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Abstract 

 

Eutrophication of receiving water is often cited as a significant environmental impact of 

shrimp aquaculture. However, it is difficult to trace sporadic nutrient inputs from harvests 

and to separate effects of aquaculture effluent from other nutrient sources. This study 

attempted to trace impacts of shrimp wastewater in Thailand, where shrimp farming 

dominates much of the coastal landscape and economy. Stable isotopes of N and C, C:N 

ratios,  and water quality analysis were used to evaluate the impact of shrimp farm effluent 

from small scale farms using semi intensive management with minimal treatment of 

discharged water. Farms discharge into the Chucachur Canal, a tributary to the Bang Pakong 

River in the Northern Gulf of Thailand. There were exceptionally high levels of nutrients in 

the canal, stemming both from shrimp aquaculture and from other agricultural sources. TP 

exceeded Thai standards for all sampling points and days; NH3 exceeded Thai standards 

near a pig farm source on all days, as well as in a plume of shrimp wastewater on a day 

when a farm was harvested. Multiple linear regression on stable isotope data indicated that 

insolation was the most influential variable determining δ
15

N and δ
13

C in plants in the canal. 

This analysis also indicated that levels of NO2 and NH3 contributed to the variation in 

isotope ratios measured in periphyton and hyacinth, respectively. Overall, δ
15

N isotope 

ratios indicated that although nitrogen inputs did explain some isotopic concentrations in 

plants, isotope ratios were driven more by physical processes like insolation and available 

oxygen than by inputs of particular δ
15

N signatures from shrimp farms. My results indicate 

that although it is likely that shrimp farming on the canal does impact the environment, 

other factors significantly influence it as well, with other anthropogenic inputs such as pig 

farming having a more significant and continual impact than temporal pulses of nutrients 

from pond harvests. 
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Introduction 

 

As humans continue to exploit Earth’s finite resources faster than they are replenished, it is clear 

that to be sustainable the human race must find a way to feed itself without sacrificing the 

environment that it depends on to provide its food. One of the areas of food production that has 

been overly taxed is seafood production.  Although wild fish catches have plateaued, demand for 

seafood continues to rise with human population, and aquaculture continues to grow to fill the gap 

between supply and demand. Currently, aquaculture is the fastest growing food production system 

in the world and is expected to continue to expand at a rate of nearly 10% per year (Diana 2009). 

This increase, coupled with other definitive characteristics of aquaculture, including feeding 

practices and water treatment methods, implies that aquaculture may have a potentially large and 

increasing impact on loading anthropogenic nitrogen to sensitive coastal ecosystems. Shrimp 

aquaculture is one such example of a nutrient intensive production system. The average industry 

producer uses high protein feed to culture organisms in intensive systems, and a large percentage 

of nitrogen inputs (35-57%) are discharged with wastewater (Briggs and Funge-Smith 1994; 

Jackson et al. 2003a).  Often this wastewater is discharged directly to receiving creeks, rivers, or 

estuaries without treatment, contributing significantly to eutrophication (Naylor et al. 1998; 

Preston et al. 2000).  It has been asserted that these nutrient inputs have a significant and 

increasing detrimental impact on coastal marine nutrient dynamics (Ryther and Dunstan 1971; 

Howarth and Marino 2006; Smith et al. 2006). 

 

Although nutrient dynamics and the influence of anthropogenic sources of these nutrients in 

coastal ecosystems are not completely understood, it is known that loading nutrients into a system 

can have adverse impacts, including increasing prevalence of coastal dead zones due to 

decomposition of plankton blooms, and the loss of ecologically important sea grass beds (Udy 

and Dennison 1997; Vitousek et al. 1997; Lapointe et al. 2004). Many governments and 

aquaculture organizations in developed and developing countries such as Australia, New Zealand, 

Honduras and Thailand have established water quality parameters that are measured to monitor 

the impact of the industry on the environment (NEB 1994; Boyd and Green 2002). For instance, 

goal oriented monitoring programs in Honduras, run as a collaboration between the Honduran 

government and the Honduran National Association of Aquaculturists, aim for no greater than 
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3mg/L ammonia (NH3) and 10mg/L total nitrogen (TN) in discharged water, and coastal waters 

are monitored to watch for levels of total nitrogen over 0.75 mg/L TN (Boyd and Green 2002). 

Unfortunately, these methods to monitor water quality can be time consuming and expensive. It is 

estimated that a startup project would cost an upfront $300,000, with an annual cost of $159,000 

thereafter (Boyd and Green 2002). Additionally, discrete sampling events may miss temporal and 

spatial variability in nutrient concentrations, since farm derived nutrient pulses can vary 

temporally, with large pulses occurring at harvest or during water exchange. Due to the 

complicated nature of nitrogen cycling in receiving waters, it can be difficult to estimate the 

ecosystem impact of nutrient inputs by a simple evaluation of chemical concentrations (Voss and 

Struck 1997; Wolanski et al. 2000). 

 

Conventional water quality analysis does not differentiate between various sources of nutrients, or 

their ultimate fate. If a shrimp farm is located downstream from a sewage treatment outfall it is 

difficult to determine which source may generate the high organic nitrogen concentrations in local 

waters. Aquaculture could be blamed for eutrophication when there may be more important 

sources of reactive nitrogen, like agricultural fertilizers or domestic and municipal human sewage 

(Jones et al. 2001; Burford et al. 2003).  Additionally, ecological impacts in the form of nutrients 

incorporated into growing tissue may also be observed at greater distances from nutrient sources 

than the zone of elevated nutrient concentrations in the water (Jones et al. 2001; Lin and Fong 

2008). This implies that conventional water quality testing may not be a sufficient indicator of 

ecosystem impact by anthropogenic nitrogen.  In response to this concern about the effectiveness 

and cost of conventional water quality monitoring, stable isotope analysis has been suggested as 

an alternative indicator to evaluate impacts of anthropogenic nutrients (Tucker et al. 1999; 

Costanzo et al. 2001; Jones et al. 2001) and to trace sewage and agriculture nutrient effects in 

coastal areas (Tucker et al. 1999; Daskin et al. 2008).   

 

Stable isotope analysis traces varying isotope ratio signatures found in different organisms to 

determine nutrient transfer within a system of interest. For instance, isotopic ratios of nitrogen 

within organisms change because biochemical reactions process heavy isotopes of nitrogen (
15

N) 

at slower rates relative to lighter isotopes (
14

N), essentially concentrating the heavy 
15

N in tissues 

during metabolism. This process is called fractionation, and results in characteristic ratios of 
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15
N:

14
N in different organisms. Since fractionation (and thus altered concentrations of 

15
N) occurs 

at each trophic level, organisms at higher trophic levels have higher ratios of 
15

N:
14

N. These ratios 

are compared to a standard ratio of atmospheric nitrogen to give a delta N number (
15

N) which is 

presented in a per mil difference from the standard ratio and indicates how much fractionation has 

occurred. On average there is a 3-5 per mil increase from one trophic level to another (Fry 2006). 

Additionally, other human and biological processes can also significantly influence the δ
15

N 

signature of different organisms. For instance, nitrification and denitrification can both have a 

substantial effect on δ
15

N values, with increasing fractionation from 10 to 40 per mil (Fry 2006).  

Furthermore, because all nitrogen fixed in the Haber Bosch process is taken from N2 in the 

atmosphere without any fractionation, synthetic fertilizers and plants deriving their nitrogen from 

this process have very little differentiation from the standard (Fry 2006).  

 

Ratios of carbon isotopes (
12

C and heavy 
13

C) also provide information about biochemical 

processes characteristic of various organisms, and shed light on the dynamics of an ecosystem. 

Because heavy 
13

C proceeds through photosynthesis at a slower rate (fractionating the carbon 

isotopes in the resulting tissue), autotrophic organisms have ratios of 
12

C to 
13

C that are different 

from the ratio available in the atmosphere. This fractionation is generally determined by the 

biochemical and physical traits of the plant, especially on land, where CO2 diffuses quickly 

through the air, and lighter CO2 with 
12

C atoms can be preferentially taken up. 
13

C values vary 

significantly with type of photosynthesis, with C3 photosynthesis, used by a majority of plants, 

fractionating to -28 per mil on average, and C4 photosynthesis, used by corn, sugar cane and many 

tropical grasses, fractionating to an average of -13 per mil. However, a study by Finlay et al. 

(1999) demonstrated that water velocity and rate of diffusion of CO2 past the boundary layer of 

photosynthesizing algae had a significant impact on δ
13

C values in varying California stream 

habitats. In productive streams, algae from pools (where water velocity was slow) showed much 

less fractionation of carbon isotopes, with average values ranging from -17.9 to -21.7 per mil 

δ
13

C. However, in fast moving riffles of the productive streams δ
13

C was more fractionated (from 

-25.6 to -27.5).  

 

Another indicator of nutrient dynamics in a system are the ratio of carbon to nitrogen (C:N) found 

in the tissues of organisms. C:N is the total ratio of carbon to nitrogen atoms found in a tissue, and 
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changes with the biology and chemistry of an organism. Higher carbon in relation to nitrogen is 

found in plant material, which is made of cellulose and other molecules that contain large 

amounts of carbon. Lower values of carbon in relation to nitrogen are found in heterotrophs and 

other protein rich organisms, which contain more nitrogen. C:N ratios have been used with stable 

isotopes to trace sources of organic matter in aquatic and marine environments (Andrews et al. 

1998; Usui et al. 2006). However, difficulties in tracing sources and differences in decomposition 

rates can make assessment difficult (Meksumpun et al. 2005). Additionally, an experiment by 

Dorenbosch and Bakker (2011) demonstrated that the C:N ratio of aquatic macrophytes decreased 

when plants were grown in high nutrient environments, in this case  with 2.2 mg KH2PO4 L
-1

 and 

10.4 mg NH4NO3 L
-1

. 

 

These characteristic differences in stable isotope ratios can be useful in determining nutrient 

sources for organisms. For instance, nitrogen isotope ratios have been used to trace anthropogenic 

nitrogen sources through the ecosystem (Kao and Liu 2000; Cole et al. 2004; Meksumpun et al. 

2005; Fry 2006; Daskin et al. 2008; Kon et al. 2009; Pinon-Gimate et al. 2009). Human sewage 

inputs generally produce considerably higher concentrations of N
15

 than shrimp farm effluent, 

with human sewage averaging 7 to 10 per mil 
15

N, and shrimp aquaculture averaging 5 to 6 per 

mil 
15

N. Both are also significantly higher than agricultural runoff, which averages -3 to 3 per 

mil 
15

N (Voss and Struck 1997; Tucker et al. 1999; Costanzo et al. 2001; Jones et al. 2001; 

Pinon-Gimate et al. 2009). Additionally, it is challenging to determine the fate of nutrients from 

shrimp ponds because volatilization, nitrification and denitrification in the ponds change the 

normal effluent isotope ratios produced by feeds used to grow shrimp (Handley and Raven 1992; 

Alongi et al. 2000). Costanzo et al. (2004) evaluated effluents from an isolated flow-through 

shrimp farm on the Northern coast of Australia, finding a signal of about 6 per mil 
15

N in the 

receiving ecosystem.  The study utilized anchored growth chambers containing a fast growing 

macroalgae, which would quickly assimilate isotopes and worked well to establish a spatial 

gradient of dilution as the nutrients entered the bay.  A later study of isotopes in anchored 

macroalgae samples in a bay in French Polynesia indicated that stable isotopes were the most 

sensitive indicator of impacts from a shrimp farm there, which also had an isotopic signature 

between 5 and 6 per mil (Lin and Fong 2008). 
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Stable isotopes have been successfully used to trace a signature from shrimp farms in the 

receiving environment in the past, but the procedure was complicated. Instead, it has been 

suggested that simply providing a surface for periphyton to adhere to may be an analogous 

alternative to collect plant material from receiving waters to analyze for stable isotope 

composition (Ledwin 2010). This technique was implemented on shrimp farms in Belize and 

detected elevated 
15

N levels near the outfalls of shrimp farms, indicating a perceivable zone of 

influence for the shrimp farms. However, some unexpectedly low N
15

 results indicated that 

nitrogen fixing blue green algae may become established in the periphyton and influence the 
15

N 

ratio results by fixing atmospheric nitrogen (Ledwin 2010). While there was success with tracing 

elevated levels of 
15

N from these shrimp farms, the lack of other human impacts in these study 

areas meant that there were few other inputs of 
15

N isotopes.  Most areas where shrimp farming 

occurs also host many other industries and users that discharge nitrogen into the receiving water 

(e.g. livestock culture, agriculture, human and industrial waste) which would potentially 

complicate the evaluation of shrimp farm effluent on isotope values in periphyton. However, the 

unique fractionation of different organisms in theory supports the evaluation of nitrogen inputs 

from different sources by tracing their unique signatures in the receiving environment (Fry 2006).  

 

The purpose of this study was to evaluate the impacts of shrimp farming on water quality and 

aquatic ecosystem processes in the Bang Pakong River Region of Thailand. Specific objectives 

were to: 1) determine if there was a common isotope and water quality signature from shrimp 

farms in the area; 2) try to trace this signature in canal water and isotopic signatures of plants 

grown in that water; and 3) determine what water quality and physical parameters influenced the 

isotope signature.  

 

I expected that there would be a common 
15

N isotope signature from shrimp farms, which should 

be 2 to 5 per mil higher than the feed signatures. I also expected that this signature would be 

different than other sources of nitrogen, so it would be perceivable in plants and animals growing 

in the receiving environment and would be more diluted with distance from the source of the 

nutrients. Additionally, higher levels of 
15

N should be correlated with levels of organic nitrogen 

parameters in the water, but I expected the isotope signature from shrimp farms to be perceivable 

at a greater distance than elevated nutrient levels. 
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Study Site 

 

The study site was chosen to represent an area with shrimp farms using wastewater treatment 

practices common to the area. Expert opinion and data from a region-wide farmer survey 

conducted separately indicated that shrimp farming in the Bang Pakong River region was 

dominated by small-scale, privately owned and operated farms which were semi-intensively 

managed. There are approximately 10,000 of these small-scale farms in the region. Litopenaeus 

vannamei (Pacific white shrimp) were commonly stocked at medium to low densities (20-100 

post larvae/m
2
), fed formulated shrimp feed daily, and grown for 3-4 months before harvest. 

Minimal preconditioning of water was practiced, little water exchange took place, and water was 

directly discharged without treatment during harvest. There were many other agricultural and 

manufacturing industries in the region, as well as large population centers, which also contributed 

nutrients to the system.  

 

The Bang Pakong Basin is characterized by a diurnal tide, which greatly influences the flow of 

the river twice daily. The low topography of the region leads to tidal influence extending nearly 

100km upriver. The region is also highly altered hydraulically to provide water for inland farms. 

Numerous irrigation canals are maintained by the government and were originally constructed to 

provide water for rice farming. These canals have subsequently been used to supply water to 

shrimp farms. It is against Thai federal regulations to discharge harvest water directly to the 

canals without treatment (NEB 1994). A 3 km irrigation canal connected to the Bang Pakong 

River, the Chucachur Canal, was selected as the representative site to evaluate nutrient inputs 

from shrimp farms. It is located about 45 km upstream from the mouth of the Bang Pakong River. 

The main canal was always inundated with water, but depth and the direction of flow changed 

twice daily under influence of the tide. Numerous side channels branch off from the main canal, 

connecting additional agriculture and aquaculture farms, but most did not have significant flow. 

Farms along the canal all used similar management practices, including pond size, stocking and 

feed application. Closer to the mouth of the canal more shrimp farms were connected by small 

connecting canals, and thus the density of farms increased further downstream.  
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Methods 

 

PVC poles were used to passively collect periphyton, and subsequently used to measure ambient 

isotope ratios available in the environment at each sample site. To do this, poles were driven into 

the substrate of culture ponds and in the canal at regular intervals. Feed was also collected to 

determine isotope ratios of inputs to the shrimp farms. Because periphyton was initially difficult 

to grow on Chucachur Canal, water hyacinth (Eichhornia crassipes, an introduced aquatic plant 

which grows vigorously throughout the Bang Pakong River) was used there as an additional 

isotope-collecting organism.  Benthic mollusks (Order: Basommatophora, Family: Physidae and 

Order: Unionoida Family: Unionidae) were also collected from the canal for stable isotope 

analysis. 

 

All samples for stable isotope analysis were rinsed, dried for 48 hrs at 60 degrees C, ground, and 

packed into 5mm tin capsules. Samples were processed for heavy 
13

C and 
15

N isotope values at 

the UC Davis Stable Isotope Facility using a PDZ Europa ANCA-GSL elemental analyzer 

interfaced to a PDZ Europa 20-20 isotope ratio mass spectrometer (Sercon Ltd., Cheshire, UK). 


15

N and δ
13

C were reported in per mil difference from experimental standards. Total mass of C 

and N in the sample were reported, and C:N ratio was determined by dividing total C by total N.  

 

Sampling points were selected at regular intervals along the canal. The points proximal to the 

river (C4-C14) were accessed by small boat, and the points distal to the river (C1-C3) were 

accessed by road and foot. On 26 June 2009, a 1.5-meter hollow PVC pole was driven into the 

channel bottom at each point to passively collect periphyton.  However, with the vast tidal 

variation in depth, water was not consistently in contact with any part of the pole throughout the 

tidal cycle and periphyton did not grow.  After seven days without periphyton growth, floating 

cages were designed and constructed which surrounded the pole and floated up and down with 

water level. Water hyacinth was collected from canals on the Asian Institute of Technology 

campus, 80 km from the study site.  After two days in fresh water, the newest leaf on each plant 

was collected and dried for isotope analysis as the pre-placement value. On 10 July 2009 a basket 

containing a hyacinth plant was placed at each sampling point along the Chucachur Canal. While 



 8 

deployed, the flotation devices maintained constant contact with the water as depth changed with 

the tide. On 22 July 2009, periphyton was observed growing on the flotation devices and was then 

included in stable isotope analysis. Insolation at each sampling point was estimated one time from 

approximate cover of the 50 meters above and below each point (100 meters total). 

 

Hyacinth and periphyton samples were collected on 22 July, 13 August, and 29 August 2009, at 

as close to regular intervals as logistics would allow. These days coincided with 2 weeks (July 

22), 2 days (13 August) and 0 days (August 29) after known harvests from at least one shrimp 

farm along the canal. Hyacinth and periphyton samples were collected at each point whenever 

possible, however, some samples were lost during high water events, or due to problems with 

access during sampling.  

 

Snail and mussel tissue were collected from accessible points on 22 July 2009 by rinsing sediment 

collected by hand from the canal bottom through a mesh sieve. Two species were sampled, one 

known as a chedi snail (6 collected, probably Melanoides tuberculatus) and one small unknown 

bivalve species (5 collected).  M. tuberculatus feeds on algae, detritus and particulate matter. It is 

tolerant of a wide range of conditions and is a very common snail in Thai waters.  

 

Additionally, seven farms directly adjacent to the Chucachur Canal were monitored using 

periphyton isotopes, but not hyacinth because it did not survive in the saline environment. 

Samples of feed were also taken from these farms to evaluate the stable isotope ratios input by 

shrimp farms. Unfortunately, most shrimp farms were harvested without prior notice and no 

samples of shrimp tissue were collected from the farms. 

 

Water quality was also measured to evaluate the dynamics of wastewater and stable isotopes in 

the system. On each sampling day, water temperature, pH, secchi depth and dissolved oxygen 

were recorded at five evenly spaced sampling points in the canal (C1, C3, C6, C10 and C14). 

Water column samples were also collected at these points using an integrated water sampler. Due 

to logistical constraints water quality on the farms was limited to collections from F2, F7 and F8 

on 13 August 2009.  
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Once collected, water samples were immediately placed in a lightproof insulated box containing 

melting ice and transported to a laboratory at the Asian Institute of Technology (AIT) for analysis 

of TSS, TAN, NO2, NO3, TKN, TP, and Chlorophyll A. Total suspended solid (TSS) was 

measured gravimetrically by filtering a well-stirred water sample through pre-washed, oven dried 

at 105 °C and pre-weighed GFC filter (Whatman, 1.2 µm pore size, 4.7 cm in diameter) under 

suction. The residue retained on the filter paper was dried to constant weight at 105 °C for 24 hrs 

and reweighed after cooling in a desiccator (APHA 1998).Total ammonia-nitrogen (TAN) was 

analyzed according to the modified Phenate method described in Parsons et al. (1984). The 

analytical procedure for nitrite-nitrogen (NO2) used the method described in Parsons et al. (1984). 

Nitrate nitrogen (NO3) was determined using the cadmium reduction method (APHA 1998). Total 

Kjeldahl Nitrogen (TKN) was determined using the standard method (APHA 1998). Total 

phosphorus (TP) content was measured by autoclaving sample water at 15 to 20 psi for 30 

minutes. The water sample was then treated with potassium persulphate in an acidic medium and 

followed by the ascorbic acid method according to APHA (1998). Chlorophyll A biomass in 

water samples were measured spectrophotometrically (CECIL – CE 1021) by filtering a 100 ml 

sample through a GFC filter. Chlorophyll A was then extracted from the filter with 90% acetone 

according to APHA (1998).  

 

To facilitate spatial and temporal comparison between different water quality measures, each 

parameter was ranked with respect to its impact on the environment. Thailand has water quality 

standards for both surface water and inland aquaculture effluent, but they use a limited number of 

water quality parameters (NEB 1994; MNRE 2007). Therefore, rankings were determined as a 

measure of the ecological functioning of the ecosystem, also taking Thai water quality measures 

into account. Each parameter was ranked on a 5-point scale with 1 being least impaired and 5 

being the most impaired. Detailed descriptions of the rankings are found in the first column of 

Table 1. Individual water quality parameters were categorized as described below (see also Table 

1). 

 

Thai inland aquaculture effluent standard for NH3 calls for less than 1.1 mg/L in effluents for 

Standard B (moderate regulation) (MNRE 2007) and Thai surface water quality standards call for 

less than 0.5 mg/L NH3 in Class 3 water bodies (which include the Bang Pakong River and the 



 10 

Chucachur Canal) (NEB 1994). Boyd (2000) stated that concentrations of NH3 less than 0.25 

mg/L indicate unpolluted waters, above 1 mg/L indicate polluted waters, and 5 to 10 mg/L are not 

uncommon in highly polluted waters. Thus, NH3 was categorized as 1: 0-0.249 mg/L, 2: 0.25-

0.49 mg/L, 3: 0.5–0.749 mg/L, 4: 0.75–1.49 mg/L, 5:  1.5 mg/L. 

 

Thai inland aquaculture effluent standards do not regulate NO3, but Thai surface water quality 

standards call for less than 5.0 mg/L NO3 in Class 3 water bodies (NEB 1994). Chapman (1996) 

stated that natural concentrations seldom exceed 0.1 mg/L in un-impacted waters, and that human 

influence can raise these levels up to 5 mg/L, but often less than 1 mg/L. Thus NO3 was 

categorized as 1: 0-0.249 mg/L, 2: 0.25-0.49 mg/L, 3: 0.5–0.749 mg/L, 4: 0.75–1.49 mg/L, 5:  

1.5 mg/L. 

 

Thai aquaculture effluent and surface water quality standards do not provide guidelines for NO2. 

However, Chapman (1996) indicates that NO2 concentrations are usually low and rarely exceed 

0.05 mg/L, but may reach higher concentrations in polluted and anoxic water. Thus NO2 was 

ranked with 1: 0.0–0.0249 mg/L, 2: 0.025-0.049, 3: 0.05–0.09 mg/L, 4: 0.10–0.149 mg/L, 5:  

0.15. 

 

The Thai inland aquaculture effluent standard calls for less than 1.1 mg/L TP in effluents for 

Standard B (MNRE 2007) but Thai surface water quality standards do not address target TP 

concentrations.  Chapman (1996) and Boyd (2000) indicate that TP in natural surface water 

generally ranges from 0.005 to 0.020 mg/L, and seldom exceeds 5 mg/L except in hyper-

eutrophic waters or wastewater. Thus, TP was ranked 1: 0-0.029 mg/L, 2: 0.03-0.049 mg/L, 3: 

0.05–0.09 mg/L, 4: 0.1–0.39 mg/L, 5:  0.40.  

 

Thai water quality standards do not address Chlorophyll A concentrations, but Chlorophyll A is 

considered a good indicator of eutrophication, with 5-140 mg/m
3
 indicating eutrophic conditions, 

and levels in excess of 300 also occurring (Chapman 1996; Boyd and Green 2002). Thus, 

Chlorophyll A ranking was established at 1: 0-9.9 mg/m
3
, 2: 10–29.9 mg/m

3
, 3: 30-59.9 mg/m

3
, 4: 

60-89.9 mg/m
3
, and 5:  90 mg/m

3
. However, these values may be confounded by high 

productivity and hyacinth growing in the environment.  
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Dissolved Oxygen (DO): Thai surface water quality standards call for more than 4.0 mg/L DO in 

Class 3 water bodies (NEB 1994). Thus DO was ranked as 1:  9 mg/L, 2: 7-8.9 mg/L, 3: 5-6.9 

mg/L, 4: 3-4.9 mg/L, 5: 0-2.9 mg/L.  

 

 

 

In order to determine the influence of shrimp farms on the canal environment, the following steps 

were followed: 1) shrimp feed isotopes (δ
13

C and 
15

N, and C:N) were analyzed to determine 

expected baseline values of shrimp farm derived isotopes; 2) Stable isotopes from periphyton 

grown on shrimp ponds were analyzed to determine the levels of fractionation occurring due to 

processing by shrimp, bacteria and chemical processes in the ponds, and what would be expected 

as an isotopic signature from ponds in the canal; 3) Water quality parameters were evaluated to 

determine if they showed significant variation temporally or spatially; 4) Stable isotopes from 

hyacinth grown in the canal were analyzed and compared to pre-placement isotope values to 

determine if there was a discernable change in isotopic signature in the canal; 5) Hyacinth and 

periphyton isotopes from the canal were evaluated and compared to determine if there was similar 

fractionation of isotopes there; 6) Mollusk tissue was also compared to periphyton and hyacinth 

isotopes to further evaluate whether shrimp farms influenced another trophic level in the canal; 7) 

Table 1: Values used for ranking of water quality parameters by their degree of 

impairment on the receiving water.  

  
TKN 

(ppm) 

NH3 

(ppm) 

NO3 

(ppm) 

NO2 

(ppm) 

TP 

(ppm) 

Chlorophyll 

A (mg/m
3
) 

DO 

(mg/L) 

1. Impairment 

unlikely  
0-0.09 0-0.249 0-0.249 0-0.0249 

0-

0.029 
0-9.9  9 

2. Impairment 

possible  

0.1-

0.49 

0.25-

0.49 

0.25-

0.49 

0.025-

0.049  

0.03-

0.049 
10-29.9 7-8.9 

3. Impairment 

likely  

0.5-

0.99 

0.5-

0.749  

0.5-

0.749 

0.05-

0.09 

0.05-

0.09  
30-59.9 5-6.9 

4. Impairment 

expected 
1-1.99 

0.75-

1.49  

0.75-

1.49 

0.10-

0.149 

0.1-

0.39 
60-89.9 

 

3 - 4.9  

5. Well 

beyond 

impairment 

levels 

 2    1.5   1.5   0.15   0.40   90 0 - 2.9 
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Periphyton and hyacinth isotope data were analyzed to determine if they varied spatially; 8) Canal 

periphyton was compared with on farm periphyton to see if canal isotopes were influenced by 

farms; and 9) Multiple linear regression was used to evaluate what physical and chemical 

parameters influenced the isotope ratios of periphyton and hyacinth. 

 

Data was assessed for normality and adjusted with a log 10 transformation as needed to meet 

assumptions of statistical tests. All statistical tests were run using the statistical program PASW 

Statistics 18, Release Version 18.0.0. (PASW 2009). 

 

Because many hyacinth samples were lost, few points had samples collected on all days, and 

isotopes of hyacinth before and after placement in the canal (after 12, 31 and 50 days) were 

compared with the Paired-Sample T-Test. Similar issues also lead to small number of replicates in 

comparing isotopes from canal hyacinth and periphyton, so again the Paired-Sample T-Test was 

used. Additionally a Pearson Correlation was used to evaluate the similarity between hyacinth and 

periphyton isotope values. Mollusk isotope content was compared to canal periphyton and 

hyacinth with a One-way Between Groups ANOVA. 

 

Since the assumption of equal variance was violated in some data sets, non-parametric tests were 

also used. The Wilcoxon Rank Test was used to compare feed and farm periphyton. Due to small 

sample size a p value of 0.1 was considered significant for this comparison.  When the canal and 

farms were compared, the Mann-Whitney Test was used to evaluate significant differences. 

However, when three or more different groups were compared, for example each independent 

point on the canal and farms, the Kruskal-Wallis test was used to evaluate differences between the 

groups. The Tukey HSD Test was used to evaluate significant variation in isotopes from point to 

point along the canal. 

 

Differences in water quality were also evaluated with non-parametric tests due to non-normal 

distributions in the data. The Friedman Test was used to evaluate differences in water quality on 

the canal between days. The Mann-Whitney U Test was used to compare farm water quality and 

canal water quality on the days when there were and were not harvests. The Kruskal-Wallis Test 

was used to evaluate differences in water quality parameters from point to point along the canal.  
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Multiple linear regressions were performed on transformed data to evaluate the influence of water 

quality and physical parameters like insolation and proximity to shrimp ponds on isotopic 

signatures in the canal to determine if shrimp pond waste had a significant impact on nutrient 

processing in the canal. An alpha value of 0.05 was considered significant, except in the case 

where replication was extremely low and thus the significant alpha was relaxed to 0.1. Finally, the 

relationship between isotopes in each species was evaluated using a Pearson Product-moment 

Correlation Coefficient.   

 

 

Results 

 

Shrimp feed from farms on the canal showed a characteristic isotope signature. Isotope values for 

feed were an average of -24.96 per mil for δ
13

C, an average of 4.59 per mil for 
15

N, and an 

average of 7.71 for C:N.  

 

Nitrogen isotope values and C:N ratios were considerably different between periphyton grown in 

ponds and shrimp feed, indicating fractionation by attached algae. There was a consistent 

difference in isotope values between feed and periphyton growing on farms (Figure 1). Although 

there was not a significant difference between 
15

N isotope values of periphyton from different 

shrimp farms, 
15

N values from periphyton did show significant increases from feed values, 

indicating that significant fractionation occurred in the ponds (Wilcoxon Rank Test: z = -1.753, p 

= 0.080). C:N also showed significant decreases from feed to periphyton values (Figure 2, 

Wilcoxon Rank Test: z =-2.023, p = 0.043). 
13

C isotopes from periphyton grown on shrimp 

farms showed no significant differences between farms or from feed. 
13

C values from all farm 

periphyton and feed had a mean of -27.04 with a standard deviation of 2.62. 
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Figure 1. 
15

N of periphyton grown in shrimp ponds and feed used for five farms on two sampling 

days 

 

 

Figure 2. C:N of periphyton grown in shrimp ponds and feed used for five farms on two sampling 

days. 

 

I found differences between farm and canal periphyton isotope values, indicating that although 

farms could be the source of canal isotopes, there were differences in nutrient dynamics between 

the two systems. There was no significant difference in 
15

N between farm periphyton values 

δ15N 
(per 
mil) 

C:N  
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(Median = 9.99) and ALL canal periphyton values (Median =11.86) (Mann-Whitney U = 104.00, 

p = 0.357), indicating that farm nitrogen was likely a major source of the canal nitrogen. 

However, there was a significantly lower C:N for periphyton from farms (Median = 4.72) than 

from all canal points (Median = 6.36, Mann-Whitney U = 29.00, p = 0.001). Additionally, δ
13

C of 

the canal periphyton was significantly higher than δ
13

C of farm periphyton for all days (Canal 

δ
13

C Median = -22.60, Farm δ
13

C Median = -27.57, Mann-Whitney U = 41.00, p = 0.002). 

Furthermore, although there was no significant difference in average 
15

N between periphyton 

from the farm and canal, variance in canal 
15

N was quite large (Figure 3). There was a 

significant difference in periphyton 
15

N at each location along the canal with highest values at 

the sampling locations most proximal and distal to the river (C1, C13 and C14), and lower values 

in the middle of the canal (C4, C7 and C8). 
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Figure 3. Box plots for 
15

N values of periphyton grown at each location on the canal. Red shaded 

points were significantly high values, green shaded values significantly low values. Sample points 

underlined at the same level in the inset figure at top were not significantly different (p>0.05, 

Tukey HSD Test). 

 

Comparing 
15

N of farm periphyton with periphyton from each point on the canal indicated that a 

few points on the canal had less fractionation than farms, while most had more fractionation. 

Evaluating 
15

N for periphyton from each individual point, only three points on the canal (C4, C7 

and C8) had 
15

N levels lower than farm values (Kruskal Wallis Test, p = 0.028), while the other 

11 points on the canal had higher 
15

N levels in periphyton tissue.  Thus, although overall there 

were not significant differences in 
15

N of periphyton between farms and the canal as a whole, 

there was great variation in values, and large differences in mean values of each location which 

made it difficult to trace the isotopic signature.  
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Hyacinth isotope values showed a change in nitrogen isotope ratios and increased eutrophication 

in the canal.  Hyacinth tissue grown in the canal had significantly different 
15

N values compared 

to pre-sample tissue. Pairwise comparisons showed an average increase of 9.05 per mil 
15

N, 

which is on the same order of magnitude as both the change in 
15

N between feed and periphyton 

on farms, and the change in fractionation between high and low periphyton in the canal. Pairwise 

comparisons also showed C:N for hyacinth grown in situ significantly decreased from pre-sample 

values, with an average of -8.21 per mil.  

 

Hyacinth grown in the canal showed a significant difference in 
15

N spatially with lowest values 

in the middle of the canal (C4, C7 and C8), and highest values at the end of the canal proximal to 

the river (C13 and C14, Figure 4). C1, C3, C6, and C10 were removed from analysis because 

there was only one sample at these points. The increase in 
15

N was expected as more farm 

effluent entered the canal as it progressed downstream, while the high levels at C1 were not 

expected.  
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Figure 4. Boxplots of 
15

N values for hyacinth grown at each location on the canal. Notations as 

in Figure 3. 

 

 


15

N values from hyacinth and periphyton collected at the same points on the canal were different 

in magnitude, but were highly correlated (Pearson Correlation = 0.660, p <0.0005), indicating a 

similar response to the ambient environment nitrogen. Periphyton 
15

N was consistently higher 

than hyacinth 
15

N, and a Paired-Sample T-Test showed a significant difference in mean of 

+2.039 per mil 
15

N for periphyton compared to hyacinth.  

 

In contrast to 
15

N trends, 
13

C was significantly different but uncorrelated between periphyton 

and hyacinth values. A paired sample t-test showed a statistically significant difference (p 

<0.0005) between periphyton and hyacinth (+9.293 per mil), but an insignificant Pearson 
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Correlation. 
13

C also had a significantly different mean between farm and canal periphyton of 

+4.97 (Mann-Whitney Test, p = 0.002). A correlation matrix of all isotope types between 

themselves and with water quality parameters is found in Appendix 1A and 1B.  

 

Mollusks collected from the canal were not significantly different from periphyton and hyacinth 

in 
15

N and δ
13

C (Table 2), but showed less variation (with the exception of δ
13

C in hyacinth). 

They did have lower C:N values than plants, which is expected in as they are consumers rather 

than producers. 

 

 

Table 2. Means, standard deviations (SD) and coefficients of variance (CV) for δ
13

C, δ
15

N, and C:N 

of mollusks, periphyton and hyacinth collected in the canal. Samples for snails and mussels were 

collected on 22 July, samples for hyacinth and periphyton include all sampling dates combined.  

  
15

N   δ
13

C   C:N   

  Mean (SD)  CV Mean (SD)  CV Mean (SD)  CV 

       

 Snail  8.908 (0.959) 0.103 -23.853 (0.892) 0.033 3.912 (0.219) 0.012 

 Mussel  11.873 (2.496) 0.525 -27.790 (2.563) 0.236 4.482 (0.539) 0.065 

 Periphyton  11.859 (4.937) 2.055 -22.596 (4.442) 0.873 6.362 (0.972) 0.148 

 Hyacinth  9.999 (6.445) 4.155 -30.961 (1.258) 0.051 9.295 (1.123) 0.136 

            

 

Water Quality 

Water in ponds of all three farms sampled met NH3 standards for Thai inland aquaculture effluent 

(less than 1.1 mg/L, rank 2 or less). However, TP far exceeded the Thai inland aquaculture 

effluent standard of 0.05 mg/L for all farms. TKN, NH3, NO2, TSS and Chlorophyll A varied 

considerably from farm to farm with some farms achieving the Thai standard and others 

exceeding it (see Figure 5d).  

 

The canal water quality was degraded and pollutant concentrations often exceeded Thai surface 

water quality standards as well as standards for inland shrimp farm effluent (Figure 5). Pearson-

moment correlations for water quality parameters compared with isotope values and other water 
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quality parameters are found in Appendix 1B and 1C. NH3 exceeded the surface water quality 

standard at C1 and C3 two days after a harvest (13 August), and at all canal locations on a harvest 

day (29 August). NH3 also exceeded the limit for inland aquaculture effluent at C1 and C3 on 13 

August and at C1, C3, and C6 on 29 August. Values for TP also exceed the Thai inland 

aquaculture effluent limits at all points on every sampling day. Although DO was below the Thai 

surface water quality standard of 4 mg/L at point C1 on 29 August, these samples were taken 

during daylight hours when photosynthesis would cause an increase in DO levels compared to a 

predawn minimum DO.  

 

The level of NH3 in canal water was significantly different between sampling days, with highest 

levels on the day of a harvest, and lower values in samples taken two days and two weeks after a 

harvest (chi squared = 8.40, p = 0.015). On the day of a harvest (29 August) the median NH3 was 

1.85 ppm, two days after a harvest (13 August) it was 0.231 ppm, and 14 days after a harvest (22 

July) it was 0.111 ppm.   

 

DO, TSS and Chlorophyll A were significantly different between the farms and canal two days 

after a harvest (13 August). Specifically, DO values were significantly higher (p<0.05) on the 

farm (Median = 9.3, n = 3) than in the canal  (Median  = 4.78, n = 5), undoubtedly because farms 

were oxygenated with aerators. Also, TSS values varied and were significantly higher on the 

farms (Median = 10.30, n = 3) than in the canal (Median = 1.70, n = 5). Additionally, Chlorophyll 

A values were also significantly higher on the farms (Median = 219.0, n = 3) than the canal  

(Median = 24.06, n = 5). 

 

Interestingly, comparing water quality between farms and the canal on the day of a harvest (29 

August), DO, TSS, and Chlorophyll A were not significantly different, indicating farm effluent 

may be transforming the water quality of the canal to shrimp farm levels. However, NH3 was 

significantly higher in the canal on a harvest day compared to farm values overall. Either the farm 

harvested on 29 August had significantly elevated levels of NH3, or there was another source of 

NH3 in the canal. However, water quality was not evaluated on the harvested farm. Although NH3 

was elevated at C1 and C3 in the canal on days when no farms were harvested and on 29 August  
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(the day of harvest), NH3 was also elevated at C6 on 29 August, where there was a visible plume 

of shrimp farm wastewater. 

 

Spatially, NO2 was statistically different from point to point (Kruskal-Wallis Test, Chi squared = 

10.711, p = 0.030) with the highest mean ranking found at the upstream end of the canal (distal to 

the river, C1), and decreasing to the lowest mean ranking at the last sampling point in the river 

(C14). Additionally, the highest concentration ranking of TP was also found at the upstream end 

of the canal, and decreased to the lowest mean ranking in the river. On-farm water quality was 

also significantly higher than most points along the canal for both NO2 (Chi squared = 12.797, p = 

0.025) and TP (Chi squared = 13.023, p = 0.029). 
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Figure 5. Ranked water quality measures for each sampling site on Chucachur Canal 22 July (A), 

13 August (B) and 29 August (C) and on adjacent farms on 13 August (D) by sampling site and 

farm. Actual values for each parameter are listed above each bar (in ppm). Values of 2 or 1 

indicate compliance with Thai water quality standards. 
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Multiple linear regressions of periphyton δ
15

N indicated that δ
15

N decreased (showed less 

fractionation) with increasing shade on the canal (R
2
 = 0.442, p < 0.0005, see Table 3 and 

Appendix 2A for full statistical results). Additionally, % shade and NO2 explained the periphyton 

δ
15

N data better than % shade alone, indicating that less shade and more NO2 increased 

periphyton δ
15

N (R
2
 = 0.589, p = 0.007, see Table 3 and Appendix 2B for full statistical results). 

Periphyton δ
13

C was also significantly correlated with % shade, with increasing shade related to 

lower δ
13

C values (R
2
 = 0.196, p =0.006, See Table 3 and Appendix 2C for full statistical results).   

 

Hyacinth δ
15

N showed the most interesting results from multiple linear regressions. The best 

model indicated that δ
15

N increased with decreasing shade, increasing number of shrimp farms 

and increasing NH3.  This multiple linear regression of hyacinth δ
15

N with % shade, number of 

shrimp farms and NH3 had an adjusted R
2
 value of 0.998, with a highly significant ANOVA (p < 

0.0005, see Table 3 and Appendix 2D for full statistical results).  

 

 

Table 3. Results of significant linear regressions of periphyton or hyacinth isotopes with physical 

and chemical characteristics of each canal site. 

Variable 

Standardized 

Coefficient () P 

Periphyton δ
15

N:  R
2
 = 0.442, P < 0.0005 

% shade -0.678 <0.0005 

   

Periphyton δ
15

N:  R
2
 = 0.589, P = 0.007 

% shade -0.731 0.005 

NO2 0.455 0.044 

   

Periphyton δ
13

C:  R
2
 = 0.196, P = 0.006 

% shade 0.470 0.006 

   

   

Hyacinth δ
15

N: R
2
 = 0.998, P < 0.0005 

% shade -0.520 <0.0005 

# shrimp farms 0.940 <0.0005 

NH3 0.541 <0.0005 
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Discussion 

 

Evidence from shrimp farms along the Chucachur Canal indicated that wastewater was elevated 

in nitrogen and TP, which could have a significant impact on the receiving ecosystem. Although 

there was a significant change in isotopes from feed to periphyton growing at the shrimp farms, 

there was a similar common signature between all farms monitored. However, isotope values on 

farms were significantly different from canal isotope values, indicating that additional factors 

including other inputs, biological processing of excessive nutrients, and physical characteristics of 

the environment all had impacts that made it impossible to trace the farm isotope signature in the 

canal in isolation.  

 

Significant increases in δ
15

N between feed inputs and periphyton growing in the pond indicated 

significant fractionation of δ
15

N in the ponds as expected. The average 2 per mil change (from 

4.59 to 7.60) on the study farms was similar to a 2 per mil change (from 5.27 to 7.37 per mil) in 

δ
15

N found in pond flocculent on shrimp farms in Belize (Ledwin 2010). It is likely that these 

changes stem from the cumulative effects of nitrification, denitrification and volatilization of 

organic nitrogen wastes in the ponds (Handley and Raven 1992). Since there was no water 

exchange on the study farms, and the highest values of δ
15

N were recorded closest to the end of 

the culture cycle, fractionation (and thus values of δ
15

N) appeared to increase as processing of 

nitrogen continued over the shrimp grow out. δ
15

N values were not significantly different from 

farm to farm, indicating that processes on farms were comparable and that comparable signatures 

should be emanating from farms as expected, and could be compared to canal isotope values to 

determine the extent of impact of farm nutrients on the receiving ecosystem.  

 

Additionally, although water quality at the farms could not be measured over time and varied 

somewhat between farms, TP values and organic nitrogen were high, as expected. Water quality 

on these farms was comparable to water quality on similar studies of semi-intensive shrimp 

farming (Islam et al. 2004). Differences in water quality between farms sampled are likely to 

reflect different stocking time and management practices between farms.  
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Canal water quality was similar to average farm water quality on the day a farm was harvested. 

This was expected and similar to results of other studies where shrimp farm effluent was found to 

be a source of eutrophication in receiving waters (Preston et al. 2000; Wolanski et al. 2000; Jones 

et al. 2001; Pinon-Gimate et al. 2009; Ledwin 2010). I expected canal water to show the 

maximum change in stable isotopes and the worst water quality near the downstream end. 

However, station C1 consistently had values similar to stations C13 and C14, even though it was 

the most upstream station. A pig farm located at C1 appeared to have a significant impact on 

water quality in that portion of the canal on all days, which added confusion to these results. On 

days when no farm was harvested, high values of organic nitrogen at C1 decreased with distance, 

and were relatively low by C6. However, on the day of a harvest, although water quality values at 

C1 and C3 remained high, C6 had the highest levels of TKN, NH3, NO2 and TP on the canal. 

Since these results corresponded to a visible plume of shrimp harvest water at this point it was 

determined that shrimp effluent did impact canal water quality in the canal with a magnitude that 

rivaled the input from the pig farm on the day of a harvest. However, since the pig farm had a 

significant impact on the canal on all days and no impact from shrimp farms was observed on 

days without a harvest, shrimp farms were clearly not the only contributor to eutrophication 

measured. This is similar to previous studies which determined that multiple sources of nutrients 

influenced eutrophication in receiving waters (Pinon-Gimate et al. 2009).  

 

Levels of TP were consistently above inland aquaculture standards for all points, indicating that 

this was a significant contributor to eutrophication on the canal. Spatially, the decrease in both TP 

and NO2 along the canal, and the high values of both nutrients on farms indicated that farms were 

a source of these nutrients, which may have been processed or diluted as the water moved into the 

main river. C1 was ranked high in both parameters, and higher than farms for TP, which indicated 

other inputs (like the pig farm) were also important inputs to the canal.  

 

Stable isotopes of periphyton and hyacinth from the canal give another means to trace shrimp 

farm effluent in the receiving system. Significant differences in hyacinth δ
15

N and C:N before and 

after placement in the canal, as well as correlation in hyacinth and periphyton δ
15

N values on the 

canal indicate that both were successfully representing the isotope concentration of available 

nutrients as anticipated. However, isotope results varied substantially from what I expected. δ
15

N 
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in both hyacinth and periphyton were more spatially variable than expected, with differences for 

each of about 20 per mil δ
15

N from the highest to lowest points on the canal. This was similar to 

some previous studies of δ
15

N of point-source sewage inputs into coastal regions (Jones et al. 

2001) and wide gradients of eutrophication in Swedish boreal streams (Bergfur et al. 2009) , but 

also had greater variation than studies with smaller effluent inputs (Ledwin 2010) or more diffuse 

inputs (Pinon-Gimate et al. 2009).  Additionally, δ
15

N values did not show evidence of dilution as 

expected with increasing distance from the point of input as seen in other studies (Jones et al. 

2001; Ledwin 2010). Instead, fractionation first decreased, reached a low in the middle of the 

study area, and then increased again for the rest of the study area. Some of the highest δ
15

N values 

were found at C1 (near the pig farm) and at C13 and C14 (in the main river) and lowest values 

were found near C4 (in the center of the canal). Although farm δ
15

N values were contained within 

the range of canal values, δ
15

N values were both higher and lower on the canal than those from 

farms. High δ
15

N values at the end of the canal distal to the river (C1) correspond to high levels of 

organic nitrogen from the pig farm there, indicating that processing of these nutrients drove 

fractionation of nitrogen. However, high values of δ
15

N at the end of the canal proximal to the 

river (C13 and C14) did not correspond to high levels of nutrients. Instead it is likely that 

increasing re-processing of chemical forms of nitrogen drove these fractionated values since 

nitrogen fractionates further in each phase of microbial decomposition (Handley and Raven 

1992). However, since there were also more farms toward the end of the canal and there may have 

been a more frequent influence from shrimp farm harvests there, the increase may also be a 

cumulative signature of many shrimp farms being harvested. 

 

The extremely low value of δ
15

N in the canal at C4 for both hyacinth and periphyton further 

complicated nature of evaluating nutrient and isotope dynamics in the system. However, it is 

likely that the low δ
15

N values reflect an input of synthetic fertilizer near this point, possibly from 

fertilized agriculture. This is supported by the values of δ
15

N near zero in hyacinth at this point 

(Fry 2006). The values of periphyton were about 5 per mil, but were still the lowest value of δ
15

N 

in the canal periphyton, which indicates that bacteria in the periphyton was potentially 

fractionating the nitrogen as it incorporated it into tissue. 
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The similarity of mollusk δ
15

N values to the canal plant values and the decrease in variance in 

mollusk tissue isotopes indicate that mollusks consumed an average diet of plant material in the 

canal, and were not influenced by the significant variation found in plant δ
15

N, indicating that 

differences in mechanisms within the plants influence their δ
15

N values. This was similar to 

invertebrate response to isotope values in basal resources of boreal streams over a gradient of 

eutrophication, which found that invertebrate δ
15

N to be positively correlated with basal resources 

and nutrient enrichment (Bergfur et al. 2009). This supports the concept that δ
15

N is a robust 

indicator of nutrient enrichment over various trophic levels in a system. 

 

Multiple linear regressions indicated that insolation was important in explaining δ
15

N, and that 

less shade (or more sunlight) led to more fractionation of nitrogen in both hyacinth and 

periphyton. This was not expected, as sunlight should not directly influence microbial processing 

of nitrogen.  However, sunlight should increase photosynthesis in the eutrophied environment, 

and increasing average dissolved oxygen at sunny points may allow more aerobic nitrification to 

occur. Additionally, as expected, nitrogen was also influential in plant δ
15

N values, with increases 

in NH3 explaining some of the increases in hyacinth δ
15

N and increases in NO2 explaining some 

increases in periphyton δ
15

N. This indicates that nitrogen concentrations did influence 

fractionation in the canal, and since NO2 is normally a short-lived intermediary of nitrification in 

aerobic systems, areas with high periphyton δ
15

N may either be anaerobic or areas where 

nitrification was occurring quickly. These increases in δ
15

N with increases in nitrogen are similar 

to other studies which found that δ
15

N was elevated in areas with NH3 and NO2/NO3 were 

elevated due to inputs from sewage and shrimp farm effluents (Jones et al. 2001) and over a 

gradient of nutrient concentrations in various boreal streams, where δ
15

N was positively 

correlated with TN (Bergfur et al. 2009). 

 

Increased fractionation of δ
13

C in periphyton and its positive relationship with insolation indicates 

that abundant nutrients and high rates of primary productivity as well as different colonizing 

species may influence δ
13

C trends in periphyton. Different characteristics of the canal may 

influence periphyton δ
13

C, including a difference in colonizing species, a difference in nutrient 

dynamics, or a difference in physical parameters like insolation, water flow or DO that leads to 

this change. Since hyacinth and farm periphyton showed very little variation in δ
13

C, and canal 
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periphyton had a great deal of variation, limitation of CO2 supply to the canal periphyton (due 

either to oxygen limitation of microbial respiration or to limited diffusion of CO2 at the boundary 

layer of the periphyton) may be responsible for the variation in δ
13

C. This result, with less 

fractionation when CO2 taken in during photosynthesis, is similar to results in productive 

California streams, where areas of low water velocity (and thus low diffusion of CO2 past the 

boundary layer of photosynthesizing algae) showed much less fractionation of carbon isotopes 

(Finlay et al. 1999).  Furthermore, experimental shading of seagrass plots in Tampa Bay, Florida 

also found lower levels of δ
13

C in shaded plots of grass, indicating a reduction in carbon demand 

decreased the influence of a diffusion dependent carbon availability on the enzymatic 

discrimination against δ
13

C (Durako and Hall 1992). This should be somewhat different than 

straightforward limitation of CO2 in the system, since it is the rate of diffusion of CO2 that slows 

photosynthesis enough to allow more 
13

C to be utilized. However, alkalinity parameters were 

unfortunately not taken in this study, and could have helped to determine whether CO2 could be 

limiting photosynthesis. Given the large carbon inputs from shrimp farms and other human 

activities, it is unlikely that CO2 alone limited primary production in the canal. 

 

Results of multiple linear regressions of physical and chemical canal parameters and isotope 

values indicate that sunlight contributed to both δ
15

N and δ
13

C. Thus it is likely that 

photosynthesis rates: 1) caused δ
13

C fractionation, driving fractionation down (making δ
13

C 

values less negative) when photosynthesis was high, similar to results of shading in seagrass 

(Durako and Hall 1992) and 2) kept oxygen concentrations high enough to allow aerobic 

nitrification and thus increase fractionation of δ
15

N in these areas, similar to experimental results 

indicating increasing nitrification with increasing oxygen in the water column (Handley and 

Raven 1992; Rysgaard et al. 1994) .  

 

This study highlights significant problems with using naturally growing periphyton to trace stable 

isotopes, because nitrifying or denitrifying bacteria probably colonize the periphyton depending 

on environmental conditions, thus influencing δ
15

N in the collected tissue. This was also an issue 

in the study in Belize, where unexpectedly low δ
15

N near an effluent release point were attributed 

to different processes occurring in the presence of excess nitrogen (Ledwin 2010). 
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However, this study does provide information about the spatial magnitude of impacts from 

various sources. For instance, since highly fractionated δ
15

N decreased to a low in the 1225 

meters from C1 to C4, the influence of pig farm nutrients did not extend far beyond about a 

kilometer, or else the signature would show an average between both inputs. Shrimp pond 

effluent may also have very localized impacts in the canal due to limited flushing of the system, 

which may also influence the variability of nitrogen isotopes and contribute to reprocessing of 

isotopes at the end of the canal.  

 

This emphasizes the fact that changes in stable isotope ratios in organisms do not necessarily 

indicate deleterious impacts on the system, but simply an assimilation of available nutrients. In 

fact, the nutrient inputs may be within the assimilative capacity of the system, and thus avoid 

adverse environmental impacts. Although the lack of benthic organism diversity sampled 

indicated that the system is somewhat degraded, to determine an adverse impact of eutrophication 

the canal would need to be compared to a similar, un-impacted control system or a pre-

development reference point. 

 

Future studies of the impact of shrimp farm effluent on a receiving water should choose simpler 

systems with fewer inputs to make tracing the impacts from shrimp farms more feasible. 

However, in any system where there are multiple inputs of waste, water quality and isotopic ratio 

of other nutrient sources could be more carefully enumerated and compared with shrimp farm 

signatures using mixing models and models of nutrient processing. Alkalinity should also be 

evaluated to aid in the evaluation of potential CO2 limitation. Additionally, the species of algae 

and bacteria colonizing periphyton should be identified, possibly with DNA analysis, to 

determine if periphyton species composition impacts periphyton isotopes. Laboratory studies 

should also be conducted to evaluate the changes in isotopic ratios of periphyton and hyacinth 

under differing conditions including ranges of nutrient pollutants, insolation and water velocity to 

provide controlled estimations of the processes proceeding in the canal. Additionally, more 

frequent sampling over multiple seasons of harvest would give a better picture of the patterns 

occurring in such a system.  
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It is likely that shrimp ponds along the Chucachur Canal strongly influence the receiving 

environment, and that efforts to treat wastewater before it is discharged would reduce the amount 

of NH3 entering the system. For instance, a study in Australia found that two days in a settling 

pond decreased TP and TN by 35% and 23%, respectively (Jackson et al. 2003b). A study in fish 

ponds in Portugal indicated that settling ponds in semi intensive systems improved benthic 

species diversity in the receiving water (Carvalho et al. 2009). However, it is also clear that other 

industries have significant impacts on the environment and the burden of reducing impacts should 

not be placed on shrimp aquaculture alone.  
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Appendix 1A. Pearson product-moment correlations between Chucachur Canal isotope, physical and chemical parameters for 

Periphyton d13C, d15N, and C:N; as well as Hyacinth d13C and d15N.  

 

 d13C 

Periph 

d15N 

Periph 

C:N 

Periph 

d13 

Hya-

cinth 

d15 

Hya-

cinth 

CN 

Hya-

cinth 

% 

cover 

# 

shrimp 

farms DO TSS ChlA TKN NO3 NO2 NH3 TP 

d13C 

Periph 

Pearson 

Correlation 

1 .372
*
 .342 .293 .105 -.094 -.470

**
 .045 .350 -.092 .686

*
 .101 -.009 .362 -.400 .291 

Sig. (2-tailed)  .033 .052 .138 .603 .640 .006 .805 .265 .777 .014 .754 .977 .248 .198 .359 

N 33 33 33 27 27 27 33 33 12 12 12 12 12 12 12 12 

d15N 

Periph 

Pearson 

Correlation 

.372
*
 1 .143 .471

*
 .660

**
 .110 -.678

**
 .133 .282 .101 .789

**
 .477 -.111 .591

*
 -.033 .528 

Sig. (2-tailed) .033  .427 .013 .000 .585 .000 .460 .374 .755 .002 .117 .732 .043 .919 .078 

N 33 33 33 27 27 27 33 33 12 12 12 12 12 12 12 12 

C:N 

Periph 

Pearson 

Correlation 

.342 .143 1 .255 .643
**

 .086 -.433
*
 .747

**
 .471 -.440 -.237 -.361 .096 -.499 -.492 -.515 

Sig. (2-tailed) .052 .427  .200 .000 .671 .012 .000 .122 .152 .459 .249 .768 .098 .104 .087 

N 33 33 33 27 27 27 33 33 12 12 12 12 12 12 12 12 

d13 

Hya-

cinth 

Pearson 

Correlation 

.293 .471
*
 .255 1 .528

**
 -.444

*
 -.482

*
 .136 .838

*
 -.040 .292 .577 .220 .255 .440 .234 

Sig. (2-tailed) .138 .013 .200  .005 .020 .011 .499 .019 .932 .525 .175 .635 .581 .324 .613 

N 27 27 27 27 27 27 27 27 7 7 7 7 7 7 7 7 

d15 

Hya-

cinth 

Pearson 

Correlation 

.105 .660
**

 .643
**

 .528
**

 1 -.066 -.697
**

 .745
**

 .625 -.204 -.113 .237 .307 -.142 .335 -.171 

Sig. (2-tailed) .603 .000 .000 .005  .744 .000 .000 .133 .662 .809 .609 .503 .762 .463 .714 

N 27 27 27 27 27 27 27 27 7 7 7 7 7 7 7 7 

*. Correlation is significant at the 0.05 level (2-tailed). 

**. Correlation is significant at the 0.01 level (2-tailed). 

 



 37 

Appendix 1B. Pearson product-moment correlations between Chucachur Canal isotope, physical and chemical parameters for 

Hyacinth C:N,  % cover, # shrimp farms, DO and TSS. 

 

  

d13C 

Periph 

d15N 

Periph 

C:N 

Periph 

d13 

Hyacinth 

d15 

Hyacinth 

CN 

Hya-

cinth 

% 

cover 

# 

shrimp 

farms DO TSS ChlA TKN NO3 NO2 NH3 TP 

CN 

Hyacinth 

Pearson 

Correlation 

-.094 .110 .086 -.444
*
 -.066 1 -.217 .048 -.825

*
 -.237 -.214 -.595 -.330 -.151 -.551 -.142 

Sig. (2-tailed) .640 .585 .671 .020 .744  .277 .814 .022 .610 .644 .159 .469 .746 .200 .761 

N 27 27 27 27 27 27 27 27 7 7 7 7 7 7 7 7 

% cover Pearson 

Correlation 

-.470
**

 -.678
**

 -.433
*
 -.482

*
 -.697

**
 -.217 1 -.270 -.046 .003 -.183 -.221 .268 .017 .081 -.252 

Sig. (2-tailed) .006 .000 .012 .011 .000 .277  .111 .870 .991 .514 .429 .334 .953 .773 .365 

N 33 33 33 27 27 27 36 36 15 15 15 15 15 15 15 15 

# shrimp 

farms 

Pearson 

Correlation 

.045 .133 .747
**

 .136 .745
**

 .048 -.270 1 .279 -.360 -.403 -.396 .272 -.564
*
 -.564

*
 -.678

**
 

Sig. (2-tailed) .805 .460 .000 .499 .000 .814 .111  .314 .187 .137 .144 .326 .028 .028 .005 

N 33 33 33 27 27 27 36 36 15 15 15 15 15 15 15 15 

DO Pearson 

Correlation 

.350 .282 .471 .838
*
 .625 -.825

*
 -.046 .279 1 -.430 .424 -.028 .431 .256 -.177 -.148 

Sig. (2-tailed) .265 .374 .122 .019 .133 .022 .870 .314  .110 .116 .922 .109 .358 .527 .599 

N 12 12 12 7 7 7 15 15 15 15 15 15 15 15 15 15 

TSS Pearson 

Correlation 

-.092 .101 -.440 -.040 -.204 -.237 .003 -.360 -.430 1 .120 .527
*
 -.061 .287 .263 .436 

Sig. (2-tailed) .777 .755 .152 .932 .662 .610 .991 .187 .110  .671 .044 .829 .299 .343 .104 

N 12 12 12 7 7 7 15 15 15 15 15 15 15 15 15 15 

*. Correlation is significant at the 0.05 level (2-tailed). 

**. Correlation is significant at the 0.01 level (2-tailed). 
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Appendix 1C. Pearson Product-moment correlations between Chucachur Canal isotope, physical and chemical parameters for 

Chlorophyll A (ChlA), TKN, NO3, NO2, NH3 and TP 

  d13C 

Periph  

d15N 

Periph  

C:N 

Periph  

d13 

Hyacinth 

d15 

Hyacinth 

C:N 

Hyacinth 

% 

cover 

# shrimp 

farms DO TSS ChlA TKN NO3 NO2 NH3 TP 

ChlA Pearson 

Correlation 

.686
*
 .789

**
 -.237 .292 -.113 -.214 -.183 -.403 .424 .120 1 .381 .122 .747

**
 .019 .617

*
 

Sig. (2-tailed) .014 .002 .459 .525 .809 .644 .514 .137 .116 .671  .162 .665 .001 .948 .014 

N 12 12 12 7 7 7 15 15 15 15 15 15 15 15 15 15 

TKN Pearson 

Correlation 

.101 .477 -.361 .577 .237 -.595 -.221 -.396 -.028 .527
*
 .381 1 -.029 .770

**
 .508 .731

**
 

Sig. (2-tailed) .754 .117 .249 .175 .609 .159 .429 .144 .922 .044 .162  .919 .001 .053 .002 

N 12 12 12 7 7 7 15 15 15 15 15 15 15 15 15 15 

NO3 Pearson 

Correlation 

-.009 -.111 .096 .220 .307 -.330 .268 .272 .431 -.061 .122 -.029 1 .246 .038 -.402 

Sig. (2-tailed) .977 .732 .768 .635 .503 .469 .334 .326 .109 .829 .665 .919  .377 .893 .137 

N 12 12 12 7 7 7 15 15 15 15 15 15 15 15 15 15 

NO2 Pearson 

Correlation 

.362 .591
*
 -.499 .255 -.142 -.151 .017 -.564

*
 .256 .287 .747

**
 .770

**
 .246 1 .499 .704

**
 

Sig. (2-tailed) .248 .043 .098 .581 .762 .746 .953 .028 .358 .299 .001 .001 .377  .058 .003 

N 12 12 12 7 7 7 15 15 15 15 15 15 15 15 15 15 

NH3 Pearson 

Correlation 

-.400 -.033 -.492 .440 .335 -.551 .081 -.564
*
 -.177 .263 .019 .508 .038 .499 1 .458 

Sig. (2-tailed) .198 .919 .104 .324 .463 .200 .773 .028 .527 .343 .948 .053 .893 .058  .086 

N 12 12 12 7 7 7 15 15 15 15 15 15 15 15 15 15 

TP Pearson 

Correlation 

.291 .528 -.515 .234 -.171 -.142 -.252 -.678
**

 -.148 .436 .617
*
 .731

**
 -.402 .704

**
 .458 1 

Sig. (2-tailed) .359 .078 .087 .613 .714 .761 .365 .005 .599 .104 .014 .002 .137 .003 .086  

N 12 12 12 7 7 7 15 15 15 15 15 15 15 15 15 15 

*. Correlation is significant at the 0.05 level (2-tailed). 

**. Correlation is significant at the 0.01 level (2-tailed). 
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Appendix 2A. Multiple linear regression results for Chucachur Canal isotopes - 

Periphyton δ
15

N with % shade 
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Appendix 2B. Multiple linear regression results for Chucachur Canal isotopes - 

Periphyton δ
15

N with % shade and NO2 
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Appendix 2C. Multiple linear regression results for Chucachur Canal isotopes - 

Periphyton δ
13

C with % shade 
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Appendix 2D. Multiple linear regression results for Chucachur Canal isotopes - 

Hyacinth δ
15

N with % shade, number of shrimp farms and NH3
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