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CHAPTER I

Introduction

1.1 Background and motivation

The starting point of this thesis is the question:

Question I.1. How much symmetry can a convex open set Ω ⊂ Rd have before it is

a symmetric space?

Perhaps the most natural type of symmetry of a set Ω in Rd is an affine symmetry,

that is an affine isomorphism of Rd that leaves Ω invariant. Despite being a natural

type of symmetry, it is fairly clear that the affine symmetries of a bounded set will

never act transitively. To obtain a larger group of symmetries, we can embed Rd into

P(Rd+1) as an affine chart and then consider the projective symmetries of Ω, that

is the projective isomorphsims of P(Rd+1) that leave Ω invariant. Notice that the

projective symmetries will contain the affine symmetries. Moreover, it is possible for

the projective symmetries of a bounded set to act transitively. Take for instance the

ball

B = {[1 : x1 : · · · : xd] ∈ P(Rd+1) :
∑

x2
i < 1}

then PSO(1, d) acts transitively on B.

With this motivation we now state all the formal definitions. A set Ω ⊂ P(Rd+1)

is convex if it does not contain any projective lines and its intersection with any

1
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projective line is connected. A convex set Ω is called proper if L ∩ Ω 6= L for

all projective lines L. Properness is a natural condition because of the following

observation:

Observation I.2. Suppose Ω ⊂ P(Rd+1) is an open convex set. Then there exists

an affine chart Rd which contains Ω and in this chart Ω is of the form Ω′×Rk where

Ω′ ⊂ Rd−k is an open bounded convex set. Moreover, if Ω is an open proper convex

set then we can assume k = 0.

The symmetries or automorphism group of a convex set Ω is the group

Aut(Ω) = {g ∈ PSL(Rd+1) : gΩ = Ω}.

A proper convex open set Ω is called symmetric if Aut(Ω) is a semi-simple Lie group

and acts transitively on Ω. The symmetric convex sets were completely characterized

by Koecher (see for instance [FK94, Koe99, Vin63]).

There are at least four natural notions of a “big” automorphism group:

1. Ω is homogeneous, that is Aut(Ω) acts transitively on Ω. In this case Vin-

berg [Vin65] provided a complete classification and there are non-symmetric

examples (see also [Rot66]).

2. Ω is divisible, that is there exists a discrete group Γ ≤ Aut(Ω) which acts co-

compactly on Ω. From the classification of homogeneous convex sets, every

divisible homogeneous convex set is actually symmetric.

3. Ω is quasi-divisible which is obtained by relaxing the definition of divisible from

co-compactness to finite volume (a proper convex set Ω has an intrinsic Aut(Ω)-

invariant volume). See [Mar10, Mar12a, Mar12b] for examples and some prop-

erties of these sets.
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4. Ω is quasi-homogeneous which means that there exists a compact set K ⊂ Ω

such that Aut(Ω)K = Ω. The automorphism group of every quasi-homogeneous

strictly convex set is actually discrete and thus every quasi-homogeneous strictly

convex set is actually divisible (see [Ben03, Corollary 4.3] or [Jo03, Proposi-

tion 5.15]). In fact, it appears that there are no known examples of quasi-

homogeneous sets which are not homogenous or divisible.

From a geometric point of view the divisible case is the most interesting. In fact,

if Ω is divisible then there exists a discrete group Γ ≤ Aut(Ω) such that Γ acts

properly discontinuously, freely, and co-compactly on Ω. Thus the quotient Γ\Ω

has a C∞ manifold structure, moreover this manifold structure is compatible with

a real projective structure. We will not pursue the geometric structures perspective

in this thesis and refer the reader to Goldman’s expository article on real projective

manifolds [Gol09].

The divisible convex sets should also be the most accessible to study. In particular

one could hope to apply techniques from discrete groups of Lie groups, Riemannian

geometry (there is a natural Finsler metric), and geometric group theory.

For the two reasons above, the study of divisible convex sets have a rich history

going back to Benzecri’s [Ben55] work in the 1950’s. Perhaps the most fundamental

result is that there are many divisible sets, in particular:

Theorem I.3. For any d ≥ 4 there exists a proper convex set Ω ⊂ P(Rd+1) which is

divided by a discrete group Γ. Moreover,

1. Ω is not projectively equivalent to the ball,

2. Γ is not quasi-isometric to any symmetric space,

3. Γ is word hyperbolic,
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4. Ω is strictly convex,

5. ∂Ω is C1+α for some α > 0.

For d = 2 or d = 3 there exists a proper convex set Ω ⊂ P(Rd+1) which is divided by

a discrete group Γ satisfying (1), (3), (4), and (5).

This theorem as stated combines several results. First Gromov and Thurston

constructed compact negatively curved Riemannian manifolds whose fundamental

groups are not quasi-isometric to any symmetric space [GT87]. M. Kapovich later

showed that some of these manifolds have a compatible convex projective struc-

ture [Kap07]. This implies (1), (2), and (3). Finally a result of Benoist [Ben04,

Theorem 1.1] implies conditions (4) and (5).

There are many other examples of divisible sets. In low dimensions it is possible

to give explicit constructions (see for instance [Ben06] or [VK67]). Further examples

can be constructed by deformations. For instance, using the Klein model of hyper-

bolic geometry every compact hyperbolic manifold has a real projective structure.

Goldman [Gol90] gave coordinates on the moduli space of projective structures on

a compact surface genus g ≥ 2 surface and showed its dimension is 16g − 16. Thus

we see that there are more projective structures than hyperbolic ones. In higher

dimensions, results of Johnson and Millson [JM87], Koszul [Kos68], and Thurston

(see [Gol88, Theorem 3.1]) imply that some compact hyperbolic manifolds have a

nontrivial moduli space of real projective structures. All of these deformations can

be realized as a quotient of the form Γ\Ω where Ω ⊂ P(Rd+1) is an open proper con-

vex set and Γ ≤ PSL(Rd+1) is a discrete group, thus leading to additional examples

of divisible convex sets.

Thus the answer to Question I.1 is that convex sets can have a lot of symme-



5

try before they are symmetric spaces. This leads to a class of discrete groups of

PSL(Rd+1) that can be studied by understanding the geometry of set they act on.

For motivation we will state three theorems along these lines. The first is geometric,

the second is algebraic, and the third is dynamical.

Theorem I.4. [Ben04, Theorem 1.1] Suppose Ω ⊂ P(Rd+1) is a proper convex open

set. If Ω is divisible by Γ ≤ PSL(Rd+1) then

Ω is strictly convex ⇔ ∂Ω is C1 ⇔ Γ is word hyperbolic.

Theorem I.5. [Ben03] Let Γ ≤ PSL(Rd+1) be a discrete group which divides some

proper convex open set Ω ⊂ P(Rd+1). If Ω is irreducible and is not symmetric then

Γ is Zariski dense in PSL(Rd+1).

For the next statement, given γ ∈ PSL(Rd+1) let sd+1(γ) ≥ · · · ≥ s1(γ) be the

singular values of γ.

Theorem I.6. [Cra09] Let Γ ≤ PSL(Rd+1) be a discrete group which divides some

proper convex open set Ω ⊂ P(Rd+1). If Ω is strictly convex then

hΓ = lim
R→∞

1

R
log #{γ ∈ Γ : log(sd+1(γ)/s1(γ)) ≤ R}

exists and is at most d − 1. If hΓ = d − 1 then Ω is projectively isomorphic to the

ball.

There are many more results about these sets and the groups that divide them.

The interested reader could look at the recent survey articles by Benoist [Ben08],

Quint [Qui10], and Marquis [Mar13].

A final motivation for studying divisible sets is their connection with special

representations. A theorem of Benoist [Ben04, Theorem 1.1] implies that when

Γ ≤ PSL(Rd+1) is word hyperbolic and divides a convex set Ω ⊂ P(Rd+1) then the



6

inclusion map ρ : Γ ↪→ PSL(Rd+1) is a convex Anosov representation. These are

part of “Higher Teichmüller theory” and were introduced by Labourie [Lab06] as a

generalization of convex-cocompact groups. The theory of Anosov representations

was further developed by Guichard and Wienhard [GW12] (among many others).

1.2 Results of this thesis

As mentioned above, the theory of real divisible sets has had remarkable success

in finding interesting examples of discrete groups in Lie groups and providing a

geometry to study them. Thus it is natural to try to extend these ideas to find more

groups and more geometries.

If we return to the original question of looking at the symmetries of a set Ω ⊂ Rd

and assume that d is even, then there is one other type of symmetry coming from

the complex projective isomorphisms. More precisely, we can identify Rd with Cd/2

and embed Cd/2 into P(Cd/2+1) as an affine chart. Then we can consider the com-

plex projective transformation which leave Ω invariant. This leads to the following

question:

Question I.7. How “big” can the symmetry group be of an open “convex” set Ω ⊂

P(Cd+1) have before it is symmetric?

In real projective geometry every two distinct points are connected by a natural

one-dimensional subspace, namely the projective line containing them. This unique

one-dimensional subspace provides an obvious definition of convexity (its intersection

with Ω should be connected). In complex projective geometry, this is no longer the

case. Instead the natural subspace containing two distinct points is one complex

dimensional. This makes the concept of convexity more ambiguous. Thankfully,

there is a great deal of literature from the several complex variables community on
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different types of convexity in complex projective space and in this thesis we will use

the definitions they developed. In particular, in the next chapter we will define three

notions of convexity and state the basic properties of each.

As in the real case we will restrict our attention to the divisible sets, that is there

exists a discrete group Γ ≤ Aut(Ω) which acts co-compactly on Ω. In this thesis

we will show that the complex case is much more rigid than the real counterpart.

Delaying precise definitions to Chapter II, we will prove the following theorem:

Theorem I.8. Suppose d ≥ 2 and Ω ⊂ P(Cd+1) is a proper weakly linearly convex set

with C1 boundary. If Ω is divisible then Ω is a projective ball, that is Ω is projectively

isomorphic to

{[1 : z1 : · · · : zd] ∈ P(Cd+1) :
∑
|zi|2 < 1}.

A main tool in the proof is a complex analogue of the Hilbert metric discovered by

Dubois [Dub09]. Dubois’ main motivation for this construction came from developing

contraction principles for linear maps on complex cones in complex Hilbert spaces.

Later this metric was used to establish regularity properties of the entropy of certain

families of random walks (see for instance [Led12]). In this thesis we will develop

properties of the geometry on Ω induced by this metric. It turns out that there are

many similarities to the real Hilbert metric, in particular,

1. the boundary behavior of the metric is closely related to the shape of the bound-

ary,

2. the metric is invariant under projective automorphisms,

3. understanding translation distances of automorphisms is easy.

These properties allow us to understand a group Γ which acts co-compactly on a
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set Ω with C1 boundary and eventually deduce that Ω must be projectively equivalent

to the ball.

Given a group G acting by isometries on a metric space (X, d), the main way to

relate (X, d) and G is the Švarc-Milnor lemma which (assuming some conditions)

says that space (X, d) is quasi-isometric to G endowed with a word metric. In the

common formulation of this lemma, one of these conditions is that the metric space

is geodesic. Unfortunately, the complex Hilbert metric does not seem to have many

geodesics. Instead, in the proof of Theorem I.8 we construct quasi-geodesics and

then observe that the Švarc-Milnor Lemma holds for quasi-geodesic metric spaces.

This difficulty in finding geodesics motivates the next theorem in this thesis:

Theorem I.9. Suppose Ω ⊂ P(Cd+1) is a proper strictly weakly linearly convex open

set. If (Ω, dΩ) is geodesic then Ω is a projective ball.

It turns out that the complex Hilbert metric is related to the Apollonian metric

introduced by Beardon [Bea98] (see Section 3.5 for details). For the Apollonian

metric Gehring and Hag [GH00] proved a version of Theorem I.9 in the case when

d = 1.

Both Theorem I.8 and Theorem I.9 will reduce to the following proposition:

Proposition I.10. Suppose Ω ⊂ P(Cd+1) is an open set such that its intersection

with any projective line is either empty or a projective disk. Then Ω is a projective

ball.

Remark I.11. If Ω ⊂ Rd is an open set such that its intersection with any 2-plane

is either empty or an ellipse then it is trivial to verify that Ω is an ellipse. The

difficulty in the above proposition is that we are only assuming knowledge about the

set intersected with certain 2-dimensional planes (namely the complex lines).
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The main step in the proof of Proposition IV.1 is to show that Aut(Ω) is very

large. In particular, it acts transitively on Ω and ∂Ω. Then we use the geometry of

the complex Hilbert metric to deduce that Ω must be projectively equivalent to the

ball.

In the final chapter of this thesis we will extend our results to “convex” sets in

quaternionic projective space. In particular we will prove the following three results:

Theorem I.12. Suppose Ω ⊂ P(Hd+1) is a proper weakly linearly convex set with

C1 boundary. If Ω is divisible then Ω is projectively equivalent to the ball.

We will also construct a quaternionic Hilbert metric dΩ and prove:

Theorem I.13. Suppose Ω ⊂ P(Hd+1) is a proper strictly weakly linearly convex set.

If (Ω, dΩ) is geodesic then Ω is projectively equivalent to the ball.

As in the complex case both theorems will eventually reduce down to the following

proposition:

Proposition I.14. Suppose Ω ⊂ P(Hd+1) is a open set such that its intersection

with any projective line is either empty or projectively isomorphic to the disk. Then

Ω is projectively equivalent to the ball.

1.3 Prior work

Kobayashi and Ochiai’s [KO80] classified compact complex surfaces with a pro-

jective structure. Using this classification Cano and Seade proved the following:

Theorem I.15. [CS08] Suppose Ω ⊂ P(C3) is a divisible proper weakly linearly

convex set. Then Ω is a projective ball.

The above theorem is actually special case of the main result in [CS08]. In higher

dimensions a complete classification is probably very difficult and thus this approach
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will not generalize.

There are also several related rigidity results coming from the complex analysis

community. One remarkable theorem is the ball theorem of Rosay [Ros79] and

Wong [Won77]:

Theorem I.16. Suppose Ω ⊂ Cd is a bounded strongly pseudo-convex domain. If the

space of holomorphic automorphisms of Ω is non-compact then Ω is bi-holomorphic

to a ball.

By strongly pseudo-convex we mean that Ω has C2 boundary and the Levi-form at

each point in the boundary is positive definite. There are more general versions of the

ball theorem requiring only that the boundary is strongly pseudo-convex at an orbit

accumulation point. We refer the reader to the survey articles [IK99] and [Kra13]

for more details.

A version of the ball theorem is also true for sets in real projective space:

Theorem I.17. [SM02] Suppose Ω ⊂ P(Rd+1) is an open proper strongly convex set.

If the space of projective automorphisms of Ω is non-compact then Ω is a projective

ball.

By strongly convex set we mean that Ω has C2 boundary and the Hessian at

each point in the boundary is positive definite. In the real projective world, Benoist

showed that rigidity still holds if the boundary regularity is relaxed but at the cost

of assuming the existence of a dividing group.

Theorem I.18. [Ben04, Theorem 1.3] Suppose Ω ⊂ P(Rd+1) is an open, proper,

divisible convex set. If ∂Ω is C1+α for all α ∈ [0, 1) then Ω is a projective ball.

The theorems of Benoist and Socié-Méthou and the examples of Benoist and M.

Kapovich show that for real divisible sets there is a major difference between the
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case when the boundary has C2 regularity and when it has C1 regularity.

Another remarkable theorem in the complex case is due to Frankel.

Theorem I.19. [Fra89] Suppose Ω ⊂ Cd is a bounded convex (in the usual sense)

domain and there exists a discrete group Γ of holomorphic automorphisms of Ω such

that Γ\Ω is compact. Then Ω is a symmetric domain.

It is clear that if Ω ⊂ P(Cd+1) is convex (in the usual sense) in some affine chart

then Ω will be weakly linearly convex. Moreover there exists bounded weakly linearly

convex sets in Cd which are not bi-holomorphic to a convex set [NPZ08]. In particular

the main theorem of this paper weakens the hypothesis of Frankel’s result in one

direction while strengthening the hypothesis in two directions: assuming additional

boundary regularity and assuming the dividing group acts projectively instead of

holomorphically. We should also mention that weak linear convexity is invariant

under projective transformations while ordinary convexity is not. Thus for proving

rigidity results about the group of projective automorphisms of a domain it seems

more natural to look at weakly linearly convex domains.



CHAPTER II

Preliminaries

2.1 Convexity in complex projective space

In this section we will recall three natural definitions of convexity in complex

projective space. Each comes from the several complex variables community and

have been studied since the 1960’s. Our presentation will closely follow the book

by Andersson, Passare, and Sigurdsson [APS04] on convexity in complex projective

geometry.

The three definitions we consider are motivated by the following proposition which

characterizes convexity in real projective geometry:

Proposition II.1. Suppose Ω ⊂ P(Rd+1) is an open connected set. Then the follow-

ing are equivalent:

1. for every p ∈ ∂Ω there exists a hyperplane H containing p such that H ∩Ω = ∅,

2. for every p ∈ P(Rd+1) \ Ω there exists a hyperplane H containing p such that

H ∩ Ω = ∅,

3. for every projective line L ⊂ P(Rd+1) the intersection L ∩ Ω is connected.

The most difficult implication is that (3) implies (1), for a proof see [APS04,

Lemma 1.3.9]. Using the proposition, one can then define convexity in real projective

12
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space as follows:

Definition II.2. A connected open set Ω ⊂ P(Rd+1) is convex if it satisfies one of

the three equivalent conditions in Proposition II.1.

Unfortunately, in complex projective geometry the three corresponding conditions

all yield a different class of sets, namely the weakly linearly convex sets, the linear

convex sets, and the C-convex sets.

Definition II.3.

1. An open set Ω ⊂ P(Cd+1) is called weakly linearly convex if for every p ∈ ∂Ω

there exists a complex hyperplane H containing p such that H ∩ Ω = ∅. A

compact set Ω ⊂ P(Cd+1) is called weakly linearly convex if there exists a basis

of open weakly convex neighborhoods of Ω.

2. A set Ω ⊂ P(Cd+1) is called linearly convex if for every p ∈ P(Cd+1) \ Ω there

exists a complex hyperplane H containing p such that H ∩ Ω = ∅.

3. Finally a set is called C-convex if for every projective line L ⊂ P(Cd+1) the sets

L ∩ Ω and L \ Ω ∩ L are both connected.

In P(C2) a complex hyperplane is just a point and hence any open set is linearly

convex. One the other hand an open set in P(C2) is a C-convex if and only if is simply

connected. Thus there exists sets which are linearly convex but not C-convex. The

next theorem gives the general relationship between these three classes:

Theorem II.4. [APS04, Theorem 2.3.9, Corollary 2.5.6] Suppose Ω ⊂ P(Cd+1) is

an open or compact set. Then the following implications hold:

Ω is C-convex ⇒ Ω is linearly convex ⇒ Ω is weakly linearly convex.

Moreover, if d > 1, Ω is open, and ∂Ω is a C1 hypersurface then
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Ω is C-convex ⇔ Ω is linearly convex ⇔ Ω is weakly linearly convex.

When d > 2 there are weakly linearly convex sets which are not linearly con-

vex [APS04, Example 2.1.7] and we have already observed there are linearly convex

sets which are not C-convex.

2.1.1 The complex dual

An important concept in the study of convex sets is the dual:

Definition II.5. The complex dual of Ω ⊂ P(Cd+1) is the set

Ω∗ =
{
f ∈ P(C(d+1)∗) : f(x) 6= 0 for all x ∈ Ω

}
⊂ P(C(d+1)∗).

Remark II.6. Notice that Ω∗ will be compact when Ω is open. Often in real projective

geometry the dual of an open convex set Ω ⊂ P(Rd+1) is defined to be the set{
f ∈ P(R(d+1)∗) : f(x) 6= 0 for all x ∈ Ω

}
⊂ P(R(d+1)∗).

This is, in some situations, a natural choice because then the dual of an open convex

set will be an open convex set. In the complex case one has to be very careful

with these definitions because C-convexity is not preserved under taking closures or

interiors. In particular, this choice of definition is made so that the complex dual of

a C-convex set is again C-convex.

Since P(C(d+1)∗) can be identified with the space of complex hyperplanes in P(Cd+1)

we have the following alternative definition of linear convexity:

Observation II.7. A set Ω ⊂ P(Cd+1) is linearly convex if and only if Ω∗∗ = Ω.

It also turns out that the boundary of Ω and the boundary of Ω∗ are closely

related. We will call a complex hyperplane H tangent to a set Ω at p ∈ ∂Ω if

H contains p but does not intersect Ω. With this language we have the following

observation:
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Observation II.8. Suppose Ω ⊂ P(Cd+1) is open then

f ∈ ∂Ω∗ ⇔ the hyperplane ker f is tangent to Ω.

2.1.2 Properness

As in the real case, it is very natural to consider convex sets that are proper. In

this thesis we will use the following definition of proper sets:

Definition II.9. A set Ω ⊂ P(Cd+1) is called proper if L ∩ Ω 6= L for every complex

projective line L in P(Cd+1).

In real projective geometry, a convex set is proper if and only if its dual has non-

empty interior. In the complex setting it is unclear if this is true, but the following

is known:

Proposition II.10. [APS04, Proposition 2.3.10] If Ω ⊂ P(Cd+1) is a proper C-

convex open set, then Ω∗ is not contained in a complex hyperplane.

2.1.3 Invariance

Since a set Ω is linearly convex if and only if Ω∗∗ = Ω we see that

Observation II.11. If Ω is linearly convex so is Ω∗.

Linear convexity is not invariant under projective maps, but C-convexity is.

Theorem II.12. [APS04, Theorem 2.3.6, Theorem 2.3.9] Suppose Ω is a open or

compact C-convex set. Then

1. any projective image or pre-image of Ω is C-convex and

2. Ω∗ is C-convex.
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2.1.4 Topology

Despite only having a constraint on two-dimensional slices, it turns out that C-

convexity greatly restricts the topology of a set:

Theorem II.13. Suppose Ω ⊂ Cd is an open C-convex set. Then Ω is homeomorphic

to a ball.

Since the idea behind the proof is simple we will sketch it: suppose that 0 ∈ Ω

then for v ∈ Cd let Ωv = {z ∈ C : zv ∈ Ω}. By the Riemann mapping theorem there

exists a unique bi-holomorphic map ϕv : D→ Ωv such that ϕv(0) = 0 and ϕ′v(0) > 0.

Then one can show that the map

Φ(v) =
ϕv/‖v‖(‖v‖)v
‖v‖

is a homeomorphism B → Ω. For complete details see [APS04, Theorem 2.4.2].

2.1.5 Relationship to pseudo-convexity

It turns out that a weakly linearly convex set is also pseudo-convex (which we do

not define here). See for instance [APS04, Proposition 2.1.8].

2.2 Quasi-geodesic metric spaces

As mentioned in the introduction, the results of this thesis makes use of a Hilbert

metric defined for weakly linearly convex sets. This metric will have many of the

nice properties of the classical Hilbert metric for convex sets in real projective space,

but unfortunately is rarely geodesic. However we will show that (Ω, dΩ) is a quasi-

geodesic metric space when Ω satisfies the hypothesis of Theorem I.8. In this section

we first recall the definitions of quasi-geodesics and quasi-geodesic metric spaces.

Then we will state an important property of such spaces.
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If (X, dX) and (Y, dY ) are metric spaces, a map f : X → Y is called a (A,B)-quasi

isometric embedding if

1

A
dX(x1, x2)−B ≤ dY (f(x1), f(x2)) ≤ AdX(x1, x2) +B

for all x1, x2 ∈ X. An embedding becomes an isomorphism when there exists some

R > 0 such that Y is contained in the R-neighborhood of f(X).

The real numbers R have a natural metric: dR(x, y) = |x− y| and a map f :

[a, b] → X is a called a (A,B)-quasi geodesic segment if f induces a (A,B)-quasi-

isometric embedding ([a, b], dR) → (X, d). A metric space (X, d) is called (A,B)-

quasi-geodesic if for all x, y ∈ X there exists a (A,B)-quasi-geodesic segment whose

image contains x and y. If (X, d) is (A,B)-quasi geodesic for some A and B, then

(X, d) is called a quasi-geodesic metric space.

We now observe that the Švarc-Milnor Lemma is true for quasi-geodesic metric

spaces. More precisely: given a finitely generated group Γ and a set of generators

S = {s1, . . . , sk} define the word metric dS on Γ by

dS(γ1, γ2) = inf{N : γ−1
2 γ1 = si1 . . . siN},

we then have the following:

Theorem II.14. Suppose (X, d) is a proper quasi-geodesic metric space and Γ is

a group acting on (X, d) by isometries. If the action is properly discontinuous and

cocompact then Γ is finitely generated. Moreover, if S ⊂ Γ is a finite generating set

and x0 ∈ X then the map γ ∈ Γ → γ · x0 ∈ X is a quasi-isometry of (Γ, dS) and

(X, d).

Proof. The proof of the theorem for geodesic metric spaces given in [dlH00, Chapter

IV, Theorem 23]) can be extended to quasi-geodesic spaces essentially verbatim.



CHAPTER III

A Hilbert type metric

In this section we will consider a projective metric defined on any proper weakly

linearly convex set in complex projective space. This metric is an analogue the

classical Hilbert metric. The metric was originally constructed by [Dub09] but many

of the results in this chapter were established in [Zim13]. We will begin by recalling

the definition of the real Hilbert metric which motivates the definition in the complex

case.

3.1 The real Hilbert metric

Suppose Ω ⊂ P(Rd+1) is a convex open set, that is a set satisfying any of the

equivalent properties in Proposition II.1. Then Ω has a natural pseudo-metric dΩ

called the Hilbert metric. Given two distinct points x, y ∈ Ω let a and b be the

intersection of the projective line xy with ∂Ω ordered a, x, y, b. Then the Hilbert

metric is defined to be

dΩ(x, y) = log
|x− b| |y − a|
|x− a| |y − b|

.

This expression is well defined and when Ω is proper the Hilbert metric is actually a

metric on Ω generating the standard topology. Moreover dΩ will be invariant under

the projective automorphisms of Ω.

18
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3.2 The complex Hilbert metric and basic properties

In this section we recall Dubois’ construction of a complex Hilbert metric and

prove some basic results. Suppose Ω ⊂ P(Cd+1) is a weakly linearly convex open

set. Let x, y ∈ Ω be distinct points and let Lxy be the projective line containing x

and y. Now Lxy has real dimension two and probably the most naive definition of a

complex Hilbert metric would be the following:

dΩ(x, y) = max
a,b∈∂(Lxy∩Ω)

log
|x− b| |y − a|
|x− a| |y − b|

.

With x, y ∈ P(Cd+1) fixed and distinct, consider the map

F : Lxy × Lxy → R

given by

F (a, b) = log
|x− b| |y − a|
|x− a| |y − b|

.

Identifying Lxy with C we see that the level sets of the maps

a→ log log
|y − a|
|x− a|

and b→ log
|x− b|
|y − b|

are circles or lines. Thus F is an open map (that is F maps open sets in Lxy × Lxy

to open sets in R). This implies that

dΩ(x, y) = max
a,b∈Lxy\Lxy∩Ω

log
|x− b| |y − a|
|x− a| |y − b|

.

Dubois’ key insight is that this choice is actually a metric when Ω is a proper

weakly linearly convex open set. More precisely:

Theorem III.1. [Dub09, Lemma 2.1, Lemma 2.2] If Ω is a proper weakly linearly

convex open set then dΩ is a complete metric on Ω such that the subspace topology
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on Ω ⊂ P(Cd+1) and the topology on Ω induced by dΩ coincide. Moreover, if W ⊂

P(Cd+1) is a complex projective subspace then the inclusion W ∩ Ω ↪→ Ω induces an

isometric embedding (W ∩ Ω, dW∩Ω) ↪→ (Ω, dΩ).

Remark III.2. Dubois only considers linear convex sets (instead of weakly linearly

convex sets) and does not explicitly state that the subspace topology and metric

topology coincide, but both assertions follow from his arguments. For the reader’s

convenience we will provide a proof of Theorem III.1.

We start with an alternative definition of the complex Hilbert metric which makes

the validity of the triangle inequality more transparent.

Proposition III.3. If Ω ⊂ P(Cd+1) is a proper weakly linearly convex open set then

dΩ(x, y) = max
f,g∈Ω∗

log

(
|f(x)g(y)|
|f(y)g(x)|

)
.(3.1)

The proposition will follow from the next Lemma:

Lemma III.4. Suppose Ω ⊂ P(Cd+1) is a proper weakly linearly convex open set

with x, y ∈ Ω and f, g ∈ Ω∗. Let L be the projective line containing x and y. Let

{bf} = L ∩ ker f and {bg} = L ∩ ker g. If we identify L with C = C∪{∞} then∣∣∣∣f(x)g(y)

f(y)g(x)

∣∣∣∣ =
|x− bf | |y − bg|
|y − bf | |x− bg|

for all x, y ∈ L.

Remark III.5. Notice that L and ker f do indeed intersect at a single point. Since L

has complex dimension 1 and ker f has complex codimension 1, the subspaces must

intersect. Moreover either L∩ ker f is a single point or L ⊂ ker f . But L∩Ω 6= ∅ by

assumption and Ω ∩ ker f = ∅ because f ∈ Ω∗. For the same reasons ker g ∩ L will

be a single point.
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Proof. For clarity let Φ : L → C be the identification. Pick e1, e2 ∈ L such that

Φ([e1 + ze2]) = z for all z ∈ C. Then x = [e1 + Φ(x)e2] and y = [e1 + Φ(y)e2] where

we define [e1 + (∞)e2] := [e2].

For h ∈ Ω∗ we will associate a special representative ĥ ∈ (Cd+1)∗. If h(e2) 6= 0

then Φ(bh) ∈ C and we can pick ĥ such that ĥ(e1 + ze2) = z−Φ(bh) for all z ∈ C. If

h(e2) = 0 then Φ(bh) =∞ and we let ĥ be a representative such that ĥ(e1 + ze2) = 1

for all z ∈ C.

Then∣∣∣∣f(x)g(y)

f(y)g(x)

∣∣∣∣ =

∣∣∣∣∣ f̂(e1 + Φ(x)e2)ĝ(e1 + Φ(y)e2)

f̂(e1 + Φ(y)e2)ĝ(e1 + Φ(x)e2)

∣∣∣∣∣ =
|Φ(x)− Φ(bf )| |Φ(y)− Φ(bg)|
|Φ(y)− Φ(bf )| |Φ(x)− Φ(bg)|

where ∞ is handled in the obvious way.

Proof of Proposition III.3. By Lemma III.4 and the fact that for every x ∈ ∂Ω there

exists f ∈ Ω∗ such that x ∈ [ker f ] we have

dΩ(x, y) = max
a,b∈∂(Lxy∩Ω)

log
|x− b| |y − a|
|x− a| |y − b|

≤ max
f,g∈Ω∗

log

(
|f(x)g(y)|
|f(y)g(x)|

)
.

We have also observed that

dΩ(x, y) = sup
a,b∈Lxy\(Lxy∩Ω)

log
|x− b| |y − a|
|x− a| |y − b|

and so using Lemma III.4 again we have that

dΩ(x, y) ≥ max
f,g∈Ω∗

log

(
|f(x)g(y)|
|f(y)g(x)|

)
.

The next lemma will be used to show that the Hilbert metric is complete and

generates the standard topology on Ω.
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Lemma III.6. Suppose Ω ⊂ P(Cd+1) is a proper weakly linearly convex open set.

Then dΩ : Ω×Ω→ R is continuous with respect to the subspace topology and for any

p ∈ Ω and R > 0 the closed ball

BR(p) = {q ∈ Ω : dΩ(p, q) ≤ R}

is a compact set in Ω (with respect to the subspace topology).

Proof. We will fist show that dΩ : Ω × Ω → R is continuous with respect to the

subspace topology. The map F : Ω× Ω× Ω∗ × Ω∗ → R given by

F (v, w, f, g) = log

(
|f(v)g(w)|
|f(w)g(v)|

)
is clearly continuous in the subspace topology. Then since Ω∗ is compact dΩ : Ω×Ω→

R is continuous in the subspace topology.

We now show BR(p) is compact. Since dΩ is continuous with respect to the

subspace topology, BR(p) is closed in Ω with respect to the subspace topology. To

see that BR(p) is compact it is enough to establish the following: if {qn}n∈N ⊂ Ω is

a sequence such that qn → y ∈ ∂Ω then dΩ(p, qn) → ∞. Let f ∈ Ω∗ be such that

f(y) = 0 (such a function exists since Ω is weakly linearly convex). Since Ω is proper

there exists a function g ∈ Ω∗ such that g(y) 6= 0. Then

dΩ(qn, p) ≥ log

(
|f(p)g(qn)|
|f(qn)g(p)|

)
and so dΩ(qn, p)→∞ as n→∞. Thus BR(p) is compact in Ω.

Proof of Theorem III.1. We will first show that dΩ is a metric. There are two things

to check:

1. dΩ(x, y) ≥ 0 with equality if and only if x = y,

2. dΩ(x, y) ≤ dΩ(x, z) + dΩ(z, y).
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The first condition will follow from properness and the second will follow from weak

linear convexity.

Since Ω is proper there exists a ∈ Lxy \ Lxy ∩ Ω thus

dΩ(x, y) ≥ log
|x− a| |y − a|
|x− a| |y − a|

= 0.

Since the map

(a, b) ∈ P(C2)× P(C2)→ log
|x− b| |y − a|
|x− a| |y − b|

∈ [−∞,∞]

is open there exists (a′, b′) ∈ Lxy \ Lxy ∩ Ω near (a, a) such that

log
|x− b′| |y − a′|
|x− a′| |y − b′|

> 0.

So dΩ(x, y) > 0. This establishes the first requirement.

Using Proposition III.3, we can establish the triangle inequality:

dΩ(x, y) = max
f,g∈Ω∗

log

(
|f(x)g(y)|
|f(y)g(x)|

)
= max

f,g∈Ω∗
log

(
|f(x)g(z)|
|f(z)g(x)|

|f(z)g(y)|
|f(y)g(z)|

)
= max

f,g∈Ω∗

(
log

(
|f(x)g(z)|
|f(z)g(x)|

)
+ log

(
|f(z)g(y)|
|f(y)g(z)|

))
≤ max

f,g∈Ω∗
log

(
|f(x)g(z)|
|f(z)g(x)|

)
+ max

f,g∈Ω∗
log

(
|f(z)g(y)|
|f(y)g(z)|

)
= dΩ(x, z) + dΩ(z, y).

The metric dΩ is complete because of Lemma III.6. Moreover if xn ∈ Ω→ x ∈ Ω

in the subspace topology, the the continuity of dΩ implies that xn → x in the metric

topology.

Now suppose xn converges to x in the metric topology, that is dΩ(xn, x) → 0.

Suppose for a contradiction that xn does not converge to x in the subspace topology.

Then by passing to a subsequence we can suppose that xn converges to x∗ ∈ Ω in

the subspace topology of Ω where x∗ 6= x. Since dΩ(xn, x) is bounded, Lemma III.6
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implies that x∗ ∈ Ω. Then xn converges to x∗ in the subspace topology of Ω. So by

the argument above xn converges to x∗ in the topology induced by dΩ. But dΩ is a

metric and so x∗ = x which contradicts our initial assumptions.

Finally the “moreover” part of the theorem follows directly from the definition of

the metric.

3.3 Action of the automorphism group

Notice that if γ ∈ Aut(Ω) then tγ will preserve Ω∗ and hence we immediately see

the following:

Lemma III.7. Suppose Ω is a proper weakly linearly convex open set. If γ ∈ Aut(Ω)

then the action of γ on Ω is an isometry with respect to the Hilbert metric.

Proposition III.8. Suppose Ω ⊂ P(Cd+1) is a proper weakly linearly convex open

set, then Aut(Ω) is a closed subgroup of PSL(Cd+1) and acts properly on Ω.

Remark III.9. There are two natural topologies on Aut(Ω): the first comes from the

inclusion Aut(Ω) ↪→ PSL(Cd+1) and the second comes from the inclusion Aut(Ω) ↪→

Homeo(Ω) where Homeo(Ω) has the compact-open topology. The proof of this propo-

sition shows that the two topologies coincide.

Proof. We first establish that Aut(Ω) ≤ PSL(Cd+1) is closed. Suppose ϕn ∈ Aut(Ω)

is a sequence and ϕn → ϕ ∈ PSL(Cd+1). Now ϕ(Ω) ⊂ Ω and since ϕ : P(Cd+1) →

P(Cd+1) is a diffeomorphism the set ϕ(Ω) is open. Then ϕ(Ω) ∩ Ω 6= ∅ since Ω \ Ω

has empty interior. So suppose p ∈ Ω such that ϕ(p) ∈ Ω.

Now for q ∈ Ω and R > 0 let BR(q) ⊂ Ω be the ball of radius R about q with

respect to the Hilbert metric. Then for n large, ϕn(p) ∈ B1(ϕ(p)) and since ϕn acts

by isometries with respect to the Hilbert metric we have ϕn(BR(p)) ⊂ BR+1(ϕ(p))
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for all R > 0. This implies that ϕ(BR(p)) ⊂ BR+1(ϕ(p)) for all R > 0 and hence

that ϕ(Ω) ⊂ Ω. An identical argument shows that ϕ−1(Ω) ⊂ Ω. So ϕ(Ω) = Ω and

ϕ ∈ Aut(Ω). Thus Aut(Ω) is closed.

Now we establish the properness of the action. It is enough to show that the

set {ϕ ∈ Aut(Ω) : ϕK ∩ K 6= ∅} is compact for any K ⊂ Ω compact. So assume

{ϕn}n∈N ⊂ {ϕ ∈ Aut(Ω) : ϕK∩K 6= ∅} for some compact K. We claim that ϕn has a

convergent subsequence in Aut(Ω). Let fn : Ω→ Ω be the homeomorphism induced

by ϕn, that is fn(p) = ϕn(p). Since each fn is an isometry with respect to dΩ and

fn(K)∩K 6= ∅, using the Arzelá-Ascoli theorem we may pass to a subsequence such

that fn converges uniformly on compact subsets of Ω to a continuous map f : Ω→ Ω.

Moreover f is an isometry and hence injective.

Now we can pick ϕ̂n ∈ GL(Cd+1) representing ϕn ∈ PSL(Cd+1) such that ‖ϕ̂n‖ =

1. Then by passing to a subsequence we can suppose ϕ̂n → ϕ̂ ∈ End(Cd+1). By

construction, for y ∈ Ω \ (Ω∩ ker ϕ̂) we have that ϕ̂(y) = f(y). As f is injective this

implies that ϕ̂ has full rank. Thus [ϕ̂] ∈ PSL(Cd+1) and ϕn → [ϕ̂] in PSL(Cd+1). As

Aut(Ω) is closed in PSL(Cd+1) this implies that ϕn → [ϕ̂] in Aut(Ω).

Since ϕn was an arbitrary sequence in {ϕ ∈ Aut(Ω) : ϕK ∩K 6= ∅} this implies

that {ϕ ∈ Aut(Ω) : ϕK ∩K 6= ∅} is compact. Since K was an arbitrary compact set

of Ω the proposition follows.

3.4 Asymptotic properties

In this section we explore some asymptotic properties of the Hilbert metric. One

nice feature of the Hilbert metric is that the behavior of the metric near the boundary

is closely related to the geometry of the boundary.
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Proposition III.10. Suppose Ω is a proper weakly linearly convex open set. If

{pn}n∈N, {qn}n∈N ⊂ Ω

are sequences such that pn → x ∈ ∂Ω, qn → y ∈ ∂Ω, and dΩ(pn, qn) < R for some

R > 0 then every complex tangent hyperplane of Ω containing x also contains y.

Proof. Since Ω is proper there exists g ∈ Ω∗ such that g(x) 6= 0 and g(y) 6= 0. If

H is a complex tangent hyperplane containing x and f ∈ P(C(d+1)∗) is such that

[ker f ] = H, then [ker f ] ∩ Ω = H ∩ Ω = ∅. Thus f ∈ Ω∗ and

R ≥ dΩ(pn, qn) ≥ log

∣∣∣∣f(qn)

f(pn)

∣∣∣∣+ log

∣∣∣∣g(pn)

g(qn)

∣∣∣∣ .
Let p̂n, q̂n, x̂, ŷ ∈ Cd+1 and f̂ , ĝ ∈ C(d+1)∗ be representatives of pn, qn, x, y ∈ P(Cd+1)

and f, g ∈ P(C(d+1)∗) normalized such that

∥∥∥f̂∥∥∥ = ‖ĝ‖ = ‖p̂n‖ = ‖q̂n‖ = ‖x̂‖ = ‖ŷ‖ = 1.

Then

R ≥ log

∣∣∣∣∣ f̂(q̂n)

f̂(p̂n)

∣∣∣∣∣+ log

∣∣∣∣ ĝ(p̂n)

ĝ(q̂n)

∣∣∣∣ .
Since f(x) = 0, we see that f̂(p̂n)→ 0. Since g(x) 6= 0 and g(y) 6= 0, we see that

log

∣∣∣∣ ĝ(p̂n)

ĝ(q̂n)

∣∣∣∣
is bounded from above and below (for n large). Thus we must have that f̂(q̂n)→ 0

and then we see that y ∈ [ker f ].

Another nice feature of the Hilbert metric is that it is possible to estimate the

translation distance of elements of ϕ ∈ Aut(Ω).
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Proposition III.11. Suppose Ω is a proper weakly linearly convex open set. If

x0 ∈ Ω then there exist R > 0 depending only on x0 such that

dΩ(ϕx0, x0) ≤ R + log
(
‖ϕ‖

∥∥ϕ−1
∥∥)

for all ϕ ∈ Aut(Ω).

Proof. Let

Λ = {f ∈ C(d+1)∗ : ‖f‖ = 1, [f ] ∈ Ω∗}.

Since Ω∗ is Aut(Ω)-invariant we see that

tϕf/
∥∥tϕf∥∥ ∈ Λ

whenever f ∈ Λ and ϕ ∈ Aut(Ω) . Let x̂0 ∈ Cd+1 as a representative of x0 ∈ P(Cd+1)

with norm one. Since f(x̂0) 6= 0 for all f ∈ Λ and Λ is compact, there exists C > 0

such that:

−C < log |f(x̂0)| < C

for all f ∈ Λ. Now for ϕ ∈ Aut(Ω)

dΩ(ϕx0, x0) = sup
f,g∈Λ

log

∣∣∣∣f(ϕx̂0)g(x̂0)

f(x̂0)g(ϕx̂0)

∣∣∣∣ ≤ 2C + sup
f,g∈Λ

log

∣∣∣∣f(ϕx̂0)

g(ϕx̂0)

∣∣∣∣
and for f, g ∈ Λ

log

∣∣∣∣f(ϕx̂0)

g(ϕx̂0)

∣∣∣∣ = log
‖tϕf‖
‖tϕg‖

+ log

∣∣∣∣( tϕf

‖tϕf‖

)
(x̂0)

∣∣∣∣− log

∣∣∣∣( tϕg

‖tϕg‖

)
(x̂0)

∣∣∣∣
≤ log

(
‖ϕ‖

∥∥ϕ−1
∥∥)+ sup

f ′,g′∈Λ
log

∣∣∣∣f ′(x̂0)

g′(x̂0)

∣∣∣∣
≤ log

(
‖ϕ‖

∥∥ϕ−1
∥∥)+ 2C.

Thus

dΩ(ϕx0, x0) ≤ 4C + log
(
‖ϕ‖

∥∥ϕ−1
∥∥)

and the proposition holds with R := 4C.
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3.5 Connection to the Apollonian metric

Suppose Ω ⊂ Rd = Rd ∪{∞} is an open set, then we can consider the function

AΩ : Ω× Ω→ R≥0 given by

AΩ(x1, x2) = max
b1,b2∈Rd\Ω

log
|x1 − b1| |x2 − b2|
|x2 − b1| |x1 − b2|

where we handle∞ in the obvious way. When Ωc is not a proper subset of a sphere or

hyperplane then AΩ is a metric on Ω called the Apollonian metric [Bea98, Theorem

1.1]. This metric was apparently first considered by Barbilian [Bar35] and rediscov-

ered by Beardon [Bea98]. For additional information about the Apollonian metric

see Hästö [Häs06], Ibragimov [Ibr02], Rhodes [Rho97], and Seittenranta [Sei99].

By Proposition III.3 we have the following relationship between the complex

Hilbert metric and the Apollonian metric:

Proposition III.12. Suppose Ω ⊂ P(Cd+1) is a weakly linearly convex open set. If

x, y ∈ Ω and L is the projective line containing x and y then

dΩ(x, y) = AΩ∩L(x, y).

One well known property of the Apollonian metric is the following:

Proposition III.13. [Bea98, Lemma 3.1] If B = {x ∈ Rd : ‖x‖ < 1} ⊂ Rd then

(B, dB) is the Poincaré model of real hyperbolic space. In particular, (B, dB) is a

geodesic metric space.

Unfortunately, as a result of Gehring and Hag demonstrates, the ball is essentially

the only plane domain in which the Apollonian metric is geodesic.

Theorem III.14. [GH00, Theorem 3.26] If Ω ⊂ C is a bounded simply connected

domain such that (Ω, dΩ) is a geodesic metric space, then Ω is a disk.
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3.6 A model of complex hyperbolic space

Using Theorem III.1, Proposition III.13, and the projective ball model of complex

hyperbolic d-space we can prove:

Proposition III.15. Let Ω ⊂ P(Cd+1) be a projective ball. Then (Ω, dΩ) is isometric

to complex hyperbolic d-space.

Proof. We can pick coordinates such that

Ω = {[1 : z1 : z2 : · · · : zd] :
∑
|zi|2 < 1}.

Now let d be the complex hyperbolic metric on Ω described in Chapter 19 of [Mos73].

Then by Proposition III.13

dΩ(p, q) = d(p, q)

for all p, q ∈ Ω ∩ L where L is the projective line L = {[1 : z : 0 : · · · : 0] : |z| < 1}.

Since SU(1, d) acts transitively on the set of projective lines intersecting Ω and both

d and dΩ are preserved by SU(1, d) we see that d = dΩ on all of Ω.

3.7 Comparison with the Kobayashi metric

In this section we will compare the Kobayashi metric to the complex Hilbert

metric. The results in this section are not used in the rest of thesis. For basic

properties and applications of the Kobayashi metric see [Aba89].

Given a complex manifold Ω the (infinitesimal) Kobayashi metric is

KΩ(x; v) = inf {|ξ| : f ∈ Hol(∆,Ω), f(0) = x, df(ξ) = v}

and the Kobayashi pseudo-distance is

dKΩ(x, y) = inf

{∫ 1

0

KΩ(γ(t); γ′(t))dt : γ ∈ C∞([0, 1],Ω), γ(0) = x and γ(1) = y

}
.

Directly from the definitions one obtains the following result:
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Proposition III.16. Suppose f : M1 →M2 is a holomorphic map between complex

manifolds M1 and M2 then

KM2 (f(p); df(v)) ≤ KM1 (p; v)

and

dKM2
(f(p1), f(p2)) ≤ dKM1

(p1, p2) .

As a corollary we see that the Kobayashi metric is invariant under bi-holomorphisms:

Corollary III.17. Suppose f : M1 →M2 is a bi-holomorphic map between complex

manifolds M1 and M2 then f induces an isometry (M1, d
K
M1

)→ (M2, d
K
M2

).

In this section we will establish the following:

Proposition III.18. Suppose Ω ⊂ P(Cd+1) is a proper open C-convex set. Then

1

4
dΩ(x, y) ≤ dKΩ(x, y)

for all x, y ∈ Ω.

The proof of Proposition III.18 will use the next Lemma:

Lemma III.19. Suppose Ω ⊂ C is simply connected and 0 /∈ Ω then

|v|
4 |p|

≤ KΩ(p; v) and
1

4
log

(
|p|
|q|

)
≤ dKΩ(p, q)

for all p, q ∈ Ω and v ∈ C ∼= TpΩ.

Proof. Since Ω is simply connected and Ω 6= C, there exists a bi-holomorphic map

f : ∆ → Ω with f(0) = p. Since f is bi-holomorphic, it is an isometry with respect

to the Kobayashi metric. Since 0 /∈ Ω by Koebe’s theorem, |f ′(0)| ≤ 4 |p|. Since

K∆(0; v) = |v| this establishes the first inequality.
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To see the second inequality suppose γ ∈ C∞([0, 1],Ω) is a curve with γ(0) = p

and γ(1) = q. Then by the first part of the lemma:∫ 1

0

KΩ(γ(t), γ′(t))dt ≥ 1

4

∫ 1

0

|γ′(t)|
|γ(t)|

dt

Now d
dt
|γ(t)| ≤ |γ′(t)| and so∫ 1

0

KΩ(γ(t), γ′(t))dt ≥ 1

4

∫ 1

0

d
dt
|γ(t)|
|γ(t)|

dt =
1

4

∫ |q|
|p|

du

u
=

1

4
log

(
|p|
|q|

)
.

Proof of Proposition III.18. Suppose p, q ∈ Ω and L is the complex projective line

containing p and q. Let x, y ∈ ∂Ω ∩ L be such that

dΩ(p, q) = log
|p− x| |q − y|
|p− y| |q − x|

.

Since Ω is weakly linearly convex, there exists a complex hyperplane Hx through x

and a complex hyperplane Hy through y which do not intersect Ω. Then we can pick

new coordinates such that

1. x = [1 : 0 : · · · : 0],

2. Hx = {[z1 : 0 : z2 : · · · : zd] : z1, . . . , zd ∈ C},

3. y = [0 : 1 : 0 : · · · : 0], and

4. Hy = {[0 : z1 : z2 : · · · : zd] : z1, . . . , zd ∈ C}.

Then L = {[z1 : z2 : 0 : · · · : 0] : z1, z2 ∈ C} and

Ω ⊂ P(Cd+1) \Hy = {[1 : z1 : · · · : zd] : z1, . . . , zd ∈ C}.

Now consider the projection P (z1, . . . , zd+1) = (z1, z2). Since P is a holomorphic

map

dKP (Ω)(p, q) ≤ dKΩ(p, q).
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By construction P (Ω) ⊂ {[1 : z] : z ∈ C} which we can identify with C. Since

Hx ∩ Ω = ∅ we see that 0 /∈ P (Ω) and since P (Ω) is C-convex we see that P (Ω) is

simply connected. Thus

dKΩ(p, q) ≥ dKP (Ω)(p, q) ≥
1

4
log
|p− x|
|q − x|

.

Since y =∞ in these coordinates

log
|p− x|
|q − x|

= log
|p− x| |q − y|
|p− y| |q − x|

and thus

dKΩ(p, q) ≥ 1

4
dΩ(p, q).

3.8 Why consider the complex Hilbert metric?

A useful approach to understanding a group is to understand the geometries it

acts on. Under the hypothesis of Theorem I.8 we have a group Γ ≤ PSL(Cd+1)

acting co-compactly on a weakly linearly convex set Ω ⊂ P(Cd+1). Now Ω has (at

least) two natural geometries: the complex Hilbert geometry and the Kobayashi

geometry. In our proof of Theorem I.8 we will understand the properties of the

group Γ by understanding the geometry of the complex Hilbert metric. We focus on

this geometry because:

1. It is easy to estimate the translation distance.

2. If W ⊂ P(Cd+1) is a projective subspace then the inclusion W ∩Ω ↪→ Ω induces

an isometric embedding (W ∩ Ω, dW∩Ω) ↪→ (Ω, dΩ). Thus making it easier to

understand the geometry.
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3. Although there are many parallels between the classical Hilbert metric and the

Kobayashi metric (see for instance [Kob77] or [Lem87] or [Gol09]), the complex

Hilbert metric is a direct analogue of the real Hilbert metric and thus many

ideas from the well developed theory of real Hilbert geometry can be directly

used in the complex setting.



CHAPTER IV

Rigidity from slices

In this chapter we will prove the following:

Proposition IV.1. Suppose Ω ⊂ P(Cd+1) is an open set such that the intersection

of Ω with any complex projective line is either empty or a projective disk. Then Ω is

a projective ball.

For the rest of chapter we will assume Ω is a open set satisfying the hypothesis of

Proposition IV.1

4.1 Convexity

Notice that Ω is a proper C-convex open set and hence is linearly convex by

Theorem II.4. In particular, Ω is contained in lots of affine charts: if f ∈ Ω∗ then

P(Cd+1) \ ker f is an affine chart containing Ω. Now suppose Cd is an affine chart

containing Ω. If x, y ∈ Ω and L is the complex line in Cd containing x and y then

Ω∩L is either a half space or a ball in L. In either case Ω∩L ⊂ Cd = R2d is convex

in the usual sense. Since x, y ∈ Ω were arbitrary we see that Ω is convex in this

affine chart. Summarizing:

Proposition IV.2. Suppose Cd is an affine chart containing Ω. Then Ω ⊂ Cd is

convex.

34



35

There are several corollaries of this observations:

Corollary IV.3. Suppose Cd is an affine chart containing Ω. If x0 + R ·v0 ⊂ Ω for

some x0 ∈ Ω and v0 ∈ Cd then x+ R ·v0 ⊂ Ω for any x ∈ Ω.

Proof. Suppose x ∈ Ω. Since Ω is open there exists ε ∈ (0, 1) such that

x+
ε

(1− ε)
(x− x0) ∈ Ω.

Then since Ω is convex for any t ∈ R

x+ tv0 = (1− ε)
(
x+

ε

(1− ε)
(x− x0)

)
+ ε

(
x0 +

t

ε
v0

)
is in Ω.

Corollary IV.4. There exists an affine chart containing Ω as a bounded convex set.

Proof. Since Ω is linearly convex, there exists an affine chart containing Ω. Since Ω is

convex in this chart we can assume 0 ∈ ∂Ω and Ω ⊂ {(z1, . . . , zd) ∈ Cd : Im(z1) > 0}.

Then if H = {(−i, z2 . . . , zd) ∈ Cd} then Ω will be a bounded subset of the affine

chart P(Cd+1) \H.

As a consequence of Corollary IV.4 we have:

Corollary IV.5. Suppose L is a projective line then L ∩ Ω = L ∩ Ω.

4.2 Constructing automorphisms

Let L be a projective line intersecting Ω and fix p, q ∈ ∂Ω ∩ L distinct. Since

Ω is linearly convex there exists complex hyperplanes Hp, Hq ⊂ P(Cd+1) such that

p ∈ Hp, q ∈ Hq, Hp ∩ Ω = ∅, and Hq ∩ Ω = ∅. Since L intersects Ω it is transverse

to Hp. Thus q /∈ Hp and so Hp 6= Hq.

Then by a projective transformation we may assume:
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1. p = [1 : 0 : · · · : 0],

2. q = [0 : 1 : · · · : 0],

3. Hp ∩Hq = {[0 : 0 : z1 : · · · : zd−1] : (z1, . . . , zd−1) 6= (0, . . . , 0)}.

Then L = {[z1, z2 : 0 : · · · : 0] : (z1, z2) 6= (0, 0)} and by another projective

transformation we may assume:

4. L ∩ Ω = {[1 : z : 0 : · · · : 0] : Im(z) > 0}.

Lemma IV.6. With the choice of coordinates above, if g ∈ SL(C2) and [g] ∈

Aut0(L ∩ Ω) then Aut0(Ω) contains the projective transformation

ψg =

g 0

0 Id

 .

In particular,

1. if Aut0(Ω) acts transitively on ∂Ω ∩ L and

2. if x ∈ L ∩ ∂Ω then Px = {ϕ ∈ Aut0(Ω) : ϕ(x) = x} acts transitively on Ω ∩ L.

Proof. The “in particular” assertion follows from the main assertion and well known

facts about Aut(H) = PSL(R2) where H = {[1 : z] : Im(z) > 0} ⊂ P(C2).

Now Hq = {[0 : z1 : z2 : · · · : zd] : (z1, . . . , zd) 6= (0, . . . , 0)} and as Ω ∩Hq = ∅ we

see that

Ω ⊂ {[1 : z1 : · · · : zd] : z1, . . . , zd ∈ C}

which we can identify with Cd. In this affine chart Ω is convex and contains the

affine subspace

A = (i, 0, . . . , 0) + R(1, 0, . . . , 0)
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In particular by Corollary IV.3, Aut0(Ω) contains the projective transformation

φt(~z) = ~z + (t, 0, . . . , 0)

for all t ∈ R. This implies thatψg : g =

1 t

0 1

 , t ∈ R

 ⊂ Aut0(Ω).

Now Hp = {[z1 : 0 : z2 : · · · : zd] : (z1, . . . , zd) 6= (0, . . . , 0)} and as Ω ∩Hp = ∅ we see

that

Ω ⊂ {[z1 : 1 : z2 : · · · : zd] : z1, . . . , zd ∈ C}

which we can identify with Cd. By our initial choice of coordinates

L ∩ Ω = {[z : 1 : 0 : · · · : 0] : Im(z) < 0}

and as Ω is convex in this new affine chart, Aut0(Ω) contains the transformation

θs(~z) = ~z + s(1, 0, . . . , 0)

for any s ∈ R. Notice that θs is defined with respect to the new affine chart. This

implies that for all s ∈ R, Aut0(Ω) contains the subgroupψg : g =

1 0

s 1

 , s ∈ R

 .

Finally it is well known that the one parameter groups
1 0

s 1



s∈R

and


1 t

0 1



t∈R

generate SL(R2) and thus the lemma follows.
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4.3 Transitivity of the automorphism group

Lemma IV.7. Aut0(Ω) acts transitively on Ω.

Proof. Since every two points in Ω are contained in a projective line intersecting Ω

Lemma IV.6 immediately implies that Aut0(Ω) acts transitively on Ω.

Lemma IV.8. Aut0(Ω) acts transitively on ∂Ω.

This should be immediate from Lemma IV.6, except that given x, y ∈ ∂Ω it is not

clear that the projective line containing x and y intersects Ω.

Proof. First observe that if L is a projective line intersecting Ω then by Lemma IV.6

for all x, y ∈ L ∩ ∂Ω there exists φ ∈ Aut0(Ω) such that φ(x) = y.

We next observe that ∂Ω is connected. This follows since Ω is convex in any

affine chart. Since ∂Ω is connected, it is enough to show that Aut0(Ω) · x contains

a neighborhood of x for all x ∈ ∂Ω. Fix x ∈ ∂Ω and let L be a complex projective

line such that x ∈ L and L intersects Ω. Fix z ∈ L ∩ ∂Ω distinct from x. By

the first observation z ∈ Aut0(Ω) · x and so Aut0(Ω) · z = Aut0(Ω) · x. Since Ω

is open, there exists a neighborhood U of x in ∂Ω such that if x′ ∈ U then the

complex line L′ containing x′ and z intersects Ω. Thus by the first observation

U ⊂ Aut0(Ω) · z = Aut0(Ω) · x.

4.4 The boundary is smooth

To deduce the boundary is smooth we use the following well known fact.

Lemma IV.9. Suppose G is a connected Lie group acting smoothly on a smooth

manifold M . Then an orbit G ·m is a smoothly embedded submanifold of M if and

only if G ·m is locally closed in M .
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Here smooth mean C∞ and for a proof see [tD08, Theorem 15.3.7]. Since ∂Ω ⊂

P(Cd+1) is closed Lemma IV.8 implies:

Proposition IV.10. ∂Ω is a C∞ embedded submanifold in P(Cd+1).

4.5 Stabilizer subgroups

In this subsection we prove:

Proposition IV.11. Suppose p ∈ Ω and Kp = {ϕ ∈ Aut0(Ω) : ϕp = p}. Then Kp

acts transitively on ∂Ω.

We will need three lemmas.

Lemma IV.12. Suppose x ∈ ∂Ω and L1, L2 are two projective lines which intersect

Ω and contain x. Then

0 = inf{dΩ(p1, p2) : p1 ∈ L1 and p2 ∈ L2}.

Proof. By Corollary IV.4 there exists an affine chart containing Ω as a bounded

convex set. Since Ω is convex we may assume

1. x = 0,

2. T0∂Ω = {(z1, . . . , zd) : Im(z1) = 0}, and

3. Ω ⊂ {(z1, . . . , zd) : Im(z1) > 0}.

Now pick p = (p1, . . . , pd) ∈ L1 ∩Ω and q = (q1, . . . , qd) ∈ L2 ∩Ω such that Im(p1) =

Im(q1). Consider the lines `1, `2 : R → Kd given by `1(t) = tp and `2(t) = tq. Since

Ω is convex for 0 < t ≤ 1 we have `1(t), `2(t) ∈ Ω. Moreover

‖`1(t)− `2(t)‖ = ‖p− q‖ t.
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Now let Lt be the complex line containing `1(t) and `2(t). Since Im(p1) = Im(q1) the

complex line Lt is parallel to T0∂Ω. Then since ∂Ω is C2 there exists C2 > 0 such

that

‖`1(t)− w‖ ≥ C2

√
t and ‖`2(t)− w‖ ≥ C2

√
t

for every w ∈ Lt ∩ ∂Ω. Then for w ∈ Lt ∩ ∂Ω we have

|`1(t)− w|
|`2(t)− w|

≤ |`1(t)− `2(t)|+ |`2(t)− w|
|`2(t)− w|

≤ 1 + (‖p− q‖ /C2)
√
t.

Similarly

|`2(t)− w|
|`1(t)− w|

≤ 1 + (‖p− q‖ /C2)
√
t

for all w ∈ Lt ∩ ∂Ω. Thus

dΩ(`1(t), `2(t)) = dΩ∩Lt(`1(t), `2(t)) ≤ 2 log
(

1 + (‖p− q‖ /C2)
√
t
)
.

As `1(t) ∈ L1 ∩ Ω and `2(t) ∈ L2 ∩ Ω for 0 < t ≤ 1 this proves the lemma.

Lemma IV.13. For x ∈ ∂Ω let Px = {ϕ ∈ Aut0(Ω) : ϕx = x}. Then Px acts

transitively on Ω.

Proof. We first consider the special case in which p, q ∈ Ω and the complex line L

containing them also contains x. Then, by Lemma IV.6, there exists ϕ ∈ Px such

that ϕ(p) = q.

Now suppose p, q ∈ Ω are arbitrary. Let Lp (resp. Lq) be the complex projective

line containing x and p (resp. q). By Lemma IV.12 there exists pn ∈ Lp and qn ∈ Lq

such that dΩ(pn, qn) → 0. By the special case there exists ϕn, ψn ∈ Px such that

ϕn(p) = pn and ψn(q) = qn. Then

dΩ(ψ−1
n ϕnp, q) = dΩ(pn, qn)→ 0.
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By Proposition III.8, Aut(Ω) acts properly on Ω and so by passing to a subsequence

we may suppose that ψ−1
n ϕn → ϕ ∈ Px. Then ϕp = q. As p, q ∈ Ω were arbitrary,

this shows that Px acts transitively on Ω.

Proof of Proposition IV.11. Suppose x, y ∈ ∂Ω. By Lemma IV.8, there exists ϕ ∈

Aut0(Ω) such that ϕx = y. Let q := ϕp. Then by the above lemma there exists

ψ ∈ Py such that ψq = p. Then (ψϕ)(p) = p and (ψϕ)x = y. As x, y ∈ ∂Ω were

arbitrary this shows that Kp acts transitively on ∂Ω.

4.6 Finishing the proof of Proposition IV.1

Fix p ∈ Ω. Let Kp = {ϕ ∈ Aut0(Ω) : ϕp = p}. By Proposition III.8 Kp is

compact. Let K̂p be the pre-image of Kp under the map SL(Cd+1) → PSL(Cd+1).

By averaging the inner product

〈w, z〉 = z1w1 + · · ·+ zd+1wd+1

to obtain an K̂p-invariant inner product and then possibly changing coordinates we

can assume K̂p ≤ SU(d + 1). Now K̂p preserves the complex line p and by an

orthogonal change of coordinates we may assume p = C e1. Then K̂p also leaves

invariant C e2 + · · ·+ C ed+1 the orthogonal complement of C e1. So

K̂p ⊂


λ 0

0 A

 : λ ∈ S1, A ∈ U(d)

 .

Now ∂Ω is not contained in a hyperplane and thus

∂Ω ∩ {[1 : z1 : · · · : zd] : z1, . . . , zd ∈ C} 6= ∅.

So suppose that x = [1 : x1 : · · · : xd] ∈ ∂Ω and let R =
∑
|xi|2. Then Kp preserves

the set

S = {[1 : z1 : · · · : zd] :
∑
|zi|2 = R}
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and acts transitively on ∂Ω. Thus ∂Ω is a subset of S. As ∂Ω is a (2d−1)-dimensional

compact manifold this implies that ∂Ω = S. Since p = [1 : 0 : · · · : 0] ∈ Ω and Ω is

convex in the affine chart {[1 : z1 : · · · : zd] : z1, . . . , zd ∈ C} we have that

Ω = {[1 : z1 : · · · : zd] :
∑
|zi|2 < R2}.



CHAPTER V

Rigidity from symmetry

Recall that an open convex set Ω ⊂ P(Cd+1) is called divisible if there exists a

discrete group Γ ≤ Aut(Ω) such that Γ\Ω is compact. In this section we will prove

the main result of this thesis:

Theorem V.1. Suppose Ω is a divisible proper weakly linearly convex open set with

C1 boundary. Then Ω is a projective ball.

Remark V.2.

1. By Theorem II.4 weak linear convexity, linear convexity, and C-convexity are

all equivalent when ∂Ω is C1 the above theorem could be restated with any of

the three types of convexity.

2. The examples of real divisible convex sets constructed by deforming a real hy-

perbolic lattice and the examples constructed by Kapovich have word hyperbolic

dividing groups. Then a theorem of Benoist [Ben04, Theorem 1.1] implies that

all these examples have C1 boundary and so in real projective geometry there

are many examples of divisible proper convex open sets with C1 boundary.

5.1 Outline of proof

The proof is divided into roughly three parts:
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1. Section 5.3: showing that Γ is quasi-isometric to (Ω, dΩ). This will be accom-

plished by showing that (Ω, dΩ) is a quasi-geodesic metric space.

2. Section 5.4 and 5.5: showing that Γ contains bi-proximal elements. This will be

accomplished by understanding how the shape of the boundary of Ω constrains

the spectrum of elements in Γ.

3. Section 5.6: using bi-proximal elements in Γ to construct additional elements in

Aut(Ω).

4. Section 5.7 and 5.8: using these additional automorphisms to show that Ω

satisfies the slice condition of Proposition IV.1.

5.2 Tangent spaces versus supporting hyperplanes

Before starting the proof we begin with a simple observation about the relationship

between the tangent spaces of ∂Ω and hyperplanes tangent to Ω (in the sense of

Observation II.7). Suppose Ω is a proper weakly linearly convex open set in P(Cd+1)

with C1 boundary. Then if x ∈ ∂Ω we can find a affine chart Cd containing x. In

this affine chart we can identify Tx∂Ω with a real hyperplane. Then let TC
x ∂Ω be the

maximal complex subspace contained in Tx∂Ω. This will be a complex hyperplane

through x. Now since Ω is weakly linearly convex there exists at least one complex

hyperplane H through x which does not intersect Ω. Since Ω is C1 this hyperplane

must actually coincide with TC
x ∂Ω. Summarizing this discussion:

Observation V.3. Suppose that Ω is a proper weakly linearly convex open set

with C1 boundary. If x ∈ ∂Ω then TC
x ∂Ω is the unique complex hyperplane passing

through x and not intersecting Ω.
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5.3 The complex Hilbert metric is quasi-geodesic and consequences

In this section we will prove that (Ω, dΩ) is quasi-geodesic when Ω satisfies the

hypothesis of Theorem I.8. We will then give some applications using the Švarc-

Milnor Lemma.

Theorem V.4. Suppose Ω is a divisible proper weakly linearly convex open set with

C1 boundary. Then (Ω, dΩ) is a quasi-geodesic metric space.

Theorem V.4 will follow from the next Proposition which shows the Hilbert metric

on a C-convex planar domain with C1 boundary are always quasi-geodesic. But first

we need some notation: for a C1 embedding f : S1 → C it is well known that

Im(f) separates C into two components one of which is bounded. We will denote

this bounded component by Ωf .

Proposition V.5. Suppose f : S1 → C is a C1 embedding, then there exists K > 0

such that (Ωf , dΩf ) is (1, K)-quasi-isometric to (D, dD). Moreover for all ε > 0 there

exists δ > 0 such that if g : S1 → C is a C1 embedding with

max
eiθ∈S1

{∣∣f(eiθ)− g(eiθ)
∣∣+
∣∣df(eiθ)− dg(eiθ)

∣∣} < δ

then (Ωg, dΩg) is (1, K + ε)-quasi-isometric to (D, dD).

We will delay the proof of Proposition V.5 until the end of the section.

Proof of Theorem V.4. We first claim that if L is a complex projective line intersect-

ing Ω then L ∩ ∂Ω ⊂ L is a C1 embedded submanifold. It is enough to show that

L intersects ∂Ω transversally at every point x ∈ ∂Ω ∩ L. Suppose not, then there

exists x ∈ ∂Ω ∩ L such that L ⊂ Tx∂Ω. Since L is a complex subspace, this implies

that L ⊂ TC
x ∂Ω. But then by weak linear convexity L ∩ Ω = ∅. Thus we have a

contradiction and so L ∩ ∂Ω ⊂ L is a C1 embedded submanifold. Since Ω is weakly
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linearly convex and ∂Ω is C1, Ω is C-convex (see for instance [APS04, Corollary

2.5.6]) and thus L ∩ ∂Ω is an embedded copy of S1.

Then, by Proposition V.5, for each complex projective line L intersecting Ω there

exists k(L) > 0 such that (Ω∩L, dΩ∩L) is (1, k(L))-quasi-isometric to (D, dD). More-

over, for L′ sufficiently close to L Proposition V.5 implies that (Ω ∩ L′, dΩ∩L′) is

(1, k(L) + 1)-quasi-isometric to (D, dD).

Now let Γ ≤ PSL(Cd+1) be a dividing group, then there exists K ⊂ Ω compact

such that Ω = ∪γ∈ΓγK. The set of complex projective lines intersecting K is compact

and so by the remarks above there exists k > 0 such that (L∩Ω, dL∩Ω) is (1, k)-quasi-

isometric to (D, dD) for any complex projective line L intersecting K. In particular,

if x ∈ K and y ∈ Ω there is a (1, k)-quasi geodesic joining x to y. As Ω = ∪γ∈ΓγK

we then have that any two points in Ω are joined by a (1, k)-quasi geodesic.

Now suppose Γ ≤ PSL(V ) is a discrete group dividing a proper weakly linearly

convex open set Ω with C1 boundary. By the above theorem (Ω, dΩ) is a quasi-

geodesic metric space and by Proposition III.8 Γ acts properly on (Ω, dΩ). Then

by Theorem II.14, Γ is finitely generated and so by applying Selberg’s Lemma we

obtain:

Corollary V.6. Suppose Ω is a proper weakly linearly convex open set with C1

boundary. If Ω is divisible, then there exists a torsion free discrete group Γ ≤ Aut(Ω)

such that Γ acts co-compactly, freely, and properly discontinuously on Ω.

For torsion free dividing groups we have the following:

Corollary V.7. Suppose Ω is a proper weakly linearly convex open set and Γ ≤

Aut(Ω) is a torsion free discrete group dividing Ω. Then there exists ε > 0 such that

dΩ(γp, p) > ε for all γ ∈ Γ \ {1} and for all p ∈ Ω.
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Proof. By Proposition III.8 the action Aut(Ω) on Ω is proper. Thus the stabilizer

Kp of any point p ∈ Ω is compact. Since Γ is torsion free and discrete Γ ∩Kp = {1}

for any p ∈ Ω and hence

inf
γ∈Γ\{1}

dΩ(γp, p) > 0

for all p ∈ Ω. Now since Γ divides Ω, there exists K ⊂ Ω compact such that

Ω = ∪γ∈ΓγK. Then

inf
p∈Ω

inf
γ∈Γ\{1}

dΩ(γp, p) = inf
p∈K

inf
γ∈Γ\{1}

dΩ(γp, p) > 0.

5.3.1 Proof of Proposition V.5

Proposition V.5 will follow from the next three lemmas.

Lemma V.8. Suppose Ω1,Ω2 ⊂ C are open bounded sets. If F : Ω1 → Ω2 is a

k-bi-Lipschitz homeomorphism with F (Ω1) = Ω2, then F induces a (1, 4 log k)-quasi-

isometry (Ω1, dΩ1)→ (Ω2, dΩ2).

Proof. Since

1

k
|x− y| ≤ |F (x)− F (y)| ≤ k |x− y|

for all x, y ∈ Ω1 we have that

dΩ1(x, y)− 4 log k ≤ dΩ2(F (x), F (y)) ≤ dΩ1(x, y) + 4 log k

for all x, y ∈ Ω1.

Lemma V.9. Suppose f : S1 → C is a C1 embedding, then for all ε > 0 there exists

δ > 0 such that if g : S1 → C is a C1 embedding with

max
eiθ∈S1

{∣∣f(eiθ)− g(eiθ)
∣∣+
∣∣df(eiθ)− dg(eiθ)

∣∣} < δ
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then there exists F : Ωf → Ωg a (1 + ε)-bi-Lipschitz homeomorphism with F (Ωf ) =

Ωg.

Proof. Since f : S1 → C is a C1 embedding there exists a collar neighborhood

extension Φ : {1 − η ≤ |z| ≤ 1 + η} → C. Then if δ is small enough, Im(g) can be

parameterized by eiθ → Φ(r(eiθ)eiθ) for some C1 function r : S1 → (1 − η, 1 + η).

By further shrinking δ, it is easy to construct a C1 diffeomorphism F : Ωf → Ωg

such that |F ′(z)| and |(F−1)′(z)| are bounded by (1 + ε). Thus F : Ωf → Ωg is

(1 + ε)-bi-Lipschitz.

Lemma V.10. Suppose f : S1 → C is a C∞ embedding, then there exists a k-bi-

Lipschitz homeomorphism F : D→ Ωf with F (D) = Ωf .

Proof. This (and more) follows from the smooth version of the Riemann mapping

theorem (see for instance [Tay11, Chapter 5, Theorem 4.1]).

We can now prove Proposition V.5.

Proof of Proposition V.5. Suppose f : S1 → C is a C1 embedding. Then since any C1

embedding can be approximated by a C∞ embedding, Lemma V.9 and Lemma V.10

implies the existence of a k-bi-Lipschitz map F : D → Ωf . By Lemma V.8 this

induces a (1, 4 log(k))-quasi-isometry (D, dD) → (Ωf , dΩf ). Finally the “moreover”

part of the proposition is just Lemma V.8 and Lemma V.9.

5.4 Every element is bi-proximal or almost unipotent

For V a complex (d+ 1)-dimensional vector space and ϕ ∈ PSL(V ) let

σ1(ϕ) ≤ σ2(ϕ) ≤ · · · ≤ σd+1(ϕ)

be the absolute value of the eigenvalues (counted with multiplicity) of ϕ. Since we

are considering absolute values this is well defined.



49

Definition V.11.

1. An element ϕ ∈ PSL(V ) is called proximal if σd(ϕ) < σd+1(ϕ) and is called

bi-proximal if ϕ and ϕ−1 are proximal. When ϕ is bi-proximal let x+
ϕ and x−ϕ

be the eigenlines in P(V ) corresponding to σd+1(ϕ) and σ1(ϕ).

2. An element ϕ ∈ PSL(V ) is called almost unipotent if

σ1(ϕ) = σ2(ϕ) = · · · = σd+1(ϕ) = 1.

The purpose of this section is to prove the following.

Theorem V.12. Suppose Ω is a proper weakly linearly convex open set with C1

boundary. If Γ ≤ PSL(Cd+1) divides Ω then every γ ∈ Γ \ {1} is bi-proximal or

almost unipotent. Moreover if ϕ ∈ Aut(Ω) is bi-proximal then

1. x+
ϕ , x

−
ϕ ∈ ∂Ω,

2. TC
x+ϕ
∂Ω ∩ ∂Ω = {x+

ϕ},

3. TC
x−ϕ
∂Ω ∩ ∂Ω = {x−ϕ}, and

4. if U+ ⊂ Ω is a neighborhood of x+
ϕ and U− ⊂ Ω is a neighborhood of x−ϕ then

there exists N > 0 such that for all m > N we have

ϕm(∂Ω \ U−) ⊂ U+ and ϕ−m(∂Ω \ U+) ⊂ U−.

Remark V.13. Notice that in the second part of theorem we allow ϕ to be any bi-

proximal element in Aut(Ω).

Given an element ϕ ∈ SL(V ) let m+(ϕ) be the size of the largest Jordan block

of ϕ whose corresponding eigenvalue has absolute value σd+1(ϕ). Next let E+(ϕ) be

the span of the eigenvectors of ϕ whose eigenvalue have absolute value σd+1(ϕ) and

are part of a Jordan block with size m+(ϕ). Also define E−(ϕ) = E+(ϕ−1).
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Given y ∈ P(V ) let L(ϕ, y) ⊂ P(V ) denote the limit points of the sequence

{ϕny}n∈N. With this notation we have the following observations:

Proposition V.14. Suppose ϕ ∈ SL(V ) and {ϕn}n∈N ⊂ SL(V ) is unbounded, then

1. there exists a proper projective subspace H ( P(V ) such that L(ϕ, y) ⊂ [E+(ϕ)]

for all y ∈ P(V ) \H,

2. ϕ acts recurrently on [E+(ϕ)] ⊂ P(V ), that is for all y ∈ [E+(ϕ)] there exists

nk →∞ such that ϕnky → y,

3. E−(ϕ) ⊂ ker f for all f ∈ E+(tϕ).

Proof. All three statements follow easily once ϕ is written in Jordan normal form.

Lemma V.15. Suppose Ω is a proper weakly linearly convex open set with C1

boundary and ϕ ∈ Aut(Ω) such that {ϕn}n∈N ⊂ PSL(Cd+1) is unbounded. Then

E±(ϕ) = x± for some x± ∈ ∂Ω and E±(tϕ) = f± for some f± ∈ Ω∗. Moreover

TC
x±∂Ω = [ker f∓].

Proof. We will break the proof of the lemma into a series of claims.

Claim 1: [E+(tϕ)] ∩ Ω∗ is non-empty.

By part (1) of Proposition V.14 there exists a hyperplane H ⊂ P(V ∗) such that

L(tϕ, f) ⊂ [E+(tϕ)] for all f ∈ P(V ∗) \H. By Proposition II.10, Ω∗ is not contained

in a hyperplane and so there exists f ∈ Ω∗ \ Ω∗ ∩ H. Then as Ω∗ is compact and

tϕ-invariant, L(tϕ, f) ⊂ Ω∗ and thus [E+(tϕ)] ∩ Ω∗ 6= ∅.

Claim 2: [E−(ϕ)] ∩ Ω = ∅ and [E−(ϕ)] ∩ ∂Ω 6= ∅. In particular, since ∂Ω is C1 if
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x ∈ [E−(ϕ)] ∩ ∂Ω then [E−(ϕ)] ⊂ TC
x ∂Ω.

By Proposition III.8, Aut(Ω) acts properly on Ω and hence for any y ∈ Ω the set

{n ∈ N : dΩ(ϕ−ny, y) ≤ 1}

is finite. So [E−(ϕ)] ∩ Ω = ∅ by part (2) of Proposition V.14. Since Ω is open, part

(1) of Proposition V.14 implies the existence of some y ∈ Ω such that L(ϕ−1, y) ⊂

[E−(ϕ)]. Since Ω in ϕ-invariant L(ϕ−1, y) ⊂ Ω. Thus [E−(ϕ)] ∩ Ω 6= ∅.

Claim 3: {f+} = [E+(tϕ)]∩Ω∗ for some f+ ∈ P(V ∗) and [ker f+] = TC
x ∂Ω for any

x ∈ [E−(ϕ)] ∩ ∂Ω.

Suppose f ∈ [E+(tϕ)] ∩ Ω∗ then by part (3) of Proposition V.14, E−(ϕ) ⊂ ker f

and by the definition of Ω∗, [ker f ]∩Ω = ∅. Thus if x ∈ [E−(ϕ)]∩ ∂Ω then [ker f ] is

a complex tangent hyperplane of Ω at x. Since ∂Ω is C1 this implies that [ker f ] =

TC
x ∂Ω. As f ∈ [E+(tϕ)] ∩ Ω∗ was arbitrary this implies the claim.

Claim 4: f+ = E+(tϕ) for some f+ ∈ Ω∗.

Pick representatives ϕ̂n ∈ GL(V ∗) of tϕn ∈ PSL(V ∗) such that ‖ϕ̂n‖ = 1. Then

there exists nk → ∞ such that ϕ̂nk converges to a linear endomorphism ϕ̂∞ ∈

End(V ∗). By construction ϕ̂∞(g) ∈ L(tϕ, g) for any g ∈ P(V ∗) \ [ker ϕ̂∞]. Also by

using the Jordan normal form one can check that ϕ̂∞(V ∗) = E+(tϕ). Select f ∈

P(V ∗) such that ϕ̂∞(f) = f+. Then viewing f and f+ as complex one dimensional

subspaces of V ∗ we see that

W := {v ∈ V ∗ : ϕ̂∞(v) ∈ f+} = f + ker ϕ̂∞.

Notice that

dimCW = 1 + dimC ker ϕ̂∞ = d+ 2− dimCE
+(tϕ).
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Finally assume for a contradiction that dimCE
+(tϕ) > 1. In this case [W ] is a

proper projective subspace of P(V ∗). By Proposition II.10, Ω∗ is not contained in a

hyperplane and thus there exists g ∈ Ω∗ \Ω∗ ∩ [W ]. Since ker ϕ̂∞ ⊂ W , g /∈ [ker ϕ̂∞]

and so ϕ̂∞g is well defined in P(V ∗). As ϕ̂∞(V ∗) = E+(tϕ) we then have that

ϕ̂∞g ∈ [E+(tϕ)]. Since Ω∗ is compact and tϕ-invariant, ϕ̂∞g ∈ L(tϕ, g) ⊂ Ω∗.

Thus by Claim 3 we must have that ϕ̂∞g = f+. But this contradicts the fact

that g /∈ [W ]. So we have a contradiction and so E+(tϕ) must be a one complex

dimensional subspace.

Claim 5: x+ = E+(ϕ) for some x+ ∈ ∂Ω.

The property of E+(ϕ) having dimension one depends only on the Jordan block

structure of ϕ. As ϕ and tϕ have the same Jordan block structure Claim 4 implies

that E+(ϕ) = x+ for some x+ ∈ P(Cd+1). By repeating the argument in the proof

of Claim 2 we see that x+ ∈ ∂Ω.

Claim 6: Lemma V.15 is true.

Summarizing our conclusions so far: we have that E+(ϕ) = x+ for some x+ ∈ ∂Ω,

E+(tϕ) = f+ for some f+ ∈ Ω∗, and [ker f+] is a complex tangent hyperplane of Ω

containing [E−(ϕ)]. Thus applying the above argument to ϕ−1 we see that E−(ϕ) =

x− for some x− ∈ ∂Ω, E−(tϕ) = f− for some f− ∈ Ω∗, and [ker f−] is a complex

tangent hyperplane of Ω containing [E+(ϕ)]. Since E±(ϕ) = x± we see that [ker f∓]

is a complex tangent hyperplane containing x± and thus TC
x±∂Ω = [ker f∓].

Since each ϕ ∈ SL(V ) is either almost unipotent or σd+1(ϕ) > σ1(ϕ), Theo-

rem V.12 will follow from the next lemma.

Lemma V.16. Suppose Ω is a proper weakly linearly convex open set with C1 bound-

ary and ϕ ∈ Aut(Ω) is such that σd+1(ϕ) > σ1(ϕ). Then ϕ is bi-proximal and
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1. TC
x+ϕ
∂Ω ∩ ∂Ω = {x+

ϕ},

2. TC
x−ϕ
∂Ω ∩ ∂Ω = {x−ϕ},

3. if U+ ⊂ Ω is a neighborhood of x+
ϕ and U− ⊂ Ω is a neighborhood of x−ϕ then

there exists N > 0 such that for all m > N we have

ϕm(∂Ω \ U−) ⊂ U+ and ϕ−m(∂Ω \ U+) ⊂ U−.

Proof. Let E±(tϕ) = f± ∈ Ω∗ and E±(ϕ) = x± ∈ ∂Ω. By the previous lemma

[ker f±] = TC
x∓∂Ω. Since σd+1(ϕ) > σ1(ϕ) we see that E+(tϕ) 6= E−(tϕ) and so

f+ 6= f−. Since ∂Ω is C1, x+ is contained in unique complex tangent hyperplane

and so x+ /∈ [ker f+]. For the same reason x− /∈ [ker f−].

Then there exists a basis e1, e2, . . . , ed+1 of Cd+1 such that C ·e1 = x+, C ·e2 = x−,

and ker f+ ∩ ker f− is the span of e3, . . . , ed+1. Since x+, x−, and ker f+ ∩ ker f− are

ϕ-invariant, with respect to this basis ϕ is represented by a matrix of the form
λ+ 0 0

0 λ− 0

0 0 A

 ∈ SL(Cd+1)

where A is some (d−1)-by-(d−1) matrix. Finally since E+(ϕ) = x+ and E−(ϕ) = x−

we see that ϕ is bi-proximal.

We now show part (1) of the lemma, that is [ker f−] ∩ ∂Ω = {x+}. If x ∈

[ker f−] ∩ ∂Ω then with respect to the basis above x = [w1 : 0 : w2 : · · · : wd] for

some w1, . . . , wd ∈ C. If w1 = 0 then x ∈ [ker f+]. But then [ker f+] and [ker f−]

are complex tangent hyperplanes to ∂Ω at x. Since ∂Ω is C1 this implies that

[ker f+] = TC
x ∂Ω = [ker f−] which contradicts the fact that f+ and f− are distinct

points in P(V ∗). So w1 6= 0, but then either x = x+ or any limit point of {ϕ−nx}n∈N
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is in [ker f+]∩ [ker f−]∩∂Ω which we just showed is empty. So [ker f−]∩∂Ω = {x+}.

A similar argument shows that [ker f+] ∩ ∂Ω = {x−}.

By part (2) of the lemma, with respect to the basis above

Ω \ {x−} ⊂ {[1 : z1 : . . . zd] : z1, . . . , zd ∈ C}.

Thus for all x ∈ Ω either x = x− or ϕmx→ x+ as m→∞. In a similar fashion, for

all x ∈ Ω either x = x+ or ϕmx→ x− as m→ −∞. Thus part (3) holds.

5.5 There is a bi-proximal element

The purpose of this section is to prove the following.

Theorem V.17. Suppose Ω is a proper weakly linearly convex open set with C1

boundary. If Γ ≤ PSL(Cd+1) divides Ω then some γ ∈ Γ \ {1} is bi-proximal.

Remark V.18. Using Proposition III.11, if ϕ ∈ Aut(Ω) is almost unipotent and

x0 ∈ Ω then we have an estimate of the form:

dΩ(ϕNx0, x0) ≤ R + log
(∥∥ϕN∥∥∥∥ϕ−N∥∥) ≤ A+B log(N).(5.1)

In particular, if we knew that every non-trivial element of Γ is an “axial isometry”

then we would immediately deduce that every non-trivial element of Γ is bi-proximal.

Unfortunately, we do not see a direct way of establishing that every non-trivial

element of Γ is an “axial isometry.”

We will start with a definition, but first let SL∗(Cd+1) = {ϕ ∈ GL(Cd+1) :

|detϕ| = 1}.

Definition V.19. A connected closed Lie subgroup G ≤ SL∗(Cd+1) is called almost

unipotent if there exists a flag

{0} = V0 ( V1 ( · · · ( Vk ( Vk+1 = Cd+1
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preserved by G such that if Gi+1 ≤ GL(Vi+1/Vi) is the projection of G then Gi+1 is

bounded.

Remark V.20. Notice that a groupG is unipotent if and only if there exists a complete

flag

{0} = V0 ( V1 ( · · · ( Vd ( Vd+1 = Cd+1

preserved by G such that if Gi+1 ≤ GL(Vi+1/Vi) is the projection of G then Gi+1 =

{1}.

The proof of Theorem V.17 will use the next two propositions.

Proposition V.21. Suppose Γ ≤ SL(Cd+1) is a subgroup such that every γ ∈ Γ is

almost unipotent. Let G be the Zariski closure of Γ in SL(R2d+2). If G is connected,

then G is almost unipotent.

Proposition V.22. Suppose G ≤ SL(Cd+1) is a connected closed Lie subgroup. If G

is almost unipotent and g1, . . . , gk are fixed elements in G then there exists a constant

C > 0 such that for all N > 0 and i1, . . . , iN ∈ {1, . . . , k}

‖gi1 · · · giN‖ ≤ CNd.

Delaying the proof of the propositions we will prove Theorem V.17.

Proof of Theorem V.17. Suppose for a contradiction that Γ contains no bi-proximal

elements, then by Theorem V.12 every element of Γ is almost unipotent. If π :

SL(Cd+1) → PSL(Cd+1) is the natural projection, then there exists a finite index

subgroup Γ′ ≤ π−1(Γ) such that the Zariski closure of Γ′ is connected and Γ′ is

torsion free. Since Γ′ is torsion free π induces an isomorphism Γ′ → π(Γ′) and by

construction π(Γ′) ≤ Γ will have finite index. Then π(Γ′) divides Ω and Γ′ is finitely
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generated by Theorem V.4, Proposition III.8, and Theorem II.14. Now fix a finite

generating set S = {s1, . . . , sk} ⊂ Γ′ and a point x0 ∈ Ω. By Proposition II.14

there exists A,B > 0 such that the map γ ∈ Γ′ → γ · x0 is an (A,B)-quasi-isometry

between (Γ′, dS) and (Ω, dΩ).

Since Γ′ has infinite order, there exists a sequence i1, i2, · · · ∈ {1, . . . , k} such that

the map

N ∈ N→ γiN · · · γi2γi1

is a geodesic with respect to the word metric, that is

dS(γiNγiN−1
· · · γi1 , 1) = N

for all N > 0. Then

1

A
N −B ≤ dΩ(γiNγiN−1

· · · γi1x0, x0) ≤ AN +B(5.2)

for all N > 0.

Since the Zariski closure of Γ′ is connected, Proposition V.21 and Proposition V.22

implies the existence of C > 0 such that

‖γi1 · · · γiN‖ ≤ CNd and
∥∥γ−1

iN
· · · γ−1

i1

∥∥ ≤ CNd

for all N > 0.

Then Proposition III.11 implies that:

dΩ(γiN · · · γi1x0, x0) ≤ R + log
(
‖γiN · · · γi1‖

∥∥γ−1
i1
· · · γ−1

iN

∥∥) ≤ R + 2 logCNd

for some R > 0 depending only on x0. This contradicts the estimate in equation (5.2)

and hence Γ must contain a bi-proximal element.

We begin the proof of Proposition V.21 with a lemma that follows easily from the

main result in [Pra94]:
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Lemma V.23. [Pra94] Suppose Γ ≤ SL(Cd+1) is a subgroup such that every γ ∈ Γ

is almost unipotent. Let G be the Zariski closure of Γ in SL(R2d+2). If G is connected

and reductive, then G is compact.

Proof of Proposition V.21. We will induct on d. When d = 0, the proposition is

trivial so suppose d > 0.

If G is reductive then the above lemma implies that G is compact. Then G is an

almost unipotent group with respect to the flag {0} ( Cd+1.

If G is not reductive there exists a connected, non-trivial, normal unipotent group

U ≤ G. By Engel’s theorem the vector subspace

V = {v ∈ Cd+1 : uv = v for all u ∈ U}

is non-empty. Since U is non-trivial, V is a proper subspace. Since U is normal in

G, G preserves the flag {0} ( V ( Cd. Now let G1 be the Zariski closure of G|V

and let Γ1 = Γ|V then Γ1 is Zariski dense in G1. Moreover each element of Γ1 is

almost unipotent and hence Γ1 ≤ SL∗(V ). Since Γ1 is Zariski dense in G1 we see

that G1 ≤ SL∗(V ). Thus by induction G1 preserves a flag of the form

{0} ( V1 ( V2 ( · · · ( Vk = V

where the image of G1 into GL(Vi+1/Vi) is bounded.

In a similar fashion let G2 be the Zariski closure of the image of G in GL(Cd /V )

and let Γ2 be the image of Γ in GL(Cd /V ). Then Γ2 will be Zariski dense in G2.

Moreover each element of Γ2 is almost unipotent and hence Γ2 ≤ SL∗(Cd /V ). Since

Γ2 is Zariski dense in G2 we see that G2 ≤ SL∗(Cd /V ). Thus by induction G2

preserves a flag of the form

{0} = W0 ( W1 ( W2 ( · · · ( W` = Cd /V
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where Wi = Vk+i/V and the image of G2 into GL(Wi+1/Wi) is bounded.

All this implies that G preserves the flag

{0} = V0 ( V1 ( · · · ( Vk+` = Cd

and the image of G into GL(Vi+1/Vi) is bounded. Hence we see that G is almost

unipotent.

Proof of Proposition V.22. After conjugating G, there exists a compact group K ≤

SU(d + 1) and a upper triangular group U ≤ SL(Cd+1) with ones on the diagonal

such that K normalizes U and G ≤ KU . In particular, we can assume G = KU .

Now for ϕ ∈ End(Cd+1) define |ϕ| := sup{|ui,j|}. Let ‖·‖ be the operator norm on

End(Cd+1) associated to the standard inner product norm on Cd+1. Then

‖k1ϕk2‖ = ‖ϕ‖

for k1, k2 ∈ SU(d+ 1) and ϕ ∈ End(Cd+1). Moreover, since ‖·‖ and |·| are norms on

End(Cd+1) there exists α > 0 such that

1

α
|ϕ| ≤ ‖ϕ‖ ≤ α |ϕ|

for all ϕ ∈ End(Cd+1). In particular, for k ∈ K and u ∈ U we have

∣∣kuk−1
∣∣ ≤ α

∥∥kuk−1
∥∥ = α ‖u‖ ≤ α2 |u| .

Now let g1, . . . , gk be as in the statement of the proposition. Then gi = kiui for some

ki ∈ K and ui ∈ U . Since K normalizes U we see that

gi1 · · · giN = ku′1 · · ·u′N

for some k ∈ K and some u′k ∈ U with |u′k| ≤ α2 |uik |. Since

‖gi1 · · · giN‖ = ‖u′1 · · ·u′N‖ ≤ α |u′1 · · ·u′N |
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the proposition will follow from the claim:

Claim: For any R > 0, there exists C = C(R) > 0 such that for any u1, . . . , uN ∈ U

with |ui| < R we have |u1 · · ·uN | ≤ CNd.

Now for i < j

(u1 · · ·uN)i,j =
∑

i=a0≤a1≤···≤aN=j

(u1)ia1(u2)a1a2 · · · (uN)aN−1j

Since U is upper triangular with ones on the diagonal at most d terms in the product

(u1)ia1(u2)a1a2 · · · (uN)aN−1j are not equal to one and so

∣∣(u1)ia1(u2)a1a2 · · · (uN)aN−1j

∣∣ ≤ Rd.

Now we estimate the number of terms in the sum. Notice that ak+1 − ak ≥ 0 and

N−1∑
i=0

ak+1 − ak = j − i.

Thus we need to estimate the number of ways to write j − i as the sum of N non-

negative integers (where order matters). First let Cn(j− i) be the number of ways to

write j− i as the sum of n positive integers. Next, at most j− i of the ak+1− ak are

positive and hence the number of ways to write j − i as the sum of N non-negative

integers is at most

j−i∑
n=1

N
n

Cn(j − i).

Then

|(u1 · · ·uN)i,j| ≤
∑

i=a0≤a1≤···≤aN=j

∣∣(u1)ia1(u2)a1a2 · · · (uN)aN−1j

∣∣ ≤ Rd

j−i∑
n=1

N
n

Cn(j − i)
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and since j − i ≤ d there exists C = C(R) > 0 such that

Rd

j−i∑
n=1

N
n

Cn(j − i) < CNd

for any i < j.

5.6 Constructing additional automorphisms

Suppose Ω is a proper weakly linearly convex open set with C1 boundary. If

ϕ ∈ Aut(Ω) is bi-proximal, then we have the following standard form. First let H±

be the complex tangent hyperplane at x±ϕ . Then pick coordinates such that

1. x+
ϕ = [1 : 0 : · · · : 0],

2. x−ϕ = [0 : 1 : 0 : · · · : 0],

3. H+ ∩H− = {[0 : 0 : z2 : · · · : zd]}.

With respect to these coordinates, ϕ is represented by a matrix of the form
λ+ 0 t~0

0 λ− t~0

~0 ~0 A


where A is a (d−1)-by-(d−1) matrix. Since H− = {[0 : z1 : · · · : zd]} and Ω∩H− = ∅

we see that Ω is contained in the affine chart Cd = {[1 : z1 : · · · : zd] : z1, . . . , zd ∈ C}.

In this affine chart x+
ϕ corresponds to 0 and TC

0 ∂Ω = {0}×Cd−1. Then by a projective

transformation we may assume that

4. T0∂Ω = R×Cd−1.

Since ∂Ω is C1 there exists open neighborhoods V,W ⊂ R of 0, an open neighborhood

U ⊂ Cd−1 of ~0, and a C1 function F : V × U → W such that if O = (V + iW )× U

then
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5. ∂Ω ∩ O = Graph(F ) = {(x+ iF (x, ~z), ~z) : x ∈ V, ~z ∈ U}.

By another projective transformation we can assume

6. Ω ∩ O = {(x+ iy, ~z) ∈ O : y > F (x, ~z)}.

Theorem V.24. With the choice of coordinates above,

Ω ∩ {[z1 : z2 : 0 : · · · : 0]} = {[1 : z : 0, · · · : 0] : Im(z) > 0}.

Moreover for h ∈ SL(R2) the projective transformation defined by

ψh =

h 0

0 Id


is in Aut0(Ω).

Proof. We can assume O is bounded. Then using part (4) of Theorem V.12 we can

replace ϕ with a power of ϕ so that ϕ(O) ⊂ O.

We first claim that F (x, ~z) = F (0, ~z) for (x, ~z) ∈ V × U . Notice that with our

choice of coordinates ϕ acts by

ϕ · (z1, ~z) =

(
λ−z1

λ+
,
A~z

λ+

)
where λ± and A are as above. Since ϕ is bi-proximal(

A

λ+

)n
→ 0.

Since ϕ preserves T0∂Ω = R×Cd−1 we see that λ−/λ+ ∈ R. Since x+
ϕ is an attracting

fixed point we have λ−/λ+ ∈ (−1, 1). Finally since

ϕ · (x+ iF (x, ~z), ~z) =

(
λ−

λ+
x+ i

λ−

λ+
F (x, ~z) ,

A

λ+
~z

)
and ϕ(O) ⊂ O we see that

F

(
λ−

λ+
x,

A

λ+
~z

)
=
λ−

λ+
F (x, ~z).
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Differentiating with respect to x yields

(∂xF )(x, ~z) = (∂xF )

(
λ−

λ+
x,

A

λ+
~z

)
and repeated applications of the above formula shows

(∂x)F (x, ~z) = (∂xF )

((
λ−

λ+

)n
x,

(
A

λ+

)n
~z

)
for all n > 0. Taking the limit as n goes to infinity proves that (∂xF )(x, ~z) =

(∂xF )(0, 0). Since (∂xF )(0, 0) = 0 we then see that F (x, ~z) = F (0, ~z).

Now for t ∈ R define the projective map ut by ut · (z1, . . . , zd) = (z1 + t, z2, . . . , zd).

Since F (x, ~z) = F (0, ~z), we see that there exists ε > 0 and an open neighborhood U ′

of 0 ∈ Cd such that ut(z1, . . . , zd) ∈ Ω for all (z1, . . . , zd) ∈ U ′ ∩ Ω and |t| < ε. Now

by construction

u(λ−/λ+)t ◦ ϕ = ϕ ◦ ut

and by part (4) of Theorem V.12 for any x ∈ Ω and t ∈ R there exist m such that

ϕmx ∈ U and |(λ−/λ+)mt| < ε. With this choice of m

ϕmutx = u(λ−/λ+)mtϕ
mx

is in Ω. As Ω is ϕ-invariant this implies that utx ∈ Ω. As x ∈ Ω and t ∈ R were

arbitrary this implies that ut ∈ Aut0(Ω) for all t ∈ R. Also ut corresponds to the

matrix 1 0

t 1


in the action of SL(R2) defined in the statement of the theorem.

The same argument starting with ϕ−1 instead of ϕ (that is viewing Ω as a subset

of the affine chart {[z1 : 1 : z2 : · · · : zd]}) shows that Aut0(Ω) contains the one-
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parameter group of automorphisms corresponding to the matrices1 s

0 1


in the action of SL(R2) defined in the statement of the theorem.

Finally it is well known that these two one-parameter subgroups generate all of

SL(R2) and thus the second part of the theorem is proven.

The only assertion left to prove is that

Ω ∩ {[z1 : z2 : 0 : · · · : 0]}

coincides with {[1 : z : 0 : · · · : 0] : Im(z) > 0}. But it well known that the

action of SL(R2) restricted to {[1 : z : 0 : · · · : 0] : Im(z) > 0} is transitive.

As Ω ∩ {[z1 : z2 : 0 : · · · : 0]} is contained in this set, we see that the two sets are

equal.

Notice that the projective map ψt = ψdt with

dt =

et 0

0 e−t


is bi-proximal, x+

ψt
= x+

ϕ , and x−ψt = x−ϕ . We state this observation (and a little more)

as a corollary.

Corollary V.25. Suppose Ω is a proper weakly linearly convex open set with C1

boundary. If ϕ ∈ Aut(Ω) is bi-proximal, then there exists a one-parameter subgroup

ψt ∈ SL(Cd+1) of bi-proximal elements such that [ψt] ∈ Aut0(Ω) and

1. (ψt)|x+ϕ = etId|x+ϕ ,

2. (ψt)|x−ϕ = e−tId|x−ϕ ,
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3. (ψt)|H+∩H− = Id|H+∩H− where H± = TC
x±ϕ
∂Ω.

Since SL(R2) acts transitively on {[1 : z] ∈ P(C2) : Im(z) > 0}, Theorem V.24

also implies the following:

Corollary V.26. Suppose Ω is a proper weakly linearly convex open set with C1

boundary, ϕ ∈ Aut(Ω) is bi-proximal, and L is the complex projective line generated

by x+
ϕ and x−ϕ . Then for all p, q ∈ L∩Ω distinct there exists ϕpq ∈ Aut0(Ω) such that

ϕpq(p) = q.

Since SL(R2) acts transitively on {[1 : z] ∈ P(C2) : Im(z) = 0} ∪ {[0 : 1]},

Theorem V.24 almost implies the following:

Corollary V.27. Suppose Ω is a proper weakly linearly convex open set with C1

boundary, ϕ ∈ Aut(Ω) is bi-proximal, and L is the complex projective line generated

by x+
ϕ and x−ϕ . Then for all x, y ∈ L ∩ ∂Ω there exists ϕxy ∈ Aut0(Ω) such that

ϕxy(x) = y.

Proof. Theorem V.24 implies that for all x, y ∈ ∂(L ∩ Ω) there exists ϕ ∈ Aut0(Ω)

such that ϕ(x) = y. Thus we only have to show that L∩∂Ω = ∂(Ω∩L). To establish

this, it is enough to show that L intersects ∂Ω transversally. Suppose this were not

the case, then there exists x ∈ L∩ ∂Ω such that L ⊂ TC
x ∂Ω. Then, since Ω is weakly

linearly convex, L ∩ Ω = ∅ which is nonsense. Thus L intersects ∂Ω transversally

and thus L ∩ ∂Ω = ∂(Ω ∩ L).

5.7 Strict convexity

We call a weakly linearly convex open set Ω strictly weakly linearly convex if every

complex tangent hyperplane of Ω intersects ∂Ω at exactly one point.
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Theorem V.28. Suppose Ω is a proper weakly linearly convex open set with C1

boundary and Γ ≤ PSL(Cd) is a torsion-free group dividing Ω. Then Ω is strictly

weakly linearly convex and for all x, y ∈ ∂Ω distinct there exists ϕ ∈ Aut0(Ω) bi-

proximal such that x = x+
ϕ and y = x−ϕ .

Remark V.29. Suppose, for a moment, that Γ is a torsion-free word hyperbolic group

and ∂Γ is the Gromov boundary. Then it is well known that the pairs of attract-

ing and repelling fixed points of elements of Γ are dense in ∂Γ × ∂Γ (see for in-

stance [Gro87, Corollary 8.2.G]). The proof of Theorem V.28 follows essentially the

same argument, but with the additional technicalities coming from the possible ex-

istence of almost unipotent elements and the fact that we do not know that Γ is a

word hyperbolic group (yet).

Theorem V.28 will follow from the next three propositions.

Proposition V.30. If x ∈ ∂Ω then TC
x ∂Ω ∩ {x+

γ : γ ∈ Γ is bi-proximal} is non-

empty.

Proposition V.31. If x, y ∈ {x+
γ : γ ∈ Γ is bi-proximal} and TC

x ∂Ω 6= TC
y ∂Ω then

there exists ϕ ∈ Aut0(Ω) bi-proximal such that x = x+
ϕ and y = x−ϕ .

Proposition V.32. If x ∈ {x+
γ : γ ∈ Γ is bi-proximal} then TC

x ∂Ω ∩ ∂Ω = {x}.

Delaying the proof of the propositions, we prove Theorem V.28

Proof of Theorem V.28. First suppose that x ∈ ∂Ω, then by Proposition V.30 there

exists

z ∈ TC
x ∂Ω ∩ {x+

γ : γ ∈ Γ is bi-proximal}.

Since TC
x ∂Ω is a complex tangent hyperplane containing z and ∂Ω is C1,

TC
z ∂Ω = TC

x ∂Ω.
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But by Proposition V.32

{z} = TC
z ∂Ω ∩ ∂Ω = TC

x ∂Ω ∩ ∂Ω

and thus x = z. Since x ∈ ∂Ω was arbitrary ∂Ω = {x+
γ : γ ∈ Γ is bi-proximal}. Then

by Proposition V.32, Ω is strictly weakly linearly convex.

Now suppose x, y ∈ ∂Ω = {x+
γ : γ ∈ Γ is bi-proximal} then by Proposition V.32

TC
x ∂Ω ∩ ∂Ω = {x} and TC

y ∂Ω ∩ ∂Ω = {y}.

In particular, if x 6= y then TC
x ∂Ω 6= TC

y ∂Ω and so by Proposition V.31 there exists

ϕ ∈ Aut0(Ω) is bi-proximal such that x = x+
ϕ and y = x−ϕ .

5.7.1 Proof of Proposition V.30

Fix x ∈ ∂Ω and pn ∈ Ω such that pn → x. Fix a base point o ∈ Ω. Then since Γ

acts co-compactly on Ω there exists R < +∞ and ϕn ∈ Γ such that dΩ(ϕno, pn) < R.

By Proposition III.10: if q ∈ Ω then any limit point of {ϕnq}n∈N is in ∂Ω ∩ TC
x ∂Ω.

Now let ϕ̂n ∈ GL(Cd+1) be representatives of ϕn ∈ PSL(Cd+1) such that ‖ϕ̂n‖ = 1.

By passing to a subsequence we may suppose ϕ̂n → ϕ ∈ End(Cd+1). By construction,

if q ∈ P(Cd+1)\ [kerϕ] then ϕ(q) = limn→∞ ϕn(q). In particular ϕ(Ω\(Ω∩ [kerϕ])) ⊂

TC
x ∂Ω. As Ω is an open set, this implies that ϕ(Cd+1) ⊂ TC

x ∂Ω.

We now claim that there exists γ ∈ Γ bi-proximal such that x+
γ /∈ [kerϕ]. To see

this, let

W := Span(x+
γ : γ ∈ Γ is bi-proximal).

Since φx+
γ = x+

φγφ−1 we see that [W ] is Γ-invariant. Now suppose γ ∈ Γ is bi-proximal,

then x+
γ ∈ [W ] and so either [W ] ∩ Ω 6= ∅ or [W ] ⊂ TC

x+γ
∂Ω. In the latter case

[W ] ∩ ∂Ω ⊂ TC
x+γ
∂Ω ∩ ∂Ω = {x+

γ }
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by Theorem V.12. Since [W ] contains x−γ = x+
γ−1 this case is impossible. Using The-

orem II.4 we know that Ω is C-convex. So by definition Ω′ = [W ] ∩ Ω is a C-convex

open set in [W ]. Since [W ] is Γ-invariant, we see that Γ acts co-compactly and prop-

erly on Ω′. Now it is well known that a proper C-convex open set is homeomorphic

to an open ball (see for instance [APS04, Theorem 2.4.2]). Thus, by cohomological

dimension considerations, we must have that W = Cd+1.

Since W = Cd+1 there exists γ ∈ Γ bi-proximal such that x+
γ /∈ [kerϕ]. Then

ϕ(x+
γ ) ∈ TC

x ∂Ω and as

ϕ(x+
γ ) = lim

n→∞
ϕnx

+
γ = lim

n→∞
x+

ϕnγϕ
−1
n

we see that TC
x ∂Ω ∩ {x+

γ : γ ∈ Γ is bi-proximal} 6= ∅.

5.7.2 Proof of Proposition V.31 and Proposition V.32

We will need to know a little more about the action of almost unipotent elements

on the boundary ∂Ω.

Lemma V.33. If u ∈ Γ \ {1} is almost unipotent and ψ ∈ Aut(Ω) is bi-proximal

then x+
ψ is not a fixed point of u.

Remark V.34. That Γ is a torsion free discrete group is critical here.

Proof. Suppose for a contradiction that there exists ψ ∈ Aut(Ω) bi-proximal such

that u(x+
ψ ) = x+

ψ . Let x± := x±ψ and let L be the complex projective line containing

x+ and x−. Let H± be the complex tangent hyperplane to Ω at x±. By Theorem V.24

there exists coordinates such that

1. x+ = [1 : 0 : · · · : 0],

2. x− = [0 : 1 : 0 : · · · : 0],
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3. H+ ∩H− = {[0 : 0 : z1 : · · · : zd−1] : z1, . . . , zd−1 ∈ C},

4. Ω ∩ L = {[1 : z : 0 : · · · : 0] : Im(z) > 0},

and Aut0(Ω) contains the automorphisms

at · [z1 : z2 : · · · : zd+1] = [etz1 : e−tz2 : z3 : · · · : zd+1].

Since u fixes x+ it also fixes H+ = TC
x+∂Ω and hence with respect to these coordinates

u is represented by a matrix of the form:
1 b ~xt

0 c ~0t

~0 ~y A

 ,

where c ∈ C, ~x, ~y ∈ Cd−1, and A is a (d − 1)-by-(d − 1) matrix. Now a calculation

shows that u′ = limt→∞ a−tuat exists in PSL(Cd+1) and is represented by a matrix

of the form: 
1 0 0

0 c ~0t

~0 ~0 A

 .

Since Aut(Ω) is closed in PSL(Cd) we have that u′ ∈ Aut(Ω). Since u′ is the limit

of almost unipotent elements, u′ is almost unipotent and so |c| = 1. Since u leaves

Ω ∩ L invariant c ∈ R. Then by possibly replacing u with u2 we may assume that

c = 1. Then u′(z) = z for all z ∈ L ∩ Ω. Fix some z ∈ Ω ∩ L, then we have

inf
p∈Ω

dΩ (u(p), p) ≤ lim
t→∞

dΩ (u(atz), atz) = lim
t→∞

dΩ ((a−tuat)(z), z) = dΩ (u′(z), z) = 0.

This contradicts Corollary V.7.

We can use a standard argument to construct bi-proximal elements.
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Lemma V.35. Suppose φ, γ ∈ Γ are bi-proximal. If x+
γ , x

−
γ , x

+
φ , x

−
φ are all distinct

and U+,W+ are neighborhoods of x+
γ , x

+
φ in Ω then there exists ψ ∈ Γ bi-proximal

such that x+
ψ ∈ U+ and x−ψ ∈ W+.

Proof. Pick neighborhoods U−,W− of x−γ , x
−
φ in Ω and by possibly shrinking U±,W±

assume that U+, U−,W+,W− are all disjoint. LetO = W+∪W−∪U+∪U−. Then by

Theorem V.12, there existsm such that γ∓m(O\U±) ⊂ U∓ and φ∓m(O\W±) ⊂ W∓.

So if ψ = γmφ−m then ψ(U+) ⊂ U+ and ψ−1(W+) ⊂ W+. By Theorem V.12, ψ is

either almost unipotent or bi-proximal. Moreover by Lemma V.15, E±(ψ) = x± for

some x± ∈ ∂Ω. Since ψ(U+) ⊂ U+ and ψ−1(W+) ⊂ W+, part (1) of Proposition V.14

implies that x+ ∈ U+ and x− ∈ W+. Since U+ and W+ are disjoint this implies that

x+ 6= x−. Thus ψ is not almost unipotent.

The next lemma constructs even more bi-proximal elements.

Lemma V.36. Suppose x1, . . . , xm ∈ ∂Ω are distinct, then there exists γ ∈ Γ bi-

proximal such that x1, . . . , xm, x
+
γ , x

−
γ are all distinct.

Proof. First suppose that Γ contains a non-trivial almost unipotent element u. Let

φ ∈ Γ be bi-proximal. Since x+
φ is a not fixed point of any power of u, un(x+

φ ) =

um(x+
φ ) if and only if m = n. Thus x1, . . . , xm each appears at most once in the list

x+
φ , u(x+

φ ), u2(x+
φ ), u3(x+

φ ), . . .

In a similar fashion, x1, . . . , xm each appears at most once in the list

x−φ , u(x−φ ), u2(x−φ ), u3(x−φ ), . . .

Thus for N sufficiently large x1, . . . , xm, u
N(x+

φ ), uN(x−φ ) are all distinct and so γ =

uNφu−N satisfies the conclusion of the lemma.
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Otherwise every element of Γ \ {1} is bi-proximal. In this case, if there does not

exist γ ∈ Γ \ {1} bi-proximal such that x1, . . . , xm, x
+
γ , x

−
γ are all distinct then

Γ = ∪mi=1StabΓ(xi)

and at least one of StabΓ(x1), . . . , StabΓ(xm) has finite index in Γ (see for instance [Neu54,

Lemma 4.1]). So by passing to a finite index subgroup and possibly relabeling we

can assume that Γ fixes x1.

Now let Γ′ be the preimage of Γ under the map SL(Cd+1) → PSL(Cd+1). Then

we can conjugate Γ′ to be a subset of the matrices of the form:λ t~v

0 A


where λ ∈ C∗, ~v ∈ Cd and A is a d-by-d matrix.

We claim that Γ′ is commutative. Suppose, for a contradiction that γ ∈ [Γ′,Γ′] is

non-trivial. Then x1 is an eigenline of γ with eigenvalue one. Since γ is non-trivial

γ is bi-proximal (by assumption). Then by part (4) of Theorem V.12 the only fixed

points of γ in ∂Ω are x+
γ and x−γ . Since x1 ∈ ∂Ω is a fixed point with eigenvalue one

and γ ∈ SL(Cd+1) we have a contradiction. So Γ′ and hence Γ is commutative.

Now fix γ0 ∈ Γ\{1} and let x± := x±γ0 . Since Γ is commutative and the only fixed

points of γ0 in ∂Ω are x± we see that Γ · {x+, x−} = {x+, x−}. Since the only fixed

points of γ ∈ Γ \ {1} are x+
γ and x−γ we have that

{x+, x−} = {x+
γ , x

−
γ }.

Using Theorem V.24 we can pick coordinates such that x+ = [1 : 0 : · · · : 0],

x− = [0 : 1 : 0 : · · · : 0], and if L is complex projective line containing x+ and x−

then

Ω ∩ L = {[1 : z : 0 : · · · : 0] : Im(z) > 0}.
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Since L is Γ-invariant and Γ\Ω is compact, Γ acts co-compactly on Ω∩L. Also Γ acts

by isometries on (Ω∩L, dΩ∩L) which by Proposition III.13 is isometric to hyperbolic

real 2-space. But this contradicts that Γ is commutative.

We can now prove Proposition V.31 and Proposition V.32.

Proof of Proposition V.31. Suppose {γn}n∈N, {φn}n∈N ⊂ Γ are sequences of bi-proximal

elements such that x+
γn → x and x+

φn
→ y. By passing to subsequences we can assume

x−γn → x′ and x−φn → y′.

First suppose that x, x′, y, y′ are all distinct. Then for n large x+
γn , x

−
γn , x

+
φn
, x−φn are

all distinct and so using Lemma V.35 we can find a sequence {ψn} ⊂ Γ of bi-proximal

elements such that x+
ψn
→ x and x−ψn → y. Now let Hx := TC

x ∂Ω, Hy := TC
y ∂Ω, and

H±n := TC
x±ψn

∂Ω. Since ∂Ω is C1 and Hx 6= Hy, for n large enough H+
n 6= H−n and

in the of space complex codimension two subspaces H+
n ∩ H−n → Hx ∩ Hy. By

Corollary V.25, there exist bi-proximal elements ψ̂n ∈ SL(Cd+1) such that

1. [ψ̂n] ∈ Aut0(Ω),

2. ψ̂n|x+ψn = 2Id|x+ψn ,

3. ψ̂n|x−ψn = (1/2)Id|x−ψn , and

4. ψ̂n|H+
n ∩H−n = Id|H+

n ∩H−n .

Now since x+
ψn
→ x, x−ψn → y, and H+

n ∩H−n → Hx∩Hy, we see that ψ̂n converges to

ψ̂ ∈ SL(Cd+1) such that ψ̂|x = 2Id|x, ψ̂|y = (1/2)Id|y, and ψ̂|Hx∩Hy = Id|Hx∩Hy . As

Aut0(Ω) ⊂ PSL(Cd+1) is closed, [ψ̂] ∈ Aut0(Ω). This establishes the lemma in this

special case.

Next consider case in which x, x′, y, y′ are not all distinct. By Lemma V.36 there

exists ϕ ∈ Γ bi-proximal such that x+
ϕ and x−ϕ are not in the set {x, y, x′, y′}. Then
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for n large x+
γn , x

−
γn , x

+
ϕ , x

−
ϕ are all distinct and we can use Lemma V.35 to find a

sequence {γ′n} ⊂ Γ of bi-proximal elements such that x+
γ′n
→ x and x−γ′n → x+

ϕ . So by

replacing γn with γ′n we may suppose x+
γn → x and x−γn → x+

ϕ . A similar argument

shows that we may assume x+
φn
→ y and x−φn → x−ϕ . Since x, y, x+

ϕ , x
−
ϕ are all distinct

we can now apply the argument above.

Proof of Proposition V.32. Suppose {γn}n∈N ⊂ Γ is a sequence of bi-proximal ele-

ments such that x+
γn → x. By passing to subsequences we can assume x−γn → x′.

Now pick γ ∈ Γ bi-proximal such that

{x, x′} ∩ {x+
γ , x

−
γ } = ∅.

Then using Lemma V.35 we can find a sequence of bi-proximal elements {φn}n∈N ⊂ Γ

such that x+
φn
→ x and x−φn → x+

γ .

By Theorem V.12, TC
x+γ
∂Ω ∩ ∂Ω = {x+

γ } and in particular TC
x+γ
∂Ω 6= TC

x ∂Ω. Thus

by Proposition V.31, there exists ϕ ∈ Aut0(Ω) bi-proximal such that x = x+
ϕ and

x+
γ = x−ϕ . Then by Theorem V.12 we see that TC

x ∂Ω ∩ ∂Ω = {x}.

5.8 Completing the proof of Theorem I.8

Suppose Ω is a divisible weakly linearly convex open set with C1 boundary. Then

it follows from Theorem V.24 and Theorem V.28 that L ∩ Ω is either empty or a

projective disk whenever L is a complex projective line. Thus by Proposition IV.1

Ω is a projective ball.

Remark V.37. The full argument in Proposition IV.1 is not needed, instead one can

use the arguments in Sections 4.3, 4.4, and 4.5 to complete the proof.



CHAPTER VI

Rigidity from geodesics

In this chapter we will prove:

Theorem VI.1. Suppose Ω ⊂ P(Cd+1) is a proper strictly weakly linear convex open

set. Then the following are equivalent:

1. (Ω, dΩ) is geodesic,

2. Ω is a projective ball,

3. (Ω, dΩ) is isometric to CHd.

We call an open set Ω strictly weakly linear convex if for every complex tangent

plane intersects Ω at exactly one point. Notice that in P(C2), complex hyperplanes

are just points and hence when d = 1 being strictly weakly linear convex and weakly

linear convex is the same.

In Section 3.5 we showed that for linearly convex domains in P(C2) the complex

Hilbert metric and the Apollonian metric coincide and in particular Theorem I.9 can

be seen as a generalization of the following result of Gehring and Hag:

Theorem VI.2. [GH00] Suppose Ω ⊂ P(C2) is a proper weakly linear convex open

set. If (Ω, AΩ) is geodesic then Ω is projectively equivalent to the unit ball.

Using Proposition IV.1 it is enough to prove the following:
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Proposition VI.3. Suppose Ω ⊂ P(Cd+1) is a proper strictly weakly linear convex

open set and (Ω, dΩ) is geodesic. If L is a projective line intersecting Ω then

(Ω ∩ L, dΩ∩L)

is geodesic. In particular, the intersection of Ω with any projective line is either

empty or a projective disk.

The proof of Proposition VI.3 will follow from the next two lemmas.

Lemma VI.4. Suppose Ω ⊂ P(Cd+1) is a proper weakly linear convex open set. Fix

x, y ∈ Ω and let f, g ∈ Ω∗ be such that

dΩ(x, y) = log

∣∣∣∣f(x)g(y)

f(y)g(x)

∣∣∣∣ .
Let L be the projective line containing x and y. If {bf} = ker f∩L and {bg} = ker g∩L

then bf , bg ∈ ∂Ω.

Proof. If we identify L with C then Lemma III.4 and the results in Section 3.5 imply

that:

log
|x− bf | |y − bg|
|y − bf | |x− bg|

= dΩ(x, y) = AΩ∩L(x, y) = sup
b1,b2∈L\(Ω∩L)

log
|x− b1| |y − b2|
|y − b1| |x− b2|

.

Now the map

(b1, b2) ∈ (L \ (Ω ∩ L))2 → log
|x− b1| |y − b2|
|y − b1| |x− b2|

∈ R

is an open map. Thus we must have that bf , bg ∈ ∂(Ω ∩ L) ⊂ ∂Ω.

Lemma VI.5. Suppose Ω ⊂ P(Cd+1) is a proper strictly weakly linear convex open

set. If x, y, z ∈ Ω are all distinct and

dΩ(x, z) + dΩ(z, y) = dΩ(x, y)

then z is contained in the complex projective line generated by x and y.
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Proof. Since Ω is open, Ω∗ is compact. Thus there exists f, g ∈ Ω∗ such that

dΩ(x, y) = log

∣∣∣∣f(x)g(y)

f(y)g(x)

∣∣∣∣ .
Let L0 be the complex projective line containing x and y. If {bf} = ker f ∩ L0

and {bg} = ker g ∩ L0 then by the previous Lemma bf , bg ∈ ∂Ω. Since f ∈ Ω∗,

ker f ∩ Ω = ∅ and thus ker f is a complex tangent hyperplane to bf ∈ ∂Ω. Since Ω

is strictly linearly convex this implies that ker f ∩ ∂Ω = {bf}. A similar argument

shows that ker g ∩ ∂Ω = {bg}.

Also

dΩ(x, y) = log

∣∣∣∣f(x)g(y)

f(y)g(x)

∣∣∣∣ = log

∣∣∣∣f(x)g(z)

f(z)g(x)

∣∣∣∣+ log

∣∣∣∣f(z)g(y)

f(y)g(z)

∣∣∣∣
≤ dΩ(x, z) + dΩ(z, y) = dΩ(x, y)

thus we must have

log

∣∣∣∣f(x)g(z)

f(z)g(x)

∣∣∣∣ = dΩ(x, z) and log

∣∣∣∣f(z)g(y)

f(y)g(z)

∣∣∣∣ = dΩ(z, y).

Now let L1 be the projective line containing x and z. If {b′f} = ker f ∩ L1 and

{b′g} = ker g ∩ L1 then by the previous Lemma b′f , b
′
g ∈ ∂Ω. But ker f ∩ ∂Ω = {bf}

and ker g∩∂Ω = {bg} so b′f = bf and b′g = bg. Since x and y are distinct dΩ(x, y) 6= 0

and so bg and bf are distinct. Then since bf , bg ∈ L0∩L1 we must have that L1 = L0.

So z is contained in the complex projective line generated by x and y.

Proof of Proposition VI.3. Suppose L is a projective line intersecting Ω. If x, y ∈ L,

then there exists a geodesic σ : [0, T ]→ Ω joining x and y. Then for all t ∈ [0, T ]

dΩ(x, y) = dΩ(x, σ(t)) + dΩ(σ(t), y).

Thus by Lemma VI.5, σ ⊂ L ∩ Ω. By Theorem III.1 the inclusion map L ∩ Ω ↪→ Ω

induces an isometric embedding (L ∩ Ω, dL∩Ω) ↪→ (Ω, dΩ) thus we see that σ is a
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geodesic in (L∩Ω, dΩ∩L). Since x, y ∈ L∩Ω were arbitrary, we see that (L∩Ω, dL∩Ω)

is a geodesic metric space. Then by Theorem VI.2, we see that L∩Ω is a projective

disk.



CHAPTER VII

Extensions to quaternionic projective space

In this section we will extend the results of Chapters IV, V, and VI to quaternionic

projective space. In particular we will show:

Theorem VII.1. Suppose Ω ⊂ P(Hd+1) is a proper weakly linearly convex set with

C1 boundary. If Ω is divisible then Ω is a projective ball.

We will construct a quaternionic Hilbert metric and prove:

Theorem VII.2. Suppose Ω ⊂ P(Hd+1) is a strictly weakly linearly convex set. If

(Ω, dΩ) is geodesic then Ω is a projective ball.

As in the complex case, both results will reduce to the following proposition:

Proposition VII.3. Suppose Ω ⊂ P(Hd+1) is an open set such that its intersection

with any projective line is either empty or a projective disk. Then Ω is a projective

ball.

We will begin with some basic background on the quaternions.
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7.1 The quaternions

The quaternions H = {a+ bi+ cj + dk : a, b, c, d ∈ R} form a complex two di-

mensional vector space with multiplication rules:

i2 = j2 = k2 = ijk = −1.

The quaternions have a natural conjugation:

a+ bi+ cj + dk = a− bi− ci− dk

and a corresponding absolute value:

|a+ bi+ cj + dk|2 = (a+ bi+ cj + dk)(a+ bi+ cj + dk) = a2 + b2 + c2 + d2.

One can also speak of the real part 1
2
(x + x) and the imaginary part 1

2
(x − x) of a

quaternion.

Let H act on Hd as follows:

α · (z1, . . . , zd) = (z1α, . . . , zdα).

Now we can define GL(Hd) to be the invertible linear transformations of Hd which

commute with the action of H. In this chapter we identify Hd with d-by-1 matrices

with entries in H. If Md(H) is the space of d-by-d matrices with entries in H, then

we can identify

GL(Hd) = GL(C2d) ∩Md(H).

Since the quaternions are non-commutative this identification requires that the scalar

multiplication acts on the right while Md(H) acts on the left.

Given ϕ ∈ GL(Hd) we can define a determinant by viewing ϕ as an element of

GL(C2d):

D(ϕ) :=
∣∣det(ϕ : C2d → C2d)

∣∣ .



79

There are more sophisticated ways to define determinants for matrices with quater-

nionic entries, but the simple definition given above is good enough for our purposes.

Finally, define the special linear group

SL(Hd+1) = {ϕ ∈ GL(Hd+1) : D(ϕ) = 1}.

Now we can define the quaternionic projective space P(Hd+1) to be

P(Hd+1) = {~z ∈ Hd+1}/{~z ∼ α · ~z}.

Then GL(Hd+1) acts on P(Hd+1) and an element ϕ ∈ GL(Hd+1) acts trivially if and

only if

ϕ =


α

. . .

α


for some α ∈ R∗. So the group

PSL(Hd+1) = SL(Hd+1)/{±Id}

acts faithfully on P(Hd+1).

We now have the following observation, which motivates our choice of determinant:

Observation VII.4. If ϕ ∈ GL(Hd+1) then there exists ϕ1 ∈ SL(Hd+1) so that the

action of ϕ and ϕ1 on P(Hd+1) coincide.

Proof. Given ϕ ∈ GL(Hd+1) there exists tϕ ∈ R such that tϕϕ ∈ SL(Hd+1).

Given a set Ω ⊂ P(Hd+1) we can define the projective automorphism group to be:

Aut(Ω) = {ϕ ∈ PSL(Hd+1) : ϕ(Ω) = Ω}.
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7.2 Convexity in quaternionic projective space

We are unaware of a version of the Riemann mapping theorem in the quaternionic

plane, thus it is unclear if C-convexity has an analogue for sets in quaternionic

projective space. However the other two types of projective convexity have obvious

analogues.

Definition VII.5.

1. An open set Ω ⊂ P(Hd+1) is called weakly linearly convex if for every p ∈ ∂Ω

there exists a quaternionic hyperplane H containing p such that H ∩ Ω = ∅.

2. A set Ω ⊂ P(Hd+1) is called linearly convex if for every p ∈ P(Hd+1) \ Ω there

exists a quaternionic hyperplane H containing p such that H ∩ Ω = ∅.

We can also define a quaternionic dual. Let H(d+1)∗ be the vector space of H-linear

functions f : Hd+1 → H.

Definition VII.6. The quaternionic dual of Ω ⊂ P(Hd+1) is the set

Ω∗ =
{
f ∈ P(H(d+1)∗) : f(x) 6= 0 for all x ∈ Ω

}
⊂ P(H(d+1)∗).

Since P(H(d+1)∗) can be identified with the space of hyperplanes in P(Hd+1) we

have the following alternative definition of linear convexity:

Observation VII.7. A set Ω ⊂ P(Hd+1) is linearly convex if and only if Ω∗∗ = Ω.

As in the complex case the boundary of Ω and the boundary of Ω∗ are closely

related. We will call a quaternionic hyperplane H tangent to a set Ω at p ∈ ∂Ω if

H contains p but does not intersect Ω. With this language we have the following

observation:

Observation VII.8. Suppose Ω ⊂ P(Hd+1) is open; then
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f ∈ ∂Ω∗ ⇔ the hyperplane ker f is tangent to Ω.

As in the real case, it is very natural to consider convex sets that are proper. In

this thesis we will use the following definition of proper sets:

Definition VII.9. A set Ω ⊂ P(Hd+1) is called proper if L ∩ Ω 6= L for every

quaternionic projective line L in P(Hd+1).

As the next proposition shows, when Ω is proper the dual is not too small.

Proposition VII.10. If Ω ⊂ P(Hd+1) is a proper weakly linearly convex open set,

then Ω∗ is not contained in a quaternionic hyperplane.

7.3 The quaternionic Hilbert metric

Let x, y ∈ Ω be distinct points and let Lxy be the projective line containing x and

y. Now Lxy has real dimension four and we define the quaternionic Hilbert metric

as:

dΩ(x, y) = max
a,b∈∂(Lxy∩Ω)

log
|x− b| |y − a|
|x− a| |y − b|

.

As in the complex case, this is actually a metric when Ω is a proper weakly linearly

convex open set. More precisely:

Theorem VII.11. If Ω is a proper weakly linearly convex open set then dΩ is a

complete metric on Ω such that the subspace topology on Ω ⊂ P(Hd+1) and the

topology on Ω induced by dΩ coincide. Moreover, if W ⊂ P(Hd+1) is a quaternionic

projective subspace then the inclusion W ∩ Ω ↪→ Ω induces an isometric embedding

(W ∩ Ω, dW∩Ω) ↪→ (Ω, dΩ).

This theorem can be proven using exactly the same argument as in the complex

case, moreover we can show the quaternionic Hilbert metric can be defined using the

dual:
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Proposition VII.12. If Ω ⊂ P(Hd+1) is a proper weakly linearly convex open set

then

dΩ(x, y) = max
f,g∈Ω∗

log

(
|f(x)g(y)|
|f(y)g(x)|

)
.(7.1)

Many of the properties of the complex Hilbert metric are also true for the quater-

nionic Hilbert metric. In particular the arguments in Section III can be used verbatim

to establish the following three results:

Proposition VII.13. Suppose Ω ⊂ P(Hd+1) is a proper weakly linearly convex open

set, then Aut(Ω) is a closed subgroup of PSL(Hd+1) and acts properly on Ω.

Proposition VII.14. Suppose Ω ⊂ P(Hd+1) is a proper weakly linearly convex open

set. If {pn}n∈N, {qn}n∈N ⊂ Ω are sequences such that pn → x ∈ ∂Ω, qn → y ∈ ∂Ω,

and dΩ(pn, qn) < R for some R > 0, then every quaternionic tangent hyperplane of

Ω containing x also contains y.

Proposition VII.15. Suppose Ω ⊂ P(Hd+1) is a proper weakly linearly convex open

set. If x0 ∈ Ω, then there exist R > 0 depending only on x0 such that

dΩ(ϕx0, x0) ≤ R + log
(
‖ϕ‖

∥∥ϕ−1
∥∥)

for all ϕ ∈ Aut(Ω).

By the definition of the quaternionic Hilbert metric we have the following rela-

tionship with the Apollonian metric:

Proposition VII.16. Suppose Ω ⊂ P(Hd+1) is a weakly linearly convex open set. If

x, y ∈ Ω and L is the quaternionic projective line containing x and y, then

dΩ(x, y) = AΩ∩L(x, y).
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Using Beardon’s calculation of the Apollonian metric on projective balls (see

Proposition III.13) we see that the Hilbert metric yields a model of quaternionic

hyperbolic space.

Proposition VII.17. Let Ω ⊂ P(Hd+1) be a projective ball. Then (Ω, dΩ) is isomet-

ric to quaternionic hyperbolic d-space.

Proof. We can pick coordinates such that

Ω = {[1 : z1 : z2 : · · · : zd] :
∑
|zi|2 < 1}.

Now let d be the quaternionic hyperbolic metric on Ω described in Chapter 19

of [Mos73]. Then by Proposition III.13

dΩ(p, q) = d(p, q)

for all p, q ∈ Ω ∩ L where L is the projective line L = {[1 : z : 0 : · · · : 0] : |z| < 1}.

Since Sp(1, d) acts transitively on the set of projective lines intersecting Ω and both

d and dΩ are preserved by Sp(1, d) we see that d = dΩ on all of Ω.

7.4 Möbius transformations

As in the complex case the proof of Proposition VII.3 and Theorem VII.1 require

some knowledge about the symmetries of the upper half plane. In this section we will

state and prove the necessary properties. We will always give elementary arguments,

but everything follows from well known properties of rank one symmetric spaces.

We can identify P(H2) with H = H∪{∞} via the map

[z1 : z2]→

 z1(z2)−1 if z2 6= 0

∞ otherwise.
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With this identification PSL(H2) acts on H bya b

c d

 · z = (az + b)(cz + d)−1.

As in the complex case, Möbius transformations map spheres and hyperplanes to

spheres and hyperplanes.

Observation VII.18. PSL(H2) maps spheres and hyperplanes to spheres and hy-

perplanes.

Proof. Every sphere and half plane can be described as a set of the form

{z ∈ H : |z − a| = R |z − b|}

for some a, b ∈ H and R > 0. Moreover every set of this form is a sphere or half

plane. A calculation shows that Möbius transformations map a set of this form to a

set of this form.

Let

H+ = {z ∈ H : Re(z) > 0}.

Now H+ is projectively equivalent to the unit ball by Möbius transformation

z → (z − 1)(z + 1)−1.

In particular, Aut(H+) is isomorphic with

Aut({|z| < 1}) = Sp(1, 1) ∼= SO(1, 4).

The next proposition follows from basic properties of rank one symmetric spaces but

we provide an elementary proof anyways.
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Proposition VII.19. 1. If x ∈ ∂H+ ⊂ H then the group

Px = {ϕ ∈ Aut0(H+) : ϕx = x}

acts transitively on H+,

2. Aut0(H+) acts transitively on ∂H+,

3. Aut0(H+) is generated by the two subgroups

U =


1 w

0 1

 : Re(w) = 0

 and V =


1 0

w 1

 : Re(w) = 0

 .

Proof. Since

P∞ =


λ w

0 λ
−1

 : λ,w ∈ H, λ 6= 0, Re(w) = 0


we see that P∞ acts transitively on H+ and ∂H+ \{∞}. Since

P0 =

0 1

1 0


−1

P∞

0 1

1 0


we see that P0 acts transitively on ∂H+ \{0}. Thus Aut0(H+) acts transitively on

∂H+. Since Aut0(H+) acts transitively on the boundary, we see that every group

Px is conjugate to P∞. Since P∞ acts transitively on H+, we then have Part (1).

It remains to prove Part (3), let G be the group generated by U and V . Since
0 w

0 0

 ,

0 0

u 0


 =

wu 0

0 −uw


and w = −w when Re(w) = 0 we see that the Lie algebra of G contains

λ w

u −λ

 : λ,w, u ∈ H,Re(w) = Re(u) = 0

 .
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In particular G contains P∞ and P0. This implies that G acts transitively on the

boundary. Now suppose ϕ ∈ Aut0(Ω). Since G acts transitively on ∂H+ there exists

γ ∈ G such that (γϕ)(0) = 0. Then γϕ ∈ P0 ⊂ G which implies that ϕ ∈ G.

7.5 Rigidity from slices

The proof of proposition VII.3 is identical to the proof in the complex case with

one technicality. That Ω is linearly convex is used repeatedly in the proof of the

proposition. In the complex case this follows from Ω being C-convex and every C-

convex open set is linearly convex. In the quaternionic case we have to prove this.

To make an induction argument work, we will relax the hypothesis a little bit.

Proposition VII.20. Suppose Ω ⊂ P(Hd+1) is an open set such that its intersec-

tion with any projective line is either empty, the projective line minus a point, or

projectively isomorphic to the disk. Then Ω is linearly convex.

Remark VII.21.

1. This proposition is much easier to prove in the special case when there already

exists an affine chart Hd containing Ω. In this situation, Ω is convex in this affine

chart and then by the separating hyperplane theorem for real convex sets we

not only have quaternionic hyperplanes through each point in the complement

of Ω but real hyperplanes.

2. The proposition should hold in greater generality, but we do not pursue such

matters here.

3. Our strategy for proving the proposition will closely follow the proof in [APS04]

that an open C-convex set is linear convex. In particular, we will pick a point

a ∈ P(Hd+1) \ Ω then let T : P(Hd+1) → P(Hd) be the projection from a. We
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then will show that T (Ω) satisfies the hypothesis of the proposition. Thus,

by induction, there exists a hyperplane H in P(Hd) which does not intersect

T (Ω). Finally T−1(H) is a hyperplane in P(Hd+1) which contains a but does not

intersect Ω. The most difficult part of the proof is showing that T (Ω) 6= P(Hd);

this will require some cohomological arguments.

The proof will repeatedly use the following type of projective map:

Definition VII.22. We call a projective map T : P(Hd+1) → P(Hd) the projection

from a ∈ P(Cd+1) if T is the map obtained by identifying P(Hd) with the space of

projective lines through a and T (b) is the projective line containing a and b (notice

T is not defined at a).

Lemma VII.23. Suppose Ω ⊂ P(Hd+1) is an open set such that its intersection with

any projective line is either empty, the projective line minus a point, or projectively

isomorphic to the disk. If a /∈ Ω and T : P(Hd+1)→ P(Hd) is the projection from a,

then T (Ω) is an open set such that its intersection with any projective line is either

empty, the whole projective line, the projective line minus a point, or projectively

isomorphic to the disk.

Proof. Since T is an open map, T (Ω) is open. Now suppose L is a projective line in

P(Hd) intersecting T (Ω). If a, b ∈ L∩ T (Ω) are distinct then we claim there exists a

projective disk in T (Ω)∩L containing them. To see this, pick preimages â ∈ T−1(a)

and b̂ ∈ T−1(b) and consider the projective line L̂ containing them. By hypothesis

there exists a projective disk in L̂ ∩ Ω containing â, b̂. Since T induces a projective

isomorphism L̂→ L, the claim follows.

Now let Ω̂ := L ∩ T (Ω). Now if Ω̂ 6= L there exists an affine chart H in L

containing Ω̂. Since every two points a, b ∈ Ω̂ are contained in a projective ball,
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we see that Ω̂ is convex in this affine chart. Now, by convexity, if Ω̂ 6= H then

L \ Ω̂ has non-empty interior. So there exists a possibly different affine chart of L

where Ω̂ is bounded. Since Ω̂ is convex we can translate so that 0 ∈ ∂Ω̂ and the

real hyperplane {z ∈ H : Re(z) = 0} is tangent to Ω̂. We may also assume that

Ω̂ ⊂ {z ∈ H : Re(z) > 0}. Since Ω̂ is bounded in this affine chart, every projective

disk in Ω̂ has the form {z ∈ H : |z − z0| < r} for some z0 ∈ H and r > 0. Moreover

by taking limits, for any p ∈ Ω̂ there exists a closed disk Dp ⊂ Ω̂ which contains 0

and p. Then 0 ∈ ∂Dp. Since {z ∈ H : Re(z) = 0} is tangent to Ω̂ we must have that

Tx∂Dp = {z ∈ H : Re(z) = 0}. Thus for any p ∈ Ω̂ we have that

Dp = {z ∈ H : |z − rp| ≤ rp}.

But then

Ω̂ = ∪Dp = {z ∈ H : |z − r| < r}

where r = sup rp.

Lemma VII.24. Suppose E ⊂ P(Hd+1) is a compact set and there exists a ∈ E

such that for all projective lines L through a the set L ∩ E has vanishing reduced

cohomology. Then E has vanishing reduced cohomology, that is, H0(E) = Z and

H i(E) = 0 for all i > 0.

The proof of [APS04, Proposition 2.3.4] taken verbatim proves the lemma. The

key step is to consider Ea the projective blow-up at a and then apply the Vietoris-

Begle mapping theorem to the map Ea → P(Hd).

We are now ready to proof the Proposition VII.20]. This argument is taken from

the proof of [APS04, Theorem 2.3.6].
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Proof of Proposition VII.20. If d = 1, then every open set Ω ⊂ P(H2) is linearly

convex and so there is nothing to prove.

Now assume d > 1 and Ω ⊂ P(Hd+1). By induction we may assume that any set

Ω̂ ⊂ P(Hd) satisfying the hypothesis of the proposition is linearly convex.

Now pick a ∈ P(Hd+1) \ Ω and consider the projection T : P(Hd+1) → P(Hd)

from a. If for every projective line L in P(Hd) we have T (Ω) ∩ L 6= L then by

Lemma VII.23 there exists a hyperplane H ⊂ P(Hd) \ T (Ω). Then T−1(H) is a

hyperplane in P(Hd+1) which contains a but does not intersect Ω.

So assume for a contradiction that T (Ω) ∩ L = L for some projective line L. Let

L̂ be the preimage of L, this set is projectively isomorphic to P(H3). So there exists

a set Ω̂ ⊂ P(H3) satisfying the hypothesis of the proposition and â ∈ P(H3) \ Ω̂ such

that if T̂ : P(H3)→ P(H2) is the projection from â then T̂ (Ω̂) = P(H2).

Then for any projective line L through â the intersection Ω̂∩L is non-empty. By

the hypothesis of the proposition L \ Ω̂ ∩ L has vanishing reduced cohomology. So

by Lemma VII.24 the set P(H3) \ Ω̂ has vanishing reduced cohomology.

Now fix b ∈ Ω̂ and consider the map π : P(H3) \ Ω̂ → P(H2) induced by the

projection P(H3) → P(H2) from b. Now by the hypothesis of the proposition, the

fibers of π have trivial reduced cohomology, thus the Vietoris-Begle mapping theorem

implies that π(P(H3) \ Ω̂) has trivial reduced cohomology. Thus π cannot be onto,

but this is only possible if Ω̂ contains an entire projective line through b which is a

contradiction.

7.6 Rigidity from symmetry

The majority of the proof Theorem VII.1 is nearly identical to the proof in the

complex case. But there are two places in the proof where the argument needs to be
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modified.

First, the proof that (Ω, dΩ) is a quasi-geodesic metric space used the Riemann

mapping theorem and as this theorem is not available in the quaternionic case we

will need a different argument to establish that (Ω, dΩ) is quasi-geodesic. Second,

in the proof of Proposition V.30 we needed to show that there are no proper Γ-

invariant projective subspace that intersects Ω. The argument we gave used that

every linear convex set with C1 boundary is C-convex and every open proper C-

convex is homeomorphic to a ball. Neither of these facts are available and thus we

will need different arguments to show that there are no proper Γ-invariant projective

subspace that intersect Ω.

Beyond these two technicalities, the rest of the proof in the complex case can be

taken verbatim.

We begin with the proof that (Ω, dΩ) is quasi-geodesic.

Proposition VII.25. Suppose Ω ⊂ P(Hd+1) is a proper weakly linearly convex set

with C1 boundary. If Ω is divisible then (Ω, dΩ) is quasi-geodesic.

We will need several lemmas.

Lemma VII.26. Suppose Ω ⊂ P(Hd+1) is a proper weakly linearly convex set with

C1 boundary. If ε > 0 and L is a quaternionic projective line that intersects Ω then

there exists a neighborhood O of L (in the space of projective lines) such that for every

L′ ∈ O the metric spaces (Ω∩L, dΩ∩L) and (Ω∩L′, dΩ∩L′) are (1, ε)-quasi-isometric.

Proof. We first observe that any projective line L that intersects Ω must intersect

∂Ω transversally. If not, then there exists a point x ∈ ∂Ω ∩ L such that L ⊂ Tx∂Ω

but then L ⊂ TH
x ∂Ω and by weak linear convexity TH

x ∂Ω does not intersect Ω.

Since ∂Ω is C1, for any δ > 0 there exists a neighborhood Oδ of L such that for any
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L′ ∈ Oδ there exists a (1+δ)-bi-Lipschitz homeomorphism f : Ω ∩ L→ Ω ∩ L′ which

maps Ω∩L to Ω∩L′. This induces, as in the proof of Lemma V.8, a (1, 4 log(1+ δ))-

quasi-isometry. Since δ > 0 was arbitrary, the lemma follows.

We now turn our attention to planar domains. Suppose Ω ⊂ H is open and p ∈ Ω

let

δΩ(p) := inf {|x− p| : x ∈ ∂Ω} .

If ∂Ω is C1 and x ∈ ∂Ω let nx be the inward pointing unit normal vector at x.

Lemma VII.27. Suppose Ω ⊂ H is a bounded open set with C1 boundary. Then

there exists ε > 0, A ≥ 1, and B ≥ 0 such that for any x ∈ ∂Ω the line segment

(x, x+ εnx] parametrized as

γ(t) = (1− e−t)x+ e−t(x+ εnx) = x+ e−tεnx

is a (A,B)-quasi-geodesic in (Ω, dΩ).

Proof. Since ∂Ω is C1 and compact there exists ε > 0 such that for any x ∈ ∂Ω and

t ∈ (0, ε) we have

δΩ(x+ tnx) ≥ t/2.

Now consider the Riemannian metric

gp(v, w) =
〈v, w〉
δΩ(p)

on Ω. If dδ is the corresponding distance on Ω then Beardon [Bea98, Theorem 3.2]

showed that

dΩ = AΩ ≤ 2dδ.
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In particular if t1 < t2 then

dΩ(γ(t1), γ(t2)) ≤ 2

∫ t2

t1

√
gγ(s)(γ′(s), γ′(s))ds

= 2

∫ t2

t1

√
|e−sεnx|

δΩ(x+ e−sεnx)
ds

≤ 2

∫ t2

t1

2ds = 4 |t2 − t1| .

To see the lower bound assume t1 < t2 then

dΩ(γ(t1), γ(t2)) = sup
a,b∈H\Ω

log
|γ(t1)− a| |γ(t2)− b|
|γ(t1)− b| |γ(t2)− a|

≥ log
|γ(t1)− x|
|γ(t2)− x|

= |t2 − t1|

where we used a = x and b =∞.

Lemma VII.28. Suppose Ω ⊂ H is a bounded open set with C1 boundary. If K ⊂ Ω

is compact then there exists A ≥ 1 and B ≥ 0 such that for any p ∈ K and any

q ∈ Ω there exists an (A,B)-quasi-geodesic in the Hilbert metric joining them.

Proof. By the previous lemma, there exists ε > 0, A ≥ 1, and B′ ≥ 0 such that

for any x ∈ ∂Ω, the line segment (x, x + εnx] can be parametrized by γx(t) to be a

(A′, B′)-quasi-geodesic.

By possibly enlarging K we can assume that

Ω = K ∪ {q ∈ Ω : δΩ(q) < ε}.

Notice that the set {γx(0) : x ∈ ∂Ω} is a compact subset of Ω and hence there

exists R > 0 such that

dΩ(p, γx(0)) ≤ R

for any p ∈ K and x ∈ ∂Ω. By enlarging R we may also assume that

dΩ(p, q) ≤ R
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for all p, q ∈ K.

Now let p ∈ K and q ∈ Ω, we claim that there exists an (A,B)-quasi-geodesic

joining them where

B = B′ +R +
1

A
.

If q ∈ K then the map γ : [0, 1]→ Ω given by

γ(t) =

 p if t < 1,

q if t = 1

is a (1, R)-quasi-geodesic. So we can assume q /∈ K and thus δΩ(q) < ε. Then there

exists x ∈ ∂Ω such that q = γx(t) for some t ≥ 0. Thus it is enough to show that

the map γ : [0,∞)→ Ω given by

γ(t) =

 p if t ≤ 1

γx(t− 1) otherwise

is an (A,B)-quasi-geodesic.

If 1 ≤ t1, t2 <∞ then

1

A
|t2 − t1| −B ≤ dΩ(γ(t1), γ(t2)) ≤ A |t2 − t1|+B

since γx is an (A,B′)-quasi-geodesic and B ≥ B′.

If 0 ≤ t1, t2 ≤ 1 then dΩ(γ(t1), γ(t2)) = 0 and hence

|t2 − t1| − 1 ≤ dΩ(γ(t1), γ(t2)) ≤ |t2 − t1| .

So, it remains to consider the case when 0 ≤ t1 ≤ 1 < t2 <∞. Then

dΩ(γ(t1), γ(t2)) = dΩ(p, γx(t2 − 1)) ≤ dΩ(p, γx(0)) + dΩ(γx(0), γx(t2 − 1))

≤ R + A |t2 − 1|+B′ ≤ A |t2 − t1|+ (R +B′)
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and

dΩ(γ(t1), γ(t2)) = dΩ(p, γx(t2 − 1)) ≥ dΩ(γx(0), γx(t2 − 1))− dΩ(p, γx(0))

≥ 1

A
|t2 − 1| −B′ −R ≥ 1

A
|t2 − t1| − (R +B′ +

1

A
)

Thus, γ is an (A,B)-quasi-geodesic and the lemma follows.

Proof of Proposition VII.25. Since Ω is divisible we can find a compact set K ⊂ Ω

such that ΓK = Ω. Now let Λ be the set of quaternionic projective lines that intersect

K. This set is compact and by the previous lemma, for every L ∈ Λ there exists

AL ≥ 1 and BL ≥ 0 such that for any p ∈ K ∩ L and q ∈ Ω ∩ L there exists an

(AL, BL)-quasi-geodesic joining them. Moreover, if L′ is sufficiently close to L then

for any p ∈ K ∩ L′ and q ∈ Ω ∩ L′ there exists a (AL, BL + 1)-quasi-geodesic joining

them. So, by the compactness of Λ there exists A ≥ 1 and B ≥ 0 such that for any

p ∈ K and q ∈ Ω there is an (A,B)-quasi-geodesic joining them. Then since ΓK = Ω

for any p, q ∈ Ω, there is an (A,B)-quasi-geodesic joining them.

Now we turn our attention to the second and final necessary modification:

Proposition VII.29. Suppose Ω ⊂ P(Hd+1) is a proper weakly linearly convex set

with C1 boundary. If Ω is divisible by Γ and W is a Γ-invariant projective subspace

that intersects Ω then W = P(Hd+1).

Proof. First suppose that there exists an affine chart Hd which contains Ω as a

bounded subset. And assume for a contradiction W 6= P(Hd+1). Now by compactness

there exists x ∈ ∂Ω such that

d(x,W ) = inf{‖x− w‖ : w ∈ W}

is as large as possible. Then since ∂Ω is C1 we must have that x + W ⊂ Tx∂Ω.

So W ∩ Tx∂Ω = ∅. Now let pn ∈ Ω be a sequence such that pn → x. Fixing a
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point o ∈ W ∩ Ω there exists ϕn ∈ Γ such that dΩ(ϕno, pn) ≤ R. By passing to a

subsequence we can suppose that ϕno → y ∈ ∂Ω. But then by Proposition VII.14

we must have y ∈ Tx∂Ω but by construction y ∈ W . So we have a contradiction.

We now show that there exists an affine chart Hd which contains Ω as a bounded

subset. Using the proof of Theorem V.24 we can find coordinates such that

Ω ⊂ {[1 : z1 : · · · : zd] : Re(z1) > 0}.

Then for t < 0 the quaternion hyperplane

H = {[z1 : tz1 : z2 : · · · : zd] : z1, . . . , zd ∈ H}

is a hyperplane in the interior of P(Hd+1) \ Ω. Then Ω is a bounded subset of

P(Hd+1) \H.

7.7 Rigidity from geodesics

The proof in the complex case can be taken verbatim to prove the corresponding

result in the quaternion case.
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[Kos68] J.-L. Koszul, Déformations de connexions localement plates, Ann. Inst. Fourier (Grenoble)
18 (1968), no. fasc. 1, 103–114. MR 0239529 (39 #886)

[Kra13] Steven G. Krantz, The impact of the theorem of bun wong and rosay, Complex Variables
and Elliptic Equations (to appear in 2013).



99

[Lab06] François Labourie, Anosov flows, surface groups and curves in projective space, Invent.
Math. 165 (2006), no. 1, 51–114. MR 2221137 (2007c:20101)

[Led12] François Ledrappier, Analyticity of the entropy for some random walks, Groups Geom.
Dyn. 6 (2012), no. 2, 317–333. MR 2914862
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