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ABSTRACT 

 
Over the past several decades, a large body of research has examined how biodiversity 

loss influences the functioning of ecosystems, as well as the cascading impacts on the goods and 

services ecosystems provide to humanity. The relationship between biodiversity and various 

ecosystem-level functions quantified in experiments to date suggests that initial losses of 

biodiversity have relatively small impacts on properties like community biomass production; 

however, beyond some threshold, increasing losses lead to accelerating declines in function. 

Some have questioned whether a saturating relationship between diversity and community 

biomass production is an artifact of overly simplified experiments that manipulate diversity in 

homogeneous conditions over short time-scales in which niche differences may not be realized.  

Others have questioned whether even the modest effects of biodiversity observed in experiments 

would be discernible in natural systems where they could be over-ridden by the stronger 

influence of abiotic factors.   

Here, I used a biogeographic dataset to assess how the taxonomic richness of aquatic 

primary producers relates to community biomass in unmanipulated lake ecosystems, and then 

compared these findings to prior experiments. I used Structural Equations Modeling (SEM) to 

quantify statistical relationships between algal richness and community biomass while 

accounting for covariance with environmental parameters measured in the USEPA's National 

Lakes Assessment (NLA), which sampled 1157 freshwater lakes across the U.S.  These analyses 

converged on a single best-fit model (Χ2 = 0.31, P = 0.58) wherein total community algal 

biomass was a function of three explanatory variables – nitrogen, phosphorus, and algal taxa 

richness.  The quantitative magnitude of the algal diversity (x) - biomass (y) relationship in the 

NLA dataset suggests that experiments to date have, if anything, underestimated the relationship 
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between diversity and biomass production in more natural, unmanipulated systems.  I discuss 

possible implications of this finding to future experimental manipulations and conservation 

strategies.    
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INTRODUCTION  
 

Over the past two decades, accelerating biodiversity loss has led to formation a rapidly 

expanding field of biology that has become colloquially known as the field of Biodiversity and 

Ecosystem Functioning (hereafter, BEF) (Loreau, 2010). The goal of BEF research is to 

understand how biodiversity loss (genes, species, functional traits) impacts the suite of ecological 

processes that collectively control the 'functioning' of ecosystems and, in turn, the services that 

ecosystems provided to humans (Tilman et al., 1999; Naeem et al., 2002).  As of 2009, 

researchers had completed nearly 600 manipulations of species richness for >500 types of 

organisms inhabiting 30 biomes to examine how diversity impacts community and ecosystem-

level processes like resource use and biomass production (Cardinale et al., 2011).  Meta-analyses 

of these experiments have shown that the efficiency of resource use, and production of 

community biomass, increase as a function of species richness (Balvanera et al., 2006; Cardinale 

et al., 2006; Schmid et al., 2009; Cardinale et al., 2011).  However, these same analyses have 

revealed that most ecological processes saturate at relatively low levels of diversity, with half-

saturation constants suggesting the majority of function is achieved by the first 2-4 species 

(Cardinale et al., 2006; Schmid et al., 2009; Cardinale et al., 2011).   

The preponderance of positive, but quickly saturating curves relating biodiversity to 

ecosystem function has led to speculation about whether results from prior BEF experiments 

accurately portray the 'true' effects of biodiversity of the properties of natural ecosystems.  Some 

researchers have argued that these quickly saturating curves might be artifacts of the overly 

simplified conditions of experimental studies (Duffy, 2009; Hillebrand & Matthiessen, 2009).  

While levels of 'realism' vary considerably among experiments, it is noteworthy that the median 

experiment to date has been performed at a spatial scale that is approximately equal to the size of 
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a 5-gallon bucket, and has run for < 1 generation of the focal organisms (Cardinale et al., 2009a; 

Cardinale et al., 2011).  This has led some to hypothesize the true effects of biodiversity might be 

greater than that revealed by experiments (Fig. 1A) because increasing spatial and temporal 

scales should allow for more environmental variation to be realized and, in turn, more of species 

niche differences to be realized (Tylianakis et al., 2008; Duffy, 2009).  Consistent with this 

hypothesis, the limited number of BEF experiments that have been run for many generations do, 

in fact, find that the impacts of biodiversity on community biomass tend to grow stronger 

through time (Cardinale et al., 2007, Stachowicz et al., 2008, Reich et al., 2012).  Furthermore, 

some evidence suggests the effects of biodiversity on community biomass grow stronger as the 

spatial scale of experiments increase (Dimitrakopoulos & Schmid, 2004; Cardinale et al., 2011; 

Griffin & Cardinale, 2013).  

While many have claimed that biodiversity effects should grow stronger in more realistic 

environments with greater spatial and temporal heterogeneity, there is an alternative hypothesis 

that is rarely cited, and which has received far less attention.  Some have argued that, when 

compared to experiments, species diversity should become less important in controlling 

ecosystem properties in natural systems because other environmental variables (nutrients, 

temperature, light, herbivores, etc.) will have far stronger impacts on ecosystem functioning 

(Fridley, 2002; Wardle & Zackrisson, 2005; Grace et al., 2007).  Proponents of this hypothesis 

argue that, while diversity may have significant impacts in more natural systems, those impacts 

will be trivial compared to those of other abiotic controls over ecosystem processes.  In turn, 

diversity effects will be rendered undetectable in anything other than highly controlled, contrived 

experiments. There have been few direct tests of this hypothesis, and for those that do exist, 

conclusions are somewhat mixed.  Grace et al. (2007), for example, found that the relationship 



 

3 
 

between plant diversity and community biomass production in unmanipulated grassland 

ecosystems is weak relative to other environmental variables.  In contrast, Paquette & Messier 

(2011) found that the relationship between tree diversity and annual wood production in forests 

was positive and significant after statistically controlling for other environmental variables that 

influence tree growth.   

Here, I present results from a study that was designed to quantify the relationship 

between species richness of primary producers and community biomass in natural lakes after 

accounting for environmental correlates, and then compare the magnitude of the richness-

biomass relationship to that measured in past biodiversity experiments.  Using a large 

biogeographic dataset of algal diversity and community biomass in freshwater lakes, I 

demonstrate that species richness is positively related to algal biomass, and can be quantified by 

the same power function that is common in experimental manipulations.  The scaling coefficient 

of this power function relating algal richness and biomass is significantly positive, and remains 

so after statistically controlling for a suite of other environmental variables that are also known 

to influence the biomass of primary producers.  But the scaling coefficient quantified for natural 

lake ecosystems in this study is significantly larger than what has been previously quantified in 

experimental manipulations of biodiversity for comparable organisms.  This latter finding is 

most consistent with the hypothesis that experiments underestimate the relationship between 

biodiversity and ecosystem-level properties in natural ecosystems.  If this conclusion holds 

broadly true as more surveys amass in natural systems, then one of the key challenges will be to 

determine what sources of 'realism' are missing from BEF experiments, and how the downward 

bias might be corrected to arrive at a more predictable diversity-function relationship.  
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METHODS 

United States Environmental Protection Agency’s National Lakes Assessment – Overview  

The bulk of data used in this study came from a large observational dataset that was 

collected by the United States Environmental Protection Agency (hereafter, U.S. EPA) referred 

to as the National Lakes Assessment (hereafter, NLA).  The original purpose of the NLA was to 

collect base-line measures of the condition of the U.S.'s lake ecosystems.  To be included in the 

NLA, lakes had to have been a natural or man-made freshwater lake, pond, or reservoir occurring 

in the Continental United States, be greater than 10 acres (4 ha) in area, be at least one meter in 

depth, be accessible by field sampling crews, and have a minimum of a quarter acre of open 

water.  The Great Lakes and the Great Salt Lake were not included in the survey.  Lakes were 

chosen from the National Hydrography Dataset using two methods; 1,033 lakes were chosen 

randomly using a statistical survey design and 124 lakes were chosen as reference lakes, with the 

latter selected non-randomly by the U.S. EPA to represent the ‘least-disturbed’ lakes in the U.S. 

(Fig. 1B).  

Collection of data for the NLA took place during the summer of 2007.  Field sampling 

for each of the lakes was completed in one-day increments by 86 teams composed of two to four 

technicians trained and deployed by the U.S. EPA.  At each lake, the field sampling crew 

followed standardized protocols (publicly available at 

http://water.epa.gov/type/lakes/lakessurvey_index.cfm) to collect samples at the deepest point of 

the lake and at ten different locations around the perimeter.  Data collected on site, such as 

temperature and pH, were entered by field sampling crews into standardized data forms, whereas 

other samples were shipped to common laboratories for additional analyses.  More than 680,000 
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measurements of the chemical, physical, biological, and recreational characteristics of the lakes 

were quantified.   

The U.S. EPA employed a Quality Assurance Project Plan to ensure quality control at all 

levels of the study, from data collection by field sampling crews to standardized and central data 

management.  All water chemistry samples were analyzed at the same laboratory under standard 

operating protocols administered by the U.S. EPA’s Western Ecology Division.  Zooplankton 

and diatom samples were sent to four different laboratories around the country, whereas 

phytoplankton samples were all processed at one laboratory.  Laboratories were audited for 

adherence to the NLA standard operating protocols for benthic processing.  All laboratories were 

subject to internal quality control on sorting and identification using the Integrated Taxonomic 

Information System and external quality control by independent taxonomists contracted to audit 

ten percent of each laboratory’s samples.  Analyzed data were organized and entered into a series 

of spreadsheets that are publically available at http://water.epa.gov/type/lakes/NLA_data.cfm.   

National Lakes Assessment – Extraction and Summary of Relevant Variables  

I extracted variables from the U.S. EPA NLA that quantified algal diversity, algal 

biomass, and a suite of environmental variables known to influence algal biomass.  Algal 

richness was taken to be the taxonomic richness in samples taken from a lake (lowest possible 

taxonomic unit, which was usually genus), and biomass was estimated as the summed biovolume 

across all algal species in the sample (log [µm3/L]).  Algal taxon richness and biomass were 

taken from the “Lake Phytoplankton Soft Algae Count Data” spreadsheet and the “Lake 

Phytoplankton Diatom Count Data” spreadsheet.  I further selected ten environmental variables 

from the U.S. EPA NLA to include in analyses, such as measures of nutrients, zooplankton 

diversity and abundance, and water chemistry.  The rationale for including each of these 
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variables in the analyses, the sources of data for each variable, and the mean, variation and range 

of each variable measured in NLA lakes are given in Table 1.   

It is important to note that the NLA dataset only had measures of standing stock biomass 

of algae at a single time point, and that rates of primary production (neither gross nor net) were 

measured in this study.  The spatial extent of this dataset is unrivaled (~1,200 lakes across the 

Continental U.S.), but the large extent prohibited taking measures of biomass at multiple time 

points, or measuring gas exchange rates by phytoplankton in sealed bottles to estimate 

productivity per se.  So it should be kept in mind that my analyses focus on how species richness 

relates to community-level biomass of algae measured at a single point in time across a large 

biogeographic gradient of many lakes.  While the distinction between standing biomass (a stock) 

vs. primary production (a flux) is important, as these do not necessarily respond to diversity in 

the same way (Weis et al., 2007; Power & Cardinale, 2009), it should also be noted that most 

studies of biodiversity-"productivity" relationships actually measure standing stock biomass at a 

single point in time, not primary production (Mittleback et al., 2001; Cardinale et al., 2011). 

Biotic data available from the NLA (zooplankton abundance and richness, algal taxa 

richness, total algal community biovolume) required a good deal of post-processing to be made 

useful for these analyses.  Zooplankton were labeled with their functional feeding group by the 

U.S. EPA.  Only herbivorous zooplankton were included in the dataset.  Zooplankton abundance 

was standardized across sites based on volume (abundance/mL), whereas zooplankton taxa 

richness was calculated by summing the number of taxa present in each lake. Algal taxa richness 

was calculated by summing the taxa richness of algae and the taxa richness of diatoms for each 

site from their respective spreadsheets.  Total algal community biovolume for each site was 

calculated by summing individual taxa biovolume for each site.  Any taxa for which biovolume 
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data was not provided by the U.S. EPA was excluded from the analyses.  In cases for which 

biovolume data was not available for a given sample, but was available for the same taxa 

elsewhere in the dataset, that biovolume was assigned to the given sample.   

Outliers +/- 2 SD from the mean were flagged for additional consideration.  I considered 

characteristics of sites with extreme outliers in attempt to determine whether these were ‘real’ 

data points; however, no outliers were removed from my analyses because I could not find 

adequate biological or methodological evidence to remove any data points.  Distributions of all 

variables were initially screened for linearity, normality, and correlations.  Variables were log-

transformed when necessary to improve the normality of the distributions. 

Variables from Other Sources  

Light was not explicitly measured during the U.S. EPA NLA; yet, its role in 

photosynthesis and primary production is obvious.  Therefore, it was necessary to gather data for 

light intensities from an alternative source.  Data for the monthly average solar radiation incident 

on the surface of the earth was taken from the National Aeronautics and Space Administration 

Atmospheric Science Data Center by entering geographical coordinates and month of sampling 

for each of the 1,157 lakes in the U.S. EPA NLA.  The geographical coordinates for each lake 

were provided in the U.S. EPA NLA.  Monthly average solar radiation incident (kWh m-2 day-1) 

is a direct measure of the light available on the surface of the water (Table 1).   

Analyses – Structural Equations Modeling  

 In the first step of the analyses, I used structural equations modeling (SEM) to quantify 

the relationship between algal taxa richness and algal community biomass while statistically 

controlling for the potential influence of other environmental variables.  The initial model 

included 12 explanatory variables (Table 1, Fig. 2).   While the NLA measured many more 
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variables than this (e.g., land use surrounding sampling sites, maximum depth of sampled lake, 

perimeter of lake, lake trophic condition, etc.), many of the variables have only indirect effects 

on algal biomass, and represent proxies for variables that have a more direct influence on algal 

biomass.  For example, land use does not have a direct effect on algae, but instead, leads to 

changes in nutrient loading, conductivity, and other metrics of water quality that are of direct 

consequence.  I identified 10 explanatory variables from the NLA dataset that are known to have 

direct influence on algal richness or biomass (Table 1), and I specified five covariance paths in 

the initial model (Fig. 2) based on previously documented correlations in the literature.  To 

confirm that the covariance paths predicted from the literature were actually covarying in the 

NLA dataset, I ran a correlation matrix in Rv 2.15.0 and verified that all correlations specified 

based on the literature had P<0.1.  These were included in the initial model (Fig. 2).    For 

example, prior studies have shown that nitrogen and phosphorus loading are highly correlated in 

lakes, and that the two inorganic nutrients have synergistic effects on algal growth that lead to 

more biomass in tandem than individually (Harpole et al., 2011).  In the NLA dataset, the 

correlation between TN and TP was, in fact, strong and statistically significant (r = 0.81, P < 

0.01).  Thus, I included a covariance term between TN and TP in the initial structural equations 

model. 

Beginning with the initial structural equation model (Fig. 2), I used the Lavaan package 

in Rv 2.15.0 (Rossel, 2012) to parameterize the relationship between algal taxa richness and 

algal community biomass while considering the specified covariance terms and the effects of the 

selected environmental variables.  I removed variables that improved the overall goodness of fit 

of the structural equation model by increasing parsimony.  Specifically, I iteratively removed 

pathways with the high P-values from the full model that improved fit (decrease in AIC, 
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RMSEA).  I used the chi-square (χ2) statistic to assess the overall significance of model fits to 

data (P > 0.05) and Akaike Information Criteria (AIC) and root mean square error of 

approximation (RMSEA) to compare models of differing complexity (Akaike, 1974; Grace, 

2006).  In addition, I calculated the Akaike weights to estimate the likelihood that each model 

was the best fit to the observed data, given the suite of models hypothesized (Johnson & Omland, 

2004).   

Analyses – Parameter Comparisons  

After finding the most parsimonious, best-fit Structural Equation Model, I used the 

resulting parameter estimates from that model to compare the quantitative magnitude of the algal 

diversity (x) - biomass (y) relationship in unmanipulated lakes to the magnitude of the 

relationship that has been quantified in prior experimental manipulations of diversity.  I made the 

comparison using the scaling coefficient b from the power function, y=axb where y is algal 

community biomass, and x is algal species richness.  The power function has previously been 

used to summarize this same diversity-function relationship in prior BEF experiments (Cardinale 

et al., 2011).  The power function was the best-fit in only 14% of prior experiments, which 

compares to 53% for the better-fitting Michaelis-Menten function.  However, the power function 

is considerably more flexible than the Michaelis-Menten, and can fit a wider variety of 

functional relationships.  In addition to its greater flexibility, experimental data fit to power 

functions had R-squared values that were similar to the Michaelis-Menten function 

(R2
Power=0.71, R2

MM=0.73) (Cardinale et al., 2011).  Thus, while the power function is not the 

single best fit to prior experimental data, its greater flexibility to fit a variety of datasets coupled 

with its comparable explanatory power makes it useful for my purposes (see the same argument 

used to justify analyses by Reich et al., 2012).  
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For BEF experiments, values for the scaling parameter b were taken from Cardinale et al. 

(2011), which assessed curve fits to 24 experiments.  The average value of b in the selected 

experiments was 0.21 + 0.53 (Cardinale et al., 2011).  The value of b for natural lakes was taken 

directly from my best-fitting SEM.  To calculate values of b in a manner comparable to how they 

are calculated for experiments, I first standardized biomass at each level of richness to that of the 

average monoculture (a = 1) to represent the proportional increase in biomass per increasing 

levels of richness.  In the natural lakes dataset, three lakes had only one algal taxa present; these 

three samples were averaged and taken as the average monoculture. I compared mean b values 

from the literature to the b value extracted from the best-fitting SEM for quantitative 

comparison.  

Variables and Relationships Not Considered  

The single greatest challenge in quantifying diversity-function relationships in natural 

systems is statistically controlling for the myriad of potentially confounding environmental 

variables.  The second greatest challenge is limiting one's search for confounding variables to a 

list that is manageably sized, and which only includes variables that have a direct causal 

influence on the focal relationship of interest (in this case, richness and biomass).  I extracted 

variables from the NLA that have been shown to influence the biomass of aquatic primary 

producers via well-known biological mechanisms (Table 1).  At the same time, I excluded from 

consideration certain relationships or variables for which I could not envision a direct causal 

pathway.  One variable that is prominently missing from my analyses is lake area.  While many 

studies have demonstrated a positive correlation between area and both biodiversity and biomass 

production (Conner & McCoy, 1979; McGuinness, 1984; Lomolino, 2001), it is generally 

understood that area per se is not the direct causal factor.  Rather, area is associated with other 
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factors such as habitat heterogeneity, resource loading, or species population sizes that do 

directly influence biodiversity or ecosystem function (Williams, 1964; Harner & Harper, 1976).  

I recognize that other researchers might have a differing opinion on the utility of surrogates like 

area, so I have included supplemental analyses (see page 36, Supplemental Text) that shows lake 

area has no bearing on the conclusions that follow from my analyses of this dataset.   

It is also worth noting that I specifically chose to examine how biodiversity influences 

biomass, rather than the converse relationship.  I recognize that a large body of historical 

research has examined how the "productivity" of ecosystems influences species diversity 

(Connell & Orias, 1964; MacArthur, 1965).  Even so, recent theoretical and empirical work has 

made it clear that resource supply rates - not actual biomass production - are what influence 

biodiversity by regulating mechanisms of competition and coexistence (Loreau et al., 2001, 

Schmid 2002; Cardinale & Gross, 2007, Cardinale et al., 2009b, Cardinale et al., 2009c).  Yet, 

empiricists routinely quantify standing biomass (which is easy to measure) as a proxy for 

resource supply rates (which are hard to measure), and then they plot richness as a function of 

biomass as if this is a causal relationship.  This model of causality between diversity and biomass 

production is fundamentally incorrect, and is inconsistent with all known ecological theory (see 

Cardinale & Gross, 2007).  Nevertheless, in the supplemental text (see page 41, Supplemental 

Text)  I present analyses in which I contemplate the historically considered direction of causality 

and model algal species richness as a function of algal biomass.  I show that the model in which 

the causal arrow between algal taxa richness and biomass production is reversed (biomass 

production drives algal taxa richness), was a poor fit because the expected and observed 

covariance matrices were significantly different (χ2 = 6.75, P < 0.01).  Thus, the historical 

perspective that productivity drives diversity can be rejected as a viable explanation of the data.      



 

12 
 

RESULTS 
 

The U.S. EPA NLA dataset was characterized by a large amount of variation in algal taxa 

diversity, primary production, and the different environmental parameters, many of which ranged 

by several orders of magnitude.  A total of 1,006 taxa of phytoplankton were identified across the 

1,157 lakes, which ranged from a minimum taxon richness of 22 to a maximum of 85.   Taxa 

representing all major taxonomic groups of freshwater algae were found, including 

Bacillariophyceae, Chlorophyta, Chrysophyta, Cryptophyta, Cyanophyta, Euglenophyta, and 

Pyrrhophyta. The most commonly occurring taxonomic group in the dataset was 

Bacillariophyceae.  Total community biovolume in each lake spanned 7 orders of magnitude (22 

to 1,310,659,599 µm3 biovolume L-1).  The range of the various environmental parameters is 

given in Table 1.  The extreme levels of variation are ideal for purposes of this study, as 

modeling approaches like SEM become increasingly powerful and more reliably quantify 

relationships when variables span a large range. 

Results of the SEM analysis indicate that the initial model (Fig. 2), which included all 

variables and specified covariance terms, was not the best-fit model.  To find the best-fit model, I 

iteratively removed variables to improve the goodness-of-fit between the predicted and observed 

covariance matrices. This led to 15 additional models (Table 2), all of which represented 

alternative hypotheses to explain patterns of covariance in the dataset.  In all models, including 

the initial model presented in figure 2, the pathway between algal taxa richness and total 

community biomass production was positive and significant. The best-fitting model to explain 

total algal community biomass was far more parsimonious that the original model, and included 

just three explanatory variables – total nitrogen, total phosphorus, and algal taxa richness (Fig. 

3).  The strongest predictor of total algal community biomass in this final model was total 
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nitrogen with a standardized partial regression coefficient of 0.26 (P < 0.05).  The standardized 

partial regression coefficient from total phosphorus to total algal community biomass was 0.15 

(P < 0.05), and the standardized partial regression coefficient from algal taxa richness to total 

algal community biomass was 0.23 (P < 0.05).  Additional positive covariance terms existed 

between algal taxa richness and total nitrogen and between total nitrogen and total phosphorus.  

Only the latter of these was statistically significant (P < 0.05).  The best-fit model with total 

nitrogen, total phosphorus, and algal taxa richness (Fig. 3) explained ~21% of the total variation 

in algal community biomass across all 1,157 lakes with a chi-square (χ2) of 0.31 (P = 0.58) and a 

root mean square error of approximation (RMSEA) of 0.07 (P = 0.88).  For theχ2 statistic, a P-

value greater than 0.05 indicates that the expected and observed covariance matrices are not 

significantly different; thus, the hypothesized model cannot be rejected as a viable explanation of 

the data.   

I calculated the Akaike weights of all 16 SEM models, which use the likelihood values to 

compare how probable each model i is as an explanation for the observed data, given the suite of 

models hypothesized.  The Akaike weight for the best-fit model (Fig. 3) was 0.74, indicating that 

the best-fit model in Figure 3 had a 74% chance of being the best fit model for the observed data, 

given the suite of models hypothesized (Table 2).  The second most likely model, which only 

differed in that the covariance term between algal richness and total nitrogen was deleted, had a 

26% chance of being the best fit model for the observed data (Table 2).  All 14 remaining models 

had Akaike weights of 0.00, indicating that they were highly unlikely to be viable explanations 

of the observed dataset (Table 2).    

One surprising result of the model comparison is that several models that included 

variables routinely thought to control algal biomass proved to be inferior explanations of the 
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observed covariance matrix, leading me to reject them as viable explanations of the data.  For 

example, zooplankton taxa richness and zooplankton abundance - both of which can influence 

the magnitude of herbivory on algae, were not retained in my best-fitting models.  This was 

surprising given the wealth of studies demonstrating the role of herbivory on biomass production 

in aquatic ecosystems (Cry & Pace, 1993).  In addition to herbivory, light was also not retained 

in my best-fitting models, which was surprising given the obvious role of light in maintaining 

primary production.   

After identifying the single best-fitting model, I used the parameter values from this 

model to compared the strength of the algal taxa richness (x) - biomass (y) relationship in the 

NLA dataset (Fig. 3) to the strength of relationships documented in prior experiments using the 

power function, y=axb. The unstandardized scaling coefficient b relating biovolume to taxa 

richness from the best-fitting SEM was 0.52 ± 2.41 (note that richness and biomass are both on a 

log scale in the SEM; thus the estimated slope is equal to b from the power function).  

Comparatively, the value of b that has been estimated from past experiments that explicitly 

manipulated the richness of freshwater algae and examined the impacts on biomass production 

was 0.21 + 0.53 (Cardinale et al. 2011).  Thus, the scaling coefficient relating algal biomass to 

diversity in natural lakes (this analysis) exceeds experimental estimates (past estimates) by a 

mean factor of 2.35, suggesting that experiments have potentially underestimated the diversity-

productivity relationship in natural, unmanipulated systems (Fig. 4A).  To understand the 

potential magnitude of underestimation, consider that experiments performed with a maximum 

of 32 species have estimated average polyculture produces a mean 2.07× the biomass of the 

average monoculture (Fig. 4A).  In contrast the average 32-taxa polyculture in the NLA dataset 

produces a mean 6.06× as much biomass as the lowest diversity lakes (Fig. 4A).  The predicted 
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experimental underestimation is relatively small at low levels of diversity loss, but grows 

disproportionately large as diversity loss increases (Fig. 4B).  For example, when 10% of species 

are lost, the potential underestimate by experiments is ~3% (experimental estimates are relatively 

close to the relationship in real lakes) (Fig. 4B).  However, when 50% of species are lost, the 

amount of function predicted to be lost differs by > 16% between prior experiments and real lake 

ecosystems (Fig. 4B).  These results suggest caution may be warranted when attempting to 

extrapolate the results of biodiversity-ecosystem functioning experiments to predict the 

functional role of biodiversity, or the consequences of extinction, in more natural systems.   

 

DISCUSSION 

Over the past two decades, accelerating rates of biodiversity loss, and the growing 

concern about how these losses impact ecosystem functions, have led to an increase in the 

number of experiments focused on understanding how biodiversity impacts ecosystem-level 

processes like community biomass production (Loreau, 2010).  These experiments have provided 

strong evidence that community biomass increases as a function of biodiversity; yet, many of the 

experiments have been completed at relatively small spatial and temporal scales (Cardinale et al., 

2011).  While many have called on researchers to increase the spatial and temporal scales used in 

BEF experiments in order to provide a more ‘realistic’ comparison to natural ecosystems, the 

practical limitations (funding, personnel, experimental control, etc.) to performing large-scale, 

long-term manipulative experiments make it unlikely that we will routinely mimic realistic 

scenarios of extinction any time soon.  As an alternative, some have suggested that we 

complement the expanding number of BEF experiments with analyses of large, observational 

datasets that are representative of unmanipulated ecosystems (Loreau et al., 2001, Cardinale et 
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al., 2011); thus allowing us to compare the results of mechanistic, highly replicated BEF 

relationships performed in relatively simplistic environments to the BEF relationship that occurs 

in more natural ecosystems.  

Several studies have now explicitly used large observational datasets to characterize the 

relationship between biodiversity and various ecosystem-level properties; but the results of these 

studies have proven to be mixed.  Paquette & Messier (2011) used a large observational dataset 

from the Quebec Forest Survey to examine the relationship between tree biodiversity and wood 

production.  They found a significant, positive relationship between tree functional richness and 

forest productivity that was strong even after holding several climactic variables constant.  Mora 

et al. (2011) used a global survey of 1,906 reefs to evaluate the relationship between reef fish 

diversity and standing biomass of reef fishes.  Using structural equation modeling to account for 

the potential influence of environmental, physiographic, and anthropogenic variables, Mora et al. 

(2011) suggested the relationship between fish biodiversity and standing biomass was stronger 

than that documented in prior experiments.  In contrast, Grace et al. (2007) investigated the 

relationship between plant biodiversity and community biomass, while statistically controlling 

for environmental variables in 12 natural grassland systems spanning 4 countries.  Using 

structural equations modeling, they found no significant relationship between plant diversity and 

community biomass in natural grasslands.  Instead, Grace et al. (2007) suggested that producer 

biomass was more consistently and strongly controlled by abiotic variables.   

Findings from this study are most consistent with the proposition that biodiversity's 

impact on community bioamss in natural, unmanipulated systems is stronger than revealed by 

prior experiments (Fig. 1A).  Indeed, the scaling coefficient relating biomass to diversity in 

natural lakes exceeds experimental estimates, suggesting that experiments underestimate the 
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relationship between diversity and community biomass in nature (Fig. 4).  For those who have 

hypothesized diversity has a stronger impact on community biomass in natural ecosystems than 

in controlled experiments, the most common explanation for this proposed difference is that 

natural, unmanipulated ecosystems have more spatial and temporal heterogeneity, and that the 

additional heterogeneity allows more species niche differences to be expressed in unmanipulated 

systems than in relatively homogenous experiments.  This is an assumption that has yet to be 

directly tested or verified in empirical studies of natural systems, and we have no ability to 

determine if this is indeed the underlying cause of a stronger diversity-biomass relationship in 

the NLA dataset.  However, it is worth noting that select experimental studies do suggest that 

diversity effects grow increasingly strong at larger spatial and temporal scales as heterogeneity is 

manifest.  For example, Stachowicz et al. (2008) used a dataset with a temporal scale of three 

years to compare the relationship between macroalgal diversity and community biomass accrual 

in marine intertidal zones, and found that the positive relationship between diversity and 

productivity became stronger over time likely because of facilitation and differential use of the 

heterogeneous environment.  Similarly, Reich et al. (2012) showed that biodiversity effects on 

community production increased through time in two long term studies (<13 years) at the Cedar 

Creek Natural History area, and that this trend occurred because of increasing complementarity 

of species over time.    

A number of variables, such as light and zooplankton abundance, which would have been 

expected to be important drivers of algal biomass production based on studies by others (Hill & 

Knight, 1988; Feminella, 1995; Cry & Pace, 1993), were not included in the best-fit model.  I 

can only speculate on reasons why variables were not significant.  One possible reason for the 

lack of an effect of light could be the relatively course measure that was available for analyses. 
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 Light obtained from NASA represented the total solar radiation incident on a horizontal surface 

at Earth's surface for a given month, with that value representing the average of a 22-year 

collection period. Thus, light intensities did correspond to actual condition on, or immediately 

preceding, the day of sampling for the NLA project, and that may explain why there was no 

signal on this particular date. 

The lack of a signal of zooplankton is perhaps more perplexing given the well known 

influence of grazers on algal biomass and turnover rates in freshwater ecosystems (Cry & Pace, 

1993).  I offer two possible explanations of this lack of a signal.  First, the NLA only had 

measures of zooplankton abundance available, but did not have estimates of biomass. Biomass 

would be a more appropriate measure of the potential influence of herbivores on algal biomass.  

Second, it is plausible that zooplankton influence rates of algal production and turnover, but the 

herbivory does not translate into an influence on standing stock biomass. For example, if an algal 

community is dominated by a large, inedible algal species, zooplankton may not strongly 

influence standing stock biomass.  The turnover of rarer, edible algal species may be influenced 

by herbivory, but standing stock biomass may remain relatively unaffected due to the proportion 

of large, inedible algal species dominating the community.  Unfortunately, measures available in 

the NLA dataset do not allow us to examine these possibilities; as such, I suggest interpreting the 

non-significant impacts of zooplankton (and light) cautiously. 

As with all biogeographic studies, my work has several obvious limitations and 

boundaries.  I address just such limitations here.   First, while this dataset has unrivaled spatial 

resolution (variables from ~1,200 lakes across the Continental U.S. measured in a consistent 

way), all lakes were sampled at just a single time point.  Because the data is only a snapshot of in 

time, I cannot test the temporal dynamics of the relationship between algal taxa richness and 
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community biomass, and cannot rule out the possibility that the data expressed a particularly 

strong relationship between algal richness and biomass at the particular time of sampling. 

 Second, structural equation modeling (SEM) is a means to test hypotheses about multivariate 

causal relationships; in the case of my study, the causal relationship between richness and 

community biomass while accounting for the influence of other environmental variables that 

affect biomass production. But conclusions from these SEMs are only as reliable as the 

hypothesized models.  If the suite of hypothesized models does not contain the 'true' set of causal 

relationships, then my analyses would identify a 'best-fit' model - but one that is fundamentally 

incorrect.  I made every attempt to evaluate a variety of hypothetical models showing how 

variables influence algal biomass; nevertheless, future work should continue to pit new, 

alternative hypotheses against the best fit obtained in Figure 3.  

In conclusion, my study finds that in unmanipulated, heterogeneous ecosystems, 

biodiversity is more strongly related to important ecosystem processes like primary production 

than predicted from two decades of prior BEF experiments.  There have been many hypotheses 

proposed for why the relationship between biodiversity and ecosystem functioning may be 

stronger in natural environments than prior experiments, including that greater spatial and 

temporal heterogeneity in natural environments allows more species niche differences to be 

expressed.  However, as I mentioned above, the use of a large observational dataset such as the 

NLA does not allow me to differentiate between mechanisms that may be causing this stronger 

relationship, and it is important to emphasize that I cannot verify any assumptions as the 

underlying cause of the differences seen in Figure 4. Therefore, in order to more accurately 

inform conservation strategies in unmanipulated ecosystems, BEF experiments may need to 

increase their focus to determining the specific mechanisms that may be driving the stronger 
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relationship between biodiversity and ecosystem functioning that have been observed in a 

diverse number of natural systems.    
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TABLES 
 
Table 1: Description of environmental variables taken from the USEPA NLA and NASA.  The 
asterisk (*) in the units column indicates that the variable was log transformed before use in the 
analysis.   
 

Variable  Units Rationale (Reference) Source Mean + SD, 
(Min, Max) 

     
     

Total Nitrogen  (µg N/L)* 
Important limiting nutrient to primary 
production in freshwater ecosystems 
(Elsner et al., 1990) 

NLA Lake Water 
Quality Data  

1162 + 2154 
(10, 26100) 

     

Total Phosphorus (µg P/L)* 
Important limiting nutrient to primary 
production in freshwater ecosystems 
(Elsner et al., 1990) 

NLA Lake Water 
Quality Data 

107 + 270 
(1, 4679) 

     

Silica (µg SiO2/L)* 

Critical to the growth and ecology of 
diatoms, and may be a  third limiting 
nutrient in systems lacking nitrogen and 
phosphorus (Martin-Jezequel et al., 
2000;  Evans et al., 2011) 

NLA Lake Water 
Quality Data 

8755 + 10630 
(25, 91907) 

     

Growing Days  
Latitude 
(Decimal 
Degrees) 

Latitude intended as a proxy for degree 
days, which are frequently used as a 
measure of growing period, or in the case 
of algae, ice-off period (Weyhenmeyer et 
al. 2013) 

NLA Information for 
Lakes that were 
Sampled  

41 + 5 
(27, 49) 
 

     

Dissolved organic 
carbon  (µg DOC/L)* 

Negatively impacts primary production, 
possibly through shading, of freshwater 
plankton communities (Carpenter et al., 
1998) 

NLA Lake Water 
Quality Data  

8857 + 16846 
(340, 290570) 

     

Zooplankton taxa 
richness 

Lowest 
taxonomic 
unit possible 

Significant influence of consumer 
diversity on rate of herbivory of algal 
biomass (Naeem & Li, 1998) 

NLA Lake 
Zooplankton Count 
Data  

7 + 3 
(0, 18) 

     

Zooplankton 
abundance  (density/mL)* 

Aquatic herbivores remove as much as 
79% of algal primary production (Cyr & 
Pace, 1993) 

NLA Lake 
Zooplankton Count 
Data  

70 + 203 
(0, 2602) 

     

Water temperature  Degrees 
Celsius 

Influences photosynthesis (Davinson, 
1991) as well as lake turnover and 
stratification ( Kalff, 2012) 

NLA Lake Profile 
Data  

21 + 5 
(7, 34) 

     

Conductivity  (µS/cm at 25 
C)* 

Frequently noted environmental variable 
in freshwater algal studies; ions in 
solution may affect algal growth rates 
and uptake of phosphorus ( Tilman et al. 

NLA Lake Water 
Quality Data 

662 + 2455 
(4, 50590) 
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Water pH pH units 

Frequently noted environmental variable 
in freshwater algal studies; hypothesized 
to play a role in nutrient availability and 
uptake of algal species (Tilman et al. 
1982) 

NLA Lake Water 
Quality Data  

8 + 1 
(4, 10) 

     

Light  kWh/m2/day 

Important environmental variable in 
primary production; measured as monthly 
average solar radiation incident 
(kWh/m2/day), which is a direct measure 
of the light available on the surface of the 
water.   

NASA 5 + 1 
(3, 8) 
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Table 2: Summary of 18 SEMs run to determine influences of algal diversity and environmental 
variables on total algal community biovolume.  Models arranged using model identification 
number.  Best-fit model is the first listed.  Models were selected based on significant X2 values 
(P>0.05) and lowest AIC value.  The difference between the model i and the best-fit model (Δi) 
was calculated for each model.  Using these values, the likelihood of a model, mi, given the data, 
y, (L[mi l y]) was calculated as L[mi l y] = exp(-1/2 Δi).  The Akaike weight (wi) was calculated 
using the (L[mi l y]) calculations.  Akaike weight provides a relative weight of evidence for each 
model, and can be interpreted as the probability of model i being the best-fit model of the 
candidate models, given the data. Akaike weight was calculated by normalizing model likelihood 
values (L[mi l y]) across all models. 

 

 

 

Model (mi) df X2
P AIC Δi L (mi l y) wi

community biomass of algae = 
15 f (µg nitrogen/L, µg phosphorus/L, 1.00 0.31 0.58 5952.45 0.00 1.00 0.74

algal taxa richness)

covariance: µg nitrogen/L -- µg
phosphorus/L, µg nitrogen/L -- algal 
taxa richness

community biomass of algae = 
16 f (µg nitrogen/L, µg phosphorus/L, 2.00 4.35 0.11 5954.49 2.04 0.36 0.26

algal taxa richness)

covariance: µg nitrogen/L -- µg
phosphorus/L

community biomass of algae = 
11 f (µg nitrogen/L, µg phosphorus/L, 4.00 42.98 0.00 12932.43 6979.99 0.00 0.00

algal taxa richness, growing period)

covariance: µg nitrogen/L -- µg
phosphorus/L, µg nitrogen/L -- algal 
taxa richness

community biomass of algae = 
12 f (µg nitrogen/L, µg phosphorus/L, 4.00 222.80 0.00 12953.72 7001.27 0.00 0.00

algal taxa richness, temperature)

covariance: µg nitrogen/L -- µg
phosphorus/L, µg nitrogen/L -- algal 
taxa richness

community biomass of algae = 
10 f (µg nitrogen/L, temperature, 4.00 225.50 0.00 18501.55 12549.11 0.00 0.00

algal taxa richness, growing period)

covariance: growing period --
temperature, µg nitrogen/L -- algal 
taxa richness

Model Description
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Model (mi) df X2
P AIC Δi L (mi l y) wi

community biomass of algae = 
14 f (µg nitrogen/L, µg phosphorus/L, 4.00 283.44 0.00 18845.74 12893.30 0.00 0.00

growing period, temperature)

covariance: µg nitrogen/L -- µg
phosphorus/L, growing period --
temperature 

community biomass of algae = 
13 f (µg phosphorus/L, temperature, 5.00 252.80 0.00 19369.95 13417.50 0.00 0.00

algal taxa richness, growing period)

covariance: growing period -- 
temperature 

community biomass of algae = 
9 f (µg nitrogen/L, µg phosphorus/L,  7.00 297.91 0.00 19582.13 13629.69 0.00 0.00

growing period, temperature, algal
taxa richness)

covariance: µg nitrogen/L -- µg
phosphorus/L, µg nitrogen/L -- algal 
taxa richness, growing period --
temperature

community biomass of algae = 
8 f (µg nitrogen/L, µg phosphorus/L, 12.00 367.21 0.00 22349.97 16397.53 0.00 0.00

light, growing period, temperature, 
algal taxa richness)

covariance: µg nitrogen/L -- µg
phosphorus/L, µg nitrogen/L -- algal 
taxa richness, growing period --
temperature

community biomass of algae = 
7 f (µg nitrogen/L, µg phosphorus/L, 17.00 481.13 0.00 24854.30 18901.86 0.00 0.00

light, growing period, temperature,
zooplankton abundance/mL, algal taxa
richness)

covariance: µg nitrogen/L -- µg
phosphorus/L, µg nitrogen/L -- algal 
taxa richness, growing period --
temperature, zooplankton abundance/
mL -- algal taxa richness

Model Description
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Model (mi) df X2
P AIC Δi L (mi l y) wi

community biomass of algae = 
6 f (µg nitrogen/L, µg phosphorus/L, 24.00 732.33 0.00 30634.57 24682.12 0.00 0.00

light, growing period, temperature,
zooplankton abundance/mL,
zooplankton taxa richness, algal taxa 
ricness)

covariance: µg nitrogen/L -- µg
phosphorus/L, µg nitrogen/L -- algal 
taxa richness, growing period --
temperature, zooplankton abundance/
mL -- algal taxa richness

community biomass of algae = 
5 f (µg nitrogen/L, µg phosphorus/L, 32.00 1420.71 0.00 32612.12 26659.67 0.00 0.00

conductivity, light, growing period, 
temperature, zooplankton abundance/
mL, zooplankton taxa richness, algal 
taxa richness)

covariance: µg nitrogen/L -- µg
phosphorus/L, µg nitrogen/L -- algal 
taxa richness, growing period --
temperature, zooplankton abundance/
mL -- algal taxa richness

community biomass of algae = 
4 f (µg nitrogen/L, µg phosphorus/L, pH, 32.00 1172.98 0.00 33235.18 27282.73 0.00 0.00

light, growing period, temperature, 
zooplankton abundance/mL,  zooplankton 
taxa richness, algal taxa richness)

covariance: µg nitrogen/L -- µg
phosphorus/L, µg nitrogen/L -- algal 
taxa richness, growing period --
temperature, zooplankton abundance/mL
-- algal taxa richness

Model Description
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Model (mi) df X2
P AIC Δi L (mi l y) wi

community biomass of algae = 
3 f (µg nitrogen/L, µg phosphorus/L, pH, 40.00 1466.48 0.00 34307.38 28354.93 0.00 0.00

conductivity, light, growing period, 
temperature, zooplankton abundance/mL, 
zooplankton taxa richness, algal taxa
richness)

covariance: µg nitrogen/L -- µg
phosphorus/L, µg nitrogen/L -- algal 
taxa richness, conductivity -- pH,
growing period -- temperature, 
zooplankton abundance/mL -- algal 
taxa richnesss

community biomass of algae = 
2 f (µg nitrogen/L, µg phosphorus/L, µg 50.00 1702.08 0.00 36297.63 30345.18 0.00 0.00

silica/L, pH, conductivity, light, growing 
period, temperature, zooplankton 
abundance/mL, zooplankton taxa richness, 
algal taxa richness)

covariance: µg nitrogen/L -- µg
phosphorus/L, µg nitrogen/L -- algal 
taxa richness, conductivity -- pH,
growing period -- temperature, 
zooplankton abundance/mL -- algal 
taxa richnesss

community biomass of algae = 
1 f (µg nitrogen/L, µg phosphorus/L, µg 61.00 2929.46 0.00 37244.75 31292.30 0.00 0.00

silica/L, µg DOC/L, pH, conductivity,
light, growing period, temperature, 
zooplankton abundance/mL, zooplankton 
taxa richness, algal taxa richness)

covariance: µg nitrogen/L -- µg
phosphorus/L, µg nitrogen/L -- algal 
taxa richness, conductivity -- pH,
growing period -- temperature, 
zooplankton abundance/mL -- algal 
taxa richnesss

Model Description
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FIGURES 
 
Figure 1: A) Positive, but quickly saturating curves of experiments to date (continuous black 
line), and possible outcomes of BEF in real ecosystems (dashed red lines).  Upper dashed red 
line represents hypothesis 1, wherein the diversity is greater in nature than in prior experiments; 
lower dashed red line represents hypothesis 2, wherein the diversity signal is lower in nature than 
in prior experiments. B) Map of the Continental United States with lakes sampled by the USEPA 
noted as red circles; darker circles indicate multiple lakes sampled in a close proximity.      
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Figure 2: Full structural equation model including all variables and specified covariance terms.  
Solid lines with arrow head represent causal pathways.  Dashed lines with dual arrow heads 
represent covariance terms.  The model’s chi-square was 2952.79, and the AIC was 36,874.602 
(P = 0.000).  Variance explained by the model was 0.209.  Analyses were completed in Lavaan 
package in R.  Growing season is measured by latitude (decimal degrees); though growing 
season is usually measured by degree days, latitude is highly correlated with degree days and 
could be log transformed to achieve normality.  Asterisks indicate significant pathways. 
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Figure 3: Best-fit structural equation model.  Solid lines with arrow head represent causal 
pathways.  Dashed lines with dual arrow heads represent covariance terms.  Standardized partial 
regression coefficients are noted first.  Unstandardized partial regression coefficients are noted 
second in parentheses.  Significance is indicated by asterisks.  The model’s chi-square was 0.307, 
and the AIC was 5952.447 (P = 0.580).   Variance explained by the model was 0.209.  Analyses 
were completed in Lavaan package in R.  
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Figure 4: A) Comparison of the scaling coefficient relating biomass to diversity in natural lakes 
and experiments.  Patterns calculated using power function y=axb, where y= standardized 
biomass [B(p)/B(m)], a=1, x=taxa richness, and b=scaling coefficient.  The scaling coefficient 
for experiments is 0.22 and was taken from Cardinale et al. (2011).  The scaling coefficient for 
lakes is 0.52 and was taken directly from our best-fitting SEM.  Taxa richness range is 
intentional; in experiments the maximum level of diversity is usually 32 species.  In the dataset, 
the maximum number level of diversity is 85 species.  B) Comparison of the magnitude of 
underestimation given scaling coefficient and known taxa richness maxima, using the power 
equation described above.   
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SUPPLEMENTAL TEXT 
 
Relationships to Lake Area  
 

I chose to limit my selection of environmental variables to those that have been shown to 

influence biomass production via a direct, known biological mechanism.  As such, I did not 

include area in my analyses, since area is only thought to influence algal richness and biomass 

indirectly via other factors that covary with area.  Nonetheless, I recognize that others may feel 

that area is an important explanatory variable that influences the diversity productivity 

relationship (Dodson et al., 2000, Chase & Leibold, 2002).  I therefore explored the possibility 

that the productivity--diversity relationship was area-dependent using linear regression.  Figure 6 

shows there was no significant relationship between lake surface area and total algal community 

biomass (Fig.6).   

 

 
 
 
Furthermore, I found no significant relationship between lake surface area and algal species 
richness (Fig. 7).   
 
 
 
 
 
 
 
 

Figure 6: Simple linear regression demonstrating 
the influence of area (hectares) on biovolume 
(µm3/L) (p=0.81); both variables were log-
transformed to achieve normality. 
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Given the lack of relationship between area and primary production and area and species 

richness, coupled with the lack of biological meaning of the influence of area on primary 

production, I found no evidence to suggest area should be included in the models.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7: Simple linear regression demonstrating 
the influence of area (hectares) on algal taxa 
richness (p=0.11); both variables were log-
transformed to achieve normality.   
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Nutrients  
 

Multiple theories have postulated how resource supply relates to diversity and 

productivity in ecosystems (Cardinale et al., 2009).  The species energy theory (SET) focuses on 

how the summation of all available resources, such as nitrogen and phosphorus, may limit taxa 

population sizes (Wright, 1983).  As more energy is available in a local community, population 

size of the abundant and rare local taxa increases, and subsequently, there is a reduction in the 

probability of stochastic extinction (Wright, 1983).  SET has been widely used to explain the 

monotonically increasing and the increasing portion of the unimodal relationships between 

diversity and productivity (Cardinale et al., 2009).  In our dataset, we chose to account for 

nitrogen and phosphorus based on their total amounts available in accordance with the SET.   

In addition to SET, resource ratio theory (RRT) can be used to understand the 

relationship between taxa diversity and productivity.  Conversely to SET, RRT is commonly 

used to explain the concave-down relationship between diversity and productivity (Cardinale at 

al., 2009).  RRT is based on the principle that taxa have intrinsic trade-offs in the capture and 

utilization of required resources (nitrogen vs. phosphorus); changes in the ratio of required 

resources drive competition and coexistence within a community, and will ultimately influence 

diversity. Therefore, I felt it necessary to account for the possible influence of nutrient ratios, 

specifically of N:P.   

Given SET and RRT, I felt it pertinent to examine the relationships between nitrogen, 

phosphorus, taxa richness, and productivity more carefully.  I ran simple linear regressions to 

assess concavity, and found that total nitrogen, total phosphorus, and N:P ratio had a significant 

linear relationship with productivity (Fig. 8).    
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I also added a N:P ratio into our best-fitting SEM to assess the role of RRT in this study 

(Fig. 9).   The partial regression coefficient describing the relationship between the N:P ratio and 

total algal community biomass was not significant (P > 0.05).  The SEM model was not 

significant (Χ2 = 32987.673, P = 0.000).   

 

Figure 8: Simple linear regressions demonstrating the influence of total nitrogen (p < 
0.001), total phosphorus (p < 0.001), and N:P ratio on total algal community biovolume (p 
< 0.001). All variables were log-transformed to achieve normality.   
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Figure 9: Best-fitting structural equation model with modification for N:P ratio.  Solid lines with arrow 
head represent causal pathways.  Dashed lines with dual arrow heads represent covariance terms.  Red 
indicates paths that were added to include the N:P ratio.  Standardized partial regression coefficients are 
noted first.  Unstandardized partial regression coefficients are noted second in parentheses.  Significance 
is indicated by asterisks.  The model’s chi-square was 32987.673 (P = 0.000).   Analyses were 
completed in Lavaan package in R. 
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Direction of causal relationship between diversity and community biomass 
 

The question of how taxa diversity relates to the productivity of ecosystems has been 

rigorously pursued in ecology since the time of Darwin.  Historically, differences in biodiversity 

have been viewed as the consequence of changes in productivity, wherein biodiversity is driven 

primarily from differences in resource availability (Mittelbach et al., 2001).  But, over the past 

two decades, there has been a fundamental shift in the approach to the relationship between 

diversity and productivity, and numerous studies have focused on how differences in biodiversity 

may be driving, as opposed to a consequence of, changes in productivity (Cardinale et al. 2011).  

Important steps in understanding how diversity relates to productivity have been hypothesized 

and mathematically modeled (see Loreau et al. 2001; Schmid, 2002; Cardinale & Gross, 2007).  

Mathematical models developed by Cardinale & Gross demonstrated that resource availability 

can drive differences in biodiversity, which can drive resource use and efficiency and biomass 

production (Cardinale & Gross, 2007).   As a result of the volume of experimental, theoretical, 

and mathematical evidence demonstrating differences in biodiversity cause, rather than a 

consequence of, changes in productivity, I chose to model productivity as the dependent variable 

and diversity as an independent variable. 

As an exercise, I reversed the causal relationship between diversity and productivity in 

our best-fitting SEM, while retaining all other relationships (Fig.10).  The resulting SEM is not 

significant (Χ2 = 6.752, P <0.01).   
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Figure 10: SEM identical to our best-fitting SEM, with one modification: the causal relationship 
between algal taxa richness and total algal community biomass has been reversed. Solid lines with 
arrow head represent causal pathways.  Dashed lines with dual arrow heads represent covariance terms.  
The model’s chi-square was 6.752 (P = 0.009).  Analyses were completed in Lavaan package in R.   
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