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ABSTRACT

Analyzing Spatial Processes Locally

by

Thomas Brown

Chair: Tailen Hsing

The emergence of dense spatial data sets allows us to examine spatial processes on

a local level. This thesis analyzes local prediction and local estimation of the co-

variance model for a Gaussian process observed on a single dense regular grid. We

assume a smooth mean and make the assumption that locally, the covariance func-

tion is stationary and approximately an even polynomial plus a principal irregular

term. This covariance model is applicable to a large class of processes including some

which are locally stationary, but nonstationary globally, and processes with locally

stationary increments. Some examples include deformation models with stationary

autocovariances (e.g., Matérn) and multifractional Brownian motion.

We justify the use of a Kriging estimator which relies on the covariance only

through the principal term. Then we consider local estimation of the principal term

through a local linear smoother and prove infill asymptotic convergence results. We

prove a central limit theorem with a rate matching the optimal nonparametric rate

assuming two derivatives and prove an almost sure uniform convergence result with

a rate slightly slower than optimal. Simulation results are provided that validate our

theory and we explore additional problems such as estimation at the boundary and

missing data.
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CHAPTER 1

Introduction

In the world of spatial data, data comprised of measurements of a statistical

process with a corresponding spatial location, the most common analyses considered

are prediction at unobserved spatial locations and estimation of parameters which

govern the process. Among prediction techniques, a popular choice is Kriging, the

best linear unbiased predictor. For Gaussian processes, Kriging relies on the mean

and covariance structure of the spatial process under consideration. If the mean or

covariance structure is unknown, then they need to be assumed or estimated from

the data. In this thesis, we make some general local stationarity assumptions on

an observed spatial process, develop a corresponding Kriging estimator and prove

consistency results for estimates of the relevant covariance parameters needed for

Kriging.

We assume that the spatial process of interest Y belongs to the class of Gaussian

processes where the mean µ smoothly changes with spatial location and the covariance

between two points C(t, s), t, s ∈ Rd satisfies the property

C(t, s) = p(t, s) + ft(t− s)|t− s|α +O
(
|t− s|α+γ

)
, (1.1)

where O(|t−s|) is as |t−s| → 0, α is a smoothness parameter(possibly varying with

t), α/2 > 0 is non-integer, ft(t− s) is a smooth function that depends on t− s only

through its direction, p(t, s) is a polynomial in t and s and γ > 0. The parameter α is

a measure of smoothness of Y , where sample paths of Y are bα/2c times mean square

differentiable. α/2 is also referred to as the Hurst parameter and is a measure of

long-term dependence in time series data or surface roughness in higher dimensional

dimensional random processes. ft(t−s)|t−s|α is referred to as the principal irregular

term.

This class of processes includes anisotropic Matérn Gaussian random fields (An-

deres 2010), multifractional Brownian motion (Ayache 2000, Herbin 2006), the de-
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formation model (Sampson and Guttorp 1992, Anderes and Stein 2008, Anderes and

Chaterjee 2009) and intrinsic random functions (Matheron 1964, Chilés and Delfiner

1999).

By taking high order increments of Y , we remove the low order behavior of µ

and the polynomial function p(t, s) in C. It follows that squared increments will

approximate the principal irregular term. The use of squared increments began with

the quadratic variation theorem in Levy (1940). He showed that for Brownian motion

on [0, 1], the average of the squared increments of order 1 converges a.s. to 1. Later,

Baxter (1956) showed a.s. convergence for stochastic processes on [0, 1] with Gaussian

increments whose mean function has bounded first derivative and covariance function

has bounded second derivative. Kozin (1957) extended this result to a limit theorem

when the processes increments are stationary and independent and Gladyshev(1961)

extended it to a larger class of processes with Gaussian increments. Istas and Lang

(1997) use squared increments to estimate the local Hölder index when d = 1. Anderes

(2010) uses them to estimate the parameters of a Gaussian random field with a

geometric anisotropic Matérn autocovariance, and show that the scale and variance

parameters can be consistently estimated separately when d > 4.

Rosenblatt (1956) introduced kernel estimators for density estimation. Nadaraya

(1964) and Watson (1964) used kernel estimators for regression estimation. Local

linear estimators have been used by Stone (1977) and Fan et. al. (1997). We evaluate

the local linear kernel regression estimator of the principal irregular term, which is a

local linear smoothing of the squared increments of Y within some window. We prove

infill asymptotic convergence rates for this estimator, that is, we prove convergence

as the width of the smoothing window decreases to 0 and the number of points in the

window simultaneously increases to ∞.

Anderes and Chatterjee (2009) use a kernel smoother to estimate the deformation

of an isotropic random field with the restriction that α < 2. We show that this restric-

tion can be extended to non-even α > 2 if we assume the deformation is sufficiently

smooth. We also show that the local linear kernel smoother has a smaller bias than

the Nadaraya-Watson estimator when estimating close to the boundary.

Stone (1982) establishes that n(p−m)/(2p+d) is the optimal nonparametric conver-

gence rate for estimating the mth derivative of an unknown regresion function assum-

ing i.i.d errors, p derivatives, dimension d and sample size n. He also shows that the

optimal a.s. convergence rate is (n−1 log(n))
(p−m)/(2p+d)

. We show that the local linear

kernel regression estimator matches Stone’s standard nonparametric rate assuming

two derivatives and has a slightly smaller than optimal a.s. convergence rate.

The rest of the thesis is structured as follows. Later in this chapter, we give
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an introduction to the relevant topics in statistics that we utilize in this thesis. In

chapter 2, we present examples of processes which belong to this class of processes and

justify the use of a Kriging estimator similar to universal Kriging and intrinsic random

function Kriging. In chapter 3, we prove consistency results for the local linear kernel

regression estimator. Chapter 4 explores related topics such as estimation at the

boundary, missing data and estimation of α. Chapter 5 provides simulation results

to confirm our theoretical calculations. The appendices provide the proofs from the

earlier chapters.

1.1 Gaussian Processes

Suppose you have measurements of a spatial process Y (t) ∈ R at locations ti,

i ∈ {1, 2, . . . , N}, where t, ti ∈ Ω, for some spatial domain Ω ⊂ Rd, d ∈ {1, 2, . . .}.
Then for example, you may wish to predict Y (t0) at some unobserved location t0 ∈ Ω

or estimate some parameter which specifies the covariance function of the process.

In statistics, Y (t) is typically assumed to be a random function or a random

variable which is characterized by a distribution function. Let

Pt1,t2,...,tN (z1, z2, . . . , zN) := P (Y (t1) ≤ z1, Y (t2) ≤ z2, . . . , Y (tN) ≤ zN)

denote the N−variate cdf of Y for spatial locations ti ∈ [0, 1]d and numbers zi ∈ R
for i = 1, . . . , N . Letting pt1,...,tN denote the corresponding N−variate pdf, define the

expected value of Y (t) as

µ(t) := E(Y (t)) =

∞∫
−∞

zpt(z)dz

and define the covariance of Y between two spatial locations t and s as

C(t, s) := E [(Y (t)− µ(t))(Y (s)− µ(s))]

=

∞∫
−∞

∞∫
−∞

(z − µ(t))(x− µ(s))pt,s(z, x)dx, dz.

From this we can define the variance of Y at t as Var(Y (t)) := C(t, t).

It is common in spatial statistics to assume that the observed process is Gaussian.

For Gaussian processs,

pt1,...,tN (y1, . . . , yN) = (2π)−N/2 det(Σ)−1/2e−
1
2

(y−µ)′Σ−1(y−µ)
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where y = (y1, . . . , yN)′, µ = (µ(t1), . . . , µ(tN))′ and

Σ =


C(t1, t1) C(t1, t2) · · · C(t1, tN)

C(t2, t1) C(t2, t2) · · · C(t2, tN)
...

...
. . .

...

C(tN , t1) C(tN , t2) · · · C(tN , tN)

 .

We require that Σ is positive definite so that det(Σ) > 0.

One benefit of the Gaussian assumption is that Y is fully characterized by µ and

C. Further, we can write

Y (t)
d
= µ(t) + Z(t)

where Z(t) is a mean 0 Gaussian process with covariance function C.

Another desirable consequence of the Gaussian assumption is that we can directly

calculate bias and variance for estimators of Y and develop consistency results for

estimators of covariance parameters. As Cressie (1993) points out, the Gaussian

assumption makes analysis much more simple and the average of many small and

possibly non-Gaussian effects will be approximately Gaussian by the central limit

theorem.

1.2 Differentiability

Let ∆ug(t) := g(t + u) − g(t) denote the increment in the direction u. Then

let ∆x
ug(t) := ∆u∆x−1

h g(t) denote the increment of order x in the direction u. The

directional derivative of g in the direction u at the point t is defined as

lim
n→∞

n∆u/ng(t) =
d∑
i=1

ui
∂

∂ti
g(t)

:= ∂ug(t).

The kth order mixed parial derivative is defined as ∂
∂ti1
· · · ∂

∂tik
g(t) where ij ∈ {1, . . . , d},

j ∈ {1, . . . , k}. Then the kth order directional derivative in directions u1, . . . ,uk is

defined as

lim
n→∞

nk∆u1/n · · ·∆uk/ng(t) =
d∑

i1=1

· · ·
d∑

ik=1

u1i1 · · ·ukik
∂

∂ti1
· · · ∂

∂tik
g(t)

:= ∂u1 · · · ∂ukg(t).
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g(t) is called k times continuously differentiable if ∂u1 · · · ∂u`g(t) exists, is continuous

and is bounded for all t ∈ [0, 1]d, ` ∈ {0, 1, . . . , k} and ui ∈ Rd s.t. |ui| = 1,

i ∈ {1, . . . , `} .

For the letter `, let ` = (`1, . . . , `d) where `i ∈ {0, 1, 2 . . .}, and let |`| =
∑

j `j.

For h ∈ Rd, let h` = h`11 · · ·h
`d
d . For any function G from Rd to R let

G(`) =
∂`d

∂t`dd
· · · ∂

`1

∂t`11
G,

where ∂0

∂t0j
is interpreted as 1. For F,G : Rd → R, if |F (h)/G(h)| ≤ c for some

finite c > 0 and |h| sufficiently large or small then write F (h) = O(G(h)). Then if

|F (h)/G(h)| ≤ c for all c > 0 and sufficiently large or small |h|, write F (h) = o(h).

By Taylor’s theorem, if g is k times continuously differentiable, then as |h| → 0,

g(t+ h) = g(t) +
∑

`:|`|≤k

1

|`|!
g(`)(t)h` +Rt(h)

where Rt(h) = o(|h|k) uniformly over t ∈ [0, 1]d. Note that uniform over t ∈ [0, 1]d

means that supt∈[0,1]d |Rt(h)| = o(|h|k). If Rt(h) = O(|h|k) uniformly over t ∈ [0, 1]d,

then there is a single finite constant c > 0 s.t. |Rt(h)| ≤ c|h|k for all t ∈ [0, 1]d and

|h| sufficiently small.

For a function g : Rd → R, define the gradient ∇g(t) :=
(

∂
∂t1
g(t), . . . , ∂

∂td
g(t)

)′
and the Hessian matrix Ht

g whose value at row i column j is ∂
∂ti

∂
∂tj
g(t) for i, j ∈

{1, . . . , d}. For a function g : Rd → Rd with g = (g1(t), . . . , gd(t)), let J t
g denote the

Jacobian of g at t be the d× d matrix defined as ∂
∂tj
gi(t) for row i and column j.

1.3 Stationarity

The simplest setting assumes that the covariance between two locations t and s,

denoted as C(t, s), only depends on the Euclidean distance |t − s|. In this setting

Y is called isotropic. In this case, consistent estimation of the covariance parameters

used in Kriging may be achieved even if the data set is only moderately sized.

Y is called stationary if C(t, s) depends on the distance and direction of t − s.

In this setting we will need to estimate C(t, t + h) for at least a few directions

h = (h1, . . . , hd) which will require either a structured data set or a dense sampling

so that a sufficient number of pairs in our data are h apart. Y is called second order

stationary if in addition µ is constant. Second order stationarity provides a convenient

framework for analysis, but is often an unreasonable assumption to make for spatial
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processes.

The most complicated setting is when C(t, s) depends on the location t and

changes across the domain. In this setting Y is called nonstationary and consistent

estimation of ft(h)|h|α will require a dense sampling.

A reasonable assumption to make is that Y is locally stationary. This is when the

covariance is approximately stationary in a local region or when ft(h) is smoothly

changing in t.

If Y is locally stationary, one option would be to separate the domain into subdo-

mains where the covariance structure is considered approximately stationary in each

subdomain. Then estimation of the principal irregular term will require a sufficient

number of points in each subdomain. Another option is to use a procedure like a

moving window Kriging to estimate the principal irregular term at a location t0 with

points that are within a window centered at t0 (assuming t0 is away from the bound-

ary of the domain). With a procedure like moving window Kriging, estimation is

aided considerably if the locations of the data are evenly spaced, or at least evenly

spaced in each dimension. To that end, we assume that the domain has been sam-

pled on a regular grid with spacing 1/n in each dimension and derive infill asymptotic

convergence results as n→∞.
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CHAPTER 2

Inference on Y

In this chapter we analyze the scenario where the observed process Y is assumed

to be Gaussian and observed on a regular grid. Since Y is Gaussian, the mean µ(t)

and the covariance C(t, s) characterize the behavior of Y . We assume µ is smooth

and make a locally stationary assumption for C which are sufficient to recover the

principal irregular term.

We present the Matérn covariance function, the deformation model, multifrac-

tional Brownian motion and intrinsic random functions as examples which satisfy our

covariance assumptions. Then we examine linear prediction of Y through Kriging

and justify an estimator which uses the principal irregular term. Lastly, we present

the increment operator which we will use to estimate the principal irregular term.

2.1 Assumptions

Assumption 2.1. The spatial process of interest is denoted as Y (t), t ∈ Rd for

integer d > 0, and is assumed to be a Gaussian process with mean function µ and

covariance function C. We observe the process on a regular grid

Tn = {(i1, i2, . . . , id)/n, with is = (j − 1/2)/n for j = 1, . . . , n}

of size 1/n on [0, 1]d.

As mentioned in the introduction, we will also make assumptions on the local

behavior of µ and C.

Assumption 2.2. µ(t) is k times continuously differentiable for some sufficiently

large integer k.

Let ∂
(i,j)
u C(t, s) denote the directional derivative in the direction u acting on t i

times and acting on s j times.

7



Assumption 2.3. For the covariance function C,

(i) As |t− s| → 0,

C(t, s) =
r∑
|`|=0

b`(t)s
` +

r∑
|`|=0

b`(s)t` + ft(t− s)|t− s|α(t)(1 +O(|t− s|γ(t)),

where ft(h) is sufficiently smooth in t and in h, α(t) is continuously differ-

entiable, α(t)/2 is non-integer, α(t) − r < 1, b`(t) are measurable functions,

γ(t) > 0 and O(|t− s|γ(t)) is uniform over t ∈ [0, 1]d.

(ii) C(t, s) is x times continuously differentiable in t and s for |t− s| away from 0

and |∂(1,1)
u1 · · · ∂

(1,1)
ux C(t, s)| ≤ c2|t− s|α(t)−2x, for ui ∈ Rd, |ui| = 1, c2 > 0 and

some integer x ≥ 1.

The parameter α(t) is a measure of smoothness of Y , where sample paths of Y are

bα(t)/2c times mean square differentiable. The value α(t)/2 is also referred to as

the Hurst parameter and is a measure of long-term dependence in time series data

or surface roughness in higher dimensional dimensional random processes. Note that

ft(h) only depends on h through its direction.

Assumption 2.3(ii) is required for consistent estimation of the principal irregular

term, ensuring that the covariance between increments converges to 0 quickly as the

distance between increments increases. Assuming the observations fall on a regular

grid is also necessary to ensure that a sufficient number of pairs of observations are

separated by a lag u ∈ Zd. Combined with the other assumptions, we will be able to

consistently estimate ft(u)|u|α(t) at any location t ∈ [0, 1]d.

2.2 Example Processes

Here are some examples of processes which satisfy our covariance assumption.

Example 2.4 (Anisotropic Matérn covariance function). The Matérn covariance

function is defined as

C(t, s) = σ2 21−ν

Γ(ν)

(√
2ν
|t− s|
ρ

)ν
Kν

(√
2ν
|t− s|
ρ

)
,

where ν > 0 is the shape parameter, ρ > 0 is the scale parameter, σ2 is the variance, Γ

is the Gamma function and Kν is the modified Bessel function of the second kind. If Z

is a Gaussian random field with covariance function C and M is a d×d transformation

matrix, then the field Y (t) = Z(Mt) is a transformed Gaussian Matérn random field

8



with covariance C(Mt,Ms) which is anisotropic when M is not an orthogonal matrix

up to a proportionality constant.

This covariance function satisfies our covariance assumption with α(t) = 2ν, and

ft(h) = c
∣∣∣M h

|h|

∣∣∣2ν for some c > 0 and x > ν + 1.

The flexibility of this covariance function makes it a popular choice in spatial

statistics. Anderes (2011) showed that when M satisfies some regularity conditions, it

can be recovered by averaging squared increments. He also shows that the parameters

of the Matérn can be consistently estimated when d > 4, the parameters can’t be

consistently estimated separately when d < 4, and it is unknown whether they can

be estimated separately when d = 4.

Example 2.5 (Multifractional Brownian Motion (mBm)). BH(t), |t| > 0 is a cen-

tered Gaussian process with covariance function

C(t, s) = D(H(t), H(s))
(
|t|H(t)+H(s) + |s|H(t)+H(s) − |t− s|H(t)+H(s)

)
where H(t) : Rd

+ → (0, 1) is the smoothness of B at location t and D is a known

deterministic function.

mBm satisfies our covariance assumpton with α(t) = 2H(t), ft(h) = D(H(t), H(t))

for all h and H(t) is three times continuously differentiable.

When H(t) is constant BH is called fractional Brownian motion. Notice that

this process is nonstationary, but has stationary increments. This process is also

self-similar, i.e. BH(at) = |a|H(t)BH(t). BH exhibits long-range dependence when

H > 1/2. Lastly, sample paths are almost nowhere differentiable.

Example 2.6 (Deformation Model). Let Z be an isotropic Gaussian random field on

Ω ⊂ R2 with covariance C(t, t+h) = σ2−|h|α+O(|h|2) where α ∈ (0, 2). Then if F

is a smooth one-to-one deformation function, Y (t) = Z(F (t)) is a deformed random

field with covariance

C(F (t), F (t+ h)) = σ2 − |F (t)− F (t+ h)|α +O(|F (t)− F (t+ h)|2).

For this model ft(h) = |J t
Fh|α, where J t

F is the Jacobian of F at t. In the two

dimensional case, Anderes and Chatterjee (2009) show that when F satisfies some

regularity conditions, it can be recovered by estimates of the semivariogram v(t, t +

h) ≈ |J t
Fh|α in the horizontal, vertical and diagonal directions.

Deformation models are a method of modeling nonstationarity which assumes that

an observed process is actually a smooth transformation of an underlying isotropic

9



process. This method was introduced by Sampson and Guttorp(1992) and they con-

sidered estimating the deformation with multiple obervations of a deformed field at

sparse locations. Clerc and Mallat(2003) and Anderes and Stein(2008) considered

estimating the deformation from a single observation of a deformed random field, but

with a dense sampling. Anderes and Chatterjee (2009) prove consistent estimation

for a class of deformation functions known as quasiconformal maps through the use of

kernel averaged squared increments while observing the deformed process on a regular

dense grid.

For the next example, recall ` = (`1, . . . , `d) ∈ Nd, |`| =
∑d

j=1 `j and h` =

h`11 · · ·h
`d
d .

Example 2.7 (Intrinsic Random Functions). Y is called an intrinsic random function

of order k (IRF-k) if

C(t, s) =
k∑
|`|=0

b`(t)s
` +

k∑
|`|=0

b`(s)t` +K(t− s),

where K is called the generalized covariance, the b` are arbitrary measurable functions

and the summations are over all ` with |`| = 0, . . . , k.

This process was introduced in Matheron (1964) and covers a wide class of co-

variance functions. By definition, IRF-k’s are stationary after a k + 1 step differ-

encing. This includes intrinsically stationary processes (IRF-0’s) which are station-

ary after one-step differencing with K as their semivariogram. When K(t − s) =

ft(t− s)|t− s|α(t)
(
1 + |t− s|γ(t)

)
, this process satisfies our covariance assumption.

2.3 Linear Prediction

A natural problem to conisder is prediction of Y (t0) for some unobserved location

t0, denoted as Ŷ (t0).

The simplest prediction method is the nearest neighbor method, where Ŷ (t0) =

Y (ti) with ti is the closest observed point to t0. Another method would be to take

the simple average or a weighted average of points that are closest to t0. In general,

a linear estimator of Y (t0) can be written as

Ŷ (t0) =
m∑
i=1

λiY (ti)

where ti are points close to t0 and λi ∈ R. When the mean is known, the best linear

unbiased estimator will be the one which minimizes the error in estimating Y (t0). If

10



we consider squared-error loss as in chapter 3 of Cressie (1993), then the estimator

minimizes E(Y (t0)− Ŷ (t0))2. This estimator is known as the Kriging estimator.

There are different types of Kriging which depend on the mean and covariance

structure. The simplest type of Kriging occurs when the mean is known and constant

and is called simple Kriging. Ordinary Kriging is used when the mean is unknown

but assumed to be constant in a local neighborhood and the variogram is estimable

from the data. Let λ = (λ1, . . . , λm)′, then the coefficients for ordinary Kriging are

λ′ =

(
v + 1

(1− 1′V −1v)

1′V −11

)′
V −1,

where λ = (λ1, . . . , λd)
′, v = (v(t0, t1), . . . , v(t0, tm))′, 1 is a vector of ones, and

V is the m × m matrix with (i, j)th element equal to v(ti, tj). The most general

forms of Kriging occur when the mean is unknown and non-constant. Universal

Kriging assumes the mean can be modeled as a linear combination of functions fj(t),

j = 0, . . . , p. This type leads to coefficients

λ′ =
(
v +X(X ′V −1X)−1(x−XV −1v)

)′
V −1,

where X is an n × (p + 1) matrix with (i, j)th element is equal to fj−1(ti) and x =

(f0(t0), . . . , fp(t0))′. Let the universal Kriging predictor using the true variogram and

assuming the mean is polynomial of degree k be denoted as ŶTK−k.

Here we develop the Kriging estimator that is of most interest, which is closely

related to IRF Kriging as outlined in Chilés and Delfiner (1999). For convenience, let

λ0 = −1. The best linear unbiased predictor Ŷ can be obtained by minimizing

E(Ŷ (t0)− Y (t0))2 = Var(Ŷ (t0)− Y (t0)) + E(Ŷ (t0)− Y (t0))2

=: V1 + V2 + V3 + V4,

where

V1 = 2
r∑
|`|=0

m∑
j=0

λjb`(tj)
m∑
i=0

λit
`
i

V2 =
m∑
i=0

m∑
j=0

λiλjf(ti − tj)|ti − tj|α(ti)

V3 =
m∑
i=0

m∑
j=0

O(|t− tj|α(ti)+γ(ti))

11



V4 = (
m∑
i=0

λiµ(ti))
2.

From our sampling scheme, we can consider locations ti s.t. |ti− t0| = O(n−1). Since

µ is k + 1 times continuously differentiable we can write

µ(ti) = µ(t0) +
d∑
j=1

∂

∂tj
µ(t0)(t0j − tij) + . . .

+
d∑

j1,...,jk=1

∂

∂tj1
· · · ∂

∂tjk
µ(t0)(t0j1 − tij1) · · · (t0jk − tijk) +O(n−k−1).

If we add the constraint

m∑
i=0

λit
`
i = 0, ` ∈ Nd s.t. |`| = 0, . . . , k (2.1)

to the optimization problem, then the low order terms in this expansion are elimi-

nated. This constraint also ensures that V1 = 0 if k ≥ r. Therefore

E{Ŷ (t0)− Y (t0)}2 ≈
m∑
i=0

m∑
j=0

λiλjf(ti − tj)|ti − tj|α(ti). (2.2)

By Lagrange’s multiplier, the problem of optimizing (2.2) under (2.1) becomes solving

for the system

m∑
j=1

λjf(ti − tj)|ti − tj|α +
r∑
|`|=0

µ`t
`
i = f(ti − t0)|ti − t0|α, i = 1, . . . , N,

m∑
j=0

λjt
`
j = t`0, `1, `2, . . . , `d ≥ 0, `1 + `2 + . . .+ `d ≤ k.

We can express this in matrix form:[
K X

X ′ 0

][
λ

µ

]
=

[
v1

v2

]

where

λ = (λ1, . . . , λm)′,

µ = a vector of µ` arranged in any order,

12



K = {f(ti − tj)|ti − tj|α}mi,j=1,

X = a matrix with m rows where the i-th row is the vector containing

t`i ; the order is arranged in the same way as µ,

v1 = (f(t1 − t0)|t1 − t0|α, . . . , f(tN − t0)|tN − t0|α)′,

v2 = the vetor containing t`0 arranged in the same order as µ.

The resulting coefficients for this estimator are

λ′ =
(
v1 +X(X ′K−1X)−1(v2 −XK−1v1)

)′
K−1

and we call a predictor of this form the UK − k estimator

ŶUK−k = λ′Y .

Note that this will be the estimator using the estimated f .

By construction, the TK − 0 estimator minimizes the estimation error if the

mean is constant. When the mean is non-constant, a larger value of k may improve

estimation by eliminating the effect of the mean. But if the mean is constant, the

TK − k estimators for k ≥ 1 will not have smaller estimation errors than the TK − 0

estimator. Similarly, adding in the linear constraints of (2.1) for the UK−k estimator

won’t result in a reduction of estimation error over the TK − 0 estimator. However,

the differencing constraints are necessary for the UK − k estimators to minimize the

variance when the principal irregular term is used.

2.4 Inference on the Principal Irregular Term

Recall from section 1.2 that ∆x
h/nY (t) is the increment operator of order x in the

direction h/n. Since the sampling grid is regular with spacing 1/n, the h we can

consider are h = (h1, . . . , hd) where hi are integers. For now assume that α(t) is

known and consider the process

Wn(t) = nα(t)/2∆x
h/nY (t)

for some integer x. Then let

J(t,u) =
x∑
i=0

x∑
j=0

(−1)i+j
(
x

i

)(
x

j

)
ft(u+ (i− j)h)|u+ (i− j)h|α(t).

13



Assumption 2.3 leads to the following lemma for Wn.

Lemma 2.8. Let Assumption 2.3 hold with x > r.

(i) For any fixed h and u,

Cov(Wn(t),Wn(t+ u/n))− Jt(u) = O(n−1 log(n)) +O(n−γ(t)),

uniformly over t ∈ [0, 1]d where O(n−1log(n)) is replaced by O(n−1) if α(t) is

constant.

(ii) For any fixed h, there exists c4 > 0 s.t.∣∣∣∣Cov(Wn(t),Wn(t+ u/n))

∣∣∣∣ ≤ c4|u|α(t)−2x

for |u| > x|h|+1
n

.

Note that the proofs of this result and the results of the next chapter are pro-

vided in appendix II. Combining Assumption 2.2 and lemma 2.8, it seems possible to

estimate J(t,h) by averaging W 2(ti) for ti within a small window of t0.

In the next chapter, we will introduce the local linear kernel regression estimator

of J(t,h). We will prove a central limit theorem and a uniform convergence rate.
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CHAPTER 3

Limit Theorems

In this chapter we introduce the local linear kernel regression estimator. We

consider the abstract Gaussian process Wn(t) introduced in the last chapter whose

variance is approximately J(t,0). The local linear kernel regression is a weighted

average of W 2
n(ti) estimating J(t0,0), where ti are the spatial locations within the

d-dimensional square centered at t0.

We make some basic assumptions on the mean and covariance of the process Wn

and the kernel function k. With these assumptions we prove the local linear smoother

is consistent by showing the bias of the smoother convergences to 0 (Theorem 3.3)

and the variance converges to 0 (Theorem 3.4). Then Theorem 3.5 gives a central

limit theorem for the smoother. Lastly, assuming that k has a product form, Theorem

3.8 proves an almost sure uniform convergence result.

We focus on the abstract Gaussian process Wn with mean µn and covariance Cn.

Assumption 3.1. For µn and Cn:

(i) There exists a positive, continuously differentiable function δ(t) s.t. µn(t) =

O(n−δ(t)) uniformly in t.

(ii) There exists a positive, continuously differentiable function ρ(t) and a twice

continuously differentiable function g(t) such that Cn(t, t) = g(t) + O(n−ρ(t))

uniformly in t with ρ(t) > 0.

(iii) Cn(t, t + h/n) < c5 ∀ t, n,h and c5 > 0 and there exists a function g2(t,h)

such that limn→∞Cn(t, t+ h/n) = g2(t,h). The convergence is uniform for all

t ∈ [0, 1]d and all h with |h| ≤ δ for any given δ > 0.

(iv) There exists some function ψ(t) with values in (0,∞) and positive constant c6

such that |Cn(t, t+h/n)| ≤ c6|h|−ψ(t) for all n, t,h such that |h| > τ for some

τ > 0.
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Note that uniformly in t means that the constants in the big-o and little-o terms do

not depend on t.

Notice that by lemma 2.8, Wn satisfies Assumption 3.1 with ρ(t) < min(1, γ(t), 2(m+

1)− α(t)), where < is changed to = if α(t) is constant.

Let

Tn(t0, b) = {ti ∈ Tn ∩ [t0 − b, t0 + b]}

where

[t0 − b, t0 + b] :=
d∏
j=1

[t0j − b, t0j + b] .

Throughout the rest of the thesis, let k(·) denote a kernel function that satisfies the

following assumption.

Assumption 3.2. Assume k(·) is a non-negative function with support [−1, 1]d and

has bounded, continuous first order partial derivatives with ‖k‖∞ = supt∈[−1,1]d k(t).

For any t0 ∈ [0, 1]d and bandwidth b, the local linear regression is defined as

β̂(t0;n, b) = argminβ
∑

ti∈Tn(t0,b)

k

(
ti − t0
b

)
{W 2

n(ti)− `(ti − t0; β)}2

where

`(t; β) = β0 + β1t1 + β2t2 + · · ·+ βdtd for t = (t1, t2, . . . , td).

It follows that

β̂(t0;n, b) = (X ′KX)−1X ′KW 2,

where X is a matrix with rows (1, ti1 − t01, ti2 − t02, . . . , tid − t0d), K is a diagonal

matrix with entries k
(
ti−t0
b

)
, and W 2 is a column vector with entries (Wn(ti))

2. For

t ∈ [0, 1]d, let

ai1 =
ti
b
∧ 1, ai2 = 1−ti

b
∧ 1.

Define

I(t, b) = [−a11, a12]× [−a21, a22]× · · · × [−ad1, ad2]
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=

(
([t1 − b, t1 + b]× · · · × [td − b, td + b]) ∩ [0, 1]d

)
− (t1, . . . , td)

b
.

If the distance between t and the boundary of [0, 1]d is at least b then aij = 1 for

all i, j, but some aij can be less than 1 if t is within distance b from some boundary

point. For example, for t = (0, 0) and b ≤ 1, we have a11 = a21 = 0 and a12 = a22 = 1.

Let

S1m1 ,...,dmd =
∑
ti

k

(
ti − t0
b

)
(ti1 − t01)m1 · · · (tid − t0d)md ,

κ1m1 ,...,dmd = κ1m1 ,...,dmd (t0, b) =

∫
I(t0,b)

k(z)zm1
1 · · · z

md
d dz.

For simplicity, if mj = 0 for dimension j, then leave jmj out of S1m1 ,...,dmd and

κ1m1 ,...,dmd . For example,

S12,31 =
∑
ti

k

(
ti − t0
b

)
(ti1 − t01)2(ti3 − t03).

From Taylor’s theorem,

g(ti) = g(t0) + (ti − t0)′∇g(t0) +
1

2
(ti − t0)′Hg(t0)(ti − t0) +O(|ti − t0|3),

for gradient ∇g(t) and Hessian matrix Hg. Therefore, β̂(t0;n, b) estimates(
g(t0),

∂

∂t1
g(t0),

∂

∂t2
g(t0), . . . ,

∂

∂td
g(t0)

)
:= β(t0).

And further the bias terms of our estimator will involve kernel averages of (ti − t0)

terms and derivatives of g, so we define

K =


κ κ11 κ21 · · · κd1

κ11 κ12 κ11,21 · · · κ11,d1

κ21 κ11,21 κ22 · · · κ21,d1

...
...

...
. . .

...

κd1 κ11,d1 κ21,d1 · · · κd2

 ,Ni,j =


κi1j1

κi1j111

κi1j121

...

κi1j1d1

 .

Then we have the following theorem for the bias of β̂.

Theorem 3.3 (Bias of β̂). Let Assumptions 3.1(i) and (ii) hold for dimension d.
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Then if n→∞, nb→∞,

E(β̂(t0;n, b)) = β(t0) +
diag(b2, b, b, . . . , b)

2
K−1

d∑
i,j=1

∂

∂ti

∂

∂tj
g(t0)Ni,j (3.1)

+


o(b2) +O(n−(ρ(t0)∧2δ(t0)))

o(b) + b−1O(n−(ρ(t0)∧2δ(t0)))
...

o(b) + b−1O(n−(ρ(t0)∧2δ(t0)))


uniformly for t0 ∈ [0, 1]d.

From this theorem we see that the bias of β0(t0) is O(b2) +O(n−(ρ(t0)∧2δ(t0))).

Let W̃n(ti) = Wn(ti)− µn(ti) then define

β̃(t0;n, b) := (X ′KX)−1X ′KW̃ 2,

where W̃ 2 is a vector with entries W̃ 2
n(ti). Define

k̄(z) = k(z)

(
K−1

1,1 +
d∑
j=1

K−1
1,1+jzj

)
,

A(t) = 2

∫
I(t,b)

k̄(z)2dz
∑
j∈Zd

g2
2(t, j).

Note that, by Fatou’s lemma and Assumption 3.1(iv),

∑
j∈Zd

g2(tj) ≤ lim inf
n→∞

∑
j∈Zd

C2
n(t+ j/n) ≤ C

∞∑
j=1

jd−1−2ψ(t) <∞

for some finite constant C.

Recall the definition of the “double factorial”

j!! =

{
j(j − 2) · · · 3 · 1 for odd positive integer j,

j(j − 2) · · · 4 · 2 for even positive integer j.

In the formulation of the central limit theorem we need to bound quantities of the

form |
∑

iCn(t, ti)| (lemma B.5), which by Assumptions 3.1(ii)-(iv) has the rate

rnb(t) :=

{ 1 if ψ(t) > d

log(nb) if ψ(t) = d

(nb)d−ψ(t0) if ψ(t) < d.
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Then the following theorem establishes the behavior of the central moments of β̃0.

Theorem 3.4 (xth central moment of β̂0(t0)). Let Assumption 3.1 hold. Then for

x = 2, 3, . . .,

(nb)dx/2E

(
β̃0(t0;n, b)− Eβ̃0(t0;n, b)

A(t0, b)x/2

)x

=

{
O
(
rnb(t0)

(nb)d/2

)
, for x odd

(x− 1)!! + o(1), for x even
(3.2)

uniformly for t0 ∈ [0, 1]d as nb→∞.

Note that the right-hand side of (3.2) converges to the xth moments of the standard

normal distribution. Then by Theorem B.6, this along with Theorem 3.3 is sufficient

to establish Theorem 3.5.

Theorem 3.5. [CLT for β̂0] Let Assumptions 3.1 and 3.2 hold with ψ(t0) > d/2.

Then for t0 ∈ [0, 1]2, Z ∼ N(0, 1),

β̂0(t0;n, b)
d
= g(t0) +

ZA(t0, b)
1/2

(nb)d/2
+

1

2
b2[K−1

d∑
i,j=1

∂

∂ti

∂

∂tj
g(t0)Ni,j]1 +R(t0;n, b),

where

R(t;n, b) = o(b2) +O
(
n−(ρ(t0)∧2δ(t0))

)
+Op

(
n−δ(t0)

√
rnb(t)

)
+ o

(
(nb)−d/2

)
.

Furthermore, when n→∞ and nb→∞, we can choose b s.t.

A(t0, b)
−1/2(nb)d/2

{
β̂0(t0;n, b)− g(t0)

}
→ Z.

Note that this is the leads to the optimal rate for estimating a regression function

nonparametrically assuming two derivatives and i.i.d. errors.

So far we have considered the asymptotic behavior of β̂0(t;n, b) for a fixed t.

Next, we consider the global asymptotic behavior of β̂0(t;n, b). In our proof of a.s.

convergence, our estimators have the form

1

ndbd

∑
ti∈Tn(t0,b)

k

(
ti − t0
b

)
Wn(ti)

2 (3.3)

and we will require the following conditions for k.

Assumption 3.6 (Almost sure convergence conditions for k). Assume for functions

k, ki, i = 1, . . . , d,
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(i) k has support on [−1, 1]d and ki have support on [−1, 1],

(ii) ki are defined s.t. k (z) =
∏d

i=1 ki(zi),

(iii) ki are continuously differentiable and ki(−1) = 0 for all i = 1, 2, . . . , d.

In addition, our proof of a.s. convergence does not restrict the value of x. To that

end, define

snb(t) :=

{ 1 if ψ(t) > d/2

log(nb) if ψ(t) = d/2

(nb)d−2ψ(t0) if ψ(t) < d/2.

Then we have the following is a corollary to Theorem 3.4

Corollary 3.7. Let Assumptions 3.1(iii) and (iv) hold and let [u,v] denote the rect-

angle with corners u and v. Then for sufficiently large n, there is a constant c7 > 0

such that

(nb)−dx/2

snb(t)x/2
E

 ∑
ti∈[u,v]∩Tn

(Wn(ti)− µn(ti))
2 − E(Wn(ti)− µn(ti))

2


x

≤ (2x− 1)!!cx7 ,

uniformly for all x ≥ 2 and u,v ∈ [0, 1]2 with |ui − vi| < 2b for i ≤ d.

Let

Vn,b = max

{
1, max

t∈[0,1]d
snb(t)

1/2, max
t∈[0,1]d

rnb(t)
1/2n−δ(t), (nb)d/2(log(n))−1(b2 + n−ρ∧2δ)

}
,

where ρ = mint∈[0,1]d ρ(t) and δ = mint∈[0,1]d δ(t). Then we have the following a.s.

uniform convergence result.

Theorem 3.8. Let Assumptions 3.1(i)-(iv) and 3.6 hold and let n and b satisfy

n→∞ and nb→∞. Then for some finite c8 > 0,

sup
t0∈[0,1]2

∣∣∣β̂0(t0;n, b)− g(t0)
∣∣∣ ≤ c8(nb)−d/2 log(n)Vn,b

eventually with probability 1.

Corollary 3.9. Let Assumptions 3.1(i)-(iv) and 3.6 hold and let n and b satisfy

n→∞ and nb→∞. Then for some finite c9 > 0 and i = 1, . . . , d,

sup
t0∈[0,1]2

∣∣∣∣β̂i(t0;n, b)− ∂

∂ti
g(t0)

∣∣∣∣ ≤ c9(nb)−d/2b−1 log(n)Vn,b
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eventually with probability 1.
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CHAPTER 4

Related Issues

In this chapter we discuss issues related to the local linear smoother presented in

the last chapter. First we give a theoretical calculation and plot to show that the

local linear estimator estimates better at the boundary than the Nadaraya-Watson

estimator. Then we show that the convergence rate of the local linear smoother

matches the optimal nonparametric rate from Stone (1982) and the uniform rate is

slightly less than optimal. Then we show the rate in estimating α is similar to the

rate in estimating f with α known, and further that the rate in estimating f and

α simultaneously worsens by log(n). Next, we give justification that the the lowest

order difference which satisfies our assumption is optimal. Lastly, we give a brief

treatment for what happens when data is missing at random.

4.1 Boundary Points

One reason we consider the local linear estimator is because it will improve the

bias when estimating close to the boundary. If we examine the Nadaraya-Watson

estimator for a point t0 away from the boundary, recalling S00 =
∑

ti
k
(
ti−t0
b

)
and

the results of chapter 3,

S−1
00

∑
ti

k

(
ti − t0
b

)
E(∆x

h/nY (ti))
2

≈ S−1
00

∑
ti

k

(
ti − t0
b

)
g(ti)

= S−1
00

∑
ti

k

(
ti − t0
b

){
g(t0) + (ti1 − t01)

∂

∂t1
g(t0)

+(ti2 − t02)
∂

∂t2
g(t0) +O

(
|ti − t0|2

)}
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= g(t0) + S−1
00 S10

∂

∂t1
g(t0) + S−1

00 S01
∂

∂t2
g(t0) +O(b2) (4.1)

= g(t0) +O(b2)

Since S10 and S01 equal 0 when t0 is away from the boundary. So asymptotically, the

N-W estimator has the same bias rate as the local linear estimator. However, if t0 is

close to the boundary, then (4.1) becomes

g(t0) + S−1
00 S10

∂

∂t1
g(t0) + S−1

00 S01
∂

∂t2
g(t0) +O(b2)

≈ g(t0) + κ−1κ11
∂

∂t1
g(t0) + κ−1κ21

∂

∂t1
g(t0) +O(b2)

= g(t0) +O(b)

where the last equality holds since κ11 and κ21 are not 0 when t0 is close to the

boundary. Recall from chapter 3 that the bias of the local linear estimator is still

O(b2) for points close to the boundary, so we see an improvement in bias of order b

when using the local linear estimator vs. the N-W estimator.

Figure 4.1: Mean and s.d. of the local linear and N-W estimators close to the bound-
ary.

To examine this, we generated fine Gaussian random fields with n = 1500 and
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C(t, t + h) = .4 − |h|1.2 + .6|h|2 in Matlab from code used to simulate the fields

generated in Anderes and Chatterjee (2009). Then we introduce bias by multiplying

a scaling field D(t) = 1+3t1 + t2 + .5t21 + .5t22. Figure 4.1 compares the NW estimator

and our local linear estimator in estimating ft
(
(1, 0)′

)
at the lower left corner of the

unit square, using their optimal bandwidths respectively. The optimal rate for the

N.W. estimator is n−1/2 while the optimal rate for the local linear estimator is n−2/3.

Figure 4.1 shows that the bias and s.d. in estimating f at the boundary are smaller

for the local linear estimator than the Nadaraya-Watson estimator.

4.2 Convergence Rates

Recall from Theorem 3.5

β̂0(t0;n, b)
d
= g(t0) +

ZA(t0, b)
1/2

(nb)d/2
+

1

2
b2[K−1

d∑
i,j=1

∂

∂ti

∂

∂tj
g(t0)Ni,j]1

+o(b2) +O
(
n−(ρ(t0)∧2δ(t0))

)
+Op

(
n−δ(t0)

√
rnb(t)

)
.

First note that if the underlying process Y has a constant mean, or if µ(t) is smooth

enough, then the terms with a δ(t0) are 0 or negligible. Now if we consider the terms

that contain b, the best rate can be attained by equating the bias and s.d.

(nb)−d/2 = b2 ⇒ n−d/2 = b2+d/2 ⇒ b = n−d/(4+d).

Therefore the convergence rate is max(n−2d/(4+d), n−ρ(t0)) which is optimal for estimat-

ing a regression function nonparametrically assuming two derivatives and iid. errors

when ρ(t0) > 2d/(4 + d).

Recall from Theorem 3.8,

sup
t0∈[0,1]2

∣∣∣β̂0(t0;n, b)− g(t0)
∣∣∣

= O
(

(nb)−d/2 log(n)s
1/2
nb

)
+O

(
(nb)−d/2 log(n)r

1/2
nb n

−δ
)

+O(b2) +O(n−ρ) +O(n−2δ).

Again, if µ(t) is constant or smooth enough, any term with a δ is negligible. Then

recall that snb depends on the value of ψ in relation to d, namely

snb(t) =

{ 1 if ψ(t) > d/2

log(nb) if ψ(t) = d/2

(nb)d−2ψ(t0) if ψ(t) < d/2.
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From Assumption 2.3(ii), we see that in practice ψ(t0) can be made arbitrarily large

as the order of the difference operator increases, so if we assume ψ > d/2.

(nb)−d/2 log(n) = b2 ⇒ n−d/2 log(n) = b2+d/2 ⇒ b = n−d/(4+d)(log(n))2/(4+d).

Therefore, if we let N = nd, the sample size, the convergence rate is

max(N−2/(4+d) log(N)4/(4+d), N−ρ(t0)/d).

Stone’s optimal rate assuming two derivatives is N−2/(4+d) log(N)2/(4+d). So if we

consider ρ sufficiently large, our rate is slightly worse than Stone’s rate.

4.3 Separating α(t) and ft(h)

As in Chan and Wood (2000), we can consider estimating α(t).

Let

ξ(t,h;n, b) = n−α(t)β̂0(t,h;n, b),

which does not depend on any unknown parameters. Define

α̂(t;n, b) =
log (ξ(t,h;n, bn))− log (ξ(t,h; 2n, b2n))

log 2
.

It follows that

α̂(t;n, b)− α(t)

=
log
(
β̂0(t,h;n, bn)

)
− log

(
β̂0(t,h; 2n, b2n)

)
log 2

=
log
(

1 + β̂0(t,h;n,bn)−J(0,t,h)
J(0,t,h)

)
− log

(
1 + β̂0(t,h;2n,b2n)−J(0,t,h)

J(0,t,h)

)
log 2

= O
(
β̂0(t,h;n, bn)− J(0, t,h) + β̂0(t,h; 2n, b2n)− J(0, t,h)

)
Thus, α̂(t;n, b)− α(t) has the same rate as β̂0(t,h;n, bn)− J(0, t,h).

Now, let β̌0(t,h;n, b) be the estimator defined with α(t) replaced by α̂(t;n, b) in

β̂0(t,h;n, b); i.e.,

β̌0(t,h;n, b) = nα(t)−α̂(t;n,b)β̂0(t,h;n, b).
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If we choose b so that β̂0(t,h;n, bn)− J(0, t,h) = Op((log n)−1), then

β̌0(t,h;n, b)− J(0, t,h)

=
(
nα(t)−α̂(t;n,b) − 1

)
β̂0(t,h;n, b) + β̂0(t,h;n, b)− J(0, t,h)

= Op(log n)
{
β̂0(t,h;n, b)− J(0, t,h)

}
.

Thus, having to estimate α(t) in estimating J(0, t,h) incurs the cost of a multiplica-

tive rate of log n over the rate when α(t) is known. However, the extra cost does not

make the rate prohibitively worse since β̂0(t,h;n, b)− J(0, t,h) has polynomial rate

if we choose b sensibly.

4.4 Higher Order Differencing

From the results above, we see that ψ(t) needs to be greater than d to achieve

optimal convergence rates. In chapter 3 this corresponds to x > α(t)+d
2

. One question

we can ask is what is the impact of using a higher order differencing operator than is

necessary. To compare estimators, consider estimating f(h) with a difference operator

of order x, i.e. Wn(t) = nα(t0)/2∆x
h/nY (t) and

f̂(h) =
β̂0(t0;n, b)∑x

i=1

∑x
j=0(−1)i+j

(
x
i

)(
x
j

)
|i− j|α(t)

.

The variance of f̂ is approximately

2

∫
I(t0,b)

k̄(z)2dz ·
∑
j∈Zd

(∑x
i=0

∑x
j=0(−1)i+j

(
x
i

)(
x
j

)
ft0(j + (i− j)h)|j + (i− j)h|α(t0)

|h|α(t0)
∑x

i=0

∑x
j=0(−1)i+j

(
x
i

)(
x
j

)
|i− j|α(t0)

)2

,

and notationally let

S =

(∑x
i=0

∑x
j=0(−1)i+j

(
x
i

)(
x
j

)
ft0(j + (i− j)h)|j + (i− j)h|α(t0)

|h|α(t0)
∑x

i=0

∑x
j=0(−1)i+j

(
x
i

)(
x
j

)
|i− j|α(t0)

)2

.

Figure 4.2 gives the values of S for orders x = 1, 2, 3, 4, 5 for varying α when d = 2,

h = (1, 0) and ft(h) = 1. We see that a given order has the lowest variance over a

range of α and the optimal order is increasing in α.

The local behavior in µ(t) and the bias will also play a role in which x is opti-

mal. In general though, the optimal x will be the smallest integer that satisfies the

assumptions of chapter 3.
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α .25 .75 1.25 1.75 2.25 2.75 3.25 3.75 4.25 4.75
x = 1 1.35 1.67

2 1.84 1.67 1.59 1.67 2.15 4.65
3 2.22 2.08 1.96 1.90 1.89 1.98 2.21 2.69 3.86 8.90
4 2.55 2.43 2.32 2.25 2.20 2.20 2.24 2.34 2.52 2.82
5 2.85 2.74 2.64 2.58 2.53 2.50 2.50 2.53 2.60 2.71

Figure 4.2: Calculated values of S for varying x and α.

4.5 Missing Data

Here we will give an informal treatment of what happens when data is missing at

random.

Suppose that observations of the process Y on our sampling grid are missing at

random with probability p. Then let X(t) be a bernoulli variable that is 0 if one of

the points in ∆x
h is missing and 1 otherwise. Then E(X(t)) = (1− p)x+1 since there

are x + 1 points in the operator ∆x
h and E(X(t)X(s)) = (1 − p)2(x+1)−y where y is

the number of points that are in both ∆x
hY (t) and ∆x

hY (s). So define

B(z,h) =

{
(1− p)x+1+y, if z = ±yh, y = 0, 1, . . . , x

(1− p)2x+2, otherwise

and it follows that

Cov(X(t), X(s)) =

{
(1− p)x+1+y − (1− p)2x+2, if z = ±yh, y = 0, 1, . . . , x

0, otherwise .

Assuming that X(t) and Y (t) are independent of each other,

E
{
X(t)(∆x

hY (t))2
}

= (1− p)x+1E(∆x
hY (t))2,

E {X(t)X(s)∆x
hY (t)∆x

hY (s)} = B(t− s,h)E {∆x
hY (t)∆x

hY (s)} .

It follows that nα(t)/2X(t)∆x
h/nY (t) satisfies Assumption 3.1 and β0(t0;n, b) estimates

(1 − p)x+1g(t0). If we let X ′(t) denote the Bernoulli variable which is 0 if a point t

is missing from our sampling grid and 1 if it is not missing with probability p. Then

we can estimate p with

p̂ = n−d
∑
ti

X(ti).
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E(p̂) = p and for m even,

E(p̂− p)m = n−md
∑

ti1 ,ti2 ,...,tim

E {(X(t1)− p)(X(t2)− p) · · · (X(tm)− p)}

= n−md
∑
ti

E(X(ti)− p)m

= n−md+dE(X(t1)− p)m

= n−(m−1)d

{[
m∑
i=0

(−1)i−1

(
m

i

)
pi+1

]
+ (−1)mpm

}
≤ n−(m−1)d.

Then by Borel-Cantelli,

∞∑
n=1

P

(
nd/2√
log(n)

|p̂− p| > c

)
≤

∞∑
n=1

Een
d(p̂−p)2

ec2 log(n)

≤
∞∑
n=1

n−c
2

E
∞∑
x=0

(nd(p̂− p)2)x/x!

=
∞∑
n=1

n−c
2
∞∑
x=0

nxdE(p̂− p)2x/x!

≤
∞∑
n=1

n−c
2

(2 +
∞∑
x=2

n−(x−1)d/x!)

=
∞∑
n=1

n−c
2

(2 + n−1

∞∑
x=2

n−(x−2)d/x!)

≤
∞∑
n=1

n−c
2

(2 + n−1

∞∑
x=2

1/x!)

≤
∞∑
n=1

n−c
2

(2 + e1)

< ∞,

when c > 1. So p̂
a.s.→ p with rate

√
log(n)

nd/2
. And combining this with Theorem 3.8 and

applying the continuous mapping theorem, β̂0(t;n,b)
p̂

a.s.→ g(t) uniformly over [0, 1]d with

rate log(n)

(nb)d/2
.
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CHAPTER 5

Simulation Results

For numerical analysis, we focus on the two-dimensional Gaussian process with

a nonstationary Matérn covariance and one-dimensional multifractional Brownian

motion. For the Matérn example, we evaluate the performance of the local linear

smoother in estimating f when ν is known. The estimator is compared over a band-

width range and for different increment orders with theoretical justification. Then we

analyze linear prediction by estimating the process at an unobserved spatial location

which is ( 7
20n
, 7

20n
) off of the grid. For comparison, we predict with Kriging using the

true variogram, Kriging using an estimated variogram, Kriging with just an estimate

of ν and local estimators. Kriging using the true variogram always performs the best,

but kriging with an estimated variogram is only slightly worse. For multifractional

Brownian motion, we examine local estimation of the smoothness parameter H(t).

We used Matlab to generate a local window of points for the Gaussian random

field specified in example 5.1 with grid size n and window width 2b. The “un-

observed” point was also generated so we can calculate the bias and s.d. of our

Kriging estimators. To generate the fields, we calculated Y = Σ1/2Z, where Z is

an vector of (2nb)2 + 1 independent N(0, 1) realizations and Σ is the symmetric

(2nb)2 + 1× (2nb)2 + 1 covariance matrix where Σij = Cov(Yi, Yj). We approximated

Σ1/2 by using the Matlab singular value decomposition function (SVD). For the mul-

tifractional Brownian motion example we used a similar procedure which generates

the grid of size 1/5000 across [0, 1].
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5.1 Nonstationary Matérn Covariance

Example 5.1. Gaussian random field with mean function µ(t) = 10 + cos(2πt1) +

sin(πt2) and nonstationary Matérn covariance function

C(t, s) = D(t)D(s)
σ221−ν

Γ(ν)
(
√

2ν|M(t− s)|)νKν(
√

2ν|M(t− s)|)

with σ2 = 1, ρ = 1, ν varying, M =

[
.5 .5

−1 3

]
and D(t) = .5 + t1 + .8t2 − t1t2.

Figure 5.1: Realizations of Matérn random fields with ν = .4(top), ν = 1.4(left) and
ν = 2.4(right)

From figure 5.1 we see that as ν increases, the field becomes smoother. We can

also see the anisotropy created by M .

Since ν is constant, we can accurately estimate ν globally if we have a large window

of points. For this example we are only generating a local window of points, so we

will assume that ν is known or accurately estimated.

5.1.1 Local Expansion

Here we will calculate the local expansion of the covariance function. Let a =

σ2 2π
Γ(ν) sin(νπ)

.

C(t, s) = aD(t)D(s)
∞∑
m=0

{
(ν/2)m|M(t− s)|2m

m!Γ(m− ν + 1)
− (ν/2)m+ν |M(t− s)|2m+2ν

m!Γ(m+ ν + 1)

}

= aD(t)D(s)


dνe∑
m=0

(ν/2)m
(∑d

j=1

(∑d
k=1Mjk(tk − sk)

)2
)m

m!Γ(m− ν + 1)

−(ν/2)ν |M(t− s)|2ν

Γ(ν + 1)

}
+O

(
|t− s|2ν+1

)
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= aD(t)D(s)


dνe∑
m=0

∑
|`1|+|`2|=2m

c`1,`2t
`1s`2 +

(ν/2)ν |M(t− s)|2ν

Γ(ν + 1)

+O
(
|t− s|2ν+1

)
,

for some constants c`1,`2 . We can express this as

dνe∑
m=0

∑
|`1|+|`2|=2m

c`1,`2t
`1s`2 =

dνe∑
|`|=0

b`(t)s
` +

dνe∑
|`|=0

b`(s)t`

where b`(t) are polynomials. Then by definition of D,

aD(t)D(s)

 dνe∑
|`|=0

b`(t)s
` +

dνe∑
|`|=0

b`(s)t`


= a(.5 + t1 + .8t2 − t1t2)(.5 + s1 + .8s2 − s1s2)

 dνe∑
|`|=0

b`(t)s
` +

dνe∑
|`|=0

b`(s)t`


=

dν+2e∑
|`|=0

b`(t)s
` +

dν+2e∑
|`|=0

b`(s)t`,

where b` are redefined to account for D. Lastly,

aD(t)D(s)
(ν/2)ν |M(t− s)|2ν

Γ(ν + 1)
= aD(t)2 (ν/2)ν |M(t− s)|2ν

Γ(ν + 1)
+O

(
|t− s|2ν+1

)
.

Therefore this satisfies our covariance assumption with

ft(t− s) =
σ22πD(t)2(ν/2)ν

Γ(ν) sin(πν)Γ(ν + 1)
|M(

t− s
|t− s|

)|2ν ,

α(t) = 2ν and γ(t) = 1.

5.1.2 Optimal Bandwidth, Increment Order and Normality

From section 4.2, the optimal bandwith will be b = cn−1/3 for some constant c. To

determine the optimal theoretical c, we will calculate the theoretical bias and variance

of the local linear smoother. In these calculations recall that M =

[
.5 .5

−1 3

]
and

D(s) = .5 + s1 + .8s2− s1 ∗ s2. Here we will set ν = .4 (α = .8), x = 2 and h = (1, 0)′

which gives ft0(h) = .964.
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From Theorem 2.5, the bias is approximately

∂2

∂t21
g(t0)

∫
k(z)z2

1dz + ∂2

∂t22
g(t0)

∫
k(z)z2

2dz

2
∫
k(z)dz

So if we consider the local linear estimator with kernel function k(z) = (1− z2
1)∗ (1−

z2
2), the theoretical bias is approximately

(32/9)−1(16/45)

(
∂2

∂t21
g(t0) +

∂2

∂t22
g(t0)

)
b2 ≈ .39b2.

And from Theorem 2.7, the variance is n−2b−2A(t0) where A(t0) is

2

(∫
k(z)dz

)−2 ∫
k(z)2dz

∑
j

g2(t0, j) ≈ 1.81.

So to minimize mean squared error,

min
b

(.392b4 + 1.81n−2b−2) = min
c

(.392c4 + 1.81c−2)n−2/3

which resuls in c = 1.35.

Figure 5.2 gives the results from 10,000 independent realizations of the field and

estimation of ft as c increases. First note that these values are consistent with our

theoretical calculations. The figure confirms that the approximate minimum of the

MSE plot is consistent with the 1.35 value.

Figure 5.3 gives the RMSE of the local linear smoother for varying ν and x when

nb is fixed at 30 and c is fixed at 1.35. From section 4.4, we expect that the optimal

x will increase as ν increases. For this example, x = 2 is optimal when ν < .5, x = 4

is optimal when ν ∈ (.5, 2) and x = 6 is optimal when ν ∈ (2, 3.5). For larger values

of ν, it appears that approximation errors dominate the error rates.

To evaluate asymptotic normality, figure 5.4 gives a comparison of Q-Q plots as

nb increases. As expected, the estimators look more normal as nb increases.

5.1.3 Prediction

Now we will examine the error in predicting the value of Y (t0) at an unobserved

location t0 that is ( 7
20n
, 7

20n
) off of the grid. The first estimator we consider is the

nearest neighbor estimator defined as ŶNN := Y (ti) where ti is the closest gridpoint
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Figure 5.2: Bias, s.d. and RMSE for estimation of f and varying c.

to t0. Next is the universal Kriging estimator defined as ŶUK−k := λ′Y where

λ′ =
(
v1 +X(X ′K−1X)−1(v2 −XK−1v1)

)′
K−1

Y = (Y (t1), . . . , Y (tm))′

λ = (λ1, . . . , λm)′,

K = {f(ti − tj)|ti − tj|2ν}mi,j=1,

X = a matrix with m rows where the i-th row is the vector containing

t`i ; the order is arranged in any order, ∀` : |`| ≤ r,

v1 = (f(t1 − t0)|t1 − t0|2ν , . . . , f(tm − t0)|tm − t0|2ν)′,
v2 = the vetor containing t`0 arranged in the same order as X.

For this estimator we will approximate ft(u) with |M̂u|2ν , which is generated by

estimating M from f̂t0(h) for h ∈ {(1, 0), (0, 1), (1, 1)} as in Anderes (2011). We
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Figure 5.3: MSE for estimation of f for varying ν and x.

Figure 5.4: Q-Q plots of f̂ ′ for nb = 10(left), nb = 15(center) and nb = 20(right).

also consider the universal Kriging estimator assuming isotropy and using the true

ν, labeled ŶIK−k, and the linear predictor whose coefficients eliminate polynomials

of degree k, labeled ŶLP−k. Lastly, we will evaluate the universal Kriging estimator
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using the true variogram. This will be labeled as TK − k, where ŶTK−k is defined

the same as ŶUK−k except the estimated principal irregular term is replaced with the

true variogram. The TK − k estimators will have the lowest prediction s.d.’s since

they are using the true variogram, but we expect that the UK − k estimators will

perform similarly if M is accurately estimated. For consistency, each estimator will

predict with the 12 × 12 grid of points centered at t0. We fix nb = 30 and for the

ŶUK−k estimators, we will use x = 4 when ν < 2 and x = 8 when ν > 2.

Figure 5.5 gives the prediction s.d. for the different estimators as ν increases. For

simplicity of presentation, we multiplied each value by 1000. The ŶTK−2 and ŶTK−4

estimators performed the same as ŶTK−0, so they were left out. We also only include

the ŶLP−2 and ŶIK−4 estimators. As expected, ŶTK−0 has the lowest s.d. across ν

and ŶNN has the largest s.d. across ν. ŶUK−4 performed the best among the ŶUK−k

estimators, the s.d. of ŶTK−0 is about 5% lower than the s.d. of ŶUK−4 when ν = .3

and there is less than a 1% difference when ν ≥ .7. The LP−2 and IK−4 estimators

perform significantly worse than the UK−4 estimator, suggesting that it is beneficial

to estimate the variogram.

From figure 5.6 we see that the bias is small compared to the s.d. for all of the

estimators except ŶNN , which has a larger bias when ν > 1.3.

ν .3 .7 1.3 1.7 2.3 2.7

s.d.(ŶNN) 294.2 55.9 16.97 13.15 11.6 11.4

s.d.(ŶLP−2) 282.3 45.6 4.27 1.03 .163 .059

s.d.(ŶIK−4) 248.3 44.9 4.31 .97 .116 .029

s.d.(ŶUK−0) 236.7 35.4 2.34 .416 .0369 .0077

s.d.(ŶUK−2) 248.3 34.1 2.34 .416 .0365 ..0074

s.d.(ŶUK−4) 230.4 33.9 2.34 .416 .0363 .0073

s.d.(ŶTK−0) 223.2 33.6 2.33 .414 .0363 .0072

Figure 5.5: Prediction standard deviation for different values of ν, multiplied by 1000.

5.2 Multifractional Brownian Motion

This simulation examines local estimation of the Hurst parameter in one-dimensional

mBm.

From Ayache (2000), the covariance for one-dimensional mBm can be written as

C(t, s) = D(H(s), H(t))
(
tH(t)+H(s) + sH(t)+H(s) − |t− s|H(t)+H(s)

)
,
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ν .3 .7 1.3 1.7 2.3 2.7

Ŷ NN − Y −4.6 −26.7 −24.3 −22.1 −21.7 −21.7

Ŷ LP−2 − Y 15.4 −.3 −.11 −.016 −.004 .002

Ŷ IK−4 − Y 4.1 .21 −.19 −.03 −.002 .003

Ŷ UK−0 − Y 18.5 −.43 .163 .014 −.013 −.0028

Ŷ UK−2 − Y 4.6 −.68 .09 −.023 −.005 −.0018

Ŷ UK−4 − Y 3.2 −.71 .09 .013 .001 .0001

Ŷ TK−0 − Y 1.93 −1.02 .234 .081 .001 .0002

Figure 5.6: Prediction bias for different values of ν, multiplied by 1000.

Figure 5.7: One realization of one dimensional mBm.

where

D(H(t), H(s)) =

√
Γ(2H(t) + 1)Γ(H(s) + 1) sin(πH(t)) sin(πH(s))

2Γ(H(t) +H(s) + 1) sin(π(H(t) +H(s))/2)
,

and we let t, s ∈ (0, 1]. In this simulation we consider H(t) = .5 − .4 cos(πt), which

increases smoothly from .1 to .9 as t increases from 0 to 1. Figure 5.7 plots a single

realization of this process, which becomes smoother as t (and H(t)) increases.

Now we will consider estimating H(t) locally with a local linear smoother. Since

this process is one-dimensional, our theoretical results tell us that the optimal rate is
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achieved when b = cn−1/5 for some c. For this example, simulation determined that

c ≈ .7 is optimal. Figure 5.8 plots the true value of H(t), the mean of the local linear

smoother from 10,000 independent replications and the mean ± 2 standard deviations

with n = 5000, c = .7 and x = 4.

Figure 5.8: Estimation of H(t) for t ∈ [.2, .8].
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APPENDIX A

Proofs of Examples from Chapter 2

Multifractional Brownian Motion

Fractional Brownian motion(fBm) was introduced by Mandelbrot and Van Ness

(1968) and defined for t ≥ 0 and H ∈ (0, 1) as

BH(t) =
1

Γ(H + 1/2)

{ 0∫
−∞

[(t− s)H−1/2 − (−s)H−1/2]dW (s)

+

t∫
0

(t− s)H−1/2dW (s)

}
,

where W is a Weiner process defined on (−∞,∞). Herbin (2006) points out that we

can also define fractional Brownian motion as a centered Gaussian process BH s.t.

∀s, t ∈ Rd
+,

E (BH(s)BH(t)) =
1

2

(
s2H + t2H − |t− s|2H

)
.

This process has some desirable properties such as self-similarity, BH(at)
d
= |a|BH(t);

stationary increments, BH(t) − BH(s)
d
= BH(t − s); long-range depenedence when

H > 1/2; sample paths are nowhere differentiable with probability one.

Multifractional Brownian motion(mBm) is an extension of fBm where H(t) is a

Hölder function s.t. 0 < α ≤ H(t) ≤ β and |H(t)−H(s)| ≤ c|t− s|β. Herbin (2006)

showed that for a mBm process X,

E(X(s)X(t)) = D(H(s), H(t))
{
|s|H(s)+H(t) + |t|H(s)+H(t) − |t− s|H(s)+H(t)

}
,
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where

D(H(t), H(s)) =

∫
Rd

(1− eiu1)/(|bu|H(t)+H(s)+d)du.

Proposition A.1. Let H be three times differentiabe and assume we observe mBm

away from 0. Then mBm satisfies our covariance assumption with ft(s − t) =

D(H(t), H(t)), α(t) = 2H(t), r = 2 and γ(t) < 1.

Proof. Since D(t, s) is a smooth function,

D(i,j)(t, s) :=
∂i

∂ti
∂j

∂sj
D(t, s) ≤ ci,j,

where ci,j are bounded for i + j ≤ 4. Since H(t) is three times differentiable for |t|
bounded away from 0. Let H(`)(t) = ∂`1

∂t
`1
1

· · · ∂`d
∂t
`d
d

H(t). Then

|t|H(s)+H(t) = e(H(s)+H(t)) log(|t|) = |t|2H(t)

 ∞∑
i=0

log(|t|)
2∑
|`|=1

(s− t)`H(`)(t)


i .

Thus,

D(H(s), H(t))|t|H(s)+H(t)

=

 2∑
|`|=0

H(`)(t)D(|`|,0)(H(t), H(t))(s− t)` +O(|s− t|3)


·

|t|2H(t)

2∑
i=0

1

i!

log(|t|)
( 2∑
|`|=1

H(`)(t)(s− t)`
)

i

+O(|s− t|3)


=

2∑
|`1|+|`2|=0

H(`1)(t)H(`2)(t)D(|`1|,0)(H(t), H(t))|t|2H(t)(s− t)`1+`2 +O(|s− t|3)

=
2∑
|`|=0

b`(t)s
` +O(|t− s|α(t)+γ(t))

for bounded functions b`(t), α(t) = 2H(t) and γ(t) = 3 − α(t). By symmetry, we

also have

D(H(s), H(t))|s|H(s)+H(t) =
2∑
|`|=0

b`(s)t` +O(|t− s|α(t)+1).
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Then

D(H(s), H(t))|s− t|H(s)+H(t)

=

 2∑
|`|=0

H(`)(t)D(|`|,0)(H(t), H(t))(s− t)` +O(|s− t|3)


·

|s− t|2H(t)

1 + log(|s− t|)
2∑
|`|=1

H(`)(t)(s− t)`
+O(|s− t|2H(t)+1)


= |s− t|2H(t)D(H(t), H(t)) +O

(
|s− t|2H(t)+1 log(|s− t|)

)
,

which implies that ft(s− t) = D(H(t), H(t)), α(t) = 2H(t) and γ(t) < 1.

For the derivative bound, notice first that D is smooth, H is three times differen-

tiable and |t| is bounded away from 0. Therefore D(H(s), H(t))|t|H(s)+H(t) is three

times continuously differentiable in t and s and hence ∂
(1,1)
u ∂

(1,1)
v D(H(s), H(t))|t|H(s)+H(t)

is uniformly bounded. Then since ∂
(1,0)
u log(|t− s|) = |t− s|−2

∑
|`|=1(t− s)`u`,

∂(1,0)
u D(H(t), H(s))|t− s|H(t)+H(s)

= D(H(t), H(s))|t− s|H(t)+H(s)

·

(H(t) +H(s))|t− s|−2
∑
|`|=1

(t− s)`u` + log(|t− s|)
∑
|`|=1

u`H(`)(t)


+|t− s|H(t)+H(s)D(1,0)(H(t), H(s))

∑
|`|=1

u`H(`)(t)

= O(|t− s|H(t)+H(s)−1).

And in general, derivatives will be a sum of terms with the form

R(t, s,u,v)|t− s|H(t)+H(s)−x

∑
|`|=1

(t− s)`u`

i∑
|`|=1

(t− s)`v`

j

logr(|t− s|)(A.1)

= O(|t− s|H(t)+H(s)−x+i+j−r), (A.2)

where R(t, s,u,v) is a smooth function in t and s. Then if we take the directional

derivative of one of the terms in (A.1), we will add at most a |t − s|−1 to the O(·)
term in (A.2),

∂(1,0)
u R(t, s,u,v) = O(1)

∂(1,0)
u |t− s|H(t)+H(s)−x = (H(t) +H(s)− x)|t− s|H(t)+H(s)−x−2

∑
|`|=1

(t− s)`u`
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= O(|t− s|H(t)+H(s)−x−1)

∂(1,0)
u

∑
|`|=1

(t− s)`u`

i

= i

∑
|`|=1

(t− s)`u`

i−1 ∑
|`|=1

u2`

= O(|t− s|i−1)

∂(1,0)
u

∑
|`|=1

(t− s)`v`

j

= j

∑
|`|=1

(t− s)`v`

j−1 ∑
|`|=1

u`v`

= O(|t− s|j−1).

Thus,

∂(1,1)
v ∂(1,1)

u D(H(t), H(s))|t− s|H(t)+H(s) = O(|t− s|H(t)+H(s)−4),

which satisfies our assumption.

Anisotropic Matérn Covariance

The general form for the Matérn covariance is given by

C(t) =
σ221−ν

Γ(ν)
(
√

2ν|t|)νKν(
√

2ν|t|),

where Kν is the modified Bessel function of the second kind.

The modified Bessel function of the first kind is defined by the infinite series:

Iν(x) =
∞∑
m=0

1

m!Γ(m+ ν + 1)

(x
2

)2m+ν

.

The modified Bessel function of the second kind is defined as

Kν(x) =
π

2

I−ν(x)− Iν(x)

sin(νπ)
,

for non-integer ν. For integer ν, Kν is defined as a limit. Then for non-integer ν,

Kν(x) =
π

2
(sin(νπ))−1

·
∞∑
m=0

{
1

m!Γ(m− ν + 1)

(x
2

)2m−ν
− 1

m!Γ(m+ ν + 1)

(x
2

)2m+ν
}
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Then the Matern covariance function is

Rν(|t|)

= σ2 21−ν

Γ(ν)

(√
2ν
|t|
ρ

)ν
Kν

(√
2ν
|t|
ρ

)
= σ2 2π

Γ(ν)

(√
ν|t|√
2ρ

)ν
(sin(νπ))−1

·
∞∑
m=0

{
1

m!Γ(m− ν + 1)

(√
ν|t|√
2ρ

)2m−ν

− 1

m!Γ(m+ ν + 1)

(√
ν|t|√
2ρ

)2m+ν
}

= σ2 2π

Γ(ν) sin(νπ)

∞∑
m=0

{
(ν/2)m|t|2m

m!Γ(m− ν + 1)ρ2m
− (ν/2)m+ν |t|2m+2ν

m!Γ(m+ ν + 1)ρ2m+2ν

}
.

Anderes (2010) considers the geometric anisotropic Matérn covariance function,

which can be defined as the covariance of a Gaussian random field Y (t) = Z(Mt),

where M is an invertible matrix with determinant 1 and Z is an isotropic Gaussian

random field with a Matérn covariance. When ν ∈ (0, 1), this covariance can be

written as

Rν(|Mt|)

= σ2 2π

Γ(ν) sin(νπ)

∞∑
m=0

{
(ν/2)m|Mt|2m

m!Γ(m− ν + 1)ρ2m
− (ν/2)m+ν |Mt|2m+2ν

m!Γ(m+ ν + 1)ρ2m+2ν

}
,

which satisfies assumption 2.3 (i) with b0 = σ2π
Γ(ν) sin(νπ)Γ(1−ν)

, ft(t−s) =
σ2πνν |M t−s

|t−s| |
2ν

Γ(ν) sin(νπ)ρ2νΓ(1+ν)
,

α(t) = 2ν, γ(t) = 2 and b`(s) can clearly be defined from |M(t− s)|2|`|.

Deformation Model

Anderes and Chatterjee (2009) consider estimation of a deformation function F

in a framework similar to ours. They assume that the observed process has the form

Y (t) = Z(F (t)) where Z is assumed to be an isotropic Gaussian random field. They

assume the following assumptions on the spatial process Z and covariance function

R:

R1: Z is a constant mean Gaussian process on R2 with autocovariance R(|t− s|) =

Cov(Z(t), Z(s)).

R2: R(|t|) = R(0)− |t|α + o(|t|α+γ), as |t| → 0 for some 0 < α < 2, γ > 0.

R3: R is C4 away from the origin and there exists a c > 0 such that |R(4)(t)| ≤ ctα−4
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for all sufficiently small t > 0.

Define the class of C1 diffeomorphisms to be the set of all continuous invertible maps

F : U → R2, such that F is C1(U) and F−1 is C1(V ), where V = F (U) is the range of

F . By the inverse function theorem, necessary and sufficient conditions are that F be

invertible, C1(U) and det(JF ) 6= 0. We write C1 as short for C1(R2). Moreover, the

directional derivative in the direction θ, denoted ∂θf , is J tfuθ, where uθ = (cos θ, sin θ).

So their basic assumption is that

F (t+ h) = F (t) + J t
Fh+ o(|h|)

where J t
F := (∂Fi

∂tj
(t))i,j is the Jacobian of the map F at t.

They also note these consequences of a C2 diffeomorphism assumption:

D1: F is a quasiconformal map on bounded simply connected domains.

D2: supt∈Θ |
F (t+εh)−F (t)

ε
− J t

Fh| → 0 as ε→ 0 for every compact set Θ.

D3: For any vector h 6= 0 and compact set Θ, there exists a constant c such that

|∂(2,2)
h R(|F (s)− F (t)|)| ≤ c|s− t|α−4 for all s, t ∈ Ω such that s 6= t.

D4: For every compact subset Θ, there exists constants c1, c2 > 0 such that c1|h| ≤
|Jx
Fh| ≤ c2|h| for all h and all x ∈ Θ.

D5: |J t
Fh|

α
is Holder continuous in t ∈ Θ for any h and compact set Θ.

Anderes and Chatterjee presented a class of deformation functions known as quasi-

conformal mappings and showed that can be estimated locally from estimates of J t
Fh

in directions h = (1, 0), (0,1) and (1,1).

D4 satisfies assumpton 2.3 (ii) and for assumpton 2.3 (i), Anderes and Chatterjee

showed that if α < 2

C(t, t+ h) = R(|F (t)− F (t+ h)|)
R(0)− |J t

Fh+ o(|h|)|α + o(|J t
Fh+ o(|h|)|α+γ)

R(0)− |J t
Fh|α +O(|h|−α−1) + o(|h|α+γ)

implies that σ2 = R(0), ft(h) = |J t
F

h
|h| |

α, α(t) = α and γ(t) = min(γ, 1). Anderes

and Chatterjee restrict α to be less than 2, however, if F is sufficiently smooth, we

can consider estimation for α > 2.

Here we will show that this model satisfies our covariance assumption.
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Proof. Consider the stationary process X with isotropic covariance function

R(h) = c0 +
k+1∑
s=1

c2s|h|2s + cα|h|α + o(|h|2k+3)

where α ∈ (2k, 2k + 2). Suppose F is a deformation function from Rd to Rd that is

(k+ 1) times differentiable. Define Y (t) = X(F (t)). Write F (t) = (F1(t), . . . , Fd(t))
′

and recall the notation from section 1.2. Then

F (t+ h)− F (t) =


2k+2∑
|`|=1

1

|`|!
F

(`)
j (t)h` + o(|h|2k+2)


d

j=1

Thus, for s = 1, . . . , k + 1,

|F (t+ h)− F (t)|2s

=
2k+2∑

|`1|+···+|`2s|=2s

h`1+···+`2s

|`1|! · · · |`2s|!

s∏
r=1

d∑
j=1

F
(`2r−1)
j (t)F

(`2r)
j (t) +O(|h|2k+3).

Replacing h with t− s, it is easily verified that this satisfies the first part of the

covariance expansion in Assumption 2.3

Then let z1, z2, . . . ,zd be some points on the line connecting t and t + h. By

Taylor’s theorem,

|F (t+ h)− F (t)|α

=

 d∑
j=1

 d∑
|`|=1

F
(`)
j (t)h` +

1

2

d∑
|`|=2

F
(`)
j (zj)h

`

2α/2

=

 d∑
j=1

 d∑
|`|=1

F
(`)
j (t)h`

2

+
1

2

d∑
|`|=1,2

F
(`)
j (t)h`

d∑
|`|=2

F
(`)
j (zj)h

`

α/2

.

Then by applying Taylor’s theorem and letting λ ∈ [0, 1],

 d∑
j=1

 d∑
|`|=1

F
(`)
j (t)h`

2

+
1

2

d∑
|`|=1

F
(`)
j (t)h`

d∑
|`|=2

F
(`)
j (zj)h

`

α/2

=

 d∑
j=1

 d∑
|`|=1

F
(`)
j (t)h`

2α/2

+
α

4

 d∑
j=1

d∑
|`|=1

F
(`)
j (t)h`

d∑
|`|=2

F
(`)
j (zj)h

`


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·

 d∑
j=1

 d∑
|`|=1

F
(`)
j (t)h`

2

+
λ

2

d∑
|`|=1

F
(`)
j (t)h`

d∑
|`|=2

F
(`)
j (zj)h

`

α/2−1

=

 d∑
j=1

 d∑
|`|=1

F
(`)
j (t)h`

2α/2

+O(|h|1+α).

The last equality holds uniformly since F is twice continuously differentiable and

applying the extreme value theorem. Therefore since α + 1 < 2k + 3, we can write

C(t, t+ h) = c0 +
2k+2∑
|`|=2

b`(t)h
` + |J t

Fh|α +O(|h|2ν+1) as h→ 0

for some functions b`. Using the fact that the covariance function is symmetric, it is

straightforward to verify that this satisfies our covariance assumption with γ(t) = 1

and ft(h) = |J t
fh|. So therefore the deformation framework satisfies our covariance

assumptions for general α(t) s.t. α(t)/2 is non-integer if F is at least bαc times

continuously differentiable.

The second half of the covariance assumption follows from the proof of Lemma 9

in Anderes and Chatterjee (2009).

Suppose now that the observed process Y is the deformation of a two dimensional

isotropic Matérn Gaussian random field X with covariance R(|t|). Then

C(t, t+ h) = Cov(Y (t), Y (t+ h))

= Cov{X(F (t)), X(F (t+ h))}
= Rν(|F (t+ h)− F (t)|)

=
σ2πνν

Γ(ν) sin(νπ)ρ2νΓ(1 + ν)

{∣∣∣∣J t
F

h

|h|

∣∣∣∣2ν +O(|h|)

}
.

So the estimation procedure to recover F will actually estimate the function

G(t) :=

(
σ2πνν

Γ(ν) sin(νπ)ρ2νΓ(1 + ν)

)1/(2ν)

F (t) = BF (t).

And so G−1(t) = F−1
(

t
B

)
and hence the covariance for Y (G−1(t)) is

C(G−1(t), G−1(t+ h))
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= Cov

{
X

(
F

(
F−1

(
t

B

)))
, X

(
F

(
F−1

(
t+ h

B

)))}
= Cov

{
X

(
t

B

)
, X

(
t+ h

B

)}
= R

(
h

B

)
.

47



APPENDIX B

Proofs of Limit Theorems and Related Results

Preliminary Results

Lemma B.1. Suppose Assumption 3.2 holds, n→∞ and nb→∞. Then∣∣∣∣∣∣∣∣n
−db−d−

∑d
`=1m`

∑
ti∈Tn(t0,b)

kti

d∏
`=1

tm`i` −
∫

[− t0
b
,
1−t0
b

]

k(z)
d∏
`=1

zm`` dz

∣∣∣∣∣∣∣∣ ≤ c10n
−1b−1,

for some c10 > 0, i, j non-negative integers.

Proof. Let Si denote the d-dim cube with area n−d centered at ti. Thus, ∪iSi = [0, 1]d.

We will also let
∑

t refer to
∑

ti∈Tn(t0,b)
.

If we let f(z) = k(z)
∏d

`=1 z
m`
` then∣∣∣∣∣∣∣∣n

−db−d−
∑d
`=1m`

∑
ti

kti

d∏
`=1

tm`i` −
∫

[− t0
b
,
1−t0
b

]

f(z)dz

∣∣∣∣∣∣∣∣
≤ b−d

∣∣∣∣∣∣n−d
∑
ti

f

(
ti − t0
b

)
−
∑
ti

∫
Si

f

(
s− t0
b

)
ds

∣∣∣∣∣∣ (B.1)

+

∣∣∣∣∣∣∣∣b
−d
∑
ti

∫
Si

f

(
s− t0
b

)
ds−

∫
[− t0

b
,
1−t0
b

]

f(z)dz

∣∣∣∣∣∣∣∣ . (B.2)
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For (B.1), ∣∣∣∣f (ti − t0b

)
− f

(
s− t0
b

)∣∣∣∣ ≤ ∣∣∣∣(s− tib

)′
f ′
(
z − t0
b

)∣∣∣∣
for some z between s and ti and f ′(z) = ∇f(z). Let ‖f ′‖∞ = maxz∈[−1,1]d |f ′(z)|,
which is bounded by Assumption 3.2. Then since

∣∣s−ti
b

∣∣ ≤ n−1b−1,

b−d

∣∣∣∣∣∣n−d
∑
ti

f

(
ti − t0
b

)
−
∑
ti

∫
Si

f

(
s− t0
b

)
ds

∣∣∣∣∣∣
≤ n−db−d

∑
ti

n−1b−1‖f ′‖∞ ≤ 2dn−1b−1‖f ′‖∞.

For (B.2), letting z = (s− t0)/b,

b−d
∑
ti

∫
Si

f

(
s− t0
b

)
ds = b−d

∫
[0,1]d

f

(
s− t0
b

)
ds

=

∫
[− t0

b
,
1−t0
b

]

f(z)dz.

Since the support of f is [0, 1]d, this integral is effectively∫
[−(1∧ t0

b
),

1−t0
b
∧1]

f(z)dz,

but the former notation is simpler. So∣∣∣∣∣∣∣∣n
−db−d−

∑d
`=1m`

∑
ti

kti

d∏
`=1

(ti` − t0`)m` −
∫

[− t0
b
,
1−t0
b

]

f(z)dz

∣∣∣∣∣∣∣∣ ≤ c10n
−1b−1

for some c10 > 0.

Theorem B.2 (Gaussian Moment Theorem). Suppose X1, X2, ..., Xn are jointly Gaus-

sian with mean 0 and finite variance. Then for n odd,

E

(
n∏
i=1

Xi

)
= 0
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and for n even,

E

(
n∏
i=1

Xi

)
=

∑
(i1,i2),...,(in−1,in)

E(Xi1Xi2) · · · E(Xin−1Xin)

where the sum is over the n
2

unique pairings that can be chosen from 1, 2, ..., n.

Theorem B.3. Suppose m,n are non-negative integers and at least one is non-zero,

and X1, X2, ..., Xm, Xm+1, ..., Xm+n are jointly Gaussian with mean 0. Then for m =

1, n = 0 or n > 0 odd, we have

E

(
m∏
i=1

(X2
i − E(X2

i )) ·
n∏
j=1

Xm+j

)
= 0

and for n > 0 even,

E

(
m∏
i=1

(X2
i − E(X2

i )) ·
n∏
j=1

Xm+j

)
=

∑
(i1,i2),...,(i2m−1,i2m),(i2m+1,i2m+2),...,(i2m+n−1,i2m+n)

E(Xi1Xi2) · · · E(Xi2m+n−1Xi2m+n)

where the sum is over all unique pairwise samplings from {1, 1, 2, 2, ...,m − 1,m −
1,m,m,m+ 1,m+ 2, ...,m+ n} such that no pairing has identical elements.

Proof. The proof is by induction on m. Clearly the result is true for m = 0 and any

n > 0 or when m = 1 and n = 0. Suppose the result is true for finite m and any n.

Then for m+ 1,

E

(
m+1∏
i=1

(X2
i − E(X2

i )) ·
n∏
j=1

Xm+1+j

)
= E

(
m∏
i=1

(X2
i − E(X2

i )) ·X2
m+1

n∏
j=1

Xm+1+j

)

−E(X2
m+1) · E

(
m∏
i=1

(X2
i − E(X2

i )) ·
n∏
j=1

Xm+1+j

)

and by the induction hypothesis, the above is 0 if n is odd, and it is equal to the

desired expression if n is even. Therefore we have shown that the result is true for

any m and n where at least one is non-zero.

Corollary B.4. Suppose X1, X2, ..., Xn are jointly Gaussian. Then

E

(
n∏
i=1

(X2
i − E(X2

i ))

)
=

∑
(i1,i2),...,(i2n−1,i2n)

E(Xi1Xi2) · · · E(Xi2n−1Xi2n)
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where the sum is over all unique pairwise samplings from {1, 1, 2, 2, ..., n−1, n−1, n, n}
such that no pairing has identical elements.

Lemma B.5. Let Assumptions 3.1 and 3.2 hold. Then if t ∈ Tn(t0, b),∑
ti∈Tn(t0,b)

|Cn(t, ti)| ≤ c11rnb(t), (B.3)

uniformly over t0 ∈ [0, 1]d for some c11 > 0 where

rnb(t) =

{ 1 if ψ(t) > d

log(nb) if ψ(t) = d

(nb)d−ψ(t0) if ψ(t) < d.

Proof. From Assumption 3.1, |Cn(t, t + j/n)| ≤ c5 ∀j ∈ Zd and |Cn(t, t + j/n)| ≤
c6|j|ψ(t) for |j| > τ . So∑
ti∈Tn(t0,b)

|Cn(t, ti)| =
∑

|ti−t|≤τ/n

|Cn(t, ti)|+
∑

|ti−t|>τ/n

|Cn(t, ti)|

≤
∑

j∈Zd∩Ω0,τ

|Cn(t, t+ j/n)|+
∑

j∈(Z2∩Ω0,τ )c,|ji|<2nb

|Cn(t, t+ j/n)|

≤ (2τ)dc5 +
∑

j∈(Z2∩Ω0,τ )c,|ji|3nb

c6|j|−ψ(t)

≤ (2τ)dc5 +
3nb∑
j=1

3djd−1−ψ(t)

≤ (2τ)dc5 +

3nb∫
j=1

3djd−1−ψ(t)

= (2τ)dc5 + (d− ψ(t))3d[(3nb)d−ψ(t) − 1].

So therefore the lemma is satisfied for

c11 =

{ (2τ)dc5 + (ψ(t)− d)3d, if ψ(t) > d

(2τ)dc5 + (d− ψ(t))3d + log(3), if ψ(t) = d

(2τ)dc5 + (d− ψ(t))3d3d−ψ(t), if ψ(t) < d

.

Theorem B.6. Suppose X,X1, X2, ... are random variables where the moments of X

all exist and are finite and uniquely determine its distribution, and E(Xk
n)→ E(Xk)
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for all k = 1, 2, .... Then

Xn
D→ X

Proof. Now lim supn→∞E(X2
n) = E(X2) <∞ implies that {Xn} is tight. So suppose

that X ′n is a subsequence converging in distribution to Y . By Prokhorov, to complete

the proof it suffices to show that Y has the same distribution as X ′. By a standard

result, Xk
n′

D→ Xk, and for any positive integer k, Xk
n′ is uniformly integrable since

lim supn′→∞E(Xk+1
n′ ) = E(Xk+1) <∞. Thus

E(Xk
n′)→ E(Y k)

and so Y has the same moments as X, and thus must have the same distribution.

Notationally, let W̃n(t) = Wn(t)− µn(t) and let
∑

ti
refer to

∑
ti∈Tn(t0,b)

.

Theorem B.7. Let Assumptions 3.1(iii),(iv) and 3.6 hold. Then for some c12 > 0,

(nb)d/2

log(n)
sup

t0∈[0,1]2

∣∣∣∣∣ 1

ndbd

∑
ti

k

(
ti − t0
b

)
(W̃n(ti)

2 − EW̃n(ti)
2)

∣∣∣∣∣ ≤ c12

eventually with probability 1 as n→∞ and nb→∞.

Proof. Let β̂0(t0) = 1
ndbd

∑
ti
k
(
ti−t0
b

)
W̃ 2
n(ti) where k satisfies Assumption 3.6. From

Assumption 3.6,
∫ 1

−1
|k′i(t)|dt <∞ for i = 1, 2, . . . , d and so ki has bounded variation.

Then we can write ki as k1,i−k2,i where k1,i and k2,i are monotone increasing. Define

β̂j(t0) =
1

ndbd

∑
ti

d∏
`=1

kj`,`(ti` − t0`)W̃ 2
n(ti),

for j` ∈ {1, 2}, ` = 1, · · · , d. Let 1(·) denote the indicator function. Then

1

ndbd

∑
ti

d∏
`=1

kj`,`(ti` − t0`)W̃ 2
n(ti)

=
1

ndbd

∑
ti

1(−b ≤ ti − t0 ≤ b)
d∏
`=1

ti`−t0`∫
−b

dkj`,`(v`)W̃
2
n(ti)

=
1

ndbd

∫
[−b,b]d

∑
ti

W̃ 2
n(ti)1(v ≤ ti − t0 ≤ b)dkj1,1(v1) · · · dkjd,d(vd)
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=
1

ndbd

∫
[−b,b]d

∑
ti

W̃ 2
n(ti)1(t0 + v ≤ ti ≤ v + b)dkj1,1(v1) · · · dkjd,d(vd),

where t ≤ b is evaluated component-wise, i.e. t` ≤ b for i = 1, · · · , `. The interchange

of summation and integration is justified by the fact that this is a Stieltjes integral

since kj`,` are monotone increasing. Now let

Gn(u,v) =
1

ndbd

∑
ti∈Tn

W̃ 2
n(ti)1(u ≤ ti ≤ v)1(0 ≤ ti ≤ 1),

G(u,v) = EGn(u,v).

Then

β̂j(t0)− Eβ̂j(t0)

=

∫
[−b,b]d

(Gn(t0 + v, t0 + b)−G(t0 + v, t0 + b)) dkj1,1(v1) · · · dkjd,d(vd).

So now,

sup
t0∈[0,1]d

|β̂j(t)− Eβ̂j(t0)| ≤ sup
t0∈[0,1]d

sup
0≤u≤2b

|Gn(t0, t0 + u)−G(t0, t0 + u)|
d∏
`=1

u`∫
−b

dkj`,`.

We will prove the convergence of

sup
t0∈[0,1]d

sup
0≤u≤2b

|Gn(t0, t0 + u)−G(t0, t0 + u)|

by discretizing [0, 1]d. Let G be a grid of size 2b on [0, 1]d where each grid point is

the lower-left corner (an “anchor point”) of a grid cell with width less than or equal

to 2b. Then for t0 ∈ [0, 1]d, the rectangle defined by the points t0 and t0 + u can

intersect with up to 2d grid cells with anchor points t̃1, ..., t̃j, j ≤ 2d. Therefore,

|Gn(t0, t0 + u)−G(t0, t0 + u)| ≤ 22d max
i

sup
0≤u≤2b

|Gn(t̃i, t̃i + u)−G(t̃i, t̃i + u)|

and further

sup
t0∈[0,1]d

sup
0≤u≤2b

|Gn(t0, t0 + u)−G(t0, t0 + u)|

≤ 22d sup
t̃∈G

sup
0≤u≤2b

|Gn(t̃, t̃+ u)−G(t̃, t̃+ u)|. (B.4)
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Assume that the point (0, 0) is always a grid point in G. Next, fix t and u and suppose

that t+u falls in the grid cell of G with anchor point t̃. Then we discretize this grid

cell by considering the points on Tn which also fall within this cell and denoted as H.

Assume that t+ u falls within the grid cell of H with lower-left corner t+ ũ. Then

Gn(t, t+ u)−G(t, t+ u) = Gn(t, t+ ũ)−G(t, t+ ũ).

So therefore

sup
t̃∈G

sup
0≤u≤2b

|Gn(t̃, t̃+ u)−G(t̃, t̃+ u)| = sup
t̃∈G

sup
v∈H
|Gn(t̃, t̃+ v)−G(t̃, t̃+ v)| (B.5)

By combining (B.4) and (B.5),

(nb)d/2

log(n)
sup

t0∈[0,1]2
sup

u≤2b,u>0
|Gn(t0, t0 + u)−G(t0, t0 + u)|

≤ 22d(nb)d/2

log(n)
sup
t̃∈G

sup
v∈H
|Gn(t̃, t̃+ v)−G(t̃, t̃+ v)|. (B.6)

Then for (B.6), from Corollary 3.7 and the Markov inequality,

P

(
22d(nb)d/2

log(n)
|Gn(ti, ti + vj)−G(ti, ti + vj)| > (d+ 2)c13

)
= P

(
exp

{
22d(nb)d/2

c13

|Gn(ti, ti + vj)−G(ti, ti + vj)|
}
> e(d+2) log(n)

)
≤ e−(d+2) log(n)

∞∑
x=0

1

x!
E

(
22d(nb)d/2

c13

{|Gn(ti, ti + vj)−G(ti, ti + vj)|}
)x

≤ e−(d+2) log(n)

∞∑
x=0

1

x!

(
22d

c13

)x
(2x− 1)!!cx7

≤ e−(d+2) log(n)

= n−(d+2)

for sufficiently large c13 > 0. So now,

∞∑
n=1

P

(
sup
t∈G

sup
v∈H

22d(nb)d/2

log(n)
|Gn(t, t+ v)−G(t, t+ v)| > (d+ 2)c13

)
≤

∞∑
n=1

∑
ti∈G

∑
vj∈H

P

(
22d(nb)d/2

log(n)
|Gn(ti, ti + vj)−G(ti, ti + vj)| > (d+ 2)c13

)
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≤
∞∑
n=1

∑
ti∈G

∑
vj∈H

n−(d+2)

=
∞∑
n=1

n−2 <∞.

Applying the Borel-Cantelli lemma we have that for some c14 > 0,

(nb)d/2

log(n)
sup

t∈[0,1]d
sup

u≤2b,u>0
|Gn(t, t+ u)−G(t, t+ u)| ≤ c14

eventually w.p.1. Therefore, with ‖k`‖∞ <∞, ` ≤ d,

(nb)d/2

log(n)
sup

t∈[0,1]d
|β̂(t)− Eβ̂(t)|

≤ (nb)d/2

log(n)
sup

t∈[0,1]d

∑
j∈{0,1}d

|β̂j(t)− Eβ̂j(t)|

≤ (nb)d/2

log(n)
sup

t∈[0,1]d
sup

0≤u≤2b

∑
j∈{0,1}d

|Gn(t, t+ u)−G(t, t+ u)|
d∏
`=1

u`∫
−b

dkj`,`

≤ 2d(nb)d/2

log(n)

d∏
`=1

‖k`‖∞ sup
t∈[0,1]d

sup
0≤u≤2b

|Gn(t, t+ u)−G(t, t+ u)|

≤ 2d
d∏
`=1

‖k`‖∞c14

eventually w.p.1.

Corollary B.8. Let Assumptions 3.1(iii), (iv) and 3.6 hold. Then for some c12 > 0,

(nb)d/2

log(n)
sup

t0∈[0,1]2

∣∣∣∣∣ 1

ndbdrnb(t0)1/2

∑
ti

k

(
ti − t0
b

)
W̃n(ti)

∣∣∣∣∣ ≤ c12

eventually with probability 1 as n→∞ and nb→∞.

Proof. Recall that W̃n(ti) ∼ N(0, Cn(ti, ti)). This implies that

1

(nb)d

∑
ti

ktiW̃n(ti) ∼ N

0,
1

(nb)2d

∑
ti,tj

ktiktjE[W̃n(ti)W̃n(tj)]


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and further from lemma B.5,∣∣∣∣∣∣ 1

(nb)2d

∑
ti,tj

ktiktjE[W̃n(ti)W̃n(tj)]

∣∣∣∣∣∣ ≤ c11r(nb)

(nb)d
.

Therefore since W̃n is Gaussian,

E

∣∣∣∣∣ 1

(nb)d

∑
ti

ktiW̃n(ti)

∣∣∣∣∣
x

≤ x!!c
x/2
11 r(nb)

x/2

(nb)dx/2

and the corollary follows from the proof of Theorem B.7

Proofs of the Main Results in Chapters 2 and 3

Proof of lemma 2.8

Proof. First we will prove (i).

E∆x
h/n(Y (t)− µ(t))∆x

h/n(Y (t+ u/n)− µ(t+ u/n))

=
x∑
i=0

x∑
j=0

(−1)i+j
(
x

i

)(
x

j

)
C(t+ ih/n, t+ u/n+ jh/n),

so we if we let α̃(t) = (α(t) + α(t+ u/n)/2, we can write∣∣∣∣nα̃(t)E∆x
h/n

(
Y (t)− µ(t))∆x

h/n(Y (t+ u/n)− µ(t+ u/n)
)
− Jt(u)

∣∣∣∣
≤ |e1|+ |e2|+ |e3|+ |e4|+ |e5|,

where

e1 = nα̃(t)

x∑
i=0

x∑
j=0

(−1)i+j
(
x

i

)(
x

j

) r∑
|`|=0

b`(t+ ih/n)(t+ u/n+ jh/n)`

e2 = nα̃(t)

x∑
i=0

x∑
j=0

(−1)i+j
(
x

i

)(
x

j

) r∑
|`|=0

b`(t+ u+ jh/n)(t+ ih/n)`

e3 = nα̃(t)

x∑
i=0

x∑
j=0

(−1)i+j
(
x

i

)(
x

j

)
·
{
ft+ih/n(u+ (i− j)h)− ft(u+ (i− j)h)

}
|u/n+ (i− j)h/n|α(t)
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e4 = nα̃(t)

x∑
i=0

x∑
j=0

(−1)i+j
(
x

i

)(
x

j

)
ft+ih/n(u+ (i− j)h)

·
{
|u/n+ (i− j)h/n|α(t+ih/n) − |u/n+ (i− j)h/n|α(t)

}
e5 = nα̃(t)

x∑
i=0

x∑
j=0

(−1)i+j
(
x

i

)(
x

j

)
O
(
u/n+ (i− j)|h/n|α(t+ih/n)+γ(t+ih/n)

)
.

First notice that

x∑
i=0

(−1)i
(
x

i

)
ik = 0 (B.7)

for any integer k < x. So it immediately follows that e1 and e2 are 0.

Let ∇ft(h) denote the gradient of f w.r.t. t. Recall that ft(h) is differentiable t,

so by Taylor’s theorem,

ft+j/n(h)− ft(h) = n−1j · ∇fz(h) (B.8)

for some z on the line connecting t and t+ j/n. Then by the extreme value theorem,

since [0, 1]2 is closed and f has continuous first order partial derivatives w.r.t t,

sup
z∈[0,1]d,|j|=1,|h|=1

|j · ∇fz(h)| ≤ c15

for some c15 > 0. Since α(t) is continuously differentiable by assumption,∣∣∣∣hn
∣∣∣∣α(t)

−
∣∣∣∣hn
∣∣∣∣α(t+j/n)

=

∣∣∣∣hn
∣∣∣∣α(t)

(
1−

∣∣∣∣hn
∣∣∣∣α(t+j/n)−α(t)

)

=

∣∣∣∣hn
∣∣∣∣α(t)

(
1−

∣∣∣∣hn
∣∣∣∣j·∇α(z)n−1

)
(B.9)

for some z on the line connecting t and t+ j/n. To show 1−n−1/n is asymptotically

equal to n−1 log(n) we can apply L’Hopital’s rule, taking derivatives w.r.t. n,

1− n−1/n

n−1 log(n)
=

exp(−n−1 log(n))

n−1 log(n)

L′H.R.⇒ exp(−n−1 log(n)) (−n−2 + log(n)n−2)

n−2 − log(n)n−2

� log(n)n−2−1/n

log(n)n−2
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→ log(n)n−2

log(n)n−2
= 1. (B.10)

So for e3, applying (B.10), (B.8) and (15),

|e3| ≤ nα̃(t)−α(t)

x∑
i=0

x∑
j=0

(
x

i

)(
x

j

)∣∣∣∣ (ft+jh/n(h)− ft(h)
)
|u+ (i− j)h|α(t)

∣∣∣∣
≤ n−1nO(n−1)

x∑
i=0

x∑
j=0

(
x

i

)(
x

j

)
j|h|c15|u+ (i− j)h|α(t).

And so |e3| = O(n−1) uniformly.

Notice that e4 = 0 if α(t) is constant. Then if we apply (B.9) and (B.10),

|e4| = nα̃(t)

x∑
i=0

x∑
j=0

(−1)i+j
(
x

i

)(
x

j

)
ft+ih/n(h)

·
∣∣|u/n+ (i− j)h/n|α(t+ih/n) − |u/n+ (i− j)h/n|α(t)

∣∣
= O

(
n−1+O(n−1) log(n)

)
= O

(
n−1 log(n)

)
.

Lastly, since α(t) is continuously differentiable and applying (B.10),

nα̃(t)−α(t+ih/n)−γ(t+ih/n) = n−γ(t)nO(n−1) → n−γ(t).

Therefore

|e5|

= nα̃(t)

∣∣∣∣∣
x∑
i=0

x∑
j=0

(−1)i+j
(
x

i

)(
x

j

)
O
(
|u/n+ (i− j)h/n|α(t+ih/n)+γ(t+ih/n)

)∣∣∣∣∣
= nα̃(t)

∣∣∣∣∣
x∑
i=0

x∑
j=0

O
(
n−α(t+ih/n)−γ(t+ih/n)

)∣∣∣∣∣
= O(n−γ(t)).

Now we will prove (ii). Notice that for |t− s| > (2|h|+ 1)/n,

E∆h/n(Y (t)− µ(t))∆u/n(Y (s)− µ(s))

=

1/n∫
0

1/n∫
0

∂
(1,1)
h C(t+ (1− φ)h, s+ (1− η)h)dηdφ.
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Therefore if |t− s| > (x|h|+ 1)/n and if we let ui = h

nαE∆x
h(Y (t)− µ(t))∆x

h(Y (s)− µ(s))

= nαE(∆u1/n · · ·∆ux/nY (t)∆u1/n · · ·∆ux/nY (s))

= nα
1/n∫
0

· · ·
1/n∫
0

∂(1,1)
u1
· · · ∂(1,1)

ux C(t+
x∑
i=1

(1− φi)ui, s+
x∑
i=1

(1− ηi)ui)

·dφ1dη1 · · · dφxdηx
∗ ≤ nα(t)−2xc16|t− s|α(t)−2x.

For some c16 > 0. To show ∗, since C(t, s) is C(x,x) away from 0 by Assumption

2.3(ii),

1/n∫
0

· · ·
1/n∫
0

∂(1,1)
u1
· · · ∂(1,1)

ux C(t+
x∑
i=1

(1− φi)ui, s+
x∑
i=1

(1− ηi)ui)

dφ1dη1 · · · dφxdηx
= n−2x∂(1,1)

u1
· · · ∂(1,1)

ux v(z1, z2)

for some z1 in the integration region for t and z2 in the integration region for s. Then

by Assumption 2.3(ii), ∂
(1,1)
u1 · · · ∂

(1,1)
ux R(z1, z2) ≤ c2|t − s|α−2x. Since [0, 1]d is closed

and ∂
(1,1)
u1 · · · ∂

(1,1)
ux R(t, s) is continuous, we can apply the extreme value theorem and

conclude that c16 is uniform over [0, 1]d.

Proof of Theorem 3.3

Proof. From Taylor’s theorem and Assumptions 3.1(i) and (ii),

E(Wn(ti)
2) = Cn(ti, ti) + µ(ti)

2 (B.11)

= g(t0) + (ti − t0)′∇g(t0) + (ti − t0)′Hg(t0)(ti − t0)

+o(‖ti − t0‖2) +O(n−ρ(ti)) +O(n−2δ(t0))

uniformly for t ∈ [0, 1]d, where Hg is the Hessian of g. Define

M0 =


S

S11

S21

...

Sd1

 , Mi =


Si1

Si111

Si121

...

Si1d1

 , Ni,j =


Si1j1

Si1j111

Si1j121

...

Si1j1d1

 , Ni,j =


κi1j1

κi1j111

κi1j121

...

κi1j1d1

 .
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It then follows from (B.11) that

X ′KE(W 2) = g(t0)M0 +
d∑
i=1

∂

∂ti
g(t0)Mi (B.12)

+
1

2

d∑
i,j=1

∂

∂ti

∂

∂tj
g(t0)Ni,j (B.13)

+


∑

ti
kti
{
o(‖ti − t0‖2) +O(n−ρ(ti)) +O(n−2δ(ti))

}∑
ti
ktixi1

{
o(‖ti − t0‖2) +O(n−ρ(ti)) +O(n−2δ(ti))

}
...∑

ti
ktixid

{
o(‖ti − t0‖2) +O(n−ρ(ti)) +O(n−2δ(ti))

}

 . (B.14)

Since (X ′KX)−1X ′KX = Id+1, with Id+1 the d + 1 × d + 1 identity matrix, and

M`, 0 ≤ ` ≤ d, are the columns of X ′KX, we have

(X ′KX)−1M` = e`+1, 0 ≤ ` ≤ d, (B.15)

where e` is a column vector with a 1 in the `th row and zeros elsewhere. Thus,

combining (B.12) and (B.15),

(X ′KX)−1

(
g(t0)M0 +

d∑
i=1

∂

∂ti
g(t0)Mi

)
= β(t0). (B.16)

By lemma B.1, if we let D = diag(1, b, . . . , b),

(X ′KX)−1 =
[
ndbdD

(
K +O(n−1b−1)

)
D
]−1

= n−db−dD−1
(
K−1 +O(n−1b−1)

)
D−1. (B.17)

Also,

d∑
i,j=1

∂

∂ti

∂

∂tj
g(t0)Ni,j

= ndbd+2D
d∑

i,j=1

∂

∂ti

∂

∂tj
g(t0)Ni,j + (nb)−1O


ndbd+2

ndbd+3

ndbd+3

...

ndbd+3

 . (B.18)
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So combining (B.17) and (B.18),

(X ′KX)−1

d∑
i,j=1

∂

∂ti

∂

∂tj
g(t0)Ni,j

= b2D
d∑

i,j=1

∂

∂ti

∂

∂tj
g(t0)Ni,j +O(n−1b)D−11. (B.19)

Since ρ(t) is continuously differentiable, |ρ(ti)−ρ(t0)| ≤ c17|ti−t0| uniformly for some

c17 > 0, and hence n−ρ(ti) ≤ n−ρ(t0)nc17b. Then nc17b = exp{c17b log(n)} → 1 since

b = o(n−1/3). So n−ρ(ti) = O(n−ρ(t0)). Similarly, n−2δ(ti) = O(n−2δ(t0)). Therefore if

we combine (B.14) and (B.17),

(X ′KX)−1


∑

ti
kti
{
o(‖ti − t0‖2) +O(n−ρ(ti)) +O(n−2δ(ti))

}∑
ti
ktixi1

{
o(‖ti − t0‖2) +O(n−ρ(ti)) +O(n−2δ(ti))

}
...∑

ti
ktixid

{
o(‖ti − t0‖2) +O(n−ρ(ti)) +O(n−2δ(ti))

}


=

 o(b2) +O(n−ρ(t0)) +O(n−2δ(t0))

o(b) +O(n−ρ(t0)b−1) +O(n−2δ(t0)b−1)

o(b) +O(n−ρ(t0)b−1) +O(n−2δ(t0)b−1)

 . (B.20)

Thus, we obtain (3.1) by combining (B.16), (B.19) and (B.20).

Proof of Theorem 3.4

Proof. First we will prove the result for x = 2. By (B.17), for any vector v of length

nd, we can write

[(X ′KX)−1X ′Kv]1

= (nb)−d
∑
i

k

(
ti − t0
b

){
K−1

1,1 +
d∑
j=1

K−1
1,j+1

(
tij − t0j

b

)
+O((nb)−1)

}
vi

=: (nb)−d
∑
i

k̃

(
ti − t0
b

)
vi.

Note that k̃ is clearly uniformly bounded. Let

W̃n(t) = Wn(t)− µn(t),

and W̃ 2 denote the vector with elements W̃n(ti)
2 and let β̃(t0) be defined with Wn(ti)
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replaced by W̃n(ti). Then, we can write

β̃0(t0)− E(β̃0(t0)) = [(X ′KX)−1X ′K{W̃ 2 − E(W̃ 2)}]1

= (nb)−d
∑
ti

k̃

(
ti − t0
b

){
W̃n(ti)

2 − E(W̃n(ti)
2)

}

If we apply Corollary B.4,

E
(
β̃0(t0)− E(β̃0(t0))

)2

= 2(nb)−2d
∑
ti,ti

k̃

(
ti − t0
b

)
k̃

(
tj − t0
b

)
C2
n(ti, tj). (B.21)

Then if t̃0 is the closest gridpoint to t0,

(nb)−d
∣∣∣∣∑
ti,ti

(
k̃

(
ti − t0
b

+
t0 − t̃0
b

)
k̃

(
tj − t0
b

+
t0 − t̃0
b

)
−k̃
(
ti − t0
b

)
k̃

(
tj − t0
b

))
C2
n(ti, tj)

∣∣∣∣
≤ (nb)−d

∣∣∣∣∑
ti,ti

(
k̃

(
ti − t0
b

+
t0 − t̃0
b

)
k̃

(
tj − t0
b

+
t0 − t̃0
b

)

−k̃
(
ti − t0
b

+
t0 − t̃0
b

)
k̃

(
tj − t0
b

))
C2
n(ti, tj)

∣∣∣∣
+(nb)−d

∣∣∣∣∑
ti,ti

(
k̃

(
ti − t0
b

+
t0 − t̃0
b

)
k̃

(
tj − t0
b

)
−k̃
(
ti − t0
b

)
k̃

(
tj − t0
b

))
C2
n(ti, tj)

∣∣∣∣
≤ (nb)−d

∑
ti,ti

c18
1

nb

∣∣∣∣k̃(ti − t0b
+
t0 − t̃0
b

) ∣∣∣∣C2
n(ti, tj)

+(nb)−d
∑
ti,ti

c18
1

nb

∣∣∣∣k̃(tj − t0b

) ∣∣∣∣C2
n(ti, tj) (B.22)

for some c18 > 0 since k is continously differentiable. It follows from comments below

that (B.22) is bounded uniformly by c19(nb)−1 for some c19 > 0.

Relabel the points ti as t̃0 + i/n, i ∈ Z2 and denote by Si the square centered at

i/(nb) with width 1/(nb). Then for a fixed positive m, write

(nb)−d
∑
i,j

k̃

(
i

nb

)
k̃

(
j

nb

)
C2
n(t̃0 + i/n, t̃0 + j/n)−

∫
I(t0,b)

k̄2(z)dz
∑
j∈Z2

g2
2(t0, j)

= εn,1 + εn,2 + εn,3 + εn,4 + εn,5,
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where

εn,1 = (nb)−d

∑
i,j

−
∑
i

∑
j:|j−i|≤m

 k̃

(
i

nb

)
k̃

(
j

nb

)
C2
n(t̃0 + i/n, t̃0 + j/n),

εn,2 = (nb)−d
(∑

i

∑
|j|≤m

k̃

(
i

nb

)
k̃

(
i+ j

nb

)
C2
n(t̃0 + i/n, t̃0 + (i+ j)/n)

−
∑
i

k̃2

(
i

nb

) ∑
|j|≤m

C2
n(t̃0 + i/n, t̃0 + (i+ j)/n)

)
,

εn,3 = (nb)−d
∑
i

k̃2

(
i

nb

) ∑
|j|≤m

C2
n(t̃0 + i/n, t̃0 + (i+ j)/n)

−
∑
i

∫
Si

k̄2(z)dz
∑
|j|≤m

C2
n(t̃0 + i/n, t̃0 + (i+ j)/n),

εn,4 =
∑
i

∫
Si

k̄2(z)dz
∑
|j|≤m

C2
n(t̃0 + i/n, t̃0 + (i+ j)/n)

−
∫

I(t0,b)

k̄2(z)dz
∑
|j|≤m

g(t0, j)2,

εn,5 =

∫
I(t0,b)

k̄2(z)dz
∑
|j|≤m

g(t0, j)2 −
∫

I(t0,b)

k̄2(z)dzg2
2(t0, j).

We need to show that, for i = 1, 2, . . . , 5,

lim
m→∞

lim sup
n→∞

εn,i = 0. (B.23)

First,

εn,1 = (nb)−d
∑
i

∑
|j|>m

k̃

(
i

nb

)
k̃

(
i+ j

nb

)
C2
n(t̃0 + i/n, t̃0 + (i+ j)/n)

Fix m > τ . By Assumption 3.1(iv), for all j with |j| > m,

sup
n

sup
j:|j|>m

C2
n(t̃0 + i/n, t̃0 + (i+ j)/n)

|j|−2ψ(t0)
≤ c2

6. (B.24)

Thus,

εn,1 ≤ c2
6(nb)−d

∑
i

k̃

(
i

nb

) ∑
|j|>m

k̃

(
i+ j

nb

)
|j|−2ψ(t0).
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Since k is bounded and −2ψ(t0) ≤ −1, (B.23) holds for i = 1.

Next, since k has bounded first derivative,∣∣∣∣k̃(i+ j

nb

)
− k̃

(
i

nb

)∣∣∣∣ ≤ c20|j|(nb)−1 (B.25)

for some c20 > 0. Combining (B.25) with Assumption 3.1,

|εn,2|

≤ (nb)−d
∑
i

∑
|j|≤m

k̃

(
i

nb

) ∣∣∣∣k̃(i+ j

nb

)
− k̃

(
i

nb

)∣∣∣∣C2
n(t̃0 + i/n, t̃0 + (i+ j)/n)

≤ c21(nb)−d−1
∑
i

k̃

(
i

nb

)∑
|j|≤τ

c5 +
∑

τ<|j|≤m

c6|j|−2ψ(t0)

 ,

for some c21 > 0. From which (B.23) follows for i = 2.

By the mean-value theorem, write
∫
Si
k̄2(z)dz = (nb)−dk̄2(zi) for some zi ∈ Si.

By the boundedness of k′ and C2
n(s, t), there exists some c22 > 0 s.t.

|εn,3| =

∣∣∣∣(nb)−d∑
i

(
k̃2

(
i

nb

)
− k̄2(zi)

) ∑
|j|≤m

C2
n(t̃0 + i/n, t̃0 + (i+ j)/n)

∣∣∣∣
≤ c22m(nb)−d+1,

which shows that (B.23) holds for i = 3.

Assumption 3.1(ii) readily establishes (B.23) for i = 4.

By Fatou’s Lemma, Assumption 3.1(ii), (B.24) and the definition of A(t0, b),

A(t0, b) ≤ lim inf
n→∞

∑
j∈Zd∩C(0,nb)

C2
n(t0 + i/n, t0 + (i+ j)/n) <∞.

This shows that (B.23) holds for i = 5 and completes the proof for x = 2.

For general x ≥ 2,

nxd/2bxd/2E[β̃0(t0;n, b)− E(β̃0(t0;n, b))]x

= (nb)−xd/2
∑

ti1 ,...,tix

E

x∏
j=1

k̃tij [W̃ (tij)− EW̃ (tij)]
2. (B.26)

Now let δtitj = k̃
(
ti−t0
b

)1/2
k̃
(

tj−t0
b

)1/2

Cn(ti, tj). Then from the Gaussian moment
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theorem, (B.26) becomes

(nb)−xd/2
∑

ti1 ,...,tix

∑
S

δts1ts2δts3ts4 · · · δts2x−1ts2x
,

where S is the set of all possible ways to make x pairs, {(s1, s2), ..., (s2x−1, s2x)}, with

sj chosen from Ix = {i1, i1, i2, i2, ..., ix, ix} without replacement and each pair must

be of different indices.

To explain the idea of the general proof, we first consider the cases x = 3 and 4.

For x = 3, we have

(nb)3d/2E
(
β̃0(t0;n, b)− Eβ̃0(t0;n, b)

)3

= (nb)−3d/2
∑

ti1 ,ti2 ,ti3

∑
S

δts1ts2δts3 ,ts4δts5ts6 ,

where S is the set of all possible ways to make three pairs, {(s1, s2), (s3, s4), (s5, s6)},
with sj chosen from I3 = {i1, i1, i2, i2, i3, i3} without replacement and each pair must

be of different indices. Observe that for any given indices i1, i2, i3, the number of all

possible pairings in S is 8, and each pairing can be expressed as {(j1, j2), (j2, j3), (j3, j1)},
where (j1, j2, j3) is a permutation of (i1, i2, i3). Thus, by lemma B.5∣∣∣∣∣∣(nb)−3d/2

∑
ti1 ,ti2 ,ti3

∑
S

δts1ts2δts3 ,ts4δts5ts6

∣∣∣∣∣∣
=

∣∣∣∣∣∣(nb)−3d/28
∑

ti1 ,ti2 ,ti3

δti1ti2δti1 ,ti3δti2ti3

∣∣∣∣∣∣
≤ (nb)−3d/28

∑
ti1 ,ti2

|δti1ti2 |
1

2

(∑
ti3

|δti1 ,ti3 |
2 + |δti2 ,ti3 |

2

)
≤ (nb)−3d/2c23

∑
ti1 ,ti2

|δti1ti2 |

≤ (nb)−d/2c24rnb(t0)

for sufficiently large c23, c24 > 0.

For x = 4, we have

(nb)2dE
(
β̃0(t0;n, b)− E(β̃0(t0;n, b)

)4

= (nb)−2d
∑

ti1 ,ti2 ,ti3 ,ti4

∑
S

δts1ts2δts3ts4δts5ts6δts7ts8 , (B.27)
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where S is the set of all possible ways to make 4 pairs, {(s1, s2), (s3, s4), (s5, s6),

(s7, s8)}, with sj chosen from I4 = {i1, i1, i2, i2, i3, i3, i4, i4} without replacement and

each pair must be of different indices. Only two configurations are possible:

{(j1, j2), (j2, j3), (j3, j4), (j4, j1)} or {(j1, j2), (j2, j1), (j3, j4), (j4, j3)},

where (j1, j2, j3, j4) is a permutation of (i1, i2, i3, i4). Separating the two cases, (B.27)

becomes

6(nb)−2d
∑

ti1 ,ti2 ,ti3 ,ti4

δti1ti2δti2ti3δti3ti4δti4ti1 (B.28)

+12(nb)−2d
∑
ti1 ,ti2

δ2
ti1ti2

∑
ti3 ,ti4

δ2
ti3ti4

. (B.29)

For (B.28),

(nb)−2d

∣∣∣∣∣∣6
∑

ti1 ,ti2 ,ti3 ,ti4

δti1ti2δti2ti3δti3ti4δti4ti1

∣∣∣∣∣∣
≤ 6(nb)−2dc5

∑
ti1 ,ti2 ,ti3

|δti1ti2δti2ti3 |

(∑
ti4

|δti3ti4 |
2 + |δti4ti1 |

2

)
≤ c25(nb)−drnb(t)

2, (B.30)

for sufficiently large c25. Then (B.29) converges to 3A(t0, b)
2 with error o(1) from the

proof when x = 2.

Now consider any general x ≥ 3. Since each index ij appears exactly twice,

each pairing {(s1, s2), (s3, s4), . . ., (s2x−1, s2x)} can be partitioned into a collection of

subsets, “chains” of the form {(j1, j2), (j2, j3), . . . , (jq, j1)}. For convenience, we say

the chain {(j1, j2), (j2, j3), . . . , (jq, j1)} has length q ≥ 2. Then similar to (25),

(nb)−qd/2

∣∣∣∣∣∣
∑

ti1 ,...,tiq

δti1ti2 · · · δtiq ti1

∣∣∣∣∣∣
≤ (nb)−qd/2

∑
ti1

∑
ti2 ,...,tiq−1

∣∣∣δti1ti2 · · · δtiq−2
tiq−1

∣∣∣
∑

tiq

δ2
tiq−1

tiq
+ δ2

tiq ti1


≤ c26

(
rnb(t)

(nb)d/2

)q−2

, (B.31)

for some c26 > 0.
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For a given pairing {(s1, s2), (s3, s4), . . ., (s2x−1, s2x)}, suppose the partition com-

prises of m chains with lengths `1, `2, . . . , `m, where `1 + · · · + `m = x. Then from

(26),

(nb)−xd/2
∑

ti1 ,ti2 ,...,tix

δts1ts2δts3ts4 · · · δts2x−1ts2x
≤ cm26

(
rnb(t0)

(nb)d/2

)∑m
i=1(`i−2)

. (B.32)

If m < x/2, then `i > 2 for some i and therefore
∑m

i=1(`i−2) > 0 and (B.32) converges

to 0. If m = x/2, then this partition will contain x/2 chains of length 2 and therefore

(nb)−xd/2
∑

ti1 ,ti2 ,...,tik

δts1ts2δts3ts4 · · · δts2x−1ts2x

= (nb)−xd/2(
∑
ti1 ,ti2

δ2
ts1ts2

)x/2

= 2−x/2A(t0, b)
x/2 + o(1).

And the number of ways to obtain x/2 chains of length two from Ix is (2(x − 1)) ·
(2(x− 3)) · · · 2 = (x− 1)!!2x/2. So therefore if x is even, then

(nb)−xd/2
∑

ti1 ,ti2 ,...,tik

δts1ts2δts3ts4 · · · δts2x−1ts2x
= (x− 1)!!A(t0, b)

x/2 + o(1).

If x is odd then m can never be equal to x/2 and therefore

(nb)−xd/2
∑

ti1 ,ti2 ,...,tik

∑
S

δts1ts2δts3ts4 · · · δts2x−1ts2x
= O

(
rnb(t0)

(nb)d/2

)
.

Proof of Theorem 3.5

Proof.

A(t0, b)
−1/2(nb)d/2{β̂0(t0;n, b)− g(t0)}

= A(t0, b)
−1/2(nb)d/2

{∑
ti

k̃tiW
2
n(ti)− g(t0)

}

= A(t0, b)
−1/2(nb)d/2

{∑
ti

k̃ti(Wn(ti)− µn(ti) + µn(ti))
2 − g(t0)

}

= A(t0, b)
−1/2(nb)d/2

∑
ti

k̃ti

{
(Wn(ti)− µn(ti))

2 − Cn(ti, ti) (B.33)
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+E(Wn(ti))
2 − g(t0) (B.34)

+2µn(ti)(Wn(ti)− µn(ti))

}
. (B.35)

For (B.33), from Theorem 3.4,

A(t0, b)
−1/2(nb)d/2E

(∑
ti

k̃ti
{

(Wn(ti)− µn(ti))
2 − Cn(ti, ti)

})x

= (x− 1)!! + o(1)

→ 0

for x even and O
(
rnb(t0)

(nb)d/2

)
→ 0 for x odd, which are the moments of the N(0, 1)

distribution. So

A(t0, b)
−1/2(nb)d/2

∑
ti

k̃ti
{

(Wn(ti)− µn(ti))
2 − Cn(ti, ti)

} d
= N(0, 1) +Op(1)

by Theorem B.6. Then for (B.34), from Theorem 3.3,

A(t0, b)
−1/2(nb)d/2

(
E
∑
ti

k̃ti(Wn(ti))
2 − g(t0)

)

=
1

2A(t0, b)1/2
nd/2bd/2+2KMg(2)(t0) + o(nd/2bd/2+2) +O(nd/2−ρ(t0)b)

→ 0

when b = o(n−d/(d+4)∧(ρ(t0)−d/2)). And for (B.35), by assumption,

Wn(ti)− µn(ti) ∼ N(0, Cn(ti, ti)).

Therefore

(nb)d/2
∑
ti

k̃ti2µn(ti)(Wn(ti)− µn(ti))

∼ N

(
0, (nb)d

∑
ti,tj

4k̃ti k̃tjµn(ti)µn(tj)Cn(ti, tj)

)

and (nb)d
∑

ti,tj
4k̃ti k̃tjµn(ti)µn(tj)Cn(ti, tj) = O(n−2δ(t0))rnb(t).

Therefore

A(t0, b)
−1/2(nb)d/2{β̂0(t0;n, b)− g(t0)}
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= Z +O
(
nd/2b2+d/2

)
+O

(
n−ρ(t0)+d/2bd/2

)
+O

(
n−2δ(t0)+d/2bd/2

)
+Op

(
n−δ(t0)+d/2bd/2

√
rnb(t)

)
+ o(1)

→ Z,

which implies that,

β̂0(t0;n, b)

d
= g(t0) +

ZA(t0, b)
1/2

(nb)d/2
+

1

2
b2[KMg(2)(t0)]1 + o(b2)

+O(n−ρ(t0)) +O(n−2δ(t0)) +Op(n
−δ(t0)

√
rnb(t)) + o

(
(nb)−d/2

)
.

Proof of Corollary 3.7

Proof. Let δt1,t2 = E {(Wn(t1)− µn(t1))(Wn(t2)− µn(t2))}. Then

E

 ∑
ti∈[u,v]n

(Wn(ti)− µn(ti))
2 − E(Wn(ti)− µn(ti))

2


x

=
∑

ti1 ,...,tix∈[u,v]n

∑
S

δts1ts2δts3ts4 · · · δts2x−1ts2x
,

where S is the set of all possible ways to make x pairs, {(s1, s2), ..., (s2x−1, s2x)}, with

sj chosen from Ix = {i1, i1, i2, i2, ..., ix, ix} without replacement and each pair must

be of different indices. By assumption, δti,tj ≤ c5 uniformly and from Lemma B.5,∑
ti
δt,ti ≤ c11rnb(t). Notice that if we let c23 = max(1, c5, c11), then as in the proof of

Theorem 3.4, every chain of length q is bounded above by cq23(nb)dsnb(t)rnb(t)
q−2. So

therefore if x is even,
∣∣∣∑ti1 ,...,tix∈[u,v]n δts1ts2δts3ts4 · · · δts2x−1ts2x

∣∣∣ is largest when each

chain has length 2. Therefore∣∣∣∣∣∣
∑

ti1 ,...,tix∈[u,v]n

δts1ts2δts3ts4 · · · δts2x−1ts2x

∣∣∣∣∣∣ ≤ cx23(nb)xd/2s(nb)x/2 (B.36)

Notice that the number of pairings in S is bounded above by (2x− 1)!!. Combining

with (B.36), for sufficiently large n

(nb)−xd/2

s(nb)x/2
E

 ∑
ti∈[u,v]n

(Wn(ti)− µn(ti))
2 − E(Wn(ti)− µn(ti))

2


x

≤ cx23(2x− 1)!!

69



when x is even. For x odd we can apply Cauchy-Schwartz. Leting

Gn(u,v) =
(nb)−xd/2

s(nb)x/2

∑
ti∈[u,v]n

(Wn(ti)− µn(ti))− E(Wn(ti)− µn(ti)),

E|Gn(u,v)|x = E
{
|Gn(u,v)|

x+1
2 |Gn(u,v)|

x−1
2

}
≤

√
E(Gn(u,v))x+1E(Gn(u,v))x−1

≤
√

c2x
23(2x+ 1)!!(2x− 1)!!

= cx23(2x− 1)!!
√

2x+ 1

≤ 2xcx23(2x− 1)!!,

where the last inequality holds since
√

2x+ 1 ≤ 2x. So the theorem holds if we set

c7 = 2c23.

Proof of Theorem 3.8

Proof. Recall that β̂0(t0;n, b) =
∑

ti∈Tn(t0,b)
k̃tiW

2
n(ti). Therefore the estimator we

will consider is

1

n2b2

∑
ti

f̃

(
ti − t0
b

)
Wn(ti)

2,

where f̃
(
ti−t0
b

)
= n2b2k̃

(
ti−t0
b

)
.

(nb)d/2

log(n)V (n, b)

∣∣∣β̂0(t0)− g(t0)
∣∣∣

=
(nb)d/2

log(n)V (n, b)

∣∣∣∣∣∣
∑

ti∈[0,1]d

1

n2b2
f̃

(
ti − t0
b

)
W 2
n(ti)− g(t0)

∣∣∣∣∣∣
=

(nb)d/2

log(n)V (n, b)

∣∣∣∣∣∣
∑

ti∈[0,1]d

1

n2b2
f̃

(
ti − t0
b

)
(W̃ 2

n(ti) + 2µn(ti)W̃n(ti) + µ2
n)− g(t0)

∣∣∣∣∣∣
≤ (nb)d/2

log(n)V (n, b)

∣∣∣∣∣∑
ti

1

n2b2
f̃

(
ti − t
b

){
W̃ 2
n(ti)− EW̃ 2

n(ti)
}∣∣∣∣∣ (B.37)

+
(nb)d/2

log(n)V (n, b)

∣∣∣∣∣∑
ti

1

n2b2
f̃

(
ti − t
b

)
2µn(ti)W̃n(ti)

∣∣∣∣∣ . (B.38)

+
(nb)d/2

log(n)V (n, b)

∣∣∣∣∣∑
ti

1

n2b2
f̃

(
ti − t
b

)
EW 2

n(ti)− g(t0)

∣∣∣∣∣ (B.39)
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From Theorem B.7 and Corollary B.8, since f̃ satisfies Assumption 3.6 and µn(t) =

O(n−δ(t)),

sup
t0∈[0,1]2

(nb)d/2

log(n)snb(t0)1/2

∣∣∣∣∣∑
ti

1

n2b2
f̃

(
ti − t0
b

){
W̃ 2
n(ti)− EW̃ 2

n(ti)
}∣∣∣∣∣ ,

sup
t0∈[0,1]2

(nb)d/2nδ(t0)

log(n)rnb(t0)1/2

∣∣∣∣∣∑
ti

1

n2b2
f̃

(
ti − t0
b

)
2µn(ti)W̃n(ti)

∣∣∣∣∣
are less than or equal to c12 eventually w.p.1. Then since Vn,b is asymptotically

greater than or equal to snb(t)
1/2 and rnb(t)

1/2/nδ(t) uniformly, supt0∈[0,1]d of (B.37)

and (B.38) are less than or equal to c12 eventually w.p.1.

Then from Theorem 3.3

(nb)d/2

log(n)V (n, b)
sup

t0∈[0,1]2
|Eβ̂0(t0;n, b)− g(t0)|

= O

(
nd/2bd/2+2

log(n)V (n, b)

)
+O

(
nd/2−ρ(t0)bd/2

log(n)V (n, b)

)
+O

(
nd/2−2δ(t0)bd/2

log(n)V (n, b)

)
uniformly. Therefore for (B.39), we can choose n, b such that

(nb)d/2

log(n)V (n, b)
sup

t0∈[0,1]2

∣∣∣∣∣∣
∑

t0i∈[0,1]d

1

n2b2
f̃

(
ti − t0
b

)
W 2
n(ti)− g(t)

∣∣∣∣∣∣ ≤ c12

eventually w.p.1. Letting c8 = 3c12 completes the proof.
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