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CHAPTER I

Introduction

Classically, algebraic geometers were interested in studying the equations defining

various projective embeddings of a given compact complex manifold X. Consider a

line bundle L on X, whose sections realize X as an embedded subvariety of projective

space:

X ↪→ Pr = PΓ(X,L).

Castelnuovo [C1893] for curves, and Mumford [M66], [M70] in general, showed that

if L is sufficiently positive, then X is cut out in Pr by quadratic equations. For

example, the map

P1 ↪→ P3 = {[Z0 : Z1 : Z2 : Z3 ] | not all Zi are 0}, [s, t] 7→ [s3, s2t, st2, t3]

embeds P1 as a cubic curve C ⊆ P3 cut out by the equations

Q12 = Z0Z2 − Z2
1 , Q23 = Z1Z3 − Z2

2 , Q13 = Z0Z3 − Z1Z2.

Around 1980, Green ([G84I], [G84II]) realized that one could see classical results

of this sort as the first cases of more general statements involving higher syzygies.

For example, not only is the twisted cubic C ⊆ P3 cut out by defining equations of
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the lowest possible degree, but the relations among the quadrics Qij are spanned by

syzygies whose coefficients all have degree one:

Z0 ·Q23 − Z1 ·Q13 + Z2 ·Q12 = 0 , Z1 ·Q23 − Z2 ·Q13 + Z3 ·Q12 = 0

To better state Green’s result, let us introduce notations for syzygies. Let L be a

very ample line bundle on a smooth projective variety X, and set

S = Sym H0(X,L) , r = r(L) = h0(L)− 1.

Let n be the dimension of X. Given a fixed divisor B on X, put

M =
⊕
m

H0(X,mL+B),

which we view as an S-module. We consider the graded minimal free resolution of

M over S:

F : ... −→ Fp −→ ... −→ F0 −→M −→ 0

where Fp = ⊕jS(−ap,j) is a free S-module. More canonically, write Kp,q(X,B;L) for

the finite dimensional vector space spanned by minimal generators of Fp in degree

(p+ q), i.e.:

Fp ∼=
⊕
q

Kp,q(X,B;L)⊗C S(−p− q)

When B = 0, in our asymptotic settings when L is sufficiently positive, F amounts

to the minimal resolution of the homogeneous coordinate ring of the image of X, we

will write simply Kp,q(X;Ld). For example, in our case of the twisted cubic above,

the resolution looks like:

0→ S(−3)⊕2 → S(−2)⊕3 → S →M → 0
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and we have:

dimK1,1(P1;O(3)) = 3 , dimK2,1(P1;O(3)) = 2

and all the other Kp,q vanish.

As noted above, higher syzygies arising from geometry were first studied by Green.

In case of curves, Green ([G84I] Thm. 4.a.1) proved that:

Kp,2(X;L) = 0, if deg(L) ≥ 2g + 1 + p

where g is the genus of X. Later for Veronese embeddings of projective spaces, he

estabilished that (corollary of [G84II] Thm. 2.2):

Kp,q(Pn;O(d)) = 0, if q ≥ 2, and d ≥ p.

In words, Green’s result says that the first d modules of syzygies for the Veronese

image are generated in the lowest possible degrees. Similar results were then obtained

for other varieties ([EL93], [P05]) and some long standing open problems remain to

give sharp bounds in special cases ([AF11], [AV03], [B03], [V02], [V05].)

A perspective changing discovery was made by Ein and Lazarsfeld in [EL12] where

they make the observation that as we increase the embedding degree d, we can have

on the order of dn potential syzygies, while the old theory accounts for only on the

order of d many syzygies. They give us a better asymptotic understanding of the

full resolution in higher dimensions by showing that for any 1 ≤ q ≤ n, Kp,q 6= 0 for

almost all p ≤ r(Ld). This means that asymptotically, syzygies are as complicated as

they can be in the sense that almost all allowed to be nonzero are actually nonzero.

The natural next set of questions, while also previously independently studied on

its own before [EL12] (cf. [HSS06], [N11], [R13], [S13]), is to understand the possible
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finer structures on syzygies. For example, when X is a projective variety in which

a group G acts and L is a G-linear line bundle, then Kp,q(X;L) carries induced G-

actions. In this thesis, we focus on the two common equivariant behaviors studied

in the literature, i.e. with respect to general linear groups and with respect to torus

actions.

When X is the projective space Pn, the vector spaces Kp,q(Pn;O(d)) are represen-

tations of GLn+1. We can then ask what their asymptotic behaviors are as GLn+1

representations. In Chapter III, we address this problem and give a sharp order

of growth for the number of distinct irreducible decompositions and the number of

irreducible representations counting multiplicities in a fixed syzygy module. In our

notation, we are studing the behavior of Kp,q(Pn;O(d)) for a fixed p as d becomes

large. We study various other asympotic behaviors in that chapter also. The work

in that chapter is joint with Mihai Fulger.

The shortcoming of the GL-equivariant results is that we are not able to consider

all Kp,q at once as d increases. This flaw is overcome in the answer to the second

question.

Specifically, when X is a toric variety with a very ample toric line bundle, Kp,q are

representations of the torus. Then the question arises what torus weights there are

in these representations. More specifically, let ∆ be the convex polytope associated

to a toric very ample line bundle A and let Ld = A⊗d. Then the torus weights of

Kp,q(X;Ld) correspond to points in (p+ q)d ·∆. Denote the collection of weights by:

wts(Kp,q(X;Ld)) := {Torus weights of Kp,q(X;Ld)} ⊆ (p+ q)d·∆
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We normalize so that all points lie in ∆:

wtsnor(Kp,q(X;Ld)) :=
wts(Kp,q(X;Ld))

(p+ q)d
⊆ ∆

The question becomes in which area the normalized weights lie inside ∆.

If we look at all the Kp,q, it is shown in Chapter IV that they are asymptotically

dense inside ∆. Their behavior is even more interesting if we look at a fixed segement

of Kp,q relative to r(Ld). More precisely, in Chapter IV, we study the closure of the

normalized weights inside ∆ for all Kp,q with ar(Ld) ≤ p ≤ br(Ld). It turns out

that this closure, denoted ∆(a, b) is not necessarily all of ∆. We give the exact

characterization of this closure, from which we see that one of the key features of

∆(a, b) is that it depends only on a, so we can denote it by ∆(a). If ∆ is the

unit square (corresponding to X = P1 × P1, A = O(1, 1)), then ∆(a) consists of

four segments of hyperbolas and eight line segments as we will see in an example in

Chapter IV.

The thesis is organized as follows. In Chapter II, we introduce the basic tools we

use to compute syzygies. In Chapter III, we present joint work with Mihai Fulger

[FZ13] on the Schur asymptotics of Veronese syzygies. In Chapter IV, we present

results on toric weights in asymptotic syzygies of toric varieties.

My previous work [Z12] is not included in this thesis. However, the material

inspires section 2 and 3 of Chapter IV.



CHAPTER II

Syzygies as cohomologies

In this chapter, we introduce the two basic tools we use to compute syzygies in the

next two chapters. In section 1, we introduce Koszul cohomology. In section 2, we

introduce a vector bundle, cohomologies of whose wedge powers compute syzygies. In

section 3, we introduce a surjective map of sheafs whose induced map in cohomologies

we will study in Chapter IV. This chapter is an expository presentation of well-known

material.

II.1 Koszul cohomology

Recall the set-up for the defintion of Kp,q(X,B;L). Let L be a very ample line

bundle on a smooth projective variety X, and set

S = Sym H0(X,L) , r = r(L) = h0(L)− 1.

Let n be the dimension of X. Given a fixed divisor B on X, put

M =
⊕
m

H0(X,mL+B),

6
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which we view as an S-module. We consider the graded minimal free resolution of

M over S:

F : ... −→ Fp −→ ... −→ F0 −→M −→ 0

where Fp = ⊕jS(−ap,j) is a free S-module. We write Kp,q(X,B;L) for the finite

dimensional vector space spanned by minimal generators of Fp in degree (p+ q), i.e.:

(II.1.1) Fp ∼=
⊕
q

Kp,q(X,B;L)⊗C S(−p− q)

Below, we show that we have an alternative way to express Kp,q. Define the

Koszul cohomology, temporarily denoted K ′p,q(X,B;L) before we prove it to be equal

to Kp,q(X,B;L), to be cohomology in the middle of the following short complex:

(II.1.2)
∧p+1H0(X,L)⊗H0(B + (q − 1)L)→ ∧pH0(X,L)⊗H0(B + qL)

→ ∧p−1H0(X,L)⊗H0(B + (q + 1)L)

and the maps are given by:

(II.1.3) s1 ∧ s2... ∧ sp ⊗ s 7→ Σp
i=1(−1)is1 ∧ ...ŝi... ∧ sp ⊗ (sis)

where sis is evaluated in H0(B + (q + 1)L) with the evaluation map:

H0(X,L)⊗H0(X,B + qL)→ H0(X,B + (q + 1)L).

and ŝi means omitting si. The key lemma of this section is that:

Lemma II.1. There is a canonical isomorphism:

K ′p,q(X,B;L) ∼= Kp,q(X,B;L)
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Proof. Let S+ ⊂ S be the irrelavant maximal ideal. We prove that:

K ′p,q(X,B;L) ∼= Kp,q(X,B;L) ∼= TorSp (M,S/S+)p+q.

F is a minimal resolution which implies the maps are all 0 tensored with S/S+,

hence the homology of F⊗ S/S+ is Kp,q(X,B;L). F is a free resolution of M , so by

definition of Tor:

Kp,q(X,B;L) = TorSp (M,S/S+)p+q.

On the other hand, let

Ep = ∧pH0(X,L)

We can form the Koszul complex:

E : ... −→ Ep −→ ... −→ E0 −→ S/S+ −→ 0

and E is the minimal free resolution of S/S+ over S known as the Koszul resolution.

So cohomologies of the complex E⊗M also give us TorSp (M,S/S+)p+q. The degree

q piece of Ep, tensored with the degree q piece of M is:

∧pH0(X,L)⊗H0(X,B + qL)

which is the mid-term of the short complex II.1.2. The other terms also match

and the map in II.1.3 is the same as the map from the Koszul complex. Therefore,

K ′p,q(X,B;L) ∼= Kp,q(X,B;L) and we denote both of them by Kp,q(X,B;L).

II.2 Computing syzygies with vector bundles

In this section, we show that these Koszul cohomology groups are governed by

the coherent cohomology of a vector bundle on X.
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Let X be a smooth variety over C. Let L be a very ample line bundle on X.

As in [GL85], [L89] and [EL12], for L in the evaluation map:

νL : H0(X,L)⊗C OX → OX(L)

we put ML = ker νL. Thus ML is a vector bundle sitting in the basic exact sequence:

(II.2.1) 0→ML → H0(X,L)⊗C OX → OX(L)→ 0

ML is central in syzygy computations since:

Proposition II.2. Assume that:

(II.2.2) H1(OX(B + (q − 1)L)) = 0,

Then:

Kp,q(X,B;L) = H1(X,∧p+1ML ⊗OX(B + (q − 1)L)).

Proof. From the defining sequence of ML, II.2.1, we get

0→ ∧pML → ∧pV ⊗OX → ∧p−1ML ⊗ L→ 0.

Twist the sequence by OX(B + qL), we get:

0→ ∧pML⊗OX(B+qL)→ ∧pV ⊗OX(B+qL)→ ∧p−1ML⊗OX(B+(q+1)L)→ 0.

Then we get, as part of its cohomology long exact sequence:

0→ H0(∧pML ⊗OX(B + qL))→ H0(∧pV ⊗OX(B + qL))→

H0(∧p−1ML ⊗OX(B + (q + 1)L))→ H1(∧pML ⊗OX(B + qL)).

Similarly, by taking the short exact sequences for other wedge powers, twisting

and taking long exact sequence, we get:
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0→ H0(∧p+1ML ⊗OX(B + (q − 1)L))→ H0(∧p+1V ⊗OX(B + (q − 1)L))

→ H0(∧pML ⊗OX(B + qL))→ H1(∧p+1ML ⊗OX(B + (q − 1)L))

→ H1(∧p+1V ⊗OX(B + (q − 1)L)) = 0

where the last term vanishes because of assumption II.2.2. and another wedge power

gives:

0→ H0(∧p−1ML ⊗OX(B + (q + 1)L))→ H0(∧p−1V ⊗OX(B + (q + 1)L))→

H0(∧p−2ML ⊗OX(B + (q + 2)L))→ H1(∧p−1ML ⊗OX(B + (q + 1)L)).

They form a diagram like the following:

(II.2.3)

0

��
H0(∧p+1ML ⊗OX(B + (q − 1)L))

��
H0(∧p+1V ⊗OX(B + (q − 1)L))

ρ

��

α

++VVVV
VVVVV

VVVVV
VVVVV

0

��
H0(∧pML ⊗OX(B + qL))

χ

��

τ // H0(∧pV ⊗OX(B + qL))
λ//

β

++VVVV
VVVVV

VVVVV
VVVVV

H0(∧p−1ML ⊗OX(B + (q + 1)L))

γ

��
H1(∧p+1ML ⊗OX(B + (q − 1)L))

��

H0(∧p−1V ⊗OX(B + (q + 1)L))

��
0 . . .

By Lemma II.1,

Kp,q(X,B;L) = Ker β / Img α.

γ and τ are both injective, and the diagram above is commutative, so we have:

Ker λ ∼= Ker β, Img α ∼= Img ρ.
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Since λ and τ lie on a horizontal long exact sequence above,

Ker λ ∼= Img τ ∼= H0(∧pML ⊗OX(B + qL)).

Then

Kp,q(X,B;L) ∼= H0(∧pML ⊗OX(B + qL)) / Img ρ ∼=

H0(∧pML ⊗OX(B + qL)) / Ker χ ∼= H1(∧p+1ML ⊗OX(B + (q − 1)L)).

Two useful corollaries of the above lemma used in [EL12], [Z12] and this thesis

are:

Proposition II.3. Assume that:

H i(OX(B +mL)) = 0 for i > 0 and m > 0,

Then for q ≥ 2:

Kp,q(X,B;L) = Hq−1(X,∧p+q−1ML ⊗OX(B + L)).

If moreover, H1(X,OX(B)) = 0, then the same statement also holds true when q = 1.

Proof. By II.2, we only need to prove

H1(X,∧p+1ML ⊗OX(B + (q − 1)L)) ∼= Hq−1(X,∧p+q−1ML ⊗OX(B + L)).

Consider again the short exact sequence:

0→ ∧p+2ML ⊗OX(B + (q − 2)L)→ ∧p+2V ⊗OX(B + (q − 2)L)

→ ∧p+1ML ⊗OX(B + (q − 1)L)→ 0.
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Taking long exact sequence, we have:

H1(∧p+2V ⊗OX(B + (q − 2)L))→ H1(∧p+1ML ⊗OX(B + (q − 1)L))→

H2(∧p+2ML ⊗OX(B + (q − 2)L))→ H2(∧p+2V ⊗OX(B + (q − 2)L))

Then if q ≥ 3 (q = 2 being the assumption), we have q − 2 > 0, and by assumption:

H1(∧p+2V ⊗OX(B + (q − 2)L)) = H2(∧p+2V ⊗OX(B + (q − 2)L)) = 0.

Hence:

H1(∧p+1ML ⊗OX(B + (q − 1)L)) = H2(∧p+2ML ⊗OX(B + (q − 2)L)).

Then we can continue the same way to prove our conclusion.

By the exact same argument, we have:

Proposition II.4. Assume that:

H i(OX(B +mL)) = 0 for i > 0 and m ≥ 0,

Then:

Kp,q(X,B;L) = Hq(X,∧p+qML ⊗OX(B)).



CHAPTER III

Schur asymptotics of Veronese syzygies

This chapter is based on joint work with Mihai Fulger. It closely follows the paper

[FZ13]. Throughout the thesis, we will be using standard limit notation as defined

in the footnote. 1

III.1 Introducion

Projective spaces are the most fundamental among algebraic varieties. Hence,

to understand equivariant structures on syzygies, we should first look at syzygies of

Veronese embeddings. We work throughout the rest of the thesis over the complex

numbers.

Recall that Kp,q(X,B;L) denotes the vector space generated by the minial gen-

1

(i) Let g, f be functions in d. g ∈ o(f) means that

lim
d→∞

g(d)

f(d)
= 0.

(ii) Let g, f be functions in d. g ∈ O(f) means that there exists constant C such that for all d:

g(d) ≤ C· f(d).

(iii) Let g, f be functions in d. g ∈ Θ(f) means that there exists constant c, C such that for all d:

c· f(d) ≤ g(d) ≤ C· f(d).

13
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erators in degree (p+ q) of the p-th module of syzygies of the section ring of OX(L)

twisted by B as a Sym•H0(OX(L))−module. In this section, we focus on the case

of X being a projective space, so X = P(V ) for some vector space V . In this case,

we use the following notations for simplicity:

Kp,q(V, b; d) := Kp,q(P(V ),O(b);O(d)), Kp,q(V ; d) := Kp,q(P(V ),OP(V );O(d)).

Concretely, Kp,q(V ; d) are representations of the group GLV . We naturally ask how

they decompose into irreducible representations.

In this chapter, we follow the notation and definitions of [FH91] and [F97] for the

basic objects of the representation theory of the general linear group. In particular,

we write λ ` n when λ = (λ1 ≥ λ2 ≥ . . .), with
∑

i≥1 λi = n, is a partition of n. We

identify partitions with Young diagrams which are left-alligned rows of boxes with λi

boxes in the i-th row for the partition λ. Recall also that irreducible representations

of GLn are in one to one correspondence with partitions with at most n rows. For

example, ∧3, Sym5 corresponding to the partitions (1, 1, 1), (5) with Young diagrams

, .

Each partition λ corresponds to a functor denoted Sλ which takes a vector space V

to a GLV representation Sλ(V ).

The precise way to set up the problem of decomposing Kp,q is the following. The

association

V → Kp,q(V ; d)

is a functor from vector spaces to representations that we denote by Kp,q(d). As in
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[EL12], [Ru04], [S13], we can then write

(†) Kp,q(d) =
⊕

λ`(p+q)d

Mλ(p, q; d)⊗C Sλ,

where Mλ(p, q; d) is a complex vector space whose dimension measures the multiplic-

ity in Kp,q(d) of the Schur functor Sλ corresponding to the partition λ of (p+ q)d.

The decompositions in general seem to be quite hard. For instance, for d =

4, a calculation by Claudiu Raicu (assuming maximal cancellation of irreducible

representations in constructing the resolution) suggests that K4,1(4) decomposes as

follows:

S(13,5,2) +S(13,4,3) +S(12,7,1) +2∗S(12,6,2) +2∗S(12,5,3) +S(12,4,4) +S(11,8,1) +3∗S(11,7,2) +

4 ∗S(11,6,3) + 3 ∗S(11,5,4) +S(10,9,1) + 3 ∗S(10,8,2) + 5 ∗S(10,7,3) + 5 ∗S(10,6,4) + 2 ∗S(10,5,5) +

S(9,9,2) + 3 ∗ S(9,8,3) + 5 ∗ S(9,7,4) + 4 ∗ S(9,6,5) + 2 ∗ S(8,8,4) + 3 ∗ S(8,7,5) + S(8,6,6) + S(7,7,6).

Conceivably, the decomposition has more irreducible factors.

The Schur decomposition of Kp,q has been studied by many authors ([N11], [R13],

[S13]) and it seems that it is closely related to the well known intractible problem

of plethysm. While it doesn’t seem realistic to expect an exact decomposition of

Kp,q(d), the view point of [EL12] suggests that an overall asymptotic picture may be

possible. This is what we give here.

Because of Green’s result (corollary of [G84II] Thm. 2.2)) metioned in the intro-

duction, we have:

Kp,q(d) = 0, if q ≥ 2, and d ≥ p.

Therefore, asymptotically the whole of the p-th syzygy,

Kp(d) =
∞⊕
q=1

Kp,q(d)
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is captured by Kp,1(d). The main theorem in this chapter describes the asymptotics

of Kp,1(d):

Theorem (III.14). Fix p ≥ 1. Then as d grows, Kp,1(d) contains

(i) Θ(dp) distinct Schur functors.

(ii) Θ(d(p+1
2 )) Schur functors counting multiplicities.

An explicit computation we can do to illustrate the statement of the theorem is

the following. Let S, R be the homogeneous coordinate rings of the ambient project

space and the Veronese image. The generators of the ideal of the Veronese image is

represented by the degree 2 piece of the quotient map

R← S.

By the definition of R and S, we want to know the kernel of the equivariant map:

Sym2d ← Sym2Symd.

Sym2Symd is a known plethysm which decomposes to representations with Young

diagrams of 2d boxes, with at most 2 rows where each row has an even number of

boxes. For instance, if d = 6, we have the following Young diagrams in Sym2Sym4:

, ,

, .

The kernel consists of all these except the one rowed Young diagram representing

Sym2d. Since each Young diagram appears with multiplicity one, we have on the order

of d many distinct irreps and also on the order of d many counting multiplicities.
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After a brief section on some representation theory notations we adopt, sections 3

and 4 give the proof of Theorem III.14 as follows. We first describe the asymptotics

of the Schur decomposition of
⊗p+1 Symd with a convex-geometric approach. Next,

we derive Theorem III.7, which allows us to compare the terms in the Koszul complex

computing Kp,1(d) to
⊗p+1 Symd. Then we arrive at the conclusion because we know

two terms out of the three terms in the Koszul complex and the convex geometric

description allows us to conclude that the third term is asymptotically insignificant.

In sections 5 and 6, we prove results involving other ways to vary the parameters.

III.2 Some representation theory notations

(i) We adopt the notation and definitions of [FH91] and [F97] for the basic objects

of the Representation Theory of the general linear group. In particular, we write

λ ` n when λ = (λ1 ≥ λ2 ≥ . . .), with
∑

i≥1 λi = n, is a partition of n. The

length of λ, denoted |λ|, is the number of its nonzero parts. We write (22, 1) for

the partition (2, 2, 1), we write λ + µ for the partition (λ1 + µ1, λ2 + µ2, . . .),

and 2λ for the partition (2λ1, 2λ2, . . .), etc. Young diagrams are left-alligned

rows of boxes with λi boxes in the i-th row for the partition λ. A Young tableau

is obtained by filling in the boxes of the Young diagram with natural numbers.

A tableau is called standard if the entries in each row and each column are

increasing. A tableau is called semistandard if the entries are column strict

but weakly increase in each row. Recording the number of times each number

appears in a tableau gives a sequence known as the weight of the tableau. For
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example (dp) = (d, ...d)︸ ︷︷ ︸
p

means we have d of 1, 2, ..., p in the tableau.

(ii) We write Sd for Symd. The symmetric group on p elements is denoted by Σp.

(iii) In this paper we work with functors F : VectC → VectC of finite dimensional

complex vector spaces that have unique finite direct sum decompositions2

F =
⊕
λ

MF ,λ ⊗C Sλ,

whereMF ,λ are complex vector spaces, and Sλ is the Schur functor corresponding

to the partition λ. The dimension

(F , λ) =def dimMF ,λ

is the multiplicity of Sλ in F . The total multiplicity of F is

N(F) =def

∑
λ

(F , λ).

The complexity of F is the number of distinct types of Schur functors appearing

in its decomposition, i.e.,

c(F) =def #{λ : (F , λ) 6= 0}.

If V is a complex vector space of finite dimension, then F(V ) is naturally a

GL(V )-representation. We will often use this to reduce questions about functors

to questions about representations of the general linear group.

(iv) It is an elementary consequence of Pieri’s rule that (
⊗p Sd, λ) is equal to the

number of semistandard Young tableaux of shape λ and weight µ = (dp).3 In

2Plethysm functors are polynomial, and syzygy functors have decompositions by [Ru04, §2]
3Such tableaux can be described by Gelfand–Tsetlin patterns (see [Sta99, p133] for a definition). The number of

such Young tableaux is called the Kostka number Kλµ
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particular, the Schur functor Sλ appears in
⊗p Sd if and only if λ is a partition

of pd with at most p parts.

(v) Let V be a GLn-representation. Denoting by Un the unipotent group, by [F97,

p144], the total multiplicity of V is equal to dimV Un , the space of Un-invariant

vectors in V . This space of Un-invariant vectors are the highest weight vectors

in the representation, whose orbit span V . It is classical that Sλ(Cp) 6= 0 if and

only if |λ| ≤ p. If F : VectC → VectC is a decomposable functor (as in Fact

(iii)), such that any Schur subfunctor corresponds to a partition with at most p

rows, then the Schur decomposition of F can be read from the decomposition

into irreducible GLp-subrepresentations of F(Cp). In particular, we can read

the total multiplicity and the complexity of F by applying the functor to Cp,

i.e., N(F) = dimF(Cp)Up .

III.3 Asymptotic plethysms

In this section we investigate the growth with d of the total multiplicity, and of

the complexity of
⊗p Symd, SympSymd, and

∧p Symd when p is fixed. As in several

of the references listed in the remark below, the idea behind our study is convex-

geometric. The contents of this section may be known to the experts, but we were

unable to find precise references. We give a presentation here for the convenience of

the reader.

Remark III.1. From the literature on the asymptotics of the decomposition of⊗p Sd and other plethysms, we mention the following:



20

• The work of Kaveh and Khovanskii in [KK12] applies to the behavior of
⊗p Sd

with fixed p and varying d. Their focus is on subtle properties such as Fujita-

type approximation, the Brunn–Minkowski inequality, the Brion–Kazarnowskii

formula, etc.

• In [K10], Kaveh computes the dimension of the moment body, varying p, for⊗p V , i.e., the growth with p of the number of its distinct subrepresentations,

where V is a fixed GLn-representation.

• Tate and Zelditch ([TZ04]) studied the asympototics of Kostka numbers of⊗p Sλ where p varies and Sλ is a fixed representation.

• Different asymptotic plethysms have been studied in [W90]. In [Man97], we

again find the idea of the convex-geometric approach.

III.3.1 Integral points and
⊗p Sd

In this subsection, we show that the total multiplicity and the complexity of
⊗p Sd

are counted by the number of lattice points inside slices over d of two rational convex

cones. The growth with d of the number of such integral points is a polynomial of

degree equal to the dimension of the cross section of the corresponding cone. We

determine these two cones and compute the corresponding dimensions.4 These are

captured by the following theorem:

Theorem III.2. Fix p ≥ 1. Then

4In the language of [KK12], we are determining the dimension of the moment body and of the multiplicity body
(which in our case is also the classical Gelfand–Tsetlin polytope) for the p-th product of a sufficiently large dimension
projective space.
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(i) limd→∞ c(
⊗p Sd)/dp−1 is a finite positive number.

(ii) limd→∞N(
⊗p Sd)/d(p2) is a finite positive number.

Proof. We specify two graded sets Y• and Y• such that the cardinalities of their d-th

graded pieces count the complexity and the total multiplicity of
⊗p S•, respectively.

Complexity. The set

Yd =def

{
(λ2, ...λp, d) : λ1 ≥ λ2 ≥ ... ≥ λp ≥ 0, with λ1 := pd−

p∑
k=2

λk

}

⊆ Np−1 × {d}

is a parametrization of the partitions λ ` pd with at most p parts, which is the set

of distinct types of Schur functors appearing in the decomposition of
⊗p Sd by Fact

(iv) from Sect.III.2. Therefore the complexity of
⊗p Sd is the number of integral

points with the last coordinate d inside the cone contained in Rp−1
≥0 × R≥0 over the

cross section:

Y =def

{
(λ2, ...λp, 1) : λ1 ≥ λ2 ≥ ... ≥ λp ≥ 0, with λ1 := p−

p∑
k=2

λk

}

⊂ Rp−1
≥0 × {1}.

This is (p− 1)-dimensional, which proves part i).

Total multiplicity. Guided by Fact (iv), we seek to parameterize the set of semis-

tandard Young tableaux T with pd boxes, at most p rows, and weight (dp). A first

parameterization is the p× p matrix

tij =def number of j’s in the i-th row of T .
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Strictness in columns for a semistandard tableau implies tij = 0 when j < i. The

weight of T is (dp) imposes

tjj = d− Σj−1
k=1tkj for all j ∈ {1, . . . , p}.

Hence T is determined by only the parameters (tij)i<j and d. Using only these

parameters, the set of all such T is in bijection with the set Yd of points in N(p2)×{d} =

{((tij)i<j, d)} subject to the following conditions:

• Denoting tii := d−
∑i−1

j=1 tji, we ask that

(III.3.1) tii ≥ 0,

which we already discussed above. And the inequality holds since this represents

the number of j’s in the j-th row in a tableau.

• We also ask that

(III.3.2)

j−1∑
k=i

tik ≥
j∑

k=i+1

ti+1,k, for all 1 ≤ i < p, 1 ≤ j ≤ p.

This inequality enforces the following condition. The LHS represents, for any

label j, the total number of boxes with labels at most j−1 in the i-th row. The

RHS represents for the chosen j, the total number of boxes with lables at most

j on the i + 1-th row. It is straightforward to deduce from column strictness

that this condition must be statisfied. Furthermore, since the rows are weakly

increasing, the inequality ensures that we can fill out the (i + 1)-th row with

ti+1j number of j’s given the i-th row.



23

Similar to the complexity problem, Yd is the set of integral points inside the cone

with the last coordinate d in R(p2)
≥0 × R≥0 over the cross section:

Y :=

((tij)i<j, 1) :
0 ≤ tii := 1−

∑i−1
k=1 tki, for all 1 ≤ i ≤ p∑j−1

k=i tik ≥
∑j

k=i+1 ti+1,k, for all 1 ≤ i < p, 1 ≤ j ≤ p


⊂ R(p2)

≥0 × {1}.

This convex body is
(
p
2

)
-dimensional,5 and part ii) follows.

Remark III.3. The limits in Theorem III.2 are at least algorithmically computable

for each p, since they are the volumes of the convex bodies Y and Y respectively.

Example III.4 (The plethysm of
⊗2 Sd). The decomposition of

⊗2 Sd consists of

all Schur functors of type (2d− a, a) with 0 ≤ a ≤ d, each with multiplicity 1. The

total multiplicity and the complexity are both d in this case.

Remark III.5. Our constructions are similar to those of the Gelfand–Tsetlin pat-

terns (see also [BZ89]). We use this particular form in order to compute the desired

growth rates.

The following remark is a consequence of the proof of Theorem III.2. It allows us

to deem certain collections of Schur functors asymptotically insignificant and will be

used repeatedly:

Remark III.6. The coordinates corresponding to Young tableaux of weight (dp)

with at most p − 1 rows, and to Young diagrams with pd boxes and at most p − 1

rows lie in proper linear subspaces of the real vector spaces spanned by Y• and Y•
5To see this, it is enough to produce a point of Y that satisfies strictly all the defining inequalities. Setting

tij = piε for all i < j, and for sufficiently small ε, defines such a point.
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respectively. It follows that asymptotically all the Young tableaux and diagrams

parameterized by Y• and Y• respectively have p rows.

III.3.2 SµSd via
⊗p Sd

We investigate the asymptotics of the Schur decomposition of SµSd when µ is a

fixed partition of p. Denote by Vµ an irreducible complex Σp-representation of weight

µ.

Theorem III.7. Fix p ≥ 1, and let µ be a partition of p. Then

(i) limd→∞N(SµSd)/d(p2) = (dimVµ)2

p!
· limd→∞N(

⊗p Sd)/d(p2).

(ii) As d grows, c(SµSd) = Θ(dp−1).

Proof. We have inclusions of graded (by d) vector spaces A,B,C (whose graded

pieces are denoted Ad, Bd, Cd respectively):

A :=
⊕
d≥0

(SµSdCp)Up ↪→ B :=
⊕
d≥0

(
⊗p

SdCp)Up ↪→ C :=
⊕
d≥0

⊗p
SdCp.

Observe that C is the section ring on the p-fold product of P(Cp) ofOP(Cp)×p(1, . . . , 1),

and B is a subalgebra of C. The action of GLp on Cp induces a GLp-representation

structure on Cd for all d. The symmetric group Σp also acts on Cd =
⊗p SdCp by

permuting the factors of the tensor product. The two actions commute, hence the

Σp-action restricts to B. We have the following:

(i) By [Gr97, Thm. 16.2], B is finitely generated.

(ii) No nontrivial σ in Σp acts as a scalar (depending only on σ and d) on Bd for

each d. Otherwise, by the commutativity of the actions of Σp and GLp, it also
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acts as a scalar on the GLp-span of Bd in Cd. As in Fact (v), the GLp-span of

Bd is Cd and we know a nontrivial σ does not act trivially on all of Cd.

By [P05] Thm. 1:

dimAd ∼
(dimVµ)2

|Σp|
· dimBd.

By Theorem III.2 and Fact (v), we have part i). Part ii) is a consequence of i) and

Lemma III.8.

Lemma III.8. Fix p ≥ 1, and let Fd be a sequence of subfunctors of
⊗p Sd so that,

as d grows, we have N(Fd) ∈ Θ(d(p2)). Then c(Fd) ∈ Θ(dp−1).

Proof. Consider the moment map

µ : R(p2) × R→ Rp−1 × R, µ((tij)i<j, d) := (λ2, . . . , λp, d), where

λi :=

p∑
j=i

tij, for all 1 ≤ i ≤ p, and tii := d−
i−1∑
k=1

tki, for all 1 ≤ i ≤ p.

By the constructions of the previous section, µ maps Y onto Y , and Yd onto Yd for

all d. By assumption, there exists C1 > 0 such that for large d,

N(Fd) ≥ C1 · d(p2).

On the other hand, denoting by mp,d the maximal multiplicity of a Schur functor in⊗p Sd which contains Fd, we have

N(Fd) ≤ c(Fd) ·mp,d.

By Theorem III.2 i) we obtain c(Fd) ≤ c(
⊗p Sd) ≤ C2· (dp−1), hence it is enough to

show that

mp,d ≤ C ′ · d(p−1
2 )
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for some C ′ > 0 independent of d. To see this, choose a basis for Z(p2) ⊂ R(p2) so that

µ is the projection onto the last p coordinates. Then choose an integer l > 0 such

that

Y ⊂ [−l, l](
p−1
2 ) × Y ⊂ R(p2) × {1}.

Then Yd ⊂ [−dl, dl](
p−1
2 ) × Yd, so mp,d ≤ #([−dl, dl] ∩ Z)(

p−1
2 ). We can set C ′ =

(3l)(
p−1
2 ).

Corollary III.9. Fix p ≥ 1. Then

1

p!
N(
⊗p

Sd) ∼ N(SpSd) ∼ N(
∧p

Sd).

Proof. This follows by applying Theorem III.7 for the trivial and alternating repre-

sentations of Σp.

Remark III.10. [BCI11, Lem. 2.2] can be adjusted to show that if Sλ(Cp) and

Sλ′(Cp) appear in the decompositions of SpSdCp and SpSd
′Cp respectively, then

Sλ+λ′(Cp) appears in the decomposition of SpSd+d′Cp.6 In particular, the set of λ

with (SpSd, λ) > 0, for some d, is a subsemigroup of Y•. Since SpSd 6= 0 for all d ≥ 0,

the semigroup is nonempty in all degrees. The existence and finiteness of

lim
d→∞

c(SpSd)/dp−1

are easy applications of the semigroup techniques developed in [Kh93] and [LM09,

§2.1]. We also have:

c(
∧p

Sd) ∼ c(SpSd).

6The product of two highest weight symmetric vectors is a highest weight symmetric vector
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We leave it to the reader to deduce this from Remark III.6 and from the following

result of Newell’s (cf. [W90] (2.4a), (2.4b) with modern notation, [New51] for the

original paper):

Lemma III.11 (Newell). For any partition λ = (λ1 ≥ . . . ≥ λp ≥ 0), we have

(i) (
∧p Sd+1, (λ1 + 1, . . . , λp + 1)) = (SpSd, λ).

(ii) (SpSd+1, (λ1 + 1, . . . , λp + 1)) = (
∧p Sd, λ).

Remark III.12 (Explicit constructions). Answering a question from [W90, Conj.

2.11], in [BCI11] it is shown that if λ ` pd has |λ| ≤ p, then

S2λ appears in the decomposition of SpS2d, i.e., (SpS2d, 2λ) > 0.

In [MM12] we find a constructive proof for this result. Because of the semigroup

structure on types of partitions contributing to SpS• and using Newell’s result, we

also have:

(

p∧
S2d+1, 2λ+ (1p)) = (SpS2d, 2λ) > 0, and

(

p∧
S2d+2, 2λ+ (1p) + (p)) = (SpS2d+1, 2λ+ (p)) > 0.

Combining with Theorem III.2.ii), these provide a constructive proof for Theorem

III.7.ii) in the particular cases when µ = (p) or µ = (1p), but do not show that the

corresponding limits exist, as it is the case in Remark III.10. The explicit construc-

tions also show that limd→∞
c(SpSd)
dp−1 ≥ 1

2p−1 · limd→∞
c(
⊗p Sd)
dp−1 . Note that 1

2p−1 > 1
p!

,

when p ≥ 3. In particular, it is not true in general that c(SpSd) ∼ 1
p!
c(
⊗p Sd).

In the next section we will also use the following result:
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Proposition III.13. Fix p ≥ 1. Then, as d grows, N(
∧p Sd⊗Sd) ∼ 1

p!
·N(

⊗p+1 Sd).

Proof. This is the same argument as for Corollary III.9. Apply Theorem III.7.i) to

the alternating representation of Σp with the action on the first p tensor factors of⊗p+1 Sd.

III.4 Asymptotic syzygy functors

In this section we determine the precise asymptotic orders of growth for the total

multiplicity and complexity of Kp,1(0; d) and Kp,0(b; d) in the nontrivial case b ≥ 1.

Given p, q, b, d ≥ 0, we defined the syzygy functor Kp,q(b; d) of the d-th Veronese

embedding as the cohomology of the functorial Koszul-type complex

∧p+1
Sd ⊗ S(q−1)d+b →

∧p
Sd ⊗ Sqd+b →

∧p−1
Sd ⊗ S(q+1)d+b.

In the introduction we explained that if we fix p, q, b ≥ 0 and let d grow to infinity,

we only have nontrivial behavior in Kp,q(b; d) when p ≥ 1, and either q = 1, or q = 0

and b ≥ 1. In this section we determine the precise asymptotic orders of growth

for the total multiplicity and complexity of Kp,1(0; d) and Kp,0(b; d) in the nontrivial

case b ≥ 1. In the next section we will give a partial result for Kp,1(b; d) when b ≥ 1.

III.4.1 Kp,1(d)

As we did in the introduction, we write Kp,1(d) for Kp,1(0; d), i.e., the cohomology

of the Koszul-type complex

(III.4.1)
∧p+1

Sd →
∧p

Sd ⊗ Sd →
∧p−1

Sd ⊗ S2d.
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The asymptotics of the decomposition of Kp,1(d) are described by:

Theorem III.14. Fix p ≥ 1. As d goes to infinity:

(i) N(Kp,1(d)) ∼ p
(p+1)!

·N(
⊗p+1 Sd).

(ii) c(Kp,1(d)) ∈ Θ(dp).

Proof. Since the first map in (III.4.1) is an inclusion, and by Remark III.6 the to-

tal multiplicity of the last term is asymptotically insignificant compared to that of⊗p+1 Sd, we obtain that

N(Kp,1(d)) ∼ N(
∧p

Sd ⊗ Sd)−N(
∧p+1

Sd)

once we have proved that the right hand side is in Θ(N(
⊗p+1 Sd)). Using Corollary

III.9 and Proposition III.13, we obtain:

N(
∧p

Sd ⊗ Sd)−N(
∧p+1

Sd) =
1

p!
·N(

⊗p+1
Sd)− 1

(p+ 1)!
·N(

⊗p+1
Sd),

which is in Θ(N(
⊗p+1 Sd)) and part i) follows. Kp,1(d) is a subquotient of

∧p Sd⊗Sd

which is (noncanonically) a subfunctor of
⊗p+1 Sd. Hence, Kp,1(d) is a subfunctor

of
⊗p+1 Sd. Part ii) is then a consequence of Lemma III.8.

Remark III.15. Unlike with
⊗p+1 Sd and the plethysms of Remark III.12, we do

not know how to construct explicit examples of λ with (Kp,1(d), λ) > 0, nor do we

know if the sequence c(Kp,1(d))/dp has a limit.

III.4.2 Kp,0(b; d)

We describe the asymptotic behavior of

(III.4.2) Kp,0(b; d) = ker(
∧p

Sd ⊗ Sb →
∧p−1

Sd ⊗ Sb+d),
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in the the nontrivial cases when only d grows, in the following theorem:

Theorem III.16. Fix p ≥ 1 and b ≥ 1. Then as d grows,

(i) N(Kp,0(b; d)) ∈ Θ
(
d(p2)

)
.

(ii) c(Kp,0(b; d)) ∈ Θ(dp−1).

Proof. Note that Pieri’s rule implies

(
∧p−1

Sd ⊗ Sb+d, λ) = 0, for any λ with |λ| = p+ 1.

As in Remark III.6, because b is finite, asymptotically all of the Schur functors

appearing in
∧p Sd correspond to λ with λp ≥ b. For each occurrence of such Sλ,

by Pieri’s rule, we have an occurrence of S(λ1,...,λp,b) in
∧p Sd ⊗ Sb. Since b > 0, this

corresponds to a partition with p+1 parts, hence it also appears in the decomposition

of Kp,0(b; d) by Schur’s lemma and (III.4.2). Therefore the total multiplicity and

complexity of Kp,0(b; d) are bounded below by those of
∧p Sd, which are described

in Corollary III.9 and Remark III.10 respectively.

The total multiplicity and complexity of Kp,0(b; d) are bounded above by those

of
⊗p Sd ⊗ Sb. By Pieri’s rule, there is at most a finite number C(p, b) of ways of

obtaining a Young tableau of weight (dp, b) by adding b boxes labeled p+1 to a fixed

one of weight (dp), or of ways of obtaining a partition λ ` pd+ b by adding b boxes

to the corresponding Young diagram of a fixed partition µ with |µ| ≤ p. Therefore

(III.4.3) N(
⊗p

Sd⊗Sb) ∈ Θ(N(
⊗p

Sd)) and c(
⊗p

Sd⊗Sb) ∈ Θ(c(
⊗p

Sd)).
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Remark III.17. We have used the assumption b ≥ 1 to say that adding b boxes on

the (p + 1)-st row of a Young diagram with p non-empty rows produces a digram

with p+ 1 rows. The assumption is also necessary for the theorem because, as in the

introduction, Kp,0(0; d) = 0.

Remark III.18. Except for the case of the total multiplicity when b = 1, which we

will explain in the next section, we do not know if the sequences N(Kp,0(b; d))/d(p2)

and c(Kp,0(b; d))/dp−1 have limits when b ≥ 1.

Lemma III.19. One can improve (III.4.3) to

N(
⊗p

Sd⊗Sb) ∼
(
b+ p

p

)
·N(

⊗p
Sd) and c(

⊗p
Sd⊗Sb) ∼ (b+1) ·c(

⊗p
Sd).

Proof. By Sect.III.2 Fact (iv), the total multiplicity of
⊗p Sd ⊗ Sb counts Young

tableaux of weight (dp, b). These are partitioned according to their truncation to

tableaux of weight (dp), by forgetting the b boxes labeled p + 1. Conversely, from

any Young tableau T of weight (dp) we obtain potential tableaux of weight (dp, b)

by arbitrarily placing a total number of b boxes labeled p+ 1 at the end of the first

p + 1 rows of T . The potential tableaux may fail to be actual tableaux only when

the shape λ of T satisfies λi < λi+1 + b for some i ≤ p. As in Remark III.6, this

phenomenon is asymptotically insignificant. Consequently,

N(
⊗p

Sd ⊗ Sb) ∼
(
b+ p

p

)
·N(

⊗p
Sd).

For the complexity problem, note that from a partition λ ` pd with |λ| ≤ p, one

obtains b+1 potential partitions λ[j] := (λ1+(b−j), λ2, . . . , λp, j) with j ∈ {0, . . . , b}.

By Pieri’s rule, the set of all such λ[j] that are true partitions (i.e., with λp ≥ j)
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is the set of partitions µ with (
⊗p Sd ⊗ Sb, µ) > 0. Reasoning as in Remark III.6,

asymptotically all λ[j] are true partitions.

III.5 Kp,1(b; d) when b > 0

In this section we investigate the asymptotics in d of the decomposition of Kp,1(b; d),

when b ≥ 1. We explain why the strategy from the previous section fails and, using

a restriction argument, we determine the asymptotic orders of the logarithms of the

complexity and total multiplicity of Kp,1(b; d) as functions of log d, when p and b > 0

are fixed, satisfying p ≥ b+ 1.

The functor Kp,1(b; d) is the cohomology of the functorial Koszul-type complex:

(III.5.1)
∧p+1

Sd ⊗ Sb →
∧p

Sd ⊗ Sb+d →
∧p−1

Sd ⊗ Sb+2d.

Similar to Lemma III.19, one can show

N(
∧p+1

Sd ⊗ Sb) ∼
(
b+p+1
p+1

)
(p+ 1)!

·N(
⊗p+1

Sd),

asymptotically
(b+pp )
(p+1)!

·N(
⊗p+1 Sd) of which corresponds to partitions of length p+1,

N(
∧p

Sd ⊗ Sb+d) ∼ 1

p!
·N(

⊗p+1
Sd),

and because the last term contains no Schur functor corresponding to partitions of

length p+ 1,

N(
∧p−1

Sd ⊗ Sb+2d) ∈ o(N(
⊗p+1

Sd)).

When b > 0, the sum of multiplicities corresponding to partitions of length p+ 1 of

the leftmost term in equation III.5.1 is asymptotically at least as big as that of the
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central term. Hence we cannot apply the strategy of the previous section. We do

not know if in fact N(Kp,1(b; d)) ∈ o(N(
⊗p+1 Sd)) for all b ≥ 1, but with the help of

a result of Raicu, we confirm this when b = 1:

Proposition III.20. If p ≥ 1, then as d grows, N(Kp,1(1; d)) ∈ o(N(
⊗p+1 Sd)).

Proof. Consider the sequence

∧p+1
Sd ⊗ S1 →

∧p
Sd ⊗ Sd+1 →

∧p−1
Sd ⊗ S2d+1.

The first two cohomologies are by definition Kp+1,0(1; d) and Kp,1(1; d). The total

multiplicity of the third term is asymptotically insignificant compared to the first

two. Hence

N(Kp+1,0(1; d))−N(Kp,1(1; d)) ∼ N(
∧p+1

Sd ⊗ S1)−N(
∧p

Sd ⊗ Sd+1),

if we show that the latter difference is in O(N(
⊗p+1 Sd)). By the computations

above,

N(
∧p+1

Sd ⊗ S1)−N(
∧p

Sd ⊗ Sd+1) ∼ 1

(p+ 1)!
·N(

⊗p+1
Sd).

By [R13, Thm. 6.4], the decomposition of Kp+1,0(1; d) is obtained from the decom-

position of Sp+1Sd−1 by replacing Schur subfunctors Sλ of the latter with Sλ+(1p+2).
7

In particular,

N(Kp+1,0(1; d)) = N(Sp+1Sd−1) ∼ 1

(p+ 1)!
·N(

⊗p+1
Sd).

But this is the same approximation as for N(Kp+1,0(1; d))−N(Kp,1(1; d)).

7With the contents of the thesis, we have another way to prove this result. By Pieri’s rule and Lemma III.11, the
referenced theorem states that Kp+1,0(1; d) contains exactly the representations with p + 2 parts in

∧p+1 Sd ⊗ S1.
This is the same as stating that (Kp+1,0(1; d), λ) = 0 if |λ| < p + 2. For this, using Sect.III.2 Fact (v), it is enough
to check that Kp+1,0(Cp+1, 1; d) = 0, which follows from [EL12, Prop. 5.1].
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We obtain asymptotic information about the Schur decomposition of Kp,1(b; d)

via a restriction argument suggested by R. Lazarsfeld, inspired by ideas from [EL12].

The Schur subfunctors of Kp,q(b; d) corresponding to partitions of length at most n

are captured by the GLn-decomposition of Kp,q(Cn, b; d) := Kp,q(b; d)(Cn). By [EL12,

Prop. 3.2],

(III.5.2) If q > 0, then Kp,q(Cn, b; d) = H1
(∧p+1

Md ⊗OPn−1 (b+ (q − 1)d)
)
,

where:

Md := ker(Sd(Cn)⊗OPn−1 → OPn−1(d)).

Consider a splitting Cn = Cn−1⊕C, and the GLn−1-equivariant short exact sequence:∧p+1
Md ⊗OPn−1(b+ (q − 1)d) ↪→

∧p+1
Md ⊗OPn−1(b+ 1 + (q − 1)d)

�
∧p+1

Md ⊗OPn−2(b+ 1 + (q − 1)d).

Then from the long sequence in cohomology we extract the GLn−1-equivariant com-

plex:

(III.5.3)

H0(
∧p+1

Md ⊗OPn−1(b+ 1 + (q − 1)d))→ H0(
∧p+1

Md ⊗OPn−2(b+ 1 + (q − 1)d))

→ H1(
∧p+1

Md ⊗OPn−1(b+ (q − 1)d)).

Assume n ≥ 2 is chosen such that

(III.5.4) p+ 1 ≥ h0(OPn−1(b+ 1 + (q − 1)d)).

By [G84II, Thm. 3.a.1], the leftmost term of (III.5.3) is zero, therefore the right-

most map is an inclusion of GLn−1-representations. Next, we study the GLn−1-

representation

H0(
∧p+1

Md ⊗OPn−2(b+ 1 + (q − 1)d)).
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By restricting the map defining Md, and by comparing with the corresponding map

for Pn−2,

(III.5.5) Md ⊗OPn−2 'M ′
d ⊕ (

⊕
j≤d−1

SjCn−1 ⊗OPn−2),

where M ′
d = ker(Sd(Cn−1)⊗OPn−2 → OPn−2(d)). The isomorphism (III.5.5) is GLn−1-

equivariant. Then

H0(
∧p+1

Md ⊗OPn−2(b+ 1 + (q − 1)d)) =

= H0

(
p+1⊕
i=0

∧i
M ′

d ⊗ (
∧p+1−i

(
⊕
j≤d−1

Sj(Cn−1)))⊗OPn−2(b+ 1 + (q − 1)d)

)

=

p+1⊕
i=0

[
H0
(∧i

M ′
d ⊗OPn−2(b+ 1 + (q − 1)d)

)
⊗
∧p+1−i

(
⊕
j≤d−1

Sj(Cn−1))

]
.

Keeping only the term corresponding to i = 0, we have by (III.5.2), (III.5.3), (III.5.4),

and [G84II, Thm. 3.a.1] an inclusion of GLn−1-representations

(III.5.6) Sb+1+(q−1)d(Cn−1)⊗
∧p+1

(
⊕
j≤d−1

Sj(Cn−1)) ↪→ Kp,q(Cn, b; d).

In particular, when q = 1, we obtain an inclusion of GLn−1-representations

(III.5.7) ⊕
0≤ep<ep−1<...<e0≤d−1

(Se0(Cn−1)⊗ . . .⊗ Sep(Cn−1)⊗ Sb+1(Cn−1)) ↪→ Kp,1(Cn, b; d).

The following lemma describes some of the partitions λ such that Sλ appears in

the decomposition of the LHS of (III.5.7).

Lemma III.21. Let n ≥ 2 and b ≥ 0. Fix λ a partition with |λ| = n − 1 ≤ p + 2,

and λn−1 > b+ 1. We assume that λ satisfies

λ ` L0 + (b+ 1), with L0 ≥
p(p+ 1)

2
.
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For all 0 ≤ i ≤ p, let

(III.5.8)

 ei := d Li
p+2−i + p+1−i

2
e

Li+1 := Li − ei

Then e0 > e1 > . . . > ep ≥ 0 and Lp+1 = 0. Assume furthermore that the following

conditions hold:

(III.5.9)



λ′1 ≥ e0

λ′1 + λ′2 ≥ e0 + e1

...

λ′1 + λ′2 + . . .+ λ′n−2 ≥ e0 + e1 + . . .+ en−3,

where λ′ := R(b+ 1, λ) is the removal of the last b+ 1 visible boxes in λ. The visible

boxes of λ are by definition the λ1 boxes of the Young diagram of λ that have no box

directly below them. We order them increasingly from left to right, and then up to

down. Then Sλ appears in the decomposition of

Sb+1 ⊗
⊗p

i=0
Sei .

If e0 ≤ d−1, then Sλ(Cn−1) appears in the decomposition of the left term of (III.5.7).

The statement of the lemma hints to its algorithmic proof that we leave as an exercise.

We are ready to show that the Schur decomposition of Kp,1(b; d) is asymptotically

rich.

Theorem III.22. Fix p ≥ 1 and b ≥ 1. Assume that p ≥ b + 1. Then as d goes to

infinity,

log c(Kp,1(b; d)) ∈ Θ(log d), logN(Kp,1(b; d)) ∈ Θ(log d).
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Proof. Choose n maximal such that (III.5.4) is satisfied. This verifies

n ≥ [ b+1
√

(p+ 1) · (b+ 1)!].

Assume n ≥ 5. The plan of the proof of the proposition is as follows: The previous

lemma constructs irreducible GLn−1-subrepresentations of Kp,1(Cn, b; d). To prove

the existence of many distinct types of irreducible GLn-subrepresentations, by the

branching rule [FH91, Ex. 6.12], it is enough to pick a large subset of the GLn−1-

representations that correspond to Young diagrams that differ pairwise in at least

one column by at least two boxes. We force this by asking that the corresponding

partitions satisfy λ2i−1 = λ2i for all i ≤ (n− 1)/2, and λn−1 = λn−2. Geometrically,

we ask that the Young diagram of λ sits in a tiling of the plane by 1× 2-sized boxes,

instead of the standard 1× 1 tiling, with the possible exception of using 1× 3 boxes

for the last three rows when n− 1 is odd. We say that λ has a twin pattern of length

n− 1. The Young diagrams of distinct partitions with twin patterns of length n− 1

(or of lengths of the same parity) automatically differ in at least one column by at

least two 1× 1 boxes.

We now construct an easy-to-count set of partitions λ with twin patterns of length

n− 1, also satisfying the conditions of Lemma III.21. We first ask that

(III.5.10) λn−1 ≥ B := B(p, b, n) := max

{
b+ 2,

p(p+1)
2

+ b+ 1

n− 1

}
.

This implies λn−1 > b+ 1, and L0 ≥ p(p+1)
2

. We next impose the restriction

(III.5.11) λ1 ≥ max

{
n− 3

2
, 1

}
·
(

L0

p+ 2
+
p+ 3

2

)
≥ max

{
n− 3

2
, 1

}
· e0.

This is a manageable condition that together with λ1 = λ2 implies the relations

(III.5.9). The last requirement of Lemma III.21 is e0 ≤ d− 1. For big enough d, this
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is implied by

(III.5.12) L0 ≤ pd.

A bound on λ3 so that any further choice for λ3 ≥ λ5 ≥ . . . ≥ λ2[(n−1)/2]−1 satisfies
via the twin pattern condition the previous restrictions is:

(III.5.13) B ≤ λ3 ≤ D(λ1, d, p, n) := min

{
λ2 = λ1,

pd− 2λ1

n− 3
,

2(p− n+ 1)

(n− 2)(n− 3)
λ1 −

(p+ 1)(p+ 2)

2(n− 3)

}
.

In the above set, λ1 appears because λ is a Young diagram. The condition λ1 = λ2

is part of the tiling restriction. The middle term is explained by (III.5.12), and an

algebraic manipulation shows that λ3 ≤ 2(p−n+1)
(n−2)(n−3)

λ1 − (p+1)(p+2)
2(n−3)

implies (III.5.11).

We are reduced to counting partitions λ having twin patterns of length n − 1,

satisfying (III.5.10) and (III.5.13). For each fixed λ1 in the interval
[
B, pd−(n−3)B

2

]
,

these are counted by the binomial coefficients:(
[D(λ1, d, p, n)]− dBe+

[
n−5

2

][
n−5

2

] )
.

When we sum over the range of λ1, the result is in Θ(d[n−3
2 ]). This conclusion also

holds when n < 5. The cases n ∈ {2, 3, 4} follow immediately from (III.5.7), and the

case n = 1 is impossible, because (III.5.4) is satisfied for n = 2, when p ≥ b+1. This

gives the lower bound needed for the first statement, hence also for the second. The

upper bounds follow from Lemma III.19 and from Theorem III.2.

III.6 Varying p

In this section, we study the growth of the complexities of Kp,0(b; d) and of

Kp,1(b; d) when we vary p. A first result in the direction of varying p for syzygy

functors is [EL12, Cor. 6.2]. It proves the nonvanishing of Kp,q(b; d) for fixed q ≥ 1
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and sufficiently large p. In this section, we study the growth of the complexities of

Kp,0(b; d) and of Kp,1(b; d) when we vary p.

III.6.1 Kp,0(b; d)

We evaluate the complexity of Kp,0(b; d) when we fix b > 0 and d > 2, and let p

grow. It is elementary that Kp,0(0; d) = 0, so we exclude this trivial case.

Theorem III.23. Fix b > 0 and d > 2. Then as p grows to infinity,

log c(Kp,0(b; d)) ∈ Θ(p1/2).

Proof. We argue that, on the one hand, logKp,0(b; d) is bounded below by a multiple

of (p1/2) by using Remark III.12. On the other, log c(
∧p Sd ⊗ Sb) is bounded above

by a multiple of (p1/2), which provides the same upper bound for the cohomology

functor.

As observed in the proof of Theorem III.16, any Sλ with |λ| = p + 1 in
∧p Sd ⊗

Sb appears in Kp,0(b; d). Using Pieri’s rule and Remark III.12, the complexity of

Kp,0(b; d) is at least the number of ways one can partition p · [(d− 1)/2] with at most

p parts, the logarithm of which is bounded below by a multiple of (p1/2) by [H99,

p86]. The complexity of
∧p Sd ⊗ Sb is bounded above by the number of partitions

of pd+ b. The logarithm of these is Θ(p1/2) by [H99, p86].

III.6.2 Kp,1(b; d)

In this subsection we look for lower bounds on the complexity of Kp,1(b; d) when

we increase p and d. We use the same restriction argument from the previous section,
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but this time we count partitions λ of length n− 1 that have almost triplet pattern,

i.e., the second and third parts of λ := λ − (1|λ|) are equal, the next three are

equal, and so on. We ask that |λ| is a multiple of 3. The mold of a partition λ

with almost triplet pattern is the partition obtained from λ by making its first part

equal to the second (and third). One sees that irreducible GLn−1-representations

corresponding to partitions with different molds cannot branch out from the same

irreducible GLn-representation after restriction to GLn−1.

Lemma III.24. Fix b ≥ 0. Let n := n(p) ≤ p + 1 be such that limp→∞ n(p) = ∞.

Then as p grows, for d ≥ 3 ·
[
p+1
n−3

]
+ 3, the number of molds of partitions λ of length

n− 1 with almost triplet pattern, such that SλCn−1 is a GLn−1-subrepresentation of

(III.6.1)
⊕

a0+...+ad−1=p+1

(⊗d−1

i=0

∧ai
SiCn−1

)
⊗ Sb+1Cn−1,

has its logarithm bounded below by a multiple of (n1/2).

Proof. We prove a weaker form of the result by asking that d ≥ p + 2. Fix r ∈

{1, 2, 3} such that d − r ≡ 1 mod 3. The representation (III.6.1) contains the

nonzero subrepresentation:

(III.6.2)
(∧n−1

Sd−r ⊗ (Sd−r−1 ⊗ Sd−r−2 ⊗ . . .⊗ Sd−r−1−(p−n+1))⊗ Sb+1
)

(Cn−1).

By Remark III.12, for any partition µ `
[

(n−1)(d−r−1)
6

]
, with |µ| ≤ l :=

[
n−1

3

]
, the

partition

λ′(µ) := (1n−1) + 2(µ1, µ1, µ1, . . . , µl, µl, µl) + ε(d) · (n− 1)

is such that Sλ′Cn−1 is a subrepresentation of
∧n−1 Sd−rCn−1, where ε(d) is 0 if
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d− r − 1 is even, and 1 if d− r − 1 is odd. By Pieri’s rule,

λ(µ) := λ′(µ) + ((

p−n+1∑
k=0

(d− r − 1− k)) + b+ 1)

produces a subrepresentation of (III.6.2). By construction, λ(µ) has almost triplet

pattern, and length n−1. If µ and µ′ are different, then λ(µ) and λ(µ′) have different

molds. At least when p is large enough, the number of µ’s is bigger than the number

of partitions of [(n− 1)/3], the logarithm of which is in O(n1/2) by [H99, p86].

When using the bound d ≥ 3·
[
p+1
n−4

]
+3, the result is proved similarly by considering

a subrepresentation of (III.6.1) of form
(∧n1 Sd1 ⊗ . . .⊗

∧nm Sdm ⊗ Sb+1
)

(Cn−1),

with m as small as possible, such that
∑m

i=1 ni = p+ 1, with ni < n satisfying some

conditions modulo 3, and with d1 > d2 > . . . > dm as large as possible, all congruent

to 1 modulo 3 and smaller than d− 1.

As a corollary, we obtain:

Proposition III.25. Fix b ≥ 0. As p goes to infinity, for n :=
[
b+1
√

(p+ 1) · (b+ 1)!
]
,

and d ≥ 3 ·
[
p+1
n−3

]
+ 3, there is a positive constant C such that:

log(c(Kp,1(b; d))) ≥ C· (p
1

2(b+1) ).

Proof. The choice of n insures that (III.5.4) holds, hence by the discussion in the

previous subsection, the GLn−1-subrepresentations given by the previous lemma ap-

pear in the decomposition of Kp,1(Cn, b; d). We conclude by using the restriction

argument of the previous section, the discussion in the preamble of this section, and

noticing that n ∈ Θ(p1/(b+1)).

Remark III.26. Fixing d and increasing p alone is a more desirable problem to

study. In attempting to use the restriction argument, our limitation in showing
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nontrivial growth for fixed d stems from not knowing if there exist many Schur

subfunctors of
∧p Sd corresponding to partitions of relatively short length and with

distinct twin patterns. (In Remark III.12, all Young diagrams are much too tall.)



CHAPTER IV

Toric weights in asymptotic syzygies of toric varieties

IV.1 Introduction

In this chapter, we consider weights in syzygies of toric varieties. We treat all

of the syzygies at once. Let X be a smooth projective toric variety over C. Let A

be a very ample toric line bundle on X. Then following notation from the previous

chapters, the embedding defined by Ld = A⊗d is toric. Let ∆ be the convex polytope

associated to the very ample divisor A ([F93], Section 3.4, p66, PA in notation of the

book.)

Then by the Koszul cohomology description of Kp,q in section II.1, the group

Kp,q(X;Ld) is the cohomology in the middle of the complex:

(IV.1.1)
∧p+1H0(X,Ld)⊗H0(X, (q − 1)Ld)→ ∧pH0(X,Ld)⊗H0(X, qLd)

→ ∧p−1H0(X,Ld)⊗H0(X, (q + 1)Ld)

By the definition of ∆, H0(X,Ld) is a representation of the torus with weights

corresponding to points in d∆. Hence ∧pH0(X,Ld)⊗H0(X, qLd) is a representation

of the torus with weights corresponding to points in (p + q)d∆. Similarly, all terms

in (IV.1.1) have weights in (p + q)d∆. The maps in (IV.1.1) are equivariant with

43
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respect to the torus action, hence Kp,q(X;Ld) is also a representation of the torus

with weights in (p + q)d∆. In this chapter, we address the question which torus

weights appear in the decompositions of Kp,q(X;Ld).

Denote the collection of weights by:

wts(Kp,q(X;Ld)) = {Torus weights of Kp,q(X;Ld)} ⊆ (p+ q)d·∆.

We normalize so that all points lie in ∆:

wtsnor(Kp,q(X;Ld)) =
wts(Kp,q(X;Ld))

(p+ q)d
⊆ ∆

We show first of all that as d→∞, the set of all normalized torus weights becomes

dense in ∆:

Theorem (IV.19). For every fixed q with 1 ≤ q ≤ n,

⋃
d > 0

1 ≤ p ≤ rd

wtsnor(Kp,q(X;Ld))

is dense in ∆.

The Theorem is illustrated in Figure IV.1 below, which approximates Kp,1(P2; d)

for d = 2 and d = 4.
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Figure IV.1: Normalized torus weights for Kp,1(P2; d) for d = 2 and d = 4.

We can then ask for more precise information, i.e. what happens if we focus on

only some of the syzygies appearing in the resolution. More specifically, restrict p to

lie in a fixed interval relative to rd
8, i.e. consider:

∆(a, b) =
⋃

d � 0
a·rd ≤ p ≤ b·rd

wtsnor(Kp,q(X;Ld)) ⊆ ∆

where 0 ≤ a < b ≤ 1. Kp,q are no longer dense inside all of ∆. Figure IV.2 shows

the normalized weights of Kp,1(P2; 4) for a = 0.33, b = 0.66 and a = 0.66, b = 1:

Figure IV.2: Closure of normalized weights for a = 0.33, b = 0.66 and a = 0.66, b = 1 with
P = P2, d = 4.

Quite surprisingly, we can explicitly describe ∆(a, b). The description involves

the largest volume of a nice region supported at x. More precisely, define:

τx = sup {vol(Sx) | Sx = finite union of cubes ⊂ ∆, with center of mass of Sx = x}
8Recall that rd = h0(X,Ld)− 1, the dimension of the ambient projective space.
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Theorem (IV.21).

∆(a, b) =

{
x ∈ ∆

∣∣∣∣ τx
vol(∆)

≥ a

}
=: ∆(a)

Note that part of the statement of the theorem is that ∆(a, b) does not depend

on b, so we write ∆(a) for it. The boundary of ∆(a) is also explicitly computable.

For example, let ∆ be the unit square. Then the boundary of ∆( 1
10

) consists of 12

pieces, 4 segments of hyperbolas at the corners and 8 line segments in between as

illustrated below.

Figure IV.3: ∆( 1
10 ) for the unit square.

IV.2 Idea of proof

In this section, we discuss the basic strategy of the proof before giving full details.

Let L be a very ample toric line bundle on a smooth projective toric variety X.

We wish to study which weights of the torus appear in Kp,q(X;L). As in Chapter
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II, let

ML = Ker
(
H0(X,L)⊗C OX → L

)
.

Thanks to Demazure vanishing and Prop. II.4, we have (cf. Prop. IV.2):

(IV.2.1) Kp,q(X;L) = Hq(X,∧p+qML).

So the issue is to identify the torus weights appearing in the right hand side of the

equality.

To a first approximation, the idea is to find torus equivariant spaces

U, W1, with dimU = 1, dimW1 � 0

together with a torus equivariant map:

(IV.2.2) Hq(X,∧p+qML) −→ U ⊗ ∧p+qW1.

Suppose one knew that (IV.2.2) is surjective. Then we can conclude that every

weight appearing in U ⊗ ∧p+qW1 appears in:

Kp,q(X;L) = Hq(X,∧p+qML).

On the other hand, one can compute combinatorially the weights of U ⊗ ∧p+qW1

from the weights of U and W1, and the results stated in the previous section would

follow.

Strictly speaking, we do not achieve proving surjectivity of (IV.2.2). What we

show is that we can find torus stable vector spaces W0 of small dimension and W1

of large dimension with W0 a quotient of W1 with the following property. Let W be

any quotient of W1 that factors the map to W0.

W1 −→→ W −→→ W0.
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Then there is a surjective mapping:

Hq(X,∧p+qML) −→ U ⊗ ∧p+qW

with dimW = p + q. As before, this allows us to produce many weights appearing

in Kp,q and the stated theorem follow.

The next point is to understand how to construct U , W0 and W1. Take a w-

dimensional torus stable quotient of H0(X,L) and denote it by W . W defines a

toric stable linear subspace:

P(W ) ⊂ P(H0(L)).

Define by Z ⊂ X, the scheme theoretic intersection:

(IV.2.3) Z = P(W ) ∩X.

Then there is a natural map:

W ⊗C OX −→ L⊗OZ .

Taking wedge powers, a local analysis (cf. (IV.3.2)) shows that there is a surjective

homomorphism:

∧wML −→ IZ/X ⊗ ∧wW.

Hence, we have a map:

(IV.2.4) Hq(X,∧wML) −→ Hq(X, IZ/X)⊗ ∧wW

which is also toric equivariant. The goal is to choose W such that:

(IV.2.5) U = Hq(X, IZ/X) = C 6= 0.
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In practice, (IV.2.4) is achieved by first choosing a toric stable subspace Z ⊂ X

such that (IV.2.5) holds, and then choosing W to satisfy (IV.2.3). This is carried

out in Sect. 3. Furthermore, we will see in Sect. 4 that we can take as W quotients

of a fixed very large W1 (Prop. IV.17).

The main technical result of Sect. 3 is that when we follow this outline, the re-

sulting map (IV.2.4) is surjective (Prop. IV.13). One key point here is that although

the map (IV.2.4) is toric, to prove that it is surjective, we do not need to stay in the

toric world. Hence, we can follow the inductive arguments in [EL12] and [Z12] with

essentially no modification.

There is one further asymptotic ingredient. Namely, we are interested in the

asymptotics of Kp,q(X;Ld) where Ld = A⊗d and A is very ample. When we go

through the constructions just outlined for Ld, we arrive at the following situation.

We have torus stable subspaces W0,d,W1,d, Wd:

weights(∧p+qWd) + (some fixed weight) ⊂ weights(Kp,q(X;Ld)).

Moreover,

dimWd = p+ q, and W1,d −→→ Wd −→→ W0,d.

Furthermore,

dim(W0,d) ∈ o(dn), and h0(X,Ld)−W1,d ∈ o(dn).

Thus, up to asymptotically insignificant contributions, all the weights of ∧p+qW1,d

appear in Kp,q. It remains to prove a lemma on asymptotics of normalized weights

for wedge powers. This is the content of Sect. 5. The asymptotic behavior we

deduce applies to any sequence of toric quotient spaces Wd asymptotically equal



50

to H0(X,Ld) in dimension. Then specializing to W1,d gives us a lower bound on

the weights that appear by the above discussion. Applying to H0(X,Ld) gives us

an upper bound by the definition of Koszul cohomology. Hence, we get our sharp

asymptotic description.

IV.3 Surjectivity of map induced by a secant space

In this section, we recall and adapt the computations in Chapter II to the toric

case.

IV.3.1 Key lemma

We first recall the key vector bundle used to compute syzygies. Let X be a smooth

projective toric variety over C. Let A be a chosen toric very ample line bundle on

X. We use L to denote any toric very ample line bundle on X (we will later replace

L with Ld = A⊗d).

As in Chapter II, in the evaluation map:

νL : H0(X,L)⊗C OX → L

we put ML = ker νL. Thus ML is a vector bundle sitting in the basic exact sequence:

0→ML → H0(X,L)⊗C OX → L→ 0.

We will need the following fact in this chapter:
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Proposition IV.1. (Demazure) For any projective toric variety X, and a very ample

divisor A, then:

Hm(X,OX(jA)) = 0 for m ≥ 1, j ≥ 0.

Proof. This follows from Demazure vanishing (cf. p410 Thm 9.2.3 [CLS11]).

In our setting, we have:

Proposition IV.2. For 1 ≤ q ≤ n, Kp,q(X;Ld) = Hq(X,∧p+qMLd).

Proof. By Prop. II.4, the conclusion follows if we know:

H i(X,OX(mLd)) = 0 for i > 0,m ≥ 0.

This follows from the Proposition above.

Let W be a quotient of H0(X,L) of dimension w. Then we have

P(W ) ⊂ P(H0(X,L)).

Let Z:

Z = P(W ) ∩X

the scheme-theoretic intersection of P(W ) with X. This gives rise to a surjective

map of sheaves:

WX = W ⊗OX −→ L⊗OZ ,

and we denote its kernel by ΣW . So we get an exact diagram of sheaves:

(IV.3.1)

0 //ML
//

��

V ⊗OX //

��

L //

��

0

0 // ΣW
//W ⊗OX // L⊗OZ // 0
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Through the local analysis of [EL12] (3.10), we get a diagram :

(IV.3.2)

∧w ΣW
//

��

∧wWX

��
IZ/X ⊗

∧wWX
// OX ⊗

∧wWX

and this induces a surjective map (cf. the map above [EL12] Def. 3.8):

(IV.3.3) σπ : ∧wML → IZ/X ⊗ ∧wWX

Then σπ induces a map:

(IV.3.4) Hq(X,∧wML)→ Hq(X, IZ/X)⊗ ∧wW

The above construction after Prop. IV.2 works in general. In our setting, when

X, L, W are toric, all the above maps are toric equivariant. Following the notations

above, the key conclusion of the section is the following lemma:

Lemma IV.3. For L = Ld with d � 0 and 1 ≤ q ≤ n, there exists torus stable W

with Z = P(W ) ∩X and

Hq(X, IZ/X) 6= 0,

such that the induced torus equivariant map:

Hq(X,∧wML)→ Hq(X, IZ/X)⊗ ∧wW

where w = dimW , is surjective. Moreover, combined with Prop. IV.2, this implies

that any torus weight in Hq(X, IZ/X)⊗ ∧wW also appears in Kw−q,q(X;L).
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IV.3.2 Proof of Lemma IV.3

Once torus equivariance has been stablished as in (IV.3.4), surjectivity has nothing

to do with the torus action. So we will be able to prove the surjectivity of (IV.3.4)

by proving the surjectivity of:

(IV.3.5) Hq(X,∧wML)→ Hq(X, IZ/X).

The rest of the proof is technical and follows the same lines of attack as in [Z12] and

[EL12]. We will give the choice of Z and W later (Lemma IV.6, Prop. IV.13). For

now, we introduce some terminology that will help in the induction.

For induction in the proof, we have to add in a twist of the map in IV.3.5. Let B

be a line bundle and consider:

(IV.3.6) Hq(X,∧wML(B))→ Hq(X, IZ/X(B))

Definition IV.4. Let W be a quotient of H0(X,L) as above. We say that W

carries weight q syzygies for B if the map induced by σπ in equation (IV.3.6) is

surjective. (We also say the same for q = 0 for notational convenience even though

it isn’t necessarily directly related to syzygies.)

Let us set up some inductive notation. Take a general divisor X ∈ |A| so that

X is irreducible and diagram (IV.3.1) remains exact after tensoring with OX . For

0 ≤ i ≤ q − 1, let

X0 = X, Z0 = Z, A0 = A.

Having made the definitions for i− 1, for i, choose a general Xi ∈ |Ai−1| so that Xi

is irreducible and the corresponding diagram (IV.3.1) for Xi−1 remains exact after
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tensoring with OXi (and as previously defined, X = X1). Let

Zi = Zi−1 ∩Xi, Ai = Ai−1|Xi−1
.

Definition IV.5. We say that Z is adapted to the data X,B,A, n, q, if:

(i) Hq(X, IZ/X(B)) 6= 0

(ii) For all i ≥ 0, Hq−i(Xi, IZi/Xi(B + (i+ 1)A))) = 0.

(iii) For all i ≥ 0, Zi has dimension q − 1− i.

Now we construct a toric Z in our smooth projective toric variety X and check

the above conditions to conclude that Z is adapted to X,OX , A, n, q.

Let −KX = e1 + ... + em where {ei} are the prime toric invariant divisors. Let

c = n+ 1− q with 1 ≤ q ≤ n.

Lemma IV.6. We can order the ei such that Z = e1 ∩ ... ∩ ec−1 ∩ (ec + ... + em) is

a complete intersection.

Proof. Choose e1, ..., en such that they generate an n-dimensional cone. Then F =

e1 ∩ ... ∩ ec−1 is a complete intersection. For any i > c − 1, F either does not meet

ei, or it does so transversely since adding a ray to a cone increase its dimension by

at most 1. It meets at least one of them, ec, since c ≤ n.

Proposition IV.7. With the above choice of Z:

Hq(X, IZ/X) = C 6= 0

Proof. If q = 1, then c = n, and in this case Z consists of two points. The short

exact sequence

0→ IZ/X → OX → OZ → 0
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induces:

H0(OX)→ H0(OZ)→ H1(IZ/X)→ H1(OX)

where h0(OX) = 1, h0(OZ) = 2 and h1(OX) = 0 (since structure sheaves of toric

varieties do not have higher cohomology). Hence, H1(IZ/X) = C.

Assume q ≥ 2. From

0→ IZ/X → OX → OZ → 0

we get:

0 = Hq−1(OX)→ Hq−1(OZ)→ Hq(IZ/X)→ Hq(OX) = 0.

Then Hq−1(OZ) = Hq(IZ/X).

Let F = e1 ∩ e2... ∩ ec−1. From

0→ IZ/F → OF → OZ → 0.

we get:

0 = Hq−1(OF )→ Hq−1(OZ)→ Hq(IZ/F )→ Hq(OF ) = 0.

we need to compute Hq(IZ/F ). Now Z = F ∩ (ec + ...+ em) and ec + ...+ em = −KF .

Since

IZ/F = OF (KF ), dimF = n− c− 1 = n− (n− q) = q,

and then Serre duality applies to give us:

Hq(IZ/F ) = H0(OF ) = C.

We next turn to verifying the conditions in Def. IV.5.
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Proposition IV.8. For all m ≥ 1, j ≥ i ≥ 0:

(i) Hm(OXi(jA)) = 0.

(ii) Hm(OZi(jA)) = 0.

Proof. We prove the first assertion by induction on i. When i = 0, the conclusion

follows from Demazure vanishing since X is toric. Suppose the conclusion is true for

i− 1, then we have:

0→ OXi−1
((j − 1)A)→ OXi−1

(jA)→ OXi(jA)→ 0

Hm(OXi−1
(jA)) = Hm+1(OXi−1

((j − 1)A)) = Hm+1(OXi−1
(jA)) = 0 by inductive

assumption, hence Hm(OXi(jA)) = 0. The second assertion is analogous.

Proposition IV.9. For all i ≥ 0:

Hq−i(Xi, IZi/Xi((i+ 1)A)) = 0

Proof. Consider on Xi the exact sequence:

0→ IZi/Xi((i+ 1)A)→ OXi((i+ 1)A)→ OZi((i+ 1)A)→ 0

then

Hq−i−1(OXi((i+ 1)A))→ Hq−i−1(OZi((i+ 1)A))→

Hq−i(IZi/Xi((i+ 1)A))→ Hq−i(OXi((i+ 1)A))

If q − i = 1, then Zi has dimension dimZ − i = dimZ − (q − 1) = n− (n+ 1− q)−

(q− 1) = q− 1− q+ 1 = 0. Then very ampleness and Hq−i(OXi((i+ 1)A)) = 0 from

Prop. IV.8 implies that Hq−i(Xi, IZi/Xi((i+ 1)A)) = 0.
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Assume q − i− 1 ≥ 1, then the two ends in the above sequence are 0 because of

Prop. IV.8 and we get:

Hq−i(IZi/Xi−1
((i+ 1)A)) = Hq−i−1(OZi((i+ 1)A)) = 0

Putting the computations together, we obtain:

Proposition IV.10. For any 1 ≤ q ≤ n, the scheme Z constructed above is adapted

to X,OX , A, n, q

Proof. Choosing the divisors as in Prop. IV.6 , Def. IV.5 (iii) follows from the

complete intersection condition. Def. IV.5 (i), (ii) are checked in Prop. IV.7, IV.9.

Having constructed Z, we next turn to the construction of quotients W as in Def.

IV.4. The issue is to specify inductive conditions that will guarantee that Def. IV.4

holds. Recall that

V = H0(X,L).

Let

(IV.3.7) V ′ = V ∩H0(X, IX/X(A)).

The intersection takes place inside V . Set W ′ = π(V ′). Write

(IV.3.8) V = V/V ′, W = W/W ′, L = L|X , B = B|X , Z = Z ∩X

As in [EL12, (3.14)], we get the analogue of (1.3) above for the barred objects

and we have the surjection:

σ : ∧wMV → IZ/X ,
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so we can study the behavior of W with respect to carrying syzygies.

Lemma IV.11. Fix 1 ≤ q ≤ n. If W carries weight q − 1 syzygies for B +A on X

and if

Hq(X, IZ/X(B + A)) = 0,

then W carries weight q syzygies for B on X.

Proof. This follows from the same argument as [EL12] Thm 3.10 with (q−1) replaced

by q and B ⊗ L with B in our case.

Proposition IV.12. If d � 0, the following statements are true and so are their

inductive counterparts after cutting down by hyperplanes as above:

(i) The map H0(X,Ld)→ H0(Z,Ld) is surjective, equivalently,

H1(X, IZ/X(Ld)) = 0.

(ii) The map H0(Z,Ld)→ H0(Z,Ld) is surjective, equivalently,

H1(Z,Ld − A) = 0.

(iii) H1(X, IZ/X(Ld − A)) = 0 (or equivalently, with W ′ chosen below, the map

V ′ → W ′ is surjective.)

(iv) The map H0(X,Ld)→ H0(X,Ld) is surjective, or equivalently

H1(X,Ld − A) = 0.

(v) IZ/X ⊗OX(Ld) is globally generated.
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Proof. These all follow from Serre vanishing.

Proposition IV.13. Fix 1 ≤ q ≤ n. Suppose there exists a subscheme Z of X

adapted to X,B,A, n, q. Take Wd = H0(X,OZ(Ld)). Then for d � 0, Wd carries

weight q syzygies for B.

Proof. Start with W = Wd = H0(Z,Ld). By definition in equation (IV.3.7), (IV.3.8)

and surjectivity from Prop. IV.12, we have:

(IV.3.9)

0 // V ′ = H0(X,Ld − A) //

��

V = H0(X,Ld) //

��

V = H0(X,Ld)

��

// 0

0 //W ′ ////

��

W = H0(Z,Ld) //

��

W

��

// 0

0 0 0

where

(IV.3.10) W ′ = H0(Z,Ld − A), W = H0(Z,Ld).

The sheaf IZ/X ⊗OX(Ld) is globally generated (Rmk. IV.12 (v)) so Z = P(W )∩X.

Moreover, when we cut down by hyperplanes as in Lemma IV.11, we obtain the

corresponding diagrams in lower dimensions.

We prove the Proposition by induction on q. Z is always of dimension q−1. When

q = 1, Z consists of points. If X is of dimension 1, then surjectivity follows from the

fact that sheaf surjective maps imply surjectivity in H1 since there is no H2. If the

dimension of X is at least 2, then we continue the induction with Z = φ,W = 0. So

the conclusion is trivially true for q = 0. Then the conclusion is true for q = 1 by

Rmk. IV.12 (ii) and Lemma IV.11. Then apply Lemma IV.11 repeatedly.
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IV.4 Enlarged secant space

In this section, our key conclusion (Prop. IV.17) is the following. Let wts(U)

denote the torus weights in a toric representation U . In the setting of syzygies, we

prove that there exists torus stable quotient spaces W0,d,W1,d:

H0(X,Ld) −→→ W1,d −→→ W0,d,

with:

dim(W0,d) ∈ o(dn), and h0(X,Ld)−W1,d ∈ o(dn),

such that for any Wd with:

dimWd = p+ q, and W1,d −→→ Wd −→→ W0,d,

we have:

weights(∧p+qWd) + some weight ⊂ weights(Kp,q(X;Ld)).

Lemma IV.14. Let X be a scheme with A a very ample divisor and Ld = dA. Let Z

be a subscheme. {Ei} a collection of divisors such that Z = ∩iEi. Then there exists

a subspace Jd ⊂ H0(X,Ld) such that Jd generates IZ/X(Ld) and dim Jd ∈ O(1).

Proof. If J i
d ⊂ H0(X,Ld) generates IEi(Ld), then

∑
i J i

d generate IZ/X(Ld), so we

can assume Z = E is a divisor. For some large N , IE(LN) is globally generated by

sections F1, ...Fm1 . Assume A is globally generated by sections s1, .., sm2 . Then for

d > N , IE(Ld) = OX(Ld − E) is globally generated by Jd =< Fi· sd−Nj >. It has

finitely many vector space generators, so dimJd is finite.

Remark IV.15. It is straightforward to see that the above lemma is still true if we

start with torus equivariant objects and want torus equivariant Jd’s.
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Proposition IV.16. There exist quotients W0,d,W1,d of H0(X,Ld), such that

(IV.4.1) W0,d = W1,d = Wd, Z = X ∩ P(W0,d) = X ∩ P(W1,d)

and the dimensions satisfy

dimW0,d ∈ o(h0(X,Ld))

and

lim
d→∞

dimW1,d

h0(X,Ld)
= 1

Moreover, W0,d and W1,d carry weight q syzygies for OX .

Proof. Pick W0,d = Wd. This satisfies the conditions. To construct W1,d, we will vary

Wd while keeping Z and Wd the same, i.e. we look for large dimension quotients W1,d

of H0(X,Ld) such that:

(IV.4.2) Z = X ∩ P(W1,d)

and

(IV.4.3) W1,d = W0,d.

By the argument of Prop. IV.13, if W1,d satisfy the above conditions, W1,d also carries

weight q syzygies. We first constuct W1,d such that they satisfy the conditions in

(IV.4.2) and (IV.4.3) and then do a dimension count.

Let W1,d be the quotient of Vd = H0(X,Ld) by J1,d, i.e.

W1,d = Vd/J1,d.
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To satisfy (IV.4.2), J1,d has to generate IZ/X(Ld). By Lemma IV.14, we can pick

J1,d of bounded dimension. To satisfy (IV.4.3), for the consecutive quotient maps:

Vd → W1,d → Wd,

we need:

(IV.4.4) V ′d + Jd = V ′d + J1,d

where

V ′d = ker(Vd → Vd), Jd = ker(Vd → Wd).

Note that:

dim(V ′d + Jd)− dimV ′d = dimVd − dimWd − dimV ′d

= dimVd − dimWd

≤ dimVd.

Hence (IV.4.4) requires J1,d to be appropriate subspaces of V ′d+Jd with the following

range of dimensions:

dimVd ≤ dimJ1,d ≤ dim(V ′d + Jd).

Note that dimVd ∈ o(dn). Therefore, to satisfy both (IV.4.2) and (IV.4.3), we can

choose J1,d such that dimJ1,d ∈ o(dn) + O(1). Since W1,d = Vd/J1,d, we have

dimW1,d = dimVd − dimJ1,d. Then h0(X,Ld) ∈ Θ(dn) imply that

lim
d→∞

dimW1,d

h0(X,Ld)
= 1.

Finally, we conclude:
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Proposition IV.17. For any torus equivariant Wd that fits in the following diagram

of consecutive quotient maps:

W1,d → Wd → W0,d

we have:

(IV.4.5) wts(

dimWd∧
Wd) + wts(Hq(X, IZ/X)) ⊆ wts(KdimWd−q,q(X;Ld))

Proof. By the argument of Prop. IV.13 , Wd carries weight q syzygies. Then the

weight inclusions follow from Lemma IV.3.

IV.5 Asymptotics of normalized weights

Recall that we defined in the introduction:

wts(Kp,q(X;Ld)) = {Torus weights of Kp,q(X;Ld)} ⊆ (p+ q)d·∆.

where ∆ is the convex polytope associated with the very ample divisor A. We are

interested in the normalized weights:

wtsnor(Kp,q(X;Ld)) =
wts(Kp,q(X;Ld))

(p+ q)d
⊆ ∆

In this section, we work asymptotically and we are interested in asymptotic closures:

∆(a, b) =
⋃

d � 0
a·rd ≤ p ≤ b·rd

wtsnor(Kp,q(X;Ld)) ⊆ ∆

Then the contributions from weights in Hq(X, IZ/X) and W0,d will be asymptotically

insiginificant, to normalized weights, in other words:

⋃
d � 0

a·rd ≤ p ≤ b·rd

wtsnor

(
dimWd∧

Wd +Hq(X, IZ/X)

)
=

⋃
d � 0

a·rd ≤ p ≤ b·rd

wtsnor

(
p∧
W1,d

)
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Hence, we can just work with the sequence {W1,d} in (IV.4.5) and for simplicity, we

abuse notation and write Wd instead of W1,d.

After this simplication, we arrive at the following setting. Let ∆ be the convex

polytope associated to a very ample divisor A in Rn. For d ∈ N, let

Wd ⊂ d∆ ∩ Zn.

Let us use
∧pdWd to denote the collection of points in Zn expressible as nonrepetitive

sums of pd points in Wd. Assume that for d ∈ N,

(IV.5.1) limd→∞
|Wd|
|d∆|

= 1

Take any point x inside the polytope ∆, suppose the largest sphere contained in ∆

centered at x is Sx and has volume ηx.

The intuition for the two key lemmas (IV.18, IV.20) in this section are as follows.

In Lemma IV.18, we prove that if there is a ball of volume ηx centered at x, we

can pick any number between 1 and (ηx − ε)dn such that the the average of these

weights lie arbitrarily close to x asymptotically. In Lemma IV.20, we prove that too

many points (exceeding the number of lattice points in dilations of maximal shapes

centered at x) will not average close to x.

Lemma IV.18. With the above notations, for any sequence

1 ≤ pd ≤ (ηx − ε)dn

and any open set Ux ⊂ Rn containing x, there exists d0 such that for all d > d0, Ux

contains a point of

wtsnor(
∧pdWd)

pd· d
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Proof. We will pick w1, ...wpd in Wd and prove that they give rise to points in Ux. By

the general theory of counting integral points via quasipolynomials [M], and approx-

imating an arbitrary polytope with rational polytopes, given any full-dimensional

convex polytope Γ,

lim
d→∞

|dΓ ∩ Zn|
dn

= vol(Γ)

For all d such that

pd ≤
1

2
|(dUx) ∩ Zn|,

Notice that there are at least pd points in dUx ∩Wd since otherwise,

|d∆−Wd| ≥ |(dUx) ∩ Zn − (dUx) ∩Wd|

≥ |dUx ∩ Zn| − pd

≥ 1

2
|(dUx) ∩ Zn|.

The last term has order of growth dn, that would be a contradiction to equation

(IV.5.1) above. Therefore, we can choose pd distinct points w1, ..., wpd from (dUx) ∩

Zn. Then, in
∧pd Wd

pdd
, they correspond to the point∑pd

i=1wi
pdd

Each wi is in dUx, hence wi
d

is in Ux. We can write the above sum as their average:

1

pd

pd∑
i=1

wi
d

and it is evidently in Ux.

For all d such that:

pd >
1

2
|(dUx) ∩ Zn|
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Let dne denote the smallest integer grearter than or equal to n. Consider the set of

points

Jd =

{(
d(pd)1/ne Sx

vol(Sx)1/n

)
∩ Zn

}
The intuition is that Sx

vol(Sx)
1
n

has volume 1, multiplied by dp
1
n
d e, it should have asymp-

totically on the growth of pd many points, which we assert as (1) below and list some

other estimates that are going to be useful. For large d, the following are true:

(i) We have:

lim
d→∞

|Jd|
pd

= 1, |Jd| − pd ∈ o(dn)

In fact, given the lower bound on pd and the upper bound |d∆ ∩ Zn| for pd,

we know that pd ∈ Θ(d). Hence, the first equality implies the second. By the

existence of Ehrhart quasi-polynomials, approximation with rational polytopes

and the fact that Sx

vol(Sx)
1
n

has volume 1, we have:

|Jd| = dp1/n
d e

n + o(dn).

Hence,

lim
d→∞

|Jd|
pd

= lim
d→∞

dp1/n
d en

pd
= 1

(ii) Furthermore, it is evident that:

|Jd| − |Jd ∩Wd| ≤ |d∆| − |d∆−Wd| ∈ o(dn)

Hence: ∣∣∣∣∣|Jd ∩Wd| − pd

∣∣∣∣∣ ≤
∣∣∣∣∣|Jd| − |Jd ∩Wd|

∣∣∣∣∣+

∣∣∣∣∣|Jd| − pd
∣∣∣∣∣ ∈ o(dn).

Let qd = |Jd ∩Wd|. Then the above inequality says

0 ≤ pd − qd ∈ o(dn).
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(iii) The minimum distance between points in Jd
d

is 1
d
, which goes to 0. Hence, the

sum:

1

|Jd|
∑
w∈Jd

w

d

approaches the integral which defines the center of mass of Sx.

(iv) One has:

dSx ∩Wd > pd

because otherwise,

|Wd| = |Wd ∩ dSx|+ |Wd ∩ dSx| ≤ pd + |dSx|

≤ |dSx|+ |dSx| − (|dSx| − pd)

≤ |d∆| − εdn

where dSx = d∆− dSx. This is a contradiction to (IV.5.1).

To fininish showing existence of a point in Ux in the case of big pd’s, we take all

the points in Jd ∩ Wd to be w1, ...wqd . Pick any of the rest pd − qd points from

dSx ∩Wd − Jd ∩Wd (in fact (c) above, we showed that we have enough points to do
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this). Then:∣∣∣∣∑pd
i=1wi
pdd

− x
∣∣∣∣ =

∣∣∣∣∣ 1

dpd
(

pd∑
i=1

wi)− x

∣∣∣∣∣
≤

∣∣∣∣∣ 1

dpd
(
∑

i∈Jd∩Wd

wi)− x

∣∣∣∣∣+

∣∣∣∣∣ 1

dpd
(
∑

i∈Wd−J

wi)

∣∣∣∣∣
≤

∣∣∣∣∣ 1

dpd
(
∑
i∈Jd

wi)− x

∣∣∣∣∣+

∣∣∣∣∣ 1

dpd
(
∑

i∈Wd−Jd

wi)

∣∣∣∣∣+

∣∣∣∣∣ 1

dpd
(
∑

i∈Wd−Jd

wi)

∣∣∣∣∣
≤

∣∣∣∣∣ |Jd|dpd

1

|Jd|
(
∑
i∈Jd

wi)−
|Jd|
dpd

x

∣∣∣∣∣+

∣∣∣∣ |Jd|dpd
x− x

∣∣∣∣+ 2

∣∣∣∣∣ 1

dpd
(
∑

i∈Wd−Jd

wi)

∣∣∣∣∣
≤ |Jd|
dpd

∣∣∣∣∣ 1

|Jd|
(
∑
i∈Jd

wi)− x

∣∣∣∣∣+

∣∣∣∣ |Jd|dpd
− 1

∣∣∣∣ |x|+ 2
1

pd
(
∑

i∈Wd−Jd

|wi|
d

)

|x| and |wi|
d

are both bounded as they lie in the polytope ∆. Suppose they are

bounded by Γ > 0, i.e.

|x| ≤ Γ,
|wi|
d
≤ Γ

Then the above sum is bounde by:∣∣∣∣∑pd
i=1 wi
pdd

− x
∣∣∣∣ ≤ |Jd|dpd

∣∣∣∣∣ 1

|Jd|
(
∑
i∈Jd

wi)− x

∣∣∣∣∣+

∣∣∣∣ |Jd|dpd
− 1

∣∣∣∣Γ + 2
|Wd − Jd|

pd
Γ

≤ |Jd|
dpd

∣∣∣∣∣ 1

|Jd|
(
∑
i∈Jd

wi)− x

∣∣∣∣∣+

∣∣∣∣ |Jd|dpd
− 1

∣∣∣∣Γ + 2
pd − qd
pd

Γ

As previously discussed, when d is large, |Jd|
dpd

tends to 1,
∣∣∣ 1
|Jd|

(
∑

i∈Jd wi)− x
∣∣∣ tends

to 0. pd − qd ∈ o(dn), pd is bounded below by 1
2
|(pddUx) ∩ Zn| which has order of

growth dn, hence the last quotient tends to 0. Therefore, the whole sum tends to 0

and we get arbitrarily close to x.



69

Theorem IV.19. Fix 1 ≤ q ≤ n. Then

⋃
d > 0

1≤ p≤ rd

wtsnor(Kp,q(X;Ld))

is dense in ∆.

Proof. By Prop. IV.16 and IV.17, we know that wtsnor(Kp,q(P;Ld)) contains weights

corresponding to nonrepetitive sums of weights in W1,d. By Prop. IV.16 and Lemma

IV.18, they are dense in ∆.

Take any point x inside the polytope ∆. Recall we denote:

τx = sup {vol(Sx) | Sx is a finite union of cubes ⊂ ∆, center of mass of Sx = x}

Lemma IV.20. Take y ∈ ∆. Assume

(IV.5.2) y = lim
d→∞

yd

where

yd =
1

id

∑
1≤j≤id

wd,i
d
, wd,i ∈ (d·∆) ∩ Zn, wd,i distinct.

Then for any subsequence {idj}:

limsupj→∞
idj
dn
≤ τy

Proof. For simplicity, we call the finite union of cubes ⊂ ∆ a shape. Suppose there

is a subsequence id′j such that

liminfj→∞
id′j
dn
≥ τ,
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we claim that for any constant ε > 0, there is a shape centered at y with volume at

least τ − ε. Assuming the claim, the lemma follows since if we had

limsupj→∞
idj
dn

= τ > τy,

there is a subsequence id′j such that

liminfj→∞
id′j
dn

=
τ + τy

2
> τy

By the claim, this is a shape with center of mass at y and volume τ+τy
2

> τy.

Contradiction to τy being the biggest volume supported at y.

Let’s turn to the claim. For convenience, we write ij for idj . We construct a shape

centered at y with volume at least τ − ε by taking small cubes centered at wdj ,i, then

make two adjustments: boundary adjustment and center adjustment.

More specifically, for each wdj ,i with 1 ≤ i ≤ dj, take the 1 × ... × 1 cubes of

dimension n centered at wdj ,i. Denote each cube by Cdj ,i. Suppose the 2 × ... × 2

cube centered at wdj ,i does not intersect the boundary of d∆ for 1 ≤ i ≤ i′d. The

boundary of d∆ is bounded by d(1 − ε)∆ and d(1 + ε)∆ for large d and any ε > 0.

Hence, id − i′d ∈ o(dn).

Take the union:

Σ′d =

i′d⋃
i=1

Cdj ,i

and denote by y′ the center of mass for Σ′d. ∆ is bounded, so by the previous

paragraph and assumption:

|y′ − y| ≤ |y′ − yd|+ |yd − y| ∈ o(dn) +O(1).

Move Σ′d by:

y − y′

i′d
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Then it is straightforward to see that for large d, the shape above is contained in ∆

and has volume arbitrarily close to τ .

Recall that we define:

∆(a, b) =
⋃

d � 0
a·rd ≤ p ≤ b·rd

wtsnor(Kp,q(P;Ld)) ⊆ ∆

Theorem IV.21. One has:

∆(a, b) =

{
x ∈ ∆

∣∣∣∣ τx
vol(∆)

≥ a

}
=: ∆(a)

Proof. The closure ∆(a, b) ⊇
{
x ∈ ∆

∣∣∣∣ τx
vol(∆)

≥ a

}
follows from a similar argument

as in Lemma IV.19 replacing a sphere with shapes supported at x with volumes

arbitrarily close to τx. For sequences asymptotically small, we can pick points in a

sphere around x. For sequences asympotically close to τx, we can pick points from

finite cube unions (possibly further scaled down) approximating τx.

Recall Lemma II.1, Kp,q(X;Ld) can be computed as cohomology in the middle of

the following short complex:

∧p+1H0(X,Ld)⊗H0(X, (q − 1)Ld)→ ∧pH0(X,Ld)⊗H0(X, qLd)

→ ∧p−1H0(X,Ld)⊗H0(X, (q + 1)Ld)

Hence all weights of Kp,q(X,Ld) correspond to nonrepetitive sums of points in (p +

q)∆. The length of the above Koszul complex is h0(X,Ld) = vol(∆)· dn+O(dn−1). q

is bounded, so asymptotically insignificant. By Lemma IV.20, if a normalized weight

is in

wtsnor(∧pdH0(X,Ld)⊗H0(X, qLd)),
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then it satisfies

τx ≥ limsupd→∞
pd
dn

We are computing for the range [avol(∆)dn, bvol(∆)dn], hence

limsupd→∞
pd
dn
≥ bvol(∆).

so

x ≥ avol(∆).

Then by the definition of Kp,q(X,Ld) above:

wtsnor(Kp,q(X,Ld))

⊆ wtsnor(∧pH0(X,Ld)⊗H0(X, qLd)) ⊆
{
x ∈ ∆

∣∣∣∣ τx
vol(∆)

≥ a

}
which gives us the other inclusion.

IV.6 Boundary of ∆(a)

In this section, we describe the boundary of ∆(a).

Fix a convex body ∆ ⊂ Rn, and a constant a in [0, 1]. Let v be a unit vector in

Rn. Then H(v, c) := {x ∈ Rn|v.x ≤ c} forms a family of parallel half spaces. There

is a unique constant c so that:

vol(∆ ∩H(v, c)) = avol(∆).

Call this constant cv. Let xv be the center of gravity of ∆ ∩H(v, cv).

Proposition IV.22. The points xv, as v ranges over all unit vectors, form the

boundary of ∆(a).



73

Remark IV.23. We give the intuition but skip the proof of the proposition. Think

of ∆ as a container holding water of volume a. When one leans it to the direction

with v pointing downward, water flows to lower its center of mass (potential energy).

In this position, the center of mass, call it xv, is the extreme of ∆ in direction v,

hence a boundary point of ∆(a). The water level in this setting corresponds to the

boundary of H(v, cv) and we can actually see that the tangent of the boundary is

the hyperplane perpendicular to v through xv.

Example IV.24. In the example given in the introduction, when ∆ is the unit

square and a = 1
10

. The interested reader can work out that when the water surface

divides the square into a triangle and a pentagon, the center of mass of the water is

parametrized by

(1− 1

15k
,
1

3
k) for

1

5
≤ k ≤ 1

and its symmetric images, these account for the 4 hyperbola segments. When the

water surface divides the unit square into two trapezoids, the center of mass lies on:

(
2

3
− 5

3
k,

29

30
− 1

6
k) for

1

10
≤ k ≤ 1

5

or its symmetric images. These account for the 8 line segments.



BIBLIOGRAPHY

74



75

BIBLIOGRAPHY

[AF11] M. Aprodu and G. Farkas, The Green Conjecture for smooth curves lying on arbitrary K3
surfaces, Compositio Mathematica 147 (2011), 839–851.

[AV03] M. Aprodu and C. Voisin. Green-Lazarsfeld’s conjecture for generic curves of large gonality,
C. R. Acad. Sci. Paris 336 No. 4 (2003) 335–339.

[B03] A. Beauville, La conjecture de Green gnrique, Sminaire Bourbaki 46 (2003-2004): 1–14.

[BCI11] P. Bürgisser, M. Christandl, C. Ikenmeyer, Even partitions in plethysms, Journal of Algebra
328 (2011), 322–329.
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