z̃1 and

z2 < z̃2, define

R1 (2 (α+ ∆)− z, 2 (α+ ∆)− z̃)

=

 (ε1, ε2) : 2 (α1 + ∆1)− z̃1 −∆1 < ε1 < 2 (α1 + ∆1)− z1 −∆1;

2 (α2 + ∆2)− z̃2 −∆2 < ε2 < 2 (α2 + ∆2)− z2 −∆2.


=

 (ε1, ε2) : 2α1 − (z̃1 −∆1) < ε1 < 2α1 − (z1 −∆1) ;

2α2 − (z̃2 −∆2) < ε2 < 2α2 − (z2 −∆2) .


We illustrate R1 (z, z̃) and R1 (2 (α+ ∆)− z, 2 (α+ ∆)− z̃) under the assumption

(α1, α2) = (0, 0), in Figure 1.7. Then we can also defineB1 (2 (α+ ∆)− z, 2 (α+ ∆)− z̃;α,∆)

accordingly.

Finally, by the same argument for the identification of the symmetry points using

Assumption RS, we can show

B1 (z, z̃;α,∆) = B1 (2 (α+ ∆)− z, 2 (α+ ∆)− z̃;α,∆)

which is similar to the identifying restriction of (α1, α2).

Now, we formalize our argument to define the identification of (∆1,∆2) in this

paper.
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Figure 1.7: Identifying restriction for (α1 + ∆1, α2 + ∆2)

Lemma I.2. For any two vectors z = (z1, z2), z̃ = (z̃1, z̃2) ∈ Sz, consider

Z1 = (z1, z2) ; Z5 = (2 (α1 + ∆1)− z1, 2 (α2 + ∆2)− z2) ;

Z2 = (z̃1, z̃2) ; Z6 = (2 (α1 + ∆1)− z̃1, 2 (α2 + ∆2)− z̃2) ;

Z3 = (z1, z̃2) ; Z7 = (2 (α1 + ∆1)− z1, 2 (α2 + ∆2)− z̃2) ;

Z4 = (z̃1, z2) ; Z8 = (2 (α1 + ∆1)− z̃1, 2 (α2 + ∆2)− z2) .

Given that Assumptions R, S and ER hold, define

B1 (z, z̃;α,∆)

= Pr[(1, 1) |Z1] + Pr[(1, 1) |Z2]− Pr[(1, 1) |Z3]− Pr([1, 1) |Z4];

B1 (2 (α+ ∆)− z, 2 (α+ ∆)− z̃;α,∆)

= Pr[(1, 1) |Z5] + Pr[(1, 1) |Z6]− Pr[(1, 1) |Z7]− Pr[(1, 1) |Z8].

By Assumption RS, we have

B1 (z, z̃;α,∆)−B1 (2 (α+ ∆)− z, 2 (α+ ∆)− z̃;α,∆) = 0. (1.3)
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Equalities (1.2) and (1.3) provide the fundamental identifying restrictions on α =

(α1, α2) andα+∆ = (α1 + ∆1, α2 + ∆2). Again, B0 (z, z̃;α) andB0 (2α− z, 2α− z̃;α)

can be constructed directly from the data. Note that at the true (α1, α2), equality

(1.2) will hold for all z, z̃. The question of identification is then whether (1.2) might

also hold for a 6= α, a ∈ Θα ⊂ R2 for all z, z̃, where Θα is the (bounded) parameter

space.

1.2.2 Definitions and Sufficient Conditions

In this section, we formalize our identification definitions and provide a set of

sufficient conditions for point identification.

Definition I.3. (Radial Symmetry-Discrete Response Identification) Let a = (a1, a2) ∈

Θα ⊂ R2. Let

T (a) =

(z, z̃)

∣∣∣∣∣∣∣
B0 (z, z̃;α)−B0 (2a− z, 2a− z̃;α) 6= 0;

z, z̃ ∈ Sz, 2a− z, 2a− z̃ ∈ Sz


(i) We say that α is RSDR identified relative to a if

Pr
[(
Z, Z̃

)
∈ T (a)

]
> 0.

(ii) In addition, we say that α is RSDR point identified if for all a 6= α,

Pr
[(
Z, Z̃

)
∈ T (a)

]
> 0.

Definition I.4. (Radial Symmetry-Discrete Response Identification) Let a = (a1, a2) ∈

Θα, δ = (δ1, δ2) ∈ Θ∆, where Θα,Θ∆ ⊂ R2. Let

T (a+ δ) =

(z, z̃)

∣∣∣∣∣∣∣
B1 (z, z̃;α,∆)−B0 (2 (a+ δ)− z, 2 (a+ δ)− z̃;α,∆) 6= 0;

z, z̃ ∈ Sz, 2 (a+ δ)− z, 2 (a+ δ)− z̃ ∈ Sz.


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(i)We say that α+ ∆ is RSDR identified relative to a+ δ if

Pr
[(
Z, Z̃

)
∈ T (a+ δ)

]
> 0.

(ii) In addition, we say that α+ ∆ is RSDR point identified if for all a+δ 6= α+ ∆,

Pr
[(
Z, Z̃

)
∈ T (a+ δ)

]
> 0.

Part(i) of Definition I.3 suggests that we can identify α relative to a particular

alternative a 6= α, if there exists a set of (z, z̃) with positive probability such that

(1.2) is violated at a. Part (ii) suggests that we can point identify α if, for any

arbitrary a 6= α, a ∈ Θα, we can find such a set. Similar arguments can be applied to

identify (α+ ∆) in Definition I.4. These definitions will be used to show that model

parameters are identified. We will formally describe sufficient conditions below.

Now, we provide a set of sufficient conditions for point identification. Given

the construction of the identification strategy, the sufficient conditions ensure that

the support of the excluded observables covers the symmetry point (α1, α2) and the

symmetry point plus the competition effects (α1 + ∆1, α2 + ∆2). In addition, the

support of observables must be sufficiently large to rule out alternative points which

might appear to be symmetric over the support of the observables. Now, we introduce

sufficient conditions for point identification in our paper.

Assumption SV (Sufficient Variation) Given any set S ⊂ SZ and a vector

a = (a1, a2), δ = (δ1, δ2), define the symmetrically reflected sets

S
′
(S,a) = { (2a1 − z1, 2a2 − z2)| for all (z1, z2) ∈ S} ;
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and

S
′
(S,a+ δ) = { (2 (a1 + δ1)− z1, 2 (a2 + δ2)− z2)| for all (z1, z2) ∈ S} .

(i) The points (α1, α2) and (α1 + ∆1, α2 + ∆2) are in the interior of the support

SZ ;

(ii) The random vector Z = (Z1, Z2) is absolutely continuously distributed with

the positive density f(Z1,Z2) (·, ·) over the support of SZ , with respect to the Lebesgue

measure;

(iii) For all a ∈ SZ such that a 6= α, there exists a Lebesgue measurable set

S ⊂ SZ with positive measure such that S ′(S,a) ⊂ SZ and

fε (z1, z2) 6= fε (2a1 − z1, 2a2 − z2) a.e. for all (z1, z2) ∈ S.

Moreover, for all a+ δ ∈ SZ such that a+ δ 6= α+ ∆, there exists a Lebesgue

measurable set with positive measure S ⊂ SZ such that S
′
(S,a+ δ) ⊂ SZ and

fε (z1, z2) 6= fε (2 (a1 + δ1)− z1, 2 (a2 + δ2)− z2) a.e. for all (z1, z2) ∈ S.

Assumption SV-(i) assumes that support of observables depends on the parameter

value. Similar parameter-dependent support assumptions are made in Vytlacil and

Yildiz (2007, pp.764), where the size of the support depends on the strength of the

exogenous regressor relative to the effect of the endogenous regressor. Assumption

SV-(iii) essentially rules out alternative parameter values in the support of the data

that “look like” symmetry points. A joint distribution can have only one symmetry

point, but if one observes that distribution over only a portion of its support, there

may be multiple points that “appear” symmetric. For example, suppose one observes

a distribution only over a portion of its support. Then, over this portion of the
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support, the distribution is periodic, and it integrates to 0.1. In this case, any of

the local symmetric points in the observed support could be the symmetric point of

the distribution. Assumption SV-(iii) rules out such points; that is, it rules out the

distribution function being periodic over the support of the data.16

Under Assumption SV, we provide our key identification result in Theorem I.5.

Theorem I.5. Suppose that Assumptions R, S, ER, RS and SV hold. Then α and

α+ ∆ are point identified as defined in Definitions I.3 and I.4.

In addition, if we are willing to assume that the distribution of unobservables is

unimodal, then Assumption SV-(iii) is implied by a unimodal distribution and we

have Theorem I.6.

Theorem I.6. Suppose that Assumptions R, S, ER, RS and SV-(i)(ii) hold, and the

joint distribution of unobservables (ε1, ε2) is unimodal. Then α and α+ ∆ are point

identified.

As our point identification result relies highly on Assumption SV, further dis-

cussion of this relationship is warranted. Conditional on the parameters α, α + ∆

and a, a+ δ as well as fε (ε1, ε2), Assumption SV only requires bounded support of

observables. That said, our support condition is weaker than that used in the prior

literature for this model (Tamer (2003) and Fox and Lazzati (2013)). But since one

obviously does not know the parameters ahead of time, it would be inappropriate

to describe our identification result as the one that depends on bounded support.

Rather, we would describe our identification result as the one that depends on the

bounded support given a compact set of parameters. More specifically, for their point

identification results, one would need unbounded support of the observables even if

the parameters were known to lie in a compact set. For our point identification result,

16Note that one may think that uniform distribution could always violate our identification strat-
egy. However, since uniform distribution has finite support, it is automatically excluded from our
discussion as we focus on the infinite support of unobservables.
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if the parameters are known to lie in bounded support, we need only bounded support

for the observables.

To conclude this section, we will give several remarks related to the identification

strategy presented above.

Remark I.7. The identification of model 1.1 is confronted with two main difficulties:

(i) if we use only the unique equilibrium to identify the parameter, we have the limited

information that can be used in identification, that is, only the choice probability of

(0, 0) and (1, 1) can be used for identification; and (ii) the binary feature of the

endogenous regressor. To tackle the first difficulty, we identify the parameters by

observing how the choice probabilities change as the observables change across the

locations. In addition, to address the binary feature of the endogenous regressor, we

transform the problem into a pairwise-difference comparison rather than a pairwise

comparison problem.17,18

Remark I.8. Though we illustrate the method in the two-player entry game case, the

proposed method can be directly extended to the case with more than two-player,

if we assume that one firm’s negative effects on its rivals are the same. We note

that as the number of players increases, the ratio of the uniquely predicted entry

outcome is decreasing relative to the total possible entry outcomes in the model.

This fact suggests that our method will likely have decreased identification power as

17Because of these two difficulties, we note that the standard pairwise-difference identification
and rank-order identification arguments cannot be directly applied to this model, since the location
parameters will be differenced out by using the standard pairwise difference or rank estimation
approach. As a motivation for our identification procedure, we observe that the location parameters
do not affect the relative magnitude rather than the absolute magnitude of the choice probability.
Given this observation, we first use the pairwise-difference to obtain a certain form of the absolute
magnitude of the choice probabilities. Second, under the symmetry condition, we can assign the
relation on these forms of the magnitude of the choice probabilities.

18In addition, we also find that though Chen (2000) provides a novel approach for identifying the
location parameters in the single-agent model, his approach cannot be directly extended to the two-
agent model unless we are willing to assume a stronger symmetry condition. We have shown that
the location parameters can be identified under spherical symmetry (or called the joint symmetry)
following Chen (2000). However, since spherical symmetry requires that the two unobservables be
uncorrelated, which cannot be satisfied in most empirical applications, we do not present the results
here.
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we increase the number of players. Note that when we allow for competition effects

indexed by the rival’s identity, the number of competition effects increases as the

number of players increases as discussed in Fox and Lazzati (2013). In this case,

our identification strategy can only identify the sum of competition effects up to

the constant. Furthermore, when the competition effects (∆1,∆2) are positive, the

argument above cannot be directly applied, since with three or more players there does

not necessarily exist a unique equilibrium, as emphasized in Fox and Lazzati (2013).

They suggest that one possible way to solve this issue is to impose an equilibrium

selection mechanism.

Remark I.9. We construct the identifying restriction using a certain combination of

observables. In fact, a similar identifying restriction can be constructed by using

other possible combination of observables. In other words, the parameters will be

overidentified. However, the more combinations we use, the larger the computational

burden is. Thus, in this paper, we only focus on the one proposed here.

Remark I.10. Finally, note that our identification strategy does not use the choice

probabilities of (0, 1) and (1, 0) in order to avoid issues associated with multiple

equilibria. A caveat of this is that our approach may lose efficiency relative to a

procedure that does use these choice probabilities..

1.3 Estimation

In this section, we propose an estimation procedure based on the identifying re-

striction discussed in Section 1.2. When identifying the symmetric points (α1, α2) and

the symmetric point plus the competition effects (α1 + ∆1, α2 + ∆2), we use the same

identification strategy but apply to different unique equilibrium outcomes ((0, 0) and

(1, 1) respectively). As such we do the same with our estimator. When estimating
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(α1, α2), we define

d = d00 = I ((Y1i, Y2i) = (0, 0)) ;

and when estimating (α1 + ∆1, α2 + ∆2), we define

d = d11 = I ((Y1i, Y2i) = (1, 1)) .

Hence, d generically represents the outcome variable depending on the parameter

under consideration. Following this generic representation, denote the true parameter

as θ0 (equal to (α1, α2) or (α1 + ∆1, α2 + ∆2)) and θ̂n as an estimator.

Now, for any two points z = (z1, z2) and z̃ = (z̃1, z̃2), and for any arbitrary value

of the parameter θ, define

ϕ1 (z, z̃,θ) = ϕ (z1, z2) = Pr (d = 1|Z1 = (z1, z2)) ;

ϕ2 (z, z̃,θ) = ϕ (z̃1, z̃2) = Pr (d = 1|Z2 = (z̃1, z̃2)) ;

ϕ3 (z, z̃,θ) = ϕ (z1, z̃2) = Pr (d = 1|Z3 = (z1, z̃2)) ;

ϕ4 (z, z̃,θ) = ϕ (z̃1, z2) = Pr (d = 1|Z4 = (z̃1, z2)) ;

ϕ5 (z, z̃,θ) = ϕ (2θ1 − z1, 2θ2 − z2) = Pr (d = 1|Z5 = (2θ1 − z1, 2θ2 − z2)) ;

ϕ6 (z, z̃,θ) = ϕ (2θ1 − z̃1, 2θ2 − z̃2) = Pr (d = 1|Z6 = (2θ1 − z̃1, 2θ2 − z̃2)) ;

ϕ7 (z, z̃,θ) = ϕ (2θ1 − z1, 2θ2 − z̃2) = Pr (d = 1|Z7 = (2θ1 − z1, 2θ2 − z̃2)) ;

ϕ8 (z, z̃,θ) = ϕ (2θ1 − z̃1, 2θ2 − z2) = Pr (d = 1|Z8 = (2θ1 − z̃1, 2θ2 − z2)) .

These eight ϕ functions correspond to the corners of the two rectangles in our iden-

tification analysis. Note that ϕ1 (z, z̃,θ), for example, does not depend on z̃ or θ

since the corresponding corner is defined solely by z. In another example, ϕ3 (z, z̃,θ)

depends only elements in z, z̃, respectively. This is done for notational simplicity.
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Next, consider
8∑

υ=1

κυϕυ(z, z̃,θ),

where (κ1, . . . , κ8) = (1, 1,−1,−1,−1,−1, 1, 1). Adding and subtracting the ϕυ terms

in this way generates the difference in choice probabilities defined in two rectangles

from the identification analysis. In other words,

8∑
υ=1

κυϕυ(z, z̃,θ) = B
(
z, z̃;θ0

)
−B

(
2θ − z, 2θ − z̃;θ0

)
.

Hence, given our identification assumptions,
∑8

υ=1 κυϕυ(z, z̃,θ) = 0 for all z, z̃ only

when θ = θ0 (see Lemmas I.1 and I.2).

To proceed to our asymptotic analysis, we propose a population objective function

based on the above,

Q (θ) = EZ,Z̃

[
τ
(
Z, Z̃,θ

) 8∑
υ=1

κυϕυ(Z, Z̃,θ)

]2

, (1.4)

where the expectation is taken over all possible values z, z̃ ∈ SoZ , where SoZ denotes

the interior of SZ . Here, Q (θ) is similar to the quadratic objective function used in

nonlinear least squares estimation.19 τ (z, z̃,θ) is a smooth trimming function which

is positive on the interior of the compact set SZ , SoZ , and zero otherwise (see more

details in Assumption TR).20 The trimming function ensures that we only evaluate

the identifying restriction at the points on SoZ and have symmetrically reflected points

also contained in SoZ for a given θ. Otherwise,
∑8

υ=1 κυϕυ(z, z̃,θ) is not well defined.

Assumption TR Define τij (θ) = (Π8
υ=1τ (zυ,1, zυ,2))

1/8
, where for υ = 1, . . . , 8,

write (zυ,1, zυ,2) as the generic points for the eight choice probabilities. The trimming

19Though other smooth or nonsmooth functional forms can also be used here, for analytical
tractability, we will focus on this quadratic form in our analysis. We note that this quadratic
function is not robust to outliers.

20In doing so, we prevent the estimator of the choice probabilities from the boundary bias. We
will discuss more in Section 1.3.3.
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function τ (zυ,1, zυ,2) : SoZ → R is bounded on the set SoZ and equal to zero outside

SoZ . In addition, the trimming function τ is at least ι times continuously differentiable

and has bounded derivatives on SoZ .

Assumption TR specifies the properties of the smooth trimming function, which

guarantees the identifying restriction is well-defined and we restrict it as the interior.21

Assumption TR further guarantees that the corresponding kernel estimators of the

choice probabilities have no boundary bias in the estimation later.

Theorem I.11. Suppose that R, S, ER, RS and SV as well as TR hold. Then, (i)

for all θ = (θ1, θ2) ∈ Θ ⊂ R2,Q (θ) ≥ 0; and (ii) Q (θ) = 0 when θ = θ0, and

Q (θ∗) > Q
(
θ0
)

= 0 for all θ∗ 6= θ0.

The proof is provided in Appendix A.3.1. Theorem I.11 shows that the population

objective function is uniquely minimized at θ0, implying that the true parameters can

be identified from the population objective function.

By the analogy principle, let Qn (θ) denote the sample analog of Q (θ). Replacing

the expectation with a sample average and replacing the choice probabilities with

corresponding kernel estimators, we obtain

Qn (θ) =
1

n(n− 1)

n∑
i=1

n∑
j=1,j 6=i

τij (θ)

[
8∑

υ=1

κυϕ̂υ (Zi,Zj,θ)

]2

.

In order to construct an estimator that converges at rate n−1/2, we will need to use

higher-order kernel functions.22 Using higher-order kernel functions has the caveat

that the predicted choice probabilities may be below zero or above one. Therefore,

we consider the alternative sample objective function Q̃n (θ) and define an estimator

21Note that the smooth trimming functions are typically assumed for analytical convenience. In
practice, commonly trimming functions are specified with the combination of the smooth function
and the indicator function.

22This is fairly common in the literature (e.g., Buchinsky and Hahn (1998)).
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θ̂n as

Q̃n (θ) =
1

n(n− 1)

n∑
i=1

n∑
j=1,j 6=i

τij (θ)Gij (θ)

[
8∑

υ=1

κυϕ̂υ (Zi,Zj,θ)

]2

; (1.5)

and θ̂n = arg min
θ
Q̃n (θ)

where τij (θ) restricts the observed variable taking the values in the interior of SZ , SoZ ,

to protect against the boundary bias in the estimated choice probabilities; and Gij

is a trimming function that ensures that the predicted choice probabilities are well-

defined (the choice probability is not below zero or above one). Additional details for

the trimming function can be found in Appendix A.3.

In the objective function Q̃n (θ), we follow standard procedure for nonparametri-

cally estimating the choice probabilities ϕ̂υ for υ = 1, . . . , 8. For example, for υ = 3,

our kernel estimator is

ϕ̂n,3
(
zi, zj, θ

)
= ϕ̂n (z1i, z2j) =

ĝn (z1i, z2j)

f̂n (z1i, z2j)
,

ĝn (z1i, z2j) =
1

n− 2

n∑
k=1,k 6=i 6=j

dkKn

(
Z1k − z1i

h
,
Z2k − z2j

h

)
,

f̂n (z1i, z2j) =
1

n− 2

n∑
k=1,k 6=i 6=j

Kn

(
Z1k − z1i

h
,
Z2k − z2j

h

)
;

where Kn (u) = 1
h2
K
(
Ω−1
t (u)

)
is a kernel function depending on the covariance

matrix Ωt and the bandwidth h = hn, which is defined as a decreasing function of n.

Other terms ϕ̂υ are constructed in the same way. In summary, our estimation strategy

follows a plug-in two-step procedure, i.e., we first nonparametrically estimate the

choice probabilities, and then use these choice probabilities to evaluate the objective

function given the parameters. We search for the parameter values to minimize this

objective function.

The rest of this section proceeds as follows: we first show the properties of the
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proposed estimator in Section 1.3.1. Then, we derive an optimal bandwidth and a

feasible estimator for standard error of θ̂n in Section 1.3.2. Finally in Section 1.3.3, we

discuss the practical issues one might encounter when choosing the kernel function,

bandwidth selection and trimming.

1.3.1 Properties of Estimator

In this section, we will derive the following asymptotic and finite-sample properties

of the proposed estimator: consistency, rate of convergence and asymptotic normality

as well as higher-order mean squared error approximation. Throughout this section,

we assume that the following additional regularity conditions hold.

Assumption 1 Θ is a compact subset of R2; θ0 ∈ int(Θ).

Assumption 1 is standard in the literature. The compactness condition is always

required for consistency, while the restriction to the interior of the parameter space

is required only for asymptotic normality. The compactness condition is commonly

used in the literature of discrete choice models (e.g., Manski (1985), Horowitz (1992),

and Ichimura (1993)).

Assumption 2 Assume that

(i) The random vector (Z1, Z2) is continuously distributed on a compact support

SZ , with the joint density f(Z1,Z2) (·, ·). Further, f(Z1,Z2) (·, ·) is bounded away from

zero by some positive constant over its support and Cf = supz1,z2 f (z1, z2) <∞.

(ii) The marginal densities fZ1 (·) and fZ2 (·) and the joint density f(Z1,Z2) (·, ·),

as well as the product ϕ(·, ·)fZ1 (·) , ϕ(·, ·)fZ2 (·) and ϕ(·, ·)f(Z1,Z2) (·, ·) are at least ι

times continuously differentiable and have bounded derivatives on the sets SoZ1
, SoZ2

and SoZ , where SoZ1
, SoZ2

denotes as the interior of SZ1 , SZ2 .

(iii) E[i,j]

[
∇θζij

(
θ0
)
ϕ(·, ·)(ι1)f(Z1,Z2) (·, ·)(ι2)

]
exists for ι1 + ι2 = ι, 0 < ι1, ι2 ≤ ι.
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In addition, E[i,j]

[
∇θfυ,ij (·, ·) /f−2

υ,ij (·, ·)
]

exists for all υ = 1, . . . , 8.

Assumption 2-(i) avoids zero denominator problems. Assumption 2-(ii) imposes

smoothness conditions on the unknown densities and the conditional choice proba-

bilities, which are standard in kernel regression estimation. Assumption 2-(ii) also

requires that the bounded derivatives exist in the interior of the support, in order

to prevent our estimator from suffering from a boundary bias. Note that the higher

the differentiability ι is, the higher the kernel function order one can use, and the

smaller the bias is. We will save the detailed discussion on this point for Section

1.3.3. Assumption 2-(iii) assumes that the first-order and higher-order means exist

for the Hoeffiding decomposition. In addition, it guarantees that the first highest-

order terms that involve the bandwidth exist. Alternatively, if we follow the derivation

of density-weighted average derivative in Powell, Stock, and Stoker (1989) and Pow-

ell and Stoker (1996), by adding the product of corresponding densities as a weight

in the objective function, then Assumption 2-(iii) is not necessary. However, it will

substantially increase complicity in our derivation. To keep the derivation simple, we

impose Assumption 2-(iii) here.

Assumption 3 The kernel function K and the bandwidth h satisfy the following

conditions:

(i) the bivariate kernel function K is a function of bounded variation that satisfies

(a) K (u) = K (−u) ;

(b) |K (u)| ≤ K̄ <∞ and
∫
R2 |K (u)| du ≤ c <∞;

(c) For some ι ≥ 2,

∫
R2

uι11 u
ι2
2 K (u) du


= 1 if ι1 + ι2 = 0,

= 0 if 0 < ι1 + ι2 < ι,

<∞ if ι1 + ι2 = ι;
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(d) For some C <∞, K (u) = 0 for ‖u‖ > C and for all u,u′ ∈ R2,

|K (u′)−K (u)| ≤ K∗ (u) ‖u′ − u‖ ;

and

CK = sup
u∈R2

(u) +

∫
R2

K (u) du and CK∗ = sup
u∈R2

(u) +

∫
R2

K∗ (u) du.

(ii) h is a sequence of positive numbers that satisfies h→ 0 as n→∞.

In Assumption 3-(i), Conditions (a)-(c) are standard in the literature. Condition-

(d) corresponds to Assumption 3 in Hansen (2008) and to Assumption 2-(d) in Cat-

taneo, Crump, and Jansson (2013). Since we allow for a relaxed support condition

on the observables, we need our kernel function to both have truncated support and

satisfy the Lipschitz condition in order to show uniform convergence. More details

on the kernel functions that satisfy this condition are given in Section 1.3.3.

Assumption 3-(ii) does not impose any specific restriction on the rate at which h

will decrease as the sample size n increases. For analytical simplicity, we assume that

the bandwidths are the same across different dimensions of each kernel regression

estimator and are the same for different kernel regression estimators.

Assumption 4 The trimming function G (·) is (L + 1)th order differentiable for

some L > 4.

Assumption 4 is required when we use a higher-order kernel function. This con-

dition ensures that the kernel regression estimator of the choice probability is well-

defined, that is, the estimated choice probability is not below zero or above one. In

Appendix A.3, we follow Linton and Xiao (2001) when specifying the form of the

trimming function. The smooth trimming of G (·), in particular, guarantees that the

trimming does not affect the higher-order mean squared error (MSE) approximation,
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in comparison to an indicator trimming function. We will discuss in greater detail

on the difference between the smooth trimming function and the indicator trimming

function on the higher-order MSE approximation in Section 1.3.3.

1.3.1.1 Consistency

To prove that the estimator is consistent, we will first show the uniform conver-

gence of the densities and the conditional choice probabilities.

Lemma I.12. Suppose that Assumptions 2-3 hold. Then, for υ = 1, · · · , 8, with zυ =

(zυ,1, zυ,2),

(i)

sup
zυ∈SoZ

∣∣∣f̂n (zυ,1, zυ,2)− E
[
f̂n (zυ,1, zυ,2)

]∣∣∣ = Op

(√
logn
nh2

)
sup
zυ∈SoZ

∣∣∣E [f̂n (zυ,1, µυ,2)
]
− fn (zυ,1, zυ,2)

∣∣∣ = O (hι) ;

(ii)

sup
zυ∈SoZ

|ĝn (zυ,1, zυ,2)− E [ĝn (zυ,1, zυ,2)]| = Op

(√
logn
nh2

)
sup
zυ∈SoZ

|E [ĝn (zυ,1, zυ,2)]− gn (zυ,1, zυ,2)| = O (hι) .

Our proof of Lemma I.12, found in the Appendix S.A, follows Newey (1994),

Hansen (2008) and Cattaneo, Crump, and Jansson (2013). Using Lemma I.12, we can

now show the uniform convergence of the choice probability of ϕ̂υ, for υ = 1, · · · , 8,

as follows.

Lemma I.13. Suppose that Assumptions 2-3 hold. Then, for υ = 1, · · · , 8, with

zυ = (zυ,1, zυ,2),

sup
zυ∈SoZ

|ϕ̂n (zυ,1, zυ,2)− E [ϕ̂n (zυ,1, zυ,2)]| = Op

(√
log n

nh2

)
sup
zυ∈SoZ

|E [ϕ̂n (zυ,1, zυ,2)]− ϕn (zυ,1, zυ,2)| = O (hι)).

Lemma I.13 shows that the optimal uniform rate of convergence of the esti-

mated choice probability is (n/ log n)
ι

2ι+2 , and the corresponding bandwidth is of
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order (n/ log n)
ι

2ι+2 . In addition, this lemma will be used to show the uniform conver-

gence of the sample objective function, which is the key to showing the consistency

of the estimator.

Theorem I.14. Suppose that Assumptions R, S, ER, RS, SV, TR and Assumptions

1-4 hold. Then, provided that nh2/ log n→∞, we have θ̂n − θ0 = op (1).

Theorem I.14 gives the consistency of the estimator. We note that the optimal

bandwidth of the choice probability satisfies the requirement nh2/ log n → ∞. As

such, an estimator using the optimal bandwidth will be consistent. Theorem I.14

allows us to construct a consistent estimator for the plug-in bandwidth selector.

1.3.1.2 Root–n Consistency and Asymptotic Normality

In this subsection, we show that the proposed estimator is
√
n-consistent and

asymptotically normal following Sherman (1994). First, we will apply Theorem 1 in

Sherman (1994) to show the
√
n-consistency.

Theorem I.15. Suppose that Assumptions R, S, ER, RS, SV, TR and Assumptions

1-4 hold. Then, provided that nh2ι → 0 and nh4 →∞, we have θ̂n−θ0 = Op

(
n−1/2

)
.

Theorem I.15 gives the
√
n-consistency result. Central to this result is that the

leading term of the estimator takes the form of a U-statistic, similar to the full

mean of Newey (1994) and Imbens and Ridder (2009). And, in a broader sense, it

is also similar to the kernel-based average derivatives of Powell, Stock, and Stoker

(1989). They find that such U-statistic can be written as an average over the plug-in

nonparametric estimator. Similarly, our estimator is a U-statistic, as it can be written

as an average over the plug-in kernel regression estimator of the choice probabilities.

Given this form, Newey (1994) and Imbens and Ridder (2009) further show that

the rate of convergence is determined by the dimensions of components of covariates
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that are averaged over: the more components are averaged out, the faster the con-

vergence rate is. Following their discussion, we find that in our context, the leading

term in our U-statistic averages out entire components of covariates. In this way, we

can achieve the n−1/2 rate of convergence.

In addition, in this theorem, we impose conditions on the bandwidth sequence.

Two bandwidth conditions are used to control both the first-order and higher-order

biases, respectively, in order to guarantee
√
n-consistency of the estimator, where we

will show the form of the bias terms in Section 1.3.1.3. Specifically, we require that

the order of the kernel function be greater than two, in order to satisfy nh2ι → 0 and

nh4 →∞. In other words, we need to use higher-order kernel functions in estimation.

Admittedly, the need to use a higher-order kernel function is a limitation of this

estimation procedure, in the sense that it requires that the underlying distribution

function have additional smoothness. Moreover, the higher-order kernel has negative

components, which can lead to kernel regression estimates of the choice probabilities

that are below zero or above one. To avoid this, we further impose an additional

trimming function when estimating the choice probabilities, as stated in Assumption

4.

Despite the cost of using the higher-order kernel function, the bandwidth choice

allows the estimation error of the nonparametric plug-in kernel regression estimator

to have order op
(
n−1/6

)
in a suitable norm, similar to Cattaneo, Crump, and Jansson

(2013). This result is weaker than the commonly used requirement in the litera-

ture while not invalidating the asymptotic linearity and asymptotic normality of our

estimator, as shown below.

Next, we follow Theorem 2 in Sherman (1994) to show asymptotic linearity and

asymptotic normality as follows.

Theorem I.16. Suppose that Assumptions R, S, ER, RS, SV, TR and Assumptions

1-4 hold. Then, provided that nh2ι → 0 and nh4 → ∞, (i) (Asymptotic Linearity)
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The estimator is asymptotically linear with

√
n
(
θ̂n − θ0

)
= n−1/2

n∑
k=1

Γ−1ψk + op (1) ;

(ii) (Asymptotic Normality) The estimator is asymptotically normal

√
n
(
θ̂n − θ0

)
d→ N

(
0,Γ−1ΣΓ−1′)

where Γ = E
[
∇θζ

(
zi, zj,θ

0
)
∇θζ

(
zi, zj,θ

0
)]

with

∇θζ
(
zi, zj,θ

0
)

= τij
(
θ0
)

(
8∑

υ=5

κυ∇θϕυ,ij
(
θ0
)
);

and ψk = 2
∑8

υ=1 κυ (∇θξn,υ − E∇θξn,υ) with23

∇θξn,υk =



(dk − ϕ (z1k, z2k))
∫ ∫
∇θζ

(
zk, s,θ

0
)
f (s1, s2) d (s1, s2) , υ = 1;

(dk − ϕ (z1k, z2k))
∫ ∫
∇θζ

(
z1k, r2, s1, z2k,θ

0
) f(z1k,r2)f(s1,z2k)

f(z1k,z2k)
d (r2, s1) , υ = 3;

(dk − ϕ (z1k, z2k))
∫ ∫
∇θζ

(
2θ0 − zk, s,θ0

)
f (s1, s2) d (s1, s2) υ = 5;

(dk − ϕ (z1k, z2k))
∫ ∫
∇θζ

(
(2θ0

1 − z1k) , r2, s1, (2θ
0
2 − z2k) ,θ

0
)

υ = 7;

×f((2θ01−z1k),r2)f(s1,(2θ02−z2k))
f(z1k,z2k)

d (r2, s1) ,

and n−1/2
∑n

k=1 ψk →d N (0,Σ), where Σ = E [ψkψ
′
k].

Theorem I.16 provides asymptotic linearity and asymptotic normality results, un-

der the bandwidth conditions the same as those in Theorem I.15. This theorem shows

that ψk is a linear combination over the different values of ∇θξn,υk for υ = 1, . . . , 8.

Recall that our estimation procedure begins with a pair of markets 1 and 2. From

these markets, we are able to construct two artificial markets, 3 and 4, by taking

the characteristic for player 1 from a market and combining it with the characteristic

23Due to the symmetry of the indices i and j, we only represent the cases with υ = 1, 3, 5, 7. The
other remaining cases take a similar form. To save space, we do not explicitly provide the expressions
of these four remaining cases.
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for player 2 from the other market. We form the market υ = 5, 6, 7, 8 by taking the

values for each player reflected through the symmetric points.

When υ = 1, 2, 5, 6, the individual U-statistics are similar to the standard full

mean case of Newey (1994) and Imbens and Ridder (2009), which can be treated

as the sample average of the kernel regression estimates over the all components of

observables. In addition, when υ = 3, 4, 7, 8, the individual U-statistics, instead,

depart slightly from the standard full mean form, which can be treated as the double

average over each dimension separately of the kernel regression estimator but across

all dimensions of the observables as well, which can also lead to the n−1/2 rate.

Therefore, these two types of U-statistics with the rate n−1/2 ensure that the final

parameter estimator has the rate n−1/2, as well.

Theorem I.16 also suggests an analytical expression for the standard error. Note

that the variance of the estimator contains the matrix Σ, which can be drawn from

joint distribution of the vector (∇θξn,1, . . . ,∇θξn,8)′; that is,


∇θξn,1

...

∇θξn,8

 ∼ N




E∇θξn,1
...

E∇θξn,8

 ,


V11,k · · · V18,k

...
. . .

...

V81,k · · · V88,k


 .

As we show in Appendix A.3.3, for all υ 6= υ′, ∇θξn,υ and ∇θξn,υ′ are correlated, and

all the off-diagonal covariance terms are of order O (n−1). This structure immediately

suggests that the variance of the estimator contains both variance and covariance com-

ponents of this vector, and to calculate the standard error of our estimator, we need

to calculate each element in this variance-covariance matrix. The kernel estimator

for each element can be written as

Vυυ = σ2E
[
χυ,kχ

′
υ,k

]
and Vυυ′ = σ2E

[
χυ,kχ

′
υ′,k

]
,
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where χυ,k denotes the integral part of ∇θξn,υk. For example, when υ = 1, we have

χ1,k =
∫ ∫
∇θζ

(
zk, s,θ

0
)
dF (s1, s2). In addition, we complete the analysis by em-

phasizing that Γ is a linear combination of the first derivative of the choice probability,

which we estimate using the kernel estimator of the derivatives of the choice proba-

bility. We will use these formulas to construct a consistent estimator of the standard

error.

1.3.1.3 Higher-order MSE Approximation

In this subsection, we provide a mean squared error (MSE) expansion of the esti-

mator θ̂n in order to derive the plug-in ”optimal” bandwidth selector. The expansion

procedure is consistent with the asymptotic results shown in Appendix A.3.

Theorem I.17. Suppose that Assumptions R, S, ER, RS and SV and Assumptions

1-4 hold. Then, the approximate MSE of Γ̄n

(
θ̂n − θ0

)
is given by

1

n
Σ + h2ιBB′ + 1

n2h4
BhBh′, (1.6)

where

Γ̄n =
1

n(n− 1)

n∑
i=1

n∑
j=1,j 6=i

[
τij (θ)

8∑
υ=1

κυ∇θϕυ (Zi,Zj,θ)

]

×

[
τij (θ)

8∑
υ=1

κυ∇θϕυ (Zi,Zj,θ)

]′
;

with B =
∑8

υ=1 κυBυ and Bh =
∑8

υ=1 κυBhυ , where

Bυ = E[i,j]

[
∇θζij

(
θ0
) ∑
ι1+ι2=ι,0<ι1,ι2≤ι

[∫ ∫
uι11 u

ι2
2 K (u) du

]
ϑυ,ι1,ι2 (·, ·)

]
,

Bhυ = σ2
υE[i,j]

[
−
∇θfυ,ij

(
θ0
)

f−2
υ,ij

(
θ0
) ] ∫ ∫ K2 (u) du;
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and E[i,j] is the expectation taken over i and j and ϑυ,ι1,ι2 are the corresponding bias

components.

Whereas Theorem I.16 discusses the first-order asymptotics, Theorem I.17 pro-

vides the higher-order MSE approximation. The first term in equation (1.6) corre-

sponds to the variance matrix of the estimators; the second term B corresponds to

the first-order bias; and the third term corresponds to the higher-order bias Bh where

its element Bhυ takes a form similar to the variance of the kernel regression estimator

for the choice probability.

Theorem I.17 not only verifies the asymptotic linear representation of the esti-

mator, but also suggests a way of selecting an optimal bandwidth h∗. Specifically,

we define the optimal bandwidth selector h∗ as the one that minimizes the second

and third terms in equation (1.6). To describe this bandwidth selector, let c = (1, 1)′

∈ R2. Then, the optimal bandwidth selector can be defined as,

h∗ =

(
4
(
c′Bh

)2

2ι (c′B)2 n2

)1/2ι+4

= Chn
−1/ι+2; (1.7)

where Ch is a constant. The last expression implies that the bandwidth selector

is proportional to n−1/ι+2, where ι is the order of a kernel function and also the

smoothness of the underlying distribution. For example, if we use the fourth-order

kernel function, that is, ι = 4, the bandwidth selector is proportional to n−1/6. This

expression also suggests that we might be able to construct a consistent estimator of

h∗ if consistent estimators of B and Bh are available. Consistent estimators B̂ and B̂h

can be derived for any arbitrary kernel function and some bandwidth h, h → 0. We

provide the derivation of these consistent estimators in Section 1.3.2.

Note that at the beginning of Section 1.3, we explicitly assume that the band-

widths are the same across two players. In addition, we assume that the bandwidths

are the same across different kernel regression estimators of the choice probabilities.
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This is done largely due to analytical convenience. In practice, we can easily allow

the bandwidth to vary with the identities of players following the same MSE approx-

imation above. In the same way, due to the linearity of the choice probabilities in the

criterion function, we can also allow the bandwidth to vary across kernel regression

estimators of the different choice probabilities. For brevity, we omit the derivation

for these extensions.

1.3.2 Feasible Estimators

The previous subsection provides the asymptotic properties and the MSE of the

estimator. To implement the plug-in bandwidth selector, we need to construct a

consistent estimator of the constant terms, B and Bh, for the optimal bandwidth

h∗ in (1.7). In addition, to draw inference from this estimator, we need to obtain

consistent estimators of the variance for the model parameters.

In order to estimate the constant, we first choose an arbitrary value for it and

obtain estimates of the model parameters, θ̃I using (1.5). Then, using θ̃I , we construct

a consistent estimator for the first order bias B and the higher-order bias Bh. Note

that B =
∑8

υ=1 κυBυ and Bh =
∑8

υ=1 κυBhυ , where explicit expressions for Bυ and Bhυ

can be found in Appendix S.C. For example, when υ = 5, a plug-in estimator of the

first-order bias, B5, is given by

B̂5 = Γ̂−1

(
n

2

)−1∑
i 6=j

[
∇θζ̂ij

(
θ̃I

) ∑
ι1+ι2=ι,0<ι1,ι2≤ι

[∫ ∫
uι11 u

ι2
2 k (u) du

]
ϑ̂5,ι1,ι2 (Z1i, Z2i)

]
,

where
∑

i 6=j =
∑n

i=1

∑n
j=i+1. In addition, we can derive

Γ̂ =

(
n

2

)−1∑
i 6=j

[
∇θζ̂ij

(
θ̃I

)] [
∇θζ̂ij

(
θ̃I

)]′
(1.8)

∇θζ̂ij

(
θ̃I

)
= τij

(
θ̃I

) 8∑
υ=5

κυ∇θϕ̂υ,ij

(
θ̃I

)
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and∇θϕ̂υ,ij

(
θ̃I

)
= f̂−1

υ,ij

(
θ̃I

)(
∇θĝυ,ij

(
θ̃I

)
− ϕ̂υ,ij

(
θ̃I

)
∇θf̂υ,ij

(
θ̃I

))
using the fourth-

order kernel function and the bandwidth taking the form of b = Cbn
−1/2ι+2+s, where

s is the order of derivative. Furthermore, ϑ̂5,ι1,ι2 (z1i, z2i) can be derived accordingly

following Taylor’s expansion24.

In addition, a plug-in estimator of the higher-order bias, Bh5 , can be written as

Bh5 = −Γ̂−1σ̂2
5

(
n

2

)−1∑
i 6=j

∇θf̂5,ij

(
θ̃I

)
f̂−2

5,ij

(
θ̃I

) µ̂k2 ,

where σ̂2
υ = 1

n

∑n
k=1 v̂

2
υ,k. Also, f̂υ,ij

(
θ̃I

)
and ∇θf̂υ,ij

(
θ̃I

)
are the standard kernel

estimators of the density and the derivative of the density, respectively. Here, we

denote µ̂k2 as
∫ ∫

k2 (u) du, for some specific kernel functions k. The value of µ̂k2

varies across the kernel functions we choose. Having obtained estimators of B and

Bh, we construct an estimator for Ch as

(
4(c′Bh)

2

2ι(c′B)2

)1/2ι+4

.

Next, with this estimator for Ch, we can construct an estimator for the standard

error. Using the optimal bandwidth derived above, we can reestimate the model

parameters θ̂ using (1.5). With θ̂, we construct a consistent estimator for the vari-

ance V(θ̂). We observe that the variance expression contains three components: the

Hessian matrix Γ, the variance of each random component V [∇θξn,υ], as well as the

covariance Cov [∇θξn,υ∇θξn,υ′ ], for υ 6= υ′. Consequently, as long as we can construct

a consistent estimator of each component, we can derive a consistent estimator of the

variance term. Natural candidates for estimates for each component are their kernel

24For example, for ι1 = 4, ι2 = 0,

ϑ̂5,ι1,ι2 (z1i, z1i) = ∂(4)ϕ (2θ1 − z1i, 2θ2 − z2i) f (2θ1 − z1i, 2θ2 − z2i) /∂θ41
+∂(4)ϕ (2θ1 − z1i, 2θ2 − z2i) f (2θ1 − z1i, 2θ2 − z2i) /∂θ42.
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estimators, defined as follows:

Γ̂ =

(
n

2

)−1∑
i 6=j

[
∇θζ̂ij

(
θ̂
)] [
∇θζ̂ij

(
θ̂
)]′

,

V̂υυ = σ̂2 1

n

n∑
k=1

[
χ̂υ,kχ̂

′
υ,k

]
,

V̂υυ′ = σ̂2 1

n

n∑
k=1

[
χ̂υ,kχ̂

′
υ′,k

]
,

where we can write Γ̂ with θ̂, and we can write σ̂2 = 1
n

∑n
k=1 v̂

2
k. χ̂υ,k

(
θ̂
)

takes

different values depending on the value of υ. For example, when υ = 1, χ̂1,k

(
θ̂
)

=

(n− 1)
∑n

j=1,j 6=k∇θζ̂jk

(
θ̂
)

where ∇θζ̂jk

(
θ̂
)

= τjk

(
θ̂
)∑8

υ=5 κυ∇θϕ̂υ,jk

(
θ̂
)

.

So far, we have been silent the initial bandwidth that is used in consistent esti-

mators of the bandwidth constant. In addition, we have not mentioned about the

initial bandwidth for the variance of the parameters. Since these estimators involve

the derivatives of the density or derivatives of the choice probability, we will use

bandwidth defined as one that minimizes the MSE of the estimated derivatives of the

densities or the estimated derivatives of the choice probabilities, similar to those in

Lemmas I.12 and I.13. For example, for the estimated derivatives of the densities,

if we use the fourth-order kernel, b = Cbn
−1/2ι+2+s = n−1/10+s, where ι is the order

of the kernel function and s is the order of the derivatives. Note that theoretically,

the choice of the constants Cb could be rather arbitrary and will lead to a consistent

estimator of the plug-in components, as long as the bandwidth satisfies that b → 0

as n→∞. In practice, however, it is also important to explore the sensitivity of the

estimators for different choices of Cb.

1.3.3 Practical Issues

To implement the proposed estimation procedure, one needs to specify the kernel

function, the numerical values of the bandwidth constants and the trimming function.
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We will discuss each of them in detail.

Choosing the Kernel Function

We begin by discussing the choice of the kernel function. Since Assumption 3 re-

quires that the kernel function be symmetric, have the truncated support and satisfy

the Lipschitz condition, we consider a set of the kernel functions that could satisfy

Assumption 3, including any higher order Epanechenikov, Biweight or Triweight ker-

nel functions. However, since the Gaussian kernel and the uniform kernel cannot

satisfy this condition, they are excluded from our discussion. In our analysis, we use

an Epanechenikov kernel function in our simulation and the empirical analysis.

Choosing the Bandwidth Constant

To specify the numerical plug-in bandwidth values, we need to specify the order of

the kernel function and the constant term. For the order of the kernel function, previ-

ous studies (e.g., Horowitz and Härdle (1996) and Lewbel (1997)) have shown that: (i)

estimates in simulation using a second-order kernel function are more stable than es-

timates derived using higher-order kernels; and (ii) a higher-order kernel can perform

better only when the sample size is relatively large. On the other hand, asymptot-

ically, the specification on the constant term of the bandwidth is less essential to

estimation, while in practice, the constant term can largely affect the performance of

the estimator (e.g., Honoré and Kyriazidou (2000)).

To obtain a
√
n-consistent estimator in our method, we require the bandwidth

have to satisfy nh2ι → 0 and nh4 → ∞. In other words, we need to consider a

fourth-order or higher-order kernel to account for this bandwidth requirement. For

example, if we choose a fourth-order kernel, the optimal bandwidth will take the form

of h∗ = Chn
−1/ι+2 = Chn

−1/6.

Moreover, in order to obtain the consistent estimator for the constants in the

plug-in bandwidth or consistent estimator for the standard error, in fact, we can

choose both second order kernel and higher order kernel. In addition, we can use any
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bandwidth h such that h→ 0. Here, we choose the bandwidth for each component as

shown in Section 1.3.2, proportional to the corresponding optimal bandwidth, similar

to the result in Lemmas I.12 and I.13.

Choosing the Trimming Functions

Trimming plays a key role in our estimation procedure. Following the discussion

in Ichimura and Todd (2007), we use two trimming functions τij and Gij to prevent

our estimator from having undesirable properties during the estimation procedure.

The first trimming function τij guarantees that our estimator will not suffer from

a boundary bias problem. The boundary bias problem is commonly found when

regressors have compact support (for more details, see Müller (1988, pp. 32-36)).

In our analysis, τij directly restricts the calculation of the choice probability to the

interior of the observables. This trimming approach is standard in the literature.

The second trimming function Gij ensures that the estimators of the choice prob-

abilities are well defined. In practice, there are two candidate trimming schemes

that one can use to achieve this goal. The first candidate trimming scheme follows

from Lewbel (1997). However, it precludes Taylor’s expansion. The second candidate

scheme follows from Linton and Xiao (2001) and Buchinsky and Hahn (1998). This

trimming scheme does allow for Taylor’s expansion. In our analysis, we follow Linton

and Xiao (2001) for analytical convenience.

1.4 Conclusion

This paper provides a new semiparametric identification and estimation strategy

for the two-player entry game under a symmetry condition on unobservables. Given

this symmetry condition, the identification strategy can identify the model param-

eters using observables with a weaker support condition than that in the existing

literature. To some extent, it is a bounded support condition conditional on know-

ing that the parameters lie in a bounded space. This identification strategy leads
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to an estimator with the
√
n-consistency. The findings complement the literature by

providing assumptions that bypass the impossibility result of Khan and Nekipelov

(2012) in entry game (or more general simultaneous discrete choice) models.

These new results obtained in this paper open several possible directions for ex-

tending the proposed method above. First, we are aware that the radial symmetry

condition plays a key role in the rate of convergence improvement. As one extension,

we will construct a statistic to test for this symmetry condition. Second, this present

paper focuses on two-player entry games. Analogously, we may be able to extend our

identification and estimation strategy to more than two players with caveats as dis-

cussed in Fox and Lazzati (2013). As a caveat to our results, note that
√
n-consistency

is an asymptotic result, and does not say anything about the small sample perfor-

mance of estimator. In the future, we plan to examine in greater details the small

sample performance of the propose estimator in comparison with those of the existing

methods. Finally, the identification and estimation strategy proposed here also relies

on the independent markets assumption. Though the relaxation of this independence

assumption is nontrivial, it might be also interesting to explore.
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CHAPTER II

A Simulation Design

2.1 Introduction

In the present paper, we will evaluate the performance of the proposed semipara-

metric estimator in Zhou (2014a) (the first chapter of my dissertation) by using a

Monte Carlo study. In particular, we will first illustrate the
√
n-consistency of the

proposed semiparametric estimator (to be clear, what we mean by ”illustrate the

√
n-consistency” is that in a small sample, the standard error of the semiparamet-

ric estimator decreases at an approximate n−1/2 rate). Furthermore, we will check

whether the proposed semiparametric estimator is more robust to non-normality (or,

in general, an unknown distribution of unobservables) compared to other parametric

approaches where the normality (or, in general, a distribution of unobservables) is

often assumed to be known.

The first goal of this paper is motivated by the fact that in the first chapter of my

dissertation, we propose a new semiparametric estimator that has been shown theo-

retically to have
√
n-consistency. In that paper, we find that one symmetry condition,

called the radial symmetry condition, can possibly give additional identification power

and lead to a
√
n-consistent estimator. It provides a possibility for the impossibility

results as shown in Khan and Nekipelov (2012).1 It is worth illustrating that, in

1Khan and Nekipelov (2012) show that an identification strategy built on the infinite support of
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practice, the
√
n-consistency result holds across different symmetric distributions of

the unobservables, as predicted by the theorems in Zhou (2014a) (the first chapter of

my dissertation).

The second goal of this paper is motivated by the comparison between semipara-

metric and parametric estimators. Our estimator belongs to semiparametric estima-

tors. It is well known that, in general, a semiparametric estimator is consistent when

the distribution is not normal. Although this feature is widely discussed in the entry

games literature (e.g., Fox and Lazzati (2013)), few papers have illustrated this feature

for entry game models. To complement the literature, this paper considers different

simulation designs to compare the parametric estimator proposed in Bresnahan and

Reiss (1990, 1991a,b) to the semiparametric estimator proposed in the first chapter

of my dissertation. More specifically, we try to test whether the semiparamtric esti-

mator can perform the same as the parametric estimator when normality holds and

whether the semiparametric estimator can improve upon the parametric one when

normality is violated.

The organization of the present paper is as follows. Section 2.2 contributes to the

model setup. Section 2.3 proposes a refined sample objective function to address the

possible issues that could happen in the estimation. Section 2.4 discusses the kernel

function choice, the bandwidth constant choice as well as the trimming function spec-

ification used in the simulation. Section 2.5 presents the results for semiparametric

and parametric estimators. Section 2.6 concludes.

observables cannot lead to an estimator with n−1/2 rate of convergence, which is a property that
the semiparametric literature often attempts to attain.
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2.2 Model Setup

The Monte Carlo study is based on a simple two-player entry game, which can be

written as follows,

Y1i = I (α1 − Z1i + ∆1Y2i + ε1i ≥ 0) ,

Y2i = I (α2 − Z2i + ∆2Y1i + ε2i ≥ 0) ;

where (Y1i, Y2i) is a vector of entry outcomes for firms, (Z1i, Z2i) is a vector of firm-

market specific observed characteristics and (ε1i, ε2i) is a vector of unobserved charac-

teristics. In the present paper, we still normalize the coefficients of scalar observables

to −1, in order to be consistent with notations in the first chapter of my dissertation.

Here I represents the indicator function.

Let g (·;µ,Σ) be a normal density function and G (·;µ,Σ) be the corresponding

normal cumulative distribution function. More specifically, g (·;µ,Σ) can be written

as

g (·;µ,Σ) =
1

(2π)k/2 |Σ|1/2
exp

(
−1

2
(·− µ)

′
Σ−1 (·− µ)

)
;

where µ ∈ Rk is a vector of means, Σ is a variance-covariance matrix and |Σ| is

the determinant of Σ. In this study, we consider two symmetric distributions of the

unobserved characteristics as follows,

Design 1: (ε1i, ε2i) ∼ Fε = G (ε; 02,Σε,1) ;

Design 2: (ε1i, ε2i) ∼ Fε =
∑4

b=1 λbGb (z;µb,Σε,2) .

For Design 1, we consider the following variance-covariance matrix, Σε,1 = σ2
ε

 1 0

0 1


with variance σ2

ε = 0.2. For Design 2, we consider the individual variance-covariance
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matrix as Σε,2 = σ2
ε

 1 0

0 1

 with variance σ2
ε = 0.04.2 Moreover, we set the weight

as λ̄b = (0.25, 0.25, 0.25, 0.25)′, and we denote a vector of means corresponding to

each individual normal as µ̄b, which is specified as

µ̄b =



(0.4, 0.4)

(−0.4,−0.4)

(0.4,−0.4)

(−0.4, 0.4)


.

This specification for the individual means guarantees that the four individual normal

distributions are pairwise symmetric, in order to ensure that the mixture of these

normals satisfies the radial symmetry condition as imposed in Assumption RS in

the first chapter of my dissertation. In addition, this specification also enforces the

overall centrality point for this four-modal mixture of normals at the origin, so that the

centrality point in Design 2 is the same as the one in Design 1 as well. Moreover, we

assume that the observed characteristics are drawn from a uniform distribution, which

can be written as Z1i, Z2i ∼ Uniform(−1.2, 0.6). We set (α1, α2) = (−0.2,−0.2)′

and (∆1,∆2) = (−0.2,−0.2)′. We choose the sample size n = (500, 1000, 2000). Each

Monte Carlo design is based on 100 repetitions.

As mentioned in Section 2.1, our experiment is designed to illustrate that the semi-

parametric estimator is
√
n-consistent and to compare this semiparametric estimator

with an existing parametric estimator. By using the two different designs, where one

is normally distributed, and another is not normally distributed, we can first test

2Note that the individual variance in Design 2 is much smaller than the variance in Design 1.
The reason is that the variance matrix of mixture of normals depends on the dispersion of the
individal mean and the individual variances (for more details, please refer to Frühwirth-Schnatter
(2006, pp. 169-202)). Here we specify our mean and variance in Design 2 such that the overall
variance of unobservables is equal to 0.2, which is the same as that in Design 1. By doing so, we
can fix the variance the same across different distributions, so that we can compare the estimates
across different shapes of the distributions.
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whether the
√
n-consistency can hold across two different symmetric distributions.

In addition, the existing parametric estimator has been shown to be consistent when

the unobservables are normally distributed, while it is inconsistent when the unob-

servables are not normally distributed. By using two different designs, we hope to

test whether the proposed semiparametric estimator is as good as the parametric

estimator under the normality and whether the proposed semiparametric estimator

can improve upon the parametric estimator when normality is violated.

2.3 Refined Sample Objective Function

In the estimation, we use a weighted sample objective function as follows.

Q̆n (θ) =


1

n(n−1)

∑n
i=1

∑n
j=1,j 6=i τij(θ)Gij(θ)[

∑8
υ=1 κυϕ̂υ(Zi,Zj ,θ)]

2

1
n(n−1)

∑n
i=1

∑n
j=1,j 6=i τij(θ)Gb,ij(θ)

, if θ ∈ Θ∗

Cp; if θ ∈ Θ/Θ∗
(2.1)

and θ̌n = arg min
θ
Q̆n (θ) ;

where Θ∗ is a bounded subset of the bounded parameter set Θ.3 This weighted sample

objective function is considered here because, without weighting, the sample objective

proposed in the first chapter of my dissertation might be minimized at some value

not equal to the true parameter value. Why? Recall the discussion of Theorem I.5

in the first chapter of my dissertation, when any reflection points of the observations

are outside the support of the observables, we drop these observations in the calcu-

lation of the objective function. Given this feature, when the alternative parameters

are near the truth, almost all the observations will be used in the sample objective

function; whereas when the alternative parameters are far away from the truth, only

a few observations might be used in the calculation, resulting in a lower value for

the objective function. Reweighting can help to prevent against this possibility as we

3Here Θ∗ is user-specified, which is rather ad hoc. In this section, we will discuss how to find the
bounded parameter set Θ and further construct the subset Θ∗.
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Figure 2.1: The probability density function of the unobservable

move parameters away from the truth. Furthermore, when the alternative parame-

ters are close to the boundary of observables, very few observations are used and the

objective function is approximately close to zero. In this case, reweighting may not

be enough to prevent this possibility. To protect us further against such possibility, in

addition to reweighting, we impose the penalty term Cp when the parameter search

is close to the boundary of observables.

Below, we would like to illustrate why the two possibilities will happen. For

simplicity, we apply our method to the one-dimensional case to illustrate these two

possibilities. To further simplify our discussion, we assume that the data-generating

process is Y = I (−Z + ε ≥ 0), the true symmetric point is at the origin, that is,

α = 0. In addition, we assume that the observables are uniformly distributed with

the support [zL, zU ], where zL < −zU .

In Figure 2.1, we consider three points, points A, B and C. Point A represents the

alternative parameter aA that is close to the truth; point B represents the alternative

parameter aB that is slightly far away from the truth; and point C represents the

alternative parameter aC that is even further away from the truth and close to the

boundary of the support of observables. In Figure 2.2, correspondingly, when the

alternative parameter is at point A, the observations used in the calculation of the

objective function are in the range SA = [2aA−zU , zU ]; when the alternative parameter
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Figure 2.2: The probability density function of the observable

is at point B, the observations used in the calculation are in the range SB = [2aB −

zU , zU ]; and when the alternative parameter is at point C, the observations used in

the calculation are in the range SC = [2aC − zU , zU ].

We expect that when the alternative parameter is at point A, the unweighted

sample objective function is larger than that at the truth. Reweighting would not

change the relative rank of the objective functions at the alternative and at the truth.

At point B, the unweighted sample objective function, however, could be smaller

than that at the truth due to a smaller number of observations that are summed

over. We hope the reweighting could rescale up the sample objective function value

at point B such that the value of weighted objective function compensates for the

decreasing number of observations that are summed over and reflects the position

of the alternative parameter values. At point C, due to an even smaller number of

observations that are summed over, the unweighted sample objective function could

be much lower than that at the truth and approximately close to zero. In this case,

even though we scale up the unweighted sample objective function after reweighting

a small number of the observations, the weighted sample objective function could still

remain small and approximately close to zero. In order to prevent this possibility, we

need to impose the penalty term for the points like point C. The same analogy can

be applied to the two dimensional case in our context.
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Figure 2.3: The probability at each point

Two practical issues arise when implementing our estimation procedure in prac-

tice. First, how can one find a bounded parameter space Θ and define the bounded

subset Θ∗ at the first place? Second, in practice, since it is possible to have global

minimum point at the boundary of observables, is there any way to rule out these

parameter values?

To address the first issue, one possibility is to start with partial identification

without imposing any distributional assumptions (e.g., Ciliberto and Tamer (2009)).

Then, we can use the identified set as the bounded parameter space Θ. As a starting

point, we can set Θ∗ as close as possible to Θ and impose the symmetry condition to

establish point identification.

The second issue will occur when the identified set Θ (and in turn Θ∗) is close

to the boundary of the support of observables. To address this issue, we try to use

the symmetry condition again and rule out the global minimum at the boundary

of observables. The rationale is that the global minimum point at the boundary of

observables is not a symmetric point and thus does not satisfy the symmetric property.

Using this fact, we could possibly rule out the global minimum point at the boundary

of observables in our search procedure.

To illustrate this, we start our discussion in a one-dimensional case and later we

will extend the discussion to the two-dimensional case. In the one-dimensional space,
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like Figure 2.3, we observe that at the symmetric point, the choice probability of

Y = 0 is equal to 0.5. When the points are below the symmetric point, the choice

probability of Y = 0 is less than 0.5 and the choice probabilities of Y = 0 is greater

than 0.5 when the points are above the symmetric point. Following the observation

above, we find that, in identification, when the parameter is at the symmetric point,

any observation point and its symmetrically reflected point that are contributed to

the objective function satisfy the relation

When z < 0, Pr [Y = 0|Z = z] ≤ 0.5 ≤ Pr [Y = 0|Z = 2α− z] ;

When z > 0, Pr [Y = 0|Z = 2α− z] ≤ 0.5 ≤ Pr [Y = 0|Z = z] .

In estimation, we can estimate Pr(Y = 0|Z = z) and Pr(Y = 0|Z = 2α − z) to test

the inequality restriction. It is easy to see that point C in Figure 2.1 cannot satisfy

the inequality restriction above, that is, the choice probabilities at any point and its

reflection point in the support Sc are all above 0.5.

Given this fact, it suggests that we could rule out point C as the symmetric point.

Further, we can shrink the parameter search set Θ∗ up to point C and estimate the

parameter values again. We can continue the procedure iteratively until all possible

global minimum points at the boundary of observables are ruled out.

Now, we extend our discussion in a two-dimensional case. The complication in

the two-dimensional case arises due to the fact that we do not directly know the value

of the choice probability of Y = (0, 0) at the symmetric point as we do in the one-

dimensional case. This choice probability is equal to 0.25 only when the correlation

of the unobservables is equal to zero. In general, it could be below or above 0.25,

depending on the shape of the joint distribution of unobservables. Although we cannot

directly know this choice probability, we could recover it from data. We know that the

choice probability at the symmetry point in the two-dimensional case is equal to the

choice probability when Z = (0, 0). Following the same way as the one dimensional
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case, in identification, the following inequality relationship will hold, that is, at the

true parameter (α1, α2) ,

When z1 < 0, z2 < 0,

Pr [(0, 0)|Z = (z1, z2)] ≤ Pr [(0, 0) |Z = (0, 0)] ≤ Pr [(0, 0)|Z = (2α1 − z1, 2α2 − z2)] ;

When z1 > 0, z2 > 0,

Pr [(0, 0)|Z = (2α1 − z1, 2α2 − z2)] ≤ Pr [(0, 0) |Z = (0, 0)] ≤ Pr [(0, 0)|Z = (z1, z2)] .

Now given this pair of inequality relationship, the second complication arises here

since we can only use the inequality relationship to rule out the alternative parameters

a1 < α1, a2 < α2 or a1 > α1, a2 > α2 (or, the homogeneous parameter, i.e. α1 = α2).

However, we cannot rule out the alternative parameters a1 > α1, a2 < α2 or a1 <

α1, a2 > α2. Admittedly, this is a limitation of our current estimation procedure.

Below, we propose two possible ways to address the issue presented above. First of

all, we have shown in a separate notes that we can identify 2α1+∆1 and 2α2+∆2 using

the radial symmetry condition and the choice probabilites of (0, 0) and (1, 1) together.4

Then we could possibly plug in our estimates for (α1, α2) (or (α1 + ∆1, α2 + ∆2)) to

verify the radial symmetry property in the identification of (2α1 + ∆1, 2α2 + ∆2). We

could rule out the estimates that can break down the radial symmetry property to

identify (2α1 + ∆1, 2α2 + ∆2). Second, throughout the main discussion of our pa-

per, we focus on the equality restriction to build up our identification strategy. But

instead, in principle, we could also use the inequality restriction to build up our iden-

tification strategy. Due to the dimensionality issue, the possible combination will

involve too many comparison scenarios, which would substantially increase computa-

tional complexity. We will leave the detailed discussion for future studies.

4The detailed discussion is upon request.
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2.4 Kernel Function and Trimming Function Specifications

Given the refined weighted sample objective function above, we need to further

specify the unknown components, like kernel functions and trimming functions to

implement our estimation procedure. In the first chapter of my dissertation, Theorems

I.15 and I.16 hold as long as Assumption TR and Assumptions 3-4 are satisfied. It

does not provide any specific guidance for the choice of kernel function, the bandwidth

constant and the trimming functions. Below, we will discuss how to specify these

unknown components to in order to implement our estimation procedure in practice.

2.4.1 Kernel Function Specification and Bandwidth Constant Choice

In this subsection, we will first discuss the specification for the kernel function in

the estimation. To construct the weighted sample objective function in (2.1), we first

need to estimate the choice probabilities ϕ̂υ (Zi,Zj,θ) for υ = 1, . . . , 8. For example,

υ = 3, our kernel estimator is

ϕ̂n,3
(
zi, zj, θ

)
= ϕ̂n (z1i, z2j) =

ĝn (z1i, z2j)

f̂n (z1i, z2j)
, with

ĝn (z1i, z2j) =
1

n− 2

∑n

k=1,k 6=i 6=j
dkKn

(
Z1k − z1i

h
,
Z2k − z2j

h

)
,

f̂n (z1i, z2j) =
1

n− 2

∑n

k=1,k 6=i 6=j
Kn

(
Z1k − z1i

h
,
Z2k − z2j

h

)
;

where Kn (u) = 1
h2
K
(
Ω−1
t (u)

)
is a kernel function depending on the covariance

matrix Ωt and the bandwidth h = hn. Here, we consider the forth-order Epanechnikov

kernel function which takes the form of

k4 (u) =
15

8

(
1− 7

3
u2

)
k (u) ,
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where k (u) = 3
4

(1− u2) I (|u| ≤ 1). We use the product kernels for the choice prob-

ability estimation. Note that any kernel functions that have higher order than the

second-order kernel and have bounded support will satisfy the conditions for Theo-

rems I.15 and I.16 in the first chapter of my dissertation. We choose an Epanechnikov

higher-order kernel in our application, largely because a higher-order Epanechnikov

kernel with an optimal bandwidth has been shown to yield the lowest possible asymp-

totic mean integrated squared error for density estimation (Hansen (2014)). Although

this property may not be preserved for semiparametric estimation, we use it here as

a starting point.5

Next, we will discuss the bandwidth constant choice. Recall that for the proposed

semiparametric estimator we derive in the first chapter of my dissertation, the optimal

bandwidth can be written as,

h∗ =

(
4
(
c′Bh

)2

2ι (c′B)2 n2

)1/2ι+4

= Chn
−1/ι+2; (2.2)

where

Bυ = E[i,j]

[
∇θζij

(
θ0
) ∑
ι1+ι2=ι,0<ι1,ι2≤ι

[∫ ∫
uι11 u

ι2
2 K (u) du

]
ϑυ,ι1,ι2 (·, ·)

]
,

Bhυ = σ2
υE[i,j]

[
−
∇θfυ,ij

(
θ0
)

f−2
υ,ij

(
θ0
) ] ∫ ∫ K2 (u) du;

and E[i,j] is the expectation taken over i and j and ϑυ,ι1,ι2 are the corresponding

bias components. When choosing a bandwidth constant for the plug-in bandwidth

selector, four approaches are commonly used in the literature.

The first approach is called Rule of Thumb (ROT) bandwidth choice. This ap-

proach presumes that the unobservables and observables are normally distributed

and commonly used in a simple one-dimensional case (e.g., Silverman (1986)). The

5We will perform robustness check for other higher-order Epanechnikov kernel functions and
other kernel functions in future studies.
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closed-form solution can be derived and can generate a numerical value of the optimal

bandwidth constant directly. Although it is simple in the one-dimensional case, there

are several caveats when using this approach in our context. One of most important

caveats is that since both unobservables and observables are two-dimensional, beyond

the normality assumption we also need to specify the correlation for unobservables

and observables. This additional specification adds another source of noise in the first

step and leads to less precise estimates for the bandwidth constant. In addition, this

noise might be exaggerated when the true underlying distributions are not normal.

The second approach is called Two-step Plug-in bandwidth choice in Wand and

Jones (1994). This approach tries to derive the optimal bandwidth constant nonpara-

metrically. Here, we will explain it backwards. In the second step, they try to recover

the bandwidth constant nonparametrically. That is, rather than simply assume nor-

mal distributions, they use the kernel function to estimate the choice probabilities and

their derivatives directly. To guarantee that the kernel estimation works, this step,

however, requires the initial bandwidth constant. Because of this, in the first step,

they still need to assume normality to obtain the initial bandwidth constant. Note

that this bandwidth constant Cb is different from Ch in (2.2) because Cb is derived to

minimize the mean squared error of the choice probability estimator rather than the

mean squared error of the parameter estimator.

The second approach, to some extent, is less restrictive than the first approach,

since the second one incorporates the nonparametric estimation in the second step

and it could possibly correct some misspecification in the first step. However, since

it still needs to specify the underlying distribution in the first step, the caveat for the

first approach will be applied here as well. In addition, the second approach will also

incur a large computation burden due to the nonparametric estimation.

A third approach is purely nonparametric, where the researcher needs to specify

a wide range of constants and to check how the semiparametric estimator performs
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across these different constants (e.g., Honoré and Kyriazidou (2000)). The under-

lying rationale behind this approach is that, asymptotically, the performance of the

estimator can be only affected by the rate of the bandwidth, n−1/ι+2, rather than the

bandwidth constant, Ch. Though it sounds very appealing with fewer restrictions,

this approach requires a large sample, in order to guarantee that it could mimic the

asymptotic scenario where the bandwidth constant is not essential to the estimation.

Because of this feature, the third approach is often used when we illustrate the the-

oretical methods, rather than examine the finite-sample property of the estimators.

Like the second approach, the third approach also incurs a large computation burden

as well, as we have to obtain our estimates for a range of constants.

The fourth approach is to choose the bandwidth constant (or, the bandwidth itself)

subjectively by eye. As mentioned in Section 3 of Wand and Jones (1994), for the

density estimator, this procedure starts by looking at several density estimators over

a range of bandwidths and choosing the one that is “most pleasing” in some sense.

One could try a large bandwidth first and decrease the bandwidth until fluctuations

are more “random” than “structural”. This approach can be used when one has

reasons to believe that there is certain structure in the data, such as knowledge of the

position of modes in density estimation. The two potential drawbacks of this method

are: (1) it is not applicable when there is no prior knowledge available; (2) it can be

very time-consuming to select the bandwidth by eye.

Among these four approaches, in our current experiment, we choose the fourth

method as a starting point. Since in the simulation, we have prior knowledge for the

true parameter values, we are able to select the bandwidth constant that can make the

criterion function achieve its minimum as close as possible to the true parameter value.

More specifically, in our design, we start with the bandwidth constant Ch = 9 and

continuously decrease it to Ch = 2. We find that Ch = 2 is the smallest bandwidth

constant that we can use and a further decrease on the bandwidth constant will
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change the shape of the sample objective functions, which is not desirable. Thus,

we adopt Ch = 2 in our estimation. As a final remark, although we can use the

fourth bandwidth constant selection approach in the simulation, it is not feasible to

implement our estimation procedure in a general context. Due to this infeasibility, a

data-driven bandwidth selection approach, such as the first or the second approach, is

more appealing. We will leave further development of data-driven bandwidth selection

approaches for our estimation in future studies.

2.4.2 Trimming Function Specification

In this subsection, we will discuss the trimming function specification for the

sample objective function in (2.1). We use the first trimming function τ to avoid the

boundary bias problem. In addition, instead of using the second trimming function G

proposed in the first chapter of my dissertation, in the current experiment, we set the

estimated choice probability equal to zero, if it is below zero; and equal to one, if it is

above one. We do this to avoid the worry about trimming out too many observations.

To specify the first trimming function τ that satisfies Assumption TR in the first

chapter of my dissertation, we consider each element τυ (z, z̃,θ) for υ = 1, . . . , 8, as

follows,

τυ (z, z̃,θ) =

{
Π2
p=1 exp

(
−

z2
υ,p (z, z̃,θ)

b2
υ,p

(
b2
υ,p − z2

υ,p (z, z̃,θ)
)) I (|zυ,p (z, z̃,θ)| ≤ bυ,p)

}1/2

;

where the trimming point is given by

bυ,p (γ) = Φ−1

(
1− (1− (1− γ))1/8

2

)
;

where γ ∈ [0, 1]. If we specify γ = 0.1, for example, roughly ten percent of the combi-

nation of observations is trimmed out when the underlying distribution of observables

is normal. This specific trimming function is the square root of the trimming function

62



proposed in Cattaneo, Crump, and Jansson (2013). This is done because we have

eight choice probabilities to be estimated at the same time and each of them has

two dimensions, which are pairwisely overlapped (e.g., the first dimension of ϕ1 is

the same as the first dimension of ϕ3). We rescale the trimming function in Catta-

neo, Crump, and Jansson (2013) to balance the weight on each dimension and each

estimated choice probability.

This trimming function is introduced to avoid the boundary bias problem. The

boundary bias problem is well discussed in the kernel estimation literature (for more

details, see Müller (1988, pp. 32-36)). In our context, the boundary bias problem

occurs in the kernel regression estimation of the choice probabilities at the boundary

points of observables. When the estimated choice probabilities badly behaves at the

boundary, it will make our sample objective function less accurate over the support of

observables. As suggested by Wand and Jones (1994), one possible way to solve such

issue is to remove these boundary points from estimation if these boundary observa-

tions are not essential to the estimation. Recall that our identification procedure will

work as long as the support of observables contains the parameter set. Therefore, in

our context, in principle, we can trim as many as possible observation points for esti-

mation as long as the remaining support contains the parameter set. But in practice,

how much observations can be trimmed out depends on the specific distribution of

observables and the sample size.

Besides avoiding the boundary bias problem, the first trimming function τ will

also remove the points at which the estimated choice probabilities are below zero or

above one when the underlying distribution is unimodal. However, it cannot work for

all the underlying reference distributions, such as mixtures of normals. As mentioned

at the beginning of this section, we enforce the estimated choice probability to be

between zero and one, by setting the estimated choice probability equal to zero, if it

is below zero; and equal to one, if it is above one.

63



2.5 Results

In this section, we compare the semiparametric estimator proposed in the first

chapter of my dissertation to the parametric estimator derived from Bresnahan and

Reiss (1990, 1991a,b)(thereafter, BR estimator). To save the space, we leave the

review about different estimators in the third chapter of my dissertation.

Table 2.1 summarizes the entry pattern of the two different simulation designs

discussed in Section 2.2. It shows the percent of each entry outcome in each design.

We specify the simulation design parameters such that the implied entry patterns

across the two simulation designs are more or less the same. Any difference in the

estimation across two designs is attributed to other aspects of the designs rather

than the overall entry patterns. Furthermore, notice that in our specification, the

unique equilibria (0, 0) and (1, 1) occur with lower frequency than (0, 1) and (1, 0). It

illustrates that our estimation can work without requiring the the unique equilibria

(0, 0) and (1, 1) be dominant in the sample.

Table 2.1: Entry Pattern for Designs 1 and 2 (percent)

(0,0) (1,1) (1,0) (0,1)
Design 1

n = 500 19.8420 20.1200 29.4620 30.5760
n = 1000 19.9690 19.9790 29.4540 30.5980
n = 2000 20.0035 19.9485 29.4270 30.6210

Design 2
n = 500 20.2320 19.7840 29.2300 30.7540
n = 1000 20.0690 19.6640 29.5960 30.6710
n = 2000 19.9625 19.6230 29.7150 30.6995

To evaluate the performance of the proposed estimator, we present the mean bias

and the root mean squared error (RMSE). In addition, since these measures can

be affected by outliers, we further consider the median bias and the median absolute

deviation (MAD). Finally, we calculate the estimated standard errors to verify the
√
n-

consistency of our estimator. Specifically, denoting the rth replication of the estimator
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θ as θ (r), we explicitly define these statistics as follows: the mean bias (R−1
∑R

r=1

θ (r)− θ0), the root mean squared error (R−1
∑R

r=1

(
θ (r)− θ0

)2
), the median bias

(median(θ (r)−θ0)) and the median absolute deviation (median
∣∣θ (r)− θ0

∣∣) as well

as the standard error
√
R−1

∑R
r=1

(
θ (r)− θ̄

)2
, where θ̄ = R−1

∑R
r=1 θ (r).

2.5.1 Semiparametric Estimators

In this subsection, we present the results for the semiparametric estimator pro-

posed in the first chapter of my dissertation. We consider the homogeneous coefficients

and use the built-in search procedure (fminsearchbnd) in Matlab to search the pa-

rameters by setting the initial points at the truth. Finally, we specify our bandwidth

as h = Chn
−1/6, where Ch = 2 and we specify the value of γ equal to 0.15 in the

simulations, so roughly fifteen percent of the combination of observations at the tail

is trimmed out. We set Θ is in the 98 percent of the support of obseravables and set

Θ∗α = [−0.6, 0.2] and Θ∗α+∆ = [−0.8, 0] in our estimation.

Table 2.2 represents the estimates for the proposed semiparametric estimator in

Design 1. First, we find that the relative standard error decreases roughly around

1/
√

2 (≈ 0.7), as the sample size doubles, for both α and α + ∆, respectively. This

result is consistent with our prediction by Theorem I.15 in the first chapter of my

dissertation. Second, we find that α and α + ∆ have almost the same magnitude

of biases but the biases are in different directions. This is due to assuming the

symmetric distribution of the observables and placing the centrality point of the

observables between the value of α and α+ ∆. The magnitude of the bias could vary

depending on different simulation designs. Third, we find that in terms of mean bias

and median bias, the magnitude of bias is relative large since the bias(θ)/
√
var(θ)

measure is around 1 to 1.5. We suspect it is because the current bandwidth constant

may not be optimal for the estimation and the sample size is not large enough to

make the bandwidth constant choice not essential to the estimation. While we could
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further show that the bias will decrease as we increase the sample size, it will require

substantial computation time. In the following subsection, we consider a slightly

different procedure which can still show the bias decreases with less computation

time.

Table 2.2: Semiparametric Estimates for Design 1

Mean Bias RMSE Median Bias MAD SD RSD
α = -0.2

Ch = 2 n = 500 -0.0758 0.1120 -0.0739 0.0796 0.0829
n = 1000 -0.0707 0.0859 -0.0684 0.0684 0.0491 0.5923
n = 2000 -0.0554 0.0644 -0.0523 0.0523 0.0330 0.6728

α + ∆ = -0.4
n = 500 0.0850 0.1211 0.0810 0.0821 0.0867
n = 1000 0.0705 0.0931 0.0540 0.0540 0.0611 0.7047
n = 2000 0.0581 0.0690 0.0580 0.0580 0.0375 0.6135

Table 2.3 represents the estimates of the proposed semiparametric estimator in

Design 2. First, it shows that the standard error of the estimates under the mixture of

normals still follows the
√
n-consistency as we increase the sample size, which is again

consistent with our prediction of Theorem I.15 in the first chapter of my dissertation.

Second, it shows that under the mixture of normals distribution, the semiparametric

estimator tends to perform relatively worse than that under the unimodal of normal

distribution, in terms of the mean bias and median bias. However, as we increase

the sample size n to 2000, we find that the performances of the estimators under

the different two distributions are relatively similar. This observation is consistent

with our intuition that the semiparametric estimator tends to perform better and

uniformly under a relatively large sample, since any possible noise in the kernel re-

gression estimation of choice probabilities tends to have less effect at a relatively large

sample.

The results in Design 1 and Design 2 suggest that for the proposed semiparametric

estimator, the
√
n-consistency can hold across different symmetric distributions. The
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Table 2.3: Semiparametric Estimates for Design 2

Mean Bias RMSE Median Bias MAD SD RSD
α = -0.2

C = 2 n = 500 -0.1215 0.1878 -0.0877 0.0963 0.1439
n = 1000 -0.1000 0.1333 -0.0762 0.0762 0.0886 0.6157
n = 2000 -0.0703 0.0793 -0.0683 0.0683 0.0369 0.4163

α + ∆ = -0.4
n = 500 0.1612 0.1981 0.1236 0.1236 0.1157
n = 1000 0.0990 0.1235 0.0855 0.0855 0.0741 0.6404
n = 2000 0.0719 0.0879 0.0577 0.0577 0.0508 0.6856

semiparametric estimator tends to perform better when the sample size is relatively

large. Though the proposed semiparametric estimators have the
√
n-consistency, the

biases of the estimators are relatively large in the finite samples. We will leave the

discussion for the bias in Section 2.5.3.

2.5.2 Parametric Estimators

In the following context, we compare the BR estimator with the proposed semi-

parametric estimator. When we consider the parametric estimator, in addition to α

and α+∆, we have two additional parameters to be estimated: the correlation of the

bivariate normal, denoted as ρ, and the variance of the bivariate normal, denoted as

σ2. We consider the same search procedure as the semiparametric one for the four

parameters here.

Table 2.4 represents the estimates of the BR estimator in Design 1. Note that

under Design 1, for the parametric estimator, the underlying distribution of unobserv-

ables is correctly specified. We expect that the parametric estimator will satisfy the

√
n-consistency and also the parametric estimator will have a smaller mean bias and

median bias. The results in Table 2.4 show that the estimates of the four parameters

in the model achieve the
√
n-consistency. In addition, in terms of mean bias and me-

dian bias, the parametric estimates are much smaller than the semiparametric ones.
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It suggests that the parametric estimator outperforms the semiparametric estimator

when the model is correctly specified.

Table 2.4: Parametric Estimates for Design 1

Mean Bias RMSE Median Bias MAD SD RSD
α = -0.2

n = 500 0.0027 0.0460 0.0064 0.0311 0.0461
n = 1000 0.0025 0.0404 0.0059 0.0271 0.0406 0.8792
n = 2000 0.0005 0.0253 0.0025 0.0169 0.0255 0.6276

α + ∆ = -0.4
n = 500 0.0047 0.0509 0.0049 0.0317 0.0509
n = 1000 -0.0008 0.0357 -0.0003 0.0225 0.0359 0.7039
n = 2000 -0.0003 0.0238 -0.0010 0.0162 0.0239 0.6657

σ =
√

0.2
n = 500 0.0146 0.2752 0.0303 0.1761 0.2761
n = 1000 0.0190 0.2234 0.0120 0.1563 0.2237 0.8101
n = 2000 0.0039 0.1489 0.0051 0.1010 0.1496 0.6689

ρ = 0
n = 500 0.0008 0.0406 -0.0020 0.0280 0.0408
n = 1000 0.0023 0.0310 -0.0021 0.0168 0.0311 0.7605
n = 2000 0.0016 0.0188 0.0016 0.0125 0.0188 0.6048

Table 2.5 presents the estimates of the BR estimator in Design 2. Note that under

Design 2, the parametric estimator incurs the misspecification issue, that is, the BR

estimator misspecifies a mixture of normals as a unimodal normal distribution. We

expect that the BR estimator will be inconsistent and the magnitude of the asymptotic

bias will depend on the level of the misspecification. From Table 2.5, first, we find

that the mean bias and median bias of the BR estimates in Design 2 are much larger

than those in Design 1. It suggests that the BR estimator does suffer from the

misspecification issue. Second, we find that the bias tends to be larger as we increase

the sample size. It further indicates that the BR estimator has the misspecification

issue.

Now, compared the BR estimator with the semiparametric estimator, we find that

when the model is correctly specified, the BR estimator outperforms the semipara-
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Table 2.5: Parametric Estimates for Design 2

Mean Bias RMSE Median Bias MAD SD RSD
α = -0.2

n = 500 -0.0004 0.0603 0.0008 0.0398 0.0606
n = 1000 0.0076 0.0412 0.0059 0.0262 0.0407 0.6710
n = 2000 0.0134 0.0312 0.0113 0.0212 0.0283 0.6964

α + ∆ = -0.4
n = 500 -0.0113 0.0540 -0.0150 0.0297 0.0530
n = 1000 -0.0171 0.0415 -0.0167 0.0255 0.0381 0.7176
n = 2000 -0.0204 0.0339 -0.0197 0.0230 0.0272 0.7138

σ =
√

0.2
n = 500 0.0224 0.0434 0.0190 0.0264 0.0374
n = 1000 0.0149 0.0276 0.0146 0.0174 0.0234 0.6244
n = 2000 0.0121 0.0188 0.0114 0.0124 0.0144 0.6154

ρ = 0
n = 500 0.0333 0.3212 0.0587 0.2002 0.3211
n = 1000 0.0638 0.2482 0.0726 0.1690 0.2411 0.7509
n = 2000 0.0876 0.1856 0.0801 0.1336 0.1645 0.6822

metric estimator in terms of lower bias and variance. When the model is misspecified,

in terms of bias and variance, the BR estimator still seems better than the semipara-

metric estimator when the sample size is smaller, n = 500. However, the magnitude

of the bias increases for BR estimator as the sample size increases, and the magni-

tude of the bias is much larger than that when the model is correctly specificied. It

suggests that the BR estimator is inconsistent, when the model is misspecified. Fol-

lowing the observations in this comparison, though we can show the semiparametric

estimator is consistent, it suggests again we need systematically examine the bias in

the semiparametric estimator, which will be discussed in Section 2.5.3.

2.5.3 Discussion for the Bias on Semiparametric Estimators

Note that in Section 2.5.1, we find that the bias on the semiparametric estimator

is relatively large. As shown in Theorem I.17 in the first chapter of my dissertation,

we expect that as the sample size increases, the bias will decrease. In this section, we
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will systematically check whether this is the case.

Ideally, we should directly check whether the bias decreases as the sample size

increases. However, this could incur an exponential increase in the computation

time, since the current sample objective function involves three summations related

with the sample size. More specifically, in the current sample objective function, two

summations in the outer-loop are attributed to the combination of the observations

to construct the difference of the probabilities and one summation in the inter-loop

is attributed to the choice probability estimation. As a result, when we double the

sample size, the computation time will increase at least 8 times. Given that the

current computation time, for n = 2000, is 8 hours for each repetition, as the sample

size further increases, the increase in computation time will be substantial, which

is not desirable. In order to avoid this computational curse of dimensionality, we

propose an alternative way to show that the bias decreases as the sample size increases

as below.

We suspect that the main source of the bias comes from the estimation of the choice

probability. Following this conjecture, it suggests that we could possibly decrease the

bias if we increase the number of observations in the kernel estimation of the choice

probabilities but keep the combination of the observations to construct the difference

of the choice probabilities as low as possible. As long as we can show that the

bias decreases when the number of observations for the kernel estimation of choice

probability increases, we can safely predict that the bias would decrease, when both

the number of observations for kernel estimation and the number of combination of

the observations increase. For illustrational purposes, we will conduct this experiment

for Design 1. More specifically, to distinguish from the sample size n that we use in

the main context, we use n1 to denote the number of observations in the outer-loop

(the combination of the observations) and use n2 to denote the number of observations

in the inter-loop (the kernel estimation of the choice probability). In particular, we
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choose n1 = 500 and n2 = (500, 1000, 2000, 4000, 8000, 20000).

Table 2.6 summarizes the results for our experiment (where we keep the same 500

observation points as we change n2). First, we find that when we increase the number

of observation n2 from 500 to 8000, the bias for α decreases from −0.0758 to −0.0365,

which is more than half of the original bias in a small sample; similarly, the bias for

α + ∆ decreases from 0.0850 to 0.0411, which is also more than half of the original

bias in a small sample. Second, as we further increase the sample size to 20000 to

mimic the large sample, we find the bias for α decreases to −0.0232 and the bias for

α + ∆ decreases to 0.0395. We expect that the bias would decrease towards zero as

we further increase the number of observations substantially.

The results above partially suggest that the bias will decrease as the number of

observations for the estimation of the choice probability at the first stage. Further,

what we try to emphasize here is that since we only increase the number of obser-

vations in the inter-loop, the magnitude of decrease in bias will be even larger as we

increase both the number of observations in the inter-loop and the number of the

combinations for observations in the outer-loop.

Table 2.6: Semiparametric Estimates for Design 1 (Experiment: Large Sample)

Mean Bias RMSE Median Bias MAD
α = -0.2

Ch = 2 n2 = 500 -0.0758 0.1120 -0.0739 0.0796
n2 = 1000 -0.0718 0.0873 -0.0691 0.0691
n2 = 2000 -0.0567 0.0657 -0.0537 0.0537
n2 = 4000 -0.0492 0.0567 -0.0446 0.0446
n2 = 8000 -0.0365 0.0532 -0.0408 0.0414
n2 = 20000 -0.0232 0.0525 -0.0358 0.0395

α + ∆ = -0.4
n2 = 500 0.0850 0.1211 0.0810 0.0821
n2 = 1000 0.0726 0.0982 0.0601 0.0601
n2 = 2000 0.0576 0.0690 0.0578 0.0578
n2 = 4000 0.0489 0.0570 0.0427 0.0427
n2 = 8000 0.0411 0.0453 0.0357 0.0357
n2 = 20000 0.0395 0.0406 0.0376 0.0376
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Based on the results above, one may misinterpret that our estimation procedure

can perform well only when we have medium-sized samples or large-sized samples.

Here, we will argue that it might be the case for this particular design and cannot

be generalized for all the designs. As an important concern, it is worth discussing

why our estimator seems to perform worse with a small sample size in the current

setting. To answer this question, it is important to examine what factor(s) would

affect the first-step estimation (i.e., the estimation of the choice probabilities) and

what factor(s) would affect the second-step estimation (i.e., the search procedure for

the parameters)?

In the first step, even though we use all the observations for the estimation of

the choice probability, the ratio of the unique entry outcomes to the total obser-

vations could affect the quality of the estimation. Why? Loosely speaking, in the

kernel estimation, the accuracy of the choice probability at each point depends on

the neighborhood observations that are similar to this point, that is, more weight is

put at the neighborhood observations that are similar to such point. Using this fact,

in our context, we expect that the more unique entry outcomes are, the better the

estimated choice probability for the unique equilibrium is. Now recall the statistics

in Table 2.1. In the current design, unique entry outcomes (0, 0), for example, only

account for roughly 20 percent of total observations. It suggests that when n = 500,

for each point, there are only a few observations that are close to each point in the

estimation, which could partially explain why our estimation procedure performs rel-

atively worse in the small sample. We expect that the performance of our estimation

procedure can be improved in the small sample in other designs that generate more

unique equilibrium outcomes.

In the second step, compared to the parametric estimation, the estimation proce-

dures for α and α+∆ are separate. To some extent, we do not use all the information

in the data at the same time for estimation. That could also explain why in the small
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sample, our estimation could be worse. We leave the improvement in future studies.

2.6 Conclusion

In this paper, we consider two different simulation designs for unobserved char-

acteristics in the entry game model, in order to illustrate the
√
n-consistency of the

proposed semiparametric estimator and to compare this new semiparametric estima-

tor with the existing parametric estimator.

We find that the proposed semiparametric estimator can approximately achieve

√
n-consistency across different distributions in small samples. It provides the ev-

idence that is consistent with the prediction by Theorem I.15 derived in the first

chapter of my dissertation. In addition, compared the proposed semiparametric esti-

mator with an existing parametric estimator, BR estimator, the parametric estima-

tor outperforms our semiparametric estimator when the model is correctly specified.

However, the parametric estimator is inconsistent when the model is misspecified.

Finally, we find a relatively large bias for the semiparametric estimator in the finite

sample. We conduct an experiment to show that the bias will decrease as we increase

only the number of observations in estimating choice probability. Given this experi-

ment, we could possibly predict that the bias will decrease, as we increase the overall

sample size in constructing the combination of observations and in estimating the

choice probability.

The results in this paper suggest two important directions for us to further improve

our estimation procedure. First, we need to further improve our sample objective

function to avoid the global minimum point that could occur at the boundary of

observables in the current sample objective function in the estimation. Second, given

a relatively large bias we find that, in the semiparametric estimates, it might be

worthwhile to propose a bias-correction estimator in the finite sample, though the

bias will shrink as the sample size is large enough.
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CHAPTER III

An Empirical Analysis

3.1 Introduction

Entry games are widely applied to a variety of empirical studies, including airline

competition, technology adoption and the location choices of discount retailers. Al-

though empirical studies commonly adopt parametric approaches by imposing a nor-

mality assumption, when the normality assumption fails to be satisfied, the estimator

will be inconsistent. The larger the misspecification is, the greater the inaccuracy of

the estimator is. In practice, misspecification can be a big concern for most empirical

researchers. Since few alternative approaches are available, few studies have been

done to systematically compare the estimators with and without invoking normality

assumption for a particular application. Fortunately, in recent years, a sequence of

papers have come up with new semiparametric estimators without invoking the nor-

mality assumption in entry game literature. Thus, this paper will attempt to compare

semiparametric and parametric estimators in an example of location choices of dis-

count retailers. In particular, we will compare the proposed semiparametric estimator

in Zhou (2014a) (the first chapter of my dissertation) with two parametric estimators

by Bresnahan and Reiss (1990, 1991a,b) and by Berry (1992).

We consider an entry game for two discount retailers, Kmart (K) and Walmart
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(W ), for markets m = 1, . . . ,M,

YKm = I (αK − ZKm + ZmβK + ∆KYWm + εKm ≥ 0) ,

YWm = I (αW − ZWm + ZmβW + ∆WYKm + εWm ≥ 0) ;

where (YKm, YWm) is a vector of entry outcomes for Kmart and Walmart at market

m. (ZKm, ZWm) is a vector of firm-market specific observed characteristics; Zm is a

vector of common market observed characteristics; εm = (εKm, εWm) is a vector of

unobserved characteristics with an unknown distribution. We allow for any corre-

lation between εKm and εWm. For simplicity, we will write Ym = (YKm, YWm) and

Xm = (XKm, XWm) where XKm = (ZKm, Zm) and XWm = (ZWm, Zm). In this type

of entry game, the discount retailers will enter a particular market (Ypm = 1), for

p = K,W only if it is profitable to do so. Under the assumption of complete infor-

mation, each discount retailer knows (Ym, Xm, εm), while the econometrician knows

only (Ym, Xm). Our objective is to recover the model parameters using data on re-

tailers’ entry decisions and the observed characteristics. The parameters that we are

interested in are ((αK , βK ,∆K) , (αW , βW ,∆W )). The key parameters are (∆K ,∆W ),

representing the competition effects between discount retailers, Kmart and Walmart.

Instead of normalizing the variance of the unobservables as used in most parametric

estimation, here we normalize the coefficients of the scalar firm-market specific ob-

served characteristics to −1. This normalization allows us to estimate the parameters

in both parametric and semiparametric estimation methods.

To recover the competition effects, different approaches invoke different underlying

assumptions. It is very important to be aware of these assumptions when we compare

different methods. The reasons of comparing these three methods are twofold. First

of all, all these three methods require knowledge of the sign of competition effect

in identification. Given this, we do not need to worry about the additional model
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assumption across the methods. Second, the way of addressing multiple equilibria

is quite similar among these three methods, especially between Bresnahan and Reiss

(1990, 1991a,b) and Zhou (2014a).1 Now, the only significant difference among these

three methods is that the two parametric methods use the normality assumption to

recover choice probabilities; and the semiparametric method relaxes this normality

assumption and uses a nonparametric approach to recover the choice probabilities.

Thus, if the estimates obtained by the parametric estimators are similar to those

obtained by the semiparametric estimator, this could informally indicate normality

is a valid approximation in this particular application. Conceptually, we can use the

semiparametric estimator and the parametric estimator to construct a formal test

of normality. We will leave this for a future study. In addition, there are other

semiparametric estimators (e.g., Fox and Lazzati (2013)) that are quite similar to

ours. For the time being, we will leave the comparison with other semiparametric

estimators in future studies.

The cross-sectional data we use is drawn from Jia (2008) and the geographical

information from Census. Several key features in the data allow us to compare these

three methods we mentioned above. The first key feature is that the data con-

tain 2065 observations (counties), which are sufficiently large for both parametric

and semiparametric estimation. The second key feature is that this data naturally

contains an excluded variable, that is, the distance from store to its headquarters.

This exclusion restriction is a key requirement for the identification strategy in Zhou

(2014a). Thus, with this excluded variable, we are able to compare these three ap-

proaches. Third, the data include rich information for both market characteristics

and firm-market characteristics, which provides enough variation for estimation for

all three approaches.

The remainder of the paper is organized as follows. Section 3.2 provides a short

1They all find that the choice probabilities of unique equilibrium contains enough information to
recover the model parameters.
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review of the three methods. Section 3.3 provides the background on the retailing

industry. Section 3.4 describes the data source and the construction of variables.

Section 3.5 examines the property of estimators across different approaches using the

simulated data. Section 3.6 conducts an empirical analysis of discount retailers using

different approaches to verify whether the normality assumption is a good approxi-

mation in this particular application. Section 3.7 concludes.

3.2 Review of Methods

In this section, we will review three approaches that provide point estimates of

the competition effects in the literature. The first approach is proposed by Bresnahan

and Reiss (1990, 1991a,b), the second approach is proposed by Berry (1992), and the

third approach is proposed by Zhou (2014a). The first two approaches are parametric

approaches that assume the normal distribution on unobserved characteristics. The

third approach is a semiparametric approach that relaxes the normality assumption

and instead recover the underlying distributions nonparametrically by using kernel

estimation procedure. We now review each approach by summarizing its identification

strategy and estimation strategy with the main objective function and the algorithm.

3.2.1 Bresnanhan and Reiss (1990, 1991a, b)

Bresnahan and Reiss (1990, 1991a,b) propose a parametric approach for entry

games. Recall the two challenges to identification and estimation in the entry game

literature: endogeneity and multiple equilibria. To help address the endogeneity

problem, they assume a parametric distribution (commonly the normal distribu-

tion) for the unobservables and treat an unknown correlation and a standard er-

ror as additional parameters to estimate. To solve the multiple equilibria issue,

the authors recognize that, when the signs of the competition effects are nega-

tive, there exist unique equilibria (0, 0) and (1, 1). Then they can uniquely recover
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the choice probabilities Pr [(0, 0) |Xm] and Pr [(1, 1) |Xm] and pool the choice prob-

abilities of multiple equilibria Pr [(0, 1) |Xm] and Pr [(1, 0) |Xm] together (that is,

Pr [(0, 1) |Xm] + Pr [(1, 0) |Xm] = 1 − Pr [(0, 0) |Xm] − Pr [(1, 1) |Xm]). As a result,

they use these choice probabilities to construct the likelihood function to recover the

parameters of interest.

More specifically, Bresnahan and Reiss (1990, 1991a,b) propose the following log-

likelihood function, which can be written as

lnL =
∑M

m=1
I (YKm = 0, YWm = 0) Pr [(0, 0) |Xm]

+I (YKm = 1, YWm = 1) Pr [(1, 1) |Xm]

+ [I (YKm = 0, YWm = 1) + I (YKm = 1, YWm = 0)] (1− Pr [(0, 0) |Xm]− Pr [(1, 1) |Xm]).

The key observation behind this log-likelihood function is that the choice probabil-

ities of the unique equilibria (0, 0) and (1, 1) contain all parameters of interest. So

exploring information in the choice probabilities of unique equilibria is sufficient to

identify the parameter values. This also suggests that in practice, we can recover

the choice probabilities of the unique equilibria (0, 0) and (1, 1), without establishing

the equilibrium selection rule for the occurrence of multiple equilibria. Note that in

order to recover the choice probabilities, this method requires two more parameters in

addition to the coefficients in the latent profit function: the correlation of unobserved

characteristics, denoted as ρ, and the variance of unobserved characteristics, denoted

as σ2
ε . This objective function above naturally suggests the estimation algorithm as

shown below.

Step 1. Start with the initial guess of the parameter values and draws from i.i.d.

standard normal distribution, i.e., a vector of random variables {vtKm, vtWm, v
t
m}Tt=1.

Step 2. Given the initial guess of ρ and σ2
ε , define εtKm = σε

(√
1− ρvtKm +

√
ρvtm

)
and εtWm = σε

(√
1− ρvtWm +

√
ρvtm

)
.
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Step 3. Given the initial guess of ((αK , βK ,∆K) , (αW , βW ,∆W )) and one simula-

tion draw, for the observation at market m, get the predicted entry outcome. Repeat

this step T times and obtain the predicted choice probabilities P̂r [(0, 0) |Xm] and

P̂r [(1, 1) |Xm].

Step 4. Plug the estimated choice probabilities into the log-likelihood function.

Search the parameter value such that it maximizes the log-likelihood function.

3.2.2 Berry (1992)

Berry (1992) proposes another parametric approach to recover the competition ef-

fects. To help address the endogeneity problem, the author still assumes a parametric

distribution for the unobserved characteristics. To tackle the multiple equilibria is-

sue, he focuses on the fact that the number of firms in markets is unique despite the

existence of the multiple Nash equilibria. Using this fact, he proposes to recover the

model parameters by using the predicted number of firms to best match the observed

number of firms in each market. This constitutes the key moment conditions that

provide the fundamental identification strategy in his paper.

A potential issue of such identification strategy is that it may not identify all

the parameters in the model, that is, the number of moments could be less than the

number of parameters. To overcome this issue, the author suggests two possible but

exclusive solutions: either using the order of entry based on the predicted profit or

assuming the order of firms’ entry as additional information. In the context of the

competition between Kmart and Walmart, it gives three possible specifications: (1)

the model with the predicted order of entry based on the firm’s predicted profit; (2)

the model with the equilibrium most profitable for Kmart; (3) the model with the

equilibrium most profitable for Walmart. Together with the main moments drawn

from the unique number of firms, we will consider the estimators derived from these

three specifications below.
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We will review the procedure of constructing the moments to complete the estima-

tion procedure using Berry’s method. We start with the moments based on the unique

number of firms and then we add additional moments either using the predicted order

of firm entry or using the assumed order of firm entry.

3.2.2.1 Moments based on the unique number of firms

Given the model specification, denote πpm(Xpm, Y−pm, εpm; θ) as a latent profit for

discount retailers p = K,W , which can be written as

πpm(Xpm, Y−pm, εpm; θ) = αp − Zpm + Zmβp + ∆pY−pm + εpm.

To start with, write εtm = (εtKm, ε
t
Wm) and let {εtm}

T
t=1 be a sequence of simulation

draws t = 1, . . . , T . Denote n̂m as an estimator of the expected number of the firms

in market m, which is defined as

n̂m(Xm, ε
t
m; θ) = max

0≤n≤P

(
n : #{p : πpm(Xpm, Y−pm, ε

t
pm; θ) ≥ 0} ≥ n, where n = yi1 + yi2

)
;

where n̂m(Xm, ε
t
m; θ) can be interpreted as the largest integer n such that at least n

firms are profitable in an n-firm equilibrium. Here, note that Y−pm in the function

πpm(Xpm, Y−pm, ε
t
m; θ) represents, given the specific simulation draws, the equilibrium

outcome following the Berry (1992) concept. It is not the realized outcome observed

in the data. Note that here the key modification from Berry (1992) is that the latent

profit depends on the entry of the competitor rather than the total number of firms

in the market.2,3

2In Berry (1992), an unbiased estimator of the expected number of firms is

n̂m (Xm, θ, um) = max
0≤n≤K

(n : # {k : πik (Xm, n, um) ≥ 0} ≥ n).

which is interpreted as, given the simulation draws, it is the largest integer n such that at least n
firms are profitable in an n-firm equilibrium.

3There are two differences in the model specification. First, in Berry (1992), the latent profit
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Next, we average across the simulation draws to get the averaged predicted number

of firms in the market, which is defined as

N̂m(Xm, εm; θ) =
1

T

∑T

t=1
n̂m(Xm, ε

t
m; θ).

Finally, following Berry (1992), since N̂m(Xm, εm; θ) is an unbiased estimator of

the expected number of firms in the market. We can define an estimating equation

as

Nm = N̂m(Xm, εm; θ) + ϑ̂m;

where ϑ̂m is the predicted error, which is mean independent of the exogenous regressor

at the true parameters value. We will use this equation to construct our moment

condition. It is easy to check that the number of moments that are constructed based

on ϑ̂m is equal to the number of exogenous regressors in the equation. Suppose that

we have S common market observed characteristics (not counting the constant) with

one excluded variable for each discount retailers. The resulting number of moments

is equal to S + 2. When we allow for the parameters to be indexed by the identity of

discount retailers, the total number of parameters is equal to 2S + 4 + 2: 2S is the

number of coefficients associated with the common market characteristics, 4 includes

the constants and the competition effects in the two equations, and 2 represents the

number of additional parameters as we use the simulated method of moments, that

is the correlation term and the variance term similar to Bresnahan and Reiss (1990,

1991a,b). It is easy to see that the number of moments we have here is far below the

number of parameters to be identified. Hence, we need additional moments.

depends on the total number of firms; here the latent profit depends on the entry of the competitor.
Second, in Berry (1992), there are no firm-market specific observed characteristics; here there is
one firm-market specific observed characteristic. While the expression here is slightly different from
Berry (1992), the concept remains the same.

81



3.2.2.2 Moments based on the order of firm entry

Moments based on the predicted order of firm entry Now, we consider in-

cluding the information on the predicted order of firm entry in the estimation. A

natural question is why the information of the order of firm entry can provide infor-

mation on the model parameters. The intuition is that a more profitable firm enters

first, while a less profitable firm enters later. Under the true parameter values, the

predicted order of entry can best match the order contained in the data. Following

this logic, we provide the moments that are constructed from the order of firm entry.

First, given the simulation draw, the parameter values and the data observation,

we define a function of ranking as Rp (Xm, ε
t
m; θ). Next, we then introduce an unbiased

estimator of the probability of entry by the pth firm as

q̂p
(
Xm, ε

t
m; θ

)
=

 1,

0,

if n̂m(Xm, ε
t
m; θ) ≥ Rp (Xm, ε

t
m; θ) ;

otherwise.

Similarly, the averaged estimator of the probability of entry over the simulation draws

is defined as

Q̂p (Xm, εm; θ) =
1

T

∑T

t=1
q̂p
(
Xm, ε

t
m; θ

)
.

Now, by using the information of the predicted order of firm entry, the additional

estimating equation is

Ypm = Q̂p (Xm, εm; θ) + ϑ̂pm.

Note that ϑ̂pm is mean independent of exogenous regressors, so that the number of

moments that can be constructed is 2 (S + 2). Note that with additional moments, we

could have an overidentification issue. If it occurs, we can select a subset of observed

characteristics among all valid observed characteristics to construct the moments from

this additional information.
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Moments based on the assumed order of firm entry Finally, we construct the

moments based on the assumed order of entry. In particular, we have two different

models: one with the equilibrium most profitable for Kmart and the other with the

equilibrium most profitable for Walmart. In this context, we consider the assumed

order of the entry with the equilibrium most profitable for firm p as long as the profit

πpm ≥ 0. Similarly, we have an unbiased estimator of the probability of entry by the

pth firms is

q̂p
(
Xm, ε̂

t
m; θ

)
=

 1,

0,

if πtpm ≥ 0;

otherwise.

The rest of definition is similar to above. Again, we can construct additional 2(S+2)

moments.

Given these descriptions, below we will specify the estimation procedure for base-

line case, baseline case with the predicted order of firm entry and the assumed order

of firm entry to outline the estimation algorithm in Berry (1992).

Baseline case: Here, we focus on the case where only information on the unique

number of firms is used.

Step 1. Start with the initial guess of the parameter values and draw from i.i.d.

standard normal distribution, i.e., a vector of random variables{vtKm, vtWm, v
t
m}Tt=1.

Step 2. Given the initial guess of ρ and σ2
ε , define εtKm = σε

(√
1− ρvtKm +

√
ρvtm

)
and εtWm = σε

(√
1− ρvtWm +

√
ρvtm

)
.

Step 3. (1) Given the parameter values, obtain the firm-market specific profit for

each firm at each market m. (2) Repeat this step for all the simulation draws in

Step 1. Calculate the average number of firms across simulation draws of firms whose

profits are greater than zero. (This is the inter-loop for market m)

Step 4. Repeat Step 3 for all M markets. Get a sequence of the predicted number

of firms. (This is the outer loop for all markets M)
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Step 5. Calculate the predicted errors for all M markets and perform the GMM

estimation, based on the fact that the predicted errors are independent of all the

market characteristics and firm-market characteristics.

Baseline case + the predicted order of firm entry In this context, we add

additional information by using the order of a firm entry that is based on the predicted

profit, i.e., a more profitable firm enters earlier and a less profitable firm enters later.

Step 1, 2, 4 and 5 are the same as above. The only thing needs to be added is

the rank of the firm entry in Step 3.

Step 3. (3) Rank the profit function based on a particular round of simulation

draw. Define a new variable to indicate whether firm k will enter the market if the

predicted total number of firms is greater than the ranking value of k. (4) Repeat (3)

for all the simulation draws. Calculate the average number across simulation draws

of firms who will enter the market.

Baseline case + the assumed order of firm entry In this context, additional

information is included by assuming an arbitrary order among firms (e.g., favors

Kmart or favors Walmart)

Step 1, 2 4 and 5 are the same as above. The only thing that need to added on

is the assumed order of firm entry in Step 3.

Step 3. (3) Define a new variable to indicate whether firm p will be in the market

if the predicted profit of firm p is greater or equal to zeros. (4) Repeat (3) for all

the simulation draws. Calculate the average number across simulation draws of firms

who will enter the market.

3.2.3 Zhou (2014a)

Here, we briefly describe the semiparametric identification and estimation strat-

egy in Zhou (2014a) as a comparison to the two parametric methods above. Different
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from two parametric methods above, the proposed semiparametric method does not

impose any parametric distribution restriction on unobservables. As such, when using

this method, simulating the unobservables from a specific distribution is not required.

Rather, the choice probability is recovered from a kernel regression estimation. In par-

ticular, to help address the endogeneity problem, this paper uses the kernel approach

to recover the joint distribution of unobservables. To handle the multiple equilibria

problem, this paper only focuses on the unique equilibria that occur in the data and

recovers the parameter values using these equilibria. Here, the way to handle the

multiple equilibria is similar to Bresnahan and Reiss (1990, 1991a,b).

The weighted sample objective function used in the estimation is further proposed

in Zhou (2014b) (the second chapter of my dissertation) as a way to improve the per-

formance of the estimation in Zhou (2014a). The weighted sample objective function

can be written as follows,

Q̆n (θ) =

1
M(M−1)

∑M
i=1

∑M
j=1,j 6=i τij (θ)Gij (θ)

[∑8
υ=1 κυϕ̂υ (X i,Xj,θ)

]2
1

n(n−1)

∑n
i=1

∑n
j=1,j 6=i τij (θ)Gij (θ)

;(3.1)

and θ̌n = arg min
θn

Q̆n (θ) .

The objective function naturally suggests the following estimation algorithm.

Step 1. For each combination by fixing observations i and j, guess the parameter

values. Calculate the relative eight choice probabilities using the kernel regression

estimation.

Step 2. Plug in the eight choice probabilities to calculate the weighted sample

objective function Q̆n (θ).

Step 3. Search the parameter value such that it minimizes the sample objective

function Q̆n (θ).

As a short summary, in terms of the estimation procedure, it is easy to see that

the parametric approaches require simulating the random draws at the beginning
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by assuming a known distribution, whereas the semiparametric approach does not

require this step but rather needs using a nonparametric method, like kernel regression

estimation. Below, we will apply these three approaches to discount retailing industry.

3.3 Review of Discount Retailing Industry

In this section, we will review the background of the discount retailing industry

to better understand the construction of the data and interpretation on the estimates

later, as we apply different methods to this particular industry. Discount stores, also

known as “big box” stores, sell general merchandise items at a substantial discount

compared to those sold in department stores. There are three dominant firms in

discount retailing industry: Kmart, Walmart and Target. Below, we would like to

introduce the history for each firm, respectively.

Kmart opened its first store at 1962 in Garden City, Michigan and originally

served the Midwest. Its world headquarters was in Troy, Michigan, but after the

purchase of Sears in 2005, the headquarters was relocated to Hoffman Estate near

Chicago, Illinois. During the 1990’s, Kmart struggled because of poor management

and has been surpassed by Walmart as the largest discount retailer in the U.S.. In

2002, Kmart filed for bankruptcy protection and more than 300 stores were closed

afterwards.

Walmart also opened its first store at 1962, in Rogers, Arkansas, four months after

Kmart opened its first stores. Its world headquarters is in Bentonville, Arkansas.

It basically focused on serving the South of U.S., primarily Arkansas, Kansas and

Louisana. The expansion of Walmart was originally very slow at the beginning, aimed

to suburban areas and tried to avoid direct competition. Around the 1990s, Walmart

expanded very rapidly. Walmart is known for its “Everyday Low Price” strategy and

“Always Low Prices, Always” slogan. During the 1990s, Walmart became the largest

discount retailer in the U.S..
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Interestingly, Target also opened its first store at 1962, in Roseville, Minnesota.

Target originally expanded in the central areas of U.S.. Target differentiates itself

from other retail stores by combining many of the best department store features —

fashion, quality and service — with low prices. It places itself as an “upscale” discount

retailer with higher-end products. Different from Kmart and Walmart, Target stores

are also likely to locate in metropolitan areas in the Midwest. Due to these substantial

differences, Target will be excluded from our analysis.

Discount retailing industry has drawn a great deal of attention from researchers in

recent decades. Jia (2008) studies the strategic network of store locations of Kmart

and Walmart. Zhu and Singh (2009) examine the importance of geographical differ-

entiation in store location decisions of firms in the discount retailing industry. Holmes

(2011) shows that the density of stores can increase competition among stores but

reduce truck costs for the companies as a whole. Ellickson, Houghton, and Tim-

mins (2013) discuss the effect of chain economies through the network. Orhun (2013)

investigates geographic positioning choices of strategic firms and infers the tradeoff

between locating close to favorable demand conditions and geographically shielding

oneself from rivals. Our analysis and model specification are close to Jia (2008), which

will be discussed in the following section.

3.4 Data

Two main data sources are used in our paper: one from Jia (2008), which contains

opening and closing information on discount stores from 1988 to 1997, and the other

from US Census which includes county level demographic information.

The first data source is drawn from the dataset in 1997 of Jia (2008). We will

use this dataset in 1997 as our primary dataset, since it contains the most recent

information for discount stores. Following Jia (2008), we define a market as a county.

In her analysis and data construction, she excludes very high and very low populated
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counties for her analysis. She argues that in sparsely populated counties, demand is

not high enough to sustain multiple firms, while in largely populated counties that

might have multiple self-contained shopping areas, consumers are less likely to travel

across the county to shop at discount stores and other competitors might exist as

well. Thus, we have data on 2065 out of all 3140 counties in the US.

Note that Target, the third largest discount retailer, is excluded in the analysis

in Jia (2008), because that Target stores are commonly in markets with larger pop-

ulations and significantly higher income than the markets for Kmart and Walmart,

as shown in the literature (e.g., Jia (2008) and Zhu and Singh (2009)). As a result,

there are few observations for Target in the counties that comprise the dataset in Jia

(2008). Therefore, like Jia (2008), we only focus on the competition of Kmart and

Walmart in our analysis.

The second data source is the geographic data for U.S. counties from the US

Census Bureau. This data set contains detailed latitude and longitude information for

each county. Using this information, we use the counties where Kmart and Walmart

headquarters are located as centers and calculate the distances to headquarters using

the Haversine formula (for more details, see Zhu and Singh (2009, pp. 19)).

Table 3.1: Entry Pattern

# of counties
(0, 0) 978
(K, 0) 105
(0, W) 694
(K, W) 288

Obs 2065

Table 3.1 represents the competition configuration across counties between two

discount retailers in 1997. We use letter K and W to represent the presence of the

discount retailers in a particular county. Following this definition, (0, 0) represents

counties with no discount retailers; (K, 0) represents counties in which only Kmart is
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present and (K, W) represents the counties with both Kmart and Walmart. We ob-

serve that in almost half of counties, neither Kmart nor Walmart enters. In addition,

we observe that in almost fifteen percent of counties, both Kmart and Walmart enter.

So overall, more than half of the entry outcomes are unique equilibria shown in the

data. Note that with one year of data, we cannot examine dynamic entry and exit

of discount retailers. This means that, only the stores that are operated in 1997, no

matter how long they have been open, are used in our analysis. In addition, a county

that has never had a discount retailer is treated the same as a county in which the

only discount retailer closed at least one month ahead of the end of year 1997.

Table 3.2: Summary Statistics: Log Value

Variable Obs Mean Std. Dev. Min Max
Ln (Population) 2065 2.98 0.67 1.54 4.37
Ln (Per capita retail sales in 1987) 2065 8.20 0.47 5.08 10.66
Urban population ratio in 1990 2065 0.33 0.24 0.00 1.00
Ln (Dist to HQ) (Kmart) 2065 6.28 0.61 3.82 8.37
Ln (Dist to HQ) (Walmart) 2065 6.24 0.63 3.03 8.29

Table 3.2 represents the summary statistics of observables. Note that except

for the distances to headquarters, the data is directly from Jia (2008). We first

derive the summary statistics of observables including the distances from stores to

their headquarters in terms of levels, which is identical to Table II in Jia (2008).

However, we present the summary statistics of observables in terms of the logarithm

because they are directly used in the estimation. In particular, we include the log of

population, the log of per capita retail sales and urban population ratio as well as

the log of distance to headquarters for both Kmart and Walmart, respectively. This

table provides fundamental information on the simulated data in Section 3.5.
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3.5 Simulated Data Illustration

Before we consider the results using real data, it is important to evaluate the

performance of the different estimators. To achieve this goal, we will compare different

estimators using the simulated data under the normality assumption of unobservables.

3.5.1 Model Setup

Here, we consider a two-player entry game, which is drawn from the following

data-generating process:

YKm = I (αK − ZKm + ZmβK + ∆KYWm + εKm ≥ 0) ,

YWm = I (αW − ZWm + ZmβW + ∆WYKm + εWm ≥ 0) ;

where (εKm, εWm)′ = N


 0

0

 , σ2
ε

 1 ρ

ρ 1


 where σ2

ε = 20 and ρ = 0.5; and in

addition,



ZKm

ZWm

Zm,1

Zm,2

Zm,3


= N





6

6

3

8

0.3


, σ2

Z



0.36 · · · 0

0.36

... 0.36
...

0.25

0 · · · 0.9




where σ2

Z = 15. We specify the model parameters (αK , βK ,∆K) = (−24, 1.8, 2, 1.5,−1)

and (αW , βW ,∆W ) = (−16, 2, 1.8, 1.6,−1), which follows the estimates in Jia (2008).

Note that we adjust the standard errors of observables and unobservables to best

match the entry pattern in the original data. In this study, we consider the exper-

iment with the sample size n = 1200 and the repetition R = 100. In addition, for

the parametric estimators, in each repetition, we consider T = 1500 independent ran-
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dom draws for unobserved characteristics. We verify the entry pattern and observed

characteristics for the simulated data, which matches with Table 1 and Table 2.

3.5.2 Results

In this subsection, we compare the following estimators: ”Zhou” (the semiparamtric

estimator proposed by Zhou (2014a)); ”BR” (the parametric estimator proposed by

Bresnahan and Reiss (1990, 1991a,b)); ”Berry” (the parametric estimator proposed

by Berry (1992) using the unique number of firms in the markets and the predicted

order of firm entry); ”Favors Kmart” (the parametric estimator proposed by Berry

(1992) using the unique number of firms in the markets and the assumed order of the

firm entry with the equilibrium most profitable for Kmart); ”Favors Walmart” (the

estimator proposed by Berry (1992) using the unique number of firms in the markets

and the assumed order of the firm entry the equilibrium most profitable for Walmart).

To evaluate the estimators, we consider five statistics: mean bias, the root mean

squared error (RMSE), the median bias and the median absolute deviation (MAD)

as well as the estimated standard error. Specifically, denoting the rth replication of

the estimator θ as θ (r), we explicitly define these statistics as follows: the mean bias

(R−1
∑R

r=1 θ (r)−θ0), the root mean squared error (R−1
∑R

r=1

(
θ (r)− θ0

)2
), the me-

dian bias (median(θ (r)−θ0)) and the median absolute deviation (median
∣∣θ (r)− θ0

∣∣)
as well as the standard error

√
R−1

∑R
r=1

(
θ (r)− θ̄

)2
, where θ̄ = R−1

∑R
r=1 θ (r).

Table 3.3 presents the estimates across these different estimation methods. Note

that when the normality assumption holds and there is no misspecification for para-

metric estimators, we find that the estimates are more or less the same across the

different approaches. In terms of absolute value, the mean bias and median bias

for the semiparametric estimates are larger than those for the parametric estimates.

Also, the root mean squared error and median absolute deviation are also larger for

the semiparametric estimates. In other words, when the model is correctly specified,
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Table 3.3: Parameter Estimates from Different Methods (Simulated Data)

Favors Favors
Zhou BR Berry Kmart Walmart

Kmart’s Profit
Log population Mean Bias 0.1670 0.0375 -0.0970 -0.1346 -0.0807

RMSE 0.5400 0.2887 0.6267 0.5978 0.5969
Median Bias 0.2505 0.0692 -0.1102 -0.0910 -0.0860
MAD 0.4334 0.1485 0.5685 0.4373 0.4186
SD 0.5200 0.2878 0.6226 0.5856 0.5947

Log Retail Sales/Capita Mean Bias 0.3148 0.0672 0.0440 0.0351 0.0370
RMSE 0.6111 0.3462 0.2126 0.1896 0.2038
Median Bias 0.5373 0.0320 0.0132 0.0156 0.0336
MAD 0.5735 0.1454 0.1018 0.0918 0.1085
SD 0.4767 0.3415 0.2091 0.1874 0.2016

Urban Ratio Mean Bias 0.4801 0.2853 -0.0134 -0.0135 -0.0074
RMSE 0.6083 0.3889 0.1027 0.1147 0.1055
Median Bias -0.3637 0.1816 -0.0126 -0.0204 -0.0055
MAD 0.5660 0.1816 0.0585 0.0513 0.0500
SD 0.5572 0.2657 0.1024 0.1146 0.1058

Constant Mean Bias 0.1170 0.2038 0.1285 0.1459 0.1170
RMSE 0.6952 0.3508 0.5456 0.4757 0.4916
Median Bias -0.6802 0.1823 0.1104 0.1325 0.1670
MAD 0.6802 0.2052 0.4215 0.3110 0.3148
SD 0.3124 0.2870 0.5332 0.4553 0.4801

Competition Effect Mean Bias 0.4831 0.1497 0.0870 0.1187 0.0614
RMSE 0.9255 0.3394 0.4948 0.4531 0.4503
Median Bias 0.3139 0.1333 0.0493 0.1512 0.0432
MAD 0.6371 0.1932 0.3291 0.2979 0.2308
SD 0.7937 0.3063 0.4898 0.4397 0.4485

(Continues)
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Favors Favors
Zhou BR Berry Kmart Walmart

Walmart’s Profit
Log population Mean Bias 0.7487 0.1541 -0.0336 -0.0427 -0.0151

RMSE 0.7941 0.3330 0.6477 0.5803 0.6264
Median Bias 0.8478 0.2208 -0.0094 0.0398 0.0247
MAD 0.8478 0.2541 0.5812 0.3667 0.4895
SD 0.2661 0.2968 0.6504 0.5819 0.6297

Log Retail Sales/Capita Mean Bias 0.8834 -0.1672 0.0227 0.0251 0.0152
RMSE 0.8978 0.3522 0.1515 0.1470 0.1681
Median Bias 0.9796 -0.1155 0.0035 0.0209 0.0200
MAD 0.9796 0.1412 0.0627 0.0504 0.0848
SD 0.1611 0.3117 0.1506 0.1456 0.1683

Urban Ratio Mean Bias 0.1034 -0.0935 -0.0105 -0.0065 -0.0028
RMSE 0.5665 0.3261 0.0687 0.0708 0.0662
Median Bias 0.1799 -0.0105 -0.0131 -0.0050 -0.0084
MAD 0.4436 0.1109 0.0369 0.0365 0.0318
SD 0.5601 0.3141 0.0682 0.0709 0.0665

Constant Mean Bias 0.4916 0.3298 0.0395 0.0786 0.0682
RMSE 0.7499 0.4143 0.4147 0.4036 0.3745
Median Bias -0.7349 0.3205 0.0347 0.0706 0.0927
MAD 0.7349 0.3239 0.2289 0.2627 0.2139
SD 0.2622 0.2523 0.4151 0.3981 0.3703

Competition Effect Mean Bias 0.2799 0.1013 0.0671 0.1077 0.0465
RMSE 0.7614 0.3150 0.5073 0.4992 0.4851
Median Bias 0.0011 0.1043 -0.0086 0.0861 0.0320
MAD 0.4153 0.1824 0.3949 0.3518 0.3174
SD 0.7120 0.2999 0.5057 0.4901 0.4855

93



the parametric estimators outperform the semiparametric estimator, consistent with

the simulation studies by Zhou (2014b). Finally, we also find that in general, the

Berry estimators perform better than the BR estimator. It might be possible that

given the current number of the simulation draws for each repition, the simulation

error in ML estimation exists in the BR estimator. Given these results, we will move

to the real data analysis, we expect that when the normality condition holds, the

different estimators will provide similar results.

3.6 An Empirical Illustration

In this section, we will compare the three estimation methods using the data

of discount retailers, Kmart and Walmart. In particular, we are interested in the

following entry game model of discount retailers,

YKm = I
(
αK − ZKm + ZmβK + βdKMidwest+ ∆KYWm + εKm ≥ 0

)
,

YWm = I
(
αW − ZWm + ZmβW + βdWSouth+ ∆WYKm + εWm ≥ 0

)
;

where (YKm, YWm) is a vector of entry outcomes in county m; (ZKm, ZWm) is a vector

of the distances from the county to each store’s headquarters; Zm is a list of market

characteristics, including the log of population, the log of retail sales per capita, and

the urban population ratio. In addition, we also consider the effect of the regional

location Midwest for Kmart and the effect of regional location South for Walmart.

(εKm, εWm) are allowed to be correlated with an unknown distribution. Although

(εKm, εWm) only need to be independent of the excluded regressor in identification,

we follow Jia (2008) and others in assuming that the unobservables are independent

of other regressors.

Given this model specification, we assume that Kmart and Walmart make in-

dependent decisions across markets, that is, when they decide whether to enter a
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particular market, they do not take into account of entry decisions in other markets.

This imposed myopia eliminates network or chain effects, which are salient to the

discount retailing industry. It is unavoidable to discuss how excluding these effects

would change the point estimates. To answer this question, we need to examine what

these network effects or chain effects reflect in a firm’s profit or operation. Holmes

(2011) finds that, the density of network can help reduce the truck cost when setting

up the stores next to each other. Jia (2008) suggests that nearby stores split the

costs of operations, delivery and advertising to achieve scale economies. In addition,

the nearby stores also share knowledge of local markets and learn from one another’s

managerial success. All these factors suggest that having stores nearby benefits the

operation in a nearby market and that the benefit declines with the distance. Be-

sides this, the evidence also suggests that the network structure or chain structure

reflects their managerial effort and improves their management. Now, following the

discussion by Ellickson and Misra (2011), from an economic perspective, the constant

terms summarize the managerial effects that are not explained by other observables.

Presumably, the network structure or chain structure is uncorrelated with other ob-

servables. When we ignore the network or chain structure, the estimated constant

terms might be upward biased as it now contains the positive average chain effects

in addition to the average managerial effects for other unobserved characteristics.

Based on this discussion, we might expect that other coefficients might remain the

same as Jia (2008) if the normality assumption is a reasonable approximation but the

constants might be upward biased (i.e., decrease in term of absolute values) as we do

not take into account of the network in our model specification. We will verify this

using our estimates.

Table 3.4 presents the estimates across different methods. From Table 3.4, we

find that the signs of all coefficients are the same across the different approaches and

the magnitudes of the coefficients are roughly the same except for the competition
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Table 3.4: Parameter Estimates from Different Methods (Real Data)

Favors Favors
Zhou BR Berry Kmart Walmart

Kmart’s Profit
Log population 1.72 1.58 1.86 1.84 1.83

(0.12) (0.07) (0.29) (0.10) (0.09)
Log Retail Sales/Capita 1.92 1.78 2.16 2.16 2.14

(0.06) (0.07) (0.16) (0.05) 0.06
Urban Ratio 1.32 1.28 1.49 1.50 1.48

(0.16) (0.08) (0.36) (0.20) (0.11)
Midwest 0.51 0.42 0.55* 0.55 0.53

(0.18) (0.10) (0.30) (0.12) (0.06)
Constant -19.63 -20.49 -19.12 -19.03 -19.04

(0.58) (1.09) (0.96) (0.43) (0.26)
Competition Effect -0.76 -0.96 -0.89 -0.88 -0.83

(0.60) (0.15) (0.17) (0.09) (0.08)
Walmart’s Profit
Log population 1.92 2.14 2.02 2.00 1.95

(0.18) (0.07) (0.29) (0.20) (0.18)
Log Retail Sales/Capita 1.96 1.99 1.83 1.81 1.83

(0.15) (0.21) (0.14) (0.07) 0.05
Urban Ratio 1.56 1.54 1.65 1.70 1.70

(0.13) (0.07) (0.30) (0.13) (0.13)
South 0.95 0.99 1.04 1.05 1.22

(0.14) (0.06) (0.34) (0.22) (0.18)
Constant -14.11 -14.89 -15.92 -15.76 -15.75

(0.61) (0.33) (0.85) (0.38) (0.44)
Competition Effect -2.89 -0.78 -0.88 -0.91 -1.01

(1.04) (0.14) (0.18) (0.06) (0.07)

Note: All coefficients are statistically significant at 5 percentage level except *
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effects.4 To some extent, the results informally suggest that normality seems a fairly

reasonable approximation in this particular application.

Note that even though all the estimators have a closed-form solution for the stan-

dard error, it is very computationally demanding to calculate them. For the semipara-

metric estimator, it involves both the kernel estimation for the choice probabilities

and the different orders of derivatives of the choice probabilities. In addition, for the

parametric estimators, it also involves the numerical derivatives. So here we consider

bootstrapped standard errors to avoid computation burden. We construct bootstrap

1200 out of 2065 with 100 replications. Note that we could also consider the bootstrap

with clusters, which we will leave for a future study.

Compared with the results of Jia (2008), we find that all coefficients except the

constant terms are more or less the same as those in Jia (2008) but the constant terms

are smaller than the ones in Jia (2008). Recall that as we discussed at the beginning,

when ignoring the network or store chains, we expect that other coefficients remain

the same but the constant terms will be upward biased as it contains the additional

averaged positive network effects. The estimates in our results now are consistent

with our prediction.

Finally, we will discuss the economic implications for our estimates. First of all,

the constant terms reflect the profitability that cannot be explained by observed

factors. From the estimates, we find that Walmart is slightly more profitable (with

higher coefficients) whereas Kmart is less profitable (with lower coefficients). This is

consistent with Kmart having a systematic management problem after 1990s. Second,

we find that urban population ratio favors for Walmart rather than Kmart, even

though at the beginning, Walmart targeted to more suburban areas. Finally, we

4As the search for the competition effects is a separate procedure from other coefficients, we could
possibly only investigate issues associated with competition effects without worrying about other
coefficients. One possible reason for this exceptional estimate for the competition effects could be
due to the fact, that the proportion of entry (1, 1) is relative smaller than the proportion of no entry
(0, 0). In other words, there are less variations to estimate competition effects. But we need more
investigation before we come to the conclusion.

97



find that in terms of the competition effects, Walmart has a larger effect on Kmart

than that Kmart does on Walmart. It is also consistent with the discussion that

Walmart is a dominant player and Kmart is relatively weak. As a final remark, since

our estimates are based on data in 1997, it can only provide partial information to

infer competition between Kmart and Walmart today, since there was a large scale

closure of Kmart stores around 2002. We might expect that the competition effect of

Walmart on Kmart is even larger today than what we estimate here.

3.7 Conclusion

In this paper, we compare the estimates for the static entry game of complete

information between the semiparametric approach and the parametric approaches in

the discount retailing industry. In particular, using the data from Jia (2008), we find

that the estimates using semiparametric approach are quite similar to those of the

parametric approaches. This informally suggests that the normality assumption seems

a fairly reasonable approximation for the underlying distribution of unobservables in

the entry game of discount retailers. In addition, we find that compared with other

studies, like Jia (2008), our parametric estimates are very close to hers except the

constant. It is consistent with our prediction that when ignoring the network or store

chains, we expect that other coefficients remain the same but the constant terms will

be upward biased as it contains the positive averaged network effects.
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APPENDIX A

A.1 Extension

A.1.1 Extension I: Multivariate Covariates under Heteroskedasticity

In this section, we will discuss a more general case with multivariate covariates

under heteroskedasticity. To facilitate our analysis, we define a vector of observables

Xpi = (Zpi,Wpi) for each player p = 1, 2, where as before Zpi is a scalar observable,

and we decompose Wpi =
(
Z̆pi, Zi

)
, where Z̆pi are firm-market characteristics other

than Zpi, and Zi are the market characteristics. Finally, we use (β1, β2) as their con-

formable coefficients with (Z1i, Z2i), which is still normalized as (−1,−1), and we

use (Λ1,Λ2) as the coefficients associated with (W1i,W2i). In this section, we provide

the identification results with multivariate covariates under the heteroskedasticity

assumption. Note that we maintain Assumptions S throughout this appendix. We

will modify Assumptions R, ER and RS accordingly and add additional assumptions

for other regressors to accommodate the multivariate covariates, that is, beyond As-

sumption S in the main context, we assume that the following regularity conditions

hold.
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Assumption RMH (Random Sampling with Multivariate Covariates under

Heteroskedasticity): An independent sample {Y i,X i, εi} n
i=1 is drawn from the

population.

Assumption RMH still assumes that firms make independent decisions across mar-

kets.

Assumption ERMH (Exclusion Restriction with Multivariate Covariates

under Heteroskedasticity) Suppose that a vector of observed characteristics (Z1i, Z2i)

satisfies that:

(i) (Z1i, Z2i) is independent of (ε1i, ε2i) conditional on (W1i,W2i)

(ii) the scaler covariate Zpi enters only the payoff function for player p, but not

the payoff function for other players.

Assumption ERMH is a generalized version of Assumption ER given the multivari-

ate regressors, which allows the excluded regressors to be conditionally independent

of unobservables. In particular, we only need one excluded regressor in our identifi-

cation.

Assumption RSMH (Radial Symmetry with Multivariate Covariates un-

der Heteroskedasticity): The conditional distribution of the unobserved charac-

teristics (ε1, ε2) is continuous over the support Sε conditioning on (W1i,W2i) and is

radially symmetric around (α1, α2); that is,

f (ε1, ε2|W1i,W2i) = f (2α1 − ε1, 2α2 − ε2|W1i,W2i) .

Assumption RSMH requires that the symmetry points remain the same condi-

tioning on the observables. Note that radial symmetry implies E (ε1) = α1 and

E (ε2) = α2, where α1 and α2 are the respective medians of the respective conditional

distributions.
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Given these assumptions, we can now construct the identifying restriction.

Lemma A.1. Suppose that W υ = W υ′ = w = (w1, w2), for υ 6= υ′. For any two

vectors z = (z1, z2), z̃ = (z̃1, z̃2) ∈ Sz|w, consider

Z1 = (z1, z2) ; Z5 = (2 (α1 + w1Λ1)− z1, 2 (α2 + w2Λ2)− z2) ;

Z2 = (z̃1, z̃2) ; Z6 = (2 (α1 + w1Λ1)− z̃1, 2 (α2 + w2Λ2)− z̃2) ;

Z3 = (z1, z̃2) ; Z7 = (2 (α1 + w1Λ1)− z1, 2 (α2 + w2Λ2)− z̃2) ;

Z4 = (z̃1, z2) ; Z8 = (2 (α1 + w1Λ1)− z̃1, 2 (α2 + w2Λ2)− z2) .

Given that Assumptions RMH, S and ERMH hold, define

B0 (z, z̃;α,Λ)

= Pr((0, 0) |X1) + Pr((0, 0) |X2)− Pr((0, 0) |X3)− Pr((0, 0) |X4);

B0 (2 (α+wΛ)− z, 2 (α+wΛ)− z̃;α,Λ)

= Pr((0, 0) |X5) + Pr((0, 0) |X6)− Pr((0, 0) |X7)− Pr((0, 0) |X8).

By Assumption RSMH, we have

B0 (z, z̃;α,Λ)−B0 (2 (α+wΛ)− z, 2 (α+wΛ)− z̃;α,Λ) = 0.

In addition, we can also consider the identifying restriction for the competition

effects.

Lemma A.2. Suppose that W υ = W υ′ = w = (w1, w2), for υ 6= υ′. For any two
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vectors z = (z1, z2), z̃ = (z̃1, z̃2) ∈ Sz|w, consider

Z1 = (z1, z2) ; Z5 = (2 (α1 + ∆1 + w1Λ1)− z1, 2 (α2 + ∆2 + w2Λ2)− z2) ;

Z2 = (z̃1, z̃2) ; Z6 = (2 (α1 + ∆1 + w1Λ1)− z̃1, 2 (α2 + ∆2 + w2Λ2)− z̃2) ;

Z3 = (z1, z̃2) ; Z7 = (2 (α1 + ∆1 + w1Λ1)− z1, 2 (α2 + ∆2 + w2Λ2)− z̃2) ;

Z4 = (z̃1, z2) ; Z8 = (2 (α1 + ∆1 + w1Λ1)− z̃1, 2 (α2 + ∆2 + w2Λ2)− z2) .

Given that Assumptions RMH, S and ERMH hold, define

B1 (z, z̃;α,∆,Λ)

= Pr((1, 1) |X1) + Pr((1, 1) |X2)− Pr((1, 1) |X3)− Pr((1, 1) |X4);

B1 (2 (α+ ∆ +wΛ)− z, 2 (α+ ∆ + wΛ)− z̃;α,∆,Λ)

= Pr((1, 1) |X5) + Pr((1, 1) |X6)− Pr((1, 1) |X7)− Pr((1, 1) |X8).

By Assumption RSMH, we have

B1 (z, z̃;α,∆,Λ)−B1 (2 (α+ ∆ +wΛ)− z, 2 (α+ ∆ + wΛ)− z̃;α,∆,Λ) = 0.

Now, given these two fundamental identifying restrictions, we now introduce the

definition of the identification.

Definition A.3. (Radial Symmetry - Discrete Response Identification) Let a =

(a1, a2) ∈ Θα, and λ = (λ1, λ2) ∈ ΘΛ. Let

T (a,λ) =

(z, z̃)

∣∣∣∣∣∣∣
B0 (z, z̃;α,Λ) 6= B0 (2 (a+wλ)− z, 2 (a+wλ)− z̃;α,Λ) ;

z, z̃ ∈ Sz|w, 2 (a+wλ)− z, 2 (a+wλ)− z̃ ∈ Sz|w.


(i)We say that (a,λ) is RSDR identified relative to (α,Λ) if

Pr
((
Z, Z̃

)
∈ T (a,λ) |W = w

)
> 0.
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(ii) in addition, we say that (a,λ) is RSDR point identified if for all (a,λ) 6= (α,Λ),

Pr
((
Z, Z̃

)
∈ T (a,λ) |W = w

)
> 0.

Definition A.4. (Radial Symmetry - Discrete Response Identification) Let a =

(a1, a2) ∈ Θα, δ = (δ1, δ2) ∈ Θ∆ and λ = (λ1, λ2) ∈ ΘΛ. Let

T (a, δ,λ) =

(z, z̃)

∣∣∣∣∣∣∣∣∣∣
B1 (z, z̃;α,∆,Λ)

6= B1 (2 (α+ δ +wλ)− z, 2 (α+ δ + wλ)− z̃;α,∆,Λ) ;

z, z̃ ∈ Sz|w, 2 (a+ δ +wλ)− z, 2 (a+ δ +wλ)− z̃ ∈ Sz|w.


(i)We say that (a, δ,λ) is RSDR identified relative to (α,∆,Λ) if

Pr
((
Z, Z̃

)
∈ T (a, δ,λ) |W = w

)
> 0.

(ii) in addition, we say that (a, δ,λ) is RSDR point identified if for all (a, δ,λ) 6=

(α,∆,Λ),

Pr
((
Z, Z̃

)
∈ T (a, δ,λ) |W = w

)
> 0.

Assumption SVMH (Sufficient Variation with Multivariate Covariates un-

der Heteroskedasticity) Given any set S ⊂ SZ|W and a vector a = (a1, a2),

define the symmetrically reflected set

S
′
(S,a) = {(z′1, z′2) |(z′1, z′2) = (2 (a1 + w1λ1)− z1, 2 (a2 + w2λ2)− z2) , (z1, z2) ∈ S } ;
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Similarly, in addition, given a vector δ = (δ1, δ2), define the symmetrically reflected

set

S
′
(S,a+ δ)

= {(z′1, z′2) |(z′1, z′2) = (2 (a1 + δ1 + w1λ1)− z1, 2 (a2 + δ2 + w2λ2)− z2) , (z1, z2) ∈ S } ;

Suppose that

(i) The points (α1 + w1Λ1, α2 + w2Λ2) and (α1 + ∆1 + w1Λ1, α2 + ∆2 + w2Λ2) are

in the interior of the support SZ|W ;

(ii) The random vector Z = (Z1, Z2) is absolutely continuously distributed with

the positive density f(Z1,Z2)|W (·, ·) over the support of SZ|W , with respect to the

Lebesgue measure;

(iii) For all a ∈ SZ|W such that a 6= α, there exists a measurable set S ⊂ SZ|W

such that S
′
(S,a) ⊂ SZ|W and

fε (z1, z2) 6= fε (z′1, z
′
2) a.e. for (z1, z2) ∈ S, (z′1, z′2) ∈ S ′ (S,a) .

Moreover, for all a+ δ ∈ SZ|W such that a+ δ 6= α+ ∆, there exists a measurable

set S ⊂ SZ|W such that S
′
(S,a+ δ) ⊂ SZ and

fε (z1, z2) 6= fε (z′1, z
′
2) a.e. for (z1, z2) ∈ S, (z′1, z′2) ∈ S ′ (S,a+ δ) .

Theorem A.5. Suppose that Assumptions RMH, S, ERMH, RSMH and SVMH hold.

Then, α,Λ and ∆ are point identified.

Theorem A.6. Suppose that Assumptions RMH, S, ERMH, RSMH and SVMH-

(i)(ii) hold, and the distribution of unobservables (ε1i, ε2i) is unimodal. Then, α,Λ

and ∆ are point identified.
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A.1.2 Extension II: Random Coefficients Model

In this section, we extend our analysis to the complete information entry games

with the random coefficients. In this context, we can allow for the competition effects

depending on the unobserved heterogeneity, similar to Dunker, Hoderlein, and Kaido

(2013). More specifically, we consider a simple entry game with random coefficients,

Y ∗1i = −Z1i + ∆̃1iY2i + ε1i;

Y ∗2i = −Z2i + ∆̃2iY1i + ε2i;

Ypi =

 1, if Y ∗pi ≥ 0

0, otherwise
for p = 1, 2.

To keep the following analysis simple, we still use the scalar observed characteristic

and normalize the coefficients associated with the scalar observables to (−1,−1). This

normalization is also used in Lewbel and Tang (2013) for the incomplete information

entry games with random coefficients.

Note that we can rewrite the random coefficients
(

∆̃1i, ∆̃2i

)
as follows: ∆̃1i =

∆1 +%1i where ∆1 ≡ E
[
∆̃1i

]
and %1i ≡ ∆̃1i−E

[
∆̃1i

]
; similarly, ∆̃2i = ∆2 +%2i where

∆2 ≡ E
[
∆̃2i

]
and %2i ≡ ∆̃2i − E

[
∆̃2i

]
. This formalization suggests that we can

possibly transform the random coefficient models to the fixed coefficient models. We

can first identify the models up to a constant mean and then trace out the part of the

distributions associated with random coefficients. Here, our identification strategy for

the random coefficient model (RCM) is almost the same as the one in the main context

except that we apply a stronger symmetry condition, called elliptical symmetry. We

will explain it in greater detail once we introduce assumptions. Given this, to present

our identification strategy, we keep Assumption R in the main context, and assume

that the following regularity conditions hold.

Assumption SRC (Sign in RCM) ∆̃1i < 0, ∆̃2i < 0.
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Assumption SRC also guarantees that there exist the unique entry outcomes (0, 0)

and (1, 1), similar to Assumption S.

Assumption ERRC (Exclusion Restriction in RCM) Suppose that

(i) (Z1i, Z2i) is independent of (ε1i, ε2i); and (Z1i, Z2i) is independent of (%1i, %2i).

(ii) the scalar covariate Zpi enters only the payoff function of player p, but not

the payoff function of the other player.

Assumption ERRC assumes that the excluded regressor is also independent of the

unobserved heterogeneity of the random coefficients, in addition to the one that is

assumed in Assumption ER in the main context.

Assumption ESRC (Elliptical Symmetry in RCM) Suppose that

(i) the distribution of (%1, %2) is elliptically symmetric, that is, (%1, %2) ∼ Ed (0,Σ%, φ%).

(ii) the distribution of (ε1, ε2) is elliptically symmetric, that is, (ε1, ε2) ∼ Ed (α,Σε, φε).

In addition, we assume that Σ% = Σε = Σ.

Assumption ESRC assumes that both unobserved heterogeneity in the random

coefficients and unobserved heterogeneity in the profit function are all elliptically

symmetric. Note that in Ed (µ,Σ, φ), µ represents the mean of a random vector, Σ

represents the variance-covariance matrix (also known as dispersion matrix) (this is

not necessarily equal to the variance-covariance matrix (%1i, %2i) (or (ε1i, ε2i)), and φ

is referred to as the characteristic generator of the corresponding random vector (for

more details, see Hult and Lindskog (2002) and Fang, Kotz, and Ng (1990)).

Assumption IRC (Independence in RCM) Suppose that (%1i, %2i) is indepen-

dent of (ε1i, ε2i).

Assumption IRC assumes that the unobservables in the profit function is indepen-

dent of unobserved heterogeneity in the random coefficients. Note that Assumption
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IRC can help us simplify the analysis in the lemma presented below. In fact, we can

allow a certain dependence between (ε1i, ε2i) and (%1i, %2i), as shown in Hult and Lind-

skog (2002). But to keep our analysis simple, we omit the derivation and discussion

here (For more details, see Hult and Lindskog (2002)).

Lemma A.7. By Assumption ESRC and IRC, the distribution of (%1i + ε1i, %2i + ε2i)

is elliptical symmetric, that is (%1i + ε1i, %2i + ε2i) ∼ Ed (α,Σ, φ∗) where φ∗ = φ%φε.

Lemma A.7 provides the fundamental results that allow us to transform the iden-

tification of random coefficient models to one with fixed coefficients, as we represented

in the main context of the paper. Since elliptical symmetry implies the radial symme-

try, essentially, the analysis in the main context can be applied here directly. On the

other hand, one can easily check that, the result in Lemma A.7 does not necessarily

hold for the radial symmetry, which is why we impose a stronger symmetry condition

here.

Given Lemma A.7, we can outline our identification steps for the random coef-

ficient models. We first identify (α1, α2) using the conditional choice probability of

(0, 0), and identify (∆1,∆2) using the conditional choice probability of (1, 1). Next,

given the fixed coefficients have been identified, we will identify the portion of the

joint distribution (ε1i, ε2i) from the conditional choice probability of (0, 0). Simi-

larly, we can identify the portion of (%1i + ε1i, %2i + ε2i) from the conditional choice

probability of (1, 1). Finally, given the portion of the distribution of (ε1i, ε2i) and

(%1i + ε1i, %2i + ε2i), we can identify the part of joint distribution (%1i, %2i).

As a final remark, the analysis can be directly extended by allowing multivariate

covariates with heteroskedasticity, following Appendix A.1.1. We can allow for the

correlation between observables with unobserved heterogeneity in the random coeffi-

cients, and the correlation between observables with unobserved heterogeneity in the

profit function, like the existing literature (e.g., Fox and Lazzati (2013), Kline (2012)

and Dunker, Hoderlein, and Kaido (2013)). For brevity, we omit the discussion.
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A.2 Proofs for Identification

In this appendix, we will show the proofs of theorems for identification.

Proof of Lemma I.1: Lemma I.1 can be shown by direct calculation. With-

out loss of generality, we assume that z1 < z̃1, z2 < z̃2. We observe that under

Assumptions R, S and ER, we can write the difference of the choice probabilities as

B0 (z, z̃;α)

= Pr[(0, 0) |Z1] + Pr[(0, 0) |Z2]− Pr[(0, 0) |Z3]− Pr[(0, 0) |Z4]

=

z2∫
−∞

z1∫
−∞

f (ε1, ε2) d (ε1, ε2) +

z̃2∫
−∞

z̃1∫
−∞

f (ε1, ε2) d (ε1, ε2)

−
z̃2∫

−∞

z1∫
−∞

f (ε1, ε2) d (ε1, ε2)−
z2∫

−∞

z̃1∫
−∞

f (ε1, ε2) d (ε1, ε2)

=

z̃2∫
z2

z̃1∫
z1

f (ε1, ε2) dε1dε2;

B0 (2α− z, 2α− z̃;α)

= Pr[(0, 0) |Z5] + Pr[(0, 0) |Z6]− Pr[(0, 0) |Z7]− Pr[(0, 0) |Z8]

=

2α2−z2∫
2α2−z̃2

2α1−z1∫
2α1−z̃1

f (ε1, ε2) d (ε1, ε2)

=

z̃2−2α2∫
z2−2α2

z̃1−2α1∫
z1−2α1

f (−ε1,−ε2) d (−ε1,−ε2)

=

z̃2∫
z2

z̃1∫
z1

f (2α1 − ε1, 2α2 − ε2) d (ε1, ε2) ;

where the last three equalities follow from direct calculation and the properties of

integrals. Now by Assumption RS, that is, f (ε1, ε2) = f (2α1 − ε1, 2α2 − ε2), the

desired result follows. Q.E.D.
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Proof of Lemma I.2: Similar to Lemma I.1, Lemma I.2 can also be shown by

direct calculation. Without loss of generality, we continue to assume that z1 < z̃1,

z2 < z̃2. It follows from Assumptions R, S, ER, we have

B1 (z, z̃;α,∆)

= Pr[(1, 1) |Z1] + Pr[(1, 1) |Z2]− Pr[(1, 1) |Z3]− Pr[(1, 1) |Z4]

=

z2−∆2∫
−∞

z1−∆1∫
−∞

f (ε1, ε2) d (ε1, ε2) +

z̃2−∆2∫
−∞

z̃1−∆1∫
−∞

f (ε1, ε2) d (ε1, ε2)

−
z̃2−∆2∫
−∞

z1−∆1∫
−∞

f (ε1, ε2) d (ε1, ε2)−
z2−∆2∫
−∞

z̃1−∆1∫
−∞

f (ε1, ε2) d (ε1, ε2)

=

z̃2−∆2∫
z2−∆2

z̃1−∆1∫
z1−∆1

f (ε1, ε2) d (ε1, ε2) ;

B1 (2 (α+ ∆)− z, 2 (α+ ∆)− z̃;α,∆)

= Pr[(1, 1) |Z5] + Pr[(1, 1) |Z6]− Pr[(1, 1) |Z7]− Pr[(1, 1) |Z8]

=

2α2−(z2−∆2)∫
2α2−(z̃2−∆2)

2α1−(z1−∆1)∫
2α1−(z̃1−∆1)

f (ε1, ε2) d (ε1, ε2)

=

(z̃2−∆2)−2α2∫
(z2−∆2)−2α2

(z̃1−∆1)−2α1∫
(z1−∆1)−2α1

f (−ε1,−ε2) d (ε1, ε2)

=

z̃2−∆2∫
z2−∆2

z̃1−∆1∫
z1−∆1

f (2α1 − ε1, 2α2 − ε2) d (ε1, ε2)

Now by Assumption RS, that is, f (ε1, ε2) = f (2α1 − ε1, 2α2 − ε2), the desired result

follows. Q.E.D.

Proof of Theorem I.5: Note that the proofs of Part (i) and (ii) are almost

identical, here we only explicitly give the proof of Part (i). To prove the desired

result in Part (i), that is, Pr
(

(Z, Z̃) ∈ T (a)
)
> 0, it is equivalent to prove for any
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a 6= α, Pr
(

(Z, Z̃) ∈ T c (a)
)
< 1, where we denote T c (a) as the complement set of

T (a), which can be written as T c (a) = T c1 (a) + T c2 (a), T c1 (a) ∩ T c2 (a) = ∅

T c1 (a) =

{
(z, z̃) ∈ SZ | (2a− z) , (2a− z̃) ∈ SZ and B (z, z̃;α) = B (2a− z, 2a− z̃;α)

}
;

T c2 (a) =

{
(z, z̃) ∈ SZ | (2a− z) , (2a− z̃) /∈ SZ

}
.

In the following analysis, we will show that Pr
(

(Z, Z̃) ∈ T c (a)
)

= 1 leads to a

contradiction. Suppose that Pr
(

(Z, Z̃) ∈ T c (a)
)

= 1. It suggests that Pr (T c1 (a))+

Pr (T c2 (a)) = 1 with Pr
(

(Z, Z̃) ∈ T c1 (a)
)
≥ 0, Pr

(
(Z, Z̃) ∈ T c2 (a)

)
≥ 0. There

are three possible cases under which, the above statement will hold. In the following

context, we will explicitly discuss these three possible cases.

Case 1: Pr
(

(Z, Z̃) ∈ T c1 (a)
)

= 0 and Pr
(

(Z, Z̃) ∈ T c2 (a)
)

= 1. This can only

occur when alternative parameter a is outside the support of Sz, which directly con-

tradicts Assumption SV-(i), that is, the support of regressors contains the parameter

space.

Case 2: Pr
(

(Z, Z̃) ∈ T c1 (a)
)
> 0, Pr

(
(Z, Z̃) ∈ T c2 (a)

)
> 0, Pr (T c1 (a)) +

Pr (T c2 (a)) = 1. The strategy to show the contradiction in Case 2 is as follows: (a) we

recall that for all z, z̃ ∈ T c1 (a), the difference of choice probabilities is equal to zero;

(b) we fixed the z̃ at some fixed values in a small neighborhood, we take the derivatives

with respect to z1 and z2, respectively; (c) we show that Pr (T c1 (a)) + Pr (T c2 (a)) = 1

with Pr
(

(Z, Z̃) ∈ T c1 (a)
)
> 0, Pr

(
(Z, Z̃) ∈ T c2 (a)

)
> 0 will lead to a contradic-

tion.

Step (a): consider z, z̃ ∈ SZ , such that B (z, z̃;α) − B (2a− z, 2a− z̃;α) = 0,
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(2a− z) ∈ SZ , (2a− z̃) ∈ SZ , which can be written as

B0 (z, z̃;α) =

z̃1∫
z1

z̃2∫
z2

f (ε1, ε2) d (ε1, ε2) ;

B0 (2a− z, 2a− z̃;α) =

2a1−z̃1∫
2a1−z1

2a2−z̃2∫
2a2−z2

f (ε1, ε2) d (ε1, ε2) .

Step (b): now, by Assumption SV-(ii), for any z̃∗ = (z∗1 , z
∗
2) in the neighborhood

N (z̃∗0, ε0) with some arbitrarily small ε0 > 0, where z̃∗0 ∈ SZ and 2a − z̃∗0 ∈ SZ , we

can take the derivative with respect to z1 and z2 on both sides of equations,

∂2B0 (z, z̃∗;α)

∂z1∂z2

= fε(z1, z2);

∂2B0 (2a− z, 2a− z̃∗;α)

∂z1∂z2

= fε (2a1 − z1, 2a2 − z2) .

Step (c): Pr (T c1 (a)) + Pr (T c2 (a)) = 1 with two cases Pr
(

(Z, Z̃) ∈ T c1 (a)
)
> 0,

Pr
(

(Z, Z̃) ∈ T c2 (a)
)
> 0, implies that given the neighborhood N (z̃∗0, ε0), by SV-(ii),

for any Lebesgue measurable set S ⊂ SZ with positive measure such that S ′ (S,a) ⊂

SZ ,

fε(z1, z2) = fε (2a1 − z1, 2a2 − z2) a.e. for (z1, z2) ∈ S;

that is, given arbitrary values a, the densities are the same for all (z1, z2) ∈ S and

for all measurable sets, which contradicts Assumption SV-(iii).

Case 3: Pr
(

(Z, Z̃) ∈ T c1 (a)
)

= 1, Pr
(

(Z, Z̃) ∈ T c2 (a)
)

= 0. This is an extreme

example of Case 2 and the proof can follow the proof of Case 2 directly. Q.E.D.

Proof of Theorem I.6: The proof of Theorem I.6 is similar to the proof of

Theorem I.5 . Similar to Theorem I.5, we follow to define T c (a) = T c1 (a) + T c2 (a),

T c1 (a) ∩ T c2 (a) = ∅. To show the desired result, it is also equivalent to show that

Pr (T c (a)) < 1. Here we will show it by contradiction. Suppose that for any a 6= α,

Pr (T c (a)) = 1. Now, given that the distribution of the unobservables is unimodal,
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it directly implies that Pr (T c1 (a)) = 0. It follows that Pr (T c (a)) = 1 implies

Pr (T c2 (a)) = 1. This becomes the same as Case 1 in Theorem I.5. By the same

argument used in Case 1 of the proof for Theorem I.5, Pr (T c2 (a)) = 1 contradicts

Assumption SV(i) directly, which gives the desired result. Q.E.D.
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A.3 Proofs for Estimation

This appendix collects the proofs for the theorems relating to the properties of the

estimator presented in Section 1.3. Throughout this appendix, following the definition

of the choice probabilities in the main context, we can define the kernel estimators

of these conditional choice probabilities. These conditional choice probabilities and

their kernel estimators are the building blocks of our estimator. Note that only the

choice probabilities for υ = 5, . . . , 8 explicitly contain the parameters of interest. This

implies that the derivatives of
∑8

υ=1 κυϕυ (z, z̃,θ) and their kernel estimators depend

only on the derivatives of the choice probabilities for υ = 5, . . . , 8. This fact is critical

for understanding some properties of our estimator.

Next, we will use the following theorems to prove the results. Let MI refer to

Markov’s inequality, CSI to the Cauchy-Schwarz inequality, DCT to the Dominated

Convergence Theorem, LLN to Khintchine’s law of large numbers and CLT to the

Lindberg-Levy central limit theorem. Let o and O denote a sequence of the real

numbers and op and Op denote the order in probability of a sequence of random

variables. Moreover, for simplicity, we will use
∑

i 6=j to abbreviate
∑n

i=1

∑n
j=1,j 6=i,

use
∑

i 6=j 6=k to abbreviate
∑n

i=1

∑n
j=1,j 6=i

∑n
k=1,k 6=i 6=j. We will write E[i] =

∫
dF (xi)

and E[i,j] =
∫
dF (xi) dF (xj) without further explanations.

In addition, because
∑8

υ=1 κυϕυ
(
Zi,Zj,θ

0
)

= 0, for all Zi,Zj, then any term

that contains
∑8

υ=1 κυϕυ
(
Zi,Zj,θ

0
)

will be equal to zero. We summarize some

properties of these terms at below. We use these results directly in the proof without

additional explanation.

1

n (n− 1)

∑n

i=1

∑n

j=1,j 6=i

(∑8

υ=1
κυϕυ

(
Zi,Zj,θ

0
))
h(·) = 0;

1

n− 1

∑n

j=1,i 6=j

(∑8

υ=1
κυϕυ

(
zi,Zj,θ

0
))
h(·) = 0;

E
[(∑8

υ=1
κυϕυ

(
Zi,Zj,θ

0
))
h(·)

]
= 0;
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where h(·) can be any arbitrary function. For notational convenience, we write

ζ (zi, zj,θ) = τ (zi, zj,θ)
∑8

υ=1 κυϕυ (zi, zj,θ) in the following context and supple-

mentary appendix.

Moreover, we consider two trimming functions. The first trimming component is

τij (θ) =
(
Π8
υ=1τυ (zi, zj,θ)

)1/8
.

This trimming component deals with the problem of the boundary bias. In addition,

we introduce a second trimming component, which takes the form of1

Gij = G
(

min
υ
ϕ̂υ (zi, zj,θ)

)
,

where G is a smooth trimming function similar to the one used in Linton and Xiao

(2001). This trimming component helps us deal with the issue of the estimated

choice probabilities that are below zero or above one by using a higher-order kernel

function. For expositional purposes, we derive the property of the objective function

Qn (θ) with the first trimming component as follows

Qn (θ) =
1

n(n− 1)

∑n

i=1

∑n

j=1,j 6=i
τij (θ)

[∑8

υ=1
κυϕ̂υ

(
Zi, Z̃j,θ

)]2

.

Our main asymptotic results will be based on Qn (θ), ignoring the second trimming

component for a while. In the end, we will treat this second trimming component

separately and show that it is asymptotically negligible and does not affect our asymp-

totic results as we derive for Qn (θ).

In summary, the rest of appendix is organized as follows. Appendix A.3.1 con-

1Note that we only consider an additional trimming on the estimated choice probability to ac-
commodate the usage of higher-order kernel. In fact, the higher order kernel may possibly affect
the estimated density of observables. We omit this for simplicity’s sake but we are aware that the
additional trimming can help in the estimation and the additional possible trimming also deserves
more discussion in the higher-order MSE approximation.
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tributes identification of parameters. Appendix A.3.2 is devoted to the consistency

of the estimator. Appendix A.3.3 proves that the estimator is
√
n-consistent and

asymptotically normal. Appendix A.3.4 describes the mean squared error approxi-

mation of the estimator, which provides the basis for the bandwidth selection in this

paper. Appendix A.3.5 shows the effect of trimming. We collect the proofs of Lem-

mas associated with Appendix A.3 in the supplementary material Appendix S.C to

save space. Throughout Appendix A.3, we assume that Assumptions R, S, ER, RS

and SV hold.

A.3.1 Identification (Population Objective Function)

Note that as we show in Appendix S.C.1, following Assumption TR, we restrict the

calculation of choice probability at the interior of SZ , SoZ . By doing so, we remove a

possible boundary bias problem from the kernel regression estimator (for more details,

see Imbens and Ridder (2009)) and guarantee the asymptotic property of the kernel

regression estimator for the choice probability. More specifically, we consider τ (θ)

restricts that (z, z̃) be in SoZ in the population objective function. This is valid under

our identification assumption as long as we allow that the interior of support is also

wider than the parameter space.

Proof of Theorem I.11: It is straightforward to verify (i) holds from the

quadratic form of the population objective function. To show (ii), we first show exis-

tence, which requires that we verify that Q (θ) achieves its minimum at θ0. This can

be directly obtained from Lemma I.1 and Lemma I.2 and Theorem I.5. Next, we show

uniqueness, that is, Q (θ∗) > Q
(
θ0
)

= 0 for all θ∗ 6= θ0. For simplicity, we suppress

the dependence on Z, Z̃ and write ϕυ (θ) = ϕυ

(
Z, Z̃,θ

)
, and τ (θ) = τ (z, z̃, θ).
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Observe that

Q (θ∗)−Q
(
θ0
)

= E
[
τ (θ∗)

∑8

υ=1
κυϕυ (θ∗)

]2

− E
[
τ
(
θ0
)∑8

υ=1
κυϕυ

(
θ0
)]2

= 2E
[
τ
(
θ0
)∑8

υ=1
κυϕυ

(
θ0
)]

×E
[
τ (θ∗)

∑8

υ=1
κυϕυ (θ∗)− τ

(
θ0
)∑8

υ=1
κυϕυ

(
θ0
)]

(A.1)

+E
[
τ (θ∗)

∑8

υ=1
κυϕυ (θ∗)− τ

(
θ0
)∑8

υ=1
κυϕυ

(
θ0
)]2

. (A.2)

In the following, we will show the terms (A.1) and (A.2), respectively.

For term (A.1), we know that τ
(
θ0
)∑8

υ=1 κυϕυ
(
z, z̃,θ0

)
= 0 for all z, z̃, so term

(A.1) is zero.

For term (A.2), we first define the set T (θ∗) as follows (similar to Definition I.3

and Definition I.4)

T (θ∗) =
{

(z, z̃) ∈ SoZ |
∑8

υ=1
κυϕυ (z, z̃,θ∗) 6= 0; 2θ∗ − z, 2θ∗ − z̃ ∈ SoZ

}
;

and in an analogous way, we define its complementary sets T c (θ∗) = T c1 (θ∗)∪ T c2 (θ∗)

and T c1 (θ∗)∩ T c2 (θ∗) = ∅, which are defined as

T c1 (θ∗) =
{

(z, z̃) ∈ SoZ |
∑8

υ=1
κυϕυ (z, z̃,θ∗) = 0; 2θ∗ − z, 2θ∗ − z̃ ∈ SoZ

}
;

T c2 (θ∗) = {(z, z̃) ∈ SoZ | 2θ∗ − z, 2θ∗ − z̃ /∈ SoZ} .

Next, we decompose the expectation in term (A.2) into three integral regions

E
[
τ (θ∗)

∑8
υ=1 κυϕυ

(
Z, Z̃,θ∗

)
− τ

(
θ0
)∑8

υ=1 κυϕυ(Z, Z̃,θ0))
]2

=
∫
T (θ∗)

[
τ (θ∗)

∑8
υ=1 κυϕυ (r, s,θ∗)− τ

(
θ0
)∑8

υ=1 κυϕυ
(
r, s,θ0

)]2
dF (r, s) (A.3)

+
∫
T c1 (θ∗)

[
τ (θ∗)

∑8
υ=1 κυϕυ (r, s,θ∗)− τ

(
θ0
)∑8

υ=1 κυϕυ
(
r, s,θ0

)]2
dF (r, s) (A.4)

+
∫
T c2 (θ∗)

[
τ (θ∗)

∑8
υ=1 κυϕυ (r, s,θ∗)− τ

(
θ0
)∑8

υ=1 κυϕυ
(
r, s,θ0

)]2
dF (r, s) . (A.5)
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For term (A.3), we observe that for all (r, s) ∈ T (θ∗), we have τ (θ∗) 6= 0,∑8
υ=1 κυϕυ (r, s,θ∗) 6= 0; τ

(
θ0
)

= 0 or
∑8

υ=1 κυϕυ
(
r, s,θ0

)
= 0. It implies that, for

the integral region T (θ∗), the integrand is strictly positive, that is

[
τ (θ∗)

∑8

υ=1
κυϕυ (r, s,θ∗)− τ

(
θ0
)∑8

υ=1
κυϕυ

(
r, s,θ0

)]2

> 0.

In addition, from Theorem I.5, we show that Pr (T (θ∗)) > 0 (that is, the model

parameters are identified). Hence, term (A.3) is strictly positive. In addition, for

term (A.4), we know that similar to the proof of Theorem 2.1, for all (r, s) ∈ T c1 (θ∗),

we have τ (θ∗) 6= 0 but
∑8

υ=1 κυϕυ (r, s,θ∗) = 0 and τ
(
θ0
)∑8

υ=1 κυϕυ
(
r, s,θ0

)
= 0,

which means term (A.4) equals zero. Furthermore, for term (A.5), for all (r, s) ∈

T c2 (θ∗), we have τ (θ∗) = 0 and though
∑8

υ=1 κυϕυ (r, s,θ∗) is undefined, we have

that τ
(
θ0
)∑8

υ=1 κυϕυ
(
r, s,θ0

)
= 0. Then, term (A.5) is equal to zero. These three

results immediately implies that, for all θ∗ 6= θ0,

E
[
τ (θ∗)

∑8

υ=1
κυ

(
ϕυ (r, s,θ∗)− τ

(
θ0
)∑8

υ=1
κυϕυ

(
r, s,θ0

))]2

> 0.

Therefore, (A.1) equals to zero while (A.2) is strictly positive giving the desired

result. Q.E.D.

A.3.2 Consistency

Below, we show the consistency of the estimator.

Proof of Theorem I.14: To show the consistency, we will apply Theorem 2.1

from Newey and McFadden (1994) (also see Theorem A-1 in Andrews (1994) for a

similar condition), which is standard in M-estimation and requires that the following

conditions hold: (A1) Q (θ) is uniquely minimized at θ0; (A2) the parameter space

Θ is compact; (A3) Q (θ) is continuous; and (A4) Qn (θ) converges uniformly in
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probability to Q (θ).

Condition (A1) holds from Theorem I.11. Condition (A2) is satisfied by construc-

tion of the parameter space Θ in Assumption 1. Condition (A3) is straightforward

to verify from the continuity of the quadratic function and the choice probabilities

ϕυ. For Condition (A4), following Hong and Tamer (2003), we first introduce an

infeasible sample objective function Q̄ (θ),

Q̄n (θ) =
1

n (n− 1)

∑
i 6=j

τij (θ)
[∑8

υ=1
κυϕυ (zi, zj,θ)

]2

.

Then by the triangle inequality, it follows that

|Qn (θ)−Q (θ)| ≤
∣∣Qn (θ)− Q̄n (θ)

∣∣+
∣∣Q̄n (θ)−Q (θ)

∣∣ ;
so that it is sufficient to show that (i) supθ∈Θ

∣∣Qn (θ)− Q̄n (θ)
∣∣ = op (1), and in

addition, (ii) supθ∈Θ

∣∣Q̄n (θ)−Q (θ)
∣∣ = op (1). We will discuss these two results

sequentially.

First, consider (i). We observe that

sup
θ∈Θ

∣∣Qn (θ)− Q̄n (θ)
∣∣

= sup
θ∈Θ

∣∣∣∣ 1

n (n− 1)

∑
i 6=j

τij

([∑8

υ=1
κυϕ̂υ (zi, zj,θ)

]2

−
[∑8

υ=1
κυϕυ (zi, zj,θ)

]2
)∣∣∣∣

≤ 1

n (n− 1)

∑
i 6=j

τij sup
θ∈Θ

∣∣∣∣[∑8

υ=1
κυϕ̂υ (zi, zj,θ)

]2

−
[∑8

υ=1
κυϕυ (zi, zj,θ)

]2
∣∣∣∣

≤ sup
zi,zj∈SoZ

sup
θ∈Θ

∣∣∣∣[∑8

υ=1
κυϕ̂υ (zi, zj,θ)

]2

−
[∑8

υ=1
κυϕυ (zi, zj,θ)

]2
∣∣∣∣

≤ sup
zi,zj∈SoZ

sup
θ∈Θ

C
∣∣∣∑8

υ=1
κυ (ϕ̂υ,ij (zi, zj,θ)− ϕυ,ij (zi, zj,θ))

∣∣∣
≤ C

∑8

υ=1
sup

zi,zj∈SoZ
sup
θ∈Θ
|ϕ̂υ,ij (zi, zj,θ)− ϕυ,ij (zi, zj,θ)|

= op (1) ;
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where the first inequality hold from the triangle inequality and the supremum of the

sum is less than the sum of supremum; and the second inequality by the property of

supremum; the third inequality follows by the fact that uniformly over zi, zj ∈ SoZ

and θ ∈ Θ,

[∑8

υ=1
κυϕ̂υ,ij (θ)

]2

−
[∑8

υ=1
κυϕυ,ij (θ)

]2

=
(∑8

υ=1
κυ (ϕ̂υ,ij (θ) + ϕυ,ij (θ))

)(∑8

υ=1
(ϕ̂υ,ij (θ)− ϕυ,ij (θ))

)
≤

(
2
∑8

υ=1
|ϕυ,ij (θ)|+ op(1)

)(∑8

υ=1
(ϕ̂υ,ij (θ)− ϕυ,ij (θ))

)
≤ C

(∑8

υ=1
(ϕ̂υ,ij (θ)− ϕυ,ij (θ))

)
;

following from Lemma I.13 and Assumption 2 with the bounded ϕυ,ij (θ);2 the fourth

inequality can be obtained by applying the triangle inequality again; the last equality

directly follows from Lemma I.13.

Next, we will show that (ii) holds, that is, supθ∈Θ

∣∣Q̄n (θ)−Q (θ)
∣∣. By the LLN

(following from Theorem A in Section 5.4, Serfling (1980)), we directly obtain the

pointwise convergence of Q̄n (θ), Q̄n (θ) = Q (θ) + op (1). Then we can conclude the

uniformity by showing stochastic equicontinuity, supθ,θ̃∈Θ,|θ−θ̃|<ε
∣∣∣Q̄n (θ)− Q̄n

(
θ̃
)∣∣∣ =

op (1). Following Andrews (1994), the stochastic equicontinuity can be shown by

verifying that Q̄n (θ) is in the type II class of function, that is, the function satisfies

the Lipschitz condition,
∣∣∣Q̄n (θ)− Q̄n

(
θ̃
)∣∣∣ ≤ C

∥∥∥θ − θ̃∥∥∥. It is straightforward to

verify that it holds from the continuity of the quadratic form of the objective function

and the continuity of the conditional choice probability with bounded first derivative.

Therefore, combining all the results above gives the desired result. Q.E.D.

2Note that in Lemma I.13 we show the uniformity using the arguments (zυ,1, zυ,2). As we use
the generic expression on the choice probabilities, alternatively, we can show the uniformity instead
using the arguments (z, z̃,θ) as we use here.
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A.3.3 Root–n Consistency and Asymptotic Normality

To show
√
n-consistency and asymptotic normality of the estimator, it is impor-

tant to examine properties of the objective functions. For this purpose, Appendix

A.3.3.1 collects lemmas devoted to showing key properties of the objective function.

Then, in Appendix A.3.3.2, we follow to show
√
n-consistency and asymptotic nor-

mality of the estimator in the main context.

Recall that the sample objective function Qn(θ) is

Qn (θ) =
1

n (n− 1)

∑
i 6=j

τij (θ)
[∑8

υ=1
ϕ̂υ (Zi,Zj,θ)

]2

.

To ease notation, we suppress the dependence on Z, Z̃ and let ϕυ,ij (θ) abbrevi-

ate ϕυ (Zi,Zj,θ) and ϕ̂υ,ij (θ) abbreviate ϕ̂υ (Zi,Zj,θ). Then, following Sherman

(1994), we decompose Qn (θ) as follows,

Qn (θ) =
1

n (n− 1)

∑
i 6=j

τij (θ)
[∑8

υ=1
κυϕυ,ij (θ)

]2

+
2

n (n− 1)

∑
i 6=j

τij (θ)
[∑8

υ=1
κυϕυ,ij (θ)

] [∑8

υ=1
κυ (ϕ̂υ,ij (θ)− ϕυ,ij (θ))

]
+

1

n (n− 1)

∑
i 6=j

τij (θ)
[∑8

υ=1
κυ (ϕ̂υ,ij (θ)− ϕυ,ij (θ))

]2

= Qn,1 (θ) +Qn,2 (θ) +Qn,3 (θ) .

In an analogous way, we decompose Qn

(
θ0
)

following the same steps. It follows that

Qn (θ)−Qn

(
θ0
)

= Qn,1 (θ)−Qn,1

(
θ0
)

+Qn,2 (θ)−Qn,1

(
θ0
)

+Qn,3 (θ)−Qn,3

(
θ0
)
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where

Qn,1 (θ)−Qn,1

(
θ0
)

= (n (n− 1))−1
∑

i 6=j
τij (θ)

[∑8

υ=1
κυϕυ,ij (θ)

]2

− (n (n− 1))−1
∑

i 6=j
τij
(
θ0
) [∑8

υ=1
κυϕυ,ij

(
θ0
)]2

;

Qn,2 (θ)−Qn,2

(
θ0
)

= 2 (n (n− 1))−1
∑

i 6=j
τij (θ)

[∑8

υ=1
κυϕυ,ij (θ)

]
×
[∑8

υ=1
κυ (ϕ̂υ,ij (θ)− ϕυ,ij (θ))

]
−2 (n (n− 1))−1

∑
i 6=j

τij
(
θ0
) [∑8

υ=1
κυϕυ,ij

(
θ0
)]

×
[∑8

υ=1
κυ
(
ϕ̂υ,ij

(
θ0
)
− ϕυ,ij

(
θ0
))]

;

Qn,3 (θ)−Qn,3

(
θ0
)

= (n (n− 1))−1
∑

i 6=j
τij (θ)

[∑8

υ=1
κυ (ϕ̂υ,ij (θ)− ϕυ,ij (θ))

]2

− (n (n− 1))−1
∑

i 6=j
τij
(
θ0
) [∑8

υ=1
κυ
(
ϕ̂υ,ij

(
θ0
)
− ϕυ,ij

(
θ0
))]2

;

As will be shown below, Qn,1 (θ)−Qn,1

(
θ0
)

will be attributed to the Hessian matrix;

Qn,2 (θ)−Qn,2

(
θ0
)

will be devoted to the key components of the asymptotic normality

of the estimator; and Qn,3 (θ) − Qn,3

(
θ0
)

will become asymptotically negligible. In

the following context, we will examine each of these three terms in turn.

A.3.3.1 Lemmas and Propositions

We begin with Qn,1 (θ) − Qn,1

(
θ0
)
, which will gives the Hessian matrix in our

analysis.

Proposition A.8. Suppose that Assumptions R, S, ER, RS, SV. Then, (i) Qn,1 (θ) =

Q1 (θ) + op (1) and Qn,1

(
θ0
)

= Q1

(
θ0
)

+ op (1); (ii) uniformly over Op (ςn) neighbor-

hood of θ0

Qn,1 (θ)−Qn,1

(
θ0
)

=
1

2

(
θ − θ0

)′
Γ
(
θ − θ0

)
+ op

(∥∥θ − θ0
∥∥2
)
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where Γ = E
[(
τij
(
θ0
)∑8

υ=5 κυ∇θϕυ,ij
(
θ0
)) (

τij
(
θ0
)∑8

υ=5 κυ∇θϕυ,ij
(
θ0
))′]

.

Proof of Proposition A.8: We find that result (i) directly follows from Theorem

A in Section 5.4 of Serfling (1980). That is, by the symmetry of the linear combination

of
∑8

υ=1 κυϕυ,ij (θ) and E
∣∣∑8

υ=1 κυϕυ,ij (θ)
∣∣ < ∞, Qn,1 (θ) = Q1 (θ) + op (1) and

likewise, for Qn,1

(
θ0
)
. Hence, the following analysis focuses on result (ii). We start

by expanding Qn,1 (θ) around θ0 up to the second derivative. Uniformly over an

Op (ςn) neighborhood of θ0,

Qn,1 (θ)−Qn,1

(
θ0
)

= (n (n− 1))−1
∑

i 6=j
τij (θ)

[∑8

υ=1
κυϕυ,ij (θ)

]
− (n (n− 1))−1

∑
i 6=j

τij
(
θ0
) [∑8

υ=1
κυϕυ,ij

(
θ0
)]

=
(
θ − θ0

)′ [∇θ (n (n− 1))−1
∑

i 6=j
τij (θ)

[∑8

υ=1
κυϕυ,ij (θ)

]2
∣∣∣∣
θ=θ0

]
+

1

2

(
θ − θ0

)′ [∇θθ (n (n− 1))−1
∑

i 6=j
τij (θ)

[∑8

υ=1
κυϕυ,ij (θ)

]2
∣∣∣∣
θ=θ0

] (
θ − θ0

)
+op

(∥∥θ − θ0
∥∥2
)

=
(
θ − θ0

)′
Rn +

(
θ − θ0

)′
Γn
(
θ − θ0

)′
+ op

(∥∥θ − θ0
∥∥2
)

;

where the last equality follows by writing Rn as the first derivative and Γn as the

second derivative; in addition, for all θ in op (1)-neighborhood of θ0, the bounded

third derivative and LLN gives that the third term. This suggests that we need to

show (i) Rn = op (1) and (ii) Γn = Γ + op (1) to obtain the desired result.

First, we notice that

Rn = ∇θ (n (n− 1))−1
∑

i 6=j
τij (θ)

[∑8

υ=1
κυϕυ,ij (θ)

]2
∣∣∣∣
θ=θ0

= 2 (n (n− 1))−1
∑

i 6=j
τij
(
θ0
)∑8

υ=1
κυϕυ,ij

(
θ0
) [∑8

υ=1
κυ∇θϕυ,ij

(
θ0
)]

+ (n (n− 1))−1
∑

i 6=j
∇θτij

(
θ0
) [∑8

υ=1
κυϕυ,ij

(
θ0
)]2

= Rn,1 +Rn,2.
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Note that for Rn,1, we have

E
[
τij
(
θ0
)∑8

υ=1
κυϕυ,ij

(
θ0
)

(
∑8

υ=1
κυ∇θϕυ,ij

(
θ0
)
)
]

= 0;

V
[
τij
(
θ0
)∑8

υ=1
κυϕυ,ij

(
θ0
)

(
∑8

υ=1
κυ∇θϕυ,ij

(
θ0
)
)
]

= 0;

following from the property of the term containing
∑8

υ=1 κυϕυ,ij
(
θ0
)

from the iden-

tifying restriction. Then, applying MI, we can show Rn,1 = op (1). By the same

reasoning, we can similarly show that Rn,2 = op (1) as well.

Next, we show that Γn = Γ + op (1). The direct calculation implies that

Γn = (n (n− 1))−1
∑

i 6=j

[
τij
(
θ0
) [∑8

υ=1
κυ∇θϕυ,ij

(
θ0
)∑8

υ=1
κυ∇θϕυ,ij

(
θ0
)]′]

+ (n (n− 1))−1
∑

i 6=j

[
τij
(
θ0
)∑8

υ=1
κυϕυ,ij

(
θ0
)∑8

υ=1
κυ∇θθϕυ,ij

(
θ0
)]

+ (n (n− 1))−1
∑

i 6=j

[
∇θτij

(
θ0
)∑8

υ=1
κυϕυ,ij

(
θ0
) [∑8

υ=1
κυ∇θϕυ,ij

(
θ0
)]]

+ (n (n− 1))−1
∑

i 6=j

[
∇θθτij

(
θ0
) [∑8

υ=1
κυϕυ,ij

(
θ0
)]2
]

= Γn,1 + Γn,2 + Γn,3 + Γn,4.

Similar to the argument used for Rn, we can show that Γn,2 = op (1) by the fact that

E
[
τij
(
θ0
)∑8

υ=1
κυϕυ,ij

(
θ0
)∑8

υ=1
κυ∇θθϕυ,ij

(
θ0
)]

= 0;

V
[
τij
(
θ0
)∑8

υ=1
κυϕυ,ij

(
θ0
)∑8

υ=1
κυ∇θθϕυ,ij

(
θ0
)]

= 0.

Similarly, we can show that Γn,3 = op (1) and Γn,4 = op (1). Finally, denoting

Γ = E
[
τij
(
θ0
)∑8

υ=5
κυ∇θϕυ,ij

(
θ0
) [∑8

υ=5
κυ∇θϕυ,ij

(
θ0
)]′]

.

and applying MI implies that Γn,1 = Γ + op (1). Combining these two parts gives the

desired result. Q.E.D.
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Second, we focus on the term Qn,2 (θ) − Qn,2

(
θ0
)
. The key is to decompose

Qn,2 (θ) and Qn,2

(
θ0
)

into different U-statistics. Note that

Qn,2 (θ) = 2 (n (n− 1))−1
∑

i 6=j
τij

[∑8

υ=1
κυϕυ,ij (θ)

] [∑8

υ=1
κυ (ϕ̂υ,ij (θ)− ϕυ,ij (θ))

]
.

Following Newey and McFadden (1994); Cattaneo, Crump, and Jansson (2013), we

observe that the quadratic expansion of ϕ̂υ (θ) can be written as below3. We expand

the denominator up to cubic terms, dropping the subscript i, j in ϕ̂υ,ij and ϕυ,ij, for

simplicity.

ϕ̂υ − ϕυ =
ĝυ − ϕυf̂υ

f̂υ
=
[
ĝυ − ϕυf̂υ

]
f−1
υ

[
1− f−1

υ

(
f̂υ − fυ

)
+ op

(
f−1

(
f̂υ − fυ

))2
]

= f−1
υ

(
ĝυ − ϕυf̂υ

)
− f−2

υ

(
f̂υ − fυ

)(
ĝυ − ϕυf̂υ

)

where the linear component and quadratic component can be written as

f−1
υ

(
ĝυ − ϕυf̂υ

)
= (n− 2)−1

∑n

k=1,k 6=j 6=i
(dk − ϕυ)Kn,υ/fυ (A.6)

f−2
υ

(
ĝυ − ϕυf̂υ

)(
f̂υ − fυ

)
= (n− 2)−2

∑n

l=1,l 6=j 6=i
(dl − ϕυ)K2

n,υk/f
2
υ (A.7)

+ (n− 2)−2
∑

k 6=l
(dl − ϕυ)Kn,υkKn,υl/f

2
υ

− (n− 2)−2
∑n

k=1,k 6=j 6=i
(dk − ϕυ)Kn,υk/fυ

Note that the quadratic component includes three terms which we will explain in turn.

First, the third term in (A.7) is identical to the linear component in (A.6) except for

the additional scale (n− 2)−1, suggesting that the third term in (A.6) will converge

to zero faster than the linear component (A.6). Second, the second term in (A.7) is

the cross-product term. Due to the i.i.d. sample, we can show that the second term

3The quadratic expansion of â/b̂ around a/b can be written as:

â/b̂− a/b = b−1[â− a− (a/b) (b̂− b)]− b−2(b̂− b)[â− a− (a/b) (b̂− b)
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asymptotically has the same order as the third term. By the same argument, we also

expect that it will converge to zero faster than the linear component in (A.6). By

virtue of these two facts, in the following context, we focus on term (A.6) and the

first component of term (A.7).

Introduce qn,υ (ωi, ωj, ωk,θ) to denote term (A.6) in Qn,2 (θ),

qn,υ (ωi, ωj, ωk,θ) = τij (θ)
[∑8

υ=1
κυϕυ,ij (θ)

]
(dk − ϕυ,ij (θ))Kn,υk/fυ (θ) ,

where ωi = (Z1i, Z2i), ωj = (Z1j, Z2j), ωk = (Z1k, Z2k, dk). We write linear combina-

tions of qn,υ as qn (ωi, ωj, ωk,θ) =
∑8

υ=1 κυqn,υ (ωi, ωj, ωk,θ). In addition, we introduce

ρn,υ (ωi, ωj, ωk,θ) to denote the leading component of term (A.7) in Qn,2 (θ),

ρn,υ (ωi, ωj, ωk,θ) = τij (θ)
[∑8

υ=1
κυϕυ,ij (θ)

]
(dk − ϕυ,ij (θ))K2

n,υk/fυ,ij (θ) ;

and similarly, let ρn denote linear combinations of ρn,υ.

Finally, let U3
n be the random probability measure that puts mass (n (n− 1) (n− 2))−1

on each 3-tuple observation, and let U4
n be the random probability measure that puts

mass
(
n (n− 1) (n− 2)2)−1

on each 3-tuple observation as well. With this notation

in place, we can write Qn,2 (θ) as

Qn,2 (θ) = 2
[
U3
nqn (ωi, ωj, ωk,θ) + U4

nρn (ωi, ωj, ωk,θ)
]

+ op (1)

= 2
∑8

υ=1
κυ
[
U3
nqn,υ (ωi, ωj, ωk,θ) + U4

nρn,υ (ωi, ωj, ωk,θ)
]

+ op (1) ;

In addition, we note that U3
nqn,υ (ωi, ωj, ωk,θ) can be further decomposed by applying
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Hoeffding decomposition, for υ = 1, . . . , 8

U3
nqn,υ (ωi, ωj, ωk,θ) = E [qn,υ (ωi, ωj, ωk,θ)]

+Ln,υ (ωi,θ) + Ln,υ (ωi,θ) + Ln,υ (ωj,θ)

+Wn,υ (ωi, ωj,θ) +Wn,υ (ωi, ωj,θ) +Wn,υ (ωj, ωk,θ)

+Tn,υ (ωi, ωj, ωk,θ)

where Ln,υ (·,θ), Wn,υ (·, ·,θ) and Tn,υ (·, ·, ·,θ), respectively, correspond to the linear

terms, quadratic terms and cubic terms in Hoeffding decomposition. (More details

can be found in Appendix S.C.2.) We can decompose U4
nρn,υ (ωi, ωj, ωk,θ) in the

same fashion.

The following two lemmas respectively provide asymptotic approximations of

U-statistics U3
nqn,υ (ωi, ωj, ωk,θ) − U3

nqn,υ
(
ωi, ωj, ωk,θ

0
)

and U4
nρn,υ (ωi, ωj, ωk,θ) −

U4
nρn,υ

(
ωi, ωj, ωk,θ

0
)
, which are the building blocks of asymptotic approximation for

Qn,2 (θ)−Qn,2

(
θ0
)
. In particular, in the following decomposition, we use L(1),W (1)

and T (1) to denote the first derivative of L,W , and T . Note that the boldface symbol

emphasizes that we deal with a vector of the first derivatives.

To start, we show the property of U3
nqn,υ (ωi, ωj, ωk,θ)− U3

nqn,υ
(
ωi, ωj, ωk,θ

0
)

in

Lemma .

Lemma A.9. Given Assumptions 2-3 hold, uniformly over Op (ςn) neighborhood of

θ0

U3
nqn,υ (ωi, ωj, ωk,θ)− U3

nqn,υ
(
ωi, ωj, ωk,θ

0
)

=
(
θ − θ0

)′ E(q(1)
n,υ

(
ωi, ωj, ωk,θ

0
))

+
(
θ − θ0

)′ (
L

(1)
n,υi +L

(1)
n,υj +L

(1)
n,υk

)
+
(
θ − θ0

)′ (
W

(1)
n,υij +W

(1)
n,υik +W

(1)
n,υjk

)
+
(
θ − θ0

)′
T

(1)
n,υijk + op

(∥∥θ − θ0
∥∥2
)
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where the order of each term can be shown as follows

(i) Eq(1)
n,υ

(
ωi, ωj, ωk,θ

0
)

= q
(1)
υ

(
θ0
)

= O (hι) ;

(ii) L
(1)
n,υi = Op

(
n−1/2hι

)
, L

(1)
n,υj = Op

(
n−1/2hι

)
and L

(1)
n,υk = Op

(
n−1/2

)
;

(iii) for υ = 1, 2, 5, 6,

W
(1)
n,υij = Op (n−1hι) , W

(1)
n,υik = Op (n−1h−1) and W

(1)
n,υjk = Op (n−1) ;

(iv) for υ = 3, 4, 7, 8,

W
(1)
n,υij = Op (n−1hι) , W

(1)
n,υik = Op

(
n−1h−1/2

)
and W

(1)
n,υjk = Op

(
n−1h−1/2

)
;

(v) T
(1)
n,υijk = Op

(
n−3/2h−1

)
.

The proof of Lemma A.9 is shown in Appendix S.C.2. In this lemma, we first use

the Hoeffding decomposition to decompose U3
nqn,υ (ωi, ωj, ωk,θ) and U3

nqn,υ
(
ωi, ωj, ωk,θ

0
)

into the means, linear terms, quadratic terms and cubic terms, respectively. Then,

we expand each term around θ0, which gives the results as shown above. The results

in Lemma A.9 play an important role in proving Proposition A.11 below. First, we

observe that the leading terms are the linear terms L
(1)
n,υk in the Hoeffding decomposi-

tion with order of Op

(
n−1/2

)
, for υ = 1, · · · , 8. These terms will be used to derive the

asymptotic linear representation and asymptotic normality. Second, we notice that

the first-order bias is carried in the terms Eq(1)
n,υ (ωi, ωj, ωk, θ

0) with order of Op (hι),

for υ = 1, · · · , 8, which will be addressed by the higher-order mean squared error

approximation. Finally, the rest of terms will vanish in limit, because they decay

faster than the leading term L
(1)
n,υk for υ = 1, · · · , 8.

Next, we show the property of U4
nρn,υ (ωi, ωj, ωk,θ)− U4

nρn,υ
(
ωi, ωj, ωk,θ

0
)
.

Lemma A.10. Given that Assumptions 2-3 hold, uniformly over Op (ςn)neighborhood
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of θ0

U4
nρn,υ (ωi, ωj, ωk,θ)− U4

nρn,υ
(
ωi, ωj, ωk,θ

0
)

=
(
θ − θ0

)′ E(ρ(1)
n,υ

(
ωi, ωj, ωk,θ

0
))

+
(
θ − θ0

)′ (
L

(1)
ρn,υi +L

(1)
ρn,υj +L

(1)
ρn,υk

)
+
(
θ − θ0

)′ (
W

(1)
ρn,υij +W

(1)
n,υik +W

(1)
ρn,υjk

)
+
(
θ − θ0

)′
T

(1)
ρn,υijk + op

(∥∥θ − θ0
∥∥2
)

where the order of each term is shown as follows

(i) Eρ(1)
n,υ

(
ωi, ωj, ωk,θ

0
)

= ρ
(1)
υ

(
θ0
)

= O (n−1hι−2) ;

(ii) L
(1)
ρn,υi = Op

(
n−3/2hι−2

)
, L

(1)
ρn,υj = Op

(
n−3/2hι−2

)
and L

(1)
ρn,υk = Op

(
n−3/2h−2

)
;

(iii) for υ = 1, 2, 5, 6,

W
(1)
ρn,υij = Op (n−2hι−2) ,W

(1)
ρn,υik = Op (n−2h−3) and W

(1)
ρn,υjk = op (n−2h−2) ;

(iv) for υ = 3, 4, 7, 8,

W
(1)
ρn,υij = Op (n−2hι−2) ,W

(1)
ρn,υik = Op

(
n−2h−5/2

)
and W

(1)
ρn,υjk = Op

(
n−2h−5/2

)
;

(v) T
(1)
ρn,υijk = Op

(
n−5/2h−3

)
.

The proof of Lemma A.10 is given in Appendix S.C.2 using the same procedure

as in the proof of Lemma A.9. We find that U4
nρn,υ (ωi, ωj, ωk,θ) has the extra scale

(n− 2)−1 and all the terms converge to zero faster than the leading terms in Lemma

A.9. In addition, we note that the higher-order bias is Eρ(1)
n,υ

(
ωi, ωj, ωk,θ

0
)

with

order of O (n−1hι−2). These terms will be dominated by the higher-order bias in

E
(
γ

(1)
n,υ

(
ωi, ωj, ωk,θ

0
))

as shown in Lemma A.9 below. This suggests that these bias

terms will not contribute to the higher-order MSE later.

Lemmas A.9 and A.10 show the order of each element in the decomposition in

Qn,2 (θ) − Qn,2

(
θ0
)
. Given these results, we give an approximation of Qn,2 (θ) −

Qn,2

(
θ0
)

in Proposition A.11.

Proposition A.11. Suppose Lemma A.9 and Lemma A.10 hold. Then, uniformly
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over Op (ςn) neighborhood of θ0

Qn,2 (θ)−Qn,2

(
θ0
)

=
(
θ − θ0

)′ (
n−1

∑n

k=1
ψk

)
+ op

(∥∥θ − θ0
∥∥2
)

+Op

(∥∥θ − θ0
∥∥hι)+ op (hι)

where ψk = 2
∑8

υ=1 κυ (∇θξn,υk − E (∇θξn,υk)), where

∇θξn,υk =



(dk − ϕ (z1k, z2k))
∫ ∫
∇θζ

(
zk, s,θ

0
)
f (s1, s2) d (s1, s2) , υ = 1

(dk − ϕ (z1k, z2k))
∫ ∫
∇θζ

(
z1k, r2, s1, z2k,θ

0
) f(z1k,r2)f(s1,z2k)

f(z1k,z2k)
d (r2, s1) υ = 3

(dk − ϕ (z1k, z2k))
∫ ∫
∇θζ

(
2θ0 − zk, s,θ0

)
f (s1, s2) d (s1, s2) υ = 5

(dk − ϕ (z1k, z2k))
∫ ∫
∇θζ

(
(2θ0

1 − z1k) , r2, s1, (2θ
0
2 − z2k) ,θ

0
)

×f((2θ01−z1k),r2)f(s1,(2θ02−z2k))
f(z1k,z2k)

d (r2, s1) υ = 7

In addition n−1/2
∑n

k=1 ψk →d N (0,Σ), where Σ = E [ψkψ
′
k].

Proof of Proposition A.11: Provided results in Lemma A.9 and Lemma A.10,

we observe that the leading terms are L
(1)
n,υk with order of n−1/2, for υ = 1, · · · , 8.

More specifically, we note that

L
(1)
n,υk = n−1

∑n

k=1
(∇θξn,υk − E∇θξn,υk) + n−1

∑n

k=1
(∇θτn,υk − E∇θτn,υk) ,

and the asymptotic normality of L
(1)
n,υk will depend on the ∇θξn,υk − E∇θξn,υk, when

the remainder converges to zero in probability. It has been shown that the remain-

der term n−1
∑n

k=1 (∇θτn,υk − E∇θτn,υk) = op (hι). Hence, we can write L
(1)
n,k =∑8

υ=1 κυL
(1)
n,υk = n−1

∑8
υ=1

∑n
k=1 κυ (∇θξn,υk − E∇θξn,υk) + op (hι) and denote

ψk = 2
∑8

υ=1
κυ (∇θξn,υk − E∇θξn,υk) .

In addition, we show that V (∇θξn,υk) = Vυυ,k with the bounded Vυυ,k and we

also calculate the covariance cov (∇θξn,υk,∇θξn,υ′k) = Vυυ′,k in Appendix S.D.2. Now,
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from Appendix S.C.2, it implies that n−1/2
∑n

k=1 ψk →d N (0,Σ), where Σ = E [ψkψ
′
k],

with Συυ = Vυυk and Συυ′ = Vυυ′,k for υ = 1, · · · , 8, and υ 6= υ′.

Therefore, here we will complete the proof by collecting all other remainder terms

in U3
nqn,υ (ωi, ωj, ωk,θ)−U3

nqn,υ
(
ωi, ωj, ωk,θ

0
)

and U4
nρn,υ (ωi, ωj, ωk,θ)−U4

nρn,υ
(
ωi, ωj, ωk,θ

0
)
.

Q.E.D.

So far, we have already discussed the property of Qn,1 (θ)−Qn,1

(
θ0
)

and Qn,2 (θ)−

Qn,2

(
θ0
)
, respectively. Finally, we proceed to show that Qn,3 (θ) − Qn,3

(
θ0
)
. In

particular, we note that we can decompose Qn,3 (θ) as follows,

Qn,3 (θ) = (n (n− 1))−1
∑

i 6=j
τij

[∑8

υ=1
κυ (ϕ̂υ,ij (θ)− ϕυ,ij (θ))

]2

= (n (n− 1))−1
∑

i 6=j
τij
∑8

υ=1
(ϕ̂υ,ij (θ)− ϕυ,ij (θ))2

+2 (n (n− 1))−1
∑

i 6=j
τij
∑

υ 6=υ′
κυκυ′ (ϕ̂υ,ij (θ)− ϕυ,ij (θ)) (ϕ̂υ′,ij (θ)− ϕυ′,ij (θ)) .

Note we decompose [ϕ̂υ − ϕυ]2 (omitting ij indices) in Qn,3 (θ) as the same way we

did for the decomposition in Qn,2 (θ).

[ϕ̂υ − ϕυ]2

=
[
ĝυ − ϕυf̂υ

]2

f−2
υ

(
1− f−1

(
f̂υ − fυ

)
+ op

(
f−1

(
f̂υ − fυ

)))2

(A.8)

= f−2
υ

[
ĝυ − ϕυf̂υ

]2

+ op (1) = f−2
υ

[
1

n− 2

∑n−2

k=1
(dk − ϕυ)Kn,υ

]2

= f−2
υ (n− 2)−2

∑n−2

k=1

∑n−2

l=1
(dk − ϕυ) (dl − ϕυ)Kn,υkKn,υl + op (1)

= (n− 2)−2
∑n−2

k=1
f−2
υ (dk − ϕυ)2K2

n,υk

+ (n− 2)−2
∑

k 6=l
f−2
υ (dk − ϕυ) (dl − ϕυ)Kn,υkKn,υl + op (1) .

It is easy to verify that in term A.8, the cross-product term in the last expression will

be dominated by the quadratic term, by the fact that the extra averaging removes

the scale factor 1/h2 due to the i.i.d. sample. It implies that the cross-product term
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converges to zero faster than the quadratic term. Analogously, we consider a similar

decomposition for the cross-product terms with different values υ and υ′,

(ϕ̂υ − ϕυ) (ϕ̂υ′ − ϕυ′)

=
[
ĝυ − ϕυf̂υ

]
f−1
υ

(
1− f−1

(
f̂υ − fυ

)
+ op

(
f−1

(
f̂υ − fυ

)))
(A.9)

×
[
ĝυ′ − ϕυ′ f̂υ′

]
f−1
υ′

(
1− f−1

(
f̂υ′ − fυ′

)
+ op

(
f−1

(
f̂υ′ − fυ′

)))
=

[
ĝυ − ϕυf̂υ

] [
ĝυ′ − ϕυ′ f̂υ′

]
(fυfυ′)

−1 + op (1)

= (n− 2)−2
∑n−2

k=1

∑n−2

l=1
(fυfυ′)

−1 (dk − ϕυ) (dl − ϕυ′)Kn,υkKn,υl + op (1)

= (n− 2)−2
∑n−2

k=1
(fυfυ′)

−1 (dk − ϕυ) (dk − ϕυ′)Kn,υ1kKn,υ2k

+ (n− 2)−2
∑

k 6=l
(fυfυ′)

−1 (dk − ϕυ) (dl − ϕυ′)Kn,υkKn,υ′l + op (1) .

Following a similar argument as above, in (A.9) we observe that the cross-product

term in the last expression is dominated by the quadratic term due to the extra

averaging. In the following, we will focus on the quadratic terms in (A.8) and (A.9).

Next, we introduce γn,υ (ωi, ωj, ωk,θ) to denote the quadratic term in (A.8),

γn,υ (ωi, ωj, ωk,θ) = (dk − ϕυ)2K2
n,υk/f

2
υ ,

where ωi = (Z1i, Z2i), ωj = (Z1j, Z2j) and ωk = (dk, Z1k, Z2k). Similarly, we write

the linear combination of γn,υ as γn (ωi, ωj, ωk, θ) =
∑8

υ=1 (dk − ϕυ)2K2
n,υk/f

2
υ . Then

similarly, we introduce γn,υυ′ (ωi, ωj, ωk,θ) to denote the quadratic term in (A.9),

γn,υυ′ (ωi, ωj, ωk,θ) = (dk − ϕυ) (dk − ϕυ′)Kn,υkKn,υ′k/fυfυ′ .

Finally, let U4
n be the random probability measure that put mass (n (n− 1) (n− 2)2)−1

on each order 3-tuple observation (the extra n component due to the product of the
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choice probability). Following these notations, we can write Qn,3 (θ) as

Qn,3 (θ) = U4
nγn (ωi, ωj, ωk,θ) +

∑
υ 6=υ′

U4
nγn,υυ′ (ωi, ωj, ωk,θ) + op (1)

=
∑8

υ=1
κυ

[
U4
nγn,υ (ωi, ωj, ωk,θ) +

∑
υ 6=υ′

U4
nγn,υυ′ (ωi, ωj, ωk,θ)

]
+ op (1) .

The following two lemmas provide the order of each term in U4
nγn,υ (ωi, ωj, ωk,θ)−

U4
nγn,υ

(
ωi, ωj, ωk,θ

0
)

and U4
nγn,υυ′ (ωi, ωj, ωk,θ)−U4

nγn,υυ′
(
ωi, ωj, ωk,θ

0
)
, respectively,

which are the key elements for showing the asymptotic property ofQn,3 (θ)−Qn,3

(
θ0
)
.

Lemma A.12. Given that Assumptions 2-3 hold, uniformly over Op (ςn) neighborhood

of θ0, when υ = 1, 2, 5, 6,

U4
nγn,υ (ωi, ωj, ωk,θ)− U4

nγn,υ
(
ωi, ωj, ωk,θ

0
)

=
(
θ − θ0

)′ E(γ(1)
n,υ

(
ωi, ωj, ωk,θ

0
))

+
(
θ − θ0

)′ (
L

(1)
γn,υi +L

(1)
γn,υk

)
+
(
θ − θ0

)′
W

(1)
γn,υik + op

(∥∥θ − θ0
∥∥2
)
,

where the order of each term is as follows

(i) Eγ(1)
n,υ (ωi, ωj, ωk, θ

0) = γ
(1)
υ (θ0) = O (n−1h−2) ;

(ii) L
(1)
γn,υi = Op

(
n−3/2h−2

)
and L

(1)
γn,υk = Op

(
n−3/2h−2

)
;

(iii) W
(1)
γn,υik = Op (n−2h−2) .

When υ = 3, 4, 7, 8,

U4
nγn,υ (ωi, ωj, ωk,θ)− U4

nγn,υ
(
ωi, ωj, ωk,θ

0
)

=
(
θ − θ0

)′ E(γ(1)
n,υ

(
ωi, ωj, ωk,θ

0
))

+
(
θ − θ0

)′ (
L

(1)
γn,υi +L

(1)
γn,υj +L

(1)
γn,υk

)
+
(
θ − θ0

)′ (
W

(1)
γn,υij +W

(1)
γn,υik +W

(1)
γn,υjk

)
+
(
θ − θ0

)′
T

(1)
γn,υijk + op

(∥∥θ − θ0
∥∥2
)
,
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where the order of each term is shown as follows

(i) Eγ(1)
n,υ

(
ωi, ωj, ωk,θ

0
)

= γ
(1)
υ

(
θ0
)

= O (n−1h−2) ;

(ii) L
(1)
γn,υi = Op

(
n−3/2h−2

)
,L

(1)
γn,υj = Op

(
n−3/2h−2

)
and L

(1)
γn,υj = Op

(
n−3/2h−2

)
;

(iii) W
(1)
γn,υij = Op (n−2h−2) ,W

(1)
γn,υik = Op

(
n−2h−5/2

)
and W

(1)
γn,υjk = Op

(
n−2h−5/2

)
;

(iv) T
(1)
γn,υijk = Op

(
n−5/2h−3

)
.

The proof of Lemma A.12 is given in Appendix S.C.2. Similar to U4
nρn,υ in Lemma

A.10, U4
nγn,υ has the extra scale (n− 2)−1 and is also attributed to the higher-order

expansion, meaning that all the decomposition terms will decline to zero faster than

the leading terms in Lemma A.9. In addition, we show that the higher-order bias

Eγ(1)
n,υ is order of O (n−1h−2), for υ = 1, · · · , 8. This order is the same as that of the

variance of the estimated choice probability. It is not coincidental by the fact that

Eγ(1)
n,υ takes a similar form as the variance of the estimated choice probability and

they thus have the same order. Finally, as mentioned before, since Eγ(1)
n,υ dominates

Eρ(1)
n,υ, the former will contribute to the higher-order MSE expansion.

Next, we show the orders of cross-product terms. Due to the similarity of the

terms, we will only discuss the case when υ = 1, υ′ = 3 and υ = 1, υ′ = 5.

Lemma A.13. Given that Assumptions 2-3 hold, uniformly over Op (ςn) neighborhood

of θ0, when υ = 1 and υ′ = 3,

U4
nγn,13 (ωi, ωj, ωk,θ)− U4

nγn,13

(
ωi, ωj, ωk,θ

0
)

=
(
θ − θ0

)′ E(γ(1)
n,13

(
ωi, ωj, ωk,θ

0
))

+
(
θ − θ0

)′ (
L

(1)
γn,13i +L

(1)
γn,13j +L

(1)
γn,13k

)
+
(
θ − θ0

)′ (
W

(1)
γn,13ij +W

(1)
γn,13ik +W

(1)
γn,13jk

)
+
(
θ − θ0

)′
T

(1)
γn,13ijk + op

(∥∥θ − θ0
∥∥2
)
,
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where the order of each term can be shown as follows

(i) Eγ(1)
n,13

(
ωi, ωj, ωk,θ

0
)

= γ
(1)
n,13

(
θ0
)

= O (n−1h−1) ;

(ii) L
(1)
γn,13i = Op

(
n−3/2h−1

)
,L

(1)
γn,13j = Op

(
n−3/2h−1

)
and L

(1)
γn,13k = Op

(
n−3/2h−1

)
;

(iii) W
(1)
γn,13ij = Op (n−2h−1) ,W

(1)
γn,13ik = Op (n−2h−2) and W

(1)
γn,13jk = Op

(
n−2h−3/2

)
;

(iv) T
(1)
γn,υijk = Op

(
n−5/2h−3

)
.

In addition, when υ = 1 and υ′ = 5,

U4
nγn,15 (ωi, ωj, ωk,θ)− U4

nγn,15

(
ωi, ωj, ωk,θ

0
)

=
(
θ − θ0

)′ E(γ(1)
n,15

(
ωi, ωj, ωk,θ

0
))

+
(
θ − θ0

)′ (
L

(1)
γn,15i +L

(1)
γn,15k

)
+
(
θ − θ0

)′
W

(1)
γn,15ik + op

(∥∥θ − θ0
∥∥2
)
,

where the order of each term can be shown as follows

(i) Eγ(1)
n,15

(
ωi, ωj, ωk,θ

0
)

= γ
(1)
n,15

(
θ0
)

= O (n−1) ;

(ii) L
(1)
γn,15i = Op

(
n−3/2h−2

)
and L

(1)
γn,15k = Op

(
n−3/2h−2

)
;

(iii) W
(1)
γn,15ik = Op (n−2h−3) .

The proof of Lemma A.13 also appears in Appendix S.C.4. Lemma A.13 suggests

that all the terms will converge to zero faster than the leading terms and also faster

than the first-order bias and higher-order bias. This suggests that the terms will not

contribute to the asymptotic linear representation, the asymptotic normality, nor the

higher-order MSE.

Lemmas A.12 and A.13 gives the order of each element in the decomposition

of Qn,3 (θ) − Qn,3

(
θ0
)
. Given these results, we can directly derive the quadratice

approximation of Qn,3 (θ)−Qn,3

(
θ0
)
.

Proposition A.14. Suppose that Lemma C.3 and Lemma C.4 hold. Then uniformly
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over Op (ςn) neighborhood of θ0

Qn,3 (θ)−Qn,3

(
θ0
)

= op

(∥∥θ − θ0
∥∥2
)

+Op

(∥∥θ − θ0
∥∥ /nh2

)
+ op

(
n−1h−2

)
Proof of Proposition A.14: The desired result can be obtained by directly

collecting the terms in Lemmas A.12 and A.13. Q.E.D

Until now, we have shown the quadratic approximation of Qn,1 (θ) − Qn,1

(
θ0
)
,

Qn,2 (θ) − Qn,2

(
θ0
)

and Qn,3 (θ) − Qn,3

(
θ0
)
, respectively. We will use these results

above to prove the
√
n-consistency and asymptotic normality of the estimator.

A.3.3.2 Proofs of Theorems

Having examined the asymptotic property of the sample objective function, we

follow to show
√
n-consistency and asymptotic normality of the estimator. Recall

that Q (θ) is the population objective function that restricts the observables in the

interior of the support.

Proof of Theorem I.14: To show
√
n-consistency of θ̂n, we will use Theorem 1 in

Sherman (1994), which requires that the following conditions hold: (A1)
∥∥θ − θ0

∥∥ =

op (1) (A2) there exists a neighborhood N of θ0 and a constant c > 0 for which

−Q (θ)− (−Q
(
θ0
)
) ≤ −c

∥∥θ − θ0
∥∥2

for all θ in N (Given the minimization problem

in our context, we add the negative sign to transform it into a maximization problem

to fit the theorem); (A3) uniformly over op (1) neighborhood of θ0,

Qn (θ)−Qn

(
θ0
)

= Q (θ)−Qtr
(
θ0
)

+Op

(∥∥θ − θ0
∥∥ /√n)+op

(∥∥θ − θ0
∥∥2
)

+Op (εn) .

Then the rate of convergence of the estimator θ is
∥∥θ − θ0

∥∥ = Op(max(ε
1/2
n , 1/

√
n)).

Now, in the following, we show our estimator θ̂n is
√
n-consistent.

Condition (A1) holds by virtue of the consistency of the estimator θ̂n shown in
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Theorem 3.1. Condition (A2) is satisfied by the fact that

−Q
(
θ̂n

)
− (−Q

(
θ0
)
)

= −
(
θ̂n − θ0

)′
∇θQ

(
θ0
)
− 1

2

(
θ̂n − θ0

)′
∇θθQ

(
θ0
) (
θ̂n − θ0

)
+ op

(∥∥∥θ̂n − θ0
∥∥∥2
)
,

where

∇θQ
(
θ0
)

= E
[
τij
(
θ0
) (∑8

υ=1
κυϕυ,ij

(
θ0
))
∇θ

[
τij
(
θ0
)∑8

υ=1
κυϕυ,ij

(
θ0
)]]

;

∇θθQ
(
θ0
)

= E
[
∇θ

[
τij
(
θ0
)∑8

υ=1
κυϕυ,ij

(
θ0
)]
∇θ

[
τij
(
θ0
)∑8

υ=1
κυϕυ,ij

(
θ0
)]]′

.

From the property of the function that contains
∑8

υ=1 τij
(
θ0
)
ϕυ,ij

(
θ0
)
, we can

directly show that ∇θQ
(
θ0
)

= 0. In addition, due to the quadratic form and

nonzero difference on the density, we can show that ∇θθQ
(
θ0
)

is positive definite;

and moreover from Assumption 3 with the bounded derivative of the function ϕ,∥∥∇θθQ
(
θ0
)∥∥ ≤ c for some constant c > 0. Then the desired result follows from

combining these results.

For Condition (A3), choose ςn such that uniformly over the neighborhood op (1)

of θ0,

Qn

(
θ̂n

)
−Qn

(
θ0
)

= Qn,1

(
θ̂n

)
−Qn,1

(
θ0
)
+Qn,2

(
θ̂n

)
−Qn,2

(
θ0
)
+Qn,3

(
θ̂n

)
−Qn,3

(
θ0
)
,

which follows to verify

(i) Qn,1

(
θ̂n

)
= Q1

(
θ̂n

)
+ op (1) , andQn,1

(
θ0
)

= Q1

(
θ0
)

+ op (1) ;

(ii) Qn,2

(
θ̂n

)
−Qn,2

(
θ0
)

= Op

( ∥∥∥θ̂n − θ0
∥∥∥ /√n)+ op

(∥∥∥θ̂n − θ0
∥∥∥2
)

+Op

(∥∥∥θ̂n − θ0
∥∥∥hι)+ op (hι) ;

(iii) Qn,3

(
θ̂n

)
−Qn,3

(
θ0
)

= Op

(∥∥∥θ̂n − θ0
∥∥∥ /nh2

)
+ op (n−1h−2) .
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It is straightforward to check that (i), (ii) and (iii) hold from Proposition A.8,

A.11, A.14 respectively.

Now, letOp (ςn) = Op (hι)+Op (n−1h−2). ThenOp

(∥∥∥θ̂n − θ0
∥∥∥hι)+Op

(∥∥∥θ̂n − θ0
∥∥∥ /nh2

)
=

Op (εn), with εn = h2ι + n−2h−4. Let the bandwidth satisfy nh2ι → 0 and nh4 →∞,

which gives the desired result.

Proof of Theorem I.16: To show asymptotic linearity and asymptotic nor-

mality, we will follow Theorem 2 in Sherman (1994), which requires that (B1) θ̂n is

√
n-consistent for θ0, an interior point of Θ; (B2) uniformly over Op (1/

√
n) neigh-

borhoods of θ0

Qn

(
θ̂n

)
−Qn

(
θ0
)

=
1

2

(
θ̂n − θ0

)′
Γ
(
θ̂n − θ0

)
+

1√
n

(
θ̂n − θ0

)′
Mn + op

(
1

n

)
,

where Γ is a positive definite matrix, and Mn is normally distributed.

The first part of Condition (B1) follows from Theorem I.15 and the second part

is satisfied by Assumption 1. For Condition (B2), let ςn = 1/
√
n. We proceed to

check that uniformly over Op (1/
√
n) neighborhood of θ0 (i) Qn,1

(
θ̂n

)
−Qn,2

(
θ0
)

=

1
2

(
θ̂n − θ0

)′
Γ
(
θ̂n − θ0

)
+ op (1) by the same argument as in Proposition C.1; (ii)

Qn,2

(
θ̂n

)
− Qn,2

(
θ0
)

= 1√
n

(
θ̂n − θ0

)′
Mn + op

(∥∥∥θ̂n − θ0
∥∥∥2
)

+ op
(

1
n

)
, with Mn =

n−1/2
∑n

k=1 ψk where ψk =
∑8

υ=1 κυ (∇θξn,υk − E∇θξn,υk) and Mn →d N (0,E [ψkψ
′
k])

by the same argument in Proposition C.2 and the bandwidth satisfies nh2ι → 0 and

nh4 → ∞; (iii) Finally, Qn,3

(
θ̂n

)
− Qn,3

(
θ0
)

= op
(

1
n

)
by the same argument as in

Proposition A.14 and the bandwidth satisfies nh2ι → 0 and nh4 →∞. After verifying

these conditions, the asymptotic linearity follows from the fact that

√
n
(
θ̂n − θ0

)
= n−1/2

∑n

k=1
−Γ−1ψk +Op(1/

√
n),

and the asymptotic normality follows from the fact that Mn = n−1/2
∑n

k=1 ψk →d
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N (0,E [ψkψ
′
k]) and Delta method, that is,

√
n
(
θ̂n − θ0

)
→d N

(
0,Γ−1ΣΓ−1′) ,

and we denote Σ = E [ψkψ
′
k], which completes the proof. Q.E.D.

A.3.4 Higher-Order Mean Squared Error Approximation

Proof of Theorem I.17: We observe that

Γ̄n

(
θ̂n − θ0

)(
θ̂n − θ0

)′
Γ̄′n = Gn + rn,

where Gn =
(
L(1)
n + q(1)

(
θ0
)

+ γ(1)
(
θ0
))(

L(1)
n + q(1)

(
θ0
)

+ γ(1)
(
θ0
))′

and rn sum-

marizes all the remainder terms other than those in Gn. In addition, we also note

that

Gn =
(
L(1)
n + q(1)

(
θ0
)

+ γ(1)
(
θ0
))(

L(1)
n + q(1)

(
θ0
)

+ γ(1)
(
θ0
))′

= AGn +RGn

where AGn = 1
n

(
∑n

k=1 ψk) (
∑n

k=1 ψk)
′
+ h2BB′ + 1

n2h4
BhBh′ and RGn collects all the

remainder terms. Then, let ρh,n = tr (S (h))

E [AGn ] =
1

n
Σ + S (h) + o(ρh,n)

=
1

n
Σ + h2BB′ + 1

n2h4
BhBh′ + o(ρh,n)

It is straightforward to verify that the cross-product term is dominated by the squared

product using CSI. In addition, the other higher-order terms are dominated by

bias terms using Lemmas A.9, A.10, A.12 and A.13. Now, note that the second

term in the last equality is the first order bias, where B is from the expansion of
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E (qn (ωi, ωj, ωk,θ))−E
(
qn
(
ωi, ωj, ωk,θ

0
))

in Qn,2; the third term is the higher-order

bias, Bh is from the expansion of E (γn (ωi, ωj, ωk,θ))−E
(
γn
(
ωi, ωj, ωk,θ

0
))

in Qn,3,

which goes to zero slower than the expansion of E (ρn (ωi, ωj, ωk,θ))−E
(
ρn
(
ωi, ωj, ωk,θ

0
))

in Qn,2. Following Appendixes S.D, S.E and S.F, we can write B =
∑8

υ=1 Bυ and

Bh =
∑8

υ=1 Bhυ , where

Bυ =



E[i,j]

[
∇θζij

(
θ0
) ∑
ι1+ι2=ι,0<ι1,ι2≤ι

[∫ ∫
uι11 u

ι2
2 K (u) du

]
ϑι1,ι2 (Z1i, Z2i)

]
, υ = 1;

E[i,j]

[
∇θζij

(
θ0
) ∑
ι1+ι2=ι,0<ι1,ι2≤ι

[∫ ∫
uι11 u

ι2
2 K (u) du

]
ϑι1,ι2 (Z1i, Z2j)

]
, υ = 3;

E[i,j]

[
∇θζij

(
θ0
) ∑
ι1+ι2=ι,0<ι1,ι2≤ι

[∫ ∫
uι11 u

ι2
2 K (u) du

]
ϑι1,ι2 (2θ1 − Z1i, 2θ2 − Z2i)

]
, υ = 5;

E[i,j]

[
∇θζij

(
θ0
) ∑
ι1+ι2=ι,0<ι1,ι2≤ι

[∫ ∫
uι11 u

ι2
2 K (u) du

]
ϑι1,ι2 (2θ1 − Z1i, 2θ2 − Z2j)

]
, υ = 7;

and

Bhυ =

 σ2E[i]

[
−∇θf5 (2θ1 − z1i, 2θ2 − z2i) /f

−2
5 (2θ1 − z1i, 2θ2 − z2i)

] ∫ ∫
K2 (u) du υ = 5;

σ2E[i,j]

[
−∇θf7 (2θ1 − z1i, 2θ2 − z2j) /f

−2
7 (2θ1 − z1i, 2θ2 − z2j)

] ∫ ∫
K2 (u) du υ = 7.

Finally, from Lemmas I.12, I.13 and I.14, we can show that rn +RGn/tr (S (h)) =

op (1), which gives the desired result. Q.E.D.

A.3.5 Trimming

Until now, our proof has been based on the sample objective function without the

second trimming component. The following theorem provides the justification for the

exercise above; that is, we will show that the difference between the sample objective

function with/without trimming components is asymptotically negligible and will not

affect the asymptotic property of the estimator.

Following Linton and Xiao (2001), we consider the following smoothed trimming
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(also see Andrews (1995)). We use g (·) to denote a density function that has support

[0, 1] which satisfies that g(0) = g(1) = 0. In addition, we write g (r) as a function

with the support on [b, 2b],

g (r) =
1

b
g
(r
b
− 1
)
,

where b is the trimming parameter. Then we can define our trimming function as a

function of gb (t), that is

G (s) =


0 s < b∫ s
−∞ g (r) dr b ≤ s ≤ 2b

1 s > 2b

.

Here, we take g (·) to be the Beta density function as in Linton and Xiao (2001); g (·)

can be written as,

g (s) = B (k + 1)−1 tk (1− t)k , 0 ≤ t ≤ 1;

for some integer k, where B(k) is the Beta function. When b ≤ s ≤ 2b,G (s) can be

expressed as

G (s) = B (k + 1)−1

{
(k!)2

(2k + 1)!
−

k∑
l=0

(k!)2

(k − l)! (k + l − 1)!

(
s− b
b

)k−l(
1− s− b

b

)k+l+1
}
.

Recall the sample objective function with trimming can be written as

Q̃n =
1

n (n− 1)

∑
i 6=j

[∑8

υ=1
ϕ̂υ,ij (θ)

]2

τ̂ijG
(

min
υ
ϕ̂υ,ij

)
,

and the sample objective function without trimming can be written as

Qn =
1

n (n− 1)

∑
i 6=j

[∑8

υ=1
κυϕ̂υ,ij (θ)

]2

τ̂ij.
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Then we will show that

Qn (θ)− Q̃n (θ) =
1

n (n− 1)

∑
i 6=j

[∑8

υ=1
ϕ̂υ,ij (θ)

]2

τ̂ij (θ)
(

1−G
(

min
υ
ϕ̂υ,ij (θ)

))
.

Proposition A.15. Suppose that Assumption 4 holds. Then, we have Qn (θ) −

Q̃n (θ) = Op

(
n−1b1/2

)
Proof of Proposition A.15: Here we use ψn to denote Qn (θ) − Q̃n (θ). Due

to the i.i.d. assumption, we need only calculate the second moment of ψn. Define

ϕ̂υ∗,ij = minυ ϕ̂υ,ij. For simplicity, we omit θ in the expression. Note that

ψn =

(
1

n (n− 1)

)∑
i 6=j

[∑8

υ=1
ϕ̂υ,ij

]2

[1−G (ϕ̂υ∗,ij)] .

Note that from Assumption 6, we have

G (ϕ̂υ∗,ij)−G (ϕυ∗,ij) =
L−1∑
l=0

1

l!
g(l) (ϕυ∗,ij) (ϕ̂υ∗,ij − ϕυ∗,ij)l+

1

L!
g(L) (ϕυ∗,ij) (ϕ̂υ∗,ij − ϕυ∗,ij)L .

Then it follows that

ψn =

(
1

n (n− 1)

)∑
i 6=j

[∑8

υ=1
ϕ̂υ,ij (θ)

]2

[1−G (ϕ̂υ∗,ij)]

=

(
1

n (n− 1)

)∑
i 6=j

[∑8

υ=1
ϕ̂υ,ij (θ)

]2

[1−G (ϕυ∗,ij)]

−
L−1∑
l=0

1

l!

(
1

n (n− 1)

)∑
i 6=j

[∑8

υ=1
ϕ̂υ,ij (θ)

]2

g(l) (ϕυ∗,ij) (ϕ̂υ∗,ij − ϕυ∗,ij)l

− 1

L!

(
1

n (n− 1)

)∑
i 6=j

[∑8

υ=1
ϕ̂υ,ij (θ)

]2

g(L) (ϕυ∗,ij) (ϕ̂υ∗,ij − ϕυ∗,ij)L

= ψn,1 + ψn,2 + ψn,3.

We will show that ψn,1 = Op

(
n−1b1/2

)
, ψn,2 = op

(
n−1b1/2

)
and ψn,3 = op

(
n−1b1/2

)
.
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Note that

E
[
ψ2
n,1

]
= E

[(
1

n (n− 1)

)2∑
i 6=j

[∑8

υ=1
ϕ̂υ,ij (θ)

]4

[1−G (ϕυ∗,ij)]
2

]
≤ C

n (n− 1)
E [1−G (ϕυ∗,ij)]

2 .

by the fact
∑8

υ=1 ϕ̂υ,ij (θ) are bounded and the i.i.d assumption. Then, we can show

that

E [1−G (ϕυ∗,ij)]
2 =

b∫
0

[1−Gb (s)]2 ds+

2b∫
b

[1−Gb (s)]2 ds+

1∫
b

[1−Gb (s)]2 ds

≈ b+

2b∫
b

[
c (b)

2k+1∑
l=0

(s− b)lb−l
]
ds

≈ c̃(b)b;

for the constant c̃(b), where the first equation follows from writing out the expectation;

the second approximate equality follows from the fact that G (s) = 1, for s > 2b and

express G (s) as (2k + 1)th order polynomial in (s− b) /b; the last equality follows

from by exchanging the integral and calculating the integral; that is,

2b∫
b

[
2k+1∑
l=0

cl (b) (s− b)lb−l
]
ds =

2k+1∑
l=0

2b∫
b

cl (b) (s− b)lb−lds

=
2k+1∑
l=0

1

l + 1
cl (b) (s− b)l+1b−l|2bs=b

= b
2k+1∑
l=0

cl (b) ;

where cl (b) is some function of b in the approximation. Then the desired result follows

ψn,1 = Op

(
n−1b1/2

)
. Following the same steps, we can show that ψn,2 = op

(
n−1b1/2

)
and ψn,3 = op

(
n−1b1/2

)
. For brevity, we omit the proofs here. Q.E.D.
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