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Abstract 

MARKOV CHAIN MONTE CARLO IN GENETICS: SUBPHENOTYPING, 

LINKAGE DISEQUILIBRIUM MODELING, AND FINE MAPPING 

by 

Ziqian Geng 

 

Chair: Sebastian Zöllner 

The advance of modern genotyping and sequencing technologies makes large scale data 

available in different genetic studies. Meanwhile, MCMC algorithm provides powerful 

computational tools in handling these high-dimensional genetic data. In this dissertation, 

I demonstrate several MCMC applications in emerging genetic studies. 

In Chapter 2, I propose a method to identify genetically homogeneous subphenotypes of 

complex diseases. I assume that different disease subtypes, caused by different risk 

variants, behave uniquely in clinical characteristics (treated as covariates). I design an 

algorithm to identify these covariates to define genetically homogeneous subtypes. 

Conditional on these covariates, this algorithm calculate each affected individual’s 

posterior probability of belonging to each subtype. Using simulated data, I illustrate that 

my algorithm correctly identifies subtypes, such that affected individuals within each 

subtype group are likely to carry the same risk variants. I also evaluate whether 
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stratifying on these estimated subtype memberships improves the power to detect 

phenotypic association at risk loci attributable to these subtypes.  

In Chapter 3, I introduce a novel algorithm to model the linkage disequilibrium (LD) 

between different genomic positions through shared genealogies. Compared to traditional 

hidden Markov models (HMM) which might over simplify the evolutionary process of 

sampled haplotypes, my method allows for more variations in prior probabilities about 

shared haplotype segments descend from particular ancestors, as well as more variations 

in population genetic parameters. Through this more careful model, our method improves 

the accuracy in haplotype reconstruction. Moreover, I propose a fine mapping algorithm 

based on this model to localize complex trait loci. My algorithm identifies disease causal 

loci accurately when traditional mapping approaches based on single marker tests have 

low power. 

In Chapter 4, I propose an approach to overcome the computational burden in fine 

mappings using our coalescent-based modeling. I first estimate a set of clusters of 

sampled haplotypes such that members within each cluster share one common ancestor. I 

then make inferences about genealogies of these clusters to localize candidate regions of 

disease-causing mutations. Using simulated data, I illustrate that this implementation 

enables my fine mapping approach in large samples with several tens of thousands of 

individuals. 
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Chapter 1 Introduction 

In recent years, genetics studies involve high dimensional data analysis. In a typical 

genome-wide association study (GWAS), millions of variant sites are genotyped and 

analyzed to detect candidate regions associated to certain phenotypes of interest. Along 

with the development in next-generation sequencing technology, genetic data to be 

analyzed contains even higher dimensions of variables. Consequently, many statistics of 

interest in modern genetic studies cannot be calculated analytically. 

To approximate these statistics of interest from high-dimensional data, Markov chain 

Monte Carlo (MCMC), as a powerful computational tool in Bayesian modeling, is widely 

applied in modern genetic studies. Conditional on the observed phenotypes and 

genotypes, as well as the family structures of sampled pedigrees, MCMC algorithms pick 

a large number of random draws from the Markov chain to approximate the posterior 

distribution of statistics to be analyzed. During the late 1990s and early 2000s, several 

MCMC approaches have been developed in linkage studies to explore different 

perspectives of genetic questions, such as what individual in large pedigrees should be 

genotyped and analyzed (e.g., Fernández et al. 2001; Tier and Henshall 2001), and what 

loci are attributive to the quantitative trait of interest (e.g., Heath et al. 1997; Uimari and 

Hoeschele 1997; Daw el al. 1999). More recently, MCMC algorithms have also been 

applied to association studies using population genotype data of unrelated individuals. 

Multiple MCMC-based approaches have been developed to model the linkage 
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disequilibrium (LD) in genomic regions and to make inferences about population genetic 

parameters (Nielsen 2000; Fearnhead and Donnelly 2001; Morris et al. 2003). 

Although promising, traditional MCMC approaches require large amount of 

computations to approximate the posterior probability of interest. To reduce this 

computational intensity, Li and Stephens have developed a method using hidden Markov 

models (HMM) to approximate LD and to identify recombination hotspots (Li and 

Stephens 2003), which has been proved an computationally efficient model. In recent 

years, similar HMM approaches are widely applied to other LD-based studies, such as 

haplotype reconstruction (e.g., Stephens and Donnelly 2003; Scheet and Stephens 2006) 

and genotype imputation (e.g., Marchini et al. 2007; Browning and Yu 2009; Li et al. 

2010; Howie et al. 2012). 

In this Chapter, we give an overview of MCMC methods in subphenotyping for complex 

diseases, as well as in modeling linkage disequilibrium and in mapping of complex trait 

loci. 

1.1 Sampling genetically homogeneous subphenotypes 

Genetic heterogeneity is one of the major challenges for identifying complex trait loci. In 

many cases, we observe multiple genetic variants affecting the same phenotype – each 

with a relatively small effect size. Accordingly, the power to detect every single variant’s 

association to the phenotype is reduced when affected individuals carrying different risk 

variants are collected into one sample of cases. Indeed, creating genetically more 

homogeneous subtypes of cases, would increase some risk allele frequencies in these 
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subtype samples, and thus improve the power to detect phenotypic association at relevant 

risk loci. 

Since the underlying risk variant is priori unknown, subtype strategies are valid only if 

non-genetic indicators for the underlying genetic variants are available. Several studies 

have hypothesized that different risk variants affect the same disease endpoint through 

different pathways, such that they create differences in clinical characteristics 

(Burmeister et al. 2008; Saunders et al. 2008; Saunders et al. 2009). These clinical 

behaviors, correlated with different risk variants, are then treated as covariates to define 

different subtypes of the disease in many studies. 

While defined subphenotypes can increase the risk variant frequency within each 

subphenotype sample, they also reduce the sample size of affected individuals within 

each subtype sample. Hence, the power gain from genetic homogeneity must outweigh 

the power loss from sample size reduction (Burmeister et al. 2008; Morris et al. 2010). 

Various subphenotype approaches have been implemented in recent years. Most 

commonly, subphenotypes are defined by stratifying affected individuals on single 

observable traits (e.g., Zandi et al. 2007; Lydall et al. 2009). However, single covariate 

stratification is less efficient when genetic variants weakly affect many covariates. To 

define subphenotypes by analyzing multiple covariates, different approaches have been 

proposed in recent years. Most of these approaches are either based on known 

comorbidity information (e.g., Schulze et al. 2006; Morris et al. 2010) or pre-selected 

SNPs (e.g., Wen and Lu 2013); they are thus not generalizable to other complex disease 

studies. 
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In Chapter 2, we propose a novel approach to define genetically homogeneous sample of 

subphenotypes that are generalizable to any complex disease. This approach analyzes the 

segregation in a large set of covariates, and identifies subsets of co-inherited covariates 

attributable to the same risk variants to identify sub-samples of cases more likely to carry 

the same risk variants. 

1.2 Modeling of linkage disequilibrium 

By definition, LD is the dependence structure of alleles carried at different positions in 

the genome. Modeling of LD is crucial in many aspects of genetic studies. In practice, 

LD provides valuable information about which alleles, at different loci, are inherited 

together. In recent years, many widely used software packages, such as PHASE 

(Stephens et al. 2001; Stephens and Donnelly 2003) or MaCH (Li et al. 2010), are 

modeling LD based on an HMM algorithm (Li and Stephens 2003): At each genomic 

position, the observed state is the genotypes and the latent state is which ancient 

haplotype in the target population is the observed haplotype descends from.. Conditional 

on the hidden state, the observed genotypes can be modeled as imperfect copies with 

mutations at each site. The algorithm then models the whole genomic region site-by-site 

as a Markov process, where the transition probability between neighboring sites is 

modeled through recombination rates. 

Although successfully applied in many studies, the HMM algorithm oversimplify the 

latent inheritance pattern. Typically, it assumes uniform prior probabilities that each 

sampled haplotypes are equally likely to be descendant of any haplotypes within the same 
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target population. In genomic regions where too many mutation and recombination 

events have resulted in much complicated inheritance patterns, we observe reduced 

performance when applying these oversimplified HMM algorithms. Likewise, we also 

observe reduced performance when applying HMM algorithms to individuals sampled 

from admixed populations. 

Alternatively, several studies have focused on making inferences about the evolutionary 

history of sampled individuals, to model LD through the shared genealogy within short 

genomic segments that are inherited together (e.g., Zӧllner and Pritchard 2005; Burkett et 

al. 2013b). Compared to the HMM algorithm which assume uniform prior probabilities of 

inheritance from a “pool of haplotypes”, these coalescent-based methods quantify the 

sampled haplotypes’ probability of descending from different ancestors based on the 

estimated local ancestry of sampled individuals. Moreover, coalescent-based methods 

analyze different positions in parallel, thus allowing more variability in mutation rates 

and recombination rates across genomic regions of interests. For each co-inherited short 

segments in the studied genomic region, these methods provide more careful local LD 

modeling. 

However, coalescent-based methods are computationally extremely intensive when 

making inferences about genealogies. To reduce computational intensity, existing 

coalescent-based methods typically assume first or second-degree Markov model to 

approximate the construction of sampled haplotypes. This simplification ignores the LD 

between more distant loci, and is thus not applicable in studies using high density SNPs. 
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In Chapter 3, we propose a more careful model of LD, which combines the local 

genealogy from coalescent-based model with the more distant modeling of haplotypes 

using HMM. To demonstrate that our algorithm provides more accurate model of LD 

than traditional methods, we apply our algorithm to an LD-related study, haplotype 

reconstruction. According to our simulation studies, haplotypes are more accurately 

reconstructed based our LD modeling than based on traditional HMM algorithms. 

1.3 Mapping of complex trait loci 

According to the Catalog of Published Genome-Wide Association Studies 

(http://www.genome.gov/gwasstudies), GWAS have identified over 1,500 genomic 

regions associated with hundreds of phenotypes. However, most of variants found by 

GWAS are located in regions that lack obvious functional consequences. These results 

are not surprising, as the idea of GWAS is based on the assumption that at least some 

detected associations are due to high LD between the tested SNPs and the non-genotyped 

true causal variant site, to identify a set of candidate regions for follow-up studies about 

functionalities.  

This ambiguity in detected associations can be partly solved by whole-exome sequencing 

studies, where the association at true causal site is directly tested. However, the causal 

site is not always genotyped even using sequencing data: it can be filtered due to low 

quality in low coverage sequencing; or the causal mutation may be not a variant but an 

indel or a copy-number variation (CNV), or it may be a non-coding functional variant. 

Moreover, many studies are based on imputation-based analysis to detect rare to low-
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frequent variant associations (Servin and Stephens 2007; Guan and Stephens 2008; Li et 

al. 2010). Although promising, rare variant association studies still face the challenge that 

some rare causal variant may be incorrectly imputed when it is not observed in the 

reference panel for imputation. In all these situations where causal variant is non-

genotyped, traditional approaches will have reduced power to detect the phenotypic 

association at the causal loci. And the follow-up fine-scale mapping can be biased. 

Alternatively, several studies have focused on mapping candidate regions through 

estimating the evolutionary history of causal mutations (Morris et al. 2002; Zӧllner and 

Pritchard 2005; Tachmazidou et al. 2007, Burkett et al. 2013a). Based on the coalescence 

theory, these methods analyze the genealogy between cases and controls position by 

position, to locate candidate regions harboring disease causal mutations. These methods 

jointly analyze genotypes at surrounding sites to make inferences about the genealogy. 

They are thus more powerful in studies where traditional approaches based on single 

marker tests have low power, and are more robust to the scenario when genotype is 

missing at a single causal position. 

In Chapter 3, we improve traditional coalescent-based model of LD by an HMM 

algorithm such that it can be applied to studies using high density SNPs. We then propose 

a fine-mapping approach based on this HMM-enhanced model to locate complex trait 

loci. Using simulated data, we demonstrate that our method correctly identifies candidate 

regions harboring causal variant sites. We also illustrate that our algorithm performs 

more robustly when genotypes at causal sites are missing, compared to traditional fine 

mapping algorithms based on initial sets of candidate regions with GWAS-detected 

associations. 
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In Chapter 4, we design a novel coalescent-based algorithm for fine mapping, which 

utilizes a clustering method (Scheet and Stephens 2006) to reduce the sampling space of 

genealogy inferences. Using simulated data, we illustrate that our implemented algorithm 

correctly identifies credible regions harboring causal variants in large-scale studies with 

several thousands of sequenced individuals.  

1.4 Outline of dissertation 

In this dissertation, we describe several MCMC algorithms that address different 

statistical genetic challenges. This dissertation is organized as follows: In Chapter 1, we 

give an overview about our dissertation. In Chapter 2, we describe our algorithm which 

identifies affected individuals carrying the same risk variants through analyzing the 

segregation of a large set of observable covariates. In Chapter 3, we focus on our HMM-

enhanced coalescent-based modeling of LD, which improves the accuracy of haplotype 

reconstruction and can be applied to correctly mapping candidate loci of complex traits. 

In Chapter 4, we implement a clustering method to our coalescent-based model, such that 

our new method is capable in large-scale studies to identify candidate regions for 

complex trait loci. In the end, we provide a summary of our studies in Chapter 5. 
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Chapter 2 A covariate based affected sib-pair endophenotype sampler 

in association studies 

2.1 Introduction 

Recent years have seen substantial progress in understanding the genetic basis of 

common complex diseases. Combining studies to achieve massive sample sizes 

(Thornton and McPeek 2010; Wen and Stephens 2010) reveals that common risk variants 

typically have very low effect sizes and each variant explains only a small proportion of 

the total heritability in many diseases. Identifying further genetic factors for complex 

traits remains a major challenge in human genetics (Hirschhorn and Daly 2005; 

McCarthy et al. 2008), which will require even larger sample sizes. Meanwhile, rare 

variants are now targeted as promising candidates for the missing heritability not 

explained by common variants. However, rare variant studies also require very large 

sample sizes to be adequately powered (Zöllner 2012; Nelson et al. 2012). 

The large sample size requirement can be at least partly explained by the genetic 

heterogeneity of the studied phenotype. In many cases, we observe multiple genetic 

variants affecting the same phenotype – each with a relatively small effect size. 

Accordingly, the power to detect every single variant’s association to the phenotype is 

small when patients carrying different risk variants are collected into one sample of cases. 

Indeed, creating genetically more homogeneous sample of cases, would increase some 

risk variants’ allele frequencies in this sample, and thus improve the power of detecting 
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these variants in association studies. As the underlying risk variant is priori unknown, 

such stratification is only possible if non-genetic indicators for the underlying genotypes 

are available. Such indicators can be identified if different risk variants affect the same 

disease endpoint through different pathways, and thus create differences in clinical 

characteristics (clinical heterogeneity). These clinical characteristics (treated as 

covariates) are then correlated with different risk variants (Burmeister et al. 2008; 

Saunders et al. 2008). Properly picked covariates will then contain information about the 

underlying genetic heterogeneity, and may define genetically more homogeneous 

subtypes of the disease. 

We borrow the endophenotype approaches suggested by many psychiatric studies, to 

identify genetically more homogeneous subtypes of a disease (Gottesman and Gould 

2003). While endophenotype approaches can increase the risk variant frequencies within 

cases with the same subtype, it also reduces the sample size of cases to the subset of cases 

showing this subtype. Hence, the power gain from genetic homogeneity must outweigh 

the power loss from sample size reduction (Burmeister et al. 2008; Morris et al. 2010). 

Various endophenotype approaches have been applied to study different psychiatric 

diseases and other complex diseases (Gottesman and Gould 2003; Flint and Munafo 

2007). Most commonly, this idea is applied by stratifying affected individuals on single 

observable traits (single covariate stratification). For example, stratification by age of 

onset showed the relation between certain genotypes and early onset Alzheimer’s disease 

is stronger than between the same genotypes and late onset Alzheimer’s disease (Dizier et 

al. 2012; Velez et al. 2013). Likewise, several studies for bipolar (BP) disorders stratified 

affected individuals on comorbid symptoms (Willour et al. 2007; Zandi et al. 2007; 
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Lydall et al. 2009; Saunders et al. 2009; Kerner et al. 2011), to identify variants 

associated with BP that are not reported before. In general, single covariate stratification 

is most powerful if only one genetic variant has a strong effect on the covariate. It is less 

efficient if genetic variants weakly affect many covariates, because stratifying on one 

covariate now insufficiently increases the allele frequency of any risk variant. In this 

latter situation, stratifying on multiple covariates simultaneously may identify individuals 

carrying specific risk variants. However, doing so will divide the whole sample of 

affected individuals into many small subsets (Burmeister et al. 2008; Morris et al. 2010). 

Such quick sample size reduction will result in an unrecoverable power loss. Therefore, 

an applicable approach to analyze multiple covariates for endophenotypes, which does 

not generate a hard limit on the number of individuals within each subtype, becomes a 

necessity. 

In recent years, several advanced approaches based on multiple covariates have been 

developed to define endophenotypes for complex diseases. For instance, Schulze et al 

(2003) proposed a mixed-effects regression analysis on BP with 40 phenotypic features. 

Andreassen et al. (2013) increased the power to detect common variants associated with 

schizophrenia by leveraging comorbidity risk factors of cardiovascular diseases using a 

stratified FDR method. And Morris et al. (2010) proposed a multinomial regression 

framework to allow for genetic heterogeneity between subtypes. However, these methods 

assume known comorbid and pleiotropic information to pre-select a few covariates. They 

are not generalizable to studies of other diseases where comorbidity is not well studied. 

Alternatively, Wen and Lu (2013) recently proposed a method which does not rely on 

known comorbidity, but focuses on selecting the optimum number of subtypes contained 
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in sampled cases. However, their model selection is based on selected SNPs. It is only 

applicable to confirm known candidate loci rather than exploiting new gene-phenotype 

association. Finally, principal component analysis (PCA) is also applied to define 

endophenotypes in complex diseases (Wang et al. 2009). However, it is difficult to 

distinguish whether the PC-represented subtypes are truly driven by underlying genetic 

variants, or are merely artifacts due to some highly correlated, non-heritable factors. 

In present study, we propose an algorithm based on the similar intuition as PCA: we 

assume that each subtype, represented by differences in covariates, is attributable to the 

constellation of one or more genetic variants. We then study the correlation structure 

between the set of covariates to identify affected individuals belonging to these subtypes 

in the study sample. Unlike PCA, our method identifies heritable subtypes by modeling 

the heritability in related individuals – if truly heritable due to genetic variants, covariates 

representing these subtypes are more likely to be shared within each family than between 

unrelated individuals (Freimer and Sabatti 2004). Indeed, we model this sharing pattern 

of covariates to calculate every affected individual’s posterior probability of being 

affected by each subtype, conditional on the set of covariates. We use this posterior 

probability to prioritize individuals carrying the same risk variants. We implement our 

algorithm for sibling-pairs – a Covariate-based Affected Sib-pair Endophenotype 

Sampler (CASES). 

To test CASES, we simulated sib-pair datasets in which at least one sibling is affected by 

a dichotomous phenotype. For a wide range of disease models, we simulated one or more 

risk variants which also associated with different sets of covariates. We analyzed these 
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covariates using CASES to identify subtypes among the cases and to evaluate if the 

subtypes represent the underlying genotypes at the risk loci. 

Our results show that our algorithm successfully identifies the informative subset of 

covariates from other covariates not affected by the underlying risk variants. Based on 

these covariate subsets, we successfully identify individuals carrying the same 

endophenotype, who are more likely to be carrying the same risk variants. We then 

illustrate that using these endophenotypes is helpful in guiding the sampling of affected 

individuals carrying specific risk variants. The precision of endophenotype identification 

increases with the increased effect sizes and increased number of co-inherited covariates. 

Moreover, we are able to use this defined endophenotypes to improve the power in 

association studies. 

2.2 Methods 

We propose an algorithm that estimates each affected individual’s probability of carrying 

any subtype of the disease. We model each subtype as attributable to a set of risk variants 

which also affect a set of distinctive covariates. 

We consider a sample of � families; each family contains at least one affected individual. 

Moreover, every family member is measured for a set of  � covariates in dataset �. We 

use � as the unknown number of subtypes and � to denote the unknown genotypes at the 

risk loci affecting different subtypes. We will discuss the selection of � later. The risk 

allele frequency �, variant effect sizes �, and the between-covariate effects 	 are also 

unknown and to be estimated in our algorithm (Table 2.1) 
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2.2.1 Data structure 

We observe � covariates in dataset � for each individual. These covariates can be either 

dichotomous or continuous, and are observed in dataset �. We denote �
 = [�


��, … �



��] 
to represent the vector of covariates in family � of size �. Let �
�


��
 represent the affection 

status (phenotype) of family member � in family �, where �
�

�� = 1 for all � = 1,2, … � 

since we condition on at least one affected individual per family. We use �
�

��

 to denote 

the observed covariate � (� = 1,2, … �). 

We model �  risk variants affecting �  subtypes. For family � , let �
 = [�


��, … �



��] 
denote the unknown genotypes at these risk loci in �, where �



�� = [�
�

��, … �
�


��]� are 

the underlying genotypes in family member � (� = 1,2, … �). 

2.2.2 Models 

Ultimately, our goal is to estimate each affected individual’s probability of belonging to 

each subtype. Under our assumption, this is equivalent as estimate the probability of 

carrying each risk variant, as in �
�|��. By Bayes rule, it is proportional to 

�
�|�� ∝ �
�|�� ∙ �
�� 

First, we specify the covariates model �
�|�� and model the co-inheritance pattern in 

covariates. We assume multiplicative models. For each member �  in family � , the 

phenotype probability follows logistic models: 

#$%�& '�(�
�

��)�
, �

*��


�� +, = ����


�� + 	���

*��


�� , 
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where �� = [���, ���, … ���]� are risk variant effect sizes on the studied phenotype and 

��� is the baseline phenotype risk. Similarly, 	� = [	��, … 	�/]� are the other covariates’ 

effects on the phenotype, which models the between-covariate correlation not explained 

by genetic variants. 

We assume similar multiplicative models for all covariates. Let �� and 	� denote the risk 

variants’ and other covariates’ effect sizes on covariate � with baseline level ���. We use 

logistic regression to model any dichotomous covariate: 

#$%�& '�(�
�

��)�
 , �

*��


�� +, = �����

�� + 	���

*��


�� . 

For continuous covariates, we substitute linear regression models. Overall, the joint 

probability of phenotypes and covariates in family � , given their genotypes, can be 

written as: 

�
�
|�
� = 1 1 [�
�
�

��|�



��, �

*��

�� �]

��
 

To calculate �
��, we define � = [��, �2, … ��]� as the unknown risk allele frequencies 

in the target population. We use � to calculate the joint genotype probability �
�
|�� 

within each family �, based on the relatedness and genotype transmission probabilities 

between members in this family. 

2.2.3 Algorithm 

By Bayes rule, the joint posterior probability of genotypes given covariates in all families 

is proportional to the total likelihood: 
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�
�|�� ∝ 1 [�
�
|�
 , �, 	� ∙ �
�
|�� ∙ �
�� ∙ �
�� ∙ �
	�]



. 

Specifically, we derive �
�
|�
, �, 	�  from the previous multiplicative model. Given 

allele frequencies, the marginal genotype probability in each family, �
�
|��, can be 

derived through the kinship coefficient and genotype transmission probabilities between 

family members. 

Furthermore, �
��, �
��, and  �
	�  are prior probabilities of parameters. We choose 

uniform priors on �. As we expect that many enrolled covariates are not informative 

about underlying risk variants, many effect sizes in � should be 0. Indeed, we specify the 

spike and slab priors for any effect size ��3 as suggested by Ishwaran and Rao (2005) and 

other related studies. We also apply the spike-and-slab priors on 	 , as the prior 

probability of between-covariate correlation unexplained by genetic variants. 

In the present study, we implement our algorithm for sib-pairs in our own software 

(CASES). Accordingly, we model �
�
|��  by integrating over possible identity by 

descent (IBD) status in each sib-pair � (Appendix A). 

Since �
�|��  is of high dimensions ( � × � ), we use MCMC to approximate this 

posterior probability. Specifically, we use Metropolis-coupled MCMC to resolve the 

potentially multi-modal posterior distribution in Markov chains. And we use Gelman and 

Rubin diagnostics (1992) to assess the MCMC convergence (see Appendix A for spike 

and slab priors and MCMC details). 
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2.2.4 Simulated data 

For each family, we simulate parental genotypes at � loci based on risk allele frequency 

�, assuming Hardy-Weinberg equilibrium. We then generate one offspring genotype and 

assign a phenotype based on this genotype and the risk variant effect sizes in ��. We 

discard this family if the offspring is unaffected. For families with affected offspring, we 

generate a second offspring genotype and phenotype. We repeat this process until we 

have generated � sib-pairs, each with at least one affected offspring. Given � and 	, we 

then assign � dichotomous covariates to these � affected individuals and their siblings. 

We then mask all genotypes, and use the phenotypes and covariates as the input dataset 

into our program CASES to generate the estimated posterior probability �
�|�� for these 

� affected individuals. 

2.2.5 Algorithm evaluation 

To evaluate if the estimated �
�|�� from CASES is informative in identifying affected 

individuals carrying the same risk variants, we compare �
�|�� to the true genotypes �. 

We first rank all affected individuals based on �
�|�� , and compare if individuals 

carrying genetic risk variants are ranked higher than individuals not carrying these 

variants. We further evaluate the benefit of our algorithm in association studies. Each 

time, we stratify the top-half ranked cases in one vector in �
�|��, to formulate a sample 

of cases of one subtype. We compare this sample of cases to a random sample of � 

controls from the same population in association tests. At the specific locus attributable to 

each selected subtype, we compute the testing power using our stratified sub-sample of 
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cases under significance level = 5 × 10*7  where the power using all �  affected 

individuals is lower than 0.1. 

To evaluate if the subsets of covariates identified by CASES can define genetically 

homogeneous subtypes in other samples of cases from the same population, we design a 

two-step simulation study: 

First, we simulate a sample of � sib-pairs exactly the same as in the previous subsection. 

We then apply CASES to this sib-pair data, to draw a large number (8) of effect size 

estimates �
9� and  	
9�. 

Second, we simulate a second sample of  : unrelated affected individuals, based on the 

same effect sizes as in our first sample of sib-pairs. Conditional on their observed 

covariates, we calculate each individual’s probability of belonging to each subtype based 

on �
9� and 	
9� in step one by: 

�;
�
|�
� = < �=�
>�
, �
9�, 	
9�?
9

 

We then stratify these unrelated affected individuals in this second sample, based on the 

estimated �;
�
|�
�, to formulate sub-samples of cases. Comparing each sub-sample of 

cases to a sample of  : controls from the same population, we perform association tests 

at the loci attributable to this subtype. Compared to the traditional association tests using 

all : affected individuals as cases, we evaluate if using sub-samples defined by CASES 

improves the power in association studies. 
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2.3 Results 

To evaluate our algorithm CASES’ ability to identify heritable subtypes, we simulate 

samples of sib-pairs with at least one affected sibling. For each individual, we simulate a 

set of dichotomous covariates affected by unobserved underlying risk variants. We apply 

our program CASES to these covariates to estimate each affected individual’s posterior 

probability of belonging to each subtype. We then stratify cases based on this posterior 

probability to evaluate if we can identify affected individuals carrying underlying risk 

variants attributable to this subtype. 

We initially assume that all covariates are affected by underlying risk variants, and 

different variants are affecting distinctive covariate subsets. Also, we assume known 

number of subtypes �. We will relax these assumptions and consider more complicated 

scenarios in the second half of section 2.3.2 and section 2.3.3. 

2.3.1 Discriminating carriers and non-carriers 

We evaluate the resolution of CASES by comparing the estimated probabilities of 

subtype membership to the true genotyeps at risk loci. Initially, we consider the single 

locus model with risk allele frequency 5% and disease OR 1.5. We analyze 200 cases 

with siblings considering 3, 5, 10, or 15 covariates affected by the risk variant, wich 

effect sizes varying between 1.0 and 2.0. 

We rank all 200 cases by their estimated probability of carrying the specific subtype. 

Based on the true genotypes, we compare the mean ranks between cases that carry either 

one or two copies of the risk allele (carriers) and cases that are homozygous with the wild 
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type allele (non-carriers). In all simulated scenarios with covariate effect size greater than 

1.0, carriers have a higher mean rank than non-carriers (figure 2.1A). This difference in 

mean rank increases with more covariates affected by the same variant. Our algorithm 

also better differentiates carriers from non-carriers with an increasing effect size of the 

risk variant on covariates. Overall, including 3 covariates each with an OR of 1.8 has 

about the same effect as including 15 covariates each with an OR of 1.2. 

We also calculated the observed risk allele frequency in top ranked individuals identified 

by CASES (figure 2.1B). For all models, the risk allele frequency decreases from higher 

ranked individuals to lower ranked individuals. Moreover, the ability to identify carriers 

depends on the number of covariates affected by the same risk variant. Specifically, when 

we have more than 15 covariates, more than one third of all carriers within the sample are 

identified within the top 10% ranked affected individuals. If we stratify on the top 10% 

cases, we increase the risk allele frequency within the sample by more than 3 times. 

When we stratify the top half of cases, almost two thirds of all carriers are sampled even 

with only 5 covariates in our model. With increasing stratification size, the observed 

allele frequency reduces towards the expected allele frequency in cases (7.3%), as more 

non-carriers are sampled. In general, CASES correctly identifies carriers conditional on 

co-inherited covariates, which provides an efficient guidance in re-sampling affected 

individuals carrying rare risk variants. 

To illustrate our algorithm performance when more than one risk variants are affecting 

different covariates, we simulated scenarios with 2 risk loci. We analyzed the resulting 

dataset using a model of � = 2 subtypes. As the assignment of clusters to the underlying 

risk variant changes between realizations, we evaluated the performance in multiple 
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realizations by comparing the mean pair-wised distances in the space of inferred 

genotype probabilities. On average, we observe shorter mean pair-wised distance in both 

carriers of risk loci 1 and 2, rather than the overall mean pair-wised distance among all 

sampled individuals. This indicates that true carriers at each risk loci can be identified 

correctly as they have similar inferred genotype probability (see Appendix B for details). 

2.3.2 Power improvement in sib-pairs 

To evaluate the power gain from our algorithm, we simulate datasets of � = 500 cases 

with siblings each, under different parameter settings with 5, 10, or 15 covariates affected 

by one risk variant, and with effect sizes on each covariate ranging from 1.0 to 2.0. We 

analyze the covariate data with CASES and stratify �/2 cases with the highest estimated 

probability of carrying the subtype. Using this stratified sample of cases, we perform 

association tests on the risk locus, and calculate the power under significance level 

A = 5 × 10*7 . We compare our testing power to association tests using all �  cases 

(figure 2.2). 

When no covariate is affected by the risk variant (covariate OR = 1.0), the power using 

stratified subtype of cases is constantly lower than using all cases, reflecting the loss of 

power due to a reduced sample of half cases. With increasing number of co-inherited 

covariates and increasing covariate OR, the ability to identify cases carrying the 

underlying risk variants is strengthened, thus we observe improved power to detect the 

association when using these stratified cases. Specifically, the power using stratified 

cases is higher than the power using all cases when analyzing 10 affected covariates with 

moderate effect sizes (OR < 1.3) or 5 covariates with greater effect sizes (OR < 1.5). 
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When analyzing 15 covariates strongly affected by the underlying risk variant (OR >
1.8 ), using our stratified cases enriched the power for even more than ten times, 

compared to the baseline power using all cases. 

So far we assume that all covariates analyzed in our model are affected by the risk 

variant. In practice, these informative covariates are unknown and most enrolled 

covariates may be non-informative in identifying subtypes. To evaluate how mixing 

informative and non-informative covariates would affect the performance of CASES, we 

consider scenarios where we analyze up to 50 covariates in our model while only 5 

covariates are affected by the underlying risk variant. We analyze the dataset blind to the 

knowledge about which covariates are affected (figure 2.3). Not surprisingly, the 

difference between using only informative covariates (red dashed line) and using both 

informative and non-informative covariates is decreasing when the effect size on each 

informative covariate increases. However, including non-informative covariates only 

have a small effect on the ability to identify risk variant carriers. Even when only 10 

percent (5 out of 50) covariates in our model are truly informative (black dashed line), the 

power using stratified subtype of cases still outperforms the power using all cases when 

the risk variant affect each of the 5 informative covariates with OR ≥ 1.6. In general, our 

algorithm distinguishes non-heritable factors, such that the testing power is mostly driven 

by covariates truly affected by the heritable risk variants. 

We also evaluate the performance of our algorithm for a range of different effect sizes 

(Appendix C). Most importantly, genetic variants may only affect the observed 

covariates, but not the phenotype (i.e., not true risk variant). Indeed, we want to verify 

that our algorithm does not stratify individuals carrying such variants, which can 
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otherwise increase type I error rate in association studies. We apply our algorithm on 

simulated datasets where the genetic variant has phenotypic OR equals 1.0 to evaluate the 

type I error rate using our stratified samples. We observe an error rate fluctuating around 

the nominal significance level. 

2.3.3 Models with more than one variants affecting the same covariates 

So far we present results based on the assumption that different subtypes are represented 

by different sets of covariates, where each of these mutually exclusive sets of covariates 

is affected by one risk variant. To evaluate if more than one risk variants affecting the 

same set of covariates would affect our algorithm performance, we consider scenarios 

where 10 covariates are affected by risk variant 1, while 0, 5, or 10 out of these 10 

covariates are also affected by another risk variant 2. As in practice, the number of 

subtypes in unknown, we compare two models with K = 1 and K = 2, and evaluate the 

power to detect phenotypic association at variant site 1 for each model (Appendix D). 

In general, we observe increased power to detect the association at variant site 1 under 

both � = 1 and � = 2 models. More importantly, the selection of  � results in different 

algorithm performance: The � = 1 model achieves higher power than the � = 2 model 

when 0 or 10 out of the 10 covariates affected by risk variant 1 are also affected by 

variant 2; while � = 2 model outperforms when 5 out of 10 covariates are affected by 

both variants (Appendix D). In practice, specifying the “best” value of � improves the 

efficiency of our algorithm. We suggest a sequential procedure for model selection of � 

(Appendix E). 
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2.3.4 Power improvement in unrelated individuals 

To evaluate if CASES provide valid effect size estimates from sib-pair data, we simulate 

multiple scenarios with different true effect sizes and different sample sizes of sib-pairs, 

and compare our estimates from CASES to the true parameters by the mean squared 

errors (MSE) (figure 2.4). In general, our effect size estimates are more accurate when 

the underlying risk variant has stronger effect on a covariate, or when we have larger 

sample sizes of sib-pairs. Specifically, the estimation based on 200 sib-pairs requires the 

covariate strongly affected by the underlying risk variant with OR > 1.8, to achieve the 

same accuracy as the estimation based on 500 sib-pairs when a covariate is only 

moderately affected by the risk variant (OR = 1.2) 

Consequently, our algorithm defines heritable disease subtypes based on these identified 

models of covariates in sib-pairs. To evaluate if these identified indicators (sets of 

covariates) for each subtype can be generalized and applied to other samples of unrelated 

affected individuals from the same target population, we simulate two samples, a model 

simulation sample of sib-pairs and a testing sample of unrelated affected individuals. 

In the first step of this analysis, we apply CASES to the sib-pair dataset to estimate the 

underlying risk variants’ effect sizes on covariates. 

In the second step, given these effect size estimates from sib-pairs, we calculate any 

individual’s probability of subtype membership, in the sample of unrelated affected 

individuals, conditional on the same set of covariates. We then stratify these unrelated 

affected individuals based on their probabilities of subtype membership. 
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To evaluate the benefit using these stratified subsamples of cases, we consider datasets of 

2,000 unrelated affected individuals under the same scenarios as in the sib-pair dataset, 

and stratify these unrelated affected individuals with the top-half estimated probabilities 

of belonging to one subtype. We then compute the power in association studies using this 

stratified sample of cases under genome-wide significance level ( A = 5 × 10*H ), 

compared to the power using all 2,000 cases (figure 2.5) for different effect sizes on 

covariates. Specifically, the power using all cases (dotted line) is constant since it does 

not depend on information provided by covariates. When no covariate is truly affected by 

the risk variant (covariates OR = 1.0), the power of using the stratified sample is smaller 

than the power using all cases due to the reduced sample size. Similar to the power in sib-

pair datasets, testing power using our stratified sample of cases increases with the number 

of covariates, and with effect sizes on covariates. If only 5 covariates are affected by the 

risk variant, using our stratified sample provides higher power than using all cases when 

the variant has moderate (OR ≈ 1.3) effect sizes on these covariates. If we have more 

than 10 covariates affected by the same risk variant, using stratified cases will lead to a 

much higher testing power even if the effect on each covariate is as weak as less than OR 

≤ 1.2. 

2.4 Discussion 

We have presented a novel algorithm to identify heritable subtypes of a complex disease. 

We model clusters of covariates that are co-inherited with the studied phenotype within 

families to define subtypes attributable to one or more underlying risk variants. We are 

thus able to use these estimated subtype memberships select subsamples of affected 



 

26 
 

individuals that are genetically more homogeneous. Focusing on the selected sub-sample 

of cases can increase the power in association tests between the subtype-specific risk loci 

and the phenotype of interests. Furthermore, our algorithm provides estimates about the 

risk variant’s effect sizes on different covariates. Such estimates can be applied to 

calculate the posterior probability of subtype membership in other samples from the same 

target population, given the same set of observed covariates. Indeed, we are able to 

generalize our estimations to unrelated affected individuals, to define genetically more 

homogeneous subtypes of the disease. 

Compared to traditional endophenotype approaches in complex diseases; our algorithm 

has at least four advantages. First, we model variation within and between sib-pairs, thus 

providing evidences that subtypes reflected in covariates are truly heritable. In contrast, 

methods using traditional mixed models (Schulze et al. 2006) and principal component 

studies (Wang et al. 2009) do not distinguish if the resulting subtypes are due to genetic 

or non-genetic factors. 

Second, our algorithm identifies informative subsets from a large set of covariates for 

endophenotypes, before knowing any genotype information. Thus, it is more 

generalizable to any complex disease of interest, and may discover novel regions 

associated with the study phenotype. In comparison, existing methods (Andreassen et al. 

2013; Wen and Lu 2013) require genotypes in a set of previously reported SNPs to select 

co-inherited covariates, while other methods require prior pleiotropic knowledge to 

define subtypes (Morris et al. 2010; Andreassen et al. 2013). 
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Third, our algorithm obtains a quantitative definition of the modeled subtypes. This 

subtype definition can then be applied to other samples of unrelated affected individuals 

from the same target population. We are able to stratify unrelated affected individuals 

based on their subtype membership, to create genetically more homogeneous sample of 

cases. Based on our simulation results, using these sub-samples as cases will increase the 

power to detect associations under a wide range of scenarios. 

Fourth, our method is tolerant to missing data as such data can be imputed in MCMC. 

When an individual has covariates missing at random, the posterior probability of 

subtypes can be inferred from the same mechanism, such that it is equivalent to the 

marginal probability conditional on the remaining covariates. 

Our algorithm is of interests in different studies. First, it identifies individuals carrying 

specific risk variants. It thus can be applied to re-sequencing studies to prioritize affected 

individuals more likely to carry risk variants. Second, it can be applied to association 

studies to select the sample of cases caused by the same risk variants, to increase the 

testing power through increased risk allele frequencies in the case group. When diagnosis 

is based on large sets of clinical measurements and questionnaires, our method fits 

naturally as such measurements can be used directly as observed covariates to define 

endophenotypes to identify different genetic basis. 

In summary, we have developed a general framework for defining endophenotypes and 

selecting genetically homogeneous subsamples of affected individuals. Comparing to 

other approaches, our algorithm is more flexible and can be used to improve the power of 

single marker tests in GWAS studies. It can also be applied to prioritize affected 
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individuals in re-sequencing studies such that affected individuals from the same genetic 

origin of the disease are more likely to be sampled. 
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Table 2.1 Model parameters in CASES. 

Notation Parameters 

� Number of sib-pairs 

� Observed covariates 

� Number of covariates 

� Underlying genotypes at risk loci 

� Number of risk loci (number of subtypes) 

� Vector of risk allele frequencies 

� Matrix of risk allele effect sizes on disease and covariates 

	 Matrix of between covariates effect sizes 
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Figure 2.1 Figure A: Mean rank comparison between carriers and non-carriers when 

using 3, 5, 10, or 15 covariates. The horizontal axis represents effect sizes on covariates 

ranging from 1.0 to 2.0. The vertical axis represents mean rank differences. Figure B: 

Risk allele frequency in stratified cases. The horizontal axis represents stratification sizes, 

from 20 to 200. The vertical axis is the observed risk allele frequency in sampled cases. 

Results are shown for a sample of size 200 and risk allele frequency of 5%, the effect size 

to the disease is 1.5. 

A.                                              B. 
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Figure 2.2 Power comparison in association tests between using full samples (dotted 

horizontal line) and using stratified samples. The horizontal axis represents effect sizes 

on covariates ranging from 1.0 to 2.0. The vertical axis shows testing power under 

significance level A = 5 × 10*7 . The red, green, and black solid curves indicate the 

power using stratified subtypes when 15, 10, and 5 covariates are in our model. 
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Figure 2.3 Power comparison in association tests between using full samples (dotted 

horizontal line) and using stratified samples based on 5 informative covariates. The 

horizontal axis represents effect sizes on covariates ranging from 1.0 to 2.0. The vertical 

axis shows testing power under significance level A = 5 × 10*7. The red, blue, brown, 

green, and black dashed curves indicate the power using stratified subtypes when 0, 5, 10, 

20, and 45 non-informative covariates are analyzed jointly with 5 informative covariates. 
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Figure 2.4 Mean squared error (MSE) comparing the risk variant’s estimated effect sizes 

and the true value. The vertical axis is the mean squared error. The horizontal axis 

represents the increased sample size. The three red curves are the MSE of the effect size 

estimates on covariates, where the true values are 1.2, 1.5, and 1.8. The black curve is the 

effect sizes on phenotype whose true value is also 1.5. The estimated effect on the 

phenotype shows the same accuracy as the estimated effect on covariates when true 

effects are of same level. 
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Figure 2.5 Power curves in external datasets of 2,000 unrelated cases and 2,000 controls. 

The horizontal axis represents effect sizes on covariates ranging from 1.0 to 2.0; and the 

vertical axis shows testing power under genome-wide significance level (A = 5 × 10*H). 

The power using all 2,000 cases is fixed at 0.045 and is represented by the black dashed 

line. The red, green, and black solid lines indicate power curves using stratified samles 

when 15, 10, and 5 covariates are enrolled and affected by the risk variant. 
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Chapter 3 Modeling linkage disequilibrium for population genotype 

data using a coalescent-based method 

3.1 Introduction 

In population genetics, linkage disequilibrium (LD) represents the non-random 

association structure of two or more alleles, at different loci, which descend together 

from the same ancestral chromosomes. Modeling of LD, which approximates the 

evolutionary history of sampled haplotypes, is crucial in many aspects of genetic studies 

such as haplotype reconstruction (Stephens et al. 2001; Stephens and Donnelly 2003), 

genotype imputation (e.g., Howie et al. 2009; Li et al. 2010; Howie et al. 2012), variant 

calling (e.g., Li et al. 2011; Bizon et al. 2014), and mapping of complex trait loci 

(Wellcome Trust Case Control Consortium 2012; Edwards et al. 2013). 

Traditionally, LD is modeled sequentially across the genomic region of interest (ROI). 

For instance, several studies have modeled LD in neighboring SNPs as a Markov process 

when estimating recombination rates and other population genetic parameters (Nielsen 

2000; Fearnhead and Donnelly 2001). More recently, Li and Stephens (2003) have 

proposed a hidden Markov model (HMM) to approximate LD across different loci. Such 

HMM algorithm has been proved an efficient approach, and is widely implemented in 

many existing software packages for genetic studies to model LD of sampled haplotypes, 
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such as PHASE (Stephens et al. 2001; Stephens and Donnelly 2003), BEAGLE 

(Browning and Yu 2009), MaCH (Li et al. 2010) or THUNDER (Li et al. 2011). 

However, the HMM algorithm oversimplifies the variation of mutation and 

recombination rates across ROI – especially if the ROI is highly polymorphic and/or has 

high recombination rates, or if sampled individuals are from an admixed population. 

Potentially, this over-simplification can be reduced by implementing larger reference 

panels from the same or similar target populations as a larger “pool of haplotypes,” to 

achieve higher accuracy in reconstructing sampled haplotypes (Huang et al. 2009; Huang 

et al. 2011).  Most studies performed to date have selected reference panels from external 

databases such as the International HapMap Project (The International HapMap 

Consortium 2005; Frazer et al. 2007) or the 1000 Genomes Project (The 1000 Genomes 

Project Consortium 2010). Following this path, several studies have also proposed other 

strategies to select more efficient reference panels (e.g., Jewett et al. 2009; Pasaniuc et al. 

2010; Liu et al. 2013) through local ancestry inferences (e.g., RFMix; Maples et al. 2013) 

to improve the HMM-based model of LD. Unfortunately, HMM algorithms still face 

challenges in modeling LD in certain complex genomic regions lacking efficient 

reference panels, such as HLA genes in the human MHC region (Cao et al. 2013). 

As an alternative approach, when no efficient reference panel is available, several studies 

have proposed coalescent-based methods to improve the modeling of LD through the 

inferred ancestral recombination graph (ARG; Nordborg 2000; Nordborg and Tavare 

2002). At each position across the ROI, these methods estimate the genealogy of sampled 

haplotypes by analyzing the genotype similarity at surrounding variant sites. LD is then 

modeled through shared and non-shared genealogies between different loci. Because 
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genealogies are analyzed in parallel position-by-position, these coalescent-based methods 

allow more variation in LD across the ROI, compared to HMM algorithms. 

Although promising, the coalescent-based model of LD is only fulfilled in a few studies 

under specific assumptions, due to its computational complexity. For instance, Burkett et 

al. (2013b) proposed a computational tool based on Zӧllner and Pritchard (2005) to make 

inferences about genealogies using unphased genotype data, and compared the accuracy 

between their inferences to the haplotypes estimated by HMM algorithms to evaluate 

their model. However, their method assumes the same first-order Markov process as in 

Zӧllner and Pritchard (2005), which ignores the LD between more distant loci to simplify 

its computation. Therefore, these methods are not applicable in studies using dense SNP 

data or using sequencing data. 

In the present study, we implement an HMM-enhanced algorithm to coalescent-based 

modeling of LD, which combines the local LD information from shared genealogies with 

the more distant LD approximated by the HMM algorithm. Based on this more careful 

modeling, we are able to apply this coalescent-based algorithm to estimate LD using 

densely genotyped or sequenced data. 

To evaluate the accuracy of our model, we focus on two applications highly related to the 

LD modeling: reconstructing haplotypes and mapping of complex trait loci. In simulation 

studies, we compare our results in these two applications to results using traditional 

HMM-based algorithms, to determine whether our new model improves the 

understanding of sampled haplotypes. 



 

38 
 

3.1.1 Haplotype reconstruction 

Traditionally, HMM-based algorithms have reconstructed haplotypes through an MCMC, 

by approximating each haplotype as a mosaic of short segments imperfectly copied from 

one or more ancestors in the target population. Without any local ancestry information, 

traditional HMM algorithms (e.g., PHASE; Stephens et al. 2001; Stephens and Donnelly 

2003) assume uniform prior probability of being copied from any specific ancestor 

haplotype.  

As an alternative in the present study, we apply more informative prior probability of 

ancestries for each haplotype segment conditional on the inferred genealogy through our 

modeling of LD. Thus, we are able to update the inferred haplotypes more efficiently.  

We set up simulation studies across a wide range of population genetic models to 

evaluate our method. Specifically, we reconstruct haplotypes from these simulated 

diploid samples through our inferred genealogies, and compare them to the true 

haplotypes to calculate the miscalling rate of the inferred haplotypes provided by our 

algorithm. We then compare our results to the miscalling rate of inferred haplotypes 

using HMM algorithms (MaCH; Li et al. 2010) to evaluate if our model of LD extracts 

more information about the construction of sampled haplotypes. 

According to our simulation results, our algorithm provides comparable haplotyping 

accuracy with MaCH in sequenced regions under neutral recombination rates. In 

sequenced regions where the recombination rate is more than 10 times higher than the 

neutral rates, the inferred haplotypes based on our model of LD are more accurate than 

the haplotypes inferred by MaCH. 
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3.1.2 Mapping of complex trait loci 

Traditionally, fine mapping is applied subsequent to genome-wide association studies 

(GWAS), to identify candidate regions harboring disease-causing mutations. Focusing on 

a set of GWAS-selected loci with detected phenotypic associations, fine mapping 

algorithms calculate the Bayes factor in favor of associations at each variant site, to 

calculate the posterior probability of causality for fine mapping (Servin and Stephens 

2007; Stephens and Balding 2009). Typically, these methods require that functional loci 

to be sought must be included in the GWAS-selected set. 

Alternatively in the present study, we make inferences about genealogies based on our 

model of LD. Conditional on these estimated genealogies, we then identify candidate 

regions harboring causal mutations by evaluating the distribution of cases and controls on 

the ARG across ROI (figure 3.1). Instead of focusing on certain GWAS-selected 

candidate regions, we analyze the entire ROI directly for causal loci. 

To evaluate our algorithm, we simulate samples of several hundred cases and controls 

from the target population. Under different simulated scenarios, we compare our mapping 

results to the results provided by traditional fine-mapping approaches based on single 

marker association tests (BIMBAM; Servin and Stephens 2007). 

According to our simulation results, our algorithm correctly localizes sub-regions 

harboring causal mutations under scenarios where single marker tests have low power to 

detect any association signal. Moreover, since we make inferences about genealogies 

through jointly analyzing genotypes at multiple sites, our algorithm performs robustly 

when the genotype at the causal site is missing. 
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3.2 Methods 

3.2.1 Estimating genealogies 

Suppose we have a sample of �  individuals, each sequenced in a region of K  Mbs 

containing � variant sites. We let � denote the genotypes of the 2� diploids in � variant 

sites, where 8 = [L�, … L/] is the physical positions (in base pairs) from each variant 

site to the left end of the sequenced ROI. We denote MN as the sample genealogy at a 

position O  base pairs to the left end of the target ROI, which contains the ancestral 

relationship topology, time to each coalescent event, as well as the length of each 

sampled haplotype sharing the same local genealogy with position O. 

At each position, we make inferences about the posterior genealogy probability, �
MN|��, 

conditional on the observed genotypes at all � variant sites. We approximate this posterior 

distribution �
MN|�� by an MCMC sampling method similar to Zӧllner and Pritchard 

(2005). 

To begin, we assume known haplotypes P = [ℎ�, … ℎ2R] from genotypes � in � diploids 

and let ℎ�
  denotes haplotype �’s allele type at variant site �. To make inferences about 

�
MN|P�, we treat these haplotypes as the external nodes of a coalescent tree. We then let 

PS = [ℎ2RT�, … ℎ7R*�] denote the unknown haplotypes of the 2� − 1 common ancestors 

(treated as internal nodes) of the genealogy, where ℎ7R*� is the haplotype of all sampled 

individuals’ most recent common ancestor (MRCA). 

Without loss of generality, we assume the position O locates at the left end of the ROI 

(O = 0), such that each variant site � is located L� based pairs to the right of position O. 
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In practice, for variant sites locate to the left of O, a similar algorithm can be applied 

easily as a mirror image. As in Zӧllner and Pritchard (2005), we denote the 

recombination rate and mutation rate as V/2 and W/2. We let X = [Y�, … Y/] denote the 

physical distances between two consecutive variant sites, such that Y� = L�  and Y� =
L� − L�*� for site � = 2, … �. Moreover, we denote Z as the vector of coalescent times in 

all 2� − 1 coalescent event on MN (Table 3.1). 

Moreover, we denote [
 as the variant site closest to O at haplotype � that is not inherited 

from parental node on MN  (due to recombination). We then use � = [��, … �7R*�]  to 

denote the lengths of haplotypes descending together with position O in genealogy MN , 

such that all �
 = �  for all observed haplotypes (external nodes) � = 1, … 2� . For any 

internal node � with left and right descendant nodes K and \, �] = L^O
[_, [̀ �. 

Then the posterior probability of genealogy, conditional on the sampled haplotypes, is 

proportional to the total likelihood: 

�
MN|P� = �
a, Z, P′, \, V, c|P� ∝ �
P, PS|\, V, c, a��
\|V, c, a��
V��
c��
a� 

Similar to Zӧllner and Pritchard (2005), we apply uniform prior probabilities on V, c, and 

a. Given these population genetic parameters, we propose possible recombination events 

in the MCMC using a Metropolis-Hasting algorithm to approximate �
\|V, c, a�. For the 

joint haplotype probability �
P, PS|\, V, c, a�, we re-write it as a series of conditional 

probabilities of haplotypes: 

�
P, PS|\, V, c, a� = �
ℎ7R*�|\, V, c, a� ∙ … ∙ �
ℎ�|ℎ2, … , ℎ7R*�, \, V, c, a� 
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For each conditional probability term, we split this haplotype probability into two parts as 

follows: For any node d with parental node �, we define ℎ
Re
f

 as the segment of all ℎ

f
 

with � < [f, which is inherited from ℎ

g

. We also define ℎhijf
 as the segment of all ℎ


f
 with 

[f ≤ � ≤ �f, which is copied from other haplotypes due to recombination (figure 3.2). 

Consequently, we model the conditional probability of ℎf as follows: 

 �
ℎf|ℎfT�, … , ℎ7R*�, \, V, c, a� = �=ℎ
Re
f >ℎg, c? ∙ �=ℎhijf >ℎfT�, … , ℎ7R*�, \, V, c, a? 

The probability for inherited segment ℎ
Re
f

 can then be modeled through mutation 

models. We then consider the recombined segment, ℎhijf
, as a mosaic of imperfect copies 

from a “pool of haplotypes” in the target population, and model this segment through an 

HMM model (Li and Stephens 2003). 

We use an MCMC to draw a large number (8) of possible coalescent trees MN

9�

 (L =
1, … 8), to approximate the posterior probability of genealogy �
MN|P�, conditional on 

the sampled haplotypes. 

3.2.2 Haplotype reconstruction 

In practice, genotyping and sequencing technologies provide diploid genotypes at each 

variant site, but do not provide haplotype information. Given genotypes �, we propose a 

method to make inference about haplotypes P through our estimation of genealogies. 

Let P
�� be the initial state of estimated haplotypes conditional on �. During our MCMC, 

we begin with P
�� to make inferences about genealogies at each position O. Suppose 

MN

��

 is the initial draw of possible genealogy conditional on P
�� , we then propose 
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possible updates of haplotypes P
�� in accordance with �, to the MCMC: We let ℎf�
�� 

and ℎf2
�� denote the two haplotypes of individual d in P
��, where ℎ
Re
f�
��

 and ℎ
Re
f2
��

 are 

the inherited haplotype segments from parental node �1 and �2 in estimated genealogy 

MN

��

. We then randomly choose a variant site � < min 
[f�
��, [f2
���  where the two 

haplotypes are ambiguous in individual d, and propose a switch of alleles at ℎ

f�

 and ℎ

f2

 

based on a Metropolis-Hasting algorithm to update the haplotypes. We update these 

haplotypes within the Markov chain that makes inferences about genealogies, such that 

the marginal probability of haplotypes in short segments surrounding O, �
PN|��, can 

also be approximated by the random draws from the MCMC. We sum over these random 

draws from �
PN|��  at each analyzed position O , and map the draws at different 

positions as a mosaic to reconstruct the entire haplotype within ROI. 

3.2.3 Mapping of complex trait loci 

Traditionally, fine mapping is applied to an initial set of candidate loci reported by 

association studies, which is based on the assumption that at least one causal variant must 

be carried by this initial set of loci with reported phenotypic association. As an 

alternative, we propose an algorithm mapping causal variants through our estimated 

genealogies across the entire ROI, which is not based on this assumption. 

We consider a study with � cases and � controls, each sequenced in an ROI of K Mbs. 

We let n  denote the observed phenotypes, where o
 = 1 if individual �  is an affected 

individual (case), and o
 = 0 if otherwise. We assume there is one causal variant within 

this ROI, and let p denote the indicator of the causal variant, such that p = O represents 

that a causal mutation is carried at the position O base pairs to the left end of the ROI. We 



 

44 
 

then make inferences about the genealogies of cases and controls at each position O, to 

map candidate regions harboring disease causal variants. 

Theoretically, we could make inferences about the sample genealogy MN at all K positions 

within the ROI. However, this is unnecessary since positions extremely close to each 

other are highly likely to share the same genealogy. Moreover, we are not able to 

distinguish the genealogies between two closely located positions, where no variant site 

is observed and genotyped in between. Instead, we borrow the idea of “focal points” 

suggested by Zӧllner and Pritchard (2005) as the set of positions where we make 

genealogy inferences. Specifically, we estimate the genealogy at one position in every 

short genomic segment of 10Kbs. 

At each focal point O , our goal is to calculate the posterior probability of causality 

�
p = O|n, ��. By Bayes rule, this is proportional to: 

�
p = O|n, �� ∝ �
n, �|p = O��
p = O�. 

The analyzed positions, the “focal points”, are uniformly selected in every 10Kbs. 

Therefore, we assume they are equally likely to be harboring the causal mutation, and 

apply uniform prior probability of causality �
p = O� to each focal point O. We then 

calculate the joint probability of phenotypes and genotypes, �
n, �|p = O�, similar to 

Zӧllner and Pritchard (2005): 

�
n, �|p = O� = q �
n|MN, p = O��
MN|��YMN 
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We approximate �
MN|��, the posterior probability of genealogies given genotypes, by 

sampling possible genealogies from our MCMC described above. We then approximate 

the probability above by: 

�
n, �|p = O� = 1
8 < �
n|MN


9�, p = O�r
9s�

 

We assume a multiplicative model, and denote �� and �� as the phenotype penetrance 

level on any individual carrying homozygous wild type alleles and variant type alleles. 

Therefore, the joint probability of phenotypes and genotypes is equivalent to: 

�(n)MN

9�, p = O+ = t �(n)MN


9�, ��, ��+
guvgw

Y��Y�� 

We then evaluate �
n|MN

9�, ��, ��� by integrating over possible mutations on any branch 

of the tree MN

9�

 as Zӧllner and Pritchard (2005). 

In the end, we apply Monte Carlo integration over all focal points O, to estimate the 

posterior probability of causality �
p = O|n, �� at each position, and build a credible 

region to fine map candidate loci harboring causal variants. 

3.2.4 Algorithm evaluation 

To evaluate our algorithm performance in haplotype reconstruction, we simulate datasets 

containing 400 haplotypes using a coalescent haplotype simulator (Hudson 2002). Each 

haplotype is sequenced in a 1Mbs with 500Kbs flanking spaces on both ends. All 

singletons are removed from the data since these single observations provide no 

information of LD. We apply neutral mutation rate, and consider different recombination 
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rates ranging from 1 × 10*H to 2 × 10*x. We then randomly assign these haplotypes into 

200 diploid individuals. We mask the haplotype information, and apply the diploid 

genotypes into our algorithm to make inferences about the sample genealogies. 

We then apply both our method and a HMM algorithm (MaCH; Li et al. 2010) to these 

genotype data, and compare the consequent estimated most likely haplotypes to the true 

haplotypes using both algorithms. For each simulated scenario, we categorize variant 

sites into 4 bins minor allele frequency levels: less than 1%, from 1% to 5 %, from 5% to 

20%, and greater than 20%. We compare our reconstructed haplotypes to the true 

haplotypes in each simulated dataset, and calculate the ratio of the number of alleles 

mislabeled into the opposite haplotype over the total number of heterozygous sites as the 

miscalling rate. We calculate this miscalling rate of our haplotype estimation within each 

category, and compare it to the same rate calculated from haplotype reconstruction using 

MaCH, to evaluate if our algorithm reconstructs haplotypes more accurately. 

To evaluate our algorithm performance in mapping of complex trait loci, we simulate a 

dataset of 2:  of haplotypes, and randomly assign these haplotypes into :  diploid 

individuals. Each individual is sequenced in a 1Mbs ROI with 500Kbs flanking region on 

both ends. We then randomly pick one variant site within ROI as the causal variant under 

different minor allele frequency (MAF) levels. We consider 3 MAF levels with different 

risk allele frequency levels, 1%, 5%, or 20%, to evaluate our algorithm performance. We 

then assign a phenotype to each individual conditional on his genotype at this causal site 

under a multiplicative model. The risk allele effect size is OR = 2.0 for the rare risk 

allele with MAF = 1%. We set OR = 1.5 for risk allele with MAF = 5%, and OR =1.2 

for the common risk allele with MAF = 20%. Under each scenario, we randomly sample 
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400 cases and 400 controls, and apply these sampled individuals into our algorithm to 

make inferences about genealogies. Conditional on the estimated genealogy, we calculate 

the posterior probability of causality across the ROI, and construct 90% Bayesian 

credible regions based on the top ranked focal points to evaluate the mapping accuracy 

using our algorithm. Under each scenario, we simulate 5 datasets, and calculate the 

median width of our credible regions, as well as the distance between causal site and the 

position with greatest posterior probability of causality, to evaluate our mapping 

accuracy. We also calculate the coverage probability to determine if the credible region 

provided by our algorithm correctly locates causal sites. 

To evaluate if our algorithm provide comparable results regardless of the causal site is 

genotyped or not, we mask the genotype at causal site in each simulated dataset, and re-

apply our method to calculate the same statistics for fine mappings. We compare our 

results with and without genotypes at causal sites, to evaluate our algorithm robustness. 

3.3 Results 

3.3.1 Reconstructing haplotypes 

To evaluate if our algorithm improves the accuracy in haplotype reconstruction, we 

simulate multiple datasets under different recombination rates, ranging from a neutral rate 

of 1 × 10*H  to as high as twenty times of the neutral level (2 × 10*x ). Under each 

recombination level, we simulate datasets each containing 200 diploid individuals 

sequenced in an ROI of 1Mbs. We also include 500Kbs flanking regions on both sides of 
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the ROI. We then categorize the variant sites within ROI into 4 MAF levels: smaller than 

1%, from 1% to 5%, from 5% to 20%, and greater than 20% (figure 3.3). 

We then compare the most likely haplotype estimates using our method to the true 

simulated haplotypes. Under each MAF level, we calculate the rate of miscalled variant 

sites over the total number of heterozygous sites within our sample provided by our 

algorithm, and compare it to the same miscalling rate provided by MaCH (Li et al. 2010). 

Using both our method and MaCH, we observe that haplotype reconstruction is more 

accurate with lower recombination rates, using both our method and using MaCH. This is 

reasonable since higher rates result in more recombination events along the genomic 

region, cutting the ROI into much smaller segments where each segment contains less LD 

information to the neighboring loci. When recombination rate is less than 2 × 10*H 

(black and green lines), both our method and MaCH provide comparable accuracy where 

less than 2 percent heterozygous alleles are mislabeled in the inferred haplotypes. Under 

low recombination rates, we also observe lowest haplotyping accuracy in rare allele sites 

with MAF less than 1%. Specifically, using our method slightly improves the accuracy in 

these sites where variant alleles are only observed a few times in our sample. 

When the recombination rate is 5 to 20 times higher, both methods experience reduced 

accuracy. Using MaCH, almost 18 percent of all heterozygous alleles are mislabeled into 

the opposite inferred haplotype when the recombination rate is 2 × 10*x (red solid line). 

In contrast, using our coalescent-based algorithm correctly identifies around 1/5 of these 

mislabeled sites, and reduces the overall miscalling rate to 14 percent across all variant 

sites (red dashed line). Moreover, such improvement is strongest in rare allele sites (MAF 
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< 1%), where miscalling rate is reduced by 1/3, and is below 10 percent in these variant 

sites where variant alleles are only observed 2 to 4 times in our sample. 

3.3.2 Mapping complex trait loci 

To evaluate if our algorithm can be applied to fine mapping for candidate region 

harboring disease causal variants, we simulate datasets with 400 cases and 400 controls 

under different risk allele models. We consider rare to common risk alleles with different 

effect sizes as described in the methods section. 

For a small sample of a few hundred individuals, traditional single marker tests are not 

sufficiently powered to detect the phenotypic association from either rare variants with 

MAF less than 1% or common variants with moderate to weak effect sizes (OR less than 

1.2). To begin with, we illustrate a single realizations from our simulated datasets, for 

such low-powered results in single marker tests when the risk variant is rare with 1% 

MAF and disease effect size 2.0 (figure 3.5). We apply both Fisher’s exact test (PLINK; 

Purcell et al. 2007) and Bayesian approaches (BIMBAM; Servin and Stephens 2007) to 

detect single marker associations, and compare the consequent p-values (figure 3.5A, 

black dots) and posterior probability of associations (PPA; figure 3.5B, grey dots). Both 

methods provide similar results that we observe no signal associated to the disease. 

When association studies have low power, loci harboring causal variants are hardly 

reported as candidate regions with phenotypic associations. If so, traditional fine mapping 

approaches are rarely performed since no signal has been found in the target region, and 

are not applicable to localize sub-regions for causal variants; In contrast, our algorithm of 

fine mapping does not depend on the power of single marker association tests. 



 

50 
 

Specifically, we apply our algorithm to make inferences about genealogies at different 

positions across ROI. Based on the estimated genealogies at a set of focal points across 

ROI, we then calculate each focal point’s posterior probability of carrying causal variants 

(figure 3.5B, red dotted line), and construct 90% credible regions to localize causal loci 

(figure 3.5B, red underlines). According to our result, the posterior probability of 

causality increases when moving towards the causal position, and peaks at focal points 

less than 20Kbs from the exact site carrying the disease risk variant. Moreover, based on 

our credible interval, we correctly localize the causal variant site in two sub-regions 

covering a region less than 350Kbs in the ROI. Compared to traditional mapping 

approaches, our algorithm successfully identifies cumulative weak signals around the 

causal region, and down-weights other noise signals from more distant loci, to correctly 

localize sub-regions harboring disease causal variant. 

To evaluate our algorithm performance in mapping candidate regions harboring causal 

variants, we simulate 5 datasets for each considered risk variant type. Under each 

scenario, we calculate the median distance between the causal site and the focal point 

with the strongest estimated posterior probability of causality (round-up in 5Kbs, as the 

mid-points in two consecutive focal points in our analysis). Under this small sample size, 

the accuracy of our fine mapping algorithm is affected by the frequency of risk alleles 

observed in the study sample. On the one hand, when the causal variants are common, 

our estimated most likely position harboring these causal variants is on average less than 

15 to 20Kbs from the exact position of the causal variant. On the other hand, when causal 

variants are rare (MAF < 1%), our estimated most likely positions is on average 30Kbs 

from the causal site. Across these scenarios, the estimated most likely position is 
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consistently within 2 to 3 focal points from the exact position – given that we only make 

inferences at focal points in every 10Kbs in present study. 

Furthermore, we construct the 90% credible region for each realization, and summarize 

the median credible region width per scenario (table 3.2) to evaluate our algorithm 

performance. We observe similar trend as in point estimates of most likely positions that 

the accuracy of fine mapping is determined by the frequency of risk alleles observed in 

study sample. When we are mapping rare risk variants with MAF less than 1%, our 

method suggests a region covering over 350Kbs across the ROI. Our credible region 

width decreases by half when the risk allele frequency is around 5%, and further reduces 

to less than 140Kbs when the risk allele frequency is 20% (even when a diseased effect 

size to the disease). 

To evaluate if our algorithm provides robust mapping accuracy when the causal variant is 

not genotyped in sampled data, we mask the genotype at the true position in our sample 

of sequenced individuals. We then re-apply our algorithm to make inferences about the 

genealogy, and to mapping candidate regions covering causal variant site. Compared to 

previous results when the causal variant is genotyped, we obtain comparable mapping 

accuracy with credible interval widths (table 3.2) slightly increased by only a few focal 

points. In general, our results suggest that our fine mapping accuracy is robust to the 

missing genotypes at the exact causal site. 
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3.4 Discussion 

We have presented a novel algorithm to model LD through estimating sample 

genealogies across ROI. At each position, we make inferences about the genealogy at one 

position at a time, based on the genotype similarities at surrounding variant sites co-

inherited with this position. We model the LD between more distant sites using an HMM 

algorithm through estimated mutation and recombination models. By evaluating the 

genealogy at every short segment, we are then able to improve the haplotype 

reconstruction by treating the entire haplotype within an ROI as a mosaic of these co-

inherited short segments. Moreover, by evaluating the distribution of cases and controls 

at genealogies in different positions across an ROI, we are also able to identify candidate 

regions harboring disease risk variants in case-control studies. 

Compared to existing methods, our algorithm has at least three advantages. First, we 

make genealogy inferences at every position independently, such that we allow more 

variations in population genetic parameters such as mutation rates and recombination 

rates across different positions. In contrast, traditional HMM-based modeling of LD (Li 

and Stephens 2003) may over simplify the distribution of these parameters across the 

ROI by assuming certain prior probabilities, thus may experience challenges in studying 

highly polymorphic genomic regions with high recombination rates. 

Second, our algorithm models both local LD and LD between more distant loci carefully: 

We combine the local LD through estimated genealogies with the distant LD modeling 

through a HMM algorithm. Thus our algorithm is applicable to studies using genotype 

data with dense SNPs and studies using sequencing data. In comparison, many existing 
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coalescent-based approaches (Zӧllner and Pritchard 2005; Burkett et al. 2013b) simplify 

the distant LD by assuming first-degree Markov models, which is only appropriate when 

SNPs are sparsely selected across the ROI. 

Third, our algorithm makes inferences about genealogies based on unphased genotype 

data. Our genealogy estimation is then not dependent to pre-phasing quality. This is 

especially beneficial for fine mapping of complex traits loci through estimated 

genealogies, where some traditional mapping approaches are highly sensitive to pre-

phasing accuracy (Morris et al. 2004; Burkett et al. 2013a). Moreover, allowing 

genealogy inferences based on unphased genotype data also improves the haplotype 

reconstruction in regions where traditional phasing algorithms provide less accurate 

reconstructed haplotypes – since each short haplotype segment co-inherited along the 

genealogy provides more local LD information about which alleles are descend from the 

same ancestor. 

Our LD modeling is of interest in different types of genetic studies. First, it contributes to 

fine mapping studies to identify disease causal loci. When practitioners have small 

sample sizes, our algorithm can be especially beneficial in localizing regions harboring 

rare causal variant or common variants with weak effect sizes – where traditional 

algorithms based on single marker tests are not sufficiently powered. According to our 

study, fine mapping based on our genealogy inferences correctly identifies credible 

regions covering causal sites under multiple disease genetic architectures, and 

outperforms traditional algorithm when the risk variant to be sought is rare in study 

sample. Second, it improves the accuracy of haplotype reconstruction through more 

accurately modeled genealogies. It thus can be applied to studies analyzing highly 
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polymorphic regions with high gene-densities where traditional approaches experience 

challenges in correctly identifying haplotype information. 

Future implementations of the present study include that one may improve the accuracy 

in identifying recombination hotspots, as well as improve the accuracy in identifying de 

novo rare variants in sequencing studies, through our more careful model of LD based on 

estimated genealogies. Moreover, in the present study, we only select one focal point per 

10Kbs to make genealogy inferences, and apply uniform prior probability of causality at 

every focal point across the ROI. Potentially, higher resolution of focal points can be 

applied to improve the power in estimating genealogies if computational time allows. 

Likewise, more informative priors based on gene densities and variant and more adaptive 

selection of focal points may also improve our mapping accuracy through up-weighting 

positions near causal sites. Furthermore, we evaluate our algorithm performance under 

scenarios where traditional single marker tests have limited power. For instance, in 

testing for rare variants, one may consider using collapsing methods (Burden tests, Li and 

Leal 2008) to jointly analyze multiple rare variants instead of applying single marker 

tests. In future studies, we will make further comparisons to these strategies, to evaluate 

under what conditions our coalescent-based algorithm is preferable.  

In summary, we have developed a general framework to model linkage disequilibrium 

through estimated genealogy. Compared to existing approaches, our algorithm combines 

the advantages in HMM algorithms and coalescent-based algorithms, and allows more 

variation in population genetic parameters. It then improves the accuracy in haplotype 

reconstruction, and enables using unphased genotype data for fine mapping of complex 

trait loci. We also project future applications such as identifying recombination hotspots 
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and calling de novo rare variants in sequencing studies, through this genealogy-based 

modeling of LD.  
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Table 3.1 Model parameters in estimating genealogies at position O. 

Notation Parameters 

ℎ

�
 Haplotype �’s allele type at variant site � 

P Haplotypes of all 2� observed haplotypes 

P′ Haplotypes of 2�-1 ancient haplotypes 

�
 Length of haplotype � restored in MN 

� Vector of haplotype lengths 

[
 SNP closest to O not inherited to haplotype � 
\ Vector of not inherited SNP boundaries 

L� Distance of variant site � to the left end of ROI 

8 Vector of physical distances to the left end of ROI 

Y� Distance of between variant site � and � − 1 

X Vector of physical distances between SNPs 

V/2 Recombination rate 

c/2 Mutation rate 

Z Vector of coalescent times 

a Tree topology of MN 
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Table 3.2 Mapping of complex trait loci using our algorithm through estimated 

genealogies using 400 cases and 400 controls. 

MAF OR Distance 
CI width 

w. causal o. causal 

1% 2.0 30 350 370 

5% 1.5 20 180 190 

20% 1.2 15 140 150 

Distance: between positions with strongest signals to causal variant sites in Kbs. 

CI width: median 90% credible region width in 5 realizations in Kbs. 

w. causal: when causal variant is directly genotyped in study sample 

o. causal: when causal variant site is missing in genotyped data. 
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Figure 3.1 Intuition of mapping of complex traits through genealogy. Figure A: position 

extremely close to causal site with no recombination in between, sharing identical 

genealogy. Figure B: position slightly distant from causal site where one recombination 

occurred, slightly different genealogy. Figure C: position far from causal site where 

multiple recombination occurred, genealogy of phenotypes. 
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Figure 3.2 Illustration of estimated genealogy at the left end of a sample of 6 haplotypes. 

Each sampled haplotype (external nodes) contains 9 SNPs, while the inferred ancestor 

haplotype (internal nodes) lengths differ due to recombination events. For each external 

and internal node, the segment colored in green indicates it is inherited from the parental 

node, while the segment in red means it is copied from other ancestors due to 

recombination. 

 



 

60 
 

Figure 3.3 Distribution of variant sites in different MAF levels (binned by 4 categories: 

<1%, <5%, <20%, and <50%) across 5 simulated recombination rate levels. 
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Figure 3.4 Miscalling rate in haplotype reconstruction under different simulated 

recombination rates, the solid lines represent miscalling rate using HMM based 

approaches (MaCH), and the dashed lines are miscalling rate through our inferred 

genealogies (Tree). The horizontal axis represents the 4 levels of MAF categories (<1%, 

<5%, <20%, and <50%). 
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Figure 3.5 Results in identifying risk variants. The green line represents the true causal 

position. Black dots in figure A represent p-values using Fisher’s exact tests. In figure B 

D, grey dots represent posterior probability of association. The red dashed lines are 

posterior probabilities provided by our coalescent-based algorithm, while the red and blue 

underlines are the 90% credible regions provided by our algorithm and traditional single 

marker test based fine mappings. 
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Chapter 4 A coalescent-based model using sequencing data in large-

scale association mapping and fine mapping 

4.1 Introduction 

In recent years, GWAS have identified over 1,500 genomic regions associated with 

hundreds of phenotypes (the Catalog of Published Genome-Wide Association Studies, 

http://www.genome.gov/gwasstudies). Thousands of SNPs have been found associated 

with various complex diseases. However, approximately 88% of the variants found in 

GWAS are located in regions that lack obvious functional consequences. Such ambiguity 

leads to unclear conclusions about how these variants affect gene expression and/or the 

regulation of gene expression (Edwards et al. 2013). This uncertainty is in fact not 

surprising, since most GWAS tag-SNPs are not selected for having likely functional 

consequences. Rather, the interpretation of a typical GWAS result is based on the 

assumption that the phenotypic associations detected at tag-SNPs are due to high LD (in 

short physical distance) between these SNPs and the non-genotyped causal variant site. 

Indeed, a successful GWAS study only suggests an initial set of candidate loci marked by 

tag-SNPs with detected associations. A consequent fine mapping study can then be 

performed to make causal inferences about this initial set, to identify one or more loci 

harboring functional variants. 
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Traditionally, existing fine mapping algorithms are based on results from GWAS studies, 

which only analyze a set of GWAS-selected candidate loci with detected phenotypic 

associations (Stephens and Balding 2009; Edwards et al. 2013). To ensure valid causal 

inferences, these GWAS-based fine mapping approaches require that the causal variant 

site must be included in the initial set of candidate regions reported by GWAS. 

With the advances in next generation sequencing technologies, the risk that no causal site 

is reported in the initial candidate set can be reduced by substituting traditional GWAS by 

whole-genome or whole-exome sequencing studies – where each variant site, including 

causal sites, will be directly tested for association. However, causal sites are not always 

genotyped even using sequencing data; they can be filtered due to low quality in low 

coverage sequencing, or the causal variant can be not a SNP but an indel or a CNV. 

Moreover, due to the high cost of sequencing technology, imputation-based approaches 

have been proved efficient to detect rare to low-frequent variant associations (Servin and 

Stephens 2007; Guan and Stephens 2008; Li et al. 2010), yet some rare causal variants 

may still be incorrectly imputed if not observed in the reference panel. After all, 

traditional fine mapping based on single marker association tests still faces the challenge 

that the causal site may remain unidentified. 

Alternatively, several studies have focused on mapping causal variants through the 

estimated genealogies (e.g., Morris et al. 2002; Zӧllner and Pritchard 2005; Tachmazidou 

et al. 2007; Burkett et al. 2013). For a genomic ROI undergoing recombination, different 

positions have different ancestries. Therefore, by evaluating the distribution of cases and 

controls on the genealogies across different positions, we are able to identify positions 

where cases are separating from controls on the ancestry, to locate candidate regions 
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likely to be harboring causal variants. Compared to traditional fine mapping algorithms, 

these coalescent-based approaches directly analyze sampled genotypes across the ROI, 

and thus do not rely on the power in single marker association tests. Moreover, the 

genealogy at each position is inferred through jointly analyzing genotypes at surrounding 

regions. Indeed, these approaches are also more robust to scenarios when causal loci are 

not genotyped – since the missing information in a few non-genotyped variant sites can 

be minimized by the shared genealogies at neighboring positions. 

Unfortunately, existing coalescent-based approaches are computationally intensive. 

Typically, they require MCMC to approximate the posterior distribution of possible 

genealogies conditional on sampled genotypes. With the increased sample size, the 

sample space of possible genealogies grows even faster than exponentially and thus 

creates unfeasible computational intensity in large-scale studies. Therefore, existing 

coalescent-based approaches tend to oversimplify the modeling of LD in haplotypes and 

are restricted to samples of no more than a few hundred individuals. 

In the present study, we propose a framework which utilizes a clustering algorithm to 

reduce the sample space in genealogy inferences, which then enables fine-scale mapping 

of complex trait loci through estimated genealogies applicable to large scaled studies. 

Intuitively, this method is motivated by the observation that sampled haplotypes tend to 

coalesce into a number of common ancestors in a very short period of time, compared to 

the entire coalescent process (Scheet and Stephens 2006). Therefore, if the causal 

mutation occurred at a time far prior to the formation of these common ancestors, we can 

then treat the sub-genealogy under each common ancestor as a cluster, and ignore these 
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lower-end coalescent patterns within each cluster. Consequently, we only need to make 

inferences about the upper-end genealogy of clusters, such that the sample space of 

genealogies is reduced from a function of 2�  haplotypes to a function of �  clusters 

(figure 4.1). We make inferences about the � clusters similar to the clustering algorithm 

suggested by Scheet and Stephens (fastPHASE; 2006). Given these clusters, we then use 

the same HMM-enhanced model, introduced in Chapter 3, to estimate the genealogies of 

clusters at each position across the ROI. We implement the estimation of genealogies of 

clusters into our own computational package, fastTREE. 

Conditional on the estimated genealogy at any position O within the ROI, we propose a 

Bayesian approach to calculate the posterior probability of association at O, to detect the 

association between genotypes at this position and the study phenotypes. We also design 

a fine mapping approach similar to our method in Chapter 3, which makes causal 

inferences for fine mapping through estimated genealogies across different positions in 

the ROI, to identify candidate regions harboring disease-causal variants. 

To evaluate the performance of our method, we simulate case-control samples using a 

coalescent haplotype simulator (Hudson 2002). We consider sample sizes up to tens of 

thousands of individuals, each sequenced for a ROI in a few Mbs. We also consider 

multiple disease models with different risk allele frequencies and different effect sizes. 

We then compare the mapping accuracy of  our method to the accuracy of traditional 

single marker association tests and subsequent fine-scale mapping (Purcell et al. 2007; 

Servin and Stephens 2007). To evaluate our method’s robustness to the non-genotyped 

causal variants, we mask the true variant site and re-apply our method. We then evaluate 
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if our method provides mapping accuracy comparable to scenarios when the causal site is 

genotyped and analyzed. 

When genotypes at the causal variant site are available in the study sample, both our 

method and traditional approaches based on single marker tests correctly identify 

candidate regions covering these causal sites. Specifically, credible regions provided by 

our algorithm are slightly wider than the intervals suggested by traditional methods when 

single marker tests have extremely high power. However, when the site carrying the 

causal variant is not genotyped, single marker tests becomes less accurate, while our 

method still correctly identifies credible regions covering disease-causing sites. 

According to our simulation results, we obtain comparable mapping accuracy and 

coverage probability, regardless of whether the causal variant is genotyped or not.  These 

results suggest that our algorithm performs robustly when the genotype at causal sites is 

missing.  

4.2 Methods 

We consider a case-control study where we have several thousand individuals, to locate 

candidate regions harboring causal variants in a sequenced region of interest (ROI). 

Suppose we have � cases and � controls, each sequenced in a ROI of K Mbs containing � 

variant sites; we denote � as the genotypes of these 2� individuals in � variant sites. We 

denote n  as the observed phenotypes, where o
 = 1  if individual �  is an affected 

individual (case), and o
 = 0 if otherwise. 
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At any position O within the ROI, we define �� and ��, the phenotype probability for any 

individual carrying homozygous wild type alleles and for any individual carrying 

homozygous variant type alleles at this position. At a position carrying disease-causal 

variants, �� and �� at this position are equivalent to the penetrance levels conditional on 

the genotype. At a position independent to the phenotype, true values of �� and �� are 

both equal to the phenotype prevalence in the target population. 

Under different models of  �� and ��, we would like to calculate the joint probability of 

observed phenotypes and genotypes at position O , �
n, �|��, ��� . In Chapter 3, we 

propose an algorithm similar to Zӧllner and Pritchard (2005) or Burkett et al. (2013), 

which calculates �
n, �|��, ���  through integrating over possible genealogies at this 

position O, which is denoted as MN: 

�
n, �|��, ��� = q �
MN|���
n|MN, ��, ���YMN 

However, the sample space of possible genealogies grows too fast with increased sample 

size �, such that this previous MCMC algorithm does not converge in large samples. 

In this Chapter, we separate the entire genealogy MN of any position O into two levels. In 

the lower-end the genealogy, sampled haplotypes have coalesced into �  common 

ancestor haplotypes where the value of � is pre-determined in our model. We treat these 

ancient haplotypes as cluster, and approximate the lower-end coalescent process by 

estimating each sampled haplotype’s probability of descending from each cluster. We 

then denote M′N  as the upper-end genealogy of the � clusters as. Since the number of 



 

69 
 

clusters �  is pre-selected such that the sample space of genealogies of M′N  does not 

increase with the increased sample size �.  

Specifically, we denote z = [W�, … W�] as the vector of ancient cluster haplotypes, where 

W3 = [W�3 , … W/3] represents the allele types of the � variant sites carried in ancient cluster 

{ ({ = 1, 2, … , �). We then denote A, the clusters of origin of sampled individuals, where 

A�


��
{�  denotes the probability of individual � ’s ( � = 1, … 2� ) first haplotype is a 

descendant from cluster { at site � (� = 1, 2, … , �). 

Consequently, we calculate �
n, �|��, ��� through M′N as follows: 

�
n, �|��, ��� = t �
z, A|�� ∙ q �
MSN|z��
n|MSN, ��, ��, A�YM′N ∙ YzYA 

Specifically, we make inference about �
z, A|��  by sampling possible clusters using 

fastPHASE (Scheet and Stephens 2006), such that we approximate �
n, �|��, ��� by: 

�
n, �|��, ��� = 1
� < q �
MSN|z
����
n|MSN, ��, ��, A
���YM′N

�
�s�

 

Given estimated �  cluster haplotypes z
�� , the posterior probability of upper-end 

genealogies �
MSN|z
��� can be approximated using the same MCMC algorithm as we 

used to approximate the genealogy of sampled haplotypes in Chapter 3. We then evaluate 

the probability of observed phenotypes conditional on the estimated genealogy, 

�
n|MSN, ��, ��, A
���  by integrating over possible mutations at every branch on MSN 

(Appendix F). 
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In the present study, we implement our own program, fastTREE, to calculate the joint 

probability of phenotypes and genotypes under different penetrance models, 

�
n, �|��, ���, through estimated genealogy of clusters. We then apply our program to 

Bayesian tests of associations and fine-scale mappings, as described in the following 

subsections. 

4.2.1 Bayesian test of association 

At any position O across the ROI, we propose a method which calculates the posterior 

probability of association (��|), as the Bayesian test statistic of phenotypic association 

at this position (Stephens and Balding 2009): 

��| = �}
1 + �}, 

where �} represents the posterior odds of association: 

�} = ~� × �
1 − �. 

Specifically, � is the prior probability of association. We apply uniform priors across the 

ROI in the present study, such that any position O within the ROI is equally likely to be 

associated with the study phenotype. 

Moreover, ~� is the Bayes factor in favor of association, which evaluate the probability 

of observed phenotype and genotype data under  penetrance model with association 

(�� ≠ ��) over the same probability under model with no association (�� = ��) as follow: 

~� = �
n, �|�� ≠ ���
�
n, �|�� = ��� 
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Under either model, we apply our own algorithm, fastTREE, to calculate �
n, �|��, ��� 

through the estimated genealogy of clusters M′N at any tested position O. Therefore, ~� is 

calculated by: 

~� = �
n, �|�� ≠ ���
�
n, �|�� = ��� 

= t �
n, �|��, ���Y��Y��guvgw
/ t �
n, �|��, ���Y��Y��gusgw

 

By definition, higher ~� indicates that the observed phenotype and genotype data is more 

likely following the model with association (�� ≠ ��), in contrast to the model without 

association (�� = ��). Consequently, any position O with extremely high values in ~� 

will result in a posterior probability of association close to 1, which can be interpreted as 

strong evidence of association at this position. 

4.2.2 Fine mapping of causal loci 

Similar as testing of associations, we can also apply our algorithm, which calculates the 

joint phenotype and genotype probability through genealogy of clusters, to fine-scale 

mappings of causal variants. 

To begin with, we denote p as the indicator of causal position, where p = O represents 

that a causal mutation is carried at position O in the ROI. In the present study, we assume 

uniform prior probabilities �
p = O� such that any position within the ROI is equally 

likely to be carrying disease-causal mutations. 
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For each position across the ROI, our goal in fine mapping is to calculate each position’s 

posterior probability of carrying disease-causal mutations, conditional on the observed 

genotypes and phenotypes, to identify candidate regions harboring causal variants. By 

Bayes rule, this posterior probability of causality is proportional to: 

�
p = O|n, �� ∝ �
n, �|p = O��
p = O�. 

We calculate �
n, �|p = O� by integrating over penetrance levels �� and �� as described 

in previous subsections: 

�
n, �|p = O� = q q �
n, �|��, ���Y��
�

�
Y��

�

�
 

Given each penetrance level, �
n, �|��, ��� is calculated through estimated genealogy of 

clusters, M′N, using our algorithm fastTREE. 

Similar as in Chapter 3, we select a set of focal points uniformly distributed across the 

entire ROI. At each focal O , we first calculate �
n, �|p = O�  through our estimated 

genealogy of clusters. We then apply a Monte Carlo integration to calculate the posterior 

probability of causality �
p = O|n, �� at each focal point O: 

�
p = O|n, �� ≈ �
n, �|p = O�/ < �
n, �|p = ��
�∈`��

. 

4.2.3 Algorithm evaluation 

To evaluate our algorithm performance in mapping of complex trait loci, we first 

simulate a set of 2: haplotypes sequenced in a 1Mbs ROI with 500Kbs flanking region 

on both ends. We then randomly assign these haplotypes into :  diploid individuals. 
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Within the ROI, we randomly pick one variant site as the causal variant based on its 

minor allele frequency. We consider 3 scenarios with different risk allele frequencies, 

1%, 5%, or 20%, to evaluate our algorithm performance. The risk allele effect size is OR 

= 2.0 for the rare risk allele with MAF = 1%. We let OR = 1.5 for the low frequent risk 

allele with MAF = 5%, and OR =1.2 for the common risk allele with MAF = 20%. 

Consequently, we assign a phenotype to each individual conditional on his genotype at 

this causal site under a multiplicative model. We consider different sample sizes in large-

scaled case-control studies, and randomly sample � cases and � controls where � equals 

2,000, 5,000, or 10,000. Under each scenario, we simulate 5 realizations to evaluate our 

algorithm performance. 

To evaluate our algorithm performance in detecting phenotypic associations, we apply 

both our algorithm and the traditional single marker Bayesian approach (BIMBAM; 

Servin and Stephens 2007), to each simulated sample of cases and controls, to identify 

association signals across the ROI. Using BIMBAM, we test for associations at every 

marker individually. While using our algorithm, we make genealogy inferences by 

fastTREE in a set of focal points in every 10kbs, and calculate each focal point’s 

posterior probability of association (��|). Under each simulated scenario, we compare 

the median distance between the causal sites and the estimated most likely positions 

(focal points with highest ��|) in 5 realizations. We then compare our results to the 

distance using BIMBAM, to evaluate our algorithm performance in detecting phenotypic 

associations. 

To evaluate our algorithm performance in fine mapping of complex trait loci, we also 

apply our fine mapping algorithm to each simulated data. Under each simulated scenario, 
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we calculate the median width of 90% credible regions provided by our algorithm, as 

well as the coverage probability, to evaluate our algorithm performance. We also apply 

traditional fine mapping approaches suggested by Servin and Stephens (2007) and 

Stephens and Balding (2009) to each simulated dataset, and calculate the median widths 

of consequent 90% credible regions. We compare the credible region width using our 

algorithm to the width using traditional methods, to evaluate our algorithm performance 

in fine mapping. 

Moreover, to evaluate our algorithm performance when the causal site is not genotyped, 

we mask the genotypes at the exact causal sites, and re-apply our algorithm to each 

simulated dataset. We calculate the same distance in association tests and credible region 

width in fine mappings. We then compare these new results to the previous results to 

illustrate that our method performs robustly when genotypes at causal variant sites are not 

available in study sample. 

4.3 Results 

To evaluate our algorithm performances, we simulate large-scale samples with � cases 

and � controls (� = 2,000, 5,000, or 10,000), each sequenced in a region of 1Mbs with 

500Kbs flanking regions on both sides. Under each sample size, we consider different 

risk allele frequencies with different disease effect sizes: rare risk variants with MAF 

= 1% and effect size OR = 2.0, low frequent risk variants with MAF = 5% and OR 

= 1.5, or common risk variants with MAF = 20% and OR 1.2 . We apply both our 

algorithm and the traditional single marker test based approaches to these simulated 
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datasets, to evaluate our algorithm performance in testing for associations and mapping 

for disease causal variants. 

4.3.1 Testing for associations 

To evaluate our algorithm performance in testing of associations, we make inferences 

about genealogies by fastTREE in a set of focal points per 10Kbs in each simulated 

dataset. We then calculate the posterior probability of associations at each focal point. 

We then compare our results to the results provided by single marker tests using either 

Fisher’s exact test (PLINK; Purcell et al. 2007) or Bayesian approaches (BIMBAM; 

Servin and Stephens 2007). 

To begin with, we illustrate a single realization using 5,000 cases and 5,000 controls, 

while the risk allele to be sought is rare with MAF less than 1% and OR equals 2.0 

(figure 4.2). Using single marker tests, variant sites with smallest p-values in Fisher’s 

exact tests (figure 4.2A) are identical to the sites with greatest posterior probability of 

association ( ��| ) in Bayesian approaches (figure 4.2B), while both tests provide 

strongest signal at the exact position of the causal variant. Using our algorithm, the 

posterior probability of association at the set of focal points also increases towards the 

causal site, and peaks in the few focal points closest to the causal site. While single 

marker tests provide strong evidence of association at the exact variant site with ��| 

close 1 (grey dots, figure 4.2B) in this realization, the result using our method provides 

slightly lower ��| – since we do not test on the causal site directly (figure 4.2B, red 

line). 
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When the causal site is not genotyped, no signal is detected when using single marker 

tests. To illustrate that our algorithm performance with the absence of causal genotypes, 

we mask the causal site, and re-calculate the ��|  at each focal point to detect any 

evidence of association (figure 4.2B, blue line). Compared to our previous results, we 

obtain almost the same low ��|  in regions far away from the causal site since the 

missing genotype at the single causal site have no influence on the genealogy estimation 

in these regions. Moreover, we observe the ��| increases in focal points closer to the 

causal site, and peaks at the position closest to the exact site carrying disease causal 

mutations. Compared to our previous results with genotyped causal site, our algorithm 

identifies the same position with the strongest evidence of association, although the ��| 

is reduced since the information carried by the causal site is missing in our data. 

In each simulated dataset, we apply both our algorithm and the Bayesian single marker 

tests using BIMBAM (Servin and Stephens 2007) to 5 simulated datasets per scenario, 

and calculate the median distance between the exact causal site and the position showing 

strongest evidence of associations. We then compare these calculated distances using our 

algorithm to the distances using BIMBAM (table 4.1). We also calculate the highest 

posterior probability of association reported in each dataset using our algorithm and using 

BIMBAM, and compare the median value of 5 realizations under each scenario, to 

evaluate under what scenario our method is more powerful than using traditional single 

marker tests. 

Using single marker tests, the results are driven by single marker testing power. When the 

sample size increases, we have higher power to detect the association at the exact causal 

site with higher posterior probability of associations. Under each sample size level, we 
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have higher power to detect low frequent risk variants with MAF = 5% and OR = 1.5, 

rather than rare risk variants with MAF = 1% and OR = 2.0 and common risk variants 

with MAF = 20% and OR = 1.2. Specifically, in smaller sample of 2,000 cases and 2,000 

controls, single marker test is most powerful in detecting low frequent variants with 

moderate effect sizes (MAF = 5%, OR = 1.5), with the highest detected ��| equals 

0.832 in a site 24Kbs from the exact causal site. The strongest signal is detected with 

higher ��|, and is detected more closely to the exact positions when we have larger 

sample sizes. With 10,000 cases and 10,000 controls, the median value, we detect a 

posterior probability of association extremely close to 1 at the exact position of the causal 

variant (distance equals 0). 

Using our method, the power to detect phenotypic associations is also increasing with 

increased sample sizes. Moreover, our method is more powerful in detecting rare variant 

associations when risk variant allele frequency is less than 1% with the effect size OR = 

2.0 in these simulated samples of thousands of cases and controls. When we only have 

2,000 cases and 2,000 controls, our algorithm outperforms traditional single marker tests 

with the strongest signal detected closer to the exact position of causal variants – in all 3 

scenarios of allele frequencies. When we have more than 5,000 cases and 5,000 controls, 

although our algorithm correctly detect the strongest association signal within 2 to 3 focal 

points closest to the causal site; it is less powerful than the traditional single marker test 

which directly tests on the exact causal variant site. 

To evaluate if our algorithm performs robustly when the causal site is not genotyped, we 

mask the causal site genotypes, and re-apply our algorithm and the single marker tests to 

each simulated dataset. We illustrate such results in realizations with 5,000 cases and 
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5,000 controls (figure 4.3). Using traditional single marker tests, the distance between the 

causal site and the position with the strongest detected association signal (black dots) 

merely depends on whether neighboring sites under high LD with the causal variant 

outweigh noise markers at random positions across the ROI. Therefore, the variation in 

single marker test performances is very high in the 5 simulated datasets per scenario. In 

contrast, using our algorithm, the strongest signal is always detected within 50Kbs (red 

triangles) from the exact position of the non-genotyped causal variant.  

Moreover, we calculate the median distance between the non-genotyped causal site and 

the focal point with the highest PPA using our method (table 4.2, in parenthesis) under 

each scenario. Compared to previous results, we obtain similar results where the focal 

point with the highest ��|  only moved by one or two units, such that the median 

distance to the causal site barely changes. 

4.3.2 Fine mapping of causal variants 

Traditionally, association-based fine mapping approaches assume that at least one causal 

variant is covered by the initial set of candidate regions with reported phenotypic 

associations. In contrast, our algorithm does not make such assumption, and can be 

applied directly through our estimated genealogies across the entire ROI, to construct 

credible regions harboring disease causal variants. 

We apply our fine mapping algorithm and the traditional fine mapping approach to 

simulated datasets. Under each scenario, we first calculate the median width of the 90% 

credible regions (table 4.2) in 5 realizations. We then compare our results to the same 
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widths from using traditional fine mapping approaches based on candidate regions with 

detected associations from single marker tests. 

Using traditional approaches, fine mapping accuracy is driven by the power in 

association tests. Therefore, the trend in mapping accuracy across different sample sizes 

and different allele frequencies is identical to the trend in association tests: We obtain 

shorter credible regions with increased sample sizes. And we obtain shortest credible 

regions under each sample size when the causal variant is of low frequent with MAF = 

5% and OR = 1.5. 

Using our fine mapping algorithm, the resulting credible region is also narrowing with 

increased sample size. Under each sample size level, we obtain the narrowest credible 

region when the causal variant is rare (MAF = 1%) with strong effects (OR = 2.0). These 

trends are also identical as the trends in our coalescent-based association tests – since 

both applications are based on the same estimated genealogies. 

Under all scenarios, our algorithm identifies credible regions covering a candidate region 

around 100Kbs. Moreover, our method provides credible regions correctly covering the 

causal variant site in all realizations, indicating that our credible interval may be too 

conservative compared to its nominal credible level. Specifically, when mapping causal 

variants using 2,000 cases and 2,000 controls, our algorithm outperforms traditional 

methods when the causal variant is rare (MAF = 1%) or is of weak effects (OR = 1.2). 

When the sample size is greater than 5,000 cases and 5,000 controls, traditional 

approaches provide more accurate mapping of candidate regions. 
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Moreover, according to our results in association tests, single marker tests do not 

consistently detect association in regions surrounding the causal site. If an association 

study fails to correctly report an initial set of candidate regions covering the causal site, 

the consequent fine mapping will be biased. 

To evaluate if our algorithm provides valid fine mapping results when the causal site is 

not genotyped, we mask the genotypes at causal positions in each simulated dataset, and 

re-apply our algorithm for fine mapping. Consequently, we calculate the new medians of 

credible interval widths under each scenario (table 4.2, in parenthesis). Under all 

scenarios, we observe slightly wider credible regions in scenarios with smaller sample 

sizes, compared to our previous results. Likewise, we observe the same coverage 

probability that our algorithm still correctly identifies candidate regions harboring disease 

causal variants. 

4.3.3 Mapping accuracy when more than one causal variants exist in ROI 

So far we assume that only one causal site is located in the study ROI. In practice, 

multiple risk variants can occur in neighboring regions to affect the study disease. To 

evaluate if our algorithm is capable in identifying more than one risk variants, we 

simulate datasets with 2,000 cases and 2,000 controls where two risk variants exist in the 

1Mbs region of interests. We consider two conditions: either two closely located risk 

variants with mutual distance less than 50Kbs, or two distantly located risk variants 

further than 200Kbs from each other. Likewise, we also consider two scenarios of risk 

allele frequencies: both risk variants are rare with MAF 1% and OR 2.0; or one such rare 

allele with strong effect sizes and one common allele with MAF 20% and OR 1.2. 
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We then apply our algorithm to construct 90% credible regions to evaluate if we have 

correctly covered both risk variants. When two rare risk alleles are closely located, we 

observe one continuous credible region around 100Kbs, which correctly covers both risk 

variant sites (figure 4.4A). In contrast, when two rare alleles are distantly located, our 

credible region covers two discrete sub-regions; each covers one risk variant in a 100Kbs 

area (figure 4.4B). Under the scenario when one common variant and one rare variant are 

closely located from each other (figure 4.4C), the posterior probability curve is skewed to 

the rare variant site as it has stronger effect size to the disease. Our algorithm still 

provides a credible region with similar widths, to correctly identify both risk variants. 

When the common risk variant is distantly located from the rare risk variant (figure 

4.4D), we observes signals on both risk positions, while the estimated posterior 

probability at the rare variant site is about 10 times higher than at the common variant 

site. Although close to the boundary, the common variant is still correctly covered by our 

credible region (figure 4.3D). 

4.4 Discussion 

We have presented and implemented an algorithm to identify complex trait loci through 

estimated genealogies, to enable coalescent-based mapping on studies using large-scaled 

case-control samples. Conditional on observed genotypes, we first make inferences about 

a set of � ancient haplotypes, as common ancestors of sampled individuals, based on a 

clustering algorithm (Scheet and Stephens 2006). We then treat these �  common 

ancestors as clusters, and make inferences about this position-specific genealogy of 

clusters. Consequently, we reduce the sampling space of genealogies from a function of 
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sample size (2�, in haplotypes) to a function of pre-determined number of clusters, �. 

We implement this algorithm for genealogy inferences into our own computational tool 

fastTREE. 

Focusing on detecting phenotypic association at any position across the genotyped or 

sequenced ROI, we make inferences about the position-specific genealogy of clusters. 

Conditional on this inferred genealogy, we calculate this position’s Bayes factor (~�) in 

favor of association, and then derive the posterior probability of association based on ~�, 

at this position. 

Furthermore, we are also able to make causal inferences for fine mapping of compelx 

trait loci, based on the assumption that our ROI contains at least one disease causal 

variant. In a set of focal points across the ROI, we evaluate the inferred genealogies at 

every focal point. We then make Bayesian inferences for causality at these positions, and 

establish credible regions to locate causal variants.  

Compared to traditional coalescent-based approaches for fine mappings, which restrict 

the sample size to a few hundred individuals, our method enables fine mapping in large 

scale case-control studies with up to several ten thousand individuals. Moreover, our 

algorithm can be running in parallel to make genealogy inferences at different positions 

across ROI. Therefore, we are able to apply our method for fine mapping in a sequenced 

ROI of a few Mbs with up to twenty thousand sampled individuals in less than ten days if 

running on 40 to 50 modern computer nodes. 

Compared to traditional fine mapping approaches based on detected associations, our 

method performs more robustly when genotypes at the causal site are missing. Because 



 

83 
 

our method make inferences about genealogies at each position by analyzing genotypes at 

surrounding variants sites jointly, information carried by the missing genotype at one site 

complemented by genotypes within co-inherited haplotype segments. In comparison, 

traditional fine mapping algorithms are based on an initial set of candidate regions with 

detected associations, and calculates individual Bayes factors site-by-site to make causal 

inferences. Based on our simulation, we suggest using our algorithm for fine-scale 

mappings in genomic region of interests where single marker tests are not sufficiently 

powerful in suggesting candidate regions for traditional fine mapping. 

In the present study, we fix the number of clusters �  at 400. In practice, �  can be 

determined by two factors. First, we want � as high as possible such that our inferred 

genealogy carries more information about the sampled haplotypes’ evolutionary history. 

The upper bound of possible � is then determined by computational burden. Second, we 

want �  greater than the number of branches left on the coalescent tree when causal 

mutation occurred in history. Thus the lower bound of � is determined by the disease 

genetic architecture – suppose our goal is to seek some rare causal variant at certain allele 

frequency level (e.g., less than 1%), the lower bound of � is then determined as it must 

be greater than number of branches when all risk allele carriers have met the same 

common ancestor. In coalescent theories, the expected number of branches left in the 

coalescent tree, when all risk allele carriers have coalesced to a common ancestor, can be 

derived sequentially. Overall, the number of � can be pre-selected between the upper and 

lower bound. 
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According to our simulation, our algorithm identifies credible regions covering a 

candidate region around 100Kbs in most scenarios. In practice, this is potentially helpful 

to locate 2 to 3 candidate genes in human genome for follow up studies to understand 

their biological functions. Our algorithm is of interests in studies trying to identify 

complex trait loci using different types of genetic data, such as low-coverage sequencing 

studies or imputation-based studies – in which sites carrying disease causal variants are 

of higher probabilities of not genotyped.  

In present study, we have only considered uniform prior probability of causality across 

the ROI. In practice, more informative priors can be applied based on gene densities or 

annotation of variants, to enhance the efficiency of our algorithm. Other future extensions 

for our algorithm include using mapping of QTLs through estimated genealogies, as well 

as under other generalized phenotypes models. Along with the advances in sequencing 

technologies and the decreasing sequencing costs, we also project more large-scale 

sequencing study samples will be formed in near future. Yet our fine mapping program 

provides a robust and computationally feasible package to identify candidate regions for 

these large-scale studies to improve our understanding about the genetic basis of complex 

diseases. 
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Table 4.1 Estimated posterior probability and the distance between causal sites and 

positions with strongest signal of associations, using single marker tests (BIMBAM) and 

using our algorithm through estimated genealogies (Tree). 

Sample 

size 
MAF 

BIMBAM Tree 

PPA Dist PPA Dist(*) 

2,000 1% 0.756 45 0.853 15(25) 

2,000 5% 0.832 24 0.788 20(25) 

2,000 20% 0.625 50 0.747 25(30) 

5,000 1% 0.998 2 0.906 15(20) 

5,000 5% 1.000 0 0.887 20(25) 

5,000 20% 1.000 3 0.872 20(25) 

10,000 1% 1.000 0 0.953 15(20) 

10,000 5% 1.000 0 0.946 15(15) 

10,000 20% 1.000 0 0.881 20(25) 

Dist: between positions with strongest signals and causal sites in Kbs. 

PPA: Posterior probability of association. 

*In parenthesis: Distance when causal variant site not genotyped. 
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Table 4.2 Median 90% credible region width in 5 realizations per scenario, using fine 

mapping algorithms based on single marker tests (BIMBAM) and using our algorithm 

through estimated genealogies (Tree). 

Sample 

size 
MAF 

CI 

BIMBAM Tree(*) 

2,000 1% 122 100(120) 

2,000 5% 76 120(130) 

2,000 20% 140 130(130) 

5,000 1% 35 80(90) 

5,000 5% 24 90(90) 

5,000 20% 42 100(100) 

10,000 1% 8 80(80) 

10,000 5% 5 80(90) 

10,000 20% 22 90(90) 

CI: 90% credible region widths in Kbs 

*In parenthesis: CI width constructed when causal variant site not genotyped. 
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Figure 4.1 Illustration of clustering method when disease mutation occurred prior to the 

formation of clusters. Figure A: genealogy of 16 sampled haplotypes, where disease 

mutation occurred in time when only 3 branches exist. Figure B: genealogy of 5 clusters, 

which reduces the sampling space by ignoring the bottom coalescent details within each 

cluster. 
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Figure 4.2 Test of associations. In figure A, black dots represent the p-values using 

Fisher’s exact tests. In figure B, grey dots are posterior probabilities of associations 

provided by Bayesian approaches for association tests (BIMBAM); while the red line 

indicates the posterior probability of association provided by our algorithm. The true 

causal position is labeled by the green line. 
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Figure 4.3 Distance between the causal site and the position with strongest detected 

associations, when causal site is not genotyped in study samples of 5,000 cases and 5,000 

controls. The black dots represent the distances obtained using single marker tests, while 

the red triangles represent the distances using our algorithm through estimated 

genealogies. The horizontal axis is the physical distances in base-pairs, while the vertical 

axis indicates the three considered allele frequency level: 1%, 5%, and 20% risk alleles.  
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Figure 4.4 Fine mapping results when more than one causal variants exist in the region of 

interest. In figure A, two rare risk variants are closely located with less than 50Kbs. In 

figure B, two rare variants are distantly located further than 200Kbs. In figure C we 

simulate one rare variant and one common risk variant, closely located. In figure D, one 

rare and one common risk variants are distantly located. Posterior curves are represented 

by red solid lines, while the red underlines represent the estimated 90% credible regions. 
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Chapter 5 Conclusion 

5.1 Summary 

Markov chain Monte Carlo (MCMC) algorithms are widely used to analyze high-

dimensional data, and to sample posterior probabilities of interests in modern genetic 

studies. In this dissertation, we have applied an MCMC algorithm on a framework about 

sampling genetically homogeneous sub-samples of affected individuals. We have also 

proposed an MCMC method to model the linkage disequilibrium in genotype data, which 

can be applied to improve the accuracy in haplotype reconstruction, as well as to identify 

candidate regions harboring causal variants of a complex disease. 

In Chapter 2, we propose a novel approach to identify affected individuals carrying the 

same underlying genetic risk variants, which can be applied on studies of any complex 

disease. Using family data with at least one affected individual per family, we first 

analyze the segregation in a large set of observed covariates, to identify subsets of 

covariates correlated to the same risk variants to define subphenotypes. Conditional on 

these covariates subsets, we then calculate each affected individual’s posterior probability 

of belonging to each subtype such that they are more likely to carry the same risk variants 

attributable to this subtype. We further stratify affected individuals based on their subtype 

memberships, and illustrate that using these stratified subsamples of cases provide 

improved power to detect the phenotypic association in relevant loci, compared to the 
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power using all sampled cases. We implement this algorithm into our own program based 

on sibling pair data, CASES. We recommend using CASES to identify genetically 

homogeneous subtypes of affected individuals to improve our understanding of any 

complex disease in follow-up studies. 

In Chapter 3, we propose HMM-enhanced method which improves the modeling of LD 

in coalescent-based estimation of genealogies. Given genotype data, we first make 

inferences about genealogies at different focal points across ROI, and model the LD 

between more distant loci not sharing the same genealogy due to recombination events 

through a HMM algorithm. We then apply this modeling of LD to improve the accuracy 

in haplotype reconstructions. Compared to existing methods, we recommend our model 

in applications for haplotype reconstructions where traditional HMM-based methods 

experience low accuracy due to more complicated population genetic parameters. We 

also apply this coalescent-based LD modeling into case-control studies, to identify 

candidate regions harboring disease causal variants.  We compare our results to 

traditional fine mapping algorithms based on an initial set of candidate loci with detected 

associations, and illustrate that our method outperforms traditional approaches when 

causal site is not directly genotyped and tested. 

In Chapter 4, we implement a clustering method to this coalescent-based algorithm to 

mapping complex trait loci in large-scale studies. We first make inferences about a set of 

common ancestors to the study sample, as a set of clusters. Conditional on the inferred 

ancient haplotypes, we then make inferences about the genealogies of clusters at different 

positions across the ROI to identify candidate regions with causal variants by our own 

program fastTREE. We define a Bayesian approach to test for associations at any 
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position through the inferred genealogies. Based on the assumption that at least one 

causal variant exists within the ROI, we then propose a fine mapping framework through 

the inferred genealogy, to make causal inferences for candidate regions harboring causal 

variants. We evaluate our algorithm under different disease genetic architectures: under 

rare to common causal variants with different effect sizes. We compare our mapping 

results to traditional Bayesian approaches for association tests and fine mappings, and 

illustrate that our algorithm behaves more robustly, and outperforms traditional methods, 

when sample genotypes at causal sites are missing. 

5.2 Relevance and future work 

This dissertation covers MCMC applications on two distinct areas of genetic studies: 

subphenotyping complex diseases to identify genetically homogeneous subsamples of 

cases, and modeling LD through estimated genealogies for reconstructing sample 

haplotypes and mapping complex trait loci. 

We implement our subphenotyping algorithm based on sib-pairs into our own software 

CASES. This sampler will be helpful for practitioners in sequencing studies to prioritize 

individuals more likely to carry specific risk variants, to reduce the sequencing cost. It is 

also helpful in stratifying affected individuals to formulate genetically homogeneous 

subsamples of cases, to improve the power in association studies. Future extension 

includes implementing CASES more generalizable to other family structures and then 

modeling genotypes by kinship coefficients, such that the power to identify genetically 

homogeneous subphenotypes is potentially improved by larger family sizes with parent-
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offspring trios. Meanwhile, CASES currently requires dichotomous diseases, and we 

could further explore the algorithm’s potential in QTL studies by allowing continuous 

phenotype measurements in future works. 

We implement the HMM algorithm onto our own approach similar to TreeLD (Zӧllner 

and Pritchard 2005). Our approach enables making inferences about genealogies based on 

unphased genotype data using high density SNPs or sequencing data. In practice, our 

estimation of genealogies is helpful to improve the accuracy of reconstructing sample 

haplotypes in genomic regions where traditional HMM-based algorithms experience 

limited performances. In practice, practitioners can also apply our approach to make 

inferences about genealogies across a genomic region of interests to identify candidate 

loci harboring disease causal variants. Future extension for our algorithm includes using 

the local information from genealogies to improve genotyping accuracies to identify de 

novo rare variants, as well as identifying recombination hotspots in genomic regions 

through the varying length of shared and non-shared genealogies. Furthermore, we have 

only considered uniform prior probability of causality across the ROI in current study. In 

practice, more informative priors can be applied based on gene densities or annotation of 

variants, to enhance the efficiency of our algorithm. 

When applying our estimated genealogy to identify complex trait loci, we compare our 

algorithm performance to traditional algorithms based on single marker tests. According 

to our results, we suggest using our method to identify candidate regions when single 

marker tests have low power. We would also like to compare our results to other 

advanced strategies, such as collapsing method for rare variant association tests (Li and 

Leal 2008), to further evaluate our algorithm’s potential in different types of studies. 
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We also apply a clustering method to reduce the computational intensity in estimating 

genealogies. We implement this updated method into our own program fastTREE, which 

enables mapping of complex trait loci in large-scale studies with sample sizes up to ten 

thousands. Along with the current advance of sequencing technologies and the trend of 

reduced per individual cost in sequencing studies, we project more large-scale sequencing 

study samples will be formed in near future. Yet our fine mapping program provides a 

robust and computationally feasible package to identify candidate regions for these large-

scale studies to improve our understanding about the genetic basis of complex diseases. 
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Appendix 

A: Metropolis-coupled MCMC setup. 

Genotype probability in sib-pairs: For each sib-pair �, we model the joint genotype 

probability as: 

�
�
|�� = 1 �
�
3|�3�
3

 

For each variant locus {, �
�
3|�3� is calculated by integrating over possible identity by 

descent (IBD) status, where IBD ∈ {0,1,2}: 

�
�
3|�3� = 1 �
�
3|�3, �~X = O��
�~X = O�2
Ns�

 

The prior probabilities of IBD equals 0, 1, or 2 are 0.25, 0.5, and 0.25, respectively. 

The spike and slab prior: For the covariate �, the probability of affected by risk variant 

in subtype {  is denoted as ��3 = �
��3 ≠ 0� , is arbitrarily chosen between 0 and 1. 

Conditional on it is effective, the effect size is uniformly distributed in (–log5, log5). 

Therefore, the entire prior probability is: 

�=��3 ≠ 0? ∙ =1 − ��3? + �=��3 = 0? ∙ ��3/2#$%5 

We use the same prior on between-covariate-effects. 
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Parallel Markov chains: We run �  Markov chains with different initial status in 

parallel. For each chain � , the total likelihood is powered by a “heat”: P� =
[1 + ℎ ∙ 
� − 1�]*� < 1, where the heat-factor h is arbitrarily chosen from 0 to 1. 

Chain switching: Let K�  be the likelihood in chain � . We randomly choose 2 

consecutive chains per one thousand rounds in MCMC, and copy the information from 

chain ^ to chain � with probability L��	(1, [) where [ = (K� K�⁄ )��*��. 

MCMC updates: In each Markov chain, we update all sib-pairs' genotype based on 

Metropolis-Hasting (M-H) algorithm in each round. We randomly choose one ��3 from 

all effect sizes in every 20 rounds of the MCMC, and update this effect based on the M-H 

algorithm. We update the between covariate effects using the same mechanism. For allele 

frequency, randomly pick locus { per 50 rounds, and update allele frequency �3 based on 

the conjugate posterior ~(M + 1, 2� − M − 1) distribution, where M is the total risk allelic 

type counts in all sibling 1s (or 2s), and 2�– M is the total counts for non-risk alleles. 

B: Discriminate risk variant carriers from non-carriers 

When there are two subtypes (� = 2) affected by two risk variants, CASES gives 2 

vectors of inferred posterior probability about carrying variant 1 and 2. 

To determine if carriers from different risk variants can be discriminated from each other, 

we compare the difference between pair-wised distance within carriers and among any 

pair of individuals in the figure below. The horizontal axis represents effect sizes on 

covariates ranging from 1.0 to 2.0, and the vertical axis is the difference in pair-wised 
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distances. The red (or green) line is the difference between within carriers of variant 1 (or 

2) and within all samples, and the black line is such difference between within all carriers 

and within all samples. 

 

In general, the mean pair-wised distances within either variant 1 or 2 carriers are shorter 

than the overall pair-wised distance. The distance is further shortened along with the 

increased covariate effect sizes. In other words, individuals carrying the same variant are 

more likely to formulate a cluster and stay close with each other with respect to the 

inferred posterior probability of carrying each subtype. In addition, the mean distance for 

pairs of individuals with one carrying variant 1 and the other carrying variant 2 is also 

shorter than the overall mean pair-wised distance, because carriers are either clustered at 

the high end of inferred subtype 1 or 2. 
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C: Power comparison under different effect sizes. 

We compare the under different risk variant effects to the phenotype in the figure below. 

The underlying risk variant affects 10 covariates, whose allele frequency is 5%. The 

effect size to the phenotype is 1.0, 1.5 or 2.0. The horizontal axis represents effect sizes 

on covariates ranging from 1.0 to 2.0, and the vertical axis is power under significance 

level A = 5 × 10*7. 

 

In general, power is increasing along with the covariate effect sizes. When the risk 

variant is truly affecting the phenotype, the power using our stratified sample 

outperforms the power using full samples. More importantly, when the effect size on 

phenotype is OR 1.0 (no association), the power curve using stratified subtype of cases 

fluctuates around the nominal significance level – indicating that our algorithm does not 

inflate the false discovery rate. 
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D: Testing power, multiple risk variants affecting the same covariates. 

To evaluate if more than one risk variants affecting the same set of covariates would 

affect our algorithm performance, we consider scenarios where 10 covariates are affected 

by risk variant 1, while 0, 5, or 10 out of these 10 covariates are also affected by another 

risk variant 2. We summarize the power to detect phenotypic association at variant site 1 

below. Since the true number of subtypes (�) is unknown, we compared the power under 

� = 1 and � = 2 model in figure A and B, respectively. The horizontal axis represents 

effect sizes on covariates ranging from 1.0 to 2.0, and the vertical axis is power under 

significance level A = 5 × 10*7. 

When risk variant 2 affect no covariate, the power to detect association at variant site 1 is 

identical to the previous single locus model with 10 covariates under � = 1 . 

Alternatively, when we specify � = 2, CASES correctly identifies the second underlying 

variant affects no covariate. Thus, the power is only slightly reduced due to the extra 

parameters to be estimated, compared to the K=1 model. 
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When risk variant 2 affect 5 out of the 10 covariates affected by risk variant 1, we 

observe reduced power in both � = 1 and � = 2 models, due to the more complicated 

correlation structures between covariates. Specifically, the � = 2  model correctly 

specifies the number of underlying risk variants, and thus outperforms the � = 1 model 

which treats total variation unexplained by the single risk variant as between-covariate 

correlation. 

When risk variant 2 affects all 10 covariates as variant 1 does, we cannot distinguish 

these two variants. Instead, these two variants are identified as one variant with elevated 

allele frequency under the � = 1 model. Since the resulting stratified cases are more 

likely to be carriers of either risk variant 1 or 2, we still observe increased risk allele 

frequency and improved testing power using this stratified subsample. Under � = 2 

model, our algorithm struggles to distinguish the following 2 possibilities: 1. Two 
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subtypes affected by two variants are represented by exactly the same covariates. 2. One 

subtype, affected by a more common risk variant, is represented by all 10 covariates; 

while the other subtype affected by another variant is not represented in any covariate. 

Due to the choice of the spike-and-slab prior, we put more weights on effect sizes equal 

0. Thus, our algorithm converges to the second possibility such that similar testing power 

as in the � = 1 model. 

Overall, we see different specification of � results in different algorithm performance. In 

reality, we do not know the true number of subtypes carried in our sample. Thus we 

always want to specify the "best" value of � in CASES, to make our algorithm most 

efficient. We suggest a sequential procedure for model selection below. 

E: Selection of  �, the number of subtypes. 

In practice, we do not know the true number of subtypes due to underlying risk variants 

carried in our sample. We would like to choose the best value of � to identify individuals 

carrying risk variants most efficiently. 

Essentially, how to determine the value of � is a model selection problem. We begin 

from the extreme case where underlying genetic variants affect only covariates (no 

subtype). Then the posterior probability of the phenotypic effect should be identical to its 

prior spike and slab distribution, which peaks at 0. If so, we have evidence that no 

underlying genetic variant is affecting the phenotype. 

Similarly, when we set � greater than the true number of underlying risk variants in our 

model, some effect size to the phenotypes will always show the same spike at 0 since 
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these pseudo, excessive factors are in fact unrelated to the disease. Indeed, we suggest 

that when using CASES, one could determine � under a sequential manner: 

We start running CASES from  �′ = 1, and check the histogram on the phenotypic effect 

size to see if it peaks at 0. If so, stop CASES since no heritable subtype can be identified. 

If not, we increase �′  by 1 and re-run CASES and evaluate all modeled variants’ 

phenotypic effects. We increase �’ iteratively until we see at least one variant’s effect 

size estimate shows the spike at 0. Accordingly, a possibly reasonable choice about the 

number of risk sites is then � = �′ − 1, which can be used in the follow-up inference 

and stratification. 

F: Posterior probability of phenotypes given genealogy. 

Given any penetrance level ��  and ��  at each focal point O , we propose possible 

occurrence of causal mutation on every possible branch on the genealogy of the � 

clusters M′N. There are 2� − 2 possible positions to allow for mutations, we define an 

indicator ~ = �  to represent that the disease mutation is occurred on branch �  (� =
1, … 2� − 2), whose prior probability �(~ = �) is proportional to the branch length. 

�(n|M′N, ��, ��, A) = < �(n|M′N, ��, ��, A, ~ = �)�(~ = �) 

Conditional on each proposed mutation on M′N , the genotype at focal point O of each 

ancient haplotype is fully determined. We use ℎN

(�)

 and ℎN

(2)

 to denote the two allele 

types of individual � at this position. We then define the probability that individual � is a 

case as follows: 
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�(
)({�, {2) = �(o
 = 1)ℎN

(�), ℎN


(2)+ = ��(e�
�(w)Te�

�(�))/2 ∙ ��(2*e�
�(w)*e�

�(�))/2 

where the two alleles are inherited from ancient cluster {�  and {2 . Similarly, the 

probability that individual � is a control is  1 − �(
)({�, {2). 

Given the cluster of origin probabilities in A, we then sum over all possible cluster of 

origins, to calculate the marginal phenotype probability if individual � is a case: 

< < �(
)({�, {2)
�

3�s�
∙ AN


(2)({2) ∙ AN

(�)({�)

�

3ws�
 

We calculate the marginal phenotype probability for each control similarly, such that the 

joint phenotype probability of all individuals is: 

�(n|M′N, ��, ��, A, ~ = �) 

= 1 < < �(
)({�, {2)
�

3�s�
∙ AN


(2)({2) ∙ AN

(�)({�)

�

3ws�
∈j��i
 

∙ 1 < < [1 − �(
)({�, {2)]
�

3�s�
∙ AN


(2)({2) ∙ AN

(�)({�)

�

3ws�
∈j�h�
 

Consequently, we integrate over mutations occurring on all possible branches to calculate 

the joint phenotype probability conditional on genealogies: 

�(n|M′N, ��, ��, A) = < �(n|M′N, ��, ��, A, ~ = �)�(~ = �) 
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