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ABSTRACT

Study Design for Longitudinal and High Dimensional Measures

by

Meihua Wu

Chair: Brisa N. Sánchez

Study design is the foundation of successful clinical or epidemiological studies. Ever

since the seminal work of Fisher (1935), research in this area has blossomed and many

innovative concepts and approaches have been developed. Despite extensive litera-

ture on study design, new challenges for study design continue to emerge as innovative

technologies push the limits of what can be investigated with a clinical or epidemio-

logical study. For instance, tools for ecological momentary assessment of behaviors or

biological markers, or high throughput experiment devices such as microarrays open

the opportunity to measure complex biological processes over time, or the expression

levels of millions of genetics or proteomics biomarkers simultaneously. In this disser-

tation, we develop novel design methodologies for studies employing these new data

collection techniques, namely: 1) studies involving repeated measures of nonlinear

profiles in biomarker studies with the objective of estimating features of the profile;

2) studies involving data with underlying functional response with the objective of

capturing the mean profile and between subject variability; 3) studies involving high

dimensional genetics and proteomics data with the objective of constructing classi-

fiers with high probability of correct classification. Correspondingly, our research is

xi



motivated by three practical applications: 1) salivary cortisol studies for investigat-

ing the association between cardiovascular disease and stress; 2) urinary progesterone

studies for reproductive health; 3) studies involving high dimensional genetics and

proteomics data with the objective of constructing classifiers with high probability of

correct classification. This dissertation contributes novel study design methodologies

for studies that involve related but distinct data structures. We demonstrate the use

of the methods with various examples to enhance the potential of their used across

a variety of settings. The new design methodology will thus enable investigators to

better evaluate the feasibility and cost-efficiency of the study in the planning stage

and ultimately improve the chance of success of studies involving longitudinal and

high dimensional data.
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CHAPTER I

Introduction

Study design is the foundation of successful clinical or epidemiological studies.

Statistical aspects of design include the determination of the sample size, mode of

randomization, the sampling units, the timing (or location) of sample collection,

among others. The optimal choice of these design features ultimately depends on

the goal of the proposed study. For example, if the purpose of the study is to test a

scientific hypothesis, then the optimal design should maximize the power of the test

given a predefined threshold for Type I errors. If, instead, the estimation of a quantity

describing a biological or clinical mechanism is of interest, the optimal design should

provide strategies to minimize the variance or mean squared errors of the estimated

quantity. Alternatively if the objective is prediction of future outcomes, the design

should enable maximum prediction accuracy. In addition to statistical concerns, other

factors will also impact the optimal design. For example, the design should minimize

the risk and burden on the subjects, as well as the implementation cost. Furthermore,

a good design should also quantify the uncertainty in the assumption of the study

scenarios and provide adequate analysis for evaluating the robustness of the design.

The field of experimental design was pioneered by the seminal work of Fisher

(1935). Ever since then, the research in this area has blossomed and many innovative

concepts and approaches have been developed, such as response surface methodology

1



(Myers et al., 2009), Bayesian design (Chaloner , 1995), adaptive design (Chow and

Chang , 2007), model-based design (Fedorov and Hackl , 1997). Comprehensive reviews

for many fundamental results and effective applications of the design methodologies

can be found in Cochran et al. (1992); Montgomery (2008).

In spite of the extensive literature on study design, new challenges for study design

continue to emerge as innovative technologies are always pushing the limits of what

can be investigated with a clinical or epidemiological study. High throughput experi-

ment devices, such as microarrays, open the opportunity to measuring the expression

levels of millions of genetics or proteomics biomarkers simultaneously. From these

data one may be able to construct accurate and reliable classifiers for predicting the

risk or prognosis of various diseases. Likewise with ecological momentary assessment

tools, repeated measures of a biomarkers or behaviors can be taken on a subject in

real time to more accurately measure behaviors or biological processes in real world

contexts (Shiffman et al., 2008). These measurement techniques will often give rise

to nonlinear functional profiles often with substantial between-individual variation.

In this dissertation, we develop novel design methodologies for the studies employ-

ing these new data collection techniques: 1) studies involving repeated measures of

nonlinear profiles; 2) studies involving data with underlying functional response with

the objective of capturing the mean profile and between subject variability; 3) studies

involving high dimensional genetics and proteomics data with the objective of con-

structing classifiers with high probability of correct classification. Correspondingly,

our research is motivated by three practical applications: 1) salivary cortisol studies

for investigating the association between cardiovascular disease and stress; 2) urinary

progesterone studies for reproductive health; 3) studies for constructing classifiers of

long term survival after kidney transplant. The background and motivations for each

of the design problems will be discussed as follows.
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1.1 Background and Motivations

1.1.1 Design for Studies Involving Repeated Measures of Nonlinear Pro-

files

Cardiovascular disease remains one of the leading causes of mortality and morbid-

ity in the US, and an area of health where race-ethnic and socioeconomic disparities

persist. In addition to known risk factors, such as overweight, psychosocial stress has

been proposed as a cause for cardiovascular disease, and as one of the roots of health

disparities (Kaplan and Keil , 1993; Diez Roux et al., 2001). However, subjective mea-

sures of stress, such as self-reported questionnaires, are susceptible to response bias.

Instead, a field-friendly biological marker of stress, salivary cortisol, is now collected

in many population-based epidemiological studies to assess the relationship between

stress and disease (Adam and Kumari , 2009). Although there is great promise in us-

ing salivary cortisol as an objective measure of stress, the best statistical methods to

properly collect and summarize salivary cortisol data in epidemiological studies, and

thus take full advantage of the millions of dollars spent yearly in assay costs alone,

remain largely unknown.

In Chapter 2, we will develop statistical methods to better quantify stress re-

sponse when using salivary cortisol. Salivary cortisol exhibits a non-linear diurnal

pattern through the length of the day, so-called stress response. The stress response

varies from day to day within a given individual, and also exhibits variation between

individuals; that is, it exhibits multiple levels of variability (Smyth et al., 1997). To

capture the variability, studies often collect salivary cortisol from multiple days on

groups of individuals (Adam et al., 2006; Cohen et al., 2006). However, the number

of days and samples per day, as well as the time of day when the samples are col-

lected have so far been chosen in an ad hoc manner. We will discuss optimal design

strategies for multi-level sampling of salivary cortisol in population studies that max-

3



imize the precision of summaries of the stress response. Improving the precision of

the summaries will ultimately reduce overall study costs and increase the ability to

detect associations between stress and disease.

We will use the Stress sub-study of the Multi-Ethnic Study of Atherosclerosis

(MESA Stress) as one of the illustrating examples. MESA Stress is among a handful

of large scale epidemiological studies using salivary cortisol. MESA Stress examines

the role of stress as a contributor to a range of precursors of cardiovascular disease,

and collects data on 1000 participants. The study is unique in size, multiethnic

composition, and sampling of repeated measures of salivary cortisol during the day

and over multiple days. The methods we develop are motivated by this study, which

we use to illustrate the statistical challenges present in epidemiology studies of the

stress response.

1.1.2 Design for Studies for Measuring the Variability in Longitudinal

Process

The mean profile and the temporal variability are two important features of a lon-

gitudinal process. While accurate estimation of the mean profile has been the primary

focus of existing approaches for longitudinal study designs, few design approaches to

characterize and estimate the variability exist. The variability is itself important in a

longitudinal study because the variability can be directly associated with a subsequent

outcome of interest (Elliott , 2007). A practical example is the urinary progesterone,

which is a biomarker important for assessing the women reproductive health. The

variability of the urinary progesterone across women is believed to be associated with

various reproductive characteristics such as demographics (Windham et al., 2002),

occupations (Gold et al., 1995), exercise habit (De Souza et al., 2010). Therefore,

further analysis of the association between these health predictors/outcomes and the

urinary progesterone profiles hinges on our ability to accurately measure the vari-

4



ability of the progesterone across individuals. In order to the capture the variability

of urinary progesterone, it is not uncommon to collect samples everyday during the

entire menstrual cycle of the participant (Waller et al., 1998). Such densely sampled

data points are helpful in reconstructing the entire progesterone profile. However,

such sampling schedule is difficult to implement in large scale studies since the cost

associated with the collection and assay of the samples become very high. Therefore,

deriving the simplified and optimal sampling schedules to measure the progesterone

level is highly desirable.

In Chapter 3, we will develop methods for optimal sampling schedules that in-

crease our ability to capture the mean profile and the variability of the longitudinal

process simultaneously. We will explore the various strategies that are most suitable

for deriving schedules for measure the mean profile and the between subject vari-

ability. The results we obtained can be useful in practice because they will not only

enable practitioners to design cost effective studies, but ultimately help elucidate the

relationships between longitudinal process and health outcomes.

We will use the urinary metabolite progesterone data from Brumback and Rice

(1998) to illustrate our new method. The data set were collected as part of early

pregnancy loss studies conducted by the Institute for Toxicology and Environmental

Health at the University of California, Davis in collaboration with the Reproductive

Epidemiology Section of the California Department of Health Services, Berkeley. The

data set contained progesterone profiles within menstrual cycles of 51 women with

healthy reproductive function. For some women more than one menstrual cycle was

recorded and in total 91 menstrual cycles have been measured. The data set also

include the conceptive and non-conceptive status for each cycle, which also allows us

to assess the performance of the sampling schedules in terms of predicting the health

outcomes from the longitudinal samples.
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1.1.3 Design for Studies Involving High Dimensional Genetics and Pro-

teomics Measures

Rapid technological development has expanded the use of high throughput data

collection in clinical and epidemiology studies. Such studies typically gather measure-

ments on thousands or millions of proteomics or genetics biomarkers from each subject

Elaine R. (2008); Schuster (2008). Sophisticated statistical analysis is conducted, for

instance, to identify associations between disease prognosis and the biomarkers. The

results of association studies can shed light on important biomarkers that are dif-

ferentially expressed for various prognosis groups, which then forms the basis of the

development of accurate and reliable classifiers for disease prognosis. These classifiers

are among the key components for realizing the promise of personalized medicine.

For instance, physicians can select the most effective treatment for a patient based

on the prediction of the classifiers, given the measurement of the biomarkers from

this very patient Hamburg and Collins (2010). Novel approaches for deriving such

classifiers for high dimensional data have been developed and applied to real world

experiments, leading to promising results.

The utility of high throughput data for clinical settings hinges on well developed

classifiers. In turn, a good classifier will depend on proficient study design. For

instance, determining the sample size needed to construct an accurate classifier is

a design question that comes to mind. This aspect of the study design is partic-

ularly relevant for high throughput experiments because the implementation cost,

while often in decline, is still prohibitively high and makes it almost impractical to

conduct a study with more than a few hundred subjects. Therefore, investigators

are highly motivated to obtain reliable sample size estimation that enhances cost-

efficiency and minimizes participant risk. Furthermore,since there are a variety of

technologies emerging to measure different type of features, the investigators are of-

ten interested in combining two or more types of the features to enhance the PCC
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of the study. These features can be genetics biomarkers, proteomics biomarkers, or

clinical covariates. However, the literature has not formally established for the results

regarding how much gain in terms of PCC could potentially be realized when we com-

bine these features in the study and under what scenarios we expect to achieve the

highest gain. These questions need to be carefully addressed in the design stage be-

fore the investigators commit substantial amount of funds and time to collect several

types of features.

In Chapter 4, we will develop methods to efficiently and accurately compute sam-

ple size for studies involving high dimensional data and clinical covariates. We will

calibrate the sample size to construct a classifier that meets the pre-selected prob-

ability of correct classification. We also derive the upper and lower bounds of the

PCC gain when two different types of the features are collected in the study. Our re-

search will enable the investigators to better evaluate the feasibility and cost-efficiency

of the study in the planning stage and ultimately improve the chance of successful

development of more accurate classifiers for disease prognosis prediction.

We apply the new methodology to the design of studies aimed at constructing high

dimensional classifiers to predict long-term survival after kidney transplant. Although

one year kidney graft survival is greater than 90% due to improved immunosuppres-

sion, long-term kidney allograft outcome has not changed dramatically over the last

decade (Meier-Kriesche et al., 2004). Traditionally, serum creatine levels have been

used as the non-invasive surrogate markers to follow renal allograft function. However

serum creatine levels are neither sensitive or specific of long-term survival. For exam-

ple, the positive predictive value of serum creatine for 7 years graft survival is only

59% (Kaplan et al., 2003). So there is a need to identify better biomarkers to con-

struct more accurate classifiers to predict long-term survival after kidney transplant.

Recently a new study is being for planned for such purpose. In total 108 proteins

will be measured simultaneously by microarray and classifiers for kidney graft sur-
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vival will be developed based on the high dimensional microarray data. This study

provides the ideal scenario for evaluating the performance of our methods. We will

compute the sample size requirement to achieve a reasonable PCC. The robustness of

the sample size calculation will also be assessed through various design assumptions.

1.2 Existing Methods

In this section, we will review the existing methods related to the design problems

of interest in this dissertation.

1.2.1 Design for Studies Involving Repeated Measures of Nonlinear Pro-

files

The longitudinal salivary cortisol profile can be modeled by the nonlinear mixed

effect model (Lindstrom and Bates , 1990). Thus we review methods for longitudinal

design in studies with nonlinear parametric profiles with the focus of selecting optimal

sampling schedules and determining the number of repeated profiles (e.g. days) per

subject. The key ingredients in this setting are choice of model, , incorporation

of uncertainty of parameter values at design stage, criterion for comparing designs

and its computation. Determination of the relative magnitude of variability across

multiple levels of sampling

Parametric nonlinear mixed models assume that the observations yij for the sub-

ject i at time tij can be modeled by

yij = f(tij, θij) + εij

where f(t, θ) is the known parametric functions for the profile of the response interest.

f(t, θ) can be any nonlinear functions which allows us to accurately capture the

diurnal profile of the salivary cortisol throughout the period of one day. θi ∼ N(θ,Σ)
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is the parametric specific to subject i. θ and Σ are the population mean and variance

of the subject specific parameters θij. The random effect component of the model

provides a simple and straightforward framework to account for the between subject

variability. Finally εij ∼ N(0, σ2) are independent measurement errors. Estimation

of the nonlinear mixed models has been established in (Lindstrom and Bates , 1990;

Pinheiro and Bates , 1995). Estimation software can be found in both R and SAS.

Besides the models for salivary cortisol profiles, appropriate criterion for compar-

ing various designs is another crucial ingredient for optimal design. The most widely

used approach for selecting the optimal design is based on the Fisher’s information

matrix (Retout et al., 2002). For a given model, and a given set of population param-

eters θ (e.g. obtained from preliminary studies), we would like to identify the optimal

design T = (t1, . . . , td) that minimize the estimation variance of θ̂ in the full study. By

MLE theory, the MLE θ̂ follows normal distribution with mean θ and variance I−1(θ)

where I(θ) is the Fisher information matrix. When θ is one-dimensional, one could

find the optimal design by minimizing I−1(θ). When the dimension of θ is higher than

one, we need to employ an appropriate criterion to summarize the variance of θ into

one quantity. Atkinson et al. (2007) discuss many such criteria, such as D-optimality

(det(I(θ))) and A-optimality (tr(I−1(θ))). Among these criteria, D-optimality is most

widely used for several reasons: 1) det(I(θ)) is the reciprocal of the confidence region

for the MLE θ̂; 2) det(I(Φ)) is invariant under reparameterization of θ.

At the design stage, the values of θ are unknown but can be approximated if

preliminary data exist. Such estimates will naturally have potentially high degree of

uncertainty. Bayesian designs are a way to incorporate uncertainty into the design

criterion (Chaloner , 1995). A full Bayesian adaptive approach for the optimal design

is described by Stroud et al. (2001). In this approach, the design problem is formulated

as identifying the optimal design of the next subject to measure the parameter, given

the data we have already collected. To achieve this goal, the authors suggest that we
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could maximize a well-defined utility function under the posterior distribution given

the data already observed,

U(T |Data) =

�
u(ynext, T, θ)p(ynext|θ)p(θ|Data)dynextdθ

where u(y, T, θ) is the utility function and is defined as the precision minus cost in

Stroud et al. (2001). p(y|θ) is the sampling distribution for data given the parameter.

p(θ|Data) is the posterior distribution given the observed data. ynext denotes the

observed data from the next patient. This Bayesian approach provides a coherent

framework for adaptively updating the optimal design for each new subject and the

resulting individualized optimal design is highly efficient. However, we find it diffi-

cult to implement this approach in population based epidemiology studies because

individualized sampling protocol poses a huge administrative cost. Nevertheless, the

Bayesian design perspective provides a useful formulation for incorporating uncer-

tainty regarding preliminary parameter estimates used at the design stage.

Once the criterion or utility function is well defined, we need to find an efficient

algorithm to solve the associated optimization problem. It turns out that optimization

of the criterion or utility function is itself difficult because the criterion or utility is

multivariate function of the sampling schedule (t1, . . . , td) with many local maxima.

People have tried to solve this problem with different approaches, which we will

discuss as follows.

One approach that has been widely studied is based on the continuous design

for convex criterion (Fedorov and Hackl , 1997). Under this formulation, subjects are

assigned to groups, each group with a different schedule. The schedule for each group

is termed “elementary design”. We define a set A, called the candidate design, which

consists of the weighted sum of elementary designs. Weighted sum of two elementary

design a1 and a2 is denoted by w1a2 + w2a2 where w1, w2 ≥ 0 and w1 + w2 = 1. The

10



notation w1a2 + w2a2 means that for an incoming subject, he/she will be assigned

to design ai with probability wi. With weighted sum defined this way, a criterion

function f(·) is convex if and only if for any design a1, a2 and weights w1, w2, we

have

f(w1a2 + w2a2) ≤ w1f(a1) + w2f(a2)

Most of the criterion functions, such as D-optimality and A-optimality, belongs to

the convex criterion if appropriate one-to-one transformation is applied. For a convex

criterion, the optimal design can be represented as a finite weighted sum of elementary

designs and Federov-Wynn algorithm has been developed to identify the optimal

design.

The optimal design based on convex functions is highly efficient and is commonly

used in the PD/PK experiment, where the sampling protocols are followed exactly.

In these settings, subjects are randomly assigned to each of the elementary designs

that form the final optimal design.

However, randomization in the elementary designs could lead to implementation

difficulties in epidemiology studies. It is not uncommon for a epidemiology study

to focus on more than one objective and collect various responses besides salivary

cortisol. In this case, the randomization of cortisol sampling protocols could substan-

tially increase the overall cost, if not disrupt the measurement of the other responses.

Therefore, we need to carefully weight the benefit and cost when employing this type

of design strategy.

A fixed sampling protocol without random assignment is more practical for epi-

demiology studies. Thus efficient optimization algorithm should be employed to iden-

tify a fixed (non-randomized) optimal design. General optimization algorithm, such

as Newton-Raphson Simplex, are not very efficient because of the high dimension of

the optimization space and the numerous local minima. A wide variety of exchange

algorithms have instead been developed for optimal design problem. For example,
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Ogungbenro et al. (2005) propose the so called Modified Federov-Wynn algorithm. In

this algorithm, we define a pool of admissible sampling times and choose an initial

design. Then iteratively we replace one time point in the current design with a time

point from the pool of candidate sampling times, such that the value of the criterion

function increases after the replacement. The procedure is repeated until we cannot

further improve the criterion function. This approach is extremely fast in terms of

convergence. However it is not guaranteed that a global optimum is reached with

such algorithm, because it can easily get stuck in local optimum. Choi et al. (2007)

describes stochastic variant by incorporating simulated annealing. In this algorithm,

the replacement of sampling times is accepted stochastically with a nonzero probabil-

ity even if replacement does not result in an increment of the criterion function. This

allows the algorithm to jump out of the local optimum and reach the global optimum

eventually.

Finally, the design for the studies with multi-level sampling, which is commonly

employed in salivary cortisol studies, has also been considered in the design litera-

ture. Raudenbush and Liu (2000) derived formulas to determine the optimal number

of samples per day and number of days for sampling under two-level linear mixed

models. A similar design problem characterized by a three-level linear mixed model

is investigated by Roy et al. (2007).

1.2.2 Existing Methods for Design for Studies for Measuring the Vari-

ability in Longitudinal Process

Because of the similarities, the existing literature for measuring the variability

of longitudinal process overlaps substantially with that for measuring the mean of a

nonlinear profile. Therefore, we will only focus on the difference and avoid restating

the common results.

In Retout et al. (2002), the longitudinal process is again modeled by the nonlinear
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mixed effect model. But instead of computing the Fisher information matrix only

for the mean parameter θ, we compute the joint information matrix for both the

mean parameter θ and variability parameter Σ. Then we identify the the optimal

schedule for maximizing an efficiency criterion, such as D-optimality or A-optimality,

using the various optimization technique, as has been described. While the nonlinear

mixed model approach has been widely employed, there are various aspects that can

be improved. In particular, under this model, the temporal pattern of the variability

is derived from the mean profile. So it might not be flexible enough to model the

pattern of the between-subject variability over time, which is the prime focus of our

design problem.

A more flexible approach for modeling the variability is based on the functional

principal component analysis (FPCA (Rice and Silverman, 1991; Silverman, 1996)).

In this case, we assume that the observation yij for the subject i at time tij can be

modeled by

yij = fi(tij) + εij

where εij are the independent measurement errors. fi(t), the subject specific pro-

file is defined nonparametrically. In particular, fi(t) is assumed to be Gaussian

process with mean E(fi(t)) = f(t, θ) where f(t, θ) is the population averaged pro-

file. We can obtain a parsimonious representation of fi(t) by applying FPCA, i.e.

fi(t) = f(t, η) +
∑∞

k=1 αikβk(t) with αik =
�
gi(t)βk(t)dt is the loading on each func-

tional principal component βk(t) for each subject i, and αik
iid∼ N(0, dk). The principal

component functions βk(t)’s maximize V ar
(�

fi(t)βk(t)dt
)

and satisfy the orthonor-

mal requirement
�
βk(t)·βk′(t)dt = 0 for k 6= k′ and

�
βk(t)·βk(t)d = 1. Parsimonious

representation can be achieved by selecting a finite number of principal components.

The major advantage of the FPCA approach is that the FPCA does not place any

assumptions on the temporal pattern of the variability of subject specific profile.

Estimation of the FPCA has been developed by (James et al., 2000; Peng , 2009).
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Various penalties that encourage the smoothness of the principal components have

also been proposed (Silverman, 1996; Yao et al., 2005; Yao and Lee, 2006; Martinez

et al., 2010).

1.2.3 Existing Methods for Study Design for High Dimensional Genetics

and Proteomics Measures

There are three basic challenges in designing the studies to construct classifiers

based on the high dimensional genetics or proteomics measures. We will review the

existing methods for each for challenges as follows.

The first challenge is to choose an appropriate and reasonable objective for the

sample size calculation. Hwang et al. (2002) consider the sample size requirement for

rejecting the global null hypothesis of no biomarkers being differentially expressed

between groups. However, such hypothesis is not directly related to performance of

the classifier and the sample size obtained in this way might not be directly relevant to

the purpose of classification. Mukherjee et al. (2003) propose using the probability of

correct classification (PCC) as the benchmark for evaluating the performance of the

classifier and calibrate sample size computation to achieve a predefined PCC. Using

PCC as the objective is appealing because it is a direct measure of the performance of

the classifiers. But it still has some limitations. The achievable range of PCC varies

depending on the practical problem and in some cases, the signal is so weak that

the PCC is far less than 1 even with infinite sample size. Dobbin and Simon (2007)

recognize this issue and propose a better strategy. The authors construct the ideal

classifier assuming complete knowledge of the data model and compute the associated

ideal PCC. The ideal PCC becomes the upper bound for the PCC of any classifier

derived from sampled data. Then they recommend calibrating the sample size to

the ideal PCC minus a certain tolerance, which avoids the possibility of setting an

objective PCC so high that it cannot be reached even with infinite sample size.
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The second challenge is the data analysis tools employed to construct the classi-

fiers. Because of the high dimensionality of the biomarkers, the number of biomarkers

is often much larger than the total number of the observations (e.g. the p � n sce-

nario). In this case, many conventional statistical analysis tools are not applicable.

For example, the sample covariance matrix is always singular and cannot be em-

ployed in Fisher’s linear discriminant because it involves inverse of covariance matrix.

Therefore, regularity structures are often imposed in high dimensional analysis. For

example, Dobbin and Simon (2007) includes a biomarker selection step to reduce

the dimension of the data subsequently used to develop the classifiers. While this

approach is simple to implement, it has some drawbacks in practical applications.

In particular, the biomarker selection depends on the type I error threshold which

needs to be determined by simulation which in turns depends on knowledge of the

true model parameters. Since these true values of the model parameters are rarely

known with confidence in the design stage, the choice of the type I error thresh-

old could be sub-optimal. In order to address these issues, Donoho and Jin (2009)

propose a rare-weak model as the framework for high dimensional classification. To

be more precise, the model assumes that the number of biomarkers that are useful

for classification is typically very small relative the total number of the biomarkers

(i.e. useful biomarkers are “rare”); the effect size of the useful biomarkers can be

very small relative to the noise (i.e. “weak”). This formulation is strikingly different

from the traditional statistical framework and it is no surprise that it leads to some

interesting and useful results. Jin (2009) shows that the linear classification problem

can be divided into two classes: infeasible and feasible. In the infeasible class, the

effect size is so weak and the biomarkers are so rare that any linear classifiers will

asymptotically perform as bad as a random assignment classifier. For the feasible

class, however, Donoho and Jin (2009) propose a novel linear classifier based on a

higher criticism threshold (HCT) such that the PCC will approach 1 asymptotically
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as the the number of biomarkers goes to infinity.

The last challenge is the computation of the PCC given the design objective and

the classifier for finite samples. This places a substantial computational burden on

the direct estimation of the PCC and makes it too slow to be practical. Mukherjee

et al. (2003) use a learning curve method to extrapolate the PCC, which requires that

extensive data is already available in order to estimate the learning curve parameter.

de Valpine et al. (2009) propose to compute the PCC by combining simulation and

approximation of the PCC formula, which speeds up the computation. However, this

combination approach seems to be complicated to implement and the accuracy of the

approximation is not yet established. For the newly developed HCT classifiers, only

the asymptotic PCC has been consider in Donoho and Jin (2009) and no efficient and

practical method for computing the PCC for the finite samples has been proposed.

1.3 Approaches

In this dissertation, we will address the design problem of interest by integrating

prior results and developing novel design methodologies.

In Chapter 2, we will discuss optimal design strategies for multi-level sampling of

salivary cortisol in population studies that maximize the precision of summaries of the

stress response. We use conditionally linear mixed models to model the cortisol profile.

Instead of D-optimality, we use the Bayesian average of the estimation variance of

features of the cortisol response as the criterion for identifying the optimal design.

We derive a closed form solution for the estimation variance of the features, which

partitions variance into variance due to: the sampling schedule, the between-subject

variability and the between-day variability. We extend the result of Raudenbush

and Liu (2000)to the case of nonlinear response profile and use it to decide on the

optimal choice for the number of samples per day and the number of the days for

sampling. This straightforward formula for the estimation variance also leads to
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other benefits, such as simplifying the computation of the Bayesian average of the

estimation variance. We identify the optimal design by inhomogeneous Markov chain

simulation (Muller et al., 2004), which progressively improves the precision of the

Bayesian average and converges the global optimum. We prefer this approach to

the FW algorithm because in our case every subject follows the same schedule and

because incorporating the Bayesian design within the FW algorithm would carry

a high computational burden. We apply these results to identify optimal design for

populations similar to those in the MESA Stress study and incorporate considerations

of cost of the multi-level approach.

In Chapter 3, we will develop methods that increase our ability to simultaneously

capture the mean and variance profile in repeated measure designs. We review the

existing methods based on parametric mixed models and show that accommodating

a broad range of between subject variability patterns at the design stage is an area

that needs improvement. We utilize functional principal component analysis (FPCA)

as a method to characterize the variability structure of the longitudinal process, and

develop a method for identifying the optimal sampling schedules for the mean pro-

file and between subject variability. We conduct a small scale simulation study to

compare designs derived using our proposed approach to those from using PMM-

based approaches. We apply these new methods to two design problems: obtaining

sampling schedules for salivary cortisol that also consider flexible models for between

subject variability, and sampling schedules for urinary progesterone profiles an early

biomarker for conceptive status.

In Chapter 4, we will develop new methods to enhance the sample size compua-

tion of the studies involving high dimensional data. We calibrate the sample size to

achieve so that the study could achieve a pre-defined PCC. We enhance the existing

method by incorporating cross-validation (CV) and high criticism threshold (HCT)

into the feature selection of the classifier. Our new approaches are data driven and
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the PCC estimates derived from these approaches are achievable in practice if the

corresponding classifiers are employed. In terms of computation, we propose a new

simulation method based on order statistics that allows us to efficiently compute the

PCC based on the HCT method. Furthermore, we derive an inequality for the upper

and lower bounds of the achievable PCC when combining two types of features in

the study. We evaluate the performance and validity of our proposed method by ex-

tensive simulations. Finally we use the prediction of long term survival after kidney

transplant to illustrate the application of our new approaches.

This dissertation contributes novel study design methodologies for studies that

involve related but distinct data structures. The design objectives for studies involv-

ing these data can include minimizing estimation variance, reducing cost, accurate

prediction and high probability of correct classification. The new design methodology

will enable the investigators to better evaluate the feasibility and cost-efficiency of the

study in the planning stage and ultimately improve the chance of success of studies

involving longitudinal and high dimensional data.
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CHAPTER II

Designing Salivary Cortisol Studies: the Case of

Salivary Cortisol in the Multi-Ethnic Study of

Atherosclerosis

2.1 Introduction

Cardiovascular disease remains one of the leading causes of mortality and morbid-

ity in the US, and an area of health where race-ethnic and socioeconomic disparities

remain unexplained. In addition to known risk factors, psychosocial stress has been

proposed as a cause for cardiovascular disease, and as one of the roots of health

disparities (Kaplan and Keil , 1993; Diez Roux et al., 2001; Williams et al., 1997;

Gallo and Matthews , 1999). Subjective measures of stress, such as self-reported ques-

tionnaires, are susceptible to response bias, hence salivary cortisol, a field-friendly

biological marker of stress, is now collected in many population-based epidemiologi-

cal studies (Adam and Kumari , 2009). Salivary cortisol exhibits a non-linear diurnal

pattern through the length of the day, so-called stress response (Figure 2.1). The

stress response not only varies between individuals, but also exhibits variability from

day to day within a given individual (Smyth et al., 1997). To capture said variabil-

ity, studies often collect salivary cortisol from multiple days on groups of individuals

(Adam et al., 2006; Cohen et al., 2006). However, because very little work exists on
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cortisol study design (Kraemer et al., 2006). the number of days and samples per

day, as well as the time of day when the samples are collected have been chosen in

an ad hoc manner.

We aim to develop an approach of optimal design for mutiple-level sampling of

the non-linear salivary cortisol profile, to maximize the precision of model-based fea-

tures of the population average stress response in community based studies. Salivary

cortisol is typically summarized into features (Adam and Kumari , 2009). Although

the features are commonly constructed from raw data (e.g. AUC constructed with a

trapezoidal rule given observed cortisol values and time points), we take a model-based

approach by modeling the cortisol profile using (non-linear) random effects models

(Laird and Ware, 1982; Lindstrom and Bates , 1990; Blozis and Cudeck , 1999). Our

approach incorporates the following design components: 1) Determine the sampling

schedule for each day; 2) Decide the number of samples per day and the number of

days for sampling; 3) Incorporate practical constraints such as the maximum number

of samples collected per participant; 4) Incorporate a wide range of plausible values

for the model parameters instead of a single point estimate; 5) Incorporate the imple-

mentation cost into the consideration of optimal design; and 6) Incorporate feasibility

constrains for large scale community-based studies (e.g. we restrict our attention to

designs where the sampling schedule is the same for every subject every day). We de-

velop this approach by extending and integrating optimal design theory and methods

from several areas.

Optimal design of repeated measurement studies has received the attention of

many researchers. The area of pharmacokinetic and pharmacodynamic modeling

(PK/PD) has seen many fruitful results (see Fedorov and Hackl (1997); Fedorov

(2010) for review). In particular, Retout et al. (2002) consider the optimal sam-

pling times for measuring the pharmocokinetics of a drug in a Phase III clinical

trial. The drug concentration is analyzed using nonlinear mixed effect models which
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Figure 2.1: LOWESS plot of log(Cortisol) showing 1) a steep climb right after waking
up that reaches the peak at approximately 30 minutes after waking up; 2) a fast
decline after reaching the peak; 3) a slower rate of decline for the rest of the day.

incorporate the between subject variability. Retout and Mentré (2003) generalize

the results of Retout et al. (2002) to incorporate inter-occasion variability (occasions

meaning different days of clinical visits), where inter-occasion variability is assumed

to be independent of the between subject variability. Anisimov et al. (2007); Fedorov

et al. (2010) use differential equations to model drug concentration profiles and in-

corporate within and between subject variability. The Bayesian perspective has also

been brought into the optimal design to address two critical issues: incorporate the

uncertainty associated with the parameters in the design stage and thus improve the

robustness of the optimal design (Chaloner , 1995), and provide a general framework

to streamline the development of adaptive sampling time of the next subject based

on the data from previously enrolled subjects (Stroud et al., 2001). More generally,

designs for repeated measures have also been considered (e.g. Roy et al. (2007);

Basagaña and Spiegelman (2010); Basagaña et al. (2010)). Specifically, Raudenbush

and Liu (2000) derived formulas to determine the optimal number of samples per day

and number of days for sampling under two-level linear mixed models.

From the computational point of view, two critical decisions in deriving the op-
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timal design are the choice of the criterion measuring efficiency of the design, and

the numerical algorithms used to solve the optimization problem. The D-optimality

criterion, i.e. the determinant of the information matrix, is a popular criterion (Atkin-

son et al., 2007) since it can be interpreted as the size of the confidence region of the

model parameters and it is very useful when the goal is to optimize the variance of the

model parameters. However, using the estimation variance of the summary statistics

of the profile and mean squared error as the criterion for sample size may also be

desirable (Dawson, 1998; Choi et al., 2007). Further, hybrid criteria that incorporate

the precision as gain and implementation cost as loss to form a utility function, which

balances the trade-off between efficiency and overall budget, have also been employed

(Fedorov et al., 2002; Tack and Vandebroek , 2004; Bacchetti et al., 2008). Neverthe-

less, most criteria rely on the evaluation of the information matrix, which can be

a computationally intensive task itself. Bazzoli et al. (2009) compare several linear

approximation and simulation based approaches for the evaluation of the information

matrix.

Optimization algorithms play a key role, not only from the view of the number

of criterion evaluations, but also from the point of view of convergence. Although

general optimization algorithms could be used, they often fail to take advantages of

the special properties of problem, such as the convexity of the criteria (Duffull et al.,

2002). Therefore, there is a demand for algorithms dedicated for the optimal design.

For studies that allow different subjects to have different sampling schedules, the

Federov-Wynn (FW) algorithm (Fedorov and Hackl , 1997; Retout et al., 2007) is an

appropriate choice since it automatically divides the subjects into an optimal number

of groups and provides the optimal sampling schedules for each group. Ogungbenro

et al. (2005) propose an exchange algorithm which, compared to the FW algorithm,

could potentially reduce computational burden by avoiding the enumeration of can-

didate schedules.
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Our approach for the cortisol design builds upon previous work, by integrating

prior results and extending approaches to our particular problem. We use condi-

tionally linear mixed models to model the cortisol profile. Instead of D-optimality,

we use the Bayesian average of the estimation variance of features of the cortisol

response as the criterion for identifying the optimal design (Section 2). We derive

a closed form solution for the estimation variance of the features, which partitions

variance into variance due to: the sampling schedule, the between-subject variability

and the between-day variability (Section 3). We extend the result of Raudenbush

and Liu (2000) to the case of nonlinear response profile and use it to decide on the

optimal choice for the number of samples per day and the number of the days for

sampling (Section 4). This straightforward formula for the estimation variance also

lead to other benefits, such as simplifying the computation of the Bayesian average of

the estimation variance. We identify the optimal design by inhomogeneous Markov

chain simulation (Muller et al., 2004), which progressively improves the precision of

the Bayesian average and converges the global optimum. We prefer this approach to

the FW algorithm because in our case every subject follows the same schedule and

because incorporating the Bayesian design within the FW algorithm would carry a

high computational burden. We apply these results to identify optimal design for the

populations similar to those in MESA Stress study and incorporate considerations of

cost of the multi-level approach (Section 5). We end the paper with a discussion of

our findings (Section 6).

2.2 Statistical Models for Salivary Cortisol

We discuss two commonly used parametric models for salivary cortisol and how

commonly used features of the curve can be written in terms of model parameters.

Because the models are special cases of nonlinear mixed models (Lindstrom and Bates ,

1990), we review this more general class of models first.
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2.2.1 Models for the Cortisol Profile

Suppose on day j = 1, . . . ,m, subject i = 1, . . . , n has d cortisol observations

yij = (yij1, yij2, . . . , yijd) taken at time points T = {tij1, tij2, . . . , tijd} after wake up,

then the underlying assumption is

yijk = f(tijk, θij) + εijk (2.1)

where f(t, θ) is the continuous response profile which depends on the subject and

day-specific parameters θij. We assume the error εijk for sample k = 1, . . . ,m on day

j follows MVN(0,Σε) distribution.

To incorporate subject and day variability into the model, we decompose θij into

three parts: the fixed population parameter θ, a random subject effect θi, and a

nested random day effect: θi(j)

θij = θ + θi + θi(j) (2.2)

We assume both random effect vectors follow multivariate normal distributions:

θi
iid∼ MVN(0,Σs) θi(j)|θi

iid∼ MVN(0,Σd) (2.3)

where the variability in the subject and day curves can be quantified indirectly

through the model variability parameters Σs and Σd respectively. We assume sub-

ject level effects θi are independent across subjects, and the day level effects θi(j) are

independent across days conditional on θi.

Two parametric models used to describe the salivary cortisol profile fit within the

nonlinear mixed effects model (2.1). Because the cortisol profile over the course of

the day can be approximately divided into three periods, a piecewise linear mixed
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model has been employed to describe the curve (Hajat et al., 2010):

f(t; θ) = θ0 + θ1t+ θ2(t− k1)+ + θ3(t− k2)+ (2.4)

where k1 and k2 are pre-specified knots, often set at 30 minutes and 2 hours, and

(x)+ = x when x > 0 and (x)+ = 0 if x ≤ 0. The piecewise linear mixed model is

straightforward to interpret. The intercept parameter θ0 represents the cortisol level

at wake up. The slopes for the three periods are θ1, θ1 + θ2, θ1 + θ2 + θ3, respec-

tively. Another model for cortisol profile is inspired by a simplified one-compartment

pharmacokinetic model (Stroud et al., 2004):

f(t; θ) = θ0 + θ1t+ θ2t exp(−θ3t) (2.5)

which depends on parameters describing the baseline cortisol level at wake up time

(θ0), a linear term for the average change over time (θ1), an amplitude parameter (θ2)

approximately describing the height of the morning rise, and a reactivity parameter

(θ3) that describes how fast the morning peak rises and declines and when it occurs.

2.2.2 Cortisol Features

Through a survey of the existing studies on salivary cortisol, we identified various

cortisol features of interest to stress researchers. These features are wake up level,

cortisol awakening response (CAR), evening decline, area under the cortisol curve

(AUC), and prediction at a certain time t. Table 2.1 provides the descriptions, for-

mulas, and references for each of the features found thorough our literature review.

Such features can be constructed as functions of model parameters. For instance, if we

denote the area under the curve by G, then, G can be written as G(θ) =
�
f(t, θ)dt;

the average slope between t1 and t2 is G(θ) = 1
t2−t1 (f(t2, θ) − f(t1, θ)). For a study

with the aim of accurately measuring G, the objective of the optimal design will nat-
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Features Descriptions Formula References

Baseline
salivary cortisol level at
wake up

f(0, θ)
Kumari et al.
(2009)

CAR
Difference between the
peak (often at 0.5h) and
the baseline

f(0.5, θ)− f(0, θ)
Pruessner et al.
(1997)

Evening Decline

The average slope in
the evening period (10h-
16h)

1
16−10(f(16, θ)− f(10, θ)) Adam (2006)

AUC
The area under the cor-
tisol curve in the period
between 0h and 16h

� 16
0 f(t, θ)dt

Badrick et al.
(2007)

Prediction
Prediction of the corti-
sol level at time t

f(t, θ)
Powell et al.
(2002)

Table 2.1: Cortisol Features

urally be minimizing V ar(Ĝ), the variance of the estimated feature. Next we derive

the asymptotic variances of θ̂, and subsequently derive V ar(Ĝ).

2.3 Asymptotic Variances

The estimation of model (2.1), based on maximum likelihood estimation (MLE),

has been established (e.g. Lindstrom and Bates (1990)) and can be conducted con-

veniently with widely available software, such as R and SAS. Here we focus on the

variance of model parameters and the features of the curve.

2.3.1 Variance of the MLE

Denote the MLE estimate of the population parameter θ by θ̂. Then we can eval-

uate the precision of estimation by considering V ar(θ̂), which is asymptotically the

inverse of the information matrix I(θ). Unfortunately, there is no closed form solu-

tion for I(θ) for general nonlinear function f(t, θ). Nevertheless, by Taylor expansion,
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Retout and Mentré (2003) proposed a approximation of I(θ):

I(θ) = X̃(T, θ)′D−1(T, θ)X̃(T, θ) + A(T, θ) (2.6)

To fully appreciate (2.6), we need to introduce some notation as follows. Let X(t, θ) =

df(t, θ)/dθ be the gradient of f(t, θ), then form a design matrix X(T, θ) = (X(t1, θ),

. . . , X(td, θ))
′ by evaluating the gradient at each time point in a given day. De-

fine X̃(T, θ) = (X(T, θ)′, . . . , X(T, θ)′)′ to be m stacked copies X(T, θ) (m days),

let X̄(T, θ) be a block diagonal matrix with m copies of X(T, θ) on the diagonal,

and finally Σ =



Σs + Σd Σs · · · Σs

Σs Σs + Σd . . .
...

...
. . . . . . Σs

Σs · · · Σs Σs + Σd


. Under such notation, we have

D(T, θ) = X̄(T, θ)ΣX̄(T, θ)′ + σ2I and A(T, θ) = −1
2
(∂vec(D)

∂θt
)t ∂vec(D

−1)
∂θt

. The formula

for I(θ) is relatively complex to understand and evaluate. As a result, we consider

some special cases of f(t, θ) that makes the evaluation of I(θ) more accessible.

The simplest case is when f(t, θ) is linear in θ, i.e., we can write f(t, θ) as f(t, θ) =

X(t)θ. In this case, D(T, θ) will not depend on θ and consequently A(T, θ) = 0.

Therefore, I(θ) reduces to X̃(T )′D−1(T )X̃(T ) for linear models.

In spite of the simplicity of the information matrix under the linear assumption,

practical data analysis may demand more sophisticated models, as in the case of

cortisol. The conditionally linear mixed model (Blozis and Cudeck , 1999) is one class

of models that meet such demand yet is still mathematically tractable. Under CLMM,

θ is partitioned into two parts: θ = (η, φ) where η is the linear parameter and φ is

the nonlinear parameter, and it is assumed that the between subject and between

day variability only affect the linear parameter η. With such assumptions, we can

write f(t, θij) = H(t, φ)ηij and the gradient becomes X(t, θ) = (H(t, φ), ∂H(t,φ)
∂φ

). By

incorporating the fixed nonlinear parameter φ, CLMM is able to accommodate a wider
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array of biological models than the linear model. At the same time, it is still relative

easy to work with. In particular, we can show that approximation formula (2.6) is

the exact closed form solution for the information matrix under CLMM (Appendix

A). In this way, when we employ CLMM for characterize our data, we are protected

against any potential biased associated with the Taylor expansion approximation.

For CLMM, we will show in Appendix B that the ijth element of the matrix

A(T, θ) can be simplified as Aij = 1
2
tr( ∂Q

∂θi
Q−1 ∂Q

∂θj
Q−1 + (m− 1) ∂P

∂θi
P−1 ∂P

∂θj
P−1) where

P = X(T, θ)ΣdX(T, θ)′+σ2 and Q = P +X(T, θ)ΣsX(T, θ)′. In this case, a sufficient

condition for A(T, θ) = 0 is ∂Q
∂θi

= 0 and ∂P
∂θi

= 0 for all i. Because model (2.5) fits into

the framework of CLMM with η = (θ0, θ1, θ2), φ = θ3 , H(t, φ) = (1, t, t · exp(−φt))

and the parameter estimates from Table 2.2 satisfy the conditions for A(T, θ) = 0,

we have I(θ) = X̃(T, θ)′D−1(T, θ)X̃(T, θ) for the nonlinear model (2.5) for salivary

cortisol.

2.3.2 Variance of Features

Suppose a study is conducted to measure a feature G derived from the profile

f(t, θ). We assume this quantity G can be written as the function of the parameter

θ, i.e. G = G(θ), as described in Section 2.2.2 and Table 1. For a study with the

aim of accurately measuring G, the objective of the optimal design will naturally be

minimizing the variance of the estimated feature, V ar(Ĝ). By the Delta method, we

can relate V ar(Ĝ) with V ar(θ̂) by

V ar(Ĝ) = ∇G′ · V ar(θ̂) · ∇G = ∇G′ · 1

n
I(θ)−1 · ∇G (2.7)

where ∇G denotes dG/dθ, the gradient of G. In the optimal design literature, designs

minimizing (2.7) are called c-optimal designs (Atkinson et al., 2007).

Because (2.7) involves variance components at multiple levels, it is critical to
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have a panoramic understanding of how the variance structure ultimately impacts

the variance of the features. In this manner, we can answer many design questions

that naturally arise in practice. For example, whether sampling more days for each

individual is worth the extra cost, whether the variance components have a substantial

impact on the choice of the daily sampling schedules, among others. To address these

questions, we study the mathematical properties of (2.7) by examining a simple closed

from solution for I−1(θ). When A(T, θ) = 0 and I(θ) = X̃(T, θ)′D−1(T, θ)X̃(T, θ), it

can be shown (Roy et al., 2007) that

I(θ)−1 = Σs +
1

m
(Σd + σ2(X ′(T, θ)X(T, θ))−1) (2.8)

In Appendix C, we provide a proof for (2.8) which can be extended to an arbitrary

number of levels of variabilities. Equation (2.8) is useful in that the between subject

variability Σs, the between day variability Σd and the design matrix X(T ) are com-

pletely separated from each other. Therefore, we can write the variance of estimated

feature Ĝ (2.7) as

V ar(Ĝ(n,m, d, T )) =
1

n
∇G′Σs∇G+

1

n ·m
∇G′Σd∇G+

σ2

n ·m
∇G′(X ′(T, θ)X(T, θ))−1∇G

(2.9)

That is, the estimation variance of Ĝ can be decomposed into three components,

each of them is associated with a clear interpretation: ∇G′Σs∇G and ∇G′Σd∇G

are the between subject variability and the between day variability for feature G;

σ2∇G′(X ′(T, θ)X(T, θ))−1∇G is the estimation variance attributed to the schedule

T alone. By (2.9), it is clear that the estimation variance is inflated by the between

subject variability and between day variability, each with scale 1
n

and 1
nm

, respectively.
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2.4 The Optimal Design in a Longitudinal Study with Re-

peated Measures

The design for a longitudinal study with repeated measures consists of four com-

ponents: (n,m, d, T ) where n is the total number of subjects; m is the number of days

of data collection; and d samples per day are collected according to sampling schedule

T = (t1, . . . , td). We denote by θ̂(n,m, d, T ) the maximum likelihood estimate of θ for

a design (n,m, d, T ). The asymptotic variance of θ̂(n,m, d, T ) is 1
n
I(θ)−1, with I(θ)

given in (2.6). The structure of the variance decomposition for the feature θ̂, (2.9),

allows us to derive several important results regarding the optimal design (n,m, d, T ),

as more fully described in what follows.

2.4.1 The Daily Sampling Schedule

Since V ar(Ĝ) depends on sampling schedule T only through the term

∇G′(X ′(T, θ)X(T, θ))−1∇G, the optimal schedule T for minimizing V ar(Ĝ) can be

obtained by minimizing ∇G′(X ′(T, θ)X(T, θ))−1∇G, without any knowledge of the

between subject or within subject variance components Σs, Σd, σ2, or the number

of days m. This result is relevant in two ways. Firstly, a reliable estimate for Σs or

Σd is typically not available in the design stage, especially for those designs relying

on small-scale pilot studies. Thanks to this result, the design practitioners can be

sure that optimal schedules T are robust against any inaccuracy or misspecification

of the variance components Σs or Σd. Secondly, this result allows us to implement

a sequential greedy algorithm for identifying the optimal design: for a given number

of samples per day d, we can first identify the optimal time points T , then find the

optimal number of days m given T , and finally the optimal number of subjects n.

This strategy reduces the computation complexity since we do not need to search the

whole design space (n,m, d, T ).
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It is easy to see that the above result still applies when we want to minimize

the weighted average of the variance of several quantities, i.e.
∑
wkV ar(Ĝk). One

application of this extension is that we can identify the optimal schedules that will

minimize the prediction errors over a series of predefined time point {tk}Kk=1 by mini-

mizing
∑K

k=1X(tk)(X
′(T )X(T ))−1X(tk), which again does not depend on Σs, Σd, σ2

or m.

2.4.2 The Number of Sampling Days and Subjects

In the ideal situation, one can enroll as many subjects and instruct them to col-

lect samples as many days as possible. In reality, ethical and budgetary constraints

prevent excessive sampling. Thus it becomes imperative to determine the optimal

number of days for sampling and the number of subjects to enroll within such con-

straints. There are two types of constraints that we consider important and their

impacts on the optimal design are discussed as follows.

We first consider the situation where the total number of samples are capped. In

this case, we compare the efficiency of two competing study designs E1 = (αn,m, d, T )

and E2 = (n, αm, d, T ) where α > 1. These two designs share the same total number

of samples αnmd, but E1 = (αn,m, d, T ) enrolls more subjects with fewer samples

per day whereas E2 = (n, αm, d, T ) collects more days of data from fewer subjects.

Then we can show that the variance of the features will always be lower under design

E1 compared to E2:

V ar(Ĝ(αn,m, T )) ≤ V ar(Ĝ(n, αm, T )) (2.10)

The equality holds only when ∇G′Σs∇G = 0 (An example satisfying this condition

is G = φ in CLMM). The inequality suggests that when between subject variability

is not zero, enrolling more independent subjects to the study is a more effective way
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to improve precision than expanding the number days by the same proportion.

In other situations, the budget, instead of the total number of samples, becomes

the major constraint for conducting the study. This could happen when the cost to

enroll a subject is much higher than the cost of keeping the subject in the study. In this

situation, designs with more independent subjects and fewer days might not be cost

effective, even if they are statistically more efficient. Therefore, it becomes necessary

to determine the optimal design within a fixed budget. We can conceptualize the

overall cost for a design (n,m, d, T ) as c1n + c2nm + c3nmd, where c1 is the cost for

the initial enrollment for one subject; the c2 is the daily cost for each subject to stay

in the study; c3 is the cost to collect or to analyze each sample. Then for a fixed

budget, the optimal number of days of sampling is

m0 =
c1∇G′(Σd + σ2(X ′(T, θ)X(T, θ))−1)∇G

(c2 + dc3)∇G′Σs∇G
(2.11)

This formula is similar to the results in Raudenbush and Liu (2000), which deals

with the similar problem under the linear model assumption. Given the choice of m0,

the optimal number of subjects is n0 = C
c1+m0c2+m0dc3

. Unlike the optimal sampling

schedule T , the number of days m0 and the number of subjects n0 depends not only

on θ but also on Σs and Σd. As a result, we consider the robustness of optimal design

carefully, which is the focus of the next section.

2.4.3 Robust Design Using Bayesian Approach

From the above derivation, we can see the optimal design (n,m, d, T ) as a whole is

dependent on the parameter estimate (θ,Σs,Σd, σ). So we reach a paradox: We design

a study to estimate parameters, but the optimal study design depends on the true

values of parameters in question. In order to address this issue, we need to identify

a design that is optimal for a wide array of values within the scientifically plausible
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parameter space. An optimal design with such property is referred to as robust de-

sign (Atkinson et al., 2007). In the study design literature, minimax and Bayesian

are two most widely used approaches to identify robust designs. The objective of the

minimax approach is to find the design that minimizes the maximum loss quantified

by estimation variance, i.e. max(θ,Σs,Σd,σ2) V ar(Ĝ(n,m, d, T )). For the Bayesian ap-

proach, a prior distribution p(θ,Σs,Σd, σ2) for (θ,Σs,Σd, σ2) is assumed, and then

the design that minimizes expected variance
�
V ar(Ĝ(n,m, d, T ))dp(θ,Σs,Σd, σ2) is

found. Atkinson et al. (2007) suggests that the minimax approach might be less

desirable because the maximum often occurs on the boundary of the plausible pa-

rameter space. So it could lead to a potential loss of efficiency since too much focus

is placed on boundary parameters. We opt for the Bayesian approach to incorporate

the knowledge regarding model parameters estimated from MESA Stress.

Assuming the variability parameters (Σs,Σd, σ2) are independent of the mean

parameter θ in the prior distribution, i.e., p(θ,Σs,Σd, σ2) = p(θ)p(Σs,Σd, σ2), the

Bayesian average is

�
V ar(Ĝ)dp(θ,Σs,Σd, σ2) = tr

{
K(θ)

(
E(Σs)

n
+
E(Σd)

n ·m

)}
+
E(σ2)

n ·m
E
{
∇G′(θ)(X ′(T, θ)X(T, θ))−1∇G(θ)

}
where K(θ) = E(∇G(θ)∇G(θ)′). This formula is very similar to (2.9). Therefore,

in the Bayesian design, we can still employ a greedy search for the optimal sampling

schedule T by minimizing E(X ′(T, θ)X(T, θ))−1, independent of the variability pa-

rameters (Σs,Σd, σ2); and find the best number of days to collect samples using a

formula similar to (2.11) with Σs, Σd and ∇G′(θ)(X ′(T, θ)X(T, θ))−1∇G(θ) replaced

by their expectations. Further, since (Σs,Σd, σ2) affect
�
V ar(Ĝ)dp(θ,Σs,Σd, σ2) only

through their prior expectation, no full distribution function for (Σs,Σd, σ2) is actually

needed to carry out a Bayesian design. This substantially reduces the computational
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burden for the Bayesian design.

2.4.4 Computation of the Bayesian Design

The most practical computational algorithm for the Bayesian design depends on

the model being used (e.g., (2.4) vs (2.5)). For the piecewise linear model (2.4), ∇G

and X(t) are not functions of θ. So the Bayesian design is the same as a naive de-

sign ignoring possible misspecification of θ. In this case, we identify T by minimizing

∇G′(X ′(T )X(T ))−1∇G as is prescribed in Section 2.4.1. Since the set of the candidate

schedules is finite, the most straightforward way to solve the optimization problem

is to enumerate all candidate schedules and find the minimum. This approach will

guarantee a global minimum is found. Alternatively, we can use more sophisticated

algorithms, such as Federal-Wynn algorithm (Retout et al., 2007) and exchange algo-

rithm Ogungbenro et al. (2005). We defer the comparison of these approaches in the

discussion section.

For the nonlinear model (2.5), ∇G and X(t, θ) are functions of θ. In this case,

we need to minimize E(∇G′(θ)X ′(θ, T )X(θ, T ))−1∇Gθ)). The expectation is taken

over the prior distribution of θ, which is multivariate normal with the mean and vari-

ance parameters estimated from prior data (eg, the MESA Stress data set Table 2.2).

Since there is no closed form solution for the expectation, we employ Monte Carlo

methods to evaluate E(∇G′(θ)X ′(θ, T )X(θ, T ))−1∇Gθ)). Monte Carlo sampling is

typically computationally intensive. So the methods used for the linear model (2.4),

such as enumeration and the exchange algorithm, are no longer applicable. Instead,

we employ the inhomogeneous Markov chain simulation (Muller et al., 2004) as a

more efficient approach to solve the optimization problem. This simulation approach

performs random walk over the space of candidate schedules in order to locate the op-

timal schedule. Compared to enumeration or the exchange algorithm, it can improve

computation efficiency because it will gradually increase of the precision of evaluat-
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ing the expectation and does not waste time to compute the expectation for those

schedules unlikely to be optimal.

2.5 Design of Salivary Cortisol Studies

In this section, we derive the optimal design for the salivary cortisol studies by

using the results discussed in Sections 2.3 - 2.4. We will use the MESA Stress study

as an illustrating example.

2.5.1 Preliminary Parameter Estimates: MESA Stress Study

MESA is a population-based, multi-site, large scale epidemiological study which

focuses on identifying predictors of subclinical cardiovascular disease (CVD) (Bild

et al., 2002). MESA Stress is an ancillary study to MESA, which examines the role

of stress as a contributor to a range of precursors of cardiovascular disease. A key

component of the study is the inclusion of repeated measures of salivary cortisol each

day over multiple days in order to characterize daily profiles of the salivary cortisol

as well as within-individual variability in the stress response.

Approximately 1000 participants, free of clinical CVD, collected salivary cortisol

samples using cotton swabs over three weekdays at six pre-specified times as follows:

wake-up time, 30 minutes after wake up, 10 am, before lunch, 6 pm, and before bed.

Each participant recorded the time of data collection on a daily card, but a track-cap

device (a container with a cap that registers the time at which it is opened) was

used to monitor the times at which the data were actually collected. We use data

from 850 participants for whom the self reported and track-cap time differed by less

than 15 minutes, and at least 15 samples over the course of three days were collected.

We restricted the sample in this manner to avoid any possible bias in estimating

parameters needed for study design (e.g. variance components). The final analytical

sample consisted of 47.8% males and 52.0% were 65 years or older. Table 2.2 gives
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Piecewise Linear Nonlinear
Mixed Model* Mixed Model*

Parameter S.E Parameter S.E
Mean

θ0 2.328 0.0331 2.266 0.0252
θ1 1.026 0.0553 −0.116 0.00273
θ2 −1.587 0.0651 3.138 0.3582
θ3 0.449 0.0245
φ 1.951 0.1834
σ2 0.5002 0.5352

Between Subject
Variance**

V ar(θ0) 0.4702 0.3472

V ar(θ1) 0.2542 0.0362

V ar(θ2)
V ar(θ3) 0.2733

Between Day
Variance**

V ar(θ0) 0.0812 0.0232

V ar(θ1) 0.0222

V ar(θ2)
V ar(θ3) 0.0282

*Model parameters are not comparable across models.
**Covariance are not shown in the table. If the variance is estimated to be zero, it
will be indicated by blanks.

Table 2.2: Parameter Estimates from MESA Stress

parameter estimates for the piecewise linear model (2.4) and the nonlinear model

(2.5). The parameter estimates are consistent with the profile depicted in Figure

2.1 and the results from Hajat et al. (2010). Since the choice of number of days

and samples per day depends on the variance parameters, note that the between day

variance is less than 37% of the between subject variance across all parameters. For

example, the between subject variance for the intercept in the piecewise linear mixed

model is 0.472 and between day variance is 0.0812.
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2.5.2 Optimal designs for salivary cortisol features

We consider designs for cortisol features that can be written in terms of θ as

summarized in Table 2.1, and, in addition, we also consider two weighted compound

objectives (Section 2.4.1). One of them is the average prediction errors over time

points 0h, 0.5h, 1h,1.5h, 2h, 3h, 4h, 5h, 16h. The set of time points forms a dense

grid near the beginning of the day where the salivary cortisol is expected to change

dramatically. Since the prediction errors over these time points are directly compa-

rable to each other, we set all the weights to 1. The other compound objective is

the weighted sum of the variance for measuring baseline, CAR, evening decline and

AUC. Because the variances for measuring these cortisol features differ dramatically

in terms of magnitude, an appropriate weighting scheme is required to ensure no one

feature over powers the rest. We choose the weights (0.01, 0.004, 0.986, 0.0001),

which are the normalized versions of the reciprocal of the optimized values for the

objective function for each feature G, i.e., 1
∇G′(X′(T,θ)X(T,θ))−1∇G .

With the cortisol features and underlying model clearly defined, we set out to

identify the optimal design for measuring these cortisol features. Since not all design

are applicable in a large-scale population epidemiology study, we restrict our attention

to a subset of candidate designs (n,m, d, T ) that meet certain requirements. Because

the linear model and the nonlinear model both contain 4 mean parameters, we need

to collect at least 4 samples per day to ensure the information matrix is not singular.

At the same time, we cap the total number of samples per day at 7 so as to avoid

unnecessary burden on the participants. Hence the possible number of samples per

day is d = 4, 5, 6, 7. Further, we require the sampling times in the schedule T be

chosen from 1
2

hour intervals from wake-up time: 0h, 0.5h, ..., 16h. In this way the

participants may be more likely to follow the sampling protocol. We will consider

m = 1, 2, 3, 4, 5 days of sampling for each subject. Finally, the total number of

subjects n will be determined by the study budget after m, d, and T are chosen. For
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exposition, we focus on the design based on nonlinear model (2.5). The design based

the piecewise linear model (2.4) shares many similarities and is presented in Appendix

D.

We first determine the sampling schedule T using the algorithms described in

Section 2.4.4. The optimal schedules for each cortisol features are shown in left

column of Figure 2.2. For the number of samples per day d ranging from 4 to 7, the

sampling times are represented by circles over the time line. The sampling schedules

aiming to capture different cortisol features are different, although some patterns

across features are apparent. For example, regardless the features in question, the

time points 0, 0.5, 16 are almost always included in the optimal schedules. The three

time points are important because cortisol levels at these time points largely define

the overall shape of cortisol profile throughout the day: The profile begins a rapid

climb from baseline t = 0 and reaches the peak at t = 0.5 and gradually decline

until the bedtime t = 16. Once these key time points are included, additional time

points are assigned to locations that boost the efficiency of estimating the features

under investigation. An exception to this rule is that not all schedules for the evening

decline require wake-up or 0.5h samples.

The variance for estimating the features under different optimal schedules are

listed in the middle column of Figure 2.2. The variances are computed for a hypo-

thetical study with one participant collecting samples for one to five days. To get

the variance for a study with n independent participants, we only need to divide the

variance values by n. In general, the variance decreases as we expand the days of

sampling. However, the reduction in variance differs significantly from feature to fea-

ture. For example, using the 6-sample-per-day schedule under the nonlinear model,

the variance to measure baseline, evening decline and AUC is reduced by 13%, 14%

and 6.3% if we collect samples over 3 days instead of 2. On the other hand, the vari-

ance to measure CAR is reduced substantially by 33%. This disparity in efficiency
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gain illustrates the results in Section 2.4.2. By definition, CAR is the difference of

the cortisol level between 0.5h and 0h. Since the time points are so close to each

other, the majority of the subject level deviation is canceled out when we take the

difference. As a result, the between subject variability for CAR (∇G′Σs∇G =3.3e-4)

is close to zero. Then, by (2.10), expanding the days of sampling is almost as good as

enrolling more independent subject into the study in terms of increasing efficiency for

CAR. For other cortisol features, however, the between subject variability ∇G′Σs∇G

are relatively high compared to between subject variability ∇G′Σd∇G or the esti-

mation errors σ2∇G′(X ′X)−1∇G. As a result, increasing the days for sampling does

not increase the effective sample size in the same proportion. In summary, the ef-

ficiency gain by expanding the number of days will vary depend on features under

investigation and should be analyzed on a case-by-case basis.
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1 Day 1 Day2 Day 2 Day3 Day 3 Day4 Day 4 Day5 Day 5 Day

0.402 0.6670.261 0.540.214 0.5310.191 0.5510.177 0.583

0.31 0.5270.215 0.4620.183 0.4770.168 0.5120.158 0.554

0.268 0.4670.194 0.4320.169 0.4590.158 0.5080.150 0.556

0.246 0.4380.184 0.4240.162 0.460.152 0.5130.146 0.568

(a) Baseline
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Variance 10^−3 Cost Adjusted Variance 10^−5

d

4

5

6

7

1 Day 1 Day2 Day 2 Day3 Day 3 Day4 Day 4 Day5 Day 5 Day

4 6.642.66 5.512.22 5.51.99 5.761.86 6.14

3.5 5.952.41 5.192.05 5.331.87 5.71.76 6.16

3.23 5.622.28 5.081.96 5.331.80 5.791.71 6.32

3.05 5.422.19 5.061.9 5.391.76 5.921.67 6.51

(b) Evening Decline

● ● ● ●

● ● ● ● ●
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4

5

6
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1 Day 1 Day2 Day 2 Day3 Day 3 Day4 Day 4 Day5 Day 5 Day

82.7 1.3767.6 1.462.6 1.5560.1 1.7458.6 1.93

76.6 1.3064.6 1.3960.6 1.5858.6 1.7957.3 2.01

73.5 1.2863.1 1.4159.5 1.6257.8 1.8656.7 2.1

71.4 1.2762 1.4358.8 1.6757.2 1.9356.3 2.20

(c) AUC

Figure 2.2: Optimal Design under the Nonlinear Model

40



● ● ● ●

● ● ● ● ●

● ● ● ● ● ●

● ● ● ● ● ● ●

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Schedules

Variance Cost Adjusted Variance 10^−2

d

4

5

6

7

1 Day 1 Day2 Day 2 Day3 Day 3 Day4 Day 4 Day5 Day 5 Day

0.562 0.9330.281 0.5820.188 0.4650.141 0.4070.113 0.372

0.427 0.7260.215 0.4620.142 0.3680.106 0.3230.0853 0.299

0.373 0.6480.185 0.4120.122 0.3330.0914 0.2940.0745 0.276

0.335 0.5960.172 0.3980.112 0.3180.0854 0.2880.0683 0.267

(d) CAR

● ● ● ●

● ● ● ● ●

● ● ● ● ● ●

● ● ● ● ● ● ●

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Schedules

Variance 10^−3 Cost Adjusted Variance 10^−5

d

4

5

6

7

1 Day 1 Day2 Day 2 Day3 Day 3 Day4 Day 4 Day5 Day 5 Day

3.94 6.542.62 5.422.18 5.41.96 5.661.83 6.03

3.45 5.872.38 5.112.02 5.251.84 5.611.73 6.06

3.18 5.542.24 51.93 5.241.77 5.691.68 6.21

3.01 5.352.15 4.971.87 5.31.73 5.821.64 6.4

(e) Sum of Variances of Cortisol Features

● ● ● ●

● ● ● ● ●

● ● ● ● ● ●

● ● ● ● ● ● ●

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Schedules

Variance Cost Adjusted Variance 10^−2

d

4

5

6

7

1 Day 1 Day2 Day 2 Day3 Day 3 Day4 Day 4 Day5 Day 5 Day

3.72 6.182.60 5.392.23 5.542.05 5.931.94 6.41

3.4 5.782.44 5.242.12 5.521.97 6.011.87 6.56

3.10 5.42.30 5.142.03 5.531.90 6.111.82 6.73

2.95 5.252.22 5.141.98 5.631.86 6.271.79 6.98

(f) Prediction

Figure 2.2: Optimal Design under the Nonlinear Model (Continued)
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2.5.3 Cost Considerations

We also consider the cost factor in order to determine the optimal number of days

for sampling. Our goal is to find the design (n,m, d, T ) that minimizes the estimation

variance for a fixed budget. We obtain the itemized cost structure of MESA Stress

study as follows: initial enrollment (including the Trackcap Device) c1 = $125, daily

compensation c2 = $25 , cost per assay sample c3 = $4. So the cost per subject

is 125 + 25m + 4md and a total of n = C
125+25m+4md

subjects can be enrolled if the

overall budget of the study is C. By substituting the numbers of (n,m, d, T ) into the

variance formula for Ĝ, we can compute the cost-adjusted variance, i.e. the overall

estimation variance when the total budget is fixed at C. While the optimal choice of

(m, d, T ) is the same regardless of the budget C, we set C to be $10000 for purpose

of exposition. The cost adjusted variances for different choice of (m, d, T ) are shown

in the right column of Figure 2.2. The cost-adjusted variance highlighted in bold is

the smallest for the feature of interest and it corresponds to the optimal choice of

(m, d, T ). After adjusting for the cost, baseline, evening decline and AUC can be

more accurately measured if we sample subjects for just one or two days and use the

resources to enroll more subjects. On the other hand, the opposite strategy should

be used if the objective is to measure CAR.

In applying the results from Section 4 to MESA Stress study, we have provided rec-

ommendations for the optimal design for measuring salivary cortisol profiles given the

mean parameters, variability parameters and the costs. Of course, the assumptions

on the parameters reflects the characteristics of the population targeted by MESA

Stress. For example, a substantial proportion of the participants in MESA Stress

are senior citizens. In this population, the between day variability of many cortisol

features is tiny. If the study targets a different population, the model parameters may

be different and the optimal design might change accordingly. The same argument

also applies to the itemized cost structure since different studies are likely to employ
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different field techniques to enroll subjects and collect samples. In this context, we

find it beneficiary to investigate the optimal design beyond the assumption of MESA

Stress on the population and cost structures.

Next we will focus on the optimal number of days. By (2.9), the optimal num-

ber of days depends on the Initial : Daily cost ratio as well as the Between-Day :

Between-Subject variability ratio. These two ratios are the y-axis and x-axis in Figure

2.3. Each point in the figures represents a particular study setting with corresponding

cost ratio and variability ratios. In particular, the dot in each figure indicates the

cost ratio and variability ratio for the cortisol features in MESA Stress. The curves

divide the spaces into several regions in which a particular number of days of sam-

pling is preferred: long dashes, − −−, separate the region 1 day and region 2 days;

short dashes, - - -, separate 2 days vs. 3 days; and the dotted line distinguishes 3

days vs. 4 days. These figures are a convenient tool for the investigators to analyze

the sensitivity of the optimal design for various population characteristics and cost

structures. For example, in the figure for AUC under nonlinear model, the dot corre-

sponding to MESA Stress is far away from the boundary of the one-day region where

the dot resides. So even if there is slight changes to the population characteristics or

cost structures in MESA Stress, we are still assured that the one-day design is more

efficient than other designs.

2.6 Discussion

The scientific questions that investigators seek to address with longitudinal data

are becoming increasingly complex. One example is understanding the nonlinear bio-

logical stress response as measured by salivary cortisol. While a longitudinal perspec-

tive to quantify the dynamic profile helps us better understand the complex biological

process, it also posts many challenges from the viewpoint of study design.

In the case of salivary cortisol, we considered sampling not only individuals, but
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(f) Prediction

Figure 2.3: Cost Ratio vs. Variability Ratio (Nonlinear Model)
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also days within individuals, and times within days, with the objective of minimiz-

ing estimation variance of profile features. We analyzed the impacts of the multi

level variabilities on the study design by deriving a simplified version of the variance

formula. Such formula is surprisingly neat in that the terms involving the between

subject variability, between day variability, and the daily sampling schedules are com-

pletely separated from each other. Hence, we derived several useful properties: 1) the

optimal daily sampling schedule depends only on the shape of the response profile; 2)

we obtained the optimal number of days for sampling under different cost structures

for the study; 3) we showed that the optimal Bayesian design is only affected by the

expectation of the variability parameters, but not their full prior distribution. These

properties are useful in practice since they substantially reduce the computation bur-

den of Bayesian designs.

We utilized a piecewise linear model (2.4) and nonlinear model (2.5) in our discus-

sion. Both models have been used in the cortisol literature and naturally they have

some advantages and disadvantages. The nonlinear model (2.5) provides smooth pre-

diction curves for the cortisol profile throughout the day, and since it is derived from

pharmocokinetics, its parameters have a meaningful biological interpretation. On the

other hand, the piecewise linear mixed model is much simpler and the corresponding

fitting algorithm is faster and more stable numerically. Furthermore, the variance

estimates in the piecewise linear model do not depend on the population parameter

θ, which is considered to be an advantage for study design since we typically do not

know the exact values of θ in the planning stage (see Appendix D).

We note that the proposed designs require very few samples to be taken between

6 hr and 16 hr (bedtime) since wake up. This is due to the fact that both models

reduce to a straight line in this period. In this case, the proposed sampling protocols

are highly efficient since they do not waste any valuable sampling points in the region

which has very little impact on determining the slope of a straight line. On the other
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hand, it maybe unwise to totally ignore the possibility that the cortisol profile in this

period calls for a more sophisticated model than a decline at constant rate. Current

studies have not collected many samples at the later part of the day, hence this region

of the salivary cortisol profile is less understood. Thus including one or two sampling

points between 6 hr since wake up and bedtime would increase the robustness of the

design.

We assume that cortisol sampling is carried out at the exact times prescribed in

the protocol. In many practical applications, the participants might find it difficult

to follow sampling instructions exactly, causing some deviations from the prescribed

sampling times. Usually the deviations will not affect the optimality of the sampling

protocol as long as the deviations are small. Furthermore, Vrijens and Goetghebeur

(1999) suggest that some deviations will help us gain a more complete and detailed

picture of the cortisol profiles and potentially improve the estimation of the population

parameters.

We also made assumptions regarding the cortisol model. First, in order to derive

schedules, we assumed measurement errors in cortisol to follow an iid normal distribu-

tion. Residual analysis of MESA Stress data shows no strong indication of deviations

from normality or autocorrelations. Nevertheless we can relax this assumption to

accommodate multivariate normal distribution with correlated covariance structure,

such as first order autoregression. We also assumed there are no random effects as-

sociated with the nonlinear parameters. The fitted model from the MESA Stress

data indicates that the variability of the nonlinear parameter is virtually zero. As

a result we do not consider random effects for the nonlinear parameter φ. Doing so

greatly simplifies the variance calculations, particularly in the case where we need

to model two levels of randomness, i.e. between subject and between day. On the

other hand, if the variability of φ is not negligible, a potential approach is to linearize

the nonlinear term containing φ by first order linearization. The appropriateness of
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the linearization is discussed in Bazzoli et al. (2009). Another possibility is to derive

variance formulas using numerical derivatives. This would increase the computational

expense to find the optimal sampling design.

There exist several methods for minimizing the variance contribution due to a

given schedule, ∇G′(X ′(T, θ)X(T, θ))−1∇G, such as the Fedorov-Wynn algorithm

(Retout et al., 2007) and the Modified Fedorov Exchange Algorithm (MFEA) (Ogung-

benro et al., 2005). The F-W algorithm divides the population into several groups

and provides optimal schedules T for each group. This approach is appealing because

a multi group approach may increase the efficiency. For large scales population stud-

ies, however, salivary cortisol is among a wide array of biological responses collected

and randomization of the schedules could substantially increase the administrative

cost. We also tested MFEA in our application of cortisol study design. Since it is a

deterministic procedure, we found MFEA to be sensitive to the initial guess of the

optimal design and often got stuck in local optimums. Considering these potential

issues, we use enumeration for the linear model since it guarantee to obtain the global

optimum and the computation is tolerable. We employ inhomogeneous Markov chain

simulation for the Bayesian design of the nonlinear model because it is efficient and

the inherent randomness allows us to jump out of local optimum.

We can further extend these results in several directions. Throughout this paper,

we used parametric models in describing the cortisol profile. Future work can involve

non-parametric models which place less restriction on the data than the paramet-

ric models. Another extension is to consider the sampling protocols for detecting

differences between groups. For example, cortisol profiles may differ by age, gender

and ethnic groups. From the statistical point of view, the same method for selecting

the efficient sampling protocol can be applied to all groups since optimal sampling

protocols are typically robust to small changes in parameters. On the other hand,

if the differences in the cortisol profiles are big, new methods might be needed to
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simultaneously select schedules for each group, as well as optimizing other criteria

like power or sample size.

In summary, our understanding of the structures of the optimal design for fea-

tures of nonlinear response profiles can be enhanced if we are able to obtain a simple

closed form solution for their variances. Decomposing variance formulas into be-

tween/within subject variability estimation error can help identify the optimal design

more efficiently as well as simplify the Bayesian computation.
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CHAPTER III

A Semi-parametric Approach to Select Optimal

Sampling Schedules for Measuring the Mean

Profile and Variability in Longitudinal Studies

3.1 Introduction

Longitudinal studies with repeated measures are widely employed in medical and

epidemiological settings and provide the unique opportunity to investigate an out-

come’s mean profile and its variability over time. These studies deepen our under-

standing of the outcome and enhance our ability to identify predictors of change.

However, longitudinal studies have to be carefully designed to achieve their potential.

Longitudinal study design is generally complex, requiring the number of subjects

and samples per subject and the spacing between measurements (i.e., the sampling

schedules), while meeting budgetary and logistical constraints. In one of our mo-

tivating examples, investigators want to identify the best timing to collect stress

biomarkers, such as salivary cortisol, to estimate the daily nonlinear stress profile and

to identify its variability across the population. Relative to methods for sample size

and power calculations for repeated measure studies (e.g. Dawson (1998); Rauden-

bush and Liu (2000); Basagaña and Spiegelman (2010)), methods to determine the

sampling schedule have received less attention.
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Researchers have discussed approaches to select optimal sampling schedules based

on parametric nonlinear mixed models (PMM) for longitudinal data (Fedorov and

Hackl , 1997; Stroud et al., 2001). These approaches have been used primarily in

pharmacodynamics and pharmacokinetics studies and are advantageous from a design

and analysis standpoint when mechanistic models for the longitudinal process exist,

e.g. kinetic models describing drug clearance rates. However, mechanistic models

are not always available and PMM can be too restrictive in modeling the temporal

pattern of the variability (see Section 2).

Capturing the variability is an important aspect in a longitudinal study, for at least

three reasons: (a) incorporating correct models for the variance structure can improve

the quality of inference (Carroll , 2003); (b) the variability of a longitudinal predictor

can be directly associated with a subsequent outcome of interest (Elliott , 2007); (c)

understanding the temporal pattern of the variability across individuals can help

us identify the optimal sampling windows to assess between individual differences.

Adequately capturing the variability of the process will likely to improve efficiency

and expand the types of questions that can be addressed.

We propose a unified framework for identifying the optimal sampling schedules

to accurately estimate the mean profile and between subject variability. We assume

identical sampling schedules for all subjects since it is most practical in large scale

studies. We review existing methods based on parametric mixed models in Section 3.2,

and show that parsimonious approaches to accommodate a broad range of between

subject variability patterns at the design stage is an area that needs improvement.

In Section 3.3 we utilize functional principal component analysis (FPCA) to charac-

terize the variability structure of the longitudinal process, and develop a method for

identifying the optimal sampling schedules for the mean profile and between subject

variability. Section 3.4 contains a small scale simulation study to compare our ap-

proach and existing methods. We apply these methods to two design problems in
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Section 3.5, and conclude with a discussion in Section 6.

3.2 Optimal Schedules by Parametric Mixed Model

Suppose subject i = 1, . . . , N will collect samples according to the sampling sched-

ule T = (t1, . . . , tn). We assume the observations yi(tj) of subject i at time tj follow

yi(tj) = f(t; ηi) + εij ηi
iid∼ N(η,Σ) (3.1)

where εij ∼ N(0, σ2) are independent and identically distributed (iid) measurement

errors; f is a known nonlinear parametric function; and ηi is a subject-specific vector

of length p.

The design goal is to find schedule T ∗ = (t1, . . . , tn) that minimizes the estimation

variance of (η,Σ). Letting l(η,Σ) be the log-likelihood, the asymptotic variance of the

MLE (η̂, Σ̂) is the inverse of the information matrix I(η,Σ) = −E

 ∂2l
∂ηt∂η

∂2l
∂ηt∂Σ

∂2l
∂Σt∂η

∂2l
∂Σt∂Σ

 ,

where by a slight abuse of notation, Σ on the right hand side denotes the vector of the

upper triangular elements of the covariance matrix Σ in (3.1). Various optimization

criteria based on the information matrix I(η,Σ) have been developed to select the

optimal sampling schedules (Atkinson et al., 2007). D-optimality, i.e. maximizing

det(I(η,Σ)), has many desirable properties: 1) it is the reciprocal of the size of the

confidence region for the MLE (η̂, Σ̂); 2) it is invariant under reparameterization of

(η,Σ); 3) it is convex, allowing the use special algorithms to find optimal schedules

(Retout et al., 2002; Ogungbenro et al., 2005).

This parametric mixed model (PMM) approach is intuitive, but three aspects

can be improved. First, the PMM approach might not always be flexible enough

to characterize the temporal pattern of the variability, given by V ar(f(t, ηi)) at

time t, because both the distribution of ηi and the functional form of f(t, η) affect
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V ar(f(t, ηi)). Figure 1 shows examples where the variance pattern cannot always be

captured by a parametric mixed model even though all figures share the same model

for the mean. Second, the PMM approach may not adapt to the situation where a

mechanistic model for the mean profile is not available. Although spline models, i.e.

f(t, η) =
∑L

l=1 ηlBl(t), have been employed to model nonlinear time trends (Green

and Silverman, 1994) they do not easily lend themselves to deriving meaningful sam-

pling schedules. Due to the linearity of η in a spline-based model for f(t, η), the

information matrix corresponding to the mean profile, −E( ∂2l
∂ηt∂η

), does not involve

η. Therefore, maximizing det(−E( ∂2l
∂ηt∂η

)) based on one set of basis functions always

leads to exactly the same optimal schedule, no matter what longitudinal process is.

Last, the information matrix I(η,Σ) is difficult to evaluate. The major obstacle is

that no closed form solution exists for the integral with respect to the individual

effect ηi when f(t, η) is a general nonlinear function of η. Approximations have not

established error rates, and nuermical methods or can be time consuming if we need

to compute I(η,Σ) repeatedly (Bazzoli et al., 2009). So while it is very useful, the

PMM approach is not universally applicable.

3.3 Optimal Schedules by Functional Principal Component

Analysis

3.3.1 Modeling Strategy

In order to relax the constraints in the PMM approach, we consider modeling the

mean profile and variability structures separately as follows:

yi(tij) = f(tij; η) + gi(tij) + εij (3.2)
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where, similar to PMM, εij
iid∼ N(0, σ2) are measurement errors; f(t; η) is a known

parametric function for the mean profile, and η is the fixed population mean parameter

as in Section 3.2, which does not depend on individual characteristics covariates. In

contrast to model (3.1), where between individual variation is modeled by random

effects ηi, we model the subject specific deviation by nonparametric random effect

gi(t). We assume gi(t)’s are iid Gaussian processes with E(gi(t)) = 0 and place

no restriction on the temporal covariance structure of gi(t). Subjects with different

covariates will have different gi(t), i.e., i’s profile f(t; η) + gi(t) implicitly depends

on covariates. This is advantagous because if some covariates exert strong effects

on the subject specific profiles, we will observe higher between subject variability

that is attributable to those covariates. Because optimal schedule for capturing the

variability will automatically include the time intervals where the longitudinal profile

exhibits high variability, this model will enable us to collect data in a way that boosts

the statistical power when regressing the longitudinal profile on influential covariates.

We use functional principal component analysis (FPCA) (Rice and Silverman,

1991) to characterize gi(t). The FPCA framework consist of finding smooth principal

component functions βk(t), k = 1, 2, 3, . . . that maximize V ar
(�

gi(t)βk(t)dt
)

with

the orthonormal restrictions
�
βk(t) · βk′(t)dt = 0 for k 6= k′ and

�
βk(t) · βk(t)d = 1.

Each functional principal coponent account for variance dk = V ar(
�
gi(t)βk(t)dt);

we assume dk are in decreasing order. Under this framework, we have fi(t) =

f(t, η) +
∑∞

k=1 αikβk(t), where αik =
�
gi(t)βk(t)dt

iid∼ N(0, dk) is the loading on the

kth component βk(t) for subject i. Since dk are in descending order, αik is typically

negligible for large k. Hence we only need the first few principal components βk(t),

k = 1, . . . , r, to capture the majority of the variability. This approximation leads to

the reduced rank model introduced by James et al. (2000)

yi(t) = f(t, η) +
r∑

k=1

αikβk(t) + ε (3.3)
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James et al. (2000) further developed an EM algorithm to obtain the maximum

likelihood estimate of the parameters since the reduced rank model has only finite

number of components. With FPCA, the variability of fi(t) can be summarized by

a few independent statistics dk, which are much easier to handle than the p × p

covariance matrix Σ in (3.1).

3.3.2 Design Approach

Let S be the set of the admissible sampling times. Theoretically, our method

does not place any restriction on S. However, investigators will probably prefer to

limit S to sampling times that can be implemented in practice. Let T = (t1, . . . , tm)

denote a candidate schedule where tj, j = 1, . . . ,m is chosen from S and tj 6= tj′ if

j 6= j′. We denote the subset of candidate schedules by Sc. Our design goal is to

select a sampling schedule T ∗ = (t1, . . . , tm) ∈ Sc such that it accurately estimates

both mean and variability. So we would like to minimize the estimation variance

of η and D = diag(d1, . . . , dr). We follow the information matrix approach for the

mean parameter η and extend it to incorporate the variance parameter D. Based on

the reduced rank model (3.3), we derive the information matrix I(η,D;T ). Unlike

the parametric approach, there is a closed form solution for I(η,D;T ) which can be

written as a block diagonal matrix, with blocks I(η;T ) and I(D;T ). Denoting ∇ as

the gradient, we have I(η;T ) = ∇f(T, η) · A · ∇f(T, η) where A = B(T )DB(T )′ +

σ2I and B(t) = (β1(t), . . . βr(t)). The klth element of I(D;T ) can be written as

I(D;T )kl = 1
2
tr(A−1βk(T )βk(T )′A−1βl(T )βl(T )′).

From the pool of all candidate schedules Sc, we identify the optimal sampling

schedule T ∗ by maximizing an appropriate criterion. Two scenarios are particu-

larly interesting: when we have a good mechanistic model for the mean profile

and the variance, then we can derive an optimal schedule T ∗ for both mean and

variability by maximizing the D-optimal criterion (Atkinson et al., 2007): T ∗ =
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argmaxT∈Scdet(I(η,D;T )). If a mechanistic model is absent and splines are employed

to model mean profile, then we can still perform FPCA to reconstruct the variance

components and derive optimal schedule to capture the variance. Since the variance

is only part of the model, we employ the Ds-optimal criterion (Atkinson et al., 2007)

to obtain T ∗: T ∗ = argmaxT∈Scdet(I(D;T )).

3.3.3 Implementations

Our design approach can be implemented in three steps: 1) prepare preliminary

data for estimating the FPCA; 2) estimate FPCA model from preliminary data, in-

cluding the selection of appropriate number of components and smoothing parameter

via cross validations; 3) maximize the optimization criterion to find T ∗. We sketch the

implementations of each step below and provide more detailed discussions including

brief review of FPCA estimation in the Web Appendices.

Preparation: Densely sampled preliminary data over the entire time interval

of interest is needed to reconstruct the variability pattern, which can be achieved

by densely sampling profiles for individuals or combining data from individuals if

they each have different (sparse) sampling points. If a particular time interval is not

covered by the preliminary data, no interesting variance structure inside such interval

can be identified by our method, or any other statistical method, simply due to lack

of information. As a result, the optimal schedule derived from the FPCA method is

unlikely to include any sampling time from such intervals.

Estimation: Various estimation procedures have been developed for FPCA,

starting from the seminal work of Rice and Silverman (1991) based on the eigen-

functions of the covariance kernel Cov(fi(t), fi(s)). James et al. (2000) developed

an EM algorithm for the reduced rank model. In considering the joint modeling of

pairs of sparse functional data, Zhou et al. (2008) suggests a smoothness penalty,

λ
�
β′′k(t)2dt, on the functional principal components βk(t), which reduce the mean
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squared error in estimating βk(t) especially when the data are sparse and irregular.

For fixed values of λ and r, we use the smoothing penalty from Zhou et al. (2008)

and derive an EM algorithm to estimate βk(t) and D. Furthermore, at each iteration

of EM algorithm, we employ a singular value decomposition (SVD) to reparameter-

ize the principal components. The SVD enforces orthonormality of components, so

that the assumed diagonal form of D holds in every iteration; and improves conver-

gence speed. Implementation details of this estimation method are discussed in the

Appendix E.

Selection of (λ, r): A popular way to select r and λ is by examining the k-

fold cross validation score s(r, λ), which is the average of log likelihoods of testing

data based on the model estimated from training data. Since higher s(r, λ) suggests

a better model, the appropriate smoothing parameter for a FPCA model with r

components is chosen as λ∗r = argmaxλs(r, λ). The appropriate number of principal

components r, however, is less straight forward. Because the model with r components

is nested within the model with r + 1 components, s(r) = s(r, λ∗r) almost always

increase as r increases. Therefore maximizing the CV score s(r) does not lead to

a parsimonious model. We employ a rule based approach inspired by the “scree

plot” (Johnson and Wichern, 2007). For pre-specified threshold b%, we select r∗ =

min{r| s(r+1)−s(r)
s(r)

≤ b%}, i.e. the smallest r such that the improvement in CV score

by adding one more component is less than the threshold for negligible improvement.

Details about the computation of s(r, λ), the scree plot and the rule based approach

are discussed, with examples, in Appendix F.

Optimization: The algorithms for identifying the optimal sampling schedules

that maximizes det(I(η,D;T )) or det(I(D;T )) are also worth consideration. Both

criteria are complex functions of the sampling schedule T , and may have many local

maximum, which makes it difficult to use conventional optimization algorithms, such

as Simplex, to find the global maximum. Instead, if there are only a few time points
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to choose from, enumeration or a grid search works well. However, if there are many

possible choices for the time points, sophisticated optimization methods are needed.

We implement a Metropolis-Hastings algorithm (Metropolis et al., 1953; Hastings ,

1970) that introduces randomness into the optimization and is guaranteed to reach

global maximum if the Markov chain has converged. The main idea is that since

det(I(η,D;T )) and det(I(D;T )) are positive, we can treat them as the probability

function (less a constant) of a multivariate distribution of t1, · · · , tn. Then the maxi-

mum of the criterion function corresponds to the mode of the probability distribution,

which the Markov chain will visit with probability one and can be identified easily.

More details about the implementations of the algorithm can be found in Appendix

G.

3.4 Simulation Study

Simulation Setup. We use simulations to compare the performance of FPCA and

parametric mixed model (PMM) in the context of selecting optimal schedules. In

order to highlight the similarities and differences of the two approaches, we consider

two simulation scenarios:

• Sim A: The between subject variability is induced from random effect in the

mean profile.

• Sim B: The between subject variability is not related to the mean profile.

In both Sim A and Sim B, we employ f(t; η) = η0 + η1t+ η2t exp(−η3t) as the mean

profile, which is motivated by the salivary cortisol profile in the MESA Stress study

(Section 5.1). Figure 3.2a presents a scatter plot of a random sub-sample of the

MESA Stress data and the estimated mean from this model. Figure 3.2b provides

a graphical presentation of f(t, η) used in the simulation from 0hr to 16hr. In both

simulations we assume the set of the candidate sampling times S = {0, 0.5, . . . , 16}
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and the candidate schedules Sc consists of schedules with 7 sampling times chosen

from S.

In Sim A, we assume the between subject variability is induced by random effects

of the parametric mean profile f(t, η) as in (3.1) where ηi = (η0
i , η

1
i , η

2
i , η

3
i )
t is the sub-

ject specific parameter. We assume (η0
i , η

1
i , η

2
i ) follow multivariate normal distribution

with mean (η0, η1, η2) and variance Σ = diag(0.3472, 0.0362, 0.32). We keep η3
i = η3

as fixed such that the formula for the information matrix is exact. Assuming the true

model and true parameter is known, the ideal sampling schedule TAideal maximizing

det(Itrue(η,Σ;T )) where Itrue(·, T ) is the information matrix under the tru model. In

this scenario, TAideal =(0.0, 0.5, 1.5, 2.0, 4.0, 15.5, 16.0) where 1.5 and 2 are close to

the peak; 4 is near the inflection point of the curve; 0, 0.5, 15.5 and 16 are near the

end points of the time interval.

In Sim B, we assume the between subject variability is not related to the paramet-

ric mean profile f(t, η). To generate the between subject variability, we employ the re-

duced rank model (3.3) with r = 2 components: yi(tij) = f(t, η)+
∑2

k=1 αikβk(tij)+εij

where αi1 ∼ N(0, 0.82) and αi2 ∼ N(0, 0.72) are independent unobserved loadings on

the components β1(t) and β2(t). A graphical representation of the components is given

by Figures 3.2c Figure 3.2d. β1(t) acts as a random intercept; as a result our ability

to estimate the variability associated with β1(t) will not depend on the placement of

the sampling times. On the other hand, β2(t) alters the decline of fi(t) after the peak

in a nonlinear fashion with a maximum deviation occurring near t = 7. Assuming the

true model and true parameters are known, the ideal sampling schedule maximizing

det(Itrue(η,D;T ) is TBideal =(0.0, 1.0, 1.5, 4.0, 7.0, 15.5, 16.0). In particular, the 4th

sampling time t = 7 is included to capture the variability of β2(t). The rest of the

sampling times are included to capture the important landmarks of the mean profile.

In order to make the simulation as realistic as possible, we pretend we only have

access to (simulated) preliminary data instead of the true model. For each of the
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Figure 3.2: Mean and Variability Structure in the Simulations.
(a) Scatter Plot of a Random Sample of the MESA Stress Data. The timing of the
measures is indexed as time since waking up.
(b) Mean Profile for Sim A and Sim B: f(t; η) = η0 + η1t + η2t exp(−η3t) where
η0 = 2.23, η1 = −0.12, η2 = 3.14, η3 = 0.55.
(c) The mean profile f(t,η) plus (dash) and minus (dot) β1(t)
(d) The mean profile f(t,η) plus (dash) and minus (dot) β2(t)
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scenarios, we simulate 1000 data sets with 200 subjects, representing “preliminary

data”. Each of the 200 subjects was assumed to take 9 samples at tij j = 1, . . . 9 and tij

randomly chosen from {0, 0.5, . . . , 16}. Random noise τij ∼ N(0, 0.12) is added to tij

to simulate noncompliance of the subjects. Given the times for each subject, outcome

data were generated according to the true model from Sim A or Sim B (above).

Regardless of the data generating model, we fit PMM and FPCA to the preliminary

data. nlme() function in R is used to fit PMM (Appendix H) and the smoothing

FPCA outlined in Section 3.3 and described in the Appendix E was used to fit FPCA.

The smoothing parameter λ and the number of principal components r were selected

by cross validation as described in Section 3.3. In particular, we use the rule based

approach to select r and the threshold for negligible improvement is set to b% = 1%.

We identify optimal schedules by the Metropolis-Hastings algorithm described in

Section 3.3. The optimization criterion is det(Iest(η,Σ;T )) or det(Iest(η,D;T )) using

model parameters estimated from the preliminary data.

We evaluate the performance of the sampling schedules selected by PMM and

FPCA in two ways. First, we investigate whether these schedules are in agreement

with ideal schedules in each scenario by tabulating the relative frequency of each

sample time selected. Second, we use the efficiency relative to the ideal schedules

as a numerical benchmark. Relative efficiency (Atkinson et al., 2007) is defined as

det(Itrue(·;Tcandidate))1/p

det(Itrue(·;TQideal))1/p
, where Q = A or B represents the two simulation scenarios;

Tcandidate and TQideal are candidate and ideal schedules respectively; p is the number of

parameters under the data generating model. Because the ideal schedule maximizes

the optimization criterion under the true model, the relative efficiency is ≤ 1, with

higher values indicating better schedules.

Simulation Results. The FPCA algorithm converged for all preliminary data sets

in Sim A and Sim B. However, the nlme() function for fitting PMM only converged

for 858 preliminary data sets in Sim A and 528 in Sim B. We restrict our comparison
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to the simulations where both methods converged.

For Sim A (Figure 3.3a), both FPCA and PMM provide schedules that are similar

to the ideal schedule. There is perfect agreement between the two methods at the end

points 0 and 16 as well as the peak time 1.5. Furthermore, at least one of 3.5 or 4, near

the inflection point of the profile (Figure 3.2b), appears in all the optimal schedules.

Both methods assign exactly one sampling time within the period (0, 1.5) where the

curve peaks, although they have slightly different preferences: FPCA always picks 1

while PMM places more weight on 0.5. Of all the seven sampling times, there is only

one consistent discrepancy between the two methods. FPCA always selects 4.5 while

PMM always selects 2. However, 4.5 and 2 are adjacent to 4 and 1.5, both of which

are already selected by the two methods. The average relative efficiency is 0.998 for

PMM and 0.970 for FPCA. Both methods can provide reasonably good schedules,

although the PMM approach has a slight advantage.

For Sim B (Figure 3.3b), the ideal schedule includes a sampling point at time

t = 7, which is the best location to capture the variability associated with the second

component β2(t). The optimal schedules by FPCA place at least one sample in the

interval of [6, 8] with probability 0.70. By comparison, the PMM approach never

includes any sampling time in the [6, 8] time interval. For the rest of the sampling

times, FPCA and PMM have good agreement, primarily influenced by the need to

capture the mean structure. The relative efficiency is 0.837 for PMM and 0.982

for FPCA. The efficiecy gain of FPCA is primiarily due to FPCA’s capability in

including the sampling times critical for detecting the variance components. Sim B

demonstrates the FPCA approach is more applicable than the PMM in the scenarios

where the temporal variability pattern is not induced by the random effects on the

mean profile.
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3.5 Application

3.5.1 Design for Salivary Cortisol Studies

The use of salivary cortisol as a biomarker of stress, which exhibits a nonlinear

diurnal pattern through the length of the day (Figure 3.2a), is increasingly common

in epidemiology studies (Adam and Kumari , 2009). Salivary cortisol can be assayed

objectively using standardized techniques, and it is less likely to suffer from biases

due to individual’s interpretations of stress questionnaires. We compare the PMM

and FPCA methods in the design for salivary cortisol studies.

As preliminary data for the design, we use data from the Stress ancillary study of

the Multi-Ethnic Study of Atherosclerosis (MESA Stress). MESA Stress (Hajat et al.,

2010) is an epidemiological study that examines the role of stress as a contributor to a

range of precursors of cardiovascular disease (CVD). We use data from 800 individuals

who collected 6 samples for 3 days. Figure 3.2a presents a scatter plot of a random

sub-sample of this data.

The design goal is to identify the sampling schedule that maximizes the precision

to measure the mean profile and the variability. We consider sampling times S =

{0, 0.5, 1, . . . , 16}, i.e. the sampling period begins at wake up time, and ends with

bed time, t = 16h (similar to the MESA Stress study). The set of candidate schedules

Sc consists of the schedules with 6 sampling times from S.

Preliminary analysis suggest f(t; η) = η0 + η1t+ η2t exp(−η3t) is a suitable mean

profile for salivary cortisol (Stroud et al., 2004). We use this mean profile in both

PMM and FPCA approaches. For PMM, we fit model (3.1) and use det(I(η,Σ;T ))

as the optimization criterion. For FPCA, we fit the reduced rank model (3.3) and

use det(I(η,D;T )) as the optimization criterion. The values of r = 3 and λ = 2000

were determined by 10-fold cross validation. Because there are only
(

33
6

)
candidate

schedules, we enumerate all of them to identify the optimal schedule.
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The 10 schedules with the highest criterion values obtained from each method are

given in Table 1. All schedules include four common sampling times: 0, 0.5, 1 and 16

hour after wake up. Wake up and 16 hours are the beginning and the end of the time

period under investigation, and hence are naturally included. Since salivary cortisol

curves exhibit high curvature between 0 and 1 hours since wake up, 0.5 and 1 are

also included in the sampling schedules. The difference between the two methods is

revealed in the time period between 2 and 16. PMM will place the remaining two

sample times close to both ends of this time period and none in between. This is

because in the 2-16 hrs time period, the exponential term η2t exp(−η3t) is essentially

zero and the mean profile is dominated by the linear term η0 + η1t. Since the linear

term forces the variability to be higher at the end points (Section 2), more sampling

times are placed at both end points. However, FPCA detects a different temporal

pattern for the variability and places the sampling times at around 4 and 10 hours

after wake up. We believe the FPCA schedule is better because it not only covers

covers almost all the sampling regions of the PMM schedules, but also includes new

sampling region that is not included in PMM schedules. This new sampling region

can be discovered mainly because the FPCA approach places less restriction on the

variance structure.

3.5.2 Urinary Progesterone Study

Urinary progesterone is an important biomarker of reproductive health. (De Souza

et al., 2010). In order to capture the variations of urinary progesterone, it is not un-

common to collect samples everyday during the entire menstrual cycle of the partici-

pant (Waller et al., 1998). Densely sampled data points are helpful in reconstructing

the entire progesterone profile, but are difficult and costly to implement in large scale

studies. Thus a design question naturally arises: which simplified sampling sched-

ule, with fewer sampling times, adequately captures the variation of the progesterone
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Time1 Time2 Time3 Time4 Time5 Time6
0 0.5 1 3.0 15.5 16
0 0.5 1 2.5 15.5 16
0 0.5 1 3.5 15.5 16
0 0.5 1 3.0 15.0 16
0 0.5 1 2.5 15.0 16
0 0.5 1 3.5 15.0 16
0 0.5 1 3.0 14.5 16
0 0.5 1 2.5 14.5 16
0 0.5 1 4 15.5 16
0 0.5 1 3.0 15.0 16

(a) Parametric Mixed Model

Time1 Time2 Time3 Time4 Time5 Time6
0 0.5 1 4 10.5 16
0 0.5 1 4 10.0 16
0 0.5 1 4.5 10.5 16
0 0.5 1 4.5 10.0 16
0 0.5 1 4 9.5 16
0 0.5 1 4 11 16
0 0.5 1 4.5 9.5 16
0 0.5 1 4.5 11 16
0 0.5 1 4 9.0 16
0 0.5 1 4.5 9.0 16

(b) FPCA

Table 3.1: The ten best sampling schedules chosen by parametric mixed model and
FPCA based approaches
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profile? We answer this question using the FPCA approach.

As preliminary data, we use the urinary metabolite progesterone data from Brum-

back and Rice (1998), which were collected as part of early pregnancy loss studies.

The data set contained progesterone profiles of 91 menstrual cycles from 51 women

with healthy reproductive function. For illustration, we randomly select only one

cycle from each of the women who contributed data of multiple cycles to ensure in-

dependent data across cycles. As is standard practice in endocrinological research,

progesterone profiles were aligned by the day of ovulation (day=0) and then truncated

at each end to present curves of equal length (24 days).

Figure 3.4a shows a scatter plot of the progesterone measures in the data set, with

a local polynomial smooth summarizing the overall trend. Although the trend appears

to resemble an horizontally stretched ’S’ shape, common parametric functions, such

as the logistic function, fail to provide a satisfactory fit. Brumback and Rice (1998)

suggested that a nonparametric spline model is a better choice for the population

mean profile.

In the absence of a mechanistic model for the mean, we consider study designs

that maximize the efficiency of measuring the variability of the progesterone pro-

file. We first center the data at each time point with the mean estimated by a local

polynomial smoother. Then we perform FPCA on the centered data to obtain the

functional principal components. The number of components r = 3 and the smooth-

ing parameter λ = 1000 were determined by 10-fold cross validation with b = 1%

as the threshold. The three principal components are shown in Figure 3.4b-3.4d.

The first component accounts for 53.2% of the variance and can be interpreted as

a constant cycle level deviation from the mean. The second and third component

accounts for 36.6% and 1.4% of overall variance. These two components capture the

local deviations at various times within a cycle.

Since three components are sufficient to characterize the progesterone data, sam-
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Figure 3.4: (a) Scatter Plot of Progesterone Data and Local Polynomial Smoother;
(b)-(c) Functional principal components of the urinary progesterone data. The solid
line indicates the mean profile. The dash lines represent the mean profile +/- one
standard deviation of the functional principal components.
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pling schedules with at least m = 3 sampling times will adequately estimate the vari-

anceD = diag(d1, d2, d3) of the principal components. We consider S = {−8,−7, . . . , 15}

as the admissible sampling times and the set candidate schedules Sc consists of sched-

ules with 3 sampling times from S.

Table 3.2 lists the 10 best schedules with 3 samples each and the associated values

of det(I(D;T )). These schedules offer similar level of efficiency when it comes to

measuring the variability across the cycles (similar det(I(D;T )). In addition, the

sampling times of these schedules also exhibit a clear pattern: t = 15 is considered

to be important by all schedules; the rest of the sampling times are clustered in two

intervals [−8, −4] and [4, 6]. The choice of the sampling times can be intuitively

understood if we refer to principal components (Figure 3.4b-3.4d). The deviation

from the mean of the second and third components are relatively higher at [−8, −4]

and [4, 6] and t = 15. Collecting samples in these locations maximizes our ability

to identity the variability associated with these components. The first component

deviates from the mean relatively uniformly during the cycle; hence it has little impact

on the choice of the sampling times even if it accounts for a substantial proportion of

the overall variability.

Furthermore, we evaluate the performance of the optimal schedules derived from

FPCA in the context of detecting the association between progesterone and a covari-

ate: conceptive status. We consider leave-one-out prediction rate of the schedules for

predicting the conceptive status. Prediction rates were computed by a logistic regres-

sion model with conceptive status as the outcome and progesterone levels measured

at the days indicated by each of the derived schedules as the predictors. The leave-

one-out prediction rate of the ten best sampling schedules obtained by FPCA are

between 92%-94% (the fifth column of Table 3.2), which suggests that progesterone

values collected with these schedules are highly predictive of conceptive status. Fur-

thermore, we rank all candidate schedules in Sc by the leave-one-out prediction rate.
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Leave One Out Ranking among All
Time1 Time2 Time3 det(I(D)) (10−8) Prediction Rate Candidate Schedules

-8 5 15 6.95 92% 94%
-8 6 15 6.92 94% 96%
-7 5 15 9.87 90% 89%
-7 6 15 6.85 90% 89%
-8 4 15 6.83 92% 94%
-6 5 15 6.81 90% 89%
-6 6 15 6.79 94% 96%
-5 6 15 6.78 92% 94%
-4 6 15 6.78 92% 94%
-5 6 15 6.78 94% 96%

Table 3.2: The ten best sampling schedules for urinary progesterone chosen by the
FPCA approach
The leave-one-out prediction rate is for the prediction of conceptive status.
The ranking in the last column is based on the leave-one-out prediction rate.

The sampling schedules we obtained perform better than 89%-96% of all candidate

schedules (the last column of Table 3.2). Sampling urinary progesterone at the times

selected by our FPCA based approach are among the best times to study the associa-

tion between conceptive status and progesterone levels. It should be noted that when

we use FPCA to derive these optimal schedules we do not make use of any informa-

tion regarding the conceptive status. With the help of FPCA we reconstructed the

temporal pattern of the variability, and subsequently identified time points critical

for detecting the association between the longitudinal profiles and covariates.

3.6 Discussion

We propose an approach to longitudinal study design that optimizes estimation

of the mean and between-subject variability. Our approach employs a semiparamet-

ric model that characterizes the mean profile and the variability separately. We use

functional principal component analysis (FPCA) to derive a parsimonious and flexible

representation of the temporal pattern of the variability. Smoothing of the princi-
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pal components is incorporated to enhance estimation stability given the potentially

unbalanced and irregular sampling of the preliminary data. The population mean

can be modeled with known parametric functions or with splines. Following the ex-

isting literature, we employ D-optimality for the mean and variability parameters as

the optimization criterion. Simulations suggest that if between subject variability is

induced by random effects in a parametric mean profile, the FPCA approach and

existing methods based on parametric mixed model (PMM) lead to equally compe-

tent sampling schedules. For more flexible variability structures, however, the FPCA

approach is superior. We apply the new approach to two real world examples. In

the first example we show that the FPCA approach identifies new sampling regions

for measuring the mean and the variability of salivary cortisol profiles that are not

discovered by the PMM approach. In the second example, the mean profile of pro-

gesterone in menstrual cycles is modeled by splines and the PMM approach is no

longer applicable. We employ the FPCA approach to identify optimal schedules for

capturing the variability of the profiles and show that schedules we obtained are also

highly predictive of conceptive status. In both simulations and real world examples,

we show that the FPCA approach is more robust flexible for capturing the variability

of the process.

Under the framework of FPCA, V ar(fi(t)) is modeled by the functional principal

components βk(t)’s and the variance of the principal componentsD = diag(d1, . . . , dr).

While both terms are involved in the optimization criterion det(I(D)), we only focus

on the estimation of D in forming the criterion. The rationale behind such decision

is that the individual deviation of subject i is captured only by the subject-specific

loadings αik but not the functional principal components βk(t) which are shared by

all subjects. Therefore we focus on subject specific loadings αik when our goal is to

maximize our ability to detect individual deviations. At the population level, the

distribution of αik is determined by the variance dk; thus focusing on the loadings im-
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plies focusing on the estimation of dk. Because the number of components is expected

to be low, only a few samples would need to be measured in future studies.

FPCA is a versatile modeling tool and its application could be seen in many

areas of statistics. For example, Fedorov and Hackl (1997) uses FPCA to model

correlated data and consider the design that minimizes prediction errors. But to

our knowledge, our proposed method is the first to employ FPCA to derive optimal

sampling schedules for the estimation of the between subject variability.

Besides parametric mixed model, mean and variance models can be employed for

longitudinal data (Davidian et al., 1988). Unlike the parametric mixed model, the

mean and variance model only characterizes the marginal distribution of the data.

As a result, it provides no insight into the between-individual variability. Therefore,

we do not consider the mean and variance model in our comparison.

There are some limitations to our approach. The FPCA approach requires pre-

liminary data with dense sampling. In the cortisol example, each individual collects

very few samples in the preliminary data, but dense sampling can be achieved by

including more individuals. In the progesterone example, each woman already has

samples every day during the menstrual cycles so we only need a small number of

women for the preliminary data. Furthermore, we need to check the normal assump-

tions of the principal component loadings αik. We observed that the loadings for

the first few components exhibited small deviations from normality at the tail distri-

bution. Because we are most interested in the temporal pattern of the majority of

variability from the first few components, these small deviations might not affect our

results significantly. Nevertheless, we recommend checking the distributions of the

estimated loadings.

The framework of determining optimal schedules based on FPCA can be extended

in many ways depending on the design problems. One direction will be to obtain the

sampling schedules for estimating βk(t), which is modeled by smoothing spline. One
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can consider a surrogate for the smoothing spline, for which the optimal schedule is

known, such as a piecewise linear spline (the optimal schedule is simply the set of the

knots). Another extension could be the sampling schedules for a study incorporating

multilevel sampling. In the second example, repeated cycles from the same woman

were excluded. To incorporate such data, one could employ a hierarchical FPCA

model and derive the information matrix for the grand mean and variability parame-

ters at multiple levels. Furthermore, our method currently consider only one optimal

schedule in the design due to practical constraint of large scale epidemiology studies.

Nevertheless, it is also interesting to consider multiple optimal schedules in the design

since it could potentially improve the efficiency of the design (Mentré et al., 1997).

Lastly, deriving theoretical results of the FPCA approach, such as its asymptotic

properties and alternative methods to select the number of principal components,

would be of interest.
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CHAPTER IV

Design for Studies Involving High Dimensional

Features and Other Covariates

4.1 Introduction

Rapid technological advances and bench scientific findings have given rise to the

use of high throughput data in clinical studies, where measurements on hundreds or

even millions of biomarkers are gathered from each subject (Elaine R., 2008; Schus-

ter , 2008). Screening analysis of association between biomarkers and disease status

enables researchers to identify promising biomarkers that are differentially expressed

across disease groups and are useful to develop classifiers for disease prognosis. Classi-

fiers are one of the key components for realizing the promise of personalized medicine.

For instance, clinicians can design an effective treatment plan for a patient utilizing

the prediction of validated classifiers, given the measurement of biomarkers from this

very patient (Hamburg and Collins , 2010). Several approaches to deriving classifiers

from high dimensional biomarkers have been developed in the literature, and when

applied to real world experiments, some promising results have been reported (Clarke

et al., 2008; Simon, 2008; Wang et al., 2008). The utility of high throughput data in

clinical practice hinges on the availability of well developed and validated classifiers,

which in turn requires proficient study design to generate training and validation
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datasets. In particular, determining the sample size needed for the deviation of a

powerful classifier is a central design question.

Sample size determination has been essential in the design of clinical studies. Ev-

ery clinical study needs it to begin with. As a matter of fact, this task is traditionally

carried out in the context of hypothesis testing, in which type I error (or size of a

test) and type II error (or power of a test) are treated as target objectives for the

sake of achieving certain optimality. However, these concepts of errors no long exist

in the setting of classification analysis, and thus a new statistical framework of design

needs to be established. The primary objective of this paper is to provide systematic

development of design and sample size calculation for classification analysis involv-

ing high-dimensional features. Our software produced from this work will furnish a

timely and useful toolbox to clinical studies.

This research work has been primarily motivated from our collaborative project

“NEPTUNE” Nephrotic Syndrome Study Network administrated by multiple prin-

cipal clinical investigators in the Division of Nephrology at University of Michigan

School of Medicine. The NEPTUNE consortium, funded with 10.25 million dollars

by NIH, University of Michigan and NephCure Foundation, is an unprecedented re-

search endeavor to conquer this aggressive rare renal disease. It’s the largest ever

committed to collectively by nephrologists in USA and Canada to study molecular

mechanisms for rare renal diseases, including Membranous Nephropathy (MN) and

Focal or Segmental Glomerulosclerosis (FSGS)/Minimal Change Disease (MCD). The

consortium is designed to address multiple scientific goals, one of which is to ex-

tract important tissue-based mRNA biomarkers to classify patients into different risk

groups and predict their clinical outcomes such as remission status (i.e. remission

versus no remission). One of the co-authors (Song) was in charge of designing the

NEPTUNE consortium (Gadegbeku et al.) using a somewhat ad-hoc approach, and a

comprehensive generalization of that original method is very appealing, because such
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design methodology is needed in practice. This motivated us to extend and rigor-

ously justify the design framework in general settings. For example, a new study was

recently proposed by a clinician at University of Michigan Kidney Transplantation

Center, which aimed to predict the graft survival of a patient after kidney transplant,

which is an important outcome for measuring treatment effectiveness. In this study,

the long term prognosis outcome after kidney transplant is divided into two groups:

stable and rejected. Overall the study being conceived will be carried out in two parts

(Figure 1).

In Part I, a commercial array allows us to collect 108 proteomics biomarkers from

each patient in both stable and rejected groups. Then classifiers for graft survival

will be constructed using the microarray data. The investigators suggest that among

these proteins, according to literature, approximately 10 proteins are likely to be in-

formative for predicting graft survival. For each informative biomarker, the difference

in mean expression between stable group and rejected group should be at least 0.8 of

the standard deviation, whereas for the non-informative biomarkers, the difference in

mean expression is 0. In Part II, additionally, the investigators will consider adding

a new source of clinical predictors such as measures of lab tests, and/or patients’

demographic characteristics into classifiers in the hope of improving classification

performance.

In this paper, we focus on the development and implementation of classification

design methodologies in clinical studies involving high-dimensional features, with the

number of the features larger than the sample size. In Section 2, we begin with a

brief review on the existing methods related to our design problem and then discuss

our strategies to approach the problem. Section 3 presents the core material of this

paper, including (i) the framework of classification design with high-dimensional fea-

tures; (ii) implementation of cross-validation scheme to evaluate PCC; (iii) a new

simulation method utilizing order statistics to efficiently evaluate PCC of high criti-
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Figure 4.1: A Study for Predicting Long Term Survival after Kidney Transplant
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cism thresholding classifier; (iv) an inequality to establish the upper and lower bounds

of achievable PCC when two sources of biomarkers are added simultaneously to en-

hance classifier in the study. In Section 4, we conduct simulation studies to compare

the relative efficiency of three design strategies in terms of potential bias in estimated

PCC and required sample size. In Section 5 we illustrate the use of these design

methods in a practical example of predicting graft survival after kidney transplant.

In Section 6, we discuss R software implementation of these new methods. Finally,

we conclude this paper with discussion and recommendation for high-dimensional

classification design.

4.2 Roadmap and Strategies

We approach the design question by three integral steps: (i) choosing a reasonable

objective to calibrate the sample size; (ii) building an efficient classifier for high-

dimensional features; (iii) improving classification performance through incorporating

new sources of features. We will discuss each of these steps in detail in the rest of the

paper.

In the first step, a reasonable objective is key to develop a proficient design for

sample size calculation. As mentioned above, conventional Type I error and power are

used in hypothesis testing to determine sample size. Such approach has been consid-

ered in designs for high-dimensional classification, based on a global null hypothesis

of no biomarkers being differentially expressed between groups (e.g. Hwang et al.

(2002)). However, such hypothesis setup does not directly measure the performance

of the classifier. In our views, a more desirable objective function for the study design

of high-dimensional classification analysis is the probability of correct classification

(PCC) (Mukherjee et al., 2003) since PCC enables us to directly measure the per-

formance of classifier. de Valpine et al. (2009) proposed a hybrid method based on

simulation and approximation of the PCC formula, which is shown to speed up the
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computation of PCC.

To quantify optimality in design, the upper bound of PCC needs to be deter-

mined. Dobbin and Simon (2007) proposed an interesting procedure to construct an

ideal classifier with the availability of the full knowledge about the underlying data

model, under which the PCC of the ideal classifier is computed. This optimistic PCC

corresponds to the PCC of a study with infinite sample size and therefore gives an

upper bound of PCC. In other words, for a practical design with finite sample size,

the actual sample size will be calibrated against the such best PCC minus a certain

tolerance specified by clinicians.

The second step is to choose an appropriate classification method. For the so-

called p � n scenarios, namely the number of biomarkers is much larger than the

total number of observations, many conventional methods, such as Fisher linear de-

terminant analysis, are not directly applicable. One way to overcome such difficulty is

to utilize variable selection strategies in the building of classifiers. The resulting clas-

sifier will only use biomarkers whose p-values, obtained by, for example, two-sample

comparison test, are lower than a predefined threshold level. Thus, the PCC of this

classifier heavily depends on a choice of the threshold for feature selection. Dobbin

and Simon (2007) proposed a design method to evaluate the best PCC, in which they

assume that there exists the optimal threshold maximizing the PCC. Unfortunately,

this assumption will not hold in real-world design settings because there exists un-

certainty in connection to the procedure of the determining threshold values. Dobbin

and Simon’s strategy will be apparently higher than a PCC obtained in actual analy-

sis stage, and thus results in an underestimated sample size. Therefore, it is desirable

to incorporate the actual thresholding procedure into the design framework so that

consistency between design and analysis is enforced, which ensures the needed sample

size for the study.

One popular thresholding procedure is cross-validation (CV). In spite of being con-
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ceptually simple, the CV approach is computationally demanding. Recently, many

advance feature selection methods have been proposed, including regularization ap-

proaches such as lasso (?) and elastic net (?), and specific approaches developed for

biomarker selection such as ? and ?. In this paper, we are particularly interested

in higher criticism thresholding (HCT) method proposed by Donoho and Jin (2009)

because of the nice properties such as well justified asymptotic theory concerning

feasibility and power of classification. HCT determines the threshold value by max-

imizing the deviation from the null empirical process indexed by ordered p-values.

HCT uses the rare-and-weak model framework, where classification problems asymp-

totically fall into one of two classes: (i) the infeasible class, referring to a scenario

where signals are so weak and rare that no linear classifier exists to outperform a

naive random classifier; and (ii) the feasible class, referring to the case where the

PCC of HCT approaches to 1 asymptotically as the number of biomarkers goes to

infinity.

In the third step, we consider evaluating the benefit of adding additional sources

of features to classification analysis. This is an important practical problem, as many

practitioners believe that using more features in classification can improve the per-

formance limitlessly. Typical features include clinical predictors such as measures

of lab test, and/or patients’ demographic characteristics. Some researchers have in-

vestigated the benefits of feature augmentation in terms of the receiver operator

curve (ROC) (?????). However, the current literature has not provided any rigorous

answers concerning the amount of potential PCC gain resulted from feature aug-

mentation, and under which scenarios we expect to achieve the highest PCC gain.

These questions are critical and need to be carefully addressed in the classification

design analysis before substantial amounts of funds and time are committed to data

collection.
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4.3 Methods

4.3.1 Setup

We begin with a brief review of a general framework for the design of studies for

classification proposed by Dobbin and Simon (2007). Suppose the study population

can be divided into two groups: Group +1 and Group -1. In our motivating example,

Group +1 consists of subjects who have a stable graft condition after the kidney

transplant and Group -1 consists of the subjects who reject the transplant. To plan

a future study, we presumably collect training data D = {(xi, yi)|i = 1, . . . n} from

n subjects; yi = {+1,−1} is the group label for subject i; the prevalences of Group

+1 and Group -1 are P (yi = 1) = π1 and P (yi = 1) = 1 − π1, respectively. Let

xi = (xi1, · · · , xip)t ∈ Rp be a high-dimensional vector of features for subject i.

For instance, xi could be the vector of 108 proteomics biomarkers in the study of

predicting graft survival after kidney transplant.

In the step of data processing, we standardize all features to ensure that their

standard deviation is 1. Furthermore, we center features around their means and align

the signs of features with group labels, such that E(xi|yi = 1) = µ and E(xi|yi =

−1) = −µ with µ = (µ1, . . . , µp)
t and µj ≥ 0 for j = 1, . . . , p. Assume that all

features are conditionally independent of each other and they follow the multivariate

normal distribution within each group:

xi|yi ∼


N(+µ, I) yi = +1

N(−µ, I) yi = −1

.

The effect size vector µ = (µ1, . . . , µp)
t presents signal strengths of features for the

purpose of classification. Higher values of µj suggest better separation between two

groups in feature j and consequently feature j is more likely to be important for

classification. Here notice that the dimension of µ is very high, ranging from hundreds

81



to millions depending on an actual problem. To overcome the curse of dimensionality,

sparsity is a common assumption. That is, it is believed that there are only a small

number of biomarkers that are differentially expressed between groups, i.e. their effect

sizes µj are not zero. These features are considered essential to construct a classifier

and the number of these features is m (� p). The other p−m features, however, are

noise and not differentially expressed, with µj = 0. For the ease of exposition, we may

reorder the features such that the first m features are important, and the resulting µ

has the form µ = (µ1, · · · , µm, 0, · · · , 0︸ ︷︷ ︸
p−m copies

)t. In general, the values in (µ1, · · · , µm)t are

unknown at the design stage. In this paper, we assume we can obtain a lower bound

µ0 for (µ1, · · · , µm)t based on prior research results or a certain hypothesis and thus

and replace µ by µ = (µ0, · · · , µ0︸ ︷︷ ︸
m copies

, 0, · · · , 0︸ ︷︷ ︸
p−m copies

)t. Clearly such simplification will lead to

a conservative estimate of the sample size, which is acceptable in practice when no

good pilot studies are available to estimate µ1, · · · , µm satisfactory.

A linear classifier is then employed for the classification problem, and their perfor-

mance is evaluated. Constructing a linear classifier is equivalent to using training data

D to derive a certain weighting scheme G that allocates weights w = (w1, · · · , wp) ∈

Rp, denoted byw = G(D). The classification rule for a new subject is: (i) ifw·xi ≥ 0,

subject i is assigned to Group 1; (ii) if w · xi < 0, subject i is assigned to Group -1.

Here a · b denotes the inner product of two vectors.

4.3.2 Objective Function

The performance of a given classifier may be evaluated by the probability of correct

classification (PCC). We employ PCC in this paper as the target objective function

for sample size determination. In the setting of two groups, the PCC is expressed as

PCC = P (Subject i is classified to Group 1|yi = 1)× P (yi = 1)

+P (Subject i is classified to Group -1|yi = −1)× P (yi = −1).
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Notice that the probability of Subject i being classified to Group 1 given yi = 1 is

the sensitivity while the probability of Subject i being classified to Group -1 given

yi = −1 is the specificity. The PCC is a weighted average of these two important

operating characteristics of a classifier. Given the weight w, it is easy to derive the

PCC of a linear classifier as PCC(w;µ, n) = Φ( w·µ√
w·w ) where Φ(·) is the cumulative

distribution function of the standard normal distribution.

In the best scenario, all important features are included in the classifier. This leads

to the oracle classifier and the associated PCC is PCCoracle = Φ(mµ0√
m

) = Φ(
√
mµ0).

In the worst scenario, none of the important features are included in the classifier,

leading to a random classifier and the resulting PCC is PCCrandom = 0.5. Clearly,

a practically achievable PCC lies in between the best and worst scenarios, and its

exact value depends on how much information can be extracted from the training

data. Thus, we can set a PCC target as PCCtarget ∈ (PCCrandom, PCCoracle).

Let PCC(n) be the PCC of a study with n subjects. Then the sample size

requirement is defined as the smallest n such that PCC(n) ≥ PCCtarget. If the inverse

function of PCC(n) can be derived, then the sample size could be easily determined

by n ≥ PCC−1(PCCtarget). However, a closed form solution for PCC−1(·) rarely

exists. In this case, we can employ the numerical algorithm to evaluate it and obtain

the sample size. For instance, the binary search algorithm can useful. We find n1 and

n2 such that PCC(n1) < PCCtarget and PCC(n2) > PCCtarget. Since PCC(n) is

monotone increasing with respect to n, the required sample size n should fall inside

the interval of (n1, n2) and be efficiently identified by the binary search method.

4.3.3 Feature Selection

In general the weighting scheme G can assign non-zero weights to all available

features. However, using all available features in the classifier can reduce PCC if

most of them are not important, raising the noise of level in the classifier. Instead,
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performing regularized feature selection allows us to include only important features

in the classifier and consequently enhance its performance. This is an especially

appealing approach where the sample size n is much less than the total number of

features, p.

Feature selection is primarily driven by pairwise associations between the features

xij and the group assignment yi, in which features having strongest associations will

be selected. To proceed, let Z = (z1, . . . , zp) be the vector of z-scores derived from a

potential training data D:

zj =
1√
n

n∑
i=1

yixij j = 1, . . . , p.

Then zj ∼ N(
√
nµ0, 1) for important feature j = 1, . . . ,m and zj ∼ N(0, 1) otherwise.

In other words, the z-scores for those p − m unimportant features appear to be

clustered around 0 while the z-scores for those m important features are away from

zero. Therefore, a natural strategy for feature selection is to choose an appropriate

threshold λ such that we only include features satisfying |zj| ≥ λ j = 1, . . . p. With

a given threshold λ, we can incorporate this parameter of feature selection into the

definition of weighting scheme:

wj =


1, if zj > λ;

−1, if zj < −λ;

0, otherwise.

(4.1)

We denote the weighting scheme (4.1) with threshold λ by Gλ. In actual data analysis,

we can employ various thresholding procedures H(D) to determine threshold λ and

the corresponding weight scheme becomes GH(D). Once again, it is worth emphasizing

that the thresholding procedure H(D) should depend on the training data D only but

not the true effect size vector µ, since µ is never fully known in practical applications.
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In the following we will introduce two procedures that may be employed to determine

λ.

Higher Criticism Threshold

The higher criticism threshold (HCT), proposed by Donoho and Jin (2009), pro-

vides a data-driven approach to select λ in a high-dimensional classification analy-

sis. Using the distribution of p-values obtained from univariate association screening

test for individual features with the group assignment, HCT allows us determine a

threshold λ for weighting scheme (4.1). Since only important features are used for

classification, HCT can substantially improve the PCC.

Now we present the detail of HCT procedure, which is denoted by HCT (D)

with respect to training data D. Recall that zj is the z-score obtained in an asso-

ciation test for feature j with group assignment yi. Then the resulting two-sided

p-value is πj = 2 × {1 − Φ(|zj|)}. For an unimportant feature j, zj ∼ N(0, 1) and

the corresponding πj ∼ Uniform(0, 1). In contrast, for an important feature j,

zj ∼ N(
√
nµ0, 1). Therefore the p-value πj for the important features does not follow

Uniform(0, 1) and tends to be extremely small compared to p-values for the unim-

portant features. As a result, we only need to focus on the smallest dpα0e p-values

(dxe denote the smallest integer larger than x and we typically choose α0 = 10%) so

as to identify the important features. Denote these smallest p-values in an increasing

order by (π(1), · · · , π(dpα0e)). Donoho and Jin (2009) showed that the l-th ordered

p-value with l = argmaxk=1,...,dpα0e
√
p

k/p−π(k)√
k/p(1−k/p)

provides an appropriate cutoff for

feature selection. So the features whose p-values are less than π(l) are considered

being important for classification. Equivalently, we may convert the p-value cut-

off π(l) to the z-score threshold HCT (D) = |Φ−1(
π(l)
2

)|. Then the resulting PCC

is ED
{
PCC(GHCT (D)(D);µ, n)

}
where the expectation is taken over the sampling

distribution of training data D.
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The HCT brings new insight to the asymptotic properties of linear classifiers under

the so-called rare and weak model (Donoho and Jin, 2009). This model is of specific

interest in the theory of high-dimensional classification, referring to the mechanism

in that important features become rarer and their effect size become weaker when

the total number of features increases, namely p → ∞. In the rare and weak model

suggested in (Donoho and Jin, 2009), the number of important features m increases

with p through the relation: m = p1−β where the parameter β ∈ (0, 1) essentially

controls the sparsity; β closer to 1 implies a smaller number of important features.

The effect size µ0 vanishes to zero along p according to µ0 =
√

2r log p√
n

where r ∈ (0, 1)

controls the signal strength. Moreover, we see that the sample size n is in the order

of c× (log(p))γ with c and γ > 0. Within this assumed framework, Donoho and Jin

(2009) proves that the PCC of any linear classifiers is characterized only by (β, r)

through a certain function ρ(β): (i) when r > ρ(β), the classification analysis is

asymptotically feasible and the PCC of the HCT classifier approaches to 1 as p→∞;

and (ii) when r < ρ(β), the classification analysis is asymptotically unfeasible and the

PCC of any linear classifier approaches to 0.5 as p → ∞. The result of asymptotic

feasibility is very critical for guiding the design of classification analysis. It allows us to

make a timely decision on the feasibility of a study under the planning stage. Simply

verifying inequality r > ρ(β) can help investigators to avoid wasting their investment

of time and effort to data collection for a failed study. The above asymptotic results of

feasibility will be illustrated through simulation in Appendix A using our R software

package.

Cross Validation Threshold

Cross validation (CV) is a popular data-driven method to choose tuning parame-

ters in the statistical literature. Since the value of λ can also be regarded as a tuning

parameter, it can be determined by CV.
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We denote the CV thresholding procedure by CV (D) where D is training data.

The main idea behind CV (D) to choose an appropriate λ is to maximize the apparent

PCC, denoted by ˜PCC(D, s), which is function of both a threshold s and the training

data D. The apparent PCC can be computed as the following steps:

Step 1: Randomly divide a training data D into k equal-sized subsets, D1, · · · , Dk.

Step 2: For each q = 1, . . . , k, treat Dq as a CV testing set and the rest of the

data D−q as a CV training set, and then use (4.1) to obtain the weighting w(D−q, s)

from the CV training set D−q and a given s value where z-scores are calculated from

D−q only.

Step 3: Calculate the apparent PCC on a CV testing set Dq as

˜PCC(Dq, w(D−q, λ))

=
∑

(xi,yi)∈Dq

{I(xi · w(D−q, λ) ≥ 0)I(yi = 1) + I(xi · w(D−q, λ) < 0)I(yi = −1)}

Step 4: Repeat Step 2 and Step 3 for all q = 1, . . . , K and then calculate the

overall apparent PCC ˜PCC(D, s) = 1
k

∑k
q=1

˜PCC(Dq, w(D−q, λ)).

Step 5: Finally select λ to maximize the overall apparent PCC: CV (D) =

argmaxs>0
˜PCC(D, s) for a sequence of dense grid points.

For a study employing the CV thresholding procedure for feature selection, the

expected PCC is ED
{
PCC(GCV (D)(D);µ)

}
where the expectation is taken over sam-

pling distribution the training data D.

4.4 Implementation

Now we present numerical methods to implement the calculation of PCC. Dobbin

and Simon (2007) suggested that the PCC of a study is given by

maxs∈(0,1)ED{PCC(Gs(D);µ, n)}. Clearly their approach implicitly assumes that

the optimal threshold maximizing is chosen in the future classification analysis after

data collection is completed. However, this assumption does not seem to be realis-
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tic. This is because the optimal threshold depends on the effect size vector µ but µ

is never fully known in an actual study. So in practice, the thresholding procedure

H(D) can only produce a threshold from a given training data D, which mostly is

not optimal. Therefore, Dobbin and Simon’s approach to calculate the PCC ignores

the sampling uncertainty arising from the thresholding procedure in an actual appli-

cation. As a result, this strategy tends to overestimate the PCC, and subsequently

the sample size requirement will be underestimated.

In order to address this issue, we need to incorporate the thresholding proce-

dure H(D) into the PCC estimation, so that it is matched seamlessly to actual data

analysis. In the following we present details pertaining to implementation of PCC

estimation employing HCT and CV as the thresholding procedure, respectively.

4.4.1 Implementation of Cross Validation Threshold

We propose the following algorithm to evaluate the expected PCC,

ED
{
PCC(GCV (D)(D);µ, n)

}
, when the CV thresholding employed for feature se-

lection. The algorithm is based on Monte Carlo simulation method to estimate the

expectation with respect to sampling distribution of the training data D. At the kth

iteration of the simulation, we execute:

(a) Generate a training data D with sample size n based on a design assumption

on µ;

(b) Employ CV on the simulated D to determine λ = CV (D);

(c) Compute the z-scores z from the training data D;

(d) Use (4.1) to derive weighting scheme w based on the z-scores z and threshold

λ;

(e) Acquire PCC(k) = Φ( w·µ√
w·w ).
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We repeat the above steps 1-5 for N iterations, generating PCC(1), ..., PCC(N). Then

the Monte Carlo estimate ofED
{
PCC(GCV (D)(D);µ, n)

}
is given by 1

N

∑N
k=1 PCC(k).

The above algorithm has been implemented in an R packages; see more details in Sec-

tion 7 Software.

4.4.2 Implementation of Higher Criticism Threshold

Since HCT (D) is a data-driven thresholding procedure, Monte Carlo simulation

is in principle applied to evaluate ED
{
PCC(GCV (D)(D);µ, n)

}
. The complication

for the implementation arises from the fact that HCT (D) depends on the training

data D exclusively through the dpα0e smallest p-values. In this paper, we propose

instead of simulating training data D, a computational fast algorithm that directly

simulates the dpα0e smallest p-values from the distribution of ordered statistics. The

algorithm is described as follows:

(a) Simulate z-scores for m important features from zj ∼ N(
√
nµ0, 1), j = 1, . . . ,m;

(b) Convert the above z-scores to two-sided p-values by πj = 2 × (1 − Φ(|zj|)),

j = 1, . . . ,m;

(c) Simulate a random variable u ∼ Beta(dpα0e, p−m+ 1− dpα0e);

(d) Simulate variables v1, . . . , vdpα0e−1 independently from Uniform(0, u);

(e) Sort vector (z1, . . . , zm, v1, . . . , vdpα0e−1, u)t in an increasing order.

In Appendix B, we show that the dpα0e smallest values given by the vector

(π1, . . . , πm, v1, . . . , vdpα0e−1, u)t has the same joint distribution as the dpα0e small-

est p-values (π(1), . . . , π(dpα0e))
t derived from training data D. As a by-product, the

above algorithm also supplies the z-score z1, . . . , zm for m important features.

Using this new algorithm to generate the dpα0e smallest p-values gives rise to

a clear computational benefit over simulating the entire vector of p-values based on
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training data D. In the latter case, np random variables need to be generated in order

to simulate training data set as opposed to the former case where only dpα0e + m

variables are generated. Thus the computational efficiency ratio is np
dpα0e+m , which

is approximately equal to n
α0

because m is much smaller than p. For the instance

of n = 100 individuals in a study and the smallest α0 = 10% of p-values being

considered, the algorithm is roughly 1000 times more efficient than generating the p-

values from training data using routine Monte Carlo algorithm similar to that given

in Section 4.1.

To incorporate this algorithm to evaluate the expected PCC,

ED
{
PCC(GHCT (D)(D);µ)

}
, as follows: At the kth iteration, we perform the fol-

lowing steps:

(a) Generate the dpα0e smallest p-values (π(1), . . . , π(dpα0e))
t and the corresponding

z-scores for m important features, with given sample size n and the inputs of

µ0 and m;

(b) Determine the threshold λ = HCT (D);

(c) Use (4.1) to calculate the weight w1, . . . , wm of m important feature using their

z-scores z1, . . . , zm and λ .

(d) Calculate PCC(k) = Φ(
µ0

∑m
j=1 wj√
#w

), where #w denotes the number of elements

in the vector (π(1), . . . , π(dpα0e))
t whose values are smaller than 2× (1− Φ(λ)).

We repeat steps 1-4 for N iterations, generating PCC(1), ..., PCC(N). Then the

Monte Carlo estimate of ED
{
PCC(GHCT (D)(D);µ, n)

}
is given by 1

N

∑N
k=1 PCC(k).

The above algorithm has been implemented in an R packages; see more details in

Section 7 Software.
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4.5 Augmenting with New Sources of Features

In practice, investigators typically collect multiple sources of features and intend

to use all of them in classification analysis. The key question concerning the augmen-

tation of features is to investigate the potential PCC gain resulted from adding new

sources of features to the study. For simplicity, let us focus on two sources of features

(e.g. molecular biomarkers and clinical variables). Denote the features already in

the study by Type A and the new set of features to be added by Type B. Let pA

and pB be the respective dimension of Type A and Type B features. For subject i

in the study, we collect measurements xAi ∈ RpA and xBi ∈ RpB . Again yi = +1,−1

is the group assignment for subject i. The prevalence for Group +1 and Group -1 is

P (yi = 1) = π1 and P (yi = −1) = 1− π1. After centering these features as discussed

in Section 3, we assume the following joint conditional distribution for features xAi

and xBi : xAi
xBi

 |yi ∼ N

yi
µA
µB

,

ΣA 0

0 ΣB




where µA and µB are the respective effect size vectors, and ΣA and ΣB are the

respective variance matrices. It is worth noting that we do not place any restriction

on the effect size vectors and the variance matrices. For instance, the important

features do not have to be sparse and correlation among the features of the same

type is allowed. For mathematical convenience, we assume that the correlation across

two sources of features is zero. The results given in this section are applicable to

a wide range of scenarios, including but not limited to the rare-and-weak model we

introduce in Section 3.3.

To study PCC gain, we need to consider the PCC of linear classifiers in three cases.

including 1) Type A features only; 2) Type B features only; and 3) Type A features

augmented with Type B features. We denote the respective weights for the Type A
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and Type B features are wA and wB, and here again we do not place any assumptions

on these weights. For instance, the weights can be derived from any thresholding

procedures for feature selection. It is known that the PCC of a linear classifier can

be written as Qπ1(t) = Φ(t − 1
2

log(1−π1
π1

)1
t
) × π1 + Φ(t + 1

2
log(1−π1

π1
)1
t
) × (1 − π1)

with t = µ·w√
wtΣw

and µ is the effect size vector, Σ is the variance and w is the

weight. Correspondingly, conditioning on the weights wA and wB, the PCC of the

classifier using Type A features only is PCCA = Qπ1(
µA·wA√
wtAΣAwA

); the PCC of the

classifier using Type B features only is PCCB = Qπ1(
µB ·wB√
wtBΣBwB

); and finally, the

PCC of the classifier using Type A and Type B features simultaneously is PCCAB =

Qπ1(
µA·wA+µB ·wB√
wtAΣAwA+wtBΣBwB

).

In Appendix C, we will prove the following theorem regarding an inequality for

three PCC’s:

min(PCCA, PCCB) ≤ PCCAB ≤ Qp1(
√

2 ·Q−1
π1

(max(PCCA, PCCB))) (4.2)

The first equality will hold when
wtkΣkwk
wtjΣ

jwj
→ 0 where

(j, k) =


(A,B) if PCCA < PCCB

(B,A) if PCCA ≥ PCCB

. The second equality is reached when PCCA =

PCCB and the weights are scaled such that wAΣAwA = wBΣBwB. The inequality

provides an upper bound of the PCC of the classifier including both two types of

features. The upper bound is a function of the PCC of the classifier including only

the more predictive type of features, i.e. max(PCCA, PCCB). If either PCCA or

PCCB approaches to 1, the upper bound will also approach to 1. We compare the

PCCA and PCCB and the upper bound numerically in the simulation section 6.2.
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4.6 Simulation Experiments

We conduct two major simulation studies to investigate the performance of the

proposed design methods. In Simulation A, we focus on the PCC estimated by the

methods under finite sample scenarios mimicking practical studies. In Simulation B,

we illustrate numerically the upper bounds of the PCC when combining two types of

features based on the inequality (4.2) in Section 5.

4.6.1 Simulation A

We set up the simulation study as follows: Consider there are m = 10 important

features that are differentially expressed in two groups of patients. The minimal effect

size of important features is µ0 = 0.4 and the two groups are equally proportioned

with p1 = p2 = 0.5. Varying the total sample size from n = 20 to n = 300, we

compute the PCC using the DS, CV and HCT thresholding procedures.

The relations between the expected PCC and the sample size are displayed in

Panel (a) and (b) of Figure 4.2 with p = 500 and p = 105 respectively. It is easy

to see that the PCC increases along with the sample size n. This is not surprising

because larger data set typically provides more information regarding which features

are important to be included in classification.

The estimated PCC differ across various classification methods. The PCC esti-

mated by the DS method is always the highest. This is primarily because it has

made use of the true effect size vector µ to choose the threshold λ. However, due to

its reliance on µ, the DS method has no counterpart in actual data analysis. As a

result, the PCC the DS method provides is overly optimistic about the actual ability

in feature selection. On the other hand, the PCC estimated by the CV and the HCT

method do not rely on information on µ. These PCC estimates truly reflect the

achievable performance of the corresponding classifiers in the real world applications.

Similarly, the receiver operating characteristic (ROC) curves of these three methods
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PCCtarget DS DSCV HCT

0.70 34 42 40
0.75 46 52 58
0.80 62 72 82
0.85 90 106 138

(a) Sim A1

PCCtarget DS DSCV HCT

0.70 88 92 108
0.75 104 108 130
0.80 126 130 158
0.85 164 190 230

(b) Sim A2

Table 4.1: Sample Size Requirement

(Panel (c) and (d)) also suggests that the DS method provides is overly optimistic

about the actual ability in feature selection reflected by the CV and the HCT method.

It is important to point out that the difference in PCC estimated by these methods

have strong implication on the sample size calculation. Table 4.1 lists the sample size

requirement suggested by three aforementioned design methods. Since the DS method

often predicts overly optimistic PCC, it recommends much smaller sample size than

the CV method or the HCT method. A study could be severely “under powered” if it

is designed solely based on the DS method. Furthermore, because the gap of the PCC

curves become stable as the PCC increases, such discrepancy of the PCC estimated

across these methods gradually translates into a substantial difference in sample size.

These observations highlight the importance of calculating the sample size based on

PCC estimates that are achievable by statistical methods at the data analysis stage.

4.6.2 Simulation B

Now we illustrate the feature augmentation. Inequality (4.2) provides an upper

bound of the PCC when we supplement new type of features to the study relative

to the PCC’s of each type of features individually, i.e. max(PCCA, PCCB). We can
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Figure 4.2
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visualize in Figure 4.3 the upper bound (the left column) and the improvement in

PCC (the right column) for Group 1 prevalence (p1) ranging from 0.5 to 0.7. If both

PCCA and PCCB are small, then max(PCCA, PCCB) will also be small. In this case,

Figure 4.3 suggests that the upper bound of the PCC of classifiers that incorporate

both Type A and Type B features is only slightly higher than max(PCCA, PCCB).

In other words, if either type of features is not predictive of the group assignment,

supplementing new type of features with the type of features already in the study

will not greatly improve the PCC. If both types of features are of medium quality, i.e.

both PCCA and PCCB are in the medium range around 0.8, then we could obtain

the highest gain (approximately 10% or less) in PCC by incorporating the new type

of features. Finally, if either PCCA or PCCB is very high, then the augmentation

with new features will not provide much more information for classification than using

only one type of the features. Therefore, the PCC cannot be significantly improved

in this case.

4.7 Application

Through our R package, we now apply the methods developed in this paper to

design our motivating study, that is a new study proposed by a clinician at University

of Michigan Kidney Transplantation Center, which aims to predict the graft survival

of a patient after kidney transplant using proteomics biomarkers. In this study,

patients are to be classified into two groups: stable transplant and rejected transplant.

Overall the planning of the study will be carried out in two steps (Figure 1).

In Step I, p = 108 proteomics biomarkers will be collected using microarray for

each patient in both stable and rejected group, and classifiers for graft survival will

be developed based on the microarray data. The investigator suggested that among

these proteins, approximately m = 10 of them are informative for predicting graft

survival, and for each informative biomarker, the difference in mean between the
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Figure 4.3: The Upper Bounds of PCC with Two Types of Features and its Improve-
ment over a Single Type of Features.
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stable group and the rejected group should be at least 0.8 of the standard deviation

and for the non-informative biomarkers, the difference in mean is 0.

Given these inputs from the investigators, we check the feasibility of the proposed

classification analysis. Under the rare-and-weak model, the strength parameter r =

µ20n

2 log p
= 5.13 and the sparsity parameter β = 1 − logm

log p
= 0.51. Referring to the

definition of ρ(β) in Donoho and Jin (2009), we confirm r > ρ(β). Therefore, the

classification analysis is feasible and at least there is at least one classifier (e.g. HCT)

whose PCC approaches to 1 as p→∞.

Then we set an appropriate target for the PCC. The PCC of the ideal classifier is

PCCideal = Φ(mµ0√
m

) = 0.90, and the PCC of the random classifier is PCCrandom = 0.50

since both groups are of equal proportion in our design. Thus any values between

PCCrandom = 0.50 and PCCideal = 0.90 could be a legitimate PCCtarget.

Panel (a) of Figure 4.4 which shows the sample size n needed to achieve PCC

estimated by various methods for this proposed study. In general, as the sample size

becomes larger, the PCC increases from the lower bound 0.50 to the upper bound 0.90.

Panel (b) of Figure 4.4 displays the sample size requirement for various PCC targets.

A large sample size is required when a higher PCC target is set for the classifiers

in the study. In addition, the DS method clearly underestimates the sample size

requirement when compared to the other methods.

In Step II, the investigator will consider adding clinical predictors such as lab test

measures, and/or patient demographic characteristics into the classifier to hopefully

improve classification performance. Let us consider an interesting scenario where the

study currently being planned with the proteomics biomarker alone can only achieve

a low target PCC, say 0.7, and the investigator considers to improve the PCC by

incorporating a new type of features, such as patients’ renal functional measures,

including proteinuria, GFR, hematuria, ALB, CHOL, CHEAT, C3, C4, etc. In Panel

(c) of Figure 4.4, we present the achievable region of the PCC with both types of
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features (PCCAB, in the notation of Inequality (4.2)) for various value of the PCC

with the new features (PCCB). We keep the PCC with the proteomics markers

(PCCA) fixed at 0.7 since it is already planned in the study. When the new features

are not as informative as the proteomics markers (PCCB ≤ PCCA), combining the

two leads to limited improvement of the classifier at best and might actually degrade

the classifier due to the noise introduced by the new features. On the other hand, if

the new features are more informative (PCCB ≥ PCCA), incorporating them in the

classifier is likely to substantially enhance the PCC, potentially exceeding 90% PCC.

4.8 Software: HDDesign

We have implemented the proposed methodologies in this paper in a user-friendly

R package named “HDDesign”. This package includes functions i) to determine fea-

sibility of a classification analysis; ii) to compute the upper bound of a PCC for any

linear classifiers, using the Dobbin and Simon (DS) , CV, or HCT method; iii) to

estimate the PCC of design method given the input of design parameters; and iv)

to determine the sample size requirement to achieve a pre-specified target PCC for a

design method. There are various design methods available in the package to choose.

For more details concerning the usage of the functions in the package, please refer to

the manual of the package.

4.9 Discussion

In this paper, we develop and compare designs for classification analysis in the

presence of high-dimensional features using PCC as the objective for sampling size

estimation. We discuss the PCC estimation method by Dobbin and Simon (2007),

and extend this approach by implementing both cross-validation method and the

HCT method to compute the actual PCC that would be obtained in an practical
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application. We propose a new simulation algorithm based on order statistics that

allows us to efficiently compute the expected PCC of the HCT classifier. We derive an

inequality for the upper and lower bounds of the achievable PCC when supplementing

new types of features into the study. We employ simulations and a a practical example

to compare the relative efficiency of the three designs and evaluate potential bias in

terms of the PCC and the corresponding sample size. More importantly, we supply an

R package that implements all the proposed methods, which will fill in the software

need of design for classification analysis with high-dimensional data.

For future work, our work on the design of high dimensional classification studies

can be improved in the following directions. Classification of more than two groups

of patients could be considered since it commonly appears in many clinical studies.

We would also be interested in investigating how various correlation structures of

features affect classification performance. An interesting scenario is non-zero corre-

lations among the features. For example, if two features are positively correlated,

they will provide similar information and thus they are less effective for classifica-

tion when compared to two independent features. When the positive correlation is

ignored, we risk overestimating the PCC. Similarly, the opposite statement is true for

negative correlations. Potentially, we could adjust for the correlation if we plugins

the values of correlations into the formula for calculating the PCC. However, reliable

estimate for the correlations are very difficult to obtain given the enormous pairs of

correlations ( (p−1)p
2

for p features) and the limited preliminary data available in the

study planning stage. Without such reliable estimate, the plugin approach might

not significantly improve, or even deteriorate the accuracy of PCC calculation. So

for simplifying design inputs, many methods, including our own, assume features are

independent. We believe a more promising approach to incorporate correlation in the

PCC calculation is to derive the bounds of the PCC assuming the plausible range of

the correlation values. This approach will be more robust than the plugin method.
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CHAPTER V

Conclusion

In this dissertation, we developed novel design methodologies for studies employing

1) repeated measures of nonlinear profiles; 2) functional responses; 3) high dimen-

sional genetics and proteomics data.

In Chapter 2, we focus on studies involving repeated measures of nonlinear profiles.

The profiles were characterized by the conditionally mixed model. We considered

sampling not only individuals, but also days within individuals, and times within

days. The objective was minimizing estimation variance of profile features. We

analyzed the impacts of the multi level variabilities on the study design by deriving

a simplified version of the variance formula. Such formula is surprisingly neat in that

the terms involving the between subject variability, between day variability, and the

daily sampling schedules are completely separated from each other. Hence, we derived

several useful properties: 1) the optimal daily sampling schedule depends only on the

shape of the response profile; 2) we obtained the optimal number of days for sampling

under different cost structures for the study; 3) we showed that the optimal Bayesian

design is only affected by the expectation of the variability parameters, but not their

full prior distribution. These properties are useful in practice since they substantially

reduce the computation burden of Bayesian designs. We apply the new methods to

the salivary cortisol studies for investigating the association between cardiovascular
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disease and stress.

In Chapter 3, we considered studies involving data with underlying functional re-

sponse with the objective of capturing the mean profile and between subject variabil-

ity. We propose an approach to longitudinal study design that optimizes estimation

of the mean and between-subject variability. Our approach employs a semiparamet-

ric model that characterizes the mean profile and the variability separately. We used

functional principal component analysis (FPCA) to derive a parsimonious and flexible

representation of the temporal pattern of the variability. Smoothing of the principal

components was incorporated to enhance estimation stability given the potentially

unbalanced and irregular sampling of the preliminary data. The population mean

can be modeled with known parametric functions or with splines. Following the ex-

isting literature, we employed D-optimality for the mean and variability parameters

as the optimization criterion. Simulations suggest that if between subject variability

is induced by random effects in a parametric mean profile, the FPCA approach and

existing methods based on parametric mixed model (PMM) lead to equally compe-

tent sampling schedules. For more flexible variability structures, however, the FPCA

approach is superior. We apply the new approach to two real world examples. In

the first example we show that the FPCA approach identifies new sampling regions

for measuring the mean and the variability of salivary cortisol profiles that are not

discovered by the PMM approach. In the second example, the mean profile of pro-

gesterone in menstrual cycles is modeled by splines and the PMM approach is no

longer applicable. We employ the FPCA approach to identify optimal schedules for

capturing the variability of the profiles and show that schedules we obtained are also

highly predictive of conceptive status. In both simulations and real world examples,

we show that the FPCA approach is more robust flexible for capturing the variability

of the process.

In Chapter 4, we explore designs for studies involving high dimensional genetics
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and proteomics data with the objective of constructing classifiers with high probabil-

ity of correct classification (PCC). We begin with a review of a statistical framework

proposed by Dobbin and Simon (2007), which incorporates feature selection in the

estimation of the PCC for high dimensional features. We recognize that the thresh-

olding step in this approach requires the complete knowledge of the effect size, which

is not available in practical applications. As a result, this approach overestimates

the PCC achievable by practical data analysis tools and consequently underestimates

the sample size requirement necessary to obtain the PCC target. In order to address

this issue, we develop two design approaches based on cross-validation (CV) and high

criticism threshold (HCT), respectively. These approaches are data driven and do not

demand any information regarding the true effect size. Therefore, the PCC estimates

derived from these approaches are achievable in practice if the corresponding classi-

fiers are employed. In terms of computation, we propose a new simulation method

based on order statistics that allows us to efficiently compute the PCC based on the

HCT method. Furthermore, since there are a variety of technologies emerging to

measure different type of the high dimensional features, the investigators are often

interested in supplementing new type of the features into the study to enhance the

PCC of the study. So we derive an inequality for the upper and lower bounds of

the achievable PCC when adding new types of feature in the study. We evaluate the

performance and validity of our proposed method by simulations. Finally we use the

prediction of long term survival after kidney transplant to illustrate the application

of our new approaches.

Overall this dissertation contributes three novel methodologies for study designs

involving three distinct data structures. The methods were evaluated by simulations

and illustrated with real data from diverse application scenarios. Furthermore these

methodologies can be improved to meet the need of more complex design problems.

For measuring the profile features as described in Chapter 2, it will be beneficial
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to consider non-parametric models which place less restriction on the data than the

parametric models we used. Another extension is to consider the sampling protocols

for detecting differences between groups. For example, cortisol profiles may differ by

age, gender and ethnic groups. From the statistical point of view, the same method

for selecting the efficient sampling protocol can be applied to all groups since optimal

sampling protocols are typically robust to small changes in parameters. On the other

hand, if the differences in the cortisol profiles are big, new methods might be needed

to simultaneously select schedules for each group, as well as optimizing other criteria

like power or sample size.

We can also extend the framework of determining optimal schedules based on

FPCA as described in Chapter 3 in many ways depending on the design problems.

One direction will be to obtain the sampling schedules for estimating βk(t), which

is modeled by smoothing spline. One can consider a surrogate for the smoothing

spline, for which the optimal schedule is known, such as a piecewise linear spline

(the optimal schedule is simply the set of the knots). Another extension could be

the sampling schedules for a study incorporating multilevel sampling. In the second

example, repeated cycles from the same woman were excluded. To incorporate such

data, one could employ a hierarchical FPCA model and derive the information matrix

for the grand mean and variability parameters at multiple levels. Furthermore, our

method currently consider only one optimal schedule in the design due to practical

constraint of large scale epidemiology studies. Nevertheless, it is also interesting to

consider multiple optimal schedules in the design since it could potentially improve

the efficiency of the design (Mentré et al., 1997). Lastly, deriving theoretical results

of the FPCA approach, such as its asymptotic properties and alternative methods to

select the number of principal components, would be of interest.

Building on top of these methods, we can explore more complex design for studies

involving longitudinal measurement. For instance, the investigator might be inter-
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ested in generating the optimal design for measuring a profile feature (Chapter 2)

as well as capturing the between subject variability (Chapter 3). One approach to

this problem is to define a utility function that combines both the profile feature ob-

jective and the between subject variability objective. However, these two objectives

are of different scales: variance for the measuring the profile feature; D-optimality

for capturing the variability. Therefore it is difficult to define an appropriate utility

function that is readily interpretable. Alternatively, we can identify the design that

maximize our ability to capture the variability among those designs that are capable

of measuring the profile feature to the pre-defined precision. This approach is often

referred to as the minimax approach, which will provide more interpretable results in

our case. We can extend this approach by developing efficient algorithm to identify

the minimax design specific for our problem and evaluating other theoretic properties.

Finally, our work on the design of high dimensional classification studies can be im-

proved in the following directions. Classification of more than two groups of patients

could be considered since it commonly appears in many clinical studies. We would

also be interested in investigating how various correlation structures of features affect

classification performance. An interesting scenario is non-zero correlations among

the features. For example, if two features are positively correlated, they will provide

similar information and thus they are less effective for classification when compared

to two independent features. Therefore we will risk overestimating the PCC when

positive correlation is ignored. The opposite statement will be true for negative cor-

relations. Potentially, we could adjust for the correlation if we plugins the values of

correlations into the formula for calculating the PCC. However, reliable estimate for

the correlations are very difficult to obtain given the enormous pairs of correlations

( (p−1)p
2

for p features) and the limited preliminary data available in the study planning

stage. Without such reliable estimate, the plugin approach might not significantly

improve, or even deteriorate the accuracy of PCC calculation. So for simplifying de-
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sign inputs, many methods, including our own, assume features are independent. We

believe a more promising approach to incorporate correlation in the PCC calculation

is to derive the bounds of the PCC assuming the plausible range of the correlation

values. This approach will be more robust than the plugin method.
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APPENDIX A

Derivation of the Information Matrix for

Conditionally Linear Mixed Model

In this section, we will derive the closed form solution of the information matrix

for conditionally linear mixed model. Under the framework of CLMM, we have

yijk = f(t; θij) + εijk = H(t, φ)ηij + εijk (A.1)

where H(t, φ) is a row vector that depends on the measurement time t and a nonlinear

population parameter φ. ηij is a linear parameter vector. εij ∼ N(0,Σε) is the

measurement error. To incorporate the between subject and between day variability,

we assume

ηij|ηi ∼ N(ηi,Σ
d) (A.2)

ηi ∼ N(η,Σs).

Consider a study in which we have n subjects and each subject takes their cortisol

sample for m days according to the schedule T = (t1, t2, . . . , td), i.e., the sched-

ule is the same for all days. The corresponding cortisol measurements are yi =
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(yi11, . . . yi1d,yi21 . . . yimd). We introduce some more notations: H(T, φ) = (H(t1, φ), . . . ,

H(td, φ))′ is the design matrix, H̃(T, φ) = (H(T, φ)′, . . . , H(T, φ)′)′ is m copies of

H(T, φ) stacked together, H̄(T, φ) is a block diagonal matrix with H(T, φ) on the

diagonal.

Let Θi = (ηti1, . . . η
t
im)t be the vector collecting linear random effects of all days

from the same subject. According to (A.2), the distribution of Θi is given by

Θi ∼MVN(Θ,Σ) Σ =



Σs + Σd Σs · · · Σs

Σs Σs + Σd . . .
...

...
. . . . . . Σs

Σs · · · Σs Σs + Σd


(A.3)

where Θ = (ηt, . . . , ηt)t is d copies of the population mean η and Σ is a block matrix.

The joint distribution of cortisol measurement for subject i over the d days is

therefore

yi ∼MVN(H(T, φ)Θ, D(T, φ)) D(T, φ) = H̄(T, φ)ΣH̄(T, φ)t + Σε (A.4)

Consequently the log-likelihood contribution for subject i (less a constant) is

li = −1

2
log |D(T, φ)| − 1

2
(yi − H̃(T, φ)η)tD−1(T, φ)(yi − H̃(T, φ)η) (A.5)

Then by large sample theory, the MLE of θ = (η, φ) will follow a multivariate normal

distribution with mean (η, φ) and variance I−1(η, φ)/n, where

I(η, φ) = −E

 ∂2li
∂ηt∂η

∂2li
∂φ∂η

∂2li
∂φ∂ηt

∂2li
∂φ∂φ

 (A.6)
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is the expected information matrix with components

E

(
∂2li
∂ηt∂η

)
= −H̃(T, φ)t ·D−1(T, φ) · H̃(T, φ) (A.7)

E

(
∂2li
∂φt∂η

)
= −H̃(T, φ)t ·D−1(T, φ) · ∂H̃(T, φ)

∂φt
· η (A.8)

E

(
∂2li
∂φ∂φ

)
= −

(
∂H̃(T, φ)

∂φ
· η

)t

·D−1(T, φ) ·

(
∂H̃(T, φ)

∂φ
· η

)

−1

2
tr

(
D(T, φ) · ∂D(T, φ)

∂φ
·D(T, φ) · ∂D(T, φ)

∂φ

)
(A.9)

Now if we define X(t, θ) = (H(t, φ)′, ∂H(t,φ)
∂φ

)′ and X(T, θ), X̃(T, θ), X̄(T, θ) we can

combine (A.7)-(A.9) as

I(θ) = X̃(T, θ)′D−1(T, θ)X̃(T, θ) + F (T, θ) (A.10)

Therefore the Taylor expansion approximation of I(θ) for nonlinear mixed models

becomes exact under CLLM.
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APPENDIX B

Derivation of A(T, θ)

In this section, we will compute the element of A(T, θ). To simplify the notation,

we denote X(t, θ) as X and D(T, θ) as D. So D can be written as

D =



F +B B · · · B

B F +B
. . .

...

...
. . . . . . B

B · · · B F +B


where F = XΣdX ′ + σ2I and B = XΣsX ′. Then it is easy to show that the inverse

of D can be written as

D−1 =



U + V V · · · V

V U + V
. . .

...

...
. . . . . . V

V · · · V U + V


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where U = F−1 and V = −(F +mB)−1BF−1. Further we have

V = −(F +mB)−1 1

m
(mB + F − F )F−1

=
1

m
((F +mB)−1 − F−1)

Then the diagonal block of ∂D
∂θi

∂D−1

∂θj
is

∂D

∂θi

∂D−1

∂θj
=

∂(F +B)

∂θi

∂(U + V )

∂θj
+ (m− 1)

∂B

∂θi

∂V

∂θj

= − 1

m
(
∂Q

∂θi
Q−1 ∂Q

∂θj
Q−1 + (m− 1)

∂P

∂θi
P−1 ∂P

∂θj
P−1)

where P = X(T, θ)ΣdX(T, θ)′ + σ2 and Q = P + X(T, θ)ΣsX(T, θ)′. Then the ij

element of A = −1
2
(∂vec(D)

∂θt
)t ∂vec(D

−1)
∂θt

is

Aij = tr

(
−1

2

∂D

∂θi

∂D−1

∂θj

)
=

1

2
tr

(
∂Q

∂θi
Q−1 ∂Q

∂θj
Q−1 + (m− 1)

∂P

∂θi
P−1 ∂P

∂θj
P−1

)
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APPENDIX C

Derivation of the Inverse of the Information

Matrix

In this section, we will prove that for I(θ) = nX tD−1X where D = XΣX t + σ2I

where

Σ =



Σs + Σd Σs · · · Σs

Σs Σs + Σd . . .
...

...
. . . . . . Σs

Σs · · · Σs Σs + Σd


then I−1(θ) = 1

n
Σs + 1

nm
(Σd + σ2(X tX)−1)

In the paper, we have shown that I(θ) is the information matrix for θ for the

following hierarchical model:

Yij ∼ N(Xθij, σ
2I)

θij ∼ N(θi,Σd)

θi ∼ N(θ,Σs)

where j = 1, . . . ,m and i = 1, . . . , n. Then by MLE theory, we can compute the

asymptotic variance of θ̂ by I−1(θ). At the same time, since everything is assumed
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normally distributed, we can directly compute the variance of θ̂. We can write the

complete likelihood of the model as (less a multiplicative constant that does not

involve θij, θi, θ)

n∏
i

� m∏
j

�
exp(−1

2
((Yij −Xθij)′

1

σ2
(Yij −Xθij)

+ (θij − θi)′Σ−1
d (θij − θi) + (θi − θ)Σ−1

s (θi − θ)))dθijdθi

Integrate with respect to θij, we have

n∏
i

�
exp(−1

2
(−

m∑
j

(X ′Yij + Σ−1
d θi)

′(
1

σ2
X ′X + Σ−1

d )−1(X ′Yij + Σ−1
d θi)

+ θ′iΣ
−1
d θi + (θi − θ)Σ−1

s (θi − θ)))dθi (C.1)

Using the fact that Σ−1
d − Σ−1

d ( 1
σ2X

′X + Σ−1
d )Σ−1

d = (Σd + σ2(X ′X)−1)−1, the above

becomes

n∏
i

�
exp(−1

2
(m · θ′i(Σd + σ2(X ′X)−1)−1θi − 2θ′i(

1

σ2
X ′X + Σ−1

d )−1

m∑
j

X ′Yij

+ (θi − θ)Σ−1
s (θi − θ)))dθi

Then integrate with respect to θi

exp(−1

2
(−n(

n∑
i

(H+Σ−1
s θ)′(Σ−1

s +m(Σd+σ2(X ′X)−1)−1)−1(H+Σ−1
s θ)+nθ′Σ−1

s θ)))

where H = ( 1
σ2X

′X + Σ−1
d )−1

∑m
j X

′Yij. The quadratic term involving θ inside the

exponential function is

−1

2
θ′n(Σ−1

s − Σ−1
s (Σ−1

s +m(Σd + σ2(X ′X)−1)−1)−1Σ−1
s )θ
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So the variance of θ̂ is (n(Σ−1
s − Σ−1

s (Σ−1
s + m(Σd + σ2(X ′X)−1)−1)−1Σ−1

s ))−1 =

1
n
(Σs + 1

m
(Σd + σ2(X ′X)−1)).

It is easy to generalize the above results to the arbitrary level of variability. We

can consider the hierarchy model:

Yi1···ip ∼ N(Xθi1···ip , σ
2I)

θi1···ip ∼ N(θi2···ip ,Σ1)

...

θip ∼ N(θ,Σp)

Here ij = 1..nj for j = 1..p. Then we set A1 = σ2(X ′X)−1, Aj+1 = 1
nj

(Σj + Aj)

for j = 1..p − 1 and Hi1···ip = X ′Yi1···ip , Hij+1···ip =
∑nj

ij=1(Σ−1
j + A−1

j )−1Hij ···ip for

j = 1..p−1. Then we will show that after we have integrated out all θiq ···ip q = 1..p−1,

the terms inside the exponential function involving is θiq+1···ip is (less 1
2
)

−
nq∑
iq=1

((Hiq ···ip + Σ−1
q θiq+1···ip)

′(Σ−1
q + A−1

q )−1(Hiq ···ip + Σ−1
q θiq+1···ip))

+ nqθ
′
iq+1···ipΣ

−1
q θiq+1···ip

+ (θiq+1···ip − θiq+2···ip)
′Σ−1

q+1(θiq+1···ip − θiq+2···ip)

We prove this statement by induction:

1. By referring to (C.1), the statement is true for q = 1.

2. Assume the statement is true for q = k, Then we need to show the expres-

sion after we have integrated out θik+1···ip . By induction assumption, the expression

involving θik+1···ip after integrated out θik···ip is
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−
nk∑
ik=1

((Hik···ip + Σ−1
k θik+1···ip)

′(Σ−1
k + A−1

k )−1(Hik···ip + Σ−1
k θik+1···ip))

+ nkθ
′
ik+1···ipΣ

−1
k θik+1···ip

+ (θik+1···ip − θik+2···ip)
′Σ−1

k+1(θik+1···ip − θik+2···ip)

which can be written as

θ′ik+1···ip(Σ
−1
k+1 + nk(Σ

−1
k − Σ−1

k (Σ−1
k + A−1

k )−1Σ−1
k ))θik+1···ip

− 2θ′ik+1···ip(

nk∑
ik=1

(Σ−1
k + A−1

k )−1Hik···ip + Σ−1
k+1θik+2···ip)

+ θ′ik+2···ipΣ
−1
k+1θik+2···ip

substitute the definition of Aj+1 and Hj+1, we have

θ′ik+1···ip(Σ
−1
k+1 +A−1

j+1)θik+1···ip−2θ′ik+1···ip(Hik+1···ip +Σ−1
k+1θik+2···ip)+θ′ik+2···ipΣ

−1
k+1θik+2···ip

Then if we integrate out θik+1···ip we have

(Hik+1···ip+Σ−1
k+1θik+2···ip)

′(Σ−1
k+1+A−1

j+1)−1(Hik+1···ip+Σ−1
k+1θik+2···ip)+θ

′
ik+2···ipΣ

−1
k+1θik+2···ip

We collect all the terms involving θik+2···ip ,

−
nk+1∑
ik+1=1

(Hik+1···ip + Σ−1
k+1θik+2···ip)

′(Σ−1
k+1 + A−1

j+1)−1(Hik+1···ip + Σ−1
k+1θik+2···ip)

+ nk+1θ
′
ik+2···ipΣ

−1
k+1θik+2···ip

+ (θik+2···ip − θik+3···ip)
′Σ−1

k+2(θik+2···ip − θik+3···ip)

In this way, we have shown the statement is also true for q = k + 1.
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Then after we integrate out all random components, we are left with

exp(−1

2
(

np∑
ik=1

((Hip + Σ−1
p θ)′(Σ−1

p + A−1
p )−1(Hip + Σ−1

p θ)) + npθ
′Σ−1

p θ))

The quadratic term involving θ is

θ′np(Σ
−1
p − Σ−1

p (Σ−1
p + A−1

p )−1Σ−1
p )θ

So the V ar(θ̂) = (np(Σ
−1
p − Σ−1

p (Σ−1
p + A−1

p )−1Σ−1
p ))−1 = 1

np
(Σp + Ap) = 1

np
(Σp +

1
np−1

(Σp−1 + · · ·+ 1
n1

(Σ1 + σ2(X ′X)−1)) · · · ).
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APPENDIX D

Optimal Design and Cost Analysis Based on

Piecewise Linear Model

In this section, we will present the figures for the design under the piecewise linear

model. The interpretations of these figures are the same as those for the nonlinear

model, which have been discussed in detail in the paper. The designs under two

models share many similarities with only one major exception: more samples per day

is more cost effective for measuring features under nonlinear model but not for the

piecewise linear model.

We also notice that more samples per day is more cost effective for measuring

features under nonlinear model but not for the piecewise linear model.
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Figure D.1: Optimal Design under the Piecewise Linear Model
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(f) Prediction

Figure D.1: Optimal Design under the Piecewise Linear Model (Continued)
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(c) Evening Decline
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(d) AUC
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(e) Sum of Variances of Cortisol Features
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(f) Prediction

Figure D.2: Cost Ratio vs. Variability Ratio (Piecewise Linear Model)
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APPENDIX E

Estimation of FPCA

A.1 Previous Literature

There are generally two major approaches for estimating FPCA, depending on

whether the covariance kernel Cov(fi(t), fi(s)) is used.

When Rice and Silverman (1991) first introduced FPCA, they provided an estima-

tion method for the principal components by identifying βk(t)’s as the eigenfunctions

of the covariance kernel Cov(fi(t), fi(s)). This method works well for functional data

for which yi(t) is regularly and densely sampled and Cov(fi(t), fi(s)) could be ac-

curately estimated. For longitudinal data, however, yi(t) is often irregularly and

sparsely sampled. In this case, the variability in estimating Cov(fi(t), fi(s)) is rela-

tively high, which results in poor estimation of βj(t). In order to address this issue,

Yao et al. (2005) proposed using the local smoothing technique to improve the esti-

mation of Cov(fi(t), fi(s)) and subsequently βk(t). The asymptotic properties of this

method were later established by Hall et al. (2006). Nevertheless, Peng (2009) points

out that this method still has some limitations: the estimated covariance kernel is

not necessarily positive semi-definite and the estimated residual variance σ̂2 could be

negative. Given the difficulty in estimating Cov(fi(t), fi(s)), methods that avoid the
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use of Cov(fi(t), fi(s)) have been considered. James et al. (2000) introduce the the

reduced rank model and develop an EM algorithm for obtaining βk(t) without esti-

mating Cov(fi(t), fi(s)). Peng (2009) recognized the EM algorithm in James et al.

(2000) does not take advantage of the orthonormality of βk(t)’s. Thus they propose a

Newton Raphson algorithm that maximizes the incomplete likelihood over the Stiefel

manifold which consists of orthonormal vectors. Simulations suggest that the New-

ton Raphson algorithm is more accurate than EM algorithm and the local smoothing

approach. However, the Newton Raphson algorithm they proposed is challenging to

implement.

Despite their differences, all the methods discussed above assume βk(t) is modeled

by a linear combinations of spline bases, i.e. βk(t) =
∑q

l=1 bk(t)θjl. This assumption

leads an important question: what is the optimal number of spline bases? While many

authors have suggested using cross validation type statistics to find the best number

of spline bases, the sparse nature of longitudinal data often restricts the number to

be quite small. In this case, the estimated β̂k(t) tends to be “wiggly” and unstable.

A better solution is to employ sufficiently many bases and impose some regularity

conditions on βk(t) at the same time. Silverman (1996) propose a smoothed version

of their original FPCA by defining a new inner product and subsequently a new norm

for βj(t): < βk, βk′ >λ=
�
βk(t)βk′(t)dt + λ

�
β′′k(t)β′′k′(t)dt and ||βk||2λ =< βk, βk >λ.

Here λ is the smoothing parameter. Although this approach fits into the original

FPCA framework nicely, the orthogonormality of βk(t) under <,>λ becomes difficult

to interpret since it now depends on the smoothing parameter λ. As an extension to

Yao et al. (2005), Yao and Lee (2006) proposed a penalized spline models for FPCA.

However, this approach only performs smoothing for the mean of the longitudinal

process but not the principal components βk(t). In considering the joint modeling

of pairs of sparse functional data, Zhou et al. (2008) suggests a smoothness penalty,

λ
�
β′′k(t)2dt, on the functional principal components βk(t), which reduce the mean
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squared error in estimating βk(t) especially when the data are sparse and irregular.

A.2 Our Approach

Given the rich literature on FPCA, we want to find an estimation method that

fits our needs. We prefer the EM approach for the reduced rank model because it

can handle the sparsity of the longitudinal data well, and automatically computes

the loadings on each principal component for every subject. We would also like to

employ penalized spline to reduce the artifacts due to the limited number of spline

bases. Lastly, we want to take advantage of the orthonormality of βk(t) to improve

the estimation efficiency. In the following paragraphs, we will describe a modification

of James et al. (2000) that incorporates the smoothing penalty Zhou et al. (2008):

For subject i, let the sampling times be Ti = (ti1, . . . tini) and the observations be

Yi = (yi(ti1), . . . yi(tini))
′. We model the principal components by linear combinations

of spline basis bl(t): βk(t) =
∑q

l=1 bl(t)θlk. Let Bi be a basis matrix such that (Bi)jl =

bl(tij); θk = (θ1k, . . . , θqk)
′; Θ be the coefficient matrix such that Θ = (θ1, . . . θr) and

finally αi = (αi1, . . . αir)
′. Then the reduced rank model can be written in the matrix

form:

Yi = f(T, η) +BiΘαi + εi (E.1)

where αi ∼ N(0, D), εi ∼ N(0, σ2I). For the purpose of identification, we impose the

orthonormal constraints: Θ′Θ = I,
�
bl(t)bl′(t)dt = δll′ . Then we have the marginal

distribution of Yi:

Yi ∼ N(f(T, η),Σi) Σi = BiΘDΘ′B′i + σ2I

and the observed log likelihood given data

n∑
i=1

−ni
2

log 2π − 1

2
log Σi −

1

2σ2
(Yi − f(T, η))′Σ−1

i (Yi − f(T, η))
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It is difficult to find the MLE for the observed likelihood given its complexity. Instead,

we employ the EM algorithm and work with the complete data likelihood with αi

assumed to be known:

n∑
i=1

−ni
2

log 2π−ni
2

log σ2−1

2
logD− 1

2σ2
(Yi−f(T, η)−BiΘαi)′(Yi−f(T, η)−BiΘαi)−

1

2
α′iD

−1αi

We could encourage the smoothness of βk(t) by introducing a second derivative

penalty λ
�
β′′k(t)2dt with λ being a positive smoothing parameter. To write the

penalty in terms of θk, we let H be a matrix such Hll′ =
�
bl(t)bl′(t)dt . Now we

have λ
�
β′′k(t)2dt = λθ′kHθk. Then we could obtain a smoothed version of FPCA by

maximizing the penalized log likelihood

Q =
n∑
i=1

{−ni
2

log 2π − ni
2

log σ2 − 1

2
logD

− 1

2σ2
(Yi − f(T, η)−BiΘαi)′(Yi − f(T, η)−BiΘαi)−

1

2
α′iD

−1αi}

−
r∑

k=1

λθ′kHθk

(The penalty term on θk is equivalent to incorporating a prior θk ∼ N(0, 1
2λ
H−1) in

Bayesian statistics. )

Green (1990) show that EM algorithm is also applicable to the penalized log

likelihood when the penalty term does not involve latent variables. Hence we can

employ EM algorithm for maximizing Q. The E-step and M-step of the EM al-

gorithm are as follows. For the E-step, we denote E(αi|Yi, η,Θ, D, σ2) by α̂i and

E(αiα
′
i|Yi, η,Θ, D, σ2) by αiα

′
i. We have

α̂i = (σ2D−1 + Θ′B′iBiΘ)−1Θ′B′i(Yi − f(T, η))

ˆαiα′i = α̂iα̂
′
i + (D−1 + Θ′B′iBiΘ/σ

2)−1

For the M-step, we could maximize Q iteratively over η,Θ, D, σ2. The formula for η,
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D, and σ2 are identical to those in James et al. (2000) and they are omitted here.

The interesting question is how to maximizeQ while preserving the orthonormality

of the columns of Θ. Our solution to this problem is a reparameterization based on

singular value decomposition (SVD). In this setting, the optimization is carried out

column by column of Θ. Suppose θk is being considered and the rest of the columns,

denoted by Θ(k) are kept fixed. Then θk should be orthogonal to the column space of

Θ(k). We perform a SVD on Θ(k) and we have

Θ(k) = U · S · V ′

where U is q × q orthogonal matrix, S is diagonal matrix and V is (r − 1)× (r − 1)

orthogonal matrix. Let (u1, . . . uq) be the columns of U . Then (ur, . . . uq) spans the

space orthogonal to the column space of Θ(k). Then we could parameterize θk as

θk =

q∑
l=r

ulpl = ŨP

where Ũ = (ur, . . . uq) and P = (pr, . . . , pq)
′. Under this parameterization, θk is

always orthogonal to the column space of Θ(k) and there is no restriction on P . Now

by focusing on the terms in Q that involve θk, we only need to minimize:

N∑
i=1

(Yi − f(T, η)−BiΘαi)
′(Yi − f(T, η)−BiΘαi) + λ̃θ′kHθk

where λ̃ = 2σ2λ. We can rewrite it as

N∑
i=1

((Yi − f(T, η)−BiΘ(k)αi(k))−Biθk)′((Yi − f(T, η)−BiΘ(k)αi(k))−Biθk) + λ̃θ′kHθk

=

N∑
i=1

((Yi − f(T, η)−BiΘ(k)αi(k))−BiŨP )′((Yi − f(T, η)−BiΘ(k)αi(k))−BiŨP )

+λ̃P ′Ũ ′HŨP
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The closed form solution for P to minimize the above equation is

P̂ =

(
N∑
i=1

α̂2
ikŨ

′B′iBiŨ + λ̃Ũ ′HŨ

)−1 N∑
i=1

Ũ ′B′i(α̂ik(Yi − f(T, η))−
∑
l 6=k

ˆαikαilBiθl)

Then we have θ̂k = Ũ P̂ and we can normalize θ̂k by dividing it by its norm. We could

repeat the same procedures for k = 1, . . . , r iteratively until convergence is reached.

The reparameterization based on SVD allows us to optimize Q under the con-

straint that the columns of Θ are orthonormal. This procedure works when the

number of columns, i.e., the number of principal components is strictly larger than

the number of spline bases, which is generally true. This method is much simpler to

understand and implement than working with Stiefel manifold. This method could

potentially be extended to other optimization problems with orthonormal restric-

tions.
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APPENDIX F

Selecting the Number of Components and the

Smoothing Parameter

In this section, we will discuss using cross validation score s(r, λ) to select the

smoothing parameter λ and the number of components r in the FPCA model. We

will use the simulation examples (Sim A and Sim B) to illustrating the approach.

The cross validation score s(r, λ) is computed by k-fold cross validation. We

randomly and evenly split the preliminary data in the simulation into k groups. We

treat one group as testing data set and the rest k − 1 groups as the training data

set. We use training data to estimate a FPCA model for the given r and λ. Then we

compute the log likelihood of the testing data given the estimated model. We repeat

the process k times so that every group becomes the testing data exactly once. Then

s(r, λ) is computed as the average of log likelihoods across the k testing sets. Because

of the normal assumption, the s(r, λ) is equivalent to negative of the mean square

error, less some constant. In general, the higher the s(r, λ), the better the model fit.

In the simulations and other two real data applications, we specify k = 10.

In the simulation, we consider smoothing parameter λ ranges from 10 to 2000. The

appropriate λ for a FPCA model with r components is chosen as λ∗r = argmaxλs(r, λ).

Figure F.1 plots s(r, λ) vs. λ for r = 1, 2, 3 for a sample of the simulated dataset from
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Sim A and Sim B. The highest s(r, λ) in each case is marked by a triangle and the

corresponding λ is chosen as λ∗r.

Let s(r) = s(r, λr), i.e. the CV score for a model with r principal components

and the appropriate smoothing parameter λr. Because the model with r components

is nested within the model with r + 1 components, s(r) = s(r, λr) almost always

increases as r increases. Therefore maximizing the CV score s(r) does not always

lead to a parsimonious model in practice. In this case, we use a “scree plot” as a

tool to visually select the appropriate number of components (Johnson and Wichern,

2007). In a scree plot, the CV score s(r) is plotted against r and we are interested in

the elbow point r∗ where the improvement of s(r) after r∗ is relatively much smaller

than those before r∗. In other words, the model fit will not significantly improve if

we already have at least r∗ principal components in the model. Figure F.2a and F.2b

present scree plots for data sets simulated for Sim A and Sim B. In general, s(r)

increases substantially from r = 1 to r = 2 but there is virtually no improvement in

s(r) from r = 2 to r = 3. So it appears that r = 2 principal components are sufficient

for the data in the simulation replicates shown in Figure F.2a and F.2b.

While the scree plot is simple to understand, it bears some subjective influence

from the analyst and cannot be implemented in a simulation scenario where analyst

intervention is absent. Inspired by the scree plot, we propose an objective rule based

approach. We set a threshold b for negligible improvement and select the appropriate

r for the data as r∗ = min{r| s(r+1)−s(r)
s(r)

≤ b}, i.e. the smallest r such that the

improvement in CV score by adding one more component is less than the threshold

for negligible improvement. The rule based approach can be clearly defined and

carried out in the simulation without outside intervention. To specify the threshold

of negligible improvement, we could consult with the investigators or refer to the

scree plot. For example, in Figure F.2a and F.2b, we notice from the scree plots that

improvement in CV score is generally larger than 1% from r = 1 to r = 2 and less
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than 1% from r = 2 to r = 3. Therefore we set the threshold to be b = 1% for

negligible improvement in this simulation.
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(f) Sim B: r=3

Figure F.1: CV score vs. λ for various choice of r. The highest CV score s(r, λ) is
marked by the triangles.
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(b) Replicate 981 in Sim B

Figure F.2: Scree plots for selected replicates in the simulations
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APPENDIX G

Algorithm for Identifying the Optimal Schedule

Let f(T ) = f(t1, · · · , tn) > 0 be the objective function with T = (t1, · · · , tn) being

the sampling schedule. The maximization is with respect to the sampling schedule T

and the values of ti i = 1, . . . , n are taken (without replacement) from the set of fea-

sible sampling times S. If S contains nS elements, there are
(
nS
n

)
sampling schedules

in the pool of all candidate schedules Sc, so this number can be extremely large even

if nS and n are only of moderate size, which makes almost impossible to enumerate

all candidate sampling schedules for the purpose of maximization, particularly in a

simulation setting. Therefore, in the following we describe a more efficient maximiza-

tion algorithm based on the Metropolis-Hastings algorithm (Metropolis et al., 1953;

Hastings , 1970).

Algorithm: Select an initial sampling schedule T0 from the pool of candidate

schedules Sc. Also set up two storage arrays xf and xT of length M where M is the

total number iterations to be run. Let Tk−1 denote the sampling schedules selected

at the k − 1 iteration.

During the kth iteration:

(a) Let Gk−1, denote the set of feasible sampling times not included in the sampling

schedule Tk−1(i.e. the complement of Tk−1 with respect to S.
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(b) Randomly select one sampling time from Tk−1 and replace it with a sampling

time randomly selected from Gk−1 to create a new sampling schedule Ttemp.

(c) Compute f(Tk−1) and f(Ttemp).

(d) If f(Ttemp) > f(Tk−1) then we let Tk = Ttemp.

(e) Otherwise, we generate a random number q ∼ Binomial(α). If q = 1, then

Tk = Ttemp, otherwise Tk = Tk−1.

(f) Store the sampling schedule Tk in xT [k] and objective value f(Tk) in xf [k].

Repeat the iteration for M times. Then we identify the maximum objective values

from xf and corresponding sampling schedule from xT .

In this algorithm, we are treating the f(T ) as the probability function (less a con-

stant) of a multivariate distribution of t1, · · · , tn. The distribution can be simulated

with the Metropolis-Hastings algorithm and a uniform proposal distribution. Since

the mode of the distribution is identical to the maximum of the objective function f(·)

less a constant, we are guaranteed to reach the maximum if the Metropolis-Hastings

algorithm has run long enough to converge. So the optimal objective function and the

corresponding optimal schedule will appear in xf and xT with probability 1. Many

methods for checking the convergence of Markov chains have been developed and

Cowles and Carlin (1996) provides a comprehensive review for these methods.
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APPENDIX H

Estimating Parametric Mixed Model with the R

package nlme

The nlme package is used to estimate linear and nonlinear mixed effect models.

We will provide an example regarding how we use nlme to estimate the nonlinear

mixed effect models in the simulation.

The mathematical model can be summarized as follows:

yij = η0i + η1itj + η2t · exp(−η3t) + εij

where εij ∼ N(0, σ2); the random effects are

η0i

η1i

 ∼ N(

η0

η1

 ,Σ). The fixed

effect parameters are η = (η0, η1, η2, η3).

The code to estimate the model can be summarized as:

fit=nlme(y˜eta0+eta1*time+eta2*time*exp(-eta3*time),

data=data,

fixed=eta0+eta1+eta2+eta3˜1,

random=eta0+eta1˜1—ID,

start=c(2.264, -0.1152, 1.1464, 0.6682) )
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The meaning of the arguments are as follow:

• The 1st argument is the nonlinear model formula.

• The 2nd argument is data set for estimation.

• The 3rd argument is to specify the fixe effect.

• The 4th argument is to specify random effect with group variable being ID.

• The 5th argument is to specify the starting values for the fixed effect parameters.
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APPENDIX I

Simulation to Verify the Asymptotic Properties of

Higher Criticism Threshold Classifier

These simulation scenarios investigate the asymptotic feasibility of the classifica-

tion problem under the rare-and-weak model. The values of strength parameter r

and sparsity parameter β for scenario S1, S2 and S3 are shown in the phase diagram

(Figure I.1a). S1 and S2 are in the feasible region while S3 is not. The sample size

n is related to p by n = c × (log(p))γ with c = 5 and γ = 1. The PCC estimated

by the DS method and the HCT method are computed. The PCC by CV is omitted

because it requires too much resource and time to compute for very large p. Figure

I.1b-I.1d suggest that for both DS and HCT method, when the total number of fea-

tures p → ∞, the PCC in S1 and S2 will go to 1 while the PCC in S3 will goes to

0.5. These results are consistent with the theory for the asymptotic feasibility.
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Figure I.1: Simulations for Evaluating Asymptotic Feasibility
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APPENDIX J

Derivation of the Order-Statistics-Based

Algorithm for Sampling P-values

The efficient algorithm to simulate the k = dpα0e smallest p-values among all the

features is broken down into three steps:

I Simulate (π1, . . . , πm)

II Simulate the k smallest values from the vector (πm+1, . . . , πp) and denote them

by (v1, . . . , vk).

III Identify the k smallest values from the vector (π1, . . . , πm, v1, . . . , vk).

Step I is relatively straight forward: for j = 1, . . . ,m, we generate zj ∼ N(
√
nµ0, 1)

and then compute πj = 2× (1− Φ(|zj|)).

Step II, however, is more involved. Since for j = m + 1, . . . , p, zj ∼ N(0, 1)

and πj = 2 × (1 − Φ(|zj|)), we have πj ∼ Uniform(0, 1). So (v1, . . . , vk) are jointly

distributed as the 1st to kth ordered statistics of the p − m independent uniform

random variable in (0, 1). The joint density function of (v1, . . . , vk) is

f(v1, . . . , vk) =
(1− vk)p−m−k(p−m)!

(p−m− k)!
× I(0 ≤ v1 ≤, . . . ≤ vk ≤ 1)
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From the join density, we can derive that vk is marginally distributed as Beta(k, p−

m+ 1− k) with marginal density function

f(vk) =
vk−1
k (1− vk)p−m−k(p−m)!

(k − 1)!(p−m− k)!
× I(0 ≤ vk ≤ 1)

Then the joint distribution of (v1, . . . , vk−1) conditional on vk is

f(v1, . . . , vk−1|vk) =
(k − 1)!

vk−1
k

× I(0 ≤ v1 ≤, . . . ≤ vk ≤ 1)

In other words, conditional on vk, (v1, . . . , vk−1) is the ordered statistics of k − 1

uniform variables in (0, vk). Such observation allows us to simulate (v1, . . . , vk−1, vk)

in an efficient manner:

(a) Simulate vk ∼ Beta(k, p−m+ 1− k).

(b) Simulate ṽ1, . . . , ṽk−1 independently from Uniform(0, vk)

(c) Sort ṽ1, . . . , ṽk−1 in increasing order and we have v1, . . . , vk−1.

Once we have simulated both (v1, . . . , vk) and (π1, . . . , πm), we proceed with Step III

by identifying the smallest k values in (v1, . . . , vk, π1, . . . , πm), which are the same as

the k smallest values from the vector (π1, . . . , πp).
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APPENDIX K

Proof of the Inequality for the Upper and Lower

Bound of the PCC When Combinging Two Types

of Features

In the section, we will provide a proof for the inequality for the upper and lower

bound of the PCC when we combine two types of features.

Lemma K.1. Qπ1(t) is continuous and strictly increasing for t ∈ (0,∞).

Proof. Continuity is obvious because all of the functions involved in Qπ1(t) are contin-

uous. So we focus on the monotonicity. Let Gπ1(t, k) = Φ(t−k)·π1+Φ(t+k)·(1−π1).

Then

∂Gπ1(t, k)

∂k
= −φ(t− k) · π1 + φ(t+ k) · (1− π1)

∂Gπ1 (t,k)

∂k
> 0 for k < 1

2t
log(1−π1

π1
);

∂Gπ1 (t,k)

∂k
= 0 for k = 1

2t
log(1−π1

π1
);

∂Gπ1 (t,k)

∂k
< 0

for k > 1
2t

log(1−π1
π1

). So Gπ1(t, k) reaches maximum when k = 1
2t

log(1−π1
π1

). For
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0 < t1 < t2 <∞,

Qπ1(t1) = Φ(t1 −
1

2
log(

1− π1

π1

)
1

t1
) · π1 + Φ(t1 +

1

2
log(

1− π1

π1

)
1

t1
) · (1− π1)

< Φ(t2 −
1

2
log(

1− π1

π1

)
1

t1
) · π1 + Φ(t2 +

1

2
log(

1− π1

π1

)
1

t1
) · (1− π1)

≤ Φ(t2 −
1

2
log(

1− π1

π1

)
1

t2
) · π1 + Φ(t2 +

1

2
log(

1− π1

π1

)
1

t2
) · (1− π1)

= Qπ1(t2)

The first inequality is due to the fact that Φ(·) is strictly increasing. The second

inequality is due to the fact that Gπ1(t, k) reaches maximum when k = 1
2t

log(1−π1
π1

).

Theorem K.2. Under the assumptions previously discussed, we have the following

inequality

min(PCCA, PCCB) ≤ PCCAB ≤ Qp1(
√

2 ·Q−1
π1

(max(PCCA, PCCB)))

The first equality will hold when wkΣkwk
wjΣjwj

→ 0 where

(j, k) =


(A,B) if PCCA < PCCB

(B,A) if PCCA ≥ PCCB

. The second equality is reached when PCCA =

PCCB and the weights are scaled such that wAΣAwA = wBΣBwB.

Proof. We begin with the special case when we havePCCA = PCCB. Because Qπ1(·)

is strictly increasing, we have µA·wA√
wtAΣAwA

= µB ·wB√
wtBΣBwB

. Then because of the symmetry,

we could fix the values of µA and wA and let µB and wB vary. Let s = µA·wA√
wtAΣAwA

=

µB ·wB√
wtBΣBwB

. Then we denote θ =
√
wt
BΣBwB and we have µB ·wB = sθ. So we have

µA ·wA + µB ·wB√
wt
AΣAwA +wt

BΣBwB

=
µA ·wA + sθ√
wt
AΣAwA + θ2
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The derivative with respect to θ is

s× (wt
AΣAwA)− θ × (µA ·wA)

(θ2 +wt
AΣAwA)3/2

The derivative is positive when θ <
s×(wtAΣAwA)

µA·wA
and negative when θ >

s×(wtAΣAwA)

µA·wA
.

In order words, µA·wA+sθ√
wtAΣAwA+θ2

reaches maximum when θ = θM =
s×(wtAΣAwA)

µA·wA
and min-

imum when θ → 0 or θ →∞.

Maximum: Since s = µA·wA√
wtAΣAwA

then θM =
s×(wtAΣAwA)

µA·wA
=
√
wt
AΣAwA , which

means that in order to obtain the maximum, the values of µB and wB will satisfy:√
wt
BΣBwB = θM =

√
wt
AΣAwA and µA ·wA = sθM = µB ·wB. In this case,

µA ·wA + µB ·wB√
wt
AΣAwA +wt

BΣBwB

≤ µA ·wA + µA ·wA√
wt
AΣAwA +wt

AΣAwA

=
√

2× µA ·wA√
wt
AΣAwA

Because Qπ1(·) is an increasing function, we have PCCAB ≤

Qπ1(
√

2×Q−1
π1

(max(PCCA, PCCB))).

Minimum: When θ → 0, µA·wA+sθ√
wtAΣAwA+θ2

→ µA·wA√
wtAΣAwA

. When θ →∞, µA·wA+sθ√
wtAΣAwA+θ2

→

s = µA·wA√
wtAΣAwA

. Therefore, we have

µA ·wA√
wt
AΣAwA

≤ µA ·wA + µB ·wB√
wt
AΣAwA +wt

BΣBwB

Because Qπ1(·) is an increasing function, we have min(PCCA, PCCB) ≤ PCCAB.

Next we employ the result of the special case to prove the result for the general case

where PCCA 6= PCCB. Without of loss of generality, we assume PCCA ≥ PCCB,

i.e. µA·wA√
wtAΣAwA

≥ µB ·wB√
wtBΣBwB

, because Qπ1(·) is continuous strictly increasing. We

choose a number η > 1 such that µA·wA√
wtAΣAwA

= η×µB ·wB√
wtBΣBwB

. Let µB̃ = η × µB and

144



apply the previous results, we have

µA ·wA + µB ·wB√
wt
AΣAwA +wt

BΣBwB

<
µA ·wA + η × µB ·wB√
wt
AΣAwA +wt

BΣBwB

=
µA ·wA + µB̃ ·wB√
wt
AΣAwA +wt

BΣBwB

≤
√

2× µA ·wA√
wt
AΣAwA

The first inequality holds because τ2 · w2 > 0. The last inequality holds because

of the result for the case of PCCA = PCCB̃.

The situation for the minimum is similar. We choose a positive number 0 < γ < 1

such that γ×µA·wA√
wtAΣAwA

= µB ·wB√
wtBΣBwB

and let µÃ = γ × µA. Then we have

µB ·wB√
wt
BΣBwB

≤ µÃ ·wA + µB ·wB√
wt
AΣAwA +wt

BΣBwB

=
γ × µA ·wA + µB ·wB√
wt
AΣAwA +wt

BΣBwB

<
µA ·wA + µB ·wB√
wt
AΣAwA +wt

BΣBwB

The first inequality holds because of the result for the case of PCCÃ = PCCB.

The last inequality holds because τ1 · w1 > 0.
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