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ABSTRACT 
 
Background: With climate change and population aging, the health burden of extreme heat (EH) 

is a present and future concern. However, characteristics of vulnerability to EH and associations 

between EH and morbidity vs. mortality are not well understood, and previous studies have 

focused on small numbers of cities and/or used sociodemographic and land cover information at 

a course geographic resolution (e.g., city-level). 

Objectives: For ages 65 and over, we examined 1) vulnerability to EH-associated mortality in 8 

Michigan cities by individual and neighborhood socio-demographic characteristics and green 

space, 2) associations between heat and HAs in over 100 U.S. cities and 3) vulnerability to EH-

associated HAs by individual and neighborhood characteristics and citywide air-conditioning 

prevalence in over 100 U.S. cities. 

Methods: In time-stratified case-crossover designs, we regressed natural-cause mortality or HAs 

against moderate heat and EH, or an indicator for maximum or apparent temperature above a 

city-specific threshold, over multiple lag days. We examined vulnerability by personal and ZIP-

code (neighborhood) characteristics using multiple interaction terms between each of the 

characteristics and EH terms and by citywide air-conditioning prevalence in meta-analyses. 

Results: In Michigan, we observed increased vulnerability to heat-associated mortality among 

men, blacks and the very old (78 years or older). Nationally, EH was associated with higher HAs 

for cardiovascular, renal and respiratory diseases, with rates increasing by 43% (95% CI: 37%, 

50%) for renal diseases, though over longer lags, substantial displacement of the initial effect 
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was observed for cardiovascular and respiratory HAs. We observed increased vulnerability to 

EH-associated HAs among men and the very old, in neighborhoods with more residents of 

nonwhite race and lower education and in cities with lower air-conditioning prevalence. 

Significant heterogeneity existed between cities for many of the vulnerability characteristics. 

Results were suggestive of increased vulnerability to heat-associated mortality and HAs in 

neighborhoods with less green space. 

Conclusions: Individuals with respiratory and renal conditions may benefit from heat adaptation 

interventions, and heat health warning systems and vulnerability maps may benefit from 

incorporating information on heat-associated HAs. Socio-demographic characteristics and 

possibly green space modify the association between EH and HAs and mortality, though effects 

vary by city. 
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CHAPTER I 
 

Dissertation Introduction 
 

 In the United States, heat is one of the deadliest natural hazards. More deaths are 

attributed directly to heat than to lightning, hurricanes, tornadoes or earthquakes (2005). Heat 

waves, extended periods of unusually high temperatures, can be especially deadly, even in the 

United States where many homes and public spaces are air-conditioned. During the week-long 

July, 1995 heat wave in Chicago, IL, the Cook County Medical Examiner’s Office quickly 

exceeded its storage capacity and enlisted the help of a local meat-packing firm, which loaned 

the city nine 48-foot long refrigerated trucks to contain the hundreds of additional corpses 

(Klinenberg 2002). Some have questioned whether heat waves are truly a public health crisis, 

proposing that individuals who die due to heat, particularly the elderly, would have died due to 

other causes within a matter of days anyway (a phenomenon known as mortality displacement, 

or “harvesting.”) (Schwartz et al. 2004). However, the death toll due to the Chicago 1995 heat 

wave has been estimated at 500 deaths, even after accounting for an estimated mortality 

displacement of 26% (Kaiser et al. 2007). Heat waves can be devastating in other industrialized 

nations, as well, as evidenced by the European heat wave of 2003, to which 35,000 excess deaths 

have been attributed (Kosatsky 2005). With global warming, heat waves are expected to increase 

in frequency, intensity and duration (Meehl and Tebaldi 2004) and could therefore become 

deadlier without a better understanding of whom they affect and of the actions required to protect 

the vulnerable. 
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 The association between temperature and mortality is well known, and by the early 

1990s, there was a renewed interest in this research with respect to climate change (Gosling et al. 

2009). Many studies have improved our understanding of which populations are especially 

vulnerable to heat. Individuals 65 and over are among the most vulnerable to heat, (Fouillet et al. 

2006; Lye 1997; Vaneckova et al. 2007) perhaps due to the increasing difficulty of 

thermoregulation with age as well as increased likelihood of impaired cardiovascular and renal 

function (Flynn 2005; Kenney 2001). The elderly may also be more likely to be taking 

medications, such as anticholinergics or antipsychotics, which inhibit the body’s ability to 

recognize hyperthermia or initiate a thermoregulatory response (Martin-Latry et al. 2007). 

Besides physical and pharmacological risk factors, heat-related morbidity and mortality seem to 

have socioeconomic risk factors as well. Not having air conditioning has been identified as a 

major risk factor for health effects from heat (Naughton et al. 2002; O'Neill 2005), as has living 

alone (Fouillet et al. 2006; Naughton et al. 2002) and being of African American race (Kaiser et 

al. 2007; Medina-Ramon et al. 2006; O'Neill et al. 2003). 

 Although the association between heat and mortality is well studied, the association 

between heat and a measure of morbidity, such as hospital admissions, is less clear. In some 

studies, the rates of hospital admissions are lower than mortality rates during periods of high 

temperature, particularly among individuals with cardiovascular disease. Many of the 

cardiovascular deaths that occur due to heat and heat waves may occur too suddenly for the 

individual to receive medical attention (Linares and Díaz 2007; Mastrangelo et al. 2006). 

Similarly, in the United Kingdom, mortality has been found to rise during heat waves, but no 

significant increase in all-cause hospital admissions was detected. However, respiratory and 

renal admissions increased during heat waves (Kovats et al. 2004). In Adelaide, Australia, on the 
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other hand, mortality rates did not rise significantly while rates of hospital admissions have been 

found to increase during heat waves (Nitschke et al. 2007). 

The effect of urban heat islands (UHIs) on the association of heat and mortality/morbidity 

is also not well studied. Certain urban neighborhoods can have higher temperatures than 

suburban or rural areas because a greater portion of urban areas are comprised of heat-absorbing 

impervious surfaces (e.g., asphalt or concrete) and less vegetation, which provides shade and 

lowers ambient temperature (Voogt and Oke 2003). For example, in a study of the variability of 

temperatures around Phoenix, AZ, higher temperatures were found in poorer neighborhoods 

where ethnic minorities reside, while wealthier neighborhoods, with lush landscaping, were 

cooler (Harlan et al. 2006). UHIs have been studied and modeled with respect to decreasing 

building cooling costs, decreasing air pollution and improving the aesthetic appeal of a 

neighborhood (Gartland 2008). However, in a literature review of the health effects of UHIs, 

only a small number of epidemiologic studies of the direct effects of UHIs on morbidity and 

mortality during heat events or heat waves have been conducted (Harlan et al. 2013, Uejio et al. 

2011, Smargiassi et al. 2009, Smoyer 1998, Vandentorren et al. 2006). 

Additionally, race may have been identified as a risk factor for death due to heat in past 

epidemiologic studies because individuals of non-white race may be more likely to live in areas 

with higher amounts of impervious surface. A large proportion of the difference in heat-related 

mortality between African Americans and Whites has been attributed to differences in air 

conditioning prevalence, but this does not explain all of the difference in effect by race (O'Neill 

2005). In a study by Anderson and Bell (2009), the increase in heat mortality of a community 

was not statistically significant for an increase in the percent of the population that was African 

American when the following variables were controlled for: median household income, percent 
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unemployed, percent of the population without a high school degree, percent public 

transportation commuters, percent living in an urban setting, population size and percent with 

central air conditioning. This suggests that at least one of these variables accounts for racial 

disparities in heat vulnerability. 

 The effect of air pollution on the association between heat and morbidity/mortality is also 

not well studied. Ozone levels rise as a direct effect of temperature which speeds the reaction 

between nitrogen dioxide, solar radiation and volatile organic compounds to form ozone. This 

pollutant could therefore confound the effect of temperature on morbidity/mortality. Several 

studies have attempted to address the question of whether air pollutants confound and/or modify 

the relationship between temperature and mortality, but the results are conflicting (Basu and 

Samet 2002, Basu et al. 2008, Ebi and McGregor 2008, Ren et al. 2008).  

 The study of the direct effects of heat on morbidity and mortality presents several 

challenges. For one, very few hospital admission records or death certificates list “heat stroke” as 

a primary or contributing cause each year. Additionally, individuals dying at home due to heat 

stroke may not be discovered until their body temperature has dropped below levels required for 

a diagnosis of heat stroke (Klinenberg 2002). However, many studies have shown an increase in 

mortality with increasing temperature during the summer, suggesting that merely counting heat 

stroke cases does not fully capture the effects of heat on health (Basu and Samet 2002). As noted 

above, rates of mortality due to respiratory and cardiovascular diseases rise with temperature as 

well. Heat is similar to air pollution in that daily time series of exposures as well as daily time 

series of health effects (mortality or hospital admissions) are available in the United States. This 

allows the identification of trends in health effects during elevations in exposure, obviating the 

need for precise causes of death. 
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 Another challenge is that humans do adapt to heat, both physiologically and culturally 

(e.g., through air conditioning use, siestas, cooler building design, etc.), making it unwise to use 

an absolute temperature threshold in heat wave health effects research. For example, 

temperatures which are considered normal in Phoenix, AZ in the summer are considered 

extremely high in Chicago, IL and are far deadlier in Chicago than in Phoenix. Cities most at risk 

to the health effects of heat have traditionally been cities in more temperate climates with lower 

air conditioning prevalence (Medina-Ramon and Schwartz 2007). Because a heat wave is 

generally considered a rare event, the National Weather Service definition is region-specific.  

However, the definition is not based on expectations of heat-health effects (2005; Robinson 

2001). Other investigators have used definitions based on percentiles of temperature for a given 

city (Medina-Ramon et al. 2006; Schwartz 2005), but there is still heterogeneity among cities 

with this approach. Additionally, it is not clear that there is an “added heat wave effect”, or an 

effect of long durations of high temperature, above and beyond the independent effects of single 

days of high temperature (Gasparrini and Armstrong 2011). 

 

 The health effects of temperature have been studied for many years, and municipalities 

and not-for-profits have begun to implement heat mitigation strategies (Rosenthal et al. 2008). 

Maps of vulnerability to heat (e.g., Reid et al. 2009 and Harlan et al. 2013) can be constructed to 

help cities identify which areas are most in need of targeted interventions during heat events, and 

heat health warning systems have been implemented in several cities (Bassil 2011) to inform the 

public and public services of impending heat events. Despite the actions being taken, it is 

important to understand the associations between heat and morbidity and which populations are 
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vulnerable to heat in order to improve vulnerability maps, heat health warning systems and to 

improve estimates of the present and future burden of heat in a changing climate. 
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ABSTRACT 

Background: With climate change and population aging, the health burden of high temperatures 

is a present and future concern, even in cooler climates. Adaptation strategies should target 

vulnerable populations. However, vulnerabilities due to land use and socio-demographic 

characteristics are not well understood. 

Objectives: We examined how neighborhood-level green space and individual- and 

neighborhood-level socio-demographic characteristics modified the association between 

temperature and mortality among the elderly in 8 Michigan cities, during the period May-

September, 1990-2007. 

Methods: In a time-stratified case-crossover design, we regressed natural-cause mortality records 

against extreme heat, or an indicator for two-day average apparent temperature (AT) above the 

95th or 97th percentile of warm season AT, on lag days 0-1 and 2-3. We examined effect 

modification by personal characteristics as well as characteristics of the decedent’s ZIP code, 

including percent “non-green space” (computed from the National Land Cover Dataset) and 

characteristics of age, race, income, education and social isolation (from the U.S. Census) using 

interaction terms between each of the extreme heat indicator variables and characteristics. 

Results were pooled using random effects meta analysis. 

Results: In models with multiple effect modifiers, non-married and male sex at the individual 

level as well as percent non-green space at the ZIP-code level modified the heat-cardiovascular 

mortality association. Black (individual level) and percent non-green space and percent over 75 

years (ZIP-code level) modified the heat-respiratory mortality association. 
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Conclusions: Neighborhood green space and other demographic characteristics modify the 

association between heat and mortality among the elderly. Future vulnerability maps should 

incorporate the magnitudes of these modifiers.  
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BACKGROUND 

In the U.S., the association between hot weather and mortality, especially cardiovascular 

and respiratory mortality, is well established (Anderson and Bell 2009; Braga et al. 2002; 

Curriero et al. 2002; Medina-Ramon and Schwartz 2007). With climate change and an aging 

population, heat-related mortality is of increasing concern. Public health measures to protect 

vulnerable populations from the effects of heat and heat waves are being adopted in many cities 

in the U.S. and around the world. Previously identified characteristics of vulnerability to heat-

related morbidity and mortality include: advanced age, non-white race, poverty, lack of air 

conditioning or the financial resources to operate an air conditioner, social isolation, lack of 

green space (which provides shade and reduces ambient temperature) and low educational 

attainment (Reid et al. 2009; Sampson et al. 2013; Zanobetti et al. 2013). These characteristics 

have been used to construct vulnerability maps that can help communities determine where to 

focus resources during extreme heat (Harlan et al. 2013; Johnson et al. 2012; Reid et al. 2009).  

However, in a validation study of one such vulnerability map, Reid and colleagues (Reid 

et al. 2012) showed that their map reflected vulnerability to mortality in general but not 

vulnerability to heat-associated mortality. Previously constructed vulnerability maps have been 

limited by using data that identify the characteristics of vulnerability or the health outcome of 

interest at a spatial resolution no finer than city- or county-level. Additionally, some of the area-

level characteristics evaluated, such as percent of people living in poverty, percent of people with 

lower education, and percent green-space can be highly correlated with each other. For example, 

in the Detroit metropolitan area, census tracts with lower percent of vegetative cover are often 

the same census tracts where the population has the highest percent of people living in poverty 

and with the least education (White-Newsome et al. 2009). This situation makes evaluation of 
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the independent and relative contributions of these factors to heat vulnerability challenging. In 

epidemiologic terms, the relative influence of each of these potential effect modifiers, as well as 

the extent to which these effect modifiers confound each other, is poorly understood. 

Cities in Michigan, a state with a temperate, four-season climate and relatively low air 

conditioning prevalence, have been shown to have high vulnerability to heat (Anderson and Bell 

2009; Zanobetti and Schwartz 2008). We aim to determine the relative influence of individual- 

and ZIP code-level characteristics in modifying the short-term association between extreme heat 

and cardiovascular and respiratory mortality in Michigan using death records, land cover data, 

temperature data and socioeconomic data from 1990-2007. 
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METHODS 

Data 

The 10 counties in Michigan with populations greater than 200,000 were aggregated into 

8 “cities” according to the county’s corresponding Metropolitan Statistical Area: Ann Arbor 

(Washtenaw County), Detroit (Wayne, Oakland and Macomb Counties), Flint (Genesee County), 

Grand Rapids (Kent County), Holland (Ottawa County), Kalamazoo (Kalamazoo County), 

Lansing (Ingham County) and Saginaw (Saginaw County) (Figure II.1). Within these cities, we 

used ZIP codes, US postal codes, as neighborhood units (Osypuk and Galea 2007). 

Michigan death records from 1990-2007 were obtained from the Michigan Department of 

Community Health. These records included date of death, ZIP code of residence, marital status, 

race, age, sex and educational level. We restricted our data set to decedents 65 years and older 

and further classified the decedents as unmarried vs. married or separated, non-white vs. white, 

black vs. non-black, age 79 years or older vs. age 65-78 years, male vs. female and no high 

school degree vs. high school degree or higher. Primary causes of death were classified using the 

International Classification of Diseases codes from versions 9 and 10 (ICD-9 and ICD-10) as all-

natural cause (ICD-9 < 800, 992 and E900.0; ICD-10 A-R, T67 and X30), heat-related (ICD-9 

992 and E900.0; ICD-10 T67 and X30), cardiovascular (ICD-9 390-429; ICD-10 I0-I52), 

respiratory (ICD-9 460-466, 480-487, 490-492, 494-496; ICD-10 J9-J18, J40-J44, J47) and 

cardiorespiratory (cardiovascular or respiratory). 

Daily mean temperature and dew point (means of at least 18 hourly observations) were 

obtained from the National Climatic Data Center (2012a) for the airport weather station nearest 

to each city with the most complete time series. These observations were used to calculate 2-day 
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running average of daily mean apparent temperature (AT, °C) for May-September, 1990-2007. 

AT incorporates both temperature and humidity and is calculated as: 

AT = −2.653 + (0.994 × ambient temperature) + (0.0153 × (dew point temperature)2) 

(O'Neill et al. 2005) 

We obtained neighborhood-level socio-demographic characteristics from 2 sources: 

Decennial Census Long Form data in 2000 ZIP Code Tabulation Areas (ZCTAs, polygons 

constructed by the U.S. Census Bureau approximating ZIP codes, which are not true polygons), 

for 1990 and 2000 (2006) and 5-year average (2006-2010) estimates in 2010 ZCTA boundaries 

from the American Community Survey (2012b). We extracted the following characteristics for 

each study ZCTA: percent 65 years or older and living alone, percent non-white, percent black, 

percent aged 75 years and older, percent without a high school degree, percent of households at 

or below the poverty level and household median income. We also obtained ZCTA population-

weighted centroids for 2000 and 2010 ZCTAs (2012c). 

Land cover classifications at a resolution of 30 x 30 m were obtained from the Multi-

Resolution Land Characteristics Consortium for 1992, 2001 and 2006 (U.S. Department of the 

Interior 2012). We further classified these data as “green space” vs. “non-green space” (Figure 

II.1) and calculated the percent area non-green space in each ZCTA using ZCTA 2000 and 2010 

Census TIGER/Line shapefiles (2012d). 

We estimated annual values for land cover and socio-demographic characteristics for 

each ZCTA by linearly interpolating the decadal values. For example, 1993 land cover values 

were obtained by taking a weighted average of the 1992 and 2001 values. For years outside the 

data interval we used the annual value of the closest year in the data interval (e.g., land cover 

values for years 1990-1991 were estimated using the 1992 land cover value). 
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Analysis 

We employed a time-stratified case-crossover design, with controls selected on the same 

days of the week in the same month as the cases (except the case day) (Janes et al. 2005). 

Confounding by individual-level characteristics and characteristics that vary over longer than 1 

month are automatically controlled for by design. First, we performed the time-stratified case-

crossover analysis using Poisson regression (with indicator variables for each combination of 

year, month and day-of-week) to examine the association between deaths and 4, 2-day means of 

AT (lag days 0-1, 2-3, 4-5 and 6-7), all used simultaneously and modeled using natural cubic 

splines with 6 degrees of freedom. Lags of 2-day mean AT, instead of single day AT, were used 

to reduce collinearity between the temperature exposures. The results of these models were used 

to make decisions about the thresholds for extreme heat as well as the number of lags of 2-day 

mean AT to include in subsequent models. Then, we performed the case-crossover analysis using 

conditional logistic regression which allowed us to assess effect modification (vulnerability) by 

including interaction terms between the time-varying exposure (AT) and the individual- or 

ZCTA-level characteristic, a feature of this design that has not often been taken advantage of 

(Carracedo-Martinez et al. 2010). 

We performed our vulnerability analysis in the following order: 

1. We ran the following model for each city for each cause of death (cardiovascular or 

respiratory), using 2 extreme heat thresholds (95th or 97th percentile of 2-day mean AT) and each 

effect modifier (e.g., percent non-green space): 

logit(mortality) = β1EH01 + β2EH23 + β3(EH01 × EM) + β4(EH23 × EM) 

where EH01 is an indicator variable for the mean of AT on lag days 0-1 being above the extreme 

heat threshold in that city, EH23 is an indicator variable for the mean of AT on lag days 2-3 
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being above the extreme heat threshold, and EM is the effect modifier. Individual-level effect 

modifiers (e.g., non-married) were introduced in the model as indicator variables. 

2. Using the estimates of exp(β3) (odds ratio (OR) of mortality for a unit increase in the 

effect modifier during extreme heat) and exp(β3 + β4) (sum of the 2 individual 2-day ORs) 

obtained for each of the 8 cities, we performed an inverse-variance weighted random effects 

meta analysis for each cause of death, extreme heat threshold and effect modifier. For the 

continuous effect modifiers, results were calculated for the interquartile range (IQR) increase 

which we calculated among the cases across all 8 cities (Table II.1). 

3. In the final model for each city, we first included modifiers from each vulnerability 

category of age, race, sex, income, education, social isolation and green space. Then, from each 

of these categories at the level at which they were available (individual- or ZIP code-level, we 

selected the modifier with the strongest association in step 2 and combined these individual- and 

ZCTA-level modifiers into a single model. The final model had 11 effect modifiers and was 

given by: 

logit(mortality) = β1EH01 + β2EH23 + β3(EH01 x EM1) + β4(EH23 x EM1) + β5(EH01 x 

EM2) + β6(EH23 x EM2) + . . . + β23(EH01 x EM11) + β24(EH23 x EM11) 

To assess whether there was still residual spatial correlation, we derived the conditional logistic 

regression residuals23 for each matched set with identical characteristics using the SAS macro 

mcstrat24. We then constructed the empirical semi-variograms of the residuals using the centroid 

of each matched set’s ZCTA to calculate distances and we evaluated them for indication of 

residual spatial dependence in the data. 

4. We then conducted meta analyses as in step 2, although we now used a multivariate 

random effects meta analysis which accounts for the covariance between the betas. We also 
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calculated best linear unbiased predictions for individual cities (a shrunken average of the city-

specific result and the meta analysis result) for each of the effect modifiers. 

We performed data management and analyses in ArcGIS 10, SAS 9.2 and R 2.15. In ArcGIS 

we used the “near” and “tabulate data” tools. Our analyses used the glm, coxph, fields, gstats and 

mvmeta packages in R. 
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RESULTS 

With the exception of Holland, the eight cities considered in this study were similar to 

one another for temperature and individual characteristics. In Holland, the percent of decedents 

who were non-white was too small to allow for analyses of this potential modifier, so race 

variables were excluded from the full models. Additionally, the percent of deaths coded as heat-

related was too small in any city to use this cause of death as an outcome. 

ZCTA characteristics ranged more widely than temperature and individual characteristics 

between cities. Ann Arbor ZCTAs had little non-green space (the 75th percentile of percent non-

green space was 29.7%) while Detroit ZCTAs had a high percentage of non-green space (the 25th 

percentile was 68.9%). Among the ZCTA characteristics, percent below the poverty level, 

median income, percent non-white, percent black and percent without a high school degree were 

moderately to highly correlated with each other (Table II.2). We did not have information on 

Hispanic ethnicity at the individual level, and percent non-white and percent black were highly 

correlated, so in subsequent analyses, the only category of race/ethnicity which we focused on 

was black race. 

In analyses of the association between extreme heat and mortality without accounting for 

effect modification, effects were strongest for AT01 and AT23 above the 95th percentile (e.g., in 

Detroit, Figure II.2). In light of this result, in our effect modification analyses we only considered 

these two 2-day lags above the 95th percentile threshold. 

Among the vulnerability characteristics, when each was examined in a separate model, 

the individual-level characteristics non-married and black race and the ZCTA characteristics 

percent non-green space, percent black and percent below poverty level modified the association 

between extreme heat and cardiovascular mortality when extreme heat was defined as 2-day AT 
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average above the 95th and/or the 97th percentile. Being unmarried was protective against 

extreme heat-associated cardiovascular mortality, with an OR less than 1 (Figure II.3A). The 

ZCTA percent aged 75 years and older modified the association between respiratory mortality 

and extreme heat (Figure II.3B). Percent below poverty level and median income in a ZCTA had 

similar effects, so we only included percent below poverty level in subsequent models. 

For models containing all 11 modifiers, being non-married and male (individual-level 

characteristics) modified the extreme heat-cardiovascular mortality association, controlling for 

the other characteristics. Modifiers of the extreme heat-respiratory mortality association differed 

from those of the extreme heat-cardiovascular mortality association. Respiratory modifiers 

included black race (at the individual level) and the percent of individuals 75 years and older (at 

the ZCTA level). 

In Q tests of heterogeneity, we found significant heterogeneity in the coefficient estimates 

for 3 extreme heat-cardiovascular mortality modifiers for cardiovascular mortality: percent non-

green space, percent black and percent with no high school degree, and the best linear unbiased 

predictions for these effect modifiers are presented in Figure II.4 A-C. We also found significant 

heterogeneity for 2 extreme heat-respiratory mortality modifiers: no high school degree 

(individual level) and percent with no high school degree (ZCTA level) (Figure II.5 A-B). Some 

of these city-specific modifying effect estimates were significantly greater than 1, e.g., percent 

non-green space in Grand Rapids, Lansing and Saginaw.  
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DISCUSSION 

Some of the potential effect modifiers were moderately correlated, reinforcing the need to 

account for confounding among characteristics of vulnerability when assessing vulnerability to 

heat. Even after accounting for social isolation, race, education, age and sex to the extent that this 

information was available at the individual and neighborhood level, the effect of percent non-

green space persisted, with, for example, a 1.44 (95% CI = 1.04, 2.00) higher risk of 

cardiovascular mortality during extreme heat for in IQR increase (51.6%) in percent non-green 

space in Grand Rapids. 

The association between non-green space and heat-associated mortality is somewhat 

consistent with other epidemiologic studies looking at the association between heat health effects 

and land cover or satellite-derived land surface temperature and sociodemographic 

characteristics at a fine geographic resolution. In Montreal, satellite-derived land surface 

temperature in a postal code modified the association between warm season temperature and 

daily mortality among individuals in postal codes with higher property values, but land surface 

temperature did not modify this association in postal codes with lower property values, where the 

temperature-mortality association was higher in general. This suggested an influence of the urban 

heat island effect on heat-associated mortality, though only in the absence of substantial 

socioeconomic deprivation (Smargiassi et al. 2009). In a study of the 2005 summer in Phoenix, 

both percent impervious surface and land surface temperature in a census block group were 

associated with heat distress calls, controlling for a variety of other socioeconomic factors (Uejio 

et al. 2011). However, in a similar study of the 1999 summer in Philadelphia, none of the built 

environment measurements—vegetation, land surface temperature or percent impervious 

surface—were associated with heat deaths in a census block group (Uejio et al. 2011). In a 
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separate study of Phoenix heat deaths in census block groups from 2000-2008, models 

incorporating either vegetation or land surface temperature in conjunction with socioeconomic 

factors best fit the data (Harlan et al. 2013). Our study, which used a design that allowed us to 

control for both individual-level demographic factors and area-level factors, still showed a 

deleterious effect of lack of vegetation; these findings suggest a role for urban-heat-island 

mitigation strategies, such as tree plantings. 

Despite the finding in 3 of the above studies and our own study that lack of surface 

vegetation contributes to vulnerability to heat-associated morbidity and mortality, the relative 

importance of this effect and of socioeconomic characteristics may be highly dependent on the 

city or region being studied as discussed above. Even within Michigan, we found heterogeneity 

in effect estimates for green space, race and education at the neighborhood level and education at 

the individual level between cities. 

Few studies have explicitly evaluated the role of green space in human health. In addition 

to the studies of vegetation and heat-associated morbidity and mortality mentioned above, self-

reported health and well-being indicators have been positively associated with green space (de 

Vries et al. 2003; Maas et al. 2006; Takano et al. 2002; Tanaka et al. 1996). A study in England 

found a significant difference in the association between income inequality and mortality across 

groups with differing exposure to green space. Incidence rate ratios for all-cause mortality and 

circulatory diseases were higher for residents living in less green areas than in areas with more 

green space (Mitchell and Popham 2008). Green areas may protect health by reducing air 

pollution, the urban heat island effect and promote physical activity for a healthier lifestyle. 

Our study was limited by the still relatively coarse spatial resolution (ZIP code) of the 

case location of residence. For example, the relative importance of, for example, having a tree 
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above one’s house vs. a lush park down the street cannot be disentangled at the ZIP code level. 

Future research will use more finely resolved residence locations. Also, the number of decedents 

of other races was too small in Michigan to allow for testing effect modification by other races, 

and the lack of availability of individual-level socioeconomic indicators besides age and marital 

and educational status prohibited us from understanding how individual-level cultural or 

economic characteristics may confound the observed effect modification by race. 

Our finding that being unmarried was protective against extreme-heat-related 

cardiovascular mortality was surprising given previous research. This variable may be serving as 

a proxy for living in multigenerational single family homes or elderly housing in which the 

elderly individual may have received a higher level of care and protection against the effects of 

extreme heat.  

We did not have individual-level or ZIP code-level information about air conditioning 

prevalence. However, previous research has found that having the financial resources to operate 

an air conditioner are important in addition to owning an air conditioner (Klinenberg 2002; 

Sampson et al. 2013; Sheridan 2007). We believe that percent below the poverty level may be a 

proxy for air conditioning usage at the ZIP code level. 

 In summary, lack of green space modified the association between extreme heat and 

cardiovascular mortality in 3 Michigan cities, even after controlling for both individual-level and 

neighborhood level socioeconomic characteristics. The influence of green space, race and 

education varied between cities and by mortality outcome. Future research will use more finely 

resolved spatial information and will develop methods to quantify and display maps of 

vulnerability to heat in Michigan. 
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TABLES 

Table II.1. Individual and Zip Code Tabulation Area (ZCTA)-level characteristics of cases (decedents) aged 65 years and older in 
Michigan study cities, 1990-2007. 
 

 

Ann Arbor Detroit Flint Grand Rapids Holland Kalamazoo Lansing Saginaw 

Mean daily number of deaths, May-September 

All-natural-cause 3.0 62.0 6.5 7.2 2.6 3.3 3.3 3.7 
Cardiovascular 1.0 24.2 2.5 2.5 0.9 1.1 1.2 1.3 
Heat-related 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 
Respiratory 0.2 4.6 0.5 0.7 0.2 0.3 0.3 0.3 
Percentiles of 2-day mean daily mean apparent temperature (°C), May-September 
95th 28.9 29.5 28.1 28.5 28.5 28.7 28.2 27.9 
97th 29.9 30.5 29.1 29.5 29.5 29.7 29.2 29.0 
Percent of cases with the following characteristics 
Non-married 36.5 36.3 38.4 38.5 43.1 38.1 36.5 39.4 
No high school degree 28.5 38.6 40.3 37.2 43.8 33.1 31.4 44.8 
Male 42.7 44.6 44.4 43.5 44.4 42.7 42.0 45.0 
Non-white 10.6 21.5 14.3 5.7 0.9 5.7 7.0 12.0 
Black 9.7 20.9 13.8 5.3 0.3 5.2 6.2 11.7 
Aged 79+ years 62.3 56.1 54.1 62.5 65.4 61.9 61.2 58.9 
Number of ZCTAs and 25th-75th percentiles of ZCTA characteristics among the cases1 
Number of ZCTAs 26 177 33 39 22 23 23 28 
Percent non-green space 8.6-29.7 68.9-94.7 12.1-53.8 43.8-73.9 17.5-24.7 8.7-48.4 25.0-53.3 9.7-46.4 
Percent non-white 7.5-31.8 5.2-60.8 4.7-30.1 6.0-22.0 2.8-10.2 8.1-20.9 7.2-25.7 3.4-23.7 
Percent black 3.0-22.8 1.4-49.6 1.7-24.5 1.6-12.2 0.2-1.4 3.7-13.9 2.1-13.5 0.6-15.2 
Percent aged 65+ years 
and living alone 5.0-7.7 8.0-12.7 7.6-11.4 7.2-11.0 6.1-9.9 7.6-10.0 6.8-9.1 9.3-13.0 
Percent below poverty 
level 4.5-14.3 4.3-19.2 6.1-22.6 6.2-12.3 3.7-7.4 6.3-20.6 7.6-20.3 7.7-18.8 
Median income 42.4-62.1 32.4-55.0 30.4-48.6 35.5-50.4 43.4-53.5 31.7-46.6 33.0-47.2 26.8-45.5 
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(thousands of dollars) 
Percent without high 
school degree 4.8-13.0 12.0-27.5 11.9-23.2 11.1-21.4 10.9-17.9 8.1-16.6 7.5-17.0 13.5-24.3 
Percent aged 75+ years 
among those aged 65+ 42.1-47.0 40.9-50.2 39.3-45.6 43.2-52.8 44.7-51.6 43.5-50.8 41.4-50.5 40.9-53.7 

1 Among all the cities combined, the IQR increases in percent non-green space, percent non-white, percent black, percent 65 years and older and living alone, 
percent below the poverty level, median income, percent black, percent without a high school degree and percent 75 years and older were 51.6%, 29.1%, 22.7%, 
4.5%, 13.1%, $20,200, 13.5% and 9.1%, respectively.  
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Table II.2. Case-weighted correlations among ZIP Code Tabulation Area characteristics, 1990-2007. 

 

% Non-
Green 

% Non-
White 

% Aged 65+ 
and Alone 

% Below 
Poverty 

Median 
Income % Black 

% No High 
School 

% Aged 
75+ 

% Non-
Green 1 0.46 0.45 0.4 -0.38 0.45 0.51 0.18 
% Non-
White 

 
1 0.09 0.81 -0.58 0.99 0.6 -0.03 

% Aged 65+ 
and Alone 

  
1 0.16 -0.28 0.1 0.25 0.49 

% Below 
Poverty 

   
1 -0.76 0.78 0.77 0 

Median 
Income 

    
1 -0.58 -0.81 0.04 

% Black 
     

1 0.59 -0.06 
% No High 
School 

      
1 -0.18 

% Aged 75+ 
       

1 
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FIGURES 

Figure II.1. Land cover in Michigan’s Lower Peninsula in 2001 (U.S. Department of the Interior 
2012). 
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Figure II.2. Partial regression plots of associations between mortality among individuals 65 years 
and older and 4, 2-day lags of 2-day mean daily mean apparent temperature (AT) as natural 
cubic splines with 6 degrees of freedom (modeled simultaneously), Detroit, Michigan, 1990-
2007. 
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Figure II.3. Pooled (among the 8 study cities) odds ratios (ORs) and 95% confidence intervals 
for the modification of the association between cardiovascular or respiratory mortality and 
extreme heat (2-day running average of daily mean apparent temperature (AT) above the 95th or 
97th percentile on lag days 0-1 and 2-3) for the presence of an individual-level or an interquartile 
range increase in a ZIP code-level effect modifier, Michigan, 1990-2007. 
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Figure II.4. Odds ratios (ORs) and 95% confidence intervals for the modification of the 
association between mortality among decedents 65 years and older and extreme heat (2-day 
mean apparent temperature above the 95th or 97th percentile on lag days 0-1 and 2-3) for 
cardiovascular mortality for an interquartile range increase in the percentages in a ZIP code of A) 
non-green space , B) residents of black race and C) residents without a high school degree, 
Michigan, 1990-2007. 
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Figure II.5. Odds ratios (ORs) and 95% confidence intervals for the modification of the 
association between mortality among decedents 65 years and older and extreme heat (2-day 
mean apparent temperature above the 95th or 97th percentile on lag days 0-1 and 2-3) for 
respiratory mortality for A) no high school degree and B) an interquartile range increase in the 
percent of residents without a high school degree in a ZIP code, Michigan, 1990-2007. 
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Abbreviations: 
AT: daily mean apparent temperature 
AT01: the mean of AT over lag days 0 and 1 (the day of and the day before hospital admission) 
AT01MH: moderate heat, or continuous AT01 in °C below a city-specific percentile threshold, 

e.g., the 95th percentile of warm-season (May-September) AT01 
AT01EH: extreme heat, or an indicator variable taking the value of 1 if AT01 on that day is above 

a city-specific percentile threshold, e.g., the 95th percentile of warm-season (May-
September) AT01, and zero otherwise 

CDD: cooling-degree day (annual sum of daily mean temperatures below 18.3 °C) 
CI: confidence interval 
COOP: National Climatic Data Center’s Cooperative Summary of the Day 
CVD: cardiovascular 
DTR: diurnal temperature range 
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HDD: heating-degree day (annual sum of daily mean temperatures above 18.3 °C) 
Heat wave: several consecutive days of extreme heat 
ICD-9-CM: The International Classification of Diseases, Ninth Revision, Clinical Modification 
IQR: Interquartile range 
MA: daily maximum temperature 
MI: daily minimum temperature 
MT: daily mean temperature 
OR: odds ratio 
Resp: respiratory 
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ABSTRACT 

Background: Heat-wave frequency, intensity and duration are increasing with global climate 

change. The association between heat and mortality in the elderly is well documented, but less is 

known regarding the associations with rates of hospital admissions. 

Objectives: To determine associations between moderate and extreme heat, heat waves and 

hospital admissions for non-accidental causes among Medicare beneficiaries aged ≥65 years in 

114 cities across 5 U.S. climate regions. 

Methods: We used Medicare inpatient billing records and city-specific temperature, humidity 

and ozone data from 1992-2006 in a time-stratified case-crossover design to estimate the 

association between hospitalization rates and moderate and extreme heat and heat waves 

(apparent temperature above the 95th percentile over 2-8 days). In sensitivity analyses we 

additionally considered confounding by ozone and holidays, different temperature metrics, 

alternative thresholds of extreme heat and more complex models of the exposure-response 

relationship. 

Results: Extreme heat over the past 2 days was associated with an 8% (95% CI: 7%, 9%) higher 

rate of all-cause hospital admissions. In cause-specific analyses, extreme heat was associated 

with higher rates of hospitalizations for cardiovascular, renal and respiratory diseases, with 

admission rates increasing by 43% (95% CI: 37%, 50%) for renal diseases. Associations between 

extreme heat and hospitalizations for renal diseases persisted up to 8 days. The sum of heat 

effects over longer lags was protective for admissions for cardiovascular and respiratory 

diseases. 

Conclusion: Extreme heat is associated with increased rates of hospital admission among the 

elderly in the U.S., and those with renal disease are particularly susceptible. 
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BACKGROUND 

Heat waves, or extreme heat events, are predicted to increase in frequency, intensity and 

duration with climate change (IPCC 2007). The elderly are more vulnerable to heat-related 

mortality, so the changing population structure (Vincent and Velkoff 2010) may also lead to an 

increased health burden from heat. The associations between temperature and mortality are well 

studied (Gosling et al. 2009; Hajat and Kosatsky 2010). In the U.S., associations between heat 

and daily mortality are stronger in cities with milder summers and lower air conditioning 

prevalence (Anderson and Bell 2009; Anderson and Bell 2011; Curriero et al. 2002; Medina-

Ramon and Schwartz 2007; O'Neill and Ebi 2009). Although extreme heat events in the U.S. are 

associated with increased deaths (Ostro et al. 2009; Semenza 1996), the role of heat-wave 

duration vs. intensity as a health determinant remains unclear (Anderson and Bell 2011; 

Gasparrini and Armstrong 2011). 

Studies examining associations between heat and hospital admissions have had mixed 

results (Ye et al. 2012, Turner et al. 2012). For example, in London, England, a 1995 heat wave 

was not associated with total hospital admissions but was associated with hospitalizations for 

respiratory and renal diseases and increased mortality (Kovats et al. 2004). On the other hand, 

heat waves in Adelaide, Australia have been associated with increased hospitalizations but not 

increased mortality (Nitschke et al. 2007). In 12 European cities, respiratory admissions 

increased with temperature in Mediterranean and North-Continental cities, but associations 

between temperature and cardiovascular admissions tended to be negative and non-significant 

(Michelozzi 2009).  

Understanding associations between heat waves and hospital admissions in the U.S. is 

important to predict how climate change may increase the future burden of heat-related 
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morbidity; to identify vulnerable subpopulations for potential interventions; and to refine 

activation thresholds for heat health warning systems. 

We analyzed Medicare inpatient billing records from 114 cities in the U.S. from 1992-

2006 to evaluate 1) the associations between moderate and extreme heat measured as daily mean 

apparent temperature (AT) and all-cause and cause-specific hospital admissions among elderly 

Medicare beneficiaries residing in 5 U.S. climate regions, 2) the added effect of extreme heat 

durations of 4-8 days, 3) whether observed associations are confounded by ambient ozone levels 

and holidays and 4) the sensitivity of our findings to the choice of temperature metric, heat 

thresholds and the modeling of the exposure-response relationship. 
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METHODS 

Study cities and regions  

The 200 counties with the highest number of cardiovascular hospital admissions in 2004-

2006 were assigned to their respective Metropolitan Statistical Areas to form the study cities, 

which were then assigned to the U.S. Department of Energy, Energy Information 

Administration's 5 climate regions as previously described (Zanobetti et al. 2012 and Appendix 

A).  

Health outcomes 

We obtained emergency hospital admissions for individuals 65 years and older from 

1992-2006 from the U.S. Centers for Medicare and Medicaid Services MedPAR billing records. 

Ninety-seven percent of Americans aged 65 and older receive Medicare insurance coverage. We 

categorized admissions according to the primary admission ICD-9-CM codes as all-cause (all 

ICD-9-CM codes < 800), cardiovascular (CVD, 390-429), heat (992 and E900.0), renal (580-

589) and respiratory (resp, 480-487, 490-492 and 494-496). The “heat” category also included 

secondary causes of admission related to heat. The research was approved by the Institutional 

Review Boards at Harvard University and University of Michigan. 

Environmental variables 

We obtained daily temperature and dew point data for each city from the National 

Climatic Data Center Cooperative Summary of the Day station files (National Climatic Data 

Center 2010b). Data from a single monitor for each city were used except in 6 cities where 

multiple observations were missing from all the nearby monitors, in which case hourly data from 

the National Climatic Data Center’s Integrated Surface Database Lite (National Climatic Data 
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Center 2010a) were converted to daily values. For 25 stations missing dew point data, dew point 

data were obtained from the nearest station with dew point data. We calculated AT using daily 

mean temperature (MT) and dew point (AT(°C) = -2.653 + (0.994 · MT) + (0.0153 · (dew 

point2)) (Kalkstein 1986). We excluded 20 cities from our analysis which were missing AT 

measurements on at least 15% of the study days.  

We chose AT as our main heat exposure metric to jointly account for effects of 

temperature and humidity, but we also addressed the sensitivity of our results to the alternative 

metric choices of MT, daily minimum temperature (MI), daily maximum temperature (MA) and 

diurnal temperature range (DTR, the difference between MA and MI). 

Because ambient ozone levels rise during hot weather and have been linked with 

increased rates of hospital admissions, ozone can potentially confound associations between heat 

and hospital admissions (Medina-Ramón et al. 2006). We obtained ozone data from the U.S. 

Environmental Protection Agency’s Air Quality System, and daily 8-hour averages were 

calculated and standardized as described previously (Medina-Ramón et al. 2006). For ozone 

analyses, we excluded an additional 10 cities from our analysis which were missing ozone 

measurements on at least 15% of the study days. 

Main Statistical Analysis  

We used a time-stratified case-crossover design as previously described (Medina-Ramon 

and Schwartz 2007) to evaluate the association between heat and hospital admissions in each city 

using data on hospital admissions occurring between May and September. Control days were 

chosen such that cases and controls were matched on calendar month and day of week. We 

applied conditional logistic regression using the coxph package in R, and specified robust 
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variance estimators with clustering on the unique combinations of year, month and day-of-the-

week. 

To reduce collinearity between temperature lags in our models, for each metric, we 

modeled temperature exposure as 2-day means of lags instead of individual lags. Specifically, we 

used the following lag metrics: AT01 (mean of ATs on the day of and day prior to the hospital 

admission) and AT23, AT45, and AT67 (means of ATs 2 and 3, 4 and 5, and 6 and 7 days before 

hospital admission, respectively). This is a constrained distributed lag model where lags 0 and 1 

are constrained to have the same effect, lags 2 and 3 are constrained to have the same effect, and 

so on (Armstrong 2006; Schwartz et al. 2004). 

We modeled moderate heat as a linear term of 2-day mean AT, taking a value in °C unless 

2-day mean AT was above the city-specific 95th percentile of warm-season (May-September) 2-

day mean AT, in which case it took a value of 0. We also included an indicator variable for 

extreme heat, taking a value of 1 if AT was above the city-specific 95th percentile of warm-

season 2-day mean AT, and 0 otherwise. To distinguish between effects of heat intensity and 

duration, we included a term for extreme heat duration in additional models, and we modeled 

this extreme heat duration term as an interaction of extreme heat—the product of each of 2, 3 or 

4 extreme heat indicator variables for heat waves of at least 4, 6 or 8 days in duration. For 

example, the model of the effect of being in a heat wave for at least 8 days, in addition to the 

parameters for each matched set of cases and controls which were conditioned out of the 

likelihood function, included the 4 linear terms for moderate heat at each 2-day lag (AT01MH, 

AT23MH, AT45MH and AT67MH), the 4 indicator variables for extreme heat (AT01EH, AT23EH, 

AT45EH and AT67EH) and the extreme heat duration term, or the product of the 4 extreme heat 

indicator variables: 
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logit(hospital admission) = β1AT01MH + β2AT01EH + β3AT23MH + β4AT23EH + 

β5AT45MH + β6AT45EH + β7AT67MH + β8AT67EH + β9(AT01EH · AT23EH · AT45EH · 

AT67EH)          [1] 

Because the models were comprised of linear terms and indicator variables, meta analysis 

using the city-specific results was straightforward. To understand the cumulative effects of 

moderate and extreme heat over longer time periods, in additional models we added terms for 

moderate and extreme heat on lag days 8-9, 10-11, 12-13, 14-16 and 17-20 and then summed the 

coefficients from lag days 0-20. 

We calculated odds ratios (ORs) and 95% confidence intervals (CIs) from this model for 

1) a 1 °C increase above a heat threshold, 2) an interquartile range (IQR) increase in temperature 

and 3) extreme temperature above a threshold (e.g., 95th percentile). 

Finally, we pooled city-specific results in each of the 5 climate regions and overall in a 

random effects meta analysis using inverse variance weighting (DerSimonian and Laird 1986) 

using the meta package in R, and Q statistics for heterogeneity within and between climate zones 

were calculated. All analyses were performed in R 2.15 (R Development Core Team 2011). 

Sensitivity Analyses 

We evaluated confounding by ozone on lag days 0-1 and the holidays Memorial Day, 

Independence Day and Labor Day (which all occur in the first or last week of the month) by 

comparing the ORs for AT from models with and without inclusion of the confounders (ozone or 

holidays). 

We examined the sensitivity of our results to percentile threshold of extreme heat by 

modeling extreme heat as indicator variables for AT above the 90th percentile. We also modeled 

different metrics for temperature (MT, MI, MA or DTR) in place of AT. 
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In a time-stratified case crossover design, each case’s controls are selected from the same 

time stratum as the case, and seasonal effects and long-term time trends are assumed to vary 

inconsequentially within each time stratum. In our main models, this time stratum was a month, 

for a total of 5 time strata per year, each 30 or 31 days long. To examine the sensitivity of our 

results to the length of the time stratum, we used either 6 time strata (each 25 or 26 days long) or 

4 time strata (each 38 or 39 days long) per year in separate models. 

We examined the sensitivity of our results to the inclusion of all the months in which heat 

waves occurred (April-October) which required the addition of a term for cold temperatures (see 

Appendix A). We also attempted to identify heat and cold thresholds using the SiZer method, 

which identifies significant increases or decreases in locally weighted polynomial smoothers for 

different spans of the smoother (see Appendix A). 
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RESULTS 

We examined the association between heat and rates of hospitalization in 114 cities 

broadly distributed across the U.S. (Appendix A, Figure A.1). 

Cardiovascular, respiratory and renal admissions accounted for approximately 24%, 8% 

and 1% of all-cause admissions in each climate zone from May through September (Table III.1). 

Heat-related admissions were uncommon, accounting for only 0.1% of all-cause admissions. In 

hotter climates, the IQR for AT was smaller than in cooler climates, though the number of days 

meeting the definitions for 4-, 6-, and 8-day long heat waves were similar between climates. 

By modeling AT as consecutive 2-day means of AT, the model terms were only weakly 

to moderately correlated, as hoped (Pearson correlation coefficients between 2-day means of AT 

within each climate zone ranged from 0.10 to 0.43, with the maximum coefficient in climate 

zone 1). 

Pooled associations (across all cities) between hospital admissions and moderate heat as 

well as extreme heat varied by cause of admission and lag (Figure III.1). Among the individual 

2-day lag periods, lag 0-1 showed the strongest association, and effects were much stronger for 

extreme heat than for moderate heat for each cause of admission (Figure III.1, see Appendix A, 

Figure A.3 for IQR increases in moderate heat). Among the causes of admission, moderate and 

extreme heat were most strongly associated with admissions for renal disease (for a 1 °C increase 

in AT01MH, OR = 1.01; 95% CI: 1.01, 1.01 and for AT01EH, OR = 1.45; 95% CI: 1.38, 1.52). 

Associations between moderate and extreme heat and admissions for all causes and 

cardiovascular and respiratory diseases were also significantly deleterious (OR > 1) for lags 0-1, 

and associations between heat and admissions were stronger for respiratory than cardiovascular 

causes (e.g., for respiratory admissions for AT01EH, OR = 1.17; 95% CI: 1.13, 1.20). However, 
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at longer lags, associations between admissions and both moderate and extreme heat were 

significantly protective (OR < 1), with a protective effect evident out as far as lag 17-20. The 

sums of the individual lag periods from lag days 0-20 showed a protective effect of heat on 

hospital admissions for all causes, cardiovascular and respiratory admissions for both moderate 

heat and extreme heat (e.g., for the sum of extreme heat effects from lag days 0-20 for 

admissions for respiratory diseases, OR = 0.62; 95% CI: 0.59, 0.65). However, for admissions 

for renal diseases, the protective effects of moderate and extreme heat declined by lag day 16, 

and the 21-day sum of the extreme heat effects was still deleterious (OR = 1.15; 95% CI: 1.04, 

1.27). 

The added heat-wave effect, or the effect of consecutive days of extreme heat over and 

above the effect captured by the moderate heat term in the model, was significantly associated 

with admissions for renal diseases (for a heat wave defined as at least 8 consecutive days of 

extreme heat vs. extreme heat for less than 8 consecutive days, OR = 1.23; 95% CI: 1.10, 1.38) 

(Table III.2). However, for renal admissions, the sum of the independent effects and the added 

heat-wave effect (a heat wave defined as at least 8 days vs. only moderate heat for 8 days, OR = 

1.47; 95% CI: 1.31, 1.67) was not significantly greater than the effect of extreme heat on lag 

days 0-1 (OR = 1.43; 95% CI: 1.37, 1.50). For cardiovascular and respiratory admissions, even 

after adding the heat-wave effect to the independent 2-day extreme heat effects, the ORs for 8-

day durations of extreme heat were still less than the effect of extreme heat on lag days 0-1 and 

still significantly less than 1 (Table III.2). In other words, the effect of an 8-day heat wave was 

not higher than the effect of extreme heat on lag days 0-1 for any of the admissions causes, and 

even during a heat wave, the effect of extreme heat on cardiovascular and respiratory admissions 

was still protective. 
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Within each climate zone, for the associations between admissions for all, renal and 

respiratory diseases and extreme heat on lag days 0-1, the ORs were significantly greater than 1 

except for climate zone 5 for respiratory diseases (Table III.3). For the sum of effects from lag 

days 0-7, extreme heat was protective in all climate zones for admissions for all causes and 

cardiovascular and respiratory diseases. For the sum of effects from lag days 0-7, extreme heat 

was still deleterious for admissions for renal diseases in each climate zone. For respiratory 

admissions, we found heterogeneity in effect estimates between climate zones as well as within 

climate zones for extreme heat over lag days 0-1 and lag days 0-7. 

Results of Sensitivity Analyses 

Confounding by ozone of the association between AT and hospital admissions was 

minimal. AT01EH from the models with ozone differed from those in the models without ozone 

by more than 10% (but less than 24%) in only 3 cities for renal admissions (results not shown). 

Confounding by holidays was also minimal. In models with terms for holidays vs. models 

without holiday terms, the ORs for moderate and extreme heat on lag days 0-1 as well as their 

sums over lag days 0-7 did not differ by more than 10%. 

When we varied the length of the time stratum, the moderate and extreme heat effect 

estimates were similar for lag days 0-1 (see Appendix A, Figure A.2). For the sum of the effects 

over lag days 0-7, the effect estimates were higher in models with the shortest time strata (6 

pseudo-months vs. 4 pseudo-months or 5 real months). 

Different temperature metrics had similar associations between hospital admission for all 

natural causes and moderate heat on lag days 0-1, within each climate zone and overall (see 

Appendix A, Figure A.3A). However, associations between hospital admission and extreme heat 

on lag days 0-1 differed between metrics, with MA having a slightly stronger effect (OR for all 
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zones = 1.11; 95% CI: 1.10, 1.12) than AT, and DTR the weakest (OR for all zones = 1.04; 95% 

CI: 1.03, 1.05) (see Appendix A, Figure A.3B). 

The effects of moderate and extreme heat on lag days 0-1 when extreme heat was defined 

as AT above the 95th percentile were similar to the effects when extreme heat was defined as 

being above the 90th percentile (see Appendix A, Figure A.3).  

Effects of moderate heat estimated by more complex models, using data from April-

October and incorporating terms for cold in addition to moderate heat and extreme heat (a 

double-threshold model with an indicator for extreme heat), were similar to effects estimated by 

the simpler model, which used data from May-September and only moderate and extreme heat 

terms (see Appendix A, Figure A.3). The SiZer method failed to identify distinct heat and cold 

thresholds (see Appendix A).  
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DISCUSSION 

This large, multi-city study of heat, heat waves and hospital admissions among elderly 

Medicare beneficiaries suggests that morbidity related to hot weather presents an important 

health burden. With the frequency and intensity of hot weather predicted to increase over time 

and an aging population, these results have important implications for enhancing public health 

preparedness.  

Extreme heat on the day of and the day before admission was strongly associated with 

hospitalizations for renal diseases. As ORs estimate incidence rate ratios in our study, for 

extreme heat, we found a 43% (95% CI: 37%, 50%) increase in hospital admission rates for renal 

disease on lag days 0-1. Additionally, excess admissions for renal diseases occurred even with 

increases in moderate heat. Positive associations between temperature, heat events and 

admissions for renal diseases have been reported in several other studies in the U.S. and 

elsewhere (Fletcher et al. 2012; Green et al. 2010; Hansen 2008; Knowlton et al. 2009; Kovats et 

al. 2004; Mastrangelo et al. 2006; Mastrangelo 2007; Nitschke et al. 2007; Nitschke et al. 2011; 

Semenza 1999; Wang et al. 2012). Renal admissions increased 8% (95% CI: 5%-12%) among 

individuals aged 65-84 in New York State for a 2.8 ºC increase in mean temperature (Fletcher et 

al. 2012). Among individuals 65 years and older, admissions for acute renal failure increased 

11% (95% CI: 6%-15%) for a 5.6 ºC increase in AT in California (Green et al. 2010). During the 

2006 heat wave in California, renal admissions increased 4% (95% CI: 1%-7%) (Knowlton et al. 

2009). During the 1995 heat wave in Chicago, Illinois, renal admissions increased 109% (95% 

CI: 84%-140%) (Semenza 1999). This body of evidence suggests a need to target patients with 

renal conditions for additional protective measures during hot weather in cities across the U.S, 
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though individuals with previously identified renal conditions may not account for the entire 

increase in renal admissions associated with heat. 

We found only a slight increase in hospital admissions rates for cardiovascular diseases 

with moderate heat (for a 1 °C increase in AT, < 0.5%) and extreme heat (1%) and a stronger 

association with admissions rates for respiratory diseases (0.5% and 14%, respectively) on lag 

days 0-1. Other studies of associations between cardiovascular and respiratory admissions and 

heat and heat waves in the U.S. have found increased risks of cardiovascular and respiratory 

diseases on lag days 0-1 (Ye et al. 2012). Studies using time series of admissions and 

temperature data from earlier time periods (e.g., Schwartz et al. 2004) tended to find stronger 

associations between cardiovascular admissions and heat than our study. These differences in 

results by time period may be related to the implementation of heat health warning systems in 

several U.S. cities and increased awareness of the dangers of heat to the elderly after the 1995 

Chicago heat wave (Bassil 2011). More similar to our findings, a study in California from 1999-

2005 (Green et al. 2010) and a study in New York State from 1991-2004 (Lin et al. 2009) did not 

find increases in cardiovascular hospital admissions rates with heat on lag days 0 or 1. In a meta 

analysis of the associations between heat and admissions for cardiovascular and respiratory 

diseases from studies worldwide, Turner and colleagues (2012) also did not find significant 

associations for cardiovascular admissions, though their results were suggestive of an association 

between respiratory admissions and heat (for a 1 °C increase in temperature, RR = 1.020; 95% 

CI: 0.986, 1.055). 

The associations between cardiovascular hospital admissions and heat were weaker than 

between cardiovascular mortality and heat found in previous U.S. studies, but the associations 

between respiratory hospital admissions and heat were stronger than for respiratory mortality and 
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heat. We found a 1% (95% CI: 0%, 3%) increase in cardiovascular admissions and a 14% (95% 

CI: 11%, 17%) increase in respiratory admissions associated with extreme heat. In contrast, 

Anderson and Bell (2009) found a 5% increase in cardiovascular mortality and 6% increase in 

respiratory mortality among individuals 75 years and older for an increase in mean daily 

temperature from the 90th to 99th percentile on lag days 0-1. In the U.S., deaths associated with 

extreme heat were higher among individuals dying out-of-hospital as well as individuals dying of 

stroke or atrial fibrillation (Medina-Ramon et al. 2006), so heat may have a stronger association 

with cardiovascular mortality than hospital admissions because heat-related deaths may tend to 

be more sudden. 

The associations between hospital admissions and moderate heat were weak (< 4% 

increase in admissions for an IQR increase in AT), but stronger for extreme heat (8% increase in 

admissions for extreme heat). Furthermore, the effects of extreme heat were similar regardless of 

whether extreme heat was defined as AT above the 90th or 95th percentile of AT, suggesting that 

the association between extreme heat and hospital admissions is driven by temperatures at or 

above the 95th percentile. 

Consistent with studies of the added heat wave effect in the association between heat and 

mortality (Anderson and Bell 2011, Gasparrini and Armstrong 2011), we did not see a 

substantial added heat wave effect for cardiovascular and respiratory admissions. In a multi-city 

U.S. study modeling temperature as a spline and heat wave as an indicator variable, Gasparrini 

and Armstrong (2011) found added heat wave effects from 0-7%, with the greatest added heat 

wave effect when the temperature spline had the fewest degrees of freedom. In our model, with 

temperature below a threshold treated as only a linear term, we still found only a small added 

heat wave effect of 1-3% for cardiovascular and respiratory diseases. 



 

52 
 

Although we found an added heat-wave effect in the association between heat and 

hospital admissions for renal diseases (for heat waves at least 8 days long, OR = 1.23, 95% CI: 

1.10, 1.38), heat waves did not increase the risk of renal admission beyond that of extreme heat 

on lag days 0-1. However, even after accounting for displacement, or the harvesting effect, 

whereby the exposure advances a health outcome by only a few days because the affected 

individuals are already very frail (Schwartz et al. 2004), extreme heat was still associated with a 

significant decrease in admissions for renal disease over the 21-day period we analyzed. In 

contrast, for cardiovascular and respiratory admissions, the prior 8 days of exposure to extreme 

or moderate AT, even after accounting for an added heat-wave effect, were protective in sum 

(though the 8-day effect estimates were sensitive to the lengths of the time strata). Mortality 

displacement patterns have varied widely in studies of heat-associated cardiovascular and 

respiratory mortality in the U.S. and Europe with some studies finding the sum of effects over 

multiple lags to be deleterious (e.g., Braga et al. 2001, Hajat et al. 2005 for London respiratory 

diseases), not significantly different from the null (e.g., Baccini 2008) or protective (e.g., Hajat et 

al. 2005 for London cardiovascular diseases). Displacement may be more pronounced among 

heat-associated hospitalizations than mortality because it is likely easier for individuals to avoid 

hospitalization than to avoid death. The displacement effect found in an earlier multi-city U.S. 

study of heat and hospital admissions (Schwartz et al. 2004) was not as pronounced as that found 

in this study. Methodological differences may account for these differences; Schwartz and 

colleagues used a time series model and a more flexible distributed lag constraint. However, they 

also used an earlier data set (1984-1996), and as discussed above, individuals with 

cardiovascular and respiratory diseases may now receive better care in the days immediately 

following a period of extreme heat.  
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Nevertheless, when considering application of these results to heat health warning 

systems, our finding of important morbidity associations with heat in the short term (lags 0-1), 

even for cardiovascular and respiratory causes, suggests that mobilization of prevention 

programs and readying of hospitals and ambulance services prior to forecast periods of extreme 

heat is important to prepare for the short-term increased health burden during extreme heat. To 

further enhance our knowledge on what conditions should activate a heat health warning system 

and to gauge the relative importance of hospital admissions and mortality in identifying heat 

health effects, studies using identical methods to analyze the associations between heat and 

mortality and heat and morbidity are warranted. 

The Energy Information Administration climate zones did not explain city-specific 

variation in the association between heat and admissions for respiratory diseases. Factors other 

than prevailing weather conditions, including vegetation, housing stock, access to air 

conditioning, and social factors may play important roles in determining the extent to which 

extreme heat puts the health of older people at risk in any given community, and using 

information on neighborhood of residence as well as city of residence, we are actively 

investigating characteristics of vulnerability to heat-associated hospital admissions. 
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CONCLUSION 

The association between extreme heat and hospital admissions for all causes on lag days 

0-1 was statistically and clinically significant in the U.S. in all climate regions. Elderly 

individuals with cardiovascular, respiratory and especially renal conditions, and providers of 

services to such people, may benefit from taking additional precautions when heat warnings are 

issued.  
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TABLES 

Table III.1. Population-weighted means (and ranges) of hospital admissions among elderly Medicare beneficiaries, apparent 
temperature, heat waves and ozone, by climate zone, May-September, 1992-2006. 
 

  
Zone 1 
(13 cities) 

Zone 2 
(34 cities) 

Zone 3 
(22 cities) 

Zone 4 
(24 cities) 

Zone 5 
(21 cities) 

All Zones 
(114 cities) 

Hospital Admissions (daily count)a 
all natural causes 53 (19-97) 241 (16-571) 266 (21-570) 142 (16-336) 98 (18-201) 186 (16-571) 
cardiovascular 13 (5-24) 59 (4-133) 65 (5-135) 33 (4-77) 24 (4-53) 45 (4-135) 
heat-related 0.0 (0.0-0.1) 0.2 (0.0-0.7) 0.3 (0.0-0.6) 0.1 (0.0-0.2) 0.1 (0.0-0.2) 0.2 (0.0-0.7) 
renal 0.6 (0.2-1.2) 2.8 (0.1-6.0) 3.0 (0.2-6.2) 1.8 (0.1-4.1) 1.2 (0.2-2.0) 2.2 (0.1-6.2) 
respiratory 5 (2-8) 21 (2-47) 22 (2-49) 13 (1-31) 8 (2-16) 16 (1-49) 
25th-75th-90th-95th percentiles of 
AT01 (°C)b 

14.3-23.2-26.3-
27.9 

16.2-25.3-28.5-
30.0 

18.8-27.0-29.8-
31.2 

20.0-24.7-26.7-
27.8 

29.4-33.8-35.0-
35.6 

20.0-27.2-29.6-
30.9 

Annual number of days in a heat wave (consecutive 2-day means each above 95th percentile of AT01) by heat-wave duration 
2-day 7.6 (7.3-7.9) 7.7 (7.1-8.1) 7.7 (7.1-7.8) 7.7 (7.4-8) 7.7 (7.4-7.9) 7.7 (7.1-8.1) 
4-day 2.6 (1.8-3.4) 2.8 (2.3-3.7) 2.9 (2.3-4.7) 3.4 (2.2-4.3) 3.1 (2.4-4.0) 3.0 (1.8-4.7) 
6-day 0.8 (0.2-1.2) 1.0 (0.3-2.3) 1.0 (0.3-3.1) 1.7 (0.5-2.6) 1.4 (0.5-2.7) 1.2 (0.2-3.1) 
8-day 0.2 (0.0-0.6) 0.4 (0.0-1.4) 0.4 (0.0-2.1) 0.9 (0.0-1.7) 0.6 (0.1-2.2) 0.5 (0.0-2.2) 
mean daily ozone (ppb)c 45 (37-49) 45 (36-54) 46 (33-56) 50 (27-71) 44 (29-57) 46 (27-71) 
a ICD-9-CM Codes: all natural causes (all ICD-9-CM codes < 800), cardiovascular (390-429), heat (including 992 (effects of heat and 

light) and E900.0 (excessive heat due to weather conditions)), renal (580-589) and respiratory (480-487, 490-492 and 494-496). 
The “heat” category also includes admissions with any secondary causes related to heat. 

b AT01 = 2-day mean of daily mean apparent temperature 
c Number of cities contributing to ozone calculations: 11, 32, 22, 20 and 19 for zones 1-5, respectively. 
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Table III.2. Pooled odds ratios (95% confidence intervals) for the association between hospital admissions for different causes and 
different heat exposures. 
 
 All causes Cardiovascular Renal Respiratory 
Sum of the independent effects of extreme heata 
lag days 0-1b 1.08 (1.07, 1.09) 1.01 (1.00, 1.03) 1.43 (1.37, 1.50) 1.14 (1.11, 1.17) 
lag days 0-3 1.02 (1.01, 1.03) 0.96 (0.95, 0.98) 1.35 (1.27, 1.43) 1.03 (1.00, 1.07) 
lag days 0-5 1.00 (0.99, 1.01) 0.89 (0.88, 0.90) 1.29 (1.22, 1.37) 0.99 (0.96, 1.02) 
lag days 0-7 0.94 (0.93, 0.95) 0.84 (0.82, 0.85) 1.28 (1.20, 1.37) 0.85 (0.82, 0.88) 
added heat-wave effect for 3 heat-wave durations 
lag days 0-3 1.01 (1.01, 1.02) 1.01 (1.00, 1.02) 1.07 (1.02, 1.13) 1.03 (1.00, 1.05) 
lag days 0-5 1.00 (1.00, 1.01) 1.01 (0.99, 1.03) 1.10 (1.02, 1.18) 1.03 (1.00, 1.07) 
lag days 0-7 1.00 (0.98, 1.02) 1.01 (0.97, 1.06) 1.23 (1.10, 1.38) 0.98 (0.90, 1.07) 
sum of the independent effects and the added heat-wave effect for 3 heat-wave durationsc 

lag days 0-3 1.03 (1.02, 1.04) 0.98 (0.96, 0.99) 1.43 (1.35, 1.51) 1.05 (1.01, 1.09) 
lag days 0-5 1.00 (0.99, 1.02) 0.90 (0.88, 0.92) 1.39 (1.28, 1.51) 1.01 (0.96, 1.06) 
lag days 0-7 0.93 (0.91, 0.95) 0.85 (0.81, 0.89) 1.47 (1.31, 1.67) 0.80 (0.72, 0.89) 
Example model terms (for model including added heat-wave effect for 6-day duration): β1AT01MH + β2AT01EH + β3AT23MH + 

β4AT23EH + β5AT45MH + β6AT45EH + β7AT67MH + β8AT67EH + β9HW, 
where AT01MH = the mean over lag days 0 and 1 of daily mean apparent temperature (AT) below the 95th percentile, 
AT01EH = the mean over lag days 0 and 1 of daily mean apparent temperature (AT) above the 95th percentile and 
HW = the added heat-wave effect = AT01EH · AT23EH · AT45EH 

aExample sum (for 6 days, or over lag days 0-5): e^(β2 + β4 + β6) 
bfrom a model without the HW term 
cExample sum (for 6-day duration): e^(β2 + β4 + β6 + β9) 
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Table III.3. Odds ratios (95% confidence intervals) for hospital admission associated with extreme heat on lag days 0-1 and the sum of 
the extreme heat effects from lag days 0-7.a 

 
Climate Zone All causes Cardiovascular Renal Respiratory 
Extreme Heat on Lag Days 0-1 
1 1.09 (1.06, 1.11) 1.07 (1.03, 1.11) 1.51 (1.29, 1.77) 1.13 (1.03, 1.24)b 
2 1.08 (1.07, 1.09) 1.01 (0.99, 1.02) 1.42 (1.31, 1.54) 1.18 (1.13, 1.22)b 
3 1.07 (1.05, 1.09)b 1.01 (0.99, 1.03) 1.44 (1.32, 1.58) 1.09 (1.02, 1.16)b 
4 1.11 (1.08, 1.14)b 1.01 (0.97, 1.05) 1.54 (1.31, 1.82) 1.16 (1.08, 1.25) 
5 1.05 (1.01, 1.09)b 1.01 (0.96, 1.06) 1.40 (1.14, 1.72) 1.01 (0.93, 1.09) 
all 1.08 (1.07, 1.09)b 1.01 (1.00, 1.03) 1.43 (1.37, 1.50) 1.14 (1.11, 1.17)b,c 
Extreme Heat on Lag Days 0-7d 
1 0.96 (0.94, 0.98) 0.88 (0.84, 0.93) 1.16 (0.95, 1.41) 0.87 (0.78, 0.96) 
2 0.94 (0.93, 0.96) 0.83 (0.81, 0.85) 1.29 (1.18, 1.40) 0.90 (0.86, 0.93) 
3 0.94 (0.92, 0.96) 0.84 (0.80, 0.88)b 1.25 (1.08, 1.45) 0.82 (0.76, 0.88)b 
4 0.96 (0.93, 0.99) 0.82 (0.77, 0.86)b 1.36 (1.13, 1.64) 0.86 (0.78, 0.94) 
5 0.89 (0.86, 0.91) 0.84 (0.80, 0.89) 1.11 (0.89, 1.39) 0.73 (0.65, 0.82) 
all 0.94 (0.93, 0.95)c 0.84 (0.82, 0.85)b 1.28 (1.20, 1.35) 0.85 (0.82, 0.88)b,c 
aExtreme heat = 2-day mean of daily mean apparent temperature above the 95th percentile (AT01EH) 
bSignificant heterogeneity within climate zone category (p < 0.05 in Q test for heterogeneity). 
cSignificant heterogeneity between climate zones 1-5 (p < 0.05 in Q test for heterogeneity). 
dResults sensitive to length of time strata for all-causes, cardiovascular and respiratory. See Appendix A, Figure A.2B. 
City-specific results available upon request. 
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FIGURES 

Figure III.1. Odds ratios (ORs) and 95% confidence intervals (CIs) for all cities for the increase 
in hospital admissions among U.S. elderly (May-September, 1992-2006) for each multi-day 
mean (lag days 0-1, 2-3, 4-5, 6-7, 8-9, 10-11, 12-13, 14-16, 17-20) and the sum of lags 0-20 for 
(A) moderate heat (1 ºC increase in 2-day mean daily mean apparent temperature (AT) below the 
95th percentile of 2-day mean AT), and (B) extreme heat (2-day mean AT above the 95th 
percentile). 
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Abbreviations and Definitions: 
AC: air conditioning 
admissions displacement: when the sum of the effects of the exposure over longer lags are 
reduced because the exposure advanced the admissions of already frail individuals by only a few 
days 
CI: confidence interval 
EH: extreme heat 
EH01: extreme heat over lag days 0-1, or an indicator variable taking the value of 1 if the mean 
of daily maximum temperature over lag days 0-1 (the day of and day before a hospital 
admission) is above the city-specific percentile threshold, i.e., the 95th percentile of warm-
season (May-September) 2-day means of daily maximum temperatures 
EH07: extreme heat over lag days 0-7 
MH01: moderate heat, or the mean of daily maximum temperature, in °C, over lag days 0-1 (the 
day of and day before a hospital admission) taking a value of 0 above the city-specific percentile 
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threshold, i.e., the 95th percentile of warm-season (May-September) 2-day means of daily 
maximum temperatures 
MH07: moderate heat over lag days 0-7 
ICD-9-CM: The International Classification of Diseases, Ninth Revision, Clinical Modification 
IQR: Interquartile range 
OR: odds ratio 
TMAX: daily maximum temperature 
ZCTA: ZIP Code Tabulation Area, or polygon constructed by the U.S. Census Bureau 
approximating a ZIP code, which is not necessarily a true polygon 
  



 

64 
 

ABSTRACT 

Background: With extreme heat (EH) events expected to increase with climate change, it is 

important to understand which populations are vulnerable to health effects of heat for targeted 

interventions. 

Objectives: To determine whether the associations between EH and hospital admissions for 

renal, heat and respiratory diseases are modified by individual and ZIP-code level characteristics, 

and citywide air conditioning (AC) prevalence among individuals aged 65 years or older in 134 

U.S. cities, May-September, 1992-2006. 

Methods: We used data from Medicare billing records, airport weather monitors, the U.S. 

Census, the National Land Cover Dataset, and air quality monitors in a time-stratified case-

crossover design with interaction terms between EH and both individual (age, race, sex) and ZIP-

code level (non-green space, high school degree, nonwhite race, poverty) characteristics in a 

single model. We then regressed the city-specific EH effect estimates on AC prevalence. 

Results: Age > 78 years; low education and high nonwhite race in a ZIP code; and low AC 

prevalence increased the association between EH and hospital admissions (e.g., during EH, 14% 

(95% CI = 5%, 24%) increase in odds of admission for an interquartile range increase in percent 

of residents without a high school degree in a ZIP code), and lower education and AC prevalence 

had a stronger modifying effect over the longer period of 0-7 days after admission. Individual-

level race did not modify EH effects, but results suggested a modifying effect of non-green 

space. Significant heterogeneity existed between cities for most of the modifying characteristics 

examined. 

Conclusion: Older people and those living in areas with: more residents with lower education 

and of nonwhite race; and lower AC prevalence, are more vulnerable to hospitalization during 
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EH in the U.S. These subgroups should be considered in burden of disease estimates, heat health 

warning systems and adaptation measures, taking into account the vulnerability differences 

observed among cities. 
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BACKGROUND 

Over the 21st century, temperature extremes and extreme heat (EH) episodes are very 

likely to increase (IPCC 2007). Understanding of the present and future health burden of heat 

and who is most vulnerable to the effects of heat is needed to adapt to climate change. 

The association between heat and mortality is well studied across a wide variety of 

climates, with stronger associations found in cities with lower air conditioning (AC) prevalence 

(Hajat and Kosatsky 2010). A smaller number of studies have examined associations between 

heat and morbidity outcomes, such as hospital admissions, ambulance dispatches or emergency 

room visits for heat stroke, heat exhaustion, fluid and electrolyte abnormalities, renal failure, 

cardiovascular disease and respiratory disease, with mixed results (Bhaskaran 2009; Turner et al. 

2012; Xu et al. 2012; Ye et al. 2012). A meta-analysis of hospital admissions for cardiovascular 

and respiratory diseases suggested an association between respiratory admissions and heat but 

not between cardiovascular admissions and heat (Turner et al. 2012). More recently, a study of 

114 cities across the United States found a 43% (95% CI: 37%, 50%) increase in admissions for 

renal diseases, a 1% (95% CI: 0%, 3%) increase in admissions for cardiovascular diseases and a 

14% (11%, 17%) increase in admissions for respiratory diseases with EH on lag days 0-1 (EH01, 

extreme heat on the day of and the day before hospital admission). However, this study found 

substantial displacement of cardiovascular and respiratory admissions (“admissions 

displacement”), in which effects of EH at longer lags were reduced. This is possibly because EH 

had advanced the admissions of these already frail individuals by only a few days; consequently, 

in the days following EH, a significant decline in the rate of hospital admissions for 

cardiovascular and respiratory diseases was observed (Gronlund et al. 2013). 
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 Individual-level or area-level characteristics which increase vulnerability to heat-

associated morbidity have also been evaluated in previous studies, although the methods and 

results have varied widely. The researchers evaluated these characteristics as either 1) predictors 

of heat-related illnesses such as heat stroke or 2) effect modifiers of the association between heat 

and other morbidity outcomes (either by stratifying the analysis by the effect modifier, using the 

effect modifier as an outcome variable in a meta-analysis of main effects of temperature or by 

including an interaction term between the main effect and the effect modifier in the model). 

Using the first design to address effect modification, in the summer of 2005 in Phoenix, AZ, the 

following census block group characteristics were independently associated with the occurrence 

of any heat distress calls in a census block group: maximum nighttime surface temperature, 

percent impervious surface, housing density, population aged 65 or older, percent people living 

alone, percent of households linguistically isolated, percent black race, percent Hispanic, percent 

Asian, percent of households vacant, and population size (Uejio et al. 2011). Several studies have 

used the second design. A California study found that age and race modified heat associations 

with emergency department visits for cardiovascular and respiratory diseases, diabetes, heat 

illness, intestinal infections and acute renal failure during  the summers of 2005-2008, although 

the direction of the effects varied depending on the disease type (Basu et al. 2012). In a study of 

hospital admissions for acute renal failure in New York State, 1991-2004, Fletcher and 

colleagues found effect modification by race and ethnicity, but not by age, sex, income or region 

(Fletcher et al. 2012). Using information from a California residential survey of AC prevalence 

and use, a 0.55% reduction in risk of respiratory hospitalization per 10 °F increase in AT was 

seen per 10% increase in central AC use in a given area (Ostro et al. 2010). Summarizing 

findings on vulnerability to heat is challenging since many studies report estimates of the effects 



 

68 
 

of heat on morbidity outcomes stratified by potential characteristics of vulnerability, but do not 

quantitatively evaluate whether these effect estimates differ significantly between strata. 

 In this study, we addressed two main questions: (1) Do individual-level characteristics 

age, race and sex as well as the ZIP-code (postal code) level characteristics of non-green space, 

education, race and poverty modify the association between EH and hospital admissions for 

respiratory and for renal and heat-related causes in the United States from 1992-2006, controlling 

for confounding between the potential effect modifiers? (2) Does AC prevalence in a city modify 

the main effect of, as well as the individual and ZIP-code level effects on the association 

between, EH and hospital admissions? We evaluated the effect modification over both the very 

short-term (EH 0-1 days prior to admission) and the longer term (EH 0-7 days prior to 

admission) to understand how the previously observed patterns of admissions displacement 

(Gronlund et al. 2013) might differ within vulnerable subpopulations.  
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METHODS 

Study cities and regions  

The 200 counties in the continental United States with the highest number of 

cardiovascular hospital admissions in 2004-2006 were assigned to their respective Metropolitan 

Statistical Areas to form the study cities, as previously described (Gronlund et al. 2013; 

Zanobetti et al. 2012). 

Health outcomes 

We obtained emergency hospital admissions for individuals 65 years and older 

during1992-2006 from the U.S. Centers for Medicare and Medicaid Services MedPAR billing 

records. These records contained the sex, race and age of the patients, which we further 

categorized as female vs. male, white vs. nonwhite race, and aged 65-78 years vs. aged 78 years 

and older. We categorized admissions with the primary admission International Classification of 

Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) codes of 580-589 (renal), 992 

(effects of heat and light) and E900.0 (excessive heat due to weather conditions) as “renal/heat.” 

In previous analyses, we found a pronounced admissions displacement effect for admissions for 

respiratory causes, whereby the sum of the effects of EH on lag days 0-1 through lag days 6-7 

was protective. Therefore, we categorized respiratory admissions separately (ICD-9-CM codes 

480-487, 490-492 and 494-496). The “heat” category also included secondary causes of 

admission related to heat. The research was approved by the Institutional Review Boards at 

Harvard University and University of Michigan. 
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Temperature 

We obtained daily maximum temperature for each city from the National Climatic Data 

Center Cooperative Summary of the Day station files (National Climatic Data Center 2010a). 

Data from a single monitor for each city were used except in 6 cities where multiple observations 

were missing from all the nearby monitors, in which case hourly data from the National Climatic 

Data Center’s Integrated Surface Database Lite (National Climatic Data Center 2010b) were 

converted to daily values. All cities had daily maximum temperature measurements on at least 

15% of the study days, which were the days of the warm season (May-September), 1992-2006. 

Area-Level Characteristics 

We obtained neighborhood-level socio-demographic characteristics from Decennial 

Census Long Form data in 2000 ZIP Code Tabulation Areas (ZCTAs, polygons constructed by 

the U.S. Census Bureau approximating ZIP codes, which are not true polygons), for 1990 and 

2000 (2006). ZCTAs were included in the study cities if a portion of the ZCTA lay within a 

study county. We extracted the following characteristics for each study ZIP code: percent 

nonwhite, percent without a high school degree and percent of households at or below the 

poverty level. 

Land cover classifications at a resolution of 30 x 30 m were obtained from the Multi-

Resolution Land Characteristics Consortium for 1992 and 2001 (U.S. Department of the Interior 

2007). We further classified these data as “green space” vs. “non-green space” and calculated the 

percent area non-green space in each ZIP code using ZCTA 2000 Census TIGER/Line shapefiles 

as was done previously by census tract (Reid et al. 2009). 
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We obtained citywide central AC prevalence for 109 study cities from 1985-2005 from 

the American Housing Survey (U.S. Census Bureau 2008). We applied the corresponding 

Metropolitan Statistical Area prevalence when the county prevalence was not available. 

We estimated annual values for land cover and socio-demographic characteristics for 

each ZIP code and city as the value from the nearest year of available data. 

Statistical Analysis  

We used a time-stratified case-crossover design as previously described (Medina-Ramon 

and Schwartz 2007) to evaluate the association between heat and hospital admissions in each city 

using data on hospital admissions occurring from May through September. Control days were 

chosen such that cases and controls were matched on calendar month and day of week. We 

applied conditional logistic regression using the coxph package in R. 

We modeled temperature as a step function, with steps at the city-specific 0-90th 

percentiles of 2-day mean TMAX, 90th-97th percentiles (moderate heat, MH) and above the 97th 

percentiles (EH). Percentiles of TMAX were calculated with respect to temperatures over the 

entire study period. We modeled temperature as a step function instead of a continuous function 

because this allowed us to restrict our data sets to “discordant sets,” or matched sets of cases and 

controls where the exposures differed between the case and controls, which made it possible to 

analyze the largest cities. (In matched designs, only the discordant sets contribute information.) 

We modeled temperature exposure as 2-day means of lags to reduce collinearity between 

temperature lags in the models and to reduce the number of model terms (Armstrong 2006). 

Specifically, we used the following lags for MH and EH: 0-1 (the day of and day prior to the 

hospital admission), 2-3, 4-5, and 6-7 (for 2 and 3, 4 and 5, and 6 and 7 days before hospital 

admission, respectively). We created interaction terms between each of the 4 EH lags and the 
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effect modifiers of interest. For each city and each cause of admission (renal/heat or respiratory), 

in addition to parameters for each matched set of cases and controls which were conditioned out 

of the likelihood function, the model included the following terms: 

logit(hospital admission) = β1MH01 + β2MH23 + β3MH45 + β4MH67 + β5EH01 + β6EH23 + 

β7EH45 + β8EH67 + β9EH01 × EM1 + β10EH23 × EM1 + β11EH45 × EM1 + β12EH67 × EM1 + . . 

. + β33EH01 × EM7 + β34EH23 × EM7 + β35EH45 × EM7 + β36EH67 × EM7 [1] 

where EM1-EM3 were indicator variables for sex, race (white vs. nonwhite) and age (65-78 vs. 

79 years or older), respectively, and EM4-EM7 were percentages of non-green space, residents 

without a high school degree, residents of nonwhite race and residents below the poverty level in 

a ZIP code, respectively. EM4-EM7 were centered around the 25th percentile value of the 

respective modifier. This allowed the “reference category” to be white females aged 65-78 years 

in ZIP codes in the 25th percentile of percentages of non-green space, residents without a high 

school degree, residents of nonwhite race and residents below the poverty level, and β5 through 

β8 estimated effects for EH vs. non-EH in the reference category. 

 To estimate pooled effects across cities, heterogeneity within cities and evaluate whether 

city-level AC prevalence modified individual- and ZIP code level modifiers, we modeled city-

specific model coefficients or sums of city-specific model coefficients in second stage random 

effect meta analyses against a random effect for city and either 1) an intercept (thereby pooling 

the effects using inverse-variance weights) or 2) an intercept and city-level predictor (i.e., AC 

prevalence) (Berkey et al. 1995). For each cause of admission, we pooled the coefficient for the 

main EH effect, the coefficient for the effect modifier of interest for the lag 0-1 coefficients (e.g., 

β9 in equation 1) and the sum of the coefficients for lags 0-7 (e.g., sum of β9 through β12 in 

equation 1) in a separate model for each sum. Between-city heterogeneity was assessed with the 
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Q test for heterogeneity. Additionally, these effects were each regressed against the citywide 

percent of households with central AC in 1999 (centered around the 25th percentile of AC 

prevalence). Meta-analyses were performed using the mvmeta package in R 2.15 (R 

Development Core Team 2013). 

 We present the interaction effect only (the added effect of a unit increase of the subgroup 

characteristic during EH) for the sociodemographic variables, rather than the sum of the main 

and interaction effects (the effect of EH vs. non-EH within a subgroup). We included multiple 

effect modifiers within a single model, and the large number of combinations of subgroups (e.g., 

older individuals residing in ZIP codes with high percentages of non-green space and residents 

without a high school degree) makes presentation of all possible combinations unwieldy. 

Furthermore, one cannot include non-time varying main effects (e.g., sex) in a conditional 

logistic regression model because they do not vary between the case and controls in each 

matched set. Therefore, by including multiple effect modifiers in a single model, we are left with 

only a single “reference category,” which in this case is white women 65-78 years of age 

residing in the ZIP codes in the 25th percentile of: percent non-green space; percent of residents 

without a high school degree; percent of residents who are nonwhite and percent of residents 

living below the poverty level. The main EH terms of the model represent the effects of EH 

versus non-EH days among this group. Given these limitations, we believe the “added effects” of 

each subgroup to be more interpretable and do not sum the subgroup effects for single or 

multiple combinations of categories. 
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RESULTS 

Individual, ZIP code and city characteristics 

 The 134 study cities were broadly distributed across the United States (Figure IV.1). The 

mean daily number of admissions in a city for renal/heat causes ranged from 0.1 to 6.8 and from 

1.0 to 49.0 for respiratory causes (Table IV.1). Both distributions were skewed left, with median 

city values of 0.5 and 3.5 admissions, respectively. The percent of admission cases aged over 78 

years ranged from 36.4% to 60.4% and the percent of male cases ranged from 39.2% to 51.6% 

across cities. The percent of cases of nonwhite race ranged widely across cities, from 3.6% to 

47.2%. The distribution of the city-specific EH thresholds, or 97th percentile of 2-day average of 

maximum daily temperatures, was skewed left with a range of 21.7-38.8 °C and a median of 27.4 

°C. The 4 ZIP code characteristics, percentages of non-green space, nonwhite, without a high 

school degree and below the poverty level, ranged from 0-100%, but the distributions of the 4 

characteristics across the 8,200 ZIP codes were skewed left, with median values less than 50%. 

The median citywide percent of households with central AC in 1999 was 63.6%. 

Effect modification by individual and ZIP-code characteristics and AC 

 The number of renal/heat and respiratory cases during EH days was insufficient to 

perform the analyses in 16 and 3 cities, respectively. When the model results were pooled across 

the cities, the odds of admission to the hospital for renal/heat causes during EH01 vs. non-EH01 

was significantly greater than 1 in the reference category, (white females aged 65-78 years 

residing in the ZIP codes in the 25th percentile of percent non-green space, percent of residents 

without a high school degree, percent of residents who are nonwhite and percent of residents 

living below the poverty level) (OR = 1.23, 95% CI = 1.13, 1.35) (Table IV.2). The 2 
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characteristics: age greater than 78 years and an IQR increase in percent of residents in the ZIP 

code without a high school degree, both modified the association between admissions for 

renal/heat causes and EH01. The increased odds of admission to the hospital during EH01 for 

these 2 characteristics were 1.13 (95% CI = 1.07, 1.19) and 1.14 (95% CI = 1.05, 1.24), 

respectively. For renal/heat causes of admission, the association between EH07 (EH over lag 

days 0-7) and hospital admission was decreased and confidence intervals wider in the reference 

category (OR = 1.19, 95% CI = 1.02, 1.39). However, the modifying effect of age greater than 

78 years persisted (OR = 1.16, 95% CI = 1.04, 1.30) and the modifying effect of percent of 

residents without a high school degree was increased (OR = 1.43, 95% CI = 1.23, 1.67). 

For admissions for respiratory causes, the odds of admission during EH01 vs. non-EH01 

were protective in the reference category (OR = 0.96, 95% CI = 0.93, 0.99) (Table IV.2). The 

characteristics male and age > 78 years significantly increased this association, and the increased 

odds of admission to the hospital during EH for these 2 characteristics were 1.03 (95% CI = 1.01, 

1.05) and 1.03 (95% CI = 1.01, 1.05), respectively. The OR for percent non-green space was 

suggestive of an added effect (OR = 1.03, 95% CI = 0.99, 1.07, p < 0.10). For respiratory causes, 

the effect of EH07 vs. non-EH07 in the reference category was also less than 1, but percent of 

residents of nonwhite race increased this association (OR = 1.04, 95% CI = 1.00, 1.08), and the 

OR for percent of residents without a high school degree was suggestive of effect modification 

(OR = 1.04, 95% CI = 0.99, 1.09, p < 0.10).  

When accounting for citywide AC prevalence in models without individual or ZIP code 

level modifiers, AC prevalence substantially modified the association between EH01 and EH07 

and renal/heat and respiratory causes (Table IV.3). In cities with lower AC prevalence, the 

association between EH07 and respiratory admissions remained deleterious (for cities in the 25th 
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percentile of AC prevalence, OR = 1.07, 95% CI = 1.04, 1.10) as compared to cities with higher 

AC prevalence in which the association became null (for cities in the 75th percentile of AC 

prevalence, OR = 1.00, 95% CI = 0.97, 1.03). However, there was significant between-city 

heterogeneity in these estimates. 

Citywide AC prevalence modified the association between admissions for respiratory 

causes and EH01 among the reference individuals. The OR for this association among cities in 

the 25th percentile of AC prevalence was 0.99 (95% CI = 0.95, 1.02) while the OR among cities 

in the 75th percentile was protective (OR = 0.92, 95% CI = 0.88, 0.97) (Figure IV.2). For EH07 

for respiratory causes among the reference individuals, the OR for AC prevalence was suggestive 

of a modifying effect. However, AC prevalence did not modify the added effects of any of the 

individual or ZIP-code level characteristics, with the exceptions of a possible modifying effect 

by AC prevalence on the added effect of male sex on the association between EH01 and EH07 

and admission for heat/renal causes and the added effect of percent of residents of nonwhite race 

on the association between EH01 and admission for respiratory causes. 

We saw neither a modifying effect of percent non-green space or a modifying effect of 

AC prevalence on the effect of percent non-green space.  However, an IQR increase in percent 

non-green space among cities in the 25th percentile of AC prevalence did increase the association 

between EH01 and renal/heat admissions (OR = 1.11, 95% CI = 1.00, 1.24) (Figure IV.2). In the 

association between respiratory admissions and EH01, percent non-green space was deleterious 

among cities in the 75th percentile of AC prevalence. Similarly, in the association between 

renal/heat admissions and EH01, for male sex, the added effect among cities in the 25th 

percentile of AC prevalence was protective, though we did not have evidence of an interaction 



 

77 
 

by sex. Also, in the association between respiratory admissions and EH07, percent of residents 

without a high school degree was protective among cities in the 25th percentile of AC prevalence. 

 Even after accounting for AC prevalence, we found significant heterogeneity in our effect 

estimates for the association between hospital admissions for renal/heat causes and EH01 vs. 

non-EH01 (Figure IV.2 and Appendix B, Figure B.1). Nevertheless, within these categories of 

effect modifiers, few, if any, cities had significant effects in the opposite direction of the meta-

analysis effect (Appendix B, Figure B.1A-D). One exception was the added effect of EH07 and 

percent of residents below the poverty level in a ZIP code on the association between renal/heat 

admissions and EH, whereby the interaction effect was significantly protective in Philadelphia, 

PA, New York City, NY, Baltimore, MD, St. Louis, MO, Atlantic City, NJ and Charleston, SC 

(Appendix B, Figure B.1E). Another exception was the added effect of EH01 and percent of 

residents of nonwhite race in a ZIP code on the association between respiratory admissions and 

EH, whereby the interaction effect was significantly protective in Bergen-Passaic, NY, Los 

Angeles, CA and Oakland, CA (Appendix B, Figure B.1F). 
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DISCUSSION 

 The association between admissions for renal/heat causes and extreme heat was greater 

for individuals older than 77 years, and among individuals living in ZIP codes with an IQR 

(16.3%) increase in percent of residents without a high school degree. These added risks were 

significant over both the short term (lag days 0-1) and the longer term (lag days 0-7). Male sex 

and age modified the association between respiratory admissions and extreme heat over lag days 

0-1, as well. Finally, an IQR increase in percent of residents of nonwhite race significantly 

increased the risk of hospital admission for respiratory causes over lag days 0-7. These findings 

suggest that in general, age, sex and ZIP-code level education are relevant characteristics of 

vulnerability to heat-associated admissions in the short term, and that age, ZIP-code level 

education and ZIP-code level race are important over the longer term. The short-term effects are 

relevant to hospitals which may have to contend with additional staffing and resource costs due 

to hospital admissions immediately following extreme heat episodes, while longer term effects 

which account for admissions displacement are relevant to burden of disease estimates as well as 

estimates of increased costs of hospitalization due to extreme heat. Measures targeting the very 

old as well as individuals residing in areas with lower levels of education may reduce the 

immediate as well as long-term burden of extreme heat, and estimates of the effects of heat on 

hospital admissions within specific categories of age, ZIP-code level education and ZIP-code 

level race may aid in calculating more refined burden of disease estimates. 

 Despite having only a very spatially coarse way to measure the potential influence of AC 

on the associations between EH and hospital admissions, we found that citywide AC prevalence 

did modify the association between extreme heat and hospital admissions. Furthermore, the 

admissions displacement observed in cities with high AC prevalence among respiratory 
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admissions was not observed in cities with low AC prevalence. However, AC prevalence did not 

modify the added effects of sociodemographic characteristics, except that among the reference 

individuals, higher AC prevalence was associated with an increasingly protective association 

between EH and respiratory admissions.  

Having identified general trends, we note the large amount of between-city heterogeneity 

in the effect estimates, even after accounting for citywide AC prevalence. Therefore, we suggest 

that city-level results should be considered in many cases when identifying characteristics of 

vulnerability. For many of the sociodemographic characteristics, few, if any, cities had 

significant effects in the direction opposite of the meta-analysis effect. We thus conclude that the 

meta-analysis results were at least indicative of the direction of effect (protective or deleterious) 

for most or all of the cities. Notable exceptions were percent of residents below the poverty level 

in a ZIP code (in the association between EH07 and renal/heat admissions) and percent of 

residents of nonwhite race in a ZIP code (in the association between EH01 and respiratory 

admissions), which sometimes had significant protective and sometimes had significant 

deleterious effects, depending on the city. The category “nonwhite” is very broad, and the wide 

variety of cultural practices, English language proficiency, community cohesion and other 

neighborhood-level social factors represented among nonwhite races may affect vulnerability to 

heat differentially.  

 Percent non-green space in a ZIP code did not significantly modify the association 

between EH and admissions for renal/heat causes, though there was suggestion of a modifying 

effect of percent non-green space on the association between EH01 and respiratory admissions 

(3%, 95% CI = -1%, 7%). ZIP-code wide green space may be too coarse a measure covering too 

broad an area to observe the potential benefits of green space on reducing heat-associated 
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morbidity. In comparison, using data aggregated at the census block group (a smaller area) in 

Phoenix, AZ, Uejio and colleagues found associations between heat distress emergency calls and 

satellite-derived nighttime surface temperature, percent impervious density and housing density, 

all of which are correlated with green space (Uejio et al. 2011). Also, the ZIP-code level 

measures of education and poverty did not have individual-level information and may be serving 

as a proxy for individual-level or smaller-area level information.  

Individual-level nonwhite race did not modify the association between extreme heat and 

hospital admissions in any of the models, and no significant heterogeneity was seen between 

cities in individual-level nonwhite race interaction effects. Therefore, when controlling for other 

potential effect modifiers, we did not find evidence that race at the individual level was a 

significant characteristic linked with vulnerability to heat-associated hospital admissions. 

Finally, we used very broad categories of admissions; we collapsed heat and renal admissions 

into one category and combined all respiratory admissions into another category. Basu and 

colleagues (Basu et al. 2012) found that the modifying effects of race and age on the association 

between heat and emergency room visits differed by finer disease subgroups, and the extent to 

which sociodemographic and land cover characteristics as well as air pollution levels modify the 

associations between heat and more specific causes of hospital admissions also deserve further 

research.  
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CONCLUSION 

 Age, sex, ZIP-code level education and race, and AC prevalence modified the association 

between extreme heat and hospital admissions for renal/heat and/or respiratory causes, and lower 

education and AC prevalence also were associated with reduced admissions displacement. Our 

results were suggestive of a modifying effect of non-green space, which is a more easily 

modifiable risk factor than the sociodemographic characteristics examined. Significant 

heterogeneity existed between cities for most of the modifying characteristics examined, and 

estimates of the short-term and longer-term costs of EH on hospital admissions as well as heat 

health warning systems and measures targeting vulnerable individuals should account for 

differences in characteristics of vulnerability between cities. 
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TABLES 

Table IV.1. Characteristics of patients 65 years and older admitted to the hospital, maximum temperature, and ZIP code characteristics 
in 134 U.S. cities and 8,200 ZIP codes, May-September, 1992-2006. 
 
 Minimum 25th 

percentile 
Median 75th 

percentile 
Maximum 

Citywide mean daily number of hospital admissions1 
     Renal/heat 0.1 0.3 0.5 1.0 6.8 
     Respiratory 1.0 2.2 3.5 6.3 49.0 
Patient characteristics (citywide percent of respiratory, renal and heat cases) 
     Aged > 78 years 36.4 46.1 49.3 51.1 60.0 
     Male 39.2 43.9 45.6 47.6 51.6 
     Nonwhite race 3.6 12.8 18.4 26.4 47.2 
Citywide extreme heat threshold (97th percentile of 2-day average 
of maximum daily temperature, °C) 

21.7 24.9 27.4 31.3 38.8 

ZIP code characteristics (percent in ZIP code) 
     Non-green space 0.0 10.0 38.6 73.9 100.0 
     Residents without a high school degree 0.0 9.8 16.4 26.1 100.0 
     Residents of nonwhite race 0.0 4.3 12.3 30.8 100.0 
     Residents below poverty level 0.0 4.2 7.5 14.4 100.0 
Citywide percent of households with central air conditioning2 4.9 33.1 63.6 81.0 96.4 
1 ICD-9-CM primary admission codes: renal/heat: 580-589, 992 or E900.0; respiratory: 480-487, 490-492, 494-496. Counts of 
admissions for heat causes also include admissions with any contributing causes coded as heat-related. 
2 N = 109 cities, year = 1999. 
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Table IV.2. Pooled odds ratios (95% confidence intervals) for admission to the hospital for renal/heat causes or respiratory causes 
among individuals aged 65 years and older during extreme heat on lag days 0-1 or over lag days 0-7 (1) vs. non-extreme heat among 
“reference individuals” (white females aged 65-78 years residing in the ZIP codes in the 25th percentile of percent non-green space, 
percent of residents without a high school degree, percent of residents who are nonwhite and percent of residents living below the 
poverty level), (2) for the added effect during extreme heat for males vs. females, nonwhites vs. whites, ages 79 years or older vs. ages 
65-78 years or (3) for the added effect during extreme heat for interquartile range increases in the percentages of non-green space, 
residents without a high school degree, nonwhite residents and residents below the poverty level in a ZIP code, May-September, 1992-
2006.  
 
Characteristic Renal/heat 

lag days 0-1 
Renal/heat 
lag days 0-7 

Respiratory 
lag days 0-1 

Respiratory 
lag days 0-7 

Extreme heat vs. non-extreme heat 
among reference individuals 

1.23 (1.13,1.35) 1.19 (1.02,1.39) 0.96 (0.93,0.99) 0.93 (0.89,0.98) 

Male 0.96 (0.91,1.01) 0.91 (0.82,1.00) 1.03 (1.01,1.05) 1.01 (0.98,1.05) 
Nonwhite race 1.02 (0.95,1.09) 0.98 (0.85,1.14) 1.02 (0.98,1.06) 0.97 (0.91,1.03) 
Age > 78 years 1.13 (1.07,1.19) 1.16 (1.04,1.30)* 1.03 (1.01,1.05) 1.03 (0.99,1.07) 
Percent non-green space 1.07 (0.98,1.16) 1.05 (0.91,1.21) 1.03 (0.99,1.07) 1.02 (0.97,1.08) 
Percent residents without high 
school degree 

1.14 (1.05,1.24)* 1.43 (1.23,1.67)* 1.02 (0.99,1.05) 1.04 (0.99,1.09) 

Percent nonwhite residents 0.97 (0.92,1.03) 1.04 (0.94,1.16)* 1.01 (0.98,1.04)* 1.04 (1.00,1.08) 
Percent residents below poverty 
level 

1.03 (0.95,1.11) 0.98 (0.84,1.13)* 1.00 (0.98,1.03) 1.00 (0.96,1.05) 

p-value for between city-heterogeneity: * p < 0.05. See Appendix B Figure B.1 for forest plots (city-specific results). 
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Table IV.3. Pooled odds ratios (95% confidence intervals) for admission to the hospital for renal/heat causes or respiratory causes 
among individuals aged 65 years and older for extreme heat vs. non-extreme heat on lag days 0-1 and summed over lag days 0-7 
among cities in the 25th percentile of air conditioning (AC) prevalence and the 75th percentile of AC prevalence. 
 
 Renal/heat Respiratory 
Extreme heat vs. non-extreme heat on lag days 0-1 
     25th percentile of AC prevalence 1.58 (1.48,1.69)**# 1.07 (1.05,1.08)**# 
     75th percentile of AC prevalence 1.35 (1.26,1.45)**# 1.01 (0.99,1.03)**# 
Extreme heat vs. non-extreme heat over lag days 0-7 
     25th percentile of AC prevalence 2.00 (1.76,2.27)**# 1.07 (1.04,1.10)**# 
     75th percentile of AC prevalence 1.68 (1.48,1.91)**# 1.00 (0.97,1.03)**# 
p-value for AC interaction term: * < 0.1, ** < 0.05. 
p-value for between-city heterogeneity: # < 0.05. 
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FIGURES 

Figure IV.1. Study cities (n = 134) in the Continental United States. 
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Figure IV. 2. Odds ratios and 95% confidence intervals for admission to the hospital for 
renal/heat causes (graphs A and C) or respiratory causes (graphs B and D) among individuals 
aged 65 years and older during extreme heat on lag days 0-1 (graphs A and B) or over lag days 
0-7 (graphs C and D) (1) vs. non-extreme heat among “reference individuals” (white females 
aged 65-78 years residing in the ZIP codes in the 25th percentile of percent non-green space, 
percent of residents without a high school degree, percent of residents who are nonwhite and 
percent of residents living below the poverty level), (2) for the added effect during extreme heat 
for males vs. females, nonwhites vs. whites, ages 79 or older vs. ages 65-78 or (3) for the added 
effect during extreme heat for interquartile range increases in percentages of non-green space, 
residents without a high school degree, residents who are nonwhite or residents living below the 
poverty level in a ZIP code in cities in the 25th and 75th percentiles of central AC prevalence 
(AC), May-September, 1992-2006. 
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CHAPTER V 
 

Dissertation Conclusion 
 

 The three studies comprising this dissertation have addressed several critical questions 

regarding the health effects of heat but have also raised additional questions. We have 

characterized the strength and direction of the association between hospital admissions and heat 

across the United States, over both short and longer-term time periods, and we have identified 

individual- and area-level characteristics of vulnerability to heat, particularly green space, in 

Michigan (as related to mortality) and in the United States (as related to emergency hospital 

admissions). However, the large amount of heterogeneity in the results points to future research 

needs. 

 In the United States as a whole, we have identified an association between hospital 

admissions for renal causes and respiratory causes and both moderate heat and extreme heat. For 

moderate heat, the effects were weak for respiratory admissions, but for both outcomes, the 

effects are of public health significance for extreme heat. Consistent with a review of studies 

worldwide, we found a null or protective association between cardiovascular admissions and 

heat (Turner et al. 2012). The contrasting pattern between heat and hospital admissions and heat 

and mortality with respect to cardiovascular disease suggests that heat effects may be more 

sudden in individuals with pre-existing cardiovascular disease, thereby prohibiting them from 

receiving life saving care in time, while the effects of heat on individuals with respiratory 

diseases may be more gradual. The strong association between heat and renal admissions 

suggests a need to target additional heat adaptation interventions towards individuals with pre-
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existing renal conditions. However, it is not clear from our study design that all of the increase in 

renal admissions associated with heat is among individuals with pre-existing renal disease, and 

heat may in fact be precipitating new renal conditions in some patients. 

 The morbidity displacement pattern observed in the associations between heat and 

hospital admissions for cardiovascular and respiratory causes is strong compared to that 

quantified in heat-mortality studies. Hospital admissions may be more “malleable” than deaths in 

that individuals may have more personal control over the timing of the admission, and this may 

make daily hospital admissions rates more sensitive to daily temperature fluctuations. This 

pronounced displacement of events highlights the importance of accounting for displacement in 

calculating estimates of the long-term burden of heat-associated disease. This is often overlooked 

in that studies of the displacement effect often have not explicitly quantified it (e.g., Braga et al. 

2001), or studies of the long-term burden of heat health effects use heat-health effect estimates 

based only on the immediate effects of heat (e.g., on lag days 0-3), without accounting for the 

subsequent decline in mortality rates (e.g., Peng et al. 2011). Characterizing the extent of 

morbidity or mortality displacement is not straightforward, though, and our own results were 

sensitive to the length of the time stratum in our case-crossover design—a problem analogous to 

the choice of degrees of freedom for the time spline in a time series study. Despite these 

challenges, we addressed this issue in our study of vulnerability to heat-associated hospital 

admissions, and we found increased vulnerability to heat over a longer lag period (0-7 days) as 

well as over the short-term. The effect of low education was even stronger over 0-7 days than 0-1 

days, and this suggests that the pronounced morbidity displacement of heat-related admissions 

seen in the general population of individuals 65 and over may be lessened or absent in vulnerable 

subgroups. 
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 Despite having only a course area-level measurement of green space (percent of green 

space within a ZIP code), we found green space to be significant modifier of both mortality (in 

Michigan) and hospital admissions in some cities. This is an encouraging finding given that 

green space is a highly modifiable characteristic—it is relatively easy, from a public health 

standpoint, to diminish the urban heat island effect through tree plantings, for example. 

Additionally, though air conditioning prevalence also modifies the association between heat and 

mortality or morbidity (confirmed in our study), urban heat island mitigation has the advantages 

as a public health intervention (over increasing air conditioning usage) of not contributing 

substantially to green house gas emissions through fossil fuel consumption and of not being 

susceptible to failures in electricity distribution. 

 The between-city heterogeneity in the modifying effects of various sociodemographic 

characteristics on the association between heat and mortality or morbidity may be due in part to 

the course resolution (ZIP code-level) of the area-level characteristics. The heterogeneity may 

also be due to the courseness of the measures themselves, .e.g, non-white, which served as a 

proxy for a wide variety of cultural characteristics, English language proficiencies and levels of 

community cohesion, and may have been reflecting entirely different underlying characteristics 

of heat vulnerability in different cities. Furthermore, sociodemographic characteristics can 

influence each other in complex, bidirectional ways not accounted for in our modeling. Though 

we deliberately avoided a principal component analysis or other variable reduction method prior 

to running our regression models, methods accounting for these complex interactions may help 

to elucidate underlying mechanisms in future research. 

 Consistent with recent studies of heat waves and mortality in the United States (Anderson 

and Bell 2011, Gasparrini and Armstrong 2011), we did not observe a strong added heat wave 
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effect in the association between heat and hospital admissions, above and beyond the 

independent effects of several days of intense, extreme heat. We used a novel method of 

estimating the added heat wave effect—as an interaction between independent days of extreme 

heat—to fully distinguish between the effect of duration and intensity. This finding suggests that 

heat health warning systems should not account strongly for the duration of heat as opposed to 

the intensity of the temperatures. 

 With extreme heat events expected to increase with climate change, the results of the 

three studies of this dissertation can inform climate adaptation efforts. These efforts include 1) 

identifying populations vulnerable to heat, especially through vulnerability mapping of 

individual- and area-level characteristics of vulnerability, and 2) understanding the importance of 

a morbidity outcome, emergency hospital admissions, in identifying thresholds for heat health 

warning systems, identifying vulnerable populations and estimating the present and future 

burden of heat on human health with respect to climate change. 

However, more research is needed. These studies as well as previous studies of 

vulnerability have depended on the scant personal information in administrative databases (such 

as age, race and sex found in death records or hospital admissions) and U.S. Census information 

to characterize individual- and area-level vulnerability. The large amount of heterogeneity in the 

results of these studies suggests that the mechanisms underlying the associations observed in the 

main or modifying effects of sociodemographic characteristics on heat-associated mortality and 

morbidity have not been identified. Future research should use more detailed information on 

individual and neighborhood sociodemographic characteristics. Additionally, though high-

powered in terms of their sample sizes, large administrative databases are usually not helpful in 

understanding the clinical or subclinical outcomes preceding the catastrophic outcomes of 
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emergency hospital admission or death. In turn, these precipitating events may be useful health 

outcomes in models identifying characteristics of vulnerability to heat. 

 In summary, we have addressed several critical issues in understanding heat-associated 

mortality and morbidity and characteristics of vulnerability to heat, but the large heterogeneity in 

results, particularly in characteristics of vulnerability to heat, suggest that more work is needed to 

identify the characteristics of subpopulations at risk from the heat health effects of climate 

change. 
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Figure A.1. Map of the 114 U.S. study cities and their corresponding Energy Information 
Administration (EIA) climate zones (Energy Information Administration 2010). 
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Figure A.2. Odds ratios (ORs) and 95% confidence intervals (CIs) for all cities for hospital 
admissions among U.S. elderly (May-September, 1992-2006) for lags 0-1 and the sum of lags 0-
7 for 3 time stratum lengths of 5 real months (30-31 days per time stratum), 6 pseudo-months 
(25-26 days per time stratum) and 4 pseudo-months (38-39 days per time stratum) for (A) 
moderate heat (1 ºC increase in 2-day mean daily mean apparent temperature (AT) below the 
95th percentile of 2-day mean AT), and (B) extreme heat (2-day mean AT above the 95th 
percentile). 
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Figure A.3. Odds ratios (ORs) and 95% confidence intervals for hospital admission among U.S. 
elderly (1992-2006) for all natural causes for the mean over lag days 0-1 of different temperature 
metrics and thresholds for (A) an IQR increase (climate-zone specific) in moderate heat (e.g., 
AT01MH) and (B) extreme heat, i.e., above the 90th or 95th percentile (e.g., AT01EH). 
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Study Cities and Regions Methods 

U.S. counties were ranked according to the number of hospital admissions due to cardiovascular 

disease from 2004-2006. Of the 200 counties with the most cardiovascular hospital admissions, 

196 counties were within Metropolitan Statistical Areas (MSAs) in the continental U.S. and were 

assigned to their respective MSAs to form the “cities” in this study. The MSAs of Denver, CO, 

Portland, OR and Albuquerque, NM, though large, did not contain counties among the 200 

counties with the highest number of cardiovascular hospital admissions, so the counties of 

Denver, CO, Jefferson, CO, Multnomah, OR, Clackamas, OR, Washington, OR and Bernalillo, 

NM were added. Cities were assigned to 5 climate regions using the U.S. Department of Energy, 

Energy Information Administration's climate zones (Energy Information Administration 2010), 

defined by numbers of cooling-degree days (CDDs, annual sum of daily mean temperatures 

above 18.3 °C) and heating-degree days (HDDs, annual sum of daily mean temperatures below 

18.3 °C). 
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Alternative Model Including a Term for Cold Effects 

Methods: In more complex models which incorporated all the months of the year in which heat 

waves occurred in our data set (April-October), we modeled AT as a double threshold piecewise 

linear spline (Armstrong 2006) to capture the possible U-shaped association, with increasing 

odds of hospital admissions above a heat threshold and below a cold threshold (since cool 

temperatures can occur in the April-October period). This spline included knots at the cold and 

heat thresholds and was constrained to have a slope of zero between the two thresholds. In these 

models, we also included the step function for AT above the city-specific 95th percentile of 

warm-season (May-September) as was included in the simpler models. We ran case-crossover 

models for each city for every combination of possible even-numbered integer AT heat and cold 

thresholds between the city-specific 10th and 90th percentiles of warm-season (May-September) 

AT, for each admissions cause where the hot threshold was forced always to be at least 18 °C. 

The heat and cold thresholds were constrained to occur at the same two points in each lag. We 

selected the model with the lowest Akaike’s Information Criterion and also compared models 

with heat and cold thresholds to models without these thresholds using likelihood ratio tests. 

Results: In the more complex models, the city-specific heat thresholds within each climate zone 

ranged widely, and the mean of the city-specific heat thresholds did not differ between climate 

zones with the exception of climate zone 5, which had a higher mean heat threshold (31 °C in 

climate zone 5 vs. 23, 26, 24 and 24 °C in climate zones 1-4, respectively for models of 

admissions for all causes). In likelihood ratio tests for each city, for admissions for all causes, the 

model was significantly improved by adding the cold and heat thresholds in only 44% of the 

cities as compared to a model with a single linear term below the 95th percentile of 2-day AT. 

For cardiovascular, renal and respiratory admissions, the models were improved by the addition 
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of cold and heat thresholds in only 29%, 20%, and 25% of the cities respectively. In Appendix 

A, Figure A.3, the moderate heat and extreme heat effects estimated by the more complex model 

were qualitatively similar to those estimated by the simpler model. 
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Alternative Threshold Identification Using SiZer 

Methods: We also attempted to identify heat and cold thresholds at lags 0-1 and 2-3 using the 

SiZer method, which identifies significant increases or decreases in locally weighted polynomial 

smoothers for different spans of the smoother (Chaudhuri and Marron 1999). The motivation for 

doing this was to potentially provide a more objective way of identifying thresholds by exploring 

the full range of smoothing approaches (from very little smoothing to a great deal). For each city, 

we performed a time stratified case-crossover analysis using Poisson regression (Lu and Zeger 

2006) of the association between daily hospital admissions counts and AT01 and AT23 as 

natural cubic splines with 3 df. The SiZer scatterplot was created from the AT values and partial 

residuals for each lag, and smoothers with differing bandwidths were fit to that scatterplot. For 

each city for each lag, we tested approximately 20-30 bandwidths (1 for each degree Celsius in 

the range of ATs for that city), and the bandwidths ranged from log10(h) = 0 to 2. 

Results: The SiZer method did not allow us to identify clear heat and cold thresholds in many 

cities. Often, a smoother with a small span (a very “wiggly” smoother) had multiple significant 

increases and decreases in its slope and a smoother with a large span significantly increased (or 

decreased) over the full range of AT values at that particular 2-day lag, without any threshold. 

Furthermore, the point at which the function began to increase, decrease or flatten often 

depended entirely on the span chosen. This suggests that the threshold approach may not fit the 

data well, or may not be estimable. Consistent with this, a linear relation with temperature fit 

better than the threshold model in a majority of our cities. 
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APPENDIX B 
 

Supplemental Information for Chapter IV 
 

 
Figure B.1. Odds ratios (and 95% confidence intervals) for admission to the hospital among 
individuals aged 65 years and older, May-September, 1992-2006, during extreme heat for (A) 
renal/heat causes for the added effect during extreme heat on lag days 0-1 for an interquartile 
range increase in the percent of residents without a high school degree in a ZIP code, (B) 
renal/heat causes for the added effect during extreme heat over lag days 0-7 for individuals aged 
79 years or older, (C) renal/heat causes for the added effect during extreme heat over lag days 0-
7 for an interquartile range increase in the percent of residents without a high school degree in a 
ZIP code, (D) renal/heat causes for the added effect during extreme heat over lag days 0-7 for an 
interquartile range increase in the percent of residents of non-white race in a ZIP code, (E) 
renal/heat causes for the added effect during extreme heat over lag days 0-7 for an interquartile 
range increase in the percent of residents below the poverty level in a ZIP code, (F) respiratory 
causes for the added effect during extreme heat on lag days 0-1 for an interquartile range 
increase in the percent of residents of non-white race in a ZIP code. 
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