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ABSTRACT

Model-based Inference for Subgroup Analysis

by

Juan Shen

Chair: Professor Xuming He

Subgroup analysis is an important problem in clinical trials. For example, when a

new treatment is approved for use, there may be concerns that the efficacy is driven

by extreme efficacy in a subgroup only. In recent years, researchers often attempt

to identify a potential subgroup with an enhanced treatment effect. In this disserta-

tion, we assume that there exist two potential subgroups in which the subjects react

differently to the treatment. We propose a logistic-normal mixture model where the

group means as well as the mixing proportions may be covariate-dependent. Testing

the existence of subgroups is critical in the mixture model, but requires nonstandard

statistical tests. We derive a test based on a small number of EM iterations towards

the likelihood, and propose the bootstrap approximation for the critical values of the

test. When subgroups exist, the mixture model helps us identify the factors that are

associated with the group membership. We apply the proposed method to the Aids

Clinical Trials Group 320 study, and demonstrate that the patients with higher values

of baseline CD4 or RNA tend to benefit significantly more by adding a protease in-

hibitor to two nucleoside analogues. We also extend our results to the logistic-normal

mixture models with unequal variances across subgroups.
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CHAPTER I

Introduction

1.1 The Motivation Example and the Goals

In the Aids Clinical Trials Group 320 study (ACTG320) (Hammer et al., 1997),

the efficacy of the treatment of adding a protease inhibitor to two nucleoside analogues

to the human immunodeficiency virus type 1 (HIV–1) infection is tested, where the

control group receives only the two nucleoside. The goal of the treatment is to increase

or to inhibit the decrease of the CD4 cell counts, and the outcome is the change of the

CD4 counts at certain time points. We ask whether there are heterogeneous treatment

effects across different subpopulations. Other variables for each subject include age,

gender, race, weight, Karnof (Karnofsky performance scale: 100 indicates no evidence

of disease, 90 minor symptoms, 80 some symptoms, 70 active work impossible), Ivdrug

(IV drug use history: 1 if never, 2 if currently, 3 if previously), Hemophil status, and

Priorzdv (months of prior zidovudine therapy, alone or in combination).

The traditional way to assess a new treatment compared to a standard one is based

on the summary statistics for the treatment effect over the entire study population.

In the ACTG320 study, from Hammer et al. (1997), for the response of the CD4 cell

count changes at the 24th week, the overall estimated mean difference between the

treatment group and the control group is 81 cells/mm3, which is statistically highly

significant. However, even with the significant mean difference, it is not necessarily
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implied that the new treatment works for all patients. In addition, there is a serious

concern about protease inhibitor resistance mutations. So we expect a high enough

treatment effect within a specified subgroup of patients who receive the new treatment

in the future, to compensate for the costs and risks of using the new treatment.

We hope to estimate the treatment effects in different subgroups and their dif-

ferences simultaneously. Therefore, we propose a mixture model, with the mixing

proportions varying through a logistic model on some covariates X. Suppose that we

have the response Y , and we expect that the mean of Y depends on the covariate Z,

in which the treatment indicator T is included. That is, the density of Y |X,Z is

π(XTγ)f(Y ;ZTβ1, σ) + (1− π(XTγ))f(Y ;ZT (β1 + β2), σ), (1.1)

where π(a) = exp(a)/(1+exp(a)), f(y;µ, σ) is the density of the normal distribution

with mean µ and variance σ2, and (β1, β2, γ, σ) ∈ Rq1 × Rq1 × Rq2 × R are unknown

parameters.

Our goal is to estimate the differential treatment effects in subgroups, that is, the

coefficient of the treatment indicator T , after we test the existence of the subgroups

and reject the null hypothesis : β2 = 0 or π(a) ≡ 0 or 1.

1.2 Literature Review

1.2.1 Subgroup Analysis in Clinical Trials with Pre-specified Subgroups

In clinical trials, researchers have been interested in the effect of a treatment

among a specified subgroup of patients with certain attributes. For example, the

treatment effect may not be significant in the whole population but only significant in

one or more subgroups, which is very important to discover in clinical trials. In other

cases the treatment may result in greater benefits in certain subgroups than others,

as often evaluated in a benefit/risk assessment. Often researchers collect p-values
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about the overall populations and about some subgroups, and use these different p-

values to claim the existence of subgroups (Frasure-Smith et al. (1997) for example).

If the subgroups are not pre-specified, there are usually no attempts to account for

the issue of multiple testing. Therefore, this kind of evaluation is only considered an

exploration without any confirmatory evidence.

In Song and Chi (2007), a two-stage testing procedure is provided, where, in

the first stage the authors use the combination of the test statistics for the overall

effect and the one for the pre-specified subgroup effect to test the null hypothesis

of no overall or subgroup treatment effects. If the null hypothesis is rejected, they

further test the hypothesis of no treatment effect in the whole population and a

subgroup separately. Assume the null hypothesis H01 for no treatment effect for

the overall population, and the null hypothesis H02 for no treatment effect for the

targeted subgroup. Let H012 = H01 ∩ H02. Let Z2 and Z∗2 , independent of Z2, be

the standardized test statistics for no treatment effect in the target subgroup and

the complimentary one relative to the overall population, respectively. For a given α,

pre-specify α1 and α∗1 with α1 < α < α∗1 ≤ 1, from which the type-1 error at level α

is strongly controlled. Their procedure goes as follows.

• Stage 1: test H012 at level α. Let p1 be the p-value of the test statistic Z1 =
√
kZ2 +

√
1− kZ∗2 for some k > 0.

– If p1 ≤ α1, H012 is rejected.

– If p1 > α∗1, H012 is not rejected.

– Otherwise, conduct the subgroup analysis that generates a new p-value p2.

Reject H012 if and only if p2 ≤ α2.

• Stage 2: if H012 is rejected, test H01 and H01 each at level α.

The two-stage test obtains satisfactory power and strongly controls the type-1 error

rate.

3



Altstein et al. (2011) uses a mixture of two log-linear models, depending on

whether the subject is treatable. The authors assume that the survival time in each

group is a log-linear model with a constant population proportion. An EM algorithm

is used to obtain the estimates. Their simulations show that for the simulated data

where the model is well-defined, the results are satisfactory, that is, the coverage of

the treatment effect difference parameter is close to the nominal level for the sample

sizes of 400 or higher. However, the effect of a covariate, which could be different

across subgroups, is not studied. When the subgroups are not distinguishable based

on the available covariates, the model is not well-defined. Their studies do not cover

this possibility.

Researchers have considered the problem from a Bayesian point of view. Un-

der the assumptions of exchangeability among treatment-covariate interactions and

a linear regression model of the response with respect to the treatment, the covari-

ates and their interactions, and with a proper prior distribution, Dixon and Simon

(1991) derives the posterior distribution of the subset-specific treatment effects. The

exchangeability assumption is reasonable for large randomly designed clinical trials.

Only binary covariates are included and there is no consideration for the interactions

between the covariates. An extension to more general models is discussed in Simon

(2002), where a proportional hazard model is used to study the treatment-by-gender

interaction.

In the aforementioned work, the subgroups are pre-specified by natural factors like

gender and certain baseline measurements. However, finding meaningful subgroups

is often a critical part of the work.

1.2.2 Subgroup Identification in Clinical Trials

Bonetti and Gelber (2004) discusses the problem of examining patterns of treat-

ment effects across several overlapping patient subpopulations. According to the value
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of a certain covariate, the authors construct overlapping subgroups and estimate the

treatment effect within each subgroup. Then, they plot the treatment effect against

the covariate to explore the possible interaction. They derive the joint asymptotic

distribution of the treatment effects and use it to construct simultaneous confidence

bands and to test the null hypothesis of no interaction, that is, all the treatment

effects are the same across the overlapping subgroups. The way they divide the data

into overlapping subgroups guarantees reasonably large subgroup sizes.

Song and Pepe (2004) considers the case where the response is binary and there

is a monotone relationship between the treatment effect and a single covariate. The

authors propose a procedure to identify a threshold value for that particular variable.

The treatment is assigned depending on whether the variable is above the threshold

value. Based on this policy, we have an overall mean response rate for each threshold

value. The authors introduce a graphical display, called the selection impact curve,

that shows the overall mean response rate as a function of the threshold value. The

curve is then used to choose the threshold value, and it can also be used to compare the

effects of different covariates on the population response rate. The simple dichotomous

criteria are discussed in the paper instead of individual decision making; arguing that

it is often the case that medical decisions are made by checking whether a variable

exceeds a percentile threshold. However, as pointed out in Cai et al. (2011), this

method is only useful with respect to an overall utility for the whole population but

could not provide a treatment choice scheme at a subject-specific level.

Foster et al. (2011) proposes the “Virtual Twins” method to identify a subgroup

from randomized clinical trial data where the response Y is binary. Let T be the

treatment indicator and X be a vector of covariates. Assume that

logit(P (Y = 1|T,X)) = α + βT + γh(X) + θTω(X),

5



where the main term of interest is ω(X), a large value of which implies an enhanced

treatment effect when θ > 0. The “Virtual Twins” method is to predict the response

probability for T = 0, 1 for each subject by the random forest method. Define Z to

be the difference of the probability for T = 1 and for T = 0. The authors use Z and

the covariates X to build a regression or classification tree to define a subgroup A

with an enhanced treatment effect. For the regression method, the tree is built with

the difference Z as the response directly, and X as the covariates. The subjects with

predicted Z above a threshold are defined to be in the estimated subgroup Â. For

the classification method, whether the difference Z is above a certain value is used

as the response instead of Z. A measure Q(Â) for evaluating the performance of Â

is defined to be the difference of the treatment effect in subgroup Â and the overall

treatment effect. To avoid overfitting, methods such as the cross-validation and the

bootstrap bias correction are suggested. Drawbacks of this method include that it

tends to identify a subgroup when it does not exist and it is not efficient in identifying

the important covariates in defining subgroups when the subgroup does exist.

Cai et al. (2011) develops a parametric scoring system based on multiple covari-

ates. Suppose that the data contain variables (Y, T, Z), where Y is the response, T

is the indicator of treatment (T = 1) or control (T = 0), and Z is a vector of covari-

ates. Let Yt be the response if a subject is assigned to group T = t, t = 0, 1. Let

µt(z) = E(Yt|Z), t = 0, 1, and the treatment difference D(Z) = µ1(Z) − µ0(Z). A

nonparametric smoothing technique is used for estimating µ1 and µ0. The smoothed

average treatment effect difference is used for personalized treatment selection, and

a global confidence interval is provided for the average treatment effect difference.

Zhao et al. (2013) uses the procedure of Cai et al. (2011) but without the smooth-

ing step. Suppose that D̂(Z) is an estimator of D(Z). Let AD(c) be the average treat-

ment difference for the subgroup of subjects, that is, AD(c) = E(Y1 − Y0|D̂(Z) ≥ c).

Note that AD(c) can be transformed to a standardized ÃD(q) = AD(F−1

D̂(Z)
(q)),

6



where q denotes any quantile levels of D(Z). Let ÂD(q) be an estimator of ÃD(q)

for q ∈ (0, 1). Then the authors plot ÂD(q) against q ∈ (0, 1) in a single graph for

different scoring systems from different parametric models for estimating the subject-

specific treatment differences. To avoid over-fitting, the data are divided into testing

data and evaluation data. Some measurements used to compare scoring systems are

constructed as a function of ÃD(·), such as the metric of the area under the curve,

which consistently measures the statistic describing the concordance of the true treat-

ment difference and its empirical one. In the work, D̂(Z) is estimated by regression

for the treatment group and for the control group separately, followed by a substrac-

tion. The regression could be linear or in more general forms. The general procedure

is:

1. Build a candidate set of covariates.

2. For each covariate set Z, compute D̂(Z) in the training data, and then calculate

the estimates of ÃD(q) in the evaluation data.

3. Compare the ÃD(q) curve for each candidate of scoring systems, and choose

one that gives the highest curve of ÃD(q).

4. Based on the chosen scoring system to further determine the subgroup of interest

with the score above a threshold value.

The idea of recursively partitioning has been adopted for subgroup analysis. Su

et al. (2009) introduces an interaction tree (IT) procedure which follows the three ma-

jor steps of CART (classification and regression trees by Breiman et al., 1984): (1)

growing a large initial binary tree by selecting the best split among all the candidate

variables and all the possible splitting values of every candidate variable. The crite-

ria is that the resultant interaction is the most significant by p−value; (2) Pruning

the trees recursively by removing the “weakest link” according to an interaction-

complexity measure; (3) determining the best tree size by some validation method.
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Lipkovich et al. (2011) also use the idea of recursive partitioning to propose a

SIDES method (subgroup identification based on differential effect search). Unlike the

IT method by Su et al. (2009), in each step of SIDES, only the remaining variables are

candidate variables for further splitting, and among all the “better” subpopulations

by finding the best splitting for each candidate covariates, multiples of them are added

to form the “parent subgroup” for the next step. Therefore, the SIDES method refines

the subgroup after each step, instead of considering both child nodes. In the later

paper of Lipkovicha and Dmitrienkoa (2014), a screening step is added after SIDES

to better tackle the case when a large number of irrelevant variables are present.

However, in the procedure reviewed above, there is no joint model connecting

the response and the grouping structure. Therefore, we introduce the logistic-normal

mixture models which allow this connection.

1.2.3 Logistic-Normal Mixture Models

The logistic-normal mixture models have been used in various applications. For

time series data, Wong and Li (2001) proposes the logistic mixture autoregressive

with a exogenous variables model (LMARX), which consists of a mixture of two

Gaussian transfer function models with the mixing proportions changing over time

through a logistic model. Hypothesis testing of the logistic part is carried out by the

standard likelihood ratio test when the model is non-degenerated. However, there is

no obvious way to perform significance tests about the conditional mean parameters

as well as the number of groups.

In Muthén and Asparouhov (2009) and Muthén and Shedden (1999), models re-

lated to logistic mixture models are used for psychological data. In Muthén and

Asparouhov (2009), a multilevel model is introduced, in which the first level is a

logistic-normal mixture model with slopes and intercepts modeled in the second level.

The numerical results show that: “level 1 heterogeneity in the form of latent classes

8



can be mistaken for level 2 heterogeneity in the form of the random effects that are

used in conventional two-level regression analysis.” Therefore, mixture models allow

heterogeneity to be investigated more fully, more correctly attributing different por-

tions of the heterogeneity. In the paper, the authors suggest using the BIC criterion

to select the number of groups. Inference under this model can be made with the

EM algorithm, as long as the model is not degenerate.

1.2.4 Testing the Number of Groups in Mixture Models

It has remained a challenge to avoid over-fitting in mixture models. In Goeffinet

et al. (1992), for a simple two group normal mixture model with a constant mean in

each group and a constant proportion p, the null distribution of the likelihood ratio

test for equal means are given for each fixed proportion parameter. Assume that

g(x;θ1,θ2,Σ) = pϕ(x;θ1,Σ) + (1− p)ϕ(x;θ2,Σ), (1.2)

where ϕ(x;θ,Σ) is the normal density with mean θ and covariance matrix Σ, and

x,θ1,θ2 are q × 1 vectors. The goal is to test θ1 = θ2 for a given p 6= 0 or 1. When

q = 1, the limiting distribution of the likelihood ratio test is a χ2
1 if p 6= 0.5 and Σ

unknown, otherwise it is a mixture of half probability with a point mass at 0 and

half probability of χ2
1. The simulation results suggest that the convergence rate of

the likelihood test statistic is poor, especially when p is close to 0.5. For q = 2 and

known Σ, the limiting distribution is 0.5χ2
0 +M2, where M = M1 +

√
M2

2 +M2
3 , M1,

M2 and M3 are independent standard normal variables. For other cases, no analytical

result is known.

Model (1.2) can be extended to any finite number of groups k. For q = 1, from

Lo et al. (2001), for testing if the sample is from a k0 component or k1 (k1 > k0)

component normal mixture model, the limiting distribution of the likelihood ratio

9



test is a weighted sum of chi-squared random variables with one degree of freedom.

In the work of Naik et al. (2007), the Akaike Information Criterion (AIC) is ex-

tended to this particular problem of deciding the number of components and selecting

variables in the mixture models. Due to the “clustering penalty function”, the mixture

regression criterion (MRC) is shown to yield marked improvement in model selection.

There are three terms in the MRC criterion: the first term measures the lack of fit; the

second term balances the temptation to add more variables by imposing a penalty for

over-fitting; and the third term, the “clustering penalty function”, provides a coun-

tervailing force to over-clustering. To illustrate the third term, suppose the mixing

proportions are equal, then the third term becomes 2n log(K), which increases with

K, the number of mixture components. The asymptotic efficiency of the MRC is

proved, and the criterion performs well in Monte Carlo studies.

Motivated by the Lasso properties (Tibshirani , 1996), Luo et al. (2008) incorpo-

rates both mixture and regression penalties to obtain group and covarite selections

(MR-Lasso). The penalty on the mixture is of the form

∑
|βj − βk|

where βj the coefficient for group j. A modified EM algorithm is given to obtain the

MR-Lasso estimates.

Chen (1995) finds the optimal convergence rate of the densities in finite mixture

normal models to be n−1/2 when the exact number of components is known, but only

n−1/4 when unknown. Under the strong identifiability condition, the rate is shown to

be attained by some minimum distance estimators.

Then in Chen and Chen (2003), for the testing problem of p = 0 or θ1 = θ2 in

(1.2) with the parameters bounded and q = 1, a complicated limiting distribution

of the likelihood ratio statistic is given. In Chen et al. (2001), a modified likelihood

10



ratio test is given for this problem in which a penalization is added to restrict p to

be bounded away from 0 and 1.

Zhu and Zhang (2004, 2006) consider a two group mixture regression model, in

which the distribution within each subgroup is any distribution whose Fisher infor-

mation is positive definite, and the difference of the two groups lies in the difference

in the parameter which measures the strength of association that is contributed by

some covariates. A resampling method is proposed for the test due to the complicated

form of the limiting distribution.

In Chen and Li (2009), an EM test is given for the same problem as in Chen

and Chen (2003) but with a much simpler limiting distribution, and the bounded

parameter space assumption is not required. For finite choices of p, we repeat the

EM algorithm for finite steps to calculate the modified likelihood ratio test statistics.

The EM test uses the maximum of those values. A generalization to more general

models is in Li and Chen (2010).

In the literature, researchers have considered various forms of mixture models, but

have not addressed the testing problems for mixture models with varying proportions

as well as covariates-dependent means. But testing the existence of subgroups is criti-

cal in the mixture model. We derive a test based on a small number of EM iterations

towards the likelihood using the same idea in Chen and Li (2009), and propose the

bootstrap approximation for the critical values of the test. When subgroups exist,

the mixture model helps us identify the factors that are associated with the group

membership.

1.2.5 Mixture of Experts

Model (1.1) can be viewed as a special case of the “mixture of experts” models

(Jordan and Jacobs (1994), Yuksel et al. (2012)) in computer science, where the

“gating function” is logistic and the “expert function” is Gaussian. The identifiability
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and the statistical properties of the parameter estimates have been studied by Jiang

and Tanner (1999a,c,b) among others. Bayesian methods for selecting the number

of experts have been suggested by Peng et al. (1996) and Ueda and Ghahramani

(2002), whereas Fritsch et al. (1997) considered a grow-and-prune strategy of the

model for the same purpose. The existing work on the mixture-of-experts models

does not cover the results of the present paper for two main reasons. First, our model

aims to find predictive variables X for the subgroups that show differential treatment

effects in the response Y , so each parameter in our model has direct interpretations. In

contrast, the mixture-of-experts models aim at the prediction of Y with no distinction

between X and Z. Second, and more importantly, we consider the hypothesis testing

problem with a specific null hypothesis, that is, no predictable subgroups exist for

differential treatment effects. As far as we know, no such confirmatory statistical

tests are available in literature.
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CHAPTER II

Logistic–Normal Two-Group Mixture Model

We start from a simple case where the response Y is normally distributed with

a covariate Z in each subgroup, where we have two well-defined subgroups, and the

group proportion depends on a covariateX through a logistic model. The expectation

for this model is that, for a clinical trial, people may react differently to the same

treatment depending on the covariates, such as the baseline of some attributes. One

interesting case is that, one subgroup shows a desirable treatment effect, while in

the other subgroup, the treatment effect is not significant. Our tasks in this chapter

are to build a statistical model, identify the covariates that are associated with the

subgroup membership, and conduct statistical inferences about the treatment effect

in each subgroup.

2.1 Statistical Model

Now we specify our model to be the following, for i = 1, . . . , n,

Yi = ZT
i (β1 + β2δi) + εi,

P (δi = 1|X i,Zi) = π(XT
i γ) ≡ exp(XT

i γ)/(1 + exp(XT
i γ)),

P (δi = 0|X i,Zi) = 1− P (δi = 1|X i),

(2.1)

13



where n is the sample size, Yi ∈ R is the outcome, δi ∈ {0, 1} is the subgroup

indicator, Zi ∈ Rq1 is the covariate associated with the subgroup mean, X i ∈ Rq2 is

the covariate associated with the group membership, β1 ∈ Rq1 ,β2 ∈ Rq1 ,γ ∈ Rq2 are

the corresponding coefficients, εi ∼ N(0, σ2) for some parameter σ. The first elements

of X i and Zi are 1, and the second element of Zi is the treatment indicator. We

can have overlapping variables in the random vectors of X i and Zi. The overall

parameters are ηT = (βT1 , σ,β
T
2 ,γ

T ). Write θT = (βT1 , σ,β
T
2 ). We observe the

data {W i = (Yi,Z
T
i ,X

T
i ), i = 1, . . . n}, and δi’s are viewed as latent variables. The

observations W i’s are independent.

2.2 Identifiability

For mixture models, the parameters are not identifiable in the usual sense. As

used in Teicher (1961, 1963), in Model (2.1), we define the parameters ((θ1)T , (γ1)T )

and ((θ2)T , (γ2)T ), where (θ1)T = ((β1
1)T , σ1, (β1

2)T ) and (θ2)T = ((β2
1)T , σ2, (β2

2)T ),

to be in an equivalent class, if and only if β1
1 = β2

1 + β2
2,β

1
2 = −β2

2, σ
1 = σ2, and

γ1 = −γ2. Then, we define the identifiability of the parameters in Model (2.1) if

equal density functions implies that the parameters are from the same equivalent

class. In this sense, by Proposition 1 in Teicher (1963), the parameters in Model

(2.1) are identifiable when the random vectors X and Z are linearly independent.

2.3 EM Algorithm

Next we derive the EM algorithm (Dempster et al., 1977) to get the estimates of

the parameters.

Note that the complete data (W i, δi) has density

f(W i, δi;η) = f(Yi, δi|Zi,X i;η)f(X i,Zi) = f(Yi|δi,Zi;θ)f(δi|X i;γ)f(X i,Zi).
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In one iteration step, suppose that currently we have the parameter ηT = (η(k))T =

((θ(k))T , (γ(k))T ), then at the (k + 1)th iteration, we have the following derivations.

In the E step, let

a
(k)
i = P (δi = 1|Yi,Zi,X i; η

(k))

= f(Yi|δi = 1,Zi; θ
(k))P (δi = 1|X i;γ

(k))/(f(Yi|δi = 1,Zi;θ
(k))P (δi = 1|X i;γ

(k))

+f(Yi|δi = 0,Zi;θ
(k))P (δi = 0|X i;γ

(k))),

(2.2)

b
(k)
i = 1− a(k)

i , a(k) = (a
(k)
1 , . . . , a

(k)
n ), and b(k) = (b

(k)
1 , . . . , b

(k)
n ).

Then we have that

Q(η(k+1)|η(k)) = Eδi|W i;η(k)

∑n
i=1 log f(δi, Yi|Zi,X i;η

(k+1))

= Eδi|W i;η(k)

∑n
i=1(log f(Yi|δi,Zi;θ

(k+1)) + logP (δi|X i;γ
(k+1)))

= Eδi|W i;η(k)

∑n
i=1 log f(Yi|δi,Zi;θ

(k+1)) + Eδi|W i;η(k)
∑n

i=1 logP (δi|X i;γ
(k+1))

= Q(θ(k+1)|η(k)) +Q(γ(k+1)|η(k)),

(2.3)

where

Q(θ(k+1)|η(k)) =
∑n

i=1 Eδi|W i;η(k) log f(Yi|δi;θ(k+1))

=
∑n

i=1[a
(k)
i log f(Yi|δi = 1,Zi;θ

(k+1)) + b
(k)
i log f(Yi|δi = 0,Zi;θ

(k+1))]

= (−n/2) log(2πσ2)−
∑n

i=1 ai(Yi −Z
T
i (β1 + β2))2/(2σ2)

−
∑n

i=1 bi(Yi −Z
T
i β1)2/(2σ2)

(2.4)

and

Q(γ(k+1)|η(k)) =
∑
i

[a
(k)
i logP (δi = 1|X i;γ

(k+1)) + b
(k)
i logP (δi = 0|X i;γ

(k+1))].

(2.5)

Therefore in the (k+1)th step, we obtain the estimates of θ(k+1) fromQ(θ(k+1)|η(k))

by the weighted least squares, and the estimates of γ(k+1) by maximizingQ(γ(k+1)|η(k)),
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which is a weighted logistic regression problem.

Remark II.1. When the model does have two distinguishable groups, the EM algo-

rithm tends to converge quickly. However, there is no guarantee that the solution is

the global maximizer. Therefore, we need to carefully choose different starting values

to locate a global maximizer in practice.

2.4 Covariance Matrix

In the EM algorithm, the standard error of the estimators can be calculated in

the following way (Louis , 1982). In the last step of the EM algorithm, suppose that

we have η̂T = (θ̂
T
, γ̂T ) = (β̂

T

1 , σ̂, β̂
T

2 , γ̂
T ). For the i-th observation, let Bi and Si

be the individual negative second derivative and first derivative of the complete data

log-likelihood. The inverse of the covariance matrix, the observed Fisher information

matrix of the parameter estimator is

IY =
∑n

i=1 E(δi|W i;η̂)Bi(Yi, δi; η̂)−
∑n

i=1 E(δi|W i;η̂)Si(Yi, δi; η̂)Si(Yi, δi|Zi; η̂)T

−
∑n

i 6=j(E(δi|W i;η̂)Si)(E(δj |W i;η̂)Sj).

(2.6)

In our setting, let εi = Yi − ZT
i (β1 + β2δi). Then the individual complete log-

likelihood is

l(Yi, δi|X i,Zi) = − log σ − ε2
i

2σ2
+ δiX

T
i γ − log(1 + exp(XT

i γ)). (2.7)

Then

Si = ∂l
∂ηT = ( 1

σ2 εiZ
T
i ,− 1

σ
+ 1

σ3 ε
2
i ,

1
σ2 εiδiZ

T
i ,

δiX
T
i − π(XT

i γ)XT
i ),

(2.8)
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and Bi = diag(Bi11,Bi22), where Bi11 is

1

σ2


ZiZ

T
i

2εiZi

σ
δiZiZ

T
i

2εiZi

σ
− 1
σ2 + 3ε2

σ4
2εiZi

σ

δiZiZ
T
i

2εiZi

σ
δiZiZ

T
i

 , (2.9)

and

Bi22 = π(XT
i γ)(1− π(XT

i γ))X iX
T
i . (2.10)

The covariance matrix of the estimators obtained from Section 2.3 can then be

computed via (2.6) by substituting with the estimates from the last step in the EM

algorithm.

From the asymptotic covariance matrix, we could easily construct confidence in-

tervals for the parameters of interest. The Wald test is feasible for the parameters

related to the treatment effects, if the two groups are distinguishable.

2.5 Simulations

In Table 2.1 and 2.2 we summarize some simulation results. Data are generated

from

Yi = µ1 + ν1Ti + α1Zi + (µ2 + ν2Ti + α2Zi)δi + εi,

P (δi = 1|Xi) = π(γ0 + γ1Xi),

for i = 1, . . . , n, where εi ∼ N(0, σ2), independent of Xi, Zi. The observations are

independent. In Case 1, Xi, Zi are independent, Xi ∼ N(1, 1) and Zi ∼ N(1, 1). In

Case 2, Xi = Zi ∼ N(1, 1). In the tables, we have two sets of parameters and sample

size n = 100. For each case, we collect the means and sample standard deviations of

the estimates in 1000 repeated experiments. From the results we observe that as the
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sample size increases, the estimates become more accurate. Whether Xi and Zi are

independent or not does not play an important role. In the simulation, we add the

constriction that ν2 is positive to guarantee the uniqueness of the parameters. We

obtain good estimates of the parameters in both Case 1 and case 2.

Table 2.1: The means and the sample standard deviations of the estimates in 1000
repeated experiments under Case 1 that Xi and Zi are independent. n =
100

Parameters True est sd True est sd
µ1 2.0 2.00 0.14 2.0 2.00 0.14
ν1 0.0 0.00 0.15 0.0 0.00 0.15
α1 2.0 2.00 0.08 2.0 2.00 0.08
µ2 3.0 3.00 0.19 3.0 2.99 0.19
ν2 3.0 3.00 0.22 8.0 8.00 0.22
α2 5.0 5.00 0.11 5.0 5.00 0.11
γ0 1.0 1.02 0.37 1.0 1.02 0.37
γ1 -1.0 -1.02 0.28 -1.0 -1.02 0.28
σ 0.5 0.48 0.04 0.5 0.48 0.04

Table 2.2: The means and the sample standard deviations of the estimates in 1000
repeated experiments under Case 2 that Xi = Zi.

Parameters True est sd True est sd
µ1 2.0 2.00 0.16 2.0 2.00 0.16
ν1 0.0 0.00 0.14 0.0 0.00 0.14
α1 2.0 2.00 0.08 2.0 2.00 0.08
µ2 3.0 3.01 0.19 3.0 3.01 0.19
ν2 3.0 3.00 0.20 8.0 8.00 0.20
α2 5.0 5.00 0.11 5.0 5.00 0.11
γ0 1.0 1.01 0.37 1.0 1.01 0.36
γ1 -1.0 -1.04 0.29 -1.0 -1.04 0.28
σ 0.5 0.49 0.04 0.5 0.49 0.04
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CHAPTER III

Hypothesis Testing for the Existence of Subgroups

3.1 Maximum Likelihood Ratio Tests for the Existence of

Subgroups

3.1.1 Maximum Likelihood Ratio Tests

Before we evaluate the likelihood in detail, we summarize a general result of the

likelihood ratio test as follows with a univariate parameter θ and a random variable

Wi. The results can be extended to high dimensional θ.

For each i, let L(Wi; θ) be the individual likelihood, and l(Wi; θ), l̇(Wi; θ), l̈(Wi; θ)

be the log-likelihood and its first and second derivatives with respect to θ, respec-

tively. In addition, let L(θ) =
∑n

i=1 L(Wi; θ), and similarly let l(θ), l̇(θ) and l̈(θ) be

the summation of l(Wi; θ), l̇(Wi; θ) and l̈(Wi; θ), respectively. Suppose θ0 is the true

parameter value, θ̂n is the maximum likelihood estimator, which satisfies l̇(θ̂n)=0,

and we are testing the null hypothesis of θ = θ0. Under the regularity conditions, we

have:

0 =
n∑
i=1

l̇(Wi; θ̂n) =
n∑
i=1

l̇(Wi; θ0) +
n∑
i=1

l̈(Wi; θ
∗)(θ̂n − θ0),
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for some θ∗ such that |θ∗ − θ0| ≤ |θ̂n − θ0|. Equivalently, we have

1√
n
l̇(θ0) =

√
n(θ̂n − θ0){I(θ0)− [ 1

n

∑n
i=1 l̈(Wi; θ

∗) + I(θ∗)] + [I(θ∗)− I(θ0)]}.

(3.1)

Since θ̂n−θ0 = op(1), 1
n

∑n
i=1 l̈(Wi, θ

∗)+I(θ∗) = op(1), I(θ) is continuous and positive

definite at θ0, then

1√
n
l̇(θ0) =

√
n(θ̂n − θ0)(I(θ0) + op(1)). (3.2)

Because 1√
n
l̇(θ0) is Op(1) by the central limit theorem, and I(θ0) is positive definite,

then
√
n(θ̂n − θ0) = Op(1). Therefore, we have

√
n(θ̂n − θ0) =

1√
n
I−1(θ0)l̇(θ0) + op(1). (3.3)

Then expansion of the log-likelihood gives that for some θ∗ such that ||θ̂n − θ0|| ≤

||θ∗ − θ0||, we have

l(θ̂n)− l(θ0) = l̇(θ0)T (θ̂n − θ0) + 1
2
(θ̂n − θ0)T l̈(θ∗)(θ̂n − θ0)

= l̇(θ0)T (θ̂n − θ0) + 1
2
(
√
n(θ̂n − θ0))T (−I(θ0) + (−I(θ∗) + I(θ0))

+(l̈(θ∗)/n+ I(θ∗)))(
√
n(θ̂n − θ0))

= l̇(θ0)T (θ̂n − θ0)− 1
2
(
√
n(θ̂n − θ0))T I(θ0)(

√
n(θ̂n − θ0)) + op(1).

(3.4)

From Equation (3.3) and (3.4), we get

2(l(θ̂n)− l(θ0)) =
√
n(θ̂n − θ0)T I(θ0)

√
n(θ̂n − θ0) + op(1)

= ( 1√
n
l̇(θ0))T I−1(θ0)( 1√

n
l̇(θ0)) + op(1).

(3.5)
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Recall that our model is

f(Y,Z,X) = f(Y |X,Z)g(X,Z)

= (π(XTγ)ϕ(Y −ZT (β1 + β2), σ2) + (1− π(XTγ))ϕ(Y −ZTβ1, σ
2))

g(X,Z),

where ϕ(µ, σ) is the density of a normal variable with mean µ and variance σ2.

If we fix the value of γT = (γ−X ,γ
T
X), the problem of testing β2 = 0 is a regular one

when γX is nonzero, which satisfies the regularity conditions, including the condition

that the third derivatives are integrable under the null hypothesis. The parameters

are identifiable. Assume that the true parameter θT0 = (βT0 , σ0, 0). Under the null

hypothesis that β2 = 0, we write the MLE as θ̂0, and under the alternative, the MLE

is θ̂n.

By direct calculation, the score function

l̇γ(Y,Z,X; θ0) =
(

1
σ2
0
(Y −ZTβ0)ZT ,− 1

σ0
+ 1

σ2
0
(Y −ZTβ0)2,

1
σ2
0
π(XTγ)(Y −ZTβ0)ZT

)T
,

(3.6)

and the Fisher information matrix

Iγ(θ0) =
1

σ2
0


A 0 B(γ)

0 2 0

B(γ) 0 C(γ)

 , (3.7)

where A = E(ZZT ),B(γ) = E(π(XTγ)ZZT ), C(γ) = E(π(XTγ)2ZZT ).

Partition Iγ(θ0) to get Iγ11, Iγ12, Iγ21, Iγ22 and Iγ22. In Particular,

Iγ11(θ0) =
1

σ2
0

 A 0

0 2

 .
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Let

M 1(γ) =
( n∑
i=1

(Yi −ZT
i β0)ZT

i√
nσ2

0

,
n∑
i=1

1√
n

(− 1

σ0

+
(Yi −ZT

i β0)2

σ3
0

)
)T
, (3.8)

and

M 2(γ) =
1√
nσ2

0

n∑
i=1

π(XTγ)(Yi −ZT
i β0)ZT

i . (3.9)

Then,

1√
n
l̇γ(θ0) = (M 1(γ),M 2(γ)).

For the reduced model where β2 = 0, we have similar results. Direct calculations give

that the information matrix for the reduced model is Iγ11(θ0), the top left submatrix

of Iγ(θ0).

Now for the likelihood ratio statistic of testing β2 = 0 with a given γ,

T (γ) ≡ 2(lγ(θ̂n)− lγ(θ0))− 2(lγ(θ̂0)− lγ(θ0)) = T1(γ)− T2(γ),

where

T1(γ) = 2(lγ(θ̂n)− lγ(θ0))

= (M 1(γ),M 2(γ))TIγ(θ0)−1(θ0)(M 1(γ),M 2(γ)) + op(1),

T2(γ) = 2(lγ(θ̂0)− lγ(θ0))

= M 1(γ)TIγ11(θ0)−1M 1(γ) + op(1).

Then, by observing that

 I11 I12

I21 I22


−1

=

 I−1
11 + I−1

11 I12I
−1
22·1I21I

−1
11 −I−1

11 I12I
−1
22·1

−I−1
22·1I21I

−1
11 I−1

22·1

 ,
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where Iγ22·1 = Iγ22 − Iγ21I
−1
γ11Iγ12 = (C(γ)−B(γ)A−1B(γ))/σ2, we have

T (γ) = T1(γ)− T2(γ)

= (M 2(γ)− Iγ21I
−1
γ11M 1(γ))TI−1

γ22·1(M 2(γ)− Iγ21I
−1
γ11M 1(γ)) + op(1),

and let

h(γ) = I
−1/2
γ22·1(M 2(γ)− Iγ21I

−1
γ11M 1(γ))

= 1√
nσ2

0

∑n
i=1 I

−1/2
γ22·1{π(XTγ)Iq2 −B(γ)A−1}(Yi −ZT

i β0)Zi

= 1√
n

∑n
i=1ψ(Yi,Zi,X i; γ),

where

ψ(Yi,Zi,X i;γ) =
1

σ2
0

I
−1/2
γ22·1{π(XT

i γ)Iq2 −B(γ)A−1}(Yi −ZT
i β0)Zi, (3.10)

then the test statistic T (γ) = ||h(γ)||2. Note that Eψ(Yi,Zi,X i;γ) = 0.

Therefore, if we have finitely many γ ′s from Γ = {γ1, . . . ,γK} with all nonzero

X coefficients, by the central limit theorem, (h(γ1), . . . ,h(γK)) converges to some

random variable (H1(Γ), · · · ,HK(Γ)), which depends on the pre-specified set Γ.

Our test statistic max{||h(γ1)||2, . . . , ||h(γK)||2}, converges to the random variable

max{||H1(Γ)||2, · · · , ||HK(Γ)||2}, which depends on the chosen set of γ.

We summarize the above derivations in the following theorem.

Theorem III.1. For Model 2.1, if we choose γ1, . . . ,γK whose X coefficients are

nonzero, K ≥ 1, and for each γ, calculate the likelihood ratio test statistic T (γi) for

the null hypothesis of β2 = 0, i = 1, · · · , K, then the maximum variable max1≤i≤K T (γi)

converges to a limiting distribution.

Remark III.2. In theory, for K = 1, the limiting distribution should be the standard

chi-square distribution. However, since for q1 = q2 = 1 with no covariates, the

convergence is very slow for a given constant proportion (Goeffinet et al., 1992), it
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is not unexpected that here with the covariates, the convergence rate is very poor in

the simulations. Therefore, to have a better finite sample performance, we prefer not

to use the limiting distribution. The bootstrap methods of determining the critical

values are recommended.

3.2 EM Tests for the Existence of Subgroups

In the previous section, we considered tests for the existence of a subgroup by

choosing a set of γ’s, computing the MLE for θT = (βT1 , σ,β
T
2 ) given each γ, and

then taking the maximum of the likelihood ratio test statistics for the hypothesis

β2 = 0 for each fixed γ. To increase power of the tests, we construct an EM test in

which the EM algorithm is used to update γ. If the underlying parameters satisfies

the alternative hypothesis, the EM algorithm tends to push γ towards the true one,

and hence increase the power of the test.

3.2.1 EM Test Process

To construct the EM test, we first choose a compact set

Γ ≡ {γ = (γ−x,γ
T
x )T : c1 < ||γx|| < c2, ||γ−x|| < c3}, (3.11)

where c1, c2, c3 > 0 are some constants. We choose a set of γj ∈ Γ, j = 1, . . . , J , for

a positive integer J and another positive integer K. Here we use two types of indices

for γ: γ−x ∈ R and γx ∈ Rq2−1 represent the intercept and the slope for one γ; while

γj represents the whole vector in Rq2 , and different j indicates different vectors. The

parameter γ ∈ Γ will be constrained in the EM process. For each j, let γ
(0)
j = γj.

We use the EM algorithm to compute

θ(0) = argmax
θ

n∑
i=1

logP (Yi,X i,Zi;θ,γ
(0)). (3.12)
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At the kth step, 1 ≤ k ≤ K − 1, we use the E-step and M -step as derived in

Section 2.3. In more details, suppose that currently η = η(k), then in the E step, let

a
(k)
i = P (δi|Yi,Zi,X i;η

(k))

= P (Yi|δi = 1,Zi;θ
(k))P (δi = 1|X i;γ

(k))/(P (Yi|δi = 1,Zi;θ
(k))P (δi = 1|X i;γ

(k))

+P (Yi|δi = 0,Zi;θ
(k))P (δi = 0|X i;γ

(k))),

(3.13)

b
(k)
i = 1− a(k)

i , for i = 1, . . . , n, a(k) = (a
(k)
1 , . . . , a

(k)
n ), and b(k) = (b

(k)
1 , . . . , b

(k)
n ).

Then in the (k + 1)th step, compute

θ(k+1) = argmax
θ

(
n∑
i=1

[a
(k)
i logP (Yi|δi = 1,Zi;θ)+b

(k)
i logP (Yi|δi = 0,Zi;θ)]), (3.14)

γ
(k+1)
temp = argmax

γ
(
∑
i

[a
(k)
i logP (δi = 1|X i;γ) + b

(k)
i logP (δi = 0|X i;γ)]), (3.15)

and let

γ(k+1) =

 γ
(k+1)
temp , if γ

(k+1)
temp ∈ Γ.

γ(k), o.w..
(3.16)

Iterate the above steps (3.13)-(3.16) until k = K − 1. In the last step, compute

γ(K) by (3.15) and (3.16), and let

θ(K) = argmax
θ

n∑
i=1

logP (Yi,X i,Zi;θ,γ
(K)). (3.17)

Let (η(K))T = ((θ(K))T , (γ(K))T ).

Let θ̂
T

0 be the MLE of the parameter θT = (βT1 , σ,β
T
2 ) under the null hypothesis

β2 = 0 with any fixed γ value γ0. That is,

θ̂0 = argmax
θ

l(θ,γ0), subject to β2 = 0.
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Then for each j, define the likelihood ratio test statistic

EM
(K)
j = 2(l(η(K))− l(θ̂0,γ0)).

The EM test statistic is then

EM (K) = max{EM (K)
j : j = 1, . . . , J}. (3.18)

The critical values are to be determined.

3.2.2 Convergence of the EM Test Statistic

Now we discuss the convergence properties of the EM test statistic EM (K) in

Section 3.2.1.

Assumption 1: The random vectors X and Z are linearly independent, respec-

tively, that is, E[ZZT ] and E[XXT ] are positive definite.

Under the null hypothesis that there is no subgroup, by the properties of M

estimators (van der Vaart , 1998), we have θ̂
(j)

= θ0 + op(1) for j = 1, . . . , K. Then,

we only need to consider parameter θ close to θ0. For some positive constants c4, c5, c6

and c7, let Θ ≡ {θ : |β1 − β0| ≤ c4, |β2| ≤ c5, c6 ≥ σ ≥ c7 > 0}, such that with

probability tending to 1, θ̂
(j)

in the process of the EM tests lie in this set Θ.

With these preparations, we have our main theory in the following:

Theorem III.3. Under the null hypothesis and Assumptions 1 , for any finite integers

J > 0 and K ≥ 0, the EM test statistic EM (K) converges to a fixed distribution as

n→∞.

To prove Theorem III.3, we state three lemmas first. Proofs of the lemmas are in

the appendix.
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Lemma III.4. Under Assumption 1, there exist some constants 0 < c8, c9 <∞, such

that for γ ∈ Θ,

0 < c8 ≤ inf
γ∈Γ

λmin(Iγ(θ0)) ≤ sup
γ∈Γ

λmax(Iγ(θ0)) ≤ c9 <∞, (3.19)

where Iγ(θ0) is defined in Equation (3.7).

Lemma III.5. Uniformly in γ ∈ Γ, we have

2(lγ(θ̂n)− lγ(θ̂0)) = || 1√
n

n∑
i=1

ψ(Yi,Zi,X i;γ)||2 + op(1), (3.20)

where θ̂n is the MLE for θ given γ, and ψ(Yi,Zi,X i;γ) = I
−1/2
γ22·1{π(XT

i γ)Iq2 −

B(γ)A−1}(Yi −ZT
i β0)Zi/σ

2
0.

Lemma III.6. Under the null hypothesis that there is no subgroup, we have γ
(K)
j =

γ
(0)
j + op(1), where γ

(K)
j is obtained in the EM iterations.

With these lemmas, we are ready to prove Theorem III.3. In the proofs, we will

follow the notations in the empirical process theory (van der Vaart , 1998; van der

Vaart and Wellner , 2000) that Pnf =
∑n

i=1 f(Yi,Zi,X i)/n, Pf = Ef(y, z,x), and

Gnf =
√
n(Pn − P)f . Given two functions l and u, the brackets [l, u] is the set

of functions f such that l ≤ f ≤ u. An ε-brackets in Lr(P ) is a bracket [l, u]

such that P (u − l)r < εr. The bracketing number N[] (ε,F , Lr(P )) is the minimum

number of ε-brackets that cover F , and the bracketing integral J[] (δ,F , L2(P )) =∫ δ
0

√
logN[] (ε,F , L2(P ))dε.

Proof. From Lemma III.5, we have that uniformly in γ ∈ Γ,

2(lγ(θ̂n)− lγ(θ̂0)) = || 1√
n

n∑
i=1

ψ(Yi,Zi,X i;γ)||2 + op(1).
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Let

h(γ) =
1√
n

n∑
i=1

ψ(Yi,Zi,X i;γ).

Recall that ψ(Y,Z,X;γ) = I
−1/2
γ22·1{π(XTγ)Iq2−B(γ)A−1}(Y −ZTβ0)Z/σ2

0, where

A = E(ZZT ),B(γ) = E(π(XTγ)ZZT ), C(γ) = Eπ(XTγ)2ZZT ), and Iγ22·1 =

(C(γ)−B(γ)A−1B(γ))/σ2
0. Direct calculations give

σ2
0ψ
′(γ) =

dI
−1/2
γ22·1
dγ

π(XTγ)(Y −ZTβ0)ZT − dI
−1/2
γ22·1
dγ

B(γ)A−1(Y −ZTβ0)ZT

+I
−1/2
γ22·1(π(XTγ)− π(XTγ)2)X(Y −ZTβ0)ZT

−I−1/2
γ22·1(B(γ)−C(γ))A−1X(Y −ZTβ0)ZT .

From above Eψ′(Yi,Zi,X i;γ) = 0, then by central limit theorem ||h′(γ)|| = Op(1)

for each γ ∈ Γ. Now we need to show that ||h′(γ)|| = Op(1) holds uniformly in γ ∈ Γ.

In the proof of Lemma III.5, we show that F = {π(XTγ)(Y−ZTβ0)ZT )T : γ ∈ Γ}

is P-Donsker component-wisely. Slight modification gives that F2 = {(π(XTγ) −

π(XTγ)2)X(Y −ZTβ0)ZT : γ ∈ Γ} is P-Donsker component-wisely under Assump-

tion 1. Along with the zero expectation, we have Gnπ(XTγ)(Y −ZTβ0)ZT = Op(1)

and Gn(π(XTγ)− π(XTγ)2)X(Y −ZTβ0)ZT = Op(1) uniformly in γ ∈ Γ.

Then since

h′(γ) =
dI
−1/2
γ22·1
dγ

Gn(π(XTγ)(Y −ZTβ0)ZT )− dI
−1/2
γ22·1
dγ

B(γ)A−1Gn((Y −ZTβ0)ZT )

+I
−1/2
γ22·1Gn(π(XTγ)X(Y −ZTβ0)ZT )− I−1/2

γ22·1(B(γ)−C(γ))A−1

Gn(X(Y −ZTβ0)ZT ),

and E(h′(γ)) = 0 since E(Y −ZTβ0|X,Z) = 0. In addition, for γ ∈ Γ, the determin-

istic functions dI
−1/2
γ22·1/dγ, I

−1/2
γ22·1, and I

−1/2
γ22·1(B(γ)−C(γ))A−1 are bounded. Finally

we will have h′(γ) = Op(1) uniformly in γ ∈ Γ.
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Then by expansion of h(γ), we get

||h(γKj )− h(γj)|| = Op(||γKj − γj||) = Op(||γKj − γ
(0)
j ||) = op(1).

Therefore,

EMK
j = ||h(γ

(K)
j )||2 + op(1) = ||h(γj)||2 + op(1)

= || 1√
n

∑n
i=1ψ(Yi,Zi,X i;γj)||2 + op(1),

for j = 1, . . . , J . Hence, the EM test statistic max{EMK
j , j = 1, . . . , J} converges to

a limiting distribution.

3.2.3 Implementation Issues

Although we have characterized the limiting distribution of the proposed EM

test under the null hypothesis, we do not suggest using the asymptotic distribution

to carry out the test. Even in the simplest case of q1 = q2 = 1 with no covariates, the

convergence to the chi-square distribution is known to be very slow (Goeffinet et al.,

1992). When covariates are present, we certainly do not expect the approximation

to be good. To conduct the test based on EM (K), we suggest using the bootstrap

method. The asymptotic representations given in Section 3.2 imply the validity of

the bootstrap method for computing the p values of the proposed test.

For the selection of J and the specific values for Γ, we recommend a small number

of γj values. If γ is q2-dimensional and q2 is small, we recommend using J = 2q2−1,

with one positive value and one negative value in each component of γX , so that the

points of Γ cover all quadrants. The exact values of γj are not important. Under

this choice, a small value of K = 3 generally works well. If q2 is large, we may choose

a small number of γj randomly. Our empirical experience shows that higher values

of J do not bring sufficient gain in power. The same can be said about the value K.

The ability to use small values of J and K makes the proposed EM test practically
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useful.

3.2.4 Local Power

Although the power function of the proposed EM test appears intractable, we

obtain in this section the local power of the test with one starting value of γ (J = 1).

More specifically, we consider, for some h ∈ Rq1 , the parameters under the null hy-

pothesis and the local alternative as η0 = (β0, σ0,0,γ0)T and ηa = (β0, σ0, n
−1/2hT ,γ0)T ,

respectively. In other words, we consider the hypothesis testing problem of

H0 : β2 = 0, v.s.

Ha : β2 = n−1/2h.
(3.21)

Theorem III.7. Under Ha, the test statistic TK(γ) := EM (K), with any value γ ∈ Γ̃

and for any positive integer K, converges to a noncentral chi-square distribution with

the degree of freedom q1 and the noncentrality parameter

λ(γ) = σ−2
0 ||I

−1/2
γ22·1(E(π(XTγ)π(XTγ0)ZZT )−B(γ)A−1B(γ0))h||2. (3.22)

In particular, when γ = γ0, we have

λ(γ0) = σ−2
0 h

T (C(γ0)−B(γ0)A−1B(γ0))h. (3.23)

Therefore, the power of the test at Ha is P (χ2
q1;λ > χ2

q1
(1− α)) where χ2

q1;λ is the

noncentral chi-square variable with the degree of freedom q1 and the noncentrality

parameter λ, and χ2
q1

(1−α) is the upper αth quantile of the χ2
q1

. When the EM test is

carried out with J ≥ 2 values of γ, the local power no longer has a simple expression,

but it relates to the maximum of J correlated noncentral chi-square random variables

whose noncentrality parameters are in the form of (3.22).

Remark: we can show that the noncentral parameter λ from γ0 is larger than
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other γ ∈ Γ̃.

Note that if a matrix  A1 A2

AT2 A4

 (3.24)

is positive definite, then we also have A4 − AT2A−1
1 A2 > 0 by taking a submatrix of

the original matrix.

After direct derivation, showing λ(γ0) ≥ λ(γ) is equivalent to show that the

matrix

C(γ0)−B(γ0)A
−1B(γ0)− (E(π(XTγ)π(XTγ0)ZZ

T )−B(γ)A−1B(γ0))
T

(C(γ)−B(γ)A−1B(γ))−1(E(π(XTγ)π(XTγ0)ZZ
T )−B(γ)A−1B(γ0))

(3.25)

is non-negative definite, which suffices to show that the matrix

 C(γ)−B(γ)A−1B(γ) E(π(XTγ)π(XTγ0)ZZ
T )−B(γ)A−1B(γ0)

E(π(XTγ)π(XTγ0)ZZ
T )−B(γ0)A

−1B(γ) C(γ0)−B(γ0)A
−1B(γ0)


(3.26)

is non-negative definite.

For any a1,a2 ∈ Rq1 , we have that

(aT1 ,a
T
2 ) C(γ)−B(γ)A−1B(γ) E(π(XTγ)π(XTγ0)ZZ

T )−B(γ)A−1B(γ0)

E(π(XTγ)π(XTγ0)ZZ
T )−B(γ0)A

−1B(γ) C(γ0)−B(γ0)A
−1B(γ0)


(aT1 ,a

T
2 )
T

= E(π(XTγ)aT1Z + π(XTγ0)a
T
2Z)2

−{E[(π(XTγ)aT1Z + π(XTγ0)a
T
2Z)ZT ]}A−1{E[Z(π(XTγ)aT1Z + π(XTγ0)a

T
2Z)]}.

≥ 0.

(3.27)
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The last inequality comes from the fact that the matrix

 EZZT E(π(XTγ)aT1Z + π(XTγ0)a
T
2Z)Z

E(π(XTγ)aT1Z + π(XTγ0)a
T
2Z)ZT E(π(XTγ)aT1Z + π(XTγ0)a

T
2Z)2

 (3.28)

is non-negative definite.

3.3 Simulations

In this section, we use simulation studies to investigate the finite sample perfor-

mance of the proposed test. We show that the asymptotic distribution of the test

statistic is not a good approximation, but with the bootstrap method, the test per-

forms similarly to the likelihood ratio test in an oracle form. In all the empirical

studies, we standardize all the covariates (to unit variance) except the treatment

indicator and choose c1 = 0.2, c2 = c3 = 5 for Γ̃.

3.3.1 Type I Errors

To assess the accuracy of the asymptotic approximation to the proposed test at

a given value of γ, we first report a relatively simple study based on Model (1) with

q1 = q2 = 2, β1 = (1, 2)T , β2 = (0, 0)T , X = (1, x)T , Z = (1, z)T , where x is

distributed as N(1, 1), z is independent of x, and distributed as either N(−1, 1) or

Bernoulli with probability 0.5. The error distribution ε is independent of (x, z) and

distributed as N(0, 0.52).

We fix Γ = {(0.3,−0.7)T} with J = 1. As we vary the sample size n from 60

to 1000, we report in Table 3.1 the mean value as well as the 0.90 and 0.95 upper

quantiles of the test statistic based on a Monte Carlo study with 5000 data sets. They

are compared with their counterparts from the limiting distribution of χ2
2. It is clear

that for n up to 300, the asymptotic approximation is unsatisfactory in preserving

the significance levels of the test.
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Table 3.1: Quality of asymptotic approximation to the the null distribution of the
EM test statistic in a simple configuration. The column under “Asymp-
totic” refers to asymptotic values, and “MC” refers to Monte Carlo-based
values. The last two columns show the type I errors of the test, if the
asymptotic values of the critical values are used.

z ∼ N(−1, 1)

n
Expectation 5% critical value 10% critical value Type I error

Asymptotic MC Asymptotic MC Asymptotic MC size 0.05 size 0.1
60 2 2.84 5.99 7.91 4.61 6.24 0.11 0.19
100 2 2.60 5.99 7.23 4.61 5.65 0.09 0.16
300 2 2.33 5.99 6.66 4.61 5.21 0.07 0.14
600 2 2.17 5.99 6.14 4.61 4.86 0.05 0.11
1000 2 2.15 5.99 6.31 4.61 4.85 0.06 0.11

z ∼ Bernoulli(1/2)

n
Expectation 5% critical value 10% critical value Type I error

Asymptotic MC Asymptotic MC Asymptotic MC size 0.05 size 0.1
60 2 3.07 5.99 8.32 4.61 6.64 0.13 0.23
100 2 2.85 5.99 7.81 4.61 6.20 0.11 0.20
300 2 2.33 5.99 6.60 4.61 5.22 0.07 0.13
600 2 2.25 5.99 6.74 4.61 5.25 0.07 0.13
1000 2 2.10 5.99 6.17 4.61 4.83 0.05 0.11
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We report another study with the data generated from Model (1) with q1 =

3, q2 = 2, β1 = (1, 0, 2)T , β2 = (0, 0, 0)T , Z = (1, t, x)T , X = (1, x)T , where t

resembles a treatment indicator distributed as Bernoulli(0.5), x is independent of t

with the distribution N(−1, 1), and the error ε is white noise N(0, 0.52). The EM

test uses Γ = {(1,−2)T , (1, 2)T}. In Table 3.2, we demonstrate the type I errors of

the proposed EM test based on 5, 000 replicates with the critical values determined

via the bootstrap method (with the bootstrap sample size 1000). With the sample

size as small as 60, the type I errors are quite close to their nominal values, regardless

of our choice of K ∈ {0, 3, 9}.

Table 3.2: Type I errors of the EM tests with bootstrap approximations.

n Nominal level α EM (0) EM (3) EM (9)

n=60 0.01 0.012 0.013 0.012
0.05 0.045 0.053 0.055
0.10 0.094 0.098 0.102

n=100 0.01 0.011 0.012 0.013
0.05 0.050 0.053 0.053
0.10 0.010 0.100 0.098

3.3.2 Power Comparison

We use the same model and the same EM tests as in the Type I error study

associated with Table 3.2, except that β2 = (1, a, b)T , γ = (1, c)T for some non-

negative values of a, b, and c are now used. The results are given in Table 3.3, with

0.05 as the nominal level of the test.

We also consider the performance of two likelihood ratio tests in some oracle form,

where we use the true value γ0. In the first variation denoted by “LRT(0)”, we use

the bootstrap method to carry out the likelihood ratio test, where γ0 is used as

the starting value in maximizing the likelihood. In addition, we include the second

variation, denoted by “LRT(Oracle)”, where we also use the bootstrap method to
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obtain the critical values, but with parameter γ = γ0 fixed. Note that “LRT(0)”

is equivalent to EM (+∞) from an ideal starting value of γ, while “LRT(Oracle)”

is equivalent to EM (0) where the true γ is used. Obviously neither variation can

be carried out with real data, so they are used here as a benchmark to gauge the

performance of the proposed EM test.

We note that in some settings, especially when Γ does not contain any value that

is close to the true γ = (1, c)T , a few EM iterations help power. At K = 3, the power

of EM (K) is often comparable to those of “LRT(0)” and “LRT(Oracle)”, that is, the

proposed EM test measures up to an oracle form of the likelihood ratio test.

We also note that, in the cases where c = 0, the power of the EM test is noticeably

lower than the powers of the Oracle tests. This is because the construction of the EM

test requires the value of γX to stay away from zero in the EM iterations. The good

news is that the low power of the EM test for the alternatives with γX = 0 is not a

concern for us, because those alternatives correspond to the existence of subgroups

that cannot be characterized by the covariates X.

Table 3.3: Power (%) of the EM test at the 5% level. The EM test uses Γ =
{(1, 2)T , (1,−2)T}, with K = 0, 3, 9 iterations. The parameters of Model
(1) are β1 = (1, 0, 2)T , β2 = (1, a, b)T , and γ = (1, c)T .

n a b c LRT(0) LRT(Oracle) EM (0) EM (3) EM (9)

60 0.5 1 1 76.8 80.2 73.0 75.0 77.4
60 0.5 0 1 31.4 39.2 18.6 32.4 33.6
60 0.5 1 0 57.2 63.8 30.2 44.4 49.8
60 1.0 1 1 89.2 92.0 82.0 86.2 87.2
60 1.0 0 1 83.4 86.2 50.4 80.2 81.6
60 1.0 1 0 74.2 75.6 45.4 62.4 66.0
100 0.5 1 1 97.6 98.4 97.0 96.6 97.6
100 0.5 0 1 63.2 73.4 37.6 57.4 62.2
100 0.5 1 0 84.8 85.6 42.0 63.4 67.4
100 1.0 1 1 99.8 97.8 98.0 99.4 99.8
100 1.0 0 1 98.2 96.0 70.0 96.2 97.8
100 1.0 1 0 95.4 89.2 65.4 85.8 88.0
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3.3.3 Misspecified Link Functions

The proposed EM test is quite robust against the mispecification of the logit link

used in modeling the subgroup membership. In this section, we consider three cases

of misspecification in the logistic component of the model.

• C1: π(x) = Φ(x/v) with v = 1.95, where Φ is the probability distribution

function of the standard normal; that is, the true model for δi is probit. All

other aspects of the model are the same as that in Section 3.2.

• C2: π(x) = F5(x/v) with v = 1.50, where F5 is the probability distribution

function of the t-distribution with 5 degrees of freedom. All other aspects of

the model are the same as that in Section 3.2.

• C3: The logistic component of the model has X = (1, x1, x2)T where x1 ∼

N(−1, 1), x2 ∼ N(0, 1), and γ = (1, c, 0.5)T , but the variable x2 is missing from

our working model. All other aspects of the model are the same as that in

Section 3.2.

Under these scenarios, the means of δi at c = 1 are roughly the same as that under

the model we considered in the previous section. The Type I errors of the EM tests

are not affected by the specification of π, but the powers vary. We report the powers

of the EM (9) test in Table 3.4, where the case C0 refers to the case with correctly

specified model under Section 3.3.2. It is clear from the table that the EM test

retains good power under the moderate misspecifications of the logistic component of

our model.

3.4 Proof of Lemmas

Here we provide the proofs of the lemmas in details from Section 3.2.2.

Proof of Lemma III.4. First, we show that for each γ ∈ Γ, Iγ(θ0) is positive definite.
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Table 3.4: Power (%)of EM (9) under the correctly specified model C0 of Section 3.3.2
and three mis-specified models C1 – C3 of Section 3.3.3 at the 5% level.

n a b c C0 C1 C2 C3
60 0.5 1 1 77.4 73.8 77.0 80.2
60 0.5 0 1 33.6 27.6 35.4 29.0
60 0.5 1 0 49.8 52.6 49.8 49.4
60 1.0 1 1 87.2 87.0 87.4 90.4
60 1.0 0 1 81.6 80.2 83.0 75.6
60 1.0 1 0 66.0 70.6 67.0 69.4
100 0.5 1 1 97.6 96.4 97.6 95.8
100 0.5 0 1 62.2 58.2 62.2 47.6
100 0.5 1 0 67.4 69.2 68.2 65.8
100 1.0 1 1 99.8 98.6 99.8 99.2
100 1.0 0 1 97.8 97.4 97.8 92.4
100 1.0 1 0 88.0 89.8 87.6 82.0

Recall from Equation (3.7) that

Iγ(θ0, (Y,Z,X)) =
1

σ2
0


A 0 B(γ)

0 2 0

B(γ) 0 C(γ)

 , (3.29)

where A = E(ZZT ),B(γ) = E(π(XTγ)ZZT ), C(γ) = E(π(XTγ)2ZZT ).

For any vector a ∈ R2×q1+1. Write aT as (aT1 , a2,a
T
3 ), in which a1,a3 ∈ Rq1 and

a2 ∈ R. Then

aTIγ(θ0)a = (aT1 , a
T
2 ,a

T
3 )


E(ZZT ) 0 E(π(XTγ)ZZT )

0 2 0

E(π(XTγ)ZZT ) 0 Eπ(XTγ)2ZZT )



a1

a2

a3


= E((aT1 + a3π(XTγ))Z)2 + 2a2

2.

Since from Assumption 1, Z is linearly independent, the matrix Iγ(θ0) is not positive

definite if and only if there exist a1,a3 ∈ Rq1 such that ||a1||2 + ||a3||2 6= 0, but
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aT1 +aT3 π(XTγ) = 0. This is equivalent to the condition that π(XTγ) is a constant.

But according to the definition of Γ in (3.11), for any γ ∈ Γ, π(XTγ) is a non-

constant random variable. Therefore, under Assumption 1, for each γ ∈ Γ, the fisher

information Iγ(θ0) is positive definite.

Let h1(γ) = λmin(Iγ(θ0)) > 0, and h2(γ) = λmax(Iγ(θ0)) < ∞. We can see that

h1, h2 are continuous functions, and along with the compactness of the parameter set

Γ, we complete the proof of the lemma.

Proof of Lemma III.5. To apply the uniform law of large numbers, we explore some

properties for l̇γ(Yi,Zi,X i;θ0). By direct calculations, we show that for θ ∈ Θ, there

exist functions L1, L2 such that ||l̇γ(Yi,Zi,X i;θ)−l̇γ(Yi,Zi,X i;θ0)|| < L1(Yi,Zi,X i),

||l̇γ(Yi,Zi,X i;θ)|| < L2(Yi,Zi,X i), and Eθ0L1 <∞,Eθ0L2 <∞.

Then by Theorem 2 in Jennrich (1969), we have

sup
θ∈Θ,γ∈Γ

||
n∑
i=1

(l̇γ(Yi,Zi,X i;θ)− l̇γ(Yi,Zi,X i;θ0)/n)− Eθ0 l̇γ(y, z,x;θ)|| = op(1),

(3.30)

and

sup
γ∈Γ
|| 1
n

n∑
i=1

(l̇γ(Yi,Zi,X i; θ0)|| = op(1).

Therefore, taking θ = θ̂n in Equation (3.30) gives

sup
θ∈Θ,γ∈Γ

||Eθ0 l̇γ(y, z,x;θ)|θ=θ̂n|| = op(1). (3.31)

By expansion of the expectation of the first derivative of the log-likelihood at θ0,

El̇γ(y, z,x;θ) = El̇γ(y, z,x;θ0) + El̈γ(y, z,x; θ)|θ=θ∗(θ − θ0), (3.32)

for some θ∗ ∈ Θ, ||θ0 − θ∗| < ||θ0 − θ||, denoted as θ∗(θ).
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Let θ = θ̂n in Equation (3.32), we have

Eθ0(l̇γ(y, z,x;θ)|θ=θ̂n
) = −Iγ(θ∗(θ̂n))(θ̂n − θ0). (3.33)

By Equation (3.31) and Equation (3.33), we have

sup
γ∈Γ
|Iγ(θ∗(θ̂n))(θ̂n − θ0)| = op(1).

By Lemma III.4, we have

sup
γ∈Γ
||θ̂n − θ0|| = op(1). (3.34)

By the uniform law of large numbers (Jennrich, 1969), we can have

1

n
l̈γ(θ) + Iγ(θ) = op(1), (3.35)

uniformly in θ ∈ Θ,γ ∈ Γ.

By the central limit theorem and that El̇(Y,Z,X;θ0) = 0, l̇γ(θ0)/
√
n = Op(1)

for each γ ∈ Γ. Recall from Equation (3.6) that

l̇γ(Y,Z,X; θ0) =
(

1
σ2
0
(Y −ZTβ0)ZT ,− 1

σ0
+ 1

σ2
0
(Y −ZTβ0)2,

1
σ2
0
π(XTγ)(Y −ZTβ0)ZT

)T
,

(3.36)

and note that only the last term in l̇γ(Y,Z,X; θ0) involves γ. So to show l̇γ(θ0)/
√
n =

Op(1) uniformly in γ ∈ Γ it suffices to show F = {π(XTγ)(Y − ZTβ0)ZT : γ ∈ Γ}

is P-Donsker (van der Vaart (1998)) component-wisely.

Suppose that Γ ⊂ Γ1 × · · ·Γq2 , where Γm ⊂ R is an interval, m ∈ {1, · · · , q2}.

For any ε > 0, for any m ∈ {1, · · · , q2}, grid Γm by a1
m ≤ · · · ≤ anm

m such that

|ajm − aj−1
m | < ε and nm ≤ Mm/ε + 1 where Mm is the length of Γm. We prove

the case when Z is a scaler, otherwise we can prove it component-wisely. Write
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X = (X1, · · · ,Xq2)
T . Then construct the functions of (Y,Z,X) with ε = Y −Zβ0,

lj1,··· ,jq2 = π
(
(aj11 I(X1εZ>0) + aj1+1

1 I(X1εZ<0))X1, · · · , (a
jq2
q2 I(Xq2εZ>0)

+a
jq2+1
q2 I(Xq2εZ<0))Xq2

)
εZ,

and

uj1,··· ,jq2 = π
(
(aj1+1

1 I(X1εZ>0) + aj11 I(X1εZ<0))X1, · · · , (a
jq2+1
q2 I(Xq2εZ>0)

+a
jq2
q2 I(Xq2εZ<0))Xq2

)
εZ.

Then lj1,··· ,jq2 ≤ uj1,··· ,jq2 . We have brackets (van der Vaart (1998); van der Vaart and

Wellner (2000)) {(lj1,··· ,jq2 , uj1,··· ,jq2 ) : jm = 1, · · · , nm,m = 1, · · · , q2}. In total the

number of such brackets are bounded by C0/ε
q2 with C0 = M1 · · ·Mq2 .

Since that |exp(x1)/(1 + exp(x1)) − exp(x2)/(1 + exp(x2))| = |1/(1 + exp(x1)) −

1/(1 + exp(x2))| ≤ |x1 − x2|, with direct algebra we have

||uj1,··· ,jq2 − lj1,··· ,jq2 ||
2
L2
≤ Eε2Z2E||X||2ε2 = C2

1ε
2,

where C2
1 = Eε2Z2E||X||2 <∞ by Assumption 1.

Let ε20 = C1ε
2, so ε = ε0/C1. Therefore the bracketing numbers

N[](ε0,F , L2) ≤ C0/ε
q2 ≤ C0(C1)q2/εq20 .

Moreover, the L2 bracketing integral

J[](1,F , L2) =
∫ 1

0

√
logN[](ε0,F , L2)dε0

<
∫ 1

0

√
logC0(C1)q2/εq20 dε0 <∞,

because that
∫ 1

0
log ε0dε0 < ∞. Finally by Theorem 19.5 in van der Vaart (1998),

F = {π(XTγ)(Y −ZTβ0)ZT : γ ∈ Γ} is P-Donsker.
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Therefore, l̇γ(θ0)/
√
n = Op(1) uniformly in γ ∈ Γ.

Applying a first-order Taylor expansion to l̇γ(θ0), we have for some θ∗ ∈ Θ,

1√
n
l̇γ(θ0) = {Iγ(θ0)− [ 1

n

∑n
i=1 l̈γ(X i;θ

∗) + Iγ(θ∗)] + [Iγ(θ∗)− Iγ(θ0)]}
√
n(θ̂n − θ0) + op(1).

(3.37)

Since now we have supγ∈Γ ||θ̂n−θ0|| = op(1)(3.34); supγ∈Γ ||Iγ(θ∗)−Iγ(θ0)|| = op(1)

from the reasons ||θ∗−θ0|| = op(1), Iγ(θ) is continuous in γ and θ, and Γ is a compact

set; supγ∈Γ ||1/n
∑n

i=1 l̈γ(X i,θ
∗) + Iγ(θ∗)|| = op(1) (3.35), supγ∈Γ ||1/

√
nl̇γ(θ0)|| =

Op(1), and Iγ(θ0) have lower bounds of the eigenvalues in γ ∈ Γ from Lemma III.4,

therefore,
√
n(θ̂n − θ0) = Op(1) (3.38)

uniformly in γ ∈ Γ.

Then from Equation (3.37), we get

1√
n
l̇γ(θ0) = Iγ(θ0)

√
n(θ̂n − θ0) + op(1) (3.39)

uniformly in γ ∈ Γ.

Then, we have, for some θ∗ ∈ Θ,

lγ(θ̂n)− lγ(θ0) = l̇γ(θ0)T (θ̂n − θ0) + 1
2
(θ̂n − θ0)T l̈γ(θ∗)(θ̂n − θ0)

= l̇γ(θ0)T (θ̂n − θ0) + 1
2
(
√
n(θ̂n − θ0))T (−Iγ(θ0) + (−Iγ(θ∗)

+Iγ(θ0)) + ( 1
n
l̈γ(θ∗) + Iγ(θ∗)))(

√
n(θ̂n − θ0))

= l̇γ(θ0)T (θ̂n − θ0)− 1
2
(
√
n(θ̂n − θ0))TIγ(θ0)(

√
n(θ̂n − θ0))

+op(1).

(3.40)

uniformly in γ ∈ Γ.
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From Equation (3.39) and (3.40), we have

2(lγ(θ̂n)− lγ(θ0)) = ( 1√
n
l̇γ(θ0))TIγ(θ0)−1( 1√

n
l̇γ(θ0))

= (M 1(γ),M 2(γ))TIγ(θ0)−1(M 1(γ),M 2(γ)) + op(1).

(3.41)

and similarly,

2(lγ(θ̂0)− lγ(θ0)) = M 1(γ)T Iγ11(θ0)−1M 1(γ) + op(1), (3.42)

uniformly in γ ∈ Γ, where Iγ11(θ0) is the top left (q1 + 1) × (q1 + 1) submatrix of

Iγ(θ0), and M 1(γ) and M 2(γ) are the same as defined in Equation (3.8) and (3.9),

that is, 1/
√
nl̇γ(θ0) = (M1(γ),M2(γ))T .

Finally from the same argument about matrix manipulation as Section 3.1.1, we

complete the proof of the lemma.

Proof of Lemma III.6. We present the proof in two steps.

Step 1: we show that θ(k) = θ0 + op(1) for k = 1, . . . , K, a fact that is also stated

at the beginning of the Appendix.

With the initial parameter γ(0), the EM algorithm finds

θ(0) = argmax
θ

n∑
i=1

log f(Yi,Zi,X i;θ,γ
(0)),

where f here denotes the joint density of (Y,Z,X). In fact, θ(0) = ((β
(0)
1 )T , σ(0), (β

(0)
2 )T )T

is the MLE computed with fixed γ(0). It follows from the positive definiteness

of Iγ(θ0) that the MLE is consistent when the null hypothesis is true, that is,

θ(0) = θ0 + op(1), when the true parameter is θ0 = ((βT0 ), σ0,01×q1)
T under the

null hypothesis.

Then for each EM iteration as described in Section 3.2, we obtain {(θ(k),γ(k)) :

k = 1, . . . , K}, a sequence determined by γ(0). Since each EM iteration increases the
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log-likelihood, resulting in

∑n
i=1 log f(Yi,Zi,X i;θ

(k),γ(k)) ≥
∑n

i=1 log f(Yi,Zi,X i;θ
(0),γ(0))

≥
∑n

i=1 log f(Yi,Zi,X i;θ0,γ
(0))

=
∑n

i=1 log f(Yi,Zi,X i;θ0,γ
(k)),

then from Theorem 5.14 of van der Vaart (1998) it follows that θ(k) = θ0 + op(1) for

k = 1, . . . , K.

Step 2: we show that γ(k) = γ0 + op(1) for k = 1, . . . , K. Let

b(θ,γ, γ̃;Y,Z,X) = (P (δ = 1|Y,Z,X;θ,γ)− π(XT γ̃))X,

and gn(θ,γ, γ̃) = Pnb(θ,γ, γ̃;Y,Z,X). Note that b(θ0,γ,γ;Y,Z,X) = 0 for any

γ ∈ Γ̃.

The value of γ after the kth iteration, which satisfies gn(θ(k),γ(k),γ) = 0, is

denoted as γ
(k+1)
temp , as given by (3.15). By the empirical process theory used in the

proof of Lemma III.5, we have gn(θ,γ,γ) = op(1) uniformly in (θ,γ) ∈ Θ × Γ̃. We

also know Eb(θ,γ,γ;Y,Z,X) is uniformly continuous on the compact set Θ × Γ̃.

Therefore,

gn(θ(k),γ(k),γ(k)) = Eb(θ0,γ
(k),γ(k);Y,Z,X) + op(1) = op(1),

for k = 1, . . . , K.

Now considering gn as a function of its last argument, we have

op(1) = gn(θ(k),γ(k),γ
(k+1)
temp )− gn(θ(k),γ(k),γ(k))

= dgn(θ(k),γ(k),γ̃)
dγ̃

|γ̃=γ∗ (γ
(k+1)
temp − γ(k))

= Pnπ(XTγ∗)(1− π(XTγ∗))XXT (γ
(k+1)
temp − γ(k)),

(3.43)
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where γ∗ satisfies ||γ∗ − γ(k)|| ≤ ||γ(k+1)
temp − γ(k)||.

We consider the case of γ
(k+1)
temp ∈ Γ̃. In this case, γ∗ ∈ Γ̃. By the uniform

law of large numbers, Pnπ(XTγ)(1 − π(XTγ))XXT converges to Pπ(XTγ)(1 −

π(XTγ))XXT uniformly in γ. In addition, by the same argument for Lemma III.4,

we know that the eigenvalues of the matrix Pπ(XTγ)(1 − π(XTγ))XXT have a

positive lower bound uniformly for γ ∈ Γ̃. Then it follows from (3.43) that γ(k+1) −

γ(k) = γ
(k+1)
temp − γ(k) = op(1).

If γ
(k+1)
temp 6∈ Γ̃, then we have γ(k+1) = γ(k). By induction, we have γ(k)−γ(0) = op(1)

for k = 1, . . . , K.

Proof of Theorem V.4. From Section 3.1.1, we have that under H0, for any γ ∈ Γ̃,

TK(γ) = || 1√
n

n∑
i=1

ψ(Yi,Zi,X i;γ)||2 + op(1), (3.44)

where ψ(y, z,x;γ) is given in (3.10).

We also have that, by Theorem 7.2 of van der Vaart (1998, p. 94 ), the log-

likelihood ratio at parameters ηa and η0

log
dP n

ηa

dP n
η0

=
1√
n

n∑
i=1

hT l̇β2
(Yi,Zi,X i)|η0

− 1

2
hT Iβ2

h+ op(1), (3.45)

under H0, in which

l̇β2
(y, z,x)|η0

=
∂l(y,z,x)

∂β2

|η0
= σ−2

0 π(xTγ0)(y − zTβ0)z, (3.46)

and

Iβ2
= −E∂

2l(y, z,x)

∂β2∂β
T
2

|η0
= C(γ0). (3.47)

From (3.45), we have, by the central limit theorem and the fact that Eψ = 0 and
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Var(ψ) = Iq1 , the identity matrix of dimension q1,

 1√
n

∑n
i=1ψ(Yi,Zi,X i;γ)

log
dPn

ηa

dPn
η0


converges in distribution to

N


 0

−1
2
hTC(γ0)h

 ,

 Iq1 s(η0,h)

s(η0,h)T hTC(γ0)h


 (3.48)

under H0, where

s(η0,h) = Eη0

(
hT l̇β2

(y,z,x)|η0
ψ(y, z,x;γ)

)
= σ−2

0 I
−1/2
γ22·1(E(π(XTγ)π(XTγ0)ZZT )−B(γ)A−1B(γ0))h.

(3.49)

By Le Cam’s third lemma, of van der Vaart (1998, p. 90 ), we have that,

1√
n

n∑
i=1

ψ(Yi,Zi,X i;γ)→ N (s(η0,h), Iq1) (3.50)

in distribution under Ha.

Therefore the test statistic has a noncentral χ2 distribution with the noncentral

parameter λ(γ) = ||s(η0,h)||2, as in (3.22). In particular, if γ = γ0, we have

(3.23).
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CHAPTER IV

Application to the AIDS Data

In this chapter, we apply the aforementioned methods to our motivation example

in Section 1.1.

In this randomized trial, ACTG 320 Study, AIDS patients are randomly assigned

to one of two daily regimens: one is the treatment with the protease inhibitor in-

dinavir in addition to zidovudine and lamivudine, and the second is the treatment

with the two nucleosides zidovudine and lamivudine alone. Following the analysis

of Hammer et al. (1997) and Zhao et al. (2013), we analyze the CD4 count change

at the 24th week as the response with three baseline variables: age, baseline CD4

counts, and RNA concentration on the logarithm scale. We ask whether a subgroup

of patients has greater benefits from the treatment of adding a protease inhibitor to

two nucleoside analogues, and how the baseline variables can be used to predict the

subgroup membership. This of course is not meant to be a full investigation of the

ACTG 320 trial, but is used to demonstrate how our proposed subgroup analysis can

add value to the existing methods.

In the following analysis, we use cd4.0, rna.0, and cd4.24 to denote the base-

line CD4 counts, baseline RNA concentration, and the CD4 change at the 24th

week, respectively. We use trt as the treatment indicator, with 1 denoting the treat-

ment of adding a protease inhibitor. We work with the subjects with no missing
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values and without extreme CD4 counts, i.e., cd4.0 ∈ (0, 200] and cd4.24 ≤ 400,

giving rise to a sample size of n = 800 subjects. We give a summary of the data

in Table 4.1. By identifying the covariates Z = (1, trt, log(cd4.0), log10(rna.0), Age)

Table 4.1: Summary statistics for our ACTG study (n = 800)
cd4.24 log(cd4.0) log10(rna.0) trt Age

Min. -132.00 -0.69 1.70 0 15.97
0.25 Quantile 0.00 3.07 4.66 0 33.33
Median 34.00 4.14 5.09 0 38.33
Mean 52.69 3.84 4.98 0.47 39.43
0.75 Quantile 89.75 4.82 5.45 1 44.65
Max. 395.00 5.29 5.88 1 73.93
s.d. 74.51 1.15 0.68 0.50 9.01

for the normal component and X = (1, log(cd4.0), log10(rna.0), Age) for the logis-

tic component in Model (2.1), we use the proposed EM (K) test for the existence of

subgroups. The choice of the specific bases in log(cd4.0) and log10(rna.0) carries no

significance; we simply follow some of the earlier work when including those variables.

We take three randomly generated values from Γ̃ to form the set of initial values Γ =

{(2.44,−3.35,−2.33, 1.24)T , (0.95,−4.49, 0.47, 4.46)T , (1.00,−2.72, 4.64,−2.84)T}, with

the resulting p-value < 0.001 for K = 0, 3 and 9. In fact the p values are insensitive

to the choice of K. It is clear that we reject the null hypothesis of no subgroups in

this study. The estimates of the parameters and their standard errors are given in

Table 4.2. As we see from the table, the differential treatment effects were evident,

but Age is statistically insignificant for subgroup membership. If a subject has higher

baseline CD4 counts and higher baseline RNA concentration, he/she is more likely

to be in a subgroup where the treatment effect on the 24-week CD4 change is much

greater, as demonstrated by the estimate of β2 for trt.

A by-product of our analysis is that we can use π(XTγ) to score any prospective

patient and suggest that the patients with a higher score receive the treatment. A

different scoring system was developed in Zhao et al. (2013), and a quick comparison
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is in order.

Suppose that a subject with a high score of

S1(X) = π(−7.89 + 0.44 log(cd4.0) + 1.10 log10(rna.0)− 0.02Age) (4.1)

receives the treatment based on the estimated γ in our model. Applying the method

of Zhao et al. (2013) to the same data set, we obtained the score of

S2(X) = −64.76 + 8.69 log(cd4.0) + 25.87 log10(rna.0)− 0.76Age (4.2)

for the same purpose. We plot the two scores in Figure 4.2, and they have a high

rank correlation. Since the two scores are not on the same scale, we use the quantiles

Table 4.2: Parameter estimates and their standard errors when Model (2.1) is used
to fit the data in the ACTG study. The variable names such as trt
and log(cd4.0) are attached to the coefficients β1,β2 and γ, whereas
β1(1),β2(1) and γ(1) refer to the intercepts.

β1(1) β1(trt) β1(log(cd4.0)) β1(log10(rna.0)) β1(Age)
Parameter -35.96 41.24 -1.97 6.10 0.69
Standard error 23.12 5.23 2.02 3.39 0.25

β2(1) β2(trt) β2(log(cd4.0)) β2(log10(rna.0)) β2(Age)
Parameter 97.00 112.98 22.16 -24.66 -0.92
Standard error 89.40 15.79 7.56 13.14 0.90

γ(1) γ(log(cd4.0)) γ(log10(rna.0)) γ(Age) σ
Parameter -7.89 0.44 1.10 -0.02 49.78
Standard error 2.20 0.18 0.35 0.02 11.77

of the scores in determining subgroups. For any q ∈ (0, 1), we assign any patient

whose score is above the q quantile within a scoring system to subgroup 1 and the

rest to subgroup 2. To see which scoring system is better, we use a 5-fold cross-

validation. We use the training data to estimate the coefficients in the scores and

assign subgroup membership to those subjects in the testing data. Then we take the

average of the treatment effect of selected Subgroup 1 for each q from the five training
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sets, as well as the treatment effect difference of the target subgroup 1 from the rest

of the training sets, subgroup 2. Note that the subgroup 1 consists of roughly 100

(1-q) percentage of the subjects in the testing data. As q varies, the treatment effect

differentials under the two scoring systems are shown in Figure 4.3. (use seed=0 to

split the data in R.) The subgroup 1 identified by our proposed method generally

enjoys a slightly greater treatment effect from the addition of the protease inhibitor

than the subgroup 1 identified by the scoring system used in Zhao et al. (2013). In

addition, the treatment effect difference is in Figure 4.4.

We hope to have balanced covariates in the treatment and control groups such

that the treatment effect is not due to a particular unbalanced covarite. We split the

data into half (use seed=0 in R) to obtain a training set and a testing set. On the

testing set with q = 0.5, we have a subgroup from our method. For this subgroup,

we have exactly 50% of the subjects receiving the treatment. We show the Q-Q plot

of the covarites and the scores in the treatment group as well as in the control group

in this chosen subgroup in Figure 4.1, from which we see the quantiles are relatively

similar.

Now we repeat the experiment 100 times. We show the treatment effect and

the difference at q = 0.75 for the first 20 experiments in Figure 4.7 and Figure

4.8, respectively. We plot the mean of the treatment effect in the chosen subgroups

for each q as well as the treatment effect difference of the chosen subgroup from

the rest in Figure 4.5 and Figure 4.6, respectively. Overall, the subgroups selected

by our method (the circles) have very similar treatment effects and treatment effect

differences as those selected by the method in Zhao et al. (2013) (the crossings). Since

the score of S2(X) was derived under a different set of model assumptions, we take

the high agreement between the two scoring systems as another piece of confirmation

that our structured normal-logistic mixture model designed primarily for a model-

based test on the existence of subgroups captures the subgroup characteristics well.
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Figure 4.1: Q-Q plot of the covariates in treatment and control groups in a chosen
subgroup q = 0.5.
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Figure 4.2: Scatter plot of S2(X) from (4.2) versus S1(X) from (4.1).
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CHAPTER V

Subgroups of Heterogeneous Variances

For two subgroups, a difference in the means is often associated with a difference in

the variances. The structured logistic-normal mixture model considered in the earlier

chapters assumes equal variances in the subgroups. If we apply the equal variance

model to the data that are generated from a mixture model with unequal variance, the

estimators could be biased and the test might lose power. In this chapter, we consider

the cases where we have heterogeneous variances in the two normal components.

5.1 Model

Suppose that we have a logistic-normal mixture model with unequal variances in

the two normal components. For i = 1, . . . , n,

Yi = ZT
i (β1 + β2δi) + εi

(
σ1δi + σ2(1− δi)

)
,

P (δi = 1|X i,Zi) = π(XT
i γ) ≡ exp(XT

i γ)/(1 + exp(XT
i γ)),

P (δi = 0|X i,Zi) = 1− P (δi = 1|X i),

(5.1)

where n is the sample size, Yi ∈ R is the outcome, δi ∈ {0, 1} is the subgroup

indicator, Zi ∈ Rq1 is the covariate associated with the subgroup mean, X i ∈ Rq2 is

the covariate associated with the group membership, β1 ∈ Rq1 ,β2 ∈ Rq1 ,γ ∈ Rq2 are

the corresponding coefficients, and εi ∼ N(0, 1) are white noises. The first elements of
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X i andZi are 1, and the second element ofZi is the treatment indicator. We can have

overlapping variables in the random vectors of X i and Zi. The overall parameters

are ηT = (γT ,βT1 ,β
T
2 , σ1, σ2). Write θT = (βT1 ,β

T
2 , σ1, σ2) as the parameters without

γ. We observe the data {W i = (Yi,Z
T
i ,X

T
i ), i = 1, . . . n}, and δi’s are viewed as

latent variables. The observations W i’s are independent. In the case of β2 = 0 and

σ1 = σ2, the model reduces to one normal component. Therefore, we consider β2 = 0

and σ1 = σ2 as our null hypothesis that no subgroup exists.

5.2 Penalized Likelihood

For a mixture normal model, with unequal variances, the likelihood is unbounded

and the MLE does not exist (McLachlan and Peel , 2000). To appreciate this, let

Y1, · · · , Yn be i.i.d. from

πN(θ1, σ
2
1) + (1− π)N(θ2, σ

2
2),

then the likelihood

Πn
i=1

{ 1√
2πσ2

1

exp{−−(Yi − θ1)2

2σ2
1

}+
1√

2πσ2
2

exp{−−(Yi − θ2)2

2σ2
2

}
}

goes to infinity by taking θ1 = Y1 and letting σ1 go to zero. So the maximum likelihood

estimator does not exist.

In order to restrict the two variances away from zero, an easy way is to impose a

reasonable bound as follows.

In the first step, let σ̂0 be the maximum likelihood estimator of σ under the equal

variance model. Then in the following EM steps, constrain σ1 and σ2 in [aσ̂0, bσ̂0] for

some a, b ∈ R such that 0 ≤ a < 1 < b ≤ ∞. With this constraint, and if the true

values of σ1 and σ2 do fall into this range, then the estimation and testing problems
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work the same way as in the common variance case. Because it is not easy to find a

and b to ensure that the true variances are covered, we will consider the alternative

approach of penalized likelihood.

We consider a penalty pn(σ), following Chen and Li (2009), with certain conditions

to be specified later. In particular, we take

pn(σ) = −λ
(S2

n

σ2
+ log(

σ2

S2
n

)
)
, (5.2)

where S2
n is a reasonable estimator of σ2, and λ is a tuning parameter. Since under the

null hypothesis, the parameters are not identifiable from the equal variance model,

but from the proof of Lemma III.6 in Section 3.4, we have consistent estimator of σ2

given a γ with nonzero slope, so we suggest to use the maximum likelihood estimator

of the variance given some γ as S2
n. For the tuning parameter λ, we show how we

choose it adaptively in Section 5.6, but a general data adaptive choice of λ needs

further study.

The penalized log-likelihood function is

pl(η) =
∑n

i=1 log[
∑1

j=0 f(Yi|Zi,X i, δi = j;βj, σj)P (δi = j|X i;γ)]

+pn(σ1) + pn(σ2).
(5.3)

To maximize the penalized likelihood, the slightly modified EM algorithm goes as

follows: at the (k + 1)th step,

Q(η(k+1)|η(k)) =
∑n

i=1 Eδi|wi,η(k){I(δi=1) log
(π(XT

i γ)√
2πσ1

exp(− (Yi−ZT
i (β1+β2))2

2σ2
1

)
)

+I(δi=0) log
(1−π(XT

i γ)√
2πσ2

exp(− (Yi−ZT
i β1)2

2σ2
2

)
)
}+ pn(σ1) + pn(σ2),
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which gives the E step,

a
(k)
i = P (δi = 1|Yi,Zi,X i; η

(k))

= f(Yi|δi = 1,Zi; θ
(k))P (δi = 1|X i;γ

(k))/{f(Yi|δi = 1,Zi;θ
(k))P (δi = 1|X i;γ

(k))

+f(Yi|δi = 0,Zi;θ
(k))P (δi = 0|X i;γ

(k))},
(5.4)

b
(k)
i = 1− a(k)

i , a(k) = (a
(k)
1 , . . . , a

(k)
n ), and b(k) = (b

(k)
1 , . . . , b

(k)
n ); and the M step:

γ(k+1) = argmaxγ
∑

i{a
(k)
i log π(XT

i γ) + b
(k)
i log(1− π(XT

i γ))};

(β
(k+1)
temp , σ

(k+1)
1 ) = argmaxβ,σ

∑
i{a

(k)
i log( 1

σ
exp(−(Yi −ZT

i β)2/(2σ2)))}+ pn(σ);

(β
(k+1)
1 , σ

(k+1)
2 ) = argmaxβ,σ

∑
i{b

(k)
i log( 1

σ
exp(−(Yi −ZT

i β)2/(2σ2)))}+ pn(σ),

(5.5)

and β
(k+1)
2 = β

(k+1)
temp −β

(k+1)
1 . In the M step, the estimation of θ(k+1) is a least squares

problem; for the particular penalty in Equation (5.2), the estimators of σ
(k+1)
1 and

σ
(k+1)
2 given β

(k+1)
1 and β

(k+1)
2 are

σ
(k+1)
1 =

(∑ a
(k)
i (Yi −ZT

i (β
(k+1)
1 + β

(k+1)
2 ))2/2 + λS2

n∑
a

(k)
i /2 + λ

)1/2

,

and

σ
(k+1)
2 =

(∑ b
(k)
i (Yi −ZT

i β
(k+1)
1 )2/2 + λS2

n∑
a

(k)
i /2 + λ

)1/2

.

We can see that the new estimators of σ2
1 and σ2

2 from penalized likelihood are weighted

sums of the estimators without penalty and S2
n.

In general, for the penalty pn(σ) which could be data-dependent. For the variables

X and Z, we further impose the following conditions. If we partition the covariate

vector Z into continuous components V and discrete components U , that is, let

ZT = (V T ,UT ), where V consists of only continuous variables and U consists of

only discrete variables with a finite sample space. Then we impose the following

conditions:
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C0. The penalty pn(σ) < 0 for all σ, and it goes to negative infinity as σ goes to

zero almost surely.

C1. For some integer n0 and all n ≥ n0, inf0<σ≤(1/n)
pn(σ)

(logn)2 log σ
≥ 8, almost surely.

C2. Under the null hypothesis of β2 = 0 and σ1 = σ2 = σ0, we have pn(σ0) = op(n)

almost surely; under the alternative hypothesis, pn(σ) = o(n) almost surely at

σ1 and σ2.

C3. For any unit vector α with the same dimension as the vector V , the conditional

distribution function of V Tα|U = u is continuous for any u, and the density is

bounded from above.

C4. The expectation E(||V ||U = u) <∞ uniformly in u.

In particular, it is easy to see that the penalty function (5.2) satisfies conditions

C0-C2. Note that for any positive λ, pn(σ) of (5.2) achieves its maximum at σ2 = S2
n,

and goes to negative infinity as σ approaches zero or infinity.

From an upcoming paper Shen et al. (2014), we study the consistency of the

parameter estimators under the alternative hypothesis to get

Proposition V.1. Under the alternative model with β2 6= 0 or σ1 6= σ2, assume

Conditions C0-C4, then the estimators from maximizing the penalized likelihood of

Equation (5.3) are strongly consistent.

5.3 Penalized EM Test

In this Section, we discuss the hypothesis testing about the existence of subgroups.

We test the null hypothesis of β2 = 0 and σ1 = σ2, where the two normal components

have the same parameters, and the model is degenerate.
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5.3.1 Penalized EM Test Process

We have a similar EM test process to that of Section 3.2.1, but with the penalty

in the objective function in Equation (5.3). For some given nonnegative integer K,

in the end of the Kth iteration, assume that we have the estimator η
(K)
j , then, for

each j = 1, 2, · · · , J , let

pEM
(K)
j = 2(pl(η

(K)
j )− pl(θ̂0,γj)), (5.6)

in which pl(·) is defined in Equation (5.3). The test statistic is

pEM (K) = max{pEM (K)
j : j = 1, 2, . . . , J}. (5.7)

5.3.2 Properties

Now we evaluate the limiting distribution of the proposed test statistic (5.7). From

Shen et al. (2014), we have the consistency of the parameter estimators in the EM

process in the following result.

Proposition V.2. Under the null model such that β2 = 0 and σ1 = σ2 = σ0, and

assume Conditions C0-C4, then for any finite K ∈ Z, the estimator from the EM

process θ(K) = (βT1 ,β
T
2 , σ1, σ2)T at the Kth iteration is strongly consistent.

By direct calculations, we can see for a given γ, under the null of β2 = 0, σ1 =

σ2 = σ0, the “Fisher information matrix” from the penalized likelihood I∗γ(θ) for θ is

1

σ2
0

 I1 02q1×2

02×2q1 I2

 . (5.8)

where

I1 =

 EZZT Eπ(XTγ)ZZT

Eπ(XTγ)ZZT Eπ2(XTγ)ZZT

 (5.9)
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and

I2 =

 2Eπ2(XTγ)− σ2
0
Ep′′n(σ0)

n
2Eπ(XTγ)(1− π(XTγ))

2Eπ(XTγ)(1− π(XTγ)) 2E(1− π(XTγ))2 − σ2
0
Ep′′n(σ0)

n

 . (5.10)

If the variables X and Z are not degenerate, γX 6= 0, and Ep′′n(σ2
0) < 0, then the

information matrix is positive definite.

In order to eliminate the asymptotic effect of the penalty from the final approxi-

mation, we further impose the following condition:

C5. Under the null hypothesis, Ep′′n(σ) < 0, Ep′′n(σ) = op(n), and p′n(σ) = op(
√
n).

Therefore, if C0-C5 hold, the penalized likelihood ratio test has the asymptotic

chi-square distribution under the null hypothesis by a quadratic approximation. That

is, for a fixed γ, by the same derivations in Section 3.1 and Theorem V.2, we have

the quadratic approximation of the penalized likelihood ratio statistic T ∗(γ):

T ∗(γ) = 2(pl(θ̂n,γ)− pl(θ̂0,γ)) = ||h(γ)||2 + op(1), (5.11)

where θ̂n = argmaxθ pl(θ,γ), and θ̂0 = argmaxθ∈H0
pl(θ,γ), and

h(γ) = (h1(γ), h2(γ)), (5.12)

in which

h1(γ) = D(γ)−1/2(N2(γ)−B(γ)A−1N1(γ)),

h2(γ) = {−2qn(σ0) + 2E
(
1− π(XTγ)

)2 −
(

2(1−Eπ(XTγ))−qn(σ0)
)2

2−2qn(σ0)
}−1/2

{N4(γ)− −qn(σ0)+2(1−Eπ(XTγ))
2−2qn(σ0)

(
N3(γ) +N4(γ)

)
},

qn(σ0) = Ep′′n(σ0)
n

,
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A = EZZT ,

B(γ) = Eπ(XTγ)ZZT ,

C(γ) = Eπ2(XTγ)ZZT ,

D(γ) = 1
σ2
0
(C(γ)−B(γ)A−1B(γ)),

N1(γ) = 1√
nσ2

0

∑n
i=1(Yi −ZT

i β1)ZT
i ,

N2(γ) = 1√
nσ2

0

∑n
i=1 π(X iγ)(Yi −ZT

i β1)ZT
i ,

N3(γ) = 1√
nσ3

0

∑n
i=1{π(X iγ)((Yi −ZT

i β1)2 − σ2) + σ3 p
′
n(σ0)
n
},

N4(γ) = 1√
nσ3

0

∑n
i=1{(1− π(X iγ))((Yi −ZT

i β1)2 − σ2
0) + σ3

0
p′n(σ0)
n
}.

In particular, for the penalty (5.2), under the null hypothesis we have Ep′′n(σ0) =

−4λ/σ2
0, and p′n(σ0) = 2λ(S2

n − σ2
0)/σ3

0. By Condition C5 and by eliminating the

penalty-related terms we have

T ∗(γ) = ||h∗(γ)||2 + op(1), (5.13)

h∗(γ) = (h1(γ), h∗2(γ)), (5.14)

h∗2(γ) =
(
2(Eπ2(Xγ)− (Eπ(Xγ))2)

)−1/2(
N∗4 (γ)− (1− Eπ(XTγ))(N∗3 (γ) +N∗4 (γ))

)
,

N∗3 (γ) = 1√
nσ3

0

∑n
i=1{π(X iγ)((Yi −ZT

i β1)2 − σ2
0)},

N∗4 (γ) = 1√
nσ3

0

∑n
i=1{(1− π(X iγ))((Yi −ZT

i β1)2 − σ2
0)}.

We can write

T ∗(γ) = || 1√
n
ψ∗(Yi,Zi,X i;γ)||2 + op(1), (5.15)

where ψ∗(Yi,Zi,X i;γ) = (ψ(Yi,Zi,X i;γ)T , ψ0(Yi,Zi,X i;γ)), ψ(Yi,Zi,X i;γ) is

the same as defined for the equal variance model in Equation (3.10) of Section 3.1.1,
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and the additional term

ψ0(Yi,Zi,X i;γ) =
(
2(Eπ2(XTγ)− (Eπ(XTγ))2)

)−1/2
(Eπ(XTγ)− π(XTγ))

(
(Yi−ZT

i β1)2

σ2
0

− 1).

(5.16)

Direct calculations show that both ψ(Yi,Zi,X i;γ) and ψ0(Yi,Zi,X i;γ) have mean

zero, and the covariance matrix of ψ∗ is Iq1+1. Therefore, T ∗(γ) has a χ2 limiting

distribution with the degrees of freedom q1 + 1. In addition, from the quadratic

representation in Equation (5.15) and Proposition V.2, by the same proof of Theorem

III.3, we will have (5.15) holds uniformly in γ ∈ Γ where Γ is defined in (3.11), and

we have the following proposition.

Proposition V.3. Under the null hypothesis and assumptions C0-C5, for any finite

integers J > 0 and K ≥ 0, the penalized EM test statistic pEM (K) of the unequal

variance model from Equation (5.7) converges to a fixed distribution as n→∞.

5.3.3 Local Power

We calculate the local power of the pEM test for the heterogeneous cases. Con-

sider the parameters and the local alternative as η0 = (β0,0, σ0, σ0,γ0)T and η∗a =

(β0, n
−1/2hT , σ0 + n−1/2h1, σ0,γ0)T , respectively. That is,

H0 : β2 = 0, σ1 = σ2 = σ0, v.s.

H∗a : β2 = n−1/2h, σ1 = σ2 + n−1/2h1 = σ0 + n−1/2h1,
(5.17)

where h ∈ Rq1 and h1 is a constant. By the same proof for Theorem V.4, we obtain

the following result:

Proposition V.4. Under H∗a and assumptions C0-C5, the test statistic pEM (K), with

any value γ ∈ Γ̃ and for any positive integer K, converges to a noncentral chi-square

63



distribution with the degree of freedom q1 + 1 and the noncentrality parameter

λ∗(γ) = λ(γ) + λ1(γ), (5.18)

where λ(γ) is the same as defined in Equation (3.22), and

λ1(γ) = ||σ−1
0 21/2h1

(
Eπ2(XTγ)− (Eπ(XTγ))2

)−1/2(
Eπ(XTγ)π(XTγ0)− Eπ(XTγ)Eπ(XTγ0)

)
||2.

(5.19)

In Section 3.2.4, we have seen that λ(γ) is maximized at γ0. Direct calculations

show that λ(γ0) is also maximized at γ0. Therefore, λ∗(γ) achieves its maximum

at the true one γ0. The power for the penalized EM test is then P (χ2
q1+1;λ∗(γ) >

χ2
q1+1(1− α)). In particular, if h1 = 0, then the noncentral parameters are the same

as those for the EM tests developed under the equal variance model, but have different

degrees of freedom, q1+1, not q1. We shall compare the two EM tests in the following

simulation studies.

5.4 Simulations

In this section, we study the finite sample performances of the proposed methods

through simulation studies. We will first show the effect of λ on the parameter

estimations under an alternative model. Second, we evaluate the type I errors and

the powers of the penalized EM test. We will compare the powers from the pEM

test and the EM test of Section 3.2, for data generated from both the equal and

unequal variance models.

5.4.1 Estimations

We start with evaluating the parameter estimations under the alternative models.

We do a simulation study using similar settings to those of Section 2.6 to show the
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performance of the estimators from the penalized likelihood under different penalty

parameters and different signal ratios. Data are generated from

Yi = µ1 + ν1Ti + α1Zi + (µ2 + ν2Ti + α2Zi)δi + εi(σ1δi + σ2(1− δi)),

P (δi = 1|Xi) = π(γ0 + γ1Xi),

for i = 1, . . . , n, where εi ∼ N(0, 1), independent of (Xi, Zi). The n observations are

independent. We use Xi = Zi from N(1, 1), and n = 100. We collect the means

and sample standard deviations of the maximum (penalized) likelihood estimates in

1000 repeated experiments. In the simulation, we use the constriction of ν2 > 0 to

guarantee the identifiability of the parameters. We examine the estimates from both

the unequal variance model in Table 5.1 and Table 5.2 and the equal variance model

in Table 5.3. Larger λ in the penalty term gives slightly larger bias. Overall the biases

do not change much with varying λ, so we will fix λ = 1 in the power calculations

later unless otherwise specified. The estimates from the equal variance model for all

the parameters except the σ’s are quite close to the true ones in Table 5.3 when σ1/σ2

is close to 1, but the bias gets larger as the ratio of two σ’s increases to 2 or 3.

Table 5.1: The biases and the sample standard deviations of the estimates under the
unequal variance model with different choices of λ .
parameters bias sd bias sd bias sd

λ = 0.05 λ = 1 λ = 50
µ1 2.0 0.010 0.130 0.010 0.130 0.018 0.132
ν1 0.0 0.001 0.121 0.001 0.121 0.003 0.121
α1 2.0 0.004 0.070 0.004 0.070 0.008 0.071
µ2 3.0 0.024 0.200 0.024 0.200 0.029 0.201
ν2 3.0 0.012 0.216 0.012 0.216 0.013 0.216
α2 5.0 0.006 0.128 0.006 0.128 0.008 0.128
γ0 1.0 0.057 0.384 0.056 0.384 0.040 0.382
γ1 -1.0 0.051 0.296 0.050 0.296 0.039 0.294
σ1 0.4 0.015 0.041 0.010 0.040 0.061 0.036
σ2 0.6 0.019 0.062 0.022 0.061 0.077 0.047
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Table 5.2: The biases and the sample standard deviations of the estimates under the
unequal variance model with different σ ratios.

(σ1, σ2) (0.4, 0.6) (0.5, 1.0) (0.5, 1.5)
parameters bias sd bias sd bias sd
µ1 2.0 0.010 0.130 0.025 0.171 0.034 0.181
ν1 0.0 0.001 0.121 0.004 0.153 0.006 0.153
α1 2.0 0.004 0.070 0.011 0.091 0.015 0.095
µ2 3.0 0.024 0.200 0.071 0.305 0.150 0.422
ν2 3.0 0.012 0.216 0.031 0.338 0.070 0.487
α2 5.0 0.006 0.128 0.023 0.202 0.046 0.285
γ0 1.0 0.057 0.384 0.060 0.407 0.059 0.431
γ1 -1.0 0.051 0.296 0.053 0.311 0.053 0.326
σ1 0.015 0.041 0.096 0.049 0.019 0.049
σ2 0.019 0.062 0.361 0.103 0.061 0.158

Table 5.3: The biases and the sample standard deviations of the estimates under the
equal variance model.

(σ1, σ2) (0.4, 0.6) (0.5, 1.0) (0.5, 1.5)
parameters bias sd bias sd bias sd
µ1 2.0 0.007 0.129 0.032 0.179 0.103 0.229
ν1 0.0 0.001 0.121 0.006 0.153 0.017 0.169
α1 2.0 0.002 0.069 0.013 0.094 0.044 0.118
µ2 3.0 0.007 0.200 0.010 0.315 0.003 0.470
ν2 3.0 0.006 0.216 0.004 0.338 0.007 0.488
α2 5.0 0.003 0.128 0.005 0.207 0.007 0.317
γ0 1.0 0.003 0.366 0.050 0.391 0.151 0.419
γ1 -1.0 0.008 0.282 0.022 0.295 0.082 0.305
σ1 0.093 0.041 0.258 0.071 0.554 0.115
σ2 0.107 0.041 0.158 0.071 0.495 0.115
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5.4.2 Type I Errors

We evaluate the proposed EM test by examining the accuracy of the type I errors.

We use the same setting as that for Table 3.2 in Section 3.3.1. The resulting type I

errors are summarized in Table 5.4 and 5.5 for λ = 1 and λ = 50, respectively. We

see the type I errors are quite close to the nominal levels for K = 0, 3, and 9.

Table 5.4: Type I errors of the EM tests with bootstrap approximations based on
1000 data sets, unequal variance case, with λ = 1.

n Nominal level α pEM (0) pEM (3) pEM (9)

n=60 0.01 0.013 0.010 0.010
0.05 0.049 0.045 0.047
0.10 0.086 0.099 0.094

n=100 0.01 0.012 0.012 0.012
0.05 0.053 0.054 0.053
0.10 0.106 0.107 0.110

Table 5.5: Type I errors of the EM tests with bootstrap approximations based on
1000 data sets, unequal variance case, with λ = 50.

n Nominal level α pEM (0) pEM (3) pEM (9)

n=60 0.01 0.013 0.013 0.014
0.05 0.044 0.050 0.051
0.10 0.089 0.088 0.094

n=100 0.01 0.010 0.010 0.008
0.05 0.049 0.049 0.048
0.10 0.103 0.116 0.113

5.4.3 Power Comparison

Power is calculated using the same setting as in the equal variance case in Section

3.3.2. The power is obtained from the EM test from both the true unequal variance

model and also the equal variance model. We fix λ = 1. When we have equal or

close variances from Table 5.6 and Table 5.7, the penalized EM test give comparable

power compared to the EM test for all the settings. As we increase the ratio of σ2/σ1
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to 2 and 3, as in Table 5.8 where σ1 = 0.5 and σ2 = 1.0, and in Table 5.9 where

σ1 = 0.5 and σ2 = 1.5, the penalized test is significantly more powerful.

Table 5.6: Power (%) of the EM and pEM tests at the 5% level. Both test uses
Γ = {(1, 2)T , (1,−2)T}. The parameters of Model (1) are β1 = (1, 0, 2)T ,
β2 = (1, a, b)T , γ = (1, c)T , σ1 = 0.5 and σ2 = 0.5.

n a b c pEM (0) pEM (3) pEM (9)

60 0.5 1 1 75.2 72.2 74.0
60 0.5 0 1 33.0 34.6 36.8
60 1.0 1 1 89.2 88.2 88.0
60 1.0 0 1 79.0 83.4 84.6

100 0.5 1 1 94.2 92.0 93.8
100 0.5 0 1 49.0 57.4 57.6
100 1.0 1 1 99.0 99.2 99.0
100 1.0 0 1 95.0 97.4 98.0

n a b c EM (0) EM (3) EM (9)

60 0.5 1 1 74.0 76.2 77.8
60 0.5 0 1 25.6 36.8 36.0
60 1.0 1 1 86.2 86.8 87.8
60 1.0 0 1 69.0 80.8 84.8

100 0.5 1 1 96.2 95.8 96.8
100 0.5 0 1 35.4 49.2 54.8
100 1.0 1 1 99.0 99.2 99.4
100 1.0 0 1 86.2 95.6 97.6

5.5 Discussion

For the choice of J , K, and the initial γ’s, we suggest the same principles as in

the equal variance case of Section 3.2.3. For the penalty in Equation (5.2), we can

use any fixed positive S2
n and λ in theory, and since pn(·) is maximized as σ2 = S2

n, we

prefer S2
n to be the estimator under the equal variance model from the EM algorithm

without iterating γ as a reasonable estimator of the variance term. We do not perform

a full EM algorithm due to the identifiability issue of the parameters under the null

model. We can also use the variance estimator from the null model, but when the

data is generated under the alternative model, the variance estimator under the null
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Table 5.7: Power (%) of the EM and pEM tests at the 5% level. Both test uses
Γ = {(1, 2)T , (1,−2)T}. The parameters of Model (1) are β1 = (1, 0, 2)T ,
β2 = (1, a, b)T , γ = (1, c)T , σ1 = 0.4 and σ2 = 0.6.

n a b c pEM (0) pEM (3) pEM (9)

60 0.5 1 1 75.8 72.8 75.2
60 0.5 0 1 43.2 44.6 43.4
60 1.0 1 1 92.4 88.2 89.8
60 1.0 0 1 84.6 87.6 88.4

100 0.5 1 1 95.6 92.0 94.2
100 0.5 0 1 70.2 72.8 74.0
100 1.0 1 1 99.4 98.2 98.4
100 1.0 0 1 98.0 98.4 99.4

n a b c EM (0) EM (3) EM (9)

60 0.5 1 1 69.0 70.6 73.6
60 0.5 0 1 18.8 31.8 37.6
60 1.0 1 1 81.0 83.8 87.8
60 1.0 0 1 57.4 77.8 82.0

100 0.5 1 1 92.4 94.4 94.8
100 0.5 0 1 23.2 36.8 49.6
100 1.0 1 1 98.2 98.4 98.8
100 1.0 0 1 77.0 93.8 96.0
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Table 5.8: Power (%) of the EM and pEM tests at the 5% level. Both test uses
Γ = {(1, 2)T , (1,−2)T}. The parameters of Model (1) are β1 = (1, 0, 2)T ,
β2 = (1, a, b)T , γ = (1, c)T , σ1 = 0.5 and σ2 = 1.0.

n a b c pEM (0) pEM (3) pEM (9)

60 0.5 1 1 51.8 49.4 50.4
60 0.5 0 1 33.2 31.6 38.4
60 1.0 1 1 68.8 63.6 65.4
60 1.0 0 1 62.4 63.4 65.2

100 0.5 1 1 81.4 78.2 80.8
100 0.5 0 1 65.0 66.2 68.0
100 1.0 1 1 92.0 89.6 91.4
100 1.0 0 1 88.4 90.0 90.4

n a b c EM (0) EM (3) EM (9)

60 0.5 1 1 31.8 35.4 38.4
60 0.5 0 1 12.2 20.6 27.2
60 1.0 1 1 43.2 44.2 47.2
60 1.0 0 1 19.8 34.2 44.8

100 0.5 1 1 58.2 57.8 60.6
100 0.5 0 1 11.8 23.0 34.2
100 1.0 1 1 70.4 73.0 75.4
100 1.0 0 1 26.0 43.2 58.6
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Table 5.9: Power (%) of the EM and pEM tests at the 5% level. Both test uses
Γ = {(1, 2)T , (1,−2)T}. The parameters of Model (1) are β1 = (1, 0, 2)T ,
β2 = (1, a, b)T , γ = (1, c)T , σ1 = 0.5 and σ2 = 1.5.

n a b c pEM (0) pEM (3) pEM (9)

60 0.5 1 1 55.2 54.2 58.0
60 0.5 0 1 54.2 54.2 56.8
60 1.0 1 1 68.6 66.8 65.6
60 1.0 0 1 70.8 71.6 74.2

100 0.5 1 1 83.0 82.4 83.2
100 0.5 0 1 82.4 83.8 85.2
100 1.0 1 1 91.8 89.0 90.8
100 1.0 0 1 92.2 92.0 92.8

n a b c EM (0) EM (3) EM (9)

60 0.5 1 1 20.4 26.4 31.0
60 0.5 0 1 19.2 33.2 40.8
60 1.0 1 1 28.2 33.4 39.6
60 1.0 0 1 23.4 38.0 47.8

100 0.5 1 1 32.0 36.4 42.0
100 0.5 0 1 18.8 38.6 51.2
100 1.0 1 1 40.8 47.4 51.8
100 1.0 0 1 21.8 44.2 58.6
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model often tends to be larger than that estimated under the equal variance model,

and therefore the test might be less powerful.

Under the unequal variance model, we are testing the null of β2 = 0 and σ1 = σ2

simultaneously. A standard second step is necessary to include the confidence interval

of β2 for understanding if the null is rejected due to the differences only in the

variances.

Between the EM test developed under the equal variance model, and the pEM

test developed under the unequal variance model, we have seen that pEM is more

powerful than the EM test in general when the variance ratios are away from 1, and

does not lose much under equal variance model. In reality, the differences in the mean

and variances between the two subgroups are often present simultaneously, therefore,

if heterogeneity is suspected, the penalized EM test is recommended.

5.6 AIDS Data

In this section, we revisit the ACTG 320 study described in Section 1.1 and ana-

lyzed by the equal variance model in Chapter IV. Using the same starting values of the

EM test in Chapter IV, that is, Γ = {(2.44,−3.35,−2.33, 1.24)T , (0.95,−4.49, 0.47, 4.46)T ,

(1.00,−2.72, 4.64,−2.84)T}, the p-values of pEM is less than 0.001 for K = 3 and 9

at λ = 1 using bootstrap sample size 5000. The p-values remain less than 0.001 for

λ = 200, 400 and 800. So the null hypothesis of no subgroups is rejected.

For parameter estimation, we consider a range of λ’s and select one adaptively as

follows. For each λ, define the score function of falling into the subgroup of better

treatment effect to be S3(X;λ) = π(XTγ), where γ is estimated using the penalized

likelihood at λ. Let

TT (λ; q) = E{Y |(trt = 1, S3(X;λ) > Qq(S3))} − E{Y |(trt = 0, S3(X;λ) > Qq(S3))}

(5.20)
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Figure 5.1: The overall treatment effect in (5.21) with different λ’s.

be the treatment effect in the selected subgroup where S3(X;λ) > Qq(S3), and Qq(S3)

is the qth quantile of the scores S3(X;λ). We use an overall treatment effect

TT (λ) =

0.9∫
0.1

TT (λ; q)dq. (5.21)

The expectation and integral for (5.20) and (5.21) are estimated by sample means

and sum over q = 0.10, 0.11, · · · 0.90, respectively. We show TT (λ) for λ ∈ [1, 800] in

Figure 5.1. We see that TT (λ) increases as λ increases, but after λ reaches 400, TT (λ)

is stable. For a given q = 0.8, the treatment effect in the targeted subgroup is shown in

Figure 5.2, from which the subgroup with λ = 400 gives the highest treatment effect.

Given the information, we choose λ = 400 and use it in the penalized maximum

likelihood method. The parameter estimates are given in Table 5.1.

The treatment effects in the two subgroups are 41.74 and 93.50, respectively. The
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Figure 5.2: The treatment effect in (5.20) in selected subgroup with q = 0.8 and
different λ’s.

Table 5.10: Parameter estimates and their standard errors when Model (5.1) is used
to fit the data in the ACTG study with λ = 400.

β1 1 trt log(cd4.0) log10(rna.0) Age
est -45.97 41.74 -0.68 7.40 0.72
se 44.48 6.34 3.60 6.73 0.38
β1 + β2 1 trt log(cd4.0) log10(rna.0) Age
est -42.60 93.50 8.05 6.14 0.01
se 49.38 7.79 4.06 7.44 0.45
γ 1 log(cd4.0) log10(rna.0) Age
Parameter -9.18 0.68 1.41 -0.02
se 1.03 0.08 0.16 0.01

σ1 σ2

est 57.65 48.28
se 0.97 1.24
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difference of the treatment effects is smaller than that under the equal variance model.

The mean probability of falling into the subgroup of higher treatment is around 0.42,

and the estimated π(Xγ) values are more spread out on both side of 0.5, than what

we obtained under the equal variance model. The ratio of the two σ’s is around 1.2.

The BIC values of equal variance model and unequal variance models are 8902 and

8985, respectively, based on which the equal variance model is preferred.

If we use the unequal variance model, from the coefficients in Table 5.10, we obtain

the scores describing the probability of getting a higher treatment effect to be

S3(X) = π(−9.18 + 0.68 log(cd4.0) + 1.41 log10(rna.0)− 0.02Age). (5.22)

We have the scores S1(X) in (4.1) obtained from the equal variance model . The

scatter plot of the two scores from equal and unequal variance models are given in

Figure 5.3. They have linear and rank correlations around 0.98.

In this example, the equal variance model and the unequal variance model lead to

very similar subgroup scores and the two models might not be highly distinguishable.

The later model however allows a more relaxed condition on the variances of the

subgroups, and resulted in a more interpretable π values for subgroup assignments.
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Figure 5.3: Scatter plot of S1(X) from (4.1) versusS3(X) from (5.22).
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CHAPTER VI

Summary

We propose a model-based framework for the dual purposes of a confirmatory

subgroup analysis and a predictive modeling of subgroup membership. In contrast

to the existing work on subgroup identification in clinical and medical statistics, our

disciplined approach aims to reduce false positive subgroup identification. In the

meantime, our model can generate a scoring system that can be used to predict sub-

group membership, as demonstrated in the analysis of an AIDS study. We propose a

(penalized) EM test based on a small number of EM iterations towards the likelihood

of the logistic-normal mixture model and obtain the asymptotic representation of the

test statistic. The proposed test avoids some of the challenges and complications, both

computational and theoretical, associated with the likelihood ratio tests for mixture

models. Through simulation studies and a real data example, we demonstrate that

the proposed methodology is a valuable addition to subgroup analysis.

Like any model-based inference, the proposed EM test needs to be understood in

conjunction with an appropriate sensitivity analysis against model mis-specifications.

For the structured logistic-normal model, our empirical work shows that the test is

quite robust against moderate deviations from the logistic component of the model,

but the normal component of the model is rather critical. We hope that future

research will address a broader set of questions on robustness in subgroup analysis.
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Finally, we discuss briefly the case of non-normal components. Consider

P (Yi|(Zi, δi)) = φ(Yi|Zi;β1 + β2δi, σ),

P (δi = 1|X i,Zi) = π(XT
i γ) ≡ exp(XT

i γ)

1+exp(XT
i γ)

,

P (δi = 0|X i,Zi) = 1− P (δi = 1|X i),

(6.1)

where the notations are similar to those in Equation (2.1), σ is a common effect

parameter, and φ(·) is a probability density function.

We can derive similar EM algorithm for estimation of the parameters. In Wang

(1994); Wang et al. (1996), and Wang and Puterman (1998), mixed Poisson models

and mixed binomial models with mixing proportions depending on the covariates

through a logistic link are discussed for a fixed number of groups. If φ is a Poisson

density, any finite group models have identifiable parameters. Note that for the

non-normal cases, with some conditions, without the undesired degenerate Fisher

information matrix, the constraint that the slope of γ has to be bounded away from

zero along the EM process can be relaxed. In the work of Zhu and Zhang (2004,

2006), the likelihood ratio test of this problem is developed, but involves intensive

computation for p-values. The identifiability of the parameters for binary response

needs further research.
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