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Preface

Before discussing the specifics of this thesis, let’s take a moment to explore the idea of a

dynamical system. Suppose you have a pool table, a cue stick and a ball. Place the ball

anywhere on the table, taking note of where you place it. Hit the ball with your cue stick

at a particular angle, with a particular force. The ball will move around the table until it

eventually stops; take note of the new position of the ball. Hit the ball with your cue stick

in the exact same manner as before - with the same angle and force. The ball will move

around the table until it eventually stops; take note of this new position. Continue to do this

process indefinitely, each time adding onto the list of positions the ball attains. The list you

create tells you about the behavior (or dynamics) of the system. Fix a manner in which to

hit the ball; this is a function defined at all possible positions of the ball on the pool table.

By varying the initial position of the ball even slightly, our list of positions that the ball

attains can change dramatically and may demonstrate very different behavior. For instance,

it could happen that where you initially place the ball, after hitting the ball five times it

returns to this initial position; in this case the behavior of the ball is periodic, repeating itself

after 5 iterations. Or it could happen that you position the ball so that after hitting it once

it ends in the exact same position; in this case the position of the ball is fixed. Or you could

position the ball so that each time you hit it, the ball gets closer and closer to a particular

position x on the table, but it never actually reaches that position x; in this case the position

you chose is attracted to x. Or perhaps you place the ball somewhere on the table and when

you hit it, the ball actually does what it is suppose to do and goes through one of the holes

in the table; then the ball has left the system and we can no longer study how the cue stick

acts on the position of the ball. In dynamics, we study the behavior of points under iteration

by a function and characterize these possible behaviors (such as periodic, fixed, or attracted

to a point).

One of the guiding questions behind the study of local (discrete) holomorphic dynamics

is: given a germ f of a holomorphic self-map of Cm that fixes a point (say the origin), can f

be expresed in a simpler form? If so, then the dynamical behavior of the map can be more
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easily understood.

In one dimension, f can be expressed near the origin as:

f(z) = λz + akz
k + ak+1z

k+1 + . . . ,

where k ∈ N and either both k > 1 and ak 6= 0 or f(z) = λz. The local dynamics of f is

well-understood except when |λ| = 1, but λ is not a root of unity. The remaining scenarios

for how f depends on λ can be divided into 3 cases: (1) If |λ| 6= 0, 1, then f is locally

holomorphically conjugate to the linear map z 7→ λz. Hence, the local dynamics in this case

is clear: when |λ| < 1 (or |λ| > 1), points tend towards the origin upon repeated application

of f (or f−1, respectively). (2) If λ = 0 and ak 6= 0, then f is locally holomorphically

conjugate to the map z 7→ zk. Hence, all points near the origin tend towards the origin upon

repeated application of f . (3) If λ is a q-th root of unity, then we can better understand

the local dynamics of f by understanding the local dynamics of f q. In this case, assuming

f(z) 6≡ λz, f is not holomorphically conjugate to a linear map in a full neighborhood of the

origin, however, the dynamics of f in a neighborhood of the origin is still well-understood.

We discuss this case further in §1.1. More information on the topic of local dynamics in one

dimension can be found in [A3, CG, M].

In higher dimensions, f can be expressed near the origin as:

f(z) = P1(z) + Pk(z) + Pk+1(z) + . . . ,

where k ∈ N, Pj is a homogeneous polynomial of degree j ∈ N and either both k > 1

and Pk 6≡ 0 or f(z) = P1(z). The local dynamics of f is much more complicated and less

well-understood in higher dimensions. In this paper, we only consider maps that are tangent

to the identity, which means that P1 ≡ Id and f 6≡ Id. Given additional assumptions on

f , there are several results on the existence of curves, submanifolds, and domains that are

invariant under f and whose points are attracted to the origin upon iteration by f . We

discuss many of these results in §1.2 as well as more recent results in the following chapters

and open questions in Chapters 3 and 4.

In this paper, we focus on the following question: How do different assumptions on f

affect the existence of a domain that is invariant under f and whose points are attracted

to the origin tangentially to a particular direction under iteration by f? In Chapter 1,

we introduce definitions and previous results necessary for understanding the context and

content of the subsequent chapters. In Chapter 2, we show the existence of an invariant

attracting domain for a germ of a holomorphic self-map of C2 whose unique characteristic

direction is non-degenerate. In Chapter 3, we restrict to maps in C2 and discuss results on the

existence of invariant attracting domains. We also introduce examples of maps that do (do
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not) have an invariant attracting domain whose points converge tangentially to a direction,

ask some (currently) open questions on the subject, and concisely summarize (in Table 3.1)

results on the existence of invariant attracting domains in C2. In Chapter 4, we focus on

the existence of invariant attracting domains in Cm, for m ≥ 3. We discuss what results are

known, provide additional examples of maps that do (do not) have such invariant attracting

domains, ask some (currently) open questions on the subject, and concisely summarize (in

Table 4.1) results on the existence of invariant attracting domains in Cm, for m ≥ 3.
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Abstract

One of the guiding questions behind the study of local (discrete) holomorphic dynamics is:

given f , a germ of a holomorphic self-map of Cm that fixes a point (say the origin), can f

be expressed in a simpler form? If so, then the dynamical behavior of the map can be more

easily understood. In general, we want to know how points near the origin behave under

iteration by the map f . More specifically, we want to know when there exists a domain

whose points are attracted to the origin under iteration by f and, if such a domain exists,

when its points converge to the origin tangentially to a given direction. In dimension one,

the Leau-Fatou Flower Theorem shows the existence of such domains. In higher dimensions,

Hakim showed that given some assumptions on f and the direction v, a domain of attraction

whose points converge to the origin tangentially to v does exist. In this thesis, we consider a

collection of maps that do not satisfy the assumptions of Hakim’s theorem. The main result

we discuss is for maps in C2 that have a unique characteristic direction and this direction is

non-degenerate. We show that there exists a domain of attraction whose points converge to

the origin along the characteristic direction and on which the map is conjugate to translation:

(τ, ω) 7→ (τ + 1, ω). When the map is a global automorphism, there exists such a domain

of attraction that is also a Fatou-Bieberbach domain. In addition, we discuss other types

of germs of holomorphic self-maps of C2 or C3 that fix the origin, in each case determining

whether or not there exists an invariant attracting domain whose points converge to the

origin tangentially to the same direction.
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Chapter 1

Introduction to complex dynamics

In this paper, we study holomorphic self-maps of Cm that fix a point and, in particular,

focus on the behavior of points near the fixed point under iteration. We begin by defining

the main object of study.

Definition 1.1. A (discrete) holomorphic local dynamical system at p ∈ Cm is a holomorphic

map f : U → Cm such that f(p) = p, where U ⊆ Cm is an open neighborhood of p.

Notation. Let End(Cm, p) denote the set of all (discrete) holomorphic local dynamical sys-

tems at a point p ∈ Cm. Let f, g ∈ End(Cm, p) be defined on open sets U, V ⊂ Cm,

respectively, that both contain the point p. We say that f and g are in the same equivalence

class if and only if they agree on U ∩ V (i.e., (f, U) ∼ (g, V )⇔ f |U∩V ≡ g|U∩V ).

In order to discuss the dynamics of f ∈ End(Cm, p), we first need to define the iterates of

f and determine where they are defined. Suppose f is defined on U ⊂ Cm with p ∈ U . Then

the second iterate of f is defined on the open set U ∩ f−1(U) containing p and additional

iterates of f can be defined on open sets containing p in a similar fashion.

Definition 1.2. Let f ∈ End(Cm, p) be defined on the open set U ⊂ Cm with p ∈ U . Denote

the n-th iterate of f by fn and the n-th iterate of a point z ∈ U by zn. In particular,

f 1 := f, f 2 := f ◦ f, fn := f ◦ fn−1 = f ◦ · · · ◦ f︸ ︷︷ ︸
n−times

, and zn := fn(z).

The set of points {zn}∞n=0, where z0 := z, is called the orbit of z. In addition, the stable set

Kf of f is:

Kf :=
∞⋂
n=0

f−n(U),

the set of all points on which f and all of its iterates are defined. A point (or its orbit)

escapes from U if z ∈ U \Kf .
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In this paper, we study the set Kf and, in particular, when Kf is open we look for open

subsets of Kf whose points converge to p under iteration. The set Kf is nonempty since

p ∈ Kf ; however, it can happen that Kf has empty interior and even that Kf = {p}.

Example 1.3. Consider the germs f(z) = 2z and g(z) = 1
2
z both defined on Dr := {z ∈

Cm | ||z|| < r} for some 0 < r < ∞. Then fn(z) = 2nz and gn(z) = 2−nz. Eventually for

any point z ∈ Dr \ {0}, fn(z) /∈ Dr and gn(z) ∈ Dr. Hence, Kf = {0} and Kg = Dr. In

other words, the orbit of every point in Dr \ {0} under f escapes from Dr, but the orbit of

every point in Dr under g remains inside Dr and, in fact, converges to the origin.

In order to simplify notation, we shall assume for the remainder of this paper that p is

the origin, O. Near the origin, any f ∈ End(Cm,O) can be expressed as:

f(z) = P1(z) + P2(z) + · · · , (1.1)

where Pj = (P 1
j , . . . , P

m
j ) and each P l

j is a homogeneous polynomial of degree j. In particular,

P1 is the differential of f at the origin, dfO, and f is locally invertible exactly when P1 is

invertible.

Definition 1.4. Let f ∈ End(Cm,O). If all of the eigenvalues of dfO:

• have modulus strictly less than 1, then O is an attracting fixed point;

• have modulus strictly greater than 1, then O is a repelling fixed point;

• are roots of unity, then O is a parabolic fixed point.

Of course there are other types of fixed points, but these three, and primarily the last

one, are the only types of fixed points we discuss in this paper. In Example 1.3, the origin

is a repelling fixed point for f and Kf = {0}, while the origin is an attracting fixed point

for g and Kg = Dr, the open set containing the origin on which g is defined. In general, if

the origin is a repelling fixed point for f ∈ End(Cm,O), then Kf = {O}. Conversely, if the

origin is an attracting fixed point for f ∈ End(Cm,O), then Kf is an open neighborhood of

the origin. When the origin is a parabolic fixed point for f , it is much less clear what Kf ,

the stable set of f , will be and this is what we focus on in this paper. More specifically,

we look at maps that are tangent to the identity at the origin, and, consequently, have the

origin as a parabolic fixed point.

Definition 1.5. A germ f ∈ End(Cm,O) is tangent to the identity if P1 = Id in (1.1). In

addition, if Pk 6≡ 0 and Pj ≡ 0 for 1 < j < k, then k is the order of f .

2



Let f ∈ End(Cm,O) be tangent to the identity of order k defined on U ⊂ Cm, an open

neighborhood of the origin. Near the origin, f can be expressed as:

f(z) = z + Pk(z) + Pk+1(z) + . . . ,

where k > 1, Pk 6≡ 0 and z ∈ Cm.

Definition 1.6. Let f ∈ End(Cm,O) be tangent to the identity.

1. Suppose the orbit of a point z ∈ Cm converges to the origin (zn → O), but does not

reach the origin (zn 6= O, ∀n).

• If m = 1, the orbit converges tangentially to a real direction v if:

zn
|zn|
→ v ∈ S1 ⊂ C.

• If m > 1, the orbit converges tangentially to a complex direction [v] if:

[zn]→ [v] ∈ Pm−1(C),

where [v] is the canonical projection of v ∈ Cm \ {O} to Pm−1(C).

2. A domain D ⊂ Cm is f -invariant if f(D) ⊆ D.

In order to more easily study the dynamics of a map f ∈ End(Cm,O), we would like f

to be expressed in a simple form. Ideally we can conjugate f to a map of a simpler form

whose dynamics can be more easily understood.

Definition 1.7. Let f1 ∈ End(Cm, p1) and f2 ∈ End(Cm, p2). Then f1 and f2 are holo-

morphically (or topologically) locally conjugate if there are open neighborhoods U1 3 p1 and

U2 3 p2 in the domains of f1 and f2, respectively, and there is a biholomorphism (or a

homeomorphism, respectively) φ : U1 → U2 with φ(p1) = p2 such that:

f1 = φ−1 ◦ f2 ◦ φ on φ−1
(
U2 ∩ f−1

2 (U2)
)

= U1 ∩ f−1
1 (U1).

If two maps f1, f2 are locally conjugate, then the local dynamics of one map tells us about

the local dynamics of the other one because:

fk1 =
(
φ−1 ◦ f2 ◦ φ

)k
= φ−1 ◦ fk2 ◦ φ,

for all k ∈ N.

3



Notation. Let || · || denote the standard Euclidean norm so that for z ∈ Cp,

||z|| =

(
p∑
j=1

|zj|2
) 1

2

.

Given f, g1, . . . , gs : Cm → Cn, we shall write f = O(g1, . . . , gs) to mean ∃C1, . . . , Cs > 0

such that:

||f(z)|| ≤ C1||g1(z)||+ · · ·+ Cs||gs(z)||

and we shall write f = o(g1) to mean:

lim
||z||→0

||f(z)||
||g1(z)||

= 0.

1.1. Complex dynamics in dimension one

We shall start by discussing holomorphic local dynamics at the origin in C.

Definition 1.8. Let f ∈ End(C, 0) be tangent to the identity of order k so that near the

origin f has the form:

f(z) = z
(
1 + akz

k−1 + . . .
)
, where k > 1 and ak 6= 0.

1. An attracting (or repelling) direction for f at the origin is v ∈ S1 ⊂ C such that akv
k−1

is real and negative (or positive, respectively).

2. The basin centered at an attracting direction v is:

Bf,v ≡

{
z ∈ Kf \ {0}

∣∣∣∣∣fn(z)→ 0,
fn(z)

|fn(z)|
→ v

}
.

3. An attracting petal centered at an attracting direction v is an open, simply-connected

f -invariant set P ⊆ Kf \ {0} such that a point z ∈ Bf,v if and only if {fn(z)}∩P 6= ∅.

We can easily extend these definitions to repelling directions because a repelling direction

direction for f is an attracting direction for f−1. Hence, a repelling petal for f centered at

a repelling direction v is an attracting petal for f−1 centered at v.

The following theorem, often called the Leau-Fatou Flower Theorem, completely de-

scribes the local dynamics of f near the origin. In addition, it can be extended to maps with

a parabolic fixed point.[CG, M].

Theorem 1.9 (Leau-Fatou). Let f ∈ End(C, 0) be tangent to the identity of order k. Then:

4



(i) f has k − 1 attracting directions and k − 1 repelling directions.

(ii) For each attracting (or repelling) direction, there exists an attracting (or repelling)

petal, so that the union of all of these 2(k − 1) petals together with the origin forms a

neighborhood of the origin.

(iii) Kf \{0} is the (disjoint) union of the basins centered at the k− 1 attracting directions.

(iv) If B is a basin centered at one of the attracting directions, then there exists a function

ϕ : B → C that conjugates f |B to translation, i.e. ϕ◦f(z) = ϕ(z) + 1 for all z ∈ B. In

addition, if B is a petal as in (ii), then ϕ|B is a biholomorphism with an open subset

of the complex plane containing a right half-plane.

In Figure 1.1, we see a depiction of the local dynamics of f(z) = z − z3 = z(1 − z2) as

described by the Leau-Fatou Flower Theorem. The attracting (or repelling) directions of f

are the positive and negative sides of the real (or imaginary) axis. Centered at each of the

two attracting directions, there is an attracting petal; similarly, centered at each of the two

repelling directions, there is a repelling petal. Points inside each attracting (or repelling)

petal approach the origin along their central axis upon repeated application of f (or f−1,

respectively). Together with the origin, the four petals form a complete neighborhood of the

origin.

Figure 1.1: Leau-Fatou Flower for f(z) = z − z3

Some of the techniques used to prove the Leau-Fatou Flower Theorem are also used to

prove similar higher dimensional results; for instance, some of the techniques are used in the

proofs of the main results of Chapter 2. We give an idea of the proof below, focusing on

those relevant techniques. For a more detailed proof, see [A3, CG, M].
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Proof. (Sketch) Assume f has order 2; this assumption simplifies some of the steps of the

proof without significantly changing any of the techniques. In addition, assume that a2 = −1,

which is the case after a linear conjugation. Then

f(z) = z − z2 + O(z3) = z(1− z + O(z2))

has an attracting direction along the positive real axis and a repelling direction along the

negative real axis. These directions along with the corresponding attracting and repelling

petals are depicted in Figure 1.2.

Figure 1.2: Leau-Fatou Flower for f(z) = z (1− z + O(z2))

First of all, we want to find an attracting petal for f . For any δ > 0, let Pδ be the disc

centered at δ with the origin in its boundary, so that:

Pδ :=
{
z ∈ C

∣∣ |z − δ| < δ
}
.

It turns out that for δ small enough, Pδ is an attracting petal for f .

In our first coordinate change, we move the fixed point at the origin in C to infinity in

P1(C). Let Ψ : C \ {0} → C \ {0} be:

Ψ(z) :=
1

z
.

Then Ψ is a biholomorphism, Ψ−1(w) = 1
w

, and Pδ maps onto the right half-plane:

Hδ := Ψ(Pδ) =

{
w ∈ C

∣∣∣ Re(w) >
1

2δ

}
.

We want to define f in our new coordinates, w = 1
z
. Since f is a germ defined in

a neighborhood of the origin, for a small ε > 0, f will be defined on the disc D(0, ε) of

6



radius ε centered at the origin. Hence, for |w| large enough, f is defined at Ψ−1(w). Let

F := Ψ ◦ f ◦Ψ−1, which is defined for |w| > ε−1. Then:

F (w) =

(
1

w

(
1− 1

w
+ O

(
1

w2

)))−1

= w + 1 +
b

w
+ O

(
1

w2

)
, (1.2)

for some b ∈ C. We can study the dynamics of F in a neighborhood of ∞ to learn about

the dynamics of f in a neighborhood of the origin.

If δ > 0 is small enough, then for any w ∈ Hδ and n ≥ 1,

Re(F (w)) > Re(w) +
1

2
⇒ Re(F n(w)) > Re(w) +

n

2

and

|w|+ 2 > |F (w)| > 1

2
⇒ |w|+ 2n > |F n(w)| > n

2
.

Hence, Hδ is F -invariant and F n(w)→∞ in Hδ as n→∞. Consequently, Pδ is f -invariant

and fn(z)→ 0 in Pδ as n→∞. Furthermore, we can show that the attracting direction for

f is along the positive real axis by showing that fn(z)
|fn(z)| → 1 in Pδ as n→∞ or, equivalently,

that Arg(F n(w)) → 0 as n → ∞. After looking at (1.2), it should not be surprising that

limn→∞Arg(F n(w)) = 0, so we will not go through the details here.

Since Pδ is a simply connected domain centered along the positive real axis with the

origin in its boundary, every orbit converging to the origin along the positive real axis must

intersect Pδ. Hence, Pδ is an attracting petal. A repelling petal can be found in the same

way as the attracting petal.

Now we have seen that f on Pδ is conjugate to F (w) = w + 1 + b
w

+ O
(

1
w2

)
on Hδ and

we want to finish by showing that both are conjugate to translation ζ 7→ ζ + 1. Let

φn(w) := F n(w)− n− b log n,

for any w ∈ Hδ and n ≥ 1. We want to show that the sequence of univalent (i.e. injective

and holomorphic) functions {φn} converges to a univalent function φ.

We can also express φn(w) as:

φn(w) = w + (φ1(w)− w) +
n−1∑
k=1

(φk+1(w)− φk(w)) , (1.3)

for any w ∈ Hδ and n > 1. Then

φk+1(w)− φk(w) = F k+1(w)− F k(w)− 1− b (log(k + 1)− log k)

=
b

F k(w)
+ O

(
1

F k(w)2

)
− b log

(
1 +

1

k

)
=

b

kF k(w)

[
k − F k(w)

]
+ O

(
1

k2

)
= O

(
1

k

)
,
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since 1
Fk(w)

= O
(

1
k

)
, and

|φn(w)− w| ≤ |φ1(w)− w|+
n−1∑
k=1

|φk+1(w)− φk(w)| = O(log n)

for any w ∈ Hδ and n > 1. Combining these two results with (1.3), we get:

φk+1(w)− φk(w) =
−b

kF k(w)
[φk(w) + b log k] + O

(
1

k2

)
= O

(
log k

k2

)
.

Hence,
∑∞

k=1 |φk+1(w)− φk(w)| <∞. In addition, for any w ∈ Hδ and n ≥ 1,

φn ◦ F (w) = F n+1(w)− n− b log n = φn+1(w) + 1 + b log

(
1 +

1

n

)
.

Therefore the univalent functions {φn} converge to a function Φ and their limit is non-

constant since Φ ◦ F (w) = Φ(w) + 1 for all w ∈ Hδ, so Φ is also univalent. Thus, Φ

conjugates F to translation, Φ ◦ F ◦ Φ−1(ζ) = ζ + 1, and Φ ◦ Ψ conjugates our original

function f to translation:

(Φ ◦Ψ) ◦ f ◦ (Φ ◦Ψ)−1(ζ) = ζ + 1.

In the following diagram, we summarize the coordinate changes we performed to show

that f is conjugate to translation on Pδ. Recall that f is defined on D(0, ε) ⊃ Pδ and F is

defined on C \ D (0, ε−1) ⊃ Hδ. Let i be the inclusion map.

D(0, ε) \ {0}
Ψ

z 7→ 1
z

- C \ D
(
0, ε−1

)

Pδ= {|z − δ| < δ}

i

6

Ψ
- Hδ =

{
Re(w) >

1

2δ

}i

6

Φ
- Φ (Hδ)

Pδ

f

? Ψ
- Hδ

F

? Φ
- Φ (Hδ)

ζ 7→ ζ + 1

?

Now we want to enlarge the size of our attracting petal Pδ and the corresponding repelling

petal so that they together with the origin form a neighborhood of the origin on which f is

defined. Since Ψ is already defined on C \ {0} and f is defined and expressed as above in a

whole neighborhood of the origin, F can easily be extended to a larger domain. From (1.2),

we know that there exist constants R,C > 0 such that

|F (w)− w − 1| ≤ C

|w|
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for any |w| > R. Given 0 < α < 1, choose δ > 0 such that |w| > 1
2δ

implies:

|F (w)− w − 1| ≤ α

2
.

Let Mα :=
√

1+α2

2δ
and extend Hδ =

{
w ∈ C

∣∣∣ Re(w) > 1
2δ

}
to:

Hα := {w ∈ C | α| Im(w)| > −Re(w) +Mα} ∪Hδ.

Then for any w ∈ Hα we have

Re(F (w)) > Re(w) + 1− α

2
and | Im(F (w))− Im(w)| < α

2
.

One can easily check that F (Hα) ⊂ Hα and every orbit starting in Hα eventually enters Hδ.

Then Pα := Ψ−1(Hα) ⊃ Pδ is an enlarged attracting petal for f .

We can extend the domain of definition of Φ to any domain Ω on which F is defined and

satisfies both:

F (Ω) ⊆ Ω and Re(F n(w))→ +∞, ∀w ∈ Ω,

since then we know that F n(w) ∈ Hδ for some n ∈ N. In particular, we can extend the

domain of definition of Φ to Hα. We do so by rearranging and adjusting the equation

Φ ◦ F (w) = Φ(w) + 1 to get:

Φ(w) := Φ ◦ F n(w)− n

for any w ∈ Hα, where n ∈ N such that F n(w) ∈ Hδ. �

Understanding the ideas and techniques used to prove the previous theorem is key to

understanding the proofs of similar results in higher dimensions. In particular, we will be

revisiting many of them to prove results in Chapter 2.

1.2. Complex dynamics in higher dimensions

Generalizing the concepts behind the Leau-Fatou Flower Theorem (Theorem 1.9) is a driving

force behind the study of holomorphic self-maps of Cm that are tangent to the identity.

There are two main objects that arise in the Leau-Fatou Flower Theorem: (1) the attracting

directions, which correspond to real lines, and (2) the invariant attracting petals. The idea

of attracting directions in C is generalized to characteristic directions in higher dimensions,

which correspond to complex lines.

Definition 1.10. Let f ∈ End(Cm,O) be tangent to the identity of order k.

1. If v ∈ Cm \ {O} is such that Pk(v) = λv for some λ ∈ C, then [v] is a characteristic

direction of f , where [v] is the canonical projection of v in Pm−1(C).
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2. A characteristic direction [v] is degenerate if λ = 0 and non-degenerate if λ 6= 0.

3. f is dicritical if all directions are characteristic, otherwise f is non-dicritical.

4. A characteristic trajectory for f is an orbit of a point z in the domain of f , such that

{zn} := {fn(z)} converges to the origin tangentially to the direction [v] ∈ Pm−1(C),

that is:

lim
n→∞

zn = 0 and lim
n→∞

[zn] = [v].

The value of λ ∈ C is relevant only in that it is either zero or nonzero.

Remark 1.11. It is easy to check that f is dicritical if and only if Pk ≡ Λ Id, where Λ :

Cm → C is a homogeneous polynomial of degree k − 1. In the generic case, f has finitely

many characteristic directions; more precisely, in the generic case f has km−1
k−1

characteristic

directions counted with multiplicity (see [AT]).

The idea of invariant attracting petals in C is generalized to Cm in two main ways:

parabolic curves and invariant attracting domains. This paper will focus on the latter, but

will address the former first. Characteristic directions play a prominent role in both cases.

Proposition 1.12 (Hakim, [H1]). Let f ∈ End(Cm,O) be tangent to the identity, and let

{zn} be a characteristic trajectory tangent to the direction [v] ∈ Pm−1(C) at the origin. Then

[v] is a characteristic direction of f .

We can also think about characteristic directions in another way, by considering the

lift f̃ of f to the blowup of the origin in Cm. Let f ∈ End(Cm,O) be tangent to the

identity of order k with characteristic direction [v] and assume, without loss of generality,

that [v] = [1 : uo]. Let π : M → Cm be the blowup of the origin, and let E = π−1(O) be

the exceptional divisor of the blowup, which is canonically biholomorphic to P(TOCm), or

Pm−1(C). Then characteristic directions of f are points in the blowup. Since f is tangent to

the identity, the holomorphic lift f̃ = π−1 ◦ f ◦ π of f to M restricts to the identity map on

E (i.e. f̃ |E = Id : E → E) and π|M\E : M \ E → Cm \ {0} is a biholomorphism.

To better understand the dynamics of f , we will study the dynamics of the lift f̃ . Recall

that, near the origin, f(z) = z + Pk(z) + Pk+1(z) + . . ., where Pk 6≡ 0 and Pl := (pl, ql) :

Cm → C× Cm−1 are homogeneous polynomials of degree l. Choose local coordinates (x, u)

on M \ E so that

π(x, u) = (x, ux) := (x, y) ∈ C× Cm−1.

In these coordinates, the lift f̃ can be expressed as:

x1 = x
(
1 + pk(1, u)xk−1 + O(xk, ||u||xk)

)
(1.4)

u1 = u+ r(u)xk−1 + O(xk, ||u||xk),
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where

r(u) := qk(1, u)− pk(1, u)u

and u1 was simplified from:

u1 =
y1

x1

=
u+ xk−1(qk(1, u) + O(x, ||u||x))

1 + xk−1(pk(1, u) + O(x, ||u||x))
= u+ (qk(1, u)− pk(1, u)u)xk−1 + O(xk, ||u||xk).

The characteristic directions of f of the form [v] = [1 : uo] correspond to points in E and

are precisely the zeros of r:

[1 : u] characteristic direction ⇔ Pk(1, u) = λ(1, u)⇔ qk(1, u) = upk(1, u)⇔ r(u) = 0,

which gives us another way of viewing characteristic directions.

Now assume that the characteristic direction [v] = [1 : uo] is non-degenerate, so pk(1, uo) 6=
0. Let

A(v) :=
1

(k − 1)pk(1, uo)
r′(uo)

be a matrix associated to the characteristic direction [v] of f . The class of similarity of

A(v) is invariant under a change of coordinates of f by formal power series (see Prop. 2.4

of [H2] or Prop. 4.7 of [AR]). Hence, the eigenvalues of A(v) are holomorphic (and formal)

invariants associated to [v].

In addition, assume, without loss of generality, that uo = 0. We can further simplify our

expression for f by using Lemma 4.4 in [AR] (also in [H2]), which tells us that there is a

polynomial change of coordinates holomorphically conjugating f to a germ F := (F1,Ψ) of

the form:

x1 = F1(x, u) = x

(
1− 1

k − 1
xk−1 + O

(
||u||xk−1, x2k−2

))
(1.5)

u1 = Ψ(x, u) = u− xk−1 1

(k − 1)pk(1, 0)
r(u) + O(xk, ||u||xk),

where we relabeled our new coordinates (x, u). By using the Taylor series expansion for r

about 0, we can rewrite u1 as:

u1 = Ψ(x, u) = u− xk−1 1

(k − 1)pk(1, 0)
r′(0)u+ O

(
||u||2xk−1, ||u||xk, xk

)
,

where r(0) = 0 since [1 : 0] is a characteristic direction of f . Then F is of the form:

x1 = F1(x, u) = x

(
1− 1

k − 1
xk−1 + O

(
||u||xk−1, x2k−2

))
(1.6)

u1 = Ψ(x, u) = (I − xk−1A)u+ O
(
||u||2xk−1, ||u||xk

)
+ xkψ1(x),
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where I is the identity matrix, A := A(v), and ψ1 is holomorphic. Since A is invariant under

a formal change of coordinates, we can assume that A is in Jordan normal form. Now that we

have expressed f in a simpler form, we return to the topic of generalizing invariant attracting

petals in C to parabolic curves and invariant attracting domains in higher dimensions.

Definition 1.13. Let f ∈ End(Cm,O) be tangent to the identity. A parabolic curve for f

is an injective holomorphic map φ : ∆→ Cm \ {O} such that:

1. ∆ is a simply connected domain in C with 0 ∈ ∂∆,

2. φ is continuous at the origin and φ(0) = O,

3. φ(∆) is f -invariant and
(
f |φ(∆)

)n → O uniformly on compact subsets as n→∞.

In addition, if [φ(ζ)]→ [v] in Pm−1(C) as ζ → 0 in ∆, then φ is tangent to the direction [v].

Theorem 1.14 (Ecalle, [E]; Hakim, [H2]). Let f ∈ End(Cm,O) be tangent to the identity

of order k. Then for any non-degenerate characteristic direction [v] ∈ Pm−1(C) there exist

(at least) k − 1 parabolic curves for f tangent to [v].

Abate in [A1] extended this result to maps with an isolated fixed point at the origin.

Theorem 1.15 (Abate, [A1]). Let f ∈ End(Cm,O) be tangent to the identity of order k

and such that the origin is an isolated fixed point. Then there exist (at least) k− 1 parabolic

curves for f at the origin (tangent to some singular direction).

We will not define a singular direction here, but it is helpful to know that for a map

f ∈ End(Cm,O) that is tangent to the identity, non-degenerate characteristic directions

of f must be singular directions of f which, in turn, must be characteristic directions of f .

Furthermore, singular directions are particularly interesting types of characteristic directions

because if f ∈ End(Cm,O) has a non-trivial orbit converging to the origin tangentially to a

direction [v] ∈ Pm−1(C), then [v] must be singular [A3]. This is an extension of Proposition

1.12.

We give an outline of the main ideas of the proof of Theorem 1.14 below. For a detailed

proof, see [H2, AR].

Proof. (Sketch) Assume that [v] = [1 : O] and k = 2 to simplify the discussion. Conjugate

f to F as in (1.6). We want to find a parabolic curve for F that is tangent to the direction

u = O. In particular, we want to find a holomorphic function µ defined on an open set

U ⊂ C with 0 ∈ ∂U such that:

µ : U → Cm−1, µ(0) = O, µ′(0) = O, and µ(F1(x, µ(x))) = Ψ(x, µ(x)).
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If we find such a function, then φ(x) := (x, µ(x)) will be an F -invariant holomorphic curve:

F ◦ φ(x) = (F1(x, µ(x)),Ψ(x, µ(x))) = φ (F1(x, µ(x))) .

There are three key steps to finding µ as above. The first step is to find a change of

coordinates that simplifies the expression for u1 so that the pure x term is of arbitrarily high

order. It is possible to do so in a domain with the origin in its boundary, but we will not go

into the details here. This coordinate change is performed and the coordinates are relabeled

(x, u).

The second step is to prove the existence of a parabolic curve for f by finding a fixed

point of a suitable operator between Banach spaces. This involves performing the following

coordinate change:

u := xAw = exp(A log x)w,

which is defined for Re(x) > 0 and the new coordinates are (x,w). In addition, we define:

H(x, u) := xA(w − w1) = u− xAx−A1 u1

so that:

w1 = w − x−AH(x, u).

Given a map µ(·) := x2l(·), where l is defined on a particular domain in C, the iterates {xn}
defined by:

xj+1 := fµ(xj) := F1(xj, µ(xj))

are well-defined on that domain. With this µ, the operator:

Tµ(x) := xA
∞∑
n=0

x−An H(xn, µ(xn))

is well-defined. Restricting the domain of definition of T , we obtain that T is a continuous

contraction, thus admitting a unique fixed point, µ. The third (and final) step is proving

that the fixed point µ is a solution to:

µ(F1(x, µ(x)) = Ψ(x, µ(x)) and lim
x→0

µ(x) = lim
x→0

µ′(x) = O .

Therefore φ = (Id, µ) is a parabolic curve for f tangent to [v] = [1 : O]. �

Given f as in (1.6), we mentioned in the previous proof that we can perform a coordinate

change in a domain with the origin in its boundary to make the pure x term in u1 of arbitrarily

high order (see [H2, AR]). Then, by using this coupled with the existence of parabolic curves

for f from Theorem 1.14, we can perform a change of coordinates to remove the pure x term
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in our expression for u1 on a reduced domain, Sjr,c (defined below). After performing this

coordinate change, we rename F to be the new map and (x, u) to be the new coordinates.

Then (x1, u1) := F (x, u) can be expressed as:

x1 = F1(x, u) = x

(
1− 1

k − 1
xk−1 + O

(
||u||xk−1, x2k−2 log x

))
(1.7)

u1 = Ψ(x, u) =
(
I − xk−1A

)
u+ O

(
||u||2xk−1, ||u||xk log x

)
,

where

(x, u) ∈ Sjr,c =
{

(x, u) ∈ C× Cm−1
∣∣∣ x ∈ Πj

r, ||u|| ≤ c
}

for r, c > 0, j ∈ {1, . . . , k − 1}, and Πj
r a connected component of Dr :=

{∣∣xk−1 − r
∣∣ < r

}
.

Now that we have discussed the existence of parabolic curves for f and used such curves

to simplify our expression for f , we turn to the main topic of this paper, the existence of

invariant attracting domains for f .

Given a map f ∈ End(Cm,O) that is tangent to the identity and of order k ≥ 2,

the existence of invariant attracting domains for f depends significantly on characteristic

directions of f and, for non-degenerate characteristic directions, their directors. Directors

are defined for non-degenerate characteristic directions, so for now assume that [v] = [1 : uo]

is a non-degenerate characteristic direction of f . We provide two equivalent definitions of

directors corresponding to the direction [v], the second of which requires the following set-up.

Assuming ||u|| is small and remains small after iteration, we know from (1.6) or (1.7)

that:

x1 ≈ x

(
1− 1

k − 1
xk−1

)
.

This expression only involves one variable, so we can use the one-dimensional results from

the previous section (in particular, Theorem 1.9) to understand the behavior of the iterates

of x. If x ≈ Re(x) and 0 < Re(x) � 1, then |x1| < |x| and for j > 0 the same expressions

hold, so xj ≈ Re(xj) and 0 < Re(xj) � 1. In addition, as we saw in the proof of Theorem

1.9, limn→∞ xn → 0. The expression for u1 is more complicated, but from (1.6) or (1.7) one

would expect A = A(v) to play a significant role in the behavior of the iterates of u. To

better understand how, view u1 as:

u1 ≈ (I − xk−1A)u.

Again assume that x ≈ Re(x) and 0 < Re(x) � 1. From this simplified model, we can get

an idea of how the eigenvalues of A would affect the size of ||u1||. If the eigenvalues of A have

positive real parts, it seems likely that ||u1|| < ||u||; if the eigenvalues of A have negative

real parts, it seems likely that ||u1|| > ||u||. However, if some or all of the eigenvalues of A
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have real parts equal to zero, then we cannot use this simplified expression to get an idea of

how the iterates of u behave; for the majority of this paper, we focus on this situation. Now

we have sufficient background and motivation to define the directors of a non-degenerate

characteristic direction.

Definition 1.16. Let f ∈ End(Cm,O) be tangent to the identity of order k with non-

degenerate characteristic direction [v]. The eigenvalues of the linear operator:

1

k − 1

(
D(Pk)[v] − Id

)
: T[v]Pm−1(C)→ T[v]Pm−1(C)

are the directors of [v]. Equivalently, the eigenvalues of A = A(v) associated to [v] are the

directors of [v]. The direction [v] is called attracting if all the real parts of its directors are

strictly positive.

In general, for dimension m > 1, results on the existence of invariant attracting domains

for f along a particular direction have mostly depended on the directors corresponding to

that direction. The following theorem is a major result in that area:

Theorem 1.17 (Hakim, [H1]). Let f ∈ End(Cm,O) be tangent to the identity of order

k ≥ 2, and let [v] be a non-degenerate attracting characteristic direction. Then there exists

an invariant attracting domain D, with the origin in its boundary, in which every point is

attracted to the origin tangentially to the direction [v], and such that the restriction of f to

D is conjugate to translation: (τ, ω) 7→ (τ, ω + 1).

Given the same assumptions on f as in the previous theorem, Hakim also proved the

existence of k − 1 invariant attracting domains associated to [v]. For a detailed proof, see

[AR, Theorem 1.2].

Theorem 1.18 (Hakim, [H2]; Arizzi-Raissy, [AR]). Let f ∈ End(Cm,O) be tangent to the

identity of order k ≥ 2, and let [v] be a non-degenerate attracting characteristic direction.

Then there exist k− 1 invariant attracting domains, each with the origin in its boundary, in

which every point is attracted to the origin tangentially to the direction [v].

The previous two theorems showed the existence of invariant attracting domains for non-

degenerate attracting characteristic directions. The following corollary [AR, Corollary 8.11]

dictates what the directors must be in order for an invariant attracting domain to possibly

exist along a non-degenerate characteristic direction:

Corollary 1.19. Let f ∈ End(Cm,O) be tangent to the identity of order k ≥ 2, and let [v]

be a non-degenerate characteristic direction. If there exists an invariant attracting domain
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where all the orbits converge to the tangentially to the direction [v], then all of the directors

of [v] must have non-negative real parts.

The following theorem lies in the middle ground between Theorem 1.14, which dictates

the existence of invariant curves, and Theorem 1.17, which dictates the existence of invariant

attracting domains when all of the directors have strictly positive real parts. In particular,

it discusses the existence of invariant manifolds in the situation where the characteristic

direction might not be attracting.

Theorem 1.20 (Hakim, [H1]). Let f ∈ End(Cm,O) be tangent to the identity of order

k ≥ 2, and let [v] be a non-degenerate characteristic direction. Assume that the directors

associated to [v] are divided into two sets {λj}1≤j≤q and {µk}1≤k≤l in such a way that for

some α > 0, we have:

Reλj > α > Reµk for all j, k.

Let dj be the multiplicity of λj, and let d := d1 + . . .+dq. Let E be the sum of the generalized

eigenvector space associated to the λjs. Then there exists an invariant piece of analytic

manifold of dimension d+ 1, with the origin in its boundary, tangent to CV + E at O, and

in which every point is attracted to the origin tangentially to the direction [v].

Brochero Mart́ınez show that when the origin is dicritical (i.e., all directions are charac-

teristic directions) there is an invariant attracting domain whose points are attracted to the

origin, but such a domain might not be tangential to any characteristic direction.

Theorem 1.21 (Brochero Mart́ınez, [Bro2]). Let f ∈ End(Cm,O) be tangent to the identity,

and let the origin be dicritical. Let π : (M,E)→ (Cm,O) be the blowup of the origin in Cm

with E = π−1(O), and let f̃ ∈ End(M,E) be the lift of f to the blowup. Then there exists a

finite number of points p1, . . . , pl ∈ E and open sets U+, U− ⊂M such that:

• U+ ∪ U− ⊃ E \ {p1, . . . , pl},

• f̃(U+) ⊂ U+ and for all q ∈ U+, limn→+∞ f̃
n(q) exists and is a point of E, and

• f̃−1(U−) ⊂ U− and for all q ∈ U−, limn→+∞ f̃
−n(q) exists and is a point of E.

In this paper we address the following question that naturally arises from the preceding

results. Let f ∈ End(Cm,O) be tangent to the identity of order k ≥ 2, let [v] be a non-

degenerate characteristic direction, and let the origin be non-dicritical: If the real part of the

directors of [v] are non-negative and at least one of them equals zero, under what conditions

does f have an invariant attracting domain tangential to the direction [v]? Another natural

question to ask, although we do not address it much in this paper, is: If [v] is degenerate,
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under what conditions does f have an invariant attracting domain tangential to the direction

[v]? Vivas showed similar results to Theorem 1.17 for maps with specific types of degenerate

and non-degenerate characteristic directions in dimension 2 [V2, Theorems 1 and 2]. In fact,

working independently at around the same time, Vivas and the author showed the existence

of invariant attracting domains whose points converge tangentially to a particular direction

for an overlapping collection of maps [L, V2]. The assumptions that Vivas makes require

additional definitions, so we wait to state these results until §2.6 and Chapter 3.

The two main results in Chapter 2 are Theorem A, a local result, and Theorem B, a

global extension of Theorem A. Recall from Remark 1.11 that a generic f ∈ End(C2,O)

that is tangent to the identity of order k ≥ 2 has k+ 1 characteristic directions at the origin

counted with multiplicity. In Theorems A and B, we only consider maps f with a unique

characteristic direction at the origin so that these k+ 1 characteristic directions all coincide.

Theorem A. Let f ∈ End(C2,O) be tangent to the identity of order k ≥ 2, and let [v] be a

non-degenerate characteristic direction. Assume that [v] is the only characteristic direction

of f at the origin. Then there exists an invariant attracting domain Ω ⊂ C2, with the origin

in its boundary, in which every point is attracted to the origin tangentially to the direction

[v], and such that the restriction of f to Ω is conjugate to translation: (τ, ω) 7→ (τ, ω + 1).

Most of the local results we just discussed can also be extended to global results. Let

f ∈ End(C2,O) be tangent to the identity of order k ≥ 2, and let [v] be a non-degenerate

characteristic direction. In addition, assume that f is a global biholomorphism of Cm. The

attractive basin to (O, [v]) is the set:

Ω(O,[v]) :=
{
x ∈ Cm \ {O}

∣∣ fn(x)→ O, [fn(x)]→ [v]
}
, (1.8)

so Ω(O,[v]) is the set of points in Cm \ {O} that are attracted to the origin tangentially to the

direction [v].

Definition 1.22. A proper subdomain D ⊂ Cm is a Fatou-Bieberbach domain if it is bi-

holomorphic to Cm.

In the global setting, we are interested in when invariant attracting domains exist and are

Fatou-Bieberbach domain. Weickert proved the existence of an automorphism of C2 that is

tangent to the identity with an invariant attracting domain that is biholomorphic to C2 and

on which the automorphism is biholomorphic to conjugation [W1, W2]. Hakim extended

this and Theorem 1.17 to the following:

Theorem 1.23 (Hakim, [H1]). Let f ∈ End(Cm,O) be tangent to the identity, and let [v] be

a non-degenerate attracting characteristic direction. If, in addition, f is a biholomorphism
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of Cm, then f has an invariant attracting Fatou-Bieberbach domain, in particular Ω(O,[v]),

and on that domain f is biholomorphically conjugate to translation: (τ, ω) 7→ (τ, ω + 1).

If we assume that f is a biholomorphism of C2, then some of Vivas’ results that were

mentioned above, and will be discussed further in §2.6, also extend in the same way as in the

previous theorem [V3]. On the other hand, Stensønes and Vivas showed that for any m ≥ 3

there exists a biholomorphism f of Cm that is tangent to the identity and whose basin of

attraction to the origin:

Ω := {x ∈ Cm | fn(x)→ O as n→∞}

is biholomorphic to (C \ {0})m−2 × C2, so Ω is not a Fatou-Bieberbach domain [StV].

We can extend Theorem A to a more global result, but we must first show that such a

biholomorphism f can exist. In order to do so, we use the following result due independently

to Weickert [W1, Theorem 2.1.1] and Buzzard-Forstneric [BF, Theorem 1.1]:

Theorem 1.24. Let P = (P1, . . . , Pm),m ≥ 2, be a holomorphic polynomial self-map of

Cm with P ′(0) invertible. Let d ≥ maxi{deg(Pi)}. Then there exists ψ : Cm → Cm, a

biholomorphism, such that |ψ(z)− P (z)| = o
(
|z|d
)

near the origin.

Then, knowing that such an f can exist, we extend Theorem A to the following:

Theorem B. Let f ∈ End(C2,O) be tangent to the identity of order k ≥ 2, and let [v] be a

non-degenerate characteristic direction. Assume that [v] is the only characteristic direction

of f at the origin. If, in addition, f is a biholomorphism of C2, then f has an invariant

attracting Fatou-Bieberbach domain Σ ⊂ C2, with the origin in its boundary, and on that

domain f is conjugate to translation: (τ, ω) 7→ (τ, ω + 1).

In the following chapters we discuss the existence of invariant attracting domains, sub-

manifolds and parabolic curves for maps f ∈ End(Cm,O) that are tangent to the identity of

order k ≥ 2 and how these existence results depend on different properties of f . The focus

of Chapter 2 is proving Theorems A and B. In Chapters 3 and 4 we discuss and provide ad-

ditional examples of results on the existence of invariant attracting domains, submanifolds,

and parabolic curves in C2 and Cm, respectively, for m ≥ 3. At the end of Chapters 3 and

4, we summarize these existence results in Tables 3.1 and 4.1, respectively.
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Chapter 2

Map in C2 whose only characteristic direction is non-degenerate

In this chapter, we study maps f ∈ End(C2,O) that are tangent to the identity of order k ≥ 2,

have exactly one distinct characteristic direction, and its unique characteristic direction is

non-degenerate. Later on, in Chapter 3, we will discuss what is known more generally for

maps f ∈ End(C2,O) that are tangent to the identity of order k ≥ 2.

Recall the statements of Theorems A and B from Chapter 1.

Theorem A. Let f ∈ End(C2,O) be tangent to the identity of order k ≥ 2, and let [v] be a

non-degenerate characteristic direction. Assume that [v] is the only characteristic direction

of f at the origin. Then there exists an invariant attracting domain Ω ⊂ C2, with the origin

in its boundary, in which every point is attracted to the origin tangentially to the direction

[v], and such that the restriction of f to Ω is conjugate to translation: (τ, ω) 7→ (τ, ω + 1).

Given the assumptions on f in this theorem, it turns out that the director of f must

be zero. Hence, Hakim’s Theorem 1.17 does not apply to this type of map. Theorem A

partially answers questions raised by Abate about the quadratic map (111) in [A2], which

will be discussed further in the next section.

Given f as in Theorem A, we can express f near the origin as f = Id +Pk + Pk+1 + . . .,

where Pk 6≡ O and Pj is a homogeneous polynomial of degree j. Then, from Theorem 1.24,

we know that there exists a biholomorphism that is arbitrarily close to f near the origin

[BF, W1]. Hence, a biholomorphism exists that satisfies the assumptions in Theorem A.

When we add the assumption that f is a biholomorphism, the local result of Theorem A

extends to the following global result.

Theorem B. Let f ∈ End(C2,O) be tangent to the identity of order k ≥ 2, and let [v] be a

non-degenerate characteristic direction. Assume that [v] is the only characteristic direction

of f at the origin. If, in addition, f is a biholomorphism of C2, then f has an invariant
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attracting Fatou-Bieberbach domain Σ ( C2 (i.e. Σ is biholomorphic to C2), with the origin

in its boundary, and on that domain f is conjugate to translation: (τ, ω) 7→ (τ, ω + 1).

Working independently from the author, Vivas in [V3] proved a similar result to Theorems

A and B for irregular characteristic directions. Given the assumptions on f and [v] in

Theorems A and B, it turns out that [v] must be irregular. In §2.6 we discuss this further.

This chapter is devoted to proving Theorems A and B. In §2.1, we conjugate f from

Theorem A to a suitable normal form using a linear change of coordinates and show that the

director of its unique characteristic direction must be zero. In §2.2, we perform a coordinate

change moving the fixed point from the origin to infinity and find an invariant domain. In

§2.3, we perform another, more complicated, coordinate change so that f acts on the second

coordinate by translation. The technique we employ to find this coordinate change is similar

to that used in the degenerate case studied in [V1], but is more complicated here because

it requires solving a system of differential equations instead of just one differential equation.

In §2.4, we perform a final coordinate change so that f acts as the identity on the first

coordinate and translation on the second. Each time we perform a coordinate change, we

find an invariant attracting domain for f so that by §2.4 we have finished showing Theorem

A. In §2.5, we assume that, in addition, f is a biholomorphism of C2 and extend our domain

from §2.4 to one that is biholomorphic to C2, concluding with Theorem B. In §2.6, we

introduce the necessary terms to understand Vivas’ results from [V3] and discuss how these

compare to Theorems A and B.

2.1. Preliminaries

Lemma 2.1. Let f ∈ End(C2,O) be tangent to the identity of order k ≥ 2, and let [v] be a

non-degenerate characteristic direction. Assume that [v] is the only characteristic direction

of f at the origin. Then f is linearly conjugate to:

f0(x, y) = (x, y)
(
1 + xyR(x, y) + yk−1

)
+
(
P (x, y), xk +Q(x, y)

)
, (2.1)

where P,Q are convergent power series vanishing to order at least k+ 1 at the origin and R

is a homogeneous polynomial of degree k − 3 such that R ≡ 0 if k = 2.

Proof. We can write f(x, y) as a sum of its homogenous polynomials,

f(x, y) = (x, y) +
∞∑
j=k

Pj(x, y),

where Pj(x, y) are homogeneous polynomials of degree j and Pk 6≡ 0. We assume that [0 : 1]

is the characteristic direction of f since, via a linear conjugation of f , we can move the
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characteristic direction of f to [0 : 1] without changing the degree of any of the Pj. We can

write the k-th degree polynomial as:

Pk(x, y) =

(
k∑
j=0

ajx
k−jyj,

k∑
j=0

bjx
k−jyj

)
,

where aj, bj ∈ C. Since [0 : 1] is the only characteristic direction of f , Pk[x : y] 6= [x : y] for

all x 6= 0. This restricts the possible values of {aj, bj}:

Pk(0, 1) = (ak, bk) and Pk(1, 0) = (a0, b0), therefore ak = 0, bk 6= 0 and b0 6= 0,

Pk(x, 1) =

(
k−1∑
j=0

ajx
k−j,

k∑
j=0

bjx
k−j

)
=

(
x
k−1∑
j=0

ajx
k−1−j,

k∑
j=0

bjx
k−j

)
6= λ(x, 1)

for any λ ∈ C. In addition,

Pk[x : 1] = [x : 1]⇔ x
k−1∑
j=0

ajx
k−1−j = x

k∑
j=0

bjx
k−j ⇔

(
−b0x

k +
k∑
j=1

(aj−1 − bj)xk−j
)
x = 0

and, by assumption, the first condition is true only when x = 0, then the last condition must

only be true when x = 0. Since b0 6= 0, this implies that aj−1 = bj,∀1 ≤ j ≤ k. We can now

re-write Pk(x, y) as:

Pk(x, y) =

(
x
k−1∑
j=0

ajx
k−1−jyj, y

k−1∑
j=0

ajx
k−1−jyj + b0x

k

)
:= (xS(x, y), yS(x, y) + b0x

k).

Now that we have a more explicit form for Pk, we want to simplify it further using linear

conjugation. Let l be a linear map that fixes [0 : 1]. Then we can write l as:

l(x, y) := (ax, cx+ dy) and l−1(x, y) =
1

ad
(dx,−cx+ ay), where ad 6= 0. (2.2)

l−1 ◦ Pk ◦ l(x, y) = l−1(axS(ax, cx+ dy), (cx+ dy)S(ax, cx+ dy) + b0a
kxk)

=

(
xS(ax, cx+ dy), yS(ax, cx+ dy) +

b0a
k

d
xk
)

S(ax, cx+ dy) =
k−1∑
j=0

aja
k−1−jxk−1−j(cx+ dy)j

= xk−1

(
k−1∑
j=0

aja
k−1−jcj

)
+ xy(· · · ) + yk−1(ak−1d

k−1)
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We can choose a, c, d so that (1) b0ak

d
= 1, (2) ak−1d

k−1 = 1, and (3)
∑k−1

j=0 aja
k−1−jcj = 0.

Therefore Pk(x, y) is linearly conjugate to:(
x
(
xyR(x, y) + yk−1

)
, y
(
xyR(x, y) + yk−1

)
+ xk

)
,

where R ≡ 0 if k ≤ 2, otherwise R(x, y) = 1
xy

(
S(ax, cx+ dy)− yk−1

)
is a homogeneous

polynomial of degree k − 3. Let

(P (x, y), Q(x, y)) := l−1 ◦
∞∑

j=k+1

Pj ◦ l(x, y).

Since the (Pj) are convergent power series in a neighborhood of the origin, so are P and

Q. �

Abate in [A2] studied quadratic maps tangent to the identity up to holomorphic conju-

gacy. He showed that for quadratic self maps of C2 tangent to the identity, holomorphic

conjugacy was equivalent to linear conjugacy and used this along with the number of char-

acteristic directions of the maps to classify all such maps. In addition, Ueda and Rivi also

classified such maps [U3, R1, W2]. If we assume that the map f in Lemma 2.1 is quadratic

with no terms of higher degree, then f0 is the map (111) in [A2], namely:

f0(x, y) =
(
x(1 + y), y(1 + y) + x2

)
= (x+ xy, y + y2 + x2).

We have not made any explicit assumptions on the director of f ; however, the following

lemma shows that the director of f must be zero, hence Theorem 1.17 does not apply to f .

Lemma 2.2. The real part of the director of f at [0 : 1] is zero.

Proof. Let U :=
{

[x0 : x1] ∈ CP1
∣∣ x1 6= 0

}
and define π : U → C by π([x0 : x1]) = x0

x1
.

Define

g(x) := π ◦ P̂k ◦ π−1(x) = π
[
xS(x, 1) : S(x, 1) + b0x

k
]

=
xS(x, 1)

S(x, 1) + b0xk
,

where x ∈ C and P̂k : CP1 → CP1 by [v] 7→ [Pk(v)]. So for x ∈ C, D(P̂k)[x:1]−Id = g′(x)−Id.

Therefore the director of f at [0 : 1] is the value of g′(0)− Id and

g′(x) =
S(x, 1)2 + b0x

kS(x, 1) + b0x
k+1S ′(x, 1)− kb0x

kS(x, 1)

(S(x, 1) + b0xk)
2 ,

so g′(0)− Id = 0. Therefore the director of f at [0 : 1] is zero. �

Notation. We will use πj to denote projection onto the jth coordinate.
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2.2. Invariant region

We want to find a domain of attraction for the map f0, which is equivalent to finding one

for f . For xy 6= 0, define the new coordinates (u, v) as:

(u, v) := ψ0(x, y) :=

(
a
yk

xk
,
b

yk−1

)
,

where a = −k−1
k
, b = − 1

k−1
. Define Ω

(u,v)
R,δ,θ to be:{

(u, v) ∈ C2

∣∣∣∣ Re(u) > R, |u|
(k−1)(k+1)

k < δ|v|, |Arg(u)| < θ, |Arg(v)| < k − 1

k
θ

}
(2.3)

and

Ωu
R,θ :=

{
u ∈ C

∣∣∣∣ Re(u) > R, |Arg(u)| < θ

}
= π1

(
Ω

(u,v)
R,δ,θ

)
, (2.4)

for any

0 < θ <
π

4
, 0 < δ � 1, and R� 0.

Fix R, δ, θ satisfying the above conditions to define

Ω(u,v) := Ω
(u,v)
R,δ,θ and Ωu := Ωu

R,θ. (2.5)

Now we can define an inverse to ψ0 restricted to the domain Ω(u,v):

(x, y) := ψ−1
0 (u, v) =

((a
u

) 1
k

(
b

v

) 1
k−1

,

(
b

v

) 1
k−1

)
,

where we choose the 1
k
, 1
k−1

roots that map 1 to 1. Therefore ψ0 : ψ−1
0

(
Ω(u,v)

)
→ Ω(u,v) is a

biholomorphism. Note that 0 ∈ ∂
(
ψ−1

0

(
Ω(u,v)

))
.

Proposition 2.3. Given R′ < R and θ < θ′ < π
4
, ∃κ > 0 such that if u ∈ Ωu

R,θ, then

B (u, κ|u|) ⊂ Ωu
R′,θ′. Furthermore, given α 6= 0 and a holomorphic function F on Ωu

R′,θ′

satisfying the bound F = O(uα), then ∀n ∈ N, the nth derivative satisfies the bound F (n) =

O (uα−n) on Ωu
R,θ.

Proof. Given u ∈ Ωu
R,θ,

Re(u)−R′ >
(

1− R′

R

)
Re(u) >

1

2

(
1− R′

R

)
|u|

and

sin (θ′ − Arg(u)) |u| > sin(θ′ − θ)|u|.
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Hence for any 0 < κ ≤ min
{

1
2

(
1− R′

R

)
, sin (θ′ − θ)

}
, the disk B (u, κ|u|) ⊂ Ωu

R′,θ′ . On

Ωu
R′,θ′ , F (ζ) = O(ζα) and ∃C > 0 such that |F (ζ)| < C|ζ|α ≤

C(1 + κ)α|u|α, if α ≥ 0

C(1− κ)α|u|α, if α < 0
.

Therefore, ∀n ∈ N,∣∣∣∣F (n)(u)

∣∣∣∣ ≤ n!

2π

∣∣∣∣∣
∫
|ζ−u|=κ|u|

F (ζ)

(ζ − u)n+1
dζ

∣∣∣∣∣ ≤ n!

(κ|u|)n
sup

|ζ−u|=κ|u|
|F (ζ)| = O

(
uα−n

)
,

where we used Cauchy estimates to get the first inequality. �

Remark 2.4. On several occasions, we will adjust R, δ, θ to shrink the domain Ω(u,v) (or Ωu).

In particular, we will choose R′, δ′, θ′ that depend on R, δ, θ so that by making R large enough

and δ, θ small enough the domain Ω
(u,v)
R′,δ′,θ′ (or Ωu

R′,θ′) satisfies all of the properties that had

been shown for Ω(u,v) (respectively, Ωu) and Ω
(u,v)
R′,δ′,θ′ ) Ω(u,v) (respectively, Ωu

R′,θ′ ) Ωu). We

will use this and Proposition 2.3 to find domains on which a holomorphic function is defined

as well as similar subdomains on which we can bound the derivatives of that holomorphic

function.

Let f1 := ψ0 ◦ f0 ◦ ψ−1
0 . For any (u, v) ∈ Ω(u,v), denote the n-th iterate of the map after

the coordinate change by fn1 (u, v) := (un, vn), where f 0
1 (u, v) = (u, v). Later in this section

we will prove the following results on invariance of Ω(u,v) and size of (un, vn).

Lemma 2.5. Ω(u,v) is invariant under f1.

Lemma 2.6. For any (u, v) ∈ Ω(u,v) and any positive integer n,

Re(v) +
3n

2
≥ Re(vn) ≥ Re(v) +

n

2
(2.6)

and

Re(u) + 3 log

(
1 +

n

Re(v)

)
≥ Re(un) ≥ Re(u) +

1

6
log

(
1 +

n

Re(v)

)
. (2.7)

It follows from Lemma 2.6 that for any (u, v) ∈ Ω(u,v),

2|v|+ 3n ≥ |vn| ≥
|v|+ n

2
, and (2.8)

2|u|+ 6 log

(
1 +

n

Re(v)

)
≥ |un| ≥

|u|
2

+
1

6
log

(
1 +

n

Re(v)

)
.
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In order to simplify the coordinate change, we make the following definitions:

R̃(u) :=
(v
b

) k−3
k−1

R(x, y) = R

((a
u

) 1
k
, 1

)
, (2.9)

P̃ (u, v) :=
(v
b

) k+1
k−1

P (x, y) =
(v
b

) k+1
k−1

P

((a
u

) 1
k

(
b

v

) 1
k−1

,

(
b

v

) 1
k−1

)
,

Q̃(u, v) :=
(v
b

) k+1
k−1

Q(x, y) =
(v
b

) k+1
k−1

Q

((a
u

) 1
k

(
b

v

) 1
k−1

,

(
b

v

) 1
k−1

)
,

h(u, v) := kb
k
k−1

(
Q̃(u, v)

u
1
k

− P̃ (u, v)

a
1
k

)
:=

∞∑
j=0

hj(u)

v
j

k−1

.

Then P̃ , Q̃, h are convergent power series in u−
1
k , v−

1
k−1 , hj is a convergent power series in

u−
1
k , and hj, R̃ are holomorphic on Ωu. Now we find an expression for u1:

u1 = u

(
1 +

xk

y
+ Q(x,y)

y
− P (x,y)

x

1 + xyR(x, y) + yk−1 + P (x,y)
x

)k

= u

1 +
1

v

ab
u

+ b
(
b
v

) 1
k−1 Q̃(u, v)− b

(
b
v

) 1
k−1
(
u
a

) 1
k P̃ (u, v)

1 + b
v

((
a
u

) 1
k R̃(u) + 1 +

(
b
v

) 1
k−1
(
u
a

) 1
k P̃ (u, v)

)
k

= u

(
1 +

1

v

(
ab

u
+

u
1
k

v
1

k−1

h(u, v)

k

)[
1 + O

(
1

v

)])k

= u

(
1 +

k

v

(
ab

u
+

u
1
k

v
1

k−1

h(u, v)

k

)
+ O

(
1

uv2
,

u
1
k

v2+ 1
k−1

))

= u+
1

v
+
u
k+1
k

v
k
k−1

h(u, v) + O

(
1

v2

)
= u+

1

v
+
u
k+1
k

v
k
k−1

k−2∑
j=0

hj(u)

v
j

k−1

+ O

(
1

v2

)
,

Similarly:
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v1 = v

(
1 + xyR(x, y) + yk−1 +

xk

y
+
Q(x, y)

y

)−(k−1)

= v

(
1 +

b

v

[(a
u

) 1
k
R̃(u) + 1 +

a

u
+

(
b

v

) 1
k−1

Q̃(u, v)

])−(k−1)

= v

(
1− (k − 1)

b

v

[
1 +

(a
u

) 1
k
R̃(u) +

a

u
+

(
b

v

) 1
k−1

Q̃(u, v)

]

+ k(k − 1)
b2

v2

[
1 +

(a
u

) 1
k
R̃(u) +

a

u
+

(
b

v

) 1
k−1

Q̃(u, v)

]2

+ O

(
1

v3

))

= v + 1 +
[a
u

] 1
k
R̃(u) +

a

u
+

[
b

v

] 1
k−1

Q̃(u, v) +
k

k − 1

1

v

[
1 +

(a
u

) 1
k
R̃(u) +

a

u

]2

+ O

(
1

v
k
k−1

)
= v + 1 +

k−1∑
j=0

gj(u)

v
j

k−1

+ O

(
1

v
k
k−1

)
,

where a = −k−1
k
, b = − 1

k−1
and g0 is a polynomial in u−

1
k with no constant term and gj are

power series in u−
1
k . We will frequently use these properties of the {gj} in what follows.

To summarize, for (u, v) ∈ Ω(u,v) we have derived the following equations for u1, v1:

u1 = u+
1

v
+
u
k+1
k

v
k
k−1

h(u, v) + O

(
1

v2

)
= u+

1

v
+
u
k+1
k

v
k
k−1

k−2∑
j=0

hj(u)

v
j

k−1

+ O

(
1

v2

)
(2.10)

v1 = v + 1 +
k−1∑
j=0

gj(u)

v
j

k−1

+ O

(
1

v
k
k−1

)
= v + 1 + O

(
1

u
1
k

,
1

v
1

k−1

)
. (2.11)

Proof of Lemma 2.5. Fix any (u, v) ∈ Ω(u,v). First we show that Re(u1) > R.

Re(u1) = Re(u) + Re

(
1

v

[
1 +

u
k+1
k

v
1

k−1

h(u, v) + O

(
1

v

)])

> Re(u) +
1

2|v|
− 2δ

1
k−1C

|v|
> Re(u) > R

where C is some constant such that |h(u, v)| < C, R is sufficiently large and δ is chosen to

be suitably small. Next we check that the arguments of u1, v1 remain small enough.

|Arg(v1)| ≤ max

{
|Arg(v)|,

∣∣∣∣∣Arg

(
1 +

k−1∑
j=0

gj(u)

v
j

k−1

+ O

(
1

v
k
k−1

))∣∣∣∣∣
}
≤ k − 1

k
θ,
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for R large enough.

|Arg(u1)| ≤ max

{
|Arg(u)|, |Arg(v)|+

∣∣∣∣∣Arg

(
1 +

u
k+1
k

v
1

k−1

h(u, v) + O

(
1

v

))∣∣∣∣∣
}
< θ,

for δ suitably small. Finally we verify that |u1| remains small enough relative to |v1|.

|u1|
k2−1
k < |u|

k2−1
k

∣∣∣∣∣1 +
1

uv

(
1 +

u
k+1
k

v
1

k−1

h(u, v) + O

(
1

v

))∣∣∣∣∣
k2−1
k

< δ|v|

∣∣∣∣∣1 +
k2 − 1

k

1

uv

(
1 +

u
k+1
k

v
1

k−1

h(u, v) + O

(
1

v

))∣∣∣∣∣
< δ|v|

∣∣∣∣1 +
1

2v

∣∣∣∣ < δ|v1|,

for large enough R. Therefore, f1

(
Ω(u,v)

)
⊂ Ω(u,v). �

Proof of Lemma 2.6.

Re(vn) = Re(v) + n+
n−1∑
j=0

O

(
u
− 1
k

j , v
− 1
k−1

j

)

un = u+
n−1∑
j=0

1

vj

1 +
u
k+1
k

j

v
1

k−1

j

h(uj, vj) + O

(
1

vj

)
In the expression for Re(vn), the O-terms are bounded independently of j and so we can

choose R sufficiently large that, for each j, the term O

(
u
−1
k
j , v

−1
k−1

j

)
is bounded above by 1

2
.

Hence, |Re(vn − v)− n| ≤ n
2
. Now we find bounds on |un|

|vn|α and Re(un):

Re(un − u) ≤
n−1∑
j=0

1 + 2δ
1

k−1C

|vj|
≤

n−1∑
j=0

3
2

Re(v) + 1
2
j
≤
∫ n−1

−1

3dx

x+ 2 Re(v)
< 3 log

(
1 +

n

Re(v)

)

Re(un − u) ≥
n−1∑
j=0

1− 2δ
1

k−1C

|vj|
≥

n−1∑
j=0

1
4

Re(v) + 3
2
j
≥ 1

6

∫ n

0

dx

x+ 2
3

Re(v)
≥ 1

6
log

(
1 +

n

Re(v)

)
Therefore we have the desired bounds on Re(un),Re(vn). �

2.3. Fatou coordinate

In this section we will perform a coordinate change to simplify the expression for (2.11). For

any (u, v) ∈ Ω(u,v) we define:

(u,w) := ψ̃1(u, v) :=

(
u, v

[
1 +

k−1∑
j=0

φj(u)

v
j

k−1

])
,
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where {φj} are holomorphic functions in Ωu that we will define later as solutions of certain

differential equations. Let wn := π2 ◦ ψ̃1 ◦fn1 (u, v) = π2 ◦ ψ̃1(un, vn). The goals of this section

are to show that the sequence (wn − n)∞n=1 converges uniformly to a Fatou coordinate ω,

that is ω ◦ f = ω + 1, and that the map (u, v) 7→ (u, ω(u, v)) defines a coordinate change,

that is a biholomorphism onto its image. Before introducing the Fatou coordinate, we need

to simplify the expression for w1 in terms of u,w and define the holomorphic functions {φj}.
Using Taylor series expansion (or integration by parts):

φj(u1) = φj(u) + (u1 − u)φ′j(u) +

∫ u1

u

φ′′j (ζ)(u1 − ζ)dζ, (2.12)

where we are integrating along the line γu(t) = (1−t)u+tu1 for 0 ≤ t ≤ 1, which is contained

in Ωu. Let t̂ ∈ [0, 1] be such that
∣∣φ′′j (γu (t̂))∣∣ = max0≤t≤1 |φ′′j (γu(t))| and û := γu(t̂). We

can bound the integral from (2.12) as follows:∫ u1

u

φ′′j (ζ)(u1 − ζ)dζ = O
(
φ′′j (û)(u1 − u)2

)
Then we can write w1 as:

w1 = v1 +
k−1∑
j=0

φj(u1)v
1− j

k−1

1

= v1 +
k−1∑
j=0

[
φj(u) +

φ′j(u)

v

(
1 +

u
k+1
k

v
1

k−1

k−2∑
l=0

hl(u)

v
l

k−1

+ O

(
1

v

))
+ O

(
φ′′j (û)

v2

)]
·

v1− j
k−1

[
1 +

1

v

(
1 +

k−1∑
m=0

gm(u)

v
m
k−1

+ O

(
1

v
k
k−1

))]1− j
k−1

= v1 +
k−1∑
j=0

v1− j
k−1

[
φj(u) +

φ′j(u)

v

(
1 +

u
k+1
k

v
1

k−1

k−2∑
l=0

hl(u)

v
l

k−1

)
+ O

(
φ′j(u)

v2
,
φ′′j (û)

v2

)]
·[

1 +

(
1− j

k − 1

)
1

v

(
1 +

k−1∑
m=0

gm(u)

v
m
k−1

)
+

(k − 1− j)
v2

O

(
j,

1

v
1

k−1

)]

= w + 1 +
k−1∑
j=0

1

v
j

k−1

(
gj(u) +

k − 1− j
k − 1

(1 + g0(u))φj(u) + φ′j(u)

)

+
k−1∑
j=0

k−1∑
m=1

1

v
j+m
k−1

(
k − 1− j
k − 1

φj(u)gm(u) + φ′j(u)u
k+1
k hm−1(u)

)

+
k−1∑
j=0

O

(
1

v
k
k−1

,
φ0(u)

v
k
k−1

, j(k − 1− j) φj(u)

v
k+j−1
k−1

,
φ′j(u)

v
k+j−1
k−1

,
φ′′j (û)

v
k+j−1
k−1

)
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In order to simplify the equation for w1, define Fj, Gj as:

Fj(u) :=
k − 1− j
k − 1

(1 + g0(u)) , (2.13)

Gj(u) := −

[
gj(u) +

j−1∑
l=0

(
k − 1− l
k − 1

φl(u)gj−l(u) + φ′l(u)u
k+1
k hj−l−1(u)

)]
.

for all integers 0 ≤ j ≤ k − 1. Therefore,

w1 = w + 1 +
k−1∑
j=0

φ′j(u) + Fj(u)φj(u)−Gj(u)

v
j

k−1

(2.14)

+ O

(
1

v
k
k−1

,
φ′0(u)

v

)
+

k−1∑
j=0

O

(
(k − 1− j)φj(u)

v
k
k−1

,
ju

k+1
k φ′j(u)

v
k
k−1

,
φ′′j (û)

v
k+j−1
k−1

)

for 0 ≤ j ≤ k− 1. Now we want to show that we can find {φj} such that φ′j +Fjφj −Gj ≡ 0

on Ω(u,v) and all of the O-terms involving {φj, φ′j, φ′′j} are small enough.

Proposition 2.7. If R is large enough and δ, θ are small enough, then there exist holomor-

phic functions {φj}0≤j≤k−1 on Ωu such that

φ′j + Fjφj −Gj ≡ 0 (2.15)

on Ωu, where Fj, Gj are defined using (2.13). Furthermore, we have the bounds

Gj(u) = O
(
u
j−1
k

)
, G′j(u) = O

(
u
j−1−k
k

)
,

φm(u) = O
(
u
m−1
k

)
, φ′m(u) = O

(
u
m−1−k

k

)
, φ′′m(u) = O

(
u
m−1−2k

k

)
, (2.16)

φk−1(u) = O
(
u

2k−2
k

)
, φ′k−1(u) = O

(
u
k−2
k

)
, φ′′k−1(u) = O

(
u−

2
k

)
,

on Ωu, where 0 ≤ m < k − 1.

Proof. First we verify that for each j, given the maps Fj and Gj then (2.15) has a solution.

Given {φl}0≤l<j, we can define Gj as in (2.13) and use this to define φj. Since G0 is

already defined, we can start this process. We follow the techniques used in Remark 2.4

to choose 0 � R2 < R1 < R and 0 < θ < θ1 < θ2 <
π
4

so that Fj, Gj are holomorphic

on Ωu
R2,θ2

, φj is holomorphic on Ωu
R1,θ1

, and the derivatives of Gj, φj are bounded on the

subset Ωu ⊂ Ωu
R1,θ1

⊂ Ωu
R2,θ2

, where these domains were defined in (2.4). Fix u0 such that

R2 < u0 < R1. A solution to (2.15) is:

φj(u) = e
−
∫ u
u0
Fj(ν)dν

∫ u

u0

Gj(ν)e
∫ ν
u0
Fj(ζ)dζdν, (2.17)
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where u ∈ Ωu
R1,θ1

and the integral is taken along any simple, smooth curve between u0 and

u contained in Ωu
R2,θ1

⊂ Ωu
R2,θ2

. Note that when j = k − 1, Fk−1 ≡ 0 so (2.17) simplifies

to φk−1(u) =
∫ u
u0
Gk−1(ν)dν. There are only finitely many j, so we can repeat this process

to get {φj}0≤j≤k−1 holomorphic on Ωu
R1,θ1

that satisfy the differential equation (2.15) and so

that {Gj, G
′
j, φj, φ

′
j, φ
′′
j}0≤j≤k−1 are all defined and bounded on Ωu as in (2.16).

Now we want to verify the orders in (2.16). When j = 0 and u ∈ Ωu we know:

G0(u) = −g0(u) = O
(
u−

1
k

)
and G′0(u) = −g′0(u) = O

(
u−

k+1
k

)
.

Suppose that the orders on {Gl, G
′
l, φl, φ

′
l, φ
′′
l }0≤l<j given in (2.16) hold for some 1 ≤ j ≤ k−1.

Then for u ∈ Ωu,

Gj(u) = O

(
gj(u),

{
φl(u), φ′l(u)u

k+1
k

}
0≤l<j

)
= O

(
u
j−1
k

)
and G′j(u) = O

(
u
j−1−k
k

)
where G′j can be bounded on Ωu using Cauchy estimates as describe in Remark 2.4. Note

that if j = k − 1, then for u ∈ Ωu and n ∈ N,

φ
(n)
k−1(u) =

dn

dun

∫ u

u0

Gk−1(ν)dν = O
(
u
k−2−(n−1)k

k

)
.

It remains to show that if, for 0 ≤ j < k − 1, the orders in (2.16) are satisfied by

{Gl, G
′
l, φl, φ

′
l, φ
′′
l }0≤l<j and hence by {Gj, G

′
j}, then they must also be satisfied by φj, φ

′
j, φ
′′
j .

Recall that {Gl}0≤l≤j are holomorphic on Ωu
R2,θ2

and we want φj to be holomorphic on Ωu
R1,θ1

.

Given any u ∈ Ωu
R1,θ1

, define cu so that Arg(cu) = Arg(u) and Re(cu) = u0. Then cu ∈ Ωu
R2,θ1

.

Parametrize the line segment between cu and u by γ(t) := tu, where cu
u
≤ t ≤ 1. By using

integration by parts once in (2.17) and this parametrization, we can express φj as:

φj(u) = e
−
∫ u
u0
Fj(ν)dν

(
Gj(ν)

Fj(ν)
e
∫ ν
u0
Fj(ζ)dζ

∣∣∣∣∣
u

u0

−
∫ u

u0

G′j(ν)Fj(ν)−Gj(ν)F ′j(ν)

Fj(ν)2
e
∫ ν
u0
Fj(ζ)dζdν

)

=
Gj(u)

Fj(u)
+ O

(
e
−
∫ u
u0
Fj(ν)dν

)
− e−

∫ u
u0
Fj(ν)dν

∫ u

cu

G̃j(ν)e
∫ ν
u0
Fj(ζ)dζdν

=
Gj(u)

Fj(u)
+ O

(
e−u
)
− u

∫ 1

cu
u

G̃j(tu)e−u
∫ 1
t Fj(τu)dτdt

where u ∈ Ωu
R1,θ1

, G̃j(u) :=
G′j(u)Fj(u)−Gj(u)F ′j(u)

Fj(u)2
= O

(
u
j−1−k
k

)
, Fj(u) = O(1), and we are

integrating along γ(t). Assume G̃j 6≡ 0, otherwise there is nothing left to prove. Then:∣∣∣∣∣
∫ 1

cu
u

G̃j(tu)e−u
∫ 1
t Fj(τu)dτdt

∣∣∣∣∣ ≤ (1− cu
u

)
max
cu
u
≤t≤1

(∣∣G̃j(tu)
∣∣e− k−1−j

k−1
Re(u

∫ 1
t (1+g0(τu))dτ)

)
≤ C max

cu
u
≤t≤1

(|u|t)
j−1−k
k e−

k−1−j
k−1

1−t
2
|u|
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for some constant C > 0. When t 6= 1, the exponential term’s exponent is a negative multiple

of |u| so the exponential term can be bounded above by a constant times an arbitrarily small

power of |u| whereas the other term remains bounded above by a constant. When t = 1, the

integral is bounded above by C|u| j−1−k
k . Therefore,

φj(u) =
Gj(u)

Fj(u)
+ O

(
e−u
)

+ uO
(
u
j−1−k
k

)
= O

(
u
j−1
k

)
on Ωu

R1,θ1
. By shrinking the domain of φ′j, φ

′′
j to Ωu, as discussed in Remark 2.4, we can use

Cauchy’s estimates and the order of φj to obtain the desired orders on the derivatives of φj.

In particular, for any u ∈ Ωu and n ∈ N:

φ
(n)
j (u) = O

(
u
j−1
k

un

)
= O

(
u
j−1−kn

k

)
.

If we take n = 1, 2 we get the desired results. �

Let (u, v) ∈ Ω(u,v). In the expression for w1 given in (2.14), we want to bound the φ′′j (û)

terms using u instead of û. Since û is on the line segment between u and u1, ∃c > 0 that is

independent of u such that |û| > c|u|. Combining this with the previous result we get:

φ′′j (û) = O
(
u
j−1−2k

k

)
.

Now that we have bounds on φj and its derivatives, we can re-write w1 from (2.14) as:

w1 = w + 1 + ε1(u, v) + ε2(u, v),

where ε1, ε2 are functions of u, v with the following orders:

ε1(u, v) = O

(
φ′0(u)

v
,
φ′′0(û)

v

)
= O

(
1

u
k+1
k v

)
ε2(u, v) = O

(
1

v
k
k−1

)
+

k−1∑
j=0

O

(
(k − 1− j)φj(u)

v
k
k−1

,
ju

k+1
k φ′j(u)

v
k
k−1

,
jφ′′j (û)

v
k+j−1
k−1

)
= O

(
u

2k−1
k

v
k
k−1

)
.

Proposition 2.8. For any (u, v) ∈ Ω(u,v) and w = w(u, v), we have

lim
n→∞

un
log n

= 1 and lim
n→∞

wn
n

= 1.

Proof. The sequence
(
wn
n

)
converges to 1 because, for some constants C, l > 0,

lim
n→∞

1

n

n−1∑
j=0

(ε1(uj, vj) + ε2(uj, vj)) ≤ lim
n→∞

1

n

n−1∑
j=l

(
C

(log j)
k+1
k j

+
C(log j)

2k−1
k

j
k+1
k

)
= 0,
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where we are using the bounds on un, vn from Proposition 2.6, and

lim
n→∞

wn
n

= lim
n→∞

1

n

[
w + n+

n−1∑
j=0

(ε1(uj, vj) + ε2(uj, vj))

]
= 1.

In order to show limn→∞
un

logn
= 1, we first need to replace the vj terms in un with wj terms:

1

v
=

1

w

(
1 +

k−1∑
j=0

φj(u)

v
j

k−1

)
=

1

w

(
1 + φ0(u) + O

(
1

v
1

k−1

))
.

We use the bounds on un, vn from Lemma 2.6 to show that the sequence
(

un
logn

)
converges

to 1.

lim
n→∞

un
log n

= lim
n→∞

1

log n

u+
n−1∑
j=0

 1

vj
+
u
k+1
k

j

v
k
k−1

j

h(uj, vj) + O

(
1

v2
j

)
= lim

n→∞

1

log n

n−1∑
j=0

1

vj
= lim

n→∞

1

log n

n−1∑
j=0

1

wj
(1 + φ0(uj))

= lim
n→∞

1

log n

n−1∑
j=m

1

j
+ lim

n→∞

1

log n

n−1∑
j=m

φ0(uj)

j
= 1,

where we recall that h(u, v) = O(1) and we choose m < n − 1 large enough so that we can

replace wj by j for j ≥ m. We arrive at the final equality using:

log n− logm =

∫ n

m−1

dx

x
≤

n−1∑
j=m

1

j
≤
∫ n−1

m−1

dx

x
= log(n− 1)− log(m− 1),

that φ0(u) = O
(
u−

1
k

)
, and

1

log n

n−1∑
j=m

1

j(log j)
1
k

≤ 1

(log n)
1
2k

n−1∑
j=m

1

j(log j)
2k+1
2k

≤ 1

(log n)
1
2k

∫ n−1

m−1

dx

x(log x)
2k+1
2k

= O

(
1

(log n)
1
2k

)
.

�

Proposition 2.9. The sequence (wn − n)∞n=0 converges uniformly on compact subsets of

Ω(u,v). Let ω be the holomorphic limit function. Then ω(u1, v1) = ω(u, v) + 1.

The function ω is usually referred to as a Fatou coordinate.
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Proof. For some C > 0 and any n,m ∈ N with n > m,

∣∣(wn − n)− (wm −m)
∣∣ =

∣∣∣∣∣
n−1∑
l=m

[ε1(ul, vl) + ε2(ul, vl)]

∣∣∣∣∣ ≤
n−1∑
l=m

(
C

|ul|
k+1
k |vl|

+
C|ul|

2k−1
k

|vl|
k
k−1

)

≤
n−1∑
l=m

 2C
Re(v)(

Re(u) + 1
6

log
(

1 + l
Re(v)

)) k+1
k
(

1 + l
Re(v)

) +
C
(

Re(u) + 3 log
(

1 + l
Re(v)

)) 2k−1
k

(
Re(v) + l

2

) k
k−1


≤ −12Ck

(
Re(u) +

1

6
log

(
1 +

x

Re(v)

))− 1
k

∣∣∣∣∣
n−1

x=m−1

+ C
Re(u)

2k−1
k

Re(v)
k
k−1

∫ n−1

m−1

dx(
1 + x

2 Re(v)

) k+1
k

≤ 12Ck

(
Re(u) +

1

6
log

(
1 +

m− 1

Re(v)

))− 1
k

+ 2Ck
Re(u)

2k−1
k

Re(v)
1

k−1

(
1 +

m− 1

2 Re(v)

)− 1
k

where we used bounds from Lemma 2.6. For any compact K ⊂ Ω(u,v), ∃S such that |u|, |v| <
S,∀(u, v) ∈ K. So

|(wn − n)− (wm −m)| < 12Ck(
R + 1

6
log
(
1 + m−1

S

)) 1
k

+
2CkS

2k−1
k R−

1
k−1(

1 + m−1
2S

) 1
k

.

Therefore ∀ε > 0,∃M ∈ N such that ∀n,m > M and ∀(u, v) ∈ K, |(wn−n)− (wm−m)| < ε.

Hence, the sequence of holomorphic functions (wn − n) converges uniformly on compact

subsets of Ω(u,v) to a holomorphic limit function:

ω(u, v) = lim
n→∞

(wn − n) = lim
n→∞

n−1∑
j=0

(wj+1 − wj − 1) + w.

Finally we show that ω ◦ f1 = ω + 1 on Ω(u,v):

ω(u1, v1) =
∞∑
j=0

(wj+2 − wj+1 − 1) + w1

=
∞∑
j=0

(wj+1 − wj − 1) + w + 1

= ω(u, v) + 1

�

Define the function η as follows for any (u, v) ∈ Ω(u,v):

η(u, v) := ω(u, v)− w = lim
n→∞

((wn − n)− (w − 0)) (2.18)
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From the proof of Proposition 2.9, we can bound η(u, v) for any (u, v) ∈ Ω(u,v):

|η(u, v)| ≤ 12Ck (Re(u)− 1)−
1
k + 4CkRe(u)

2k−1
k Re(v)−

1
k−1 . (2.19)

Now we will show that the following map is a coordinate change from coordinates (u, v) to

(u, ω):

ψ1(u, v) := (u, ω(u, v)).

First we need to define several domains that contain Ω(u,v). Recall the definition of Ω
(u,v)
R′,θ′,δ′

from (2.3). We choose appropriate constants 0 � R2 < R1 < R, 0 < 2δ < δ2 � 1, and 0 <

3θ < π
4

so that

Ω(u,v) ( Ω1 := Ω
(u,v)
R1,2θ,2δ

( Ω2 := Ω
(u,v)
R2,3θ,δ2

and all of these domains have been shown to satisfy the properties depicted thus far for

Ω(u,v).

Proposition 2.10. Let

Ω
(u,ω)
2 :=

{
(u, ω)

∣∣∣∣ Re(u) > R, |u|
(k−1)(k+1)

k < δ|ω|, |Arg(u)| < θ, |Arg(ω)| < k − 1

k
θ

}
Ω

(u,v)
2 := Ω1 ∩ ψ−1

1

(
Ω

(u,ω)
2

)
= Ω

(u,v)
R1,2θ,2δ

∩ ψ−1
1

(
Ω

(u,ω)
2

)
Then ψ1 : Ω

(u,v)
2 → Ω

(u,ω)
2 is a biholomorphism.

Proof. First of all, ψ1 is holomorphic on Ω2 since it is holomorphic in each component. Now

we want to find a domain on which ψ1 is injective. For any (u, v), (û, v̂) ∈ Ω(u,v),

ψ1(u, v) = ψ1(û, v̂)⇔ u = û and ω(u, v) = ω(û, v̂).

Fix u0 ∈ Ωu and let ωu0(v) := ω(u0, v). Define

Ω2,u0 := {v ∈ C | (u0, v) ∈ Ω2}

Ω1,u0 := {v ∈ C | (u0, v) ∈ Ω1}

Ωu0 :=
{
v ∈ C | (u0, v) ∈ Ω(u,v)

}
Then ωu0 is holomorphic on Ω2,u0 . Fix any y ∈ Ωu0 . For any v ∈ Ω2,u0 , let

g(v) := ωu0(v)− y and h(v) := v − y.

Then g, h are holomorphic on Ω2,u0 . Let γ be the curve that is the boundary of the region:

Ω1,u0 ∩ {v ∈ C | |v| < 2|y|} =

{
v ∈ C

∣∣∣∣ (2δ)−1|u0|
k2−1
k < |v| < 2|y| and |Arg(v)| < 2θ

}
.
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The point y lies inside the region bounded by the curve γ. Note that:

|g(v)− h(v)| =

∣∣∣∣∣
k−1∑
j=0

φj(u0)

v
j

k−1

+
η(u0, v)

v

∣∣∣∣∣|v| < c|v|
|u0|

1
k

for some constant c > 0. We want to show that on γ:

|g(v)− h(v)| < |h(v)|, which we can prove by showing that
c

|u0|
1
k

<
|h(v)|
|v|

=
|v − y|
|v|

.

We bound |h(v)|
|v| from below on the segments of γ:

(1) |v| = (2δ)−1|u0|
k2−1
k , (2) |v| = 2|y|, (3) |Arg(v)| = 2θ.

On the first segment of γ:

|h(v)| = |v − y| ≥ |y| − |v| >
(
δ−1 − (2δ)−1

)
|u0|

k2−1
k = (2δ)−1|u0|

k2−1
k = |v|

On the second segment of γ:

|h(v)| = |v − y| ≥ |v| − |y| = |y| = 1

2
|v|.

On the third segment of γ, |Arg(v)| = 2θ. Fix any v on this segment and without loss

of generality assume Arg(v) = 2θ. The distance |v − y| is greater than the shortest distance

from v to the line of angle θ from the origin, therefore

|h(v)| = |v − y| ≥ |v| sin(θ).

Hence on γ we have:

|h(v)|
|v|

=
|v − y|
|v|

≥ min

{
1,

1

2
, sin θ

}
= sin θ.

By requiring that R >
(

c
sin θ

)k
, we get

|g(v)− h(v)| < |h(v)| = |v − y| on γ.

From this inequality, we know that neither g(v) nor h(v) has a zero on γ. The region Ω2,uo

contains the closed curve γ and g, h are holomorphic on Ω2,uo with no zeros on γ, so we can

extend the closed, connected set bounded by γ to a region slightly larger that contains no

extra zeros of g or h. By Rouché’s theorem, g and h have the same number of zeros on

this region. Since h(v) = v − y has exactly one zero in this region, g(v) must as well. Note

that if v ∈ Ω1,uo and |v| ≥ 2|y|, then it is not possible for ω(uo, v) = y (we can see this

from the calculation for y in terms of v). Therefore g is injective on Ω1,u0 for any u0 ∈ Ωu

and so ψ1 is injective on Ω1. Furthermore, ∀(uo, y) ∈ Ω
(u,ω)
2 we know that (uo, y) ∈ Ω(u,v)

and so there exists a unique element (uo, v) ∈ Ω1 such that ψ1(uo, v) = (uo, y). Therefore,

ψ1 : Ω
(u,v)
2 → Ω

(u,ω)
2 is a biholomorphism. �
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2.4. Conjugacy to translation

In this section we make a coordinate change so that composition with f acts as the identity

map on the first component. We can re-write (2.10) and (2.18) for any (u, v) ∈ Ω(u,v) as:

ω = w + η(u, v) = v

(
1 +

k−1∑
l=0

φl(u)

v
l

k−1

+
η(u, v)

v

)
(2.20)

1

v
=

1

ω

(
1 +

k−1∑
l=0

φl(u)

v
l

k−1

+
η(u, v)

v

)
= O

(
1

ω

)

u1 = u+
1

v
+
u
k+1
k

v
k
k−1

h(u, v) + O

(
1

v2

)
where h = O(1). Let f2 := ψ1 ◦ f1 ◦ ψ−1

1 . Then for any (u, ω) ∈ Ω
(u,ω)
2 , we can express

f2(u, ω) = (u1, ω1) as:

u1 = u+
1

ω
+
φ0(u)

ω
+

k−1∑
l=1

O

(
φl(u)

ω
l+k−1
k−1

)
+ O

(
u
k+1
k

ω
k
k−1

,
1

ω2

)
(2.21)

= u+
1

ω
+
φ0(u)

ω
+ O

(
u
k+1
k

ω
k
k−1

)
ω1 = ω + 1, (2.22)

where we use (2.16) and (2.19) to bound {φl} and η. By employing the same techniques

as in the proof of Lemma 2.5, we can show that if (u, ω) ∈ Ω
(u,ω)
2 , then (u1, ω1) ∈ Ω

(u,ω)
2 .

Since ψ is surjective, if (u, ω) ∈ Ω
(u,ω)
2 , then ∃(u, v) ∈ Ω

(u,v)
2 such that ψ1(u, v) = (u, ω) and

ψ1(u1, v1) = (u1, ω1). We can use (2.20) to roughly bound Re v by Reω: Reω
2
< Re v < 2 Reω.

Combining this with (2.7), we derive the inequality:

3 log

(
1 +

2n

Re(ω)

)
≥ Re(un)− Re(u) ≥ 1

6
log

(
1 +

n

2 Re(ω)

)
. (2.23)

Proposition 2.11. Fix some u0 ∈ π1

(
Ω

(u,ω)
2

)
and let 1 ≤ l ≤ k. Define:

αl(u) :=

∫ u

u0

φl0(ζ)dζ, α(u) :=
k∑
l=1

(−1)lαl(u), and tn := un − logωn + α(un) (2.24)

for any (u, ω) ∈ Ω
(u,ω)
2 and n ∈ N. Then the sequence (tn)∞n=0 converges uniformly on

compact subsets of Ω
(u,ω)
2 . Let τ be the holomorphic limit function of the sequence. Then

τ(u1, ω1) = τ(u, ω).
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Proof. For any (u, ω) ∈ Ω
(u,ω)
2 and j ∈ N, we use Taylor series expansion as in (2.12) to get:

αl(uj+1) = αl(uj) + α′l(uj)(uj+1 − uj) +

∫ uj+1

uj

α′′l (ζ)(uj+1 − ζ)dζ, (2.25)

where we are integrating along the line γuj(t) = (1 − t)uj + tuj+1 for 0 ≤ t ≤ 1, which is

contained in π1

(
Ω

(u,ω)
2

)
= Ωu by (2.5). After substituting the definition of αl into (2.25),

we get: ∫ uj+1

uj

φl0(ζ)dζ = φl0(uj)(uj+1 − uj) +

∫ uj+1

uj

lφl−1
0 (ζ)φ′0(ζ)(uj+1 − ζ)dζ. (2.26)

Let t̂ ∈ [0, 1] be such that:∣∣φl−1
0

(
γuj
(
t̂
))
φ′0
(
γuj
(
t̂
))∣∣ = max

0≤t≤1

∣∣φl−1
0

(
γuj(t)

)
φ′0
(
γuj(t)

)∣∣ ,
and let û := γuj(t̂). Since û is on the line between uj and uj+1 we can bound û so that

C|uj| > |û| > c|uj| for some constants C > c > 0 that are independent of u and j. Then we

can bound the integral from (2.26) as follows:∫ uj+1

uj

lφl−1
0 (ζ)φ′0(ζ)(uj+1 − ζ)dζ = O

(
(uj+1 − uj)2φl−1

0 (û)φ′0(û)
)

= O
(
ω−2
j u

− k+l
k

j

)
Combining this bound with (2.26) we get:∫ uj+1

uj

φl0(ζ)dζ = φl0(uj)(uj+1 − uj) + O
(
u
− k+l

k
j ω−2

j

)
.

For any n,m ∈ N with n > m,

un − um =
n−1∑
j=m

 1

ωj
+
φ0(uj)

ωj
+ O

u
k+1
k

j

ω
k
k−1

j


α(un)− α(um) =

n−1∑
j=m

(α(uj+1)− α(uj)) =
n−1∑
j=m

k∑
l=1

(−1)l
∫ uj+1

uj

φl0(ζ)dζ

=
n−1∑
j=m

k∑
l=1

(−1)l

φl0(uj)

(
1

ωj
+
φ0(uj)

ωj

)
+ O

u
k+1
k

j

ω
k
k−1

j


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Now we bound |tn − tm| using the previous equations:∣∣tn − tm∣∣ =
∣∣∣(un − um)− (logωn − logωm) + (α(un)− α(um))

∣∣∣
≤

∣∣∣∣∣
n−1∑
j=m

(
k∑
l=0

(−1)lφl0(uj)

(
1

ωj
+
φ0(uj)

ωj

)
− log

(
ωj+1

ωj

)) ∣∣∣∣∣+ c

n−1∑
j=m

|uj|
k+1
k

|ωj|
k
k−1

≤

∣∣∣∣∣
n−1∑
j=m

(
1

ωj
− log

(
1 +

1

ωj

)) ∣∣∣∣∣+ c
n−1∑
j=m

(
|uj|

k+1
k

|ωj|
k
k−1

+
1

|uj|
k+1
k |ωj|

)

≤ c
n−1∑
j=m

(
|uj|

k+1
k

|ωj|
k
k−1

+
2

|uj|
k+1
k |ωj|

)

≤ 2cRe(u)
k+1
k

Re(ω)
k
k−1

n−1∑
j=m

(
1 + 3

Re(u)
log
(

1 + 2j
Re(ω)

)) k+1
k

(
1 + j

Re(ω)

) k
k−1

+ 2c
n−1∑
j=m

[(
Re(u) +

1

6
log

(
1 +

j

2 Re(ω)

)) k+1
k
(

1 +
j

2 Re(ω)

)
Re(ω)

]−1

≤ 2cRe(u)
k+1
k

Re(ω)
k
k−1

∫ n−1

m−1

[
1 +

x

Re(ω)

]− k+1
k

dx

− 24kc

[
Re(u) +

1

6
log

(
1 +

x

2 Re(ω)

)]− 1
k
∣∣∣∣n−1

x=m−1

≤ 2kc
Re(u)

k+1
k

Re(ω)
1

k−1

(
1 +

m− 1

Re(ω)

)− 1
k

+ 24kc

(
Re(u) +

1

6
log

(
1 +

m− 1

2 Re(ω)

))− 1
k

for some constant c > 1 independent of (u, ω). For any compact K ⊂ Ω
(u,ω)
2 ,∃S such that

|u|, |v| < S,∀(u, v) ∈ K. Then∣∣tn − tm∣∣ < 2kcS
k+1
k

R
1

k−1

(
1 +

m− 1

S

)− 1
k

+ 24kc

(
R +

1

6
log

(
1 +

m− 1

2S

))− 1
k

.

Therefore ∀ε > 0,∃M ∈ N such that ∀n,m > M and ∀(u, v) ∈ K, |tn − tm| < ε. Hence,

the sequence of holomorphic functions (tn) converges uniformly on compact subsets of Ω
(u,ω)
2

to the limit function τ , which also must be holomorphic on Ω
(u,ω)
2 . So

τ(u, ω) = lim
n→∞

tn =
∞∑
j=0

(tj+1 − tj) + t.

Finally we show that τ ◦ f2 = τ on Ω
(u,ω)
2 :

τ(u1, ω1) =
∞∑
j=0

(tj+2 − tj+1) + t1 − (t− t) =
∞∑
j=0

(tj+1 − tj) + t = τ(u, ω)

�
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Now we show that the following map is a coordinate change:

ψ2(u, ω) := (τ(u, ω), ω).

Define the function µ as follows for any (u, ω) ∈ Ω
(u,ω)
2 :

µ(u, ω) := τ(u, ω)− u+ logω − α(u) = lim
n→∞

(tn − t) . (2.27)

We can bound µ(u, ω) for any (u, ω) ∈ Ω
(u,ω)
2 using the proof of Proposition 2.11 and m = 0:

|µ(u, ω)| ≤ 4kc
Re(u)

k+1
k

Re(ω)
1

k−1

+
24kc

(Re(u)− 1)
1
k

. (2.28)

Let Ω
(u,ω)
R′,δ′,θ′ be defined as:{

(u, ω)

∣∣∣∣ Re(u) > R′, |u|
(k−1)(k+1)

k < δ′|ω|, |Arg(u)| < θ′, |Arg(ω)| < k − 1

k
θ′
}

(2.29)

for any R′, δ′, θ′. To simplify notation, replace (R, δ, θ) by (R2, δ2, θ2) in the preceding work

so that Ω
(u,ω)
2 = Ω

(u,ω)
R2,δ2,θ2

. Given (R2, δ2, θ2), we choose appropriate constants R2 < R1 <

R, 0 < δ < δ1 < δ2, and 0 < θ < θ1 < θ2 so that

Ω0 := Ω
(u,ω)
R,δ,θ ( Ω1 := Ω

(u,ω)
R1,δ1,θ1

( Ω
(u,ω)
2

and all of these domains have satisfied the properties shown thus far for Ω
(u,ω)
2 .

Proposition 2.12. Let

Ω
(τ,ω)
0 :=

{
(τ − log(ω), ω)

∣∣∣∣ Re(τ) > R, |τ | < δ|ω|
k

(k−1)(k+1) , |Arg(τ)| < θ, |Arg(ω)| < k − 1

k
θ

}
Ω

(u,ω)
0 := Ω1 ∩ ψ−1

2

(
Ω

(τ,ω)
0

)
Then ψ2 : Ω

(u,ω)
0 → Ω

(τ,ω)
0 is a biholomorphism onto its image.

Proof. We use a similar strategy as in the proof of Proposition 2.10. ψ2 is holomorphic on

Ω
(u,ω)
2 since it is holomorphic in each component. For any (u,w), (û, ŵ) ∈ Ω

(u,ω)
2 ,

ψ2(u,w) = ψ2(û, ŵ)⇔ τ(u,w) = τ(û, ŵ) and w = ŵ.

Fix w0 ∈ π2 (Ω0) and let τw0(u) := τ(u,w0). Define

Ω2,w0 :=
{
u ∈ C | (u,w0) ∈ Ω

(u,ω)
2

}
Ω1,w0 := {u ∈ C | (u,w0) ∈ Ω1}

Ω0,w0 := {u ∈ C | (u,w0) ∈ Ω0}
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Then τw0 is holomorphic on Ω2,w0 . Fix any y ∈ Ω0,w0 . Let

g(u) := τw0(u) + log(w0)− y and h(u) := u− y

Then g, h are holomorphic on Ω2,w0 . Let γ be the curve that is the boundary of the region:

Ω1,w0 =
{
u ∈ C

∣∣∣Re(u) > R1, |u| < (δ1|w0|)
k

(k−1)(k+1) , |Arg(u)| < θ1

}
.

The point y lies inside the curve γ. Using (2.16), we bound α:

α(u) =
k∑
l=1

(−1)l
∫ u

u0

φl0(ζ)dζ = O

(∫ u

u0

φ0(ζ)dζ

)
= O

(
u
k−1
k

)
.

Then for u ∈ Ω2,w0 , using this bound and the one on µ given in (2.28), we get:

|g(u)− h(u)| = |µ(u,w0) + α(u)| < c|u|1−
1
k < |u|1−

1
k2−1 ,

for some c > 0 and R2 large enough. We want to show that on γ:

|g(u)− h(u)| < |h(u)|.

We bound |h(u)| from below on the segments of γ:

(1) Re(u) = R1, (2) |u| = (δ1|w0|)
k

(k−1)(k+1) , (3) |Arg(u)| = θ1.

On the first segment of γ:

|h(u)| ≥
(
|y|
|u|
− 1

)
|u| >

(
R0√
2R1

− 1

)
|u| ≥ |u|1−

1
k2−1 ,

where the last inequality follows if we assume that R0 ≥
√

2R1

(
1 +R

− 1
k2−1

1

)
.

On the second segment of γ:

|h(u)| ≥ |u| − |y| > |u|

(
1−

(
δ0

δ1

) k
k2−1

)
> |u|1−

1
k2−1 ,

where the last inequality follows if we assume that R1 ≥
(

1−
(
δ0
δ1

) k
k2−1

)−(k2−1)

.

On the third segment of γ:

|h(u)| = |u− y| > |u| sin(θ1 − θ0) ≥ |u|1−
1

k2−1 ,

where the last inequality follows if we assume that R1 ≥ (sin(θ1 − θ0))−(k2−1).

Given {θj, δj}0≤j≤2, we can choose {Rj}0≤j≤2 large enough. Hence

|h(u)| > |g(u)− h(u)| on γ.
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From this inequality, we know that neither g nor h has a zero on γ. Since the region Ω2,w0

contains the closed curve γ and both g and h are holomorphic on Ω2,w0 with no zeros on

γ, we can extend the closed, connected set bounded by γ to a region slightly larger that

contains no extra zeros of g or h. By Rouché’s theorem, g and h have the same number of

zeros on this region; h has exactly one zero in this region, hence so does g. So ∀(y, w0) ∈ Ω0,

there is a unique element u ∈ Ω1,w0 such that τ(u,w0) = y − log(w0). Consequently, for any

(y − log(w0), w0) ∈ Ω
(τ,ω)
0 there is a unique u ∈ Ω1,w0 such that ψ2(u,w0) = (τ(u,w0), w0) =

(y − log(w0), w0). Therefore ψ2 : Ω
(u,ω)
0 → Ω

(τ,ω)
0 is a biholomorphism. �

Let

Ω
(u,v)
0 := ψ−1

1

(
Ω

(u,ω)
0

)
, Ω

(x,y)
0 := ψ−1

0

(
Ω

(u,v)
0

)
, Ω := l

(
Ω

(x,y)
0

)
(2.30)

Ψ := ψ2 ◦ ψ1 ◦ ψ0, and f3 := Ψ ◦ f0 ◦Ψ−1.

Lemma 2.13. f3

(
Ω

(τ,ω)
0

)
⊆ Ω

(τ,ω)
0 and f0

(
Ω

(x,y)
0

)
⊆ Ω

(x,y)
0 .

Proof. For any (τ̂ , ω) ∈ Ω
(τ,ω)
0 , let τ := τ̂ + log(ω). Then

f3 (τ̂ , ω) = (τ̂ , ω + 1) = (τ − log(ω), ω + 1).

Let

t := τ̂ + log(ω + 1) = τ + log(1 + ω−1).

To show that (τ̂ , ω + 1) = (t− log(ω + 1), ω + 1) ∈ Ω
(τ,ω)
0 , we need:

(1) Re(t) > R, (2) |t| < (δ|ω + 1|)
k

(k−1)(k+1) , (3) |Arg(t)| < θ.

First of all,

Re(t) = Re(τ) + log
∣∣1 + ω−1

∣∣ > R.

Secondly,

|t| = |τ |
∣∣1 + τ−1 log

(
1 + ω−1

) ∣∣ < (δ|ω|)
k

(k−1)(k+1)
∣∣1 + τ−1 log

(
1 + ω−1

) ∣∣ < (δ|ω + 1|)
k

(k−1)(k+1) ,

where the last inequality follows from the Taylor series expansions:

1 + τ−1 log
(
1 + ω−1

)
= 1 + τ−1ω−1 + O

(
τ−1ω−2

)
(
1 + ω−1

) k
(k−1)(k+1) = 1 +

k

k2 − 1
ω−1 + O

(
ω−2

)
Finally,

|Arg(t)| ≤ max
{
|Arg(τ)|,

∣∣Arg log
(
1 + ω−1

) ∣∣} < θ,
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because ∣∣Arg log
(
1 + ω−1

) ∣∣ =

∣∣∣∣Arg(ω−1) + Arg

(
1− ω−1

(
1

2
+ O

(
ω−1

))) ∣∣∣∣
< |Arg(ω)| < θ.

Note that the last inequality follows because Arg(ω−1) and Arg(1−ω−1) have opposite signs.

Therefore,

f3

(
Ω

(τ,ω)
0

)
⊂ Ω

(τ,ω)
0 ⇒ f0

(
Ω

(x,y)
0

)
⊂ Ω

(x,y)
0 .

�

Also the origin is in the boundary of Ω = l
(

Ω
(x,y)
0

)
, where l is the bilinear map (2.2).

Given any (x, y) ∈ Ω
(x,y)
0 , we showed that (xn, yn) ∈ Ω

(x,y)
0 ,∀n ∈ N. Since (xn, yn) =

ψ−1
0 (un, vn) and |un|, |vn| → ∞, the sequence {(xn, yn)} converges to the origin and so

(0, 0) ∈ ∂Ω
(x,y)
0 ∩ ∂Ω.

To summarize, we have shown that there is a domain Ω with the origin in its boundary

that is biholomorphic to Ω
(τ,ω)
0 ⊂ C2 and on the latter, f acts as the identity on the first

coordinate and translation on the second. Figure 2.1 illustrates all of the coordinate changes

we performed to get that result.

2.5. Fatou-Bieberbach domain

Now that we have finished demonstrating Theorem A, we turn to Theorem B. In order to

apply our previous results, we want to assume that f as in Theorem A is an automorphism.

From Theorem 1.24, due independently to Weickert [W1] and Buzzard-Forstneric [BF], we

know there exist automorphisms of C2 that approximate f very closely near the origin. In

the power series expansions of f and f0 near the origin, we have only explicitly used terms

up to degree at most 2k − 1. By Theorem 1.24, there is an automorphism whose Taylor

series expansion near the origin agrees with that of f up through its degree 2k terms. We

now assume that f is an automorphism of C2 since it is possible to have an automorphism

f as in Theorem A. Then f0 = l−1 ◦ f ◦ l is an automorphism with the same general form as

before in (2.1). Let

Σ
(x,y)
0 :=

⋃
n≥0

f−n0

(
Ω

(x,y)
0

)
and Σ := l

(
Σ

(x,y)
0

)
=
⋃
n≥0

f−n
(
l
(

Ω
(x,y)
0

))
.

We can extend the domains of definition of ω and τ to Σ
(x,y)
0 :

τ ◦ ψ1 ◦ ψ0(x, y) := τ ◦ ψ1 ◦ ψ0(xn, yn),

ω ◦ ψ0(x.y) := ω ◦ ψ0(xn, yn)− n,
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(z, w) ∈ Ω ⊂
f

- Ω 3 (z1, w1)

(x, y) ∈

l−1

?

Ω
(x,y)
0

l−1 bilinear

?

⊂
f0 - Ω

(x,y)
0

l−1

?

⊂
3 (x1, y1)

i
-

?

ψ−1
0

(
Ω

(u,v)
2

)
⊂
i
- ψ−1

0

(
Ω(u,v)

)

Ω
(u,v)
0

ψ0 biholo.

?

⊂
f1 - Ω

(u,v)
0

ψ0

?

⊂
i

- Ω
(u,v)
2

ψ0

?

⊂
i

- Ω(u,v)

ψ0

?

Ω
(u,ω)
0

ψ1 biholo.

?

⊂
f2 - Ω

(u,ω)
0

ψ1

?

⊂
i

- Ω
(u,ω)
2

ψ1

?

(τ, ω) ∈

Ψ

?

Ω
(τ,ω)
0

ψ2 biholo.

?

⊂
f3 - Ω

(τ,ω)
0

ψ2

?

3 (τ, ω + 1)

Figure 2.1: Coordinate changes performed for Theorem A.

where fn0 (x, y) = (xn, yn) ∈ Ω
(x,y)
0 for some n ∈ N. These are well-defined so we can use

them to extend the domain of definition of Ψ to Σ
(x,y)
0 :

Ψ(x, y) := ψ2 ◦ ψ1 ◦ ψ0(x, y) = Ψ(xn, yn)− (0, n),

where fn0 (x, y) = (xn, yn) ∈ Ω
(x,y)
0 for some n ∈ N. Since Ψ is holomorphic on Ω

(x,y)
0 and f0

is biholomorphic on C2, this extension of Ψ is holomorphic on Σ
(x,y)
0 . In the following, we

want to show that Ψ
(

Σ
(x,y)
0

)
= C2.

π2 ◦Ψ
(

Σ
(x,y)
0

)
= ω ◦ ψ0

(
Σ

(x,y)
0

)
=
⋃
n≥0

{
ω ◦ ψ0(xn, yn)− n | (xn, yn) ∈ Ω

(x,y)
0

}
=
⋃
n≥0

{
ω
(

Ω
(u,v)
0

)
− n

}
=
⋃
n≥0

{
π2

(
Ω

(τ,ω)
0

)
− n

}
= C,
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where the third equality follows because f0 is an automorphism of C2 and the final equality

follows from the definition of Ω
(τ,ω)
0 given in Proposition 2.12. For any w ∈ C and n ∈ N, let

Ww
n := (ω ◦ ψ0)−1(w) ∩ f−n0

(
Ω

(x,y)
0

)
.

Then (ω ◦ ψ0)−1(w) ∩ Σ
(x,y)
0 =

⋃
n≥0W

w
n .

Theorem 2.14. Fix any w ∈ π2

(
Ω

(τ,ω)
0

)
. Then

τ ◦ ψ1 ◦ ψ0 = π1 ◦Ψ : (ω ◦ ψ0)−1(w) ∩ Σ
(x,y)
0 → C

is a biholomorphism.

Proof. First we show that the extension of τ ◦ ψ1 ◦ ψ0 to Σ
(x,y)
0 is holomorphic. For any

(x, y) ∈ Σ
(x,y)
0 ,∃n ∈ N such that (xn, yn) ∈ Ω

(x,y)
0 . Let U be a connected open neighborhood

of (x, y) small enough that fn0 (U) ⊂ Ω
(x,y)
0 , which is then a connected open neighborhood

of (xn, yn). Therefore τ ◦ ψ1 ◦ ψ0 is holomorphic on fn0 (U). Since f0 is holomorphic and

τ ◦ψ1 ◦ψ0 = τ ◦ψ1 ◦ψ0 ◦ fn0 , it follows that τ ◦ψ1 ◦ψ0 is holomorphic on U . Hence τ ◦ψ1 ◦ψ0

is holomorphic on Σ
(x,y)
0 .

Now we show injectivity. Suppose τ ◦ψ1 ◦ψ0(x, y) = τ ◦ψ1 ◦ψ0(x̃, ỹ) for some (x, y), (x̃, ỹ) ∈
(ω ◦ ψ0)−1(w) ∩ Σ

(x,y)
0 . For n ∈ N large enough we have (xn, yn), (x̃n, ỹn) ∈ Ω

(x,y)
0 and

τ ◦ ψ1 ◦ ψ0(xn, yn) = τ ◦ ψ1 ◦ ψ0(x, y) = τ ◦ ψ1 ◦ ψ0(x̃, ỹ) = τ ◦ ψ1 ◦ ψ0(x̃n, ỹn).

Then

π2 ◦Ψ(x, y) = w = π2 ◦Ψ (x̃, ỹ) ⇒ π2 ◦Ψ(xn, yn) = w + n = π2 ◦Ψ (x̃n, ỹn) .

Ψ is injective on Ω
(x,y)
0 and f0 is injective on C2, therefore

Ψ(xn, yn) = Ψ (x̃n, ỹn) ⇒ (xn, yn) = (x̃n, ỹn) ⇒ (x, y) = (x̃, ỹ) .

Finally we show surjectivity.

Claim: τ ◦ ψ1 ◦ ψ0 (Ww
n ) = τ ◦ ψ1 ◦ ψ0

(
(ω ◦ ψ0)−1(w + n) ∩ Ω

(x,y)
0

)
.

For any (x, y) ∈ Ww
n , it follows that (xn, yn) ∈ Ω

(x,y)
0 and ω ◦ ψ0(xn, yn) = w + n. Hence

(xn, yn) ∈ (ω ◦ ψ0)−1(w + n) ∩ Ω
(x,y)
0 and τ ◦ ψ1 ◦ ψ0(x, y) = τ ◦ ψ1 ◦ ψ0(xn, yn).

Conversely, for any (x, y) ∈ (ω ◦ ψ0)−1(w + n) ∩ Ω
(x,y)
0 , ∃(x̃, ỹ) ∈ C2 such that (x̃n, ỹn) =

(x, y) since f0 is an automorphism of C2. Then ω ◦ ψ0(x̃, ỹ) = w so (x̃, ỹ) ∈ Ww
n and

τ ◦ ψ1 ◦ ψ0(x, y) = τ ◦ ψ1 ◦ ψ0(x̃, ỹ).
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Therefore, τ ◦ ψ1 ◦ ψ0(Ww
n ) = τ ◦ ψ1 ◦ ψ0

(
(ω ◦ ψ0)−1(w + n) ∩ Ω

(x,y)
0

)
.

Fix any n ∈ N.

τ ◦ ψ1 ◦ ψ0(Ww
n ) = τ ◦ ψ1 ◦ ψ0

(
(ω ◦ ψ0)−1(w + n) ∩ Ω

(x,y)
0

)
= τ ◦ ψ1

(
(π2 ◦ ψ1)−1(w + n) ∩ Ω

(u,v)
0

)
=

{
τ(u,w + n)

∣∣∣∣ (u,w + n) ∈ Ω
(u,ω)
0

}
=

{
τ − log(w + n)

∣∣∣∣ Re(τ) > R, |τ | < (δ|w + n|)
k

(k−1)(k+1) , |Arg(τ)| < θ

}
,

where the last equality follows because ψ2 : Ω
(u,ω)
0 → Ω

(τ,ω)
0 is a biholomorphism. For fixed

w, |w + n|
k

(k−1)(k+1) grows much faster than | log(w + n)| as n→∞. Therefore,

π1 ◦Ψ
(

(ω ◦ ψ0)−1(w) ∩ Σ
(x,y)
0

)
=
⋃
n≥0

τ ◦ ψ1 ◦ ψ0(Ww
n ) = C.

�

For n ∈ N, let

Ωn :=
⋃

w∈π2
(

Ω
(τ,ω)
0

)(ω ◦ ψ0)−1(w − n) ∩ Σ
(x,y)
0

Ψn := (π1 ◦Ψ ◦ fn0 , π2 ◦Ψ) = Ψ ◦ fn0 − (0, n).

Then

Ψn : Ωn → C×
{
π2

(
Ω

(τ,ω)
0

)
− n

}
is a biholomorphism and

⋃
n∈N Ωn = Σ

(x,y)
0 . So {Ωn}n∈N is an open cover of Σ

(x,y)
0 with

coordinate functions {Ψn}n∈N which agree with each other on overlaps. This defines on

Σ
(x,y)
0 a structure of a locally trivial fiber bundle with base C and fiber C. Hence,

Ψ : Σ
(x,y)
0 → C2

is a biholomorphism and

Ψ(x, y) = Ψ ◦ fn0 (x, y)− (0, n)

for any (x, y) ∈ Σ
(x,y)
0 and n ∈ N. In addition, f0 acts as translation:

Ψ ◦ f0(x, y) = Ψ(x, y) + (0, 1)
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for any (x, y) ∈ Σ
(x,y)
0 . Recall that Σ = l

(
Σ

(x,y)
0

)
and let Φ := Ψ ◦ l−1. The following

commutative diagram illustrates Theorem B:

Σ
f

- Σ

C2

Φ

?

Id +(0, 1)
- C2

Φ

?

where all maps are biholomorphisms.

We have now completed the proofs of Theorems A and B, extending Hakim’s Theorems

1.17 and 1.23 to a type of map whose director is zero.

2.6. Comparing results

We now compare the two main theorems in this chapter to a theorem proven by Vivas [V2,

Theorem 1]. In order to understand the statement of Vivas’ Theorem, we must first introduce

a few terms that distinguish between characteristic directions in C2; these distinctions were

made by Abate and Tovena [AT]. Before introducing these terms, let’s recall some notation

from Chapter 1.

Let f ∈ End(C2,O) be tangent to the identity of order k ≥ 2 with characteristic direction

[v]. Near the origin,

f(z) = z + Pk(z) + Pk+1(z) + . . . ,

where z = (x, y) ∈ C × C, Pk 6≡ 0, and Pl := (pl, ql) : C2 → C × C are homogenous

polynomials of degree l. Assume, without loss of generality, that [v] = [1 : uo]. Let:

r(u) := qk(1, u)− pk(1, u)u.

Let m ≥ 0 and n ≥ 0 be the order of vanishing of pk(1, u) and r(u) at u = uo, respectively.

Definition 2.15. The origin is dicritical when n = ∞. When the origin is non-dicritical,

the characteristic direction [v] is:

1. Fuschian if 1 +m = n,

2. irregular if 1 +m < n, or

3. apparent if either 1 +m > n > 0 or m =∞.

These definitions are invariant under a holomorphic change of coordinates.
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Remark 2.16. The direction [v] is a characteristic direction of f if and only if n > 0. Fur-

thermore, [v] is a non-degenerate characteristic direction of f if and only if m = 0 < n. The

origin is dicritical if and only if r ≡ 0.

Now we can state Vivas’ aforementioned result from [V3].

Theorem 2.17 (Vivas, [V3]). Let f ∈ End(C2,O) be tangent to the identity. Assume

that [v] is an irregular characteristic direction. Then there exists an invariant attracting

domain Ω ( C2 in which every point is attracted to the origin tangentially to the direction

[v] and, such that the restriction of f to V is conjugate to translation. In addition, if f is a

biholomorphism of C2, then such an Ω exists that is also a Fatou-Bieberbach domain.

In Theorems A and B, we assume that f ∈ End(C2,O) is tangent to the identity of

order k ≥ 2, that [v] is a non-degenerate characteristic direction, and that [v] is the only

characteristic direction of f at the origin. Given these assumptions, in Lemma 2.1 we showed

that f is linearly conjugate to:

f0(x, y) = (x, y)
(
1 + xyR(x, y) + yk−1

)
+
(
P (x, y), xk +Q(x, y)

)
.

It is then straightforward to show that the unique characteristic direction of f0 must be

irregular, hence [v] is irregular. Theorems A and B can then follow by using Theorem 2.17

and that [v] must be irregular. As was mentioned in the introduction, the author and Vivas

arrived at these results while working independently from each other [L, V2].
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Chapter 3

Invariant attracting domains and curves in C2

In this chapter, we survey what is known in dimension two about the existence of invariant

attracting domains and curves for maps that are tangent to the identity. For the entirety of

this chapter, let f ∈ End(C2,O) be tangent to the identity of order k ≥ 2 with characteristic

direction [v] and assume, without loss of generality, that [v] = [1 : 0].

In order to better understand the dynamics of f , we again look at the lift of f to the

blowup of C2 at the origin. As we saw in (1.4), the lift of f can be expressed in the local

coordinates (x, u) as follows:

x1 = x
(
1 + pk(1, u)xk−1 + O(xk, ||u||xk)

)
(3.1)

u1 = u
(
1 + xk−1(α + ur̃(u) + O(x))

)
+ O(xk),

where

r(u) := qk(1, u)− upk(1, u),

α = r′(0), and r̃ is a polynomial in u defined so that:

r(u) = αu+ u2r̃(u).

For both degenerate and non-degenerate characteristic directions we can define the following:

Definition 3.1. Abate’s index of f at [v] = [1 : uo], Ind(f̃ ,P1, [v]), equals Resu=uo
pk(1,u)
r(u)

.

If [v] is non-degenerate, we can further simplify the expression for (x1, u1) by performing

the same coordinate change as we did to get (1.5). Then:

x1 = x

(
1− 1

k − 1
xk−1 + O

(
||u||xk−1, x2k−2

))
(3.2)

u1 = u
(

1− xk−1(A+ uR̃(u) + O(x))
)

+ O(xk),
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where

A :=
α

(k − 1)pk(1, 0)
and R̃(u) :=

1

(k − 1)pk(1, 0)
r̃(u).

Recall that A is a holomorphic invariant associated to the direction [v] = [1 : 0] called the

director of f at [v].

When [v] is non-degenerate, Abate’s index of f at [v] and the director of f at [v] are

clearly closely related. We use Abate’s index when [v] is degenerate and directors when [v]

is non-degenerate.

In §2.6 we defined two constants associated to the characteristic direction [1 : 0]; in

particular, the constants m and n are the orders of vanishing of pk(1, u) and r(u) at u = 0,

respectively. As we saw in Definition 2.15, the origin is dicritical precisely when n =∞ and,

when the origin was non-dicritical, characteristic directions were divided into three different

types:

Fuchsian (1 +m = n), irregular (1 +m < n), and apparent (1 +m > n or m =∞).

We use this categorization to discuss how the existence of invariant attracting domains whose

points converge to the origin tangentially to [v] depends on the properties of that direction.

Remark 3.2. Apparent characteristic directions must be degenerate because a characteristic

direction is degenerate if and only if m 6= 0. However, Fuchsian and irregular characteristic

directions can be either non-degenerate or degenerate.

Before discussing the existence of invariant attracting domains in C2, we first discuss the

existence of complex curves in C2. More specifically, the existence of parabolic curves (see

Definition 1.13).

3.1. Existence of parabolic curves in C2

Ecalle and Hakim showed that there exist (at least) k − 1 parabolic curves for f tangent to

[v] (see Theorem 1.14 or [E, H2]). By replacing the assumption that [v] is non-degenerate

with some other assumptions on f , Abate and Tovena showed that parabolic curves for f

at the origin still exist. In particular, if the origin is an isolated fixed point, Abate showed

that there exist (at least) k− 1 parabolic curves for f at the origin tangent to some singular

direction (see Theorem 1.15 or [A1, AT]). In addition, Abate proved that when the origin is

dicritical, f admits parabolic curves. In particular,

Theorem 3.3 (Abate, [A1]). Let f ∈ End(C2,O) be tangent to the identity. If the origin is

dicritical, then f admits infinitely many parabolic curves.
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Therefore a map f ∈ End(C2,O) tangent to the identity admits at least k − 1 parabolic

curves if: f has a non-degenerate characteristic direction, the origin is an isolated fixed point,

or the origin is dicritical.

Now we discuss the existence of invariant attracting domains whose points converge to

the origin tangentially to the direction [v] and how this depends on properties of [v].

3.2. Fuschian characteristic directions

We divide the discussion of the existence of invariant attracting domains for a Fuchsian

characteristic direction [v] into five different cases, depending on the values of m,n and the

director [v]. Recall that when [v] is Fuchsian, 1 +m = n <∞.

Case 1. m = 0 (so [v] is non-degenerate) and Re(A(v)) > 0.

These are precisely the assumptions for Hakim’s Theorems 1.17 and 1.18 in dimension 2

[AR, H2]. Hence, there exist k − 1 invariant attracting domains, each with the origin in

its boundary, in which every point is attracted to the origin tangentially to the direction

[v] [AR, H1, H2]. Furthermore, Hakim showed that there exists one such invariant domain

Ω on which f |Ω is holomorphically conjugate to translation (see Theorem 1.17 or [H2]). In

addition, if f is a biholomorphism of C2, then f has such a domain Ω that is also a Fatou-

Bieberbach domain and the restriction of f to Ω is conjugate to translation (see Theorem

1.23 or [H2]).

Case 2. m = 0 (so [v] is non-degenerate) and Re(A(v)) = 0.

These assumptions imply that n = 1 and A(v) = Im(A(v)) 6= 0. As we see in the following

example, there does not necessarily exist an invariant attracting domain for f whose points

converge tangentially to [v].

Example 3.4.

Consider the following map:

f(x, y) = ( x(1− x), y(1− (1 + iα)x) ) ,

where α ∈ R\{0}. Note that this map is also discussed in [R1]. The direction [1 : 0] is a non-

degenerate, Fuchsian characteristic direction of f with director iα. The first coordinate is

independent of the second coordinate, so we can use the one dimensional results to understand

the dynamics of the first coordinate.
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Let C ⊂ C be the standard cauliflower set, which is the parabolic basin for the map

x 7→ x(1 − x). It is well-known that for this map, {xn} diverges as n → ∞ if and only

if x 6∈ C and {xn} converges to 0 if and only if x ∈ C. Furthermore, if x ∈ C, then

limn→∞ nxn = 1, so Re(xn) ∼ 1
n

and | Im(xn)| � 1
n

. We bound | Im(xn)| more precisely, for

x ∈ C and Re(x) 6= 0, by doing the following:

Re(x1) = Re(x) (1− Re(x)) + (Im(x))2 ≥ Re(x) (1− Re(x))

|Im(x1)| = |Im(x) (1− 2 Re(x))| ≤ |Im(x)| (1− Re(x))2

|Im(xn)| ≤ |Im(x)|
n−1∏
j=0

(1− Re(xj))
2 ≤ | Im(x)|

Re(x)2
Re(xn)2.

Note that if Re(x) = 0, all of the inequalities except for the last one hold and we can replace

Re(x) by Re(x1) 6= 0 in the last inequality. Hence, for x ∈ C and n large, Im(xn) = O
(

1
n2

)
.

Let (xn, yn) := fn(x, y) and w = y
x
. For xn 6= 0, if

(xn, yn)→ (0, 0) along [1 : 0], then
1

xn
(xn, yn) = (1, wn)→ (1, 0).

Notice that:

yn = y
n−1∏
l=0

(1− (1 + iα)xl) and wn = w
n−1∏
l=0

(1− iαxl(1 + O(xl))).

Assume that x ∈ C and y 6= 0. Then

Re(log yn) ∼ Re

(
n−1∑
l=1

−(1 + iα)xl

)
∼

n−1∑
l=1

−1

l
→ −∞,

so yn → 0 as n→∞ and

Re(logwn) ∼ Re

(
n−1∑
l=1

−iαxl(1 + O(xl))

)
∼

n−1∑
l=1

(
α Im(xl) + O(x2

l )
)
9 −∞,

so wn 9 0 as n → ∞. Hence, C × C is attracted to the origin, but its points (excluding

C × {0}) do not converge along [1 : 0]. Thus, since {xn} converges to zero if and only if

x ∈ C, f has no invariant attracting domain whose points converge to the origin tangentially

to [1 : 0].

Question. Given the assumptions on f , under what conditions (if any) does there exist an

invariant attracting domain whose points converge to the origin tangentially to [v]?

Case 3. m = 0 (so [v] is non-degenerate) and Re(A(v)) < 0.

There does not exist an invariant attracting domain whose points converge to the origin

tangentially to [v] (see Theorem 1.19).
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Case 4. m > 0 (so [v] is degenerate) and Re
(
Ind(f̃ ,P1, [v])

)
∈ R, where

R =

{
z ∈ C,Re(z) > − m

k − 1
,

∣∣∣∣z − m+ 1− m
k−1

2

∣∣∣∣ > m+ 1 + m
k−1

2

}
⊂ C.

Vivas showed that there exists an invariant attracting domain whose points converge to the

origin tangentially to [v] [V3].

Question. Given the assumptions on f , if f is an automorphism, can such an invariant

attracting domain be a Fatou-Bieberbach domain?

Case 5. m > 0 (so [v] is degenerate) and Re
(
Ind(f̃ ,P1, [v])

)
/∈ R.

As we see in the following example, there are maps that do not have an invariant attracting

domain whose points converge to the origin along [v].

Example 3.5.

Consider the following map:

f(x, y) =
(
x+ ay2 + P>2(x, y), y +Q>2(x, y)

)
,

where a 6= 0, P>2 and Q>2 are convergent power series each with degree at least 3, and [1 : 0]

is a degenerate Fuchsian characteristic direction. Then m = 2 and Re(Ind(f̃ ,P1, [v]) = −1 /∈
R. When P>2 = Q>2 ≡ 0, it is clear that f has no invariant attracting domain tangential to

[1 : 0].

Question. Given the assumptions on f , under what conditions (if any) does there exist an

invariant attracting domain whose points converge to the origin tangentially to [v]?

3.3. Irregular characteristic directions

In the main results from Chapter 2 (Theorems A and B) we assume that f ∈ End(C2,O) has

a non-degenerate characteristic direction [v] and that [v] is the only characteristic direction of

f at the origin. Given these assumptions, it turns out that [v] must irregular. Furthermore,

the assumption that [v] is irregular is precisely the assumption made in Vivas’ Theorem 2.17.

Hence, there exists an invariant attracting domain Ω ⊂ C2, with the origin in its boundary,

in which every point is attracted to the origin tangentially to the direction [v], and such that

the restriction of f to Ω is conjugate to translation. If, in addition, f is an automorphism of

C2, then there exists such an Ω that is also a Fatou-Bieberbach domain and the restriction

of f to Ω is conjugate to translation [L, V3] .
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3.4. Apparent characteristic direction

Recall from Definition 2.15 that [v] is apparent when 1 +m > n. Vivas showed in [V3] that

when [v] is an apparent characteristic direction of a map f , there are sometimes, but not

always, invariant attracting domains tangential to [v].

In particular, suppose f is of the form f(z) = z + Pk(z) with an apparent characteristic

direction [v]. Then there exist, for j = 1, 2, fj(z) = f(z) +Qj(z), where Qj(z) = O(|z|k+1),

such that:

f1 has an invariant attracting domain tangential to [v]; and

f2 does not have any orbit converging towards the origin along [v].

Question. Given the assumptions on f , under what conditions does there exist an invariant

attracting domain whose points converge to the origin tangentially to [v]?

3.5. The origin is dicritical

When the origin is dicritical (n = ∞), all directions must be characteristic directions.

Brochero Mart́ınez showed in [Bro2] that there is an open set U whose points converge

to the origin under f and the orbit of each point p ∈ U is attracted to the origin along some

direction, however that direction may not be the same for all points in U . For more details,

refer back to Theorem 1.21.

The following example demonstrates how a map f that is dicritical at the origin can have

an invariant attracting domain whose points converge to the origin tangentially to some

direction, but in which not all points converge along the same direction.

Example 3.6.

Suppose f = Id +Pk is dicritical at the origin and Pk 6≡ 0 is a homogeneous polynomial

of degree k. Then Pk = λ Id, where λ : C2 → C is a non-trivial (λ 6≡ 0) homogeneous

polynomial of degree k − 1 (see Remark 1.11). Rewriting f we get:

(x1, y1) := f(x, y) = (x, y) (1 + λ(x, y)) .

Suppose the orbit of a point (x, y) ∈ (C \ {0})2 converges to the origin. Then the orbit

of (x, y) must converge to the origin tangentially to the direction [xn : yn] = [x : y] since
xn
x

= yn
y

. Hence, any invariant attracting domain whose points converge to the origin under

iteration by f cannot have all of its points converge along the same direction, however each

of its points converges along a particular direction.
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3.6. Summary of results in C2

Let f ∈ End(C2,O) be tangent to the identity of order k ≥ 2 with characteristic direction

[v]. Below we summarize the results from this chapter on the existence of parabolic curves

and invariant attracting domains.

There exist (at least) k − 1 parabolic curves for f if:

• [v] is non-degenerate, in which case the curves are tangent to [v] (see [E, H2]),

• the origin is an isolated fixed point, in which case the curves are tangent to some

singular direction (see [A1, AT]), or

• the origin is dicritical, in which case infinitely many parabolic curves exist (see [A1]).

In the following table, we summarize the results on the existence of invariant attracting

domains whose points converge to O tangentially to [v]. In order to simplify the table, let:

Â be Abate’s Index of f at [v].

A be the director of f corresponding to [v] if [v] is non-degenerate.

U be an open set whose points converge to O, each point along some direction.

Ω̂ be an invariant attracting domain whose points converge tangentially to [v].

Ω be Ω̂ such that f is conjugate to translation on Ω̂.

Σ be Ω and, if f is an automorphism, it is a Fatou-Bieberbach domain.
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[v] is Non-Degenerate (m = 0) Degenerate (m > 0)

Fuchsian •ReA > 0 ⇒

 ∃Σ∃(k − 1) Ω̂

[H1]

[AR]
•Re Â ∈ R ⇒ ∃Ω̂ [V3]

(1 +m = n) •ReA = 0 6= A •Re Â 6∈ R ⇒
⇒ sometimes @Ω̂ Ex. 3.4 sometimes @Ω̂ Ex. 3.5

•ReA < 0 ⇒ @Ω̂ [H1]

Irregular

(1 +m < n)
(A = 0) always ⇒ ∃Σ [L, V3] always ⇒ ∃Σ [V3]

Apparent

(1 +m > n)
Does not apply sometimes ⇒

 ∃Ω̂@Ω̂

[V3]

[V3]

O is

Dicritical

(m =∞)

(r ≡ O)

(A = 0)

 ⇒ ∃U [Bro2] (r ≡ O) ⇒ ∃U [Bro2]

Table 3.1: Summary of the existence of invariant attracting domains in C2.
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Chapter 4

The higher-dimensional case

In this chapter, we survey what is known about the existence of invariant attracting domains,

submanifolds, and curves for maps that are tangent to the identity in dimension m ≥ 3. For

the entirety of this chapter, let f ∈ End(Cm,O) be tangent to the identity of order k ≥ 2

with characteristic direction [v] and assume, without loss of generality, that [v] = [1 : O].

Unless otherwise stated, assume that [v] is non-degenerate.

In order to better understand the dynamics of f , we again look at the lift of f to the

blowup of Cm at the origin. As we saw in (1.4), the lift of f can be expressed in the local

coordinates (x, u) ∈ C× Cm−1 as follows:

x1 = x
(
1 + xk−1pk(1, u) + O(xk, ||u||xk)

)
u1 = u+ xk−1r(u) + O(xk, ||u||xk),

where r(u) := qk(1, u)−pk(1, u)u, so r is a polynomial in u whose terms have degree between

1 and k + 1. The previous coordinate change did not require [v] to be non-degenerate, but

the next one does require [v] to be non-degenerate. We can further simplify the expression

for (x1, u1) by performing the same coordinate change as we did to get (1.5) as well as a

linear change of the u coordinates so that A is in Jordan canonical form. Then:

x1 = x

(
1− 1

k − 1
xk−1 + O(xk, ||u||xk)

)
(4.1)

u1 = (1− xk−1A)u− xk−1r̃(u) + O(xk, ||u||xk),

where r(u) corresponds to −Au − r̃(u) after the coordinate change, r̃ is a polynomial in u

whose terms have degrees between 2 and k + 1, and A is in Jordan canonical form. Recall

that the eigenvalues of A are the directors corresponding to the characteristic direction [v].

Let {α1, . . . , αm−1} ⊂ C be the directors corresponding to [v].

As we saw in §1.2 and Chapter 3, directors play a significant role in the existence of

invariant attracting domains or submanifolds whose points converge tangentially to a direc-
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tion. In this chapter, we discuss how directors and other factors affect the existence and

characteristics of invariant attracting domains or submanifolds. In addition, we discuss the

existence of parabolic curves.

4.1. Existence of parabolic curves in Cm,m ≥ 3

Most of the results we discussed in Section 3.1 on the existence of parabolic curves in C2

also hold in higher dimensions. In particular, a map f ∈ End(Cm,O) that is tangent to

the identity admits (at least) k − 1 parabolic curves along some direction if: f has a non-

degenerate characteristic direction (Ecalle [E], Hakim, [H2]) or the origin is an isolated fixed

point (Abate [A1], Abate-Tovena [AT]). However, we do not have an extension of Abate’s

result in C2 for maps where the origin is dicritical.

4.2. All directors have strictly positive real part

When all directors have strictly positive real part (i.e., Re(αj) > 0 for all j), Hakim showed

that there exist k − 1 invariant attracting domains, each with the origin in its boundary,

in which every point is attracted to the origin tangentially to the direction [v] [H1, H2,

AR]. Furthermore, Hakim showed that there exists one such invariant attracting domain

D on which f |D is holomorphically conjugate to translation (see Theorem 1.17 or [H2]).

In addition, if f is a biholomorphism of Cm, then f has such a domain D that is also a

Fatou-Bieberbach domain and f |D is conjugate to translation (see Theorem 1.23 or [H2]).

4.3. At least one director has strictly negative real part

When at least one director has strictly negative real part, Hakim showed that there does

not exist an invariant attracting domain in which every point is attracted to the origin

tangentially to the direction [v] (Theorem 1.19 or [H1]). However, if some of the directors

have strictly positive real part, an invariant submanifold whose points are attracted to the

origin tangentially to [v] can exist (see Theorem 1.20 or [H1]). We discuss this further in the

next section.

4.4. Some, but not all, directors have strictly positive real part

Suppose [v] has exactly d directors with strictly positive real part. Then Hakim showed that

there exists Md+1, an invariant piece of analytic manifold of dimension d+ 1, with the origin

in its boundary, that is tangent to CV +E at the origin, and such that every point of Md+1

57



is attracted to the origin tangentially to the direction [v] (see Theorem 1.20 or [H1]). In the

following, we see that such a manifold of dimension greater than d+ 1 sometimes exists.

All directors have non-negative real part

When all of the directors corresponding to [v] have non-negative real part, an invariant

attracting domain whose points converge to the origin tangentially to the direction [v] some-

times exists.

The following is an example of a map that has an invariant attracting domain whose

points converge to the origin, but the map cannot have such a domain in which its points

all converge tangentially to the given direction.

Example 4.1. Let

f(x, y, z) = (x(1− x), y(1− x), z(1− 2x)) .

Then [1 : 0 : 0] is a non-degenerate characteristic direction with corresponding directors 0

and 1. In addition, f has infinitely many characteristic directions, but the origin is non-

dicritical. As we mentioned in Example 3.4, the map x 7→ x(1 − x) has a parabolic basin

C ⊂ C such that {xn} diverges as n → ∞ if and only if x 6∈ C and {xn} converges to 0 if

and only if x ∈ C. In addition, if x ∈ C, then xn ∼ 1
n

for large n. For x ∈ C,

yn
y

=
xn
x
∼ 1

n
for large n

and, as n→∞,

zn
xn

=
z

x

n−1∏
j=0

(
1− xj

1− xj

)
→ 0 since Re

(
n−1∑
j=0

xj
1− xj

)
→∞.

Hence, if f has an invariant attracting domain whose points converge to the origin, then it

must be contained in C × C2. For any point (x, y, z) ∈ C × C2, as n→∞,

(xn, yn, zn)→ (0, 0, 0),

but

[xn : yn : zn] =

[
1 :

y

x
:
z

x

n−1∏
j=0

(
1− xj

1− xj

)]
→
[
1 :

y

x
: 0
]
.

Therefore f has an invariant attracting domain whose points converge to the origin, but not

one whose points converge tangentially to the direction [1 : 0 : 0].
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4.5. All directors are zero

We divide this section into two parts, each of which depends on properties of the matrix

A from (4.1). In the first part, we assume that A is the zero matrix. In the second part,

we assume that all eigenvalues of A are zero, but A is not the zero matrix. In each part,

we discuss results relating to when there exists an invariant attracting domain whose points

converge tangentially to the direction [v].

Part 1. A is the zero matrix

We split this into two cases: (1) the origin is dicritical and (2) the origin is non-dicritical.

Case 1. The origin is dicritical

When the origin is dicritical, all directions must be characteristic directions. The same result

that we discussed in Section 3.5 also holds in higher dimensions. In particular, Brochero

Mart́ınez showed in [Bro2] that there is an open set U whose points converge to the origin

under f and the orbit of each point p ∈ U is attracted to the origin along a particular

direction, however that direction may not be the same for all points in U . For more details,

see Theorem 1.21 or [Bro2].

Case 2. The origin is non-dicritical.

For some maps, an invariant attracting domain whose points converge to the origin tangen-

tially to the direction [v] exists, while for other maps such a domain does not exist.

Let’s consider a particular class of maps for which A is the zero matrix, but the origin

is non-diciritical. Suppose that m = 3, k = 2, and f has no higher-order terms. Then

f = Id +P2 ∈ End(C3,O) and (x1, y1, z1) := f(x, y, z) equals:(
x [1− x− l1(y, z)]− p(y, z), y[1− x− l2(y, z)]− a2z

2, z[1− x− l3(y, z)]− a3y
2)
)
,

where lj and p are homogeneous polynomials of degree 1 and 2, respectively, and aj ∈ C.

Notice that the expression for f is missing a few terms: (1) there is no x2 term in y1, z1, (2)

the coefficients of x2, xy, and xz in x1, y1, and z1, respectively, is −1, and (3) the coefficients

of xz in y1 and xy in z1 are both zero. We can express f in this way for the following reasons:

(i) there is no x2 term in y1, z1 because [v] = [1 : 0 : 0] is a characteristic direction of f ,

(ii) the coefficient of x2 in x1 is non-zero because [v] is non-degenerate and, after a linear

change of coordinates, we can assume the coefficient is −1,
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(iii) r′(O) ≡ O because A is the zero matrix, so the coefficients of: (a) xy in y1 and xz in

z1 must be the same as x2 in x1 and (b) xz in y1 and xy in z1 must both be zero.

Given these assumptions, such a map f may or may not have an invariant attracting domain

whose points converge to the origin tangentially to [v] = [1 : 0 : 0]. One problem that arises

when determining whether such an invariant attracting domains exists for f is that it is not

clear how to control the relative sizes of y and z upon repeated iteration of f . We can avoid

this problem by making more assumptions on f , as we do in the following two examples. In

the first example we show that f has an invariant attracting domain whose points converge

to the origin tangentially to [v], while in the second example we show that no such domain

exists.

Example 4.2.

Let f be the map:

f(x, y, z) = ( x(1− x− ay − bz)− cyz, y(1− x− dy − bz), z(1− x− ay − ez) ) , (4.2)

for any constants a, b, c, d, e ∈ C. Assume that a 6= d and b 6= e, which is equivalent to

assuming l1(y, z) 6≡ l2(y, z) and l1(y, z) 6≡ l3(y, z). When we lift f to the blowup of C3 at the

origin, we can successfully avoid terms of the form y
z

and z
y

so we do not need to know how

y and z behave relative to one another. Using many of the same techniques as in the proofs

of Theorems A and B, we can show that f has an invariant attracting domain whose points

converge to the origin tangentially to the direction [1 : 0 : 0]. First we perform the coordinate

change (y, z) 7→
(

y
d−a ,

z
e−b

)
, renaming our constants a, b, c, our new coordinates (x, y, z), and

our new map f so that:

f(x, y, z) = (x(1− x− ay − bz)− cyz, y(1− x− (a+ 1)y − bz), z(1− x− ay − (b+ 1)z)) .

Then we define the following coordinate change φ : (C \ {0})3 → (C \ {0})3 by:

φ(x, y, z) =

(
1

x
,
x

y
,
x

z

)
:= (u, v, w) ⇒ φ−1(u, v, w) =

(
1

u
,

1

uv
,

1

uw

)
= (x, y, z).

Let f̃ := φ◦f ◦φ−1. When |u|, |v|, |w| � 1, f̃ acts on the new coordinates (u, v, w) as follows:

u1 = u+ 1 +

(
a

v
+
b

w
+

c

vw

)
+

1

u

(
1 +

a

v
+
b

w
+

c

vw

)2

+ O

(
1

u2

)
v1 = v +

1

u

(
1− c

w

)
+ O

(
1

u2

)
w1 = w +

1

u

(
1− c

v

)
+ O

(
1

u2

)
.
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Define Ω to be:{
(u, v, w) ∈ C3

∣∣∣ |Arg(v)|, |Arg(w)| < θ, |Arg(u)| < θ0, and R < |v|, |w| < |u|
1
N

}
,

for R � N > 2 and 0 < 2θ0 < θ < π
8
. It is straightforward to show that f̃ (Ω) ⊂ Ω, so

f (φ−1(Ω)) ⊂ φ−1(Ω). In addition, we can see that |un|, |vn|, |wn| → ∞ as n → ∞ so for

any point (x, y, z) ∈ φ−1(Ω), (xn, yn, zn) → (0, 0, 0) tangentially to [1 : 0 : 0] as n → ∞. It

remains to be seen if f is conjugate to translation (x, y, z) 7→ (x+ 1, y, z).

Instead of choosing f as in the previous example, we can choose f so that it cannot

have an invariant attracting domain whose points converge to the origin tangentially to the

direction [1 : 0 : 0].

Example 4.3.

Let f be the map:

f(x, y, z) = ( x(1− x), y(1− x− y), z(1− x+ y) ) .

Then [1 : 0 : 0] is a non-degenerate characteristic direction whose corresponding matrix A

is zero. Although f has infinitely many characteristic directions, the origin is non-dicritical

since not every direction is a characteristic direction. For any n ∈ N, let tn := yn
xn

and

wn := zn
xn

so that (1, tn, wn) = 1
xn

(xn, yn, zn). Suppose (xn, yn, zn) → O, but xl, yl, zl 6= 0 for

all l ∈ N. We want to show that [xn : yn : zn] 6→ [1 : 0 : 0] or, equivalently, that (1, tn, wn)

cannot converge to (1, 0, 0). Consider the following expressions for tn, wn as n→∞:

tn =
y
∏n−1

l=0 (1− xl − yl)
x
∏n−1

l=0 (1− xl)
= t0

n−1∏
l=0

(
1− yl

1− xl

)
→ 0 ⇔ Re

(
n−1∑
l=0

−yl
1− xl

)
→ −∞

wn =
z
∏n−1

l=0 (1− xl + yl)

x
∏n−1

l=0 (1− xl)
= w0

n−1∏
l=0

(
1 +

yl
1− xl

)
→ 0 ⇔ Re

(
n−1∑
l=0

yl
1− xl

)
→ −∞.

We cannot have both sums diverge to −∞, so (1, tn, wn) cannot converge to (1, 0, 0). Hence,

(xn, yn, zn) cannot converge to the origin tangentially to the direction [1 : 0 : 0]. Thus, f

cannot have an invariant attracting domain whose points converge to the origin tangentially

to the direction [1 : 0 : 0].

Given the assumptions that A = A(v) is the zero matrix and the origin is non-dicritical,

we have seen an example in which there exists an invariant attracting domain whose points

converge to the origin tangentially to [v] and another example in which such a domain does

not exist.
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Question. Given these assumptions on f , under what conditions does there exist an invariant

attracting domain whose points converge to the origin tangentially to the direction [v]?

Part 2. A is not the zero matrix

As we saw in (4.1), f is of the form:

x1 = x

(
1− 1

k − 1
xk−1 + O(xk, ||u||xk)

)
u1 = (1− xk−1A)u− xk−1r̃(u) + O(xk, ||u||xk),

where r(u) corresponds to −Au− r̃(u) after the coordinate change and r̃ is a polynomial in

u whose terms have degree at least 2 and at most k+1. In addition, A is in Jordan canonical

form and its eigenvalues are all zero, so it must be of the form:

A =



0 ε1 0 . . . 0

0 0 ε2 . . . 0

...
...

. . .
...

0 0 0 . . . εm−2

0 0 0 . . . 0


where εj ∈ C. Express u ∈ Cm−1 as u = (u(1), . . . , u(m−1)) and r̃ : Cm−1 → Cm−1 as

r̃ = (r̃(1), . . . , r̃(m−1)). Then we can rewrite f as:

x1 = x

(
1− 1

k − 1
xk−1 + O(xk, ||u||xk)

)
(4.3)

u
(j)
1 = u(j) − xk−1

(
εju

(j+1) + r̃(j)(u) + O(x, ||u||x)
)
,

u
(m−1)
1 = u(m−1) − xk−1

(
r̃(m−1)(u) + O(x, ||u||x)

)
,

where 1 ≤ j < m − 1. A major problem in finding an invariant attracting domain for f

that converges to the origin tangentially to [1 : O] arises from the behavior we see in the u
(j)
1

coordinates for 1 ≤ j < m − 1. In particular, for 1 ≤ j < m − 1, u
(j)
1 depends significantly

on u(j+1) when εj 6= 0. As we see in the following example, an invariant attracting domain

that converges to the origin tangentially to [v] = [1 : O] might not exist for f .

Example 4.4.

For ε 6= 0, let:

f(x, y, z) := (x(1− x), y(1− x)− εxz, z(1− x− z))
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Then [1 : 0 : 0] is a non-degenerate characteristic direction of f whose corresponding matrix

A equals

0 ε

0 0

. Define ψ to be the following map:

ψ : (x, y, z) 7→ (x, u, v) :=
(
x,
y

x
,
z

x

)
, where ψ : C \ {0} × C2 → C \ {0} × C2.

When 0 < |x| < 1, ψ ◦ f ◦ ψ−1 acts on our new coordinates u, v as follows:

u1 = u− ε xv

1− x
= u− εxv + O

(
x2v
)

(4.4)

v1 = v − xv2

1− x
= v

(
1− xv + O

(
x2v
))
.

Suppose for some x, y, z 6= 0, the orbit (xn, yn, zn) → (0, 0, 0). We want to show that

(xn, yn, zn) cannot converge tangentially to the direction [1 : 0 : 0]; in particular, we want

to show that [xn : yn : zn] = [1 : un : vn] 6→ [1 : 0 : 0]. We perform another coor-

dinate change, moving the origin to ∞, by inverting each coordinate. In particular, let

φ : (C \ {0})3 → (C \ {0})3 be given by:

φ : (x, u, v)→
(

1

x
,

1

u
,

1

v

)
:= (r, s, t).

For |x|, |v| � 1, hence |r|, |t| � 1, f acts on the coordinates r, t as follows:

r1 = r + 1 + O

(
1

r

)
⇒ rn = r + n+

n−1∑
j=0

O

(
1

rj

)

t1 =
t

1− 1
rt

+ O
(

1
r2t

) = t+
1

r
+ O

(
1

r2

)
⇒ tn = t+

n−1∑
j=0

1

rj

(
1 + O

(
1

rj

))

Therefore rn ∼ n and tn ∼ log n for large n; hence xn ∼ 1
n

and vn ∼ 1
logn

for large n. Then

we see that un 6→ 0:

un = u− ε
n−1∑
j=0

xjvj (1 + O(xj)) ∼ −ε log(log(n)),

for large n. Therefore f cannot have a domain of attraction to the origin whose points

converge along the direction [1 : 0 : 0].

Question. Given the assumptions on f , under what conditions (if any) does there exist an

invariant attracting domain whose points converge to the origin tangentially to the direction

[v]?
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4.6. Summary of results in Cm, for m ≥ 3

Let f ∈ End(Cm,O) be tangent to the identity of order k ≥ 2 with non-degenerate char-

acteristic direction [v]. Let α1, . . . , αm−1 ∈ C be the directors corresponding to [v], and let

A = A(v) be in Jordan canonical form. In the following table, we summarize the results from

this chapter on the existence of invariant attracting domains and submanifolds. In order to

simplify the table, let:

U be an open set whose points converge to O, each point along some direction.

Md+1 be a submanifold of dimension d+ 1 whose points converge to O tangentially to [v].

Ω̂ be an invariant attracting domain whose points converge to O tangentially to [v].

Ω be Ω̂ such that f is conjugate to translation on Ω̂.

Σ be Ω and, if f is an automorphism, a Fatou-Bieberbach domain.

Assumption Existence Result

Re(αj) > 0 for all j ∃Σ [H1]

∃(k − 1) Ω̂ [AR, H1]

Re(αj) ≥ 0 for all j, Re(αj) = 0 for only some j sometimes @Ω̂ Ex. 4.1

Re(αj) = 0 for all j

• A ≡ 0

• O is dicritical (extends to [v] degenerate) ∃U [Bro2]

• O non-dicritical sometimes ∃Ω̂ & @Ω̂ Ex. 4.2 & 4.3

• A 6≡ 0 sometimes @Ω̂ Ex. 4.4

Re(αj) > 0 for d of the j’s ∃Md+1 [H1]

Re(αj) < 0 for some j @ Ω̂ [H1]

[v] is non-degenerate or ∃ at least k − 1 parabolic [E, H2]

O is an isolated fixed point curves along a direction [A1, AT]

Table 4.1: Summary of the existence of invariant attracting domains, invariant attracting
submanifolds, and parabolic curves in Cm for m ≥ 3.

There are two main differences in the study of the existence of an invariant attracting

domain whose points converge to the origin tangentially to a given direction when we consider

maps in C2 versus maps in Cm, for m ≥ 3. Table 4.1 and Table 3.1, its C2 counterpart, clearly
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illustrate these differences. First of all, there is a classification of characteristic directions

in C2 that has not been extended to Cm; in particular, Fuchsian, irregular, and apparent

characteristic directions. Secondly, for a map f ∈ End(Cm,O) that is tangent to the identity,

a given non-degenerate characteristic direction of f has only one director when m = 2 where

as it has multiple directors when m ≥ 3; directors play a significant role in the existence

of invariant attracting domains, so this allows for many more possible situations in higher

dimensions. However, in both cases, as we can see from Tables 3.1 and 4.1, there are still

many open questions on the existence of invariant attracting domains whose points converge

to the origin along a particular direction.
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