
A Priori Estimates for Two-Dimensional Water Waves with Angled Crests

by

Rafe Hand Kinsey

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Mathematics)

in the University of Michigan
2014

Doctoral Committee:

Professor Sijue Wu, Chair
Assistant Professor Lydia Bieri
Professor Joseph G. Conlon
Professor Charles R. Doering
Professor Joel A. Smoller



c© Rafe Hand Kinsey, 2014



Acknowledgments

I would like to thank all of my professors, friends, and family for their support during

graduate school. A special thanks is due to my committee members, especially to Charles

Doering, for being my second reader. I owe a deep debt to my paternal grandfather, Richard

Kinsey, and maternal grandmother, Frances Hand, for inspiring a love of mathematics when

I was young. Above all, I must thank my advisor, Sijue Wu, for her wisdom, guidance,

and collaboration. I would also like to acknowledge financial support from NSF grants

DMS-0800194 and DMS-1101434, a Rackham Regents Fellowship, and a Sweetland Junior

Fellowship.

ii



Table of Contents

Acknowledgments ii

List of Figures vii

List of Appendices viii

Abstract ix

Chapter

1 Introduction 1

1.1 Water Wave Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Previous Research and Our Program . . . . . . . . . . . . . . . . . . . . . . 2

1.3 The Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Outline of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Notation and Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.6 Function Spaces and Norms . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 The Lagrangian Framework 12

2.1 The Geometry and the Framework . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Derivation of the Surface Equation . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 The Quasilinear Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Boundary Behavior and the Derivative Dα . . . . . . . . . . . . . . . . . . . 15

3 The Riemann Mapping Version 18

3.1 The Riemann Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 The Riemannian Coordinates and Notation . . . . . . . . . . . . . . . . . . . 19

3.3 The Hilbert Transform H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4 Boundary Properties and the Riemann Mapping . . . . . . . . . . . . . . . . 32

iii



3.5 A Priori Smoothness Assumptions . . . . . . . . . . . . . . . . . . . . . . . . 34

3.6 Holomorphic Functions and What Disappears Under (I −H) . . . . . . . . . 35

3.6.1 Identities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.6.2 Mean Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.7 The Riemann Mapping Version of the Equation . . . . . . . . . . . . . . . . 39

3.7.1 A and the quantity A1 . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.7.2 At . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.7.3 Applications of the Riemann Derivation . . . . . . . . . . . . . . . . 46

4 Technical Details 47

4.1 Sobolev Inequalities and the Peter-Paul Trick . . . . . . . . . . . . . . . . . 47

4.2 Derivatives and Complex-Valued Functions . . . . . . . . . . . . . . . . . . . 49

4.3 Hardy’s Inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.4 Commutator Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
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Abstract

We consider the two-dimensional water wave problem in the case where the free interface

of the fluid meets a vertical wall at a possibly non-trivial angle; our problem also covers

interfaces with angled crests. We assume that the fluid is inviscid, incompressible, and

irrotational, with no surface tension and with air density zero. We construct a low-regularity

energy and prove a closed energy estimate for this problem. Our work differs from earlier

work in that, in our case, only a degenerate Taylor stability criterion holds, with −∂P
∂n

> 0,

instead of the strong Taylor stability criterion −∂P
∂n

> c > 0.

ix



Chapter 1

Introduction

1.1 Water Wave Problems

A class of water wave problems concerns the dynamics of the free surface separating a zero-

density region (air) from an incompressible fluid (water) either of infinite depth or bounded

by a fixed rigid boundary (e.g., the ocean bottom or the coast), under the influence of gravity.

Let Ω(t) be the fluid region, Σ(t) be the free surface between the fluid and the air, and

Υ (if it exists) be the fixed rigid boundary, for time t > 0; thus ∂(Ω(t)) = Σ(t)∪Υ. We will

henceforth assume that the fluid is not only incompressible but also irrotational, and we will

neglect surface tension and viscosity. Assume that the fluid density is 1. If the gravity field

is −j, the governing equations of motion are

vt + v · ∇v = −j−∇P on Ω(t) (1)

div v = 0 on Ω(t) (2)

curl v = 0 on Ω(t) (3)

P = 0 on Σ(t) (4)

(1,v) is tangent to the free surface (t,Σ(t)) (5)

v is tangent to the fixed boundary Υ (if it exists), (6)

where v is the fluid velocity and P is the fluid pressure. We also assume that

v(x, y)→ 0 as y → −∞. (7)

1



An important quantity governing the stability of these problems is −∂P
∂n

, where n is the

outward unit normal vector to Ω(t) along Σ(t).

1.2 Previous Research and Our Program

The study of water waves dates back centuries; early mathematical works include those

by Stokes [Sto47], Levi-Civita [LC25], and Taylor [Tay50]. [Nal74], [Yos82], and [Cra85]

obtained early local-in-time existence results for the two-dimensional water wave problem

for small data. In 1997, [Wu97] proved, for the infinite depth two-dimensional water wave

problem (1)-(5) and (7) (Υ = ∅), that the Taylor stability criterion −∂P
∂n

> c > 0 always

holds and that the problem is locally well-posed in Sobolev spaces Hs, s > 4, for arbitrary

data. [Wu99] proved a similar result in three dimensions. Since then, there have been

numerous results on local well-posedness in both two and three dimensions, for the water

wave equations with nonzero vorticity [CL00] [Lin05], with a fixed bottom [Lan05], and with

nonzero surface tension [AM05] [CS07]. [ABZar] proved local well-posedness of the problem

for interfaces in C3/2+ε.1 All of these works assume the strong Taylor stability criterion
−∂P
∂n

> c > 0. In addition, in the past several years [Wu09], [Wu11], [GMS12], [IP13],

[AD13], and [HIT14] have produced results showing almost global or global well-posedness

in two and three dimensions.

All of these results assume either infinitely deep water or else a fixed bottom that is a

positive distance away from the free interface. In actual oceans, of course, the free surface

does intersect with the rigid boundary, e.g., on the coast. It is important, therefore, to study

the water wave problem in this setting. In this dissertation, we will begin such a program,

by considering the two-dimensional water wave equations in the presence of a vertical wall

that interacts with the free interface.

In addition to addressing the interaction of the free surface with the rigid vertical wall,

our research covers singularities in water waves away from the rigid boundary. Indeed, by

Schwarz reflection, a model of waves making a non-trivial angle with a rigid vertical wall

corresponds to a symmetric angled crest in the middle of the ocean. (See Figure 1.) More

generally, our work applies to water waves with very low regularity, including those with

1A recent preprint, [ABZ14], improves on these results using Strichartz estimates, reducing the required
smoothness of the interface to a fraction under C3/2. The recent work of [HIT14] also has a low-regularity
result that improves on [ABZar] for two-dimensional water waves. Both [ABZ14] and [HIT14] work in the
setting where the strong Taylor stability criterion −∂P∂n > c > 0 holds.

2



Figure 1: Symmetric Angled Crests. Under a Schwarz reflection, a non-trivial angle at a
vertical wall corresponds to a symmetric angled crest in the middle of water.

angled crests.2 Our work differs from the low-regularity result of [ABZar], which assumes

that the strong Taylor stability criterion −∂P
∂n

> c > 0 holds and considers surfaces in C3/2+ε.

In our case, we allow surfaces that are not even in C1 where only a degenerate Taylor stability

criterion −∂P
∂n

> 0 holds.3 Our research relates to recent work of Wu [Wu12], who constructed

a class of convection-dominated self-similar solutions of the two-dimensional water wave

equation with such angled crests. Our work indicates that the water wave equations (1)-(7)

admit solutions with this type of singularity.

1.3 The Problem

For simplicity, we consider a rigid boundary consisting of two vertical walls, with water of

infinite depth in between the walls. Working in two dimensions (x, y) ∈ R2, we assume that

our fixed walls are at x = 0, 1, with the fluid region Ω0(t) ⊂ [0, 1]× (−∞, c) for some c <∞.

We assume that the water surface is flat at the corner x = 0 (i.e., that the surface makes

a right angle with the vertical wall), but we allow a non-trivial (i.e., not necessarily 90◦)

angle at x = 1.4

2We note that these angled crests don’t have to be symmetric.
3In [ABZar], Alazard et al. consider the water wave problem in the presence of a bottom bounded away

from the interface. In this framework, the strong Taylor stability condition doesn’t necessarily hold, so it
is assumed. In our case, the only rigid boundary is the vertical wall and we can prove that the degenerate
Taylor stability condition always holds. The degeneracy occurs at singularities in the interface and when the
water wave meets the wall with a non-trivial angle.

4We note that our problem can be viewed as an idealized contact angle problem.

3



Figure 2: The Geometric Framework. We begin with solid walls at x = 0, 1, with a possibly
non-trivial angle ν at x = 1 and a right angle at x = 0. We then symmetrize the problem
using Schwarz reflection, so there are non-trivial angles ν at the walls x = ±1.

This angle will be of fundamental importance for the remainder of the dissertation. We

will use ν to denote this angle. (See Figure 2.) We will henceforth say that the water surface

is flat or the angle is trivial at the corner if ν = 90◦ = π
2
; otherwise, we will say that the

angle at the corner is non-trivial.5 As our terminology suggests, if the angle is trivial, then

existing techniques ought to apply, so long as there are no singularities in the middle of the

free surface. What’s novel about our work is that it extends to the non-trivial regime, and

allows singularities in the middle of the free surface.

For the remainder of the paper, we will often frame the problem in terms of singularities at

the vertical wall—i.e., a non-trivial angle ν at x = ±1. Nevertheless, the energy estimate we

prove applies more generally to singularities—e.g., waves with angled crests—in the middle

of the free surface, away from the walls.

We begin by symmetrizing the problem via a Schwarz reflection to expand the domain

across the y-axis, using the fact that (6) implies that v1(0, y) ≡ 0. Precisely, for v = (v1, v2)

and x ∈ [0, 1], we define

v(−x, y) = (−v1(x, y), v2(x, y)). (8)

It is easy to check that equations (1) through (7) continue to hold in the expanded domain,

with v1(0, y) continuing to be zero in what is now considered part of the water. Henceforth,

we shall work exclusively in this reflected domain Ω(t). Ω(t) ⊂ [−1, 1]×(−∞, c) is symmetric

5We will see in §3.7.1 (183) that the angle ν must be no more than π
2 . Therefore a non-trivial angle ν is

necessarily < π
2 .

4



with respect to the y-axis, with solid vertical walls Υ at x = −1, 1. When we say the wall

we will mean x ≡ ±1, and when we say the corners, we will mean the corner of the water

surface at x = ±1. (See Figure 2.)

The non-trivial angle the water wave makes with the wall and the singularities in the

surface introduce significant technical challenges.

In [Wu97], a key result was proving that the Taylor sign condition −∂P
∂n

> c > 0 always

holds as long as the surface is smooth and non-self-intersecting. In the situation where
−∂P
∂n

< 0, [Ebi87] has shown that the free boundary problem is not well-posed, a fact which

is not surprising, since it is the positive sign of −∂P
∂n

that gives the hyperbolicity of the

equation. In our situation, however, we will have that −∂P
∂n

= 0 at the wall when there is a

non-trivial angle and at the points on the surface where there are singularities (e.g., angled

crests). In this case, the water wave equation is degenerate hyperbolic, and it is harder to

construct an energy that can be closed.6

A second challenge comes from the potential asymmetry of certain quantities at the left

and right boundaries of the domain. Thanks to the Schwarz reflection, we can now treat our

problem as being periodic. The non-trivial angle of the free surface with the wall introduces

a fundamental asymmetry: if the surface is sloping downwards near x = −1, it is sloping

upwards near x = 1. Therefore, the value of certain quantities at x = −1 will not agree

with their values at x = 1. This leads to problems both with integration by parts and with

handling estimates of various commutators involving the (periodic) Hilbert transform. This

challenge actually proves to be a blessing in disguise, because it directs us to precisely the

quantities that are well-behaved as periodic functions, quantities which turn out to behave

very well when others have singularities.

A third challenge also proves to have a silver lining. [Wu97] relied on the Riemann

mapping to flatten out the fluid domain. When the angle of the free surface with the wall

is not 90◦, or when there is an angled crest in the middle of the free surface, the Riemann

mapping has a singularity. Instead of avoiding the Riemann mapping, we embrace it, since

it gives us heuristics to determine which quantities we might or might not expect to be

finite. We used these heuristics, and more importantly the self-similar solution constructed

in [Wu12], to guide us in the construction of our energy.

In this dissertation, we prove an a priori estimate for solutions of the water wave equation

in this framework. We follow the general approach of Wu’s earlier papers [Wu97] and [Wu99],

in reducing the water wave problem to an equation on the free surface, differentiating with

6We remark that in this case the water wave equation is also degenerately dispersive.
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respect to time to get a quasilinear equation, and then using the fact that the velocity is

antiholomorphic to express the nonlinearities in terms of commutators involving the Hilbert

transform. The novelty is that we introduce a new energy that relies on two different singular

weights and controls some natural holomorphic quantities. Our estimates do not depend on

any positive lower bound for −∂P
∂n

.7 Substantial technical difficulties exist due to the very

low regularity involved in the energy and the non-existence of a positive lower bound of −∂P
∂n

.

Nevertheless, we have overcome these challenges.

Our energy inequality is a crucial step towards proving local well-posedness in this frame-

work. This will be the focus of an upcoming paper by Wu.

We mention that our energy is finite for the self-similar waves constructed in [Wu12].

1.4 Outline of the Dissertation

In the next section, §1.5, we present some of the notations and conventions used in the

dissertation. In §1.6 we introduce the function spaces and norms we will use. Then, in

§2, we introduce the Lagrangian framework for the water wave problem, following [Wu97].

In particular, in §2.4, we discuss some of the boundary challenges mentioned above, and

introduce a special weighted derivative that we will use in our energies.

In §3, we introduce the Riemann mapping and use it to derive a form of the equation

in “Riemannian coordinates.” We also introduce the Hilbert transform in these coordinates

and prove various technical results about the transform.

In §4, we present various technical results that we will need for the proof.

Finally, in §5, we define the energy we will use (in §5.1) and state our result, the a priori

inequality (in §5.3). We offer some discussion in §5.2 about our choice of energy. We begin

the proof in §5.4, and then in §5.5 we outline the remainder of the proof, which takes up §6
through §10.

In §11 we discuss the strength of the energy. In §11.1, we give a characterization of the

energy in terms of the velocity and the free surface. In §11.2, we offer a general discussion of

the heuristics that the Riemann mapping gives about singularities for the equation, including

what they suggest about the angle ν.

We have two appendices that might be useful to the reader. In §A, we provide an

overview of the notation used in the dissertation, with cross references to where everything

7We will show that in our framework −∂P
∂n > 0. In fact, a positive lower bound on −∂P

∂n is roughly
equivalent to a non-singular Riemann mapping; see section §3.7.1.

6



was initially defined. In §B, we list various quantities controlled by the energy, again with

cross references.

1.5 Notation and Conventions

We will define most of our notations throughout the text, as we introduce our various quanti-

ties. Here, we list some general conventions and notations, and give references to the sections

where we introduce substantial amounts of new notation. The appendix §A presents a sum-

mary of all of the important notations in the dissertation.

In §1.3 above, we introduced the basic geometry and defined ν, the angle the free surface

makes with the wall. In §1.6 we define the function spaces and norms we will use. In §2 we

introduce the basic notations for our various quantities, in what will be Lagrangian coordi-

nates, with basic variables α and β. In §3, we introduce the analogues of those quantities

in Riemannian coordinates, where our basic variables will be α′ and β′. In §3.2, we will in-

troduce a special notation for partial derivatives in these coordinates. Except as mentioned

there, an expression fx(x, y) means ∂xf(x, y). (We will also occasionally use the notation f ′;

this is always the spatial derivative in whatever coordinates we are using.) To save space,

we sometimes omit the variables; when we do so, fα := f(α, t), fβ := f(β, t), etc. Finally,

§5.1, we introduce and define our energy.

We will often use commutators. We define

[A,B] := AB −BA. (9)

When we use such notation for [f,H]g, where f and g are functions and H is the Hilbert

transform, f will be treated as a multiplication operator: thus [f,H]g = f(Hg)−H(fg).

We will use <(x+ iy) = x and =(x+ iy) = y to represent the real and imaginary parts,

respectively, of a complex number.

Compositions are always in terms of the spatial valuables. For example, for f = f(α, t),

g = g(α, t), we define f ◦ g = f ◦ g(α, t) := f(g(α, t), t).

We will use C as a placeholder to refer to a universal constant, possibly varying from

line to line. We will also often use the notation f . g, which means that there exists some

universal constant C such that f 6 Cg.

Once we have reduced the water wave equations to an equation in one spatial dimension,

we will primarily be working with the spatial domain I := [−1, 1]. We will often speak of the

7



“boundary”; this refers to what happens at ±1. We write f |∂ := f(1) − f(−1); therefore,

f |∂ = 0 if f(1) = f(−1).

We will use

−
∫
I

f :=
1

|I|

∫
I

f(x)dx =
1

2

∫ 1

−1
f(x)dx (10)

for the mean of a function f . Here, and elsewhere for other integrals, we will often drop the

subscript I when there is no risk of ambiguity.

We will use the following notation as an abbreviation for a type of higher-order Calderon

commutator:

[f, g;h](α′) :=
1

2i

∫
f(α′)− f(β′)

sin(π
2
(α′ − β′))

g(α′)− g(β′)

sin(π
2
(α′ − β′))

h(β′)dβ′. (11)

We will at several points have long series of identities or inequalities. When we say “on

the RHS” of an equation block with a string of multiple equalities or inequalities, we mean

all the terms on the right hand side of the last equality or inequality sign in the string.

Similarly, when we say “on the LHS,” we mean all the terms to the left of the very first

equality or inequality sign in the string of equalities and inequalities. We have tried to avoid

saying “on the nth line” when any of the previous mathematical “lines” splits into more than

one typographic line, but if we have, “line” refers to the mathematical, not typographic, line.

We have tried to give extensive cross references for each time we use a result or estimate.

We tend to refer to equation numbers, rather than propositions, since it seems that these

will be easier to find as cross references. When we refer to an equation number as part of

a proposition, we are of course referring to the whole proposition, including any conditions

assumed.

When we are deriving estimates, we sometimes use the cross references within our equa-

tions, e.g.:

f 6 g

6 h
(12)

and
h . j + f

. j + (12)

. j + h.

(13)

This means (12) is used to obtain (13). We hope this will help the reader locate the previous

estimate or estimates.

8



In several of our more complicated estimates, we will split terms up f = I + II and then

I = I1 + I2, I1 = I11 + I12, etc. Such notation will be local to each chapter. There is an

ambiguity between the use of I as a placeholder, its use as the identity operator, and its use

as I := [−1, 1]. It should be clear from the context which one is being used.

1.6 Function Spaces and Norms

We introduce here the function spaces and norms we will use. We work with functions f(·, t)
defined on I = [−1, 1]. Except when necessary to avoid ambiguity, we neglect to write the

time variable.

We say f ∈ Ck(J), J = (−1, 1) or [−1, 1], if for every 0 6 l 6 k, ∂lxf is a continuous

function on the interval J . We say f ∈ Ck(S1) (i.e., periodic Ck) if for every 0 6 l 6 k,

∂lxf ∈ C0[−1, 1] and ∂lxf(1) = ∂lxf(−1). (∂lxf at the end points 1 or −1 is defined to be

either the left- or right-sided derivative.) Note in particular that saying f ∈ C0(S1) implies

that f |∂ = 0.

Let p > 1. We define our Lp spaces by the norms

‖f‖Lp := ‖f‖Lp(I) :=

(∫
[−1,1]

|f |p
)1/p

(14)

(and analogously for p = ∞). Note that f ∈ C1(−1, 1) and f ′ ∈ Lp(I) doesn’t imply

f(1) = f(−1).

We will sometimes deal with weighted Lp spaces. We write

‖f‖Lp(ω) = ‖f‖Lp(ωdx) :=

(∫
I

|f |p ω(x)dx

)1/p

(15)

for weights ω > 0.

Whenever we write Lp, we will be referring to Lp(I), in the spatial variable. Similarly,

whenever we write an integral, if the domain is not specified, it is I = [−1, 1]. When we

prove our estimates for the Hilbert transform in terms of the estimates for the transform on

R, we will use Lp(I) and Lp(R) to distinguish domains. For weighted Lp spaces, we always

write Lp(ω), where ω is the weight function.

Note that if f ∈ C0(S1), with f ′ ∈ Lp, then if we extend f periodically to (−3, 3), the

weak derivative of the extended function is the periodic extension of f ′ to (−3, 3) and is in

9



Lp(−3, 3).8

We define the homogeneous half-derivative space Ḣ1/2 by the norm

‖f‖Ḣ1/2 :=

(
π

8

∫∫
I×I

|f(α′)− f(β′)|2

sin2(π
2
(α′ − β′))

dα′dβ′

)1/2

. (18)

We do so initially for f ∈ Ck(S1) for large enough k, and then complete the norm. By

Hardy’s inequality (217) below, the definition (18) above makes sense for f ∈ C0(S1) with

f ′ ∈ L2.

For our Hilbert transform in the periodic setting, we will need to define the principal

value, which we do using the following distance function. For x, y ∈ I, we define

dS1(x, y) := min(|x− y| , |x− y + 2| , |x− y − 2|). (19)

This is a periodic distance that ensures that if, say, x is close to −1 and y is close to 1 then

dS1(x, y) is small. We then write

Iε = Iε(α
′) := {β′ ∈ I : dS1(α′, β′) > ε} (20)

and

(I × I)ε := {(α′, β′) ∈ I × I : dS1(α′, β′) > ε} . (21)

We then define

pv

∫
I

f(α′, β′)dβ′ := lim
ε→0

∫
Iε(α′)

f(α′, β′)dβ′. (22)

In almost all circumstances, except where there is ambiguity, we will simply write Iε instead

8To see this, let f ∈ C0(R), and assume that f ′ is the weak derivative of f on (0,∞) and on (−∞, 0) and
that f ′ is in Lp(R). Let g be the distributional derivative of f on R. Then

∫
R gϕ = −

∫
R fϕ

′ for all ϕ ∈ C∞
compactly supported. It suffices to show that g = f ′ on R. For any ε > 0, let ψε(x) = ψ(ε−1x) be a C∞

function, supported in (−ε, ε), and equal to 1 on (−ε/2, ε/2). Then∫
R
f ′ϕ =

∫
R
f ′ϕψε +

∫ ∞
0

f ′ϕ(1− ψε) +

∫ 0

−∞
f ′ϕ(1− ψε). (16)

The first term goes to 0 as ε→ 0 since f ′ ∈ Lp. The second term is∫ ∞
0

f ′ϕ(1− ψε) = −
∫ ∞
0

fϕ′(1− ψε) +

∫ ε

0

fϕε−1ψ′(ε−1·). (17)

As ε→ 0 this goes to −
∫∞
0
fϕ′− f(0)ϕ(0) because f is continuous. Similarly, as ε→ 0, the third term goes

to −
∫ 0

−∞ fϕ′ + f(0)ϕ(0). This proves g = f ′ on R.
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of Iε(α
′), since it will be clear from the integral which is the variable of integration.
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Chapter 2

The Lagrangian Framework

2.1 The Geometry and the Framework

We now introduce a Lagrangian parametrization of the free surface Σ(t). Since we are in

two dimensions, we will often work in complex coordinates (x, y) = x+ iy. We determine a

parametrization

z(α, t) = x(α, t) + iy(α, t) (23)

for α ∈ I := [−1, 1] by

zt(α, t) = v(z(α, t), t). (24)

We choose our initial parametrization to be in arc length coordinates:

|zα(α, 0)| ≡ 1. (25)

Note that in these Lagrangian coordinates ztt is the material derivative forming the LHS of

the Euler equation (1). Along the free surface, therefore, the Euler equation (1) is

ztt + i = −∇P. (26)

The incompressibility and irrotationality conditions (2) and (3) imply that the conjugate

velocity is holomorphic; therefore zt is the boundary value of a holomorphic function in

the fluid region. Through the remainder of the dissertation, except when there’s a risk

of confusion, we will slightly abuse notation and say that a function f on the surface is

“holomorphic” (or anti-holomorphic); what we mean, precisely, is that it is the boundary

12



value of a function that is holomorphic (or anti-holomorphic) in the fluid region.9

2.2 Derivation of the Surface Equation

By condition (4), we know that ∇P is orthogonal to the free surface. Since zα is tangent to

the free surface, izα is normal. We can therefore rewrite our main equation as

ztt + i = iazα, (27)

where

a = −∂P
∂n

1

|zα|
∈ R, (28)

for ∂P
∂n

the outward-facing normal derivative. Although z will not of course remain an arc

length parametrization, we will show in §6.2 that, so long as our energy is finite,

0 < c1 6 |zα| 6 c2 <∞. (29)

Therefore, for the Taylor stability criterion, we can focus on a instead of −∂P
∂n

, and we will

henceforth refer to either a or −∂P
∂n

as the Taylor coefficient. Recall that in [Wu97] it was

essential to show the strong Taylor sign criterion, which we can state in terms of a as

a > c0 > 0. Here we will not be lucky, since we will only have a > 0.

Indeed, since ∇P is orthogonal to the free surface, we have, treating complex numbers

as vectors in R2,

0 = 〈−∇P, zα〉 = 〈(ztt + i), zα〉, (30)

so

xttxα = −yα(ytt + 1). (31)

Therefore,
yα
xα

=
−xtt
ytt + 1

. (32)

Along the wall, we know that xt ≡ 0 by (6), so we have xtt ≡ 0. Observe that the angle ν

9As will be clear from §3.3, it’s important that these holomorphic functions be periodic as well (and,
usually, that they go to zero as y → ∞). When we speak of something being “holomorphic” in this sense,
we implicitly are requiring that it be periodic as well.
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between the water surface and the wall x = −1 is given by

tan ν =
xα
−yα

, (33)

so

ν = arctan

(
xα
−yα

)
= arctan

(
ytt + i

xtt

)
. (34)

If (ytt + i)/xtt is infinite, then the angle must be 90◦. Therefore, the only possible way for

the angle of the water surface with the wall to be other than a right angle is if the numerator

ytt + 1 is zero at the corner. This implies that a = 0 at the corner.

We will prove below, in §3.7.1, that a > 0.10 Because a is non-negative, we can therefore

conclude that

a =
|ztt + i|
|zα|

. (35)

We note that (27) and (35) imply that

ztt + i

|ztt + i|
= i

zα
|zα|

ztt − i
|ztt − i|

= −i zα
|zα|

.
(36)

2.3 The Quasilinear Equation

We henceforth focus on the equations on the free surface.11 As in [Wu97] and following

works, we differentiate the basic equation (27) with respect to time and take conjugates,

turning it into the quasilinear equation

zttt + iaztα = −iatzα, (37)

where we continue to have zt the boundary value of a holomorphic function. This is the

basic equation we will work with throughout the dissertation.

The holomorphicity of zt implies that a∂α can be written as a∂αH, where H is the Hilbert

transform with respect to the free surface Σ(t).12 Because i∂αH is a nonnegative operator, a

10Equation (185) in §3.7.1 uses the Riemann mapping to give a precise correspondence between points
where a = 0 and points where there is a singularity on the interface.

11We may solve for the velocity on Ω(t) from its boundary values (including the condition that it goes to
zero as y → −∞), and then solve for the pressure from the velocity.

12This Hilbert transform has kernel 1
2izβ(β, t) cot(π2 (z(α, t)− z(β, t))).
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natural positive energy can be defined.

The holomorphicity of zt also implies that the RHS is lower-order. In [Wu99] and [Wu09],

coordinate-independent formulas for the RHS were derived, using the invertibility of the

double-layer potential. We will instead follow the original approach of [Wu97], relying on

the Riemann mapping version of the equation to derive the RHS. We do so in §3.7.2.

2.4 Boundary Behavior and the Derivative Dα

Because we are working on a compact domain, we will have to worry about boundary terms

when integrating by parts.13 Indeed, it will be critical that various potentially problematic

boundary terms either disappear or can be controlled. For this reason, we need to take care

in specifying what the boundary properties of our various functions are.

Our hope is that we are dealing with functions f(α, t) that satisfy

f |∂ := f(1, t)− f(−1, t) = 0. (38)

The key property of our basic function zt = xt− iyt, which has real part odd and imaginary

part even, is that the real part xt is nonetheless zero at the corners, by (6). Therefore,

zt|∂ = 0. (39)

Because this boundary difference is constant over time, (39) implies that

ztt|∂ = 0. (40)

Also, this doesn’t change under conjugation, so

zt|∂ = 0 (41)

and

ztt|∂ = 0. (42)

Unfortunately, periodic boundary behavior is not preserved under spatial differentiation.

13The issue arises as well in certain commutators of the Hilbert transform, where a failure of boundary
agreement corresponds to a delta function in the derivative, when treating the domain as periodic.
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Indeed, although the operator

∂α = xα∂x + yα∂y (43)

simply flips parity (because xα is even and yα is odd, and ∂x flips parity while ∂y preserves

parity), there’s no reason for it to preserve the periodicity. Thus, ∂αzt should have real part

even and imaginary part that’s odd but not necessarily zero at the boundary.

The key observation is that the conjugate velocity v is both holomorphic and periodic

in the domain Ω(t), since v(1, y) = v(−1, y) for all y. For such periodic and holomorphic

functions, ∂y preserves both periodicity and holomorphicity.

Therefore, if we choose a spatial derivative to apply to zt on Σ(t) that corresponds to ∂y

inside the domain, we will preserve periodic boundary behavior and holomorphicity. Note

that for holomorphic functions ∂z = −i∂y. We therefore look for the derivative on the surface

Σ(t) that corresponds to ∂z inside the domain.

This derivative is

Dα :=
1

zα
∂α. (44)

Indeed, if g(α, t) = G(z(α, t), t), and G is holomorphic, then

∂αg = (Gz ◦ z)zα (45)

so

Dαg = (∂zG) ◦ z = (−i∂yG) ◦ z. (46)

Thus Dk
αg is the boundary value of the function ∂kzG and therefore is periodic for any k > 1,

so long as G is periodic and holomorphic.

We may therefore conclude that

Dk
αzt
∣∣
∂

= 0, for any k > 0. (47)

This suggests using Dα as the main derivative for our energy. In addition to preserving

periodic boundary behavior and preserving holomorphicity, it transforms well under the

Riemann mapping, to be discussed in the next chapter.

We note that (47) implies that

∂tD
k
αzt
∣∣
∂

= 0, (48)

16



Dk
αzt

∣∣∣
∂

= 0, (49)

and

∂tDk
αzt

∣∣∣
∂

= 0. (50)

We caution that this periodic boundary behavior does not necessarily hold for Dk
αztt or

Dk
αzt, because the holomorphicity is crucial and disappears under differentiation by t or

conjugation.14

We do, however, have

<Dαzt|∂ = 0. (51)

This will be used in §8.2. Here, the < is the savior. Note that <Dαzt is even and =Dαzt is

odd; this is because Dα flips the parity of the real and imaginary parts, and <zt is odd and

=zt is even. Therefore, taking conjugates, we know that < ztα
zα

is even and = ztα
zα

is odd. We

write

<(Dαzt) = <
(
zα
zα

ztα
zα

)
=

(
<zα
zα

)(
<ztα
zα

)
−
(
=zα
zα

)(
=ztα
zα

)
.

(52)

We calculate that
zα
zα

=
xα − iyα
xα + iyα

xα − iyα
xα − iyα

=
x2α − y2α − 2ixαyα

x2α + y2α
.

(53)

Because xα is even and yα is odd, we conclude that < zα
zα

is even and = zα
zα

is odd. Therefore,

each of the terms on the RHS of (52) are even. This concludes the proof of (51).

We will defer the remaining discussions of boundary properties to §3.4 in the chapter on

the Riemann mapping.

14Indeed, for g the boundary value of an antiholomorphic function, Dαg = i zαzα ∂yg, as can be calculated
using the antiholomorphic Cauchy-Riemann equations.
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Chapter 3

The Riemann Mapping Version

We now introduce a version of the water wave equations using the Riemann mapping to

flatten out the curved free interface.15 The Riemann mapping version of the equations

present certain advantages. Because we are working on a flat domain, our Hilbert transform

is now the traditional Hilbert transform H defined by

Hf(α′) :=
1

2i
pv

∫
I

cot(
π

2
(α′ − β′))f(β′)dβ′. (54)

(The cotangent kernel appears instead of the 1
x−y kernel because we are on a periodic domain.)

Because Hf ∈ iR for f real-valued, this allows us to invert the operator (I − H) on purely

real (resp., purely imaginary) functions by taking real (resp., imaginary) parts. This is far

simpler than the approach in Lagrangian coordinates used by [Wu99] in three dimensions,16

where the Hilbert transform H is complex-valued, and (I − H) must be inverted using the

double-layer potential.

The challenge with using the Riemann mapping in our problem is that the non-trivial

angle at the corner and the singularity in the middle of the interface creates singularities

in the Riemann mapping. This differs from previous work (e.g., [Wu97]), where there were

no such singularities. On the other hand, the Riemann mapping can be helpful in that it

gives us heuristic information about the nature of our singularities. We discuss this further

in §11.2.

15The idea of using Riemann mapping to study the well-posedness of 2-d water waves dates back to [Wu97].
16Note that there is no Riemann mapping in three dimensions.
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Figure 3: The Riemann Mapping. The Riemann mapping on the reflected domain.

3.1 The Riemann Mapping

We begin by defining our mapping.

Proposition 1 (Riemann Mapping Theorem). Let Ω0(t) ⊂ [0, 1] × (−∞, c) be the unre-

flected fluid domain. Then there exists a unique Riemann mapping Φ0 :
◦
Ω0(t) →

◦
P−0 :=

{(x, y) : x ∈ (0, 1), y < 0} that extends continuously to the boundaries and sends the two

upper corners to (0, 0) and (1, 0) and ∞ to ∞ (i.e., = limy→−∞Φ0(x+ iy) = −∞).

We have uniqueness by specifying where three points go. The continuity of the extension

is due to Carathéodory; for full details, see [GK02], Theorem 13.2.3.

We further extend this Riemann mapping by Schwarz reflection to a (unique) map

Φ : Ω(t)→ P− := {(x, y) : x ∈ [−1, 1], y 6 0} (55)

on the reflected domain including boundaries; henceforth, this will be our definition of the

Riemann mapping Φ. (See Figure 3.)

3.2 The Riemannian Coordinates and Notation

We now define the Riemann mapping parametrization of our problem. We previously defined

our Lagrangian parametrization z(α, t) : I → Σ(t). We define a change of coordinates

h(α, t) := Φ(z(α, t), t) : I → I

h(α, t) : α 7→ α′.
(56)
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We will use α′ and β′ for the variables in the Riemannian coordinates (on the flattened

domain) and α and β for the variables in the Lagrangian coordinates (on the curved domain).

We define

Z(α′, t) := z ◦ h−1(α′, t) = z(h−1(α′, t), t), (57)

where h−1 is defined by

h(h−1(α′, t), t) = α′. (58)

We observe that in the new coordinates

∂α′(f ◦ h−1) =
fα
hα
◦ h−1. (59)

We write

Zt := zt ◦ h−1;Ztt := ztt ◦ h−1 (60)

and

Z,α′ = ∂α′Z =
zα
hα
◦ h−1;Zt,α′ =

ztα
hα
◦ h−1;Ztt,α′ :=

zttα
hα
◦ h−1, (61)

and likewise for conjugates. (Observe that when using the subscript notation, a t subscript

always refers to the time derivative in Lagrangian coordinates and precedes any ,α′ , which

refers to a derivative in Riemannian coordinates.)

Observe that Z = z ◦ h−1 = Φ−1. Therefore

Z,α′(α
′, t) = ∂α′(Φ

−1(α′, t)) (62)

and
1

Z,α′
= Φz ◦ Z. (63)

Also, since Φ(Φ−1(α′, t), t) = α′, we have (Φz ◦ Z) · (Φ−1)t + Φt ◦ Z = 0, and therefore

(Φ−1)t = (−Z,α′)(Φt ◦ Z). (64)

We write

A := (ahα) ◦ h−1 (65)

and

At := (athα) ◦ h−1. (66)
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Observe that our derivative Dα := 1
zα
∂α behaves well under the change of variables:

(Dαf) ◦ h−1 =
1

Z,α′
∂α′(f ◦ h−1). (67)

We therefore define

Dα′ :=
1

Z,α′
∂α′ . (68)

3.3 The Hilbert Transform H

We now introduce the Hilbert transform in the Riemannian coordinates.

The Hilbert transform Hf(x) := pv
∫ f(y)

x−ydy on R relates the boundary values of the real

and imaginary parts of a holomorphic function on the upper half-plane. We will use a slight

variant of this Hilbert transform. Our Hilbert transform works in the periodic rather than

infinite domain, so the 1
x−y kernel is replaced by a cotangent kernel. We also normalize our

Hilbert transform differently: we choose an imaginary normalization of our Hilbert transform

H so that Hf = f + c for holomorphic functions, and we have a different sign because the

physical nature of the water wave problems means we work in the lower rather than upper

half-plane.

We define our Hilbert transform for α′ ∈ [−1, 1] by

Hf(α′) :=
1

2i
pv

∫
I

cot(
π

2
(α′ − β′))f(β′)dβ′ =

1

2i
lim
ε→0

∫
Iε

cot(
π

2
(α′ − β′))f(β′)dβ′. (69)

(Recall from §1.6 that Iε = {β′ ∈ I : dS1(α′, β′) > ε}, where dS1 is a periodic distance for

I.)

We initially define this for functions f ∈ C0(S1) ∩ C1[−1, 1]. Then,

1

2i
pv

∫
I

cot(
π

2
(α′ − β′))f(β′)dβ′ =

1

2i
pv

∫
I

cot(
π

2
(α′ − β′))(f(β′)− f(α′))dβ′

=
1

2i

∫
I

cot(
π

2
(α′ − β′))(f(β′)− f(α′))dβ′,

(70)

where the integral makes sense without the principal value. (We’ve used the fact that∫
Iε

cot(π
2
(α′ − β′))dβ′ = 0 for any α′ in the first line.) We then extend our definition to Lp

by the Lp → Lp boundedness of H for 1 < p <∞:
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Proposition 2. Let 1 < p <∞. Then there exists Cp > 0 such that for all f ∈ Lp

‖Hf‖Lp 6 Cp ‖f‖Lp . (71)

Proof. This is a classical result. We present a proof for the sake of completeness.

We begin by proving the result for f ∈ C0(S1) ∩ C1[−1, 1]. Then by the density of

C0(S1) ∩ C1[−1, 1] in Lp the result holds for all f ∈ Lp.
We could prove our estimate directly for our cotangent kernel, but instead we will simply

show how it follows from the result on R, via the classical identity

π

2
cot(

π

2
x) =

∑
l∈Z

1

x+ 2l
. (72)

Here, and in any remaining use of these sums, the infinite summation is summable when

added symmetrically:

∑
k∈Z

1

x+ 2k
= lim

N→∞

∑
|k|6N

1

x+ 2k

= lim
N→∞

(
1

x
+
∑

16k6N

1

x+ 2k
+

1

x− 2k

)

= lim
N→∞

(
1

x
+
∑

16k6N

2x

x2 − 4k2

)
.

(73)

We write

Hf(α′) =
1

2i
pv

∫
I

cot(
π

2
(α′ − β′))f(β′)dβ′

=
1

2i
pv

∫
I

π

2

∑
l∈Z

1

(α′ − β′) + 2l
f(β′)dβ′.

(74)

We now split into the cases |l| 6 1 and |l| > 1. For l = 0, we estimate∥∥∥∥pv

∫
I

1

(α′ − β′)
f(β′)dβ′

∥∥∥∥
Lp(I)

=

∥∥∥∥pv

∫
R

1

(α′ − β′)
χI(β

′)f(β′)

∥∥∥∥
Lp(I)

6

∥∥∥∥pv

∫
R

1

(α′ − β′)
χI(β

′)f(β′)

∥∥∥∥
Lp(R)

. ‖χIf‖Lp(R)
= ‖f‖Lp(I) ,

(75)
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where we have used the Lp boundedness of the Hilbert transform H on R.

For |l| = 1, by periodical extending f to (−3, 3) we have the same estimate.

For |l| > 1, by adding symmetrically, we have

∑
|l|>1

1

(α′ − β′) + 2l
=
∑
l>1

(
1

(α′ − β′) + 2l
+

1

(α′ − β′)− 2l

)

=
∑
l>1

(
2(α′ − β′)

(α′ − β′)2 − 4l2

)
=: k(α′, β′).

(76)

Observe that since |α′ − β′| 6 2, there exists a constant C > 0 so that

|k(α′, β′)| 6 C (77)

for any α′, β′. Therefore, ∣∣∣∣∫
I

f(β′)k(α′, β′)dβ′
∣∣∣∣ 6 C

∫
I

|f(β′)| (78)

and so ∥∥∥∥∫
I

f(β′)k(α′, β′)dβ′
∥∥∥∥
Lp(I)

6 ‖f‖Lp(I) (79)

by Jensen’s. Adding up the parts gives the inequality.

We observe that for any constant c,

Hc = 0. (80)

We now present an important proposition characterizing the boundary value of periodic

holomorphic functions on [−1, 1]× (−∞, 0).

Proposition 3. Let g ∈ Lp for some p > 1. Then

(I −H)g = c0 (81)

if and only if g is the boundary value of a holomorphic function G on [−1, 1] × (−∞, 0)

satisfying G(−1, y) = G(1, y) for all y < 0 and G(x, y) → c0 as y → −∞. Moreover,

c0 = −
∫
I
g.

Proof. We reduce this to the classical result for bounded domains.
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Let U be a C1 bounded domain, and let ∂U be parametrized by ζ(α), for α ∈ [−1, 1]. Let

f : ∂U → C, f ∈ Lp(∂U) for some p > 1. It is a well-known result that f is the boundary

value of a holomorphic function in U if and only if

f(ζ(α)) =
1

πi
pv

∫
f(ζ(β))ζ ′(β)

ζ(β)− ζ(α)
dβ. (82)

(Here the RHS is the Hilbert transform for the domain U .)

Let Ψ be the holomorphic function from (−1, 1)× (−∞, 0) to the unit disc given by

Ψ(ξ) = e−iπξ, (83)

with the inverse

Ψ−1(ζ) =
i

π
log ζ. (84)

(This is the Riemann mapping from (−1, 1) × (−∞, 0) to the unit disc minus a slit; things

will be well-defined on this slit since G is periodic.)

The function g is the boundary value of a holomorphic function G on [−1, 1]× (−∞, 0)

satisfying the periodic boundary and limit conditions if and only if (g ◦Ψ−1) is the boundary

value of a holomorphic function on the disc with (G ◦Ψ−1)(0) = c0.

Consider a parametrization of the unit circle by

ζ(α′) = e−iπα
′
. (85)

By (82), g ◦Ψ−1 is the boundary value of a holomorphic function on the unit disc if and only

if (
g ◦Ψ−1

)
(ζ(α′)) =

1

πi
pv

∫
I

(g ◦Ψ−1) (ζ(β′))ζ ′(β′)

ζ(β′)− ζ(α′)
dβ′. (86)
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We expand this out

g(α′) = g

(
i

π
log(e−iπα

′
)

)
=
(
g ◦Ψ−1

)
(ζ(α′))

=
1

πi
pv

∫
I

(g ◦Ψ−1) (ζ(β′))ζ ′(β′)

ζ(β′)− ζ(α′)
dβ′

=
1

πi
pv

∫
I

g(β′)
−iπe−iπβ′

e−iπβ′ − e−iπα′
dβ′

= − pv

∫
I

g(β′)
e−iπβ

′

e−iπβ′ − e−iπα′
dβ′

= pv

∫
I

g(β′)
1

1− eiπ(β′−α′)
dβ′

= pv

∫
I

g(β′)
1− cos(π (β′ − α′)) + i sin(π(β′ − α′))

2(1− cos(π(β′ − α′)))
dβ′

=
1

2

∫
I

g(β′)dβ′ +
i

2
pv

∫
g(β′)

1

tan(π
2
(β′ − α′))

dβ′

= −
∫
I

g +
1

2i
pv

∫
I

g(β′) cot(
π

2
(α′ − β′))dβ′

= −
∫
I

g + Hg,

(87)

where we have used the trigonometric identities

1

1− eix
=

1− cos(x) + i sin(x)

2(1− cos(x))
(88)

and
sin(x)

(1− cos(x))
=

1

tan(x/2)
. (89)

By the mean value theorem, c0 = −
∫
I
g.

Proposition 4. Let f ∈ Lp for some p > 1. Then

H2f = f −−
∫
f. (90)

In particular, H2 = I on mean-zero functions.

Proof. By replacing f with f − −
∫
f , it suffices to prove H2 = I when f is mean zero. This
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follows from the Fourier series representation of H, since Ĥf = − sgn(n) · f̂ , where sgn is the

signum function.17

Proposition 5 (Adjoint of H). Let f ∈ Lp, g ∈ Lq, where 1
p

+ 1
q

= 1, 1 < p, q <∞. Then∫
f(Hg) = −

∫
(Hf)g. (91)

Proof. Formally, this is immediate by Fubini; the only subtlety is handling the principal

value condition correctly. We begin by assuming a priori that f, g ∈ C1(S1). Then∫
f(α′)(Hg(α′))dα′ =

1

2i

∫
f(α′) pv

∫
cot(

π

2
(α′ − β′))g(β′)dβ′dα′

= lim
ε→0

1

2i

∫
I

∫
Iε(α′)

f(α′) cot(
π

2
(α′ − β′))g(β′)dβ′dα′

= lim
ε→0

1

2i

∫
I

∫
Iε(β′)

f(α′) cot(
π

2
(α′ − β′))g(β′)dα′dβ′

=
1

2i

∫
g(β′) pv

∫
cot(

π

2
(α′ − β′))f(α′)dα′dβ′

= −
∫
g(β′)(Hf(β′))dβ′.

(92)

Here, to justify the interchange of limits and integration, we use Lebesgue dominated con-

vergence theorem: because f ∈ L∞ and g ∈ C1(S1),
∣∣∣f(α′)

∫
Iε(α′)

g(β′) cot(π
2
(α′ − β′))dβ′

∣∣∣ 6
C > 0 uniform in ε,18 and similarly when we change the limits the second time, with f and

g reversed. Note that there were no issues in applying Fubini because that was done when

dS1(α′, β′) > ε.

We conclude by using the denseness of C1(S1) in Lp and Lq to generalize to arbitrary

f ∈ Lp, g ∈ Lq.

We define the following projection operators:

PAf :=
(I −H)

2
f ;PHf :=

(I + H)

2
f (93)

We will refer to PA as the “antiholomorphic projection” and PH as the “holomorphic projec-

tion.” PH (respectively PA) projects any mean-zero function onto a part that is the boundary

value of a periodic holomorphic (respectively, antiholomorphic) function in [−1, 1]× (−∞, 0)

17See, for example, [Kat04], for details.
18We again use the trick of rewriting g(β′) = g(β′)− g(α′) and then difference quotient estimates.
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with limit 0 as y → −∞. Note that if a function is the boundary value of an antiholomorphic

function in [−1, 1]×(−∞, 0), it is the boundary value of a holomorphic function in the upper

space [−1, 1]× (0,∞).

Proposition 6. Let f ∈ Lp for some p > 1. Then

P2
Af = PAf −

1

4
−
∫
f,P2

Hf = PHf −
1

4
−
∫
f (94)

and

PAPHf =
1

4
−
∫
f ;PHPAf =

1

4
−
∫
f. (95)

Proof. We can prove (94) easily by (90):

P2
Af =

(I2 + H2)− 2H
4

f = PAf −
1

4
−
∫
f. (96)

The proof for PH is analogous.

To prove (95) we again expand and use (90):

PAPHf =
(I2 −H2)

4
f =

1

4
−
∫
f, (97)

and analogously for PHPA.

Proposition 7. Let f ∈ Lp, g ∈ Lq for 1
p

+ 1
q

= 1, 1 < p, q <∞.Then∫
(PAf)g =

∫
f(PHg). (98)

Proof. This is immediate by the adjointness property (91).

Proposition 8. Let f ∈ Lp, g ∈ Lq for p > 1, q > 1, 1
p

+ 1
q
< 1. Then

PA {(PHf)(PHg)} =
1

2
−
∫
{(PHf)(PHg)} =

1

2
−
∫
{f(PAPHg)} =

1

8

(
−
∫
f

)(
−
∫
g

)
. (99)

Proof. Note that our assumptions ensure that the product (PHf)(PHg) ∈ Lp for some p > 1.

By (95) and Proposition 3, PHf and PHg are the boundary values of holomorphic functions.

Therefore, their product is the boundary value of a holomorphic function, so by Proposition

3 again, we have the first equality. The second equality holds by (98), and the third by

(95).
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We also note the following commutators:

Proposition 9. Let f ∈ C0[−1, 1] ∩ C1(−1, 1) with f ′ ∈ Lp for some p > 1.19 Then

if f |∂ = 0, then [∂α′ ,H]f = 0. (100)

If f |∂ 6= 0, then

[∂α′ ,H]f = − 1

2i
cot(

π

2
(α′ − β′))f(β′)

∣∣∣∣
∂

(101)

in L2(ω2) for any weight ω satisfying ω ∈ L∞, ∂α′ω ∈ L2.

This holds in particular for ω = 1

|Z,α′ | , since we will show that 1
Z,α′
∈ L∞, ∂α′ 1

Z,α′
∈ L2 in

our energy.

Proof. Formally, these follow immediately by integration by parts. The only subtlety is in

justifying the formal derivation rigorously.

We begin by showing (100). We show this assuming initially that f ∈ C2(S1). By change

of variables and periodicity, we can write

Hf =
1

2i

∫
I

cot(
π

2
β′)(f(α′ − β′)− f(α′))dβ′. (102)

We have

∂α′Hf =
1

2i
lim
h→0

∫
I

cot(
π

2
β′)

(f(α′ − β′ + h)− f(α′ − β′))− (f(α′ + h)− f(α′))

h
dβ′. (103)

If we can bring the limit inside the integral we will be done, since that is H∂α′f . Therefore,

it suffices to show that the integrand is bounded on I, independent of h, so that we may use

the Lebesgue dominated convergence theorem. We rewrite the integrand as

(f(α′ − β′ + h)− f(α′ + h)) cot(π
2
β′))− (f(α′ − β′)− f(α′)) cot(π

2
β′)

h

=
g(α′, β′, h)− g(α′, β′, 0)

h
,

(104)

where

g(x, y, z) := (f(x− y + z)− f(x+ z)) cot(
π

2
y). (105)

19Recall from §1.6 that f ′ ∈ Lp allows the possibility for f to differ at ±1.
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By the mean value difference quotient estimate for complex-valued functions (see (213)

below), (104) is universally bounded by ‖gz(α′, β′, ·)‖L∞ . We estimate

|gz| =
∣∣∣∣(f ′(x− y + z)− f ′(x+ z))

y
y cot(

π

2
y)

∣∣∣∣
. ‖f ′′‖L∞ ,

(106)

where we have used the fact that y cot(π
2
y) is in L∞(−1, 1). This completes the proof

that [∂α′ ,H]f = 0 for f ∈ C2(S1). By distribution theory, this holds for (C2(S1))′, where

derivatives are interpreted periodically. If f ∈ C0(S1) with f ′ ∈ Lp, the periodic derivative

coincides with the derivative on I, so [∂α′ ,H]f = 0 in the non-periodic sense.20

To show (101), we begin by rewriting f(α′) = (f− f |∂
2
α′)+

f |∂
2
α′. Because we have shown

(100), it remains only to show that

[∂α′ ,H]α′ = − 1

2i
cot(

π

2
(α′ − β′))β′

∣∣∣∣
∂

(107)

in L2(ω2).

Note that [∂α′ ,H]α′ = ∂α′Hα′−H(∂α′α
′) = ∂α′Hα′. (Here we are working non-periodically,

so there are no delta functions and therefore ∂α′α
′ = 1 and H1 = 0.)

Let ϕ be a smooth test function in L2(−1, 1) such that ‖ϕ‖L2 6 1 and ϕ is compactly

20We remark that this may also be shown using Fourier series, since both ∂α′ and H are multiplier operators.
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supported in (−1, 1) (so it is zero in a neighborhood of ±1). Then∫
(ϕω∂α′Hα′)dα′ =

∫ (
ϕω∂α′

1

2i
lim
ε→0

∫
|α′−β′|>ε

cot(
π

2
(α′ − β′))β′dβ′

)
dα′

=

∫ (
ϕω∂α′

1

2i
lim
ε→0

∫
|α′−β′|>ε

cot(
π

2
(α′ − β′))(β′ − α′)dβ′

)
dα′

= −
∫ (

(∂α′ (ϕω))
1

2i
lim
ε→0

∫
|α′−β′|>ε

cot(
π

2
(α′ − β′))(β′ − α′)dβ′

)
dα′

= − lim
ε→0

∫ (
(∂α′ (ϕω))

1

2i

∫
|α′−β′|>ε

cot(
π

2
(α′ − β′))(β′ − α′)dβ′

)
dα′

= lim
ε→0

∫ (
ϕω∂α′

1

2i

∫
|α′−β′|>ε

cot(
π

2
(α′ − β′))(β′ − α′)dβ′

)
dα′

= lim
ε→0

∫ (
ϕω∂α′

1

2i

∫
|α′−β′|>ε

cot(
π

2
(α′ − β′))β′dβ′

)
dα′

= lim
ε→0

∫ (
ϕω

1

2i

∫
|α′−β′|>ε

∂α′ cot(
π

2
(α′ − β′))β′dβ′

)
dα′

+ lim
ε→0

∫ (
ϕω

1

2i

(
− cot(

π

2
(α′ − β′))β′

)∣∣∣α′+ε
α′−ε

)
dα′

= lim
ε→0

∫ (
ϕω

1

2i

∫
|α′−β′|>ε

(
−∂β′ cot(

π

2
(α′ − β′))

)
β′dβ′

)
dα′

+ lim
ε→0

∫ (
ϕω

1

2i

(
− cot(

π

2
(α′ − β′))β′

)∣∣∣α′+ε
α′−ε

)
dα′

= lim
ε→0

∫ (
ϕω

1

2i

∫
|α′−β′|>ε

cot(
π

2
(α′ − β′))(∂β′β′)dβ′

)
dα′

− lim
ε→0

∫ (
ϕω

1

2i

(
cot(

π

2
(α′ − β′))β′

)∣∣∣α′−ε
−1

+
(

cot(
π

2
(α′ − β′))β′

)∣∣∣1
α′+ε

)
dα′

+ lim
ε→0

∫ (
ϕω

1

2i

(
− cot(

π

2
(α′ − β′))β′

)∣∣∣α′+ε
α′−ε

)
dα′

= lim
ε→0

∫ ϕω 1

2i

∫
|α′−β′|>ε

cot(
π

2
(α′ − β′))dβ′︸ ︷︷ ︸

0

 dα′

− lim
ε→0

∫ (
ϕω

1

2i

{
cot(

π

2
(α′ − β′))β′

∣∣∣
∂

})
dα′

=

∫ (
ϕω

1

2i

{
− cot(

π

2
(α′ − β′))β′

∣∣∣
∂

})
dα′.

(108)
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Here, to justify pulling the limε→0 outside the outer integral, we use Cauchy-Schwarz; the

fact that ∂α′(ϕω) ∈ L2; and the fact that, because of ϕ’s compact support in (−1, 1), we

know that |α′ − β′| 6 c < 2 , so
∫
|α′−β′|>ε cot(π

2
(α′ − β′))(β′ − α′)dβ′ is uniformly bounded

(for each fixed ϕ), since x cot(π
2
x) ∈ C0(−1, 1). This gives the result.

Finally, we will need the following proposition.

Proposition 10. Suppose (I −H)f = −
∫
f , with f ∈ L∞, and let g be an arbitrary function

in Lp for some p > 1. Then

[f,H]g = H[f,H]g −−
∫

(fg) +

(
−
∫
f

)(
−
∫
g

)
. (109)

Proof. We begin by noting that f = PHf + 1
2
−
∫
f . Observe that

[f,H] g = fHg −H(fg)

= f(I + H)g − (I + H)(fg).
(110)

Therefore,

(I −H)[f,H]g = (I −H) {f(I + H)g − (I + H)(fg)}

= (I −H) {f(I + H)g} − (I −H)(I + H)(fg)

= (I −H)

{(
PHf +

1

2

(
−
∫
f

))
(I + H)g

}
− (I −H)(I + H)(fg)

= (I −H) {(PHf)(I + H)g}+
1

2

(
−
∫
f

)
(I −H)(I + H)g

− (I −H)(I + H)(fg)

=
1

2

(
−
∫
f

)(
−
∫
g

)
+

1

2

(
−
∫
f

)(
−
∫
g

)
−−
∫

(fg)

=

(
−
∫
f

)(
−
∫
g

)
−−
∫

(fg)

(111)

by (95) and (99).
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3.4 Boundary Properties and the Riemann Mapping

In Riemannian coordinates, we will need to check that certain functions have periodic bound-

ary behavior. By applying change of coordinates to (39), (40), (41), (42), (47), and (49), we

have

Zt

∣∣
∂

= Ztt

∣∣
∂

= Zt|∂ = Ztt|∂ = 0 (112)

and

Dk
α′Zt

∣∣
∂

= Dk
α′Zt

∣∣∣
∂

= 0 for k > 0. (113)

We list a few other boundary properties that we will need in the following. Some rely on

quantities introduced in §3.7 and could properly be put there.

We also have
1

Z,α′

∣∣∣∣
∂

= 0; (114)

this follows from (63) and the symmetry of the Riemann mapping Φ.

We also can state the following:

1

Z,α′
(±1) ≡ 0 or

{
the angle ν is 90◦ and

zα
|zα|

∣∣∣∣
∂

= 0

}
. (115)

This holds because 1
Z,α′

= 0 when ν < π
2
; otherwise, ν = π

2
and so yα(±1) ≡ 0, and thus

zα|∂ = 0.21

We will at one point need the fact that

(
Zttt + iAZt,α′

)∣∣
∂

=
{
Zttt + (Ztt + i)Dα′Zt

}∣∣
∂

= 0. (116)

This follows from the fact that each of the factors Zttt, (Ztt + i), and Dα′Zt satisfies the

periodic boundary conditions.

We will also at one point need the fact that

htα
hα
◦ h−1

∣∣∣∣
∂

= 0. (117)

This follows because h and therefore ht are odd, and ∂α flips parity.

We note that functions f satisfying f |∂ = 0 form an algebra; any product of them will

21We will see below at (183) that ν 6 π
2 .
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retain this behavior. In particular, we will often use

Zt
Z,α′

∣∣∣∣
∂

= 0, (118)

which follows from (112) and (114).

Proposition 11. Let f ∈ L2, f ′ ∈ L2 with f |∂ = 0. Then

(Hf)|∂ = 0. (119)

Proof. By the L2 boundedness of H and (100), Hf ∈ L2, (Hf)′ ∈ L2. From Sobolev embed-

dings we know that Hf is in C0[−1, 1]. Now, for f ∈ C1[−1, 1] ∩ C0(S1), we have, for all

α′ ∈ I,

Hf(α′) =
1

2i

∫
cot(

π

2
(α′ − β′))(f(β′)− f(α′))dβ′. (120)

The periodicity of cot(π
2
(α′ − β′)) in α′ gives (119). Our result for general f follows from

the density of C1[−1, 1]∩C0(S1) in H1[−1, 1]∩C0(S1) (where H1[−1, 1] is defined by norm

‖f‖H1 = ‖f‖L2 + ‖f ′‖L2) and the L2 boundedness of H.

From this proposition, we can conclude that

H
Zt
Z,α′

∣∣∣∣
∂

, PA
Zt
Z,α′

∣∣∣∣
∂

, PH
Zt
Z,α′

∣∣∣∣
∂

= 0. (121)

To apply the proposition, we rely on (i) the fact that Zt
Z,α′
∈ L2 and ∂α′

Zt
Z,α′
∈ L2, which will

be true in our regime, since Dα′Zt ∈ L∞, ∂α′ 1
Z,α′
∈ L2 when our energy is finite and we make

the a priori assumption that 1
Z,α′
∈ C0 and Zt ∈ C0; and (ii) the boundary condition (118).

Finally, we note a boundary property that will come up in §3.6. Suppose G(z, t) is a

periodic holomorphic function in Ω(t). Then

Gt(z(α, t), t)|∂ = Gt(z(h−1(α′, t), t), t)
∣∣
∂

= 0. (122)

Now, let F (z(α, t), t) = zt(α, t) be the conjugate of the velocity. Then

Ft ◦ Z|∂ = Ft(z(h−1(α′, t), t), t)
∣∣
∂

= 0. (123)
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We will show in (192) in §3.7.2 that

Ftz ◦ z = Dα(ztt − (Dαzt)zt). (124)

Note that this implies, by (122) and (113), that

Ftz ◦ z|∂ = Dα((ztt − (Dαzt)zt))|∂ = 0. (125)

We similarly have

Fttz ◦ Z|∂ = 0 (126)

and

D2
α′(Ftz ◦ Z)

∣∣
∂

= Ftzzz ◦ Z|∂ = 0. (127)

3.5 A Priori Smoothness Assumptions

For the remainder of the dissertation, we will make certain a priori smoothness assumptions

on the various quantities we are working with. What we assume is that all functions are

reasonably well-behaved locally within (−1, 1) (e.g., C0 or C1); that those functions that

don’t have singularities (due to a non-trivial angle ν) are well-behaved at the boundaries

(and are periodic to the extent that it follows from §3.4); and that those functions that do

have singularities (due to a non-trivial angle ν) at the boundaries are at least in some Lp

space for p > 1. See §11.2 for heuristic discussions of which functions have singularities.22

Thus, for example, we can assume that Dk
α′Zt ∈ C0(S1) ∩ C1(−1, 1), since Dk

α′ preserves all

good properties, but we only assume that ∂α′D
k
α′Zt ∈ Lp ∩ C0(−1, 1) for some p > 1, since

∂α′ introduces singularities and does not preserve periodic boundary behavior.

We have phrased the following in terms of singularities at the corner. For solutions with

singularities (e.g., angled crests) in the middle of the free surface, the a priori smoothness

assumptions can be adjusted accordingly.

We emphasize that we use such a priori assumptions only to justify our formal arguments;

what really matters are the norms that appear in our actual estimates, all of which we show

are finite under our energy.

22We note that those heuristics indicate that if fα ∈ L∞, then ∂α′(f ◦ h−1) ∈ L1+ε for some ε sufficiently
small, so long as the angle ν > 0.
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3.6 Holomorphic Functions and What Disappears Un-

der (I −H)

In this section, we note which of the functions we are dealing with are holomorphic—more

precisely, are the boundary values of periodic holomorphic functions—and which, further,

have mean zero and thus disappear under (I −H).

Recall from (81) that for f ∈ Lp, p > 1, (I − H)f = c0 iff f is the boundary value of a

periodic holomorphic function going to c0 as y → −∞, and, moreover, c0 = −
∫
f . Therefore,

to show that (I−H) of various functions disappears, it suffices to show that they are boundary

values of periodic holomorphic functions and to show that their means are zero.

We rely fundamentally on the following facts:

First, we have that the conjugate velocity is holomorphic, and goes to zero as y → −∞
by (7), so

(I −H)Zt = 0. (128)

Then we have three identities about the Riemann mapping. Recall that

Z,α′ = ∂α′Φ
−1(α′, t) (129)

and
1

Z,α′
= Φz ◦ Z. (130)

Both of these are clearly holomorphic. Therefore, we have

(I −H)
1

Z,α′
= −
∫

1

Z,α′
(131)

and

(I −H)Z,α′ = 1. (132)

The mean −
∫
Z,α′ = 1 by the fundamental theorem of calculus, since Z(1, t) = 1, Z(−1, t) =

−1 for all time.

Finally, we have

(I −H) {Φt ◦ Z} = −
∫
I

Φt ◦ Z. (133)

Here, we have Φt ◦ Φ−1 is holomorphic because it is the limit of holomorphic functions, and

we know that Φt is periodic by the Schwarz reflection.

35



From these facts, we will be able to deduce everything else that we need, from the

following principles:

• If (I −H)f = c and f |∂ = 0 then (I −H)∂α′f = 0, since [∂α′ ,H]f = 0 by (100).

• If (I −H)f = 0 and (I −H)g = c(t) then (I −H)(fg) = 0. Indeed, fg is the boundary

value of the product of two periodic holomorphic functions and therefore is holomorphic

and periodic. Since one of the factors goes to 0 as y → −∞, the product also goes to

0 as y → −∞.

• If (I − H)f = 0 and f |∂ = 0, then (I − H)Dα′f = 0, since (I − H)∂α′f = 0 and

(I −H) 1
Z,α′

= c.

• Therefore, if G(z, t) is a periodic holomorphic function on Ω(t) going to zero as y →
−∞, that is, if

(I −H)G(z(h−1(α′, t), t), t) = (I −H)(G ◦ Z) = 0, (134)

then (I −H)Gz(z(h−1(α′, t), t), t) = 0, since Gz ◦ Z = Dα′(G ◦ Z).

• If G(z, t) is a periodic holomorphic function on Ω(t) going to zero as y → −∞, so

(I − H)(G ◦ Z) = 0, then (I − H)(Gt ◦ Z) = 0.23 Gt ◦ Z is holomorphic, since it is

the limit of holomorphic functions. It remains to show that −
∫
Gt ◦ Z = 0. Note that

−
∫
G ◦ Z = 0 for all time. Therefore, using (64) and the fact Z = Φ−1, we have

0 =
d

dt
−
∫
G(Z(α′, t), t)

= −
∫
Gt(Z(α′, t), t) +−

∫
(Gz ◦ Z) · (Φ−1)t(α′, t)

= −
∫
Gt ◦ Z −−

∫
(∂α′(G ◦ Z)) · (Φt ◦ Φ−1).

(135)

It therefore suffices to show that the second integral is zero. To do this, we use (I −
23Note that this argument does not apply to Φt ◦ Z itself, because Φ is not periodic.
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H)∂α′(G ◦ Z) = 0, integration by parts, the adjoint property (98), and (133):

−
∫

(∂α′(G ◦ Z))Φt ◦ Φ−1 = −
∫
{PH(∂α′(G ◦ Z))}Φt ◦ Φ−1

= −
∫

(∂α′(G ◦ Z))
(
PA(Φt ◦ Φ−1)

)
= −−

∫
(G ◦ Z)∂α′

(
PA(Φt ◦ Φ−1)

)
= 0.

(136)

3.6.1 Identities

We now present the various identities. These all follow from the above principles and the

fact that these quantities have periodic boundary behavior.

(I −H)∂α′
1

Z,α′
= 0 (137)

(I −H)Dα′Zt = 0 (138)

(I −H)D2
α′Zt = 0 (139)

(I −H)D3
α′Zt = 0 (140)

(I −H)Zt,α = 0 (141)

(I −H)∂α′Dα′Zt = 0 (142)

(I −H)∂α′D
2
α′Zt = 0 (143)

(I −H)

{
1

Z,α′
Dk
α′Zt

}
= 0, k 6 2. (144)

We will write F for the conjugate velocity, so F is a periodic holomorphic function on

Ω(t) and zt(α, t) = F (z(α, t), t). By (128),

(I −H) {F ◦ Z} = 0. (145)

We will need the following statements about F :

(I −H) {Ft ◦ Z} = 0 (146)
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(I −H) {Ftt ◦ Z} = 0 (147)

(I −H) {Z,α′(Ft ◦ Z)} = 0 (148)

(I −H) {Z,α′(Ftt ◦ Z)} = 0 (149)

(I −H)Dα′(Ft ◦ Z) = 0 (150)

(I −H)D2
α′(Ft ◦ Z) = 0 (151)

(I −H)D2
α′(Ftt ◦ Z) = 0. (152)

Recall that we will show at (192) in §3.7.2 that

Ftz ◦ z = Dα(ztt − (Dαzt)zt). (153)

We begin with the basic identity

(I −H)Dα′(Ztt − (Dα′Zt)Zt) = 0. (154)

This gives:

(I −H)∂α′(Ztt − (Dα′Zt)Zt) = 0 (155)

(I −H)∂α′D
2
α′(Ztt − (Dα′Zt)Zt) = 0 (156)

(I −H)

{(
PH

Zt
Z,α′

)
∂α′D

2
α′(Ztt − (Dα′Zt)Zt)

}
= 0. (157)

We also have

(I −H)∂α′(Φt ◦ Z) = 0 (158)

(I −H)

{
(∂α′D

2
α′Zt)PH

Zt
Z,α′

}
= 0 (159)

(I −H)

{
(∂α′D

2
α′Zt)

(
PH

Zt
Z,α′

)2
}

= 0 (160)

(I −H)∂α′

(
1

Z,α′
D2
α′Zt

)
= 0 (161)

(I −H)

{(
PH
(
ZtH

(
Zt∂α′

1

Z,α′

)))
∂α′

(
1

Z,α′
D2
α′Zt

)}
= 0 (162)
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(I −H)

{(
PH
(
Zt∂α′

1

Z,α′

))2

D2
α′Zt

}
= 0 (163)

(I −H)

{
(∂α′D

2
α′Zt)

(
PH

Zt
Z,α′

)
(I + H)Dα′Zt

}
= 0. (164)

Finally, we have one, rare, equation where the mean is not zero.24 Using (99),

(I −H)

{
[(I + H)Dα′Zt]PH

[
(∂α′D

2
α′Zt)

(
PA

Zt
Z,α′

)]}
=

1

2

(
−
∫
Dα′Zt

)(
−
∫

(∂α′D
2
α′Zt)

(
PA

Zt
Z,α′

))
.

(165)

3.6.2 Mean Conditions

We have implicitly in the preceding section shown that various quantities are mean-zero, but

we don’t use that fact other than in those identities. We will at one point, though, require

an explicit mean-zero condition, to use a variant of the Sobolev inequality. This is that

−
∫

(Dα′Zt)
2dα′ = 0. (166)

We note that −
∫

(Dα′Zt) = 0 because (I − H)Dα′Zt = 0. Therefore, Dα′Zt is the boundary

value of a periodic holomorphic function going to 0 as y → −∞, so its square will also be

the boundary value of a periodic holomorphic function going to 0 as y → −∞.

3.7 The Riemann Mapping Version of the Equation

We now derive the Riemann mapping version of the equation.

We follow the approach of [Wu97], although we work with the real and imaginary parts

together instead of separating Zt = Xt + iYt into real and imaginary parts.

In this section, we present a full derivation of the RHS of the quasilinear equation in

Riemannian coordinates. We don’t end up using this derivation directly for our energy

estimates, which involve more derivatives on the RHS; instead, we will have to do those

estimates by hand, in later sections.25 Rather, the derivation in this section proves useful

24By adjointness, we can write the second mean as −
∫

(PH∂α′D2
α′Zt)

Zt
Z,α′

= −
∫
ZtD

3
α′Zt.

25Because we are using weighted derivatives Dα′ (to ensure periodic boundary behavior and prevent
singularity) we have to take more care in applying derivatives to the RHS than [Wu97] does. A particular
source of difficulty is that our derivative Dα′ is not purely real, so inverting (I −H) is more subtle.
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because it provides several key formulas, especially one that allows us to estimate the crucial

quantity at
a

. Still, it seems most natural to motivate the following calculations by writing

as if our goal were to derive the full quasilinear Riemann mapping version of the equations,

rather than just to get a technical formula for at
a

.

We note, also, that this section serves as an introduction to the techniques that we will

use in later sections to derive advantageous commutator formulas for various quantities that

we will need to control.

We begin as in the Lagrangian case by differentiating the main equation (27) with respect

to t to get

zttt − iaztα = iatzα. (167)

We now precompose both sides with h−1 to get an equation in the flattened Riemann mapping

coordinates:

Zttt − iAZt,α′ = iAtZ,α′ . (168)

(Recall that A = (ahα) ◦ h−1 and At = (athα) ◦ h−1.)
We now seek formulas for A and the RHS nonlinearity At. We will be working under the

boundary conditions of §3.4 and the a priori assumptions of §3.5.

3.7.1 A and the quantity A1

We first derive a formula for A. Historically, in [Wu97], this derivation showed that the

Taylor positivity condition would automatically hold. There is now [Wu99] a direct proof of

this using basic elliptic theory without requiring the Riemann mapping. For our purposes,

though, this original derivation here will be crucial because it introduces a quantity, A1, that

compares the degeneracy of −∂P
∂n

directly with that of the Riemann mapping and therefore

the geometry of the surface.

We begin with the conjugated form of our initial equation (27) and precompose with h−1:

Ztt − i = −iAZ ,α′ . (169)

The key observation is that Ztt − i is in some sense close to holomorphic, since Zt is holo-

morphic. Therefore, if we apply (I − H) to this, it should be “small” in some sense. If the

RHS were purely imaginary, we would be able to invert (I −H) by taking imaginary parts,

and thus get a formula for the RHS. The RHS is not purely real or imaginary, but it is if we
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multiply both sides by the holomorphic Z,α′ :

Z,α′(Ztt − i) = −iA |Z,α′ |2 . (170)

We will apply (I −H) to both sides of (170). Before we do so, we must expand out Ztt.

Let

F (z(α, t), t) := zt(α, t); (171)

note that this is the boundary value of a periodic holomorphic function. (We will use this

expansion several times in the sequel, always with this definition of F .) By the chain rule,

ztt =
d

dt
F (z(α, t), t) = (Fz ◦ z)zt + (Ft ◦ z). (172)

Recall from §2.4 that ∂z = Dα for holomorphic functions. Therefore,

Fz ◦ z =
ztα
zα
, (173)

and thus

ztt =
ztα
zα
zt + Ft ◦ z. (174)

We precompose with h−1:

Ztt =

(
Zt,α′

Z,α′

)
Zt + Ft ◦ Z. (175)

We can now write our equation (170) as

Zt,α′Zt + Z,α′(Ft ◦ Z)− iZ,α′ = −iA |Z,α′|2 . (176)

We apply (I −H) to both sides. By (141), we have

(I −H)ZtZt,α′ = [Zt,H]Zt,α′ . (177)

Therefore, by (148), (132), and (177), applying (I −H) to each side of (176) gives

[Zt,H]Zt,α′ − i = (I −H)
(
−iA |Z,α′|2

)
. (178)
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We now take imaginary parts of both sides:

A |Z,α′ |2 = =
(
−[Zt,H]Zt,α′

)
+ 1. (179)

We define

A1 := A |Z,α′ |2 = =
(
−[Zt,H]Zt,α′

)
+ 1. (180)

This is the same A1 as that in [Wu97]. It’s easy to see that =
(
−[Zt,H]Zt,α′

)
is non-negative,

by integration by parts. Indeed, if Zt = Xt + iYt, then

=(−[Zt,H]Zt,α′) = −= 1

2i

∫
(Zt(α

′)− Zt(β′)) cot(
π

2
(α′ − β′))Zt,β′dβ

′

=
1

2

∫
((Xt(α

′)−Xt(β
′))Xt,β′ + (Yt(α

′)− Yt(β′))Yt,β′) cot(
π

2
(α′ − β′))dβ′

=
1

2

∫
1

2

{
−∂β′

[
(Xt(α

′)−Xt(β
′))2 + (Yt(α

′)− Yt(β′))2
]}

cot(
π

2
(α′ − β′))dβ′

=
1

2

∫
1

2

π

2

(Xt(α
′)−Xt(β

′))2 + (Yt(α
′)− Yt(β′))2

sin2(π
2
(α′ − β′))

dβ′

> 0.

(181)

We conclude that

A1 > 1. (182)

Notice by (170) and (180) that

1

Z,α′
= i

Ztt − i
A1

. (183)

Therefore Z,α′ 6= 0, for otherwise Ztt = ∞. This shows that a non-trivial angle ν at the

corner must be < π
2
.26

Because

A1 ◦ h =
a |zα|2

hα
(184)

and
−∂P
∂n

= |zα| a =
A1 ◦ h
|Z,α′ ◦ h|

(185)

the estimate A1 > 1 gave [Wu97] a strictly positive lower bound for the Taylor coefficient

26Similarly, this shows that the interior (i.e., within the water) angle of crests in the middle of the free
surface cannot be over π.
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−∂P
∂n

. Indeed, 1
Z,α′

= Φz ◦ Z, and in the setup without singularities at the corner or in

the middle of the free surface, it is easy to see from the Riemann mapping that 0 < c0 6

|Φz ◦ Z| 6 C0 < ∞. In our situation, 1
Z,α′
→ 0 at the corner if the angle ν < π

2
.27 Control

of A1, however, is still very useful; if we can control A1 above and below, we know that

the degeneracy of −∂P
∂n

corresponds precisely to the degeneracy of the Riemann mapping.

Similarly, this shows that the degeneracy of a corresponds to that of hα; we will use these

quantities (rather than −∂P
∂n

) in the following. In any case, since 1

|Z,α′ | > 0, this proves that

the degenerate Taylor stability condition −∂P
∂n

> 0 always holds.

3.7.2 At
Now we seek a formula for the nonlinearity on the RHS of (168), At. We begin by conjugating

(168):

Zttt + iAZt,α′ = −iAtZ ,α′ . (186)

As in the previous section, we will hope that the LHS is close to holomorphic and apply

(I −H) to both sides and then invert. Here we start by multiplying both sides by Z,α′ , since

we want the RHS to be purely imaginary:

Z,α′(Zttt + iAZt,α′) = −iAt |Z,α′ |2 . (187)

We once again carefully expand the LHS. As before, let F (z(α, t), t) = zt(α, t). Again, we

have

ztt = (Fz ◦ z)zt + Ft ◦ z, (188)

so

zttt = (Fzz ◦ z)z2t + (Fzt ◦ z)zt + (Fz ◦ z)ztt + (Ftz ◦ z)zt + Ftt ◦ z

= (Fzz ◦ z)z2t + 2(Ftz ◦ z)zt + (Fz ◦ z)ztt + Ftt ◦ z.
(189)

We now solve for Fz ◦ z, Fzz ◦ z and Ftz ◦ z. Since ∂z = Dα on holomorphic functions

Fz ◦ z =
ztα
zα

= Dαzt (190)

27Similarly, 1
Z,α′

= 0 at angled crests in the middle of the free surface.
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and

Fzz ◦ z = D2
αzt. (191)

We solve for Ftz ◦ z by applying ∂z = Dα to (188):

Ftz ◦ z = Dα (ztt − (Dαzt)zt) . (192)

Therefore, by substituting (190), (191), and (192) into (189), we get

zttt = (D2
αzt)z

2
t + 2ztDα (ztt − (Dαzt)zt) + (Dαzt)ztt + Ftt ◦ z. (193)

Precomposing with h−1, we have

Zttt = (D2
α′Zt)Z

2
t + 2ZtDα′(Ztt − (Dα′Zt)Zt) + (Dα′Zt)Ztt + Ftt ◦ Z. (194)

We now go back to (187), substituting in (194) to get

Z,α′
(
(D2

α′Zt)Z
2
t + 2ZtDα′(Ztt − (Dα′Zt)Zt) + (Dα′Zt)Ztt + Ftt ◦ Z + iAZt,α′

)
= −iAt |Z,α′ |2 .

(195)

We simplify, distributing the Z,α′ and then using the identity Ztt + i = iAZ,α′ on the last

term:

(∂α′Dα′Zt)Z
2
t + 2Zt∂α′(Ztt − (Dα′Zt)Zt) + Zt,α′Ztt + Z,α′(Ftt ◦ Z) + (Ztt + i)Zt,α′

= −iAt |Z,α′ |2 .
(196)

We now apply (I − H) to both sides. Various terms will disappear on the LHS and others

will turn into commutators, due to holomorphicity. We do this term by term:

• The first term will become [Z2
t ,H]∂α′Dα′Zt by (142).

• The second term becomes 2[Zt,H]∂α′(Ztt − (Dα′Zt)Zt) (155).

• The third term and the first part of the fifth term become 2[Ztt,H]Zt,α by (141).

• The fourth term disappears, by (149).

• The second part of the fifth term disappears by (141).
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We get

[Z2
t ,H]∂α′Dα′Zt + 2[Zt,H]∂α′(Ztt − (Dα′Zt)Zt) + 2[Ztt,H]Zt,α

= (I −H)
{
−iAt |Z,α′ |2

}
.

(197)

We could continue working with this form, but two integrations by parts will give us a nicer

equation for getting our estimates. We take the first term and the second part of the second

term and integrate by parts both terms:[
Z2
t ,H

]
∂α′Dα′Zt − 2[Zt,H]∂α′

(
(Dα′Zt)Zt

)
=

1

i

∫
Zt(β

′)Zt,β′(β
′) cot(

π

2
(α′ − β′))Dβ′Zt(β

′)dβ′

− 1

2i

∫
π

2

Z2
t (α′)− Z2

t (β′)

sin2(π
2
(α′ − β′))

Dβ′Ztdβ
′

− 1

i

∫
Zt(β

′)Zt,β′(β
′) cot(

π

2
(α′ − β′))Dβ′Ztdβ

′

+
1

i

∫
π

2

Zt(α
′)− Zt(β′)

sin2(π
2
(α′ − β′))

(Dβ′Zt)Zt(β
′)dβ′.

= − 1

2i

∫
π

2

Z2
t (α′)− Z2

t (β′)

sin2(π
2
(α′ − β′))

Dβ′Ztdβ
′

+
1

i

∫
π

2

Zt(α
′)− Zt(β′)

sin2(π
2
(α′ − β′))

(Dβ′Zt)Zt(β
′)dβ′

= − 1

2i

∫
π

2

(Zt(α
′)− Zt(β′))2

sin2(π
2
(α′ − β′))

Dβ′Zt(β
′)dβ′.

(198)

This is a type of higher-order Calderon commutator, which we write as −π
2
[Zt, Zt;Dα′Zt]

(see (11)). We therefore can rewrite (197) as:

− i(I −H)
{
At |Z,α′|2

}
= 2[Zt,H]Ztt,α′ + 2[Ztt,H]Zt,α −

π

2
[Zt, Zt;Dα′Zt]. (199)

Taking imaginary parts, we get

At |Z,α′|2 = −=
(

2[Zt,H]Ztt,α′ + 2[Ztt,H]Zt,α −
π

2
[Zt, Zt;Dα′Zt]

)
. (200)
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3.7.3 Applications of the Riemann Derivation

We could now plug (179) and (200) into (168) to get the quasilinear equation in Riemannian

coordinates. Instead, though, we will focus on a different quantity. Observe that dividing

(200) by (179) we have

at
a
◦ h−1 =

At
A

=
At |Z,α′ |2

A |Z,α′ |2
=
−=

(
2[Zt,H]Ztt,α′ + 2[Ztt,H]Zt,α′ − π

2
[Zt, Zt;Dα′Zt]

)
A1

. (201)

If we want to control
∥∥at

a

∥∥
L∞

, then, because A1 > 1 by (182), it suffices to control the

numerator of the RHS (201), which we will be able to do.
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Chapter 4

Technical Details

We now present assorted technical results that we will need in our dissertation. None of the

results here are original.

4.1 Sobolev Inequalities and the Peter-Paul Trick

We present here the one-dimensional Sobolev inequality we will use in our proof. Our version

is a slight variant of the standard inequality: it includes weighted L2 spaces and allows a

factor of ε on the highest-order term.

Proposition 12 (Weighted Sobolev Inequality with ε). Let ε > 0. Then for all f ∈
C1(−1, 1) ∩ L2( 1

ω
) ∩ L2 with f ′ ∈ L2(ω),

‖f‖L∞ .
1

ε
‖f‖L2( 1

ω
) + ε ‖f ′‖L2(ω) + ‖f‖L2 (202)

for any weight ω > 0.

Furthermore,

−
∫
f 2 = 0⇒ ‖f‖L∞ .

1

ε
‖f‖L2( 1

ω
) + ε ‖f ′‖L2(ω) . (203)

The second version, (203), will give us slightly more flexibility. The condition −
∫
f 2 = 0

will actually follow from −
∫
f = 0 for f the boundary value of a periodic holomorphic function

on [−1, 1]× (−∞, 0) (see the discussion for (166)), and so is not so constraining.
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Proof. Let x ∈ (−1, 1). Then for any u ∈ C1(−1, 1) ∩ L1(−1, 1),∣∣∣∣u(x)− 1

2

∫ 1

−1
u(y)dy

∣∣∣∣ =

∣∣∣∣12
∫ 1

−1
(u(x)− u(y))dy

∣∣∣∣
6

1

2

∫ 1

−1
|u(x)− u(y)| dy

=
1

2

∫ 1

−1

∣∣∣∣∫ y

x

u′(t)dt

∣∣∣∣ dy
6

1

2

∫ 1

−1

∫ 1

−1
|u′(t)| dtdy

= ‖u′‖L1 .

(204)

Letting u = f 2, we get∣∣∣∣f 2(x)− 1

2

∫ 1

−1
f 2(y)dy

∣∣∣∣ 6 ∣∣∣∣∫ 1

−1
(f 2)′

∣∣∣∣ = 2

∣∣∣∣∫ 1

−1
ff ′
∣∣∣∣ = 2

∣∣∣∣∫ 1

−1

f√
ω

(f ′
√
ω)

∣∣∣∣ . (205)

Therefore, applying Cauchy-Schwarz and Cauchy’s inequality, we get

∥∥f 2
∥∥
L∞

.
1

2

∫ 1

−1
|f |2 +

1

ε2

(∫ 1

−1
|f |2 1

ω

)
+ ε2

(∫ 1

−1
|f ′|2 ω

)
. (206)

Taking square roots and adjusting gives inequality (202).

To get (203), we note that in (205) if −
∫
f 2 = 0, then the second term on the LHS is zero,

and the result follows.

We will once use the following “Peter-Paul” trick28 with the weighted Sobolev inequality

with ε.

Proposition 13 (Peter-Paul Trick). Let f ∈ C1(−1, 1). Suppose

‖Dαf‖L2(µ) 6 c1 + c2 ‖f‖L∞ , (207)

where µ > 0 is a weight and Dα := 1
zα
∂α. Suppose further that ‖f‖L∞ <∞. Then

‖f‖L∞ . c2 ‖f‖
L2(
|zα|2
µ

)
+ c1 + ‖f‖L2 , (208)

where the constant implicit in . is universal.

28So-called because one takes from Peter to give to Paul.
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Proof. By the weighted Sobolev inequality (202) with ω = µ

|zα|2
and then (207),

‖f‖L∞ 6 C

(
1

ε
‖f‖

L2(
|zα|2
µ

)
+ ε ‖f ′‖L2( µ

|zα|2
) + ‖f‖L2

)
= C

(
1

ε
‖f‖

L2(
|zα|2
µ

)
+ ε ‖Dαf‖L2(µ) + ‖f‖L2

)
6 C

(
1

ε
‖f‖

L2(
|zα|2
µ

)
+ ε(c1 + c2 ‖f‖L∞) + ‖f‖L2

)
.

(209)

We choose ε 6 min( 1
2Cc2

, 1), so Cεc2 6 1
2
. Subtracting Cc2ε ‖f‖L∞ from both sides, we get

1

2
‖f‖L∞ 6 C

(
1

ε
‖f‖

L2(
|zα|2
µ

)
+ εc1 + ‖f‖L2

)
, (210)

which gives desired inequality.

4.2 Derivatives and Complex-Valued Functions

Because our functions will be complex-valued, and we will often be looking at derivatives

of angular and modular parts of these functions, we note here a few elementary facts about

such functions.

Let f(α) = r(α)eiθ(α), with r, θ real-valued functions. Then

|∂α |f ||︸ ︷︷ ︸
|rα|

6 |f ′|︸︷︷︸
|rαeiθ+irθαeiθ|

(211)

and ∣∣∣∣∂α f|f |
∣∣∣∣︸ ︷︷ ︸

|iθαeiθ|

6

∣∣∣∣ f ′|f |
∣∣∣∣︸︷︷︸∣∣∣ rαeiθ+iθαreiθr

∣∣∣
. (212)

Note that the mean value theorem doesn’t apply for complex-valued functions of a real-

variable. Luckily, we still have the basic L∞ estimate for difference quotients. Indeed, if

f = u+ iv, then∣∣∣∣f(α)− f(β)

α− β

∣∣∣∣ 6 ∣∣∣∣u(α)− u(β)

α− β

∣∣∣∣+

∣∣∣∣v(α)− v(β)

α− β

∣∣∣∣ 6 ‖uα‖L∞ + ‖vα‖L∞ 6 2 ‖f ′‖L∞ . (213)
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A more subtle complication arises from the fact that we will care about controlling both

Γf and Γf , for different combinations of differential operators Γ. If we were using only pure

spatial and time derivatives ∂α and ∂t, then there would be no problem, but our weighted

derivative Dα = 1
zα
∂α poses a problem. Indeed, D2

αz = Dα1 = 0, but there is no reason to

expect D2
αz = Dα

zα
zα

to be zero. We therefore present carefully the relevant facts:

∣∣∂kαf ∣∣ =
∣∣∂kαf ∣∣ , k > 0 (indeed, conjugation commutes with ∂α) (214)

∣∣∂kt f ∣∣ =
∣∣∂kt f ∣∣ , k > 0 (indeed, conjugation commutes with ∂t) (215)

|Dαf | =
∣∣Dαf

∣∣ . (216)

It turns out we can control D2
αf by D2

αf in the appropriate weighted L2 spaces by our

energy. Because this relies on the specific terms of the energy, we will postpone this until

§6.1.

4.3 Hardy’s Inequality

We will often use Hardy’s inequality to control the L2 norm of a difference quotient.

Proposition 14 (Hardy’s Inequality). Let f ∈ C0(S1) ∩ C1(−1, 1) (and so f |∂ = 0), with

f ′ ∈ L2. Then there exists C > 0 independent of f such that for any α′ ∈ I,∣∣∣∣∫
I

(f(α′)− f(β′))2

sin2(π
2
(α′ − β′))

dβ′
∣∣∣∣ 6 C ‖f ′‖2L2 (217)

and ∣∣∣∣∫
I

(f(α′)− f(β′))2 cot2(
π

2
(α′ − β′))dβ′

∣∣∣∣ 6 C ‖f ′‖2L2 . (218)

Proof. By the fundamental theorem of calculus, for any α′, β′ ∈ [−1, 1],

f(α′)− f(β′)

α′ − β′
=

1

α′ − β′

∫ α′

β′
f ′(x)dx. (219)

(Observe that we have assumed sufficient regularity for this to be the case. We have C1

regularity inside (−1, 1), so the only issue is if α′ or β′ is ±1, which is handled by the

continuity of f in the whole domain and f ′ ∈ L2.)
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Therefore,

(∫
I

∣∣∣∣(f(α′)− f(β′))2

(α′ − β′)2

∣∣∣∣ dβ′)1/2

=

∫ ∣∣∣∣∣ 1

α′ − β′

∫ α′

β′
f ′(x)dx

∣∣∣∣∣
2
1/2

. (220)

Recall the classical Hardy inequality, which states in its more traditional form that if G(x) =
1
x

∫ x
0
g(t)dt, then ‖G‖Lp(R) 6 Cp ‖g‖Lp(R) for 1 < p <∞. This implies that∣∣∣∣∫

I

(f(α′)− f(β′))2

(α′ − β′)2
dβ′
∣∣∣∣ 6 C ‖f ′‖2L2 . (221)

To replace the (α′ − β′)2 with sin2(π
2
(α′ − β′)), we use the following classical identity:

1

sin2(π
2
α′)

=

(
2

π

)2∑
l∈Z

1

(α′ + 2l)2
, (222)

which can be obtained by differentiating (72). We begin by rewriting the LHS of (217) using

this identity: ∫
I

(f(α′)− f(β′))2

sin2(π
2
(α′ − β′))

dβ′ =

(
2

π

)2 ∫
I

∑
l∈Z

(f(α′)− f(β′))2

(α′ − β′ + 2l)2
dβ′. (223)

We split the integral into the cases where |l| 6 1 and where |l| > 2. For l = 0, we have the

result by (221); by periodic extension of f , so long as f |∂ = 0, we have the same result for

|l| = 1. (If f |∂ 6= 0 we would have a delta function in the derivative of the extended function

f .)

For |l| > 2, the denominator |α′ − β′ + 2l| > 2 |l| − 2, and so the infinite sum

∑
l∈Z,|l|>2

1

(α′ − β′ + 2l)2
=: l(α′, β′) (224)

is bounded by a universal constant. Therefore,∣∣∣∣∫
I

(f(α′)− f(β′))2l(α′, β′)dβ

∣∣∣∣ 6 ∫
I

∣∣∣∣(f(α′)− f(β′))2

(α′ − β′)2
(α′ − β′)2l(α′, β′)dβ′

∣∣∣∣
6 C ‖f ′‖2L2 ‖l(α′, β′)‖L∞ ,

(225)
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which gives (217). Together with the boundedness of cosine, this implies (218).

4.4 Commutator Estimates

We present here the basic commutator estimates we will rely on to prove our energy estimate.

Several of these estimates control quantities of the form [f,H]g′ by something involving f ′

and g; they thus reduce the amount of regularity required on g, at the expense of further

regularity on f .

For many of these estimates, we must pay close attention to the boundary conditions.

Recall that f ∈ C0(S1) implies that f |∂ = 0. Many of these estimates do not hold if this

periodic boundary condition is removed. In the remainder of the paper, when we use these

results, we do not always explicitly cite these boundary conditions, but they are always met,

by the results in §3.4.29

The first main estimate is a version of Calderon’s classical commutator estimate.

Proposition 15 (L∞ × L2 Estimate [Cal65]). There exists a constant C > 0 such that for

any f ∈ C1[−1, 1] ∩ C0(S1), g ∈ C0(S1) ∩ C1(−1, 1) with g′ ∈ Lp for some p > 130 (and so

f |∂ = g|∂ = 0),

‖[f,H]∂α′g‖L2 6 C ‖f ′‖L∞ ‖g‖L2 . (226)

Proof. We reduce the periodic result here to the classical result on R by [Cal65].31

We begin by integrating by parts32:

[f,H] ∂α′g =
1

2i

∫
(f(α′)− f(β′)) cot(

π

2
(α′ − β′))∂β′g(β′)dβ′

=
1

2i

∫
fβ′(β

′) cot(
π

2
(α′ − β′))g(β′)dβ′ − 1

2i

∫
π

2

f(α′)− f(β′)

sin2(π
2
(α′ − β′))

g(β′)dβ′

= H(f ′g)− 1

2i

∫
π

2

f(α′)− f(β′)

sin2(π
2
(α′ − β′))

g(β′)dβ′.

(227)

Observe that the periodic boundary conditions ensure that the boundary term disappears.

The estimate for the first term is immediate by boundedness of H and Hölder’s inequality,

29We remark that the difficulties posed by non-periodic boundary conditions likewise appear for singu-
larities in the middle of the free surface away from the corners. By handling the problem correctly at the
corners, we have automatically handled the problem correctly in the middle of the free surface.

30We assume g′ ∈ Lp only to ensure [f,H]g′ is well-defined.
31The result was later extended by [CM78].
32Technically, we must include the principal values, so the last integral is well-defined.
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so it suffices to focus on the second term.

We return to thinking of the cotangent kernel in terms of the infinite summation, using

the identity (222). We must therefore control∫
I

(f(α′)− f(β′))
∑
l∈Z

1

(α′ − β′ + 2l)2
g(β′)dβ′. (228)

We split this into two cases. The main term will consist of the case when l = 0.

For the main term, we have ∫
I

f(α′)− f(β′)

(α′ − β′)2
g(β′)dβ′. (229)

The work of [Cal65] implies that such an integral over R is bounded in L2(R) by ‖f ′‖L∞(R)

‖g‖L2(R). To apply this result in R, we must extend f and g from I to R. We may assume

without loss of generality that f(±1) = 0, and then we extend f to the function χIf ; note

that this is still Lipschitz continuous. We extend g by gχI . Then∥∥∥∥∫
I

f(α′)− f(β′)

(α′ − β′)2
g(β′)dβ′

∥∥∥∥
L2(I)

=

∥∥∥∥∫
I

χIf(α′)− χIf(β′)

(α′ − β′)2
χI(β

′)g(β′)dβ′
∥∥∥∥
L2(I)

6

∥∥∥∥∫
I

χIf(α′)− χIf(β′)

(α′ − β′)2
χI(β

′)g(β′)dβ′
∥∥∥∥
L2(R)

=

∥∥∥∥∫
R

χIf(α′)− χIf(β′)

(α′ − β′)2
χI(β

′)g(β′)dβ′
∥∥∥∥
L2(R)

. ‖(χIf)′‖L∞(R) ‖χIg‖L2(R)

. ‖f ′‖L∞(I) ‖g‖L2(I) .

(230)

We now consider the remainder term, for |l| > 0. We control |l| = 1 identically to the main

term, by periodicity. Therefore, we may assume |l| > 1, which implies that |α′ − β′ + 2l| >
2 > 0.

Our kernel is now

l(α′, β′) :=
∑
|l|>1

1

(α′ − β′ + 2l)2
. (231)

Since |α′ − β′ + 2l| > 2, our kernel l(α′, β′) is summable and universally bounded. We write
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the remaining terms as∥∥∥∥∫
I

f(α′)− f(β′)

α′ − β′
(α′ − β′)l(α′, β′)g(β′)dβ′

∥∥∥∥
L2

6 C ‖f ′‖L∞ ‖g‖L2 (232)

by the difference quotient estimate (213) and Hölder’s inequality.

We now present the other main estimate. Observe that for this estimate we don’t require

g|∂ to be 0.

Proposition 16 (L2 × L∞ Estimate). There exists a constant C > 0 such that for any

f ∈ C0(S1) ∩ C1(−1, 1) with f ′ ∈ L2, g ∈ C0[−1, 1] with g′ ∈ Lp for some p > 133 (so

f |∂ = 0, though possibly g|∂ 6= 0),

‖[f,H]∂α′g‖L2 6 C ‖f ′‖L2 ‖g‖L∞ . (233)

Proof. This result is the periodic modification of a result from [Wu09], which in turn is a

consequence of the T (b) theorem [DJS85].

As in the proof of (226), we integrate by parts,

[f,H]∂α′g = H(f ′g)− 1

2i
pv

∫
π

2

f(α′)− f(β′)

sin2(π
2
(α′ − β′))

g(β′)dβ

+
1

2i
(f(α′)− f(β′)) cot(

π

2
(α′ − β′))g(β′)

∣∣∣∣
∂

,

(234)

where we now have a boundary term because we didn’t place periodic boundary assumptions

on g.

We control the first term by the L2 boundedness of H and Hölder. We control the last

term by Hardy’s inequality (218).

We are therefore left with the second term. We handle this as we did in the proof of

Proposition 15, by expanding the formula. Now the second estimate of Proposition 3.2 in

[Wu09], instead of the result of [Cal65], proves this estimate for integrals of this form, over

R. Although the statement in [Wu09] requires f ′ ∈ C0(R), in fact the proof only requires

f ′ ∈ L2, which we have; without loss of generality, we may assume f(−1) = f(1) = 0 and

we extend f from I to R by defining it to be zero elsewhere. For the remainder term (232),

we use Hardy’s inequality (in the original form, without a trigonometric kernel) instead of

the difference quotient estimate.

33We require this only to ensure that [f,H]g′ is well-defined.
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Proposition 17 (L2 × L∞ Estimate Variant). There exists a constant C > 0 such that

for any f ∈ C0(S1) ∩ C1(−1, 1) with f ′ ∈ L2, g ∈ C0[−1, 1] (and so f |∂ = 0 but possibly

g|∂ 6= 0), ∥∥∥∥pv

∫
(f(α′)− f(β′))

sin2(π
2
(α′ − β′))

g(β′)dβ′
∥∥∥∥
L2

6 C ‖f ′‖L2 ‖g‖L∞ . (235)

Proof. This is one of the terms in (234) in Proposition 16 above, which we controlled there.34

We present here a variant of the L2 × L∞ estimate, where we replace L∞ with Ḣ1/2

(whose norm is defined at (18)).

Proposition 18. There exists a constant C > 0 such that for any f, g ∈ C1(−1, 1)∩C0(S1)

with f ′ ∈ L2 and g′ ∈ Lp for some p > 1 (and so f |∂ = g|∂ = 0),

‖[f,H]∂α′g‖L2 6 C ‖f ′‖L2 ‖g‖Ḣ1/2 . (236)

Proof. We integrate by parts, first rewriting ∂β′g(β′) = ∂β′(g(β′)− g(α′)):

[f,H]∂α′g =
1

2i

∫
fβ′(β

′) cot(
π

2
(α′ − β′))(g(β′)− g(α′))dβ′

− 1

2i

∫
π

2

f(α′)− f(β′)

sin2(π
2
(α′ − β′))

(g(β′)− g(α′))dβ′,
(237)

where there is no boundary term because of the periodic boundary conditions.

For the first term, we apply Cauchy-Schwarz:∣∣∣∣∫ fβ′(β
′) cot(

π

2
(α′ − β′))(g(β′)− g(α′))dβ′

∣∣∣∣
6 ‖f ′‖L2

(∫
|g(α′)− g(β′)|2

∣∣∣cot2(
π

2
(α′ − β′))

∣∣∣ dβ′)1/2

.

(238)

Taking L2 of this in α′ and using the boundedness of cosine to replace cot2 with 1
sin2

, we get

the needed estimate.

34Note that we do not need the g′ ∈ Lp condition of that proposition, which was used to make sure Hg′
was well-defined.
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For the second term, we use Cauchy-Schwarz:∥∥∥∥∫ f(α′)− f(β′)

sin2(π
2
(α′ − β′))

(g(β′)− g(α′))dβ′
∥∥∥∥
L2
α′

6

(∫ ∫
|f(α′)− f(β′)|2

sin2(π
2
(α′ − β′))

dβ′
∫
|g(α′)− g(β′)|2

sin2(π
2
(α′ − β′))

dβ′dα′

)1/2

,

(239)

and then we use Hardy’s inequality (217) on f to get our inequality (236).

There’s also another, easier Ḣ1/2 estimate:

Proposition 19. There exists a constant C > 0 such that for any f ∈ Ḣ1/2, g ∈ L2 (and so

f |∂ = 0),

‖[f,H]g‖L2 6 C ‖f‖Ḣ1/2 ‖g‖L2 . (240)

Proof. This is immediate by Cauchy-Schwarz and the boundedness of cosine.

Proposition 20. There exists a constant C > 0 such that for any f, g ∈ C1(−1, 1)∩C0(S1)

with f ′, g′ ∈ L2 and h ∈ L2 (and so f |∂ , g|∂ = 0),

‖[f, g;h]‖L2 :=

∥∥∥∥ 1

2i

∫
f(α′)− f(β′)

sin(π
2
(α′ − β′))

g(α′)− g(β′)

sin(π
2
(α′ − β′))

h(β′)dβ′
∥∥∥∥
L2

6 C ‖f ′‖L2 ‖g′‖L2 ‖h‖L2 .

(241)

Proof. By Cauchy-Schwarz,∣∣∣∣∫ f(α′)− f(β′)

sin(π
2
(α′ − β′))

g(α′)− g(β′)

sin(π
2
(α′ − β′))

h(β′)dβ′
∣∣∣∣

6

(∫ ∣∣∣∣ f(α′)− f(β′)

sin(π
2
(α′ − β′))

∣∣∣∣2 dβ′
)1/2(∫ ∣∣∣∣ g(α′)− g(β′)

sin(π
2
(α′ − β′))

h(β′)

∣∣∣∣2 dβ′
)1/2

. (242)

Now we take the L2 of this in the α′ variable. By Hardy’s inequality (217), we control the

f factor by ‖f ′‖L2 , and are left with

(∫ ∫ ∣∣∣∣ g(α′)− g(β′)

sin(π
2
(α′ − β′))

h(β′)

∣∣∣∣2 dβ′dα′
)1/2

. (243)

Applying Fubini and then using Hardy’s inequality (217) once more gives the result.
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We also rely on the following easy L∞ estimate.

Proposition 21. There exists a constant C > 0 such that for any f ∈ C1(−1, 1) ∩ C0(S1)

with f ′ ∈ L2, g ∈ L2 (and sof |∂ = 0),

‖[f,H]g‖L∞ 6 C ‖f ′‖L2 ‖g‖L2 . (244)

Proof. Estimate (244) holds by Cauchy-Schwarz and Hardy’s inequality (218).

Proposition 22. There exists a constant C > 0 such that for any f, g ∈ C1(−1, 1)∩C0(S1)

with f ′, g′ ∈ L2 and h ∈ L2 (and so f |∂ , g|∂ = 0),

‖∂α′ [f, [g,H]]h‖L2 . ‖f ′‖L2 ‖g′‖L2 ‖h‖L2 . (245)

Proof. We differentiate35:

∂α′
1

2i

∫
(f(α′)− f(β′))(g(α′)− g(β′)) cot(

π

2
(α′ − β′))h(β′)dβ′

= f ′[g,H]h+ g′[f,H]h− 1

2i

∫
π

2

(f(α′)− f(β′))(g(α′)− g(β′))

sin2(π
2
(α′ − β′))

h(β′)dβ′. (246)

We control the first two terms by Hölder and then (244). We control the last term by

(241).

At one point, we require an estimate on a higher-order Calderon commutator.

Proposition 23 (Higher-Order Calderon Commutator [CM78]). There exists a constant

C > 0 such that for any f ∈ C1[−1, 1] ∩ C0(S1) and h ∈ C0(S1) ∩ C1(−1, 1) with h′ ∈ Lp

for some p > 1 (and so f |∂ , h|∂ = 0),

‖[f, f ; ∂α′h]‖L2 6 C ‖f ′‖2L∞ ‖h‖L2 . (247)

Proof. The proof is entirely analogous to the proof of (226), and now follows from the

work of [CM78], which extends the original result of [Cal65] used for (226) to allow two

difference quotient factors, instead of one. To move from R to our compact domain, we

do the same infinite summation argument, with the only difference being that instead of

∂α′ cot(π
2
α′) = c

∑
1

(α′+2l)2
we have ∂α′

1
sin2(π

2
α′)

= c
∑

1
(α′+2l)3

.

35To differentiate under the integral sign, we first assume that f, g ∈ C1[−1, 1] ∩ C0(S1). Then by the
density of C0[−1, 1] in L2 we can reduce to assuming f ′, g′ ∈ L2.
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4.5 The Half-Derivative Space Ḣ1/2

We show here that the following.

Proposition 24. Let f ∈ C1(−1, 1) ∩ C0(S1) with f ′ ∈ L2. Then

(I −H)f = −
∫
f ⇒ ‖f‖2Ḣ1/2 =

∫
i(∂α′f)fdα′. (248)

Proof. We begin by rewriting the RHS of (248) as∫
i(∂α′Hf)fdα′, (249)

using (I−H)f = −
∫
f , where the mean term disappears under the derivative. We now expand

this out. To be absolutely rigorous with interchanging limits, etc., our derivation is slightly

convoluted. We begin as usual by introducing the difference quotient:∫
i(∂α′Hf)fdα′ =

∫
i

2i
f(α′)∂α′ lim

ε→0

∫
Iε

cot(
π

2
(α′ − β′))f(β′)dβ′dα′

=
1

2

∫
f(α′)∂α′ lim

ε→0

∫
Iε

cot(
π

2
(α′ − β′))(f(β′)− f(α′))dβ′dα′.

(250)

Now we want to move the limε→0 outside the outer integral. To do this, we first integrate by

parts, so that we can use the Lebesgue dominated convergence theorem, and then integrate

by parts back. On integrating by parts, we have∫
i(∂α′Hf)fdα′ = −1

2

∫
(∂α′f(α′)) lim

ε→0

∫
Iε

cot(
π

2
(α′ − β′))(f(β′)− f(α′))dβ′dα′. (251)

(Note that there are no boundary terms by the periodicity of cotangent and f .) By Hardy’s

inequality (218), the outer integrand is uniformly bounded in ε by |f ′| ‖f ′‖L2 ∈ L1, so we

may use the Lebesgue dominated convergence theorem to pull the limit outside the outer

integral. We do this and then integrate by parts back (where, once again, there are no
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boundary terms):∫
i(∂α′Hf)fdα′ = −1

2
lim
ε→0

∫
(∂α′f(α′))

∫
Iε

cot(
π

2
(α′ − β′))(f(β′)− f(α′))dβ′dα′

=
1

2
lim
ε→0

∫
f(α′)∂α′

∫
Iε

cot(
π

2
(α′ − β′))(f(β′)− f(α′))dβ′dα′

=
1

2
lim
ε→0

∫
f(α′)

∫
Iε

∂α′
(

cot(
π

2
(α′ − β′))(f(β′)− f(α′))

)
dβ′dα′ + ∂

= −1

2
lim
ε→0

∫
f(α′)

∫
Iε

π

2

f(β′)− f(α′)

sin2(π
2
(α′ − β′))

dβ′dα′ + ∂,

(252)

where36

∂ =
1

2
lim
ε→0

∫
f(α′) cot(

π

2
(α′ − (α′ − ε)))(f(α′ − ε)− f(α′))dα′

− 1

2
lim
ε→0

∫
f(α′) cot(

π

2
(α′ − (α′ + ε)))(f(α′ + ε)− f(α′))dα′

= lim
ε→0

1

2

∫
f(α′)

(
cot(

π

2
ε)(f(α′ − ε)− f(α′))− cot(−π

2
ε)(f(α′ + ε)− f(α′))

)
dα′

= lim
ε→0

1

2

∫
f(α′)

(
cot(

π

2
ε)(f(α− ε) + f(α′ + ε)− 2f(α′))

)
dα′

= −G′(0) +G′(0) = 0

(253)

for

G(x) =
1

π

∫
f(α′)f(α′ + x)dα′. (254)

We were able to pull the derivative inside the integral in the third line of (252) because of the

principal value, and there was no term
∫
Iε

cot(π
2
(α′ − β′))f ′(α′)dβ′ in the last line of (252)

because that is zero. By the same derivation, interchanging α′ and β′, we have∫
i(∂α′Hf)fdα′ =

∫
i(∂β′Hf)fdβ′

= −1

2
lim
ε→0

∫
f(β′)

∫
Iε

π

2

f(α′)− f(β′)

sin2(π
2
(β′ − α′))

dα′dβ′

=
1

2
lim
ε→0

∫
f(β′)

∫
Iε

π

2

f(β′)− f(α′)

sin2(π
2
(α′ − β′))

dα′dβ′.

(255)

36Technically, this has to be adjusted slightly if α′ − ε < −1 or α + ε > 1; recall our definition of Iε at
(20). By the periodicity of f , this reduces to what’s below.
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We may now apply Fubini to (252) and (255), separately, and then average the two, noting

that because of the principal value there are no issues with applying Fubini. We get∫
i(∂α′Hf)fdα′ =

π

8
lim
ε→0

∫∫
(I×I)ε

(f(β′)− f(α′))
(
f(β′)− f(α′)

)
sin2(π

2
(α′ − β′))

dβ′dα′

=
π

8
lim
ε→0

∫∫
(I×I)ε

|f(β′)− f(α′)|2

sin2(π
2
(α′ − β′))

dβ′dα′

=
π

8

∫∫
|f(β′)− f(α′)|2

sin2(π
2
(α′ − β′))

dβ′dα′

= ‖f‖2Ḣ1/2 ,

(256)

where we’ve used the monotone convergence theorem to remove the principal value limit.

4.6 Commutator Identities

We include here for reference the various commutator identities that are necessary.

First, we calculate the basic commutators to interchange time differentiation and our

special weighted spatial derivative.

[∂t, Dα] = −(Dαzt)Dα (257)[
∂t, D

2
α

]
= ∂tD

2
α −Dα∂tDα +Dα∂tDα −D2

α∂t

= [∂t, Dα]Dα +Dα[∂t, Dα]

= −(Dαzt)D
2
α −Dα((Dαzt)Dα)

= −2(Dαzt)D
2
α − (D2

αzt)Dα.

(258)

Now we calculator the commutators [∂2t + ia∂α, D
k
α], which we will need to control for

k = 1, 2.

[
∂2t , Dα

]
= ∂2t

1

zα
∂α −

1

zα
∂α∂

2
t

= −∂t
ztα
z2α
∂α + ∂t

1

zα
∂α∂t −

1

zα
∂a∂

2
t

= −zttα
z2α

∂α +
ztα2ztα
z3α

∂α −
ztα
z2α
∂α∂t −

ztα
z2α
∂α∂t +

1

zα
∂α∂

2
t −

1

zα
∂α∂

2
t

= (−Dαztt)Dα + 2(Dαzt)
2Dα − 2(Dαzt)Dα∂t.

(259)
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To calculate [ia∂α, Dα], we use iazα = ztt + i (27) to rewrite ia∂α = iazαDα = (ztt + i)Dα.

Therefore

[ia∂α, Dα] = [(ztt + i)Dα, Dα] = −(Dαztt)Dα. (260)

Adding (259) and (260), we conclude that

[
∂2t + ia∂α, Dα

]
= (−2Dαztt)Dα + 2(Dαzt)

2Dα − 2(Dαzt)Dα∂t. (261)

Because [(∂2t + ia∂α), D2
α] = [(∂2t + ia∂α), Dα]Dα +Dα[(∂2t + ia∂α), Dα], we have[

(∂2t + ia∂α), D2
α

]
= (−2Dαztt)D

2
α + 2(Dαzt)

2D2
α − 2(Dαzt)Dα∂tDα − (2D2

αztt)Dα

− (2Dαztt)D
2
α + 4(Dαzt)(D

2
αzt)Dα + 2(Dαzt)

2D2
α

− 2(D2
αzt)Dα∂t − 2(Dαzt)D

2
α∂t

= (−4Dαztt)D
2
α + 4(Dαzt)

2D2
α − 2(Dαzt)Dα∂tDα − (2D2

αztt)Dα

+ 4(Dαzt)(D
2
αzt)Dα − 2(D2

αzt)Dα∂t − 2(Dαzt)D
2
α∂t.

(262)
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Chapter 5

The Energy and the Theorem

5.1 Definition of the Energy

We now introduce the energy for which we will prove an a priori inequality. We consider a

general equation of the form

(∂2t + ia∂α)θ = Gθ, (263)

with the constraint that θ is the boundary value of a periodic holomorphic function in Ω(t)

and has mean zero. Our base case is (37), written in this form as

(∂2t + ia∂α)zt = −iatzα, (264)

with θ = zt and Gzt = −iatza. Higher-order cases will come from applying Dk
α to (264); in

those cases, θ = Dk
αzt with

Gθ = Dk
α(−iatzα) + [∂2t + ia∂α, D

k
α]zt. (265)

A natural energy for (263) would be∫
|θt|2 dα + <

∫
i (a∂αθ) θdα. (266)

Here, the fact that θ is holomorphic allows the second term to be rewritten as
∫
i (aH∂αθ) θdα,

where H is the Hilbert transform for the curved domain Ω. Because iH∂α is a positive

operator—in flattened coordinates, it corresponds to |D| =
√
−∆—the second term will be

non-negative up to an error term (due to the coefficient a).

62



We will, instead, use two variants of this energy, differing primarily in that we multiply

or divide by the roughly equivalent singular weights a and hα
A1◦h .37 (From our calculation in

§3.7, we saw that a ≈ hα, so long as |zα| is bounded above and below and A1 is bounded

above.) In earlier works, where there was a strict bound a > c0 > 0 (in addition to the upper

bound we continue to have), all of these energies were essentially equivalent, but here the

singularity a = 0 makes an important difference, and so the choice of the weights is critical.

We note that we are phrasing everything here in Lagrangian coordinates. With a change

of variables, we can easily switch to the Riemannian coordinates. We will often express our

basic quantities in the Lagrangian coordinates when we need to take a time derivative but

use Riemannian coordinates when we need to estimate terms, since that gives us access to

the easily invertible (I −H) operator.

Our first energy differs from (266) primarily by a multiplicative factor of hα:

Ea,θ(t) :=

∫
I

|θt|2
hα

A1 ◦ h
dα + <

∫
I

(ia∂αθ)θ
hα

A1 ◦ h
dα

+<
∫
I

(
i

1

zα
∂α
hα
zα

)
|θ|2 hαdα +

∫
I

|θ|2 hα
A1 ◦ h

dα.

(267)

Here, the A1 ◦ h appears for technical reasons, which will be explained below in §5.2. The

first two terms are the main terms. The third term is a correction to the second term, to be

explained below, and the fourth term is lower-order.

For our second energy, Eb, we divide through by a in the main terms:

Eb,θ(t) :=

∫
I

1

a
|θt|2 dα +

∫
I

(i∂αθ)θdα +

∫
I

(A1 ◦ h)

a
|θ|2 dα. (268)

Here, the first two integrals are the primary terms; the last is lower-order. It’s easy to check,

by integration by parts, that the second term is purely real.

Our total energy consists primarily of Ea,θ using two Dα derivatives and Eb,θ using one

Dα derivative. In addition, we will include one other, lower-order term in our total energy:

|ztt(α0, t)− i| for some fixed α0 ∈ I. Our total energy therefore is

E(t) := Ea,D2
αzt

(t) + Eb,Dαzt(t) + |ztt(α0, t)− i| . (269)

Even though we have now specialized to the case where θ = D2
αzt and θ = Dαzt for Ea,θ and

37These weights go to zero at the corner for non-trivial angles, as well as at angled crests in the middle of
the free surface.
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Eb,θ, respectively, we will in the following present some of the proofs about these energies

in broader generality. We will refer to Ea,θ and Eb,θ for such generic energies, and use

Ea := Ea,D2
αzt

and Eb := Eb,Dαzt for the specific energies.

5.2 Discussion of the Energy

In this section, we offer a few comments on our energy.

We begin by discussing Ea,θ. Here, what’s most significant is the hα weight. On chang-

ing variables to Riemannian coordinates, the first and the fourth terms of Ea,θ become

‖θt ◦ h−1‖2L2(1/A1)
and ‖θ ◦ h−1‖2L2(1/A1)

. Since we will be able to control ‖A1‖L∞ by our

energy, these two terms therefore are equivalent to ‖θt ◦ h−1‖L2 and ‖θ ◦ h−1‖L2 .

The second term and third terms in Ea,θ treated together equal
∥∥∥ 1
Z,α′

(θ ◦ h−1)
∥∥∥
Ḣ1/2

. In-

deed, when we use A1 ◦h = a|zα|2
hα

and then change variables, these two terms in Ea,θ become

<
∫

(ia∂αθ)θ
hα

A1 ◦ h
dα + <

∫
I

(
i

1

zα
∂α
hα
zα

)
|θ|2 hαdα

= <
∫
i
h2α
|zα|2

(∂αθ)θdα + <
∫
I

(
i

1

zα
∂α
hα
zα

)
|θ|2 hαdα

= <
∫
i

(
∂α

(
θ
hα
zα

))(
θ
hα
zα

)
dα

= <
∫
i

(
∂α′

(
1

Z,α′
(θ ◦ h−1)

))(
1

Z ,α′
(θ ◦ h−1)

)
dα′.

(270)

We showed in §4.5 that this equals to the square of the Ḣ1/2 norm of 1
Z,α′

(θ◦h−1). (Note that
1

Z,α′
(θ ◦h−1) is holomorphic; this explains why we divided through by A1 ◦h in our definition

of Ea,θ.) This Ḣ1/2 control will be crucial in allowing us to close our energy equality without

loss of derivatives.

We now specialize to Ea = Ea,D2
αzt

. By the above discussions,

Ea =
∥∥(∂tD

2
αzt) ◦ h−1

∥∥2
L2(1/A1)

+

∥∥∥∥ 1

Z,α′
D2
α′Zt

∥∥∥∥2
Ḣ1/2

+
∥∥D2

α′Zt

∥∥2
L2(1/A1)

. (271)

We will be able to control the commutator [∂t, D
2
α], so the first term corresponds roughly to∥∥D2

α′Ztt

∥∥
L2(1/A1)

or
∥∥D2

α′Ztt

∥∥
L2 ; we make this more precise in §6.1.
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Similarly, by using the half-derivative calculation from §4.5, Eb = Eb,Dαzt equals

Eb = ‖∂tDαzt‖2L2( 1
a
) +
∥∥Dα′Zt

∥∥2
Ḣ1/2 + ‖Dαzt‖2L2(

(A1◦h)
a

)
. (272)

On changing variables to Riemannian coordinates, we see that, modulo a commutator [∂t, Dα]

and a factor of A1,

‖∂tDαzt‖L2( 1
a
) ≈

∥∥Ztt,α′
∥∥
L2 . (273)

We make this more precise in §6.1. Furthermore, due to the additional A1 ◦ h factor on the

weight, the lower-order term

‖Dαzt‖L2(
(A1◦h)

a
)

=
∥∥Zt,α′

∥∥
L2 . (274)

We will see in (297) that ‖A1‖L∞ is bounded by
∥∥Zt,α′

∥∥2
L2 + 1. This explains our choice of

this lower order term. We note that A1 as well as ‖Zt,α′‖L2 are invariant with respect to the

scaling α′ ∼ t2 of the water wave equations (1)-(5), (7) (with Υ = ∅).
We note that the roughly inverse singular weights of Ea and Eb will allow us to use the

weighted Sobolev inequality (202) to control the L∞ norm of various quantities.

Finally, we also include |ztt(α0, t)− i| in our energy since it, along with control of∥∥Ztt,α′
∥∥
L2 , will allow us to control the lower-order term

∥∥Ztt − i
∥∥
L∞

. We remark that this is

a very benign assumption: all we are assuming is that the material derivative of the velocity

is finite at a single point on the free sufrace. We never depend on an estimate of ‖Zt‖L∞ ,

but by a similar argument, so long as the velocity is finite at one point on the free surface,

it will be bounded everywhere since Zt,α′ ∈ L2.

In §11 we offer further discussion of what our energy controls: in §11.1 we characterize

the energy in terms only of Zt and 1
Z,α′

, and in §11.2 we discuss what angles ν our energy

allows.

5.3 The Main Result

We can now state our result.

Theorem 25. [A Priori Inequality for the Water Wave Equation] There exists a polynomial

p(x, y, z) with universal coefficients such that, for any solution of water wave equations (1)
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to (7) satisfying the a priori smoothness assumptions of §3.5 with E(t) <∞ for all t ∈ [0, T ],

d

dt
E(t) 6 p

(
E(t), ‖zα‖L∞ (t),

∥∥∥∥ 1

zα

∥∥∥∥
L∞

(t)

)
(275)

for all t ∈ [0, T ], where

‖zα‖L∞ (t) . exp

∫ t

0

(
E1/2
a + E1/2

a E
1/2
b + E

1/2
b

)
(τ)dτ (276)

and ∥∥∥∥ 1

zα

∥∥∥∥
L∞

(t) . exp

∫ t

0

(
E1/2
a + E1/2

a E
1/2
b + E

1/2
b

)
(τ)dτ . (277)

Here the fixed boundary Υ in the water wave equations (1)-(7) is that specified in §1.3.

We do not state precise polynomial p (E, ‖zα‖L∞ , ‖1/zα‖L∞), but it can be calculated by

carefully combining the estimates we make in the proof. Estimates for the individual parts

of the energy Ea, Eb, and |ztt(α0)| are listed in §5.4.38

Although we state the a priori inequality for the original equations (1)-(7) on Ω(t), our

proof relies exclusively on the Lagrangian reduction to the equation (27) on the free surface

Σ(t), along with the accompanying statements about zt’s holomorphicity and periodicity.

5.4 The Proof

As is standard for energy inequalities, we begin the proof by differentiating the main com-

ponents of E(t) in time. For the two main energies, Ea and Eb, we then integrate by parts

to arrive at a term ∂2t θ + ia∂αθ and use the basic equation ∂2t θ + ia∂αθ = Gθ to replace it

with Gθ. What remains to be estimated will be Gθ, along with several ancillary terms. We

then control these quantities in terms of a polynomial of the energy, along with ‖zα‖L∞ and

‖1/zα‖L∞ , which we estimate in §6.2.39

5.4.1 The Estimate for Ea

We begin by differentiating Ea with respect to t.

38We remark that we have not distinguished between the higher-order and lower-order parts of Ea and Eb
in these differential inequalities, but it would be straightforward to do a refined estimate separating these.

39Technically, our polynomial includes square roots of the energy; this may be relaxed to remove the square
roots, at the loss of some sharpness.
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We will work initially with general θ satisfying θ|∂ = 0, (I − H)(θ ◦ h−1) = 0, and the

basic equation (263), and then we will specialize to the θ = D2
αzt in our energy. Note that

θ|∂ = 0 ensures that there is no boundary term in the integration by parts below; θ = D2
αzt

satisfies this periodic boundary condition by (47).

We use the fact that ahα
(A1◦h) = h2α

|zα|2
in the following calculation.

d

dt
Ea,θ(t) =

∫
(θttθt + θtθtt)

hα
A1 ◦ h

dα +

∫
|θt|2

htα
A1 ◦ h

dα−
∫
|θt|2

hα
A1 ◦ h

(A1 ◦ h)t
A1 ◦ h

dα

+ <
∫
i

(
h2α
|zα|2

)
t

θαθdα + <
∫
i
h2α
|zα|2

θtαθdα︸ ︷︷ ︸
−<

∫
i

(
h2α
|zα|2

)
α

θtθdα+<
∫ h2α
|zα|2

θtiθαdα

+<
∫
i
h2α
|zα|2

θαθtdα

+ <
∫
i

(
1

zα
∂α
hα
zα

)
t

|θ|2 hαdα + <
∫
i

(
1

zα
∂α
hα
zα

)
(θtθ + θθt)hαdα

+ <
∫
i

(
1

zα
∂α
hα
zα

)
|θ|2 htαdα

+

∫
(θtθ + θtθ)

hα
A1 ◦ h

+

∫
|θ|2 htα

A1 ◦ h
dα−

∫
|θ|2 hα

A1 ◦ h
(A1 ◦ h)t
A1 ◦ h

dα

=

∫
2<
(
(θtt + iaθα)θt

) hα
A1 ◦ h

dα

+

∫
|θt|2

(
htα
hα
− (A1 ◦ h)t

A1 ◦ h

)
hα

A1 ◦ h
dα +

∫
|θ|2

(
htα
hα
− (A1 ◦ h)t

A1 ◦ h

)
hα

A1 ◦ h
dα

+ <
∫
i

(
1

zα
∂α
hα
zα

)
t

|θ|2 hαdα

+ <
∫
i

(
1

zα
∂α
hα
zα

)
(θtθ + θθt)hαdα

+ <
∫
i

(
1

zα
∂α
hα
zα

)
|θ|2 htα

hα
hαdα

+ 2<
∫
θtθ

hα
A1 ◦ h

dα

−<
∫
i

(
h2α
|zα|2

)
α

θtθdα

+ <
∫
i

(
h2α
|zα|2

)
t

θαθdα.

(278)

Now we show how we control each of these terms.

For the first, we replace θtt + iaθα with the RHS Gθ by the main equation (263) and then
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use Cauchy-Schwarz:∫
2<
(
(θtt + iaθα)θt

) hα
A1 ◦ h

dα =

∫
2<
{
Gθθt

} hα
A1 ◦ h

dα

.

(∫
|Gθ|2

hα
A1 ◦ h

dα

)1/2(∫ ∣∣θt∣∣2 hα
A1 ◦ h

dα

)1/2

.

(279)

The first factor, the RHS of the equation, is the main term to control. For θ = D2
αzt,

Gθ = D2
α(−iatzα) + [∂2t + ia∂α, D

2
α]zt. (280)

We estimate these terms in §10: the first at (583) and the commutator at (475).

Using Hölder’s inequality, we estimate∫
|θt|2

(
htα
hα
− (A1 ◦ h)t

A1 ◦ h

)
hα

A1 ◦ h
dα +

∫
|θ|2

(
htα
hα
− (A1 ◦ h)t

A1 ◦ h

)
hα

A1 ◦ h
dα

6

∥∥∥∥htαhα − (A1 ◦ h)t
A1 ◦ h

∥∥∥∥
L∞

(∫
|θt|2

hα
A1 ◦ h

dα +

∫
|θ|2 hα

A1 ◦ h
dα

)
6

(∥∥∥∥htαhα
∥∥∥∥
L∞

+

∥∥∥∥(A1 ◦ h)t
A1 ◦ h

∥∥∥∥
L∞

)
Ea,θ.

(281)

In §7, we will control ∣∣∣∣< ∫ i

(
1

zα
∂α
hα
zα

)
t

|θ|2 hαdα
∣∣∣∣ . (387). (282)

We estimate∣∣∣∣< ∫ i

(
1

zα
∂α
hα
zα

)
(θtθ + θθt)hαdα

∣∣∣∣ . ∥∥∥∥Dα
hα
zα

∥∥∥∥
L∞

(∫
|θt|2 hαdα

)1/2(∫
|θ|2 hαdα

)1/2

.

∥∥∥∥Dα′
1

Z,α′

∥∥∥∥
L∞
‖A1‖L∞ Ea,θ.

(283)

We estimate∣∣∣∣< ∫ i

(
1

zα
∂α
hα
zα

)
|θ|2 htα

hα
hαdα

∣∣∣∣ . ∥∥∥∥Dα
hα
zα

∥∥∥∥
L∞

∥∥∥∥htαhα
∥∥∥∥
L∞

∫
|θ|2 hαdα

.

∥∥∥∥Dα′
1

Z,α′

∥∥∥∥
L∞

∥∥∥∥htαhα
∥∥∥∥
L∞
‖A1‖L∞ Ea,θ.

(284)
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We estimate∣∣∣∣2< ∫ θtθ
hα

A1 ◦ h
dα

∣∣∣∣ 6 2

(∫
|θt|2

hα
A1 ◦ h

dα

)1/2(∫
|θ|2 hα

A1 ◦ h
dα

)1/2

6 2Ea,θ.

(285)

We estimate∣∣∣∣∣−<
∫
i

(
h2α
|zα|2

)
α

θtθdα

∣∣∣∣∣ =

∣∣∣∣∣∣−<
∫
i

(
h2α
|zα|2

)
α

hα
(A1 ◦ h)θtθ

hα
A1 ◦ h

dα

∣∣∣∣∣∣
6 ‖A1 ◦ h‖L∞

∥∥∥∥∥∥
(

h2α
|zα|2

)
α

hα

∥∥∥∥∥∥
L∞

∫ ∣∣∣∣θtθ hα
A1 ◦ h

∣∣∣∣ dα.
(286)

We observe that ∥∥∥∥∥∥
(

h2α
|zα|2

)
α

hα

∥∥∥∥∥∥
L∞

=

∥∥∥∥∥∂α′ 1

|Z,α′ |2

∥∥∥∥∥
L∞

6 2

∥∥∥∥Dα′
1

Z,α′

∥∥∥∥
L∞

. (287)

Therefore, using Cauchy-Schwarz to expand the last factor in (286), we have∣∣∣∣∣−<
∫
i

(
h2α
|zα|2

)
α

θtθdα

∣∣∣∣∣ . ‖A1‖L∞
∥∥∥∥Dα′

1

Z,α′

∥∥∥∥
L∞

Ea,θ. (288)

Finally, in §8 we control

<
∫
i

(
h2α
|zα|2

)
t

θαθdα . (433). (289)

We now combine these estimates and specialize to θ = D2
αzt. Each of the remaining

factors we will control in §6; we list the location of the final estimate for each quantity of
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the following in the subscripts. We get∣∣∣∣ ddtEa
∣∣∣∣ . ∥∥GD2

αzt

∥∥
L2( hα

A1◦h
)︸ ︷︷ ︸

.(583)+(475)

E1/2
a

+

∥∥∥∥htαhα
∥∥∥∥
L∞︸ ︷︷ ︸

.(347)

Ea +

∥∥∥∥(A1 ◦ h)t
A1 ◦ h

∥∥∥∥
L∞︸ ︷︷ ︸

.(350)

Ea

+

(
1 +

∥∥∥∥htαhα
∥∥∥∥
L∞

)
︸ ︷︷ ︸

.1+(347)

‖A1‖L∞︸ ︷︷ ︸
(297)

∥∥∥∥Dα′
1

Z,α′

∥∥∥∥
L∞︸ ︷︷ ︸

.(367)

Ea

+ Ea

+ <
∫
i

(
1

zα
∂α
hα
zα

)
t

|θ|2 hαdα︸ ︷︷ ︸
.(387)

+ <
∫
i

(
h2α
|zα|2

)
t

θαθdα︸ ︷︷ ︸
.(433)

.

(290)

5.4.2 The Estimate for Eb

Now we consider our second energy. Once again, we work first with general θ satisfying

θ|∂ = 0, (I−H)(θ ◦h−1) = 0, and the main equation (263). Then we specialize to θ = Dαzt.

Note again that θ|∂ = 0 ensures that there is no boundary term in the integration by parts
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below; θ = Dαzt satisfies this periodic boundary condition by (47).

d

dt
Eb,θ(t) =

∫
1

a
(θttθt + θtθtt)dα−

∫
at
a

1

a
|θt|2 dα

+

∫
iθtαθdα︸ ︷︷ ︸

=
∫
iθαθtdα

+

∫
iθαθtdα

+

∫
(A1 ◦ h)

a
(θtθ + θθt)dα +

∫
(A1 ◦ h)t

a
|θ|2 dα−

∫
at
a

(A1 ◦ h)

a
|θ|2 dα

= 2<
(∫

1

a
θttθtdα +

∫
iθαθtdα

)
−
∫

at
a

1

a
|θt|2 dα

+

∫
A1 ◦ h

a
(θtθ + θθt)dα +

∫ (
(A1 ◦ h)t
(A1 ◦ h)

− at
a

)
(A1 ◦ h)

a
|θ|2 dα

= 2<
∫
Gθ

a
θtdα−

∫
at
a

1

a
|θt|2 dα

+

∫
A1 ◦ h

a
(θtθ + θθt)dα +

∫ (
(A1 ◦ h)t
(A1 ◦ h)

− at
a

)
(A1 ◦ h)

a
|θ|2 dα.

(291)

By Hölder and Cauchy-Schwarz, we conclude that∣∣∣∣ ddtEb,θ(t)
∣∣∣∣ . ∥∥∥∥Gθ√

a

∥∥∥∥
L2

E
1/2
b,θ +

(
‖A1‖1/2L∞ +

∥∥∥at
a

∥∥∥
L∞

+

∥∥∥∥(A1 ◦ h)t
(A1 ◦ h)

∥∥∥∥
L∞

)
Eb,θ. (292)

For θ = Dαzt, we control
∥∥∥Gθ√a∥∥∥L2

in §9, at (435) and (472). We control ‖A1‖L∞ at (297),∥∥at
a

∥∥
L∞

at (327), and
∥∥∥ (A1◦h)t

(A1◦h)

∥∥∥
L∞

at (350).

5.4.3 The Estimate for |ztt(α0, t)|

Finally, we show that we can control |ztt(α0, t)− i|.40 By differentiating with respect to t,

we have, by the basic quasilinear equation (37),

d

dt
|ztt(α0)− i| 6 |zttt(α0)|

= |iat(α0)zα(α0) + ia(α0)ztα(α0)|

.
(∥∥∥at

a

∥∥∥
L∞

+ ‖Dαzt‖L∞
)
|ztt(α0)− i| .

(293)

40We remark that, if we chose α0 = 1, then so long as we are in the non-trivial angle regime, ztt(α0)−i ≡ 0
for all time.
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We control
∥∥at

a

∥∥
L∞

below at (327) and ‖Dαzt‖L∞ at (301).

5.5 Outline of the Remainder of the Proof

In §6 through §10, we complete the proof of the a priori inequality (275).

In §6, we control various quantities that are necessary for our proof. In §6.1, we carefully

list the basic quantities controlled by our energy. In §6.2, we show that ‖zα‖L∞ and ‖1/zα‖L∞
are controlled. In §6.3-§6.10, we estimate various other quantities in terms of quantities

already controlled in previous parts of §6. These quantities include many of the quantities

to be controlled in §5.4 above, and are used in the remainder of the proof. In Appendix §B,

we list and give references to all the quantities controlled in §6, which we then use without

citation in §7 through §10.

In §7 and §8 we estimate the terms from (282) and (289) in the estimate of d
dt
Ea above.

Finally, in §9 and §10 we conclude the estimates for d
dt
Eb and d

dt
Ea, respectively, by controlling

the Gθ terms, completing the proof.

The basic approach for many of the estimates is to try and use the fact that certain

quantities are purely real-valued and others are holomorphic to express problematic terms as

commutators involving the Hilbert transform, and then use the commutator estimates from

§4.4 to avoid loss of derivatives. The estimates are very tight, and sometimes convoluted

and tedious. Among the reasons for the complexity are:

• we have very little regularity to work with;

• we are working with a weighted derivative Dα′ that has to be commuted with H and

whose complex-valued weight makes inverting (I − H) on real-valued functions more

difficult;

• we have no positive lower bound for the Taylor coefficient a;

• because our estimates are tight, we have to take care in using different estimates for

different terms, including treating certain terms as commutators while keeping others

in (I −H) form;

• we must take care that the quantities in our commutators have appropriate periodic

boundary behavior; and
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• we sometimes have to carefully decompose certain quantities into their holomorphic

and antiholomorphic projections.

Throughout the remaining derivations, we will repeatedly rely on the identity

A1 ◦ h =
a |zα|2

hα
. (294)
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Chapter 6

Quantities Controlled by Our Energy

Here we collect together many quantities that are controlled by our energy. In Appendix §B,

we give a list of all the quantities controlled in this chapter that are quoted without citation

in future chapters or sections within this chapter.

6.1 Basic Quantities Controlled by the Energy

In this section, we present a list of basic quantities controlled by our energy. Because

conjugations and commutations of ∂t with Dα add complexity, we take care to list those

estimates as well. Consulting the appendix §B as a reference will be more useful than this

section in many cases.

Using Eb and changing variables to Riemannian coordinates, we control

∥∥Zt,α′
∥∥
L2 =

(∫ ∣∣∣∣ztαhα ◦ h−1
∣∣∣∣2 dα′

)1/2

=

(∫
1

hα
|ztα|2 dα

)1/2

=

(∫
(A1 ◦ h)

a
|Dαzt|2 dα

)1/2

. E
1/2
b .

(295)

By taking conjugates, we similarly have

‖Zt,α′‖L2 . E
1/2
b . (296)
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Now we estimate ‖A1‖L∞ . By (180), we have

‖A1‖L∞ 6
∥∥[Zt,H]Zt,α′

∥∥
L∞

+ 1

. ‖Zt,α′‖2L2 + 1

. Eb + 1

(297)

by the commutator estimate (244), and then by (295).

A natural space for quantities controlled by Ea is L2
(

hαdα
(A1◦h)

)
, or, by a change of variables,

L2(dα
′

A1
). Thanks to (297) and ‖f‖L2(dα′) 6 ‖A1‖1/2L∞ ‖f‖L2

(
dα′
A1

), we then have control of the

same quantities in L2(dα′).

By (271), Ea directly controls

∥∥D2
αzt
∥∥
L2( hα

A1◦h
dα)

=
∥∥D2

α′Zt

∥∥
L2( 1

A1
dα′)

6 E1/2
a (298)

and ∥∥∥∥ 1

Z,α′
D2
α′Zt

∥∥∥∥
Ḣ1/2

=

∥∥∥∥ 1

Z,α′
D2
α′Zt

∥∥∥∥
Ḣ1/2

. E1/2
a . (299)

Now we control ‖Dαzt‖L∞ =
∥∥Dα′Zt

∥∥
L∞

. We work in Riemannian coordinates and use

the weighted Sobolev inequality (203) with weight ω = 1

|Z,α′ |2
(and ε = 1). Note that

−
∫

(Dα′Zt)
2 = 0 by (166). By the Sobolev inequality, we have

∥∥Dα′Zt

∥∥
L∞

.

(∫ ∣∣Dα′Zt

∣∣2 |Z,α′ |2 dα′)1/2

+

(∫ ∣∣∂α′Dα′Zt

∣∣2 1

|Z,α′|2
dα′

)1/2

=
∥∥Zt,α′

∥∥
L2 +

∥∥D2
α′Zt

∥∥
L2

6 E
1/2
b + ‖A1‖1/2L∞ E

1/2
a

. E1/2
a + E1/2

a E
1/2
b + E

1/2
b .

(300)

We conclude that

‖Dαzt‖L∞ = ‖Dα′Zt‖L∞ = ‖Dαzt‖L∞ =
∥∥Dα′Zt

∥∥
L∞

. E1/2
a + E1/2

a E
1/2
b + E

1/2
b .

(301)
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Now we use the commutator (257) to move the ∂t inside the first term in Eb:(∫
|Dαztt|2

dα

a

)1/2

6

(∫
|∂tDαzt|2

dα

a

)1/2

+

(∫
|[∂t, Dα]zt|2

dα

a

)1/2

6 E
1/2
b +

(∫
|Dαzt|2 |Dαzt|2

dα

a

)1/2

6 E
1/2
b + ‖Dαzt‖L∞

(∫
|Dαzt|2

dα

a

)1/2

. (1 + E1/2
a + E1/2

a E
1/2
b + E

1/2
b )E

1/2
b .

(302)

by (301) and A1 > 1 (182).

By changing variables as in (295), we conclude from (302) that

‖Ztt,α′‖L2 =
∥∥Ztt,α′

∥∥
L2 . ‖A1‖1/2L∞

(∫
|Dαztt|2

dα

a

)1/2

. (E
1/2
b + Eb)(1 + E1/2

a + E1/2
a E

1/2
b + E

1/2
b ).

(303)

Now we show that for a generic f , we can control D2
αf by D2

αf in L2( hα
A1◦hdα) norm, at

the expense of some lower-order terms. (Recall from §4.2 that there’s no reason a priori for

|D2
αf | to equal

∣∣D2
αf
∣∣.) For notational convenience, we define here

|Dα| =
1

|zα|
∂α =

zα
|zα|

Dα. (304)

We expand: ∣∣D2
αf
∣∣ =

∣∣∣∣∣
(
|zα|
zα

)2

|Dα|2 f +
|zα|
zα

(
|Dα|

|zα|
zα

)
|Dα| f

∣∣∣∣∣
6
∣∣|Dα|2 f

∣∣+

∣∣∣∣(|Dα|
|zα|
zα

)
|Dα| f

∣∣∣∣
=
∣∣|Dα|2 f

∣∣+

∣∣∣∣(|Dα|
|zα|
zα

)
|Dα| f

∣∣∣∣
6
∣∣D2

αf
∣∣+ 2

∣∣∣∣(|Dα|
|zα|
zα

)
|Dα| f

∣∣∣∣
=
∣∣D2

αf
∣∣+ 2

∣∣∣∣|Dα|
|zα|
zα

∣∣∣∣ ∣∣Dαf
∣∣ .

(305)
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Therefore,

(∫ ∣∣D2
αf
∣∣2 hαdα

A1 ◦ h

)1/2

6

(∫ ∣∣D2
αf
∣∣2 hαdα

A1 ◦ h

)1/2

+ 2

(∫ ∣∣∣∣|Dα|
|zα|
zα

∣∣∣∣2 ∣∣Dαf
∣∣2 hαdα

A1 ◦ h

)1/2

6

(∫ ∣∣D2
αf
∣∣2 hαdα

A1 ◦ h

)1/2

+ 2
∥∥Dαf

∥∥
L∞

(∫ ∣∣∣∣Dα
|zα|
zα

∣∣∣∣2 hαdα

A1 ◦ h

)1/2

.

(306)

We use (36) to rewrite(∫ ∣∣∣∣Dα
|zα|
zα

∣∣∣∣2 hαdα

A1 ◦ h

)1/2

=

(∫ ∣∣∣∣Dα
ztt − i
|ztt − i|

∣∣∣∣2 hαdα

A1 ◦ h

)1/2

.

(∫
|Dαztt|2

hα

|ztt − i|2 (A1 ◦ h)
dα

)1/2

=

(∫
|Dαztt|2

hα

a2 |zα|2 (A1 ◦ h)
dα

)1/2

=

(∫
|Dαztt|2

1

a(A1 ◦ h)2
dα

)1/2

6

(∫
|Dαztt|2

1

a
dα

)1/2

. (1 + E1/2
a + E1/2

a E
1/2
b + E

1/2
b )E

1/2
b ,

(307)

where we used (212), the fact that A1 > 1 (182), and (302). We plug this into (306):(∫ ∣∣D2
αf
∣∣2 hαdα

A1 ◦ h

)1/2

.

(∫ ∣∣D2
αf
∣∣2 hαdα

A1 ◦ h

)1/2

+ 2
∥∥Dαf

∥∥
L∞

(1 + E1/2
a + E1/2

a E
1/2
b + E

1/2
b )E

1/2
b .

(308)

We now apply (308) to f = zt, using (301) to control ‖Dαzt‖L∞ :

∥∥D2
α′Zt

∥∥
L2( 1

A1
dα′)

=

(∫ ∣∣D2
αzt
∣∣2 hαdα

A1 ◦ h

)1/2

. E1/2
a + (E1/2

a + E1/2
a E

1/2
b + E

1/2
b )(1 + E1/2

a + E1/2
a E

1/2
b + E

1/2
b )E

1/2
b .

(309)

We now control ‖D2
αztt‖L2(hαdα

A1◦h
). We use the commutator [∂t, D

2
α] = (−2Dαzt)D

2
α −
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(D2
αzt)Dα (258) to get∥∥D2

α′Ztt

∥∥
L2( 1

A1
dα′)

=
∥∥D2

αztt
∥∥
L2(hαdα

A1◦h
)

6
∥∥∂tD2

αzt
∥∥
L2(hαdα

A1◦h
)
+ 2

∥∥(Dαzt)D
2
αzt
∥∥
L2(hαdα

A1◦h
)
+
∥∥(D2

αzt)Dαzt
∥∥
L2(hαdα

A1◦h
)

6 E1/2
a + 2 ‖Dαzt‖L∞

∥∥D2
αzt
∥∥
L2(hαdα

A1◦h
)
+
∥∥D2

αzt
∥∥
L2(hαdα

A1◦h
)
‖Dαzt‖L∞

. E1/2
a + (301)(E1/2

a + (309)).

(310)

We will also need to controlD2
α′Ztt; we delay doing this until later, after we control ‖Dαztt‖L∞ .

We will also at one point (in §10.1) need to control

‖Dα∂tDαzt‖L2( hα
A1◦h

dα) 6 ‖∂tDαDαzt‖L2( hα
A1◦h

dα) + ‖[∂t, Dα]Dαzt‖L2( hα
A1◦h

dα)

6 E1/2
a + ‖Dαzt‖L∞

∥∥D2
αzt
∥∥
L2( hα

A1◦h
dα)

6 E1/2
a (1 + (301)).

(311)

We now control ‖ztt − i‖L∞ =
∥∥Ztt − i

∥∥
L∞

. Recall from our definition of the energy

(269) that the energy includes |ztt(α0, t)− i| for some fixed α0 ∈ I. Let α′0 = h(α0, t). Then,

by the fundamental theorem of calculus, for arbitrary α′ ∈ I,

∣∣Ztt(α
′, t)− i

∣∣ 6 ∣∣Ztt(α
′
0, t)− i

∣∣+

∫ α′

α′0

∣∣Ztt,α′
∣∣ dα′

.
∣∣Ztt(α

′
0, t)− i

∣∣+
∥∥Ztt,α′

∥∥
L2

.
∣∣Ztt(α

′
0, t)− i

∣∣+ (303).

(312)

We conclude that

‖ztt + i‖L∞ = ‖Ztt + i‖L∞ = ‖ztt − i‖L∞ =
∥∥Ztt − i

∥∥
L∞

. |ztt(α0, t)− i|+ (303).
(313)

Because of (183) and (182), we can also conclude that∥∥∥∥ 1

Z,α′

∥∥∥∥
L∞

. |ztt(α0, t)− i|+ (303). (314)

We now control ‖Dαztt‖L∞ , using the weighted Sobolev inequality (202) in Riemannian
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coordinates with weight ω = 1

|Z,α′|2
(and ε = 1).41 By the Sobolev inequality,

‖Dαztt‖L∞ = ‖Dα′Ztt‖L∞ = ‖Dαztt‖L∞ =
∥∥Dα′Ztt

∥∥
L∞

.
∥∥Ztt,α′

∥∥
L2 +

∥∥D2
α′Ztt

∥∥
L2 +

(∫ ∣∣Dα′Ztt

∣∣2 dα′)1/2

.
(
1 + ‖1/Z,α′‖L∞

) ∥∥Ztt,α′
∥∥
L2 +

∥∥D2
α′Ztt

∥∥
L2

. (1 + (314)) (303) + ‖A1‖1/2L∞ (310)

. (1 + (314)) (303) + (E
1/2
b + 1)(310).

(315)

Finally, we use (308), (310), and (315) to control D2
αztt and D2

α′Ztt:∥∥D2
α′Ztt

∥∥
L2( 1

A1
dα′)

=
∥∥D2

αztt
∥∥
L2(hαdα

A1◦h
)

.
∥∥D2

α′Ztt

∥∥
L2( 1

A1
dα′)

+ 2 ‖Dα′ztt‖L∞ (1 + E
1/2
b + E1/2

a E
1/2
b + E1/2

a )E
1/2
b

. (310) + (315)(1 + E1/2
a + E1/2

a E
1/2
b + E

1/2
b )E

1/2
b .

(316)

6.2 Maintaining Control of ‖zα‖L∞ and ‖1/zα‖L∞
We assume by our parametrization at initial time that |zα(α, 0)| ≡ 1 (25). Therefore, we

know that

‖zα‖L∞ (0), ‖1/zα‖L∞ (0) = 1 <∞. (317)

These norms will not necessarily remain identically one after initial time, so we will need to

control them. We will, of course, be able to do so via the fundamental theorem of calculus,

because our energy will control the time derivative of zα.

We apply the fundamental theorem of calculus to zα. We have

|zα(α, t)| = |zα(α, 0)|+
∫ t

0

|zα(α, τ)|τ dτ

6 |zα(α, 0)|+
∫ t

0

|zα(α, τ)| |Dαzt(α, τ)| dτ.
(318)

41Note that unlike our proof for
∥∥Dα′Zt

∥∥
L∞

at (300) above, we don’t necessarily have that −
∫

(Dα′Ztt)
2 is

zero, so we get a third term in the Sobolev inequality.
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We take the supremum over all α, and conclude that

‖zα‖L∞ (t) 6 ‖zα‖L∞ (0) +

∫ t

0

‖zα‖L∞ (τ) ‖Dαzt‖L∞ (τ)dτ. (319)

Similarly, for 1
zα

,∣∣∣∣ 1

zα(α, t)

∣∣∣∣ =

∣∣∣∣ 1

zα(α, 0)

∣∣∣∣+

∫ t

0

∣∣∣∣ 1

zα(α, τ)

∣∣∣∣
τ

dτ

6

∣∣∣∣ 1

zα(α, 0)

∣∣∣∣+

∫ t

0

∣∣∣∣ 1

zα(α, τ)

∣∣∣∣ |Dαzt(α, τ)| dτ.
(320)

Once again, we take supremum over all α and conclude:∥∥∥∥ 1

zα

∥∥∥∥
L∞

(t) 6

∥∥∥∥ 1

zα

∥∥∥∥
L∞

(0) +

∫ t

0

∥∥∥∥ 1

zα

∥∥∥∥
L∞

(τ) ‖Dαzt‖L∞ (τ)dτ. (321)

We now use (301), which controls ‖Dαzt‖L∞ in terms of the total energy, independent of

‖zα‖L∞ and
∥∥∥ 1
zα

∥∥∥
L∞

. By Gronwall’s inequality,42 this implies that

‖zα‖L∞ (t) . exp

(∫ t

0

(
E1/2
a + E1/2

a E
1/2
b + E

1/2
b

)
(τ)dτ

)
(322)

and ∥∥∥∥ 1

zα

∥∥∥∥
L∞

(t) . exp

(∫ t

0

(
E1/2
a + E1/2

a E
1/2
b + E

1/2
b

)
(τ)dτ

)
. (323)

6.3 Controlling
∥∥at

a

∥∥
L∞

We now show that we can control
∥∥at

a

∥∥
L∞

, using (201). Because A1 > 1 (182), it suffices to

control ∥∥∥2[Zt,H]Ztt,α′ + 2[Ztt,H]Zt,α′ −
π

2
[Zt, Zt;Dα′Zt]

∥∥∥
L∞

. (324)

We control the first two terms by (244):

∥∥2[Zt,H]Ztt,α′ + 2[Ztt,H]Zt,α′
∥∥
L∞

. ‖Zt,α′‖L2

∥∥Ztt,α′
∥∥
L2 . (325)

42See [Tao06], Theorem 1.10; the continuity in t of the spatial L∞ follows from the fact that we assume a
priori that ztα ∈ C0.
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We control∥∥∥π
2

[Zt, Zt;Dα′Zt]
∥∥∥
L∞

=

∥∥∥∥ 1

2i

π

2

∫
(Zt(α

′)− Zt(β′))2

sin2(π
2
(α′ − β′))

Dβ′Zt(β
′)dβ′

∥∥∥∥
L∞

. ‖Zt,α′‖2L2

∥∥Dα′Zt

∥∥
L∞

(326)

by Hölder and then Hardy’s inequality (217).

We conclude that∥∥∥at
a

∥∥∥
L∞

. ‖Zt,α′‖L2 (‖Zt,α′‖L2

∥∥Dα′Zt

∥∥
L∞

+
∥∥Ztt,α′

∥∥
L2). (327)

6.4 Controlling
∥∥∥∂α′ 1

Z,α′

∥∥∥
L2

Recall from (183) that
1

Z,α′
= i

Ztt − i
A1

. (328)

Therefore,

∂α′
1

Z,α′
= i

Ztt,α′

A1

− iZtt − i
A2

1

∂α′A1. (329)

Because A1 > 1 (182), we can control the first term by
∥∥Ztt,α′

∥∥
L2 . Now we address the

second term.

We recall that

A1 = =
(
−[Zt,H]Zt,α′

)
+ 1. (330)

Therefore,

∂α′A1 = ∂α′=
−1

2i

∫
(Zt(α

′)− Zt(β′)) cot(
π

2
(α′ − β′))Zt,β′dβ

′

= −=Zt,α′HZt,α′︸ ︷︷ ︸
0

+= 1

2i

∫
π

2

(Zt(α
′)− Zt(β′))

sin2(π
2
(α′ − β′))

Zt,β′(β
′)dβ

= = 1

2i

∫
π

2

(Zt(α
′)− Zt(β′))

sin2(π
2
(α′ − β′))

Zt,β′(β
′)dβ,

(331)

where the first term disappears because HZt,α′ = Zt,α′ (141) and so Zt,α′HZt,α′ is purely

real.43

43We ignore here and a few times in the sequel the details of justifying differentiating under the integral;
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Therefore, multiplying (331) by
∣∣Ztt(α)− i

∣∣ and splitting into two parts, we have

∣∣Ztt − i
∣∣ ∂α′A1 = = 1

2i

∫
π

2

(Zt(α
′)− Zt(β′))

sin2(π
2
(α′ − β′))

(|Ztt(α′)− i| − |Ztt(β′)− i|)Zt,β′(β
′)dβ

+ = 1

2i

∫
π

2

(Zt(α
′)− Zt(β′))

sin2(π
2
(α′ − β′))

∣∣Ztt(β
′)− i

∣∣Zt,β′(β
′)dβ

= I + II.

(332)

We need to control ‖I/A2
1‖L2 and ‖II/A2

1‖L2 . Because A1 > 1 (182), it suffices to control

‖I‖L2 and ‖II‖L2 . By (241), we have

‖I‖L2 . ‖Zt,α‖L2

∥∥Ztt,α

∥∥
L2

∥∥Zt,α′
∥∥
L2 =

∥∥Zt,α′
∥∥2
L2

∥∥Ztt,α′
∥∥
L2 . (333)

For, II, we use (328) to rewrite

II = = 1

2i

∫
π

2

(Zt(α
′)− Zt(β′))

sin2(π
2
(α′ − β′))

∣∣∣∣(−iA1(β
′))

Z,β′

∣∣∣∣Zt,β′(β
′)dβ. (334)

Now we use estimate (235):

‖II‖L2 . ‖Zt,α′‖L2

∥∥A1Dα′Zt

∥∥
L∞

6 ‖Zt,α′‖L2

∥∥Dα′Zt

∥∥
L∞
‖A1‖L∞ . (335)

We conclude that∥∥∥∥∂α′ 1

Z,α′

∥∥∥∥
L2

.
∥∥Ztt,α′

∥∥
L2 (1 + ‖Zt,α′‖2L2) + ‖Zt,α′‖L2

∥∥Dα′Zt

∥∥
L∞
‖A1‖L∞ . (336)

6.5 Controlling
∥∥∥htαhα ∥∥∥L∞

We recall (56):

h(α, t) = Φ(z(α, t), t) = Φ ◦ z. (337)

Therefore

hα = (Φz ◦ z)zα (338)

this may be made rigorous.
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and

ht = (Φt ◦ z) + (Φz ◦ z)zt = (Φt ◦ z) +
hα
zα
zt. (339)

Therefore,

(ht ◦ h−1)(α′, t) = Φt ◦ Z +
1

Z,α′
Zt. (340)

Differentiating with respect to α′ gives

(ht ◦ h−1)α′ = ∂α′(Φt ◦ Z) +Dα′Zt + Zt∂α′
1

Z,α′
. (341)

It proves useful to replace the Dα′Zt with its conjugate. We can do this by rewriting Dα′Zt =

2<Dα′Zt −
Zt,α′

Z,α′
, giving

(ht ◦ h−1)α′ − 2<Dα′Zt = ∂α′(Φt ◦ Z)− Zt,α′

Z ,α′
+ Zt∂α′

1

Z,α′
. (342)

Observe that the LHS is purely real. Therefore, if we apply <(I−H) to both sides, the LHS

remains unchanged. On the right-hand side, (I−H)∂α′(Φt ◦Z) disappears by (158), and the

remaining terms become commutators by (141) and (137):

(ht ◦ h−1)α′ − 2<Dα′Zt = <
{
−(I −H)

(
1

Z ,α′
Zt,α′

)
+ (I −H)

(
Zt∂α′

1

Z,α′

)}
= <

{
−
[

1

Z ,α′
,H
]
Zt,α′ + [Zt,H]∂α′

1

Z,α′

}
.

(343)

We use (244) to control these:∥∥∥∥[ 1

Z ,α′
,H
]
Zt,α′

∥∥∥∥
L∞

.

∥∥∥∥∂α′ 1

Z ,α′

∥∥∥∥
L2

∥∥Zt,α′
∥∥
L2 (344)

∥∥∥∥[Zt,H] ∂α′
1

Z,α′

∥∥∥∥
L∞

. ‖Zt,α′‖L2

∥∥∥∥∂α′ 1

Z,α′

∥∥∥∥
L2

. (345)

Observe that
htα
hα
◦ h−1 = ∂α′(ht ◦ h−1). (346)
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We therefore conclude that∥∥∥∥htαhα
∥∥∥∥
L∞

=
∥∥∂α′(ht ◦ h−1)∥∥L∞ . ‖Dα′Zt‖L∞ +

∥∥∥∥∂α′ 1

Z,α′

∥∥∥∥
L2

∥∥Zt,α′
∥∥
L2 . (347)

6.6 Controlling
∥∥∥(A1◦h)t

(A1◦h)

∥∥∥
L∞

Recall that

A1 ◦ h =
a |zα|2

hα
. (348)

Therefore,
d
dt

(A1 ◦ h)

A1 ◦ h
=

at
a
− htα
hα

+ 2<Dαzt. (349)

We have controlled each of the terms on the RHS in L∞ in the previous sections. We conclude

that ∥∥∥∥∥ d
dt

(A1 ◦ h)

A1 ◦ h

∥∥∥∥∥
L∞

.
∥∥∥at
a

∥∥∥
L∞

+

∥∥∥∥htαhα
∥∥∥∥
L∞

+ ‖Dαzt‖L∞ . (350)

6.7 Controlling ‖(I +H)Dα′Zt‖L∞
By taking conjugates, using (141) to get a commutator, and using commutator estimate

(244), we have

‖(I + H)Dα′Zt‖L∞ =

∥∥∥∥(I −H)
1

Z ,α′
Zt,α′

∥∥∥∥
L∞

=

∥∥∥∥[ 1

Z ,α′
,H
]
Zt,α′

∥∥∥∥
.

∥∥∥∥∂α′ 1

Z,α′

∥∥∥∥
L2

∥∥Zt,α′
∥∥
L2 .

(351)

6.8 Controlling
∥∥(I −H)Dα′Ztt

∥∥
L∞

We begin by expanding Dα′Ztt as in (175):

Dα′Ztt = Dα′(ZtDα′Zt) +Dα′(Ft ◦ Z), (352)
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where F (z(α, t), t) := zt(α, t). Under (I −H), the second term disappears by (150), so we’re

left with

(I −H)Dα′Ztt = (I −H)
{
Dα′(ZtDα′Zt)

}
= (I −H)

{
ZtD

2
α′Zt

}
+ (I −H)

{(
1

Z,α′
Dα′Zt

)
Zt,α′

}
= [Zt,H]D2

α′Zt +

[
1

Z,α′
Dα′Zt,H

]
Zt,α′

(353)

by (139) and (141). We control both of these by (244),44 to conclude that

∥∥(I −H)Dα′Ztt

∥∥
L∞

. ‖Zt,α′‖L2

∥∥D2
α′Zt

∥∥
L2 +

∥∥∥∥∂α′ ( 1

Z,α′
Dα′Zt

)∥∥∥∥
L2

∥∥Zt,α′
∥∥
L2

6 ‖Zt,α′‖L2

∥∥D2
α′Zt

∥∥
L2

+

(∥∥D2
α′Zt

∥∥
L2 +

∥∥∥∥∂α′ 1

Z,α′

∥∥∥∥
L2

‖Dα′Zt‖L∞
)∥∥Zt,α′

∥∥
L2

6 ‖Zt,α′‖L2

(∥∥D2
α′Zt

∥∥
L2 +

∥∥D2
α′Zt

∥∥
L2 +

∥∥∥∥∂α′ 1

Z,α′

∥∥∥∥
L2

‖Dα′Zt‖L∞
)
.

(354)

6.9 Controlling
∥∥∥Dα′

1
Z,α′

∥∥∥
L∞

Recall from (183) that
1

Z,α′
= i

Ztt − i
A1

. (355)

Therefore, ∥∥∥∥Dα
1

Z,α′

∥∥∥∥
L∞

=

∥∥∥∥ 1

Z,α′
∂α′

1

Z,α′

∥∥∥∥
L∞

=

∥∥∥∥Ztt − i
A1

∂α′
1

Z,α′

∥∥∥∥
L∞

6

∥∥∥∥(Ztt − i)∂α′
1

Z,α′

∥∥∥∥
L∞

=

∥∥∥∥(Ztt + i)∂α′
1

Z,α′

∥∥∥∥
L∞

,

(356)

44Note that 1
Z,α′

Dα′Zt

∣∣∣
∂

= 0 by (115).
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where we’ve used (182) A1 > 1. We therefore will estimate this last term.45 Because

(Ztt + i)∂α
1

Z,α′
= ∂α′

(
1

Z,α′
(Ztt + i)

)
−Dα′Ztt, (357)

we can control∥∥∥∥(Ztt + i)∂α′
1

Z,α′

∥∥∥∥
L∞

6 ‖Dα′Ztt‖L∞ +

∥∥∥∥∂α′ ( 1

Z,α′
(Ztt + i)

)∥∥∥∥
L∞

. (358)

Because we can control ‖Dα′Ztt‖L∞ , it suffices to focus on this second term. Observe that

A1

|Z,α′ |2
= i

1

Z ,α′
(Ztt − i) (359)

is purely real. Therefore
1

Z,α′
(Ztt + i) ∈ iR, (360)

and so

∂α′

(
1

Z,α′
(Ztt + i)

)
∈ iR. (361)

Therefore, we may apply (I −H) and invert by taking imaginary parts:

∂α′

(
1

Z,α′
(Ztt + i)

)
= i=(I −H)∂α′

(
1

Z,α′
(Ztt + i)

)
= i=(I −H)

{
(Ztt + i)∂α′

1

Z,α′

}
+ i=(I −H)Dα′Ztt.

(362)

It thus suffices to control the terms on the RHS of (362).

We rewrite the first term as a commutator by (137) and control it by (244)∥∥∥∥(I −H)(Ztt + i)∂α′
1

Z,α′

∥∥∥∥
L∞

6

∥∥∥∥[Ztt + i,H]∂α′
1

Z,α′

∥∥∥∥
L∞

. ‖Ztt,α′‖L2

∥∥∥∥∂α′ 1

Z,α′

∥∥∥∥
L2

.

(363)

Therefore, it suffices to control the second term on the RHS of (362), =(I − H)Dα′Ztt.

If H were L∞ to L∞ bounded, then this would be fine, since Dα′Ztt ∈ L∞. But we don’t

have such a bound. We get around this by taking advantage of the fact that we know things

45We will also find it useful to estimate for its own sake, in a later section.
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about holomorphicity.

Our technique relies crucially on the fact that we only care about the imaginary part of

(I −H)Dα′Ztt. We write

=(I −H)Dα′Ztt = =(I −H)

(
1

Z,α′
Ztt,α′ −

1

Z ,α′
Ztt,α′

)
+ =(I −H)

{
1

Z ,α′
Ztt,α′

}
. (364)

Observe that because what’s inside the (I −H) in the first term is purely imaginary, we can

remove the H and so we no longer have the issue of L∞ boundedness. This term, therefore, is

controlled by 2
∥∥Dα′Ztt

∥∥
L∞

, so it suffices to focus on the second term, =(I−H)
{

1
Z,α′

Ztt,α′

}
.

We now drop the =, and focus on (I −H)
{

1
Z,α′

Ztt,α′

}
.

We begin by reducing this to controlling (I − H)Dα′Ztt, by commuting out the 1
Z,α′

,

replacing it with 1
Z,α′

, and commuting it back in:

∣∣∣∣(I −H)

{
1

Z ,α′
Ztt,α′

}∣∣∣∣ =

∣∣∣∣[ 1

Z ,α′
,H
]
Ztt,α′ +

1

Z ,α′
(I −H)Ztt,α′

∣∣∣∣
6

∣∣∣∣[ 1

Z ,α′
,H
]
Ztt,α′

∣∣∣∣+

∣∣∣∣ 1

Z ,α′
(I −H)Ztt,α′

∣∣∣∣
=

∣∣∣∣[ 1

Z ,α′
,H
]
Ztt,α′

∣∣∣∣+

∣∣∣∣ 1

Z,α′
(I −H)Ztt,α′

∣∣∣∣
=

∣∣∣∣[ 1

Z ,α′
,H
]
Ztt,α′

∣∣∣∣+

∣∣∣∣(I −H)
1

Z,α′
Ztt,α′ −

[
1

Z,α′
,H
]
Ztt,α′

∣∣∣∣
6

∣∣∣∣[ 1

Z ,α′
,H
]
Ztt,α′

∣∣∣∣+

∣∣∣∣[ 1

Z,α′
,H
]
Ztt,α′

∣∣∣∣+

∣∣∣∣(I −H)
1

Z,α′
Ztt,α′

∣∣∣∣ .
(365)

We control the first two terms by (244):∥∥∥∥[ 1

Z ,α′
,H
]
Ztt,α′

∥∥∥∥
L∞

+

∥∥∥∥[ 1

Z,α′
,H
]
Ztt,α′

∥∥∥∥
L∞

.

∥∥∥∥∂α′ 1

Z,α′

∥∥∥∥
L2

∥∥Ztt,α′
∥∥
L2 . (366)

We’ve controlled the remaining term,
∥∥(I −H)Dα′Ztt

∥∥
L∞

, in (354) above.
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We conclude that∥∥∥∥Dα
1

Z,α′

∥∥∥∥
L∞

6

∥∥∥∥(Ztt + i)∂α′
1

Z,α′

∥∥∥∥
L∞

. ‖Dα′Ztt‖L∞ + ‖Ztt,α′‖L2

∥∥∥∥∂α′ 1

Z,α′

∥∥∥∥
L2

+

∥∥∥∥∂α′ 1

Z,α′

∥∥∥∥
L2

∥∥Ztt,α′
∥∥
L2 + (354)

. ‖Dα′Ztt‖L∞ + ‖Ztt,α′‖L2

∥∥∥∥∂α′ 1

Z,α′

∥∥∥∥
L2

+

∥∥∥∥∂α′ 1

Z,α′

∥∥∥∥
L2

∥∥Ztt,α′
∥∥
L2

+ ‖Zt,α′‖L2

(∥∥D2
α′Zt

∥∥
L2 +

∥∥D2
α′Zt

∥∥
L2 +

∥∥∥∥∂α′ 1

Z,α′

∥∥∥∥
L2

‖Dα′Zt‖L∞
)
.

(367)

6.10 Controlling
∥∥∥∂α′(I −H) Zt

Z,α′

∥∥∥
L∞

and Related Terms

In this section, we estimate
∥∥∥∂α′(I −H) Zt

Z,α′

∥∥∥
L∞

= 2
∥∥∥∂α′PA Zt

Z,α′

∥∥∥
L∞

, as well as some related

quantities.

Because Zt
Z,α′

∣∣∣
∂

= 0 by (118), by (100) we may commute in the derivative, so

∂α′(I −H)
Zt
Z,α′

= (I −H)∂α′
Zt
Z,α′

= (I −H)Dα′Zt + (I −H)

{
Zt∂α′

1

Z,α′

}
.

(368)

First, we control the first term. Rewriting (I −H) = 2I − (I + H), we have

‖(I −H)Dα′Zt‖L∞ . ‖Dα′Zt‖L∞ + ‖(I + H)Dα′Zt‖L∞ . (369)

We estimated the second term at (351) above. We conclude that

‖(I −H)Dα′Zt‖L∞ . ‖Dα′Zt‖L∞ +

∥∥∥∥∂α′ 1

Z,α′

∥∥∥∥
L2

∥∥Zt,α′
∥∥
L2 . (370)

We write the second term of (368) as a commutator by (137), and control this by (244):∥∥∥∥(I −H)

{
Zt∂α′

1

Z,α′

}∥∥∥∥
L∞

=

∥∥∥∥[Zt,H]∂α′
1

Z,α′

∥∥∥∥
L∞

. ‖Zt,α′‖L2

∥∥∥∥∂α′ 1

Z,α′

∥∥∥∥
L2

.

(371)
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We conclude from (370) and (371) that∥∥∥∥∂α′(I −H)
Zt
Z,α′

∥∥∥∥
L∞

. ‖Dα′Zt‖L∞ + ‖Zt,α′‖L2

∥∥∥∥∂α′ 1

Z,α′

∥∥∥∥
L2

. (372)
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Chapter 7

Controlling <
∫
i
(

1
zα
∂α

hα
zα

)
t
|θ|2 hαdα

In this chapter, we control from the RHS of (278) the term (282)

<
∫
i

(
1

zα
∂α
hα
zα

)
t

|θ|2 hαdα = −<
∫
i
ztα
zα

(
1

zα
∂α
hα
zα

)
|θ|2 hαdα

+ <
∫
i

(
1

zα
∂α∂t

hα
zα

)
|θ|2 hαdα

(373)

for θ = D2
αzt.

We can control the first of these terms by∣∣∣∣−<∫ i
ztα
zα

(
1

zα
∂α
hα
zα

)
|θ|2 hαdα

∣∣∣∣ . ‖Dαzt‖L∞
∥∥∥∥Dα′

1

Z,α′

∥∥∥∥
L∞

∥∥D2
α′Zt

∥∥2
L2 . (374)

Therefore, it suffices to focus on the second term on the RHS of (373). We expand it out:

<
∫
i

(
1

zα
∂α∂t

hα
zα

)
|θ|2 hαdα = <

∫
i

(
1

zα
∂α

(
hα
zα

(
htα
hα
− ztα
zα

)))
|θ|2 hαdα

= <
∫
i

(
1

zα
∂α
hα
zα

)(
htα
hα
− ztα
zα

)
|θ|2 hαdα

+ <
∫
i

(
1

zα

hα
zα
∂α

(
htα
hα
− ztα
zα

))
|θ|2 hαdα.

(375)
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We can estimate the first term on the RHS by∣∣∣∣< ∫ i

(
1

zα
∂α
hα
zα

)(
htα
hα
− ztα
zα

)
|θ|2 hαdα

∣∣∣∣
.

∥∥∥∥Dα′
1

Z,α′

∥∥∥∥
L∞

(∥∥∥∥htαhα
∥∥∥∥
L∞

+ ‖Dαzt‖L∞
)∥∥D2

α′Zt

∥∥
L2 .

(376)

Therefore, it suffices to focus on the second term on the RHS of (375). Observe that because

h is real-valued,

<
∫
i

(
1

zα

hα
zα
∂α

(
htα
hα
− ztα
zα

))
|θ|2 hαdα = −<

∫
i

(
1

zα

hα
zα
∂α

(
ztα
zα

))
|θ|2 hαdα. (377)

For consistency with the quantities we’ve controlled elsewhere, we will conjugate, and focus

on

<
∫
i

(
hα

|zα|2
∂α

(
ztα
zα

))
|θ|2 hαdα. (378)

We now drop < and the i, write D2
αzt = θ, and switch to Riemannian coordinates. We have

∫ (
1

|Z,α′ |2
∂α′

(
Zt,α′

Z ,α′

)) ∣∣D2
α′Zt

∣∣2 dα′. (379)

We want to take advantage of the holomorphicity and antiholomorphicity of various of

these factors. To do this, we first replace the 1
Z,α′

with a 1
Z,α′

inside the inner part of the

first factor to make it closer to holomorphic (since
Zt,α′

Z,α′
= Dα′Zt is holomorphic):

∫ (
1

|Z,α′ |2
∂α′

(
Zt,α′

Z ,α′

)) ∣∣D2
α′Zt

∣∣2 dα′ = ∫ ( 1

|Z,α′ |2
Z,α′

Z ,α′
∂α′

(
Zt,α′

Z,α′

)) ∣∣D2
α′Zt

∣∣2 dα′
+

∫ (
1

|Z,α′|2

(
∂α′

Z,α′

Z ,α′

)(
Zt,α′

Z,α′

)) ∣∣D2
α′Zt

∣∣2 dα′
=

∫ (
1

Z
2

,α′

∂α′Dα′Zt

)∣∣D2
α′Zt

∣∣2 dα′
−
∫ (

1

|Z,α′|2

(
∂α′

Ztt + i

Ztt − i

)
Dα′Zt

)∣∣D2
α′Zt

∣∣2 dα′,
(380)

where we have used (36) to replace the
Z,α′

Z,α′
with −Ztt+i

Ztt−i
. We can estimate the second term
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by ∣∣∣∣∣
∫ (

1

|Z,α′|2

(
∂α′

Ztt + i

Ztt − i

)
Dα′Zt

)∣∣D2
α′Zt

∣∣2 dα′∣∣∣∣∣
.

∥∥∥∥∥
(

1

|Z,α′ |2

(
∂α′

Ztt + i

Ztt − i

)
Dα′Zt

)∥∥∥∥∥
L∞

∥∥D2
α′Zt

∥∥2
L2 .

. ‖Dα′Ztt‖L∞
∥∥Dα′Zt

∥∥
L∞

∥∥D2
α′Zt

∥∥2
L2 ,

(381)

where we have used 1
A1

=
∣∣∣ 1
Z,α′ (Ztt+i)

∣∣∣ (183), A1 > 1 (182), and (212).

It therefore remains only to control the first term on the RHS of (380). Now we take

advantage of holomorphicity. We rewrite this as

∫ (
1

Z
2

,α′

∂α′Dα′Zt

)∣∣D2
α′Zt

∣∣2dα′ = ∫ ( 1

Z ,α′
∂α′Dα′Zt

)(
1

Z,α′
D2
α′Zt

)
D2
α′Ztdα

′

=

∫ (
(PA + PH)

1

Z ,α′
∂α′Dα′Zt

)(
1

Z,α′
D2
α′Zt

)
PHD2

α′Ztdα
′,

(382)

where we have used (139) to insert PH in front of the D2
α′Zt and decomposed the first factor

into the holomorphic and antiholomorphic projections. Now we use the adjoint property

(98) to move the PH into a PA on the remaining factors, and control using Cauchy-Schwarz:∣∣∣∣∫ ((PA + PH)

{
1

Z ,α′
∂α′Dα′Zt

})(
1

Z,α′
D2
α′Zt

)
PHD2

α′Ztdα
′
∣∣∣∣

=

∣∣∣∣∫ (PA{((PA + PH)

{
1

Z ,α′
∂α′Dα′Zt

})(
1

Z,α′
D2
α′Zt

)})
D2
α′Ztdα

′
∣∣∣∣

.

∥∥∥∥PA{((PA + PH)

{
1

Z ,α′
∂α′Dα′Zt

}(
1

Z,α′
D2
α′Zt

))}∥∥∥∥
L2

∥∥D2
α′Zt

∥∥
L2 .

(383)

It now remains only to control this first factor.

First we consider the term with the PH . In this case, we can rewrite this as a commutator:

PA
{(

PH
{

1

Z ,α′
∂α′Dα′Zt

})(
1

Z,α′
D2
α′Zt

)}
=

1

2

[
1

Z,α′
D2
α′Zt,H

]
PH
{

1

Z ,α′
∂α′Dα′Zt

}
+

1

4

1

Z,α′
D2
α′Zt

(
−
∫

1

Z ,α′
∂α′Dα′Zt

)
.

(384)
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Here, the mean term appears because of (95). We now use commutator estimate (240) for

the first term and Hölder for the second term, to conclude that∥∥∥∥PA{(PH 1

Z ,α′
∂α′Dα′Zt

)(
1

Z,α′
D2
α′Zt

)}∥∥∥∥
L2

.

∥∥∥∥ 1

Z,α′
D2
α′Zt

∥∥∥∥
Ḣ1/2

∥∥∥∥PH { 1

Z ,α′
∂α′Dα′Zt

}∥∥∥∥
L2

+

∥∥∥∥ 1

Z,α′
D2
α′Zt

∥∥∥∥
L2

∥∥∥∥ 1

Z ,α′
∂α′Dα′Zt

∥∥∥∥
L1

.

∥∥∥∥ 1

Z,α′
D2
α′Zt

∥∥∥∥
Ḣ1/2

∥∥∥∥ 1

Z ,α′
∂α′Dα′Zt

∥∥∥∥
L2

+

∥∥∥∥ 1

Z,α′

∥∥∥∥
L∞

∥∥D2
α′Zt

∥∥
L2

∥∥∥∥ 1

Z ,α′
∂α′Dα′Zt

∥∥∥∥
L2

.
∥∥D2

α′Zt

∥∥
L2

(∥∥∥∥ 1

Z,α′
D2
α′Zt

∥∥∥∥
Ḣ1/2

+

∥∥∥∥ 1

Z,α′

∥∥∥∥
L∞

∥∥D2
α′Zt

∥∥
L2

)
. (385)

Finally, we consider the PA term in the first factor on the RHS of (383). By the L2

boundedness of PA, it suffices to control∥∥∥∥ 1

Z,α′
D2
α′Zt(I −H)

{
1

Z ,α′
∂α′Dα′Zt

}∥∥∥∥
L2

.

∥∥∥∥D2
αZt

[
1

Z,α′
,H
]{

1

Z ,α′
∂α′Dα′Zt

}∥∥∥∥
L2

+

∥∥∥∥D2
α′Zt(I −H)

{
1

Z ,α′
D2
α′Zt

}∥∥∥∥
L2

.
∥∥D2

αZt

∥∥
L2

∥∥∥∥[ 1

Z,α′
,H
]{

1

Z ,α′
∂α′Dα′Zt

}∥∥∥∥
L∞

+
∥∥D2

αZt

∥∥
L2

∥∥∥∥[ 1

Z ,α′
,H
]
D2
α′Zt

∥∥∥∥
L∞

.
∥∥D2

αZt

∥∥2
L2

∥∥∥∥∂α′ 1

Z,α′

∥∥∥∥
L2

,

(386)

where we’ve used (139) to get the second commutator and used commutator estimate (244).
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We now combine our estimates, concluding that

<
∫
i

(
1

zα
∂α
hα
zα

)
t

|θ|2 hαdα . (374) + (375)

. (374) + (376) + (381)

+
∥∥D2

α′Zt

∥∥
L2 · ((385) + (386))

. ‖Dαzt‖L∞
∥∥∥∥Dα′

1

Z,α′

∥∥∥∥
L∞

∥∥D2
α′Zt

∥∥2
L2

+

∥∥∥∥Dα′
1

Z,α′

∥∥∥∥
L∞

(∥∥∥∥htαhα
∥∥∥∥
L∞

+ ‖Dαzt‖L∞
)∥∥D2

α′Zt

∥∥
L2

+ ‖Dα′Ztt‖L∞
∥∥Dα′Zt

∥∥
L∞

∥∥D2
α′Zt

∥∥2
L2

+
∥∥D2

α′Zt

∥∥2
L2

(∥∥∥∥ 1

Z,α′
D2
α′Zt

∥∥∥∥
Ḣ1/2

+

∥∥∥∥ 1

Z,α′

∥∥∥∥
L∞

∥∥D2
α′Zt

∥∥
L2

)
+
∥∥D2

αZt

∥∥3
L2

∥∥∥∥∂α′ 1

Z,α′

∥∥∥∥
L2

.

(387)
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Chapter 8

Controlling <
∫
i

(
h2α
|zα|2

)
t
θαθdα

We now show that we can control the term (289) from the RHS of (278):

<
∫
i

(
h2α
|zα|2

)
t

θαθdα = <
∫
i

(
2
htα
hα
− 2<Dαzt

)
h2α
|zα|2

θαθdα. (388)

Here, all results will be expressed in terms of general energy Ea,θ for θ satisfying θ|∂ = 0 and

(I −H)(θ ◦ h−1) = 0, rather than specifying θ = D2
αzt.

8.1 Preliminary Estimate

We begin by rewriting this as

<
∫
i

(
2
htα
hα
− 2<Dαzt

)
h2α
|zα|2

θαθdα = <
∫

2i

(
htα
hα
−<Dαzt

)(
∂α

(
θ
hα
zα

))
θ
hα
zα
dα

−<
∫

2i

(
htα
hα
−<Dαzt

)(
hα
zα
∂α
hα
zα

)
θθdα

= I + II.

(389)

II is easy to control, via Hölder and a change of variables to Riemannian coordinates:

|II| .
(∥∥∥∥htαhα

∥∥∥∥
L∞

+ ‖Dαzt‖L∞
)∥∥∥∥Dα′

1

Z,α′

∥∥∥∥
L∞
‖A1‖L∞ Ea,θ. (390)
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Therefore, we can focus on I from (389), which we will handle in the remaining sections of

this chapter.

8.2 The Framework and Notation

For the following derivation, we will adopt some abbreviations for notational simplicity. We

define:

ψ :=

(
hα
zα
θ

)
◦ h−1, (391)

B :=

(
htα
hα
−<Dαzt

)
◦ h−1, (392)

and

Θ := θ ◦ h−1. (393)

We know ψ,B, and θ have the following properties:

Proposition 26. Let ψ,B and Θ be as in (391), (392), and (393). Then

B|∂ = 0. (394)

ψ|∂ , ψ
∣∣
∂

= 0 (395)

B ∈ R (396)

(I −H)Θ = 0 (397)

(I −H)ψ = 0. (398)

‖B‖L∞ 6

∥∥∥∥htαhα
∥∥∥∥
L∞

+ ‖Dα′Zt‖L∞ (399)

‖Θ‖L2 6 ‖A1‖1/2L∞ E
1/2
a,θ (400)

‖ψ‖Ḣ1/2 . E
1/2
a,θ . (401)

Proof. For (394), this follows from (51) and (117). For (395), this follows from (114) and

θ|∂ = 0; in the specific case θ = D2
αzt this follows from (113) and (114). For (396), this

follows because h is real-valued. For (397), this follows in the specific case from (139). For

(398), this follows from (131), (397) and the second principle in §3.6; in the specific case

from (144). The estimate (399) is immediate from the definition of B. Estimates (400) and
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(401) follow immediately from the definition of Ea,θ and change of variables; in the specific

case, they follow from (298) and (299).

8.3 Green’s Identity

We now show that we can control I from (389), using the properties listed in Proposition 26.

A key insight is that i∂α′ψ = i∂α′Hψ by (398). The operator i∂α′H corresponds to the

Dirichlet-Neumann operator ∇n.46 We can therefore use Green’s identity on the harmonic

extensions of ψ and B.47

Since i∂α′ψ = i∂α′Hψ = ∇nψ, we can expand I from (389) as

I = <
∫

2i(B ◦ h)(∂α(ψ ◦ h))(ψ ◦ h)dα

= <
∫

2iB(∂α′ψ)ψdα′

= <
∫

2B(∇nψ)ψdα′

=

∫
B(∇nψ)ψdα′ +

∫
Bψ(∇nψ)dα′

=

∫
B∇n(

∣∣ψ~∣∣2)dα′.

(402)

Here ψ~ is the periodic harmonic extension of ψ to P− := [−1, 1]× (−∞, 0].

We now use Green’s identity:∫
B∇n(

∣∣ψ~∣∣2)dα′ = ∫ (∇nB) |ψ|2 dα′ +
∫
P−

B~∆(
∣∣ψ~∣∣2)dv

= I1 + I2.

(403)

46Recall that the Dirichlet-Neumann operator is defined by ∇nf := ∇nf~, where ∇n is the outward-facing
normal derivative and f~ is the extension of f that is harmonic and periodic in P− = [−1, 1]× (−∞, 0]. For
f real-valued, we can derive this by noting that (I + H)f is holomorphic, so i∂α′(I + H)f = ∇n(I + H)f .
Taking real parts gives the identity.

47Here, to justify Green’s identity, we can map the interior of P− to the unit disc minus the slit, and then
use the periodicity of all of the functions involved to consider the harmonic extensions of these functions to
the whole unit disc.
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We control the second term, I2, by

|I2| =
∣∣∣∣∫
P−

B~∆(
∣∣ψ~∣∣2)dv∣∣∣∣

= 2

∣∣∣∣∫
P−

B~ ∣∣∇ψ~∣∣2 dv∣∣∣∣
6 2

∥∥B~∥∥
L∞

∫
P−

∣∣∇ψ~∣∣2 dv
=
∥∥B~∥∥

L∞

∫
P−

∆(
∣∣ψ~∣∣2)dv

= ‖B‖L∞
∫
∇n(

∣∣ψ~∣∣2)dα′
= ‖B‖L∞ 2<

∫
i(∂α′ψ)ψdα′,

= ‖B‖L∞ ‖ψ‖Ḣ1/2

(404)

by the maximum principle and another application of Green’s identity, where we can remove

the absolute value because of the positivity of the integral in the third line.

We are left with the remaining term on the RHS of (403), I1.

8.4 Controlling I1

We are left from §8.3 with controlling

I1 =

∫
(∇nB) |ψ|2 dα′

= <
∫

(i∂α′HB) |ψ|2 dα′

= <
∫

(iH∂α′B) |ψ|2 dα′

= <
∫

1

Z,α′
(iH∂α′B)Θψdα′,

(405)

where we have commuted ∂α′ outside the H by (100) since B|∂ = 0 (394).
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We commute the 1
Z,α′

factor inside the H, and then apply the adjoint property (91):

I1 = <
∫
i

([
1

Z,α′
,H
]
∂α′B

)
Θψdα′ + <

∫
i

(
H
(

1

Z,α′
∂α′B

))
Θψdα′

= <
∫
i

([
1

Z,α′
,H
]
∂α′B

)
Θψdα′ −<

∫
i

(
1

Z,α′
∂α′B

)
H
(
Θψ
)
dα′

= <
∫
i

([
1

Z,α′
,H
]
∂α′B

)
Θψdα′

−<
∫
i

(
1

Z,α′
∂α′B

)H
(
Θψ
) 0︷ ︸︸ ︷
−ψHΘ + ψHΘ

 dα′

= <
∫
i

([
1

Z,α′
,H
]
∂α′B

)
Θψdα′

+ <
∫
i

(
1

Z,α′
∂α′B

)[
ψ,H

]
Θdα′ −<

∫
i

(
1

Z,α′
∂α′B

)
ψHΘdα′

= I11 + I12 + I13.

(406)

Observe that because HΘ = Θ (397),

I13 = −<
∫
i

(
1

Z,α′
∂α′B

)
ψΘdα′

= −<
∫
i (∂α′B) |ψ|2 dα′

= 0,

(407)

since B ∈ R. It remains to control I11 and I12.

We use Cauchy-Schwarz and then the Ḣ1/2 × L2 commutator estimate (240) to control

I12:

|I12| 6 ‖Dα′B‖L2

∥∥[ψ,H]Θ
∥∥
L2

. ‖Dα′B‖L2

∥∥ψ∥∥
Ḣ1/2 ‖Θ‖L2 .

(408)

We will control ‖Dα′B‖L2 by (430) in §8.5 below, we controlled
∥∥ψ∥∥

Ḣ1/2 at (401), and we

controlled ‖Θ‖L2 at (400). We conclude that

|I12| . ‖Dα′B‖L2 ‖A1‖1/2L∞ Ea,θ. (409)

It remains to control I11 from (406). Here we use Proposition 10, identity (109). Because
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(I −H) 1
Z,α′

= −
∫

1
Z,α′

(131) we can rewrite

[
1

Z,α′
,H
]
∂α′B = H

[
1

Z,α′
,H
]
∂α′B −−

∫ (
1

Z,α′
∂α′B

)
+

(
−
∫

1

Z,α′

)(
−
∫
∂α′B

)
︸ ︷︷ ︸

0 by (394)

(410)

and so, by using this for one half of
[

1
Z,α′

,H
]
∂α′B,

[
1

Z,α′
,H
]
∂α′B =

(I + H)

2

([
1

Z,α′
,H
]
∂α′B

)
− 1

2
−
∫ (

1

Z,α′
∂α′B

)
= PH

([
1

Z,α′
,H
]
∂α′B

)
− 1

2
−
∫
Dα′B.

(411)

We now use (411) to rewrite I11, and then use adjoint property (98):

I11 = <
∫
i

([
1

Z,α′
,H
]
∂α′B

)
Θψdα′

= <
∫
i

{
PH
([

1

Z,α′
,H
]
∂α′B

)
− 1

2
−
∫
Dα′B

}
Θψdα′

= <
∫
i

{
PH
([

1

Z,α′
,H
]
∂α′B

)}
Θψdα′ −<

{(
1

2
−
∫
Dα′B

)∫
iΘψdα′

}
= <

∫
i

([
1

Z,α′
,H
]
∂α′B

)
PA
(
Θψ
)
dα′ −<

{(
1

2
−
∫
Dα′B

)∫
iΘψdα′

}
= I111 + I112.

(412)

To control I111, we use Cauchy-Schwarz, and then control the first factor with the L2 × L∞

estimate (233) and control the second factor by rewriting it as a commutator by (397) and

then using the Ḣ1/2 × L2 estimate (240):

|I111| 6
∥∥∥∥[ 1

Z,α′
,H
]
∂α′B

∥∥∥∥
L2

∥∥PA (Θψ)∥∥L2

=

∥∥∥∥[ 1

Z,α′
,H
]
∂α′B

∥∥∥∥
L2

∥∥∥∥1

2

[
ψ,H

]
Θ

∥∥∥∥
L2

.

∥∥∥∥∂α′ 1

Z,α′

∥∥∥∥
L2

‖B‖L∞
∥∥ψ∥∥

Ḣ1/2 ‖Θ‖L2

.

∥∥∥∥∂α′ 1

Z,α′

∥∥∥∥
L2

(∥∥∥∥htαhα
∥∥∥∥
L∞

+ ‖Dα′Zt‖L∞
)
‖A1‖1/2L∞ Ea,θ,

(413)
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where we have used (399), (400) and (401) in the last line.

It’s easy to estimate I112 from (412); using (183) to rewrite 1
Z,α′

= −iZtt+i
A1

, we estimate

|I112| =
∣∣∣∣(1

2
−
∫
Dα′B

)∫
iΘψdα′

∣∣∣∣
6 ‖Dα′B‖L2

∫ ∣∣Θψ∣∣ dα′
= ‖Dα′B‖L2

∫ ∣∣∣∣Ztt + i

A1

|Θ|2
∣∣∣∣ dα′

6 ‖Dα′B‖L2 ‖Ztt + i‖L∞ Ea,θ.

(414)

8.5 Controlling ‖Dα′B‖L2

We must control ‖Dα′B‖L2 , where B is defined from (392) as

B =

(
htα
hα
−<Dαzt

)
◦ h−1 = (ht ◦ h−1)α′ −<Dα′Zt. (415)

Recall from (343) that

(ht ◦ h−1)α′ − 2<Dα′Zt = <
{
−(I −H)

(
1

Z ,α′
Zt,α′

)
+ (I −H)

(
Zt∂α′

1

Z,α′

)}
. (416)

Therefore,

‖Dα′B‖L2 6 ‖Dα′<Dα′Zt‖L2 +

∥∥∥∥Dα′<
{
−(I −H)

(
1

Z ,α′
Zt,α′

)
+ (I −H)

(
Zt∂α′

1

Z,α′

)}∥∥∥∥
L2

.

(417)

Note that |∂α′<f | 6 |∂α′f | and so |Dα<f | 6 |Dαf | for any f . Therefore,

‖Dα′B‖L2 6
∥∥D2

α′Zt
∥∥
L2 +

∥∥∥∥Dα′(I −H)

(
1

Z ,α′
Zt,α′

)∥∥∥∥
L2

+

∥∥∥∥Dα′(I −H)

(
Zt∂α′

1

Z,α′

)∥∥∥∥
L2

.

(418)

We’ve controlled ‖D2
α′Zt‖L2 , so it suffices to focus on the second and third terms.

For the second term, we begin by commuting the Dα′ inside the (I −H):

Dα′(I −H)

{
1

Z ,α′
Zt,α′

}
=

1

Z,α′
(I −H)∂α′

(
1

Z ,α′
Zt,α′

)
− 1

Z,α′
[∂α′ ,H]

{
1

Z ,α′
Zt,α′

}
. (419)
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The [∂α′ ,H] term is not necessarily zero, but it is easily controlled. By (101), it is:

1

2i

1

Z,α′
(α′) cot(

π

2
(α′ − β′)) 1

Z ,β′
Zt,β′

∣∣∣∣
∂

. (420)

There are now two cases. If we are in the trivial angle regime, this is zero, because
1

Z,β′
Zt,β′ =

Z,β′

Z,β′
Dβ′Zt; the second factor always has periodic behavior, and the first does

by (115). Otherwise, 1
Z,β′

(β′) = 0 at the corner, by the dichotomy (115), so we can subtract
1

Z,β′
(β′) cot(· · · ) 1

Z,β′
Zt,β′ and control by Hölder and Hardy’s inequality (218):

∥∥∥∥∥ 1

2i

1

Z,α′
(α′) cot(

π

2
(α′ − β′)) 1

Z ,β′
Zt,β′

∣∣∣∣
∂

∥∥∥∥∥
L2
α′

=

∥∥∥∥∥ 1

2i

(
1

Z,α′
(α′)− 1

Z,β′
(β′)

)
cot(

π

2
(α′ − β′)) 1

Z ,β′
Zt,β′

∣∣∣∣
∂

∥∥∥∥∥
L2
α′

.

∥∥∥∥∂α′ 1

Z,α′

∥∥∥∥
L2

∥∥Dα′Zt

∥∥
L∞

. (421)

Therefore, it suffices to consider the first term on the RHS of (419), which we write as∥∥∥∥ 1

Z,α′
(I −H)∂α′

(
1

Z ,α′
Zt,α′

)∥∥∥∥
L2

=

∥∥∥∥(I −H)Dα′

(
1

Z ,α′
Zt,α′

)
−
[

1

Z,α′
,H
]
∂α′

(
1

Z ,α′
Zt,α′

)∥∥∥∥
L2

.

∥∥∥∥Dα′

(
1

Z ,α′
Zt,α′

)∥∥∥∥
L2

+

∥∥∥∥∂α′ 1

Z,α′

∥∥∥∥
L2

∥∥∥∥ 1

Z ,β′
Zt,β′

∥∥∥∥
L∞

=
∥∥D2

α′Zt
∥∥
L2 +

∥∥∥∥∂α′ 1

Z,α′

∥∥∥∥
L2

∥∥∥∥ 1

Z ,β′
Zt,β′

∥∥∥∥
L∞

,

(422)

where we used (233) in the second line (noting that this doesn’t require control of 1
Z,β′

Zt,β′

∣∣∣
∂
).

We conclude from (419), (421), and (422) that the second term on the RHS of (418) is

controlled ∥∥∥∥Dα′(I −H)

{
1

Z ,α′
Zt,α′

}∥∥∥∥
L2

.

∥∥∥∥∂α′ 1

Z,α′

∥∥∥∥
L2

∥∥Dα′Zt

∥∥
L∞

+
∥∥D2

α′Zt
∥∥
L2 . (423)

We now consider the last term in (418). We begin by writing this as a commutator using
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(137), and then apply Dα′ :

Dα′(I −H)

{
Zt∂α′

1

Z,α′

}
= Dα′ [Zt,H]∂α′

1

Z,α′

=
1

Z,α′
∂α′

1

2i

∫
(Zt(α

′)− Zt(β′)) cot(
π

2
(α′ − β′))∂β′

1

Z,β′
dβ′

=
1

Z,α′
Zt,α′H∂α′

1

Z,α′
− 1

Z,α′

1

2i

∫
π

2

Zt(α
′)− Zt(β′)

sin2(π
2
(α′ − β′))

∂β′
1

Z,β′
dβ′.

(424)

Via the boundedness of the Hilbert transform, we control the first of these terms by

‖Dα′Zt‖L∞
∥∥∥∥∂α′ 1

Z,α′

∥∥∥∥
L2

. (425)

Therefore, it suffices to focus on the second term. We commute the 1
Z,α′

inside, getting

− 1

2i

∫
π

2

Zt(α
′)− Zt(β′)

sin2(π
2
(α′ − β′))

Dβ′
1

Z,β′
dβ′

− 1

2i

∫
π

2

(Zt(α
′)− Zt(β′))

sin(π
2
(α′ − β′))

(
1

Z,α′
(α′)− 1

Z,β′
(β′)

)
sin(π

2
(α′ − β′))

∂β′
1

Z,β′
dβ′.

(426)

We control the first term by (235):∥∥∥∥∫ π

2

Zt(α
′)− Zt(β′)

sin2(π
2
(α′ − β′))

Dβ′
1

Z,β′
dβ′
∥∥∥∥
L2

. ‖Zt,α′‖L2

∥∥∥∥Dβ′
1

Z,β′

∥∥∥∥
L∞

. (427)

We control the second term by (241):∥∥∥∥∥∥
∫
π

2

(Zt(α
′)− Zt(β′))

sin(π
2
(α′ − β′))

(
1

Z,α′
(α′)− 1

Z,β′
(β′)

)
sin(π

2
(α′ − β′))

∂β′
1

Z,β′
dβ′

∥∥∥∥∥∥
L2

. ‖Zt,α′‖L2

∥∥∥∥∂α′ 1

Z,α′

∥∥∥∥2
L2

. (428)

We conclude that the third term in (418) is controlled∥∥∥∥Dα′(I −H)

{
Zt∂α′

1

Z,α′

}∥∥∥∥
L2

. ‖Dα′Zt‖L∞
∥∥∥∥∂α′ 1

Z,α′

∥∥∥∥
L2

+ ‖Zt,α′‖L2

(∥∥∥∥Dβ′
1

Z,β′

∥∥∥∥
L∞

+

∥∥∥∥∂α′ 1

Z,α′

∥∥∥∥2
L2

)
.

(429)
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We conclude from (418) that

‖Dα′B‖L2 6
∥∥D2

α′Zt
∥∥
L2 + (423) + (429).

.
∥∥D2

α′Zt
∥∥
L2 +

∥∥∥∥∂α′ 1

Z,α′

∥∥∥∥
L2

∥∥Dα′Zt

∥∥
L∞

+ ‖Zt,α′‖L2

(∥∥∥∥Dβ′
1

Z,β′

∥∥∥∥
L∞

+

∥∥∥∥∂α′ 1

Z,α′

∥∥∥∥2
L2

)
.

(430)

8.6 Conclusion

We now combine our various estimates. We have

|I| . |I1|+ |I2|

. |I1|+ (404)

. |I1|+
(∥∥∥∥htαhα

∥∥∥∥
L∞

+ ‖Dα′Zt‖L∞
)
E

1/2
a,θ ,

(431)

where
|I1| 6 |I11|+ |I12|

6 |I111|+ |I112|+ |I12|

. (413) + (414) + (409)

.

∥∥∥∥∂α′ 1

Z,α′

∥∥∥∥
L2

(∥∥∥∥htαhα
∥∥∥∥
L∞

+ ‖Dα′Zt‖L∞
)
‖A1‖1/2L∞ Ea,θ

+ ‖Dα′B‖L2 ‖Ztt + i‖L∞ Ea,θ + ‖Dα′B‖L2 ‖A1‖1/2L∞ Ea,θ.

(432)
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From the original equation in this chapter (389), we conclude that∣∣∣∣∣<
∫
i

(
h2α
|zα|2

)
t

θαθdα

∣∣∣∣∣ 6 |I|+ |II|
6 (431) +

(∥∥∥∥htαhα
∥∥∥∥
L∞

+ ‖Dαzt‖L∞
)∥∥∥∥Dα′

1

Z,α′

∥∥∥∥
L∞
‖A1‖L∞ Ea,θ

.

(∥∥∥∥htαhα
∥∥∥∥
L∞

+ ‖Dα′Zt‖L∞
)
E

1/2
a,θ

+

∥∥∥∥∂α′ 1

Z,α′

∥∥∥∥
L2

(∥∥∥∥htαhα
∥∥∥∥
L∞

+ ‖Dα′Zt‖L∞
)
‖A1‖1/2L∞ Ea,θ

+ ‖Dα′B‖L2 ‖Ztt + i‖L∞ Ea,θ + ‖Dα′B‖L2 ‖A1‖1/2L∞ Ea,θ

+

(∥∥∥∥htαhα
∥∥∥∥
L∞

+ ‖Dαzt‖L∞
)∥∥∥∥Dα′

1

Z,α′

∥∥∥∥
L∞
‖A1‖L∞ Ea,θ,

(433)

where we use (430) to control ‖Dα′B‖L2 .
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Chapter 9

Controlling Gθ of Eb

By (292), we must control(∫
1

a

∣∣Dα(−iatzα) + [(∂2t + ia∂α), Dα]zt
∣∣2 dα)1/2

. (434)

We control the commutator in §9.1 at (435) and the first term in §9.2 at (472).

9.1 Controlling the Commutator for Eb

We use (261) to control(∫
1

a

∣∣[(∂2t + ia∂α), Dα]zt
∣∣2 dα)1/2

. (‖Dαztt‖L∞ + ‖Dαzt‖2L∞) ‖Dαzt‖L2( 1
a
dα)

+ ‖Dαzt‖L∞ ‖Dαztt‖L2( 1
a
dα)

. (‖Dαztt‖L∞ + ‖Dαzt‖2L∞)E
1/2
b

+ ‖Dαzt‖L∞ ‖Dαztt‖L2( 1
a
dα) ,

(435)

where we have used A1 > 1 (182) to insert the A1◦h weight corresponding to the lower-order

term in energy Eb, ‖Dαzt‖2L2(
(A1◦h)

a
)
.
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9.2 Controlling the Main Part for Eb

We show here that we can control
(∫

1
a
|Dα(−iatzα)|2 dα

)1/2
. It turns out to be advantageous

to think of atzα as at
a
azα. We have

Dα

(
−iat

a
azα

)
= −iazαDα

(at
a

)
+

at
a
Dα(−iazα) = −iazαDα

(at
a

)
+

at
a
Dαztt, (436)

since −iazα = ztt − i (27). Therefore,(∫
1

a
|Dα(−iatzα)|2 dα

)1/2

6

(∫
1

a

∣∣∣azαDα

(at
a

)∣∣∣2 dα)1/2

+
∥∥∥at
a

∥∥∥
L∞

(∫
1

a
|Dαztt|2 dα

)1/2

.

(437)

We controlled the factors in the second term on the RHS in (302) and (327). We can therefore

concentrate on the first term. We recall that

1

a
=
|zα|2

A1 ◦ h
1

hα
, (438)

so (∫
1

a

∣∣∣azαDα

(at
a

)∣∣∣2 dα)1/2

=

(∫
1

a

∣∣∣a∂α (at
a

)∣∣∣2 dα)1/2

=

(∫
|zα|2

(A1 ◦ h)hα

∣∣∣a∂α (at
a

)∣∣∣2 dα)1/2

6

∥∥∥∥∥ |zα|2A1 ◦ h

∥∥∥∥∥
1/2

L∞

(∫
1

hα

∣∣∣a∂α (at
a

)∣∣∣2 dα)1/2

6 ‖zα‖L∞

∫ ∣∣∣∣∣a∂α
(
at
a

)
hα

∣∣∣∣∣
2

hαdα

1/2

= ‖zα‖L∞

(∫ ∣∣∣∣(a ◦ h−1)∂α′ (AtA
)∣∣∣∣2 dα′

)1/2

,

(439)

where in the penultimate step we have removed the factor of 1/A1 because A1 > 1 (182).

We now seek a way of writing (a ◦ h−1)∂α′
(At
A

)
in terms of commutators. The derivation

to do so will be slightly convoluted, since we have to take care that we can invert (I − H)

and we want to make sure that the advantageous weight (a ◦ h−1) is placed appropriately.
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Recall that (azα) ◦ h−1 = AZ ,α′ . Because

− iAtZ ,α′ =
At
A

(−iAZ ,α′), (440)

by the product rule

∂α′
(
−iAtZ ,α′

)
= (−iAZ ,α′)∂α′

(
At
A

)
+
At
A
∂α′
(
−iAZ ,α′

)
. (441)

The LHS is just the derivative of our standard quasilinear equation in Riemannian coordi-

nates (186) and the second part of the second term in the RHS is simply ∂α′(Ztt−i) = ∂α′Ztt.

Therefore, using the original equations (27) (in Riemannian coordinates) and (186), we have

(−iAZ ,α′)∂α′
At
A

= ∂α′
(
Zttt + iAZt,α′

)
− At
A
∂α′Ztt. (442)

We now apply (I −H) to each side:

(I −H)

{
(−iAZ ,α′)∂α′

At
A

}
= (I −H)∂α′

(
Zttt + iAZt,α′

)
− (I −H)

{
At
A
∂α′Ztt

}
. (443)

We want to move the factor AZ ,α′ outside on the LHS, so we do this:

(−iAZ ,α′)(I −H)∂α′
At
A

= (I −H)∂α′
(
Zttt + iAZt,α′

)
− (I −H)

{
At
A
∂α′Ztt

}
+ [iAZ ,α′ ,H]∂α′

At
A
.

(444)

Now, by multiplying both sides by the modulus-one factor
|Z,α′|
Z,α′

, we may remove the (I−H)

on the LHS by taking imaginary parts. We get that∣∣∣∣AZ ,α′∂α′
At
A

∣∣∣∣ 6 ∣∣∣∣(I −H)∂α′
(
Zttt + iAZt,α′

)
− (I −H)

{
At
A
∂α′Ztt

}
+ [iAZ ,α′ ,H]∂α′

At
A

∣∣∣∣ .
(445)
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Since AZ ,α′ = (azα) ◦ h−1, we may conclude that ∥∥∥∥(a ◦ h−1)∂α′
At
A

∥∥∥∥
L2

6

∥∥∥∥ 1

zα

∥∥∥∥
L∞

∥∥∥∥(I −H)∂α′
(
Zttt + iAZt,α′

)
− (I −H)

{
At
A
∂α′Ztt

}
− [iAZ ,α′ ,H]∂α′

At
A

∥∥∥∥
L2

.

(446)

We can easily control the second and third terms. Since iAZ ,α′ = −(Ztt − i), by the L2

boundedness of H and Hölder for the second term and estimate (233) for the third term,∥∥∥∥−(I −H)

{
At
A
Ztt,α′

}
− [iAZ ,α′ ,H]∂α′

At
A

∥∥∥∥
L2

. ‖Ztt,α′‖L2

∥∥∥∥AtA
∥∥∥∥
L∞

. (447)

We can therefore focus on controlling

∥∥(I −H)∂α′
(
Zttt + iAZt,α′

)∥∥
L2 . (448)

9.2.1 Controlling
∥∥(I −H)∂α′

(
Zttt + iAZt,α′

)∥∥
L2

Recall from (116) that
(
Zttt + iAZt,α′

)∣∣
∂

= 0. Therefore, we may commute ∂α′ outside

(I −H) for free by (100), so we are left with controlling

∥∥∂α′(I −H)
(
Zttt + iAZt,α′

)∥∥
L2 . (449)

Recall from (194) and iA = Ztt+i
Z,α′

that

Zttt+iAZt,α′ = (D2
α′Zt)Z

2
t +2ZtDα′(Ztt−(Dα′Zt)Zt)+2(Dα′Zt)Ztt+Ftt◦Z+iDα′Zt, (450)

where F (z(α, t), t) := zt(α, t).

Under (I − H), by (139), (154), (138) and (147) the last two terms disappear and the

rest turn into commutators:

(I −H)
(
Zttt + iAZt,α′

)
= [Z2

t ,H]D2
α′Zt + 2[Zt,H]Dα′(Ztt − (Dα′Zt)Zt) + 2[Ztt,H]Dα′Zt.

(451)
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Therefore, by (449) and (451), we have to control

∥∥∂α′ [Z2
t ,H]D2

α′Zt + 2∂α′ [Zt,H]Dα′(Ztt − (Dα′Zt)Zt) + 2∂α′ [Ztt,H]Dα′Zt

∥∥
L2 . (452)

We will treat the first term in (452) with part of the second term, and treat the remainder

of the second term together with the third term. In doing so, we will have to be careful,

because we will depend on the fact that from the second term Dα′(Ztt − (Dα′Zt)Zt) is

holomorphic when treated together (see (154)) but not when split apart.

We begin with the second and third terms of (452). Observe that, on expanding out, we

would be able to control everything except

∂α′2[Zt,H]
{

(D2
α′Zt)Zt

}
(453)

—which we will end up treating with the first term—if there were any inequality of the form

‖∂α′ [f,H]g‖L2

?

. ‖f ′‖L2 ‖g‖L∞ . (454)

Unfortunately, this inequality doesn’t hold. Indeed, we calculate that

∂α′ [f,H]g = f ′Hg − 1

2i

∫
π

2

f(α′)− f(β′)

sin2(π
2
(α′ − β′))

g(β′)dβ′. (455)

The inequality does apply to the second term, by (235). The first term, though, we cannot

control this way, since H is not L∞ → L∞ bounded. If, however, Hg = g, then we can rewrite

f ′Hg = f ′g and attain the desired inequality directly by Hölder. We will therefore follow this

approach, relying on the fact that (I−H)Dα′(Ztt−(Dα′Zt)Zt) = 0 (154) and (I−H)Dα′Zt =

0 (138).48 Because we are not using this method to control ∂α′2[Zt,H]
{

(D2
α′Zt)Zt

}
, we will

be left with a remainder term, which we will return to the form ∂α′ [Zt,H]
{

(D2
α′Zt)Zt

}
at

the expense of an error term. We will control this error term after this derivation, and then

control ∂α′ [Zt,H]
{

(D2
α′Zt)Zt

}
together with the first term of (452) at the end.

48An alternative approach would be to handle the terms like Zt,α′HDα′Ztt by commuting a 1
Z,α′

outside

Zt,α′HDα′Ztt = (Dα′Zt)HZtt − Zt,α′
[

1

Z,α′
,H
]
Ztt,α′ (456)

and then using Hölder and (244).
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We begin by expanding out the second and third terms of (452):

2∂α′ [Zt,H]Dα′(Ztt − (Dα′Zt)Zt) + 2∂α′ [Ztt,H]Dα′Zt

= 2Zt,α′HDα′(Ztt − (Dα′Zt)Zt) + 2Ztt,αHDα′Zt

− 1

i

∫
π

2

Zt(α
′)− Zt(β′)

sin2(π
2
(α′ − β′))

Dβ′(Ztt − (Dβ′Zt)Zt)dβ
′

− 1

i

∫
π

2

Ztt(α
′)− Ztt(β′)

sin2(π
2
(α′ − β′))

Dβ′Ztdβ
′.

(457)

Now we use the fact that (I − H)Dα′(Ztt − (Dα′Zt)Zt) = 0 (154) and (I − H)Dα′Zt = 0

(138) to remove the Hs from the RHS above. We get

2Zt,α′Dα′(Ztt− (Dα′Zt)Zt) + 2Ztt,αDα′Zt−
1

i

∫
π

2

Zt(α
′)− Zt(β′)

sin2(π
2
(α′ − β′))

Dβ′(Ztt− (Dβ′Zt)Zt)dβ
′

− 1

i

∫
π

2

Ztt(α
′)− Ztt(β′)

sin2(π
2
(α′ − β′))

Dβ′Ztdβ
′. (458)

We now want to put just the term with (D2
α′Zt)Zt back into commutator form. We can

rewrite just that part as

−2Zt,α′(D
2
α′Zt)Zt +

1

i

∫
π

2

Zt(α
′)− Zt(β′)

sin2(π
2
(α′ − β′))

((D2
β′Zt)Zt(β

′))dβ′

= −2Zt,α′H
{

(D2
α′Zt)Zt

}
− 2Zt,α′(I −H)

{
(D2

α′Zt)Zt
}

+
1

i

∫
π

2

Zt(α
′)− Zt(β′)

sin2(π
2
(α′ − β′))

((D2
β′Zt)Zt(β

′))dβ′

= −2∂α′ [Zt,H]
{

(D2
α′Zt)Zt

}
− 2Zt,α′(I −H)

{
(D2

α′Zt)Zt
}
.

(459)
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We use (459) to rewrite (458) as

2Zt,α′(Dα′Ztt − (Dα′Zt)Dα′Zt) + 2Ztt,αDα′Zt

− 1

i

∫
π

2

Zt(α
′)− Zt(β′)

sin2(π
2
(α′ − β′))

(Dβ′Ztt − (Dβ′Zt)(Dβ′Zt))dβ
′

− 1

i

∫
π

2

Ztt(α
′)− Ztt(β′)

sin2(π
2
(α′ − β′))

Dβ′Ztdβ
′

− 2∂α′ [Zt,H]
{

(D2
α′Zt)Zt

}
− 2Zt,α′(I −H)

{
(D2

α′Zt)Zt
}
.

(460)

We control all of this except for −2∂α′ [Zt,H]
{

(D2
α′Zt)Zt

}
−2Zt,α′(I−H)

{
(D2

α′Zt)Zt
}

using

Hölder and (235):

∥∥(460)−
(
−2∂α′ [Zt,H]

{
(D2

α′Zt)Zt
}
− 2Zt,α′(I −H)

{
(D2

α′Zt)Zt
})∥∥

L2

. ‖Zt,α′‖L2 (
∥∥Dα′Ztt

∥∥
L∞

+
∥∥Dα′Zt

∥∥2
L∞

) + ‖Ztt,α′‖L2

∥∥Dα′Zt

∥∥
L∞

. (461)

Now we must control the error term,
∥∥Zt,α′(I −H)

{
(D2

α′Zt)Zt
}∥∥

L2 . By Hölder, we control

∥∥Zt,α′(I −H)
{

(D2
α′Zt)Zt

}∥∥
L2 6 ‖Zt,α′‖L2

∥∥(I −H)
{

(D2
α′Zt)Zt

}∥∥
L∞

. (462)

By (139), we write the last factor as a commutator and control it by (244):∥∥(I −H)
{

(D2
α′Zt)Zt

}∥∥
L∞

=
∥∥[Zt,H]D2

α′Zt

∥∥
L∞

. ‖Zt,α′‖L2

∥∥D2
α′Zt

∥∥
L2 .

(463)

We conclude that

∥∥Zt,α′(I −H)(D2
α′Zt)Zt

∥∥
L2 . ‖Zt,α′‖

2
L2

∥∥D2
α′Zt

∥∥
L2 . (464)

Thus we have reduced the problem to controlling

∂α′ [Z
2
t ,H]D2

α′Zt − 2∂α′ [Zt,H]
{

(D2
α′Zt)Zt

}
, (465)

where the first of these is the first term in (452) and the second of these is all we have left
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from the second and third terms in (452). Observe the following identity:

−2[f,H]fg + [f 2,H]g

=
1

2i

∫
(−2(f(α′)− f(β′))f(β′) + f 2(α′)− f 2(β′)) cot(

π

2
(α′ − β′))g(β′)dβ′

=
1

2i

∫
(f(α′)− f(β′))2 cot(

π

2
(α′ − β′))g(β′)dβ′

= [f, [f,H]]g.

(466)

Letting f = Zt, g = D2
αZt, we have

∂α′ [Z
2
t ,H]D2

α′Zt − 2∂α′ [Zt,H]
{

(D2
α′Zt)Zt

}
= ∂α′

1

2i

∫
(Zt(α

′)− Zt(β′))2 cot(
π

2
(α′ − β′))D2

β′Ztdβ
′

= ∂α′ [Zt, [Zt,H]]D2
α′Zt.

(467)

By (245), we have that

∥∥∂α′ [Zt, [Zt,H]]D2
α′Zt

∥∥
L2 . ‖Zt,α′‖

2
L2

∥∥D2
α′Zt

∥∥
L2 . (468)

We now bring together our various estimates from this subsection. By (461), (464), and

(468),∥∥(I −H)∂α′
(
Zttt + iAZt,α′

)∥∥
L2 . (461) + (464) + (468)

. ‖Zt,α′‖L2 (
∥∥Dα′Ztt

∥∥
L∞

+
∥∥Dα′Zt

∥∥2
L∞

)

+ ‖Ztt,α′‖L2

∥∥Dα′Zt

∥∥
L∞

+ ‖Zt,α′‖2L2

∥∥D2
α′Zt

∥∥
L2 .

(469)

9.2.2 Combining the Estimates

We now combine our various estimates.

We begin by separately noting the estimate∥∥∥∥(a ◦ h−1)∂α′
At
A

∥∥∥∥
L2

= (446)

6

∥∥∥∥ 1

zα

∥∥∥∥
L∞

((469) + (447)) .

(470)
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From this, using (439), we have(∫
1

a

∣∣∣azαDα

(at
a

)∣∣∣2 dα)1/2

. ‖zα‖L∞
∥∥∥∥(a ◦ h−1)∂α′

At
A

∥∥∥∥
L2

. ‖zα‖L∞
∥∥∥∥ 1

zα

∥∥∥∥
L∞

{
‖Zt,α′‖L2 (

∥∥Dα′Ztt

∥∥
L∞

+
∥∥Dα′Zt

∥∥2
L∞

)

+ ‖Ztt,α′‖L2

(∥∥Dα′Zt

∥∥
L∞

+

∥∥∥∥AtA
∥∥∥∥
L∞

)
+ ‖Zt,α′‖2L2

∥∥D2
α′Zt

∥∥
L2

}
,

(471)

which we use both here for Eb but also in our control of Ea.

Therefore, (∫
1

a
|Dα(−iatzα)|2 dα

)1/2

6 (437)

6

(∫
1

a

∣∣∣azαDα

(at
a

)∣∣∣2 dα)1/2

︸ ︷︷ ︸
.(471)

+
∥∥∥at
a

∥∥∥
L∞

(∫
|Dαztt|2

dα

a

)1/2

︸ ︷︷ ︸
=(302)≈‖Ztt,α′‖L2

.

(472)

By (292), combining estimates in §6 with (435) and (472), we conclude that d
dt
Eb is

bounded by a universal polynomial of E, ‖zα‖L∞ and ‖1/zα‖L∞ .
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Chapter 10

Controlling Gθ of Ea

From (279), we must control(∫ ∣∣D2
α(−iatzα) + [∂2t + ia∂α, D

2
α]zt
∣∣2 hα
A1 ◦ h

dα

)1/2

. (473)

We control the commutator in §10.1. We control the first, main part in §10.2.

10.1 Controlling the Commutator for Ea

We must control ∥∥[∂2t + ia∂α, D
2
α]zt
∥∥
L2( hα

A1◦h
dα)

. (474)

We use the commutator (262) and Hölder to control this by

‖Dαztt‖L∞
∥∥D2

αzt
∥∥
L2( hα

A1◦h
dα)

+ ‖Dαzt‖2L∞
∥∥D2

αzt
∥∥
L2( hα

A1◦h
dα)

+ ‖Dαzt‖L∞ ‖Dα∂tDαzt‖L2( hα
A1◦h

dα) +
∥∥D2

αztt
∥∥
L2( hα

A1◦h
dα)
‖Dαzt‖L∞

+‖Dαzt‖2L∞
∥∥D2

αzt
∥∥
L2( hα

A1◦h
dα)

+
∥∥D2

αzt
∥∥
L2( hα

A1◦h
dα)
‖Dαztt‖L∞+‖Dαzt‖L∞

∥∥D2
αztt
∥∥
L2( hα

A1◦h
dα)

.

(475)

We have controlled all of these quantities in §6.1.49 Observe that we will have quite a

complicated polynomial dependence on our original, due to the presence of factors like

49The only unfamiliar quantity, ‖Dα∂tDαzt‖L2( hα
A1◦h

dα), we controlled at (311).
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‖D2
αztt‖L2( hα

A1◦h
dα), which differ from our energy by the location of the ∂t and/or by the

lack of conjugation.

10.2 Controlling the Main Part for Ea

We need to control (∫ ∣∣D2
α (atzα)

∣∣2 hα
A1 ◦ h

dα

)1/2

. (476)

Because A1 > 1 (182), we will remove the A1 ◦ h factor in the denominator and focus on

estimating (∫ ∣∣D2
α (atzα)

∣∣2 hαdα)1/2

. (477)

Our plan will be to rewrite this RHS into a series of commutators by inserting an (I−H)

in front, as in §3.7.2. Getting to this point will require a long and somewhat convoluted

series of estimates; we finally reach our initial goal of controlling (I − H) of the RHS (in

Riemannian coordinates) at equation (503), below.

We begin by writing atzα =
(
at
a

)
azα. By the product rule

D2
α (atzα) =

(
D2
α

(at
a

))
azα + 2

(
Dα

(at
a

))
Dα(azα) +

at
a
D2
α(azα). (478)

We can handle the second and third terms directly, using azα = i(ztt − i) (27). Indeed, for

the second term, we can reduce it to a term we estimated in §9.2:

∥∥∥(Dα

(at
a

))
Dα(azα)

∥∥∥
L2(hα)

6

(∫ ∣∣∣Dα

(at
a

)∣∣∣2 hαdα)1/2

‖Dαztt‖L∞

6

∥∥∥∥ 1

A1

∥∥∥∥1/2
L∞

(∫ ∣∣∣Dα

(at
a

)∣∣∣2 hα(A1 ◦ h)dα

)1/2

‖Dαztt‖L∞

6

(∫ ∣∣∣azαDα

(at
a

)∣∣∣2 dα
a

)1/2

︸ ︷︷ ︸
.(471) from §9.2.2

‖Dαztt‖L∞ ,

(479)

where we’ve used A1 > 1 (182) to remove the ‖1/A1‖1/2L∞ factor. We control the third term∥∥∥at
a
D2
α(azα)

∥∥∥
L2(hα)

6
∥∥∥at
a

∥∥∥
L∞

∥∥D2
αztt
∥∥
L2(hα)

. (480)
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We conclude from (478), (479) and (480) that

∥∥D2
α (atzα)

∥∥
L2(hα)

6
∥∥∥(D2

α

(at
a

))
azα

∥∥∥
L2(hα)

+ 2
∥∥∥(Dα

(at
a

))
Dα(azα)

∥∥∥
L2(hα)

+
∥∥∥at
a
D2
α(azα)

∥∥∥
L2(hα)

.
∥∥∥(D2

α

(at
a

))
azα

∥∥∥
L2(hα)

+

(∫ ∣∣∣Dα

(at
a

)∣∣∣2 a |zα|2 dα)1/2

︸ ︷︷ ︸
.(471) from §9.2.2

‖Dαztt‖L∞ +
∥∥∥at
a

∥∥∥
L∞

∥∥D2
αztt
∥∥
L2(hα)

.

(481)

It therefore suffices to focus on the first term on the RHS of (481).

10.2.1 Controlling
∥∥(D2

α

(
at
a

))
azα
∥∥
L2(hα)

We now rearrange this term so that we can apply (I − H) in a way so that we will be able

to invert the operator by taking real parts. Note that at
a

is purely real. Unfortunately, our

derivative Dα = 1
zα
∂a is not purely real. To get around this, we factor the derivative into a

real-weighted derivative and a complex modulus-one weight. Recall our notation

|Dα| =
1

|zα|
∂α, |Dα′| =

1

|Z,α′ |
∂α′ . (482)

Since Dα =
(
|zα|
zα

)
|Dα|, we rewrite

D2
α =

(
|zα|
zα

)2

|Dα|2 +

(
|zα|
zα

)(
|Dα|

(
|zα|
zα

))
|Dα| . (483)

Therefore,

azαD
2
α

at
a

= azα

(
|zα|
zα

)2

|Dα|2
at
a

+ azα

(
|zα|
zα

)(
|Dα|

(
|zα|
zα

))
|Dα|

at
a
. (484)
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We now switch to Riemannian coordinates, recalling that azα = i(ztt − i). We get

i(Ztt − i)D2
α′
At
A

= i(Ztt − i)
(
|Z,α′|
Z,α′

)2

|Dα′|2
At
A

+ i(Ztt − i)
(
|Z,α′ |
Z,α′

)(
|Dα′ |

(
|Z,α′|
Z,α′

))
|Dα′|

At
A
.

(485)

It will turn out that we’ll want to replace |Dα′|2 in the first term of the RHS of (485) with

∂α′

(
1

|Z,α′| |Dα′ |
)

, since this will give us the proper commutator estimate,50 and it further

turns out that we want to make the switch now rather than later, when it would be in

commutator form. Doing this, we get

i(Ztt − i)D2
α′
At
A

= i(Ztt − i)
(
|Z,α′|
Z,α′

)2

∂α′

(
1

|Z,α′|
|Dα′ |

At
A

)
−i(Ztt − i)

(
|Z,α′|
Z,α′

)2(
∂α′

1

|Z,α′ |

)
|Dα′ |

At
A

+ i(Ztt − i)
(
|Z,α′ |
Z,α′

)(
|Dα′|

(
|Z,α′|
Z,α′

))
|Dα′ |

At
A︸ ︷︷ ︸

e

,

(486)

where we will use

e := −i(Ztt − i)
(
|Z,α′ |
Z,α′

)2(
∂α′

1

|Z,α′ |

)
|Dα′ |

At
A

+ i(Ztt − i)
(
|Z,α′|
Z,α′

)(
|Dα′|

(
|Z,α′ |
Z,α′

))
|Dα′ |

At
A

(487)

as an abbreviation to save space and de-emphasize the less central error terms, which we

will control directly, below at (496). We now apply (I −H) to both sides of (486):

(I −H)

{
i(Ztt − i)D2

α′
At
A

}
= (I −H)

{
i(Ztt − i)

(
|Z,α′ |
Z,α′

)2

∂α′

(
1

|Z,α′|
|Dα′ |

At
A

)}
+ (I −H)e.

(488)

Observe that what’s inside the (I − H) in the first term on the RHS is purely real, except

for the controllable factor −i(Ztt− i)
(
|Z,α′ |
Z,α′

)2

. We commute that part outside the (I −H).

50See footnote 51 below for a further explanation.
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We get

(I −H)

{
i(Ztt − i)D2

α′
At
A

}
= i(Ztt − i)

(
|Z,α′ |
Z,α′

)2

(I −H)∂α′

(
1

|Z,α′|
|Dα′ |

At
A

)
+

[
i(Ztt − i)

(
|Z,α′|
Z,α′

)2

,H

]
∂α′

(
1

|Z,α′ |
|Dα′|

At
A

)
+ (I −H)e.

(489)

By multiplying by a modulus-one constant and taking real parts, we can invert the (I−H)

on the first term of the RHS of (489), and therefore we can control∣∣∣∣i(Ztt − i)
(
|Z,α′|
Z,α′

)2

∂α′

(
1

|Z,α′ |
|Dα′|

At
A

) ∣∣∣∣
6

∣∣∣∣(I −H)

{
i(Ztt − i)D2

α′
At
A

}∣∣∣∣
+

∣∣∣∣∣
[
i(Ztt − i)

(
|Z,α′ |
Z,α′

)2

,H

]
∂α′

(
1

|Z,α′ |
|Dα′|

At
A

)∣∣∣∣∣
+ |(I −H)e| .

(490)

Now we may begin our estimates. Note that L2(hα) corresponds under the Riemann mapping

to L2(dα′).
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Recall that what we needed to control was (486). We can estimate this by

∥∥∥∥−i(Ztt − i)D2
α′
At
A

∥∥∥∥
L2

.

∥∥∥∥∥i(Ztt − i)
(
|Z,α′ |
Z,α′

)2

∂α′

(
1

|Z,α′ |
|Dα′|

At
A

)∥∥∥∥∥
L2

+ ‖e‖L2

. ‖(490)‖L2 + ‖e‖L2

6

∥∥∥∥(I −H)

{
i(Ztt − i)D2

α′
At
A

}∥∥∥∥
L2

+

∥∥∥∥∥
[
i(Ztt − i)

(
|Z,α′|
Z,α′

)2

,H

]
∂α′

(
1

|Z,α′|
|Dα′ |

At
A

)∥∥∥∥∥
L2

+ ‖(I −H)e‖L2 + ‖e‖L2

.

∥∥∥∥(I −H)

{
i(Ztt − i)D2

α′
At
A

}∥∥∥∥
L2

+

∥∥∥∥∥
[
i(Ztt − i)

(
|Z,α′|
Z,α′

)2

,H

]
∂α′

(
1

|Z,α′|
|Dα′ |

At
A

)∥∥∥∥∥
L2

+ ‖e‖L2 .

(491)

Thus, it suffices to focus on these three terms. The first term will be the main term that will

eventually give us the commutator structure that we want. We first control the remaining

terms.

First we check the error term, e (487). We control the first term∥∥∥∥∥−i(Ztt − i)
(
|Z,α′|
Z,α′

)2(
∂α′

1

|Z,α′|

)
|Dα′|

At
A

∥∥∥∥∥
L2

6

∥∥∥∥(Ztt − i)∂α′
1

|Z,α′ |

∥∥∥∥
L∞

∥∥∥∥Dα′
At
A

∥∥∥∥
L2

(492)

and the second term∥∥∥∥i(Ztt − i)
(
|Z,α′ |
Z,α′

)(
|Dα′ |

(
|Z,α′ |
Z,α′

))
|Dα′|

At
A

∥∥∥∥
L2

6

∥∥∥∥i(Ztt − i)
(
|Dα′ |

(
|Z,α′|
Z,α′

))∥∥∥∥
L∞

∥∥∥∥|Dα′|
At
A

∥∥∥∥
L2

. (493)
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We control the
∥∥Dα′

At
A

∥∥
L2 factors by using an estimate we made for Eb:∥∥∥∥Dα′
At
A

∥∥∥∥
L2

=

∥∥∥∥|Dα′ |
At
A

∥∥∥∥
L2

=

∥∥∥∥ 1

Z,α′
∂α′
At
A

∥∥∥∥
L2

=

(∫ ∣∣∣Dα
at
a

∣∣∣2 hαdα)1/2

=

(∫ ∣∣∣Dα
at
a

∣∣∣2 a |zα|2
A1 ◦ h

dα

)1/2

6

(∫ ∣∣∣azαDα
at
a

∣∣∣2 dα
a

)1/2

. (471),

(494)

where we’ve removed the 1/A1 factor by A1 > 1 (182). Because |∂α′ |f || 6 |∂α′f | (211), we

have estimated the first factor in (492) directly at (367). For the first factor in (493), we use∣∣∣∂α′ f|f |∣∣∣ 6 ∣∣∣ f ′|f | ∣∣∣ (212), and again

∥∥∥∥i(Ztt − i)
(
|Dα′|

(
|Z,α′ |
Z,α′

))∥∥∥∥
L∞

6

∥∥∥∥(Ztt − i)∂α′
1

Z,α′

∥∥∥∥
L∞

. (367). (495)

We conclude from (492), (493), (494), and (495) that

‖e‖L2 6

∥∥∥∥(Ztt − i)∂α′
1

Z,α′

∥∥∥∥
L∞

∥∥∥∥Dα′
At
A

∥∥∥∥
L2︸ ︷︷ ︸

(471)

,
(496)

where we have estimated
∥∥∥(Ztt + i)∂α′

1
Z,α′

∥∥∥
L∞

as part of the estimate for
∥∥∥Dα′

1
Z,α′

∥∥∥
L∞

at

(367).

Now we estimate the second term on the RHS of (491). We use L2 × L∞ commutator

estimate (233):∥∥∥∥∥
[
−i(Ztt − i)

(
|Z,α′ |
Z,α′

)2

,H

]
∂α′

(
1

|Z,α′ |
|Dα′|

At
A

)∥∥∥∥∥
L2

.

∥∥∥∥∥∂α′
(
−i(Ztt − i)

(
|Z,α′ |
Z,α′

)2
)∥∥∥∥∥

L2

∥∥∥∥( 1

|Z,α′|
|Dα′ |

At
A

)∥∥∥∥
L∞

. (497)
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Observe that because either (i) the water is flat, in which case
|Z,α′ |
Z,α′

∣∣∣∣
∂

= 0, or else (ii) the

angle is non-trivial and so Ztt− i = 0 at the corners (see (115)) this commutator does satisfy

the boundary condition we need for (233).51 To control the first factor, we replace
|Z,α′ |
Z,α′

with

Ztt−i
|Ztt−i| (36) and estimate:

∥∥∥∥∥∂α′
(
−i(Ztt − i)

(
|Z,α′|
Z,α′

)2
)∥∥∥∥∥

L2

6 ‖Ztt,α′‖L2 +

∥∥∥∥∥(Ztt − i)∂α′
Ztt − i∣∣Ztt − i

∣∣
∥∥∥∥∥
L2

. ‖Ztt,α′‖L2 .

(499)

What remains to be done is to show that we can control

∥∥∥∥ 1

|Z,α′| |Dα′ | AtA

∥∥∥∥
L∞

. First we

rewrite this by (183) as∥∥∥∥ 1

|Z,α′ |
|Dα′|

At
A

∥∥∥∥
L∞

=

∥∥∥∥Ztt − i
A1

|Dα′ |
At
A

∥∥∥∥
L∞

6

∥∥∥∥(Ztt − i) |Dα′ |
At
A

∥∥∥∥
L∞

=
∥∥∥(azα)Dα

at
a

∥∥∥
L∞

6
∥∥∥(Dα(azα))

at
a

∥∥∥
L∞

+ ‖Dα(atzα)‖L∞

6 ‖Dαztt‖L∞
∥∥∥at
a

∥∥∥
L∞

+ ‖Dα(atzα)‖L∞ ,

(500)

where we’ve used A1 > 1 (182) in the second line and −iazα = ztt − i in the third and last

lines. Because we can control the first term on the RHS of the last line, it suffices to control

the last term. We defer doing so until the end, in §10.2.9. For now, we combine (497), (499)

51 Note that this estimate for [f,H]∂α′g, unlike the L∞×L2 estimate, does not require that g|∂ = 0. This

explains why we moved from |Dα′ |2 AtA to ∂α′

(
1

|Z,α′ | |Dα′ | AtA

)
; had we tried to estimate

∥∥∥∥∥
[

1

|Z,α′ |

(
−i(Ztt − i)

(
|Z,α′ |
Z,α′

)2
)
,H

]
∂α′ |Dα′ |

At
A

∥∥∥∥∥
L2

(498)

by L∞ × L2 commutator estimate (226), we would have been able to control each of the terms (they would
be similar to the estimates for e in (496) above), but we don’t know that |Dα′ | AtA

∣∣
∂

is zero.
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and (500) to estimate∥∥∥∥∥
[
−i(Ztt − i)

(
|Z,α′ |
Z,α′

)2

,H

]
∂α′

(
1

Z,α′
|Dα′ |

At
A

)∥∥∥∥∥
L2

. ‖Ztt,α′‖L2

(
‖Dαztt‖L∞

∥∥∥at
a

∥∥∥
L∞

+ ‖Dα(atzα)‖L∞
)
. (501)

We’re left with the first, main term of the end of (491). Observe that by (478) (changing

between Riemannian and Lagrangian notation), this is∥∥∥∥(I −H)

{
i(Ztt − i)D2

α′
At
A

}∥∥∥∥
L2

=
∥∥∥(I −H)

{((
D2
α

at
a

)
azα

)
◦ h−1

}∥∥∥
L2

6
∥∥(I −H)

(
D2
α(atzα)

)
◦ h−1

∥∥
L2

+ ‖(I −H)‖L2→L2

·
∥∥∥{2

(
Dα

(at
a

))
Dα(azα) +

at
a
D2
α(azα)

}
◦ h−1

∥∥∥
L2

.
∥∥(I −H)

(
D2
α(atzα)

)
◦ h−1

∥∥
L2 + (479) + (480).

(502)

We have therefore reduced things (except for the one term we’re deferring to the end) to

controlling

∥∥(I −H)
{(
D2
α(atzα)

)
◦ h−1

}∥∥
L2 =

∥∥(I −H)D2
α′(Zttt + iAZt,α′)

∥∥
L2 , (503)

that is, we have finally reduced things to controlling (I − H) of the RHS of the equation,

which will allow us to use desirable commutators.

10.2.2 Controlling
∥∥(I −H)

{(
D2
α(atzα)

)
◦ h−1

}∥∥
L2

We now expand out the RHS of (503), (I −H)D2
α′(Zttt + iAZt,α′), as we did in the Riemann

mapping derivation in §3.7.2. From (194), we have

Zttt = (D2
α′Zt)Z

2
t + 2ZtDα′(Ztt − (Dα′Zt)Zt) + (Dα′Zt)Ztt + Ftt ◦ Z, (504)

where F (z(α, t), t) := zt(α, t). By Ztt + i = iAZ,α′ ,

iAZt,α′ = (Ztt + i)Dα′Zt. (505)
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Putting these together and applying (I −H)D2
α′ , we have

(I −H)D2
α′(Zttt + iAZt,α′)

= (I −H)D2
α′

[
(D2

α′Zt)Z
2
t + 2ZtDα′(Ztt − (Dα′Zt)Zt) + (Dα′Zt)(2Ztt + i) + Ftt ◦ Z

]
.

(506)

Observe that each of these terms has holomorphic factors, so under (I − H) we will get

commutators.

First we address the last two terms: (I − H)D2
α′

(
(Dα′Zt)(2Ztt + i) + Ftt ◦ Z

)
. We may

rewrite

(I −H)D2
α′

(
(Dα′Zt)(2Ztt + i) + Ftt ◦ Z

)
= (I −H)D2

α′

{
(Dα′Zt)(2Ztt + i)

}
= (I −H)D2

α′

{
(Dα′Zt)2(Ztt + i)

}
= 2(I −H)

[
(D3

α′Zt)(Ztt + i) + 2(D2
α′Zt)(Dα′Ztt) + (Dα′Zt)(D

2
α′Ztt)

]
,

(507)

where we have relied on (152) and (140); note how we added i(I−H)D3
α′Zt = 0 in the second

line, to go from 2Ztt + i to 2(Ztt + i).

By Hölder, we can control the second and third terms of the RHS of (507):∥∥(I −H)
[
2(D2

α′Zt)(Dα′Ztt) + (Dα′Zt)(D
2
α′Ztt)

]∥∥
L2

.
∥∥D2

α′Zt

∥∥
L2 ‖Dα′Ztt‖L∞ +

∥∥Dα′Zt

∥∥
L∞

∥∥D2
α′Ztt

∥∥
L2 .

(508)

To control the first term on the RHS of (507), we use (143) to write

∥∥(I −H)(D3
α′Zt)(Ztt + i)

∥∥
L2 =

∥∥∥∥[Ztt + i

Z,α′
,H
]
∂α′D

2
α′Zt

∥∥∥∥
L2

.

∥∥∥∥∂α′Ztt + i

Z,α′

∥∥∥∥
L∞

∥∥D2
α′Zt

∥∥
L2

.

(
‖Dα′Ztt‖L∞ +

∥∥∥∥(Ztt + i)∂α′
1

Z,α′

∥∥∥∥
L∞

)∥∥D2
α′Zt

∥∥
L2 ,

(509)

where we have used the L∞ × L2 commutator estimate (226).
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We conclude from (507), (508) and (509) that we can control∥∥(I −H)D2
α′

(
(Dα′Zt)(2Ztt + i) + Ftt ◦ Z

)∥∥
L2 . (508) + (509)

.
∥∥D2

α′Zt

∥∥
L2

(
‖Dα′Ztt‖L∞ +

∥∥∥∥(Ztt + i)∂α′
1

Z,α′

∥∥∥∥
L∞

)
+
∥∥Dα′Zt

∥∥
L∞

∥∥D2
α′Ztt

∥∥
L2 .

(510)

We can now focus on what remains from (506),

(I −H)D2
α′

{
(D2

α′Zt)Z
2
t + 2ZtDα′(Ztt − (Dα′Zt)Zt)

}
= (I −H)

(
(D2

α′(Z
2
t ))(D2

α′Zt) + 2(D2
α′Zt)Dα′(Ztt − (Dα′Zt)Zt)

)
+ (I −H)

(
2(Dα′(Z

2
t ))(D3

α′Zt) + 4(Dα′Zt)D
2
α′(Ztt − (Dα′Zt)Zt)

)
+ (I −H)

(
Z2
t (D4

α′Zt) + 2ZtD
3
α′(Ztt − (Dα′Zt)Zt)

)
= i+ ii+ iii.

(511)

Terms i and ii are easy to control. The details are uninteresting and distract from our main

derivation, so we defer them to §10.2.7, below. We may therefore focus on iii.

10.2.3 Controlling iii from (511)

We now focus on controlling

iii = (I −H)
{
Z2
t (D4

α′Zt)
}

+ (I −H)
{

2ZtD
3
α′(Ztt − (Dα′Zt)Zt)

}
= I + II. (512)

This quantity will be subdivided quite a few times, with various terms being controlled

directly and certain terms canceling out with others, as we estimate iii in this subsection,

§10.2.4 and §10.2.5. To help the reader confirm that we have covered every term, we give

an exhaustive list of the various terms at (567) in §10.2.6, where we combine the various

estimates.

These terms appear to require too much smoothness to close the estimate: we have up

to four derivatives here, when our energy controls only two derivatives. The key observation

is the following identity, obtained by integrating by parts in each of the commutators on the
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LHS of the following,

[
f 2,H

]
∂α′g − 2[f,H]∂α′(fg)− ∂ =

1

2i

∫
(f 2(α′)− f 2(β′)) cot(

π

2
(α′ − β′))∂β′g(β′)dβ′

− 1

2i

∫
2(f(α′)− f(β′)) cot(

π

2
(α′ − β′))∂β′ (f(β′)g(β′)) dβ′ − ∂

=
1

2i

∫
2f(β)f ′(β′) cot(

π

2
(α′ − β′))g(β′)dβ′ − 1

2i

∫
π

2

f 2(α′)− f 2(β′)

sin2(π
2
(α′ − β′))

g(β′)dβ′

− 1

2i

∫
2f ′(β′) cot(

π

2
(α′ − β′))f(β′)g(β′)dβ′

+
1

2i

∫
π

2
2
f(α′)− f(β′)

sin2(π
2
(α′ − β′))

f(β′)g(β′)dβ′

=
1

2i

∫
π

2

−f 2(α′) + f 2(β′) + 2(f(α′)− f(β′))f(β′)

sin2(π
2
(α′ − β′))

g(β′)dβ′

=
−1

2i

∫
π

2

(f(α′)− f(β′))2

sin2(π
2
(α′ − β′))

g(β′)dβ′

=: −π
2

[f, f ; g],

(513)

where ∂ is the boundary term from the two integrations by parts, which it is useful to keep

on the LHS of the equation. Using the commutator estimate (247), we can control the RHS

in L2 by ‖f ′‖2L∞ ‖G‖L2 , where G′ = g, if G|∂ = 0 (so −
∫
g = 0). Note this has the effect of

smoothing two derivatives away from ∂α′g. Our goal will be to take the worst terms from

(512) and put them in this form, using the fact that various of these factors are holomorphic.

The natural choice would be to put f = Zt
Z,α′

and g = ∂α′D
2
α′Zt. Unfortunately, this poses a

problem, since ∂α′
Zt
Z,α′

isn’t controlled in L∞. We can, however, control
∥∥∥∂α′(I −H) Zt

Z,α′

∥∥∥
L∞

;

we did this at (372). Therefore, we will try to attain an equation of the form (513) with

f = PA Zt
Z,α′

(and still g = ∂α′D
2
α′Zt), where PA = (I−H)

2
is the anti-holomorphic projection.

To do this, we will have to do substantially more work, decomposing certain factors from

(512) into their holomorphic and antiholomorphic projections.52

52An alternative approach is to observe that Zt might be close to being as good of a weight as Ztt + i and
therefore 1

Z,α′
, which would suggest that ∂α′

Zt
Z,α′

is close to ∂α′
1

Z2
,α′
, which is in L∞. Suppose we replaced

zt with zt + c(t) for a c(t) so that c′(t) = i and c(0) = −zt(±1, 0). Then zt + c(t) is zero at the corners at
t = 0 and its time derivative is ztt + i, which is zero at the corners for all time (assuming we’re dealing with
a non-trivial angle). Therefore Zt + c(t) is always zero. If we make the initial assumption that∥∥∥∥zt + c(t)

ztt + i

∥∥∥∥
L∞α

(0) <∞, (514)
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Our goal, therefore, will be to isolate[(
PA

Zt
Z,α′

)2

,H

]
∂α′(∂α′D

2
α′Zt)− 2

[(
PA

Zt
Z,α′

)
,H
]
∂α′

((
PA

Zt
Z,α′

)(
∂α′D

2
α′Zt

))
(515)

from (512), and handle the remaining terms. Technically, in fact, we will want to isolate

not this but the already integrated-by-parts version, since there’s a problematic boundary

term on integrating by parts. Luckily, this boundary term will cancel out with other

problematic terms in our derivation. In other words, our goal will be to end up with

−π
2

[(
PA Zt

Z,α

)
,
(
PA Zt

Z,α′

)
; ∂α′D

2
α′Zt

]
, which we will control via (247), where we rely on bound-

ary condition (121) (and (113)):∥∥∥∥[PA ZtZ,α ,PA Zt
Z,α′

; ∂βD
2
β′Zt

]∥∥∥∥
L2

6

∥∥∥∥∂α′ (PA Zt
Z,α′

)∥∥∥∥2
L∞

∥∥D2
α′Zt

∥∥
L2 , (516)

where we have estimated the first factor at (372).

Thus we must expand I and II from (512). The basic approach is straightforward: we

follow our nose to put things in the form (515). The only challenge will be that we have

to take extra care about certain potentially singular holomorphic functions, which won’t

immediately disappear under (I − H).53 It turns out that these will be fine—everything

cancels perfectly—but this imposes some extra bookkeeping, so the derivation below looks

particularly complicated.

We begin by expanding I from (512):

I = (I −H)

{
Z2
t

Z2
,α′
∂2α′D

2
α′Zt

}
+ (I −H)

{
Z2
t

(
1

Z,α′
∂α′

1

Z,α′

)
∂α′D

2
α′Zt

}
= I1 + I2. (517)

then we can derive a Gronwall inequality for d
dt
zt+c(t)
ztt+i

in terms of our energy (the only issue is controlling∥∥∥ zttt
ztt+i

∥∥∥
L∞

, which by (37) can be reduced to controlling
∥∥at

a

∥∥
L∞

), so we will continue to have the bound

(514) for short periods of time. It’s possible to finagle things to replace Zt with Zt + c(t); it’s not trivial—
there’s some accounting to make sure that the extraneous terms cancel or disappear—but it’s less work than

the derivation here of introducing PA. Then we’re left with controlling
∥∥∥∂α′ Zt+c(t)Z,α′

∥∥∥
L∞

, which we can do

assuming (514). This technique can be used to simplify a few other derivations in this dissertation. In a
regime where (514) held or was a benign assumption, this might be a useful trick, but it imposes restrictions
on the initial data so we do not use it.

53More precisely, these functions are highly singular in the non-trivial angle regime. In general, these
functions are not necessarily periodic (and their means are not necessarily zero), so there would be boundary
terms remaining; in the non-trivial angle regime, these boundary terms would blow up.
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We expand the identity operator into the sum of the projections PA + PH , allowing us to

rewrite

I1 = (I −H)

{(
(PA + PH)

Zt
Z,α′

)2

∂2α′D
2
α′Zt

}

= (I −H)

{(
PA

Zt
Z,α′

)2

∂2α′D
2
α′Zt

}
+ (I −H)

{
2

(
PA

Zt
Z,α′

)(
PH

Zt
Z,α′

)
∂2α′D

2
α′Zt

}

+ (I −H)

{(
PH

Zt
Z,α′

)2

∂2α′D
2
α′Zt

}
= I11 + I12 + I13.

(518)

Sweeping the issues of too-singular holomorphic functions, mean conditions, etc., under the

rug for a moment, we see that I11 would be one of the main terms that we want to end up

with in (515) and I13 would disappear by holomorphicity, and we’d be left with I12, which

will cancel out with a term from the expansion of II (in (530)). From I, therefore, we would

be left with controlling I2, which we will handle at the end.

Now we handle those details that we had swept under the rug. To begin, we write I11 in

commutator form. Note that ∂2α′D
2
α′Zt is too singular to disappear under (I −H), so we will

have to be careful in writing things in commutator form. Luckily, the boundary remainder

we will end up with to handle that singularity will cancel with the boundary terms we get

when we integrate by parts for the main term, as was required in (515). We expand I11:

I11 =

[(
PA

Zt
Z,α′

)2

,H

]
∂2α′D

2
αZt +

(
PA

Zt
Z,α′

)2

(I −H)∂2α′D
2
α′Zt. (519)

We now integrate by parts for the first term and commute a derivative outside of (I −H) in
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the second term:

I11 = − 1

2i

∫ {
∂β′

(((
PA

Zt
Z,α′

)2

(α′)−
(
PA

Zt
Z,β′

)2

(β′)

)
cot(· · · )

)}
∂β′D

2
β′Ztdβ

′

+
1

2i

((
PA

Zt
Z,α′

)2

(α′)−
(
PA

Zt
Z,β′

)2

(β′)

)
cot(· · · )∂β′D2

β′Zt

∣∣∣∣∣
∂

+

(
PA

Zt
Z,α′

)2

∂α′ (I −H)∂α′D
2
α′Zt︸ ︷︷ ︸

0 by (143)

+

(
PA

Zt
Z,α′

)2

(α′) [∂α′ ,H]∂α′D
2
α′Zt︸ ︷︷ ︸

− 1
2i

cot(··· )∂β′D2
β′

∣∣∣
∂
by (101)

= −
∫
{∂β′ · · · } ∂β′D2

β′Zt(β
′)dβ′− 1

2i

(
PA

Zt
Z,β′

)2

(β′) cot(· · · )∂β′D2
β′Zt

∣∣∣∣∣
∂︸ ︷︷ ︸

R

.

(520)

Here, the first term is precisely what we want. The second term, R, we’ll handle at (533),

where it will cancel out with other terms.

From the remaining terms from I1 (518), we will handle I12 below after (530) and we will

handle I13 below in (532).

We defer I2 until later, and now move on to II from (512). Once again expanding the

identity as PA + PH , we have

II = 2(I −H)
{
ZtD

3
α′(Ztt − (Dα′Zt)Zt)

}
= 2(I −H)

{(
(PA + PH)

Zt
Z,α′

)
∂α′D

2
α′(Ztt − (Dα′Zt)Zt)

}
= 2

[(
PA

Zt
Z,α′

)
,H
]
∂α′D

2
α′(Ztt − (Dα′Zt)Zt)

+ (I −H)

{(
PH

Zt
Z,α′

)
∂α′D

2
α′(Ztt − (Dα′Zt)Zt)

}
︸ ︷︷ ︸

0 by (157)

,

(521)

where we’ve used (156) to get the first commutator. We now expand what remains from

(521):

II = 2

[(
PA

Zt
Z,α′

)
,H
]
∂α′(D

2
α′Ztt − (∂α′D

2
α′Zt)

Zt
Z,α′
− 2(D2

α′Zt)Dα′Zt − (Dα′Zt)D
2
α′Zt)

= II1 + II2 + II3 + II4.

(522)
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We control everything but II2 directly by the L∞×L2 commutator estimate (226). To apply

this, we need that both parts have periodic boundary behavior. We know PA Zt
Z,α′

∣∣∣
∂

= 0 (121).

The reason that

(D2
α′Ztt − 2(D2

α′Zt)Dα′Zt − (Dα′Zt)D
2
α′Zt)

∣∣
∂

= 0 (523)

is that it equals
(
D2
α′(Ftz ◦ Z) + (∂α′D

2
α′Zt)

Zt
Z,α′

)∣∣∣
∂

= 0 by (112), (113), and (127). We get

‖II1 + II3 + II4‖L2 .

∥∥∥∥∂α′PA Zt
Z,α′

∥∥∥∥
L∞

·
(∥∥D2

αZtt

∥∥
L2 +

∥∥(D2
α′Zt)Dα′Zt

∥∥
L2 +

∥∥(Dα′Zt)D
2
α′Zt

∥∥
L2

)
.

∥∥∥∥∂α′PA Zt
Z,α′

∥∥∥∥
L∞

·
(∥∥D2

αZtt

∥∥
L2 +

∥∥D2
α′Zt

∥∥
L2 ‖Dα′Zt‖L∞ +

∥∥D2
α′Zt

∥∥
L2

∥∥Dα′Zt

∥∥
L∞

)
.

(524)

We are now left with II2 from (522), which we expand, rewriting the identity as PA+PH :

II2 = −2

[(
PA

Zt
Z,α′

)
,H
]
∂α′

{
(∂α′D

2
α′Zt)(PA + PH)

Zt
Z,α′

}
= −2

[(
PA

Zt
Z,α′

)
,H
]{

∂α′

(
(∂α′D

2
α′Zt)PA

Zt
Z,α′

)
+ ∂α′

(
(∂α′D

2
α′Zt)PH

Zt
Z,α′

)}
= II21 + II22.

(525)

II21 will give us the main term that we want, after integrating by parts, which we do now:

II21 = 2
1

2i

∫
(∂β′ · · · )(∂β′D2

β′Zt)PA
Zt
Z,β′

(β′)dβ′

− 2
1

2i

((
PA

Zt
Z,α′

(α′)

)
−
(
PA

Zt
Z,β′

(β′)

))
cot(· · · )

(
PA

Zt
Z,β′

(β′)

)
∂β′D

2
β′Zt

∣∣∣∣
∂

= II211 + II212.

(526)

The first term, II211, is what we need, combining with I11 to give the integrated-by-parts

version of (515). We’ll handle II212 together with II222 below in (529).

To handle II22 from (525), we will want to switch back from commutator form, so we do
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that:

II22 = −2

[(
PA

Zt
Z,α′

)
,H
]
∂α′

(
(∂α′D

2
α′Zt)PH

Zt
Z,α′

)
= −2(I −H)

{(
PA

Zt
Z,α′

)
∂α′

(
(∂α′D

2
α′Zt)PH

Zt
Z,α′

)}
+ 2

(
PA

Zt
Z,α′

)
(I −H)∂α′

(
(∂α′D

2
α′Zt)PH

Zt
Z,α′

)
= II221 + II222.

(527)

We begin by considering II222. We expand carefully:

II222 = 2

(
PA

Zt
Z,α′

)
∂α′ (I −H)

(
(∂α′D

2
α′Zt)PH

Zt
Z,α′

)
︸ ︷︷ ︸

0 by (159)

+ 2

(
PA

Zt
Z,α′

)
[∂α′ ,H]

(
(∂α′D

2
α′Zt)PH

Zt
Z,α′

)
= − 2

1

2i

(
PA

Zt
Z,α′

(α′)

)
cot(· · · )

(
(∂β′D

2
β′Zt)PH

Zt
Z,β′

)∣∣∣∣
∂

,

(528)

where we used (101) for the commutator [∂α′ ,H]. When we combine this with II212 from

(526) we get

II222 + II212 = − 2
1

2i

(
PA

Zt
Z,α′

(α′)

)
cot(· · · )

(∂β′D
2
β′Zt) (PA + PH)︸ ︷︷ ︸

I

Zt
Z,β′

∣∣∣∣∣∣
∂︸ ︷︷ ︸

0

+ 2
1

2i

(
PA

Zt
Z,β′

(β′)

)
cot(· · · )

(
(∂β′D

2
β′Zt)PA

Zt
Z,β′

)∣∣∣∣
∂

.

(529)

The first term is zero because D3
β′Zt and Zt have periodic boundary behavior by (112) and

(113). The remaining term we’ll control later at (533); it will cancel out with other terms.
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We now expand II221 from (527):

II221 = −2(I −H)

{(
PA

Zt
Z,α′

)
∂α′

(
(∂α′D

2
α′Zt)PH

Zt
Z,α′

)}
= −2(I −H)

{(
PA

Zt
Z,α′

)(
(∂2α′D

2
α′Zt)PH

Zt
Z,α′

)}
− 2(I −H)

{(
PA

Zt
Z,α′

)(
(∂α′D

2
α′Zt)PH∂α′

Zt
Z,α′

)}
= II2211 + II2212,

(530)

where we’ve used Zt
Z,α′

∣∣∣
∂

= 0 (118) to commute the ∂α′ in the second term inside PH by (100).

The first of these terms, II2211, cancels with I12 from (518).

Thus we’re left with the second term in (530), II2212, which we combine with I2 from

(517):

I2 + II2212 = (I −H)

{
Z2
t

(
1

Z,α′
∂α′

1

Z,α′

)
∂α′D

2
α′Zt

}
− 2(I −H)

{(
PA

Zt
Z,α′

)
(∂α′D

2
α′Zt)PH∂α′

Zt
Z,α′

}
= (I −H)

{
(∂α′D

2
α′Zt)

{
Zt
Z,α′

Zt∂α′
1

Z,α′
− 2

(
PA

Zt
Z,α′

)(
PH∂α′

Zt
Z,α′

)}}

= (I −H)

(∂α′D
2
α′Zt)

 Zt
Z,α′

Zt∂α′
1

Z,α′
− 2

(PA + PH)︸ ︷︷ ︸
I

Zt
Z,α′

(PH∂α′ Zt
Z,α′

)


+ 2(I −H)

{
(∂α′D

2
α′Zt)

{(
PH

Zt
Z,α′

)(
PH∂α′

Zt
Z,α′

)}}
= A+B.

(531)

We begin by considering the second term, B, which will be part of a series of terms that
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cancel. First, we combine B with I13 from (518):

I13 +B = (I −H)

{(
PH

Zt
Z,α′

)2

∂2α′D
2
α′Zt

}

+ 2(I −H)

{
(∂α′D

2
α′Zt)

{(
PH

Zt
Z,α′

)(
PH∂α′

Zt
Z,α′

)}}
= (I −H)

{(
PH

Zt
Z,α′

)2

∂2α′D
2
α′Zt

}
+ (I −H)

{
(∂α′D

2
α′Zt)∂α′

{(
PH

Zt
Z,α′

)2
}}

= (I −H)∂α′

{
(∂α′D

2
α′Zt)

(
PH

Zt
Z,α′

)2
}

= ∂α′ (I −H)

{
(∂α′D

2
α′Zt)

(
PH

Zt
Z,α′

)2
}

︸ ︷︷ ︸
0 by (160)

+[∂α′ ,H]

{
(∂α′D

2
α′Zt)

(
PH

Zt
Z,α′

)2
}

= − 1

2i
cot(

π

2
(α′ − β′))(∂β′D2

β′Zt)

(
PH

Zt
Z,β′

)2
∣∣∣∣∣
∂

.

(532)

Here we have in the second line used Zt
Z,α′

∣∣∣
∂

= 0 (118) to commute the ∂α′ in the second term

outside PH by (100), and used (101) to expand the commutator [∂α′ ,H] in the last line. We

now combine this with R from (520) and with (529). Together, these are

R + (529) + (532) = − 1

2i

(
PA

Zt
Z,β′

)2

(β′) cot(· · · )∂β′D2
β′Zt

∣∣∣∣∣
∂

+ 2
1

2i

(
PA

Zt
Z,β′

)2

(β′) cot(· · · )(∂β′D2
β′Zt)

∣∣∣∣∣
∂

− 1

2i
cot(· · · )(∂β′D2

β′Zt)

(
PH

Zt
Z,β′

)2

(β′)

∣∣∣∣∣
∂

=
1

2i

(PA − PH)︸ ︷︷ ︸
−H

Zt
Z,β′

(PA + PH)︸ ︷︷ ︸
I

Zt
Z,β′

 cot(· · · )∂β′D2
β′Zt

∣∣∣∣∣∣
∂

=
−1

2i

(
H
Zt
Z,β′

)(
Zt
Z,β′

)
cot(· · · )∂β′D2

β′Zt

∣∣∣∣
∂

= 0.

(533)

This is zero because the first factor has periodic boundary behavior by (121), the Zt has
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periodic boundary behavior by (112), and the 1
Z,β′

joins with the ∂β′D
2
β′Zt to ensure periodic

boundary behavior by (113).

All that remains is the first term on the RHS of (531),

A = (I −H)

(∂α′D
2
α′Zt)

Zt
Z,α′

(
Zt∂α′

1

Z,α′
− 2PH∂α′

Zt
Z,α′

)
︸ ︷︷ ︸

(∗)

 . (534)

We expand (∗) as follows:

(∗) = Zt∂α′
1

Z,α′
− (I + H)Dα′Zt − (I + H)

{
Zt∂α′

1

Z,α′

}
= −H

(
Zt∂α′

1

Z,α′

)
− (I + H)Dα′Zt.

(535)

Therefore, we need to control

(I −H)

{
(∂α′D

2
α′Zt)

Zt
Z,α′

H
(
Zt∂α′

1

Z,α′

)}
(536)

and

(I −H)

{
(∂α′D

2
α′Zt)

Zt
Z,α′

(I + H)Dα′Zt

}
. (537)

We will control (536) in §10.2.4 and (537) in §10.2.5.

10.2.4 Controlling (536)

We begin with (536). Our goal is to take advantage of the fact that we can control∥∥∥ 1
Z,α′

D2
α′Zt

∥∥∥
Ḣ1/2

. Therefore, we rewrite (536) so that we can isolate 1
Z,α′

D2
α′Zt for a commu-

tator estimate:

(536) = (I −H)

{(
1

Z,α′
∂α′D

2
α′Zt

)
ZtH

(
Zt∂α′

1

Z,α′

)}
= (I −H)

{(
ZtH

(
Zt∂α′

1

Z,α′

))
∂α′

(
1

Z,α′
D2
α′Zt

)}
− (I −H)

{(
ZtH

(
Zt∂α′

1

Z,α′

))(
∂α′

1

Z,α′

)
D2
α′Zt

}
= (a) + (b).

(538)
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We expand (a) using I = PA + PH :

(a) = (I −H)

{(
(PA + PH)

(
ZtH

(
Zt∂α′

1

Z,α′

)))
∂α′

(
1

Z,α′
D2
α′Zt

)}
= (I −H)

{(
PA
(
ZtH

(
Zt∂α′

1

Z,α′

)))
∂α′

(
1

Z,α′
D2
α′Zt

)}
+ (I −H)

{(
PH
(
ZtH

(
Zt∂α′

1

Z,α′

)))
∂α′

(
1

Z,α′
D2
α′Zt

)}
=

[(
PA
(
ZtH

(
Zt∂α′

1

Z,α′

)))
,H
]
∂α′

(
1

Z,α′
D2
α′Zt

)
+ (I −H)

{(
PH
(
ZtH

(
Zt∂α′

1

Z,α′

)))
∂α′

(
1

Z,α′
D2
α′Zt

)}
︸ ︷︷ ︸

0 by (162)

(539)

by (161). We now use (236) to estimate the remaining, first term of (539):

‖(a)‖L2 .

∥∥∥∥∂α′PA(ZtH(Zt∂α′ 1

Z,α′

))∥∥∥∥
L2

∥∥∥∥ 1

Z,α′
D2
α′Zt

∥∥∥∥
Ḣ1/2

. (540)

To apply (236), we require

PA
(
ZtH

(
Zt∂α′

1

Z,α′

))∣∣∣∣
∂

= 0; (541)

note that the second boundary condition,(
1

Z,α′
D2
α′Zt

)∣∣∣∣
∂

= 0, (542)

holds by (113) and (114). It isn’t obvious why this first boundary condition should hold. We

will show below at (554) that it does, in fact, hold. Assuming that, because
∥∥∥ 1
Z,α′

D2
α′Zt

∥∥∥
Ḣ1/2

is part of our energy, we’ve reduced things to controlling
∥∥∥∂α′ (PA (ZtH(Zt∂α′ 1

Z,α′

)))∥∥∥
L2

.

We first find a useful way of rewriting ZtH
(
Zt∂α′

1
Z,α′

)
. Observe that

[Zt, [Zt,H]] = Z2
tH− ZtHZt − ZtHZt + HZ2

t

= Z2
tH− 2ZtHZt + HZ2

t .
(543)
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Therefore,

[Zt, [Zt,H]] ∂α′
1

Z,α′
= Z2

t H∂α′
1

Z,α′︸ ︷︷ ︸
∂α′

1
Z,α′

by (137)

−2ZtH
(
Zt∂α′

1

Z,α′

)
+ H

(
Z2
t ∂α′

1

Z,α′

)

= (I + H)

(
Z2
t ∂α′

1

Z,α′

)
− 2ZtH

(
Zt∂α′

1

Z,α′

)
.

(544)

Therefore,

2ZtH
(
Zt∂α′

1

Z,α′

)
= (I + H)

(
Z2
t ∂α′

1

Z,α′

)
− [Zt, [Zt,H]]∂α′

1

Z,α′
. (545)

Now we apply PA to this, getting

2PA
(
ZtH

(
Zt∂α′

1

Z,α′

))
= PA(I + H)

(
Z2
t ∂α′

1

Z,α′

)
− PA[Zt, [Zt,H]]∂α′

1

Z,α′
. (546)

By (95), the first term on the RHS is just a mean-term, because PAPH = 0 is zero on mean-

zero functions. Because this mean will eventually disappear under the derivative, we denote

it simply by c. We are left with

2PA
(
ZtH

(
Zt∂α′

1

Z,α′

))
= c− PA[Zt, [Zt,H]]∂α′

1

Z,α′
. (547)

Now we will show, as promised, that PA
(
ZtH

(
Zt∂α′

1
Z,α′

))∣∣∣
∂

= 0. We expand

[Zt, [Zt,H]] ∂α′
1

Z,α′
=

1

2i

∫
(Zt(α

′)− Zt(β′))2 cot(
π

2
(α′ − β′))∂β′

1

Z,β′
dβ′. (548)

Because Zt|∂ = 0, we see, by the fundamental theorem of calculus and Hölder,54 that

the kernel function (Zt(α
′)− Zt(β′))2 cot(π

2
(α′ − β′)) is continuous for (α′, β′) ∈ (I × I) −

54Here we use the fact that Zt
∣∣
∂

= 0 to assume by periodic extension that |α′ − β′| 6 1, so we may replace

the cotangent with 1
α′−β′ . Note that∣∣∣∣∣f(x)− f(y)

|x− y|1/2

∣∣∣∣∣ . 1

|x− y|1/2

∫ y

x

|f ′| dz . 1

|x− y|1/2

(∫ y

x

dz

)1/2(∫ y

x

|f ′|2 dz
)1/2

. ‖f ′‖L2(I) . (549)
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{dS1(α′, β′) 6= 0}, is periodic in α′, and satisfies∣∣∣(Zt(α′)− Zt(β′))2 cot(
π

2
(α′ − β′))

∣∣∣ . ∫ |Zt,α′ |2 dα′. (550)

Therefore, by the Lebesgue dominated convergence theorem,

[Zt, [Zt,H]]∂α′
1

Z,α′

∣∣∣∣
∂

= 0. (551)

Furthermore we can estimate∥∥∥∥[Zt, [Zt,H]]∂α′
1

Z,α′

∥∥∥∥
L∞

. ‖Zt,α′‖2L2

∥∥∥∥∂α′ 1

Z,α′

∥∥∥∥
L2

(552)

by Hölder and Hardy’s inequality (217), and∥∥∥∥∂α′ [Zt, [Zt,H]]∂α′
1

Z,α′

∥∥∥∥
L2

. ‖Zt,α′‖2L2

∥∥∥∥∂α′ 1

Z,α′

∥∥∥∥
L2

(553)

by (245). We may then conclude by (547), (551), (552), (553), and (119) that

PA[Zt, [Zt,H]]∂α′
1

Z,α′

∣∣∣∣
∂

= PA
(
ZtH

(
Zt∂α′

1

Z,α′

))∣∣∣∣
∂

= 0. (554)

Now we return to controlling
∥∥∥∂α′ (PA (ZtH(Zt∂α′ 1

Z,α′

)))∥∥∥
L2

. By (547),

∥∥∥∥∂α′PA(ZtH(Zt∂α′ 1

Z,α′

))∥∥∥∥
L2

=
1

2

∥∥∥∥∂α′PA[Zt, [Zt,H]]∂α′
1

Z,α′

∥∥∥∥
L2

.

=
1

2

∥∥∥∥PA∂α′ [Zt, [Zt,H]]∂α′
1

Z,α′

∥∥∥∥
L2

.

∥∥∥∥∂α′ [Zt, [Zt,H]]∂α′
1

Z,α′

∥∥∥∥
L2

. ‖Zt,α′‖2L2

∥∥∥∥∂α′ 1

Z,α′

∥∥∥∥
L2

,

(555)

where we have used (100) and (551) to commute the ∂α′ inside the PA in the second line;

used the L2 boundedness of PA in the third line; and used estimate (553) in the final line.

Now we return to controlling part (b) from (538). We begin by decomposing two of the
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factors into their holomorphic and antiholomorphic projections:

(b) = −(I −H)

{(
H
(
Zt∂α′

1

Z,α′

))(
Zt∂α′

1

Z,α′

)
D2
α′Zt

}
= −(I −H)

{(
H
(
Zt∂α′

1

Z,α′

))(
(PA + PH)

(
Zt∂α′

1

Z,α′

))
D2
α′Zt

}
.

(556)

Observe that H = −PA + PH . The cross terms cancel, and we’re left with

(I −H)

{(
PA
(
Zt∂α′

1

Z,α′

))2

D2
α′Zt

}
− (I −H)

{(
PH
(
Zt∂α′

1

Z,α′

))2

D2
α′Zt

}
. (557)

The second of these terms disappears by (163). We control the first term of (557) by the

boundedness of H and Hölder’s inequality, and conclude

‖(b)‖L2 .
∥∥D2

α′Zt

∥∥
L2

∥∥∥∥PA(Zt∂α′ 1

Z,α′

)∥∥∥∥2
L∞

, (558)

whose second factor we controlled in (371).

We conclude from (538) that

‖(536)‖L2 . (540) + (558)

6 ‖Zt,α′‖2L2

∥∥∥∥∂α′ 1

Z,α′

∥∥∥∥
L2

∥∥∥∥ 1

Z,α′
D2
α′Zt

∥∥∥∥
Ḣ1/2

+
∥∥D2

α′Zt

∥∥
L2

∥∥∥∥PA(Zt∂α′ 1

Z,α′

)∥∥∥∥2
L∞

.

(559)

10.2.5 Controlling (537)

Now we are left with controlling (537), which we expand using I = PA + PH :

(537) = (I −H)

{
(∂α′D

2
α′Zt)

Zt
Z,α′

(I + H)Dα′Zt

}
= (I −H)

{
(∂α′D

2
α′Zt)

(
(PA + PH)

Zt
Z,α′

)
(I + H)Dα′Zt

}
= (I −H)

{
(∂α′D

2
α′Zt)

(
PA

Zt
Z,α′

)
(I + H)Dα′Zt

}
,

(560)
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where the PH term disappears by (164). We expand again I = PA + PH with what remains:

(537) = (I −H)

{
[(I + H)Dα′Zt] (PA + PH)

{
(∂α′D

2
α′Zt)

(
PA

Zt
Z,α′

)}}
. (561)

The PH part would be zero by holomorphicity, except that there is a mean term; by (165),

what we’re left with from that part is, in absolute value,∣∣∣∣12
(
−
∫
Dα′Zt

)(
−
∫

(∂α′D
2
α′Zt)

(
PA

Zt
Z,α′

))∣∣∣∣ =

∣∣∣∣12
(
−
∫
Dα′Zt

)(
−
∫

(D2
α′Zt)

(
∂α′PA

Zt
Z,α′

))∣∣∣∣
. ‖Dα′Zt‖L∞

∥∥D2
α′Zt

∥∥
L2

∥∥∥∥∂α′PA Zt
Z,α′

∥∥∥∥
L∞

.

(562)

By (121) and (113) there is no boundary term in the integration by parts.55

What’s left from (561) to control is the PA part,

(I −H)

{
((I + H)Dα′Zt)PA

(
(∂α′D

2
α′Zt)

(
PA

Zt
Z,α′

))}
. (563)

Now we use the boundedness of H and Hölder to control this in L2 by

‖(I + H)Dα′Zt‖L∞
∥∥∥∥PA{(∂α′D

2
α′Zt)

(
PA

Zt
Z,α′

)}∥∥∥∥
L2

. (564)

We rewrite the second factor as a commutator, using (143):∥∥∥∥PA{(∂α′D
2
α′Zt)

(
PA

Zt
Z,α′

)}∥∥∥∥
L2

=

∥∥∥∥1

2

[(
PA

Zt
Z,α′

)
,H
]
∂α′D

2
α′Zt

∥∥∥∥
L2

.

∥∥∥∥∂α′(I −H)
Zt
Z,α′

∥∥∥∥
L∞

∥∥D2
α′Zt

∥∥
L2 ,

(565)

where we’ve used the L∞ × L2 commutator estimate (226).

We conclude from (561), (562), (564) and (565) that

‖(537)‖L2 . (‖Dα′Zt‖L∞ + ‖(I + H)Dα′Zt‖L∞)

∥∥∥∥∂α′(I −H)
Zt
Z,α′

∥∥∥∥
L∞

∥∥D2
α′Zt

∥∥
L2 . (566)

55We have been inefficient, in using L∞ estimates when easier estimates could apply, to keep things in
terms of quantities we have controlled.
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10.2.6 Concluding the Estimate for iii from (511)

We now outline our expansion for iii. We expanded

iii = I︸︷︷︸
(517)

+ II︸︷︷︸
(522)

= ( I1︸︷︷︸
(518)

+I2) + (II1 + II2︸︷︷︸
(525)

+II3 + II4)

= (I11 + I12 + I13) + I2 + (II21︸︷︷︸
(526)

+ II22︸︷︷︸
(527)

) + (II1 + II3 + II4)

= (I11 + I12 + I13) + I2 + (II211 + II212) + (II221︸︷︷︸
(530)

+II222) + (II1 + II3 + II4)

= (I11 + I12 + I13) + I2 + (II211 + II212) + (II2211 + II2212) + II222 + (II1 + II3 + II4).

(567)

Of these terms, I11 −R and II211 will give the main estimate we were seeking:

‖I11 −R + II211‖ . (516). (568)

A remaining estimate is

‖II1 + II3 + II4‖ . (524). (569)

I12 and II2211 cancel. If we add R and all the remaining terms, I13, I2, II2212, II222, II212,

after the cancellation from (533), we are left with

(534) = (536) + (537). (570)

We estimate the first at (559) and the second at (566). We conclude that
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‖iii‖ . (516) + (524) + (559) + (566)

.

∥∥∥∥∂α′ (PA Zt
Z,α′

)∥∥∥∥2
L∞

∥∥D2
α′Zt

∥∥
L2

+

(∥∥∥∥∂α′PA Zt
Z,α′

∥∥∥∥
L∞

(∥∥D2
αZtt

∥∥
L2 +

∥∥D2
α′Zt

∥∥
L2 ‖Dα′Zt‖L∞ +

∥∥D2
α′Zt

∥∥
L2

∥∥Dα′Zt

∥∥
L∞

))
+ ‖Zt,α′‖2L2

∥∥∥∥∂α′ 1

Z,α′

∥∥∥∥
L2

∥∥∥∥ 1

Z,α′
D2
α′Zt

∥∥∥∥
Ḣ1/2

+
∥∥D2

α′Zt

∥∥
L2

∥∥∥∥PA(Zt∂α′ 1

Z,α′

)∥∥∥∥2
L∞

+ (‖Dα′Zt‖L∞ + ‖(I + H)Dα′Zt‖L∞)

∥∥∥∥∂α′(I −H)
Zt
Z,α′

∥∥∥∥
L∞

∥∥D2
α′Zt

∥∥
L2 .

(571)

10.2.7 Estimating i and ii from (511)

We must estimate i and ii from (511). When we expand this out carefully, all the problematic

terms cancel and what remains can be controlled easily using Hölder and the L2 boundedness

of H.

We expand i:

i = (I −H)
{

2(D2
α′Zt)Zt(D

2
α′Zt) + 2(Dα′Zt)

2(D2
α′Zt) + (2D2

α′Zt)(Dα′Ztt)

− 2(D2
α′Zt)ZtD

2
α′Zt − 2(D2

α′Zt)(Dα′Zt)(Dα′Zt)
}

= (I −H)
{

2(Dα′Zt)
2(D2

α′Zt) + (2D2
α′Zt)(Dα′Ztt)− 2(D2

α′Zt)(Dα′Zt)(Dα′Zt)
}
,

(572)

where the first and fourth terms of the first line of the RHS cancel. We can therefore estimate

‖i‖L2 . ‖Dα′Zt‖2L∞
∥∥D2

α′Zt

∥∥
L2 +

∥∥D2
α′Zt

∥∥
L2 (
∥∥Dα′Ztt

∥∥
L∞

+ ‖Dα′Zt‖2L∞). (573)

We expand ii:

ii = (I −H)
{

4(Dα′Zt)ZtD
3
α′Zt + 4(Dα′Zt)(D

2
α′Ztt)− 4(Dα′Zt)(D

3
α′Zt)Zt

− 8(Dα′Zt)
2(D2

α′Zt)− 4(Dα′Zt)(Dα′Zt)(D
2
α′Zt)

}
= (I −H)

{
4(Dα′Zt)(D

2
α′Ztt)− 8(Dα′Zt)

2(D2
α′Zt)− 4(Dα′Zt)(Dα′Zt)(D

2
α′Zt)

}
,

(574)

where the first and third terms of the first line of the RHS cancel out. We can therefore
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estimate

‖ii‖L2 . ‖Dα′Zt‖L∞
∥∥D2

α′Ztt

∥∥
L2 + ‖Dα′Zt‖2L∞

∥∥D2
α′Zt

∥∥
L2 + ‖Dα′Zt‖2L∞

∥∥D2
α′Zt

∥∥
L2 . (575)

10.2.8 Concluding the Estimates of (I −H) of the RHS

Combining our various estimates, we have, by (503) and (506), that∥∥(I −H)
(
D2
α(atzα)

)
◦ h−1

∥∥
L2

. (510) + ‖i‖L2 + ‖ii‖L2 + ‖iii‖L2

. (510) + (573) + (575) + (571)

.
∥∥D2

α′Zt

∥∥
L2

{
‖Dα′Ztt‖L∞ +

∥∥∥∥(Ztt + i)∂α′
1

Z,α′

∥∥∥∥
L∞

+ ‖Dα′Zt‖2L∞ +

∥∥∥∥PA{Zt∂α′ 1

Z,α′

}∥∥∥∥2
L∞

+

(∥∥∥∥∂α′ (PA Zt
Z,α′

)∥∥∥∥
L∞

+ ‖Dα′Zt‖L∞ + ‖(I + H)Dα′Zt‖L∞
)∥∥∥∥∂α′ (PA Zt

Z,α′

)∥∥∥∥
L∞

}
+
∥∥D2

α′Ztt
∥∥
L2

∥∥Dα′Zt

∥∥
L∞

+
∥∥D2

α′Ztt

∥∥
L2

(∥∥Dα′Zt

∥∥
L∞

+

∥∥∥∥∂α′ (PA Zt
Z,α′

)∥∥∥∥
L∞

)
+
∥∥D2

α′Zt
∥∥
L2

(∥∥Dα′Ztt

∥∥
L∞

+ ‖Dα′Zt‖2L∞ + ‖Dα′Zt‖L∞
∥∥∥∥∂α′ (PA Zt

Z,α′

)∥∥∥∥
L∞

)
+ ‖Zt,α′‖2L2

∥∥∥∥∂α′ 1

Z,α′

∥∥∥∥
L2

∥∥∥∥ 1

Z,α′
D2
α′Zt

∥∥∥∥
Ḣ1/2

.

(576)

10.2.9 Using the Peter-Paul Trick, Combining the Estimates

We now combine the many terms we have estimated, and handle the remaining term we had

deferred.

Starting in §10.2.1 we estimated
∥∥(D2

α

(
at
a

))
azα
∥∥
L2(hα)

. On changing to Riemannian
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coordinates, this was equivalent to estimating∥∥∥(D2
α

(at
a

))
azα

∥∥∥
L2(hα)

= (491)

.

∥∥∥∥(I −H)

{
i(Ztt − i)D2

α′
At
A

}∥∥∥∥
L2

+

∥∥∥∥∥
[
i(Ztt − i)

(
|Z,α′|
Z,α′

)2

,H

]
∂α′

(
1

|Z,α′ |
|Dα′|

At
A

)∥∥∥∥∥
L2

+ ‖e‖L2

. (502) + (501) + (496)

.
(∥∥(I −H)

(
D2
α(atzα)

)
◦ h−1

∥∥
L2 + (479) + (480)

)
+
(
‖Ztt,α′‖L2

(
‖Dαztt‖L∞

∥∥∥at
a

∥∥∥
L∞

+ ‖Dα(atzα)‖L∞
))

+ (496)

. ((576) + (479) + (480))

+
(
‖Ztt,α′‖L2

(
‖Dαztt‖L∞

∥∥∥at
a

∥∥∥
L∞

+ ‖Dα(atzα)‖L∞
))

+ (496).

(577)

By (481) and A1 > 1 (182) we can conclude that∥∥D2
α(atzα)

∥∥
L2
(

hα
A1◦h

) 6 ∥∥D2
α (atzα)

∥∥
L2(hα)

6
∥∥∥(D2

α

(at
a

))
azα

∥∥∥
L2(hα)

+ (479) + (480).

6 (577) + (479) + (480)

. (576) + (479) + (480) + (496)

+
(
‖Ztt,α′‖L2

(
‖Dαztt‖L∞

∥∥∥at
a

∥∥∥
L∞

+ ‖Dα(atzα)‖L∞
))

.

(578)

Recall that we still needed to control ‖Dα(atzα)‖L∞ . Here, we use the Peter-Paul trick

Proposition 13. By (578), we now have an estimate

∥∥D2
α(atzα)

∥∥
L2
(

hα
A1◦h

) 6 c1 + c2 ‖Dα(atzα)‖L∞ , (579)

where

c1 = C
(

(576) + (479) + (480) + (496) + ‖Ztt,α′‖L2 ‖Dαztt‖L∞
∥∥∥at
a

∥∥∥
L∞

)
(580)
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and

c2 = C ‖Ztt,α′‖L2 . (581)

We may now apply Proposition 13 with µ = hα
A1◦h .56 We get that

‖Dα(atzα)‖L∞ . c2 ‖Dα(atzα)‖
L2(
|zα|2(A1◦h)

hα
)
+ c1 + ‖Dα(atzα)‖L2

6 C ‖Ztt,α′‖L2 ‖Dα(atzα)‖
L2(

(A1◦h)2
a

)
+ (580) + ‖a‖1/2L∞ ‖Dα(atzα)‖L2( 1

a
)

6 C ‖Ztt,α′‖L2 ‖A1‖L∞ ‖Dα(atzα)‖L2( 1
a
)

+ (580) + ‖ztt − i‖1/2L∞ ‖1/zα‖
1/2
L∞ ‖Dα(atzα)‖L2( 1

a
)

6 C
((
‖Ztt,α′‖L2 ‖A1‖L∞

)
+ ‖ztt − i‖1/2L∞ ‖1/zα‖L∞

)1/2
(472) + (580),

(582)

where (472) was the main term to control for the RHS of Eb.

We now insert (582) into (578), and expand the various terms, to conclude that∥∥D2
α (atzα)

∥∥
L2( hα

A1◦h
dα)

. (576) + (479) + (480) + (496)

+
(
‖Ztt,α′‖L2

(
‖Dαztt‖L∞

∥∥∥at
a

∥∥∥
L∞

+ ‖Dα(atzα)‖L∞
))

6 (576) + (479) + (480) + (496)

+ ‖Ztt,α′‖L2

(
‖Dαztt‖L∞

∥∥∥at
a

∥∥∥
L∞

)
+ ‖Ztt,α′‖L2 (582)

.
∥∥(I −H)

(
D2
α(atzα)

)
◦ h−1

∥∥
L2

+

(
‖Dαztt‖L∞ +

∥∥∥∥(Ztt − i)∂α′
1

Z,α′

∥∥∥∥
L∞

)(∫
1

a

∣∣∣azαDα

(at
a

)∣∣∣2 dα)1/2

+
∥∥∥at
a

∥∥∥
L∞

∥∥D2
αztt
∥∥
L2(hα)

+ ‖Ztt,α′‖L2 ‖Dαztt‖L∞
∥∥∥at
a

∥∥∥
L∞
·

+ ‖Ztt,α′‖L2

(
‖Ztt,α′‖L2 ‖A1‖L∞ + ‖ztt − i‖1/2L∞ ‖1/zα‖

1/2
L∞

)
{(∫

1

a

∣∣∣azαDα

(at
a

)∣∣∣2 dα)1/2

+
∥∥∥at
a

∥∥∥
L∞

(∫
|Dαztt|2

dα

a

)1/2
}
,

(583)

56To do this, we need the a priori assumption that ‖Dα(atzα)‖L∞ < ∞, since this is required for Peter-
Paul. This holds so long as Dα(zttt + iaztα) ∈ L∞.
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where we controlled (∫
1

a

∣∣∣azαDα

(at
a

)∣∣∣2 dα)1/2

. (471) (584)

and ∥∥(I −H)
(
D2
α(atzα)

)
◦ h−1

∥∥
L2 . (576). (585)

By (290), combining estimates in §6, §7, and §8 with (475) and (583), we conclude that d
dt
Ea

is bounded by a universal polynomial of E, ‖zα‖L∞ and ‖1/zαL∞‖. This concludes the proof

of Theorem 25.
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Chapter 11

The Strength of the Energy

Our energy is expressed in terms of not only the free surface Z, the velocity Zt and their

spatial derivatives, but also time derivatives of these quantities. In this chapter, we give a

characterization of our energy in terms of the free surface Z, the velocity Zt, and their spatial

derivatives. We do so in Riemannian variable, as it directly captures the geometry of the

interface Z. We also, in §11.2, offer a heuristic discussion of the singularities inherent in the

problem and the crest angles allowed by our energy, as indicated by the Riemann mapping.

11.1 A Characterization of the Energy

In this section, we translate the terms of our energy involving time derivatives57 into terms

depending only on the free surface Z, the velocity Zt, and their spatial derivatives. We do

this using the basic identity (183)

1

Z,α′
= i

Ztt − i
A1

, (586)

(180), and the holomorphicity of Zt and various other quantities discussed in §3.6. These

basic water wave equations allow us to show that quantities involving Ztt can be controlled

by analogous quantities involving 1
Z,α′

, along with various lower-order terms.58

57We could call these the “acceleration” terms, although often the time derivative is outside the spatial
derivatives, and the “acceleration” Ztt is really the material derivative of the velocity, rather than the time
derivative.

58We remark that for these estimates we do not ever rely on (high order) Ḣ1/2 parts of the energies.
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The estimate we prove is

E(t) 6 C

(∥∥Zt,α′
∥∥
L2 ,
∥∥D2

α′Zt

∥∥
L2 ,

∥∥∥∥∂α′ 1

Z,α′

∥∥∥∥
L2

,∥∥∥∥D2
α′

1

Z,α′

∥∥∥∥
L2

,

∥∥∥∥ 1

Z,α′
D2
α′Zt

∥∥∥∥
Ḣ1/2

,
∥∥Dα′Zt

∥∥
Ḣ1/2 ,

∥∥∥∥ 1

Z,α′

∥∥∥∥
L∞

)
, (587)

where the constant depends polynomially on its terms. We remark that this inequality can

be reversed: each of the factors on the RHS of (587) is controlled by the energy. That is,

∥∥Zt,α′
∥∥
L2 ,
∥∥D2

α′Zt

∥∥
L2 ,

∥∥∥∥∂α′ 1

Z,α′

∥∥∥∥
L2

,

∥∥∥∥D2
α′

1

Z,α′

∥∥∥∥
L2

,

∥∥∥∥ 1

Z,α′
D2
α′Zt

∥∥∥∥
Ḣ1/2

,

∥∥Dα′Zt

∥∥
Ḣ1/2 ,

∥∥∥∥ 1

Z,α′

∥∥∥∥
L∞

. C(E(t)). (588)

Therefore, these quantities fully characterize our energy. In the proof of our a priori estimate,

we have shown (588) for every term except
∥∥∥D2

α′
1

Z,α′

∥∥∥
L2

, which we never had a need to control.

One can adapt the argument in §11.1.3 below to show that
∥∥∥D2

α′
1

Z,α′

∥∥∥
L2

can be controlled by

the energy.59

We remark because both Zt and 1
Z,α′

are the boundary values of periodic holomorphic

functions, the weighted derivative Dα′ corresponds to the complex derivative ∂z. We also

note that 1
Z,α′

= hα
zα
◦ h−1 is a natural geometric quantity well-suited to this problem: it

captures the free surface zα modulo the singularities from the Riemann mapping hα.

59To do this, it comes down once again to estimating
∥∥∥ 1
Z,α′

D2
α′A1

∥∥∥
L2

, except this time we need to do this

without the dependence on
∥∥∥D2

α′
1

Z,α′

∥∥∥
L2

. That dependence comes from estimate (612). (It also comes from

using
∥∥∥D2

α′
1

Z,α′

∥∥∥
L2

in the Sobolev inequality for
∥∥∥Dα′

1
Z,α′

∥∥∥
L∞

; this is not a problem, since
∥∥∥Dα′

1
Z,α′

∥∥∥
L∞

is

controlled by the energy.) To handle (612), we take advantage of the fact that (I − H)
{
∂α′Dα′

1
Z,α′

}
= 0

(this is due to (131), (137) and the second principle in §3.6) to rewrite the problematic term as a commutator
and then use commutator estimate (233):∥∥∥∥(I −H)

{
A1

Z,α′
∂α′Dα′

1

Z,α′

}∥∥∥∥
L2

=

∥∥∥∥[Ztt,H] ∂α′Dα′
1

Z,α′

∥∥∥∥
L2

.
∥∥Ztt,α′∥∥L2

∥∥∥∥Dα′
1

Z,α′

∥∥∥∥
L∞

,

(589)

both of which are controlled by the energy. We remark that this, sharper argument shows that∥∥∥ 1
Z,α′

D2
α′A1

∥∥∥
L2

is in some sense lower-order, since, by the Sobolev inequality with ε,
∥∥∥Dα′

1
Z,α′

∥∥∥
L∞

depends

on the highest-order terms only with a weight of ε.
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11.1.1 The Proof

Throughout the following proof we will rely on the fact that A1 > 1 (182), the estimate

(297)

‖A1‖L∞ . 1 +
∥∥Zt,α′

∥∥2
L2 , (590)

the Sobolev estimate (300)

∥∥Dα′Zt

∥∥
L∞

.
∥∥Zt,α′

∥∥
L2 +

∥∥D2
α′Zt

∥∥
L2 , (591)

and the estimate ∥∥∥∥Dα′
1

Z,α′

∥∥∥∥
L∞

.

∥∥∥∥D2
α′

1

Z,α′

∥∥∥∥
L2

+

∥∥∥∥∂α′ 1

Z,α′

∥∥∥∥
L2

, (592)

which holds by Sobolev inequality (203).60

We begin by noting that it suffices to control only the first term of Ea and Eb, since the

remaining terms of the energy are (up to a factor of A1) already on the RHS of (587).

For the first term of Ea, by the commutator identity (258)∫ ∣∣∂tD2
αzt
∣∣2 hα
A1 ◦ h

dα .
∫ ∣∣D2

αztt
∣∣2 hα
A1 ◦ h

dα +

∫ ∣∣[∂t, D2
α]zt
∣∣2 hα
A1 ◦ h

dα

.
∥∥D2

α′Ztt

∥∥2
L2 +

∫ ∣∣(Dαzt)D
2
αzt + (D2

αzt)Dαzt
∣∣2 hα
A1 ◦ h

dα

.
∥∥D2

α′Ztt

∥∥2
L2 + ‖Dαzt‖2L∞ (

∥∥D2
α′Zt

∥∥2
L2 +

∥∥D2
α′Zt

∥∥2
L2).

(593)

By (305) and (212)

∥∥D2
α′Zt

∥∥
L2 .

∥∥D2
α′Zt

∥∥
L2 +

∥∥Dα′Zt

∥∥
L∞

∥∥∥∥∂α′ 1

Z,α′

∥∥∥∥
L2

. C

(∥∥D2
α′Zt

∥∥
L2 ,
∥∥Zt,α′

∥∥
L2 ,

∥∥∥∥∂α′ 1

Z,α′

∥∥∥∥
L2

)
.

(594)

We conclude that∫ ∣∣∂tD2
αzt
∣∣2 hα
A1 ◦ h

dα . C

(∥∥D2
α′Ztt

∥∥
L2 ,
∥∥Zt,α′

∥∥
L2 ,
∥∥D2

α′Zt

∥∥
L2 ,

∥∥∥∥∂α′ 1

Z,α′

∥∥∥∥
L2

)
. (595)

60Note that −
∫ (

Dα′
1

Z,α′

)2
= 0 by the same argument that was used at (166) to show −

∫
(Dα′Zt)

2 = 0.
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For the first term of Eb, we use the commutator identity (257) to get∫
|∂tDαzt|2

1

a
dα .

∫
|Dαztt|2

1

a
dα +

∫
|[∂t, Dα]zt|2

1

a
dα

.
∫
|Dαztt|2

(A1 ◦ h)

a
dα +

∫
|(Dαzt)Dαzt|2

1

a
dα

.
∥∥Ztt,α′

∥∥2
L2 + ‖Dαzt‖2L∞

∫
|Dαzt|

(A1 ◦ h)

a
dα

.
∥∥Ztt,α′

∥∥2
L2 + (

∥∥Zt,α′
∥∥
L2 +

∥∥D2
α′Zt

∥∥
L2)

2
∥∥Zt,α′

∥∥2
L2

6 C(
∥∥Ztt,α′

∥∥
L2 ,
∥∥Zt,α′

∥∥
L2 ,
∥∥D2

α′Zt

∥∥
L2).

(596)

All that remains to do from (595) and (596) is to estimate
∥∥Ztt,α′

∥∥
L2 and

∥∥D2
α′Ztt

∥∥
L2 in

terms of Zt and 1
Z,α′

, which we now do, in §11.1.2 and §11.1.3.

11.1.2 Controlling
∥∥Ztt,α′

∥∥
L2

Using (586), we estimate

∥∥∂α′Ztt

∥∥
L2 . ‖A1‖L∞

∥∥∥∥∂α′ 1

Z,α′

∥∥∥∥
L2

+ ‖Dα′A1‖L2

. C

(∥∥Zt,α′
∥∥
L2 ,

∥∥∥∥∂α′ 1

Z,α′

∥∥∥∥
L2

, ‖Dα′A1‖L2

)
.

(597)

To control ‖Dα′A1‖L2 , we follow a similar procedure to what we did in (331)-(332), except

instead of using Ztt − i, we use 1
Z,α′

and estimate things in terms of 1
Z,α′

. We get

‖Dα′A1‖L2 .
∥∥Zt,α′

∥∥2
L2

∥∥∥∥∂α′ 1

Z,α′

∥∥∥∥
L2

+ ‖Zt,α′‖L2

∥∥Dα′Zt

∥∥
L∞

6 C

(∥∥Zt,α′
∥∥
L2 ,

∥∥∥∥∂α′ 1

Z,α′

∥∥∥∥
L2

,
∥∥D2

α′Zt

∥∥
L2

)
.

(598)

Combining (597) and (598) we conclude that

∥∥∂α′Ztt

∥∥
L2 6 C

(∥∥Zt,α′
∥∥
L2 ,

∥∥∥∥∂α′ 1

Z,α′

∥∥∥∥
L2

,
∥∥D2

α′Zt

∥∥
L2

)
. (599)
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11.1.3 Controlling
∥∥D2

α′Ztt

∥∥
L2

From (586), we have

iD2
α′Ztt = A1D

2
α′

1

Z,α′
+ 2(Dα′A1)Dα′

1

Z,α′︸ ︷︷ ︸
e1

+
1

Z,α′
D2
α′A1. (600)

We estimate
∥∥D2

α′Ztt

∥∥
L2 through the following procedure. First we note that the only chal-

lenging term to control on the RHS of (600) is the last one, 1
Z,α′

D2
α′A1. We observe that this

is almost real, modulo factors of 1
Z,α′

and its derivatives; therefore, we will be able to use

the <(I −H) trick and, through a series of commutators, reduce the estimate for 1
Z,α′

D2
α′A1

to an estimate of (I −H)(D2
α′

A1

Z,α′
) = (I −H)(iD2

α′Ztt). Since Zt is holomorphic, we will be

able to rewrite (I − H)(iD2
α′Ztt) in terms of commutators and obtain favorable estimates.

We now give the details.

We first estimate the error term e1 in (600):

‖e1‖L2 . ‖A1‖L∞
∥∥∥∥D2

α′
1

Z,α′

∥∥∥∥
L2

+ ‖Dα′A1‖L2

∥∥∥∥Dα′
1

Z,α′

∥∥∥∥
L∞

. (1 +
∥∥Zt,α′

∥∥2
L2)

∥∥∥∥D2
α′

1

Z,α′

∥∥∥∥
L2

+ (598)

(∥∥∥∥D2
α′

1

Z,α′

∥∥∥∥
L2

+

∥∥∥∥∂α′ 1

Z,α′

∥∥∥∥
L2

)
. C

(∥∥Zt,α′
∥∥
L2 ,

∥∥∥∥D2
α′

1

Z,α′

∥∥∥∥
L2

,
∥∥D2

α′Zt

∥∥
L2 ,

∥∥∥∥∂α′ 1

Z,α′

∥∥∥∥
L2

)
.

(601)

It remains to control
∥∥∥ 1
Z,α′

D2
α′A1

∥∥∥
L2

. We want to use (I − H) to turn our quantity into

commutators, but to do so we need to factor Dα′ into a real-weighted derivative |Dα′| :=
1

|Z,α′|∂α
′ so that we may invert (I −H).

From (483), we have

1

Z,α′
D2
α′A1 =

1

Z,α′

(
|Z,α′ |
Z,α′

)2

|Dα′|2A1 +
1

Z,α′

|Z,α′ |
Z,α′

(
|Dα′ |

|Z,α′ |
Z,α′

)
|Dα′ |A1︸ ︷︷ ︸

e2

. (602)

We multiply both sides by

(
Z,α′

|Z,α′ |

)3

so that the first term on the RHS is purely real:

(
Z,α′

|Z,α′ |

)3
1

Z,α′
D2
α′A1 =

(
Z,α′

|Z,α′ |

)3
1

Z,α′

(
|Z,α′ |
Z,α′

)2

|Dα′ |2A1 +

(
Z,α′

|Z,α′|

)3

e2. (603)
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Now we apply <(I −H) to each side, and conclude from the fact that A1 ∈ R that

∣∣∣∣ 1

Z,α′
|Dα′ |2A1

∣∣∣∣ .
∣∣∣∣∣(I −H)

{(
Z,α′

|Z,α′ |

)3
1

Z,α′
D2
α′A1

}∣∣∣∣∣+

∣∣∣∣∣(I −H)

{(
Z,α′

|Z,α′|

)3

e2

}∣∣∣∣∣ . (604)

We conclude from (602) and (604) that

∥∥∥∥ 1

Z,α′
D2
α′A1

∥∥∥∥
L2

. ‖e2‖L2 +

∥∥∥∥∥(I −H)

{(
Z,α′

|Z,α′|

)3
1

Z,α′
D2
α′A1

}∥∥∥∥∥
L2

. (605)

By (212) and (598) we estimate

‖e2‖L2 .

∥∥∥∥Dα′
1

Z,α′

∥∥∥∥
L∞
‖Dα′A1‖L2 . (592)(598). (606)

It remains to estimate

∥∥∥∥∥(I −H)

{(
Z,α′

|Z,α′ |

)3
1

Z,α′
D2
α′A1

}∥∥∥∥∥
L2

. To get the right commutator

estimate, we first rewrite this as∥∥∥∥∥(I −H)

{(
Z,α′

|Z,α′ |

)3
1

Z,α′
D2
α′A1

}∥∥∥∥∥
L2

.

∥∥∥∥∥(I −H)

{(
Z,α′

|Z,α′ |

)3
1

Z,α′
∂α′

(
1

Z,α′
Dα′A1

)}∥∥∥∥∥
L2

+

∥∥∥∥∥(I −H)

{(
Z,α′

|Z,α′ |

)3
1

Z,α′

(
∂α′

1

Z,α′

)
Dα′A1

}∥∥∥∥∥
L2

.

(607)

We estimate the second term on the RHS of (607) directly:∥∥∥∥∥(I −H)

{(
Z,α′

|Z,α′ |

)3
1

Z,α′

(
∂α′

1

Z,α′

)
Dα′A1

}∥∥∥∥∥
L2

.

∥∥∥∥Dα′
1

Z,α′

∥∥∥∥
L∞
‖Dα′A1‖L2

. (592)(598).

(608)

For the first term on the RHS of (607), we commute the non-holomorphic factor

(
Z,α′

|Z,α′ |

)3

outside the (I −H), bringing along 1
Z,α′

to ensure that the commutator is controllable, and
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then bringing the 1
Z,α′

back inside:

∥∥∥∥∥(I −H)

{(
Z,α′

|Z,α′ |

)3
1

Z,α′
∂α′

(
1

Z,α′
Dα′A1

)}∥∥∥∥∥
L2

.

∥∥∥∥∥
[(

Z,α′

|Z,α′ |

)3
1

Z,α′
,H

]
∂α′

(
1

Z,α′
Dα′A1

)∥∥∥∥∥
L2

+

∥∥∥∥[ 1

Z,α′
,H
]
∂α′

(
1

Z,α′
Dα′A1

)∥∥∥∥
L2

+

∥∥∥∥(I −H)

{
1

Z,α′
∂α′

(
1

Z,α′
Dα′A1

)}∥∥∥∥
L2

.

(609)

We estimate the first two terms on the RHS of (609) using commutator estimate (233)61:∥∥∥∥∥
[(

Z,α′

|Z,α′ |

)3
1

Z,α′
,H

]
∂α′

(
1

Z,α′
Dα′A1

)∥∥∥∥∥
L2

+

∥∥∥∥[ 1

Z,α′
,H
]
∂α′

(
1

Z,α′
Dα′A1

)∥∥∥∥
L2

.

∥∥∥∥∂α′ 1

Z,α′

∥∥∥∥
L2

∥∥∥∥ 1

Z,α′
Dα′A1

∥∥∥∥
L∞

.

(610)

We will postpone estimating
∥∥∥ 1
Z,α′

Dα′A1

∥∥∥
L∞

until the end of this long series of calculations.

For the moment, we take the last term from the RHS of (609):∥∥∥∥(I −H)

{
1

Z,α′
∂α′

(
1

Z,α′
Dα′A1

)}∥∥∥∥
L2

.

∥∥∥∥(I −H)D2
α′

(
1

Z,α′
A1

)∥∥∥∥
L2

+

∥∥∥∥(I −H)

{
Dα′

(
A1Dα′

1

Z,α′

)}∥∥∥∥
L2

.

(611)

We estimate the second term by∥∥∥∥(I −H)

{
Dα′

(
A1Dα′

1

Z,α′

)}∥∥∥∥
L2

.

∥∥∥∥D2
α′

1

Z,α′

∥∥∥∥
L2

‖A1‖L∞ +

∥∥∥∥Dα′
1

Z,α′

∥∥∥∥
L∞
‖Dα′A1‖L2

.

∥∥∥∥D2
α′

1

Z,α′

∥∥∥∥
L2

(1 +
∥∥Zt,α′

∥∥2
L2) + (592)(598).

(612)

Finally, for the first term on the RHS of (611), we recall from (175) that

1

Z,α′
A1 = i(Ztt − i) = i(ZtDα′Zt) + iFt ◦ Z + 1 (613)

61Note that this does not require that 1
Z,α′

Dα′A1 has periodic boundary behavior; this explains why we

chose this commutator and moved 1
Z,α′

around instead of using the L∞ × L2 estimate. Cf. footnote 51.
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for F (z(α, t), t) := zt(α, t). We apply (I −H)D2
α′ to this, and the last two terms disappear,

the first by (151). We get∥∥∥∥(I −H)D2
α′

(
1

Z,α′
A1

)∥∥∥∥
L2

=
∥∥(I −H)D2

α′(ZtDα′Zt)
∥∥
L2

.
∥∥(I −H)

{
(D2

α′Zt)Dα′Zt

}∥∥
L2

+
∥∥(I −H)

{
(Dα′Zt)(D

2
α′Zt)

}∥∥
L2

+

∥∥∥∥(I −H)

{
Zt
Z,α′

∂α′D
2
α′Zt

}∥∥∥∥
L2

.

(614)

We estimate the first two terms directly by∥∥(I −H)
{

(D2
α′Zt)Dα′Zt

}∥∥
L2 +

∥∥(I −H)
{

(Dα′Zt)(D
2
α′Zt)

}∥∥
L2

.
∥∥Dα′Zt

∥∥
L∞

(
∥∥D2

α′Zt
∥∥
L2 +

∥∥D2
α′Zt

∥∥
L2)

. (591)(
∥∥D2

α′Zt

∥∥
L2 + (594)).

(615)

We are left with the last term on the RHS of (614). We first decompose Zt
Z,α′

into its

holomorphic and antiholomorphic projections. The term with the holomorphic projection

disappears by (159); with what remains, we use (143) to get a commutator, which we control

by commutator estimate (226):∥∥∥∥(I −H)

{
Zt
Z,α′

∂α′D
2
α′Zt

}∥∥∥∥
L2

=

∥∥∥∥(I −H)

{(
PA

Zt
Z,α′

)
∂α′D

2
α′Zt

}∥∥∥∥
L2

=

∥∥∥∥[(PA Zt
Z,α′

)
,H
]
∂α′D

2
α′Zt

∥∥∥∥
L2

.

∥∥∥∥∂α′PA Zt
Z,α′

∥∥∥∥
L∞

∥∥D2
α′Zt

∥∥
L2

.

(
‖Dα′Zt‖L∞ + ‖Zt,α′‖L2

∥∥∥∥∂α′ 1

Z,α′

∥∥∥∥
L2

)∥∥D2
α′Zt

∥∥
L2

.

(∥∥D2
α′Zt

∥∥
L2 + ‖Zt,α′‖L2

(
1 +

∥∥∥∥∂α′ 1

Z,α′

∥∥∥∥
L2

))∥∥D2
α′Zt

∥∥
L2

(616)

by (372).

We now give the estimate for
∥∥∥ 1
Z,α′

Dα′A1

∥∥∥
L∞

=

∥∥∥∥ 1

|Z,α′|2
∂α′A1

∥∥∥∥
L∞

in (610). We do so
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using (331). We have

1

|Z,α′|2
∂α′A1 = = 1

2i

∫
π

2

(Zt(α
′)− Zt(β′))

sin2(π
2
(α′ − β′))

(
1

|Z,α′|2
− 1

|Z,β′ |2

)
Zt,β′(β

′)dβ

+ = 1

2i

∫
π

2

(Zt(α
′)− Zt(β′))

sin2(π
2
(α′ − β′))

1

Z ,β′
Dβ′Zt(β

′)dβ

= I + II.

(617)

From Hölder’s inequality, Hardy’s inequality (217) and the mean value theorem,62 we have

‖I‖L∞ . ‖Zt,α′‖2L2

∥∥∥∥Dα′
1

Z,α′

∥∥∥∥
L∞

. ‖Zt,α′‖2L2 (592). (618)

We rewrite II using integration-by-parts identity (227):

1

2i

∫
π

2

(Zt(α
′)− Zt(β′))

sin2(π
2
(α′ − β′))

1

Z ,β′
Dβ′Zt(β

′)dβ

= −[Zt,H]∂α′

(
1

Z ,α′
Dα′Zt

)
+ H

(
Zt,α′

1

Z ,α′
Dα′Zt

)
= −[Zt,H]∂α′

(
1

Z ,α′
Dα′Zt

)
−
[

1

Z,α′
Dα′Zt,H

]
Zt,α′ +

∣∣Dα′Zt

∣∣2 .
(619)

Using (244) on the first two terms on the RHS of (619), we get

‖II‖L∞ . ‖Zt,α′‖L2

∥∥∥∥∂α′ ( 1

Z ,α′
Dα′Zt

)∥∥∥∥
L2

+
∥∥Dα′Zt

∥∥2
L∞

. ‖Zt,α′‖L2

(∥∥D2
α′Zt

∥∥
L2 +

∥∥∥∥∂α′ 1

Z,α′

∥∥∥∥
L2

∥∥Dα′Zt

∥∥
L∞

)
+
∥∥Dα′Zt

∥∥2
L∞

.

(620)

Combining (617), (618), (620), (592), and (591), we have∥∥∥∥∥ 1

|Z,α′|2
∂α′A1

∥∥∥∥∥
L∞

6 ‖I‖L∞ + ‖II‖L∞

6 C

(∥∥Zt,α′
∥∥
L2 ,
∥∥D2

α′Zt

∥∥
L2 ,

∥∥∥∥∂α′ 1

Z,α′

∥∥∥∥
L2

,

∥∥∥∥D2
α′

1

Z,α′

∥∥∥∥
L2

)
.

(621)

62Note that we may use the periodicity of 1

|Z,α′ |2
to assume that |α′ − β′| 6 1 and therefore replace the

1
sin with 1

α′−β′ to apply the mean value theorem.

154



We now sum up these estimates, from (605):∥∥∥∥ 1

Z,α′
D2
α′A1

∥∥∥∥
L2

. (606) + (608) + (610) + (612) + (615) + (616)

. (592)(598) +

∥∥∥∥∂α′ 1

Z,α′

∥∥∥∥
L2

∥∥∥∥ 1

Z,α′
Dα′A1

∥∥∥∥
L∞

+

∥∥∥∥D2
α′

1

Z,α′

∥∥∥∥
L2

(1 +
∥∥Zt,α′

∥∥2
L2)

+ (591)(
∥∥D2

α′Zt

∥∥
L2 + (594))

+

(∥∥D2
α′Zt

∥∥
L2 + ‖Zt,α′‖L2

(
1 +

∥∥∥∥∂α′ 1

Z,α′

∥∥∥∥
L2

))∥∥D2
α′Zt

∥∥
L2

. C

(∥∥∥∥D2
α′

1

Z,α′

∥∥∥∥
L2

,
∥∥Zt,α′

∥∥
L2 ,
∥∥D2

α′Zt

∥∥
L2 ,

∥∥∥∥∂α′ 1

Z,α′

∥∥∥∥
L2

)
,

(622)

where we used (621) to estimate
∥∥∥ 1
Z,α′

Dα′A1

∥∥∥
L∞

.

Combining (601) and (622) we conclude that

∥∥D2
α′Ztt

∥∥
L2 . C

(∥∥∥∥D2
α′

1

Z,α′

∥∥∥∥
L2

,
∥∥Zt,α′

∥∥
L2 ,
∥∥D2

α′Zt

∥∥
L2 ,

∥∥∥∥∂α′ 1

Z,α′

∥∥∥∥
L2

)
. (623)

11.2 Singularities and the Angle of the Crest

In §11.1 at (587) and (588) we characterized our energy in terms of various L2 and Ḣ1/2

norms of quantities in Riemannian coordinates (as well as a single quantity, 1
Z,α′

, in L∞).

When there is a non-trivial angle ν at the corner, or when there is a singularity in the middle

of the free surface, the Riemann mapping will have a singularity. In this section, we discuss

this singularity and what it suggests about the angle ν, as well as what the singularity

suggests about what types of quantities we can expect to control. This section is a heuristic

discussion relying on crude power-law asymptotics; we emphasize that all other parts of the

dissertation are fully rigorous, and do not depend on this discussion.

We will phrase our discussion in terms of a singularity at the corner—i.e., what we have

called a non-trivial angle—but it applies more broadly to singularities in the middle of the

free surface, where ν is half of the interior angle of the crest. We thus henceforth focus on

non-trivial angles ν at the corner. Of course, our energy is finite in the trivial regime when

ν = π
2
, so we can focus on the case where ν < π

2
.63

63Recall from the discussion at (183) that we cannot have ν > π
2 .
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Throughout this section, we will abuse notation and say, e.g., Φ(z) ≈ zr or h(α) ≈ αr at

the corner, when in fact the corners are at z, α = ±1, not 0.

If ν is the angle of the water at the corner, the Riemann mapping Φ(z) should behave

like zr at the corner, where rν = π
2
. For ν < π

2
, we have r > 1. (See Figure 3 from §3.1.)

Recall from (587) and (588) that
∥∥∥∂α′ 1

Z,α′

∥∥∥
L2

and
∥∥∥D2

α′
1

Z,α′

∥∥∥
L2

help characterize the energy,

and so in particular if the energy is finite they must be finite. This gives us a more precise

characterization of what angles ν our energy allows. Note that

Z(α′) = Φ−1(α′) ≈ (α′)1/r (624)

so

Z,α′ = ∂α′(Φ
−1) ≈ (α′)1/r−1, (625)

1

Z,α′
≈ (α′)1−1/r, (626)

and

∂α′
1

Z,α′
≈ (α′)−1/r (r 6= 1). (627)

Therefore, assuming r > 1, ∂α′
1

Z,α′
∈ L2 if and only if r > 2 if and only if ν < π

4
. Similarly,

D2
α′

1
Z,α′
∈ L2 so long as r > 2.64

We conclude from this discussion that our energy will be finite only when ν < π
4

(or there

is flat water ν = π
2
). This coincides precisely with the angles in the self-similar construction

of [Wu12].65 For singularities in the middle of the free surface, this suggests that the interior

angle 2ν must be less than π
2
.66

The preceding discussion depends only 1
Z,α′

, which is defined by the Riemann mapping.

Now we consider other quantities, comparing their behavior in Lagrangian and Riemann

coordinates. For this discussion, we work under the assumption that 0 < c1 6 |zα| 6 c2 <∞
for all t in our timeframe, so the function z(α) doesn’t affect the singularity (to first order).

We can work under this assumption by the control of ‖zα‖L∞ and ‖1/zα‖L∞ from §6.2.

Since z ≈ α, we have

h(α) = Φ(z(α)) ≈ αr (628)

64We remark that, even though Ea (which roughly includes
∥∥∥D2

α′
1

Z,α′

∥∥∥
L2

) is higher-order than Eb (which

roughly includes
∥∥∥∂α′ 1

Z,α′

∥∥∥
L2

) in terms of the number of derivatives, the two energies are comparable in the

sense that they allow precisely the same angles.
65We recall that our energy is finite for these solutions.
66We note that our energy does not apply to Stokes waves (interior angle 2ν = π

3 ).
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and

h−1(α′) ≈ (α′)1/r. (629)

On differentiating (628), we get that

hα(α) ≈ αr−1 (630)

and so

hα ◦ h−1(α′) ≈ (α′)
1
r
(r−1) = (α′)1−

1
r . (631)

Now we can see the impact of the Riemann mapping change of coordinates on derivatives.

For the derivatives in Riemannian coordinates,

∂α′(f ◦ h−1) =
fα
hα
◦ h−1. (632)

The singularity introduced by the denominator will be of the order of (α′)
1
r
−1. This means

that unless fα → 0 at the corner, we cannot expect ∂α′(f ◦ h−1) to be in L∞ for non-trivial

angles.

On the other hand, the weighted spatial derivative Dα′ does not introduce any such

singularity:

Dα′(f ◦ h−1) =
1

Z,α′
∂α′(f ◦ h−1) =

fα
zα
◦ h−1, (633)

which should be in L∞ as long as fα ∈ L∞.

We remark that the behavior of the angle ν over time is of significant interest. This

angle is determined by zα at the corner. Therefore, the behavior of ztα and zttα at the corner

should determine how the angle changes. Since Zt,α′ = ztα
hα
◦h−1 and 1

hα
◦h−1 ≈ (α′)1/r−1, we

must have ztα → 0 at the corner if Zt,α′ ∈ L2, as our energy assumes. A similar argument

holds for Ztt,α′ . Careful analysis of such behavior at the corner could be an avenue for future

research.
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Appendix A

Summary of Notation

We list here the various notations we’ve introduced in the dissertation.

• f |∂ := f(1, t) − f(−1, t) = limx1→−1+ f(x1, t) − limx2→1− f(x2, t) (38). Note that this

is always with respect to space.

• We will use ν for the angle the water wave makes with the wall. We will say the water

is flat or the angle is trivial at the corner if ν = 90◦ = π
2
; otherwise, we say the angle

at the corner is non-trivial. See §1.3 for further details, and §11.2 for a discussion of

what our energy being finite implies about ν.

• Ω0(t) ⊂ [0, 1]× (−∞, c) is the initial fluid domain; on Schwarz reflection, we get fluid

domain Ω(t) ⊂ [−1, 1]×(−∞, c). (See §1.3.) This is mapped by the Riemann mapping

to

P− := {(x, y) : x ∈ [−1, 1], y 6 0} . (634)

• I := [−1, 1] (except when it’s used for the identity or as an abbreviation for a quantity

to be controlled).

• For a complex number z = x+ iy, <z = x,=z = y.

• Details about our function spaces Ck(−1, 1), Ck[−1, 1], Ck(S1) and Lp are given in §1.6.

We define ‖f‖Ḣ1/2 :=
(
π
8

∫∫ |f(α′)−f(β′)|2
sin2(π

2
(α′−β′))dα

′dβ′
)1/2

at (18).

• −
∫
f = −

∫
I
f := 1

2

∫
I
f(β′)dβ′.

• Iε and (I × I)ε are defined at (20) and (21). We use this for our definition of the

principal value at (22).
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• z(α, t) is the Lagrangian parametrization, and zt(α, t) = v(z(α, t), t) is the velocity.

ztt = ∂tzt, etc.

• a = |ztt−i|
|zα| = −∂P

∂n
1
|zα| is the Taylor coefficient; n is the outward-facing normal to Ω(t).

We will sometimes also refer to −∂P
∂n

as the Taylor coefficient.

• h : α 7→ α′ is defined by h(α) = Φ(z(α, t), t) and gives the Riemannian coordinates,

where Φ is the Riemann mapping defined in §3.1. Full details are in §3.2.

• α and β are our variables in Lagrangian coordinates; α′ and β′ are our variables in

Riemannian coordinates.

• H is the Hilbert transform in Riemannian coordinates, defined by

Hf(α′) :=
1

2i
pv

∫
I

cot(
π

2
(α′ − β′))f(β′)dβ′. (635)

We will occasionally refer to variants of the Hilbert transform (e.g., using H to refer to

a Hilbert transform for the curved domain in Lagrangian coordinates), and will provide

details in the text.

• We define PA := (I−H)
2

and PH := (I+H)
2

as the antiholomorphic and holomorphic

projections.

• [f, g;h](α′) := 1
2i

∫ (f(α′)−f(β′))(g(α′)−g(β′))
sin2(π

2
(α′−β′)) h(β′)dβ′. We use this for the higher-order

Calderon commutator.

• We use F (z(α, t), t) := zt(α, t) at several points (and take care not to use F for any

other purpose).

• Z := z ◦ h−1, Zt := zt ◦ h−1, Ztt := ztt ◦ h−1, Z,α′ = ∂α′(z ◦ h−1), Zt,α′ = ∂α′(zt ◦ h−1),
etc., where composition and inverses are with respect to the spatial variable.

• A := (ahα) ◦ h−1.

• At := (athα) ◦ h−1.

• Dα := 1
zα
∂α, |Dα| := 1

|zα|∂α.

• Dα′ := 1

|Z,α′|∂α
′ , |Dα′ | := 1

|Z,α′|∂α
′ .

159



• For generic function G on Ω(t), G ◦ Z := G(Z(α′, t), t).

• A1 = A |Z,α′|2 = iZ,α′(Ztt − i) ∈ R (180). On changing variables, we have

A1 ◦ h =
a |zα|2

hα
, (636)

originally derived at (184); we will use this repeatedly without citation. We will often

use A1 > 1 (182), and we also use 1
Z,α′

= iZtt−i
A1

(183).

• We define our energies in §5.1. We define generic energies Ea,θ and Eb,θ, and then

specialize to Ea := Ea,D2
αzt

and Eb := Eb,Dαzt . We use Gθ to describe the RHS of the

equation (∂2t + ia∂α)θ = Gθ. For θ = Dk
αzt, Gθ = Dk

α(−iatzα) + [∂2t + ia∂α, D
k
α]zt.

• ψ :=
(
hα
zα
θ
)
◦ h−1 (391).

• B :=
(
htα
hα
−<Dα′zt

)
◦ h−1 (392).

• Θ := θ ◦ h−1 (393).

• See §1.5 for a discussion of how broadly I, II, I1, I12, etc., are defined: in short, they

are unambiguous within each chapter, but ambiguous between chapters. We list here

the distinct places where they are defined: (332) in §6.4; (389) in §8.1; (512) in §10.2.3;

and (617) in §11.1.3. Of these, the penultimate is most extensively subdivided, and is

fully expanded in (567).

• In §10.2.2, we define a subdivision i, ii, iii at (511).
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Appendix B

Main Quantities Controlled

We list here the various quantities that are controlled by our energy, for ease of reference.

We don’t list every single quantity we have controlled, but we do include any quantities that

we give at the end of a concluding inequality without further explanation.

• In §6.1, we control ‖A1‖L∞ by the lower-order term in Eb at (297). We know A1 > 1

by (182).

• In §6.1, we use Ea to control
∥∥D2

α′Zt

∥∥
L2
(
dα′
A1

), ∥∥D2
α′Ztt

∥∥
L2
(
dα′
A1

), ‖D2
α′Zt‖L2

(
dα′
A1

), and

‖D2
α′Ztt‖L2

(
dα′
A1

), although except in the first case there is also dependence on Eb, which

comes from commuting ∂t and handling conjugations correctly.

• From this, with an extra factor of ‖A1‖1/2L∞ , we can control
∥∥D2

α′Zt

∥∥
L2 ,

∥∥D2
α′Ztt

∥∥
L2 ,

‖D2
α′Zt‖L2 , and ‖D2

α′Ztt‖L2 .

• In §6.1, we control
∥∥∥ 1
Z,α′

D2
α′Zt

∥∥∥
Ḣ1/2

directly by Ea at (299).

• In §6.1, we control ‖Dαzt‖L2(
(A1◦h)

a
)

= ‖Dαzt‖L2(
(A1◦h)

a
)

=
∥∥Zt,α′

∥∥
L2 = ‖Zt,α′‖L2 directly

by the lower-order term in Eb.

• In §6.1, we control ‖Dαztt‖L2( 1
a
) = ‖Dαztt‖L2( 1

a
), primarily by Eb, although there are

other terms (which come from commuting ∂t). By change of variables, we can control

‖Ztt,α′‖L2 =
∥∥Ztt,α′

∥∥
L2 in terms of this and ‖A1‖L∞ .

• In §6.1, we control

‖Dαzt‖L∞ = ‖Dα′Zt‖L∞ = ‖Dαzt‖L∞ =
∥∥Dα′Zt

∥∥
L∞

6 (301)
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‖Dαztt‖L∞ = ‖Dα′Ztt‖L∞ = ‖Dαztt‖L∞ =
∥∥Dα′Ztt

∥∥
L∞

6 (315)

‖ztt + i‖L∞ = ‖Ztt + i‖L∞ = ‖ztt − i‖L∞ =
∥∥Ztt − i

∥∥
L∞

6 (313)∥∥∥∥ 1

Z,α′

∥∥∥∥
L∞

. (314). (637)

• ‖zα‖L∞ and
∥∥∥ 1
zα

∥∥∥
L∞

are controlled by initial assumption in (25) and then we use

Gronwall to get absolute bound on these so long as E <∞ in §6.2.

•
∥∥at

a

∥∥
L∞

=
∥∥At
A

∥∥
L∞

is controlled at (327) in §6.3.

•
∥∥∥∂α′ 1

Z,α′

∥∥∥
L2

is controlled at (336) in §6.4.

•
∥∥∥htαhα ∥∥∥L∞ is controlled at (347) in §6.5.

•
∥∥∥ (A1◦h)t

A1◦h

∥∥∥
L∞

is controlled at (350) in §6.6.

• ‖(I + H)Dα′Zt‖L∞ is controlled at (351) in §6.7.

•
∥∥(I −H)Dα′Ztt

∥∥
L∞

is controlled at (354) in §6.8.

•
∥∥∥Dα′

1
Z,α′

∥∥∥
L∞

is controlled at (367) in §6.9. The related term
∥∥∥(Ztt + i)∂α′

1
Z,α′

∥∥∥
L∞

is

also estimated there.

•
∥∥∥∂α′PA Zt

Z,α′

∥∥∥
L∞

is controlled at (372) in §6.10. The related term
∥∥∥PA (Zt∂α′ 1

Z,α′

)∥∥∥
L∞

is

estimated at (371).
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