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ABSTRACT

Interactive proof systems form an important complexity model that has been central

to many prominent results in computational complexity theory, such as those on proba-

bilistically checkable proofs, hardness of approximation, and fundamental cryptographic

primitives. In this thesis, we study the quantum-enhanced version of interactive proof sys-

tems, in which each party has access to quantum computing resources. We focus on its

power and limitations, which lead us to the following results.

• We provide an alternative and conceptually simpler proof of Jain et al.’s recent break-

through result, which demonstrates that the expressive power of quantum interactive

proof systems coincides with that of its classical counterpart, and therefore PSPACE.

• We determine the complexity of several variants of quantum competing-prover inter-

active proof systems, which introduce zero-sum games into interactive proof systems.

In particular, we prove that the complexity class of two-turn quantum refereed games

coincides with PSPACE, answering an important open problem of Jain et al.’s. Our

result suggests that a more general model called double quantum interactive proof

systems coincides with PSPACE, which subsumes and unifies all previous results on

short refereed games.

• We contribute to the study of two-prover quantum Merlin-Arthur games (QMA(2)),

which exhibit an intriguing tradeoff between an intrinsic quantum ingredient, entan-

glement, and computational power. We prove a PSPACE upper bound for a variant

of QMA(2) that is to date the most general one known in PSPACE. We also pro-

vi



vide a quasi-polynomial time algorithm for optimizing linear functions over separa-

ble states, giving an alternative to the one proposed by Brandao et al.

Our main technical contribution behind the above results is the equilibrium value method

for obtaining space-efficient algorithms for a class of optimization problems that arise nat-

urally in quantum computation.

We also contribute to QMA-complete problems, where we demonstrate that the “Non-

Identity Check” problem remains QMA-complete on circuits of poly-logarithmic depths,

improving upon polynomial depths from previous results.
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CHAPTER 1

Introduction

1.1 Quantum Information and Computation

Quantum mechanics: created at the beginning of the last century, quantum mechanics de-

scribes physical systems that are otherwise indescribable by classical physics at an atomic

scale. At the heart of quantum mechanics are a few counterintuitive postulates that are fun-

damentally different from the classical world. One particular postulate is that the state of a

quantum system can be in a superposition of many different classical states, which can ex-

hibit interference during its evolutions. Another marvelous property is that entanglement

shared among spatially separated systems can display “nonlocal” effects. Immediately

after its inception, this theory has been at the center of exciting developments in various

disciplines of science. The last three decades have witnessed a huge body of research

focused on exploiting quantum mechanical features to perform computational, communi-

cation, cryptographic, and information-theoretic tasks. Research in this perspective also

reinforces our understanding of quantum mechanics and the nature.

Quantum computation: in early 1980s, Benioff [16] and Feynman [42] studied the task

of simulating quantum mechanical phenomena on existing models of computation such as

Turing machines. It turned out that a new computational model based on the laws of quan-

tum mechanics is necessary to perform such tasks because there seem to be forbidding

1
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difficulties to execute simulations on classical computers. This observation led to the sem-

inal work of David Deutsch [35], in which the concept of the quantum computer was made

precise in terms of quantum Turing machines. In the same paper, Deutsch showed that a

quantum computer can solve a black box problem substantially faster than any classical

computer. Our understanding about quantum computation was improved in the subsequent

decade; Bernstein and Vazirani [17] formalized the quantum complexity theory; Deutsch

and Jozsa [36] showed that a quantum computer can solve a certain type of black-box

problem exponentially faster than a classical computer. One of the most important discov-

eries in this field is Shor’s efficient quantum algorithms [104] for two important problems

(i.e., integer factorization and discrete logarithms) that are not known to admit efficient

solutions on a classical computer.

The rapid development of quantum information and computation has already affected

various areas in the theory of computation. In the algorithm aspect, besides the famous

Shor’s algorithm for integer factorization and discrete logarithms, other quantum algo-

rithms (e.g., Grover’s algorithm for unstructured database search and quantum random

walk algorithms) are known to out-perform their classical counter-parts. Such an impact

also exists in the field of cryptography, in which we are most likely to see practical ap-

plications in the near future. The peculiar properties of quantum mechanics, especially

the non-cloning property, enable the existence of an unconditionally secure quantum key

distribution protocol for the first time. On the other hand, as Shor’s algorithm renders most

modern cryptography systems based on the hardness of integer factorization insecure, it

is of great interest to develop post-quantum cryptography systems that are secure against

quantum adversaries.

Interactions with other fields: one of the most important concepts discovered during the

study of quantum information was quantum entanglement. Moreover, the study of dif-
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ferent types of quantum correlations and local Hamiltonian systems has also shed light

on the recent progress in the study of condensed matter physics. For theoretical com-

puter science, arguments that arise from quantum information have proven instrumental

in tackling seemingly unrelated classical problems. One of the applications of quantum

arguments in theoretical computer science is to prove the first exponential lower bound on

two-query Locally Decodable Codes (LDCs). It is also known that quantum arguments

can lead to simplifications of proofs for important results [1, 33]. Other examples include

lower bounds in communication complexity and polynomial approximation.

1.2 Quantum Computational Complexity

In this section, we provide a comprehensive introduction of the main topic of this disser-

tation, quantum computational complexity, and the particular model we focus on, efficient

verification of proofs.

Computational complexity theory studies the inherent difficulty, or hardness, of com-

putational problems. Hardness is typically measured in terms of the resources required

to solve a given problem, such as the number of steps of a deterministic Turing machine.

Typically, computational models and resource constraints are physically motivated. A

prominent example of this is the class of polynomial-time computable functions, whose

relevance is ultimately derived from physical considerations.

However, it took the community significant efforts to realize that quantum mechan-

ics should have implications to computational complexity theory. We mentioned some

facts about the history of formal models of quantum computation in the previous section.

It is only through these remarkable discoveries and ideas of several researchers that this

potential has become evident. In particular, Shor’s polynomial-time quantum factoring

and discrete-logarithm algorithms have provided strong support for the conjecture that
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quantum and classical computers yield different notions of computational hardness. Other

quantum complexity-theoretic concepts, such as efficient verification of quantum proofs,

suggest a wider extent to which quantum mechanics could influence computational com-

plexity.

The principal aim of quantum computational complexity theory is to understand the

implications of quantum physics to classical computational complexity theory. In this dis-

sertation, we focus on the influence of quantum mechanics on computational complexity

in the context of efficient verification of proofs, or equivalently the interactive proof sys-

tem model. Interactive proof systems form an important complexity model that has been

central to many prominent results in computational complexity theory, such as those on

probabilistically checkable proofs, hardness of approximation, and fundamental crypto-

graphic primitives. The famous complexity class NP appears to be the simplest one in this

model.

In the following we provide a formal introduction (including the definition and a brief

survey of prior results) of this model and its variants, which contain the standard interac-

tive proof systems either with a single prover or with competing provers. Moreover, we

also study the quantum analogue of NP called Quantum Merlin-Arthur (QMA) games.

In particular, we are interested in two-prover quantum Merlin-Arthur games (QMA(2)),

which exhibit a counter-intuitive and quantum-unique phenomenon that the enforcement

of no entanglement potentially increases computational power.

1.2.1 Efficient Verification of Proofs

Efficient proof verification implicitly involves two players, the prover and the verifier, and

that the verification procedure is assumed to be efficient. It has become one of the most

widely studied notions in theoretical computer science, with broad applications. One of the
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motivations to investigate this model is to study the difference between the following two

fundamental tasks in computational complexity: proof generation and proof verification.

Let (Lyes; Lno) be a promise decision problem and x be an input string. The aim is

to establish that x ∈ Lyes. The task of efficient proof generation is to design an efficient

(polynomial-time) algorithm that outputs a proof such that if the claim is true, then the

algorithm accepts the proof and if the claim is false, then the algorithm rejects the proof.

For example, the complexity class P is a class of decision problems that admit efficient

proof generation procedures.

The task of efficient proof verification is to design an efficient algorithm that verifies

the correctness of a given proof of the claim x ∈ Lyes. In other words, the algorithm takes

in two inputs, the string x and the proof, and then efficiently verifies the correctness of the

claim. For instance, the complexity class NP is such a class of decision problems that admit

efficient proof verifications. In this sense, the problem about the intrinsic complexity of the

two tasks, proof generation and proof verification, is equivalent to the famous P-versus-NP

problem, which asks whether the two classes are the same.

We remark that the above separation demonstrates the difference between proof gen-

eration and proof verification in traditional problem-solving procedures. In this way, we

generalize the conventional concept of mathematical proofs that are static and are verified

in a deterministic way to a convincing procedure between an all-powerful but untrustful

prover and a computationally bounded verifier. The new model allows us to introduce var-

ious ingredients that would lead to more powerful complexity models and classes. Among

the most important ones are interaction and randomness. Intuitively, interactions (i.e.,

two-way communication between the prover and the verifier) will increase the chance of

any efficient verifier to catch a cheating prover. Similarly, randomness could make the ver-

ifier’s questions more difficult to answer and thus potentially increases the computational
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power of the entire proof system. Of course, any proof verification system still needs to be

efficient and satisfy the following three properties.

• Completeness. For every x ∈ Lyes, there exists a behavior of the prover that causes

the verifier to accept x with high probability.

• Soundness. For every x ∈ Lno, regardless of the behavior of the prover, the verifier

will reject x with high probability.

• Efficiency. The complete verification procedure, including all rounds of communi-

cation between the prover and the verifier, and the verifier’s internal computation

should run in polynomial time in terms of the size of the input.

The efficient interactive proof systems proposed above turn out to be an important com-

putational model, as it provides alternative and insightful characterizations of more natural

complexity classes defined in terms of consumed time or space. The famous complexity

class NP is one such example. The generalized single-prover interactive proofs turn out

to characterize polynomial space [101, 100, 86] and the multi-prover version provides

the same expressive power as nondeterministic exponential time [15]. All these results

shed light on alternative characterizations of conventional computational resources, and

are considered among the most important results in theoretical computer science since

Cook-Levin’s theorem.

The proof verification scenario also deepens our understanding about proofs them-

selves. One prominent example in this regard is the zero-knowledge proof in cryptography,

in which the untrustful prover tries to convince the verifier that a given statement is true,

without conveying any additional information more than the mere fact that the statement

is indeed true. This is very useful in cryptographic scenarios where the ability to prove

the statement requires some secret information from the prover. Zero-knowledge proofs,

thus, prevent the verifier to prove the statement to anyone else. Another important exam-
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ple is the probabilistically checkable proofs (i.e., PCP theorem) that certify every decision

problem in NP with a constant number of queries into the proofs and a logarithmic amount

of randomness. The PCP theorem serves as the cornerstone of the study of the hardness

of approximation, which investigates the inherent obstacles in designing efficient approx-

imation algorithms for various optimization problems.

In the following, we shall elaborate on the models and their variants studied in this

dissertation. All the models extend easily to quantum setting, in which provers and ver-

ifiers have access to quantum computers. Also, classical messages (or proofs) will be

replaced by quantum messages (or proofs). The requirement on completeness, soundness,

and efficiency, however, remains the same.

1.2.2 Quantum Interactive Proof Systems

Interactive proof systems evolve from the standard efficient verification of proofs model

with extra ingredients (i.e., interaction and randomness). In this model (denoted IP), a

computationally bounded verifier exchanges messages of at most polynomial length with

an all-powerful prover. For any input x, the prover tries to convince the verifier to accept,

whereas the verifier will make its own decision based on the interacting process.

The expressive power of this interactive proof system model is completely character-

ized [101, 100, 86] by the well-known relationship

IP=PSPACE

through the technique commonly known as arithmetization. Many variants of the interac-

tive proof system model have been studied, such as public-coin interactive proofs [8, 9, 48],

multi-prover interactive proofs [15], and zero-knowledge interactive proofs [47], as well

as competing-prover interactive proofs [40].

The quantum interactive proof system (denoted QIP) is defined [74, 110] in a similar
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way to its classical counterparts except that the verifier and the prover have access to quan-

tum resources and exchange quantum messages. Similarly, several variants of quantum in-

teractive proof systems have also been studied, including the ordinary quantum interactive

proofs [110, 74], public-coin quantum interactive proofs [88], zero-knowledge quantum

interactive proofs [112, 76, 54], and multi-prover quantum interactive proofs [68, 77]. The

complexity class QIP, known as the set of languages admitting quantum interactive proof

systems, satisfies [74]

PSPACE=IP ⊆ QIP ⊆ EXP.

Pinning down the complexity class QIP between EXP and PSPACE was open ever since

and was considered one of the most important problems in quantum computational com-

plexity.

There are a few interesting properties about quantum interactive proof systems, among

the most important ones of which is that it only requires three-turn interactions. Let QIP(r)

denote the subset of QIP where the interaction is r-turn. This implies that QIP(3)=QIP,

which is contrary to the classical case where constant-turn interactions lead to the com-

plexity class AM, weaker than the whole IP. We can also build similar connections for

r = 0, 1, where QIP(0)=BQP and QIP(1)=QMA. However, the complexity class QIP(2)

remains mysterious because no clear characterization exists for that class.

Recently, Jain et al. [60] solved the complexity of QIP and concluded that the expres-

sive power of quantum interactive proof systems coincides with its classical counterpart,

i.e., QIP=IP=PSPACE. Their result is crucially based on the fact that three-turn quantum

Merlin-Arthur games (denoted QMAM) have the same expressive power as quantum in-

teractive proof systems. This observation leads to a simplified formulation of QIP as a

semidefinite program over density operators. Then they applied Arora-Kale’s [67] primal-

dual approach for solving semidefinite programs through the use of the matrix multiplica-
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tive weight update method. The later one admits space-efficient implementations. How-

ever, the resultant proof is still quite involved and less accessible to non-expert readers.

Our contributions: we find out that Jain et al. did not make full use of the properties

of quantum interactive proof systems in the sense that they oversaw the possibility to use

a QIP-complete problem as a start point. Moreover, the choice of Arora-Kale’s primal

dual method for solving semidefinite programs is sufficient but not elegant. In particular,

Arora-Kale’s algorithm, when applied, incurs a few unnecessary technical difficulties.

Our proof starts with one QIP-complete problem called the close images problem [74].

Our crucial observation is to imagine this promise problem as a zero-sum game between

two well-designed players. Thus, in order to solve this promise problem, it suffices to

approximate the equilibrium value of that particular zero-sum game. This separates our

proof from Jain et al’s which formulates QIP as semidefinite programs. Then we resort to

the well-known application of the multiplicative update method to approximate equilib-

rium values of zero-sum games. We apply the same matrix version of the multiplicative

weight update method, however, in a quite different way from Arora-Kale’s approach, as

their approach is for semidefinite programs. These observations lead to a conceptually

very simple and modularized proof of QIP=PSPACE.

Extending our observations above to concrete mathematics, we develop a framework

called the equilibrium value method. This general idea is simple and might be known

before. Our contributions are technical solutions to an interesting class of problems that

arise naturally in quantum computation. In the following, we will see how this framework

could be applied in more sophisticated settings and lead to stronger results.
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1.2.3 Quantum Refereed Games

In this section we introduce the variant of interactive proof systems induced from compet-

itive (or zero-sum) games. Competitive two-player games are often modeled as either a

table of payouts (normal form) or a game tree (extensive form). The extensive form model

is equivalent to the refereed games model wherein the game is specified by a referee who

exchanges messages with the players and declares a winner at the end of the interaction.

In this terminology, normal form games correspond to the very restricted class of one-turn

refereed games in which there is no communication from the referee to the players.

Despite this restriction, the problem of computing the exact value of a normal form

game is logspace-hard for P [44, 41]. This hardness result is striking when juxtaposed

with the existence of deterministic polynomial-time algorithms for arbitrary, multi-turn

games [81, 80]. For succinct games where the game setting is specified implicitly by

circuits, exponential-time algorithm exists for finding the exact value [80, 81] and it is

also EXP-hard to approximate the game value [44, 41]. The situation is much different

for shorter games, where succinct two-turn games admit polynomial-space approximation

scheme and are also PSPACE-hard to approximate [40]. Approximating one-turn games

is known to be SP
2 -complete [44].

For each competitive game model, one can analogously define the corresponding com-

peting provers interactive proofs (also called refereed games), where players become com-

peting provers who are trying to convince the polynomial-time bounded verifier to either

accept or reject on the input x. Note this complexity class includes the standard interac-

tive proof systems as special cases when the verifier simply ignores one of the provers. Let

RG(k) denote the complexity class of problems that admit classical refereed games of k-

turns and RG be short for RG(poly). Thus the above algorithmic results imply RG=EXP

and RG(2)=PSPACE.



11

Quantum refereed games are defined similarly except that the referee is a polynomial

time quantum computer who exchanges quantum messages with the provers. The class of

problems that admit quantum refereed games is denoted QRG.

The polynomial-time algorithm for quantum games implies QRG⊆EXP [52]. Prior

work on classical refereed games then implies QRG=RG=EXP that is the competing-

prover analogy of the well-known collapse QIP=IP=PSPACE for single-prover interac-

tive proofs [86, 100, 60, 113]. One can analogously define QRG(k) as the quantum coun-

terpart of RG(k). The parallel algorithm for one-turn quantum games immediately implies

QRG(1)⊆PSPACE [62].

For both classical and quantum refereed games, it is an interesting long standing open

question as to whether there is a space-efficient algorithm for approximating k-turn games

for some k ≥ 2.

Our contributions: we completely answer the above question for k = 2 by showing that

quantum two-turn refereed games coincide with polynomial space, i.e., QRG(2)=PSPACE.

Our result is more than that. We define and study a much more general class called double

quantum interactive proof systems and prove that its expressive power is also PSPACE.

This class is so general that our result subsumes and unifies all previously known results

about short classical or quantum refereed games.

Our results also lead to two main by-products. First, we observe the difference between

public-coin and private-coin models in refereed games. In contrast to single-prover inter-

active proof systems, in which public-coin and private-coin models are roughly identical,

we demonstrate that public-coin refereed games are strictly weaker than private-coin refer-

eed games unless PSPACE=EXP. Second, part of our results can also be treated as parallel

algorithms for a very general class of semidefinite programs.
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1.2.4 Quantum Merlin-Arthur Games: Single vs Multiple Provers

In this section we discuss about the simplest quantum model in proof verification and its

surprisingly interesting variant.

QMA and its complete problems: the complexity class QMA (Quantum Merlin-Arthur

games, also known as quantum proofs) was defined [73] as the quantum counterpart of

the complexity class NP. Discovered by Kitaev [73], the local hamiltonian problem is

the first known QMA-complete problem, which naturally generalizes the Boolean Satis-

fiability problem and serves as the quantum analog of the Cook-Levin theorem [31, 82].

Subsequently, a series of parameter improvements have been made on the local Hamilto-

nian problem [65, 69, 59, 92, 3], one of which suggests that the problem remains QMA-

complete even for 1-D local Hamiltonian. Other QMA-complete problems also exist, such

as the local consistency problem and its variants [83, 84, 105], and the quantum clique

problem [13].

We are interested in one QMA-complete problem called the Non-Identity Check prob-

lem that is closely connected to the implementation of quantum computation. Much of

the difficulty in implementing quantum computation is due to the decoherence effect of

quantum mechanics, which happens in very short time. Short-depth quantum circuits, as a

result, seem to be an easier model to implement. Thus, analyzing the power of short-depth

quantum circuits is of significant importance.

The Non-Identity Check problem is to decide whether or not a quantum circuit is far

away from the identity circuit, given a classical description of the circuit. More generally,

one can ask whether two quantum circuits U and V are equivalent or not. However, it

is easy to see that the non-equivalence problem can be reduced to the non-identity check

problem of the circuit UV†. Similar problems [19, 98, 117] that determine whether two

given classical circuits are equivalent or not are known to admit efficient randomized al-
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gorithms. In contrast, the quantum Non-Identity Check problem was shown to be QMA-

complete [65], which suggests the hardness of distinguishing between quantum circuits.

The original version of the quantum Non-Identity Check problem [65] is about quantum

circuits of polynomial sizes. However, all known realizable quantum circuits, which need

to overcome the decoherence effect in some way, are circuits of short depths. Thus, it is

reasonable and interesting to ask about the complexity of the quantum Non-Identity Check

problem when restricting to short-depth circuits.

If the complexity is still high, say, remains QMA-complete, this might suggest even

short-depth quantum circuits still preserve enough amount of “quantumness” in the sense

that it is sufficient to generate QMA-hardness. On the other side, if the complexity is

reduced, this might be a signal that short-depth quantum circuits reduce to classical circuits

somehow and might not be useful to perform truly quantum tasks.

Our contributions: we determine the complexity of the Non-Identity Check problem for

poly-logarithmic depth quantum circuits and show that it is still QMA-complete. Namely,

even poly-logarithmic depth quantum circuits are still “quantum enough” to be hard to

simulate.

QMA with multiple provers: the multiple-prover variant of QMA attracts much atten-

tion recently because it exhibits a counter-intuitive phenomenon that the enforcement of

no entanglement could increase computational power. This is a quantum-unique phe-

nomenon as its classical counterpart trivially reduces to the one-prover setting. The study

of QMA(k), where k denotes the number of provers, was initialized by Kobabyashi et

al. [78, 79]. Much attention was attracted to this model because of the discovery that NP

admits logarithmic-size unentangled quantum proofs [18]. This result was surprising be-

cause single prover quantum logarithm-size proofs only characterize BQP [88]. Adding

one unentangled prover seems to increase the power of the model substantially. The ini-
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tial protocol [18] has been subsequently improved either with better completeness and

soundness [12, 2, 27, 38] or with less powerful verifiers [26].

Despite many efforts, any non-trivial upper bound of QMA(2) remains elusive. The

best known upper bound QMA(2)⊆NEXP follows trivially by nondeterministically guess-

ing the two proofs. Although NP admits logarithmic-size unentangled quantum proofs,

the protocol dose not scale to show NEXP is inside QMA(2). Indeed, it would be surpris-

ing if QMA(2)=NEXP. Nevertheless, several partial results that attack on related prob-

lems or simplified models have been obtained recently. In [55], Harrow et al. proved

that QMA(2)=QMA(poly) by using the so-called product test protocol that determines

whether a multipartite pure state is a product state when two copies of the multipartite

state are given. Another line of research studies the power of unentangled quantum proofs

with restricted verifiers. Two complexity classes BellQMA and LOCC-QMA, referring

to the restricted verifiers that perform only nonadaptive or adaptive local measurements

respectively, were defined in [2] and studied in [21, 22]. It has been shown [22] that

LOCC-QMA(m) is equivalent to QMA for constant m.

It is a challenging problem to seek a better upper bound of QMA(2) itself or of a more

powerful variant than LOCC-QMA or BellQMA.

Our contributions: we provide a PSPACE upper bound for a variant of QMA(2) that

allows the verifier to perform restricted but entangled measurements over the two proofs.

Note that neither LOCC-QMA nor BellQMA allows any entangled measurement. Our

variant is thus the most general one considered up to date, and one step closer to QMA(2).

Our main observation is to cleverly enumerate over a structured solution space. As a

result, we can minimize enumeration and replace it by efficient computation. Again, the

final ingredient is our equilibrium value method, which leads to space-efficient solutions.
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1.3 Organization

The rest of the dissertation is organized as follows. In Chapter 2, we introduce necessary

backgrounds about quantum computation, computational complexity classes and semidef-

inite programs. In Chapter 3, we formulate our main technique contribution, the equi-

librium value method, and deal with various issues about this framework. In Chapter 4,

we apply the equilibrium value method to characterize the expressive power of quantum

interactive proof systems. Then we proceed to the problems requiring more sophisticated

uses of the equilibrium value method. In Chapter 5 and Chapter 6, we demonstrate how to

simulate quantum refereed games and quantum Merlin-Arthur games of multiple provers

in this way. In Chapter 7, we illustrate that the Non-Identity Check problem remains

QMA-complete even for poly-logarithmic depth quantum circuits.

This dissertation is mainly devoted to our work on quantum computational complexity,

especially on quantum interactive proof systems. We will briefly review the author’s work

on other topics during the Phd period and conclude this dissertation in Chapter 8.



CHAPTER 2

Preliminaries

This chapter serves as an introduction to those concepts, mathematical objects and our

notation used throughout this dissertation. It is not meant to be comprehensive. We only

summarize fundamental notions that are directly related to our topics here. Relatively

more advanced notions shall be introduced right before their use.

In Section 2.1, we provide mathematical formulations of objects in quantum computa-

tion. In Section 2.2, we provide formal definitions of those classical and quantum compu-

tational complexity classes that we are interested in. Finally, in Section 2.3, we introduce

semidefinite programs, another important mathematical object in our dissertation.

2.1 Mathematical Formulations of Quantum Computation

We refer readers who are unfamiliar with fundamental quantum computation and informa-

tion concepts to [73, 91, 111]. The following is meant to clarify notation used through this

dissertation.

Operators: For any two complex Euclidean spaces X ,Y , let L (X ,Y) denote the space

of all linear mappings (or operators) from X to Y (L (X ) short for L (X ,X )).

• An operator A ∈ L (X ,Y) is a linear isometry if A∗A = 1X where A∗ denotes the

adjoint (or conjugate transpose) of A.

16
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• An operator A ∈ L (X ) is Hermitian if A = A∗. The eigenvalues of a Hermitian

operator are always real. For n = dimX , we write,

λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A),

to denote the eigenvalues of A sorted in descending order.

• An operator P ∈ L (X ) is positive semidefinite, the set of which is denoted by

Pos (X ), if P is Hermitian and all of its eigenvalues are nonnegative, namely λn(P) ≥

0.

• An operator Π ∈ Pos (X ) is a projection if Π is a Hermitian and satisfies Π2 = Π.

Note such operators only have eigenvalues of 0 or 1.

The Hilbert-Schmidt inner product on L (X ) is defined by

〈A, B〉 = Tr A∗B,

for all A, B ∈ L (X ).

Quantum States: A quantum register refers to a collection of qubits, usually represented

by a complex Euclidean space of the form X = CΣ where Σ refers to some finite non-

empty set of the possible states.

A quantum state of a quantum register X is represented by a density operator ρ, in

which ρ ∈ Pos (X ) and Tr(ρ) = 1. The set of density operators is denoted by D (X ).

When ρ’s rank is one, such a state is called a pure state; otherwise it is called a mixed state.

A mixed density operator describes a quantum system in a statistical ensemble of several

quantum states, in contrast to a pure state. The density operator is the quantum-mechanical

analogue to a phase-space probability measure (probability distribution of position and

momentum) in classical statistical mechanics.
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Quantum Measurements: We refer to measurements, or precisely POVM-type mea-

surements as a collection of positive semidefinite operators

{Pa : a ∈ Σ} ⊂ Pos (X ) ,

satisfying the constraint ∑a∈Σ Pa = 1X . Here Σ refers to a finite, nonempty set of mea-

surement outcomes. If a quantum state represented by ρ ∈ D (X ) is measured with respect

to this measurement, then each outcome a ∈ Σ will be observed with probability 〈Pa, ρ〉.

Tensor-product Spaces: The tensor product X ⊗ Y of vector space X = CΣ and

Y = CΓ is associated with the space CΣ×Γ. The tensor product of operators A ∈ L (X )

and B ∈ L (Y) is defined to be the unique linear mapping that satisfies (A⊗ B)(x⊗ y) =

(Ax)⊗ (By) for all x ∈ X and y ∈ Y .

For spaces X and Y , one can define the partial trace TrY : L (X ⊗Y)→ L (X ) to be

the unique linear mapping that satisfies TrY (A⊗ B) = (Tr A)B for all A ∈ L (X ) and

B ∈ L (Y).

Norms of Operators: Many interesting and useful norms can be defined on spaces

of operators. We restrict our interest to a single family of norms called Schatten p-norms.

This family includes the three most commonly used norms in quantum information theory:

the spectral norm, the Frobenius norm, and the trace norm.

For any operator A ∈ L (X ,Y) and any real number p ≥ 1, one defines the Schatten

p-norms of A as

‖A‖p = [Tr((A?A)p/2)]1/p.

Denoting by ‖·‖ the Euclidean norm, we define

‖A‖∞ = max{‖Au‖ : u ∈ X , ‖u‖ = 1},

which happens to coincide with limp→∞‖A‖p.
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For a given non-zero operator A ∈ L (X ,Y) with rank r ≥ 1, let the vector s(A)

denote the singular values of A. For each real number p ∈ [1, ∞], it holds that the Schatten

p-norm of A coincides with the ordinary (vector) p-norm of s(A):

‖A‖p = ‖s(A)‖p.

• The spectral norm of an operator A ∈ L (X ), also called the operator norm, is

defined by

‖A‖∞ = max{‖Ax‖ : x ∈ X , ‖x‖ ≤ 1}.

It is easy to see that ‖A‖ is actually the maximum singular value of A.

• The Frobenius norm of a matrix A is defined by

‖A‖F = [Tr(A∗A)]1/2 =
√
〈A, A〉.

It is therefore the norm defined by the Hilbert-Schmidt inner product on L (X ,Y),

which leads to an alternative formulation:

‖A‖F = ‖vec(A)‖ =
√

∑
i,j
|A(i, j)|2,

where i and j range over the indices of the matrix representation of A.

• The trace norm of an operator A ∈ L (X ) is denoted by ‖A‖Tr and defined to be

‖A‖Tr = Tr
√

A∗A.

When A is Hermitian, we have

(2.1.1) ‖A‖Tr = max{〈P0 − P1, A〉 : P0, P1 ∈ Pos (X ) , P0 + P1 = 1X }.

Distance Metrics: Two distance measures between quantum states are commonly used,

i.e., the trace distance and the fidelity.
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• Given any two quantum states ρ, σ ∈ D (X ), the trace distance between ρ and σ is

simply,

‖ρ− σ‖Tr ,

which ranges between 0 and 2.

• Given any two quantum states ρ, σ ∈ D (X ), the fidelity between ρ and σ is

F(ρ, σ) =
∥∥√ρ
√

σ
∥∥

Tr ,

which ranges between 1 and 0.

There is an important relation between the above two measures, known as Fuchs-van

de Graaf inequality.

Lemma 2.1.1 (Fuchs-van de Graaf). For any ρ, σ ∈ D (X ), we have

(2.1.2) 1− 1
2
‖ρ− σ‖Tr ≤ F(ρ, σ) ≤

√
1− 1

4
‖ρ− σ‖2

Tr.

Super-operators: A super-operator (or quantum channel) is a linear mapping of the

form

Ψ : L (X )→ L (Y) .

A super-operator Ψ is said to be positive if Ψ(X) ∈ Pos (Y) for any choice of X ∈

Pos (X ), and is completely positive if Ψ⊗ 1L(Z) is positive for any choice of a complex

vector space Z . The super-operator Ψ is said to be trace-preserving if Tr Ψ(X) = Tr X

for all X ∈ L (X ). A super-operator Ψ is admissible if it is completely positive and trace-

preserving. Admissible super-operators represent the discrete-time changes in quantum

systems that, in principle, can be physically realized.

One can also define the adjoint super-operator of Ψ, denoted by

Ψ∗ : L (Y)→ L (X ) ,
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to be the unique linear mapping that satisfies

〈B, Ψ(A)〉 = 〈Ψ∗(B), A〉 ,

for all operators A ∈ L (X ) and B ∈ L (Y).

Let Ψ : L (X )→ L (Y) be any given super-operator, the Choi-Jamiolkowski represen-

tation of Ψ is denoted

J(Ψ) = ∑
i,j∈Σ

Ψ(|i〉 〈 j|)⊗ |i〉 〈 j| ∈ L (Y ⊗X ) .

For an admissible super-operator Ψ, the J(Ψ) is positive semidefinite and TrY J(Ψ) = 1X .

The Stinespring representations of super-operators goes as follows. For any super-

operator Ψ, there is some auxiliary space Z and A, B ∈ L (X ,Y ⊗Z) such that

Ψ(X) = TrZ AXB∗

for all X ∈ L (X ). When Ψ is admissible, we have A = B and A is a linear isometry.

The diamond norm of a super-operator Ψ : L (X )→ L (Y) is defined to be

‖Ψ‖� = max
‖X‖1≤1

‖Ψ⊗ 1X (X)‖Tr.

Because of taking into account the effort of using auxiliary entanglement , the diamond

norm serves as a good measure of the distinguishability between quantum operations.

2.2 Computational Complexity Classes: Classical and Quantum

We assume fundamental knowledge of the deterministic Turing machine and its non-

deterministic and probabilistic variant. In the following, we have briefly summarized those

basic complexity classes that appear in this dissertation and then provide formal definitions

of interactive proof systems and their variants, both classical and quantum.
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2.2.1 Basic Classical Complexity Classes

The following complexity classes are directly related to this dissertation.

• P : stands for the collection of promise problems A = (Ayes; Ano) such that for

every A, there exists a polynomial-time deterministic Turing machine that accepts if

x ∈ Ayes and rejects if x ∈ Ano.

• BPP : stands for the collection of promise problems A = (Ayes; Ano) such that for

every A, there exists a polynomial-time probabilistic Turing machine that accepts

with probability at least 2/3 if x ∈ Ayes and rejects with probability at least 2/3 if

x ∈ Ano.

• NP : stands for the collection of promise problems A = (Ayes; Ano) such that for

every A, there exists a polynomial-time nondeterministic Turing machine that accepts

if x ∈ Ayes and rejects if x ∈ Ano. Alternatively, the class NP can be defined as

follows. For every A, there exists a polynomial-time deterministic Turing machine

that takes the input x and some witness string w whose length |w| = poly(|x|). So

that if x ∈ Ayes , then there exists a w to make the machine accept; otherwise, if

x ∈ Ano, then the machine rejects no matter what the witness string w is.

• PSPACE : stands for the collection of promise problems A = (Ayes; Ano) for which

there exists a polynomial-space deterministic Turing machine that accepts every string

x ∈ Ayes and rejects every string x ∈ Ano.

• EXP : stands for the collection of promise problems A = (Ayes; Ano) such that

there exists an exponential-time deterministic Turing machine accepts every string

x ∈ Ayes and rejects every string x ∈ Ano.

• NEXP : stands for the collection of promise problems A = (Ayes; Ano) such that

for every A, there exists a exponential-time nondeterministic Turing machine that
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accepts if x ∈ Ayes and rejects if x ∈ Ano. Similar to NP, this class has an alternative

definition using the notion of witness strings except that the length now becomes

exponential.

These above complexity classes are related to each other via the following relation-

ships:

P ⊆ NP ⊆ PSPACE ⊆ EXP ⊆ NEXP and P ⊆ BPP.

2.2.2 Interactive Proof Systems

In the introduction we briefly survey interactive proof systems. Here we formally define

those complexity classes. The introduction already includes the definition of interactive

proof systems. We will focus on definitions of quantum interactive proof systems, quantum

Merlin-Arthur games, and classical and quantum refereed games.

Definition 2.2.1 (QIP). Let L = (Lyes, Lno) be a promise problem, let m be a polynomial-

bounded function, and let a, b : N → [0, 1] be polynomial-time computable functions.

Then L ∈ QIP(m, a, b) if and only if there exists an m-message quantum verifier V with

the following properties:

1. Completeness. For all x ∈ Lyes, there exists a quantum prover P that causes V to

accept x with probability at least a(|x |).

2. Soundness. For all x ∈ Lno, every quantum prover P causes V to accept x with

probability at most b(|x |).

Also define QIP(m) = QIP(m, 2/3, 1/3) for each polynomial-bounded function m and

define QIP =
⋃

m QIP(m), where the union is over all polynomial-bounded functions m.

As a special case of quantum interactive proof systems, in which there is only one-

way communication from the prover to the verifier, one-turn quantum interactive proof

systems (i.e., QIP(1)) have another name called quantum Merlin-Arthur games (QMA).
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It is considered as the quantum counterpart of the complexity class NP. Due to inherent

randomness in quantum computation, it would be more accurate to consider it the quantum

counterpart of the complexity class MA, which stands for Merlin-Arthur games and is the

randomized version of NP.

Definition 2.2.2 (QMA). A language L is in QMA if there is a family of circuits {Ux, x ∈

Σ∗} generated in polynomial-time together with a polynomial m such that Ux acts on

m + k qubits and the following holds:

1. If x ∈ L, there exists an m(|x|)-qubit state |ψ〉 , Pr
[
Ux accepts |ψ〉 ⊗ |0〉⊗k(|x|)

]
≥

2/3;

2. If x 6∈ L, for all m(|x|)-qubit state |ψ〉, Pr
[
Ux accepts |ψ〉 ⊗ |0〉⊗k(|x|)

]
≤ 1/3.

We shall encounter multiple-prover quantum Merlin-Arthur games in Chapter 6 in

which we will provide the precise definition for the multiple-prover version. In the follow-

ing, we formally define the classical refereed games (RG) and its quantum variant (QRG).

Definition 2.2.3 (RG). A promise problem L = (Lyes, Lno) is in RG if and only if it has

a classical interactive proof system with two competing provers. The completeness and

soundness conditions for such a proof system are replaced by the following conditions:

1. For every x ∈ Lyes, there exists a yes-prover Pyes that convinces the referee to accept

with probability at least 2/3, regardless of the strategy employed by the no-prover

Pno.

2. For every x ∈ Lno, there exists a no-prover Pno that convinces the referee to reject

with probability at least 2/3, regardless of the strategy employed by the yes-prover

Pyes.

Quantum refereed games are defined similarly except that the referee is a polynomial

time quantum computer who exchanges quantum messages with the provers. The class of
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problems that admit quantum refereed games is denoted QRG.

Definition 2.2.4 (QRG). A promise problem L = (Lyes, Lno) is in QRG (quantum refer-

eed games) if and only if it has a quantum interactive proof system with two competing

provers. The completeness and soundness conditions for such a proof system are analo-

gous to RG.

2.3 Semidefinite Programs

A semidefinite program (SDP) over X and Y (shown below) is specified by a triple

(Ψ, A, B) where Ψ : L (X ) → L (Y) is a Hermiticity preserving super-operator and

A ∈ Herm (X ) and B ∈ Herm (Y).
Primal problem

maximize: 〈A, X〉 ,

subject to: Ψ(X) ≤ B,

X ∈ Pos (X ) .

Dual problem

minimize: 〈B, Y〉 ,

subject to: Ψ∗(Y) ≥ A,

Y ∈ Pos (Y) .

The reason why SDP is intimately related to quantum information and computation

is that quantum states are represented by semidefinite positive operators with unit trace.

Therefore, if one considers any optimization problem involving quantum states, SDP

should be the most nature tool to formulate the problem.

In practice we usually consider SDPs whose optimum values are within a constant

range. For those SDPs, it suffices to consider the feasibility problem defined below. Once

the feasibility problem is solved, it suffices to use binary search to find the optimum value.

For any instance of SDP and a guess value c , the feasibility problem is defined to be

Feasibility Problem
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ask whether: 〈A, X〉 ≥ c,

subject to: Ψ(X) ≤ B,

X ∈ Pos (X ) .



CHAPTER 3

Equilibrium Value Method

In this chapter, we formulate our main technical contribution in this dissertation, namely

the so-called equilibrium value method, for obtaining PSPACE solutions to a class of quan-

tum optimization problems. We illustrate our approach of reformulating these optimiza-

tion problems as zero-sum games and highlight the main two technical difficulties in doing

so: the first one is that one can only hope to approximate equilibrium values of zero-sum

games rather than to solve them exactly, and the second one is that we need an extra

rounding theorem to convert approximate solutions to exact solutions without incurring

too much error. We discuss how the matrix multiplicative weight update method applies

in our method and point out potential technical limits.

The rest of this chapter is organized as follows. In Section 3.1, we formulate the equi-

librium value method. In Section 3.2, we introduce the matrix multiplicative weight update

method and show how it approximates a specific form of equilibrium values of zero-sum

games. In Section 3.3, we demonstrate a warm-up example in which our equilibrium value

method out-performs known approaches. In Section 3.4, we compare our use of the matrix

multiplicative weight update method with Arora-Kale’s primal-dual approach. Finally, in

Section 3.5, we address how our solutions can be made space-efficient and also deal with

their possible precision issues.

27
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3.1 Formulation

This equilibrium value method first converts the optimization problem into a zero-sum

game, and then applies the matrix multiplicative weight update method to approximate the

equilibrium value of that particular zero-sum game. Note that in such conversions, a small

error in approximating the equilibrium value might blow up significantly for the original

optimization problem. Among all possible conversions of this kind, our conversion is

optimal in the sense that it guarantees the efficiency in implementing this conversion, and

also minimizes the error induced by the conversion.

Let us demonstrate this framework more carefully. Recall that for any instance of

semidefinite programs and a guess value c , the feasibility problem1 is defined to be

Feasibility Problem

ask whether: 〈A, X〉 ≥ c

subject to: Ψ(X) ≤ B,

X ∈ D (X ) .

The equilibrium value method converts any feasibility problem into a zero-sum game as

follows. Imagine that there is a primal player who wants to provide you a feasible solution

X to prove that the original problem is feasible. On the contrary, the dual player who wants

to disprove the feasibility will try to find where the constraints on X are violated. Thus, it

is conceivable that the ability to determine the winner of this zero-sum game is equivalent

to the ability to determine the feasibility of the optimization problem.

However, this intuition cannot be carried out directly due to two technical constraints.

• First, we cannot calculate equilibrium values, or who wins the game, perfectly. All

known techniques only approximate equilibrium values. Moreover, for our purpose,
1We replace Pos (X ) by D (X ) due to technical reasons. However, imposing D (X ) constraint (i.e., bounding the width of X) is

valid in many applications.
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we need to efficiently approximate equilibrium values of zero-sums, not only in time

but also in space. This is a further requirement that we do not have much prior

knowledge.

• Second, we need an extra rounding theorem to convert approximate solutions to exact

solutions without incurring too much error. Such a rounding theorem will depend on

specific cases.

The main challenge is to address these two issues at the same time. For technical reasons,

we might want to approximate equilibrium values of some relaxations of original zero-sum

games, which might in turn require special handling in the rounding theorem.

We define the following bilinear function f to capture the zero-sum game mentioned

above.

Framework 3.1.1. Let function f be

(3.1.1) f (X, Π) =

〈 c− 〈A, X〉

Ψ(X)− B

 , Π

〉

over the set D (X )× T where T = {Π : 0 ≤ Π ≤ 1Y⊕C}. Let the equilibrium value

λ̌( f ) be

λ̌( f ) = min
X∈D(X)

max
Π∈T

f (X, Π) = max
Π∈T

min
X∈D(X)

f (X, Π).

The relation between the equilibrium value λ̌( f ) and the feasibility of the original

problem is captured by the following theorem.

Theorem 3.1.2. The original problem is feasible if and only if λ̌( f ) ≤ 0.

We remark that Framework 3.1.1 is flexible in the sense that it admits manipulations

on the specific form of the function f . For example, one could assign different weights to

different constraints; or one can split the variable X into two density operators X1, X2 and
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1. Initialization: Pick a fixed ε ≤ 1
2 , and let W(1) = 1X ∈ L (X ), N = dimX .

2. Repeat for each t = 1, . . . , T:

(a) Let the density operator ρ(t) = W(t)/ Tr W(t).

(b) Observe the loss matrix M(t) ∈ L (X ) which satisfies 0 ≤ M(t) ≤ 1X , update the weight matrix
as follows:

W(t+1) = exp(−ε
t

∑
τ=1

M(τ)).

Figure 3.1: The Matrix Multiplicative Weight Update method.

so on. What appears in Eq. (3.1.1) only conveys the spirit of this framework and can be

manipulated for different problems.

In the next section, we will introduce the matrix multiplicative weight update method

which leads to algorithms that approximate λ̌( f ) within satisfiable precision under mild

technical conditions. Moreover, because the matrix multiplicative weight update method

only contains fundamental operations of matrices, the resultant algorithms are usually also

efficient in parallel (i.e., in NC). By invoking the well-known relation between parallel

efficiency and space efficiency (i.e., NC(poly)=PSPACE [20]), we could also obtain space-

efficient solutions. This is vital for our later purpose, namely to prove PSPACE upper

bounds of quantum computational complexity classes.

3.2 Matrix Multiplicative Weight Update Method

Fortunately, for many interesting instances, our equilibrium value method can be applied

with the help of the matrix multiplicative weight update method. This method is a well-

known framework that originates in various fields, such as machine learning and opera-

tions research. This particular variant (shown in Fig. 3.1) in our application was developed

and discussed in a survey paper [6] and also in the PhD thesis of Kale [67]. Note that

{M(t)} is the freedom we have in this framework.

Theorem 3.2.1. Assume 0 ≤ M(t) ≤ 1 for all t, after T rounds, the algorithm in Fig 3.1
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guarantees that, for any ρ∗ ∈ D (X ), we have

(3.2.1) (1− ε)
T

∑
t=1

〈
ρ(t), M(t)

〉
≤
〈

ρ∗,
T

∑
t=1

M(t)

〉
+

ln N
ε

.

One important and direct application of this method is to efficiently approximate a

class of equilibrium values. One of the main advantages of this method is that any time

efficiency in this framework can be easily extended to space efficiency. This is because

the matrix multiplicative weight update method is explicit and only contains fundamental

operations of matrices, which usually admit space-efficient solutions [108]. We defer

discussions for space-efficiency to Section 3.5.

Let us consider the following class of equilibrium values. Given any convex matrix set

P of bounded width (say, ∃ w > 0 s.t. ∀P ∈ P, ‖P‖∞ ≤ w), and any explicit2 Hermiticity

preserving super-operator Ξ, define the equilibrium value λ(P, Ξ) by

(3.2.2) λ(P, Ξ) = min
X≥0,Tr(X)=1

max
P∈P
〈Ξ(X), P〉 = max

P∈P
min

X≥0,Tr(X)=1
〈Ξ(X), P〉 .

A direct consequence following from [6] is:

Corollary 3.2.2. If the optimization problem maxP∈P 〈Ξ(X∗), P〉 for any X∗ can be ef-

ficiently approximated within an additive error δ in space, then there is a space-efficient

algorithm to approximate λ with an inverse poly-logarithmic additive error plus δ.

3.3 Example: QIP(2)⊆PSPACE

Now it is our turn to consider a real instance of semidefinite programs and apply our

framework to solve it. Our candidate is the quantum interactive proof systems with two

messages. In this model, on input x, the polynomial-time bounded quantum verifier will

send one quantum message to an all powerful quantum prover and get another quantum

message back. Then the verifier will decide whether to accept or to reject based on the
2For example, if the super-operator can be calculated by a constant number of steps of fundamental matrix operations.
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message sent back from the prover and the qubits kept at his side. The only constraint on

the all powerful quantum prover is that the prover must operate an admissible quantum

operation on the quantum message sent to him. The complexity class QIP(2) denotes all

the languages which can be recognized by the procedure above.

It is known that QIP(2)⊆PSPACE [61] by following Arora-Kale’s way [67] to solve

SDPs. Here we demonstrate how our Framework 3.1.1 can be applied, thus contributing

an alternative and simple proof of the same result. There are two main differences between

the two proofs. The first one is that we choose a better formulation of this model in

terms of density operators rather than quantum channels. The second one is that we apply

our equilibrium value method rather than Arora-Kale’s approach to solve the resultant

semidefinite programs.

LetM denote the message’s space between the prover and the verifier and V denote

the verifier’s private space. Fix input x for the following discussion. Without loss of

generality, let the pure state ρ1 ∈ D (M⊗V) be the initial state. The prover then applies

an admissible quantum channel Φ : L (M) → L (M) on part of the state ρ1 and obtains

state ρ2 = Φ⊗ 1L(V)(ρ1). The verifier then measures on ρ2 to decide whether to accept

or to reject. Let R be the POVM corresponding to the acceptance case. To simulate this

model, it suffices to solve the following optimization problem

max
Φ
〈R, ρ2〉 s.t. ρ2 = Φ⊗ 1L(V)(ρ1),

where the optimum value is the maximum probability that the verifier accepts on input x.

By Lemma 3.3.3, we have ρ1 and ρ2 are connected by an admissable quantum operation

if and only if TrM ρ1 = TrM ρ2. Thus the above optimization problem is equivalent to

the following semidefinite program,
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SDP Problem

maximize: 〈R, ρ2〉

subject to: TrM(ρ2) ≤ TrM(ρ1),

ρ2 ∈ D (M⊗V) .

Feasibility Problem

ask whether: 〈R, ρ2〉 ≥ c

subject to: TrM(ρ2) ≤ TrM(ρ1),

ρ2 ∈ D (M⊗V) .

Before we proceed to the solution to the above feasibility problem, we present several

useful properties about purification and fidelity as follows.

Lemma 3.3.1. Given any two density operators ρ1, ρ2 over the space A, and another

density operator σ1 over the spaceA⊗B such that TrB σ1 = ρ1, then there exists another

density operator σ2 over the space A⊗ B for which that TrB σ2 = ρ2 and F (ρ1, ρ2) =

F (σ1, σ2).

(Please note that this lemma was originally proved in many places. The following proof

follows the one in [61]. The only reason to include this proof is for later use in proving

Lemma 3.3.2.)

Proof. First, by the monotonicity of the fidelity function under partial trace, we have for

any σ2 ∈ D (A⊗B) such that TrB σ2 = ρ2 the inequality F (ρ1, ρ2) ≥ F (σ1, σ2) always

holds. Thus, it suffices to show that equality can be achieved.

Let V ∈ U (A) such that
√

ρ1
√

ρ2V is positive semidefinite. Since for fidelity func-

tion we have F (ρ1, ρ2) = ‖√ρ1
√

ρ2‖Tr, then for such a V it holds that F (ρ1, ρ2) =

Tr(
√

ρ1
√

ρ2V). Now let C = A⊗B and |u1〉 ∈ A⊗ B ⊗ C be the purification of σ1, in

particular, |u1〉 is chosen to be

|u1〉 = vec(
√

σ1).

By rearranging the coefficients we can find a X ∈ L (B ⊗ C,A) such that vec(X) =

|u1〉. Since |u1〉 is also a purification of ρ1, there must exist a linear isometry U ∈
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U (A,B ⊗ C) such that,

X =
√

ρ1U∗.

Finally, let |u2〉 = vec(
√

ρ2VU∗) ∈ A ⊗ B ⊗ C where V, U are obtained above

respectively. It is easy to see that |u2〉 is a purification of ρ2 in the space A ⊗ B ⊗ C.

Thus, we choose σ2 = TrC(|u2〉 〈u2|) and it holds that

F(σ1, σ2) ≥ | 〈vec(
√

ρ1U∗), vec(
√

ρ2VU∗)〉 | = | 〈√ρ1U∗,
√

ρ2VU∗〉 |

= Tr(
√

ρ1
√

ρ2V) = F(ρ1, ρ2).

Lemma 3.3.2. In addition to the result in Lemma 3.3.1, we can compute the classical

representation of σ2 as required above given the classical representations of ρ1, ρ2 and σ1

in NC where the input size refers to the size of the matrices.

Proof. The proof of Lemma 3.3.1 actually gives one a way to construct σ2 given ρ1, ρ2, σ1.

Let us review the important steps in the proof again with more attention to the computation

of each intermediate quantity.

In the first step, we need to calculate a V ∈ U (A) such that
√

ρ1
√

ρ2V is posi-

tive semidefinite. This can be done by calculating the singular value decomposition of

√
ρ1
√

ρ2 and let V = 1− 2P where P is the projection onto the subspace S = span{|ψ〉 :

〈ψ| √ρ1
√

ρ2 |ψ〉 ≤ 0}.

The second step calculates X such that vec(X) = |u1〉 = vec(
√

σ1). This can be

done by simply rearranging the coefficients in the entries of
√

σ1. In order to get U ∈

U (A,B ⊗ C), we can calculate the singular value decomposition of
√

ρ1 and get the

inverse (or pseudo-inverse) of
√

ρ1. Then U = X∗(
√

ρ1
−1)∗.

Once we have U and V, we can easily calculate σ2 by using the formula

σ2 = TrC(vec(
√

ρ2VU∗) vec(
√

ρ2VU∗)∗).
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Due to the fact that fundamental operations of matrix and the singular value decomposition

can be done in NC and the fact we can compose these NC circuits easily, we conclude that

σ2 can be calculated in NC given the classical representations of ρ1, ρ1 and σ1 as input.

Lemma 3.3.3. Given two density operators ρ1, ρ2 ∈ D (A⊗B) where ρ1 represents a

pure state, there exists an admissible quantum channel Φ : L (A) → L (A) such that

Φ⊗ 1L(B)(ρ1) = ρ2 if and only if TrA(ρ1) = TrA(ρ2).

Lemma 3.3.4. Given two density operators ρ1, ρ2 ∈ D (A), and their purifications σ1, σ2 ∈

D (A⊗B) in space A⊗B respectively, for which F(ρ1, ρ2) = F(σ1, σ2), let

s =
1
2
‖ρ1 − ρ2‖Tr and t =

1
2
‖σ1 − σ2‖Tr

Then we have the following inequalities

1− s ≤
√

1− t2 and 1− t ≤
√

1− s2

Proof. This is only a simple application of Fuchs-van de Graaf Inequality. Namely, we

have

1− s ≤ F(ρ1, ρ2) ≤
√

1− s2 and 1− t ≤ F(σ1, σ2) ≤
√

1− t2.

Given F(ρ1, ρ2) = F(σ1, σ2), it easily follows that

1− s ≤
√

1− t2 and 1− t ≤
√

1− s2.

Solution to the feasibility problem

Following Framework 3.1.1, we define

(3.3.1) f1(ρ, Π) =

〈 c− 〈R, ρ〉

TrM(ρ)− TrM(ρ1)

 , Π

〉
,
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where ρ ∈ T1 = D (M⊗V) and Π ∈ T2 = {Π : 0 ≤ Π ≤ 1M⊕C}. Let λ̌1 be the

equilibrium value of function f1, namely,

λ̌1 = min
ρ∈T1

max
Π∈T2

f1(ρ, Π) = max
Π∈T2

min
ρ∈T1

f1(ρ, Π).

By Theorem 3.1.2, the value of λ̌1 determines whether the original problem is feasible.

In addition, we demonstrate a rounding theorem that converts any approximately feasible

solution to exactly feasible solution below.

Lemma 3.3.5. Let λ̄1 be the approximate equilibrium value of the function f1 to precision

δ, and λ̌1 be the actual equilibrium value. Then we have

• if λ̄1 > δ, then the original problem is infeasible.

• if λ̄1 ≤ δ, then there exists a feasible solution ρ̃ such that 〈R, ρ̃〉 ≥ c−
√

2δ− δ2.

Proof. • If λ̄1 > δ, namely, λ̌1 ≥ λ̄1− δ > 0, then due to Theorem 3.1.2, the original

problem is feasible.

• Otherwise, we have

(3.3.2) max{c− 〈R, ρ̄〉 , 0}+ 1
2
‖TrM(ρ̄)− TrM(ρ1)‖Tr ≤ δ,

where ρ̄ is an approximate equilibrium point. By Lemma 3.3.1 and 3.3.2, we can

compute ρ̃ such that F(TrM(ρ̄), TrM(ρ1)) = F(ρ̃, ρ1) and TrM(ρ̃) = TrM(ρ1).

Let s = 1
2‖TrM(ρ̄)− TrM(ρ1)‖Tr and t = 1

2‖ ρ̃− ρ̄‖Tr. Then we have

〈R, ρ̃〉 − c = 〈R, ρ̄〉+ 〈R, ρ̃− ρ̄〉 − c

≥ 1
2
‖TrM(ρ̄)− TrM(ρ1)‖Tr − δ− 1

2
‖ ρ̃− ρ̄‖Tr

= s− t− δ ≥ s−
√

2s− s2 − δ

≥ δ−
√

2δ− δ2 − δ = −
√

2δ− δ2,
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where the first inequality is due to Eq. (3.3.2) and Eq. (2.1.1) and the second in-

equality comes from Lemma 3.3.4. The last inequality is because s −
√

2s− s2 is

decreasing when 0 ≤ s ≤ 0.2 and by Eq. (3.3.2) s ≤ δ.

To complete our algorithm, it suffices to notice that our λ̌1 is a special form of λ(P, Ξ)

in Eq. (3.2.2) where P = {Π : 0 ≤ Π ≤ 1} and Ξ is defined in Eq. (3.3.1). Fur-

thermore, we notice that the optimization problem (i.e., maxP∈P 〈Ξ(X∗), P〉) required in

Corollary 3.2.2 reduces to the projection onto that positive eignspace of Ξ(X∗), which

follows directly from the spectral decomposition of Ξ(X∗). Therefore all conditions of

Corollary 3.2.2 are satisfied and we could make use of it to approximate λ̌1 to desired

precision.

We are ready to apply our result to simulate QIP(2). Recall the definition of QIP(2),

there will be two promises with gap ∆ = c(|x|)− s(|x|) = Ω(1/poly(|x|)). It suffices

to choose the right precision and then apply our above result.

Corollary 3.3.6. QIP(2) ⊆ PSPACE.

Proof. For any input x, we simply compose the following circuits.

• For any specific x, compute the corresponding initial state ρ1 and the function f1.

This can be done in NC(poly) because it only involves the computation of the product

of a polynomial number of exponential-size matrices that corresponds to the quantum

circuits used by the verifier.

• Choose the guess value c = 1
2(c(|x|) + s(|x|)) and precision δ = 1

18 ∆2. Then use

the NC algorithm implied by Corollary 3.2.2 to calculate the equilibrium value λ̌1 to

precision δ.

• Finally, based on the two cases in Lemma 3.3.5, we can claim either the optimum
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value of the SDP is less than c or at least c−
√

2δ− δ2 ≥ c− 1
3 ∆. Then we are able

to tell whether x ∈ L.

All the circuits can be composed in NC(poly). Because NC(poly)=PSPACE [20], we have

QIP(2)⊆PSPACE.

3.4 Comparison with Arora-Kale’s Approach

It is interesting to compare our equilibrium value method with the primal-dual method

introduced by Arora-Kale [6, 7] to solve semidefinite programs. The main advantages of

our method are a better guarantee of rounding theorems (i.e., incur the minimum amount of

extra error) and a simpler oracle design (i.e., a simplification of one technical step required

by the matrix multiplicative weight update method).

First of all, these two methods share a lot of similarities in making use of the matrix

multiplicative weight update method. They both generate a series of candidate solutions

X(1), X(2), · · · , X(T) for T rounds using the matrix multiplicative weight update method.

For each round, special designed operators serve as the loss matrices in the framework.

To obtain these loss matrices, they both require to finish some extra computation, which

we abstract as oracles. In general, the design of an efficient oracle depends on the specific

problem and might need to handle specific technical difficulties. After T rounds, both

methods obtain an approximate solutions for the original problem, however, under differ-

ent guarantees of approximation. A crucial step afterwards is to prove such an approximate

solution could be converted to an exact solution without incurring too much extra error,

namely, a rounding theorem. It is conceivable that the quality of any rounding theorem

shall highly depend on the approximation guarantee achieved.

We now briefly compare the performance of these two methods with respect to the two

considerations discussed above.
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• Oracles. In the primal-dual approach, for any feasibility problem of semidefinite

programs, and for any X(t) in the round t, we require an oracle O1 to solve the

following problem

(3.4.1) find Y(t) s.t.
〈

Ψ∗(Y(t))− A, X(t)
〉
≥ 0,

〈
B, Y(t)

〉
≤ c, Y(t) ∈ Pos (Y) .

The oracle O1 will return such a Y(t) or claim such a Y(t) does not exist. Note that

this oracle is a semidefinite program in a restricted form. However, the problem is

still so general that it is not known to admit an efficient solution automatically. In

fact, a significant effort in using the primal-dual approach in previous works is to

design an efficient oracle O1.

To approximate equilibrium values, we need a different oracle O2. For any equilib-

rium value λ in the form:

λ = min
X≥0,Tr X=1

max
y∈Y

f (x, y) = max
y∈Y

min
X≥0,Tr X=1

f (x, y),

oracle O2 only needs to solve the following optimization problem:

max
y∈Y

f (X(t), y).

In Framework 3.1.1, we choose Y = {Π : 0 ≤ Π ≤ 1}. This implies oracle O2 is

equivalent to projection onto the positive eigenspace, which is a standard problem and

known to admit space-efficient solutions. Namely, oracle design in our equilibrium

value method is no longer an issue.

• Approximation guarantees. For the same additive error ε governed by the matrix

multiplicative weight update method, the approximation guarantees for these two

methods are different. For the primal-dual method, it means,

(3.4.2) ∀ρ ∈ D (X ) , 〈Ψ∗(Y)− A, ρ〉 ≥ −ε.
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On the other side, our Framework 3.1.1 guarantees that

(3.4.3) ∀ Π ∈ {Π : 0 ≤ Π ≤ 1},
〈 c− 〈A, X〉

Ψ(X)− B

 , Π

〉
≤ ε.

In examples [61, 60] using the primal-dual approach, the fact A = 1X is crucial be-

cause of the guarantee in Eq. (3.4.2). Intuitively, this is because Eq. (3.4.2) roughly

implies that Ψ∗(Y)− A ' 0 only holds in terms of `∞ norm. On the other side, our

approximation guarantee (Eq. (3.4.3)) is stronger in the sense that the candidate solu-

tion X only violates the constraints a bit so that the `1 norm of the violations is tiny,

i.e., at most ε. This is one of the main reasons why we can handle sophisticated con-

straints later in Chapter 4 and Chapter 5. In addition, we have the freedom to choose

a different T to generate a different Eq. (3.4.3), and thus to meet the requirement of

new constraints, which is another advantage over the primal-dual approach.

3.5 NC and Precision Issues

We denote by NC the class of promise problems computed by the logarithmic-space uni-

form Boolean circuits with poly-logarithmic depth. Furthermore, we denote by NC(poly)

the class of promise problems computed by the polynomial-space uniform Boolean cir-

cuits of polynomial depths. Since it holds that NC(poly)= PSPACE [20], thus in order to

simulate any algorithm in PSPACE, it suffices to prove that we can simulate the algorithm

in NC(poly).

There are a few facts about these classes which are useful in our discussion. First, func-

tions in these classes compose nicely. It is clear that if f ∈ NC(poly) and g ∈ NC, then

their composition g ◦ f is in NC(poly), which follows from the most obvious way of com-

posing the families of circuits. Another useful fact is that many computations involving

matrices can be performed by NC algorithms (Please refer to the survey [108] which de-
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scribes NC algorithms for these tasks). Especially, we will make use of the fact that matrix

exponentials and singular value decompositions can be approximated to high precision in

NC.

Fact 3.5.1. Fundamental operations like addition, multiplication of matrices are in NC [108].

Fact 3.5.2. Matrix exponentials: there exist NC algorithms such that,

Input: An n× n matrix M, a positive rational number η, and an integer k ex-

pressed in unary notation (i.e., 1k).

Promise: ‖M‖ ≤ k.

Output: An n× n matrix X such that ‖exp(M)− X‖ < η.

Fact 3.5.3. Singular value decompositions: there exist NC algorithms such that,

Input: An m× n matrix M and a positive rational number η.

Output: An m×m unitary matrix U ,n× n unitary matrix V and an m× n real

diagonal matrix Λ such that

‖M−UΛV∗‖ < η.

Precision Issues. The analysis made in the main part has assumed that all computations

performed by the algorithm are exact. However, in order to implement our algorithm, some

steps of the computations, such as positive eigenspace projections and matrix exponentials,

must be approximate. An elaborated analysis on these issues can be found in [60, 62] for

specific problems. We will basically follow that type of analysis and provide a sketch of

the analysis to our problem.

First, it must be made clear which part of the algorithm can be made exact and which

part must be made approximate. We will use the same convention of storing complex

numbers as the one in [60]. Once the input x is given and stored in memory, all elementary
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matrix operations (in this case: addition, multiplication, and computation of traces or

partial traces) can be implemented exactly in NC [108]. However, matrix exponentials

and positive eigenspace projections cannot be exact since these operations will generate

irrational numbers and the precision must be truncated somewhere. Fortunately, Watrous

et al. [60] provided a way to approximate these two operations to high precision in NC.

Fact 3.5.4. Given an n×n matrix M (whose operator norm is bounded by k) and a positive

rational number η, the computation of n× n matrix X such that ‖exp(M)− X‖ < η can

be done in NC.

Fact 3.5.5. Given an n × n Hermitian matrix H and a positive rational number η, the

computation of an n× n positive semidefinite matrix ∆ ≤ 1 such that ‖∆−Λ‖ < η for

Λ being the projection operator onto the positive eigenspace of H can be done in NC.

Before we move on to the analysis of precision issues, it helps to introduce the follow-

ing convention. We will represent the actual matrices generated during the algorithm by

placing a tilde over the variables that represent idealized values. As we discussed above,

there are mainly two types of operations where the accuracy will be lost. Further investi-

gation tells us that matrix exponentials are always necessary to the multiplicative weight

update method while positive eigenspace projections are special for our application. For

generality of the analysis, we will first discuss the general form of Theorem 3.2.1 when

the computation is only approximate.

Consider the scheme in Fig 3.1 and keep the notation convention in mind. The ρ̃(t) will

be the actual generated density operator for round t and W(t+1) = exp(−ε ∑t
τ=1 M̃(t)).

The latter one is exact simply because W(t) is only a notation and not stored in the memory

at all. Fact 3.5.4 implies that ‖ ρ̃(t) −W(t)/ Tr W(t)‖ < δ1/N for every t where δ1 is

some constant for our purpose. The situation for M̃(t) is tricky in the sense that there is no
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idealized value for M(t) in general. By going through the proof of Theorem 3.2.1 again,

we can easily obtain the following fact.

Fact 3.5.6. If the computation can only be performed approximately, the inequality in

Theorem 3.2.1 becomes

(1− ε)
T

∑
t=1

〈
ρ̃(t), M̃(t)

〉
≤
〈

ρ∗,
T

∑
t=1

M̃(t)

〉
+

ln N
ε

+
1
2

Tδ1.

Thus, approximate scenario only incurs an affordable additive error. A similar analysis

also applies to approximate eigenspace projections, which we leave to readers as a simple

exercise.



CHAPTER 4

Quantum Interactive Proof Systems

This chapter is based on work [113, 114].

In this chapter, we provide alternative proofs of Jain et al.’s result of QIP=PSPACE [60].

The containment of PSPACE inside QIP follows automatically from the well-known rela-

tion IP=PSPACE. Thus, our contribution is to upper bound QIP by PSPACE.

In the following we provide two different proofs of QIP=PSPACE. The first one takes a

totally different approach from Jain et al.’s. It starts with a QIP-complete problem, known

as close images, and converts this problem into an equilibrium value problem in which

Corollary 3.2.2 readily applies. This conversion only requires fundamental manipulations

in quantum computation, and therefore leads to a much simplified proof of QIP=PSPACE.

The second one is another demonstration of our standard equilibrium value method to

solve semidefinite programs. We follow Jain et al.’s approach and try to solve the semidef-

inite programs corresponding to the complexity class QMAM. We depart from Jain et al.’s

approach by using our own equilibrium value method rather than Arora-Kale’s method to

solve that particular semidefinite program. We note that this approach does not simplify

the original proof much. However, it is meant to illustrate the generality of our equilibrium

value method.

Before we proceed to the main technical part, let us clarify some pre and post pro-

cessing procedures. First, it is clear that, given input x, one can easily calculate (through

44
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fundamental matrix operations) an explicit representation of quantum circuits or states by

definition. It is worth mentioning that representations of quantum circuits or states are

of exponential sizes in terms of |x|. This step shall correspond to the calculation of the

instance of close images problem and the instance of SDPs that correspond to QMAM.

Second, for the purpose of distinguishing between yes and no instances, it suffices to

approximate the corresponding problem to inverse polynomial precision in terms of |x|,

which is inverse poly-logarithm in terms of the size of representations of quantum states.

We thus claim that Corollary 3.2.2 is sufficient for our purpose in this step. As a routine in

our framework, one can finally compose all these circuits in NC(poly) in terms of |x| and

then invoke the relation NC(poly)=PSPACE [20] to show the PSPACE upper bound.

In the rest of this chapter, we demonstrate our first approach in Section 4.1, followed

by our second approach in Section 4.2. Finally, as a corollary of the whole chapter, we

have

QIP = PSPACE.

4.1 Close Images Approach

To prove the containment of a certain complexity class inside another, it suffices to prove

such containment of the complete problems of that complexity class. We thus start with

one QIP-complete problem and prove its containment inside PSPACE. The particular com-

plete problem we exploit is the close images problem defined below.

Definition 4.1.1 (Close Images, QIP-complete [74]). Given any two constants a, b ∈ [0, 1]

with b < a, and two mixed quantum circuits (Q0, Q1), we want to distinguish between

the following two promises.

• Yes: There exist quantum states ρ0 and ρ1 such that F(Q0(ρ0), Q1(ρ1)) ≥ a.

• No: For every choice of quantum states ρ0 and ρ1, F(Q0(ρ0), Q1(ρ1)) ≤ b.
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By standard manipulations in quantum computation, we can convert the above problem

into an equilibrium value problem as follows.

Theorem 4.1.2. There exists an explicit Hermiticity preserving super-operator Ξ (which

can be efficiently calculated from Q0, Q1) and a convex set P such that

λ(P, Ξ) = min
X≥0,Tr(X)=1

max
P∈P
〈Ξ(X), P〉 = max

P∈P
min

X≥0,Tr(X)=1
〈Ξ(X), P〉

satisfies λ(P, Ξ) ≤
√

1− a2 if x ∈ L and λ(P, Ξ) ≥ 1− b if x /∈ L.

Proof. This theorem follows from simple conversions between different distance measures

of quantum states. By Fuchs-van de Graaf inequality (Lemma 2.1.1), we have

• if x ∈ L, then ∃ρ0, ρ1 such that F(Q0(ρ0), Q1(ρ1)) ≥ a and thus ‖Q0(ρ0)−Q1(ρ1)‖Tr ≤

2
√

1− a2.

• if x /∈ L, then ∀ρ0, ρ1, we have F(Q0(ρ0), Q1(ρ1)) ≤ b and thus ‖Q0(ρ0)−Q1(ρ1)‖Tr ≥

2(1− b).

Given any ρ = (ρ0, ρ1) as the input state1, let Ξ(ρ) = Q0(ρ0) − Q1(ρ1). Also by

Eq. (2.1.1), we can rephrase the trace norm ‖Ξ(ρ)‖Tr as,

‖Ξ(ρ)‖Tr = 2 max
Π:0≤Π≤1

〈Ξ(ρ), Π〉 .

Thus, we can let P = {Π : 0 ≤ Π ≤ 1} and define λ(P, Ξ). It follows easily from

the above two observations that: if x ∈ L, then λ(P, Ξ) ≤
√

1− a2; and if x /∈ L, then

λ(P, Ξ) ≥ 1− b.

A direct consequence of Theorem 4.1.2 is that it suffices to approximate λ(P, Ξ) to

sufficient precision to distinguish between yes and no instances. For example, if we choose

a = 0.9, b = 0.1, then it suffices to distinguish between

λ(P, Ξ) ≤ 0.44 and λ(P, Ξ) ≥ 0.9.
1One can simply image ρ0 and ρ1 as reduced states of ρ on different parts.
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It is also from Theorem 4.1.2 (also similar to our QIP(2) example) that all the conditions of

Corollary 3.2.2 are met. In particular, the optimization problem (i.e., maxP∈P 〈Ξ(ρ∗), P〉)

required in Corollary 3.2.2 reduces to the projection onto that positive eignspace of Ξ(ρ∗).

Therefore by invoking Corollary 3.2.2, we prove the containment of the close images

problem inside PSPACE.

4.2 QMAM Approach

In this section, we demonstrate how Framework 3.1.1 can be applied to the SDPs of

QMAM. Since our goal is to illustrate the generality of our equilibrium value method,

we directly cite the SDPs of QMAM in [60] as follows:

SDP Problem

maximize: 〈R, ρ〉

subject to: TrY (ρ) ≤
1
2

1A ⊗ σ

ρ ∈ D (A⊗X ⊗Y)

σ ∈ D (X ) ,

Feasibility Problem

ask whether: 〈R, ρ〉 ≥ c

subject to: TrY (ρ) ≤
1
2

1A ⊗ σ

ρ ∈ D (A⊗X ⊗Y)

σ ∈ D (X ) ,

where R (0 ≤ R ≤ 1X ) is a POVM measurement and the space A is of dimension 2. Let

α be the optimum value of the above SDP. We need to distinguish between the following

two promises.

Definition 4.2.1. Any language L is inside QMAM if and only if

• If x ∈ L, α ≥ c(|x|).

• If x /∈ L, α ≤ s(|x|).

where c(|x|)− s(|x|) = Ω(1/poly(|x|)).

Following Framework 3.1.1, we define
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(4.2.1) f2({ρ, σ}, Π) =

〈 c− 〈R, ρ〉

TrY (ρ)− 1
21A ⊗ σ

 , Π

〉
,

where {ρ, σ} ∈ T1 = D (A⊗X ⊗Y) × D (X ) and Π ∈ T2 = {Π : 0 ≤ Π ≤

1A⊗X⊕C}. Let λ̌2 be the equilibrium value of function f2, namely,

λ̌2 = min
{ρ,σ}∈T1

max
Π∈T2

f2({ρ, σ}, Π) = max
Π∈T2

min
{ρ,σ}∈T1

f2({ρ, σ}, Π).

Based on Theorem 3.1.2, the value of λ̌2 determines whether the original problem is fea-

sible. We note that it suffices to choose c = 1
2(c(|x|) + s(|x|)) to distinguish between the

two promises.

Lemma 4.2.2. Given the two promises in Definition 4.2.1, let ∆ = c(|x|)− s(|x|), then

we have

• If x ∈ L, then λ̌2 ≤ 0.

• If x /∈ L, then λ̌2 ≥ 1
8 ∆2.

Proof. • If x ∈ L, then there exists a ρ ∈ D (A⊗X ⊗Y) , σ ∈ D (X ) such that

〈ρ, R〉 ≥ c and TrY (ρ) ≤ 1
21A ⊗ σ. This implies λ̌2 ≤ 0.

• Otherwise, let ({ρ̌, σ̌}, Π̌) be any equilibrium point. Due to Eq. (2.1.1), we have

(4.2.2) λ̌2 = f2({ρ̌, σ̌}, Π̌) = max{c− 〈R, ρ̌〉 , 0}+ 1
2
‖TrY (ρ̌)−

1
2

1A ⊗ σ‖Tr.

By Lemma 3.3.1, there exists a ρ̃ ∈ D (A⊗X ⊗Y) such that F(1
21A⊗σ, TrY (ρ̌)) =

F(ρ̃, ρ̌) and TrY (ρ̃) = 1
21A ⊗ σ. Let s = 1

2‖TrY (ρ̌) − 1
21A ⊗ σ‖Tr and t =

1
2‖ ρ̃− ρ̌‖Tr. Then if t ≤ 1

2 ∆, we have

λ̌2 ≥ c− 〈R, ρ̃〉+ 〈R, ρ̃− ρ̌〉+ s ≥ 1
2

∆− t + s

≥ 1
2

∆− t + 1−
√

1− t2 ≥ 1
2

∆− 1
2

∆ + 1−
√

1− 1
4

∆2 ≥ 1
8

∆2,
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where the first inequality is due to Eq. (4.2.2), the second inequality comes from

Eq. (2.1.1) and the third inequality comes from Lemma 3.3.4. The last inequality is

because t +
√

1− t2 is increasing when 0 < t < 1
2 and 1−

√
1− x2 ≥ 1

2 x2 for any

0 < x < 1. On the other side, if t ≥ 1
2 ∆, by Eq. (4.2.2),

λ̌2 ≥ s ≥ 1−
√

1− t2 ≥ 1
2

t2 ≥ 1
8

∆2.

Finally, we have λ̌2 ≥ 1
8 ∆2 in this case.

The above lemma establishes the fact approximating λ̌2 to appropriate precision (say,

O(∆2)) is sufficient to determine whether x ∈ L. We then invoke Corollary 3.2.2 again

to implement this approximation in PSPACE. There is one slight difference here as T1 is

defined to be over {ρ, σ} instead of a single density operator. We note that such a variance

can be easily handled by simultaneously running two matrix multiplicative weight update

methods.



CHAPTER 5

Quantum Refereed Games

This chapter is based on a joint work with Gus Gutoski [53].

In this chapter we demonstrate how our equilibrium value method extends to a much

more sophisticated situation to simulate short quantum refereed games. As we mentioned

in Chapter 3, two main difficulties in applying the equilibrium value method are first to

approximate equilibrium values and second to convert approximate solutions into exact so-

lutions through a rounding theorem. Here we encounter both difficulties at the same time.

We overcome both difficulties with the help of a penalization idea with well-designed

penalties and a recursive rounding theorem that makes non-trivial use of the Bures an-

gle. We package our findings as an abstract mathematical result, which also finds other

applications, for example, parallel algorithms for a class of semidefinite programs.

Applying our result to quantum refereed games, we determine the complexity of all

short-turn quantum refereed games. In particular, we define a new complexity model

called double quantum interactive proof systems, which can be simulated in PSPACE by

invoking our result, and thus has the equal expressive power as PSPACE. This complexity

model is so general that our result subsumes and unifies all previous results about short

refereed games. Our findings also imply a crucial difference between public and private

randomness in refereed games.

The rest of this chapter is organized as follows. We summarize our abstract math-
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ematical result in Section 5.1, together with its two main applications and a sketch of

techniques. A brief preliminary on quantum fidelity and the Bures angle is provided in

Section 5.2, followed by our rounding theorem in Section 5.3. We present our main al-

gorithm in Section 5.4 and then illustrate how to use this algorithm to simulate double

quantum interactive proof systems in Section 5.5. We conclude with some extensions of

the main results in Section 5.6

5.1 Introduction

This chapter presents a parallel approximation scheme for a new class of min-max prob-

lems with applications to classical and quantum zero-sum games and interactive proofs. In

order to describe this class of min-max problems let us begin by considering a semidefinite

program (SDP) of the form

minimize Tr(XkP)

subject to TrMn(Xi+1) = Φi(Xi) for i = 1, . . . , k− 1

Tr(X1) = 1

0 � X1, . . . , Xk ∈Mmn.

(5.1.1)

Here Md denotes the space of all d× d complex matrices and TrMn is the partial trace—

the unique linear map from matrices to matrices satisfying

TrMn : Mmn →Mm : A⊗ B 7→ Tr(B)A

for every choice of A ∈ Mm and B ∈ Mn. An SDP (5.1.1) is specified by arbitrary

choices of a positive semidefinite matrix P ≥ 0 with ‖P‖∞ ≤ 1 and completely positive

and trace-preserving supper-operators

Φ1, . . . , Φk−1 : Mmn →Mm.
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Let A denote the feasible region of the SDP (5.1.1) (which is always non-empty) and

let P ⊂ Mmn be a non-empty compact convex subset of positive semidefinite matrices

having spectral norm at most 1. We are concerned with the following min-max problem,

which is a generalization of the SDP (5.1.1):

(5.1.2) λ(A, P) def
= min

(X1,...,Xk)∈A
max
P∈P

Tr(XkP).

The ordering of minimization and maximization is immaterial, as implied by well-known

extensions of von Neumann’s Min-Max Theorem [107, 39] given the fact that A, P are

convex compact sets and Tr(XkP) is a bilinear form over the two sets.

Our main result is an efficient parallel oracle-algorithm for finding approximate solu-

tions to the min-max problem (5.1.2) and for approximating the quantity λ(A, P), given

an oracle for optimization over the set P. We also describe parallel implementations of

this oracle for certain sets P, yielding an unconditionally efficient parallel approximation

scheme for the min-max problem (5.1.2) for those choices of P. This result is stated

formally below as Theorem 5.1.3. Before stating this theorem let us clarify about our

terminology. We refer readers to Section 3.5 on backgrounds about parallel computation.

An oracle-algorithm is an algorithm endowed with the ability to get instantaneous an-

swers to questions that fall within the scope of some specific oracle. In our case, we

assume an oracle for optimization over P, which instantly solves problems of the form

Problem 5.1.1 (Optimization over P).

Input: A matrix X � 0 with Tr(X) = 1 and an accuracy parameter δ > 0.

Output: A near-optimal element P? ∈ P such that Tr(XP?) ≥ Tr(XP) − δ for all

P ∈ P.

An oracle is incorporated into the circuit model of computation by supplementing a

standard gate set (such as {AND, OR, NOT}) with a special oracle gate. This oracle
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gate has many input bits (describing the question) and many output bits (describing the

answer). As with standard gates, each oracle gate contributes unit cost to circuit size and

run time.

An approximation scheme refers to an algorithm that computes one or more quantities

to a given precision δ and whose run time is efficient for each fixed choice of δ > 0 but

does not necessarily scale well with δ. In the circuit model (and other models, too) this

property is encapsulated by defining the underlying problem so that the accuracy param-

eter δ = 1/s is specified in unary as 1s, thus forcing the bit length of the input to be

proportional to 1/δ instead of 1/ log(δ). The choice to specify the accuracy parameter in

unary allows parallel approximation schemes to be described neatly by log-space uniform

circuits with polylog depth.

The following is a formal statement of the problem solved by our algorithm.

Problem 5.1.2 (Approximation of λ(A, P)).

Input: Completely positive and trace-preserving linear maps Φ1, . . . , Φk−1 specify-

ing the feasible region A of an SDP of the form (5.1.1). An accuracy param-

eter δ > 0.

Oracle: Optimization over P (Problem 5.1.1).

Output: Near-optimal elements (X?
1 , . . . , X?

k ) ∈ A and P? ∈ P such that

Tr(X?
k P) ≤ λ(A, P) + δ for all P ∈ P

Tr(XkP?) ≥ λ(A, P)− δ for all (X1, . . . , Xk) ∈ A

and a quantity λ̃ with
∣∣λ̃− λ(A, P)

∣∣ ≤ δ.

Theorem 5.1.3 (Main result). There is a parallel oracle-algorithm for Problem 5.1.2 (Ap-

proximation of λ(A, P)) with run time bounded by a polynomial in k, 1/δ, and log(mn).

This algorithm is efficient if k, 1/δ are promised to scale as a polynomial in log(mn).
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5.1.1 Application: Parallel Approximation of Semidefinite Programs

The SDP (5.1.1) is recovered from (5.1.2) in the special case where P = {P} is a singleton

set. Thus, a special case of Theorem 5.1.3 is a parallel approximation scheme for SDPs of

the form (5.1.1).

We restricted attention to SDPs for which ‖P‖ , Tr(X1) ≤ 1 because this restriction

does not interfere with our application to quantum interactive protocols and because the

run time of our parallel algorithm scales polynomially with the largest eigenvalue of P and

with the trace of X1, so it is only efficient when these quantities are bounded by a fixed

polynomial in the logarithm of the bit length of the input P, Φ1, . . . , Φk−1. (In keeping

with convention, one can think of these quantities as the width of the SDPs we consider.

Our algorithm is efficient only for width-bounded SDPs.)

It has long since been known that the problem of approximating the optimal value of an

arbitrary SDP is logspace-hard for P [99, 89], so there cannot be a parallel approximation

scheme for all SDPs unless NC = P. The precise extent to which SDPs admit parallel

solutions is not known. This special case of our result adds considerably to the set of such

SDPs, subsuming all prior work in the area at the time it was made public. (Since that time

parallel approximation schemes have been found for some SDPs of unbounded width that

are not covered by our scheme [63, 93, 64].)

Some of what is known about SDPs in this respect is inherited knowledge from linear

programs (LPs). For example, Luby and Nisan describe a parallel approximation scheme

for so-called positive LPs of the form

minimize xp∗ subject to Cx ≥ q and x ≥ 0

where each entry of the matrix C and vectors p, q is a nonnegative real number [85]. Young

provides a generalization of Luby-Nisan to arbitrary mixed packing and covering problems
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[116]. By contrast, Trevisan and Xhafa show that it is P-hard to find exact solutions for

positive LPs [106].1

The notion of a positive instance of an LP can be generalized to SDPs as follows. An

SDP of the form

minimize Tr(XP) subject to Ψ(X) � Q and X � 0

is said to be positive if P, Q � 0 and Ψ is a positive map. Of course, P-hardness of exact

solutions for positive LPs implies P-hardness of exact solutions for positive SDPs. Jain

and Watrous give a parallel approximation scheme for width-bounded positive SDPs [62].

Subsequent improvements extend to all positive SDPs [63, 93], and even to mixed packing

and covering SDPs [64].

The Jain-Watrous algorithm for positive SDPs is derived from a correspondence be-

tween positive SDPs and one-turn quantum games and can therefore be recovered as a

special case of the work in this chapter. In their proof of QIP = PSPACE, Jain et al. give

a parallel algorithm for a specific SDP based on quantum interactive proofs [60]. It is not

difficult to see that their SDP can be written in the form (5.1.1) considered in this chapter.

As mentioned above, our algorithm is not efficient when used for SDPs of unbounded

width, leaving the recent works of Jain and Yao [63, 64] and Peng and Tangwongsan

[93] on mixed packing and covering SDPs as the only known parallel SDP approximation

schemes that are not subsumed by the present work. These recent works do not subsume

our results, as neither the SDP instance used in Ref. [60] to prove QIP = PSPACE nor its

generalization (5.1.1) in this chapter are mixed packing and covering SDPs.
1 For clarification, a polynomial-time algorithm finds an exact solution to an LP or SDP if it finds solutions that are within ε of

optimal in time polynomial in the bit length of ε—that is, log(1/ε). By contrast, an approximation scheme for LPs or SDPs finds
solutions that are within ε of optimal with run time that depends super-polynomially in the bit length of ε—typically 1/ε.
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5.1.2 Application: Refereed Games

We refer to Section 2.2.2 for the formal definition of the complexity class RG. Here we

consider an interesting subclass of RG obtained by placing restrictions upon the number

and timing of messages in the interaction between the verifier and provers. Precisely, we

introduce one such subclass based upon interactions of the following form:

1. The verifier exchanges several messages with only the yes-prover.

2. After processing this interaction with the yes-prover, the verifier exchanges several

additional messages with only the no-prover.

3. After further processing, the referee declares acceptance or rejection.

Interactive proofs of this form shall be called double interactive proofs: the verifier in such

a protocol executes a standard single-prover interactive proof with the yes-prover followed

by a second single-prover interactive proof with the no-prover. The class of problems that

admit double interactive proofs shall be called DIP.

By contrast to RG, it is not immediately clear that the definition of DIP is robust with

respect to the choice of parameters c, s. But it follows from our result that DIP is, in

fact, robust with respect to the choice of c, s. Also, whereas RG is trivially closed under

complement, the protocol for double interactive proofs is asymmetric and so it is not im-

mediately clear that DIP is closed under complement. Again, it follows from our result

that DIP is closed under complement.

Another example of an interesting subclass of RG is the family of bounded-turn classes.

For each positive integer k the class RG(k) consists of those problems that admit an in-

teractive proof with competing provers in which the verifier exchanges no more than k

messages with each prover. It is understood that messages are exchanged with the provers

in parallel so that RG(k), like RG, is trivially closed under complement.
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Quantum interactive proofs with competing provers are defined similarly except that the

verifier is a polynomial-time quantum computer who exchanges quantum information with

the provers. The analogous complexity classes are denoted QRG, DQIP, and QRG(k).

Prior Work. As noted in Refs. [41, 40], the results of Koller and Meggido [80] and

Koller, Megiddo, and von Stengel [81] imply that RG ⊆ EXP. The reverse containment

was proven by Feige and Kilian [40], yielding the characterization RG = EXP. It was

proven in Ref. [52] that QRG ⊆ EXP, from which one obtains

QRG = RG = EXP,

which is the competing-provers version of the well-known collapse QIP = IP = PSPACE

for single-prover interactive proofs [86, 100, 60].

For bounded-turn classes, the results of Fortnow et al. tell us that RG(1) is essentially

a randomized version of SP
2 [44]. Feige and Kilian proved RG(2) = PSPACE [40].2 For

bounded-turn quantum classes, [62] proved QRG(1) ⊆ PSPACE. The complexity of

QRG(2) is an open question of [60] that is solved in this chapter. The exact complexity

of RG(k) and QRG(k) for all other k is not known.

Bounded-turn double quantum interactive proofs have been studied previously under

the name short quantum games; the associated complexity class has been called SQG. In

an effort to unify notation let DQIP(k, l) denote the class consisting of problems that admit

a double quantum interactive proof with competing provers in which the verifier exchanges

no more than k messages with the yes-prover followed by no more than l messages with the

no-prover. The class SQG was first defined in Ref. [51] to be equal to DQIP(1, 2), wherein

it was shown that this class contains QIP = DQIP(poly, 0). The importance of short

quantum games has been diminished by the proof of QIP = PSPACE, as containment
2 The class we call RG(2) is called RG(1) by Feige and Kilian [40]. This conflict in notation stems from the fact that we measure

the length of an interaction in turns (i.e. messages per prover), whereas those authors measure an interaction in rounds of messages.
This switch of notation was instigated by Jain and Watrous, who required a convenient symbol for one-turn interactions [62].
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of QIP is no longer such a peculiar property. However, the containment of PSPACE

inside DQIP(1, 2) is still interesting, as it is not known whether PSPACE is contained in

DIP(1, 2), the classical version of this class.

Our contribution

As we explain in Section 5.5, the oracle-algorithm of Theorem 5.1.3—together with a par-

allel implementation of a suitably chosen oracle—implies that near-optimal strategies for

the provers in a double quantum interactive proof can be computed efficiently in parallel.

The following containment then follows from a standard argument (summarized in Section

5.5.4).

Theorem 5.1.4. DQIP ⊆ PSPACE.

This containment, when combined with the trivial containments IP ⊆ DIP ⊆ DQIP

and the well-known fact that PSPACE ⊆ IP [86, 100], yields the following characteriza-

tion.

Corollary 5.1.5. DQIP = DIP = PSPACE.

As a special case of Corollary 5.1.5 we obtain the solution to an open problem of [60]:

Corollary 5.1.6.

QRG(2) = PSPACE.

Another special case of our result is a direct polynomial-space simulation of multi-

message quantum interactive proofs, resulting in a first-principles proof of QIP = PSPACE.

Corollary 5.1.7.

QIP = PSPACE

via direct polynomial-space simulation of multi-message quantum interactive proofs.
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By contrast, all other known proofs [60, 113] rely upon the fact that the verifier can be

assumed to exchange only three messages with the prover [74]. The original proof of Jain

et al. [60] also relies on the additional fact that the verifier’s only message to the prover

can be just a single classical coin flip [88].

Of course, every other competing-provers complexity class whose protocol can be cast

as a double interactive proof also collapses to PSPACE, such as the aforementioned class

DQIP(1, 2) based on short quantum games.

It follows from the collapse of DQIP and DIP to PSPACE that these classes are closed

under complement and that they are robust with respect to the choice of parameters c, s.

(Indeed, it may be assumed that c = 1 and s ≤ 2−q for any desired polynomially-bounded

function q(|x|)—see Section 5.6.3.)

Prior to our work polynomial-space algorithms were known only for two-turn clas-

sical interactive proofs with competing provers (RG(2)), for one-turn quantum interac-

tive proofs with competing provers (QRG(1)), and for single-prover quantum interactive

proofs (QIP). Our result unifies and subsumes all of these algorithms. It also demonstrates

for the first time the existence of a polynomial-space algorithm for a competing-prover in-

teraction (classical or quantum) in which one prover reacts adaptively to the other.

Finally, our results illustrate a difference in the effect of public randomness between

single-prover interactive proofs and competing-prover interactive proofs. Any classical

interactive proof with single prover can be simulated by another public-coin interactive

proof where the verifier’s messages to the prover consist entirely of uniformly random

bits and the verifier uses no other randomness [48]. Extending the notion of public-coin

interaction to competing-prover interactions, it is easy to see that any such interaction with

a public-coin verifier can be simulated by a double interactive proof.3 We therefore have
3 Proof sketch: As the verifiers’s questions to each prover are uniformly random, they cannot depend on prior responses from the

other prover and can therefore be reordered so that all messages with one prover are exchanged before any messages with the other.
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that the public-coin version of RG is a subset of DIP, which we now know is equal to

PSPACE. Thus, by contrast to the single-prover case where public-coin-IP = IP, in the

competing-prover case we establish the following.

Corollary 5.1.8. public-coin-RG 6= RG unless PSPACE = EXP.

5.1.3 Summary of Techniques

Equilibrium Value Method

We mentioned earlier about the difficulties we will encounter in the use of the equilibrium

value method. The first one is that we cannot directly apply Corollary 3.2.2 to approximate

equilibrium values in Eq. (5.1.2). This is because, in its unaltered form, the MMW can

only be used to solve min-max problems over the domain of density operators—positive

semidefinite matrices X with Tr(X) = 1. We introduce a new extension to this method for

min-max problems over the domain A defined in the SDP (5.1.1)—a domain consisting of

k-tuples of density operators lying within a strict subspace of the affine space associated

with k-tuples of density operators. The high-level approach of our method is as follows:

1. Extend the domain from a single density matrix to a k-tuple of density matrices.

This step is straightforward: the MMW can be applied without complication to all k

density matrices at the same time. (Equivalently, k density matrices may be viewed

as a single, larger, block-diagonal density matrix.)

2. Restrict the domain to a strict subspace of k-tuples of density matrices.

This step is more difficult. It is accomplished by relaxing the problem so as to allow

all k-tuples, with an additional penalty term to remove incentive for the players to

use inconsistent transcripts.

3. Round strategies in the relaxed problem to strategies in the original protocol.

For this step one must prove a “rounding” theorem (Theorem 5.3.1), which estab-
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lishes that near-optimal, fully admissible strategies can be obtained from near-optimal

strategies in the unrestricted domain with penalty terms.

It is also crucial to design an appropriate rounding theorem. The first challenge is to

find good penalty terms such that these terms can be naturally incorporated into the min-

max forms and at the same time are powerful enough to round approximate solutions to

exact ones. The second challenge lies in the proof of such a rounding theorem. Since

we are dealing with polynomially many quantum messages at the same time, where each

message has dependence on the previous one, we need to invoke a recursive structure in

the proof. To avoid unaffordable losses during the recursion, we make non-trivial use of

the Bures angle.

Finding optimal strategies for the provers in a double quantum interactive proof

In Section 5.5 we observe that the verifier in a double quantum interactive proof induces

a min-max problem of the form (5.1.2) in which elements of A correspond to strategies

for the yes-prover and elements of P correspond to strategies for the no-prover. Thus, the

parallel oracle-algorithm of Theorem 5.1.3—together with a parallel implementation of

the oracle for optimization over P—can be used to find optimal strategies for the provers

in a double quantum interactive proof.

Our implementation of this oracle is itself a special case of the algorithm of Theorem

5.1.3, so that the overall algorithm employs the MMW method twice in a two-level recur-

sive fashion. At the top level the MMW is used to iteratively converge toward an optimal

strategy for the yes-prover; at the bottom level the MMW is used again to solve an SDP

for “best responses” for the no-prover to a given strategy for the yes-prover.

The central challenge in using the MMW to find optimal strategies for parties in a

quantum interaction is to find a representation for strategies that is amenable to the MMW
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method. In Kitaev’s transcript representation [72] the actions of a prover in a double

quantum interactive proof are represented by a list X1, . . . , Xk of density matrices that

satisfy a special consistency condition that is captured by the definition of the feasible

region A of the SDP (5.1.1). Intuitively, these density matrices correspond to “snapshots”

of the state of the verifier’s qubits at various times during the interaction. (See Figure 5.3

on page 77.)

The key property of double quantum interactive proofs that we exploit is the ability to

draw a “temporal line” in the interaction before which only the yes-prover acts and after

which only the no-prover acts. Given a transcript X1, . . . , Xk for the yes-prover, the actions

of the no-prover can then be represented by another transcript Y1, . . . , Y`. By optimizing

over all such transcripts one obtains an oracle for “best responses” for the no-prover to a

given strategy of the yes-prover as required by the MMW method.

Comparison of proofs of QIP = PSPACE

Unlike our proof, the original proof of QIP = PSPACE due to Jain et al. [60] does not

take advantage of the transcript representation for arbitrary multi-turn strategies. Instead,

as mentioned earlier, those authors derive a special SDP by invoking several nontrivial

facts about quantum interactive proofs. Admittedly, their SDP does bear a resemblance to

Kitaev’s transcript conditions, but this resemblance is only superficial and their solution

applies only to a very restricted subset of transcripts. Indeed, their derivation breaks down

without the assumption that the verifier sends only classical messages to the prover.

In Chapter 4, we presented two simplified proofs of QIP = PSPACE that, like the work

in this chapter, employs Kale’s algorithmic min-max theorem [67] instead of the primal-

dual approach for SDPs that was used in the original proof by Jain et al. [60]. Since those

proofs all employ non-trivial facts about quantum interactive proofs, they do not require

the penalization method introduced in this chapter nor an attendant rounding theorem.
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The Bures angle

Finally, it is noteworthy that the proof of our rounding theorem (Theorem 5.3.1) contains

an interesting and nontrivial application of the Bures angle, which is a distance measure

for quantum states that is defined in terms of the more familiar fidelity function.

Properties of the trace norm, which captures the physical distinguishability of quantum

states, are sufficient for most needs in quantum information. When some property of the

fidelity is also required one uses the Fuchs-van de Graaf inequalities to convert between

the trace norm and fidelity [45]. (See Eq. (2.1.2) in Section 2.1.)

However, every such conversion incurs a quadratic slackening of relevant accuracy

parameters. Our study calls for repeated conversions, which would incur an unacceptable

exponential slackening if done naively via Fuchs-van de Graaf. Instead, we make only a

single conversion between the trace norm and the Bures angle and then repeatedly exploit

the simultaneous properties of (i) the triangle inequality, (ii) contractivity under quantum

channels, and (iii) preservation of subsystem fidelity.

Although conversion inequalities between the trace norm and Bures metric are im-

plied by Fuchs-van de Graaf, to our knowledge explicit conversion inequalities have not

yet appeared in published literature. The required inequalities are derived in this chapter

(Proposition 5.2.2).

5.2 Fidelity and the Bures Angle

5.2.1 Preservation of Subsystem Fidelity

Consider the following property of the fidelity function, which we call the preservation of

subsystem fidelity: if ρ, ξ are states of a quantum system with fidelity F(ρ, ξ) and ρ′ is any

state of a larger system consistent with ρ then it is always possible to find ξ ′ consistent with

ξ such that F(ρ′, ξ ′) = F(ρ, ξ). We exploit this property in our proof of QIP(2)⊆PSPACE
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in Section 3.3.

Proposition 5.2.1 (Preservation of subsystem fidelity: Lemma 3.3.1 and Lemma 3.3.2).

Let ρ, ξ ∈ Mm and ρ′ ∈ Mmn be density matrices with TrMn(ρ
′) = ρ. There exists a

density matrix ξ ′ ∈ Mmn with TrMm(ξ
′) = ξ and F(ρ′, ξ ′) = F(ρ, ξ). Moreover ξ ′ can

be computed efficiently in parallel given ρ, ξ, ρ′.

5.2.2 The Bures Angle

The Bures angle or simply the angle A(ρ, ξ) between quantum states ρ, ξ is defined by

A(ρ, ξ)
def
= arccos F(ρ, ξ).

The angle is a metric on quantum states, meaning that it is nonnegative, equals zero only

when ρ = ξ, and obeys the triangle inequality [91]. Moreover, the angle is contractive, so

that

A(Φ(ρ), Φ(ξ)) ≤ A(ρ, ξ)

for any quantum channel Φ. The Fuchs-van de Graaf inequalities establish a relationship

between the fidelity and trace norm [45]. The inequalities are

(5.2.1) 1− F(ρ, ξ) ≤ 1
2
‖ρ− ξ‖Tr ≤

√
1− F(ρ, ξ)2.

These inequalities can be used to derive a relationship between A(ρ, ξ) and ‖ρ− ξ‖Tr.

For example,

Proposition 5.2.2 (Relationship between trace norm and Bures angle). For all density

matrices ρ, ξ it holds that

1
2
‖ρ− ξ‖Tr ≤ A(ρ, ξ) ≤

√
π

2
‖ρ− ξ‖Tr.

Proof. The lower bound on A(ρ, ξ) follows immediately from Fuchs-van de Graaf:

1
2
‖ρ− ξ‖Tr ≤

√
1− cos A(ρ, ξ)2 = sin A(ρ, ξ) ≤ A(ρ, ξ),
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where we used the identity sin x ≤ x for all x ≥ 0.

To obtain the upper bound on A(ρ, ξ) we employ the identity cos x ≤ 1− x2/π for

x ∈ [0, π/2], which can be verified using basic calculus. Then we have

1
2
‖ρ− ξ‖Tr ≥ 1− cos A(ρ, ξ) ≥ A(ρ, ξ)2

π

from which the proposition follows.

5.3 Rounding Theorem for a Relaxed Min-Max Problem

In this section we define a new min-max expression µε(A, P) that approximates the desired

quantity λ(A, P) from (5.1.2) in the limit as ε approaches zero. This new expression is a

relaxation of λ(A, P) that is more amenable to the MMW. We prove a “rounding theorem”

(Theorem 5.3.1) by which near-optimal points for λ(A, P) are efficiently obtained from

near-optimal points for µε(A, P). Our use of the Bures angle occurs in the proof of Lemma

5.3.4, which is used in the proof of our rounding theorem.

Define the relaxation µε(A, P) of λ(A, P) by

µε(A, P) def
= min

(ρ1,...,ρk)
max
P∈P

(Π1,...,Πk−1)

〈ρk, P〉+ k
ε

k−1

∑
i=1
〈TrMn(ρi+1)−Φi(ρi), Πi〉

= min
(ρ1,...,ρk)

max
P∈P
〈ρk, P〉+ k

ε

k−1

∑
i=1

1
2
‖TrMn(ρi+1)−Φi(ρi)‖Tr .

Here the minimum is taken over all density operators ρ1, . . . , ρk ∈Mmn and the maximum

over all P ∈ P and over all measurement operators Π1, . . . , Πk−1 ∈ Mm. The second

equality follows immediately from Eq. (2.1.1) in Section 2.1.

Notice that the minimum in the definition of µε(A, P) is taken over all k-tuples (ρ1, . . . ,

ρk) of density operators, not just those in A. Each term in the summation serves to penalize

any violation of the conditions required for membership in A by adding the magnitude of

that violation to the objective function. The k/ε factor amplifies the penalty so as to
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remove incentive to select an element outside of A. Indeed, it is clear that

lim
ε→0

µε(A, P) = λ(A, P).

The following “rounding” theorem establishes a specific rate of convergence for this limit.

A subsequent extension of this theorem (Proposition 5.3.3) provides a means by which

near-optimal points for λ(A, P) are efficiently computed from near-optimal points for

µε(A, P).

Theorem 5.3.1 (Rounding theorem). For any ε > 0 it holds that

λ(A, P) ≥ µε(A, P) > λ(A, P)− ε.

Proof. The first inequality is easy: let (ρ1, . . . , ρk) be optimal for λ(A, P) and let (P, Π1,

. . . , Πk−1) be optimal for µε(A, P). Then we have

λ(A, P) ≥ 〈ρk, P〉 = 〈ρk, P〉+ k
ε

k−1

∑
i=1
〈TrMn(ρi+1)−Φi(ρi), Πi〉 ≥ µε(A, P).

(The first inequality is because (ρ1, . . . , ρk) is optimal for λ(A, P). The equality follows

because (ρ1, . . . , ρk) ∈ A, so each term in the sum is zero. The final inequality is because

(P, Π1, . . . , Πk−1) is optimal for µε(A, P).)

The second inequality is more difficult. We invoke the following lemma, the proof of

which appears later in this section.

Lemma 5.3.2 (Rounding lemma). For any ε > 0 and any states ρ1, . . . , ρk ∈Mmn there

exists (ρ′1, . . . , ρ′k) ∈ A such that

1
2

∥∥ρk − ρ′k
∥∥

Tr < ε +
k
ε

k−1

∑
i=1

1
2
‖TrMn(ρi+1)−Φi(ρi)‖Tr .

Moreover, ρ′1, . . . , ρ′k can be computed efficiently in parallel given ρ1, . . . , ρk.
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Let (ρ1, . . . , ρk) be optimal for µε(A, P), let (ρ′1, . . . , ρ′k) be the density operators

obtained by invoking Lemma 5.3.2, and let P ∈ P be optimal for λ(A, P). Because

(ρ1, . . . , ρk) is optimal for µε(A, P) we have

µε(A, P) ≥ 〈ρk, P〉+ k
ε

k−1

∑
i=1

1
2
‖TrMn(ρi+1)−Φi(ρi)‖Tr .(5.3.1)

Employing the identity (2.1.1), the quantity 〈ρk, P〉 becomes

〈ρk, P〉 =
〈
ρ′k, P

〉
+
〈
ρk − ρ′k, P

〉
≥
〈
ρ′k, P

〉
− 1

2

∥∥ρk − ρ′k
∥∥

Tr .

Substituting the bound on 1
2

∥∥ρk − ρ′k
∥∥

Tr from Lemma 5.3.2, we see that the summation

of trace norms in (5.3.1) is canceled, leaving

µε(A, P) >
〈
ρ′k, P

〉
− ε ≥ λ(A, P)− ε

as desired. (The final inequality is because P is optimal for λ(A, P).)

Proposition 5.3.3 (Construction of near-optimal strategies). The following hold for any

δ, ε > 0:

1. If (ρ1, . . . , ρk) is δ-optimal for µε(A, P) then there is an efficient parallel algorithm

to compute (ρ′1, . . . , ρ′k) ∈ A that is (δ + ε)-optimal for λ(A, P).

2. If (P, Π1, . . . , Πk−1) is δ-optimal for µε(A, P) then P is also (δ + ε)-optimal for

λ(A, P).

Proof of item 1. Let (ρ1, . . . , ρk) be δ-optimal for µε(A, P), let (ρ′1, . . . , ρ′k) ∈ A be ob-

tained by invoking Lemma 5.3.2, and let P ∈ P. We have

〈
ρ′k, P

〉
≤ 〈ρk, P〉+ 1

2

∥∥ρk − ρ′k
∥∥

Tr

≤ 〈ρk, P〉+ ε +
k
ε

k−1

∑
i=1

1
2
‖TrMn(ρi+1)−Φi(ρi)‖Tr

≤ µε(A, P) + ε + δ ≤ λ(A, P) + ε + δ.
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(The first inequality follows from (2.1.1); the second from Lemma 5.3.2; the third because

(ρ1, . . . , ρk) is δ-optimal for µε(A, P); and the fourth because µε(A, P) ≤ λ(A, P).) It

therefore follows that (ρ′1, . . . , ρ′k) is (δ + ε)-optimal for λ(A, P).

Proof of item 2. Let (P, Π1, . . . , Πk−1) be δ-optimal for µε(A, P). For any (ρ1, . . . , ρk) ∈

A we have

〈ρk, P〉 = 〈ρk, P〉+ k
ε

k−1

∑
i=1
〈TrMn(ρi+1)−Φi(ρi), Πi〉

≥ µε(A, P)− δ > λ(A, P)− ε− δ.

(The equality is because (ρ1, . . . , ρk) ∈ A so each term in the sum is zero. The first

inequality is because (P, Π1, . . . , Πk−1) is δ-optimal for µε(A, P). The final inequality

is because µε(A, P) > λ(A, P) − ε.) It therefore follows that P is (δ + ε)-optimal for

λ(A, P).

We now prove Lemma 5.3.2, the statement of which appeared in the proof of Theorem

5.3.1. Given any states ρ1, . . . , ρk this lemma asserts that these states can be “rounded” to

an element (ρ′1, . . . , ρ′k) ∈ A in such a way that the distance between the final states ρk

and ρ′k is bounded by a function of the extent to which (ρ1, . . . , ρk) violate the conditions

required for membership in A. Let us re-state Lemma 5.3.2 in terms of the Bures angle.

Lemma 5.3.4 (Rounding lemma). For any ε > 0 and any states ρ1, . . . , ρk ∈Mmn there

exists (ρ′1, . . . , ρ′k) ∈ A such that

A(ρk, ρ′k) ≤
k−1

∑
i=1

A (TrMn(ρi+1), Φi(ρi)) .

Moreover, ρ′1, . . . , ρ′k can be computed efficiently in parallel given ρ1, . . . , ρk.

Proof. Define ρ′1, . . . , ρ′k recursively as follows. Let ρ′1 = ρ1. For each i = 1, . . . , k− 1

by the preservation of subsystem fidelity (Proposition 5.2.1) there exists ρ′i+1 (which can
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be computed efficiently in parallel) with

TrMn(ρ
′
i+1) = Φi(ρ

′
i)

and

A(ρi+1, ρ′i+1) = A
(
TrMn(ρi+1), Φi(ρ

′
i)
)

.

By the triangle inequality this quantity is at most

A (TrMn(ρi+1), Φi(ρi)) + A
(
Φi(ρi), Φi(ρ

′
i)
)

.

By contractivity of the Bures angle under channels, the summand on the right is at most

A(ρi, ρ′i). The lemma now follows inductively from the fact that A(ρ1, ρ′1) = 0.

It is easy to recover Lemma 5.3.2 from Lemma 5.3.4: it follows immediately from

Lemma 5.3.4 and Proposition 5.2.2 (Relationship between trace norm and Bures angle)

that
1
2

∥∥ρk − ρ′k
∥∥

Tr ≤
k−1

∑
i=1

√
π

2
‖TrMn(ρi+1)−Φi(ρi)‖Tr.

Lemma 5.3.2 then follows from the fact that
√

π
2 x < 1

2δ x + δ for all x ≥ 0 and all δ > 0.

5.4 A Parallel Oracle-algorithm for a Min-Max Problem

In this section we prove Theorem 5.1.3 (Main result) by exhibiting an efficient parallel

oracle-algorithm based on our equilibrium value method for finding approximate solutions

to the min-max problem (5.1.2). We formally introduce the matrix multiplicative weight

update method in Chapter 3. For technical convenience, we introduce the following variant

that can be readily used in later proof.

Theorem 5.4.1 (Multiplicative weights update method [67, Theorem 10]). Fix γ ∈ (0, 1/2)

and α > 0. Let M(1), . . . , M(T) be arbitrary d× d “loss” matrices with 0 � M(t) � αI.
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Let W(1), . . . , W(T) be d× d “weight” matrices given by

W(1) = I W(t+1) = exp
(
−γ

(
M(1) + · · ·+ M(t)

))
.

Let ρ(1), . . . , ρ(T) be density operators obtained by normalizing each W(1), . . . , W(T) so

that ρ(t) = W(t)/ Tr(W(t)). For all density operators ρ it holds that

1
T

T

∑
t=1

〈
ρ(t), M(t)

〉
≤
〈

ρ,
1
T

T

∑
t=1

M(t)

〉
+ α

(
γ +

ln d
γT

)
.

Let us establish some notation before stating our algorithm. Let ε > 0 and consider the

linear mapping fA,ε with the property that

〈 fA,ε(ρ1, . . . , ρk), (P, Π1, . . . , Πk−1)〉 = 〈ρk, P〉+ k
ε

k−1

∑
i=1
〈TrMn(ρi+1)−Φi(ρi), Πi〉

so that we may write

µε(A, P) = min
(ρ1,...,ρk)

max
P∈P

(Π1,...,Πk−1)

〈 fA,ε(ρ1, . . . , ρk), (P, Π1, . . . , Πk−1)〉 .

It is clear that the mapping fA,ε is given by

fA,ε : (ρ1, . . . , ρk) 7→
(

ρk,
k
ε
[TrMn(ρ2)−Φ1(ρ1)] , . . . ,

k
ε
[TrMn(ρk)−Φk−1(ρk−1)]

)
.

It is tedious but straightforward to verify that the adjoint mapping f ∗A,ε is given by

f ∗A,ε =
(

f ∗A,ε,1, . . . , f ∗A,ε,k
)

where

f ∗A,ε,1 : (P, Π1, . . . , Πk−1) 7→ −
k
ε

Φ∗1(Π1)

f ∗A,ε,i : (P, Π1, . . . , Πk−1) 7→
k
ε
[Πi−1 ⊗ I −Φ∗i (Πi)] for i = 2, . . . , k− 1

f ∗A,ε,k : (P, Π1, . . . , Πk−1) 7→ P +
k
ε

Πk−1 ⊗ I
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Note that for any (P, Π1, . . . , Πk−1) it holds that

−k
ε

I � f ∗A,ε,1(P, Π1, . . . , Πk−1) � 0

−k
ε

I � f ∗A,ε,i(P, Π1, . . . , Πk−1) �
k
ε

I for i = 2, . . . , k− 1

0 � f ∗A,ε,k(P, Π1, . . . , Πk−1) �
(

1 +
k
ε

)
I � 2k

ε
I

(5.4.1)

The statement of our MMW algorithm in Figure 5.1 employs these formulae for the

adjoint. We are now ready to prove Theorem 5.1.3.

Proof of Theorem 5.1.3. We argue that the theorem is established by the oracle-algorithm

presented in Figure 5.1. To this end, note that each loss matrix M(t)
i ∈ Mmn satisfies

0 � M(t)
i � 1

k I—a fact that follows immediately from their definition in step 2d and the

bounds (5.4.1) on the adjoint mapping f ∗A,ε.

For each i = 1, . . . , k it is clear that the construction of the density operators ρ
(t)
i in

terms of the loss matrices M(t)
i presented in Figure 5.1 are as defined in Theorem 5.4.1. It

therefore follows that for any density operator ρ?i ∈Mmn we have

1
T

T

∑
t=1

〈
ρ
(t)
i , M(t)

i

〉
≤
〈

ρ?i ,
1
T

T

∑
t=1

M(t)
i

〉
+

1
k

(
γ +

ln(mn)
γT

)
.

Summing these inequalities over all i we find that for any density operators (ρ?1 , . . . , ρ?k) it

holds that

1
T

T

∑
t=1

〈(
ρ
(t)
1 , . . . , ρ

(t)
k

)
,
(

M(t)
1 , . . . , M(t)

k

)〉
≤
〈
(ρ?1 , . . . , ρ?k),

1
T

T

∑
t=1

(
M(t)

1 , . . . , M(t)
k

)〉
+

(
γ +

ln(mn)
γT

)
.

Substituting the definition of the loss matrices M(t)
i from step 2d and simplifying, we
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1. Let ε = δ/3, let γ = εδ
12k2 , and let T =

⌈
ln(mn)

γ2

⌉
. Let

W(1)
i = I ∈Mmn

for each i = 1, . . . , k.

2. Repeat for each t = 1, . . . , T:

(a) For i = 1, . . . , k: Compute the updated density operators ρ
(t)
i = W(t)

i / Tr(W(t)
i ).

(b) For i = 1, . . . , k− 1: Compute the projection Π(t)
i ∈Mm onto the positive eigenspace of

TrMn(ρ
(t)
i+1)−Φi(ρ

(t)
i ).

(c) Use the oracle to obtain a δ/3-optimal solution P(t) ∈ Mmn to the optimization problem for P
(Problem 5.1.1) on input ρ

(t)
k .

(d) Compute the loss matrices(
M(t)

1 , . . . , M(t)
k

)
=

ε

2k2

[
f ∗R,ε

(
P(t), Π(t)

1 , . . . , Π(t)
k−1

)
+

k
ε
(I, . . . , I, 0) .

]
(e) Update each weight matrix according to the standard MMW update rule:

W(t+1)
i = exp

(
−γ

(
M(1)

i + · · ·+ M(t)
i

))
.

3. Return

λ̃ =
1
T

T

∑
t=1

〈
fR,ε

(
ρ
(t)
1 , . . . , ρ

(t)
a

)
,
(

P(t), Π(t)
1 , . . . , Π(t)

k−1

)〉
as the δ-approximation to λ(A, P).

4. Compute

(ρ1, . . . , ρk) =
1
T

T

∑
t=1

(ρ
(t)
1 , . . . , ρ

(t)
k )

(P, Π1, . . . , Πk−1) =
1
T

T

∑
t=1

(P(t), Π(t)
1 , . . . , Π(t)

k−1),

the pair of which are 2
3 δ-optimal for µε(A, P). Compute (ρ′1, . . . , ρ′k) from (ρ1, . . . , ρk) as described

in item 1 of Proposition 5.3.3. Return (ρ′1, . . . , ρ′k) and P as the δ-optimal point for λ(A, P).

Figure 5.1:
An parallel oracle-algorithm for finding approximate solutions to λ(A, P) (Problem 5.1.2) used
in the proof of Theorem 5.1.3.
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obtain

λ̃ =
1
T

T

∑
t=1

〈(
ρ
(t)
1 , . . . , ρ

(t)
k

)
, f ∗R,ε

(
P(t), Π(t)

1 , . . . , Π(t)
k−1

)〉
≤
〈
(ρ?1 , . . . , ρ?k),

1
T

T

∑
t=1

f ∗R,ε

(
P(t), Π(t)

1 , . . . , Π(t)
k−1

)〉
+

2k2

ε

(
γ +

ln(mn)
γT

)
︸ ︷︷ ︸

error term

.

(5.4.2)

Substituting the choice of γ, T from step 1 we see that the error term on the right side is at

most δ/3. Since this inequality holds for any choice of (ρ?1 , . . . , ρ?k) it certainly holds for

the optimal choice, from which it follows that the right side is at most µε(A, P) + δ/3.

By construction each (P(t), Π(t)
1 , . . . , Π(t)

k−1) is a δ/3-best response to (ρ
(t)
1 , . . . , ρ

(t)
k ) so it

must be that the left side of this inequality is at least µε(A, P)− δ/3. It then follows from

Theorem 5.3.1 (Rounding theorem) and the choice ε = δ/3 that
∣∣λ̃− λ(A, P))

∣∣ < 2
3 δ as

desired.

Next we argue that the point (ρ′1, . . . , ρ′k) returned in step 4 is δ-optimal for λ(A, P).

By item 1 of Proposition 5.3.3 it suffices to argue that (ρ1, . . . , ρk) is 2
3 δ-optimal for

µε(A, P). To this end, choose any (P?, Π?
1 , . . . , Π?

a). Since each (P(t), Π(t)
1 , . . . , Π(t)

k−1)

is a δ/3-best response to (ρ
(t)
1 , . . . , ρ

(t)
k ) it holds that the inner product

〈(
ρ
(t)
1 , . . . , ρ

(t)
k

)
, f ∗R,ε

(
P(t), Π(t)

1 , . . . , Π(t)
k−1

)〉
can increase by no more than δ/3 when (P?, Π?

1 , . . . , Π?
k−1) is substituted for (P(t), Π(t)

1 ,

. . . , Π(t)
k−1). It then follows from (5.4.2) that〈

1
T

T

∑
t=1

(
ρ
(t)
1 , . . . , ρ

(t)
k

)
, f ∗R,ε

(
P?, Π?

1 , . . . , Π?
k−1
)〉
≤ λ̃ + δ/3 ≤ µε(A, P) + 2

3 δ

and hence (ρ1, . . . , ρk) is 2
3 δ-optimal for µε(A, P) as desired.

Next we argue that the operator P returned in step 4 is δ-optimal for λ(A, P). By item 2

of Proposition 5.3.3 it suffices to argue that (P, Π1, . . . , Πk−1) is 2
3 δ-optimal for µε(A, P).
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To this end, choose any (ρ?1 , . . . , ρ?k). It follows from (5.4.2) that

〈
(ρ?1 , . . . , ρ?k), f ∗R,ε (P, Π1, . . . , Πk−1)

〉
≥ λ̃− δ/3 ≥ µε(A, P)− 2

3 δ

and hence (P, Π1, . . . , Πk−1) is 2
3 δ-optimal for µε(A, P) as desired.

The efficiency of this algorithm is not difficult to argue. Each individual step consists

only of matrix operations that are known to admit an efficient parallel implementation.

Efficiency then follows from the observation that the number T of iterations is polynomial

in k, 1/δ, and log(mn).

5.5 Double Quantum Interactive Proofs

In this section we prove DQIP ⊆ PSPACE by means of Theorem 5.1.3. Specifically,

in Section 5.5.2 we argue that the verifier in a double quantum interactive proof induces

a min-max problem of the form (5.1.2) in which elements of A correspond to strategies

for the yes-prover, elements of P correspond to strategies for the no-prover, and the value

λ(A, P) corresponds to the probability with which the verifier rejects when both provers

act optimally.

Thus, the parallel oracle-algorithm of Theorem 5.1.3—together with a parallel imple-

mentation of the oracle for optimization over P—can be used to compute this probability

to sufficient accuracy so as to determine which prover has the winning strategy. In Sec-

tion 5.5.3 we provide a parallel implementation of the oracle required by Theorem 5.1.3.

Finally, in Section 5.5.4 we recite the argument by which the existence of a parallel al-

gorithm for approximating λ(A, P) leads to the containment of DQIP inside PSPACE.

First, we briefly introduce new notation in Section 5.5.1.
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5.5.1 Notation

Until now we have used the symbol Mn to denote the space of complex n× n matrices.

This notation is ideal when only one or two distinct quantum systems are under considera-

tion. However, discussion henceforth deals with many different systems (called registers)

and so we adopt the convention that distinct finite-dimensional complex vector spaces

of the form Cd shall be denoted with calligraphic letters (X ,Y , . . . ). We also adopt the

following notation:

XY Shorthand for the Kronecker product X ⊗ Y . If X = Cd and

Y = Cd′ then XY = Cdd′ .

MX The complex space of all linear operators (matrices) acting on

X .

IX ∈MX The identity operator acting on X .

TrX : MXY →MY The partial trace over X .

5.5.2 Characterization of Strategies for the Yes-prover

The verifier in a double quantum interactive proof can be assumed to act upon two quantum

registers: an m-qubit register M that is shared with the provers for the purpose of exchang-

ing messages and a v-qubit register V that serves as a private memory for the verifier.

Associated with the registers M,V are complex Euclidean spaces M = C2m
,V = C2v

,

respectively. A verifier who exchanges a rounds of messages with the yes-prover fol-

lowed by b rounds of messages with the no-prover is completely specified by a tuple

V = (|ψ〉 , V1, . . . , Va+b−1, Π) where

1. |ψ〉 ∈ MV is a pure state.

2. V1, . . . , Va+b−1 ∈MMV are unitary operators.

3. Π ∈MMV is a projective measurement operator.
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ρ P

accept
or

reject
|ψ〉 V1 V2 V3 V4 V5 Π

A1 A2 A3 B1 B2 B3

C C C C C CC C C C C C

V V V V V V

W W Z Z

Figure 5.2:
An illustration of a double quantum interactive proof in which the verifier V =
(|ψ〉 , V1, . . . , V5, Π) exchanges a = 3 rounds of messages with the yes-prover followed by
b = 3 rounds of messages with the no-prover before performing the measurement {Π, I −Π}
that dictates acceptance or rejection. Any choice of (A1, A2, A3) and (B1, B2, B3) induces a
state ρ and a measurement operator P as indicated. The probability of rejection is given by
〈ρ, P〉 = Tr(ρP).

The yes-prover acts upon the shared communication register M and a private memory reg-

ister W with associated spaceW . The actions of the yes-prover are specified by unitaries

A1, . . . , Aa ∈MMW . Similarly, the no-prover acts upon the shared communication reg-

ister M and a private memory register Z with associated space Z . The actions of the

no-prover are specified by unitaries B1, . . . , Bb ∈ MMZ . The interaction proceeds as

suggested by Figure 5.2 with measurement outcome Π indicating rejection.

Basic quantum formalism tells us that if the yes- and no-provers act according to ~A =

(A1, . . . , Aa) and ~B = (B1, . . . , Bb), respectively, then the probability of rejection is given

by

Pr
[
reject | ~A,~B

]
= ‖ΠBbVa+b−1Bb−1 · · · B1Va AaVa−1Aa−1 · · · A2V1A1 |ψ〉‖2 .

(5.5.1)

(For clarity we have suppressed numerous tensors with identity and the initial states |0〉 of

the provers’ private memory registers.)

For any ~A let ρ be the reduced state of the verifier’s registers (M,V) immediately after

Aa is applied so that the actions of the yes-prover are completely represented by the state ρ.
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ρ3ρ2ρ1ρ0

|ψ〉 V1 V2 Π

A1 A2 A3

C C CC C C

V V V

W W

Figure 5.3:
The states ρ1, ρ2, ρ3 are a transcript of the referee’s conversation with the yes-prover. It follows
easily from the unitary equivalence of purifications that a triple (ρ1, ρ2, ρ3) is a valid transcript if
and only if it obeys the recursive relation TrMi (ρi) = TrAi (Vi−1ρi−1V∗i−1) for i = 1, 2, 3 where
V0 = I.

Similarly, for any ~B let P be the measurement operator on (M,V) obtained by bundling the

verifier–no-prover interaction into a single measurement operator as suggested by Figure

5.2. The expression (5.5.1) for the probability of rejection can be rewritten in terms of ρ, P

as

Pr[reject | ~A,~B] = 〈ρ, P〉.

By definition, the no-prover wishes to maximize this quantity while the yes-prover wishes

to minimize it. Let λ(V) denote the verifier’s probability of rejection when both provers

act optimally. For a verifier with completeness c and soundness s, or goal is to determine

whether λ(V) is closer to 1− c or to 1− s.

Let Y(V) ⊂MMV denote the set of states of (M,V) obtainable by the yes-prover and

let P(V) ⊂ MMV denote the set of measurement operators on (M,V) obtainable by the

no-prover. Then the desired quantity λ(V) is given by the min-max problem

(5.5.2) λ(V) = min
ρ∈Y(V)

max
P∈P(V)

〈ρ, P〉.

What can be said of the sets Y(V), P(V)? Let us begin by considering the set Y(V).

As suggested by Figure 5.3, each element of Y(V) can be viewed as the final entry ρa

in a transcript (ρ1, . . . , ρa) of the verifier’s conversation with the yes-prover. Moreover,

it is straightforward to use the unitary equivalence of purifications to characterize those
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a-tuples of density matrices which constitute valid transcripts. This characterization was

first noted by Kitaev [72].

Proposition 5.5.1 (Kitaev’s consistency conditions [72]). Let V = (|ψ〉 , V1, . . . , Va+b−1, Π)

be a verifier and let Y(V) be the set of admissible states for the yes-prover. A given state ρ

is an element of Y(V) if and only if there exist density matrices ρ1, . . . , ρa ∈ MMV with

ρa = ρ and

TrM(ρi) = TrM(Vi−1ρi−1V∗i−1) for i = 1, . . . , a

where we have written V0 = I and ρ0 = |ψ〉 〈ψ| for convenience.

With these observations in mind we consider completely positive and trace-preserving

linear maps

Φ0, . . . , Φa−1 : MMV →MV

defined by

Φ0 : X 7→ Tr(X)TrM(|ψ〉 〈ψ|)

Φi : X 7→ TrM(ViXV∗i ) for i = 1, . . . , a− 1.

These maps specify the feasible region A(V) of an SDP of the form (5.1.1) from Section

5.1. Moreover, it follows from Kitaev’s consistency conditions (Proposition 5.5.1) that

(ρ0, . . . , ρa) ∈ A(V) if and only if ρa ∈ Y(V). Thus, the min-max problem (5.5.2) for

λ(V) can equivalently be written

λ(V) = min
(ρ0,...,ρa)∈A(V)

max
P∈P(V)

〈ρa, P〉 .(5.5.3)

We have not yet shown that the set P(V) of measurement operators for the no-prover is

compact and convex. But if we assume for the moment that it is then we may already

apply Theorem 5.1.3 so as to obtain a parallel oracle-algorithm for approximating λ(V)

on input Φ0, . . . , Φa−1 given an oracle for optimization over P(V).
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5.5.3 Implementation of the Oracle for Best Responses of the No-prover

In order to complete the description of our parallel algorithm for double quantum interac-

tive proofs it remains only to describe the implementation of the oracle for optimization

for P(V) (Problem 5.1.1). In this section we establish the following.

Proposition 5.5.2. Let V = (|ψ〉 , V1, . . . , Va+b−1, Π) be a verifier and let P(V) be the

set of admissible measurement operators for the no-prover. There is a parallel algorithm

for optimization over P(V) (Problem 5.1.1) with run time bounded by a polynomial in b,

1/δ, and log(dim(MV)).

It follows that the algorithm of Figure 5.1 yields an unconditionally efficient parallel

algorithm for approximating λ(V) given an explicit matrix representation of the verifier

V.

As mentioned earlier, this instance of optimization over P(V) (Problem 5.1.1) will be

rephrased as an SDP of the form (5.1.1) (plus some post-processing) so that the algorithm

of Section 5.4 can be reused in the implementation of our oracle.

To this end choose any state ρ ∈ MMV and suppose that a (possibly cheating) yes-

prover was somehow able to make it so that the registers (M,V) after the interaction with

the yes-prover are in state ρ. Let W be a register large enough to admit a purification

of ρ and let |ϕ〉 ∈ WMV be any such purification. If the no-prover acts according to

(B1, . . . , Bb) then the probability of rejection (as per Eq. (5.5.1)) is

Pr[reject | ρ, (B1, . . . , Bb)] = ‖ΠBbVa+b−1Bb−1 · · · B1Va |ϕ〉‖2 .

Notice that this quantity also represents the probability of rejection in a different, single-

prover interactive proof with a verifier V′ whose initial state is Va |ϕ〉. (Formally, the

verifier V′ exchanges b rounds of messages with one of the provers and zero messages

with the other.) The unitaries B1, . . . , Bb could specify actions for either the yes-prover
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or the no-prover—a choice that depends only upon how we label the components of the

verifier V′.

Since our goal is to reduce optimization over P(V) (which is a maximization problem)

to an SDP of the form (5.1.1) (which is a minimization problem), it befits us to view

B1, . . . , Bb as actions for the yes-prover in the interactive proof with verifier V′. Let us

write

V′ = (Va |ϕ〉 , V′1, . . . , V′b−1, Π′)

where V′1, . . . , V′b−1, Π′ ∈MMVW are given by

V′i = Va+i ⊗ IW for i = 1, . . . , b− 1

Π′ = (I −Π)⊗ IW .

The private memory register V′ of the new verifier V′ is identified with the registers (V,W)

and communication register M′ of the new verifier is identified with M.

Each choice of unitaries (B1, . . . , Bb) induces both a measurement operator P ∈ P(V)

and a state ξ ∈ Y(V′) with

〈ρ, P〉 = ‖ΠBbVa+b−1Bb−1 · · · B1Va |ϕ〉‖2 = 1−
〈
ξ, Π′

〉
and therefore

max
P∈P(V)

〈ρ, P〉 = 1− λ(V′) = 1− min
ξ∈Y(V′)

〈
ξ, Π′

〉
.

Moreover, P ∈ P(V) achieves the maximum on the left side if and only if the unitaries

(B1, . . . , Bb) that induce P also induce a state ξ ∈ Y(V′) that achieves the minimum on

the right side.

Incidentally, by identifying elements of P(V) with elements of A(V′) we have estab-

lished that the set P(V) is compact and convex as required by Theorem 5.1.3. We are now

ready to prove Proposition 5.5.2.
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Proof of Proposition 5.5.2. Consider the following algorithm for optimization over P(V):

1. Use the algorithm of Figure 5.1 to find ξ ∈ Y(V′) minimizing 〈ξ, Π′〉.

2. Find the unitaries (B1, . . . , Bb) that induce ξ. These unitaries also induce a measure-

ment operator P ∈ P(V) maximizing 〈ρ, P〉. Compute P using (B1, . . . , Bb) via

standard matrix multiplication.

We already saw how the algorithm of Figure 5.1 can be used to accomplish step 1 given

an oracle for optimization over P(V′). In this case P(V′) = {Π′} is a singleton set and

thus the oracle for optimization over P(V′) admits a trivial implementation by returning

the only element.

It remains only to fill in the details for step 2. Recall that the algorithm of Figure 5.1

finds a near-optimal transcript (ξ0, . . . , ξb) ∈ A(V′), meaning that

TrM(ξ1) = TrM(Va |ϕ〉 〈ϕ|V∗a )

TrM(ξi+1) = TrM(V′i ξiV′∗i ) for each i = 1, . . . , b− 1.

(Here ξ0 is an arbitrary density matrix that is not used in our construction. The presence

of this matrix is an artifact of the identification of Y(V′) with A(V′).) The following

algorithm finds the unitaries (B1, . . . , Bb):

1. Let Z be a space large enough to admit purifications of ξ1, . . . , ξb. Write |α0〉 =

|ϕ〉 |0Z 〉 and V′0 = Va.

2. For each i = 1, . . . , b:

(a) Compute a purification |αi〉 ∈ ZMVW of ξi.

(b) Compute a unitary Bi ∈MZM that maps V′i−1 |αi−1〉 to |αi〉.

3. Return the desired unitaries (B1, . . . , Bb).
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Correctness of this construction is straightforward (though notationally cumbersome). Let

us argue that each individual step consists only of matrix operations that are known to ad-

mit an efficient parallel implementation, from which it follows that the entire construction

is efficient.

Step 2a requires that we compute a purification |α〉 of a given mixed state ξ. This can

be achieved by computing a spectral decomposition

ξ = ∑
i

µi |φi〉 〈φi |

of ξ; the purification |α〉 is then given by

|α〉 = ∑
i

√
µi |φi〉 |φi〉 .

Given two pure states |α〉 , |α′〉 ∈ ZMVW with

TrZM(|α〉 〈α|) = TrZM(
∣∣α′〉 〈α′

∣∣),
step 2b requires that we compute a unitary B ∈MZM that maps |α〉 to |α′〉. This can be

achieved by computing Schmidt decompositions

|α〉 = ∑
i

si |φi〉 |ψi〉
∣∣α′〉 = ∑

i
s′i
∣∣φ′i〉 |ψi〉

with respect to the partition ZM⊗VW . (Schmidt decompositions on vectors are equiv-

alent to singular value decompositions on matrices and hence can be implemented in par-

allel.) The desired unitary is then given by straightforward matrix multiplication and sum-

mation:

B = ∑
i

∣∣φ′i〉 〈φi | .
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5.5.4 Containment of DQIP inside PSPACE

The argument by which a parallel algorithm for double quantum interactive proofs leads

to a proof of DQIP ⊆ PSPACE is by now a familiar one. (See Section 3 of Ref. [60] for

a good exposition of this type of argument.)

Proof of Theorem 5.1.4. For each decision problem L ∈ DQIP we must prove that there

is a polynomial space algorithm for L. To this end consider a “scaled up” version of

NC known as NC(poly), which consists of all functions computable by polynomial-

space uniform Boolean circuits of polynomial depth. It has long since been known that

NC(poly) algorithms can be simulated in polynomial space [20], so in order to prove

L ∈ PSPACE it suffices to give an NC(poly) algorithm for L.

Let V be a verifier with completeness c, soundness s, and polynomial-bounded p with

c − s ≥ 1/p witnessing the membership of L in DQIP. Let x be any input string and

consider the following algorithm for deciding whether x is a yes-instance or a no-instance

of L:

1. Compute the matrix representation of the verifier V = (|ψ〉 , V1, . . . , Va+b−1, Π)

on input x. As argued earlier, this representation specifies sets A(V), P(V) for a

min-max problem of the form (5.1.2).

2. Compute a δ-approximation of λ(V) for the choice δ = (c− s)/3 so as to determine

which of the two provers has a winning strategy. Accept or reject accordingly.

The dimension dim(MV) = 2m+v of the matrix representation of a verifier on input x

might grow exponentially in the bit length of x. Nevertheless, as argued in Ref. [60] for

ordinary quantum interactive proofs, it is not difficult to see that step 1 admits a straight-

forward implementation in NC(poly) via standard matrix multiplication.

Earlier in this section we argued that the parallel oracle-algorithm of Theorem 5.1.3
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can be used to compute the desired approximation of λ(V). We also presented a parallel

implementation of the oracle for optimization over P(V) required by Theorem 5.1.3. To

see that this parallel algorithm is efficient it suffices to observe that the number of rounds

a + b and the inverse of the accuracy parameter 1/δ both scale as a polynomial in |x| and

hence also in log(dim(MV)).

Thus, the above algorithm computes the composition of a function in NC(poly) with

another function in NC. As NC(poly) is closed under such compositions, it follows that

the above algorithm admits an NC(poly) implementation and hence also a polynomial-

space implementation. It follows that L ∈ PSPACE and hence DQIP ⊆ PSPACE.

5.6 Consequences and Extensions

5.6.1 A Direct Polynomial-space Simulation of QIP

As mentioned in the introduction, a special case of our result is a direct polynomial-space

simulation of multi-message quantum interactive proofs, resulting in a first-principles

proof of QIP ⊆ PSPACE. Recall that an ordinary, single-prover quantum interactive

proof is a double quantum interactive proof in which the verifier exchanges zero messages

with the no-prover. We already observed in Section 5.5.3 that such a verifier induces an

SDP of the form (5.1.1) in which elements of the feasible region A are identified with

strategies for the prover. In this case, Theorem 5.1.3 yields an efficient parallel algorithm

for finding optimal strategies for the prover in a single-prover quantum interactive proof

with no need to specify an oracle.

5.6.2 Finding Near-optimal Strategies

The algorithm of Figure 5.1 not only approximates the value λ(A, P) of the min-max

problem (5.1.2), but it also finds near-optimal points (ρ1, . . . , ρk) ∈ A and P ∈ P. By

contrast, in Section 5.5 we were primarily concerned with the problem of approximating
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only the value λ(V) of the min-max problem (5.5.3). This quantity is the verifier’s prob-

ability of rejection when both provers act optimally; approximating it suffices to prove

DQIP ⊆ PSPACE.

However, our result readily extends to the related search problem of finding near-

optimal strategies for the provers. Indeed, step 4 of the algorithm of Figure 5.1 returns

a transcript (ρ0, . . . , ρa) ∈ A(V) and a measurement operator P ∈ P(V), both of which

are δ-optimal for λ(V). The unitaries (A1, . . . , Aa) for the yes-prover can be recovered

from the transcript (ρ0, . . . , ρa) via the method described in Section 5.5.3 with no addi-

tional complication.

It is only slightly more difficult to recover the no-prover’s unitaries (B1, . . . , Bb) from

P. Our definition of Problem 5.1.1 (Optimization over P) specifies only that a solution

produce a near-optimal measurement operator P ∈ P for a given state ρ. But the algo-

rithm for Problem 5.1.1 described in Section 5.5.3 for optimization over P(V) produces

its output P by first constructing the associated unitaries (B, . . . , Bb). It is a simple matter

to modify our definition of Problem 5.1.1 so as to also return those unitaries in addition to

P.

The near-optimal measurement operator P returned in step 4 of the algorithm of Figure

5.1 is given by

P =
1
T

T

∑
t=1

P(t),

which indicates a strategy for the no-prover that selects t ∈ {1, . . . , T} uniformly at ran-

dom and then acts according to (B(t)
1 , . . . , B(t)

b ). It is a simple matter to construct unitaries

(B1, . . . , Bb) that implement this probabilistic strategy by sampling the integer t during

the first round, recording that integer in the no-prover’s private memory (which must be

enlarged slightly to make room for it), and controlling the operation in subsequent turns on

the contents of that integer. All of the matrix operations required to construct (B1, . . . , Bb)
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from each (B(t)
1 , . . . , B(t)

b ) in this way can be implemented efficiently in parallel.

5.6.3 Robustness with Respect to Error

In Section 5.1.2 we noted that it is not immediately obvious that the classes DIP and DQIP

are robust with respect to completeness and soundness parameters c, s. Because of this we

defined the classes to be inclusive as possible, allowing any verifier for which c− s ≥ 1/p

for some polynomial-bounded function p(|x|).

Nevertheless, it follows from the collapse of these classes to PSPACE that they are in-

deed robust with respect to completeness and soundness. In particular, classical interactive

proofs for PSPACE [86, 100] imply that if a decision problem L admits a double (quan-

tum) interactive proof with c− s ≥ 1/p then L also admits a double (quantum) interactive

proof with c = 1 and s ≤ 2−q for any desired polynomial-bounded function q(|x|).

However, the method by which the original verifier is transformed into the low-error

verifier is very circuitous: the original verifier must be simulated in polynomial space

according to Theorem 5.1.4 and then that polynomial-space computation must be con-

verted back into an interactive proof with perfect completeness and exponentially small

soundness according to proofs of IP = PSPACE. It would be nice to know whether

a more straightforward transformation such as parallel repetition followed by a major-

ity vote could be used to reduce error for double quantum interactive proofs and other

bounded-turn interactive proofs with competing provers.

5.6.4 Arbitrary Payoff Observables

In the study of interactive proofs attention is generally restricted to the accept-reject model

wherein the verifier’s measurement {Π, I − Π} indicates only acceptance or rejection

without specifying a payout to the provers. From a game-theoretic perspective, one might

wish to consider a more general verifier whose final measurement {Πa}a∈Σ could have
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outcomes belonging to some arbitrary finite set Σ. In this case, the verifier awards payouts

to the provers according to a payout function v : Σ → R where v(a) denotes the payout

to the yes-prover in the event of outcome a. (Since the game is zero-sum, the no-prover’s

payout must be −v(a).)

Jain and Watrous describe a simple transformation by which their algorithm for one-

turn quantum games can be used to approximate the expected payout in this more general

setting [62]. Their transformation extends without complication to double quantum inter-

active proofs.

In our case, the expected payout to the yes-prover when she and the no-prover play

according to (A1, . . . , Aa) and (B1, . . . , Bb), respectively, is given by

∑
a∈Σ

v(a) 〈φ|Πa |φ〉 = 〈φ|ΠΣ |φ〉

where

|φ〉 = BbVa+b−1Bb−1 · · · B1Va AaVa−1Aa−1 · · · A2V1A1 |ψ〉

is the final state of the system and the Hermitian operator ΠΣ = ∑a∈Σ v(a)Πa denotes the

payout observable induced by the verifier. The expected payout of this interaction can be

computed simply by translating and rescaling ΠΣ so as to obtain a measurement operator

0 � Π � I and then running our algorithm for double quantum interactive proofs with

verifier V = (|ψ〉 , V1, . . . , Va+b−1, Π). The expected payout of the original protocol is

then obtained by inverting the scaling and translation operations by which Π was obtained

from ΠΣ. As noted by Jain and Watrous, this transformation has the effect of inflating the

additive approximation error δ by a factor of ‖ΠΣ‖, which is the maximum absolute value

of any given payout.



CHAPTER 6

Quantum Merlin-Arthur Games:
Multiple Provers

This chapter is based on a joint work with Yaoyun Shi [102].

In this chapter we provide a PSPACE upper bound for a variant of QMA(2) that allows

the verifier to perform restricted but entangled measurements over the two proofs. We

introduced QMA(2) in Section 1.2.4 that exhibits an intriguing quantum phenomenon that

the enforcement of absence of entanglement might increase its computational power. It

is, however, a challenging problem to beat the trivial upper bound of QMA(2). In the

following, we demonstrate how a clever use of enumeration through epsilon-nets can lead

to a PSPACE upper bound for a variant of QMA(2) that is the most general one considered

up to date. Our results are also applications of the equilibrium value method.

6.1 Background and Main Results

Entanglement is an essential ingredient in many ingenious applications of quantum infor-

mation processing. Understanding and exploiting entanglement remains a central theme

in quantum information processing research [57]. Denote by SepD (A1 ⊗A2) the set

of separable density operators over the space A1 ⊗A2. The weak membership problem

for separability that is to decide, given a classical description of ρ ∈ SepD (A1 ⊗A2),

whether the state ρ is inside or ε far away in trace distance from SepD (A1 ⊗A2), turns

88
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out to be NP-hard when ε is inverse exponential [50] (or even inverse polynomial [58, 46])

in the dimension of A1 ⊗A2. In this chapter we study a closely related problem, namely

the linear optimization problem over separable states below.

Problem 6.1.1. Given a Hermitian matrix Q overA1⊗A2 (of dimension d× d), compute

the optimum value, denoted by OptSep(Q), of the optimization problem

max 〈Q, X〉 subject to X ∈ SepD (A1 ⊗A2) .

It is a standard fact in convex optimization [49, Figure 4.1] that the weak membership

problem and the weak linear optimization, a special case of Problem 6.1.1, over a certain

convex set, such as SepD (A1 ⊗A2), are equivalent up to a polynomial loss in preci-

sion and a polynomial-time overhead. Thus it is NP-hard to compute OptSep(Q) with an

inverse polynomial additive error.

Besides the connection mentioned above, Problem 6.1.1 can also be understood from

various aspects. Firstly, Problem 6.1.1 can be viewed as finding the minimum energy

of some physical system that is achieved by separable states. Secondly, in the study of

the tensor product space [34], the value OptSep(Q) is precisely the injective norm of

Q in L(A1) ⊗ L(A2), where L(A) denotes the Banach space of operators on A with

the operator norm. Finally, one may be equally motivated from the study in operations

research (e.g.,“Bi-Quadratic Optimization over Unit Spheres” [24]).

Another motivation to study Problem 6.1.1 is due to the recent interest about the com-

plexity class QMA(2). While the extension of NP to allow multiple provers trivially re-

duces to NP itself, the power of QMA(2), the extension of QMA with multiple unentangled

provers, remains far from being well understood. The study of the multiple-prover model

was initiated in [78], in which QMA(k) denotes the complexity class for the k-prover case.

Much attention was attracted to this model because of the surprising discovery that NP ad-
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mits logarithmic size unentangled quantum proofs [18], comparing with the fact that sin-

gle prover quantum logarithmic size proofs only characterize BQP [87]. It seems adding

one unentangled prover increases the power of the model substantially. There are several

subsequent works on refining the initial protocol either with improved completeness and

soundness [12, 2, 27, 38], or with less powerful verifiers [26]. Recently it was proved that

QMA(2)=QMA(poly) [55] by using the so-called product test protocol that determines

whether a multipartite pure state is a product state when two copies of it are given. Also,

variants of QMA(2), such as BellQMA and LOCCQMA with restricted verifiers that per-

form only nonadaptive or adaptive local measurements respectively, were defined in [2]

and studied in [21, 22].

Despite significant efforts, any nontrivial upper bound of QMA(2) remains elusive.

The best known upper bound QMA(2)⊆NEXP follows trivially by nondeterministically

guessing the two proofs. It would be surprising if QMA(2) = NEXP. Thus it is reasonable

to seek a better upper bound like EXP or even PSPACE. It is not hard to see that simulating

QMA(2) amounts to distinguishing between two promises of OptSep(Q), although one is

free to choose an appropriate Q.

Our contributions. In this chapter we provide efficient algorithms for Problem 6.1.1 in

either time or space for several Qs of interest. Our idea is to enumerate via epsilon-nets

more "cleverly" with the help of certain structures of Q.

Now we briefly describe our strategy of obtaining space-efficient algorithms. When the

total number of points to enumerate is not large, one can represent, and hence enumerate

each point in polynomial space. If the additional computation for each point can also

be done in polynomial space, one immediately gets a polynomial-space implementation

for the whole algorithm by composing those two components naturally. We make use

of the relation NC(poly)=PSPACE [20] to obtain space-efficient implementation for the
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additional computation, which in our case basically includes the following two parts. The

first part assures that the enumeration procedure functions correctly because these epsilon-

nets of interest are not standard. This part turns out to be a simple application of our

equilibrium value method to compute a min-max form. The second part only contains

fundamental matrix operations, which usually admit efficient parallel algorithms [108].

As a result, both parts of the additional computation admit efficient parallel algorithms,

and therefore can be implemented in polynomial space.

We summarize below the main results obtained by applying the above ideas.

1. The first property exploited is the so-called decomposability of Q which refers to

whether Q can be decomposed in the form Q = ∑M
i=1 Q1

i ⊗ Q2
i with small M. Intu-

itively, if one substitutes this Q’s decomposition into 〈Q, ρ1 ⊗ ρ2〉 and treat
〈

Q1
1, ρ1

〉
, · · · ,〈

Q1
M, ρ1

〉
,
〈

Q2
1, ρ2

〉
, · · · ,

〈
Q2

M, ρ2
〉

as variables, the optimization problem becomes quadratic

and M is the number of second-order terms in the objective function. If we plug the values

of
〈

Q1
1, ρ1

〉
,· · · ,

〈
Q1

M, ρ1
〉

into the objective function, then the optimization problem re-

duces to an efficiently solvable semidefinite program. Hence by enumerating all possible

values of
〈

Q1
1, ρ1

〉
, · · · ,

〈
Q1

M, ρ1
〉

one can efficiently solve the original problem when M

is small. Since this approach naturally extends to the k-partite case for k ≥ 2, we obtain

the following general result.

Theorem 6.1.2 (Informal. See Section 6.3). Given any Hermitian Q (of dimension d)

and its decomposition Q = ∑M
i=1 Q1

i ⊗ · · · ⊗ Qk
i , OptSep(Q) can be approximated with

additive error δ in quasi-polynomial time1 in d and 1/δ if kM is O(poly-log(d)).

By exploiting the space-efficient algorithm design strategy above, this algorithm can also

be made space-efficient. To facilitate later applications to complexity classes, we choose

the input size to be some n such that d = exp(poly(n)).
1Quasi-polynomial time is upper bounded by 2O((log n)c) for some fixed c, where n is the input size.
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Corollary 6.1.3 (Informal. See Section 6.3). If kM/δ ∈ O(poly(n)), the quantity OptSep(Q)

can be approximated with additive error δ in PSPACE.

As a direct application, we prove the following variant of QMA(2) belongs to PSPACE

where QMA(2)[poly(n), O(log(n))] refers to the model in which the verifier only per-

forms O(log(n)) elementary gates that act on both proofs at the same time and a polyno-

mial number of other elementary gates.

Corollary 6.1.4. QMA(2)[poly(n), O(log(n))] ⊆ PSPACE.

This result establishes the first PSPACE upper bound for a variant of QMA(2) where

the verifier is allowed to generate some quantum entanglement between two proofs. In

contrast, previous results are all about variants with nonadaptive or adaptive local mea-

surements, such as BellQMA(2) or LOCCQMA(2).

We also study Problem 6.1.1 when Q is a local Hamiltonian over k parties. Recall that a

promise version of this problem in the one party case, namely the local-Hamiltonian prob-

lem, is QMA-complete [73]. Our definition extends the original local Hamiltonian prob-

lem to its k-partite version, which, however, is no longer necessarily QMA(k)-complete.

Indeed, our result supports this fact in the algorithmic aspect. An independent work of

Chailloux and Sattath [25], which complements our result, shows that the 2-partite local

Hamiltonian problem defined above lies in QMA.

Corollary 6.1.5 (Informal. See Section 6.5). Given some local Hamiltonian Q over k

parties, OptSep(Q) can be approximated with additive error δ in quasi-polynomial time

in d, 1/δ; the k-partite local Hamiltonian problem is in PSPACE.

2. The second structure made use of is the eigenspace of Q of large eigenvalues, where

we establish an algorithm in time exponential in ‖Q‖F.
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Theorem 6.1.6. For Q ≥ 0, OptSep(Q) can be approximated with additive error δ in

time exp(O(log(d) + δ−2‖Q‖2
F ln(‖Q‖F/δ))).

A similar running time exp(O(log2(d)δ−2‖Q‖2
F)) was obtained in [22] using some

advanced results (i.e., the semidefinite programming for finding symmetric extension [37]

and an improved quantum de Finetti-type bound) in quantum information theory. In con-

trast, our algorithm only uses fundamental operations of matrices and epsilon-nets. To

approximate with precision δ, it suffices to consider the eigenspace of Q of eigenvalues

greater than δ whose dimension is bounded by ‖Q‖2
F/δ2. Nevertheless, naively enu-

merating density operators over that subspace does not work since one cannot detect the

separability of those density operators. We circumvent this difficulty by making nontrivial

use of the Schmidt decomposition of bipartite pure states.

We note, however, that other results in [22] do not follow from our algorithm, and our

method cannot be seen as a replacement of the kernel technique therein. Furthermore, our

method does not extend to the k-partite case, as there is no Schmidt decomposition in that

case.

The rest of this chapter is organized as follows. The necessary background knowl-

edge on the epsilon-nets is introduced in Section 6.2. Our main algorithm based on the

decomposability of Q is illustrated in Section 6.3, which is followed by the simulation

of variants of QMA(2) in Section 6.4 and the local Hamiltonian case in Section 6.5. We

conclude with the demonstration of an algorithm with running time exponential in ‖Q‖F

for Problem 6.1.1 in Section 6.6.

6.2 Epsilon Net

The epsilon-net (or ε-net) is an important concept in several mathematical topics. For our

purpose, we adopt the following definition of ε-net.
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Definition 6.2.1 (ε-net). Let (X, d) 2 be any metric space and let ε > 0. A subset Nε is

called an ε-net of X if for each x ∈ X, there exists y ∈ Nε with d(x, y) ≤ ε.

Now we turn to the particular ε-net in this chapter. Let H be any Hilbert space of dimen-

sion d and Q = Q(M, w) = (Q1, Q2, · · ·QM) be a sequence of operators on H with

‖Qi‖∞ ≤ w, for all i. Define the Q-space, denoted by SP(Q), as

SP(Q) = {(〈Q1, ρ〉 , 〈Q2, ρ〉 , · · · , 〈QM, ρ〉) : ρ ∈ D (H)} ⊆ CM.

The set is convex and compact, and a subset of Raw-(M, w) = {(q1, q2, · · · , qM) :

∀i, qi ∈ C, ‖qi‖ ≤ w}. In the following, we construct an ε-net of the metric space

(SP(Q), `1) by first generating an ε-net of (Raw-(M, w), `1) via a standard procedure

and then selecting those points close to Q-space.

Selection process

The selection process determines if some point ~p in Raw-(M, w) is close to SP(Q). De-

note by dis(~p) the distance of ~p ∈ CM to SP(Q), i.e.,

dis(~p) = min
~q∈SP(Q)

‖~p−~q‖1.

The distance dis(~p) can be efficiently computed in time by casting the problem as a

semidefinite program, e.g., the following one:

min:
M

∑
i=1

ti,(6.2.1)

subject to:

 ti ~pi −~q(ρ)i

~p∗i −~q(ρ)∗i ti

 ≥ 0, ∀i = 1, · · · , M.(6.2.2)

ρ ∈ D (H) .

(6.2.3)

2 We will abuse the notation later where the metric d is replaced by the norm from which the metric is induced.
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The correctness of the SDP comes from that the positive semidefinite constraint in Eq. (6.2.2)

implies t2
i ≥ ‖~pi −~q(ρ)i‖2 for each i=1,...,M. For any fixed ρ, the minimization over tis

will give ‖~p−~q(ρ)‖1. And then the minimization over ρ gives the desired answer.

Although semidefinite programs admit polynomial time solutions (when Q has a con-

cise description, then this corresponds to exponential time solutions), it is generally un-

known whether these polynomial time solutions can also be made space-efficient (i.e., in

poly-logarithmic space). In our case where Q has a concise description, space-efficient

solution corresponds to a PSPACE upper bound. Thus we need to develop our own space-

efficient algorithm for this problem. Due to the duality of the `1 norm, one has

dis(~p) = min
ρ∈D(H)

max
~z∈B(CM,‖·‖∞)

Re 〈~p−~q(ρ),~z〉 ,

where ~q(ρ) = (〈Q1, ρ〉 , 〈Q2, ρ〉 , · · · , 〈QM, ρ〉) ∈ CM. By rephrasing dis(~p) in the

above form, one shows the quantity dis(~p) is actually an equilibrium value. This fol-

lows from the well-known extensions of von’ Neumann’s Min-Max Theorem [107, 39].

One can easily verify that the density operator set D (H) and the unit ball of CM under `∞

norm are convex and compact and the objective function is a bilinear form over the two

sets.

(6.2.4) min
ρ∈D(H)

max
~z∈B(CM,‖·‖∞)

Re 〈~p−~q(ρ),~z〉 = max
~z∈B(CM,‖·‖∞)

min
ρ∈D(H)

Re 〈~p−~q(ρ),~z〉 .

Fortunately, there is an efficient algorithm in both time and space (in terms of d, M, w, 1/ε)

to approximate dis(~p) with additive error ε. This is a simple application of our equilibrium

value method in Chapter 3.

Lemma 6.2.2. Given any point ~p ∈ Raw-(M, w) and ε > 0, there is an algorithm that

approximates dis(~p) with additive error ε in poly(d, M, w, 1/ε) time. Furthermore, if d

is considered as the input size and M, w, 1/ε ∈ O(poly-log(d)), this algorithm is also

efficient in parallel, namely, it is inside NC.
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Construction of the ε-net

Given any Q(M, w) and ε > 0, we construct the ε-net of SP(Q) as follows.

• Construct the ε-net of the set Raw-(M, w) with the metric induced from the `1 norm.

Denote such an ε-net byRε.

• For each point ~p ∈ Rε, determine dis(~p) and select it toNε if dis(~p) ≤ ε. We claim

Nε is the ε-net of (SP(Q), `1).

The construction for the first step is rather routine. Creating an ε′-net T′ε over a bounded

complex region {z ∈ C : ‖z‖ ≤ w} is simple: we can place a 2D grid over the complex

plane to cover the disk ‖z‖ ≤ w. Simple argument shows |T′ε| ∈ O(w2

ε′2 ). Then Rε can

be obtained by cross-producting T′ε for M times. To ensure the closeness in the `1 norm,

we will choose ε′ = ε/M.

Theorem 6.2.3. The Nε constructed above is indeed an ε-net of (SP(Q), `1) with cardi-

nality at most O((w2 M2

ε2 )M). For any point~n ∈ Nε, we have dis(~n) ≤ ε.

Proof. First we show Rε is indeed an ε-net of (Raw-(M, w), `1). To that end, consider

any point ~p ∈ Raw-(M, w). From the construction of Rε, there is some point ~q ∈ Rε

such that ‖~p−~q‖∞ ≤ ε′. Then we have ‖~p−~q‖1 ≤ M‖~p−~q‖∞ ≤ Mε′ ≤ ε. Since

Nε ⊆ Rε, one has |Nε| ≤ |Rε| ∈ O((w2 M2

ε2 )M).

In order to show Nε is the required ε-net, consider any point ~p ∈ SP(Q). Since

SP(Q) ⊆ Raw-(M, w), there exists a point ~p′ ∈ Rε such that ‖~p− ~p′‖1 ≤ ε. Hence we

have dis(~p′) ≤ ε and the point ~p′ will be selected, namely ~p′ ∈ Nε. Finally, it is a simple

consequence of the selection process that every point~n ∈ Nε has dis(~n) ≤ ε .

Remarks. If one choosesQ to beQ(d2, 1) = {|i〉〈j| : i, j = 1, · · · , d}, one can generate

the ε-net of the density operator set with `1 norm in the method described above. It is akin

to generating an ε-net for every entry of the density operator. At the other extreme, one can
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also efficiently generate the ε-net of a small size SP(Q) even when the space dimension d

is relatively large.

6.3 The Main Algorithm

Without loss of generality, we assume A1,A2 are identical, and of dimension d in Prob-

lem 6.1.1. Moreover, our algorithm will deal with the set of product states rather than

separable states. Namely, we consider the following problem.

max: 〈Q, ρ〉 ,(6.3.1)

subject to: ρ = ρ1 ⊗ ρ2, ρ1 ∈ D (A1) , ρ2 ∈ D (A2) .

It is easy to see these two optimization problems are equivalent since product states are

extreme points of the set of separable states. Our algorithm works for both maximization

and minimization of the objective function and can be extended naturally to the k-partite

version.

Problem 6.3.1 (k-partite version). Given any Hermitian matrix Q over A1 ⊗ · · · ⊗ Ak

(k ≥ 2), compute the optimum value OptSep(Q) with additive error δ.

max: 〈Q, ρ〉 ,(6.3.2)

subject to: ρ = ρ1 ⊗ · · · ⊗ ρk, ∀i, ρi ∈ D (Ai) .

Before describing the algorithm, we need some terminology about the decomposability

of a multi-partite operator. Any Hermitian operator Q is called M-decomposable if there

exists (Qt
1, Qt

2, · · · , Qt
M) ∈ L (At)

M for each t such that

Q =
M

∑
i=1

Q1
i ⊗Q2

i ⊗ · · · ⊗Qk−1
i ⊗Qk

i .

To facilitate the use of ε-net, we adopt a slight variation of the decomposability above.

Let ~w ∈ Rk
+ denote the widths of operators over each Ai. Any Q is called (M, ~w)-
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1. Let Qt(M, wt) = (Qt
1, Qt

2, · · · , Qt
M) for t=1,..., k-1. Let W = Πk

i=1wi. Generate the εt-net (by
Theorem 6.2.3) of (SP(Qt), `1) for each t=1,..., k-1 with εt = wtδ/(k− 1)W and denote such a set
by N t

εt . Also let OPT store the optimum value.

2. For each point~q = (~q1,~q2, · · ·~qk−1) ∈ N 1
ε1
×N 2

ε2
× · · · × N k−1

εk−1
, let Qk be

Qk =
M

∑
i=1

q1
i q2

i · · · qk−1
i Qk

i ,

and calculate Q̃k = 1
2 (Q

k + Qk∗). Then compute the maximum eigenvalue of Q̃k, denoted by
λmax(~q). Update OPT as follows: OPT = max{OPT, λmax(~q)}.

3. Return OPT.

Figure 6.1: The main algorithm with precision δ.

decomposable if Q is M-decomposable and the widths of those operators in the decom-

position are bounded in the sense that maxi
∥∥Qt

i

∥∥
∞ ≤ wt for each t. It is noteworthy

to mention that the decomposability defined above is related to the concept tensor rank.

However, given the representation Q as input, it is hard in general to compute the tensor

rank of Q or its corresponding decomposition. Therefore, for any (M, ~w)-decomposable

Q we assume its corresponding decomposition is also a part of the input to our algorithm.

Theorem 6.3.2. Let Q be some (M, ~w)-decomposable Hermitian over A1 ⊗ · · · ⊗ Ak

(each Ai is of dimension d) and δ > 0. Also let (Qt
1, Qt

2, · · · , Qt
M) ,t=1,..., k be the oper-

ators in the corresponding decomposition of Q. The algorithm shown in Fig. 6.1 approx-

imates OptSep(Q) of Problem 6.3.1 with additive error δ in O(( (k−1)2W2 M2

δ2 )(k−1)M)×

poly(d, M, k, W, 1/δ) time where W = Πk
i=1wi.

Proof. By substituting the identity Q = ∑M
i=1 Q1

i ⊗ Q2
i ⊗ · · · ⊗ Qk−1

i , the optimization

problem becomes,

max:

〈
M

∑
i=1

p1
i p2

i · · · pk−1
i Qk

i , ρk

〉

subject to: ∀t ∈ {1, · · · , k− 1}, ~pt ∈ SP(Qt(M, wt)), and ρk ∈ D (Ak) .
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Thus, solving the optimization problem amounts to first enumerating~pt ∈ SP(Qt(M, w1))

for each t, and then solving the optimization problem over D (Ak).

Consider any point ~p = (~p1,~p2, · · · ,~pk−1) ∈ SP(Qi)
k−1 where SP(Qi)

k−1 de-

notes SP(Q1) × · · · × SP(Qk−1). Due to Theorem 6.2.3, there is at least one point

~q = (~q1,~q2, · · ·~qk−1) ∈ {N i
εi
}k−1 where {N i

εi
}k−1 denotes N 1

ε1
×N 2

ε2
× · · · × N k−1

εk−1

such that ‖~qt − ~pt‖1 ≤ εt for t=1,..,k-1. The choice of Q̃k is to symmetrize Qk. With

Q̃k being Hermitian, it is clear that λmax(~q) = maxρk∈D(Ak)

〈
Q̃k, ρk

〉
. Now let’s analyze

how much error will be induced in this process.

Let Pk(~p) = ∑M
i=1 p1

i p2
i · · · pk−1

i Qk
i and P̃k = 1

2(Pk + Pk∗). It is not hard to see that

Pk = P̃k. The error bound is achieved by applying a chain of triangle inequalities as

follows. Firstly, one has∥∥∥ P̃k − Q̃k
∥∥∥

∞
=

∥∥∥∥ 1
2
(Pk −Qk) +

1
2
(Pk∗ −Qk∗)

∥∥∥∥
∞
≤
∥∥∥Pk −Qk

∥∥∥
∞

.

Substitute the expressions for Pk, Qk and apply the standard hybrid argument.∥∥∥Pk −Qk
∥∥∥

∞
=

∥∥∥∥∥ M

∑
i=1

(p1
i p2

i · · · pk−1
i − q1

i q2
i · · · qk−1

i )Qk
i

∥∥∥∥∥
∞

=

∥∥∥∥∥ M

∑
i=1

k−1

∑
t=1

(q1
i · · · qt−1

i pt
i pt+1

i · · · pk−1
i − q1

i · · · qt−1
i qt

i pt+1
i · · · pk−1

i )Qk
i

∥∥∥∥∥
∞

,

which is immediately upper bounded by the sum of the following terms,

M

∑
i=1
|p1

i − q1
i ||p2

i · · · pk−1
i |

∥∥∥Qk
i

∥∥∥
∞

, , · · · ,
M

∑
i=1
|q1

i · · · qk−2
i ||pk−1

i − qk−1
i |

∥∥∥Qk
i

∥∥∥
∞

.

As the tth term above can be upper bounded by εtW/wt for each t, we have,∥∥∥ P̃k − Q̃k
∥∥∥

∞
≤ ε1W/w1 + ε2W/w2 + · · ·+ εk−1W/wk−1 =

δ

k− 1
+ · · ·+ δ

k− 1︸ ︷︷ ︸
k-1 terms

= δ.

Hence the optimum value for any fixed ~p won’t differ too much from the one for its ap-

proximation~q in the ε-net. This is because

max
ρk∈D(Ak)

〈
P̃k, ρk

〉
= max

ρk∈D(Ak)

〈
Q̃k, ρk

〉
+
〈

P̃k − Q̃k, ρk

〉
.
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By Hölder Inequalities we have |
〈

P̃k − Q̃k, ρk
〉
| ≤

∥∥ P̃k − Q̃k
∥∥

∞ ‖ρk‖Tr ≤ δ,

λmax(~q)− δ ≤ max
ρk∈D(Ak)

〈
P̃k(~p), ρk

〉
≤ λmax(~q) + δ.

We now optimize ~p over SP(Qi)
k−1 and the corresponding ~q will run over the ε-net

{N i
εi
}k−1. As every point ~q ∈ {N i

εi
}k−1 is also close to SP(Qi)

k−1 in the sense that

dis(~qt) ≤ εt for each t, we have

max
~q∈{N i

εi}k−1
λmax(~q)− δ ≤ max

~p∈SP(Qi)k−1
max

ρk∈D(Ak)

〈
P̃k(~p), ρk

〉
≤ max

~q∈{N i
εi}k−1

λmax(~q) + δ.

Finally, it is not hard to see that OPT = max~q∈{N i
εi}k−1 λmax(~q) and therefore

OPT− δ ≤ OptSep(Q) ≤ OPT + δ.

Now let us analyze the efficiency of this algorithm. The total number of points in the ε-net

{N i
εi
}k−1 is upper bounded by O(( (k−1)2W2 M2

δ2 )(k−1)M) . The generation of each point ~q

will cost time polynomial in d, M, W, 1/δ (See Lemma 6.2.2.). Afterwards, one needs to

calculate Q̃k and its maximum eigenvalue for each point, which can be done in time poly-

nomial in d, k, M. Thus, the total running time is bounded by O(( (k−1)2W2 M2

δ2 )(k−1)M)×

poly(d, M, k, W, 1/δ).

Remarks. All operations in the algorithm described in Fig. 6.1 can be implemented effi-

ciently in parallel in some situation. This is because fundamental operations of matrices

can be done in NC and the calculation of dis(~p) can be done in NC (See Lemma 6.2.2)

when M, W, k, 1/δ are in nice forms of d.

Corollary 6.3.3. Let n be the input size such that d = exp(poly(n)), if W/δ ∈ O(poly(n)),

kM ∈ O(poly(n)), then OptSep(Q) can be approximated with additive error δ in PSPACE.

Proof. Given Q and its decomposition, consider the following algorithm

1. Enumerate each point ~p = (~p1, · · · ,~pk−1) in the raw setR1
ε1
× · · · ×Rk−1

εk−1
.
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2. Compute dis(~pt) for each t=1,...,k-1. If ~p is a valid point in the epsilon-net, then we

continue with the rest part in Step 2 of the algorithm in Fig. 6.1.

3. Compare the values obtained by each point ~p and keep the optimum one.

Given the condition W/δ ∈ O(poly(n)), kM ∈ O(poly(n)), the first part of the algorithm

can be done in polynomial space. This is because in this case each point in the raw set

can be represented in polynomial space and therefore enumerated in polynomial space.

The second part is more difficult. Computing dis(~pt) for each t=1,...,k-1 can be done

in NC(poly(n)) as shown in Lemma 6.2.2. Step 2 in the main algorithm only contains

fundamental operations of matrices and the spectral decomposition. Thus, it also admits

a parallel algorithm in NC(poly(n)). One can easily compose the two circuits and get a

polynomial space implementation by the relation NC(poly)=PSPACE [20]. The third part

can obviously be done in polynomial space. Thus, by composing these three polynomial-

space implementable parts, one proves that the whole algorithm can be done in PSPACE.

6.4 Simulation of several variants of QMA(2)

This section illustrates the use of the algorithm shown in Section 6.3 to simulate some

variants of the complexity class QMA(2). The idea is to show for those variants, the

corresponding POVM matrices of acceptance are (M, ~w)-decomposable with small Ms.

Recall the definition of the complexity class QMA(2).

Definition 6.4.1. A language L is in QMA(2)m,c,s if there exists a polynomial-time gen-

erated family of quantum verification circuits Q = {Qn|n ∈ N} such that for any input

x of size n, the circuit Qn implements a two-outcome measurement {Qacc
x , 1 − Qacc

x }.

Furthermore,
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• Completeness: If x ∈ L, there exist |ψ1〉 ∈ A1, |ψ2〉 ∈ A2, each of m qubits,

〈Qacc
x , |ψ1〉〈ψ1| ⊗ |ψ2〉〈ψ2|〉 ≥ c.

• Soundness: If x /∈ L, then for any states |ψ1〉 ∈ A1, |ψ2〉 ∈ A2,

〈Qacc
x , |ψ1〉〈ψ1| ⊗ |ψ2〉〈ψ2|〉 ≤ s.

We call QMA(2)=QMA(2)poly(n),2/3,1/3. It is easy to see that simulating the complex-

ity class QMA(2) amounts to distinguishing between the two promises of the maximum

acceptance probability (i.e. OptSep(Qacc
x )).

The first example is the variant with logarithmic size proofs (QMA(2)O(log(n)),2/3,1/3).

It is not hard to find out the corresponding POVMs of acceptance (i.e. Qacc
x ) need to be

(poly(n),~w)-decomposable where ~w = (1, 1) sinceA1,A2 are only of polynomial dimen-

sion. Thus, it follows directly from Corollary 6.3.3 that OptSep(Qacc
x ) can be approxi-

mated in polynomial space. Namely,

QMA(2)O(log(n)),2/3,1/3 ⊆ PSPACE.

The next example is slightly less trivial. Before moving on, we need some terminology

about the quantum verification circuits Q. Assume the input x is fixed from now on.

Let A1,A2 be the Hilbert space of size dA for the two proofs and let V be the ancillary

space of size dV . Then the quantum verification process will be carried out on the space

A1 ⊗A2 ⊗ V with some initial state |ψ1〉 ⊗ |ψ2〉 ⊗
∣∣∣~0〉 where |ψ1〉 , |ψ2〉 are provided

by the provers. The verification process is also efficient in the sense that the whole circuit

only consists of polynomial many elementary gates. Without loss of generality, we can

fix one universal gate set for the verification circuits. Particularly, we choose the universal

gate set to be single qubit gates plus the CNOT gates [91]. One can also choose other

universal gate sets without any change of the main result.
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We categorize all elementary gates in the verification circuits into two types. A gate is

of type-I if it only affects the qubits within the same space (i.e, A1,A2, or,V). Otherwise,

this gate is of type-II. It is easy to see single qubit gates are always type-I gates. The only

type-II gates are CNOT gates whose control qubit and target qubit sit in different spaces.

Let p, r : N → N be polynomial-bounded functions. A polynomial-time generated

family of quantum verification circuits Q is called Q[p, r] if each Qn only contains p(n)

type-I elementary gates and r(n) type-II elementary gates.

Definition 6.4.2. A language L is in QMA(2)m,c,s[p, r] if L is in QMA(2)m,c,s with some

Q[p, r] verification circuit family.

It is easy to see that QMA(2) = QMA(2)[poly, poly] from our definition.

Lemma 6.4.3. For any family of verification circuits Q[p, r], the POVM Qacc
x is (4r(n), (1, 1))-

decomposable for any n ∈N and input x. Moreover, this decomposition can be calculated

in parallel with O(t(n)4r(n))× poly(n) time.

Proof. Fix the input x, let us denote the whole unitary that the verification circuit applies

on the initial state by U = UtUt−1 · · ·U1 where each Ui corresponds to one elementary

gate and t = p + r. Without loss of generality, we assume the output bit is the first qubit

in the space V and the verification accepts when that qubit is 1. Let V̄ be the space V

without the first qubit, then we have

Qacc
x = TrV

(
1A1A2 ⊗

∣∣∣~0〉〈~0∣∣∣ (U∗1A1A2 ⊗ 1V̄ ⊗ |1〉〈1|U)1A1A2 ⊗
∣∣∣~0〉〈~0∣∣∣) .

Let Pt+1 = 1A1A2 ⊗ 1V̄ ⊗ |1〉〈1| and Pτ = U∗τ Pτ+1Uτ for τ=t,t-1,...,1. It is easy to

see P1 = U∗(1A1A2 ⊗ 1V̄ ⊗ |1〉〈1|)U. Also it is straightforward to verify that Pt+1 is

1-decomposable. Now let us observe how the decomposability of Pτ changes with τ.

For each τ, the unitary Uτ either corresponds to a type-I or type-II elementary gate.

In the former case, applying Uτ won’t change the decomposability. Thus, Pτ is M-
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decomposable if Pτ+1 is. In the latter case, applying Uτ will potentially change the de-

composability in the following way. For any such CNOT gate one has Uτ = |0〉〈0| ⊗ 1+

|1〉〈1| ⊗ X where X is the Pauli matrix for the flip. And one can show

Pτ = (|0〉〈0| ⊗ 1)Pτ+1(|0〉〈0| ⊗ 1) + (|0〉〈0| ⊗ 1)Pτ+1(|1〉〈1| ⊗ X)

+ (|1〉〈1| ⊗ X)Pτ+1(|0〉〈0| ⊗ 1) + (|1〉〈1| ⊗ X)Pτ+1(|1〉〈1| ⊗ X).

Thus in general we can only say Pτ is 4M-decomposable if Pτ+1 is M-decomposable.

As there are r(n) type-II gates, one immediately has P1 is 4r(n)-decomposable. Moreover,

each operator appearing in the decomposition is a multiplication of unitaries , |0〉〈0| , |1〉〈1|

and X in some order, which implies the operator norm of those operators is bounded by 1.

Therefore we have P1 is (4r(n), (1, 1))-decomposable.

Finally, it is not hard to verify that multiplications with 1A1A2 ⊗
∣∣∣~0〉〈~0∣∣∣ and partial trace

over V won’t change the decomposability of P1. Namely, we have Qacc
x is (4r(n), (1, 1))-

decomposable. The above proof can also be considered as the process to compute the

decomposition of Qacc
x . Each multiplication of matrices can be done in NC(poly(n)). And

the total number of multiplications is upper bounded by O(t(n)4r(n)). Therefore, the total

parallel running time is upper bounded by O(t(n)4r(n))× poly(n).

We will show that when the number of type-II gates is relatively small, one can simulate

this complexity model efficiently by the algorithm in Fig. 6.1.

Corollary 6.4.4. QMA(2)[poly(n), O(log(n))] ⊆ PSPACE.

Proof. This is a simple consequence of Lemma 6.4.3 and Corollary 6.3.3. For any fixed x

of length n, one can first compute the decomposition of Qacc
x in parallel with O(t(n)4r(n))×

poly(n) time, which is parallel polynomial time in n when r(n) = O(log(n)) and t(n) ∈

poly(n). Hence the first step can be done in polynomial space by NC(poly)=PSPACE [20].
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Then one can invoke the parallel algorithm in Corollary 6.3.3 to approximate OptSep(Qacc
x )

to sufficient precision δ such that one can distinguish between the two promises. Precisely

in this case, we choose those parameters as follows,

k = 2, W = 1, M = 4O(log(n)) = poly(n), 1/δ = poly(n).

Thus the whole algorithm can be done in polynomial space.

Remarks. Although the proof of the result is not too technical, it establishes the first

non-trivial upper bound (PSPACE in this case) for variants of QMA(2) that allow quantum

operations acting on both proofs at the same time.

However, our results are hard to extend to the most general case of QMA(2). This is

because SWAP-test operation uses many more type-II gates than what is allowed in our

method. And SWAP-test seems to be inevitable if one wants to fully characterize the

power of QMA(2).

6.5 Quasi-polynomial algorithms for local Hamiltonian cases

In this section, we illustrate that if Q appears in the objective function that is a local

Hamiltonian then the optimal value OptSep(Q) can be efficiently computed by our main

algorithm. Consider any k-partite space A1 ⊗A2 ⊗ · · · ⊗ Ak where each Ai contains n

qubits (i.e., of dimension 2n).

Definition 6.5.1. Any Hermitian Q over A1 ⊗ · · · ⊗ Ak is a l-local Hamiltonian if Q is

expressible as Q = ∑r
i=1 Hi where each term is a Hermitian operator acting on at most l

qubits among k parties.

Hamiltonians are widely studied in physics since they usually characterize the energy

of a physical system. Local Hamiltonians are of particular interest since they refer to

the energy of many interesting models in low-dimension systems. Our algorithm can be
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considered as a way to find the minimum energy of some physical system achieved by

separable states.

Local Hamiltonians are also appealing to computational complexity theorists since the

discovery of the promise 5-local Hamiltonian problem [73] which turns out to be QMA-

complete. Precisely, it refers to the following promise problem when k = 1, l = 5.

Problem 6.5.2 (k-partite l-local Hamiltonian problem). Take the expression Q = ∑r
i=1 Hi

for any l-local Hamiltonian over A1 ⊗ · · · ⊗ Ak as input3, where ‖Hi‖∞ ≤ 1 for

each i. Let OptSep(Q) denote the minimum value of 〈Q, ρ〉 achieved for some ρ ∈

SepD (A1 ⊗ · · · ⊗ Ak). The goal is to tell between the following two promises: either

OptSep(Q) ≥ a or OptSep(Q) ≤ b for some a > b with an inverse polynomial gap.

When k = 1, the promise problem defined above is exactly the original l-local Hamilto-

nian problem. Subsequent results demonstrate that it remains QMA-complete even when

l = 3, 2 [3, 59, 92]. Our definition of the promise problem naturally extends to the k-

partite case. We refer to Chapter 14 in [73] for technical details. It is not hard to see that

k-partite l-local Hamiltonian problem belongs to QMA(k) by applying similar techniques

in the original proof. However, it does not remain QMA(k)-complete. Indeed, Chailloux

and Sattath [25] proved that the k-partite local Hamiltonian problem defined above lies in

QMA for constant k.

Lemma 6.5.3. Any l-local Hamiltonian Q over A1 ⊗ · · · ⊗ Ak such that Q = ∑r
i=1 Hi

and ‖Hi‖∞ ≤ w is (O((4nk)l), w )-decomposable.

Proof. Since Q is a l-local Hamiltonian, it is easy to see r ≤ (kn
l ). For each Hi with

‖Hi‖∞ ≤ w, since it acts only on at most l qubits, it must be (4l, w)-decomposable.

Thus Q is (r4l, w)-decomposable. In terms of only n, k, l, we have Q is (O((4nk)l), w)-
3It is noteworthy to mention that the input size of local Hamiltonian problems can be only poly-logarithm in the dimension of the

space where Q sits in.
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decomposable.

Corollary 6.5.4. Take the expression Q = ∑r
i=1 Hi of any l-local Hamiltonian overA1⊗

· · · ⊗ Ak (each Ai is of dimension d = 2n) such that ‖Hi‖∞ ≤ w for each i as input.

Assuming k, l = O(1), the quantity OptSep(Q) can be approximated to precision δ in

quasi-polynomial time in d, w, 1/δ.

If n is considered as the input size and w/δ = O(poly(n)), then OptSep(Q) can be

approximated to precision δ in PSPACE.

Proof. The proof of the first part follows directly from Lemma 6.5.3 and Theorem 6.3.2.

Recall the proof of Lemma 6.5.3 also provides a way to compute the decomposition of Q

given the expression Q = ∑r
i=1 Hi as input. It is easy to verify that O(r4l) time (upper

bounded by O((4k log d)l)) is sufficient to complete this computation. After that, one

may directly invoke the algorithm in Fig. 6.1 and make use of Theorem 6.3.2. Now we

substitute the following identities into our main algorithm. Note k, l = O(1) and we have

M = O(logO(1) d), W = wO(1). One immediately gets the total running time bounded

by

exp(O(logO(1)(d)(log log d + log w/δ)))× poly(d, w, 1/δ),

which is quasi-polynomial time in d, w, 1/δ.

For the second part when n is considered as the input size, it is easy to see that the com-

putation of the decomposition of Q according to Lemma 6.5.3 can be done in NC(poly),

henceforth in polynomial space. (Note M = O(poly(n)).) Then by composing with the

polynomial-space algorithm implied by Corollary 6.3.3, one proves that the whole algo-

rithm can be implemented in polynomial space.

Remarks. It is a direct consequence of Corollary 6.5.4 that Problem 6.5.2 is inside

PSPACE.
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1. Compute the spectral decomposition of Q = ∑t λt |Ψt〉〈Ψt|. Choose ε = δ/2 and Γε = {t : λt ≥
ε}. Also let OPT store the optimum value.

2. Generate the ε-net of the unit ball of C|Γε | under the Euclidean norm with ε = δ
4‖Q‖F

. Denote such a
set by Nε. Then for each point α ∈ Nε,

(a) Compute |φα〉 = ∑t∈Γε
α∗t
√

λt |Ψt〉 and compute the Schmidt decomposition of |φα〉, i.e.,

|φα〉 = ∑
i

µi |ui〉 |vi〉 ,

where µ1 ≥ µ2 ≥ · · · and {ui}, {vi} are orthogonal bases.
(b) Update OPT as follows: OPT=max{OPT, µ1}.

3. Return OPT.

Figure 6.2: The algorithm runs in time exponential in ‖Q‖F/δ.

6.6 Exponential running time algorithm in ‖Q‖F

In this section we demonstrate another application of the simple idea "enumeration" by

epsilon-net to Problem 6.1.1. As a result, we obtained an algorithm with running time

exponential in ‖Q‖F (or ‖Q‖LOCC [109]4) for computing OptSep(Q) with additive error

δ. A similar running time exp(O(log2(d)δ−2‖Q‖2
F)) was obtained in [22] using some

known results in quantum information theory.

Theorem 6.6.1. Given any positive semidefinite Q over A1 ⊗ A2 (of dimension d × d)

and δ > 0, the algorithm in Fig. 6.2 approximates OptSep(Q) with additive error δ with

running time exp(O(log(d) + δ−2‖Q‖2
F ln(‖Q‖F/δ))).

Proof. We first prove the correctness of the algorithm. The analysis will mainly be divided

into two parts. Let Sε = span{|Ψt〉 |t ∈ Γε}. The first part shows it suffices to only

consider vectors inside the subspace Sε for approximating OptSep(Q) with additive error

δ. The second one demonstrates that our algorithm in Fig. 6.2 approximates the optimal

value obtained by only considering vectors in Sε. Precisely, since {|Ψi〉} forms a basis,
4This follows easily from the fact ‖Q‖F = O(‖Q‖LOCC) [109] where ‖Q‖LOCC stands for the LOCC norm of the operator Q.
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one has |u〉 |v〉 = ∑t∈Γε
βt |Ψt〉+ ∑t/∈Γε

βt |Ψt〉 where β is a unit vector in Cd2
. Then

we have

〈Q, |u〉〈u| ⊗ |v〉〈v|〉 = ∑
t∈Γε

λt|βt|2︸ ︷︷ ︸
(I)

+ ∑
t/∈Γε

λt|βt|2︸ ︷︷ ︸
(I I)

,

where term (II) is obviously bounded by δ/2 (i.e., ∑t/∈Γε
λt|βt|2 ≤ δ/2). For term (I),

it is equivalent to OptSep(Q̃) where Q̃ = ∑t∈Γε
λt |Ψt〉〈Ψt|. Namely, small eigenvalues

are truncated in Q̃. Now observe the following identity.

max
|u〉|v〉

〈
Q̃, |u〉〈u| ⊗ |v〉〈v|

〉
= max

|u〉|v〉 ∑
t∈Γε

λt| 〈u| 〈v|Ψt〉 |2 = max
|u〉|v〉
‖γu,v‖2

= max
|u〉|v〉

max
α∈B(C|Γε |,‖·‖)

| ∑
t∈Γε

α∗t
√

λt 〈u| 〈v|Ψt〉 |2

= max
|u〉|v〉

max
α∈B(C|Γε |,‖·‖)

| 〈u| 〈v|φα〉 |2

= max
α∈B(C|Γε |,‖·‖)

max
|u〉|v〉

| 〈u| 〈v|φα〉 |2,

where γu,v ∈ C|Γε| and γu,v
t =

√
λt 〈u| 〈v|Ψt〉 for each t ∈ Γε. The second line comes

from the duality of the Euclidean norm (i.e., ‖y‖ = max‖z‖≤1 | 〈z|y〉 |). The third line

comes by exchanging positions of the two maximizations. We then make use of the fol-

lowing well-known fact.

Fact 6.6.2. For any bipartite vector |ψ〉 with the Schmidt decomposition

|ψ〉 = ∑
i

µi |ui〉 |vi〉 ,

where µ1 ≥ µ2 ≥ · · · and {ui}, {vi} are orthogonal bases . Then max|u〉|v〉 | 〈u| 〈v|ψ〉 | =

µ1 and the maximum value is obtained by choosing |u〉 |v〉 to be |u1〉 |v1〉.

It is not hard to see that our algorithm computes exactly the term on the third line except

that we replace the unit ball by its ε-net. However, this won’t incur too much extra error.

For any α ∈ B(C|Γε|, ‖·‖), there exists α̃ ∈ Nε, such that ‖α− α̃‖ ≤ ε. Thus, the extra
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error incurred is || 〈u| 〈v|φα〉 |2 − | 〈u| 〈v|φα̃〉 |2| and can be bounded by

(‖|φα〉‖+ ‖|φα̃〉‖)| 〈u| 〈v|ψα − ψα̃〉 | ≤ 2 max
‖β1‖≤1

‖φβ1‖ max
β2=α−α̃,‖β2‖≤ε

‖φβ2‖

= 2
√
‖Q‖F × ε

√
‖Q‖F ≤ δ/2,

where max‖β‖≤ε′‖φβ‖ ≤ ε′
√
‖Q‖F for any ε′ > 0 can be verified directly and therefore

the total additive error is bounded by δ/2 + δ/2 = δ.

Finally, let us turn to the analysis of the efficiency of this algorithm. The spectral

decomposition in the first step takes polynomial time in d, so is the same with calcula-

tion of |ψα〉. The generation of the ε-net of the unit ball is standard and can be done in

O((1 + 2
ε )
|Γε|) × poly(|Γε|). The last operation, finding the Schmidt decomposition, is

equivalent to singular value decompositions, and thus can be done in polynomial time

in d as well. Also note |Γε| ≤ min{d2, ‖Q‖2
F/δ2}. To sum up, the total running

time of the algorithm is upper bounded by O((1 + 2
ε )
|Γε|) × poly(d), or equivalently

exp(O(log(d) + δ−2‖Q‖2
F ln(‖Q‖F/δ))).



CHAPTER 7

Non-Identity Check of Quantum
Circuits

This chapter is based on a joint work with Zhengfeng Ji [66].

In this chapter we study one QMA-complete problem, called Non-Identity Check,

which asks whether a given quantum circuit is far away from identity or not. It is well-

known that similar problems for classical circuits admit efficient randomized solutions.

Thus, it is striking to show that the Non-Identity Check problem for quantum circuits is

QMA-complete [65]. We study this problem further to see whether this QMA-hardness re-

mains for small and structured quantum circuits. In this chapter we conclude that even for

poly-logarithmic depth quantum circuits, the Non-Identity Check problem remains QMA-

complete. This suggests that even short-depth quantum circuits deviate significantly from

their classical counterparts and might imply the hardness of simulating these circuits.

7.1 Introduction

Quantum circuits are the natural quantum analogues of classical circuits and serve as an

important model [115] to analyze the power of quantum computation. In this chapter

we study quantum circuits in the complexity perspective. We restrict our attention to the

following definition of quantum circuits and refer curious readers to [91] for general cases.

We consider pure state quantum circuits. In this model, the whole quantum circuit

111
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can be represented as a large unitary U. The initial pure state |ψ〉, which the quantum

circuit U applies on, and the measurements, which apply on the final state U |ψ〉, are

however not interesting for our purpose, and are thus not discussed here. Let U be such

a quantum circuit acting on n qubits that consists of a sequence of quantum elementary

gates U1, U2, · · · , UT such that,

U = UTUT−1 · · ·U2U1,

in which each elementary gate Ui is a unitary applied on a constant-size (often two or three)

subset of n qubits and T is the number of elementary gates in this circuit. It follows easily

that the classical descriptions of gate Ui, i = 1 · · · T and their order provide a classical

description of the quantum circuit U.

Each elementary gate builds a connection among a constant number of qubits. When

applying these elementary gates sequentially, it forms paths from input qubits to output

qubits. The depth of a quantum circuit U is the maximum number of gates encountered

on any path from an input qubit to an output qubit in the circuit. Circuit depths can also be

treated as the parallel running time, or the number of time units needed to apply a circuit

when operations may be parallelized in any way that respects the topology of the circuit.

Much of the difficulty in implementing quantum computation is the decoherence effect

of the qubits which happens in a very short time. In this sense, short-depth quantum cir-

cuits seem to be more resilient to the decoherence effect. Thus, analyzing the power of

short depth quantum circuits is of significant interest. A few examples about the power

of logarithmic depth quantum circuits have been proposed in the past few years [30, 90].

Also, a systematic procedure has also been discovered [23] to parallelize a class of quan-

tum circuits to logarithmic depths.

The Non-Identity Check problem is to decide whether a quantum circuit is far away

from identity, given a classical description of the circuit. More generally, one can ask
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whether two quantum circuits U and V are equivalent or not. It is easy to see that the

equivalence problem can be reduced to the identity check problem of UV†. Classically,

similar problems [19, 98, 117] that determine whether two given classical circuits are

equivalent turn out to admit efficient randomized solutions, i.e., in BPP. In contrast, we

know that the quantum Non-Identity Check problem is QMA-complete [65].

We have elaborated on the history of QMA-complete problems in Chapter 1. The main

result in this chapter is that Non-Identity Check for short quantum circuits remains QMA-

complete. Formally we have,

Theorem 7.1.1. Non-Identity Check of constant depth quantum circuits on n qubits is

QMA-complete if the encoding of the circuit describes each gate to at least Ω(log n) bit

of precision.

When restricting to circuits that consist of gates from a finite universal gate set, we have

the following corollary, which follows directly from Solovay-Kitaev Theorem [32].

Corollary 7.1.2. Non-Identity Check is QMA-complete for O(logδ(n))-depth quantum

circuits of an arbitrary universal gate set on n qubits where δ ≈ 3.

If input circuits make use of efficient universal gate sets as shown in Ref. [56], then we

have the following stronger result:

Corollary 7.1.3. There exists a universal gate set such that Non-Identity Check is QMA-

complete for logarithmic-depth quantum circuits using this particular universal gate set.

To prove Theorem 7.1.1, we start with the 1-D local Hamilton problem (QMA-complete),

and reduce it to the Non-Identity Check problem. The reminder of this chapter is orga-

nized as follows. In Section 7.2, we elaborate on our main technique tool, the phase and

numerical range of an operator. We prove our main result in Section 7.3 and conclude in

Section 7.4.
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7.2 Phase and Numerical Range

The numerical range of an operator A is the subset of the complex plane {〈ψ| A |ψ〉}

and is known to be convex. In particular, for normal matrices the numerical range is

simply the convex hull of all eigenvalues. For any Hermitian matrix H, λmax(H) and

λmin(H) are the largest and smallest eigenvalue of H. Denote the eigenvalue range of H

by λ(H) = λmax(H)− λmin(H).

The eigenvalues of a unitary matrix U lie on the unit circle of the complex plane. The

distribution of the eigenvalues is important to characterize the closeness of U to identity

I. See for example the illustration made in Figure 7.1 where the eigenvalues of U are

marked on the unit circle as small hollow circles. Use αmax(U) and αmin(U) to denote

the maximal and minimal value of the arguments of eigenvalues of U taken in the interval

(−π, π]. They correspond to the arguments of point A and C in Figure 7.1. Let α̃(U) be

the length of the shortest arc that contains all eigenvalues of U (which corresponds to arc
_

AC in the figure). It was known that U is perfectly distinguishable from I if and only if

α̃(U) ≥ π [94]. Define a new quantity called phase range as

(7.2.1) α(U) = min{π, α̃(U)},

and extend it to be defined on two unitary operations U and V as

(7.2.2) α(U, V) = α(U†V).

The diamond norm [75] serves as a good way of measuring distances between quantum

operations. For any superoperator Φ mapping operators acting on Hilbert space H1 to

operators acting on Hilbert spaceH2, the diamond norm ‖Φ‖� is

(7.2.3) ‖Φ‖� = max
ρ
‖Φ⊗ IH1(ρ)‖Tr,

where the maximum takes over density matrices ρ.
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Figure 7.1: Comparison of different distances

Let U be the quantum operation corresponding to unitary U,

U (ρ) = UρU†.

It was known that [111]

‖U − I‖� = 2
√

1− ν2(U),

where I is the identity operation and ν(U) is the minimum distance of the zero point to

the numerical range of U. As U is normal, its numerical range is the convex hull of all of

its eigenvalues and the diamond norm is exactly the length of segment AC in Figure 7.1.

Therefore, we have

‖U − I‖� = 2 sin
α(U)

2
.

Another way to measure the closeness of U and I is the following quantity [65]:

(7.2.4) min
ϕ
‖U − eiϕ I‖.

We can also visualize the idea of the definition in Figure 7.1. The minimum in Eq. (7.2.4)

will be achieved when ϕ is the argument of point B in the middle of the arc connection A

and C, and the minimum value is the length of segment AB. Its relation with phase range

α when α(U) < π is

min
ϕ
‖U − eiϕ I‖ = 2 sin

α(U)

4
.
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When α(U) = π, they are not related but we will always have

(7.2.5) min
ϕ
‖U − eiϕ I‖ ≥ 2 sin

α(U)

4
.

The main technical tools in our proof are α, αmax, αmin. In particular, we find the

following properties about αmax, αmin extremely useful. Note that the proof of the first

two lemmas can be found in the Appendix of Ref. [28].

Lemma 7.2.1. For unitaries U1 and U2 such that

αmax(U1) + αmax(U2) < π,

αmin(U1) + αmin(U2) > −π,

we have

αmax(U1U2) ≤ αmax(U1) + αmax(U2),

αmin(U1U2) ≥ αmin(U1) + αmin(U2).

Lemma 7.2.2. For Hermitian matrices H, K and −π < H + K < π,

αmax(eiHeiK) ≤ αmax(ei(H+K)),

αmin(eiHeiK) ≥ αmin(ei(H+K)).
(7.2.6)

Lemma 7.2.3. α(U1, U2) ≤ α(U1) + α(U2).

Proof. If either α(U1) or α(U2) equals π, the above equation obviously holds. Now if

both α(U1) and α(U2) are less than π, we can choose phases ϕ1 and ϕ2 such that

U†
1 = eiϕ1V1, U2 = eiϕ2V2,

and V1 and V2 have eigenvalues of arguments in (−π/2, π/2). The condition in Lemma 7.2.1

holds for V1 and V2 and it follows that α(V1V2) ≤ α(V1)+ α(V2) which finishes the proof

by noticing that α(U) is invariant under the change of a global phase in U.
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It’s interesting to note that Lemma 7.2.3 implies that α(U1, U2) is a distance measure on

the space of U(d)/U(1). Specifically,

α(U1, U3) = α(U†
1 U2U†

2 U3) ≤ α(U†
1 U2) + α(U†

2 U3) = α(U1, U2) + α(U2, U3).

Lemma 7.2.4. For unitaries U and V, |α(U)− α(V)| ≤ π‖U −V‖.

Proof. Since α is a distance measure,

|α(U)− α(V)| = |α(U, I)− α(V, I)| ≤ α(U†V).

Using Eq. (7.2.5) and sin(x) ≥ 2x/π for x ∈ [0, π/2], we have

‖U −V‖ ≥ min
ϕ
‖U − eiϕV‖ ≥ 2 sin

α(U†V)

4
≥ 1

π
α(U†V) ≥ 1

π
|α(U)− α(V)|.

Lemma 7.2.5. For Hermitian matrices H, K and 0 ≤ H, K, H + K ≤ π, 0 < t < 1,

(7.2.7) |α(eiHteiKt)− α(ei(H+K)t)| ≤ ct2,

where c is a constant independent of H, K and t.

Proof. Using the expansion of the matrix exponential function and the condition 0 ≤

H, K, H + K ≤ π, 0 < t < 1, it’s easy to show that there exists some constant c1 such

that

‖eiHteiKt − ei(H+K)t‖ ≤ c1t2.

The inequality follows immediately from Lemma 7.2.4.

7.3 Hardness of Non-Identity Check for Short Circuits

We will make use of the 1-D local Hamiltonian problem as our start point. Consider a

Hamiltonian H of an n-particle system with constant local dimensions. H is called k-local
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if it is the sum ∑i Hi where each Hi acts non-trivially only on k particles. In some cases,

there is also an underlying layout of the particles in the problem, for example the 1-D

chain or the 2-D lattice, such that each local term Hi acts only on neighbouring particles

corresponding to the layout. We will call them 1-D and 2-D local Hamiltonian problems

respectively. For any 1-D Hamiltonian H = ∑ Hi, the particles are arranged on a line, and

each local term Hi acts non-trivially only on two neighbouring particles. General local

Hamiltonian problems can be formalized as follows.

Definition 7.3.1 (The Local Hamiltonian Problem). Given a k-local Hamiltonian H =

∑r
i=1 Hi of n particles and two real numbers a, b, where Hi has a bounded norm and

b − a ≥ 1/poly(n), r is polynomial in n and k is O(1). It is promised that the lowest

eigenvalue of H is either smaller than a or larger than b. Output “Yes” in the first case and

“No” otherwise.

The problem was first shown to be QMA-complete for 5-local Hamiltonians [73, 5].

Recent improvements show that Hamiltonians with much simpler structures – 3-local, 2-

local, 2-D, and even 1-D cases – are all complete for QMA [69, 59, 92, 3]. Non-Identity

Check problem was first considered in Ref. [65]. It can be stated as,

Definition 7.3.2 (Non-Identity Check). Given a classical description of a quantum circuit

U on n qubits and two real numbers a, b with b− a ≥ 1/poly(n). It is promised that

min
ϕ
‖U − eiϕ I‖

is either larger than b or smaller than a. Output “Yes” in the first case and “No” in the

second.

In the definition, the quantity min
ϕ
‖U − eiϕ I‖ is used to evaluate the closeness of U

to identity. We can also use phase ranges α(U) or diamond norms instead. And it’s
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easy to see that, all the three definitions mentioned above can be used in defining the

Non-Identity Check problem without changing its complexity. The point is that they are

quantities related to each other by monotonic trigonometric functions. Moreover, any

inverse polynomial gap in one of them implies a similar gap in others. In the following, we

use phase ranges to define and analyze the Non-Identity Check problem. It is interesting

to note at this point that the hardness of Non-Identity Check implies the hardness of the

estimation of the diamond norm of the difference of two unitary quantum circuits to inverse

polynomial precision.

Proof of Theorem 7.1.1. Now we sketch the proof of the QMA-hardness of the Non-Identity

Check problem by reducing the 1-D local Hamiltonian problem to it.

Suppose we are given an instance of the 1-D local Hamiltonian problem which has

input H = ∑r
i=1 Hi and real numbers a, b with at least an inverse polynomial gap. H

is a Hamiltonian of an n particle system with local dimension d and each term Hi is an

operator on two neighboring particles which can be described by a d2 by d2 Hermitian

matrix. It is a “Yes” instance if there exists some density matrix ρ such that 〈H, ρ〉 ≤ a

and a “No” instance if 〈H, ρ〉 ≥ b for all ρ. This problem is known to be QMA-complete

for d ≥ 12. For simplicity, one can always rescale the problem and assume that Hi’s are

positive semidefinite and ‖Hi‖ ≤ 1.

Note that the 1-D property of the problem allows us to write H as Hodd + Heven where

Hodd and Heven each consists of local terms acting on disjoint particles. This is illustrated

in Figure 7.2. Hodd is the sum of H1, H3, H5, . . . where H1 acts on particle 1 and 2, H3

acts on particle 3 and 4, etc. Heven consists of H2, H4, . . . where H2 acts on particle 2 and

3, H4 acts on particle 4 and 5, etc.

The first step in the reduction is to modify the Hamiltonian such that it will have eigen-

value r, where r is the number of local terms. To that end, we add an additional dimension,
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Figure 7.2: A 1-D local Hamiltonian

labeled by |d〉, to each particle, and consider the Hamiltonian with local terms

H̃i = |d〉〈d| ⊗ |d〉〈d|+ Hi.

It should be understood that Hi acts trivially when underlying particles are in state |d〉.

Let H̃ be the sum ∑i H̃i. It’s obvious that |d〉⊗n is an eigenvector of H̃ with eigenvalue

r, while the smallest eigenvalue of H̃ equals that of H. The 1-D Hamiltonian problem of

H is now reduced to deciding if the eigenvalue range of H̃, denoted by λ(H̃), is at least

r− a or no more than r− b.

Before further reducing the problem, we normalize H̃ by dividing 2r/π for technical

convenience. Denote the normalized Hamiltonian again by H and its local terms by Hi

for simplicity. After the normalization, we have ‖H‖ ≤ π/2. Let l and s be (r− a)π/2r

and (r − b)π/2r respectively. It’s a “Yes” instance if λ(H) ≥ l and a “No” instance if

λ(H) ≤ s. Note that l and s are separated by an inverse polynomial gap.

We can construct a Non-Identity Check instance as follows. The circuit is simply

(7.3.1) UH = eiHeventeiHoddt,

with two carefully chosen threshold numbers a, b that have an inverse polynomial gap. As

the local terms H1, H3, H5, . . . in Hodd are on disjoint particles, eiHoddt equals the tensor

product of eiH1t, eiH3t, eiH5t, . . . and can be implemented in parallel. Similar properties

hold for Heven. Therefore UH is indeed a constant depth circuit.
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Since λ(H) is promised either larger than l or smaller than s, one can verify that the

promises for the above Non-Identity problem also hold. If λ(H) is larger than l, it follows

from Lemma 7.2.5 that α(UH) is at least

α(eiHt)− ct2 = λ(Ht)− ct2 ≥ lt− ct2 = b.

If λ(H) is smaller than s, Lemma 7.2.2 implies that α(UH) is at most

α(eiHt) ≤ st = a.

It’s also easy to check that the eigenvalue range problem of H is a “Yes” (or “No”) instance

if and only if the Non-Identity Check problem of UH is a “Yes” (or “No”) instance.

It’s worth noting that the main idea in the proof is highly related to quantum simulation

using Trotter expansion

eA+B = lim
n→∞

(eA/neB/n)n.

Fortunately however, it is enough to simulate the first round of eA/neB/n and leave the

amplification procedure to the verifier.

The circuit we constructed above contains quantum gates such as eiH1t which need

Ω(log n) bits to specify. In order to translate the result to the case in which only a finite

universal set of quantum gates are allowed, we need to expand each gate in the circuit using

Solovay-Kitaev theorem. This will give us the result in Corollary 7.1.2. The main problem

here is to analyze how the imperfections in each gate will affect the phase range α of the

circuit. Suppose we want to use unitary gates U1 and U2 but the actual implementations
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are unitary gates V1 and V2 with V1 = U1 + E1 and V2 = U2 + E2, then

‖V1V2 −U1U2‖ = ‖(U1 + E1)(U2 + E2)−U1U2‖

= ‖U1E2 + E1(U2 + E2)‖

= ‖U1E2 + E1V2‖

≤ ‖E1‖+ ‖E2‖,

and similarly,

‖V1 ⊗V2 −U1 ⊗U2‖ ≤ ‖E1‖+ ‖E2‖.

These two facts and Lemma 7.2.4 imply that for any circuit C and its imperfect implemen-

tation C′, we have,

|α(C)− α(C′)| ≤ π‖C− C′‖ ≤ π ∑
i
‖Ei‖,

where Ei’s are errors in all gates of C′. Thus, the total error in α of the circuit is at

most π times the summation of norms of all errors in each gate. It can be made inverse

polynomially small and much smaller than the gap between threshold parameter a and b.

This validates the claim in Corollary 7.1.2.

It’s proved in [56] that there exists some universal gate set such that only a O(log(1/ε))

number of gates are required to achieve an error bound of ε. A similar argument as above

gives the proof of Corollary 7.1.3.

7.4 Conclusion

In this chapter, we conclude that Non-Identity Check for constant depth quantum circuits

is QMA-complete given Ω(log n) bits of precision to each gate. However, the depth may

vary when using different universal gate sets. Employing different versions of Solovay-

Kitaev theorem, we are able to prove the hardness for circuits of poly-logarithmic or even

logarithmic depths.
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It is interesting to compare our result with the problem of distinguishing mixed state

quantum circuits in terms of the diamond norm [4]. Although the main difference is simply

whether some output are discarded or not, the problem of distinguishing mixed state quan-

tum computation seems to be much harder. In fact, it was shown to be QIP-complete [97].

Rosgen [96] further proved that logarithmic depth mixed state quantum circuits are as hard

to distinguish as polynomial depth ones and thus distinguishing logarithmic depth mixed

state quantum circuits remains QIP-complete.

We leave the complexity of Non-Identity Check for constant depth quantum circuits

with gates from a finite universal gate set as an interesting open problem.



CHAPTER 8

Conclusions and Future Directions

In this chapter, we summarize our results about quantum interactive proof systems.

Moreover, we also briefly survey the author’s contribution to other topics in quantum com-

putation during his PhD period. We conclude this chapter with a few on-going projects

about quantum interactive proof systems and our attack plans.

8.1 Conclusions

In this dissertation, we make several important contributions to the study of quantum in-

teractive proof systems. Our results help determine the complexity of a few variants of

quantum interactive proof systems. Since quantum models usually contain their classi-

cal counterparts as special cases, and thus inherit their classical lower bounds, our main

contributions are to show their upper bounds, namely to provide a way to simulate these

quantum models in desired complexity classes. To that end, we formulate a framework,

called the equilibrium value method, to provide space-efficient solutions to a class of opti-

mization problems that arise naturally in these quantum models. Applying this framework

to specific models, we obtain PSPACE upper bounds for single-prover quantum interactive

proof systems, short quantum refereed games and a variant of multiple-prover quantum

Merlin-Arthur games. We elaborate more as follows.

• In Chapter 3, we formulate our equilibrium value method. We illustrate our approach

124
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of reformulating optimization problems as zero-sum games and point out a few tech-

nical difficulties in doing so. In particular, we highlight two difficulties: the first

one is that one can only hope to approximate equilibrium values of zero-sum games

rather than to solve them exactly, and the second one is that we need an extra round-

ing theorem to convert approximate solutions to exact solutions without incurring

too much error. We also highlight a specific form of equilibrium values of zero-sum

games that can be directly solved by the matrix multiplicative weight update method.

To illustrate our approach, we go through one example about simulating SDPs that

come from QIP(2). We conclude this chapter with comparisons with Arora-Kale’s

use of the matrix multiplicative weight update method and how our solutions can be

made space-efficient.

• In Chapter 4, we demonstrate then how our equilibrium value method can directly

lead to the result that PSPACE contains QIP, and thus QIP=PSPACE. In fact, we pro-

vide two approaches to this result. The first one exploits more about the property of

quantum interactive proof systems. It begins with one QIP-complete problem, called

close images, and then translates it into an equilibrium value problem, which admits a

direct solution from the matrix multiplicative weight update method. The second ap-

proach is to apply our equilibrium value method to solve SDPs from QMAM, which

resembles Jain et al.’s approach, however, provides a much cleaner solution.

• In Chapter 5, we demonstrate how our equilibrium value method extends to much

broader situations and provides PSPACE upper bounds for short quantum refereed

games. This is the situation where direct applications of the matrix multiplicative

weight update method fail and two main difficulties in applying our equilibrium value

method come into play. We find a unified solution to these two difficulties by using

appropriate penalties and a recursive rounding method. Our upper bounds also imply
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a crucial difference between public and private randomness in refereed games.

• In Chapter 6, we switch to quantum Merlin-Arthur games with two-provers (QMA(2)).

We provide a PSPACE upper bound to a non-trivial variant of QMA(2) that is up

to date the most general one known in PSPACE. This result follows from a clever

enumeration idea with the help of the problem structure and our equilibrium value

method. We also provide an alterative and conceptually simpler algorithm for a re-

lated problem than previous results.

• In Chapter 7, we contribute to QMA-complete problems, where we demonstrate

that the “Non-Identity Check” problem remains QMA-complete on circuits of poly-

logarithmic depths, improving on polynomial depths from previous results. Our re-

sult follows from an application of the QMA-completeness of 1-d local Hamiltonian

problems and also from a careful analysis of phase and number ranges of operators.

Contributions to Other Quantum Computation Topics

Besides working on quantum interactive proof systems, the author has also been actively

working on several other interesting topics in quantum computation and made the follow-

ing contributions.

• Quantum Communications. Proving quantum analogues of classical information

theorems is usually a task fraught with difficulty, even for fundamental problems.

Compression of quantum mixed states is one such example, where no clean charac-

terization but a conjectured Holevo bound exists for the attainable compression rate.

In an on-going project with Yaoyun Shi, we identify a class of ensembles of quantum

mixed states whose compression rate, under a reasonable conjecture, is arbitrarily far

away from the Holevo bound, contrary to the widely held belief. The compression

rate of our examples is lower bounded by the sign rigidity of a slightly corrupted
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Hadamard matrix; we conjecture that the high sign rigidity of uncorrupted Hadamard

matrices [43] is preserved under this particular corruption.

It is also fascinating to study the limit of the quantum advantage in communication

complexity problems, especially in problems that are both interesting on their own

and require new lower bounding techniques. The generalized “Hidden Matching

Problem” to arbitrary group size is one such example: this original problem serves as

the first exponential separation between quantum and classical one-way communica-

tion complexity [10] and is also intimately related to the quantum argument for the

exponential lower bound of 2-query Locally Decodable Codes (LDCs) [71]. In [103],

with Yaoyun Shi and Wei Yu, we illustrate that this kind of quantum-classical sep-

aration is unique for group size two, and rule out the possibility of extending the

quantum argument of super-polynomial lower bounds for LDCs to more queries.

Our proofs are new applications of the matrix hypercontractive inequalities [14].

• Sum of squares and representation of quantum convex sets. This project tries

to build the connection between the sum of squares relaxation of the general posi-

tive polynomials, a pure mathematical field related to Hilbert 17th problem, and the

representation of interesting convex sets in quantum information. Note that we are

only interested in those convex sets that cannot be represented by a finite number

of hyperplanes, i.e., not polyhedral. Our first result systematically investigates such

a connection about the set of separable states. Previously, one such connection ap-

peared implicitly in [11]. Moreover, we prove that a version of the quantum de Finetti

theorem follows from the universal denominator argument in the approach of [95] to

Hilbert 17th problem. We also recover several properties about small dimension or

low rank PPT states.

• Quantum Correlations. The set of quantum correlations generated by shared entan-
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glement between distant parties is an important but mysterious object. It is closely

connected to quantum non-locality, an intrinsic feature of quantum mechanics. How-

ever, the only known clean characterization of quantum correlations is for XOR

games through Tsirelson’s bound [29]. Fundamental questions, such as whether there

is a bound on the amount of entanglement to approximate any given quantum corre-

lation, remain open.

In an on-going work with Zhengfeng Ji, we partially answer the above question by

giving an explicit upper bound on the amount of entanglement for approximating

any correlation in a relaxed model called compatible games. In this new model, the

tensor product structure among the Hilbert spaces of different parties is not enforced,

but rather replaced by a weak commutation condition. Interesting instances such as

XOR games and unique games can be characterized in this model, although it is not

clear how it connects to general entangled non-local games.

We are also interested in the computational hardness of approximating the value of

non-local games, in which we focus on the difference between non-local games with

classical correlations and those with quantum correlations. A prominent example is

that approximating the value of unique games (a problem conjectured to be NP-hard)

becomes polynomial-time solvable in the presence of shared entanglement [70]. In an

on-going work with Kai-Min Chung and Fang Song, we confirm that the NP-hardness

of approximating the value of projection games remains with shared entanglement.

• Device-independent Quantum Cryptography. Device-independent quantum cryp-

tography is a recent active research topic. It studies the scenario to perform quantum

cryptographic tasks (such as quantum key distributions and so on) without trusting

quantum devices, which could be potentially manufactured by a malicious adversary.

In an on-going project with Kai-Min Chung and Yaoyun Shi, we provide a device-



129

independent protocol to extract uniform randomness from any arbitrary weak random

source through deterministic operations, which is totally impossible in the classical

setting without the help of untrusted quantum devices.

8.2 Future Directions

8.2.1 Continued Effort on Quantum Refereed Games

In Chapter 5, we fully characterize the power of QRG(2). However, the power of QRG(k)

(as well as RG(k)) remains unclear for k ≥ 3. In particular, we would like to investigate

the k ≥ 3 case in the following two aspects.

Relation between EXP and QRG(k)

It is well-known that quantum interactive proofs admit three-turn protocols [74] (i.e.,

QIP = QIP(3)), while an interaction of a polynomial number of turns is necessary in

the classical case. A natural question is to ask whether such a phenomenon is also true

in the context of refereed games. Following the protocols in [40], the classical refereed

games seem to require a polynomial number of turns in order to simulate EXP. It is un-

clear whether a short (i.e., with a small number of turns) quantum refereed game protocol

can simulate an arbitrary polynomial-turn protocol analogously to [74]. It is also unclear

whether one can directly make use of the public-coin version of the refereed games to sim-

ulate EXP. On the other side, one can also try to show that QRG(k) for constant k ≥ 3 is

strictly contained in EXP.

Attack Plan: one possible approach is to compress the classical refereed game protocols

that simulate EXP [40] into a small number of turns by using quantum protocols. Another

possibility is to make use of the public-coin protocols in the way similar to Watrous’s

work, which is, however, excluded by our partial result [53]. One can also try to apply

other techniques, such as an ingenious improvement of the scheme that simulates QIP by
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QIP(3) [74], to our case.

On the other side, one can also try to design algorithms that simulate quantum refereed

games of a small number of turns more efficiently (i.e., better than exponential time), and

thus exclude the possibility of QRG=QRG(k) for sub-polynomial ks. The main difficulty

is to find a good representation of the alternative interaction with two provers for multiple

turns. Competing-prover quantum games of multiple turns admit a natural representation

by quantum strategies [52], while working with such representations is a task fraught with

difficulty [61]. Alternatively, we use Kitaev’s transcript representation [72] to charac-

terize the multi-turn interaction with one prover and then the multi-turn interaction with

another prover [53] separately. However, it is unclear whether such a representation can

be extended to the interaction of three or more turns. Even if such an extension exists,

it is conceivable that a more sophisticated rounding method, other than the Bures metric

one [53], will be necessary.

Relation between QRG(k) and other quantum complexity classes

It is also natural to ask about the relative expressive power within quantum complexity

classes. For instance, QIP(2) and QRG(1) are both known to be contained in PSPACE,

but the relation between these two are not known.

Attack Plan: we would like to investigate whether the equilibrium value formulation of

QIP(2), proposed in the alternative proof of QIP(2) ⊆ PSPACE in Section 3.3, can be

carried out by a one-turn quantum refereed game protocol or its reasonable variant.

8.2.2 Continued Effort on QMA(2)

We already discussed the upper bound of a variant of the computational class QMA(2).

This project is a continued effort in that direction. In particular, we believe that a proof

of a better upper bound of QMA(2) might need to utilize an improved technique in the
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following three directions, separately or jointly. On the other hand, a better understanding

about any following topic is also interesting on its own right.

Manipulation of the protocol

A good QMA(2) protocol not only provides a special Q to Problem 6.1.1 that might have

an efficient solution, but also provides a large gap between completeness and soundness.

Partial results also suggest this possibility. It is known [2] that a strong amplification

scheme of QMA(2) protocols, if exists, would imply the collapse of QMA(2) to QMA.

In [55], Harrow et al. show any QMA(2) protocol is equivalent to a canonical protocol

where the only operation applied to the separable proofs at the same time is the SWAP-

test. As a result, they obtain a week amplification scheme to get better bounds on soundness

and completeness.

Algorithms with large allowed errors

The NP-hardness of Problem 6.1.1 does not exclude the possibility of the existence of ef-

ficient algorithms for large additive errors. In fact, it is a common situation that certain

combinatorial optimization problems are NP-hard to solve exactly but can be efficiently

approximated with large additive errors. An ambitious target is to develop a generic al-

gorithm to solve Problem 6.1.1 in this scenario. However, one can take a more humble

approach by developing an efficient algorithm based on special protocols or finding a

polynomial time approximation scheme (PTAS) rather than an efficient algorithm. Such

a PTAS does exist when Q is restricted to certain structure. Furthermore, it comes to our

attention that similar problems are actively studied in the field of operations research [24]

under the name of “Bi-Quadratic Optimization over Unit Spheres”. The latter problem

falls into the category of homogenous polynomial optimization with quadratic constraints,

which is an interesting and actively studied instance of the so-called polynomial optimiza-
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tion. The connection between polynomial optimization and theoretical computer science

has been observed in many places, especially in the recent study of the hardness of ap-

proximation and the unique game conjecture.

Good relaxation and rounding schemes for separable states

As a potential quantum approach of obtaining good algorithms, we want to highlight the

possible contribution of a better understanding of separable states to a good relaxation

and rounding scheme for solving Problem 6.1.1. There are a few well-known approaches

to relax the separability requirement, such as the Positive Partial Transpose (PPT) condi-

tion. Unfortunately, almost for every such relaxation, we know the existence of a bad case

where a very entangled state (measured in terms of the trace distance from the set of sepa-

rable states) lies in the feasible set after the relaxation. However, this is not necessarily an

issue for the purpose of solving Problem 6.1.1, especially when large errors are allowed.

It is possible to develop an approach that is insufficient for the purpose of telling separa-

ble states from entangled ones but yet powerful enough for the purpose of distinguishing

between the two promises of the optimization problem.

Summary: We would like to make use of the protocol in [55] to obtain a good completeness

and soundness separation as our start point. We want to continue the effort of finding a

PTAS, especially via the randomized rounding method following the framework of Barvi-

nok’s. In particular, we hope the simplified protocol in [55] that only contains SWAP-test

applied on both proofs is helpful for this effort. Also, we hope a better understanding of

the set of separable states is instrumental to the design of a good relaxation and rounding

scheme. We plan to explore further on the connection between criterions of the separability

of quantum states and Hilbert 17th problem.
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