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CHAPTER 1

Introduction

In recent years, there has been a great deal of interest in using a patient’s specific

information to make more informed treatment decisions. This practice, often referred

to as personalized medicine, is motived by the fact that few treatments are equally

effective for all individuals in a population. A treatment may be quite effective for

some subset of a population, but mildly effective, ineffective, or even harmful for

others. Because of this, there is great interest in identifying which individuals in a

population, if any, will respond well to a treatment. More specifically, it is necessary

to identify which characteristics, if any, lead to this enhanced response if one wishes

to pursue a personalized treatment.

A generally accepted approach to identifying such characteristics is to pre-define a

small number of subregions of the covariate space before looking at the data, and then

evaluate them. However, one may not always know which subgroups to consider, and

increasing the number of subgroups considered also increases the risk of false positive

findings, which is already a well-known danger in subgroup analysis. One way to

reduce this risk of false positives is to employ a multiple testing approach, such as a

Bonferroni correction. This can effectively reduce false positives, but also decreases

1
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the power to detect true subgroups.

An alternative approach, which will be the main focus of this dissertation, is

to pre-define a statistical procedure for identifying subgroups [Ruberg et al., 2010].

These procedures can eliminate the need for a priori specification of subgroups, and

may help to reduce the risk of false findings, though some risk still remains. Such

procedures have been proposed by many authors, including Friedman and Fisher

[1999], Negassa et al. [2005], Su et al. [2008, 2009], Brinkley et al. [2010], Cai et al.

[2011], Foster et al. [2011], Lipkovich et al. [2011], Qian and Murphy [2011], Zhao

et al. [2011], Imai and Ratkovic [2012] and Zhang et al. [2012]. When developing

such a procedure, it is common to first consider what each subject’s potential outcome

value would be, given each of the treatment options [Zhang et al., 2012]. That is,

when two treatment options (say treatment 1 and treatment 0) are present, it is

common to consider what each subject’s potential outcome would be given treatment

1 and what it would be given treatment 0. One general way to identify subgroups

is to first estimate these two potential outcomes, and then take the difference, which

is an estimate of the treatment effect. One can then investigate the relationship

between these estimated treatment effects and the covariates to obtain subgroups.

Alternatively, one could attempt to identify subgroups by maximizing the expected

response under a class of treatment regimes [Gunter et al., 2007, Zhang et al., 2012].

The treatment regimes in such a case will generally be defined based on the covariates,

and will be of the form xi ∈ A ⇒ Ti = 1, xi /∈ A ⇒ Ti = 0, where xi and Ti are

the covariate vector and treatment indicator for subject i and A is some region of

the covariate space. Thus, with this approach, the “optimal” subgroup is the region

A which maximizes the expected response when only individuals in A will receive

treatment 1 and only individuals in region Ac will receive treatment 0.
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Note that, in the setting of personalized medicine, the ultimate goal is to use

the identified subregion to define “rules”, which can be used in the future to make

more informed treatment decisions. Moreover, these treatment decisions will nearly

always be made by someone such as a physician or nurse practitioner, who may

only have a modest understanding of statistics. Thus, an issue which should be

considered before employing any subgroup identification procedure is the potential

form and complexity of the resulting subgroup(s), which can both vary considerably

depending on which approach is taken. A very complex subgroup, which depends on

some, or perhaps all of the available covariates will often be quite good at identifying

truly enhanced responders, but such subgroups may lack “nice” interpretability. In

addition, the dependence on a large number of covariates means a large amount

of information will need to be collected before a treatment decision can be made,

which could lead to slower, more expensive, or more invasive (due to performing of

unnecessary procedures to collect information) treatment decisions than are necessary.

This could potentially limit the chances of such a subgroup being used in practice. In

contrast, a very simple subgroup, perhaps depending on only one or two covariates,

may less accurately identify enhanced responders, but will be easier to interpret,

and will likely see more real-world use. Given this tradeoff between classification

accuracy and interpretability, the most “ideal” subgroups may be those which are of

only moderate complexity. To this end, we will focus on the identification of simple

subgroups, which depend on only a few covariates, and have a very simple form. In

many cases, such subgroups may be able to classify enhanced responders well, while

still being nicely interpretable, and will thus be more likely to see real-world use.

Because a large number of covariates may often exist, identifying “useful” sub-

groups which depend on only a few covariates will generally require some form of
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variable selection. One simple way to do this is to use a regression tree, which splits

the data into a number of regions of the covariate space (i.e. subgroups) [Negassa

et al., 2005, Su et al., 2008, 2009, Foster et al., 2011, Lipkovich et al., 2011]. These

regions contain individuals who are similar with regard to the response, and they are

generally defined using only a subset of the available covariates. Alternatively, one

could consider a more model-based approach to selecting covariates. In particular,

one could consider some form of penalized regression. Potential penalty functions

include the LASSO [Tibshirani, 1996], smoothly clipped absolute deviation (SCAD)

[Fan and Li, 2001] and adaptive LASSO [Zou, 2006] penalties. These penalty func-

tions are designed to force the regression parameter estimates which correspond to

“useless” variables to zero, thereby removing these variables from the model. Thus,

predicted values of the response of interest will be a function of a linear combination

of a potentially small number of covariates.

As previously mentioned, most subgroup analysis carries with it some potential

for false positive findings. Pre-defining a subgroup identification approach can help

to reduce false positives, but in our experience, these methods also have a tendency

to identify subgroups, even when no true enhanced subgroup exists. To further re-

duce the potential for false findings, one may wish to evaluate the “usefulness” of a

subgroup once it is identified, perhaps by performing a hypothesis test or computing

some type of “enhancement” metric [Foster et al., 2011]. Before such a hypothesis test

can be implemented, one must consider what “null” means in the setting of subgroup

analysis. Note that “meaningful” subgroups arise when the treatment effect differs

as covariate values differ. That is, subgroups arise when treatment-by-covariate in-

teractions exist. Thus, in this setting, one could define “null” data as that in which

treatment is constant with respect to the covariates, so that no treatment-by-covariate
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interactions exist. Alternatively, if one has a specific subgroup to evaluate, “null” data

could be defined as data for which the effect of treatment in the chosen subgroup is

no different than that for the entire population. In this dissertation, we will consider

the more general definitition that no treatment-by-covariate interactions exist.

In this dissertation, we will consider a number of methods which use randomized

clinical trial data to identify simple subgroups of enhanced treatment effect, which

should depend on only a small number of covariates. Using randomized clinical trial

data allows us to avoid potential problems with confounded relationships, and thus

have more confidence that the identified subgroup contains “truly” enhanced individ-

uals. Moreover, randomized clinical trial data generally contains a large number of

subjects, which is advantageous, as large samples are generally required if one wishes

to accurately identify subgroups.

In Chapter 2, we consider the use of adaptive LASSO-penalized monotone single-

index models to identify subgroups of enhanced treatment effect. A single-index model

assumes that the outcome of interest is an unknown function of a linear combination

of covariates. By forcing this unknown function to be monotone, we are able to nicely

describe the estimated effect of each covariate on the response of interest. In addition,

by penalizing the regression parameter, the resulting model will generally depend on

only a relatively small number of covariates, making it easier to interpret.

In Chapter 3, we propose a two-stage subgroup identification procedure, which

can be viewed as a model-based alternative to Virtual Twins [Foster et al., 2011]. In

the first stage of this procedure, we use nonparametric regression to obtain treatment

effect estimates for each subject. From these estimates, we define a criterion [Sutton

and Barto, 1998, Gunter et al., 2007], which is subsequently used to systematically

evaluate many subgropus of a simple, pre-specified form. The identified subgroup is
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that which has the best value of the evaluation criterion. In this chapter, we also

consider the use of an enhancement metric [Foster et al., 2011] to evaluate the utility

of identified subgroups.

In Chapter 4, we propose a number of permutation-based methods for obtaining

p-values for treatment-by-covariate interactions, which can be used to test whether

or not an identified subgroup is truly enhanced. These methods are used to obtain

p-values for some of the enhancement metric estimates discussed in Chapter 3. All

methods in this dissertation are evaluated in simulation studies, and illustrated using

randomized clinical trial data.

In Chapter 5, we present an overall discussion of the proposed methods, and

consider a number of potential extensions and modifications of these methods.



CHAPTER 2

Variable selection in monotone single-index models

via the adaptive LASSO

2.1 Introduction

Linear regression is a simple and commonly-used technique for assessing rela-

tionships of the form y = βTx + ε between an outcome of interest, y, and a set of

covariates, x1, . . . , xp; however, in many cases, a more general model may be desirable.

As noted by Hardle et al. [1993], one particularly useful and more general variation

of the linear regression formulation is the single-index model

yi = η(βTxi) + εi, (2.1)

where xi’s are subject-specific covariate vectors, β = (β1, . . . , βp)
T , yi ∈ R, η is

an unknown function, ε1, . . . , εn are iid errors with mean zero and variance σ2, and

εi’s and xi’s are independent. To ensure identifiability, no intercept is included,

and β1 is assumed to be equal to 1. These models are able to capture important

features in high-dimensional data, while avoiding the difficulties associated with high-

dimensionality, as dimensionality is reduced from many covariates to a univariate

7
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index Yu and Ruppert [2002]. Single-index models have applications to a number of

fields, including discrete choice analysis in econometrics and dose-response models in

biometrics Hardle et al. [1993].

There is a rich literature on estimation of β and η, including Hardle et al. [1993],

Yu and Ruppert [2002], Ichimura [1993], Carroll et al. [1997], Xia et al. [2002], Xia

and Hrdle [2006], among many others. Additionally, variable selection for single-index

models was considered by Kong and Xia [2007], who proposed the separated cross-

validation method, and Liang et al. [2010], who applied the smoothly clipped absolute

deviation (SCAD) approach to partially linear single-index models. However, little

consideration has been given to such problems for monotone single-index models,

where η is required to be non-decreasing (or non-increasing). In the case of linear

models, a great many authors, including Tibshirani [1996], Fan and Li [2001], Zou

[2006] and Zou and Zhang [2009] have considered variable selection via penalized

least squares, which allows for simultaneous selection of variables and estimation of

regression parameters. Several penalty functions, including the SCAD Fan and Li

[2001], the adaptive LASSO Zou [2006] and the adaptive elastic-net Zou and Zhang

[2009], have been shown to possess favorable theoretical properties, including the

oracle properties; that is, consistency of selection and asymptotic normality, with

the asymptotic covariance matrix being the same as that which would be obtained if

the true underlying model were known. Hence, for large samples, oracle procedures

perform as well as if the true underlying model were known in advance. Furthermore,

Liang et al. [2010] established the oracle properties for the SCAD for partially linear

single-index models. Given the desirable properties of the SCAD, adaptive LASSO

and adaptive elastic-net approaches, it is natural to consider the extension of these

methods to monotone single-index models. Unlike the adaptive LASSO and adaptive
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elastic-net, which present a convex optimization problem, the SCAD optimization

problem is non-convex, and thus more computationally demanding Hastie et al. [2009].

In addition, the adaptive elastic-net and SCAD methods require the selection of two

tuning parameters, whereas the adaptive LASSO requires the selection of a single

tuning parameter. Therefore, for convenience, computational efficiency, and because

covariates in our example data are not highly correlated (a condition under which the

adaptive elastic-net is especially good), we consider adaptive LASSO penalized least

squares estimation of β in monotone single-index models.

The assumption of monotonicity and the desire to select a subset of the covari-

ates are motivated in part by the randomized clinical trial data considered in Foster

et al. [2011]. A monotonicity assumption is often reasonable, and such an assumption

may improve prediction and reduction in model complexity, while also allowing for

more straightforward inference. Foster et al. Foster et al. [2011] consider methods

for subgroup identification in randomized clinical trial data. In such cases, should

a subgroup be identified, it is desirable that this subgroup be easily described, and

depend on only a small number of covariates. Application of the methods proposed

in this paper result in estimates η̂ and β̂, such that ŷi = η̂(β̂
T
xi), where η̂ is mono-

tone and β̂ generally includes a number of zero values. Using this model, one can

classify individuals with ŷ’s beyond some predefined threshold, c, as being in the

subgroup. Then, because of the monotonicity of η̂, the predefined threshold can be

converted into an equivalent threshold, c′, on β̂
T
x, and the impact of the chosen co-

variates on subgroup membership can be easily described. Without the assumption

of monotonicity, the subgroup may be a collection of several disjoint subregions of

the covariate space, making each covariate’s impact on subgroup membership more

difficult to ascertain.
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The remaining sections of this article are as follows. In Section 2, we consider

penalized least-squares estimation for monotone single-index models, briefly discuss

asymptotics, and discuss a method to obtain standard error estimates for β. In

Section 3, we present the results of a simulation study implemented to assess the

performance of the adaptive LASSO penalized single-index models. In Section 4, we

briefly discuss the application of this method to the randomized clinical trial data,

and in Section 5, we give concluding remarks.

2.2 Estimation for monotone single index models

Our estimation procedure iterates between estimation of β and η until conver-

gence. Given some η, the penalized least-squares estimator of β can be found by

minimizing

Q(β) =
n∑
i=1

(
yi − η(βTxi)

)2
+ λn

p∑
j=2

wj|βj|, (2.2)

where wj, j = 2, . . . , p are known weights and covariates xi are standardized to have

mean zero and variance 1. Due to the identifiability constraint specified in model

(2.1), β1 is not penalized. Following Zou [2006], we choose wj = |β̂init,j|−γ for γ > 0,

where β̂init is a nα-consistent estimator of β, where 0 < α ≤ 1
2
. We use linear ordinary

least squares (OLS) estimates for β̂init, as under the assumptions of Theorem 2.1 in Li

and Duan [1989], these are shown to be
√
n-consistent up to a multiplicative scalar.

Once obtained, β̂init is rescaled by β̂1,init. Alternatively, weights could be defined

using the unpenalized single-index model estimates of β.

For a given β, without considering the monotonicity constraint, η can be estimated
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at some point t using the Nadaraya-Watson kernel-weighted average:

η̂(t;β,y,X, h) =

∑
j yjK

(
t−βTxj

h

)
∑

jK
(
t−βTxj

h

) , (2.3)

where X is the covariate matrix, K is a fixed kernel function and h is a bandwidth.

Note that, when β is known, η̂ is determined by h, so a value of h must be chosen. We

consider kernel functions which are symmetric probability densities. For numerical

stability, we hold (2.3) fixed for all t outside the range of the βTx’s. That is, η̂(t) =

η̂(mini(β
Txi)) if t < mini(β

Txi) and η̂(maxi(β
Txi)) if t > maxi(β

Txi).

Combining (2.2) and (2.3), the adaptive LASSO estimator for β is obtained by

minimizing

Q̂(β, h) =
∑
i

′ (
yi − η̂(βTxi;β,y,X, h)

)2
+ λn

p∑
j=2

wj|βj| (2.4)

with respect to β, where
∑′

i denotes summation over i such that the denominator

in the kernel estimator is not too close to zero. Details can be found in Hardle et al.

[1993]. With the inclusion of the penalty term in (2.4), β̂ becomes a function of λn,

so in addition to h, a value of λn must be chosen if β̂ is to be obtained. Throughout

this paper, we refer to the method of estimating β and η without a monotonicity

constraint, using objective function (2.4), as the unconstrained approach.

2.2.1 A smooth monotone function estimate for η with fixed β

There are a variety of ways to obtain smooth monotone regression function es-

timates, including quadratic B-splines He and Shi [1998], I-splines Ramsay [1988],

empirical distribution tilting Hall and Huang [2001], the scatterplot smoothing ap-
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proach of Friedman and Tibshirani [1984], and the kernel-based approach of Mukerjee

[1988] and Mammen [1991]. We consider the kernel-based method of the latter two

papers, which we briefly describe below.

Assume β is known. The proposed monotone estimator η̂m requires two steps:

Isotonization. This step involves the application of the pooled adjacent violator

algorithm (PAVA) Barlow et al. [1972]. Using (βTxi, yi) ordered by increasing

βTxi as data, PAVA produces monotone estimates m̂1, . . . , m̂n, which are av-

erages of yj’s near i (unless y’s are already monotone, in which case m̂i = yi),

and which are not necessarily smooth Friedman and Tibshirani [1984].

Smoothing. Apply the kernel estimator (2.3) with yi replaced by m̂i for all i to

estimate η. That is, η̂m(t) = η̂(t;β, m̂,X, h).

Since m̂1, . . . , m̂n are monotone, the resulting function estimate is monotone in t. It is

worth noting that this may not necessarily be the case for other smoothing methods,

such as local linear regression.

As previously mentioned, a bandwidth is needed to estimate η, and can be found

using cross-validation; however, our algorithm requires estimation of both η and its

derivative η′, so care must be taken. In particular, to ensure good algorithmic con-

vergence, it is crucial that η̂′ be smooth, but to obtain a smooth estimate of η′, it is

often necessary to oversmooth η. Thus, we restrict the range of potential bandwidths

in our cross-validation. Specifically, h is restricted to be between 0.1∗sd(Xβ) and

sd(Xβ), as values in this range were found to perform well in our simulations.
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2.2.2 Estimation for β with fixed η

The shooting algorithm proposed by Fu [1998] has been shown to perform well

in solving LASSO penalized least-squares problems for linear models Friedman et al.

[2007]. Therefore, we consider the application of this algorithm to LASSO problems

for the single-index model. One way to achieve this is to employ a linear approxi-

mation via Taylor series expansion of η(βTxi) about βT0 xi, where β0 is known. We

define the linear approximation as follows:

η
(
βTxi

)
≈ η

(
βT0 xi

)
+ η

′ (
βT0 xi

) [
βTxi − βT0 xi

]
. (2.5)

Let

y∗i = yi − η
(
βT0 xi

)
+ η

′ (
βT0 xi

)
βT0 xi

and

x∗i = η
′ (
βT0 xi

)
xi.

Then we have

yi − η
(
βTxi

)
≈ yi − η

(
βT0 xi

)
− η′ (

βT0 xi
) [
βTxi − βT0 xi

]
= y∗i − βTx∗i ,

and (2.4) can be approximated by

Q̂lin (β) =
∑
i

′ (
y∗i − βTx∗i

)2
+ λn

p∑
j=2

wj|βj|, (2.6)
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which is a LASSO penalized least-squares problem for the linear model, and can thus

be solved using the shooting algorithm.

Note that (2.5) involves an estimate of η′. This estimate is obtained as fol-

lows. Sort the observations by increasing βT0 xi, and define new data
{

(x̃i, ỹi) :

, i = 1, . . . , n − 1
}

, where ỹi = η(βT
0 xi+1)−η(βT

0 xi)

βT
0 xi+1−βT

0 xi
, and x̃i = xi + xi+1−xi

2
. This

new data should “look like” data coming from the model ỹi = η′(βTxi) + ε̃i, so

η′(t) can be estimated using (2.3), but with
{

(xi, yi) : i = 1, . . . , n
}

replaced by{
(x̃i, ỹi) : i = 1, . . . , n− 1

}
, i.e. η̂′(t) = η̂(t;β, ỹ, X̃, h̃), where h̃ is a new bandwidth

for the derivative estimate. To select h̃, cross-validation can again be used.

2.2.3 Algorithm

The algorithm to obtain final estimates of η and β iterates between the steps

in Sections 2.1 and 2.2 until convergence. After k iterations, let β̂
(k)

, η̂
(k)
m and

m̂
(k)
1 , . . . , m̂

(k)
n denote the current estimates of β and η and the current PAVA es-

timates respectively. For a given λn, the “final” estimates of β and η are obtained as

follows:

1. Using data
{

(β̂
(k)T
xi, yi) : i = 1, . . . , n

}
, apply PAVA to obtain new monotone

data
{

(β̂
(k)T
xi, m̂

(k+1)
i ) : i = 1, . . . , n

}
, and define the monotone function esti-

mate η̂
(k+1)
m (t) using (2.3). Select h via a grid search on values

{
0.1∗sd(Xβ̂

(k)
),

0.2∗sd(Xβ̂
(k)

), . . . , sd(Xβ̂
(k)

)
}

using leave-one-out cross-validation. For com-

putational convenience, fix h after a small number, say a, of iterations (i.e.

when k = a ).

2. Using data
{

(β̂
(k)T
xi, m̂

(k+1)
i ) : i = 1, . . . , n

}
, obtain the derivative data{

(β̂
(k)T
x̃i, ỹ

(k+1)
i ) : i = 1, . . . , n− 1

}
, and define the derivative η̂(k+1)′(t) using
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(2.3). Select h̃ from the grid
{

0.1∗sd(Xβ̂
(k)

), 0.2∗sd(Xβ̂
(k)

), . . . , sd(Xβ̂
(k)

)
}

using leave-one-out cross-validation. As with h, h̃ is fixed after a iterations.

3. Let the general notation z(k
l) indicate the lth update to z(k). Using approxima-

tion (2.5), obtain data
{

(x
∗(k1)
i , y

∗(k1)
i ) : i = 1, . . . , n

}
, and minimize Q̂

(k1)
lin (β)

from (2.6), giving β̂
(k1)

. Repeat this step m−1 more times, for a total of m itera-

tions, each time updating the linear approximation (2.5), so that β̂
(km)
≡ β̂

(k+1)

comes from data
{

(x
∗(km)
i , y

∗(km)
i ) : i = 1, . . . , n

}
≡
{

(x
∗(k+1)
i , y

∗(k+1)
i ) : i =

1, . . . , n
}

.

4. Cycle through steps 1-3 until
∥∥∥β̂(k+1)

−β̂
(k)
∥∥∥ becomes smaller than a prespecified

precision level. The final estimate of η is then obtained by implementing step

1 once more using the converged β estimate.

The identifiability constraint is imposed by rescaling β̂
(k)

by β̂
(k)
1 each time Step 3 is

completed, so it is desirable that β1 be nonzero to avoid potential numerical problems.

To help ensure this in practice, one could first fit a linear model, and choose the largest

(or most significant) βj estimate to be that which is subsequently unpenalized and

forced to be 1. If in the final model another coefficient is larger, then one could re-run

the analysis with that coefficient being the one which is upenalized and forced to be

1. As suggested by one of the reviewers, one could also consider a sensitivity analysis

in which multiple models were fit, each time forcing a different coefficient to be 1.

A value of λn must be chosen before β can be estimated. Suppose that β̂(λn)

and η̂m(t;λn) are the estimates of β and η(t), given tuning parameter λn. To choose

a value of λn, we use the Bayes information criterion (BIC) measure of Liang et al.
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[2010]. Specifically, we choose the value of λn that minimizes:

BIC(λn) = log
{ 1

n

∑
i

′
(
yi − η̂m(β̂(λn)Txi;λn)

)2 }
+

log(n)

n
DFλn ,

where DFλn is one less than the number of non-zero values in β̂(λn), since β̂1 is forced

to be nonzero. To find the optimal λn, a grid search is employed.

In the remaining sections, the monotone-constrained method described above is

referred to as the constrained approach.

2.2.4 Asymptotics

Using the results of Hardle et al. [1993] and arguments similar to Zou [2006], it

is possible to establish the oracle properties for the unconstrained approach. We

provide an outline of such an argument here.

Suppose the regularity conditions of Hardle et al. [1993] hold. Then, by their main

theorem, we can rewrite the sum of squares portion of (2.4) as a sum of three terms,

S̃, T , and R, where S̃ and T depend only on β and h respectively, and the remainder

term R is negligible. Thus, as S̃ is the only term which depends on β, (2.4) can be

reduced to S̃(β) + λn
∑p

j=2wj|βj| = n
{
W

1/2
0 (β − β0) − σ√

n
Z
}T{

W
1/2
0 (β − β0) −

σ√
n
Z
}

+λn
∑p

j=2wj|βj|, where W 0 is a p× p matrix, β0 is the true index parameter,

and Z is an asymptotically normal N(0, I) p-vector. Now suppose that λn√
n
→ 0, and

λnn
(γ−1)/2 → ∞, where γ ∈ (0, 3

5
], and let β = β0 + u√

n
, where ‖ u‖ ≤ C. From

here, following arguments very similar to Zou [2006], the oracle properties can be

established. Two theorems and a formal proof for the unconstrained approach are

given in the Appendix.

It seems that the oracle properties will also hold for β estimates from the con-
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strained approach under certain conditions. Specifically, under the conditions of

Theorem 2 in Mammen [1991], we have η̂m(t) = η̂(t) +Op(n
−8/15), for all t, where η̂m

is our monotone estimator of η and η̂ is the Nadaraya-Watson kernel-weighted aver-

age. Thus, it is possible to reduce the penalized sum of squares for the constrained

approach to (2.4) plus a negligible remainder term. The oracle properties for the

constrained approach would hold by the same reasoning used for the unconstrained

approach.

In practice it is difficult to verify that the conditions needed for the theory hold.

Because a data-driven method (BIC) is used to select the tuning parameter, λn, we

cannot guarantee the required rate of convergence. Thus, the assumptions λn√
n
→ 0

and λnn
(γ−1)/2 →∞ may not hold.

2.2.5 Bootstrap standard errors

Standard errors for our β estimates can be obtained via the bootstrap. In partic-

ular, for a given data set, we employ the adaptive LASSO-based residual bootstrap

(ARB) approach discussed by Chatterjee and Lahiri [2011] to obtain many, say M ,

bootstrap data sets. A penalized single-index model is then fit on each of these boot-

strap data sets, giving M sets of estimates. The estimated standard errors are then

obtained by taking the standard deviations of the M estimates for each βj.

For a given data set, we obtain a residual bootstrap data set as follows. Suppose

β̂ and η̂ are final estimates of β and η for a particular data set. Let ei = yi− η̂(β̂
T
xi),

i = 1, . . . , n be the residuals for this data set. A residual bootstrap data set is then

obtained by replacing yi with η̂(β̂
T
xi) + e∗i , i = 1, . . . , n, where {e∗1, . . . , e∗n} is a

random sample (drawn with replacement) from the centered residuals, ei− 1
n

∑n
i=1 ei,

i = 1, . . . , n. The covariate matrix remains the same across the bootstrap data sets.
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Based on additional simulations (results not given), creating residual bootstrap

data sets using permuted (sampled without replacement) residuals gives nearly iden-

tical results to those shown in Table 2.2. As noted by one reviewer, in practice, the

interpretation for the standard errors can be awkward, particulary in cases where a

number of covariates are highly correlated. In such cases, one might expect the dis-

tribution of these estimates to be a mixture of a continuous distribution and a point

mass at zero. Thus, the estimates are a product of both selection and estimation,

which can make interpretation difficult. This may be due to the known shortcomings

of the adaptive LASSO for highly correlated predictors. If one believes that a number

of covariates may be highly correlated, an alternative approach, such as the adaptive

elastic-net, may perform better, and may lead to bootstrap standard error estimates

based on a smaller number of zeros.

We generally suggest that one reselect λn with each bootstrap data set; however,

our simulations (results not shown) suggest that holding λn fixed across bootstrap

data sets gives standard error estimates which are nearly identical to those found by

reselecting λn for each bootstrap data set. Thus, it may be reasonable to consider

fixed-λn bootstrap standard errors if reselecting λn for each bootstrap data set is too

computationally burdensome.

2.3 Simulations

A simulation study was performed using R software to evaluate the performance

of the proposed methods. To comply with the conditions in Section 2.4, a value of

3
5

was chosen for γ for adaptive LASSO. Additionally, for each example, a large test

set (n = 10, 000) was generated, and final β estimates from each of the simulated
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data sets were used to calculate the mean squared error (MSE) for this large test set.

To evaluate the performance of all methods considered, we recorded the number of

correct and incorrect zero values in β̂, as well as the total proportion of β̂j’s correctly

estimated as zero or non-zero for each data set. The average of these proportions

across all simulated data sets is referred to in Table 2.1 as the relative frequency

correct. We also computed the false discovery rate (FDR), which is the percentage

of non-zero β̂ values which should have been zero. For each data set, the optimal

tuning parameter value λn was chosen from the grid {0, 0.01, . . . , 0.25} using BIC.

2.3.1 Examples

For all simulations, 100 data sets of size 100 were generated from the model

yi = (βTxi)
3 + εi,

where xi’s were Unif [−1
2
, 1
2
], and error terms were normal with mean zero and vari-

ance σ2. We considered five different cases:

(i) β = (1, 0.8, 0, 0, 0, 0,−0.7, 0, 0, 0)T , xi’s independent, and ε’s independent with

σ = 0.20;

(ii) Same as case (i), but with σ = 0.30;

(iii) Same as case (i), but with β changed to (1, 0.8, 0, 0, 0, 0,−0.2, 0, 0, 0)T ;

(iv) Same as case (i), but with Corr(xij, xik) = 0.5, j 6= k;

(v) Same as case (i), but with an additional 50 noise covariates, so that β =

(1, 0.8, 0, 0, 0, 0,−0.7, 0, 0, 0,01×50)
T .
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Figure 2.1: Average η̂m values from 100 simulations

From Table 2.1, we can see that, in all cases, the constrained approach shows

noticeably better reduction in model complexity and smaller FDR than the uncon-

strained approach. Additionally, the constrained approach has mean test MSEs which

are smaller, and closer to the corresponding oracle test MSEs than the unconstrained

approach. Reduction in model complexity for the constrained approach appears to be

reasonably insensitive to the changes in simulation settings considered above; how-

ever, the unconstrained approach appears to suffer in this regard, especially when

true parameter values are decreased or error standard deviation is increased.
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Table 2.1: Simulation results: variable selection performance

Rel. Freq Avg. No. β̂ = 0* Mean Test
Method Correct Correct Incorrect FDR MSE (×100)

Case (i)1

Cons.: 0.92 6.22 0.00 0.21 4.93
Uncons.: 0.85 5.47 0.01 0.34 5.63
Cons. oracle: 1.00 7.00 0.00 0.00 4.74
Uncons. oracle: 1.00 7.00 0.00 0.00 4.96

Case (ii)2 **

Cons.: 0.89 6.09 0.17 0.24 10.87
Uncons.: 0.75 4.68 0.16 0.45 12.84
Cons. oracle: 1.00 7.00 0.00 0.00 10.07
Uncons. oracle: 1.00 7.00 0.00 0.00 10.56

Case (iii)3

Cons.: 0.86 6.25 0.65 0.24 4.64
Uncons.: 0.73 4.83 0.56 0.47 5.51
Cons. oracle: 1.00 7.00 0.00 0.00 4.45
Uncons. oracle: 1.00 7.00 0.00 0.00 4.65

Case (iv)4

Cons.: 0.88 6.15 0.32 0.24 4.79
Uncons.: 0.82 5.45 0.27 0.36 5.38
Cons. oracle: 1.00 7.00 0.00 0.00 4.51
Uncons. oracle: 1.00 7.00 0.00 0.00 4.78

Case (v)5

Cons.: 0.94 53.70 0.10 0.53 5.64
Uncons.: 0.87 49.36 0.13 0.74 7.16
Cons. oracle: 1.00 57.00 0.00 0.00 4.74
Uncons. oracle: 1.00 57.00 0.00 0.00 4.96

Note: “oracle” indicates true zero β values known. η is estimated in all
methods. * Average number of variables dropped in final model.
1 β = (1, 0.8, 0, 0, 0, 0,−0.7, 0, 0, 0)T , Corr(xij, xik) = 0, j 6= k, σ = 0.20.
2 Same as Case (i), but σ = 0.3. 3 Same as Case (i), but β7 = −0.2.
4 Same as Case (i), but Corr(xij, xik) = 0.5, j 6= k.
5 Same as Case (i), but β = (1, 0.8, 0, 0, 0, 0,−0.7, 0, 0, 0,01×50)

T .
** Required 101 simulated data sets due to numerical problems.
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Additional simulations were implemented to evaluate the performance of the pro-

posed methods under alternative monotonic functions, η (results not shown). In

particular, we considered a linear function, and two spline functions; one resembling

the cubic function from the above examples, but with two knots chosen to create a

wider “flat” section around the origin, and one which is constant to the left of the

origin and quadratic to the right. As expected, both methods performed well in the

linear case. In the cubic spline case, reduction in model complexity was good, but

mean test MSE became noticeably larger, and in the case of the constant spline with

the quadratic knot, mean test MSE was good, but reduction in model complexity was

noticeably worse. Thus, as one might expect, the proposed methods are less useful

in cases where η contains large sections which are nearly flat, or exactly constant.

To evaluate the performance of our standard error estimates, residual bootstrap

standard errors (based on 100 bootstrap data sets) were calculated for case (i) above.

Let SD denote the standard deviation of the 100 βj estimates, j = 1, . . . , p. Addition-

ally, let SE and SEsd denote the mean and the standard deviation of the 100 estimated

SE’s respectively. Looking at Table 2.2, we can see that the standard error estimates

appear to perform reasonably well, though they sometimes slightly underestimate or

overestimate the true values.

To demonstrate the ability of penalized monotone single-index models to capture

non linear relationships, we computed η̂m values across a fine grid of input values and

averaged these η̂m’s across the 100 data sets in case (i). These average values can

be found in Figure 2.1, along with the true function η and 90% empirical pointwise

confidence bands for η̂m. As we can see, the monotone function estimate η̂m appears

to closely follow the true function.
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Table 2.2: Performance of standard error estimates

β̂2 β̂7

Method SD SE (SEsd) SD SE (SEsd)

Cons.: 0.25 0.20 (0.08) 0.20 0.18 (0.06)
Uncons.: 0.28 0.34 (0.41) 0.28 0.27 (0.26)

Note: required 102 simulated data sets due to nu-
merical problems.

Because we are interested in using the proposed methods to identify subgroups,

we also compared “enhancement” classification between the two methods for case (i).

For this comparison, we consider a subject to be enhanced if η(xTβ) > 0. On aver-

age, 88% of subjects identified as enhanced by the constrained approach were truly

enhanced, whereas for the unconstrained approach, only 73% were correctly identified

on average. Thus, the constrained approach may be advantageous for applications to

subgroup identification.

The two methods methods require approximately the same amount of time to

complete a single iteration of our algorithm for a given value of λ. However, for some

data sets, the constrained approach requires more iterations to achieve the same

degree of convergence as the unconstrained approach. For example, for case (i) of

our simulations, the median run time for a data set for the constrained approach was

approximately 64% longer than that for the unconstrained approach.

2.4 Example data

In this example, we apply the proposed methods to the Eli Lilly data in Foster et al.

[2011], which come from a randomized, double-blinded clinical trial in patients with a
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critical illness in the ICU conducted over a decade ago. We consider 1019 individuals,

of whom 512 received the experimental treatment in addition to the standard of care.

The remaining patients received placebo with the standard of care. The intervention

is a drug that is intended to improve survival in patients with a critical illness, and

the endpoint was survival at 28 days post-randomization to treatment/placebo. We

consider 58 covariates analyzed by Foster et al. [2011], which include demographic,

laboratory, medical history and questionnaire data. Of these, 9 are binary, 22 are

regarded as continuous, and 27 are dummy variables coming from subdivision of 12

categorical variables.

In Foster et al. [2011], a random forest was used to obtain two predicted prob-

abilities, P̂1i and P̂0i, for each individual, where P1i is the probability of survival at

28 days post-randomization for subject i if that individual had received treatment

and P0i is that if subject i had received placebo. The estimation of these prob-

abilities was motivated by the fact that the methods of Foster et al. [2011] were

designed to identify subgroups of enhanced treatment effect in randomized clinical

trial data. Therefore, a new outcome representing the treatment effect for person i,

Zi = P̂1i − P̂0i, i = 1, . . . , n, was subsequently defined, since individuals in such a

subgroup should ideally have values of P1i which are much larger than P0i. Then, a

single regression tree was fit using Z as the outcome and the covariates as predictors.

This tree identified subgroups of enhanced treatment effect which depended on age

at admission, baseline creatinine clearance, baseline interleukin 6 and hypertension

(yes, no or unknown). This method was referred to by Foster et al. [2011] as “Virtual

Twins.”

Using Z as the outcome and the 58 covariates as predictors, we fit penalized

single-index models with and without monotonicity constraints. All covariates were
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Figure 2.2: Estimates of function η̂(·) from Eli Lilly data. Index values in the plotted

data are β̂
T
x, where β̂ comes from the constrained approach, and treatment effect

estimates are the Z values from Virtual Twins procedure. Those points to the right
of the vertical dotted line would be considered “enhanced” based on this analysis.

standardized in this analysis due to large differences in scale, and age at admission

was chosen to be the first column of X, as its corresponding initial estimate was the

largest and most significant value of β̂init It should be noted that this analysis was also

performed with baseline creatinine clearance as the first column (results now shown),

and the same six additional covariates were chosen, along with one other. The relative

magnitude of the coefficients in this analysis were similar for most variables. Results

from these models (with age at admission as first column of X) can be found in Table
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2.3. Estimates for the constrained and unconstrained approaches were fairly similar,

though an additional covariate, baseline index of independence in activities of daily

living (ADL) Katz and Akpom [1976], was included by the constrained approach.

Table 2.3: Estimates for Eli Lilly data

Unconstrained Constrained
Variable Estimate SE Estimate SE

Age 1.00 - 1.00 -
ADL1 - - -0.13 0.04
Platelet Count -0.12 0.03 -0.19 0.08
Creat. Clear. -0.70 0.17 -0.81 0.21
Interleukin 6 0.60 0.11 0.70 0.13
# Organ Fail. 0.14 0.06 0.23 0.11
APACHE II2 0.24 0.09 0.33 0.14
1 Baseline index of independence in activities of daily living.
2 Pre-infusion acute physiology and chronic health evalua-
tion II score.

In addition to β estimates, we computed bootstrap standard errors using 300

bootstrap samples. Because less important covariates will tend to be removed from

the model in most bootstrap samples, resulting in many zero bootstrap estimates, we

expect such covariates to have very small bootstrap standard errors.

The six covariates selected by both methods were age at admission, baseline cen-

tral lab platelet count, baseline creatinine clearance, baseline interleukin 6 (log scale),

number of baseline organ failures, and pre-infusion acute physiology and chronic

health evaluation II (APACHE II) score, of which age at admission, creatinine clear-

ance and interleukin 6 were also selected by the Virtual Twins method. Plots of the

data (from the constrained approach) and the final η estimates can be found in Figure

2.2. We can see that both estimates of η are reasonably close, with the constrained

estimate being noticeably more smooth. From Figure 2.2, we can see that the pre-
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dicted region of enhanced treatment effect consists of β̂
T
x values which are larger

than approximately −2, with the degree of enhancement increasing as β̂
T
x becomes

larger. The constrained and unconstrained approaches identified 847 and 864 sub-

jects as being enhanced, respectively, and of the 864 identified by the unconstrained

approach, 845 were also identified by the constrained approach. Furthermore, for the

constrained model, older individuals and those with higher baseline IL-6 respond very

well to treatment, and patients with lower baseline creatinine clearance show a greater

treatment differential. The findings from this analysis are reasonably consistent with

the original conclusions from this trial, which suggested that patients who had higher

risk factors for mortality responded better to the treatment.

As both fits suggest a relationship which is close to linear, an adaptive LASSO

penalized linear model was also fit (results not shown), once using the default tuning

parameter selection settings (10-fold cross-validation using squared error loss) in the

R glmnet package, and once using BIC to select the tuning parameter. The model

resulting from the default tuning parameter selection settings contained 24 covariates,

while the model selected using BIC contained 7 covariates. Although BIC is known

to give smaller models than cross-validation, this dramatic difference in model com-

plexity was mildly surprising to us. Based on the results of the linear model (using

BIC), it appears that the single-index models may not have added much compared

to a linear model in this case.

2.5 Discussion

We proposed the use of adaptive LASSO variable selection for monotone single-

index models, and showed that it performs well in a variety of situations. The con-
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strained approach noticeably outperformed the unconstrained, and has the advantage

of more straightforward interpretation. A linear approximation to η via Taylor series

was also proposed, thus allowing for the use of standard LASSO algorithms, such as

coordinate descent, which have been shown to perform well. In addition, we suggested

the use of residual bootstrap standard errors for β estimates, and showed that they

perform reasonably well in simulations.

We argue that the unconstrained adaptive LASSO penalized single-index model

estimates possess the oracle properties when η is estimated using the Nadaraya-

Watson formula. Additionally, we briefly argue that, following the results of Mammen

[1991], the oracle properties may also hold for the constrained approach, and it would

be interesting to investigate this more formally. Furthermore, the proof outlined in

Section 2.4 assumes that β is in a
√
n-neighborhood of the true value, which is likely

true given that the initial estimator of β is in a
√
n-neighborhood of β0.

Our method of obtaining a monotone function estimate is very similar to that of

Friedman and Tibshirani [1984]. They suggested that it may be possible to improve

the estimation of the monotone penalized single-index model if one considers “one-

step” monotone function estimates, such as those suggested by He and Shi [1998] and

Ramsay [1988]. This is worthy of further investigation.

The adaptive LASSO penalty was chosen for convenience; however, one may wish

to consider other penalty functions. For instance, as noted by a reviewer, the adaptive

elastic-net can often outperform the adaptive LASSO approach, particularly when

covariates are highly correlated. Note that the linear approximation to the function

η does not involve the penalty function. Thus, the proposed method and algorithm

could easily be modified if one wished to use a different penalty function, such as the

SCAD or adaptive elastic-net.



CHAPTER 3

Selection of simple rules for treatment assignment

using patient information

3.1 Introduction

Though some treatments may be more widely effective than others, few, if any,

work for all individuals in a target population. In many cases, a treatment may be

extremely effective for some subset of a population, but mildly effective, ineffective,

or even harmful, for others. Even if an experimental treatment is at least mildly

effective for an entire population, the standard of care may still be preferred for some

individuals if, for example, the experimental treatment is very expensive and there

is little difference in effectiveness between the two [Song and Pepe, 2004]. Thus, it

is desirable to know which individuals in a population, if any, will respond well to a

particular treatment. In particular, the identification of the characteristics which lead

to these individuals showing an enhanced response is of interest, as this may allow

future members of the population to be assigned the treatment which will benefit

them the most.

In recent years, many authors have proposed methods which use randomized clin-

ical trial or observational data to obtain a set of “rules” based on patient information,

29



30

which can subsequently be used to help ensure that future individuals in the popula-

tion are assigned the treatment which is best for them [Friedman and Fisher, 1999,

Negassa et al., 2005, Gunter et al., 2007, Su et al., 2008, 2009, Brinkley et al., 2010,

Cai et al., 2011, Foster et al., 2011, Janes et al., 2011, Lipkovich et al., 2011, Qian

and Murphy, 2011, Zhao et al., 2011, Imai and Ratkovic, 2012, Zhang et al., 2012].

The resulting “rules” may vary widely in form and complexity, from simple regions of

the design space, such as x3 > 5 or {x1 > 0.5, x6 < 1}, to more complex inequalities,

such as f(x) > c, where c is some constant and f is some nontrivial p-to-1 function

of the covariate vector x.

In this paper, we limit our discussion to cases where the outcome is continuous,

and only two treatment options are available. We are interested in cases where p, the

number of baseline covariates, is moderate, e.g. 5 to 100. We consider the use of ran-

domized clinical trial (RCT) data to select a simple treatment “regime” [Zhang et al.,

2012] which, if followed by the entire population, leads to the best expected outcome.

Potential regimes are restricted to those which involve assigning one treatment to

individuals who are in a region, say A, of the covariate space, and assigning the other

treatment to those individuals in Ac. It is desirable that these regions be simple,

and depend on only a limited number of covariates, so potential regions are limited

to contiguous subsets of the covariate space defined by one, two and three variables,

such as {x1 > 0, x2 > 0} or {x3 < 5, x4 > 0, x7 < 1}. These simple regions are easy

to understand, and allow for future treatment decisions to potentially be faster, less

expensive or less invasive, as they require only a limited amount of necessary patient

information. In addition to providing a “nice” functional form, limiting the number

of covariates that define the regions allows one to potentially identify the covariates

which most strongly affect how a patient will respond to treatment.
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The remainder of this chapter is as follows. In Section 2 we describe the proposed

method and outline an algorithm for implementation. In Section 3 we present the

results of a simulation study, and in Section 4, we discuss the application of the

proposed methods to a prehypertension RCT data set.

3.2 Identifying subgroups using the average value function

Suppose we have independent observations (y1,x1), . . . , (yn,xn) from the general

model

yi = h(xi) + (Ti − π)g(xi) + εi, (3.1)

where y is a continuous outcome, g and h are unknown functions, T is a binary

treatment indicator, π is the treatment randomization probability, and ε1, . . . , εn are

iid errors with mean zero and variance σ2. Without loss of generality, assume that

higher values of y represent an improved response. We wish to estimate a subregion,

Â, of the covariate space with which to define our treatment regime. In future pop-

ulations, only individuals in region Â would receive treatment (T = 1), with those

in Âc receiving the standard of care (T = 0). We wish to select the region Â which

maximizes the expected response under this regime. This expectation is sometimes

referred to as the average Value [Sutton and Barto, 1998, Gunter et al., 2007]. Note

that g(xi) is the treatment effect for subject i, so if we had no restrictions on Â and

g were known, the best regime would be to treat all individuals with g(xi) ≥ 0. The

functions g(x) and h(x) may be complex, potentially involving non-linearities and

interactions, so the approach we take is to use non-parametric methods to estimate

g and h. These estimates are then used to select the “optimal” region Â, with the

restriction that Â has to be simple.
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3.2.1 Nonparametric estimation of g and h

The following iterative approach is used to estimated the unknown functions h

and g in (3.1):

(i) Fit the model y = h(x) to obtain the initial estimate of h, ĥ(1).

(ii) Fit the model 1
T−π (y − ĥ(k)(x)) = g(x) to obtain the kth estimate of g, ĝ(k),

k ≥ 1.

(iii) Fit the model y − (T − π)ĝ(k)(x) = h(x) to obtain the (k + 1)th estimate of h,

ĥ(k+1), where k ≥ 1.

(iv) Iterate between steps (ii) and (iii) until
∑n

i=1

[
yi − ĥ(k)(xi)− (T − π)ĝ(k)(xi)

]2
changes by less than a prespecified small number.

There are many possible choices of model or algorithm for estimating g and h in steps

(ii) and (iii), such as multivariate adaptive regression spline (MARS) [Friedman, 1991]

and Random Forests [Breiman, 2001]. One may wish to choose the “convergence

threshold” in step (iv) above differently depending on which estimation method is

chosen. For instance, in our experience, a threshold of around 10−5 can generally

be achieved within only a few iterations for methods such as MARS and generalized

additive models. For Random Forests, the amount by which the sum of squares in

step (iv) changes remains somewhat constant, regardless of how many iterations have

been performed, most likely because of the random nature of this method. Thus,

in this case, we instead continue until 60 iterations have been performed, as in our

experience this is more than enough to obtain good estimates of g(x) and h(x).
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3.2.2 Selecting a subgroup for fixed g and h

Using notation similar to Zhang et al. [2012], let y1i and y0i be the potential

responses given that subject i received treatment or the standard of care respectively,

so that yi = y1iTi + y0i(1 − Ti). Let y∗i (A) = y1iI(xi ∈ A) + y0i(1 − I(xi ∈ A)) be

the potential outcome for a future subject under this “treat-if-in-A” regime for any

region A. After some simple algebra, we have

E
[
y∗i (A)

]
= E

[
E
(
y∗i (A)

∣∣∣xi, A)]
= E

[
h(xi)

]
− E

[
πg(xi)

]
+ E

[
2πg(xi)I(xi ∈ A)

]
. (3.2)

Note that only the last term in (3.2) involves A, so maximizing the expected value of

y∗i (A) with respect to A amounts to maximizing

EX

[
g(xi)I(xi ∈ A)

]
. (3.3)

Thus, given function g, one estimator for (3.3) is the sample average:

1

n

n∑
i=1

g(xi)I(xi ∈ A),

which, after multiplying by n, can be rewritten as

∑
i:xi∈A

g(xi). (3.4)

The chosen subgroup, Â, is that which maximizes (3.4). In practice, one may wish to

consider the inclusion of a nonzero offset in (3.4), as in our experience this can help
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to better identify truly positive responders. Specifically, one could replace (3.4) with

∑
i:xi∈A

[g(xi)− δ], (3.5)

where δ 6= 0. Selection of the offset δ is considered below.

We consider one, two and three-dimensional regions of the general form
{
xj
≥
< cj

}
,or{

xj
≥
< cj

}
∩
{
xk
≥
< ck

}
or
{
xj
≥
< cj

}
∩
{
xk
≥
< ck

}
∩
{
xl
≥
< cl

}
as candidates for the

region Â, where ≥< indicates either ≥ or < and j, k and l are distinct. In addition,

we consider the complements of these regions.

Once the final converged estimates, ĥ and ĝ, are obtained, the optimal region Â

can be found by replacing g with ĝ in (3.4) or (3.5) and maximizing with respect

to A. For the remainder of the paper, this subgroup identification method will be

referred to as the Average Value (AV) approach.

Note that for just the three-variable candidate regions specified above, there are(
p
3

)
unique combinations of covariates, 23 = 8 unique ways to assign directions ≥ / <

to xj, xk and xl, and as many as n−1 unique cutpoints for each covariate (if observed

values are unique). Thus, the Average Value procedure will often involve the evalu-

ation of a very large number of regions, making it very computationally expensive.

Therefore, a modified version of the procecure is employed in our simulations and

example data analysis. Specifically, to decrease the number of candidate groups, we

consider a rough, evenly-spaced grid of 10 to 20 cutpoints, rather than all observed

values as candidates for the cutpoint cj for covariate j, j = 1, . . . , p. Additionally,

instead of considering all one, two and three-dimensional regions simultaneously, we

employ a “stepwise” approach. This approach is as follows:

1. Evaluate all candidate one-dimensional regions, and select the best M1D re-
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gions. Let B1D be the set of unique covariates which define these “best” one-

dimensional regions.

2. Evaluate all candidate two-dimensional regions in which one of the dimensions

is defined by a member of B1D and the other is any other covariate (that may

or may not be in B1D), and select the best M2D regions. Let B2D be the set

of unique pairs of covariates which define these “best” two-dimensional regions.

Note that B1D is only used to define which covariates are allowed to define

one of the dimensions of the two-dimensional regions. All possible directions

(i.e. < or ≥) and cutpoints are considered for these covariates when evaluating

two-dimensional regions.

3. Evaluate all candidate three-dimensional regions in which two of the dimensions

are defined by a pair contained within B2D and the other is any other covariate

(that may or may not be in B2D), and select the best three-dimensional region.

As in step 2, B2D is only used to define which covariates are allowed to define

two of the dimensions of the three-dimensional groups, so all possible directions

(i.e. < or ≥) and cutpoints are considered for these covariates when evaluating

three-dimensional regions.

4. Identify Â, the best overall region.

It should be noted that, if one wishes to restrict the minimum or maximum size of

candidate subgroups, this can be done by simply removing groups outside of this size

range from consideration. This may also help to improve the computational efficiency

of the AV method, as it further decreases the number of subgroups which must be

evaluated.
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3.2.3 Evaluation of the region Â

The proposed method always identifies a region, so it is important to have a

method by which to evaluate the strength of the selected region. For this purpose,

we consider the metric proposed by Foster et al. [2011]:

Q(A) = E(y|T = 1,x ∈ A)−E(y|T = 0,x ∈ A)− [E(y|T = 1)−E(y|T = 0)], (3.6)

which is a measure of the enhanced treatment effect in A relative to the average

treatment effect. We consider six methods for estimating (3.6), which we briefly

describe below. Additional details are given by Foster et al. [2011].

Method 1. Resubstitution. Replace the four conditional expectations in (3.6)

with the observed means in the data and use these obtain an estimate of Q(A):

Q̂(A)RS =

∑n
i=1 yiI(xi ∈ A, Ti = 1)∑n
i=1 I(xi ∈ A, Ti = 1)

−
∑n

i=1 yiI(xi ∈ A, Ti = 0)∑n
i=1 I(xi ∈ A, Ti = 0)

−

[∑n
i=1 yiI(Ti = 1)∑n
i=1 I(Ti = 1)

−
∑n

i=1 yiI(Ti = 0)∑n
i=1 I(Ti = 0)

]
. (3.7)

As noted by Foster et al. [2011], the Resubstitution method re-uses the data

which were used to estimate Â. Thus, this estimate is expected to be positively

biased.

Method 2. Simulate new data. The goal of this method is to obtain new data

which “look like” the original data, but are independent of the original data,

thereby reducing the bias of the resulting estimate. This process could be re-

peated many times, and each time (3.7) could be recalculated using the new

data. The simulate new data estimate could be found by averaging these resub-
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stitution estimates. As in Foster et al. [2011], we avoid actually simulating new

data by instead replacing yi by ŷi = ĥ(xi) + (Ti− π)ĝ(xi), i = 1, . . . , n in (3.7).

This estimate is denoted Q̂(A)SND. This method also tends to be positively

biased, but is generally less biased than the RS approach. It should be noted

that, though we do not actually simulate new data in this method, we use the

name “simulate new data” in order to be consistent with Foster et al. [2011].

Method 3. Mean ĝ. For a given sample, under model (3.1), the empirical version

of (3.6) is equivalent to

1
|A|
∑

i:xi∈A g(xi) − 1
n

∑n
i=1 g(xi), where |A| is the number of individuals in the

region A. Thus, ĝ can be used to obtain an estimate of (3.1):

Q̂(A)ĝ =
1

|A|
∑
i:xi∈A

ĝ(xi)−
1

n

n∑
i=1

ĝ(xi). (3.8)

This method is similar to the SND method, and will generally have a similar

amount of bias. It should be noted that for “paired” data, in which each treated

observation has a corresponding identical (with respect to covariate values)

control observation, this estimate will be exactly equal to the SND estimate.

Methods 4-6. Bootstrap bias correction. We also consider the bootstrap bias

correction discussed in [Foster et al., 2011]. For a given region A, the bias of an

estimate, Q̂(A), of (3.6) is Q̂(A)−Q(A). Following the arguments provided in

[Foster et al., 2011], it is possible to obtain an approximation to this bias using

bootstrap data sets. Let sample l represent a bootstrap sample taken with

replacement from the observed data. Using this sample, the Average Value

approach is implemented, providing new estimates ĥ(l), ĝ(l) and a new region
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A(l). A new estimate Q̂(l)(A(l)) of (3.6) is then obtained from one of the above

methods, and can be viewed as an approximate estimate of Q̂(A). Additionally,

the observed data and corresponding function estimates ĥ and ĝ may be used

along with the new region A(l) to calculate Q̂(A(l)), which can be viewed as an

approximate estimate of Q(A). Thus, a bootstrap approximation of the bias

is Q̂(l)(A(l)) − Q̂(A(l)). This process is repeated many times (say, L), and the

bias of Q̂(A) is approximated by 1
L

∑L
l=1(Q̂

(l)(A(l)) − Q̂(A(l))). The resulting

estimate may be used to adjust estimates from any of the above three methods,

i.e. the adjusted Q̂(A) = Q̂(A)− 1
L

∑L
l=1(Q̂

(l)(A(l))− Q̂(A(l))). These adjusted

RS, SND and ĝ-based estimates are called Methods 4, 5 and 6 respectively.

3.2.4 Selection of δ

If one wishes to consider an offset, δ, a number of options exist. In this paper, we

use the offset to improve the performace of our method, and we select the smallest

value δ such that (−δ, δ) contains at least 50% of the estimated treatment effects,

ĝ(xi), i = 1, . . . , n, thus forcing the estimated subgroup to contain fewer than half of

the observations. This value tends to be large, and was selected because we wish to

aggressively search for enhanced individuals. It should be noted that, though we use

a positive, nonzero δ, we consider anyone with a treatment effect greater than zero

to be enhanced. If one instead considers “enhanced” individuals to be those beyond

some known, nonzero, minimal meaningful treatment effect (say, c), one could instead

define the offset to be δ + c, where δ is still nonzero. Alternatively, if one wishes for

the selected subset to be of a specific size, the value of δ could be chosen accordingly.

If one wishes to be less aggressive, an offset need not be used.
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3.3 Simulations

To evaluate the performance of the proposed method a simulation study was un-

dertaken. In this study, the proposed method is compared to the Virtual Twins

[Foster et al., 2011] approach, which is another two-stage subgroup identification pro-

cedure. In the first stage of the Virtual Twins procedure, y is used as the outcome in

a Random Forest, with the covariates and treatment indicator being used as predic-

tors. This Random Forest is used to obtain estimates of the two potential outcomes,

y1i and y0i, for each subject, and the estimated treatment effect ŷ1i− ŷ0i is calculated

for each subject. In the second stage, the estimated treatment effects are used as

the outcome in a single regression tree, and the identified subgroup consists of all

terminal nodes for which the estimated treatment effect (from the single regression

tree, not the Random Forest) is beyond some pre-defined “enhancement” threshold.

In this simulation study, we consider six different cases, as shown below:

1. g(x) = 5√
2
(x1 + x2)

2. g(x) =



0.5 + 10 min(|x1|, |x2|) if x1 > 0.5 and x2 > 0.5

−0.5 if x1 < −0.5 or x2 < −0.5

min(|x1 + 0.5|, |x2 + 0.5|)− 0.5 otherwise

3. g(x) = 20I(x1 > 0, x2 > 0) min(|x1|, |x2|)

4. g(x) = 35I(x1 > 0, x2 > 0)

5. g(x) = 5

6. g(x) = 0.
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In all cases, at most 2 of the p variables determine g(x). In case 1, treatment effects

are generated by summing values of the first two covariates. Because the covariates

are normally distributed with mean zero, the resulting treatment effects have a distri-

bution which is symmetric about zero. Thus, there is no clearly separated “enhanced”

group of individuals who are different from the rest of the population. However, in-

dividuals with x1 + x2 > 0 show a positive expected response to treatment and those

with x1 + x2 < 0 show a negative expected response to treatment. Cases 2-4 have

clearly defined enhanced individuals present. In case 2, there is a group of “nonre-

sponders” whose values for g vary slightly around zero, and a group of “responders”,

whose values for g vary around some nonzero mean treatment effect. Case 3 is simi-

lar to case 2, but nonresponders show no effect of treatment whatsoever, rather than

small effects centered at zero. In case 4, nonresponders again have a constant zero

treatment effect, and responders have a constant nonzero treatment effect. Cases 5

and 6 are two variants on a null case. In case 5, the treatment effect is a non-zero

constant for all individuals, so no “enhanced” region exists, or alternatively, everyone

is “enhanced.” In case 6, the treatment effect is exactly zero for all members of the

population. Specific data generation schemes for all six cases are given below. For

each case, 100 data sets of size n = 500 were generated from the model:

yi = 30 + 5x1i + 5x2i − 5x7i + Tig(xi) + εi,

where x’s are iid standard normal, ε’s are iid normal with mean zero and variance

100 and are independent of the x’s. In all cases, we consider a total of 10 variables (8

of which may be considered “noise” variables) in our analysis. For cases 1-4, three-

dimensional plots of x1, x2 and g are given in Figure 3.1 and histograms of g from all



41

100 data sets can be found in Figure 3.2. The “true” enhanced region in each case

consists of all individuals for whom g(xi) > 0. Thus, in case 1 we expect 1
2

of the

subjects to be enhanced, in cases 2-4 we expect 1
4

of the population to be enhanced,

in case 5 the true region is all individuals, and in case 6 the true region is empty.

For the Average Value approach, only subgroups of size 20 or larger were consid-

ered. It should be noted that this value is somewhat arbitrary. Additionally, for the

stepwise subgroup search, the top 10 (M1D = 10) of the one-dimensional regions were

used to identify covariates for B1D and the top five of the two-dimensional groups of

the form
{
xi
≥
< ci, xj

≥
< cj

}
(and top five groups of the form

{
xi
≥
< ci, xj

≥
< cj

}c
) were

used to identify covariate pairs for B2D (when combined, gives M2D = 10). Candi-

date cutpoints for each covariate were the corresponding 0, 5, 7.5, . . . , 95 percentiles for

the one-dimensional search, 0, 5, 10, . . . , 95 percentiles for the two-dimensional search

and 0, 5, 20, 35, 50, 65, 80, 95 percentiles for the three-dimensional search. It should

be noted that the 0th quantiles were included as candidate cutpoints to allow for the

identification of subgroups of less than three variables, since ≥ 0th percentile means

the corresponding variable is useless. For both the Average Value and Virtual Twins

procedures, 20 bootstrap data sets were used to obtain the bias-corrected estimates.

As mentioned above, for the Average Value procedure, we selected an offset δ such

that (−δ, δ) contains at least 50% of the estimated treatment effects. This offset value

was also used as the “enhancement” threshold for the Virtual Twins procedure. For

the Average Value procedure, the unknown functions g and h were estimated using a

simple average MARS estimates and Random Forest estimates, as this approach was

found to perform better than either method alone in our simulations. These estimates

were obtained using the R functions randomForest and mars with default settings.

For each case, to assess the ability of the methods to identify the true underlying



42

subgroup, we calculate the average number of individuals with a true positive treat-

ment effect, the average size of the identified region, the average sensitivity, specificity,

positive and negative predictive values for the identified regions, the proportion of the

time in which the correct covariates are included in the identified regions, and the

proportion of the times the identified subgroup is defined using only the correct co-

variates. In addition, for each case we calculate the average values of Q(A), Q(Â) and

all the estimates of Q(Â) discussed in Section 2.2.3. In the calculation of sensitivity,

specificity, positive predictive value and negative predictive value, we consider the

“true” region to be all individuals for whom g(xi) > 0 and the “estimated” region to

be all individuals in Â.

Table 3.1, shows that the Average Value approach tends to identify larger sub-

groups than Virtual Twins, especially when there exists a subgroup of patients with

especially large treatment effects, such as in Cases 3 and 4. Because of this, the

Average Value approach tends to have slightly better sensitivity and slightly lower

positive predictive value than Virtual Twins. This tendency to select larger groups

also leads to slightly lower specificity for the Average Value approach compared to

Virtual Twins, especially when some very enhanced individuals exist (Cases 3 and

4), as the Average Value approach tends to identify too many individuals as being

enhanced in these cases. Both methods tend to identify too few individuals as being

enhanced in situations where there are many individuals with small to moderate treat-

ment effects, such as in Cases 1, 2 and 5; however, this is to be expected, as a large

offset was selected in order to aggressively search for very enhanced individuals. The

Average Value method is generally very successful at identifying regions which de-

pend on the true important covariates, and this success appears to be less sensitive to

changes in scenario than that of the Virtual Twins approach. The Virtual Twins ap-
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proach more frequently identifies regions which depend only on the correct covariates.

Both of these trends are most likely a result of the Average Value method’s tendency

to select three-dimensional regions, regardless of the true underlying dimension.

From Table 3.2, we can see that the Virtual Twins procedure tends to identify

more enhanced regions than the Average Value procedure. This is most likely due to

the fact that Virtual Twins tends to identify fewer subjects as being enhanced than

the Average Value procedure. The uncorrected estimates of Q(Â) tend to be less

biased for Virtual Twins than for the Average Value procedure, most likely because

the Average Value procedure selects less enhanced regions, and as noted by Foster

et al. [2011], these estimates tend to be more biased when Q(Â) is small (or zero). As

expected, the uncorrected SND estimates are less biased than the RS estimates for

both procedures. Also, for the Average Value approach, the Mean ĝ estimate appears

to be a slight improvement over the SND estimate. The bias correction appears to

work better for the Average Value method, showing less of a tendency to overcorrect

than with Virtual Twins, perhaps because the estimates of Q(Â) tend to be more

biased for the Average Value procedure than for Virtual Twins.

It is difficult to identify one estimate as the best performer for all cases for either

method. For non-null cases (1-4), the uncorrected SND estimates appear to be best

for Virtual Twins, while the bias-corrected RS estimates generally perform best for

the Average Value method. Though it tends to overcorrect, the bias-corrected Mean

ĝ estimate also seems promising, especially for null cases 5 and 6. For the Virtual

Twins procedure, the bias-corrected RS estimates appear to be best for cases 5 and

6.

In our experience, the Virtual Twins procedure has a tendency to identify sub-

groups which consist of two or more disjoint regions, whereas the Average Value
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method is designed to identify only contiguous regions. Because of this, subgroups

identified by the Average Value method will generally be simpler and easier to use

than those identified by Virtual Twins. Moreover, the results of this simulation study

suggest that further restricting the form of potential subgroups has only a very mild

negative impact on performace (compared to Virtual Twins). Thus, we believe the

Average Value procedure is a very viable alternative to Virtual Twins.

Table 3.1: Simulation study results: subgroup identification performance

True # Incl. Only
Scenario Responders1 Size Sens. Spec. PPV NPV x1, x2 x1, x2

Case 1
AV: 249.94 98.84 0.36 0.97 0.93 0.61 0.99 0.11
VT: 249.94 95.12 0.36 0.98 0.92 0.61 0.94 0.43

Case 2
AV: 125.27 103.08 0.33 0.84 0.42 0.79 1.00 0.10
VT: 125.27 78.88 0.37 0.91 0.62 0.82 0.81 0.12

Case 3
AV: 125.27 171.37 0.69 0.77 0.53 0.89 1.00 0.21
VT: 125.27 118.79 0.62 0.89 0.73 0.88 1.00 0.43

Case 4
AV: 125.27 204.32 0.99 0.79 0.63 1.00 1.00 0.53
VT: 125.27 129.93 0.97 0.98 0.96 0.99 1.00 1.00

Case 5
AV: 500 239.30 0.48 - 1.00 - - -
VT: 500 231.64 0.46 - 1.00 - - -

Case 6
AV: 0 76.74 - 0.85 - 1.00 - -
VT: 0 49.42 - 0.90 - 1.00 - -

1 True responders defines as those with g(xi) > 0.
AV and VT indicate Average Value and Virtual Twins respectively.
Sample size for each case is 500.
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Figure 3.1: Plot of True g(x) for Cases 1-4

3.4 Application to randomized clinical trial data

The proposed methods were applied to data from the Trial of Preventing Hy-

pertension (TROPHY) [Julius et al., 2006]. This study included participants with

prehypertension, meaning that all participants had either an average systolic blood

pressure of 130 to 139 mm Hg and diastolic blood pressure of no more than 89mm Hg
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Figure 3.2: Histogram of True g(x) for Cases 1-4

for the three run-in visits (before randomization), or systolic pressure of 139 mm Hg

or lower and diastolic pressure between 85 and 89 mm Hg for the three run-in visits.

These subjects were randomly assigned to receive either two years of candesartan (a

hypertension treatment) or placebo, followed by two years of placebo for all subjects.

Subjects had return visits at 1 and 3 months post-randomization, and every 3 months



47

Table 3.2: Simulation study results: Q(Â) estimation performance

Q̂(Â) Bias-Corrected Q̂(Â)

Scenario Q(A) Q(Â) RS SND Mean ĝ RS SND Mean ĝ

Case 1
AV: 4.00 5.43 8.00 6.63 6.63 4.97 2.79 3.51
VT: 4.00 6.19 7.92 6.29 - 4.00 1.16 -

Case 2
AV: 3.03 1.38 6.10 4.38 4.11 2.82 0.19 0.65
VT: 3.03 4.31 6.45 4.91 - 1.62 -1.16 -

Case 3
AV: 7.02 3.63 5.63 4.53 4.37 3.29 1.53 1.92
VT: 7.02 7.71 9.01 7.17 - 5.51 2.67 -

Case 4
AV: 26.23 13.31 14.36 11.72 11.28 13.23 9.98 10.32
VT: 26.23 24.95 25.01 23.20 - 24.28 22.20 -

Case 5
AV: 0.00 0.00 2.69 1.87 1.79 0.54 -0.90 -0.61
VT: 0.00 0.38 2.49 2.20 - -1.47 -2.56 -

Case 6
AV: 0.00 0.00 6.12 4.33 3.85 2.33 -0.43 -0.09
VT: 0.00 0.41 2.75 2.29 - -0.77 -2.05 -

AV and VT indicate Average Value and Virtual Twins respectively.
Sample size for each case is 500.

thereafter until month 24. In year 3, clinic visits were at 25 and 27 months, and then

every third month thereafter until the end of the study. The study produced analyz-

able data on 772 subject, with 391 coming from the candesartan group and 381 from

the placebo group. Baseline measurements included age, gender, race (white, black

or other), weight, body-mass index (BMI), systolic and diastolic blood pressures, to-

tal cholesterol, high density lipoprotein cholesterol (HDL), low density lipoprotein

cholesterol (LDL), HDL:LDL ratio, triglycerides, fasting glucose, total insulin, in-

sulin:glucose ratio and creatinine, with the insulin:glucose ratio being dropped from

our analysis due to extremely high correlation (≈ 0.98) with total insulin. The end-
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point of interest in the original study was the binary variable development of stage

1 hypertension (see Julius et al. [2006] for details); however, for the purpose of this

paper we consider the continuous variable systolic blood pressure as the outcome

variable. Specifically, the outcome in our analysis is blood pressure (systolic) at 12

months post-randomization.

It should be noted that at 12 months post-randomization there was some (ap-

proximately 20%) missing data in the outcome due to patient dropout and patients

developing hypertension (the endpoint in the original study). For our analysis, be-

cause the endpoint (hypertension) was defined based only on observed blood pressure

measurements, missing data due to patients experiencing the event were assumed to

be missing at random. There was also a small amount of missingness in the base-

line covariates, with the largest fraction of missing for any covariate being 4.3%. All

missing values were imputed using SAS PROC MI (SAS Institute Inc., Cary, NC).

The imputation model included all baseline covariates and all blood pressure mea-

surements up to 12 months post-randomization, stratified by treatment and gender.

Because the proposed methods have not yet been extended to data with missing

values, only a single imputation was perfomed.

There are three very large and influential outliers in the covariate values. Thus,

Random Forests, rather than an average of Random Forests and MARS, was used

to estimate the unknown functions g and h, as it is less sensitive to outliers than

MARS. Additionally, insulin, glucose, HDL, LDL, HDL:LDL ratio and triglycerides

were noticeably skewed, so these covariates were log-transformed for the analysis.

In our analysis, we used the following settings for the Average Value method: (1)

the percentiles of covariates used as cutpoints in the three-dimensional search were

changed to 0, 7.5, 15, . . . , 90, (2) all two-dimensional regions were considered in the



49

stepwise search procedure (so that B1D contained all the baseline covariates), (3) the

top 50 two-dimensional groups (and the top 50 complement groups) were used to

identify covariate pairs for B2D (so M2D = 100), and (4) the Random Forest included

2000 trees. All other settings were the same as those in the simulations.

A histogram of the estimated treatment effects is given in Figure 3.3. The very

high percentage of positive predicted treatment effects suggests that candesartan is

widely effective for treating prehypertension. Thus, in this case, it may be more inter-

esting to identify the small subgroup of individuals who shouldn’t receive treatment.

As a result, no offset was used in this analysis (δ = 0), and Â was redefined as the

region which minimizes (3.5).

The identified region is Â = {HDL:LDL ratio < 0.38, HDL cholesterol < 46.02,

total insulin ≥ 25.11}, and contains 20 subjects. Thus, the Average Value method

suggests a treatment regime where individuals in this region receive placebo and all

others receive candesartan. Estimates of Q(Â) were -1.63, -8.14 and -9.75 for the RS,

SND and Mean ĝ methods respectively, with bias corrected values being 3.92, 0.35 and

-4.24. The bias corrected estimates are closer to zero than the uncorrected estimates,

and are fairly small in magnitude, suggesting that individuals in the identified region

may have essentially no response to treatment, rather than a large negative response.

It should be noted that, due to the random nature of Random Forests, results may

vary slightly depending on which seed is chosen for the estimation of the functions

g and h. The above analysis was repeated using a different random seed, and a

slightly different subgroup was identified; however, the subgroup was again defined

using insulin and two of the cholesterol measures, and contained some, but not all

of the same individuals. The above analysis was also performed without the three

large outlying observations in the covariates, and again a region based on cholesterol
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Figure 3.3: Histogram of ĝ(x) for TROPHY Data

measures and insulin was identified. Given the relatively small magnitude of the bias-

corrected estimates of Q(Â), it is also possible that the selection of different covariates

and subjects with different seeds is due to the fact that no “true” subgroup exists.

3.5 Discussion

We proposed a method which uses randomized clinical trial data to identify sim-

ple sets of “rules” based on patient information, which can be used to define future
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treatment regimes. The method was found to be very effective at identifying truly im-

portant covariates in simulations, but had a tendency to identify larger, and therefore

less enhanced subgroups than Virtual Twins [Foster et al., 2011]. Though slightly less

enhanced, the subgroups identified by the Average Value procedure were generally

comparable to those from Virtual Twins, and have the added advantage of being sim-

pler, and therefore easier to interpret, which may lead to them seeing more real-world

use.

Due to slight differences between the proposed method and Virtual Twins, it is

difficult to know if the results in the simulation section are directly comparable. For

instance, an offset of, say 10 for the Average Value procedure may not be equiva-

lent to an “enhancement” threshold of 10 in Virtual Twins. Additionally, a direct

comparision may not be fair because, as previously mentioned, the Average Value

procedure does not allow the same subgroup complexity as Virtual Twins.

Though very effective at identifying truly important covariates, the proposed

method tends to select three-dimensional regions, even when the true underlying

region is of fewer dimensions. Thus, it may be interesting to consider some form of

pruning, as is done for classification and regression trees. This would be particularly

interesting if one wished to consider subgroups of more than three dimensions. Al-

ternatively, it may be interesting to consider incorporating a penalty based on the

number of covariates to the objective function. It is possible that the inclusion of such

a penalty could help the Average Value method to more frequently identify regions

of the correct dimension.

The general strategy used in this paper is to first estimate g(xi), and then find

the region A which maximizes
∑

i∈A ĝ(xi), where we restrict Â to have a certain

simple form. Other simple forms of Â could also be considered. For example, Â could
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be defined by {x : βTx > c}, with further simplification possible if the number of

non-zero βj’s was also restricted.

It should be noted that the chosen value of the offset δ can strongly impact the size

of the estimated subgroup. Thus, it may be possible to improve the performance of

the Average Value approach by using alternative data-adaptive methods for selecting

δ.

Because of the computationally expensive nature of the Average Value method,

we considered a more computationally efficient “stepwise” version of the procedure

in our data analysis and simulations. It may be of interest to consider less greedy

methods for increasing the speed of the procedure.



CHAPTER 4

Permutation testing for treatment-covariate

interactions

4.1 Introduction

In clinical trials, a common goal is to search for subgroups of enhanced treat-

ment effect. A well-known risk in subgroup analysis is that of false positives [Yusuf

et al., 1991, Peto et al., 1995, Assmann et al., 2000, Brookes et al., 2001, Cui et al.,

2002, Pocock et al., 2002, Brookes et al., 2004, Rothwell, 2005, Lagakos, 2006, Wang

et al., 2007]. One way to reduce this risk is to pre-define a small number of potential

subgroups before looking at the data; however, one may not always know a priori

which subgroups may be of interest. When considering pre-defined subgroups, one

common approach to reducing the risk of false positive findings is to consider a mul-

tiple testing procedure, such as a Bonferroni correction. Multiple testing procedures

can effectively reduce false positives, but generally also lack power to detect true sub-

groups. Thus, one may instead wish to pre-define a statistical approach for identifying

subgroups [Ruberg et al., 2010], which can be implemented using the data [Friedman

and Fisher, 1999, Negassa et al., 2005, Su et al., 2008, 2009, Brinkley et al., 2010,

Cai et al., 2011, Foster et al., 2011, Lipkovich et al., 2011, Qian and Murphy, 2011,

53
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Zhao et al., 2011, Imai and Ratkovic, 2012, Zhang et al., 2012]. Such pre-defined

approaches can be very effective, but may still be prone to identifying subgroups,

even when no true underlying subgroup exists [Foster et al., 2011]. To help quantify

the potential usefulness of identified subgroups, Foster et al. [2011] considered the use

of a metric, Q(A), which is defined as the difference between the expected treatment

effect in some subset of the covariate space, A, and the overall treatment effect. Such

a metric can also be helpful for eliminating false subgroups, as small values suggest

a lack of enhancement, but may be more effective if one can also obtain p-values for

the metric estimates.

Before obtaining a p-value, one must consider what “null” means in a particular

setting. Subgroups of enhanced (or more generally, different) treatment effect occur

when the effect of treatment depends on the covariate values, i.e., such subgroups

arise when treatment-by-covariate interactions exist. Thus, in this setting, “null”

data may be defined as data in which no treatment-by-covariate interactions exist.

Alternatively, if one has implemented a subgroup identification procedure, and wishes

to evaluate the identified region of the covariate space, say A, null data could be

defined as data for which the treatment effect in region A is equal to the overall

treatment effect. In this paper, we will focus on the more general null scenario that

no treatment-by-covariate interactions exist.

Consider the following general model:

yi = h(xi) + g(xi)(Ti − π) + εi, (4.1)

where yi is the observed, continuous outcome measure for subject i, xi is the ith row

of the standardized, n× p covariate matrix X, and Ti is a binary indicator of which
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treatment subject i received. Additionally, εi, i = 1, . . . , n are iid errors with mean

zero and variance σ2 which are independent of the covariates, and π is a treatment

randomization probability. We wish to consider a general class of models, so h and

g are unspecified. Note that in this model, g(xi) is the treatment effect at covariate

value xi. Our goal is to test the null hypothesis that g(x) is constant with respect

to the covariates x. That is, we wish to test for treatment-by-covariate interactions.

One possible approach is to develop a test statistic for which asymptotic properties

can be obtained, but this may be difficult for some methods. In such cases, a common

approach is to use permutation tests.

A number of authors, including Edgington [1986], Good [2000], Potthoff et al.

[2001], Bůžková et al. [2011] and Simon and Tibshirani [2012], have considered the

testing of interactions using permutation-based methods, which work by shuffling

parts of the data, such as the outcome, some or all of the covariates, or the treatment

indicators, with the goal of eliminating one or more specific associations. In this

chapter, we have a broad definition of what a permuted data set is. In general,

permutations shuffle selected parts of the data set in such a way that the new data

“look like” the original data in some aspects, but in other aspectes, the new data

differ from the original data. For example, marginal distributions are preserved,

but some associations between selected variables are not preserved. Moreover, with

simple permutations, it may not be possible to completely control which aspects of the

original data are preserved, and which are changed. An issue which must be addressed

if one wishes to test for interactions using permutation-based methods is that it is

generally impossible to remove only the associations of interest by simply permuting

the data [Edgington, 1986, Good, 2000, Potthoff et al., 2001, Bůžková et al., 2011,

Simon and Tibshirani, 2012]. One way to reduce the drawbacks of removing more than
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just the association of interest is to “cleverly” choose a test statistic [Edgington, 1986,

Good, 2000, Potthoff et al., 2001, Bůžková et al., 2011], but there may not always be

an obvious choice. The “permutation-like” methods that we will develop and describe

later in this chapter have a similar characteristic of preserving some aspects of the

data structure, while not preserving other aspects, but in a somewhat more controlled

fashion. In particular, we will propose alternative forms of permutation methods,

which are designed to remove only the associations of interest, thereby avoiding some

of the potential issues with using traditional permutation tests for interactions.

The remainder of this chapter is as follows. In Section 4.2 we briefly review

permutation tests and present a variety of alternative methods for obtaining p-values.

In Section 4.3, the proposed methods are compared with a number of commonly-used

permutation-based approaches in a simulation study. In Section 4.4, the proposed

methods are implemented on real data from a randomized clinical trial, and in Section

4.5 we present a discussion.

4.2 Permutation tests

4.2.1 Review of permutation tests

Suppose we have observed data (y1, x1), . . . , (yn, xn), where y is some outcome and

x is a covariate of interest, and that we only consider testing the null hypothesis of

no association between y and x. This is generally done by calculating a test statistic,

say T̂ S, and then obtaining a p-value based on the null distribution of T̂ S. In lieu of

using asymptotics to determine the null distribution of T̂ S, one may wish to employ a

permutation test. For testing the null hypothesis that no association exists between x

and y, approximately “null” data can be obtained by permuting either x or y. This is



57

essentially the same as replacing the permuted covariate with a randomly generated

noise covariate of the same distribution. Permutation tests work by repeating the

process many times (say K), each time calculating a new value of the test statistic,

T̂ S
(k)

. These K values are then used to define an approximated null distribution for

T̂ S, from which a p-value can be obtained.

As noted by Edgington [1986], there are two basic methods of permuting data.

One approach is the systematic [Edgington, 1986] method, in which all possible per-

mutations are considered; however, in this case, K = n! (if the observed values are

unique), so for even moderate sample sizes, the number of possible permutations will

be very large. An alternative approach is random [Edgington, 1986] or Monte Carlo

permutation, in which only a random subset of the possible permutations are consid-

ered, making it much more feasible for moderate-to-large data sets. In this paper, we

consider only random permutation tests.

In the next subsection, we consider several methods which are permutation based,

but are specifically designed to test only for interactions, which is something tradi-

tional permutation tests are generally unable to do. Though the proposed methods

could be applied to any interaction, we will limit our discussion to treatment-by-

covariate interactions.

4.2.2 Modified permutation methods

Permutation tests may not be ideal if one wishes to test for interactions, as

they will generally be unable to remove only the association of interest. To bet-

ter understand why this is, consider the following example. Suppose we have RCT

data (yi, Ti,xi), i = 1, . . . , n, and that we wish to fit the interaction model yi =

β0 + βTxi + γ(Ti − π) + θTxi(Ti − π) + εi, where β and θ are p × 1. In particular,
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suppose we wish to test for an interaction between treatment and one covariate, say

xj. That is, we wish to test the null hypothesis θj = 0. Permuting y will eliminate

the desired interaction, but will also eliminate all main effects of the covariates and

the treatment, thereby making the “true” underlying model yi = β0 + ε′i. Similarly,

permuting the covariate xj or the treatment indicator T will eliminate the interac-

tion, but also the corresponding main effect for either xj or T , leading to a “true”

underlying model where βj = θj = 0 or γ = 0,θ = 0 respectively.

One simple way to address this issue is considered by Potthoff et al. [2001], and

involves permuting the covariates of interest within levels of T . Thus, in this case, one

would permute values of xj separately for those with Ti = 1 and those with Ti = 0.

This approach will avoid removing the main effect for treatment, but still eliminates

the main effect for xj, so that the null model has βj = θj = 0. Note that if one wishes

to test for all x-by-T interactions (null hypothesis θ = 0), this approach is equivalent

to permuting y within levels of T .

Consider now the general model (4.1), and suppose we are interested in testing

whether or not the treatment effect, g(xi), is constant with respect to the covariates

xi. Additionally, suppose that model (4.1) has been fit, giving function estimates ĥ

and ĝ, and let T̂ S be the sample value of the test statistic of interest. Our methods

are designed to perturb the values of ĝ(xi) to obtain a new treatment effect, g∗i , which

does not depend on the covariates, and which will be discussed later. Using this null

treatment effect, along with the specific form of model (4.1), we obtain p-values as

follows:

1. Create a new “null” outcome, y
∗(k)
i = ĥ(xi)+g∗i (Ti−π)+ẽ

(k)
i , i = 1, . . . , n, where

ẽ
(k)
1 , . . . , ẽ

(k)
n are randomly sampled (without replacement) centered residuals
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from fitted model (4.1).

2. Using y∗(k), X and T , refit model (4.1), and obtain a new value of the test

statistic, T̂ S
(k)

.

3. Repeat steps 1 and 2 K times (i.e. k = 1, . . . , K), giving K values of the test

statistic, and use these values to obtain an approximate null distribution for

the test statistic.

4. Use this approximate null distribution and the test statistic value from the

observed data, T̂ S, to obtain a p-value (either one or two-sided).

We now consider methods which use the estimated treatment effect, ĝ, to obtain

the null treatment effect, g∗.

Mean of estimated treatment effect:

Fixed g∗ approach. Perhaps the simplest null scenario in this setting is that

of a constant treatment effect for all individuals. Thus, one natural choice

is to create null data by giving all individuals the average estimated treat-

ment effect, so that g∗i = 1
n

∑n
i=1 ĝ(xi) ≡ ¯̂g, i = 1, . . . , n. For the remainder

of this paper, this will be referred to as the fixed g∗ approach.

Fixed g∗ (RN) approach. One could also consider a variation of the fixed

g∗ case, in which individuals have treatment effects which vary randomly

around a fixed, population-wide mean. In this case, we define the null

treatment effect for subject i to be g∗i = ¯̂g + ε̃g,i, where ε̃g is a random

permutation of the non-centered residuals ĝ− ¯̂g. This will be refered to as

the fixed g∗ random noise, or fixed g∗ (RN) approach.
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Fixed g∗ (BN) approach. Alternatively, if one has reason to believe these

residuals do not vary equally about ¯̂g for all subjects, one may instead

consider g∗i = g∗i,Bern = ¯̂g + εg,Bern,i, where

εg,Bern,i =


ĝi − ¯̂g when a = 1

¯̂g − ĝi when a = 0

,

and a is an independently generated Bernoulli(1
2
) random variable. This

will be referred to as the fixed g∗ Bernoulli noise, or fixed g∗ (BN) approach.

Randomly shuffled estimated treatment effect:

Random g∗ approach. As an alternative to the fixed treatment effect case,

one may wish to consider a scenario in which each subject’s response to

treatment is random, but does not depend on the covariates. Therefore, we

could also consider creating null data by giving each individual a random

estimated treatment effect, so that g∗i = g̃i, where g̃ is a random permua-

tion of the estimated treatment effects. Note that this method is actually

identical to the fixed g∗ (RN) approach. Thus, we will not consider them

separately.

Random g∗ (RN) approach. As with the fixed g∗ approach, one could also

consider the addition of random noise to the random treatment effects, g̃.

This could be done by following an approach similar to that used in the

fixed g∗ method. Specifically, we may consider g∗i = g̃i + ε̃g,i, where ε̃g is

as defined above. This will be referred to as the random g∗ random noise,

or random g∗ (RN) approach.

Random g∗ (BN) approach. Alternatively, we may consider g∗i = g̃∗i,Bern,

where g̃∗Bern is a random permutation of g∗Bern (defined above). This will be



61

referred to as the random g∗ Bernoulli noise, or random g∗ (BN) approach.

Constrained least-squares approach. One may also consider obtaining null data

by modifying the estimated treatment effects so that they are approximately

null, but with similar values to the original estimates. To do this, we use least

squares to calculate a new treatment effect, g∗i , which is close to ĝ(xi), but has

marginal sample correlations of zero with all the covariates. That is, we choose

values g∗i , i = 1, . . . , n which minimize

n∑
i=1

{ĝ(xi)− g∗i }2

under the constraint that the sample correlations between g∗ and xj, j =

1, . . . , p, are zero, or equivalently by minimizing

n∑
i=1

{ĝ(xi)− g∗i }2 +

p∑
j=1

λj

n∑
i=1

g∗i xij

with respect to g∗, where λj, j = 1, . . . , p, are Lagrange multipliers. Note that

if the covariates are not centered, the penalty term becomes
∑p

j=1 λj
∑n

i=1(g
∗
i −

ḡ∗)(xij − x̄j). It is straightforward to show that

g∗ = ĝ − 1

2
Xλ, (4.2)

where λ = 2(XTX)−1XT ĝ.

This method will be referred to as the Lagrange g∗ approach. It should be noted

that a correlation of zero between the treatment effect and a covariate does not

necessarily mean the treatment effect is independent of the covariate. Though
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we don’t discuss it here, one could also consider additional constraints, such as

g∗ being uncorrelated with x2j , or g∗ being uncorrelated with ĥ.

To better understand why the Lagrange method should work, note that g∗ is

exactly equal to the residuals from the model ĝ(xi) = xTi ω + εi. Thus, the

Lagrange method works by estimating the contribution of the covariates to

the treatment effect, and then removing this estimated contribution, so that

only that part of the estimated treatment effect which does not depend on the

covariates remains.

4.3 Simulations

To evaluate the performance of the proposed methods under a variety of scenar-

ios, a simulation study was performed. In addition to the proposed methods, we

considered four permutation-based methods:

• Permutation of y;

• Permutation of X;

• Permutation of T ;

• Permutation of y within levels of T .

These approaches will be referred to as the permute y, permute X, permute T and

permute y (in T ) methods respectively. We begin by considering a linear model

with treatment-by-covariate interactions, which allows us to compare the proposed

methods to both permutation and exact p-values. We then discuss simulation results

for a more complex model.
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4.3.1 Simple linear model example

Data were generated from the model

y = 3 + β
(
x1 + x3 + x5

)
+ γ
(
T − 1

2

)
+ θ
(
T − 1

2

)(
x1 + x2

)
+ ε,

where ε’s and all x’s are iid standard normal, and the design matrix, X, has five

columns. In this case, the test of interest (for the assumed model, given below) is

that θj = 0, j = 1, . . . , 5. This is a situation where the F statistic has a known

distribution, and thus an exact test exists. We considered four scenarios:

(1) θ = 0.35, γ = 0.25, β = 0.5;

(2) θ = 0, γ = 0.25, β = 0.5;

(3) θ = 0.35, γ = 0.5, β = 0.25;

(4) θ = 0, γ = 0.5, β = 0.25.

In scenarios (1) and (2), the main effects for the covariates are large, and in scenarios

(3) and (4) the main effect for treatment is large. These cases were chosen to illustrate

the potential shortcomings of traditional permutation-based tests when large main

effects exist. In each scenario, 500 data sets of size 200 were generated, and the model

y = α+βTx+γ(T− 1
2
)+θTx(T− 1

2
)+ε was fit, where β and θ, are 5×1 vectors. The

null hypothesis was that no x-by-T interactions exist (vs. alternative that at least

one exists). To assess the sensitivity of the methods to the choice of test statistic, we

computed the permutation p-values using an F statistic and also the statistic
∑
θ̂2j .

For all non-asymptotic methods, 1000 permutations were used (so K = 1000).
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Note that, in this case, the covariates are independent, as are the observations, and

the design matrix is standardized. As a result, it can be shown thatX(XTX)−1XT is

approximately equal to ( p
n
)I, where I is an n×n identity matrix. For the fitted model,

the estimated treatment effect vector ĝ is equal to γ̂ +Xθ̂, where γ̂ = (γ̂, . . . , γ̂)T .

Thus for the Lagrange method, from (4.2) we have

g∗ = ĝ −X(XTX)−1XT ĝ

= γ̂ +Xθ̂ −X(XTX)−1XT γ̂ −X(XTX)−1XTXθ̂

= γ̂ +Xθ̂ −X(XTX)−1XT γ̂ −Xθ̂

= (I −X(XTX)−1XT )γ̂

≈
(

1− p

n

)
γ̂ ≈ γ̂,

where the last approximation is a result of the fact that, in this case, p is considerably

smaller than n, so that p
n

is nearly zero. In addition, for the fixed g∗ method, we have

g∗i =
1

n

∑
i

(γ̂ + xTi θ̂) = γ̂ +
1

n

∑
j

(
θ̂j
∑
i

xij

)
= γ̂,

again because covariates are standardized, so that the second term is exactly zero.

Therefore, for this specific example, the Lagrange and fixed g∗ methods are nearly

identical. Note that if the covariates were correlated, the off-diagonal elements of

X(XTX)−1XT would be non-zero, leading to unique Lagrange g∗ values for each

subject. Thus, in this case the Lagrange and Fixed g∗ methods would be different.

Looking at Figure 4.1, we can see that rejection rates when using the F statistic

are generally quite similar for all methods in all four scenarios, whereas the rejection

rates for the statistic
∑
θ̂2j vary noticeably between methods. In particular, the

∑
θ̂2j
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rejection rates for the permuteX, permute y and permute y (in T ) methods tend to be

considerably lower than those for the other methods. This is due to the fact that these

methods remove several main effects (in addition to the desired interactions) in the

process of creating new “null” outcome values, which subsequently have larger error

variances than the observed outcome values. Because
∑
θ̂2j comes from the parameter

estimates for a linear regression model, its variance depends on the variance of the

outcome values, and in particular will increase or decrease as the error variance of the

outcome increases or decreases. Thus, the permute X, permute y and permute y (in

T ) methods induce “null” distributions for
∑
θ̂2j which have much larger variances

than the correct null distribution (where only the interactions are removed), leading

to larger p-values and fewer rejections. A similar effect can be seen in the permute

T method, but to a lesser degree, as this method only removes one main effect. In

contrast, the Lagrange and Fixed g∗ methods create “null” outcome values whose

variances are slightly smaller than that of the observed outcome values, causing these

methods to give elevated rejection rates. This general phenomenon is mentioned by

Bůžková et al. [2011], who note that permutation-based methods perform better for

statistics with a pivotal null distribution.

Overall, the best methods (not based on the exact F distribution) are fixed g∗

(BN) and fixed g∗ (RN), which have rejection rates that are nearly identical for both

the F statistic and
∑
θ̂2j , and which are very close to 0.05 in the “null” scenarios (2

and 4). The random g∗ (BN) and random g∗ (RN) methods are also fairly good, but

have slightly lower rejection rates for
∑
θ̂2j , again due to an elevated outcome error

variance (from adding “noise” twice). Figures 4.2-4.5 further illustrate the effect of

creating “null” data which has an outcome error variance that is too large (or too

small). This is again most noticeably for the permute X, permute y and permute y
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(in T ), methods, whose histograms have heavier right tails for scenarios 1 and 3 and

are obviously non-uniform in scenarios 2 and 4.

The results for the statistic
∑
θ̂2j help illustrate the importance of an appropriately

chosen permutation method when the test statistic is somewhat ad hoc, as may be

the case in situations where asymptotics are difficult to obtain.
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(c) Scenario 3 (β = 0.25, γ = 0.5, θ = 0.35)

F Statistic

∑θ̂j
2

0.
00

0.
02

0.
04

0.
06

0.
08

Fixe
d 

g*

Fixe
d 

g*
 (R

N)

Fixe
d 

g*
 (B

N)

Ran
d.

 g
* (

RN)

Ran
d.

 g
* (

BN)

La
gr

an
ge

Per
m

ut
e 

Y

Per
m

ut
e 

X

Per
m

ut
e 

T

Per
m

. Y
 (i

n 
T)

Exa
ct

(d) Scenario 4 (β = 0.25, γ = 0.5, θ = 0)

Figure 4.1: Rejection rates (α = 0.05) for simple linear model simulations
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4.3.2 Complex model example

As mentioned in the Introduction, the proposed methods were motivated by our

interest in subgroup analysis. Thus, we also considered p-values for the metric Q(Â)

for subgroups identified using the Average Value approach proposed in Chapter 2. As

noted by Foster et al. [2011], Q(Â) can be viewed as the treatment effect enhancement

in the region Â beyond the overall treatment effect. In this case, we are interested

in testing whether or not the identified subgroup is “real,” so the null hypothesis is

that Q(Â) is 0 (vs. alternative that Q(Â) > 0). We considered four scenarios for the

true treatment effect, g:

(1) g(x) = 15I(x1 > 0, x2 > 0);

(2) g(x) = 5 (case 5 from Chapter 2);

(3) g(xi) = 5 + ei, i = 1, . . . , n, where ei’s are iid N(0,52);

(4) g(x) = 0 (case 6 from Chapter 2).

Other than the treatment effect, the data generation model was identical to that

in the Chapter 2 simulations. That is, data were generated from the model yi =

30 + 5x1i + 5x2i− 5x7i +Tig(xi) + εi, where x’s are iid standard normal and ε’s are iid

normal with mean zero and variance 100 and are independent of the x’s. Scenario 1

is a modified version of case 1 from Chapter 2, with the coefficient of g reduced from

35 to 15 to reduce the power to detect a positive Q(Â) (which is near 0.9 when a

coefficient of 35 is used). Scenario 3 can be viewed as a more challenging “null” case,

where a main effect for treatment exists, but varies randomly around a population

mean, so that some subjects do have an enhanced treatment effect, but enhancement

is independent of the covariates. Alternatively, scenario 3 can be viewed as being like
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scenario 2, but with a larger error variance. For each scenario, 200 data sets of size

500 were generated.

We consider the null distributions of three statistics, Q̂(Â)RS, Q̂(Â)SND and

Q̂(Â)ĝ, which are estimates of the enhancement metric Q(Â). The first statistic,

Q̂(Â)RS, is obtained by subtracting the observed marginal treatment effect,
∑

i yiTi∑
i Ti
−∑

i yi(1−Ti)∑
i(1−Ti)

, from the observed treatment effect in the region Â,∑
i yiTiI(xi∈Â)∑
i TiI(xi∈Â)

−
∑

i yi(1−Ti)I(xi∈Â)∑
i(1−Ti)I(xi∈Â)

. This is expected to be positively biased, as the same

data which were used to identify the region Â are being used to estimate Q(Â). Note

that independent outcome values from approximately the same distribution could

be obtained by adding random residuals to the outcome estimates, ŷ. Thus, one

way to reduce the bias of Q̂(Â)RS is to obtain independent outcome measures as

described above, and use these instead of yi’s to compute Q̂(Â)RS. This could be

repeated several times, and the resulting estimates could be averaged to obtain a

less biased estimate of Q(Â); however, because the residuals have mean zero, this is

approximately equivalent to just replacing the observed y values with ŷs in Q̂(Â)RS.

Therefore, the second statistic, Q̂(Â)SND, is obtained by computing Q̂(Â)RS, but with

yis replaced by ŷis. Because the Average Value method involves directly estimating

the treatment effect, Q(Â) can also be estimated directly from these treatment effect

estimates, ĝ, by computing the difference
∑

i ĝ(xi)I(xi∈Â)∑
i I(xi∈Â)

−
∑

i ĝ(xi)

n
. This is the third

statistic, and is referred to as Q̂(Â)ĝ, and is very similar to Q̂(Â)SND, with the two

statistics being exactly equal in the case of paired data. To obtain p-values for these

statistics, we again follow the procedure outlined in subsection 3.2.2. In this case,

the Average Value procedure is re-implemented each time step 2 is performed, and

new values of these three test statistics are calcuated. Because the Average Value

approach is computationally expensive, p-values were computed using only 100 per-
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mutations (so K = 100). It is worth noting that the Average Value method involves

nonparametric regression, and in this case we do not have an obvious test statistic,

such as the F statistic in the simple linear model case, which has a known exact or

asymptotic distribution for the fitted model (4.1).

From Figure 4.6, we can see that the statistic Q̂(Â)ĝ performs the best overall,

showing generally high power for scenario 1, while also tending to be the closest to the

desired type-I error rate of 0.05 (and rarely exceeding it) in the three null cases. The

statistics Q̂(Â)RS and Q̂(Â)SND perform well for the permute X and permute y (in

T ) approaches in scenario 1, but nearly always noticeably exceed the desired type-I

error level in the three null cases. The very high type-I errors for the RS and SND

estimates observed in scenarios 2 and 3 for the permute y and permute T methods

are most likely due to instability in these metrics when the identified region Â is

extremely small, as is often the case for the “null” data sets created by permuting y

or permuting T .

Histograms of p-values for the four complex scenarios for all three metrics are

given in Figures 4.7 - 4.10. For scenario 1 (Figure 4.7), the histograms generally have

the desired “right-skewed” shape, with the exception of the permute y and permute

T methods. For the null scenarios (Figures 4.8 - 4.10), we can see that histograms for

the proposed methods are generally closer to uniform than those for the four simple

permutation methods, especially for the statistic Q̂(Â)ĝ. For the permute y and

permute T methods, we frequently see a bimodal shape, which is again most likely a

result of identifying very small regions Â for “null” data created by permuting y or T .

Though they showed generally good power and type-I error, we can see that p-values

for the permute X and permute y (in T ) methods are often noticeably non-uniform.
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In general, the proposed methods perform very well, though the Lagrange method

had slightly lower power in scenario 1 and generally much lower type-I errors in

scenarios 2-4. The permute X and permute y (in T ) methods also performed well

in the four scenarios we considered, though we suspect the performance of these two

methods would suffer more in non-null scenarios where g is more complex. Based on

the results from the simple and complex model simulations, it appears that the fixed

g∗ and random g∗ (and their variants with Bernoulli or random noise) are the best

choice. Additionally, the results of the simulation study suggest that, if one wishes to

obtain p-values for the metric Q(Â) for subgroups identified using the Average Value

method, the best choice in test statistic is Q̂(Â)ĝ.

As noted previously, the estimates Q̂(Â)ĝ and Q̂(Â)SND are quite similar, and

in the case of paired data, identical. Thus, the noticeably performance differences

between these two methods in our simulation study were surprising. We believe that

these differences are a result of identifying subgroups which do not have a similar

number of treated and control subjects. In particular, when very small subgroups

are identified, these differences can be quite severe, and lead to very pronounced

differences between the two estimates.

4.4 Application to data from a randomized clinical trial

Recall that in Chapter 2, the Average Value method procedure was applied to

pre-hypertension data from the TROPHY study [Julius et al., 2006] in an attempt

to identify the subset of individuals who should not receive candesartan, a treatment

for hypertension. In this analysis, the identified region was Â = {HDL:LDL ratio <

0.38, HDL cholesterol < 46.02, total insulin ≥ 25.11}, contained 20 subjects, and
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had corresponding (uncorrected) estimates of Q(Â) of -1.63, -8.14 and -9.75 for the

RS, SND and Mean ĝ methods respectively. To further assess the identified subgroup,

the proposed methods and the four simple permutation methods were used to obtain

p-values for these uncorrected estimates. Because the Average Value approach is

computationally expensive, and because a finer grid of cutpoints was considered for

the TROPHY data, further decreasing the computational speed of the method, p-

values were computed using 100 permutations (so K = 100).

Table 4.1: P-values for TROPHY data

Q(Â) Estimate
Method RS SND Mean ĝ

Fixed g∗ 0.94 0.33 0.11
Fixed g∗ (RN) 0.92 0.34 0.12
Fixed g∗ (BN) 0.95 0.34 0.12
Random g∗ (RN) 0.90 0.42 0.16
Random g∗ (BN) 0.92 0.29 0.14
Lagrange 0.94 0.37 0.17
Permute y 0.46 0.00 0.00
Permute X 0.96 0.25 0.08
Permute T 0.41 0.00 0.00
Permute y (in T ) 0.90 0.21 0.04

P-values for these three estimates for the five proposed methods and the four

simple permutation methods are given in Table 4.1. As might be expected, given

the relative magnitudes of the three estimates, the Mean ĝ statistic has the smallest

p-value for all the methods considered, followed by the SND estimate, with the RS

estimate having the largest p-values. Though somewhat large for the RS and SND

statistics, the p-values for the Mean ĝ were relatively small for the fixed g∗ (RN) and

fixed g∗ (BN) approaches (which were shown to perform the best in our simulations).

Thus, it is possible that a small subgroup of people who shouldn’t receive candesartan
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exists, but can’t be fully demonstrated with the current data.

When we permute y or T , the new treatment effect estimates are generally centered

around zero, which in this case will most likely lead to a larger “don’t treat” region

than that identified using the observed data, for which nearly all treatment effect

estimates were positive. These larger “don’t treat” regions for the permuted data

will generally have smaller corresponding estimates of Q(Â), which may be why the

permute y and permute T approaches give the smallest p-values. Given the poor

performance of the permute y and permute T approaches in our simulations, it may

not be wise to trust these methods when testing for interactions, particularly when a

somewhat ad hoc test statistic is being used.

4.5 Discussion

We proposed several permutation-based methods which can be used as an al-

ternative to simple permutation test when one wishes to test for interactions. The

proposed methods were shown to generally outperform simple permutation tests,

particularly when we considered more complex scenarios and test statistics. These

methods may help to reduce false positive findings when a pre-defined subgroup iden-

tification strategy such as Virtual Twins [Foster et al., 2011] or the Average Value

procedure is employed.

In the example data analysis in this paper, we considered only the estimates

Q̂(Â)RS, Q̂(Â)SND and Q̂(Â)ĝ as test statistics for the Average Value procedure. In

the future, it may be interesting to consider the performance of the proposed methods

when alternative test statistics are used. One such alternative is the Z statistic for the

test of interaction (α3 = 0) in the model y = α0+α1T+α2I(x ∈ Â)+α3TI(x ∈ Â)+e,
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which could be fit after the region Â has been identified.

We show in the simple linear model simulations that the fixed g∗ and Lagrange

methods are slightly anti-conservative, and hypothesized that this may be due to the

decreased total variance of y∗i compared to yi. Thus, for these methods, it may be

helpful to consider inflating the variance of the residuals in step 1 of our algorithm, so

that the variance of y∗i matches that of yi. Similarly, the random g∗ (RN) and random

g∗ (BN) methods were overly conservative in our simple linear model simulations,

which we believe is due to an increased total variance of y∗i relative to yi, so for these

methods it may be helpful to consider deflating the variance of the residuals in step

1 of our algorithm.

We consider only a limited number of scenarios in our simulation study. Thus,

in the future it may also be useful to consider a wider variety of simulation settings.

Given our example randomized clinical trial data, it may be of interest to consider

a scenario in which the treatment effects are mostly positive, so that our goal is

to identify the small subset of patients who should not receive treatment. In this

case, we could again consider setting the offset, δ, at zero. This may help us to

better understand the results in our example data analysis. Additionally, it may be

interesting to assess the performance of our methods for non-null cases in which the

treatment effect is more complex, so that the form of potential subgroups considered

in our search does not match the underlying truth.

It may be possible to improve the performance of the various permutation meth-

ods by considering a number of refinements. For example, in the first step of our

algorithm, we resample residuals from the fit of model 4.1 without replacement, but

we could also consider resampling these residuals with replacement.
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Figure 4.2: Histograms of p-values for simple linear scenario 1 (β = 0.5, γ = 0.25,
θ = 0.35)
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Figure 4.3: Histograms of p-values for simple linear scenario 2 (β = 0.5, γ = 0.25,
θ = 0)



76

Fixed g*

p value

F
re

qu
en

cy

0.0 0.4 0.8

0
10

0
30

0

Fixed g* (RN)

p value

F
re

qu
en

cy

0.0 0.4 0.8

0
10

0
30

0

Fixed g* (BN) 

p value

F
re

qu
en

cy

0.0 0.4 0.8

0
10

0
30

0

Random g* (RN)

p value

F
re

qu
en

cy

0.0 0.4 0.8

0
10

0
30

0

Random g* (BN)

p value

F
re

qu
en

cy

0.0 0.4 0.8

0
10

0
30

0

Lagrange

p value

F
re

qu
en

cy

0.0 0.4 0.8

0
10

0
30

0

Permute Y

p value

F
re

qu
en

cy

0.0 0.4 0.8

0
10

0
30

0

Permute X

p value

F
re

qu
en

cy

0.0 0.4 0.8

0
10

0
30

0

Permute T

p value

F
re

qu
en

cy

0.0 0.4 0.8

0
10

0
30

0

Permute Y (in T)

p value

F
re

qu
en

cy

0.0 0.4 0.8

0
10

0
30

0
Exact

p value

F
re

qu
en

cy
0.0 0.4 0.8

0
10

0
30

0

(a) F Test

Fixed g*

p value

F
re

qu
en

cy

0.0 0.4 0.8

0
10

0
30

0

Fixed g* (RN)

p value

F
re

qu
en

cy

0.0 0.4 0.8

0
10

0
30

0

Fixed g* (BN)

p value

F
re

qu
en

cy

0.0 0.4 0.8

0
10

0
30

0

Random g* (RN)

p value

F
re

qu
en

cy

0.0 0.4 0.8

0
10

0
30

0

Random g* (BN)

p value

F
re

qu
en

cy

0.0 0.4 0.8

0
10

0
30

0

Lagrange

p value

F
re

qu
en

cy

0.0 0.4 0.8

0
10

0
30

0

Permute Y

p value

F
re

qu
en

cy

0.0 0.4 0.8

0
10

0
20

0
30

0

Permute X

p value

F
re

qu
en

cy

0.0 0.4 0.8

0
10

0
30

0

Permute T

p value

F
re

qu
en

cy

0.0 0.4 0.8

0
10

0
30

0

Permute Y (in T)

p value

F
re

qu
en

cy

0.0 0.4 0.8

0
10

0
20

0
30

0

(b)
∑
θ̂2j

Figure 4.4: Histograms of p-values for simple linear scenario 3 (β = 0.25, γ = 0.5,
θ = 0.35)
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Figure 4.5: Histograms of p-values for simple linear scenario 4 (β = 0.25, γ = 0.5,
θ = 0)
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Figure 4.6: Rejection rates (α = 0.05) for complex model simulations
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Figure 4.7: Histograms of p-values for complex scenario 1 (g(x) = 15I(x1 > 0, x2 >
0))
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Figure 4.8: Histograms of p-values for complex scenario 2 (g(xi) = 5)
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Figure 4.9: Histograms of p-values for complex scenario 3 (g(xi) = 5 + ei)
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Figure 4.10: Histograms of p-values for complex scenario 3 (g(x) = 0)



CHAPTER 5

Discussion and future work

We proposed two methods which use randomized clinical trial data to identify

subgroups of enhanced treatment effect. The first method was a penalized monotone

single-index model, and could be used for subgroup identification in a variety of

ways. For instance, one could consider using this model for the variable selection

stage of an existing subgroup identification procedure, such as Virtual Twins [Foster

et al., 2011]. That is, this model could be used as a replacement for the single

regression tree in the second stage of the Virtual Twins procedure. One could also

consider using a penalized monotone single-index model to estimate the treatment

effect directly in the Average Value procedure, converting it to a one-stage procedure,

and eliminating the need for the computationally expensive subgroup search. By

penalizing the index parameter in this model, we are able to greatly reduce model

complexity, which, combined with the monotonicity constraint on the function η,

means the resulting subgroup will generally be relatively easy to understand. The

second method is the Average Value procedure mentioned above, which can be viewed

as a model-based alternative to the Virtual Twins procedure, and which was found to

very effectively identify truly important covariates in our simulation study. Though
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this procedure is more computationally demanding than Virtual Twins, and was in

some ways outperformed by Virtual Twins in our simulations, it has the advantage

of identifying a single, contiguous region, which will often depend on fewer covariates

than the subgroup identified by Virtual Twins, and may thus be somewhat easier to

understand.

In addition to the subgroup identification procedures, we proposed a number of

permutation-based methods for obtaining p-values for treatment-by-covariate inter-

actions, and showed that they perform well compared to simple permutation tests,

especially for more complex models and somewhat ad hoc test statistics. We also

considered the use of these methods to obtain p-values for the enhancement metric

discussed by Foster et al. [2011]. Having p-values along with enhancement metric

estimates could help to further reduce the chances of falsely declaring an identified

subgroup to be enhanced.

Overall, we feel the methods proposed in this dissertation represent a meaning-

ful contribution to the field of subgroup analysis. We showed that, in many cases,

very simple subgroups can accurately identify subjects who will show an enhanced

response to treatment. Additionally, we considered a number of methods for evalu-

ating the identified regions, such as permutation-based p-values for interaction tests.

We believe such post-identification evaluation is important, as most subgroup identi-

fication procedures will nearly always identify a region, regardless of whether or not

it is truly enhanced. Using the proposed methods, it may be possible to make more

informed (and more confident) treatment decisions in the future using only a very

limited amount of patient information. This lack of necessary information, along with

the simple form (and resulting easy interpretability) of the subgroups identified by

our methods, should lead to treatment assignment rules which will see a good deal of
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real-world use. Because of this, we believe the proposed methods may also encourage

others working in the field of subgroup analysis to consider giving more weight to

interpretability.

There are a variety of possible extensions to the methods considered in this dis-

sertation. To further reduce the risk of false positives, we could consider the use

of external information to define a subgroup. This could be done by developing an

approach for weighting covariates which were pre-determined to be important, so

that some are more likely than others to be chosen to define the “enhanced” region.

Alternatively, we could consider the development of a method for pre-screening the

covariates. Such a method could be used, say, after the first step of the Virtual

Twins or Average Value procedures, so that only a subset of the covariates would be

included as candidates for defining potential subgroups. This could be particularly

helpful if we wish to consider other forms of data, such as genetic data, which could

have thousands of covariates.

Thus far, we have considered the case where only two treatment options exist, but

in many cases there may be several potentially good treatment options. Therefore, it

would be useful to modify the proposed methods so that multiple treatment options

could be considered. One simple way to do this would be to consider a different anal-

ysis for each unique treatment comparison, so that we would have several treatment

effect estimates instead of one; however, this could dramatically increase the potential

for false positive findings, and the results of such an analysis could be difficult to in-

terpret. In some cases, one may know a priori which specific treatment comparisons

are of interest, and could thus potentially reduce the number of unique treatment

comparisons considered, thereby potentially reducing the risk for false findings and

allowing for more interpretable results. For situations where one doesn’t know which
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specific comparisons are of interest, it may also be interesting to consider the devel-

opment of some sort of screening method which “weeds out” comparisons between

similar treatments.

Another issue is the implementation of subroup identification procedures when

there is missing data in the outcome, covariates or both. In such situations, multiple

imputation is often employed, but combining inferences from multiple imputed data

sets could be difficult when the output of a method is a subregion of the covariate

space, rather than a numeric value, such as a parameter estimate or test statistic. One

option would be to implement multiple imputation in the treatment effect estimation

stage, but then use the observed data (with missingness) in the subgroup identification

stage, but this is clearly not ideal. Thus, it would be very interesting to consider the

development of a method for combining inferences from multiple imputed data sets

when the object of interest is a subregion of the design space.

To this point, we have focused on using baseline information from RCT data to

predict a patient’s response to treatment, but have not suggested how post-treatment

information may be used. It would be very interesting to work on developing methods

which use post-treatment information, in addition to baseline information, to better

assign treatment to patients. This could be done within the framework of dynamic

treatment regimes, in which treatment decisions at a given time are made using a

patient’s history up to that time. A number of authors, including Murphy [2002],

Lavori and Dawson [2004], Robins [2004], Laan and Petersen [2004], Murphy [2005],

Laber et al. [2010], and Shortreed et al. [2011] have considered dynamic treatment

regimes. Though very nice to work with, RCT data is often quite difficult to obtain,

so the extension of the proposed methods to data from observational studies is also

of interest.
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APPENDIX



Appendix A

Asymptotics for Chapter 1

Statement of theorem

We establish the oracle properties for unconstrained adaptive lasso penalized

single-index model estimates. Consider the following setup and regularity conditions

of Hardle et al. [1993]. Assume the data {(xi, yi) :, i = 1, . . . , n} come from (2.1),

where β0 is the true value of the index parameter, and the last q < p elements of β0

are 0. Let A = {j : β0,j 6= 0} and A∗n = {j : β̂j 6= 0}. Let H ⊆ Rp be a set chosen so

denominators in formulas for kernel estimators are not too close to 0, where H is the

union of a finite number of convex sets. Define W 0 =

W 0(11) W 0(21)

W 0(12) W 0(22)

 to be the

p× p matrix:

∫
H

{
x− E(XH |βT0XH = βT0 x)

}{
x− E(XH |βT0XH = βT0 x)

}T × η′(βT0 x)2f(x)dx,

whereX is a random variable with the design density f , W 0(11) is (p−q)×(p−q) and

XH has the distribution of X, conditional on X ∈ H. Given δ > 0, let Hδ denote the

set of all points in Rp distant no further than δ from H. Put U = {βT0 x : x ∈ Hδ},
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and let ζ denote the density of βT0X. We define the following conditions for some

δ > 0:

1. f is bounded away from 0 on Hδ and has two bounded derivatives there;

2. η and ζ have two bounded, continuous derivatives on U ;

3. K is supported on the interval (−1, 1) and is a symmetric probability density,

with a bounded derivative;

4. E(εi|xi) = 0, E(ε2i |xi) = σ2(xi) for all i, where the function σ2 is bounded and

continuous and supiE|εi|m = Mm <∞ for all m.

As noted by Hardle et al. [1993], the emphasis on two derivatives in (1) and (2) is

motivated by the use of a second-order kernel, and the restriction in (1) that f be

bounded away from 0 on Hδ ensures with high probability that the denominator in

(2.3) is bounded away from zero for t = βTx, where x ∈ H and β is close to β0. Let

B denote the set of all unit p-vectors. Given C > 0, and 0 < C1 < C2 < ∞, Bn =

{β ∈ B : ‖β − β0‖ ≤ Cn−1/2}, and Hn = {h : C1n
−1/5 ≤ h ≤ C2n

−1/5}. We

assume that β̂ ∈ Bn and h ∈ Hn. This is likely to be true if we start with a
√
n-

consistent estimator, such as that shown by Ichimura [1993] to exist for unpenalized,

unconstrained SIM.

Theorem A.1 (Oracle Properties). Let (x1, y1), . . . , (xn, yn) be iid observations

from model (2.1) such that conditions (1)-(4) hold. Suppose that W 0 is positive-

definite, and that λn√
n
→ 0 and λnn

(γ−1)/2 →∞, where γ ∈ (0, 3
5
]. Then the adaptive-

LASSO penalized single-index model estimates must satisfy:

1. Consistency in variable selection: limnP (A∗n = A) = 1;
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2. Asymptotic normality:
√
n× (β̂A − β0A)→d N(0, σ2W−1

0(11)).

Thus, the adaptive lasso penalized single-index model estimates perform as well

as if the true nonzero elements of β0 were known.

Proofs

Theorem 1, part (b)

Let Ŝ(β, h) be the non-penalized sum of squares. Under conditions (i)-(iv), we

know from Hardle et al. [1993] that

Ŝ(β, h) = S̃(β) + T (h) +R1(β, h) +R2(h),

where supβ∈Bn,h∈Hn
|R1(β, h)| = op(n

1/5), and S̃(β) =

n{W 1/2
0 (β−β0)− σ√

n
Z}T{W 1/2

0 (β−β0)− σ√
n
Z}+R4(β), where supβ∈Bn

|R4(β)| =

op(1). From this point on, we drop any terms not depending on β, since β is our

primary interest. Also, since R4 is of smaller order than S̃, it is negligible. Thus, we

can treat S̃ as our objective function. Considering now S̃2 = S̃ + λn
∑
ŵj|βj|, we

can apply reasoning similar to Zou [2006]. Let β = β0 + u√
n
, where ‖u‖ ≤ C and

ŵj = |β̂init|−γ. Then we have:

S̃2(u) = n

{
W

1
2
0

u√
n
− σ√

n
Z

}T{
W

1
2
0

u√
n
− σ√

n
Z

}
+ λn

p∑
j=1

ŵj

∣∣∣∣∣β0,j +
uj√
n

∣∣∣∣∣+ op(1).
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Where Z →d T ∼ N(0, Ip). Let û = argmin S̃2(u); then β̂ = β0 + û√
n
, or û =

√
n× (β̂ − β0) Thus, we know S̃2(u)− S̃2(0) = V (n)(u), where

V (n)(u) =

uTW
1
2
0W

1
2
0u− 2σuTW

1
2
0Z +

λn√
n

p∑
j=1

√
nŵj

(∣∣∣∣∣β0,j +
uj√
n

∣∣∣∣∣− |β0,j|
)

+ op(1).

The first term does not depend on n and we know that Z →d T ∼ N(0, Ip). The lim-

iting behavior of the third term can be argued exactly as in Zou [2006]. In particular,

if β0,j 6= 0, then we know ŵj →p |β0,j|−γ and
√
n(|β0,j +

uj√
n
| − |β0,j|)→p ujsign(β0,j),

so by Slutsky’s theorem we know λn√
n
ŵj
√
n(|β0,j +

uj√
n
| − |β0,j|) →p 0, since λn√

n
→ 0,

as long as uj < ∞. If β0,j = 0, then
√
n(|β0,j +

uj√
n
| − |β0,j|) = |uj| and λn√

n
ŵj =

λn√
n
nγ/2(|

√
nβ̂init,j|)−γ, where

√
nβ̂init,j = Op(1). Therefore, using Slutsky’s theorem

again, we can see that V (n)(u)→d V (u) for every u, where

V (u) =

 uTAW 0(11)uA − 2σuTAW
1
2

0(11)TA if uj = 0 ∀j /∈ A

∞ otherwise.

Note that choosing uj to be finite for β0,j 6= 0 gives finite values of V (n), whereas

if uj is not finite for β0,j 6= 0, V (n) is infinite, so the optimal u must be finite. We

know that V (n) is convex (if W 0 is positive-definite), and the unique minimum of V

is (σW
− 1

2

0(11)TA,0). Thus, following the epi-convergence argument used by Zou [2006],

we have

ûA →d σW
− 1

2

0(11)TA and ûAc →d 0.

Since TA ∼ N(0, I), we know
√
n×(β̂A−β0A)→d N(0, σ2W−1

0(11)), and we are done.
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Theorem 1, part (a)

Again we can follow the general framework of Zou [2006]. We know that ∀j ∈ A,

the asymptotic normality results above indicate that β̂j →p β0,j; thus meaning that

P (j ∈ A∗n) → 1. Therefore, we need only show that ∀j′ /∈ A, P (j′ ∈ A∗n) → 0.

Suppose that j′ ∈ A∗n. By the KKT optimality conditions, we know that 2n{W
1
2
0 (β̂−

β0)− n−
1
2σZ}TW

1
2
0 = λn(ŵ1sign(β̂1), · · · , ŵpsign(β̂p)), so 2n[W

1
2
0 ]Tj′{W

1
2
0 (β̂ − β0)−

n−
1
2σZ} = λnŵj′sign(β̂j′). We know generally that |sign(t)| → 1 as t → 0, and

λn√
n
ŵj′ = λn√

n
nγ/2(|

√
nβ̂init,j′ |)−γ →p ∞. However,

2√
n
n[W

1
2
0 ]Tj′{W

1
2
0 (β̂ − β0)− n−

1
2σZ} = 2[W

1
2
0 ]Tj′W

1
2
0

√
n(β̂ − β0)− 2σ[W

1
2
0 ]Tj′Z,

where both terms on the right hand side converge in distribution to normals. Thus,

we know

P (j′ ∈ A∗n) ≤ P
(

2n[W
1
2
0 ]Tj′{W

1
2
0 (β̂ − β0)− n−

1
2σZ} = λnŵj′sign(β̂j′)

)
→ 0,

and we are done.
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