
USING COLLECTIVE DISCOURSE TO

GENERATE SURVEYS OF SCIENTIFIC

PARADIGMS

by

Vahed Qazvinian

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in The University of Michigan
2012

Doctoral Committee:

Professor Dragomir R. Radev, Chair
Associate Professor Lada A. Adamic
Assistant Professor Michael J. Cafarella
Assistant Professor Qiaozhu Mei



c© Vahed Qazvinian 2012
All Rights Reserved



To my parents.

ii



ACKNOWLEDGEMENTS

I am most grateful to my advisor Professor Dragomir R. Radev to guide me

through four enjoyable and productive years of Ph.D. studies. His guidance and

support have been essential not only in the development of this thesis, but also in

my personal development as a scientist.

Dragomir Radev is a fantastic advisor, a very brilliant computer scientist, and

a great friend. He is also among the most influential people in my life. Dragomir

is a wonderful researcher. He has taught me how take initiative and how to think

critically. Watching Dragomir approach difficult problems and solve them is both

fascinating and inspiring. Dragomir cares about his students a lot and considers their

success in their academic lives as his own success. I am most grateful to Dragomir

for his support without which my success would have been impossible.

I would also like to thank my dissertation committee, Michael Cafarella, Qiaozhu

Mei and Lada Adamic for careful criticism and insightful feedback that improved the

quality of this work. Taking the network theory class with Lada was undoubtedly

one of my most exciting experiences at Michigan. Lada is an amazing teacher and a

truly inspiring researcher. I strongly believe that any graduate student at Michigan

in any field of study would benefit from Lada’s class.

I was also very fortunate to be Michael Cafarella’s first teaching assistant at Michi-

gan. During this time, I found Michael to be an excellent teacher and a wonderful

researcher. Working with Mike helped me shape my academic philosophy. I under-

iii



stood that many students have difficulty in seeing how the theoretical material and

algorithms in the lectures can be applied to various real-world problems. Michael

showed me how teaching solutions to specific theoretical problems is not as effec-

tive as showing the students how to think as problem solvers and how to construct

solutions in real-world applications.

Finally, I am very thankful to Qiaozhu Mei. I have been working with Qiaozhu

in a very interesting, yet challenging project. Qiaozhu is an excellent advisor, a

very smart researcher, and an extremely personable individual. I have learned a lot

working with Qiaozhu and am very thankful to have known such a great computer

scientist .

During two summer internships at Microsoft Research, Redmond, I had the oppor-

tunity to work with two wonderful researchers, Chris Brockett, and Wen-tau Scott

Yih. Chris is an amazing mentor, who sets high standards in his research. He taught

me how to be critical and precise, and have high standards in my research. Scott is

a very smart and knowledgeable researcher. He patiently helped me familiarize my-

self with new Machine Learning techniques and taught me how large-scale machine

learning systems work. I am deeply grateful to both Chris and Scott.

During the four years of my Ph.D. studies, I have collaborated with many excellent

researchers and scientists. I thank Bonnie Dorr, Ben Shneiderman, Judith Klavans,

and Jimmy Lin from the University of Maryland College Park, Saif Mohammad from

National Research Council Canada, and Paul Resnick, Rahul Sami, and Qiaozhu Mei

from School of Information at Michigan.

I am also thankful to all the former and current members of the CLAIR lab at

Michigan: Joshua Gerrish, Alex Gonopolskiy, Ben Nash, Arzucan Ozgur, Ahmed

Hassan, Amjad Abu-Jbara, Pradeep Muthukrishnan, Rahul Jha, Wanchen Lu, and

iv



Ben King.

I am very grateful to the administrative staffs in the CSE department at Michigan,

specially Dawn Freysinger, Karen Liska, Steve Crang, and Cynthia Watts who made

many things seamless. Also many thanks to Professor Smaranda Muresan from Rut-

gers, Professor Kathleen McKeown from Columbia, and Professor Yejin Choi from

Stony Brook University for their hospitality while I was visiting their institutions.

I take this opportunity to thank my very special friends who made life in Ann

Arbor enjoyable and memorable. Thank you Jennifer Klein, Siamak Nejad Davarani,

Mohammadreza Imani, Farhad Bayatpour, Danial Ehyaie, and Eaman Jahani. I also

wish to thank all other friends who shared their joy with me.

I thankfully acknowledge the fellowships and grants that supported my research

at Michigan. I was supported by the Rackham Centennial Fellowship Award, Na-

tional Science Foundation grants “SoCS: Assessing Information Credibility Without

Authoritative Sources” as IIS-0968489, and “iOPENER: A Flexible Framework to

Support Rapid Learning in Unfamiliar Research Domains” as IIS-0705832.

Above all, I express my heartfelt gratitude to my beloved parents Mehrnoush

Toufan Tabrizi and Habibollah Ghazvinian, my brother Vaqef, and my lovely grand-

mother Roghaiyeh Khalkhali, whose love and prayers have always been with me.

Without their love, support, and encouragement none of my achievements would

have been possible.

v



TABLE OF CONTENTS

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

LIST OF APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

CHAPTER

I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Collective Discourse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Guide to Chapters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

II. Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1 Collective Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Language as a Complex System . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Diversity of Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.4 Lexical Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.5 Graph-based Summarization Methods . . . . . . . . . . . . . . . . . . . . . . 36
2.6 Citation Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

III. Diversity of Perspectives in Collective Discourse . . . . . . . . . . . . . . . . 40

3.1 Data Annotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.1.1 Nuggets vs. Factoids . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 Diversity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2.1 Skewed Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2.2 Factoid Inventory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.2.3 Summary Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3 Other Collective Discourse Datasets . . . . . . . . . . . . . . . . . . . . . . . 51
3.3.1 Annotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.3.2 Diversity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.4 Small-world of Factoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.5 Wise Crowds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

IV. Community Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

vi



4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.1.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.1.2 Annotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2 Network Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.2.1 Number of Edges . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.2.2 Number of Connected Nodes . . . . . . . . . . . . . . . . . . . . . 65
4.2.3 Connected Components . . . . . . . . . . . . . . . . . . . . . . . . 65
4.2.4 Average Shortest Path and Diameter . . . . . . . . . . . . . . . . . 66
4.2.5 Clustering Coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3 Phase Transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.3.1 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.3.2 NMI Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.3.3 Domain Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.3.4 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

V. Citation Summarization using C-LexRank . . . . . . . . . . . . . . . . . . . . 76

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.3 Citation Summarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.3.1 C-LexRank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.4 Other Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.4.1 Random . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.4.2 LexRank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.4.3 MMR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.4.4 DivRank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.4.5 Trimmer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.5.1 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.5.2 Relative Utility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

VI. Factoid Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.1 Contribution Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.1.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.1.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.1.4 Automatic Keyphrase Extraction . . . . . . . . . . . . . . . . . . . 104
6.1.5 Sentence Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.1.6 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.1.7 Baselines and Gold Standards . . . . . . . . . . . . . . . . . . . . . 111
6.1.8 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.1.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.2 Communities of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.2.1 Distributional Similarity . . . . . . . . . . . . . . . . . . . . . . . . 115
6.2.2 Other Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.2.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
6.2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

VII. Survey Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7.1 Survey Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
7.1.1 Data Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

vii



7.1.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

VIII. Expert-written Historical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

8.1 Historical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
8.2 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

8.2.1 The ACL Anthology Network . . . . . . . . . . . . . . . . . . . . . 134
8.2.2 Gold Standard Preparation . . . . . . . . . . . . . . . . . . . . . . 135

8.3 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
8.3.1 Ranking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
8.3.2 Adding Weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
8.3.3 Citation Bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

8.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
8.4.1 Baseline Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
8.4.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 143

IX. Conclusion and Future Direction . . . . . . . . . . . . . . . . . . . . . . . . . . 147

9.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
9.1.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . 148

9.2 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
9.2.1 Decision Support Systems . . . . . . . . . . . . . . . . . . . . . . . 152
9.2.2 Identifying Misinformation . . . . . . . . . . . . . . . . . . . . . . . 152
9.2.3 Paraphrase Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . 153
9.2.4 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

viii



LIST OF FIGURES

Figure

2.1 In the model proposed by Abrams and Strogatz, each individual is monolingual
and with a probability changes her language to the other spoken language in the
community. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 In the model proposed by Wang and Minett, each monolingual individual can opt
to be bilingual or vice versa. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Sample dependency network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Part of the English conceptual network built from a thesaurus. . . . . . . . . . . . 25

3.1 The cumulative probability distribution for the frequency of factoids (i.e., the prob-
ability that a factoid will be mentioned in c different summaries) across in each
category. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2 The number of unique factoids and nuggets observed by reading n random sum-
maries in all the clusters of each category . . . . . . . . . . . . . . . . . . . . . . . 47

3.3 The 25th to 75th percentile pyramid score range in individual clusters . . . . . . . 48

3.4 Average pyramid score obtained by reading n random summaries shows rapid
asymptotic behavior. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.5 The cumulative probability distribution for the frequency of factoids (i.e., the prob-
ability that a factoid will be mentioned in c different summaries) across in each corpus. 53

3.6 Mean Average Precision (MAP) versus the number of reviews used to extract each
movie genre. (The shaded area shows 95% confidence interval for each MAP result) 59

4.1 Lexical network for the Yale dataset at 5 different τ values . . . . . . . . . . . . . 63

4.2 Clustering coefficient (cc), average shortest path (nasp), connected components
(ncc), and largest connected component (nlcc) in the Yale latent network over τ ,
compared with a randomized network of the same size. . . . . . . . . . . . . . . . . 68

4.3 The dendrogram for the Yale dataset’s latent network. Different sentences join
into connected components at different temperatures. . . . . . . . . . . . . . . . . . 71

5.1 An illustration of C-LexRank algorithm in a toy citation summary network . . . . 85

ix



5.2 An illustration of vertex coverage by selecting representative nodes as a summary.
Selecting two similar vertices will cause the summary to cover fewer contributions
of the target paper in (a), while selecting less similar vertices as the summary will
increase the coverage of the summary (b). . . . . . . . . . . . . . . . . . . . . . . . 86

5.3 Illustration of the C-LexRank algorithm on the citation summary network of (Cohn
& Blunsom, 2005). In the network (a), the nodes are citation sentences (annotated
with their nuggets from Table 5.2), and each edge is the cosine similarity between
the corresponding node pairs. (b) shows that the network has an underlying struc-
ture which is captured by C-LexRank in (c). Finally, (d) shows the C-LexRank
output where node diameter is proportional to its LexRank value within the cluster. 87

6.1 Evaluation Results (summaries with 5 sentences): The median pyramid score over
25 datasets using different methods. . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.2 Part of the word similarity graph in the redsox cluster . . . . . . . . . . . . . . . . 118

6.3 Part of the word similarity graph in the citation cluster . . . . . . . . . . . . . . . 119

8.1 A mini-model of the bi-partite graph for Chapter 5 (Part-of-Speech Tagging) . . . 137

8.2 Average Rouge-L scores of automatic surveys of the 10 chapters listed in Table 8.2
using chapter summaries and historical notes as reference . . . . . . . . . . . . . . 145

x



LIST OF TABLES

Table

3.1 Some of the annotated datasets and the number of summaries in each of them (hdl
= headlines; cit = citations) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 Agreement between different annotators in terms of average Kappa in 25 headline
clusters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3 Different factoids extracted from the Palin dataset with the number of tweets that
mention them, and short descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.4 Average number of factoids in various collective discourse corpora. . . . . . . . . . 53

3.5 Average clustering coefficient (C) and the average shortest path length (`) in the
networks of the collective discourse corpora and the corresponding random networks. 56

3.6 Top 10 genres extracted for the movie “Avatar” from user reviews. . . . . . . . . . 57

3.7 Mean Average Precision and F-score for genre extraction from a set of reviews (C.I.:
Confidence Interval). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.1 The datasets and the number of documents in each of them (hdl = headlines; cit
= citations) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2 Full Annotation of the Yale dataset results in a fact distribution matrix of sentences. 64

4.3 Average Pearson Correlation coefficient between clustering NMI and predicted NMI
at different τ values for each network, using various features . . . . . . . . . . . . . 73

4.4 Average prediction correlation when the model is trained on the other category. . . 73

4.5 Average clustering Normalized Mutual Information (NMI) for each method, in each
category. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.1 Papers chosen from clusters for single document summarization, with their publi-
cation year, and the number of citing sentences in AAN’s 2008 release. . . . . . . . 83

5.2 The set of citing sentences to the AAN paper W05-0622 (Cohn & Blunsom, 2005).
Each nugget extracted by the annotators is underlined. . . . . . . . . . . . . . . . . 84

5.3 Average purity and normalized mutual information (NMI) in the evaluated datasets 91

5.4 The 100 word summary constructed using C-LexRank for (Cohn & Blunsom, 2005)
together with the factoids shown in bold face. . . . . . . . . . . . . . . . . . . . . . 92

xi



5.5 Comparison of different ranking systems. . . . . . . . . . . . . . . . . . . . . . . . . 96

5.6 Comparison of different ranking systems using Relative Utility (RU) . . . . . . . . 99

6.1 List of papers chosen from AAN for evaluation together with the number of sen-
tences citing each. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.2 Nuggets of P03-1001 extracted by annotators. . . . . . . . . . . . . . . . . . . . . . 103

6.3 Statistics on the abstract corpus in AAN used as the background data . . . . . . . 103

6.4 Example: citation sentence for W05-1203 written by D06-1621, and its extracted
bigrams. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.5 Bigram-based summary generated for A00-1043. . . . . . . . . . . . . . . . . . . . . 109

6.6 The greedy algorithm for summary generation . . . . . . . . . . . . . . . . . . . . . 110

6.7 Comparison of different ranking systems . . . . . . . . . . . . . . . . . . . . . . . . 121

6.8 Top 3 ranked summaries of the redsox cluster using different methods . . . . . . . 122

7.1 Pyramid F-measure scores of human-created surveys of QA and DP data. The
surveys are evaluated using nuggets drawn from QA citation texts (QA–CT), QA
abstracts (QA–AB), and DP citation texts (DP–CT). . . . . . . . . . . . . . . . . . 126

7.2 Pyramid F-measure scores of automatic surveys of QA and DP data. The surveys
are evaluated using nuggets drawn from QA citation texts (QA–CT), QA abstracts
(QA–AB), and DP citation texts (DP–CT). * LexRank is computationally intensive
and so was not run on the DP-PA dataset (about 4000 sentences). (Highest scores
for each input source are shown in bold.) . . . . . . . . . . . . . . . . . . . . . . . . 127

7.3 ROUGE-2 scores obtained for each of the manually created surveys by using the
other three as reference. ROUGE-1 and ROUGE-L followed similar patterns. . . . 128

7.4 ROUGE-2 scores of automatic surveys of QA and DP data. The surveys are eval-
uated by using human references created from QA citation texts (QA–CT), QA
abstracts (QA–AB), and DP citation texts (DP–CT). These results are obtained
after Jack-knifing the human references so that the values can be compared to those
in Table 4. * LexRank is computationally intensive and so was not run on the DP
full papers set (about 4000 sentences). (Highest scores for each input source are
shown in bold.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

7.5 First few sentences of the QA citation texts survey generated by Trimmer. . . . . . 129

8.1 Part of the historical note in [89] signifying the history, early and late developments
and evaluation in “machine translation” . . . . . . . . . . . . . . . . . . . . . . . . 134

8.2 List of chapter historical notes used in our experiments together with the number
of source papers extracted from historical notes (src), the number of citing papers
extracted from AAN (cit), size of the left (BL) and right (BR) components in the
bi-partite graph, and number of edges in the graph (EB). . . . . . . . . . . . . . . 136

xii



8.3 Average Rouge-1 scores of automatic surveys of the 10 chapters listed in Table 8.2
evaluated using historical notes as reference (C.I.: Confidence Interval). . . . . . . 141

8.4 Average Rouge-1 scores of automatic surveys of the 10 chapters listed in Table 8.2
evaluated using chapter summaries as reference (C.I.: Confidence Interval). . . . . 143

8.5 Part of the automatic survey generated using HITS with weights for “part-of-
speech” tagging signifying early work, state-of-the-art, etc. . . . . . . . . . . . . . . 144

A.1 The output of C-LexRank summarization system for 3 papers from Table 5.1 in 3
topics: DP, MT, and Summ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

A.2 The output of C-LexRank summarization system for 3 papers from Table 5.1 in 3
topics: QA, TE, and CRF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

B.1 Sample expert surveys of Question Answering using abstracts. . . . . . . . . . . . . 160

B.2 Sample expert surveys of Question Answering using citations. . . . . . . . . . . . . 161

xiii



LIST OF APPENDICES

Appendix

A. Sample Automatic Summaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

B. Expert Summaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

xiv



ABSTRACT

USING COLLECTIVE DISCOURSE TO GENERATE SURVEYS OF SCIENTIFIC
PARADIGMS

by
Vahed Qazvinian

Chair: Professor Dragomir R. Radev

This thesis is focused on understanding collective discourse and employing its

properties to build better decision support systems. We first define collective dis-

course as a collective human behavior in content generation. In social media, col-

lective discourse is often a collective reaction to an event. A collective reaction to

a well-defined subject emerges in response to an event (a movie release, a breaking

story, a newly published paper) in the form of independent writings (movie reviews,

news headlines, citation sentences) by many individuals.

In order to understand collective discourse, we perform our analysis on a wide

range of real-world datasets from citations to movie reviews. We show that all these

datasets exhibit diversity of perspective, a property seen in other collective systems

and a criterion in wise crowds. Our experiments also confirm that the network

of different perspective co-occurrences exhibits the small-world property with high

clustering of different perspectives. Finally, we show that non-expert contributions

in collective discourse can be used to answer simple questions that are otherwise hard

xv



to answer.

As a concrete example of collective discourse, we discuss citations to scholarly

work. We show how they contain important information that convey the key features

and basic underpinnings of a particular field, early and late developments, important

contributions, and basic definitions and examples that enable rapid understanding of

a field by non-experts. We then present C-LexRank, a system that exploits scientific

collective discourse to produce automatically generated, readily consumable technical

surveys. Finally, we further extend our experiments to summarize an entire scientific

topic. We generate extractive surveys of a set of Question Answering (QA) and

Dependency Parsing (DP) papers, their abstracts, and their citation sentences and

show that citations have unique survey-worthy information.

xvi



CHAPTER I

Introduction

In sociology, the term collective behavior is used to denote mass activities that are

not centrally coordinated [21]. Collective behavior is different from group behavior

in the following ways: (a) it involves limited social interaction, (b) membership is

fluid, and (c) it generates weak and unconventional norms [181].

Gordon [69] explained how harvester ants achieve task allocation without any

central control and only by means of continual adjustment. Moreover Gordon [69]

argued that the cooperative behavior in the ant colony merely results from local

interactions between individual ants and not a central controller (emergent behavior).

For instance, in ant colonies individual members react to stimuli (in the form of

chemical scent) depending only on their local environment. In the absence of a

centralized decision maker, ant colonies exhibit complex behavior to solve geometric

problems like shortest paths to food or maximum distance from all colony entrances

to dispose of dead bodies.

Self organized behavior is not specific to ants. Schools of fish, flocks of birds,

herd of ungulate mammals are other examples of complex systems among animal

groups [60]. Similarly, pedestrians on a crowded sidewalk exhibit self-organization

that leads to forming lanes along which walkers move in the same directions [22]. It

1
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is argued that all examples of complex systems exhibit common characteristics:

1. They are composed of a large number of inter-connected parts (i.e., agents)

2. The system is self-organized in that there is not central controller.

3. They exhibit emergent behavior : properties seen in the group but not observable

from the actions of individuals.

Nonlinear behavior has been widely observed in nature in the past. Gordon [69]

explains how harvester ants achieve task allocation without any central control and

only by means of continual adjustment. Moreover he argues that the cooperative be-

havior in the ant colony merely results from local interactions between individual ants

and not a central controller. For instance, in ant colonies individual members react

to stimuli (in the form of chemical scent) depending only on their local environment.

In the absence of a centralized decision maker, ant colonies exhibit complex behavior

to solve geometric problems like shortest paths to food or maximum distance from

all colony entrances to dispose of dead bodies.

Self-organized behavior is not specific to ants. Schools of fish, flocks of birds,

herd of ungulate mammals are other examples of complex systems among animal

groups [60]. Similarly pedestrians on a crowded sidewalk exhibit self-organization

that leads to forming lanes along which walkers move in the same directions [22]. It

is argued that all examples of complex systems exhibit common characteristics:

1. They are composed of a large number of inter-connected parts (i.e., agents)

2. The system is self-organized in that there is not central controller.

3. They exhibit emergent behavior: properties seen in the group but not observable

from the actions of individuals.
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1.1 Collective Discourse

In social sciences, a lot of work has been done on collective systems and their

properties [83]. However, there is only little work that studies a collective system

in which individual members describe an event or an object. In our work, we focus

on the computational analysis of collective discourse, a collective behavior seen in

interactive content contribution in online social media [162].

In social media, collective discourse [72] is often a collective reaction to an event.

One scenario leading to collective reaction to a well-defined subject is when an event

occurs (a movie is released, a story occurs, a paper is published) and people inde-

pendently write about it (movie reviews, news headlines, citation sentences). This

process of content generation happens over time, and each person chooses the aspects

to cover. Each event has an onset and a time of death after which nothing is written

about it. Tracing the generation of content over many instances will reveal temporal

patterns that will allow us to make sense of the text generated around a particular

event.

• Movie Reviews

The first collective discourse appears in the set of reviews that non-expert users

write about a movie. The set of online reviews about an object is a perfect case

of collective human behavior. Upon its release, each movie, book, or product

receives hundreds and thousands of online reviews from non-expert Web users.

These reviews, while discussing the same object, focus on different aspects of

the object. For instance, in movie reviews, some reviewers solely focus on a few

famous actors, while some discuss other aspects like music or screenplay.

For example, the following excerpts are extracted from user reviews for the movie
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Pulp Fiction, and show how non-expert reviewers focus on different aspects of

the movie.

“... starred by many well-known Actors, such as: John Travolta, Samuel L.

Jackson, Uma Thurman, Bruce Willis and many. Directed by Quentin

Tarantino, the eccentric Director ...”

“Pulp Fiction was nominated for seven academy awards and won only one for

screen writing ...”

“Shocking, intelligent, exciting, hilarious and oddly though-provoking. Best bit:

Jackson’s Bible quote ...”

• Microblogs

The second type of collective discourse that we observe in our work is the set

of tweets written about a news story. Using Twitter as a corpus of collective

discourse does present unusual challenges. In Twitter, posts are limited to 140

characters and often contain information in an unusually compressed form.

An example of this type of collective discourse is the set of people who spread

rumors on social media such as Twitter. In [165], we study several examples of

such discourse. One such example is about Sarah Palin’s divorce rumor that was

popular during the 2008 presidential election campaigns. This dataset contains

tweets that are about this story and yet discuss it from different angles. For

example, the following tweets are extracted from this dataset and reveal various

facts about the story. One aspect is that a blogger has started the spread, and is

threatened with libel suit. Another aspect is that the rumor has been debunked

on Facebook.

“... Palins lawyer threatens divorce blogger with libel suit, gives her the option
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of receiving the summons at her residence http://ow.ly/15JDO6”

“@jose3030 Palin divorce is supposedly debunked on Facebook, but I think they

are just spinning it, until they can announce it.”

“RT @mediaite: Sarah Palin uses Facebook to deny unsourced divorce rumors

- http://bit.ly/14Xy6hCH.”

As another Microblog dataset, we collected the tweets that talk about the can-

cellation rumors of 14 TV shows in August of 2011. For instance, one of our

collected datasets is about the rumor that Charlie Sheen might go back to the

TV show Two and a Half Men.

“Charlie Sheen Claims ‘Discussions’ About Returning to ‘Two and a Half Men’:

In Boston for his national tour, C... http://bit.ly/hIbOWf.”

“Charlie Sheen Two And A Half Men’ Return Not Happening”

• News Headlines

Another collective discourse is seen when a story breaks and various news agen-

cies write headlines about it. All such headlines discuss the same story, but

view it from different perspectives.

We collected 25 news clusters from Google News. Each cluster consists of a

set of unique headlines about the same story, written by different sources. The

following example shows 3 headlines in our datasets that are about hurricane

Bill and its damage in Maine.

“Hurricane Bill sweeps several people into ocean.”

“7-year-old girl swept away by Bill wave dies after rescue.”

“Maine ranger: wave viewers didn’t heed warnings.”
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• Citation Sentences

The final collective discourse example that we study is the set of citation sen-

tences that different scholars write about a specific paper. A citation sentence to

an article is a sentence that appears in the literature and cites that paper. Each

citation to a paper may or may not discuss one of that paper’s contributions.

A citation sentence is a sentence in an article containing a citation and can

contain zero or more nuggets (i.e., non-overlapping contributions) about the

cited article. For example the following sentences are a few citation sentences

that appeared in the NLP literature in past that talk about Resnik’s work.

“The STRAND system (Resnik, 1999), for example, uses structural markup

information from the pages, without looking at their content, to attempt to

align them.”

“Resnik (1999) addressed the issue of language identification for finding Web

pages in the languages of interest.”

“Mining the Web for bilingual text (Resnik, 1999) is not likely to provide suf-

ficient quantities of high quality data.”

• Other Collective Discourse Examples

The study of collective discourse helps us understand new aspects of an object

that are hard to identify with a single authoritative view. Collective discourse

examples are not limited to the datasets that we have collected. For instance,

studying a complete set of introductions about PageRank enables us to learn

about its important aspects such as the algorithm, the damping factor, and the

Power method, as well as aspects that are less known such as its use in 1940s [61].

Similar examples exist in different TV show synopses, book descriptions, story
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narrations and many more.

To understand collective discourse, we are interested in behavior that happens

over a short period of time. We focus on topics that are relatively well-defined in

scope such as a particular event or a single news event that does not evolve over

time. This can eventually be extended to events and issues that are evolving either

in time or scope such as elections, wars, or the economy.

In social sciences and the study of complex systems a lot of work has been done

to study such collective systems, and their properties such as self-organization [151]

and diversity [83, 60]. However, there is little work that studies a collective system

in which members individually write summaries.

In this thesis, we will discuss various examples of collective discourse in online

social media and in particular citations to scholarly work. We will show how they

contain important information that convey the key features and basic underpinnings

of a particular field, early and late developments, important contributions, and basic

definitions and examples that enable rapid understanding of a field by non-experts.

We will then present C-LexRank, a system that exploits scientific collective discourse

to produce automatically generated, readily consumable technical surveys.

Collecting collective discourse datasets may not be a straight-forward task. For

instance, in scientific literature a citation sentence is normally accompanied with

a set of context (background information) sentences that implicitly cite the target

paper. In [160], we propose a general framework based on probabilistic inference to

extract such context information from scientific papers.

Finally, we further extend our experiments to summarize an entire scientific topic.

We generate extractive surveys of a set of Question Answering (QA) and Dependency

Parsing (DP) papers, their abstracts, and their citation sentences and show that
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citations have unique survey-worthy information.

1.2 Guide to Chapters

In chapter III, we analyze collective discourse and show that it exhibits diver-

sity, a property of general collective systems. We analyze 50 sets of human-written

summaries about the same story or artifact and investigate the diversity of perspec-

tives across these summaries. We show how different summaries use various phrasal

information units (i.e., nuggets) to express the same atomic semantic units, called

factoids.

In chapter IV, we view collective discourse as a complex system modeled with

a network that is bound to a parameter. Such a network can be considered as an

ensemble of unweighted graphs, each consisting of edges with weights greater than

the cutoff value. We look at this network ensemble as a complex system with a

temperature parameter, and refer to it as a Latent Network. Our experiments on

a number of datasets from different domains show that certain properties of latent

networks like clustering coefficient, average shortest path, and connected components

exhibit patterns that are significantly divergent from random networks. We explain

that these patterns reflect the network phase transition as well as the existence of

a strong community structure in document collections. These properties of latent

networks can be exploited to predict the network at which the community structure

in the network, and thus the clustering quality is best captured.

Our understanding of the emergent behavior in text enables us to design better

techniques for common text analysis tasks such as clustering, re-ranking, summa-

rization, salience detection, and more. Chapter V is focused on designing summa-

rization systems that exploits the properties of collective discourse such as diversity



9

and community structure, and produce diverse summaries of the represented content

in a collective discourse.

In chapter VI, we first design a method to automatically extract different perspec-

tives (factoids) from citations. Moreover, we discuss C-LexRank when it is run on

words and not documents. We represent the set of words in a corpus as a network,

where edges show the similarity of words using the distributional hypothesis. By

applying C-LexRank on this network, we find communities of words that are more

similar to each other whereby each community represents the set of words that relate

to one factoid.

Finally in chapters VII, VIII we extend our work from summarizing contribu-

tions of single articles to entire scientific topics. More particularly, we present our

experiment on using the tools explained in previous chapter for automatic survey

generation in chapter VII. We evaluate 2 automatically generated surveys on Ques-

tion Answering (QA) and Dependency parsing (DP). Finally, in chapter VIII we

perform experiments on gold standard datasets that are beyond expensive human

annotations. We propose the use of naturally written surveys as gold standards.

These gold standard resources include end-of-chapter historical notes from the lead-

ing NLP text book of Jurafsky and Matin [89], student summaries from a seminar

class, and survey papers written by other scholars.

In Appendix, we list some of the summaries that are generated using our proposed

system, C-LexRank, as well as 4 human written summaries on Question Ansewring.



CHAPTER II

Related Work

In this chapter we review the related work in 4 different sections. First, we summa-

rize previous work on collective systems and collective human behavior in general.

Then, we look at prior work on modeling natural language as a complex system.

Since this thesis is focused on modeling collective discourse as a complex system

composed of nodes and edges, it is essential to review previous attempts that model

linguistic phenomena as complex systems. Third, we provide a literature review of

graph based summarization systems. Systems that represent a set of documents as a

network and produce a summary by applying graph based methods such as salience

detection and ranking. Finally, we review work on citation analysis. Particularly,

we review prior work that has looked at the structure and importance of citations in

scholarly work.

2.1 Collective Behavior

Previous work has studied the complex system of natural collective behaviors such

as the ant colonies [195] or bird flocks and fish schools [173]. Many of the properties

seen in these naturally occurring complex systems are also integral to human systems.

Properties such as self-organization, coordination, and emergence are common in real

world tasks that involve interaction between humans. For example, teammates in

10
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a sports team constantly adjust their strategies in response to others’ actions [174].

Similar phenomenon exists in groups like poker players and traders on eBay.

Previously, it has been argued that diversity is essential in intelligent collective

decision-making. Page [151] argued that the diversity of people and groups, which

enable new perspectives, leads to better decision making. He found that the diversity

of perspectives in a collective system is associated with higher rates of innovation

and can enhance the capacity for finding solutions to complex problems. Similarly,

Hong and Page [82] showed that a random group of intelligent problem solvers can

benefit from diversity and outperform a group of the best problem solvers.

2.2 Language as a Complex System

A complex system is a system composed of interconnected parts (agents, processes,

etc.) that as a whole exhibit one or more properties called emergent behavior. The

emergent behavior, which is not obvious from the properties of the individuals, is

called to be nonlinear (not derivable from the summations of the activity of individual

components). Complex systems have been widely used to explain nonlinear behavior

in nature [69, 60].

Naturally occurring complex systems are often represented with systems of equa-

tions. The equations from which complex system models are developed generally

derive from statistical physics, information theory and non-linear dynamics. They

represent organized but unpredictable behaviors of systems of nature that are con-

sidered fundamentally complex. Complex Systems are also used to model processes

in economics, computer science, physics, and biology [30]. All complex systems have

many inter-connected components that can be represented as a network of nodes

with edges. Thus, network theory is an important aspect of the study of complex
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systems.

The theory of complex systems is helpful in explaining the origin, evolution, and

death of human languages and can explain the process of language acquisition as

well as the emergent properties of natural languages (e.g., Zipf’s law). Moreover,

it provides powerful tools such as network theory and agent based modeling, which

enable us to provide a unified explanation of various properties seen in different

languages.

2.1 Language Evolution and Acquisition

Most of the research on language acquisition has been dominated by the views

of Noam Chomsky and his classic questions [32]: (1) what constitutes knowledge

of a language? (2) how is this knowledge acquired? (3) how is it put to use?

One theory is that what one knows is a grammar, a complex system of rules and

constraints, that allows people to distinguish grammatical sequences [179]. Moreover,

it is argued that there must be strong innate constraints on the possible forms of

grammars [68], and that a child possesses considerable grammatical knowledge at

birth [179]. The logical argument behind this claim is due to poverty of stimulus (e.g.,

the lacking evidence of ungrammatical sequences that a child observes while learning

a language) [112] or the fact that no learning process has so far been successful in

explaining language acquisition [33]. This theory implies that language is preserved

due to genetic transmission.

Various aspects of the theory of language through biological evolution have been

criticized and rejected in the literature including the poverty of stimulus [39, 158]

and grammar-specific genes [200]. The alternative theory is based on a complex

system viewpoint. This theory rejects any genetic dimension to language evolution

and acquisition, and claims that language is a result of self-organized structures[186].
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Structures similar to those result in straight lines in ant colonies and certain patterns

in bird flocks.

In the complex systems view of language, individuals lack any “language organ,”

but preserve information about it in their memories [187]. Language, as we explain

later, is transmitted through learning in a cultural fashion. Mutations in the lan-

guage occur since individual speakers may lack a comprehensive understanding of

the language, make errors, or try to be as different from other individuals as pos-

sible (giving rise to diversity). In fact, Nowak et al. [149] proposed 4 reasons for a

language change as part of a cultural evolution: (1) random variation, (2) contact

with other languages, (3) hitchhiking on other cultural inventions, and (4) selection

for better learnability and communication. This self-organization in the community

of individual language users make the language more coherent (i.e., frequent use of

a word will give it success, which will in turn preferentially boost the use of that

word).

Other attempts have tried to link these two distinct theories and use both genetic

evolution and individual adaptation to explain language [81]. In [182] language

is modeled as the interaction of 3 separate complex systems: biological evolution,

learning, and culture. In their model learning results in cultural evolution which

leads to biological evolution. They also argue that innate endowment guides language

acquisition (learning).

The Complex System of Language

Previous work argues that the process of language acquisition is a transition of

a set of pre-fabricated sequences between two agents (e.g., parent and child) rather

than an open choice among all other words in a language [148]. This is also confirmed

by usage-based theories, which argue that we learn a language while engaging in a
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communicative process that shapes the language [13].

The complex system perspective provides evidence that the process of language

acquisition, use, and evolution are not independent from each other but correspond

to a single complex system [18]. More formally, this perspective proposes a co-

evolution process for language evolution and acquisition. A process that has 4 main

components: (1) language usage leads to change, (2) change affects how cues are

perceived, (3) perception affects learning, (4) learning affects usage [18].

2.2 Characteristics of Language Complex System

The complex system of language has 7 major characteristics [18]:

1. Two levels of existence: This characteristic indicates the existence of lan-

guage both in individuals (as idiolect) and the community of users (as communal

language). Communal language is emergent from the interaction of individual

idiolects and idiolects emerge from social interactions of individuals through

communal language use. This distinction and connection is a common feature

of complex systems. The collective patterns seen in communal level (similar to

bird flocks or fish schools) are emergent from long-term local interactions.

2. Diversity: Similar to other collective systems (such as bird flocks, ant colonies,

or people on crosswalks), there is no ideal or authoritative speaker of a language.

Each individual’s exposure and experience results in a different idiolect [26].

This variety in idiolects results in high degrees of diversity in language use [208].

More recently, Qazvinian and Radev [162, 163] performed extensive statistical

analysis and showed that diversity exists in large degrees in using various phrasal

information units (nuggets) that represent the same information. They use a

complex system approach and show that collective discourse, a collective system
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in which each agent independently contributes content about an artifact or

event, exhibits the diversity similar to those seen in other collective systems.

3. Perpetual dynamics: Language is very similar to many other complex systems

in its natural change. Unlike closed systems, which reduce to an equilibrium,

language is in constant change both in its idiolect level and its communal level.

4. Adaptation through competing factors: Like many other complex systems,

language evolves through various competing factors. Factors like production,

brevity, perceptual salience, explicitness, and clarity.

5. Phase Transition: Phase transition is often referred to as significant qualita-

tive differences after small quantitative changes in certain parameters. Previous

work argues that human language emerges when a set of language-enabling traits

(such as sociality, vocal tract control, shared attention, imitation, memory, etc)

take a specific form. In this model language is seen as a domain-specific out-

come that emerges through the interaction of multiple features, none of which is

specific to language. Small change in such features results in a communication

means of totally different nature in humans [52].

In a different work, language use among a group of people is modeled as a com-

plex system, where agents engage in a collective discourse [163]. This complex

system is bound to a simple temperature parameter. Small change of this pa-

rameter makes the network of agents undergo phase transition and exhibit high

degrees of community structure, where each community corresponds to a topic

of the collective discourse.

6. Dependence on social structure: Like many real-world networks that rep-

resent various complex systems, the network of linguistic interactions is not

formed via random interactions. Mirloy [130] argues that language change is
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affected by the social network of language use. The understanding of the role

of social networks in language evolution and acquisition remains an important

research problem.

Social networks have also been employed in the past to explain certain emergent

behaviors in language [207, 57, 59]. For instance, Steyvers and Tenenbaum [189]

examined free association networks, WordNet, and the Roget Thesaurus, and

noted five different properties in semantic networks. They were all sparse, with

a giant component, a small shortest-path length, a high clustering-coefficient,

and a scale-free degree distribution. We will review related work on network

analysis later in the paper.

7. Adaptation to human brain The last characteristics of language complex

system listed in [18], is its adaptation to the human brain. This characteristic

focuses on the mutual role that language and human brain play in a co-evolution

process. This research problem, which is often studied in Neurolinguistics, is

beyond the scope of this survey. To learn more on this topic, we encourage the

reader to refer to other related work [76, 46, 178, 36, 35].

Computational Models

The theory of language evolution as a complex system is supported by some

computational work mainly through simulating models. Prior work in [17, 157]

explored a simple communication model in which the world consists of agents. Each

agent contains a “meaning vector” and a recurrent neural network for communicating

sequences of characters chosen from {a, b, c, d}. In one communication episode each

element in the speaker’s meaning vector obtains a value in [0, 1] depending on the

meaning that the speaker would like to convey. The listener receives the vector and
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process it using its own network. After the sequence has been processed, the output

of the listener’s network represents its interpretation of the sequence. The neural

network is trained using the back-propagation algorithm [177]. The authors showed

that after 15,000 iterations, over 92% of the meanings are interpreted accurately by

the listeners, suggesting the emergence of some sort of systematic regularities between

meanings and their expression as sequences of characters. A central assumption to

the model presented by [17] is that agents use their own responses to characters as

a means to predict other agents’ interpretation of characters. This assumption is

somewhat present in primates and more in humans [210].

Similarly, Steels [188] took a complex systems viewpoint of language and models

a system in which agents have means of communication but lack specific semantics

and language conventions. He further explained that these conventions arise from

the interaction of agents in a simulated process. Others have tried to model lan-

guage as a Nash equilibrium in an evolutionary process [197]. In their work, Trapa

and Nowak [197] modeled the complex system of language users in an evolutionary

game theory setting, and showed that any random language evolves into a strict

Nash equilibrium, in which the total amount of information exchanged between two

individuals is more than any other language.

Language Death

The number of living languages today exceeds 6,000 [100]. 52% of the 6,000

languages are spoken by fewer than 10,000 people, and 28% are spoken by less than

1,000 people [71]. According to some estimates 50% to 90% of these languages will

vanish by the end of the 21st century [205].

Abrams and Strogatz [1] proposed a simple dynamical complex system for mod-

eling language endangerment. In their model the community of language speakers



18

has only 2 languages, X and Y , and individuals are monolingual. Intuitively, each

individual adopts a language with a frequency proportional to its status, s, a pop-

ularity measure of a language expressed as an increasing function of the number of

people who speak that language.

As depicted in Figure 2.1 an individual converts from Y to X with a probability

of pY→X(x, s), where x is the fraction of people speaking X, and s ∈ [0, 1] is the

status of X. The minimal model for this language change can be formulated as

(2.1)
dx

dt
= yPY→X(x, s)− xPX→Y (x, s)

Equation 2.1 states that the change in the fraction of people speaking X at a point

of time equal the fraction of people converting to X minus the fraction abandoning

X. By assuming that no one will ever adopt a language that has no speakers (i.e.,

Px→y(0, s) = 0) or no status (i.e., Px→y(x, 0) = 0), [1] conclude that Equation 2.1

has only 2 stable fixed points at x = 0 and x = 1 suggesting that the two languages

cannot coexist stably.

They fit the proposed model on data from 4 languages using Equation 2.2, and

show that the exponent a is unexpectedly constant across different languages (a ≈

1.31).

(2.2) PY→X(x, s) = cxas

The proposed model by [1] could be more realistic if it took a social structure

of individuals into account. For instance, this model can not explain the cases of

languages that have limited diffusion but are not at risk of extinction. Therefore,

a possible extension of this model should consider cultural effect has been proposed

before in [154].
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Figure 2.1: In the model proposed by Abrams and Strogatz, each individual is monolingual and with
a probability changes her language to the other spoken language in the community.

Patriarca and Leppänen [154] argued that the influence of a language can depend

on political or geographical factors. They extended the previous model by assuming

the area has 2 zones, and individuals can only interact (speak) with other individual

who are in the same zone. They showed that despite the difference in languages’

status (sA 6= sB), the system has a stationary state in which both languages survive.

However, they pointed out that the 2 languages are mainly concentrated in different

zones, but interact with one another in a narrow area between the two zone. They

finally concluded that multiple languages can coexist by acquiring speakers in distinct

geographical areas.

Wang and Minett [205] argued that a model for language competition should

incorporate bilingual speakers. In their model the sociolinguistic interaction between

the speakers of one language (X) and another (Y ) is possible via bilingual speakers.

As illustrated in Figure 2.2, in this model monolingual speakers of either X or Y

can choose to become proficient in the other language, without losing their original

language. Moreover, bilingual speakers can opt to lose proficiency in one of the

languages they speak.

Previous research that extends Abrams and Strogatz’s original model by taking

bilingual speakers into account is presented in [131, 132]. They analyzed the evolution
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of two coexisting languages (Castilian Spanish and Galician) under Abrams and

Strogatz’s model, and showed that the two languages can evolve to coexist if they are

similar enough [149]. The similarities between Spanish Castilian and Galician allow

for limited conversation between monolingual speakers of either languages. Mira and

Paredes [131] assumed 3 groups of people: speakers of X, Y , and bilinguals , B and

denote by x, y, b the fraction of people in each group where x + y + b = 1. Their

extension to the model in Equation 2.1 is as follows.

(2.3)
dx

dt
= yPY→X + bPB→X − x(PX→Y + PX→B)

where

PX→B = cksY (1− x)a(2.4)

PX→Y = c(1− k)sY (1− x)a(2.5)

Here, a speaker of X will change to Y or become bilingual with probabilities based

on a parameter 0 ≤ k ≤ 1, which reflects the ease of bilingualism and language

similarity. This model reduces to the one by [1] if k = b = 0.

Mira and Paredes [131] showed that the extended model successfully fits the data

and yields high similarity between the two languages. They argued that for every

value of sX , denoting the status of the language X, there exists kmin(sX , a) such

that for all k < kmin the language with smaller status dies, and for other values of

k both groups survive. Furthermore, Mira et al. [132] simulate the sociolinguistic

situation in Galicia using their model up to the year 2100 (k = 0.80 ) and showed

that all groups can survive if Galician status is equal to 0.36. However, if Galician

language fails to to reach a status of 0.335, Spanish monolingual population will

have a sustained growth and the Galician monolingual population will die. Mira et

al. [132] emphasized that the disappearance is of the monolingual group does not
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Figure 2.2: In the model proposed by Wang and Minett, each monolingual individual can opt to
be bilingual or vice versa.

imply the death of Galician language itself, since it would survive in the bilingual

group.

Research on language competition can potentially benefit from recent advance-

ments in modeling social structure, diffusion on networks, and influence in a com-

munity [111, 93, 109, 92, 38, 67, 94], and propose models of language evolution that

takes social relations into account.

2.3 Complex Networks of Language

Recent achievements in network theory [12] has proved its ability to model com-

plex systems such as the World Wide Web [5, 84, 85, 106], social network of peo-

ple [207], scientific collaborations [144], biological networks [170], and complex food

webs [211]. Similarly, prior work has tried to model language complex system as a

network of linguistic entities such as words or phrases [57, 48, 59].

Dorogovtsev and Mendes [48] modeled language as a self-organizing and evolving

network of words. The network grows both when new words are born and when new

edges emerge between disconnected nodes (words) obeying the following simple rules.

At each time step t, the tth node joins the network, and connects to several other

nodes following the preferential attachment model of [12]. Preferential attachment

states that the new node connects to an older node i with probability proportional to

i’s degree ki. Moreover, in this model, at each time step ct new edges emerge in the
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network connecting two nodes i and j with probability proportional to the product

of their degrees kikj [47].

In this model, at each time t, 1 + 2ct new edge tails are distributed preferentially

among old nodes. The evolution of the degree of the sth word (the node born at

time s) observed at time t (i.e., k(s, t)) can be formalized as

(2.6)
∂k(s, t)

∂t
= (1 + 2ct)

k(s, t)∫ t
0
k(u, t)du

By approximately solving this stochastic model in Equation 2.6, Dorogovtsev and

Mendes [48] showed that this network has a non-stationary power-law degree distri-

bution that is also observed in real-world data [57].

An interesting conclusion from this work is that the number of core words in a

lexicon does not depend on the total number of distinct words and is determined

by the value of the average rate interconnection c. However, despite confirming the

degree distribution seen in human language networks, this model fails to account for

important factors such as word extinction or a word’s evolution through language

use.

2.4 Small-world effect

Statistical relationships between words can be analyzed with the rate of their

co-occurrences in sentences. Such co-occurrences could be due to variety of reasons

such as syntactical relations or collocations (e.g., United States). The network of

words as nodes and co-occurrence relationships as edges is called the co-occurrence

network. Ferrer i Cancho and Solé [57] used three quarters of the 107 words in

the British National Corpus (BNC1) and formed a link between any two nodes if

the corresponding words had a distance of 2 or smaller (co-occur within 2 words of

1http://info.ox.ac.uk/bnc/
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each other) in the corpus. With extensive statistical analysis, they showed that this

network exhibits small-world properties [207].

The small-word effect is also seen in networks of human interactions [207], metabo-

lite processing [206], food webs [135], electronic circuits [56], and brain neurons [16].

Networks with this property obtain short average shortest paths but large cluster-

ing coefficients. Ferrer i Cancho and Solé [57] showed that the average shortest

path in co-occurrence networks is below 3.00 and the clustering coefficient is greater

than 0.68. This study showed that despite the huge lexicon stored in human brains

(104 − 105 words [129]), any word can be reached with fewer than 3 intermediate

words, on average. In other words, during the course of a communication, reaching

one word from another requires very few steps.

In a similar work, Ferrer i Cancho et al. [59] looked at dependency networks. These

networks contain a directed edge from a node si to a node sj if the corresponding

word to si can be a modifier of the head sj in a sentence in the corpus. Therefore,

the global dependency network consists of all the dependency relations seen in the

corpus, and thus the syntactic dependency structure of a sentence corresponds to a

subgraph of this large network. Figure 2.3 is an example of a dependency network

built using the Stanford parser and dependencies representation [98, 45] extracted

from the following sentence:

Television announced that Ashton Kutcher will join the cast of the hit comedy and

replace Charlie Sheen.

A global dependency network is the network of the dependency graphs of all the

sentences in a corpus. Ferrer i Cancho et al. [59] studied global dependency networks

of 3 different languages: Czech, German, and Romanian. They showed that these

networks exhibit similar properties: they all have small-world structure (i.e., average
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Figure 2.3: Sample dependency network.

shortest path ≈ 3.5) and highly heterogeneous degree distributions, in which the

probability that a vertex has degree k obeys a power-law of the form

(2.7) p(k) ∝ k−γ

where γ ≈ 2.2. Moreover, and these networks exhibit high degrees of community

structure (i.e., hierarchical organization), which implies that syntactic dependency

networks define a top-down hierarchical organization that is the basis of phrase-

structure formalisms [59]. Similarly, Liu and Xu [118] analyzed the dependency

networks of 15 languages and showed that the dependency syntactic networks can

reflect morphological variation degrees and morphological complexity in a language.

Liu and Hu [117] showed that syntax influences the properties of a complex network,

but argued that the scale-free property is a necessary condition but not sufficient to

judge whether a network is syntactic or not.

The small-world effect is not limited to BNC or the dependency networks. These

properties have also been observed in various semantic networks. Motter et al. [136]

analyzed the structure of conceptual networks, and Steyvers and Tenenbaum [189]

performed statistical analysis of the large-scale structure of 3 different semantic net-

works: word associations, WordNet, and Roget’s thesaurus.
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Figure 2.4: Part of the English conceptual network built from a thesaurus.

Motter et al. [136] constructed a conceptual network from the entries in a the-

saurus and formed a link between two nodes if they express similar concepts. They

showed that this network is sparse and exhibits small-world property with a clus-

tering coefficient equal to 0.53 and average shortest path of 3.2. They argued that

this is a result of natural optimization and the network’s scale-free property is due

to its dynamic character. Moreover, the very small average shortest path is because

of the existence of words that correspond to two or more very different concepts.

For instance, Figure 2.4 shows part of the English thesaurus network around the

word “fair”2. This network shows that “fair” is connected to both “carnival” and

“reasonable”, making them connected through a very short path (length of 2).

The study of conceptual networks was extended in [189] to study word association

2Network is built using http://www.visualthesaurus.com/
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networks. Word association networks are constructed by asking people the first word

that comes to their mind after seeing a particular given word (e.g., dog) [142]. In

word (directed) association networks, two word nodes are connected if the cue one

word evoked the other as an associative response for at least two of the participants

in the database. Roget’s thesaurus [175] includes over 29,000 words classified into

1,000 semantic categories. Steyvers and Tenenbaum [189] represented this thesaurus

as a bipartite graph where a set of words are connected to a set of semantic classes,

and then collapsed this graph to a regular network of words in which two words are

connected if they have a common neighbor in the bipartite graph. The WordNet [128]

network used in [189], contains more than 120,000 word forms (i.e.m single words and

collocations) and 99,000 word meanings. They studied 5 different properties of these

3 semantic networks: sparsity, connectedness, short path lengths, high neighborhood

clustering, and power-law degree distributions.

Steyvers and Tenenbaum [189] argued that all 3 semantic networks are very sparse.

For instance, in the association networks, a word is only connected to less than 1% of

other nodes. However, these networks exhibit high connectivity where a single giant

component accounts for the majority of the nodes in the graph (e.g., the largest

connected component consists of 96% of all words in association networks and 99%

in Roget’s thesaurus and WordNet network). Despite sparsity and having giant com-

ponents, these networks exhibit very short average shortest paths (3 in association

networks). This means that on average any two words are 3 association steps away

from each other. Moreover, similar to BNC and dependency networks, all these net-

works obtain singnificantly positive clustering coefficients (significantly larger than

a random network). Finally, these networks are scale-free and obtain node degrees

from a power-law distribution expressed in Equation 2.7 with γ ≈ 3.00.
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These various studies show that there are statistical universals in different lan-

guage networks, which are similar to those seen in other scale-free networks. This

finding suggests that the commonalities are not artifacts of our analysis, but rather

some abstract features of self-organization dynamics [189, 183]. An interesting con-

clusion of the small-world effect in human languages is made in [136]. They empha-

sized that human memory is associative (i.e., information is retrieved by connecting

similar concepts) in which the small-world property of the network maximizes the re-

trieval efficiency. More precisely, high clustering of the network causes similar pieces

of information to be stored together, and low shortest paths make very different

pieces of information to be separated only by a few links, guaranteeing a fast search.

2.5 Language Regularities

Different human languages exhibit common markable regularities. Most of prior

works have argued that these regularities and similarities are due to common vowels

and consonants [105, 156, 70]. [34] model the occurrences of consonants across differ-

ent languages using a complex network. They build a bipartite graphG = 〈VL, VC , E〉

in which a consonant from one part of the graph VC is linked with a language in the

second group VL if the language contains that consonant. They analyze the degree

distribution in each vertex group and show that the number of consonants in a lan-

guage follows a β-distribution. That is, for α > 0 and β > 0, the probability that a

language has a fraction of x consonants out of all possible consonants is drawn from

Equation 2.8, where Γ is the Euler’s gamma function.

(2.8) f(x) =
Γ(α + β)

Γ(α)Γ(β)
xα−1(1− x)β−1

This distribution is normally characterized by an asymmetric right-skewed distri-

bution. Choudhury et al. [34] fit this model on the data and shows that the best fit
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results in α = 7.06 and β = 47.64.

The more interesting observation is about the degree distribution of VC . Choud-

hury et al. [34] showed that the degree distribution in VC (i.e., the distribution of the

number of languages a consonant is used in) follows a power-law with two regimes.

Two-regime power-law distributions are characterized by two separate power-laws

that join at a break point, b. The two parts of the distribution (before and after the

break-point) are obtain different exponents in the following equations.

p(k) ∝

 k−γ1 if k ≤ b

k−γ2 if k ≥ b

Using empirical analysis, the authors in the mentioned reference suggest that the

two exponents for their network are γ1 = 0.71 and γ1 = 2.36, where the two regimes

join at k = 21. This simply means that there are two different power-laws. One

power-law describes the number of consonants that appear in less than 21 languages

(γ1) and the other describes the number of consonants that appear in more than 21

(γ2).

Similar work has proposed that vowel systems are the result of self-organization

in a population of language users. A self-organization that emerges from language

users trying to imitate each other [44, 43].

2.6 Emergent Behavior

The complex systems view of language use has opened new dimensions in explain-

ing some of the properties seen in language. These properties that are not observable

from individual language users are called emergent behavior. The emergent behavior

in language use is often captured in terms of statistical regularities, regularities that

help us develop a complete theory of language.
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Zipf’s Law

One of the features of natural languages that is widely studied is the statistical

distribution of word abundances. Zipf was among the first who studied this property.

Zipf’s law [218, 217] states that in a corpus of natural language text, the frequency

of a word is determined by a power-law function of its rank, r.

p(r) ∝ r−α(2.9)

Equation 2.9 is the simplest form of this representation where α = 1. Similarly,

we can present the Zipf’s law as a function of the frequency f of a word.

p(f) ∝ f−β(2.10)

Here p(r) is the probability that a randomly selected word from the corpus is of rank

r and p(f) is the probability that a randomly selected word from the corpus has the

frequency f . Prior work [57, 141] stated that β can be represented as a function of

α of the form

(2.11) β =
1

α
+ 1

Many prior works have tried to understand the mechanics that results in Zipf’s

law [19, 58, 110]. Li [110] argued that the same distribution is seen when the corpus

is not built using meaningful natural languages, but rather randomly generated text.

His model of text generation is based on drawing random characters from a uniform

distribution of English characters and the space character, thus each having the

probability of 1/27 to be chosen. For instance, the probability of seeing a is (1/27)3

and abc is (1/27)5.

Li [110] argued that seeing a power-law function with an exponent close to 1 is

mainly according to the transformation from the word’s length to its rank, which
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stretches an exponential function to a power-law function [110]. Such a view implies

that the structure of the natural language has no effect in the emergence of Zipf’s

law. However, Ferrer i Cancho and Solé [58] discussed that the distributions seen

from such random text are very different from those seen in natural languages. They

repeated Li’s experiment but replaced the uniform distribution of letters with the

frequency of the letters in Herman Melville’s Moby Dick. They drew random letters

and the space character with the probability proportional to the letter’s frequency

in Moby Dick. They showed that the new word frequency distributions are more

realistic and similar to the ones seen in human written text.

Zipf’s law is not limited to English word frequencies in text corpora. Ellis and

Ferreira [51] observed the Zipfian distribution in English verb-argument constructions

(VACs): verb locative (VL), verb object locative (VOL), and ditransitive (VOO). It

has also been observed in non-English languages such as Chinese [176], Greek [75],

and Turkish [41].

Gelbukh and Sidorov [66] argued that the exponent of the Zipf’s law depends

on language. In their work, they processed 39 literature texts for English, Russian,

and Spanish chosen randomly from different genres. They showed that the Zipf’s

exponent is 0.97 for English, and .89 for Russian, with Spanish between the two.

They suggested that this is due high “inflectivity” of Russian compared to English,

while English is more analytical than Russian. They generalized their finding and

conclude that Zipf’s law’s exponent depends on language.

Zipf’s law is observed as an emergent behavior in many other complex systems.

It has been used to explain the distribution cities [64], firm sizes [9], scientific cita-

tions [171], gene expressions [63], family names [10] and many more.
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Heaps’ Law

In linguistics, Heaps’ law explains the growth of vocabulary represented in a set

of documents. This law is normally formulated as shown in Equation 2.12, where V

is the size of the vocabulary built after seeing n words in a corpus [79].

(2.12) V ∝ nλ

Practically, λ takes a value close to 0.5 in English text corpora. Similar to their

work on Zipf’s law, Gelbukh and Sidorov [66] also performed experiments to show

that the value of the exponent in Heaps’ law depends on language.

Some prior work has attempted to show that Heaps’ law and Zipf’s law are related.

Baeza-Yates and Navarro [11] showed that when Zipf’s exponent is greater than 1

(α > 1) then Heap’s exponents (λ) is

(2.13) λ =
1

α
.

Lü et al. [119] argued that the relation in Equation 2.13 is only an asymptotic

solution holds for very-large-size systems with α > 1. They refine this result for

finite-size systems with α > 1 and complement it with α < 1.

λ ∝


1
α

α > 1

1 α < 1

2.3 Diversity of Perspectives

In prior work on evaluating independent contributions in content generation, [201]

studied IR systems and showed that relevance judgments differ significantly between

humans but relative rankings show high degrees of stability across annotators. How-

ever, perhaps the closest work to this thesis is [199] in which 40 Dutch students and
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10 NLP researchers were asked to summarize a BBC news report, resulting in 50 dif-

ferent summaries. Teufel and van Halteren also used 6 DUC3-provided summaries,

and annotations from 10 student participants and 4 additional researchers, to create

20 summaries for another news article in the DUC datasets. They calculated the

Kappa statistic [29, 101] and observed high agreement, indicating that the task of

atomic semantic unit (factoid) extraction can be robustly performed in naturally

occurring text, without any copy-editing.

The diversity of perspectives and the unprecedented growth of the factoid inven-

tory also affects evaluation in text summarization. Evaluation methods are either

extrinsic, in which the summaries are evaluated based on their quality in performing

a specific task [184] or intrinsic where the quality of the summary itself is evalu-

ated, regardless of any applied task [198, 143]. These evaluation methods assess the

information content in the summaries that are generated automatically.

Leveraging the diverse range of perspectives has also played a critical role in

developing new paraphrase generation systems by providing massive amounts of data

that is easily collectable. For instance, Chen and Dolan [31] performed a study and

collected highly parallel data, used for training paraphrase generation systems from

descriptions that participants wrote for video segments from YouTube. Such parallel

corpora of document pairs that represent the same semantic information in different

languages have also been extracted from user contributions in Wikipedia and been

used for learning translations of words and phrases [212].

In automatic text summarization, a number of previous methods have focused

on diversity. Mei et al. [123] introduced a diversity-focused ranking methodology

based on reinforced random walks in information networks. Their random walk
3Document Understanding Conference
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model introduces the rich-gets-richer mechanism to PageRank with reinforcements

on transition probabilities between vertices. Mei et al. employ this ranking algorithm

on TF-IDF based similarities of sentences, rank documents in the DUC 2004 datasets

for summarization, and show improvements in the task.

A similar ranking model is the Grasshopper ranking model [216], which leverages

an absorbing random walk. This model starts with a regular time-homogeneous

random walk, and in each step the node with the highest weight is set as an ab-

sorbing state. The multi-view point summarization of opinionated text is discussed

in [155]. Paul et al. introduced Comparative LexRank, based on the LexRank rank-

ing model [55]. Their random walk formulation is to score sentences and pairs of

sentences from opposite viewpoints (clusters) based on both their representativeness

of the collection as well as their contrastiveness with each other. Once a lexical

similarity graph is built, they modify the graph based on cluster information and

perform LexRank on the modified cosine similarity graph.

The most well-known paper that address diversity in summarization is [28], which

introduces Maximal Marginal Relevance (MMR). This method is based on a greedy

algorithm that picks sentences in each step that are the least similar to the sum-

mary so far. There are a few other diversity-focused summarization systems like

C-LexRank [159], which employs document clustering. These works have tried to

increase diversity in summarizing documents, but do not explain the type of the

diversity in their inputs. In this chapter, we give an insightful discussion on the

nature of the diversity seen in collective discourse, and will explain why some of the

mentioned methods may not work under such environments.

Lin and Hovy [114] discussed the evaluations of summaries on the Document

Understanding Conference 2001 data. Although they showed that more than one
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gold standard summary is needed to evaluate a system summary, they did not give

an estimate on the number of such summaries to achieve a reliable evaluation.

Finally, recent research on analyzing online social media shown a growing inter-

est in mining news stories and headlines because of its broad applications ranging

from “meme” tracking and spike detection [108] to text summarization [15]. In sim-

ilar work on blogs, it is shown that detecting topics [103, 2] and sentiment [152]

in the blogosphere can help identify influential bloggers [3, 86] and mine opinions

about products [133]. These methods have demonstrated the utility of harnessing

the wisdom of disparate crowds in identifying current events and the sentiment they

generate.

However, previous research has not addressed the coverage of such distributed

contents, whether the marginal information gain with each additional contribution

asymptotes and how such contents can best be summarized.

2.4 Lexical Networks

Several properties of lexical networks have been analyzed before [57, 59]. Steyvers

and Tenenbaum [189] examined free association networks, WordNet, and the Roget

Thesaurus, and noted five different properties in semantic networks. They were

all sparse, with a giant component, a small shortest-path length, a high clustering-

coefficient, and a scale-free degree distribution.

The evolution of lexical networks over time has also been studied in [48, 27].

These studies found that the resulting network for a text corpus exhibited small-

world properties in addition to a power-law degree distribution.

It has been noted that although the standard growth models based on preferential

attachment fit the degree distribution of the world wide web and citation networks,
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they fail to accurately model the cosine distribution of the linked documents. A

mixture model for cosine distribution of linked documents is proposed in [125], which

combines preferential attachment with cosine similarity. This model makes use of the

idea that authors don’t just link to the common pages on the web, but also take into

account the content of these pages. Authors tend to link to and cite articles that are

related to their own content. Menczer’s model generates networks that reproduce the

same degree distribution and content distribution of real-world information networks.

More formally he showed that at each step t one new page t is added, and m links

are created from t to m existing pages. Each of these m pages are selected from

{i, i < t} with a probability,

Pr(i, t) =


k(i)
mt

if σc(i, t) > κ∗

cσγc (i, t) otherwise

where σc(i, t) is the content similarity of two pages i, t, and m, κ∗ are constants

derived from the data and c is a normalization factor.

They also generate networks by simulating the Open Directory Project (DMOZ)

network and a collection of articles published in the Proceedings of the National

Academy of Sciences (PNAS). Their results show that their model not only fits the

degree distribution, but it fits the similarity distribution, where the probability of a

node to be linked is

Pr(i) = α
k(i)

mt
+ (1− α)P̄ r(i)

where i < t and α ∈ [0, 1] is a preferential attachment parameter.

In the degree-uniform mixture model we have, P̄ r(i) = 1
t

but a degree-similarity

mixture model uses content similarity and results in

P̄ r(i) ∝
( 1

σc(i, t)
− 1
)−γ
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where γ is a constant.

Finally, graph based techniques have been used for other applications in NLP such

as summarization [55], and summary evaluation [153]. Finally, Lexrank [55] uses a

network representation for multi-document summarization. To do so, it builds a

lexical network, in which nodes are sentences and a weighted edge between two

nodes shows the lexical similarity.

2.5 Graph-based Summarization Methods

As a representative of graph-based methods applied to summarization, LexRank [55]

constructs a graph whose vertices are sentences from all the documents in a clus-

ter. The graph is characterized by a sentence connectivity matrix representing the

Markov transition probabilities among vertices. Sentences of high centralities are

then selected to form the summary. C-LexRank [159] extended the framework by

incorporating community clustering to address the need of covering different aspects

of contributions in a scientific work.

Motivated by the similar idea of applying PageRank and HITS [99] on graphs

of sentences, Mihalcea and Tarau [127] presented TextRank, a system for keyword

extraction and sentence extraction, and successfully apply it to producing extractive

summaries. The system is proved scalable to multi-document summarization tasks,

and also language-independent [126].

More recent work has integrated link analysis and other techniques as re-ranking

to improve the effectiveness of summarization based on graph-based ranking. Wan

and Yang [203] incorporated information richness and information novelty into the

criteria of selecting important sentences. These two parameters are determined by

a sentence affinity graph reflecting the semantic relationships between sentences.
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They also distinguished between intra-document and inter-document links, biasing

the latter for information richness computation.

Another optimization ClusterCMRW (and ClusterHITS) proposed in [204] as-

sumes that a given document set covers a few topic themes or subtopics that are

of different degrees of importance. The idea of clustering sentences according to

subtopics is comparable to C-LexRank. Designed for summarizing scientific contri-

butions, C-LexRank looks for a comprehensive coverage of each subtopic or contribu-

tion aspect, while ClusterCMRW (and ClusterHITS) focus at ranking on the cluster

level, so that sentence centralities are scaled by the centralities of the clusters in

which they belong.

2.6 Citation Analysis

Previous work has analyzed citation and collaboration networks [194, 144] and

scientific article summarization [193]. Bradshaw [23, 24] benefited from citations

to determine the content of articles and introduce “Reference Directed Indexing”

to improve the results of a search engine. Nanba et al. [139, 138] analyzed cita-

tion sentences and automatically categorized citations into three groups using 160

pre-defined phrase-based rules. This categorization was then used to build a tool

to help researchers analyze citations and write scientific summaries. Nanba and

Okumura [140] also discussed the same citation categorization to support a system

for writing a survey. They [140, 139] reported that co-citation implies similarity by

showing that the textual similarity of co-cited papers is proportional to the proximity

of their citations in the citing article.

Previous work has shown the importance of the citation sentences in understand-

ing scientific contributions. Elkiss et al. [50] performed a large-scale study on cita-
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tions and their importance. They conducted several experiments on a set of 2, 497

articles from the free PubMed Central (PMC) repository4 and 66 from ACM digital

library. Results from this experiment confirmed that the average cosine between

sentences in the set of citations to an article is consistently higher than that of its

abstract. They also showed that this number is reported to be much greater than the

average cosine of the citation sentences with that of a randomly chosen document,

and so is for the abstract. Finally, they concluded that the content of citing sen-

tences has much greater uniformity than the content of the corresponding abstract,

implying that citations are more focused and contain additional information that

does not appear in abstracts.

Nakov and Hearst [137] performed a detailed manual study of citations in the area

of molecular interactions and found that the set of citations to a given target paper

cover most information found in the abstract of that article, as well as 20% more

concepts, mainly related to experimental procedures.

Kupiec et al. [104] used the abstracts of scientific articles as a target summary.

They used 188 Engineering Information summaries that are mostly indicative in

nature. Kan et al. [90] used annotated bibliographies to cover certain aspects of

summarization and suggest guidelines that summaries should also include metadata

and critical document features as well as the prominent content-based features.

Siddharthan and Teufel [180] described a new reference task and show high hu-

man agreement as well as an improvement in the performance of argumentative zon-

ing [192]. In argumentative zoning—a rhetorical classification task—seven classes

(Own, Other, Background, Textual, Aim, Basis, and Contrast) are used to label

sentences according to their role in the author’s argument.

4http://www.pubmedcentral.gov
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Athar [7] addressed the problem of identifying positive and negative sentiment

polarity in citations to scientic papers. Similarly, Athar and Teufel [8] used context-

enriched citations to classify scientific sentiment towards a target paper.

Little work has been done on automatic citation extraction from research papers.

Kaplan et al. [91] introduced “citation-site” as a block of text in which the cited text

is discussed. The mentioned work used a machine learning method for extracting

citations from research papers and evaluates the result using an annotated corpus of

38 papers citing 4 articles.



CHAPTER III

Diversity of Perspectives in Collective Discourse

In this chapter, we analyze collective discourse, a collective human behavior in

content generation, and show that it exhibits diversity, a property of general collec-

tive systems. Using extensive analysis, we propose a novel paradigm for designing

summary generation systems that reflect the diversity of perspectives seen in real-life

collective summarization. We analyze 50 sets of summaries written by human about

the same story or artifact and investigate the diversity of perspectives across these

summaries. We show how different summaries use various phrasal information units

(i.e., nuggets) to express the same atomic semantic units, called factoids. We believe

that out experiments will give insight into new models of text generation, which is

aimed at modeling the process of producing natural language texts, and is best char-

acterized as the process of making choices between alternate linguistic realizations,

also known as lexical choice [49, 14, 185].

3.1 Data Annotation

The datasets used in our experiments represent two completely different cate-

gories: news headlines, and scientific citation sentences. The headlines datasets

consist of 25 clusters of news headlines collected from Google News1, and the cita-

1news.google.com

40
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tions datasets have 25 clusters of citations to specific scientific papers from the ACL

Anthology Network (AAN)2. Each cluster consists of a number of unique summaries

(headlines or citations) about the same artifact (non-evolving news story or scien-

tific paper) written by different people. Table 3.1 lists some of the clusters with the

number of summaries in them.

This table indicates that the cluster size ranges from 10 to more than 100 headlines

per cluster. For instance the largest cluster (size=125) is about “Miss Venezuela wins

miss universe 2009”, and the smallest cluster represents headlines about “Yale lab

tech in court” with only 10 headlines on Google.

ID type Name Story/Title #
1 hdl miss Miss Venezuela wins miss universe’09 125
2 hdl typhoon Second typhoon hit philippines 100
3 hdl russian Accident at Russian hydro-plant 101
4 hdl redsox Boston Red Sox win world series 99
5 hdl gervais “Invention of Lying” movie reviewed 97
· · · · · · · · ·

25 hdl yale Yale lab tech in court 10
26 cit N03-1017 Statistical Phrase-Based Translation 172
27 cit P02-1006 Learning Surface Text Patterns ... 72
28 cit P05-1012 On-line Large-Margin Training ... 71
29 cit C96-1058 Three New Probabilistic Models ... 66
30 cit P05-1033 A Hierarchical Phrase-Based Model ... 65
· · · · · · · · ·

50 cit H05-1047 A Semantic Approach to Recognizing ... 7

Table 3.1: Some of the annotated datasets and the number of summaries in each of them (hdl =
headlines; cit = citations)

3.1.1 Nuggets vs. Factoids

We define an annotation task that requires explicit definitions that distinguish

between phrases that represent the same or different information units. Unfortu-

nately, there is little consensus in the literature on such definitions. Therefore, we

follow [198] and make the following distinction. We define a nugget to be a phrasal

information unit. Different nuggets may all represent the same atomic semantic unit,

2http://clair.si.umich.edu/clair/anthology/
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which we call as a factoid. In the following headlines, which are randomly extracted

from the redsox dataset, nuggets are manually underlined.

red sox win 2007 world series

boston red sox blank rockies to clinch world series

boston fans celebrate world series win; 37 arrests reported

These 3 headlines contain 9 nuggets, which represent 5 factoids or classes of equiv-

alent nuggets.

f1 : {red sox, boston, boston red sox}

f2 : {2007 world series, world series win, world series}

f3 : {rockies}

f4 : {37 arrests}

f5 : {fans celebrate}

The first headline indicates that the “red sox” are the winning team and have

become the champion of the “2007 world series”. The second headline mentions

that the red sox beat colorado “rockies” to win the world series. The last headline

covers other aspects of the story that are absent in the other two: “celebrations”

and “arrests”. This example suggests that different headlines on the same story

written independently of one another use different phrases (nuggets) to refer to the

same semantic unit (e.g., “red sox” vs. “boston” vs. “boston red sox”) or to semantic

units corresponding to different aspects of the story (e.g., “37 arrests” vs. “rockies”).

In the former case different nuggets are used to represent the same factoid, while in

the latter case different nuggets are used to express different factoids. This analogy

is similar to the definition of factoids in [199].
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The following citation sentences to Koehn’s work suggest that a similar phe-

nomenon also happens in citations.

We also compared our model with pharaoh (Koehn et al, 2003).

Koehn et al (2003) find that phrases longer than three words improve performance

little.

Koehn et al (2003) suggest limiting phrase length to three words or less.

For further information on these parameter settings, confer (koehn et al, 2003).

where the first author mentions “pharaoh” as a contribution of Koehn et al, but

the second and third use different nuggets to represent the same contribution: use

of trigrams. However, as the last citation shows, a citation sentence, unlike news

headlines, may cover no information about the target paper.

The use of phrasal information as nuggets is an essential element to our experi-

ments, since some headline writers often try to use uncommon terms to refer to a

factoid. For instance, two headlines from the redsox cluster are:

Short wait for bossox this time

Soxcess started upstairs

The use of different nuggets to represent the same factoid is also seen in smaller

datasets. Four randomly selected headlines from the babies dataset are as follows.

most babies born this century will live to 100

today’s babies are tomorrow’s centenarians

100 candles on birthday cake to become common event

most babies in rich nations to see 100

These headlines result in 3 factoids as below.

f1: {live to 100, tomorrow’s centenarians, 100 candles on birthday cake, to see 100}



44

f2: {babies born this century, today’s babies, most babies}

f3: {in rich nations}

Following these examples, we asked two annotators to annotate all 1, 390 head-

lines, and 926 citations. The annotators were asked to follow precise guidelines in

nugget extraction. Our guidelines instructed annotators to extract non-overlapping

phrases from each headline as nuggets. Therefore, each nugget should be a substring

of the headline that represents a semantic unit3.

Previously Lin and Hovy [114] have shown that information overlap judgment

is a difficult task for human annotators. To avoid such a difficulty, we enforced

our annotators to extract non-overlapping nuggets from a summary to make sure

that they are mutually independent and that information overlap between them is

minimized.

Finding agreement between annotated well-defined nuggets is straightforward and

can be calculated in terms of Kappa. However, when nuggets themselves are to be

extracted by annotators, the task becomes less obvious. To calculate the agreement,

we annotated 10 randomly selected headline clusters twice and designed a simple

evaluation scheme based on Kappa4. For each n-gram, w, in a given headline, we

look if w is part of any nugget in either human annotations. If w occurs in both or

neither, then the two annotators agree on it, and otherwise they do not. Based on

this agreement setup, we can formalize the κ statistic as κ = Pr(a)−Pr(e)
1−Pr(e)

where Pr(a)

is the relative observed agreement among annotators, and Pr(e) is the probability

that annotators agree by chance if each annotator is randomly assigning categories.

3Before the annotations, we lower-cased all summaries and removed duplicates
4Previously Qazvinian and Radev [160] have shown high agreement in human judgments in a similar task on

citation annotation
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Average κ
unigram bigram trigram

Human1 vs. Human2
0.76± 0.4 0.80± 0.4 0.89± 0.3

Table 3.2: Agreement between different annotators in terms of average Kappa in 25 headline clus-
ters.
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Figure 3.1: The cumulative probability distribution for the frequency of factoids (i.e., the probabil-
ity that a factoid will be mentioned in c different summaries) across in each category.

Table 3.2 shows the unigram, bigram, and trigram-based average κ between the

two human annotators (Human1, Human2). These results suggest that human

annotators can reach substantial agreement when bigram and trigram nuggets are

examined, and has reasonable agreement for unigram nuggets.

3.2 Diversity

We study the diversity of ways with which human summarizers talk about the

same story or event and explain why such a diversity exists.

3.2.1 Skewed Distributions

Our first experiment is to analyze the popularity of different factoids. For each

factoid in the annotated clusters, we extract its count, X, which is equal to the

number of summaries it has been mentioned in, and then we look at the distribution

of X. Figure 3.1 shows the cumulative probability distribution for these counts (i.e.,

the probability that a factoid will be mentioned in at least c different summaries) in
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both categories.

These highly skewed distributions indicate that a large number of factoids (more

than 28%) are only mentioned once across different clusters (e.g., “poor pitching of

colorado” in the redsox cluster), and that a few factoids are mentioned in a large

number of headlines (likely using different nuggets). The large number of factoids

that are only mentioned in one headline indicates that different summarizers increase

diversity by focusing on different aspects of a story or a paper. The set of nuggets

also exhibit similar skewed distributions. If we look at individual nuggets, the redsox

set shows that about 63 (or 80%) of the nuggets get mentioned in only one headline,

resulting in a right-skewed distribution.

The factoid analysis of the datasets reveals two main causes for the content di-

versity seen in headlines: (1) writers focus on different aspects of the story and

therefore write about different factoids (e.g., “celebrations” vs. “poor pitching of

colorado”). (2) writer use different nuggets to represent the same factoid (e.g., “red-

sox” vs. “bosox”). In the following sections we analyze the extent at which each

scenario happens.

3.2.2 Factoid Inventory

The emergence of diversity in covering different factoids suggests that looking at

more summaries will capture a larger number of factoids. In order to analyze the

growth of the factoid inventory, we perform a simple experiment. We shuffle the set

of summaries from all 25 clusters in each category, and then look at the number of

unique factoids and nuggets seen after reading nth summary. This number shows

the amount of information that a randomly selected subset of n writers represent.

This is important to study in order to find out whether we need a large number of

summaries to capture all aspects of a story and build a complete factoid inventory.
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Figure 3.2: The number of unique factoids and nuggets observed by reading n random summaries
in all the clusters of each category

The plot in Figure 3.2.1 shows, at each n, the number of unique factoids and nuggets

observed by reading n random summaries from the 25 clusters in each category.

These curves are plotted on a semi-log scale to emphasize the difference between the

growth patterns of the nugget inventories and the factoid inventories5.

This finding numerically confirms a similar observation on human summary an-

notations discussed in [198, 199]. In their work, van Halteren and Teufel indicated

5Similar experiment using individual clusters exhibit similar behavior
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Figure 3.3: The 25th to 75th percentile pyramid score range in individual clusters

that more than 10-20 human summaries are needed for a full factoid inventory. How-

ever, our experiments with nuggets of nearly 2, 400 independent human summaries

suggest that neither the nugget inventory nor the number of factoids will be likely

to show asymptotic behavior. However, these plots show that the nugget inventory

grows at a much faster rate than factoids. This means that a lot of the diversity

seen in human summarization is a result of the so called different lexical choices that

represent the same semantic units or factoids.

3.2.3 Summary Quality

In previous sections we gave evidence for the diversity seen in human summaries.

However, a more important question to answer is whether these summaries all cover

important aspects of the story. Here, we examine the quality of these summaries,

study the distribution of information coverage in them, and investigate the number

of summaries required to build a complete factoid inventory.

The information covered in each summary can be determined by the set of factoids

(and not nuggets) and their frequencies across the datasets. For example, in the

redsox dataset, “red sox”, “boston”, and “boston red sox” are nuggets that all

represent the same piece of information: the red sox team. Therefore, different
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summaries that use these nuggets to refer to the red sox team should not be seen as

very different.

We use the Pyramid model [143] to value different summary factoids. Intuitively,

factoids that are mentioned more frequently are more salient aspects of the story.

Therefore, our pyramid model uses the normalized frequency at which a factoid is

mentioned across a dataset as its weight. In the pyramid model, the individual

factoids fall in tiers. If a factoid appears in more summaries, it falls in a higher tier.

In principle, if the term wi appears |wi| times in the set of headlines it is assigned to

the tier T|wi|. The pyramid score that we use is computed as follows. Suppose the

pyramid has n tiers, Ti, where tier Tn is the top tier and T1 is the bottom. The weight

of the factoids in tier Ti will be i (i.e. they appeared in i summaries). If |Ti| denotes

the number of factoids in tier Ti, and Di is the number of factoids in the summary

that appear in Ti, then the total factoid weight for the summary is D =
∑n

i=1 i×Di.

Additionally, the optimal pyramid score for a summary is Max =
∑n

i=1 i × |Ti|.

Finally, the pyramid score for a summary can be calculated as

P =
D

Max

Based on this scoring scheme, we can use the annotated datasets to determine

the quality of individual headlines. First, for each set we look at the variation in

pyramid scores that individual summaries obtain in their set. Figure 3.3 shows,

for each cluster, the variation in the pyramid scores (25th to 75th percentile range)

of individual summaries evaluated against the factoids of that cluster. This figure

indicates that the pyramid score of almost all summaries obtain values with high

variations in most of the clusters For instance, individual headlines from redsox

obtain pyramid scores as low as 0.00 and as high as 0.93. This high variation confirms

the previous observations on diversity of information coverage in different summaries.
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Figure 3.4: Average pyramid score obtained by reading n random summaries shows rapid asymp-
totic behavior.

Additionally, this figure shows that headlines generally obtain higher values than

citations when considered as summaries. One reason, as explained before, is that a

citation may not cover any important contribution of the paper it is citing, when

headlines generally tend to cover some aspects of the story.

High variation in quality means that in order to capture a larger information

content we need to read a greater number of summaries. But how many headlines

should one read to capture a desired level of information content? To answer this

question, we perform an experiment based on drawing random summaries from the

pool of all the clusters in each category. We perform a Monte Carlo simulation,

in which for each n, we draw n random summaries, and look at the pyramid score

achieved by reading these headlines. The pyramid score is calculated using the

factoids from all 25 clusters in each category6. Each experiment is repeated 1, 000

times to find the statistical significance of the experiment and the variation from the

average pyramid scores.

Figure 3.4 shows the average pyramid scores over different n values in each cate-

6Similar experiment using individual clusters exhibit similar results
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gory on a log-log scale. This figure shows how pyramid score grows and approaches

1.00 rapidly as more randomly selected summaries are seen.

3.3 Other Collective Discourse Datasets

In this section, we extend our analysis from citations and news headlines to a

larger set of collective discourse examples.

3.3.1 Annotations

In addition to citations and headlines, we collect and annotate the following

datasets: movie reviews to the same movies from imdb.com, and tweets about the

same stories from Twitter.com. For each collective discourse dataset described in

Section 1.1, we construct the set of factoids that represent various aspects of a story

or a movie or different contributions of a paper.

For the microblogs dataset, we asked two annotators to go over all the tweets and

identify a set of factoids that represent different aspects of each rumor. We then

manually marked each tweet with the factoid that is relevant to the tweet. Each

factoid is usually covered by a number of tweets, and each tweet covers one or more

factoids. However, we did not observe any tweets that cover more than 2 factoids in

our datasets. The small number of factoids covered by each tweet is most likely due

to the length limit enforced by Twitter on each post.

Table 3.3 lists the factoids extracted from the Sarah Palin.s divorce rumor dataset.

This table shows that the 414 tweets discuss how “Facebook is used to debunk the

rumor,” while the “libel suit against the blogger who started the rumor” is only

mentioned in 24 tweets of the total 789 tweets.

To calculate the inter-judge agreement, we annotated 100 microblog instances on
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Factoid #tweets Perspective description

FB 414 debunked on Facebook
FAMILY 106 family values
ALASKA 87 Alaska report’s evidence
QUIT 72 resignation and divorce
AFFAIRS 58 affairs
GAY 36 gay marriage ban
CAMP 36 her camp denies the rumor
MONTANA 33 moving to Montana
LIBEL 24 libel suit against the rumor
BLOG 19 blogger who started the rumor

Table 3.3: Different factoids extracted from the Palin dataset with the number of tweets that men-
tion them, and short descriptions.

Sarah Palin twice, and calculated the statistic as

κ =
Pr(a)− Pr(ε)

1− Pr(ε)

where Pr(a) is the relative observed agreement among the two annotators on the

10 factoids from Table 3.3, and Pr(ε) is the probability that annotators agree by

chance if each annotator is randomly assigning categories. Based on this formulation,

we reach a value of 0.913 in κ, and 93% agreement between the two annotators.

Previously we showed high agreement in human judgments for extracting factoids

from other datasets such as news headlines and citations (κ ≈ 0.8) [162].

For the movie review clusters, we downloaded the list of cast names as well as the

list of plot keywords provided for each movie by IMDB, as the set of factoids about

the movie7.

Table 3.4 lists the average number of factoids for each collective discourse corpus.

For the Movie reviews, there is an average of 131 factoids per movie, and for citations,

headlines and microblogs, our annotators identify an average of 5, 7, and 3 factoids

respectively.

7We admit that the set of cast names and plot keywords provided by IMDB does not include all the factoids
about the movie. However, since creating gold standard data from complete user reviews is fairly arduous, and we
did not pursue manual annotations for movies.
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Dataset Number of factoids

Movie reviews 131.31± 52.67
Microblogs 2.93± 2.05
News headlines 7.48± 4.02
Citations 5.48± 1.96

Table 3.4: Average number of factoids in various collective discourse corpora.

3.3.2 Diversity

Surow [190] defines 4 criteria for a crowd to be wise: (1) people in the crowd should

have diverse knowledge of facts (diversity); (2) people should act independently and

their opinion should not be affected by that of others (independence); (3) people

should have access to local knowledge (decentralization); and (4) a mechanism should

exist to turn individual judgments into collective intelligence (aggregation).

Previously, we showed that citation and headline datasets exhibit skewed fac-

toid distributions and diversity. Here, we present evidence that the individuals who

engage in collective discourse in other examples also have diverse perspectives and

interpret things differently.
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Figure 3.5: The cumulative probability distribution for the frequency of factoids (i.e., the probabil-
ity that a factoid will be mentioned in c different summaries) across in each corpus.
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Novelty and Redundancy

To investigate the diversity of perspectives, we look at the frequency distribution

of various factoids in different corpora by extracting the number of individuals that

mention each factoid, f , in the annotated clusters. Figure 3.5 shows the log-log

scale cumulative probability distribution for these counts (i.e., the probability that

a factoid will be mentioned by at least c different people) in the movie review and

microblog corpora. This figure suggests that factoid mention frequencies exhibit

a highly skewed distribution with many factoids mentioned only once and a very

few factoids mentioned by a large number of people. For instance, in the Pulp

Fiction example, “Bruce Willis” and “Quentin Tarantino” are very popular factoids

and most reviewers mention them, while “Rene Beard”, “Frank Whaley” (two other

actors), or “Jackson’s bible quote” are among many factoids that are not as frequently

mentioned.

3.4 Small-world of Factoids

Recent research has shown that a wide range of natural graphs such as the biolog-

ical networks [170], food webs [135], electronic circuits [56], brain neurons [16], and

human languages [57] exhibit the small-world property. This common characteristic

can be detected from two basic statistical properties: the clustering coefficient C ,

and the average shortest path length `.

The clustering coefficient of a graph measures the number of closed triangles in

the graph. The clustering coefficient describes how likely it is that two neighbors of a

vertex are connected [146]. Watts and Strogatz [207] define the clustering coefficient

as the average of the local clustering values for each vertex.
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C =

∑n
i=1 ci
n

The local clustering coefficient, ci for the ith vertex is the number of triangles

connected to vertex i divided by the total possible number of triangles connected to

vertex. Watts and Strogatz [207] show that small-world networks are highly clustered

and obtain relatively short paths (i.e., ` is small). These networks are usually studied

in contrast with random networks in which both ` and C obtain small values.

To understand the relationship between various aspects of a story or subject and

to study the relationship between different individuals’ contributions, we analyze the

network of factoids.

For each dataset, we build a network in which nodes represent different factoids

and there is an edge between two nodes if the corresponding factoids have been

mentioned together in at least 10 documents. Using these networks, we would like

to investigate whether there are many factoid pairs that co-occur in individual user

contributions, and whether there are communities of factoids that co-occur more

frequently than others. For each network, we use the same number of nodes and

edges and generate a random network using the Erdös–Rényi model, which sets an

edge between each pair of nodes with equal probability, independently of the other

edges [53].

Table 3.5 lists the average clustering coefficient (C) and the average shortest path

length (`) in the networks built using factoid co-occurrences. This table confirms that

the clustering coefficient in the factoid networks is generally significantly greater than

random networks of the same size. Moreover, this table confirms that the average

shortest paths in the random networks are small.

Ferrer i Cancho and Solé [57] and Motter et al., [136] perform similar experiments
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C Crandom ` `random

0.814 0.072 1.613 2.627

Table 3.5: Average clustering coefficient (C) and the average shortest path length (`) in the networks
of the collective discourse corpora and the corresponding random networks.

and show that the word co-occurrence and word synonymy networks have small-

world properties. However, we believe that this is the first work that shows the

small-world effect in human language at the factoid level (network of concepts). This

finding further justifies the conclusion made by [136], who emphasize that human

memory is associative (i.e., information is retrieved by connecting similar concepts)

in which the small-world property of the network maximizes the retrieval efficiency.

More precisely, high clustering of the network causes similar pieces of information to

be stored together, and low shortest paths make very different pieces of information

to be separated only by a few links, guaranteeing a fast search.

3.5 Wise Crowds

Previous work has studied crowd wisdom in online content contributions. Wikipedia

for instance, has been named as an example of a successful collective effort. Kittur

et al., [96] study user contributions in Wikipedia and suggest that the main work-

load is Wikipedia is driven by “common” users and that the admin influence has

dramatically decreased over years. Furthermore, Kittur [97] show that adding more

editors to an article results in higher article quality when appropriate coordination

techniques are used. In this section, we present some evidence of wisdom in collec-

tive discourse that is not achievable from individuals or from smaller groups. In our

experiments, we try to answer a simple question about a movie just by using its set

of reviews.

The question we try to answer is to find each movie’s genre. As the gold standard,
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Rank Genre Sg relevance

1 action 0.241 1
2 sci-fi 0.124 1
3 war 0.105 0
4 fantasy 0.087 1
5 history 0.086 0
6 animation 0.062 0
7 adventure 0.051 1
8 romance 0.039 0
9 drama 0.025 0
10 family 0.023 0

Table 3.6: Top 10 genres extracted for the movie “Avatar” from user reviews.

we collected the genres for each of the 100 movies for which we had user reviews.

Each movie is associated with a few (3-4) genres out of a total of 19 genre names.

To extract the list of possible genres for a movie, we match all the genre names

against the reviews and rank them based on their relative frequency. More particu-

larly, the score of each genre, g for a movie with N reviews (D1...DN) is calculated

as

Sg =

∑N
i=1 1Di mentions g

N

Table 3.6 lists the top 10 genres retrieved for the movie “Avatar” form user reviews

together with the score of each genre and the relevance according to the gold standard

that we obtained from IMDB. This table shows an example in which all the 4 genre

names for Avatar are among the 7 most frequently genres mentioned by non-expert

users.

To evaluate the ranked list of retrieved genre names, we use Mean Average Pre-

cision and F-score. The Mean Average Precision (MAP) for a set of queries (movie

names in our experiments) is calculated as the mean of the average precision scores

for each query. The average precision for each query, q is calculated as
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Method MAP 95% C.I. Fβ=3 95% C.I.

Reviews 0.698 [0.657 , 0.740] 0.550 [0.499 , 0.600]
Random 0.260 [0.229 , 0.290] 0.140 [0.101 , 0.179]

Table 3.7: Mean Average Precision and F-score for genre extraction from a set of reviews (C.I.:
Confidence Interval).

(3.1) APq =

∑N
k=1 Precision@k × rel(k)

number of relevant genres

where rel(k) obtains a value of 1 if the kth retrieved genre is correct and 0 other-

wise. We also calculate Fβ=3 when top 3 genres from the top of the ranked list are

retrieved as relevant. Table 3.7 lists the results of this experiment.

To see how useful the set of reviews is for this particular task, we compare it with

ranking genre names randomly and repeating the experiment. As Table 6 shows,

using simple mention frequency measures provides significant improvements over

guessing the genre randomly.

The numbers in Table 3.7 are calculated using all the user reviews collected for

each movie (ranging from a few hundreds to a few thousands per movie). Here, we

would like to investigate if having more reviews will give us a more accurate estimate

of the genres associated with each movie.

Figure 3.6 plots the 95% confidence interval of MAP versus the number of ran-

domly selected user reviews used to rank the genres for each movie. This figure,

which is plotted on a semi-log scale, shows that the quality of ranking grows rapidly

by the 100th randomly selected review and exhibits asymptotic behavior when more

reviews are visited.
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Figure 3.6: Mean Average Precision (MAP) versus the number of reviews used to extract each
movie genre. (The shaded area shows 95% confidence interval for each MAP result)

3.6 Conclusion

We studied collective discourse and investigated diverse perspectives when a num-

ber of non-expert Web users engage in collective behavior and generate content on

the Web. We show that the set of people who discuss the same story or subject

have diverse perspectives, introducing new aspects that have not been previously

discussed by others.

We analyzed a wide range of collective discourse examples, from movie reviews

and news stories to scientific citations and microblogs. To the best of our knowledge

this is the first work that studies the diversity in perspectives, and the small world-

effect in factoid co-occurrences. We also perform an experiment that provides some

evidence of collective intelligence in the collectively written set of reviews by non-

expert users.

The ultimate goal of this work is to develop models of collective discourse. The

models would be informed by empirical analysis of varied and large-scale datasets and

would address various aspects of collective discourse: motivation behind continuous
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contributions, heterogeneity and diversity in perspectives, and collective intelligence

from collaboration. By formulating simple stochastic models of individual and group

behavior, we may be able to predict phenomena on the macro level of discourse. We

will be trying to address these questions by developing state of the art technologies

in computational linguistics, network science and social theories of mass communi-

cations.



CHAPTER IV

Community Structure

In this chapter, we model the pair-wise similarities of a set of documents as a

weighted network with a single cutoff parameter. Such a network can be thought

of an ensemble of unweighted graphs, each consisting of edges with weights greater

than the cutoff value. We look at this network ensemble as a complex system with

a temperature parameter, and refer to it as a Latent Network. Our experiments on

a number of datasets from two different domains show that certain properties of

latent networks like clustering coefficient, average shortest path, and connected com-

ponents exhibit patterns that are significantly divergent from randomized networks.

We explain that these patterns reflect the network phase transition as well as the

existence of a community structure in document collections. Using numerical anal-

ysis, we show that we can use the aforementioned network properties to predict the

clustering Normalized Mutual Information (NMI) with high correlation (ρ > 0.9).

Finally we show that our clustering method significantly outperforms other baseline

methods (NMI > 0.5)

4.1 Introduction

Lexical networks are graphs that show relationship (e.g., semantic, similarity, de-

pendency, etc.) between linguistic entities (e.g., words, sentences, or documents) [57].

61
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One specific type of lexical networks include those in which edges represent a sim-

ilarity relation between documents. These networks are fully connected, weighted,

and symmetric (if the similarity measure is symmetric).

If we apply a cutoff value c ∈ [0, 1], and prune the edges with values smaller than

c, we will have an ordinary binary lexical network (i.e., an unweighted network in

which edges denote a binary relationship). Therefore, at each value c, we have a

different network. In other words, binding a network with a cutoff parameter c on

edge weights as the single parameter of the network, will result in an ensemble of

networks with different properties. We refer to this ensemble of networks as a latent

network. More accurately, a latent network, L, is an ensemble of lexical networks

that are originated from the same document collection and differ by the value of a

single parameter.

In our work, we analyze different properties of latent networks when the cutoff

value changes, and will discuss how the network undergoes different phases and ex-

hibits high degrees of community structure. Finally, we propose a predictive model

to estimate the best cutoff value for which the network community structure is max-

imum and use this estimation for clustering the document collection.

4.1.1 Data

For our experiments, we use the data from [162] on collective discourse, a collective

human behavior in content generation. This data contains 50 different datasets

of collective discourse from two completely different domains: news headlines, and

scientific citation sentences. Each set consists of a number of unique headlines or

citations about the same non-evolving news story or scientific paper.

Table 4.1 lists some of these datasets with the number of documents in them.
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ID type Name Story/Title #
1 hdl miss Venezuela wins miss universe 2009 125
2 hdl typhoon Second typhoon hit philippines 100
3 hdl russian Accident at Russian hydro-plant 101
· · · · · · · · ·

25 hdl yale Yale lab tech in court 10
26 cit N03-1017 Statistical Phrase-Based Translation 172
27 cit P02-1006 Learning Surface Text Patterns ... 72
28 cit P05-1012 On-line Large-Margin Training ... 71
· · · · · · · · ·

50 cit H05-1047 A Semantic Approach To Recognizing TE 7

Table 4.1: The datasets and the number of documents in each of them (hdl = headlines; cit =
citations)
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Figure 4.1: Lexical network for the Yale dataset at 5 different τ values

4.1.2 Annotation

Following [159], we asked a number of annotators to read each set and extract

different facts that are covered in each sentence. Each fact is an aspect of the news

story or a contribution of the cited paper.

For example, one of the annotated datasets, Yale, is the set of the headlines about

a murder incident at Yale. The manual annotation of the Yale dataset has resulted

in 4 facts or classes:

f1 : {annie le, yale student}

f2 : {former yale lab tech, raymond clark}

f3 : {plea, court}

f4 : {murder, killing}

Table 4.2 shows the headlines with sentence-to-fact assignments in the Yale dataset.



64

ID sentence f1f2f3f4

1 annie le slay suspect raymond clark due in court 1 1 1 0
2 attorneys to spar today over sealed annie le file 1 0 0 0
3 former yale lab tech due in court 0 1 1 0
4 former yale lab tech due in court for murder charge 0 1 1 1
5 photos: accused yale lab tech due in court today 0 1 1 0
6 raymond clark due in court 0 1 1 0
7 suspect in yale student killing to enter plea 1 0 1 1
8 yale lab tech murder suspect expected 0 1 0 1
9 yale lab tech murder suspect expected to plead not guilty 0 1 1 1
10 yale slaying suspect due in court 0 0 1 0

Table 4.2: Full Annotation of the Yale dataset results in a fact distribution matrix of sentences.

The full annotation of each dataset results in a number of facts (representing classes)

and a fact distribution matrix.

4.2 Network Properties

One way to look at a latent network is to use a physical point of view. The

network is a complex system, and the temperature of this system will determine the

interaction of the nodes. Here, nodes with smaller similarities will join each other at

higher temperatures. In fact, the temperature of this system can be interpreted as

τ = 1− cutoff(4.1)

increasing which will cause more nodes to connect to each other.

Figure 4.1 shows the cosine similarity-based latent network for the 10 documents

in the Yale dataset at 5 different τ values. At τ = 0 (cutoff = 1.00) all the edges

are pruned and the network is empty, while on the other end of the spectrum, where

τ = 1 all edges with positive weights are present.

A simple 2-D visualization of a latent network does not reveal much information

about it. Describing different aspects of the network structure is easier when looking

at quantitative network properties. We observe some of the latent networks’ proper-

ties over different network temperatures. Starting at τ = 0 and gradually increasing
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it till it reaches τ = 1 will cause more edges to emerge and network properties to

change.

4.2.1 Number of Edges

Increasing the temperature τ (and thus decreasing the cutoff) will cause different

edges to appear in the network according to the distribution of edge weights. To

compare the number of edges in different networks we use the normalized number

of edges at each τ based on Equation 4.2, in which e(τ) is the number of edges at

temperature τ , and n is the total number of documents (nodes).

(4.2) ne(τ) =
2e(τ)

n(n− 1)

4.2.2 Number of Connected Nodes

Another property that we are interested in is the number of nodes that have

positive degrees at each τ . The number of connected nodes quantifies the distribution

of e(τ) edges between n nodes. Here, we normalize this number by the total number

of nodes in the graph based on Equation 4.3.

(4.3) nn(τ) =
|{i|ki(τ) > 0}|

n

where ki(τ) is the degree of node i at temperature τ .

4.2.3 Connected Components

A connected component (cc) of a graph is a subgraph in which there is a path

between any two node pairs. The pattern in which smaller components merge into

larger components or join the largest connected component (lcc) can quantify com-

munity structure in a network. Here, we observe the number of different connected

components and the size of the largest connected component at each network tem-
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perature τ .

(4.4) ncc(τ) =
# cc(τ)

n
; nlcc(τ) =

|lcc(τ)|
n

In a network, where community structure is weak, new nodes join the largest

connected component one-by-one, and the giant component includes most of the

nodes in the graph. However, in a network with an inherent community structure,

we expect to see the formation of smaller separate connected components that will

only merge in high temperatures.

4.2.4 Average Shortest Path and Diameter

In graph theory, the shortest path between two vertices is path with the smallest

number of edges. In network analysis, the average shortest path (asp) of a network

is the mean of all shortest path lengths between reachable vertices. Moreover, the

diameter (d) of a network is defined as the length of the longest shortest path. We

observe the normalized average shortest path (nasp) and the normalized diameter

(nd) of each network at different values of τ .

(4.5) nasp(τ) =
asp(τ)

n
; nd(τ) =

d(τ)

n

4.2.5 Clustering Coefficient

The clustering coefficient of a graph measures the number of closed triangles in

the graph. The clustering coefficient describes how likely it is that two neighbors of

a vertex are connected. In social networks, it can represent the idea that “the friends

of my friends are my friends.” [146]. A high clustering coefficient indicates a net-

work with many triangles, where most of my friends are connected, a low clustering

coefficient indicates a network with few triangles, where most of my friends are not

friends with each other.
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Watts and Strogatz’s definition of clustering coefficient [207] is based on a local

clustering value for each vertex that is averaged over the entire network. The clus-

tering coefficient for a given vertex i is the number of triangles connected to vertex

i divided by the total possible number of triangles connected to vertex i. More

formally, in a undirected graph, if mi(τ) is the number of i’s neighbors that are con-

nected at temperature τ , and ki(τ) is the degree of node i at τ , then the clustering

coefficient of i can be defined by Equation 4.6.

(4.6) ci(τ) =
2mi(τ)

ki(τ)(ki(τ)− 1)

The global clustering coefficient of the network is defined by Equation 4.7. Higher

global clustering coefficient values of a network would imply the existence of groups

of nodes in the network that are densely connected.

(4.7) cc(τ) =
1

n

∑
i

ci(τ)

4.3 Phase Transition

Increasing τ in a latent network will cause new edges to emerge and network

properties to change. We observe these changes in non-overlapping intervals of τ ∈

[0, 1].

The solid black lines in Figure 4.2 show 4 network properties for the Yale dataset:

clustering coefficient, average shortest path, number of connected components, and

the size of the largest connected component. This figure also plots the same proper-

ties for a network of the same size and edge weights, but in which edges are randomly

assigned to node pairs. We can think of this randomization as a random permutation

of edges that preserves the number and the weights of edges.

Figure 4.2 reveals a lot of information about the structure of the Yale latent
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Figure 4.2: Clustering coefficient (cc), average shortest path (nasp), connected components (ncc),
and largest connected component (nlcc) in the Yale latent network over τ , compared
with a randomized network of the same size.
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network. When τ = 0 where the network is empty the latent network and the

randomized version are identical. For values of τ ∈ [0, 0.2], the two networks exhibit

similar behavior: clustering coefficient is very small, shortest path lengths increase,

the number of connected components decrease and the largest connected component

get bigger. However, for values of τ > 0.2 the two networks show different behavior

until τ is approximately greater than 0.8, where both networks become very dense

and exhibit similar patterns again.

We refer to each of these intervals, in which the network has a different behavior,

as a phase. One such phase is when the network’s different connected components

exhibit high degrees of community structure. The shaded area in Figure 4.2 (τ ∈

[0.2, 0.4]) shows a phase in which the clustering coefficient spikes; shortest paths,

unlike the randomized network, get smaller; the number of connected components

is non-decreasing; and the largest connected component does not get larger. These

patterns suggest the formation of dense communities in this interval because of two

reasons: (1) Nodes connect to smaller components rather than the giant component.

(2) Current components in the graph get denser rather than joining each other. Our

goal in the rest of this chapter is to predict a value τ̂ that best characterizes this

phase, and for which the network has the best clustering of nodes represented by

different connected components.

To cluster the network at each τ , we simply assign all the nodes in a connected

component to the same cluster, and assign isolated (degree = 0) nodes to separate

individual clusters. To evaluate this clustering we use the fact distribution matri-

ces from the annotations and calculate the normalized mutual information (NMI)

proposed by [121]. Let’s assume Ω = {ω1, ω2, . . . , ωK} is the set of clusters and
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C = {c1, c2, . . . , cJ} is the set of classes. Then,

(4.8) NMI(Ω,C) =
I(Ω;C)

[H(Ω) +H(C)]/2

where I(Ω;C) is the mutual information:

I(Ω,C) =
∑
k

∑
j

P (ωk ∩ cj) log
P (ωk ∩ cj)
P (ωk)P (cj)

(4.9)

=
∑
k

∑
j

|ωk ∩ cj|
N

log
N |ωk ∩ cj|
|ωk||cj|

(4.10)

where P (ωk), P (cj), and P (ωk ∩ cj) are the probabilities of a document being in

cluster ωk, class cj, and in the intersection of ωk and cj, respectively. Here, H is

entropy:

H(Ω) = −
∑
k

P (ωk) logP (ωk)(4.11)

= −
∑
k

|ωk|
N

log
|ωk|
N

(4.12)

I(Ω;C) in Equation 4.9 measures the amount of information that we would lose

about the classes without the cluster assignments. The normalization factor ([H(Ω)+

H(C)]/2) in Equation 4.8 enables us to trade off the quality of the clustering against

the number of clusters, since entropy tends to increase with the number of clus-

ters. For example, H(Ω) reaches its maximum when each document is assigned to a

separate cluster. Because NMI is normalized, we can use it to compare cluster as-

signments with different numbers of clusters. Moreover, [H(Ω) +H(C)]/2 is a tight

upper bound for I(Ω;C), making NMI obtain values between 0 and 1 [121].

The evolution of a latent network over τ can be illustrated using a dendrogram,

and characterized by the quality of the clustering that the connected components

produce. Figure 4.3 shows NMI(Ω,C) versus τ in the Yale dataset aligned with a

clustering dendrogram. The shaded area in the plot (τ ∈ [0.2, 0.4]) shows the area



71

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 3

 4

 5

 8

 9

 1

10

 6

 2

 7

τ

d
o
c
u
m

e
n
t

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

τ

N
M

I(
Ω

, 
C

)

Figure 4.3: The dendrogram for the Yale dataset’s latent network. Different sentences join into
connected components at different temperatures.

in which any cut on the dendrogram will result in a maximum community structure

characterized by NMI.

4.3.1 Optimization

To find the best cut on the dendrogram, we propose a model that is similar to the

Information Bottleneck method [40] in optimizing clustering mutual information.

We build an L1-regularized log-linear model [6] on τ and 7 network-based features

discussed before to predict NMI(Ω,C) at each τ . Let’s suppose Φ : X×Y → RD is a

function that maps each (x, y) to a vector of feature values. Here, the feature vector

is the vector of coefficients corresponding to τ and 7 different network properties,

and the parameter vector θ ∈ RD (D = 8 in our experiments) assigns a real-valued

weight to each feature. This estimator chooses θ to minimize the sum of least squares

and a regularization term R.

θ̂ = argmin
θ
{1

2

∑
i

||〈θ, xi〉 − yi||22 +R(θ)}(4.13)
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where the regularizer term R(θ) is the weighted L1 norm of the parameters.

R(θ) = α
∑
j

|θj|(4.14)

Here, α is a parameter that controls the amount of regularization (set to 0.1 in our

experiments).

To optimize the L1-regularized objective function, we use the orthant-wise limited-

memory quasi-Newton algorithm (OWL-QN), which is a modification of L-BFGS

that allows it to effectively handle the discontinuity of the gradient [6]. This algo-

rithm works quite well in practice, and typically reaches convergence in even fewer

iterations than standard L-BFGS [65].

4.3.2 NMI Prediction

Using 5-fold cross validation scheme in each category, we predict the value of

NMI(Ω,C) (N̂MI) at each τ for each network. In each fold the training data consists

of 20 networks. For each network Li, we observe 201 values of τ (τ ∈ [0, 1] with

increments of 0.005), and calculate NMI and 7 network-based features in Li. We use

all the observations from 20 networks to predict NMI at each τ in the test networks.

The result of this experiment is a list of N̂MIs at each τ for each network. Ta-

ble 4.3 shows the average correlation between NMIs and N̂MIs in each category, using

different features. The highest correlation is when we use all the features. However,

clustering coefficient seems to play as an important indicator of the clustering quality.

4.3.3 Domain Adaptation

To generalize the effectiveness of network-level features in predicting cluster qual-

ity, we design the following experiment. We first use τ and 7 network features to

train a model on all the 25 networks from the citations category (at 201 equally

spaced values of τ ∈ [0, 1]) and use this model to predict NMI at each τ for each
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Features headlines citations Mean
τ+ ne + nn + ρ 95% C.I. ρ 95% C.I.
ncc + nlcc 0.904 [0.844, 0.964] 0.923 [0.857, 0.989] 0.913
nasp + nd 0.861 [0.790, 0.932] 0.886 [0.796, 0.976] 0.873
cc 0.907 [0.856, 0.958] 0.805 [0.716, 0.894] 0.856
all 0.906 [0.845, 0.967] 0.923 [0.864, 0.982] 0.914

C.I. = Confidence Interval

Table 4.3: Average Pearson Correlation coefficient between clustering NMI and predicted NMI at
different τ values for each network, using various features

headlines citations Mean
ρ 95% C.I. ρ 95% C.I.

0.865 [0.786, 0.945] 0.929 [0.867, 0.991] 0.897
C.I. = Confidence Interval; Features: all.

Table 4.4: Average prediction correlation when the model is trained on the other category.

headline network. We also do the same experiment when the model is trained on

headline networks and tested on citation networks. Table 4.4 reports the average

correlation between predicted NMIs and actual NMIs at various τ values.

4.3.4 Clustering

We have shown the effectiveness of network-based features in predicting the clus-

tering quality. Here, we employ our model to find a good clustering of a document

collection. Our clustering works by simply applying the best clustering τc, the tem-

perature that results in the highest predicted NMI:

(4.15) τc = arg max
τ∈[0,1]

N̂MI(τ)

Applying τc to a latent network means pruning all the edges whose weight is below

the cutoff from Equation 4.1. We then simply, assign all the nodes in each connected

component to a single cluster. Here, to build a predictive model of NMI, we follow our

first experiment, and perform a 5-fold cross validation for each category. We compare

the results of this experiment with 3 clustering systems: Random, Modularity-based,

and K-means.
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Random

The Random clustering, randomly assigns each document to one of k clusters.

Here we assigned k to be the number of classes in each dataset (|f |). Although

Random is basically a weak baseline, using |f | as the number of classes makes is

stronger.

Modularity-based

Modularity is a measure of network community division quality and is based

on the measure of assortative mixing [145]. Here we explain Newman’s definition

of modularity as defined in [147, 38]. Consider a division in the network with k

communities. Let’s define e as the community matrix. e is a k×k symmetric matrix

in which eij is the fraction of all edges in the network that link a vertex in community

i to a vertex in community j. The trace of this matrix is the fraction of edges that

link vertices within the same community.

(4.16) Tr e =
∑
i

eii

A good division should result in a high value of the trace matrix. Let’s also define

the row sums as ai =
∑

j eij, which represents the fraction of edges that connect to

vertices in community i. In a random network in which edges fall between nodes

regardless of any community structure, we would have eij = aiaj. In such a network,

a2
i shows the fraction of edges within the community i. Given this setting, modularity

is defined as Equation 4.17

(4.17) Q =
∑
i

(eii − a2
i )

If the number of within-community edges is no better than random, we will have

Q = 0. Higher values of Q indicates strong community structure, while Q = 1 is the

maximum value Q can obtain.
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Method headlines citations Mean
NMI 95% C.I. NMI 95% C.I.

Random 0.183 [0.124, 0.243] 0.272 [0.201, 0.343] 0.227
K-means(4) 0.310 [0.244, 0.377] 0.333 [0.253, 0.413] 0.321
K-means(f) 0.364 [0.289, 0.439] 0.378 [0.298, 0.458] 0.371
Modularity 0.254 [0.193, 0.315] 0.298 [0.234, 0.362] 0.276
Latent network 0.489 [0.425, 0.553] 0.575 [0.515, 0.635] 0.532

C.I. = Confidence Interval

Table 4.5: Average clustering Normalized Mutual Information (NMI) for each method, in each
category.

The modularity-based algorithm [147] uses edge betweenness to do the clustering.

Edge betweenness in a network is an extension of the node betweenness definition [62],

and measures the number of shortest paths in the graph that fall on the given edge.

Intuitively, removing edges will high betweenness values will cause node pair to be-

come more separated and form communities. Thus this algorithm iteratively removes

edges with highest betweenness values, and stops when modularity is maximal.

K-means

We finally used two variants of the K-means algorithm as baselines. In the first

one, we run K-means on each collection with a constant number of clusters (k= 4

in our experiments), and in the second one we assign k to be the number of classes

from the annotations in each dataset (k = |f |).

Table 4.5 lists the average NMI achieved by each method in each category. As this

table shows the latent network model can achieve high values of NMI in clustering

while outperforming other state of the art algorithms.



CHAPTER V

Citation Summarization using C-LexRank

Researchers and scientists increasingly find themselves in the position of having

to quickly understand large amounts of technical material. Our goal is to effectively

serve this need by using bibliometric lexical link mining and summarization tech-

niques to generate summaries of scientific literature. In this chapter, we show how

we can use citations to produce an automatically generated, readily consumable,

technical survey. We first propose C-LexRank, a model of summarizing single sci-

entific articles based on citations, which employs community detection and extracts

salient information-rich sentences.

5.1 Introduction

In today’s rapidly expanding disciplines, scientists and scholars are constantly

faced with the daunting task of keeping up with knowledge in their field. In ad-

dition, the increasingly interconnected nature of real-world tasks often requires ex-

perts in one discipline to rapidly learn about other areas in a short amount of time.

Cross-disciplinary research requires scientists in areas such as linguistics, biology, and

sociology to learn about computational approaches and applications, e.g., computa-

tional linguistics, biological modeling, social networks. Authors of journal articles

and books must write accurate surveys of previous work, ranging from short sum-
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maries of related research to in-depth historical notes. Interdisciplinary review panels

are often called upon to review proposals in a wide range of areas, some of which

may be unfamiliar to panelists. Thus, they must learn about a new discipline “on

the fly” in order to relate their own expertise to the proposal.

Our goal is to effectively serve these needs by combining two currently available

technologies: (1) bibliometric lexical link mining that exploits the structure of cita-

tions and (2) summarization techniques that exploit the content of the material in

both the citing and cited papers.

It is generally agreed upon that manually written abstracts are good summaries of

individual papers. More recently, we argued in [159] that citation sentences (i.e., set

of sentences that appear in other papers and cite a given article) are useful in creating

a summary of important contributions of a research paper. Moreover, Qazvinian and

Radev [160] showed the usefulness of using implicit citations (context sentences) in

summary generation. Teufel [192] argued that citations could contain subjective

content, and that this content can be exploited for summary generation. Additional

work [134] demonstrated the usefulness of citations for producing multi-document

surveys of scientific articles. Follow-on work indicated that further improvements to

citation handling enables the production of more fluent summaries [209].

In our work, we compare and contrast the usefulness of abstracts and of citations in

automatically generating a technical survey on a given topic from multiple research

papers. Moreover, we develop a summarization model that exploits citations to

produce a multi-faceted summary of scientific contributions.
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5.2 Background

Automatically creating technical surveys is significantly distinct from traditional

multi-document summarization. Below we describe the primary characteristics of a

technical survey and we present different types of input texts that we used for the

production of surveys.

Technical Survey

In the case of multi-document summarization, the goal is to produce a readable

presentation of multiple documents, whereas in the case of technical survey creation,

the goal is to convey the key features and basic underpinnings of a particular field,

early and late developments, important contributions and findings, contradicting

positions that may reverse trends or start new sub-fields, and basic definitions and

examples that enable rapid understanding of a field by non-experts.

A prototypical example of a technical survey is that of “chapter notes,” i.e., short

(50–500 word) descriptions of sub-areas found at the end of chapters of textbook,

such as [89]. One might imagine producing such descriptions automatically, then

hand-editing them and refining them for use in an actual textbook.

Previously Mohammad et al. [134] conducted a human analysis of these chapter

notes and revealed a set of conventions, an outline of which is provided here (with

example sentences in italics):

1. Introductory/opening statement: The earliest computational use of X was in

Y, considered by many to be the foundational work in this area.

2. Definitional follow up: X is defined as Y.

3. Elaboration of definition (e.g., with an example): Most early algorithms were

based on Z.
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4. Deeper elaboration, e.g., pointing out issues with initial approaches: Unfortu-

nately, this model seems to be wrong.

5. Contrasting definition: Algorithms since then...

6. Introduction of additional specific instances / historical background with cita-

tions: Two classic approaches are described in Q.

7. References to other summaries: R provides a comprehensive guide to the details

behind X.

The notion of text level categories or zoning of technical papers—related to the

survey components enumerated above—has been investigated previously in [139] and

[193]. These earlier works focused on the analysis of scientific papers based on their

rhetorical structure and on determining the portions of papers that contain new

results, comparisons to earlier work, etc. The work described here focuses on the

synthesis of technical surveys based on knowledge gleaned from rhetorical structure

not unlike that of the work of these earlier researchers, but guided by structural

patterns along the lines of the conventions listed above.

Although our current approach to survey creation does not yet incorporate a fully

pattern-based component, our ultimate objective is to apply these patterns to guide

the creation and refinement of the final output. As a first step toward this goal, we

use citation sentences (closest in structure to the patterns identified by convention 7

above) to pick out the most important content for survey creation.

Scholarly Texts

Published research on a particular topic can be summarized from two different

kinds of sources: (1) where an author describes her own work and (2) where others

describe an author’s work (usually in relation to their own work). The author’s
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description of her own work can be found in her paper. How others perceive her

work is spread across other papers that cite her work.

Traditionally, technical survey generation has been tackled by summarizing a set of

research papers pertaining to the topic. However, individual research papers usually

come with manually-created “summaries”—their abstracts. The abstract of a paper

may have sentences that set the context, state the problem statement, mention how

the problem is approached, and the bottom-line results—all in 200 to 500 words.

Thus, using only the abstracts (instead of full papers) as input to a summarization

system is worth exploring.

Whereas the abstract of a paper presents what the authors think to be the im-

portant aspects of a paper, the citations to a paper captures what others in the field

perceive as the contributions of the paper. The two perspectives are expected to

have some overlap in their content, but the citations also contain additional infor-

mation not found in abstracts [50, 137]. For example, authors may describe how

a particular methodology from one paper was combined with another from another

paper to overcome some of the drawbacks of each. A citation is also an indicator of

what contributions described in a paper were influential over time.

Another feature that distinguishes citations texts from abstracts is that citations

tend to have a certain amount of redundant information. This is because multiple

papers may describe the same contributions of a target paper. This redundancy can

be exploited to determine the important contributions of the target paper.

Our goal is to test the hypothesis that an effective technical survey will reflect

information on research not only from the perspective of its authors but also from the

perspective of others who use, commend, discredit, or add to it. Before describing

our experiments with technical papers, abstracts, and citations, we first summarize
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relevant prior work that used these sources of information as input.

5.3 Citation Summarization

The ACL Anthology Network1 (AAN) is a manually curated anthology built on

top of the ACL Anthology2 [20]. AAN includes all the papers published by ACL

and related organizations as well as the Computational Linguistics journal over a

period of four decades. AAN consists of more than 18, 000 papers from more than

14, 000 authors, each distinguished with a unique ACL ID, together with their full-

texts, abstracts, and citation information. It also includes other valuable metadata

such as author affiliations, citation and collaboration networks, and various centrality

measures [167, 88].

To study citations across different areas within Computational Linguistics, we

first extracted six different clusters of papers from AAN corresponding to 6 different

NLP topics: Dependency Parsing (DP), Phrase-based Machine Translation (PBMT),

Text Summarization (Summ), Question Answering (QA), Textual Entailment (TE),

and Conditional Random Fields (CRF). To build each cluster, we matched the topic

phrase against the title and the content of AAN papers, and picked 5 highest cited

papers. Table 5.1 shows the number of articles and citation sentences in each cluster.

Next, we designed an annotation task that requires explicit definitions that dis-

tinguish between phrases that represent the same or different information units. Un-

fortunately, there is little consensus in the literature on such definitions. Therefore,

following [198, 162] we made the following distinction. We define a nugget to be a

phrasal information unit (i.e., any phrase that would contain some information about

the contributions of the cited paper). Different nuggets may all represent the same

1http://clair.si.umich.edu/anthology/
2http://www.aclweb.org/anthology-new/
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atomic semantic unit, which we refer to as a factoid. In the context of citations, a

factoid refers to a unique contribution of a target paper mentioned in a citation sen-

tence. For example, the following set of citations to Eisner’s famous parsing paper3

illustrate the set of factoids about this paper and suggest that different authors who

cite a particular paper may discuss different contributions (factoids) of that paper.

In the context of DPs, this edge based factorization method was proposed by (Eisner,

1996).

Eisner (1996) gave a generative model with a cubic parsing algorithm based on an

edge factorization of trees.

Eisner (1996) proposed an O(n3) parsing algorithm for PDG.

If the parse has to be projective, Eisner’s bottom-up-span algorithm (Eisner, 1996)

can be used for the search.

This example also suggests that different authors use different wordings (nuggets)

to represent the same factoids. For instance, cubic parsing and O(n3) parsing algo-

rithm are two nuggets that represent the same factoid about (Eisner, 1996).

Another example, which we will use throughout the paper, is the paper by Cohn

and Blunsom (2005)4 (identified with the ACL ID W05-0622 in Table 5.1). This

paper is cited in 9 different sentences within AAN. All of these sentences are listed in

Table 5.2. In each sentence, the nuggets extracted by the annotators are underlined.

As this table suggests, a citation sentence may not discuss any of the contributions of

the cited paper. For instance, the last sentence does not contain any factoids about

(Cohn & Blunsom, 2005). The nuggets that are identified using the citation to (Cohn

3Eisner, J. (1996). Three new probabilistic models for dependency parsing: An exploration. In Proceedings of
the 34th Annual Conference of the Association for Computational Linguistics (ACL-96), pp. 340–345.

4Cohn, T., & Blunsom, P. (2005). Semantic role labelling with tree conditional random Fields. In Proceedings of
the Ninth Conference on Computational Natural Language Learning, pp. 169-172.
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ACL ID Title Year # of citations

D
P

C96-1058 Three New Probabilistic Models For Dependency Parsing ... 1996 66
P97-1003 Three Generative, Lexicalized Models For Statistical Parsing 1997 50
P99-1065 A Statistical Parser For Czech 1999 54
P05-1013 Pseudo-Projective Dependency Parsing 2005 40
P05-1012 On-line Large-Margin Training Of Dependency Parsers 2005 71

P
B

M
T

N03-1017 Statistical Phrase-Based Translation 2003 172
W03-0301 An Evaluation Exercise For Word Alignment 2003 11
J04-4002 The Alignment Template Approach To Statistical Machine Translation 2004 49
N04-1033 Improvements In Phrase-Based Statistical Machine Translation 2004 23
P05-1033 A Hierarchical Phrase-Based Model For Statistical Machine Translation 2005 65

S
u
m

m

A00-1043 Sentence Reduction For Automatic Text Summarization 2000 19
A00-2024 Cut And Paste Based Text Summarization 2000 20
C00-1072 The Automated Acquisition Of Topic Signatures ... 2000 19
W00-0403 Centroid-Based Summarization Of Multiple Documents ... 2000 28
W03-0510 The Potential And Limitations Of Automatic Sentence Extraction ... 2003 14

Q
A

A00-1023 A Question Answering System Supported By Information Extraction 2000 13
W00-0603 A Rule-Based Question Answering System For Reading ... 2002 19
P02-1006 Learning Surface Text Patterns For A Question Answering System 2002 72
D03-1017 Towards Answering Opinion Questions: Separating Facts From Opinions ... 2003 39
P03-1001 Offline Strategies For Online Question Answering ... 2003 27

T
E

D04-9907 Scaling Web-Based Acquisition Of Entailment Relations 2004 12
H05-1047 A Semantic Approach To Recognizing Textual Entailment 2005 7
H05-1079 Recognising Textual Entailment With Logical Inference 2005 9
W05-1203 Measuring The Semantic Similarity Of Texts 2005 17
P05-1014 The Distributional Inclusion Hypotheses And Lexical Entailment 2005 10

C
R

F

N03-1023 Weekly Supervised Natural Language Learning ... 2003 29
N04-1042 Accurate Information Extraction from Research Papers ... 2004 24
W05-0622 Semantic Role Labelling with Tree CRFs 2005 9
P06-1009 Discriminative Word Alignment with Conditional Random Fields 2006 33
W06-1655 A Hybrid Markov/Semi-Markov CRF for Sentence Segmentation 2006 20

DP: Dependency Parsing, PBMT: Phrase-based Machine Translation, Summ: Text Summarization, QA: Question Answer-
ing, TE: Textual Entailment, CRF: Conditional Random Fields

Table 5.1: Papers chosen from clusters for single document summarization, with their publication
year, and the number of citing sentences in AAN’s 2008 release.

& Blunsom, 2005) account for a total number of 3 factoids (contributions) identified

for this paper: semantic role labeling, tree structures, and a pipelined approach.

5.3.1 C-LexRank

In this section we describe C-LexRank as a method to extract citing sentences that

cover a diverse set of factoids. Our method works by modeling the set of citations as

a network of sentences and identifying communities of sentences that cover similar

factoids. Once a good division of sentences is made, we extract salient sentences from

different communities. Figure 5.1 illustrates a toy example that depicts C-LexRank’s

process.

In the first step (as shown in Figure 5.1 a), we model the set of sentences that

cite a specific paper with a network in which vertices represent citing sentences and

undirected weighted edges show the degree of semantic relatedness between node
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1 Our parsing model is based on a conditional random field model, however, unlike previous
TreeCRF work, e.g., (Cohn and Blunsom, 2005; Jousse et al., 2006), we do not assume a
particular tree structure, and instead find the most likely structure and labeling.

2 Some researchers (Xue and Palmer, 2004; Koomen et al., 2005; Cohn and Blunsom,
2005; Punyakanok et al., 2008; Toutanova et al., 2005; Toutanova et al., 2008) used a
pipelined approach to attack the task.

3 They have been used for tree labelling, in XML tree labelling (Jousse et al., 2006) and
semantic role labelling tasks (Cohn and Blunsom, 2005).

4 Finally, probabilistic models have also been applied to produce the structured output, for
example, generative models (Thompson, Levy, and Manning 2003), sequence tagging with
classifiers (M‘arquez et al. 2005; Pradhan et al.2005b), and Conditional Random Fields on
tree structures (Cohn and Blunsom 2005).

5 As for SRL on news, most researchers used the pipelined approach, i.e., dividing the task
into several phases such as argument identification, argument classification, global inference,
etc., and conquering them individually (Xue and Palmer, 2004; Koomen et al., 2005; Cohn
and Blunsom, 2005; Punyakanok et al., 2008; Toutanova et al., 2005; Toutanova et al.,
2008).

6 Although T-CRFs are relatively new models, they have already been applied to several
NLP tasks, such as semantic role labeling, semantic annotation, word sense disambiguation,
image modeling (Cohn and Blunsom, 2005; Tang et al., 2006; Jun et al., 2009; Awasthi
et al., 2007).

7 The model can be used for tasks like syntactic parsing (Finkel et al., 2008) and
semantic role labeling (Cohn and Blunsom, 2005).

8 Regarding novel learning paradigms not applied in previous shared tasks, we find Relevant
Vector Machine (RVM), which is a kernelbased linear discriminant inside the framework
of Sparse Bayesian Learning (Johansson and Nugues, 2005) and Tree Conditional Random
Fields (T-CRF) (Cohn and Blunsom, 2005), that extend the sequential CRF model to
tree structures.

9 We use CRFs as our models for both tasks (Cohn and Blunsom, 2005).

Table 5.2: The set of citing sentences to the AAN paper W05-0622 (Cohn & Blunsom, 2005). Each
nugget extracted by the annotators is underlined.
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pairs, normally quantified by a similarity measure. We refer to this network as the

Citation Summary Network of an article. The similarity function should ideally

assign high scores to sentence pairs that have the same factoids, and should assign

low scores to sentences that talk about different contributions of the target paper.

Previously, Qazvinian and Radev [159] examined 7 different similarity measures

including TF-IDF with various IDF databases, longest common sub-sequence, gen-

eration probability [54], and the Levenstein distance on a training set of citations.

They showed that the cosine similarity measure that employs TF-IDF vectors as-

signs higher similarities to pairs that contain the same factoids. Following [159], we

use the cosine similarity between TF-IDF vector models that employ a general IDF

corpus to construct the citation summary network of each article.

(a) Citation summary network (b) Community structure (c) C-LexRank output

Figure 5.1: An illustration of C-LexRank algorithm in a toy citation summary network

Community Structure

We generate summaries by extracting representative sentences from the citation

summary network. Intuitively, a good summary should include sentences that rep-

resent different contributions of a paper. Therefore, a good sentence selection from

the citation summary network will include vertices that are similar to many other

vertices and which are not very similar to each other. On the other hand, a bad

selection would include sentences that are only representing a small set of vertices in
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the graph. This is very similar to the concept of maximizing social influence in social

networks [93]. Figure 5.2 shows a toy example in which the selected two nodes in

the citation summary networks represent a small subset of vertices (left) and a larger

subset of vertices (right). In our work we try to select vertices that maximize the

size of the set of vertices that they represent. We achieve this by detecting different

vertex communities in the citation summary network.

(a) Bad sentence selection (b) Good sentence selection

Figure 5.2: An illustration of vertex coverage by selecting representative nodes as a summary. Se-
lecting two similar vertices will cause the summary to cover fewer contributions of the
target paper in (a), while selecting less similar vertices as the summary will increase
the coverage of the summary (b).

In order to find vertex communities and thus a good sentence selection, we exploit

the small-world property of citation summary networks. A network is called small-

world, if most of its vertices are not neighbors of each other, but can be reached

from one another by a small number of steps [207]. Recent research has shown that

a wide range of natural graphs such as biological networks [170], food webs [135],

brain neurons [16] and human languages [57] exhibit the small-world property.

This common characteristic can be detected using two basic statistical properties:

the clustering coefficient C, and the average shortest path length `. The clustering

coefficient of a graph measures the number of closed triangles in the graph. It de-

scribes how likely it is that two neighbors of a vertex are connected [146]. Watts and
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(a) Citation summary network (b) Latent community structure
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(c) Clustering output (d) C-LexRank ranking

Figure 5.3: Illustration of the C-LexRank algorithm on the citation summary network of (Cohn
& Blunsom, 2005). In the network (a), the nodes are citation sentences (annotated
with their nuggets from Table 5.2), and each edge is the cosine similarity between the
corresponding node pairs. (b) shows that the network has an underlying structure which
is captured by C-LexRank in (c). Finally, (d) shows the C-LexRank output where node
diameter is proportional to its LexRank value within the cluster.

Strogatz [207] define the clustering coefficient as the average of the local clustering

values for each vertex.

(5.1) C =

∑n
i=1 ci
n

The local clustering coefficient ci for the ith vertex is the number of triangles

connected to vertex i divided by the total possible number of triangles connected
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to vertex i. Watts and Strogatz [207] show that small-world networks are highly

clustered and obtain relatively short paths (i.e., ` is small). We showed in previous

work that citation summary networks are highly clustered in which C obtains values

that are significantly larger than random networks [161]. This suggests that citation

summary networks have an inherent community structure whereby each community

consists of the citing sentences that discuss the same factoids.

Figure 5.3 (a) illustrates a real citation summary network built using the citation

sentences in Table 5.2 in which each node is labeled with its corresponding nugget.

With some re-arrangement of the nodes in Figure 5.3 (b), it becomes clear that the

citation summary network of this paper has an underlying community structure in

which sentences that cover similar factoids are closer to each other and form com-

munities. For instance, in this network there are at least 3 observable communities:

one that is about “tree structure,” one about “semantic role labeling” and the last

one about the “pipelined approach” as proposed by (Cohn & Blunsom, 2005).

In order to detect these communities automatically we use modularity. Modular-

ity, [147], is a measure to evaluate the divisions that a community detection algorithm

generates. For a division with g groups, they define matrix eg×g whose component eij

is the fraction of edges in the original network that connect vertices in components

i, j. Then the modularity Q can be defined as

(5.2) Q =
∑
i

eii −
∑
ijk

eijeki

Intuitively, Q is the fraction of all the edges that are embedded within communities

minus the expected value of the same quantity in a network with the same degrees

but in which edges are placed at random regardless of the community structure.

Graph clustering methods aim at finding a division that for which the average

number of intra-cluster edges is significantly greater and that of inter-cluster edges.
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Here, we employ the network clustering algorithm described in [38]. In their work,

Clauset et al. propose a hierarchical agglomeration algorithm which works by greed-

ily optimizing the modularity in a linear running time for sparse graphs. More

particularly, their method continuously merges vertex or cluster pairs with the high-

est similarity and stops when modularity reaches the maximum value. Figure 5.3

(c) shows how the clustering algorithm detects factoid communities in the citation

summary network of (Cohn & Blunsom, 2005). In this figure, we have color-coded

nodes based on their community. The clustering algorithm assigns sentences 1, 4

and 8 (which are all about the tree structures) to one cluster; sentences 3, 6 and 7

(which are all about semantic role labeling) to another cluster; and finally assigns

sentences 2, 5 and 9 (sentences 2 and 5 are both about pipelined approach) to the

last cluster.

To evaluate how well the clustering method works in all of our datasets, we calcu-

lated both the purity and the normalized mutual information (NMI) for the divisions

in each citation set, extracted using the community detection algorithm. Purity [215]

is a method in which each cluster is assigned to the class with the majority vote in

the cluster, and the accuracy of this assignment is then measured by dividing the

number of correctly assigned documents by N . More formally:

(5.3) purity(Ω,C) =
1

N

∑
k

max
j
|ωk ∩ cj|

where Ω = {ω1, ω2, . . . , ωK} is the set of clusters and C = {c1, c2, . . . , cJ} is the set

of classes. ωk is interpreted as the set of documents in the cluster ωk and cj as the

set of documents in the class cj.

We also calculate the normalized mutual information (NMI) [121]. Let’s assume

Ω = {ω1, ω2, . . . , ωK} is the set of clusters and C = {c1, c2, . . . , cJ} is the set of



90

classes. Then,

(5.4) NMI(Ω,C) =
I(Ω;C)

[H(Ω) +H(C)]/2

where I(Ω;C) is the mutual information:

I(Ω,C) =
∑
k

∑
j

P (ωk ∩ cj) log
P (ωk ∩ cj)
P (ωk)P (cj)

(5.5)

=
∑
k

∑
j

|ωk ∩ cj|
N

log
N |ωk ∩ cj|
|ωk||cj|

(5.6)

where P (ωk), P (cj), and P (ωk ∩ cj) are the probabilities of a document being in

cluster ωk, class cj, and in the intersection of ωk and cj, respectively.

Here, H is entropy

H(Ω) = −
∑
k

P (ωk) logP (ωk)(5.7)

= −
∑
k

|ωk|
N

log
|ωk|
N

(5.8)

I(Ω;C) in Equation 5.5 measures the amount of information that we would

lose about the classes without the cluster assignments. The normalization factor

([H(Ω) +H(C)]/2) in Equation 5.4 enables us to trade off the quality of the cluster-

ing against the number of clusters, since entropy tends to increase with the number of

clusters. For example, H(Ω) reaches its maximum when each document is assigned

to a separate cluster. Because NMI is normalized, we can use it to compare cluster

assignments with different numbers of clusters. Moreover, [H(Ω)+H(C)]/2 is a tight

upper bound for I(Ω;C), making NMI obtain values between 0 and 1. Table 5.3 lists

the average Purity and NMI for each paper in our collected dataset, as well as the

same numbers for a division of the same size, but in which vertices are randomly

assigned to clusters.
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average 95% C.I.
purity(Ω,C) 0.461 [0.398, 0.524]
purity(Ωrandom,C) 0.389 [0.334, 0.445]
NMI(Ω,C) 0.312 [0.251, 0.373]
NMI(Ωrandom,C) 0.182 [0.143, 0.221]

C.I.: Confidence Interval.

Table 5.3: Average purity and normalized mutual information (NMI) in the evaluated datasets

Ranking

Once the graph is clustered and communities are formed, we extract sentences

from different clusters to build a summary. We start with the largest cluster and

extract sentences using LexRank [55] within each cluster. In other words, for each

cluster Ωi we made a lexical network of the sentences in that cluster (Ni). Using

LexRank we can find the most central sentences in Ni as salient sentences of Ωi

to include in the main summary. We choose, for each cluster Ωi, the most salient

sentence of Ωi, and if we have not reached the summary length limit, we do that for

the second most salient sentences of each cluster, and so on. The cluster selection

is in order of decreasing size. Figure 5.3 (d) shows the citation summary network of

(Cohn & Blunsom, 2005) in which each node is plotted with a size proportional to

its LexRank value within its cluster. This figure shows how C-LexRank emphasizes

on picking a diverse set of sentences covering a diverse set of factoids.

Previously, we mentioned that factoids with higher weights appear in a greater

number of sentences, and clustering aims to cluster such fact-sharing sentences in

the same communities. Thus, starting with the largest community is important to

ensure that the system summary first covers the factoids that are more frequently

mentioned in other citation sentences and thus are more important.

The last sentence in the example in Table 5.2 is as follows. “We use CRFs as

our models for both tasks (Cohn and Blunsom, 2005).” This sentence shows that
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Our parsing model is based on a conditional random field model, however, unlike previous
TreeCRF work, e.g., (Cohn and Blunsom, 2005; Jousse et al., 2006), we do not assume a
particular tree structure, and instead find the most likely structure and labeling.
Some researchers (Xue and Palmer, 2004; Koomen et al., 2005; Cohn and Blunsom, 2005;
Punyakanok et al., 2008; Toutanova et al., 2005; Toutanova et al., 2008) used a pipelined
approach to attack the task.
The model can be used for tasks like syntactic parsing (Finkel et al., 2008) and Semantic
Role Labeling (Cohn and Blunsom, 2005).

Table 5.4: The 100 word summary constructed using C-LexRank for (Cohn & Blunsom, 2005)
together with the factoids shown in bold face.

a citation may not cover any contributions of the target paper. Such sentences are

assigned by the community detection algorithm in C-LexRank to clusters to which

they are semantically most similar. The intuition behind employing LexRank within

each cluster is to try to avoid extracting such sentences for the summary, since

LexRank within a cluster enforces picking the most central sentence in that cluster.

In order to verify this, we also try a variant of C-LexRank in which we do not pick

sentences from clusters based on their salience in the cluster, but rather in a round-

robin fashion, in which all the sentences within a cluster are equally likely to be

picked. We call this variant C-RR.

Table 5.4 shows the 100 word summary constructed using C-LexRank for (Cohn

& Blunsom, 2005), in which different nuggets are illustrated in bold. This summary

is a perfect summary in terms of covering the different factoids about the paper.

It includes citing sentences that talk about tree CRF, pipelined approach, and

Semantic Role Labeling, which are the three main contributions of (Cohn &

Blunsom, 2005).

5.4 Other Methods

In our experiments in Section 5.5 we compare C-LexRank to a number of other

summarization systems described below.
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5.4.1 Random

For each set, this method simply chooses citations in random order without re-

placement. Since a citing sentence may cover no information about the cited paper

(as in the last sentence in Table 5.2), randomization has the drawback of selecting

citations that have no valuable information in them. Moreover, the random selec-

tion procedure is more prone to produce redundant summaries, if it selects citing

sentences that discuss the same factoid.

5.4.2 LexRank

LexRank [55] works by first building a graph of all the documents (Di) in a cluster.

The edges between corresponding nodes (di) represent the cosine similarity between

them if the cosine value is above a threshold (0.10 following [55]). Once the network

is built, the system finds the most central sentences by performing a random walk

on the graph.

p(dj) = (1− λ)
1

|D|
+ λ

∑
di

p(di)P (di → dj)(5.9)

5.4.3 MMR

Maximal Marginal Relevance (MMR) is proposed in [28] and is widely used algo-

rithm in generating summaries that reflect the diversity of perspectives in the source

documents [42]. It uses the pairwise cosine similarity matrix and greedily chooses

sentences that are the least similar to those already in the summary. In particular,

(5.10) MMR = arg min
Di∈D−A

[
max
Dj∈A

Sim(Di, Dj)
]
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where A is the set of documents in the summary, initialized to A = ∅. In equa-

tion 5.10, a sentence Di that is not in the summary A is chosen such that its highest

similarity to summary sentences maxDj∈A Sim(Di, Dj) is minimum among all unse-

lected sentences.

5.4.4 DivRank

Unlike other time-homogeneous random walks (e.g., PageRank), DivRank does

not assume that the transition probabilities remain constant over time. DivRank

uses a vertex-reinforced random walk model to rank graph nodes based on a diversity

based centrality. The basic assumption in DivRank is that the transition probability

from a node to other is reinforced by the number of previous visits to the target

node [123]. Particularly, let’s assume pT (u, v) is the transition probability from any

node u to node v at time T . Then,

(5.11) pT (di, dj) = (1− λ).p∗(dj) + λ.
p0(di, dj).NT (dj)

DT (di)

where NT (dj) is the number of times the walk has visited dj up to time T and

(5.12) DT (di) =
∑
dj∈V

p0(di, dj)NT (dj)

Here, p∗(dj) is the prior distribution that determines the preference of visiting

vertex dj, and p0(u, v) is the transition probability from u to v prior to any rein-

forcement. Mei et al. argue that the random walk could stay at the current state at

each time, and therefore assumes a hidden link from each node to itself, thus defining

p0(u, v) as

(5.13) p0(u, v) =

 α.w(u,v)
deg(u)

if u 6= v

1− α if u = v
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Here, we try two variants of this algorithm: DivRank, in which p∗(dj) is uniform,

and DivRank with priors in which p∗(dj) ∝ l(Dj)
−β, where l(Dj) is the number of

the words in the document Dj and β is a parameter (0.1 in our experiments). This

prior distribution assigns larger probabilities to shorter sentences which will increase

their likelihood of being salient. This will enforce more sentences to be included

in the summary, and might increase the factoid coverage. In our experiments, we

follow [123] and set λ = 0.90 and α = 0.25.

5.4.5 Trimmer

Trimmer is a sentence-compression tool that extends the scope of an extractive

summarization system by generating multiple alternative sentence compressions of

the most important sentences in target documents [214]. Trimmer compressions are

generated by applying linguistically-motivated rules to mask syntactic components

of a parse of a source sentence. The rules can be applied iteratively to compress

sentences below a configurable length threshold, or can be applied in all combinations

to generate the full space of compressions.

Trimmer can leverage the output of any constituency parser that uses the Penn

Treebank conventions. At present, the Stanford Parser [98] is used. The set of

compressions is ranked according to a set of features that may include metadata

about the source sentences, details of the compression process that generated the

compression, and externally calculated features of the compression.

Summaries are constructed from the highest scoring compressions, using the meta-

data and maximal marginal relevance [28] to avoid redundancy and over-representation

of a single source. The summarizer contains a redundancy score using an index index
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Length: 100 words Length: 200 words

Method pyramid 95% C.I. pyramid 95% C.I.
Random 0.560 [0.465,0.655] 0.763 [0.692,0.834]
MMR 0.600 [0.501,0.699] 0.761 [0.685,0.838]
LexRank 0.604 [0.511,0.696] 0.784 [0.725,0.844]
DivRank 0.644 [0.580,0.709] 0.769 [0.704,0.834]
DivRank (with priors) 0.632 [0.545,0.719] 0.778 [0.716,0.841]
Trimmer 0.571 [0.477,0.665] 0.772 [0.705,0.840]
C-RR 0.513 [0.436,0.591] 0.755 [0.678,0.832]
C-LexRank 0.647 [0.565,0.730] 0.799 [0.732,0.866]
C.I.=Confidence Interval

Table 5.5: Comparison of different ranking systems.

of the words (w) in the document set.

(5.14)
∑
w

log(λ.P (w|summary) + (1− λ).P (w|corpus))

where λ is a weighting factor (set to 0.3 in our experiments).

5.5 Experiments

We used the 30 sets of citations listed in Table 5.1 and employ C-LexRank to

produce 2 extractive summaries with different lengths (100 and 200 words) for each

set. In addition to C-LexRank and C-RR, we also performed the same experiments

with the baseline methods described in Section 5.4, most of which are aimed at

leveraging diversity in summarization.

5.5.1 Evaluation

To evaluate our system, we use the pyramid evaluation method [143]. Each factoid

in the citations to a paper corresponds to a summary content unit (SCU) in [143].

The score given by the pyramid method for a summary is the ratio of the sum of

the weights of its factoids to the sum of the weights of an optimal summary. This

score ranges from 0 to 1, and high scores show the summary content contain more

heavily weighted factoids. We believe that if a factoid appears in more sentences of

the citation summary than another factoid, it is more important, and thus should
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be assigned a higher weight. To weight the factoids we build a pyramid, and each

factoid falls in a tier. Each tier shows the number of sentences a factoid appears

in. Thus, the number of tiers in the pyramid is equal to the citation summary size.

If a factoid appears in more sentences, it falls in a higher tier. So, if the factoid fi

appears |fi| times in the citation summary it is assigned to the tier T|fi|.

The pyramid score formula that we use is computed as follows. Suppose the

pyramid has n tiers, Ti, where tier Tn on top and T1 on the bottom. The weight of

the factoids in tier Ti will be i (i.e. they appeared in i sentences). If |Ti| denotes the

number of factoids in tier Ti, and Di is the number of factoids in the summary that

appear in Ti, then the total factoid weight for the summary is

(5.15) D =
n∑
i=1

i×Di

Additionally, the optimal pyramid score for a summary with X factoids, is

(5.16) Max =
n∑

i=j+1

i× |Ti|+ j × (X −
n∑

i=j+1

|Ti|)

where j = maxi(
∑n

t=i |Tt| ≥ X). Subsequently, the pyramid score for a summary is

calculated as

(5.17) P =
D

Max

Table 5.5 shows the average pyramid score of the summaries generated using

different methods with different lengths. Longer summaries result in higher pyramid

scores since the amount of information they cover is greater than shorter summaries.

C-LexRank outperforms all other methods that leverage diversity as well as random

summaries and LexRank. The results in this table also suggest that employing

LexRank within each cluster is essential for the selection of salient citing sentences,

as the average pyramid scores from C-RR, where sentences are picked in a round-

robin fashion, are lower.
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5.5.2 Relative Utility

Since inter-judge agreement measured by Precision and percent agreement are low

for extractive summaries, it is practically impossible to write summarizers which are

optimized for these measures. Relative Utility is an multi-document summarization

evaluation system, which provides an intuitive mechanism and takes into account

human judge disagreement on sentences that belong in a summary [168, 191].

In this section, we perform more evaluations on the proposed systems and different

summary lengths using Relative Utility [191]. In Relative Utility (RU), a number

of judges, N(N > 1), are asked to assign utility scores to all n sentences in a set

of documents. The sentence utility score of judge i over n sentences is defined as

follows.

~Ui = {ui,1, ui,2, · · · , ui,n}

The summary based utility vector for judge i is then defined as

~U ′i = {δi,1 · ui,1, δi,2 · ui,2, · · · , δi,n · ui,n}

where δi,j is the summary characteristic function for judge i and sentence j. Accord-

ingly, the total self-utility and total extractive self-utility for judge i are respectively

defined as follows.

Ui =
n∑
j=1

ui,j(5.18)

U ′i =
n∑
j=1

δi,j · ui,j(5.19)

For a summarization system, RU will be computed as its performance against

the human judges divided by the maximum possible performance. In other words,

the ratio of the sum of its cross-utility with the totality of human judges and the

maximum utility U ′ achievable at a given summary length e:
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Length: 100 words

Method RU 95% C.I.
Random 0.234 [0.176,0.292]
MMR 0.228 [0.170,0.286]
LexRank 0.238 [0.186,0.290]
DivRank 0.240 [0.204,0.277]
DivRank (with priors) 0.204 [0.152,0.256]
Trimmer 0.074 [0.032,0.116]
C-RR 0.178 [0.135,0.221]
C-LexRank 0.245 [0.187,0.302]
C.I.=Confidence Interval

Table 5.6: Comparison of different ranking systems using Relative Utility (RU)

(5.20) S =

∑n
j=1 δs,j ·

∑N
i=1 ui,j

U ′

In this formula,
∑N

i=1 ui,j is the utility assigned by the totality of judges to a

given sentence j extracted by the summarizer. In the setting of our annotations

for citations to scientific papers, we assume that each factoid represents a judge.

And each judge assigns the same utility to any sentence containing that factoid.

Intuitively, each factoid judges a sentence to determine whether that sentence has any

nuggets representing the factoid. The utility that a judge assigns to such sentences

in our work is proportional to the count of such nuggets (therefore, more important

factoids will be assigned higher utility values).

Table 5.6 shows the average RU value for each of the summarization systems, when

summaries of 100 words are generated. This Table suggests that the experimental

results from Relative Utility are consistent with those of pyramid scores. For instance,

C-LexRank is the best system using both measures and DivRank and LexRank

follow. Moreover, this Table suggests that RU is not a suitable evaluation measure for

abstractive summarization systems such as Trimmer. Intuitively, the judges assign

utility scores to sentences in the original documents. Therefore, systems such as

Trimmer, which alter original sentences could utility assignments intractable.



CHAPTER VI

Factoid Extraction

6.1 Contribution Extraction

In the first part of this chapter, we present an approach to summarize a single

scientific paper, by extracting its contributions from the set of citation sentences writ-

ten in other papers. Our methodology, as explained in [164] is based on extracting

significant keyphrases from the set of citation sentences and using these keyphrases

to build the summary. Comparisons show how this methodology excels at the task

of single paper summarization, and how it out-performs other multi-document sum-

marization methods.

6.1.1 Introduction

In recent years statistical physicists and computer scientists have shown great

interest in analyzing complex adaptive systems. The study of such systems can pro-

vide valuable insight on the behavioral aspects of the involved agents with potential

applications in economics and science. One such aspect is to understand what moti-

vates people to provide the n+ 1st review of an artifact given that they are unlikely

to add something significant that has not already been said or emphasized. Citations

are part of such complex systems where articles use citations as a way to mention

different contributions of other papers, resulting in a collective system.

100
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The focus of this work is on the corpora created based on citation sentences. A

citation sentence is a sentence in an article containing a citation and can contain

zero or more nuggets (i.e., non-overlapping contributions) about the cited article.

For example the following sentences are a few citation sentences that appeared in

the NLP literature in past that talk about Resnik’s work.

The STRAND system (Resnik, 1999), for example, uses structural markup information

from the pages, without looking at their content, to attempt to align them.

Resnik (1999) addressed the issue of language identification for finding Web pages

in the languages of interest.

Mining the Web for bilingual text (Resnik, 1999) is not likely to provide sufficient

quantities of high quality data..

The set of citations is important to analyze because human summarizers have

put their effort collectively but independently to read the target article and cite its

important contributions. This has been shown in other work too [50, 139, 159, 124,

134]. In this work, we introduce a technique to summarize the set of citation sentences

and cover the major contributions of the target paper. Our methodology first finds

the set of keyphrases that represent important information units (i.e., nuggets), and

then finds the best set of k sentences to cover more, and more important nuggets.

Our results confirm the effectiveness of the method and show that it outperforms

other state of the art summarization techniques. Moreover, as shown in the chapter,

this method does not need to calculate the full cosine similarity matrix for a document

cluster, which is the most time consuming part of the mentioned baseline methods.
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ACL-ID Title

N03-1017 Statistical Phrase-Based Translation
P02-1006 Learning Surface Text Patterns For A Question Answering System
P05-1012 On-line Large-Margin Training Of Dependency Parsers
C96-1058 Three New Probabilistic Models For Dependency Parsing: An Exploration
P05-1033 A Hierarchical Phrase-Based Model For Statistical Machine Translation
P97-1003 Three Generative, Lexicalized Models For Statistical Parsing
P99-1065 A Statistical Parser For Czech
J04-4002 The Alignment Template Approach To Statistical Machine Translation
D03-1017 Towards Answering Opinion Questions: Separating Facts From Opinions ...
P05-1013 Pseudo-Projective Dependency Parsing
W00-0403 Centroid-Based Summarization Of Multiple Documents: Sentence Extraction, ...
P03-1001 Offline Strategies For Online Question Answering: Answering Questions Before ...
N04-1033 Improvements In Phrase-Based Statistical Machine Translation
A00-2024 Cut And Paste Based Text Summarization
W00-0603 A Rule-Based Question Answering System For Reading Comprehension Tests
A00-1043 Sentence Reduction For Automatic Text Summarization
C00-1072 The Automated Acquisition Of Topic Signatures For Text Summarization
W05-1203 Measuring The Semantic Similarity Of Texts
W03-0510 The Potential And Limitations Of Automatic Sentence Extraction For Summarization
W03-0301 An Evaluation Exercise For Word Alignment
A00-1023 A Question Answering System Supported By Information Extraction
D04-9907 Scaling Web-Based Acquisition Of Entailment Relations
P05-1014 The Distributional Inclusion Hypotheses And Lexical Entailment
H05-1047 A Semantic Approach To Recognizing Textual Entailment
H05-1079 Recognising Textual Entailment With Logical Inference

Table 6.1: List of papers chosen from AAN for evaluation together with the number of sentences
citing each.

6.1.2 Data

In order to evaluate our method, we use the ACL Anthology Network (AAN),

which is a collection of papers from the Computational Linguistics journal and pro-

ceedings from ACL conferences and workshops and includes more than 13, 000 pa-

pers [167]. We use 25 manually annotated papers from [159], which are highly cited

articles in AAN. Table 6.1 shows the ACL ID and the title of these papers.

The annotation guidelines asked a number of annotators to read the citation

summary of each paper and extract a list of the main contributions of that paper.

Each item on the list is a non-overlapping contribution (nugget) perceived by reading

the citation summary. The annotation strictly instructed the annotators to focus on

the citing sentences to do the task and not their own background on the topic. Then,

extracted nuggets are reviewed and those nuggets that have only been mentioned by

1 annotator are removed. Finally, the union of the rest is used as a set of nuggets

representing each paper.
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Fact Occurrences
f1: “ Supervised Learning” 5
f2: “ instance/concept relations” 3
f3: “Part-of-Speech tagging” 3
f4: “filtering QA results” 2
f5: “lexico-semantic information” 2
f6: “hyponym relations” 2

Table 6.2: Nuggets of P03-1001 extracted by annotators.

unique all max freq
unigrams 229,631 7,746,792 437,308
bigrams 2,256,385 7,746,791 73,957
3-grams 5,125,249 7,746,790 3,600
4-grams 6,713,568 7,746,789 2,408

Table 6.3: Statistics on the abstract corpus in AAN used as the background data

Table 6.2 lists the nuggets extracted by annotators for P03-1001.

6.1.3 Methodology

Our methodology assumes that each citation sentence covers 0 or more nuggets

about the cited papers, and tries to pick sentences that maximize nugget coverage

with respect to summary length.

These nuggets are essentially represented using keyphrases. Therefore, we try to

extract significant keyphrases in order to represent nuggets each sentence contains.

Here, the keyphrases are expressed using N -grams, and thus these building units are

the key elements to our summarization. For each citation sentence di, our method

first extracts a set of important keyphrases, Di, and then tries to find sentences that

have a larger number of important and non-redundant keyphrases. In order to take

the first step, we extract statistically significantly frequent N -grams (up to N = 4)

from each citing sentence and use them as the set of representative keyphrases for

that citing sentence.
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6.1.4 Automatic Keyphrase Extraction

A list of keyphrases for each citation sentence can be generated by extracting N -

grams that occur significantly frequently in that sentence compared to a large corpus

of such N -grams. Our method for such an extraction is inspired by the previous work

by Tomokiyo and Hurst [196].

A language model, M, is a statistical model that assigns probabilities to a se-

quence of N -grams. Every language model is a probability distribution over all

N -grams and thus the probabilities of all N -grams of the same length sum up to 1.

In order to extract keyphrases from a text using statistical significance we need two

language models. The first model is referred to as the Background Model (BM) and

is built using a large text corpus. Here we build the BM using the text of all the

paper abstracts provided in AAN1. The second language model is called the Fore-

ground Model (FM) and is the model built on the text from which keyphrases are

being extracted. In this work, the set of all citation sentences that cite a particular

target paper are used to build a foreground language model.

Let gi be an N -gram of size i and CM(gi) denote the count of gi in the modelM.

First, we extract the counts of each N -grams in both the background (BM) and the

foreground corpora (FM).

1http://clair.eecs.umich.edu/aan/index.php
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MBM =
∑

gi∈{BM∪FM}

1

NBM =
∑

gi∈{BM∪FM}

CBM(gi)

NFM =
∑

gi∈FM

CFM(gi)

p̂FM(gi) = CFM(gi)/NFM

p̂BM(gi) = (CBM(gi) + 1)/(MBM +NBM)

The last equation is also known as Laplace smoothing [122] and handles the N -

grams in the foreground corpus that have a 0 occurrence frequency in the background

corpus. Next, we extract N -grams from the foreground corpus that have significant

frequencies compared to the frequency of the same N -grams in the background model

and its individual terms in the foreground model.

To measure how randomly a set of consecutive terms are forming an N -gram,

Tomokiyo and Hurst [196] use point-wise divergence. In particular, for an N -gram

of size i, gi = (w1w2 · · ·wi),

δgi(FMi‖FM1) = p̂FM(gi) log(
p̂FM(gi)∏i
j=1 p̂FM(wj)

)

This equation shows the extent to which the terms forming gi have occurred

together randomly. In other words, it indicates the extent of information that we

lose by assuming independence of each word by applying the unigram model, instead

of the N -gram model.

In addition, to measure how randomly a sequence of words appear in the fore-

ground model with respect to the background model, we use point-wise divergence as
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well. Here, point-wise divergence defines how much information we lose by assuming

that gi is drawn from the background model instead of the foreground model:

δgi(FMi‖BMi) = p̂FM(gi) log(
p̂FM(gi)

p̂BM(gi)
)

We set the criteria of choosing a sequence of words as significant to be whether it

has positive point-wise divergence with respect to both the background model, and

individual terms of the foreground model. In other words we extract all gi from FM

for which the both properties are positive:

δgi(FMi‖BMi) > 0

δgi(FMi‖FM1) ≥ 0

The equality condition in the second equation is specifically set to handle unigrams,

in which p̂FM(gi) =
∏i

j=1 p̂FM(wj).

In order to handle the text corpora and building the language models, we have

used the CMU-Cambridge Language Model toolkit [37]. We use the set of citation

sentences for each paper to build foreground language models. Furthermore, we

employ this tool and make the background model using nearly 11,000 abstracts from

AAN. Table 6.1.3 summarizes some of the statistics about the background data.

Once keyphrases (significant N -grams) of each sentence are extracted, we remove

all N -grams in which more than half of the terms are stopwords. For instance, we

remove all stopword unigrams, if any, and all bigrams with at least one stopword in

them. For 3-grams and 4-grams we use a threshold of 2 and 3 stopwords respectively.

After that, the set of remaining N -grams is used to represent each sentence and to



107

(Corley and Mihalcea, 2005) applied or uti-
lized lexical based word overlap measures.
{overlap measures, word overlap, lexical
based, utilized lexical}

Table 6.4: Example: citation sentence for W05-1203 written by D06-1621, and its extracted bi-
grams.

build summaries. Table 6.4 shows an example of a citation sentence from D06-1621

citing W05-1203 (Corley and Mihalcea, 2005), and its extracted bigrams.

6.1.5 Sentence Selection

After extracting the set of keyphrases for each sentence, di, the sentence is repre-

sented using its set of N -grams, denoted by Di. Then, the goal is to pick sentences

(sets) for each paper that cover more important and non-redundant keyphrases. Es-

sentially, keyphrases that have been repeated in more sentences are more important

and could represent more important nuggets. Therefore, sentences that contain more

frequent keyphrases are more important. Based on this intuition we define the reward

of building a summary comprising a set of keyphrases S as

f(S) = |S ∩ A|

where A is the set of all keyphrases from sentences not in the summary.

The set function f has three main properties. First, it is non-negative. Second, it

is monotone (i.e., for every set v we have f(S+v) ≥ f(S)). Third, f is sub-modular.

The submodularity means that for a set v and two sets S ⊆ T we have

f(S + v)− f(S) ≥ f(T + v)− f(T )

Intuitively, this property implies that adding a set v to S will increase the reward

at least as much as it would to a larger set T . In the summarization setting, this

means that adding a sentence to a smaller summary will increase the reward of the
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summary at least as much as adding it to a larger summary that subsumes it. The

following theorem formalizes this and is followed by a proof.

Theorem 1. The reward function f is submodular.

Proof

We start by defining a gain function G of adding sentence (set) Di to Sk−1 where

Sk−1 is the set of keyphrases in a summary built using k − 1 sentences, and Di is a

candidate sentence to be added:

G(Di,Sk−1) = f(Sk−1 ∪Di)− f(Sk−1)

Simple investigation through a Venn diagram proof shows that G can be re-written

as

G(Di,Sk−1) = |Di ∩ (∪j 6=iDj)− Sk−1|

Let’s denote Di ∩ (∪j 6=iDj) by ∩i. The following equations prove the theorem.

Sk−1 ⊆ Sk

S ′k−1 ⊇ S ′k

∩i ∩ S ′k−1 ⊇ ∩i ∩ S ′k

∩i − Sk−1 ⊇ ∩i − Sk

| ∩i −Sk−1| ≥ | ∩i −Sk|

G(Di,Sk−1) ≥ G(Di,Sk)

f(Sk−1 ∪Di)− f(Sk−1) ≥ f(Sk ∪Di)− f(Sk)

Here, S ′k is the set of all N -grams in the vocabulary that are not present in Sk.

The gain of adding a sentence, Di, to an empty summary is a non-negative value.

G(Di,S0) = C ≥ 0
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Summary generated using bigram-based keyphrases
ID Sentence
P06-1048:1 Ziff-Davis Corpus Most previous work (Jing 2000; Knight and Marcu 2002; Riezler et al 2003; Nguyen et al

2004a; Turner and Charniak 2005; McDonald 2006) has relied on automatically constructed parallel corpora for
training and evaluation purposes.

J05-4004:18 Between these two extremes, there has been a relatively modest amount of work in sentence simplification
(Chandrasekar, Doran, and Bangalore 1996; Mahesh 1997; Carroll et al 1998; Grefenstette 1998; Jing 2000;
Knight and Marcu 2002) and document compression (Daume III and Marcu 2002; Daume III and Marcu 2004;
Zajic, Dorr, and Schwartz 2004) in which words, phrases, and sentences are selected in an extraction process.

A00-2024:9 The evaluation of sentence reduction (see (Jing, 2000) for details) used a corpus of 500 sentences and their
reduced forms in human-written abstracts.

N03-1026:17 To overcome this problem, linguistic parsing and generation systems are used in the sentence condensation
approaches of Knight and Marcu (2000) and Jing (2000).

P06-2019:5 Jing (2000) was perhaps the first to tackle the sentence compression problem.

Table 6.5: Bigram-based summary generated for A00-1043.

By induction, we will get

G(Di,S0) ≥ G(Di,S1) ≥ · · · ≥ G(Di,Sk) ≥ 0

2

Theorem 1 implies the general case of submodularity:

∀m,n, 0 ≤ m ≤ n ≤ |D| ⇒ G(Di,Sm) ≥ G(Di,Sn)

Maximizing this submodular function is an NP-hard problem [95]. A common

way to solve this maximization problem is to start with an empty set, and in each

iteration pick a set that maximizes the gain. It has been shown before in [102]

that if f is a submodular, nondecreasing set function and f(∅) = 0, then such a

greedy algorithm finds a set S, whose gain is at least as high as (1− 1/e) of the best

possible solution. Therefore, we can optimize the keyphrase coverage as described in

Algorithm of Table 6.6.

6.1.6 Experimental Setup

We use the annotated data described in Section 6.1.2. In summary, the anno-

tation consisted of two parts: nugget extraction and nugget distribution analysis.

Five annotators were employed to annotate the sentences in each of the 25 citation
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Algorithm 1 The greedy algorithm for summary generation
k ← the number of sentences in the summary
Di ← keyphrases in di
S ← ∅
for l = 1 to k do

sl ← arg maxDi∈D |Di ∩ (∪j 6=iDj)|
S ← S ∪ sl
for j = 1 to |D| do

Dj ← Dj − sl
end for

end for
return S

Table 6.6: The greedy algorithm for summary generation

summaries and write down the nuggets (non-overlapping contributions) of the target

paper. Then using these nugget sets, each sentence was annotated with the nuggets

it contains. This results in a sentence-fact matrix that helps with the evaluation

of the summary. The summarization goal and the intuition behind the summariz-

ing system is to select a few (5 in our experiments) sentences and cover as many

nuggets as possible. Each sentence in a citation summary may contain 0 or more

nuggets and not all nuggets are mentioned an equal number of times. Covering

some nuggets (contributions) is therefore more important than others and should be

weighted highly.

To capture this property, the pyramid score seems the best evaluation metric to

use. We use the pyramid evaluation method [143] at the sentence level to evaluate

the summary created for each set. We benefit from the list of annotated nuggets

provided by the annotators as the ground truth of the summarization evaluation.

These annotations give the list of nuggets covered by each sentence in each citation

summary, which are equivalent to the summarization content unit (SCU) as described

in [143].

The pyramid score for a summary is calculated as follows. Assume a pyramid

that has n tiers, Ti, where tier Ti > Tj if i > j (i.e., Ti is not below Tj, and that if a
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nugget appears in more sentences, it falls in a higher tier.). Tier Ti contains nuggets

that appeared in i sentences, and thus has weight i. Suppose |Ti| shows the number

of nuggets in tier Ti, and Qi is the size of a subset of Ti whose members appear in

the summary. Further suppose Q shows the sum of the weights of the facts that are

covered by the summary. Q =
∑n

i=1 i×Qi.

In addition, the optimal pyramid score for a summary with X facts, is

Max =
n∑

i=j+1

i× |Ti|+ j × (X −
n∑

i=j+1

|Ti|)

where j = maxi(
∑n

t=i |Tt| ≥ X). The pyramid score for a summary is then

calculated as follows.

P =
Q

Max

This score ranges from 0 to 1, and a high score shows the summary contains more

heavily weighted facts.

6.1.7 Baselines and Gold Standards

To evaluate the quality of the summaries generated by the greedy algorithm, we

compare its pyramid score in each of the 25 citation summaries with those of a

gold standard, a random summary, and four other methods. The gold standards are

summaries created manually using 5 sentences. The 5 sentences are manually selected

in a way to cover as many nuggets as possible with higher priority for the nuggets

with higher frequencies. We also created random summaries using Mead [166]. These

summaries are basically a random selection of 5 sentences from the pool of sentences

in the citation summary. Generally we expect the summaries created by the greedy

method to be significantly better than random ones.
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In addition to the gold and random summaries, we also used 4 baseline state of

the art summarizers: LexRank, the clustering C-RR and C-LexRank, and Maximal

Marginal Relevance (MMR). LexRank [55] works based on a random walk on the

cosine similarity of sentences and prints out the most frequently visited sentences.

Said differently, LexRank first builds a network in which nodes are sentences and

edges are cosine similarity values. It then uses the eigenvalue centralities to find the

most central sentences. For each set, the top 5 sentences on the list are chosen for

the summary.

The clustering methods, C-RR and C-LexRank, work by clustering the cosine

similarity network of sentences. In such a network, nodes are sentences and edges are

cosine similarity of node pairs. Clustering would intuitively put nodes with similar

nuggets in the same clusters as they are more similar to each other. The C-RR

method as described in [159] uses a round-robin fashion to pick sentences from each

cluster, assuming that the clustering will put the sentences with similar facts into

the same clusters. Unlike C-RR, C-LexRank uses LexRank to find the most salient

sentences in each cluster, and prints out the most central nodes of each cluster as

summary sentences.

Finally, MMR uses the full cosine similarity matrix and greedily chooses sentences

that are the least similar to those already selected for the summary [28]. In particular,

MMR = arg min
di∈D−A

[
max
dj∈A

Sim(di, dj)
]

where A is the set of sentences in the summary, initially set to A = ∅. This method

is different from ours in that it chooses the least similar sentence to the summary in

each iteration.
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Figure 6.1: Evaluation Results (summaries with 5 sentences): The median pyramid score over 25
datasets using different methods.

6.1.8 Results and Discussion

As mentioned before, we use the text of the abstracts of all the papers in AAN as

the background, and each citation set as a separate foreground corpus. For each cita-

tion set, we use the method described in Section 6.1.4 to extract significant N -grams

of each sentence. We then use the keyphrase set representation of each sentence to

build the summaries using Algorithm 6.6. For each of the 25 citation summaries, we

build 4 different summaries using unigrams, bigrams, 3-grams, and 4-grams respec-

tively. Table 6.5 shows a 5-sentence summary created using algorithm 6.6 for the

paper A00-1043 [87].

The pyramid scores for different methods are reported in Figure 6.1 together

with the scores of gold standards, manually created to cover as many nuggets as

possible in 5 sentences, as well as summary evaluations of the 4 baseline methods
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described above. This Figure shows how the keyphrase based summarization method

when employing N -grams of size 3 or smaller, outperforms other baseline systems

significantly. More importantly, Figure 6.1 also indicates that this method shows

more stable results and low variation in summary quality when keyphrases of size

3 or smaller are employed. In contrast, MMR shows high variation in summary

qualities making summaries that obtain pyramid scores as low as 0.15.

Another important advantage of this method is that we do not need to calculate

the cosine similarity of the pairs of sentences, which would add a running time of

O(|D|2|V |) in the number of documents, |D|, and the size of the vocabulary |V | to

the algorithm.

6.1.9 Conclusion

This chapter presents a summarization methodology that employs keyphrase ex-

traction to find important contributions of scientific articles. The summarization

is based on citation sentences and picks sentences to cover nuggets (represented by

keyphrases) or contributions of the target papers. In this setting the best summary

would have as few sentences and at the same time as many nuggets as possible. In this

work, we use point-wise KL-divergence to extract statistically significant N -grams

and use them to represent nuggets. We then apply a new set function for the task

of summarizing scientific articles. We have proved that this function is submodular

and concluded that a greedy algorithm will result in a near-optimum set of covered

nuggets using only 5 sentences. Our experiments in this paper confirm that the sum-

maries created based on the presented algorithm are better than randomly generated

summary, and also outperform other state of the art summarization methods in most

cases. Moreover, we show how this method generates more stable summaries with

lower variation in summary quality when N -grams of size 3 or smaller are employed.
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6.2 Communities of Contributions

In previous chapters we showed that the diversity seen in human summaries could

be according to different nuggets or phrases that represent the same factoid. Ideally,

a summarizer that seeks to increase diversity should capture this phenomenon and

avoid covering redundant nuggets. C-LexRank achieves this by finding communities

of sentences that represent the same factoid. However in datasets such as citations a

sentence may contain more than one factoid. Assigning each sentence to one cluster

will ignore this phenomenon.

In this chapter, we discuss C-LexRank when it is run on words and not documents.

We represent the set of words in a corpus as a network, where edges show the

similarity of words using the distributional hypothesis. By applying C-LexRank on

this network, we find communities of words that are more similar to each other

whereby each community represent the set of words that relate to one factoid.

6.2.1 Distributional Similarity

Measuring the semantic relatedness of words is a fundamental problem in natural

language process and and has many useful applications, including textual entailment,

word sense disambiguation, information retrieval and automatic thesaurus discovery.

Existing approaches can be roughly categorized into two kinds: knowledge-based

and corpus-based, where the former includes graph-based algorithms and similarity

measures operating on a lexical database such as WordNet [25, 4] and the latter

consists of various kinds of vector space models (VSMs) constructed with the help

of a large collection of text [172, 169].

Corpus-based vector space models follow the standard distributional hypothesis,

which states that words appearing in the same contexts tend to have similar mean-
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ing [73, 107]. Each target word is thus represented by a high-dimensional sparse

term-vectors that consists of words occurring in its context.

The definition of a context varies from the neighboring words [120] to words that

are linked in a syntactic dependency structure [115, 150]. Nevertheless, previous

study shows that the performance differences of different context definitions are lim-

ited [4]. For simplicity and scalability, we use the following bag-of-words approach

to construct term vectors.

Given a corpus, we first collect terms within a window of [−3,+3] centered at

each occurrences of a target word. This bag-of-words representation is then mapped

to the TF-IDF term vector: each term is weighted by log(freq)× log(N/df), where

freq is the number of times the term appears in the collection, df the document

frequency of the term in the whole corpus and N the number of total documents.

Particularly, each word wi is represented by a term vector `i, using the words that

have a surface distance of 3 or smaller to wi anywhere in the cluster. In other words,

`i contains any word that co-occurs with wi in a 4-gram in the cluster. This bag of

words representation of words enables us to find the word-pair similarities.

sim(wi, wj) =
~̀
i · ~̀j√
|~̀i||~̀j|

(6.1)

We use the pair-wise similarities of words in each cluster, and build a network

of words and their similarities. Intuitively, words that appear in similar contexts

are more similar to each other and will have a stronger edge between them in the

network. Therefore, similar words, or words that appear in similar contexts, will

form communities in this graph. Ideally, each community in the word similarity

network would represent a factoid. To find the communities in the word network we
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use [38], a hierarchical agglomeration algorithm which works by greedily optimizing

the modularity in a linear running time for sparse graphs.

The community detection algorithm will assign to each word wi, a community

label Ci. For each community, we use LexRank to rank the words using the simi-

larities in Equation 6.1, and assign a score to each word wi as S(wi) = Ri

|Ci| , where

Ri is the rank of wi in its community, and |Ci| is the number of words that belong

to Ci. Figure 6.2.1 shows part of the word similarity graph in the redsox cluster,

in which each node is color-coded with its community. This figure illustrates how

words that are semantically related to the same aspects of the story fall in the same

communities (e.g., “police” and “arrest”). Finally, to rank sentences, we define the

score of each document Dj as the sum of the scores of its words.

pds(Dj) =
∑
wi∈Dj

S(wi)

Intuitively, sentences that contain higher ranked words in highly populated com-

munities will have a smaller score. To rank the sentences, we sort them in an as-

cending order, and cut the list when its size is greater than the length limit.

6.2.2 Other Methods

Random

For each cluster in each category (citations and headlines), this method simply

gets a random permutation of the summaries. In the headlines datasets, where

most of the headlines cover some factoids about the story, we expect this method

to perform reasonably well since randomization will increase the chances of covering

headlines that focus on different factoids. However, in the citations dataset, where a

citing sentence may cover no information about the cited paper, randomization has
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Figure 6.2: Part of the word similarity graph in the redsox cluster

the drawback of selecting citations that have no valuable information in them.

LexRank

LexRank [55] works by first building a graph of all the documents (Di) in a cluster.

The edges between corresponding nodes (di) represent the cosine similarity between

them is greater than a threshold (0.10 following [55]). Once the network is built, the

system finds the most central sentences by performing a random walk on the graph.

p(dj) = (1− λ)
1

|D|
+ λ

∑
di

p(di)P (di → dj)(6.2)

MMR

Maximal Marginal Relevance (MMR) [28] uses the pairwise cosine similarity ma-

trix and greedily chooses sentences that are the least similar to those already in the

summary. In particular,

MMR = arg minDi∈D−A

[
maxDj∈A Sim(Di, Dj)

]
where A is the set of documents in the summary, initialized to A = ∅.



119

generative

semantic

tree

probabilistic

modeling

treecrf

model

labeling

role

labelling

approach

pipelined

srl

sparse

bayesian

kernel-based

sequential

discriminant

linear

Pajek

Figure 6.3: Part of the word similarity graph in the citation cluster



120

DivRank

Unlike other time-homogeneous random walks (e.g., PageRank), DivRank does

not assume that the transition probabilities remain constant over time. DivRank

uses a vertex-reinforced random walk model to rank graph nodes based on a diversity

based centrality. The basic assumption in DivRank is that the transition probability

from a node to other is reinforced by the number of previous visits to the target

node [123]. Particularly, let’s assume pT (u, v) is the transition probability from any

node u to node v at time T . Then,

pT (di, dj) = (1− λ).p∗(dj) + λ.
p0(di, dj).NT (dj)

DT (di)
(6.3)

where NT (dj) is the number of times the walk has visited dj up to time T and

DT (di) =
∑
dj∈V

p0(di, dj)NT (dj)(6.4)

Here, p∗(dj) is the prior distribution that determines the preference of visiting

vertex dj. We try two variants of this algorithm: DivRank, in which p∗(dj) is

uniform, and DivRank with priors in which p∗(dj) ∝ l(Dj)
−β, where l(Dj) is the

number of the words in the document Dj and β is a parameter (β = 0.8).

C-LexRank

C-LexRank is a clustering-based model in which the cosine similarities of doc-

ument pairs are used to build a network of documents. Then the the network is

split into communities, and the most salient documents in each community are se-

lected [159]. C-LexRank focuses on finding communities of documents using their

cosine similarity. The intuition is that documents that are more similar to each
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Method
headlines citations Mean

pyramid 95% C.I. pyramid 95% C.I.
R 0.928 [0.896, 0.959] 0.716 [0.625, 0.807] 0.822
MMR 0.930 [0.902, 0.960] 0.766 [0.684, 0.847] 0.848
LR 0.918 [0.891, 0.945] 0.728 [0.635, 0.822] 0.823
DR 0.927 [0.900, 0.955] 0.736 [0.667, 0.804] 0.832
DR(p) 0.916 [0.884, 0.949] 0.764 [0.697, 0.831] 0.840
C-LR 0.942 [0.919, 0.965] 0.781 [0.710, 0.852] 0.862
WDS 0.931 [0.905, 0.958] 0.813 [0.738, 0.887] 0.872
R=Random; LR=LexRank; DR=DivRank; DR(p)=DivRank with
Priors; C-LR=C-LexRank; WDS=Word Distributional Similarity;
C.I.=Confidence Interval

Table 6.7: Comparison of different ranking systems

other contain similar factoids. We expect C-LexRank to be a strong ranker, but

incapable of capturing the diversity caused by using different phrases to express the

same meaning. The reason is that different nuggets that represent the same factoid

often have no words in common (e.g., “victory” and “glory”) and won’t be captured

by a lexical measure like cosine similarity.

6.2.3 Experiments

We use each of the systems explained above to rank the summaries in each cluster.

Each ranked list is then cut at a certain length (50 words for headlines, and 150 for

citations) and the information content in the remaining text is examined using the

pyramid score.

Table 6.7 shows the average pyramid score achieved by different methods in each

category. The method based on the distributional similarities of words outperforms

other methods in the citations category. All methods show similar results in the

headlines category, where most headlines cover at least 1 factoid about the story

and a random ranker performs reasonably well. Table 6.8 shows top 3 headlines

from 3 rankers: word distributional similarity (WDS), C-LexRank, and MMR. In

this example, the first 3 headlines produced by WDS cover two important factoids:
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Method Top 3 headlines

WDS
1: how sweep it is
2: fans celebrate red sox win
3: red sox take title

C-LR
1: world series: red sox sweep rockies
2: red sox take world series
3: red sox win world series

MMR
1:red sox scale the rockies
2: boston sweep colorado to win world series
3: rookies respond in first crack at the big time

C-LR=C-LexRank; WDS=Word Distributional
Similarity

Table 6.8: Top 3 ranked summaries of the redsox cluster using different methods

“red sox’s winning the title” and “fans celebrating”. However, the second factoid is

absent in the other two.

6.2.4 Conclusion

We proposed a ranking system that employs word distributional similarities to

identify semantically equivalent words, and compared it with a wide range of sum-

marization systems that leverage diversity.

In the future, we plan to move to content from other collective systems on Web. In

order to generalize our findings, we plan to examine blog comments, online reviews,

and tweets (that discuss the same URL). We also plan to build a generation system

that employs the Yule model [213] to determine the importance of each aspect (e.g.

who, when, where, etc.) in order to produce summaries that include diverse aspects

of a story.

Our work has resulted in a publicly available dataset 2 of 25 annotated news

clusters with nearly 1, 400 headlines, and 25 clusters of citation sentences with more

than 900 citations. We believe that this dataset can open new dimensions in studying

diversity and other aspects of automatic text generation.

2http://www-personal.umich.edu/ vahed/data.html



CHAPTER VII

Survey Generation

7.1 Survey Generation

In this chapter, we present our experiment on using the tools explained in previous

sections for automatic survey generation. Our evaluation experiments for survey

generation are on a set of papers in the research area of Question Answering (QA)

and another set of papers on Dependency parsing (DP). The two sets of papers were

compiled by selecting all the papers in AAN that had the words Question Answering

and Dependency Parsing, respectively, in the title and the content. There were 10

papers in the QA set and 16 papers in the DP set. We also compiled the citation

texts for the 10 QA papers and the citation texts for the 16 DP papers.

7.1.1 Data Preparation

Our goal is to determine if citation texts do indeed have useful information that

one will want to put in a survey and if so, how much of this information is not

available in the original papers and their abstracts. For this we evaluate each of

the automatically generated surveys using two separate approaches: nugget-based

pyramid evaluation and ROUGE (described in the two subsections below).

Two sets of gold standard data were manually created from the QA and DP

123
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citation texts and abstracts, respectively:1 (1) We asked three impartial judges to

identify important nuggets of information worth including in a survey. (2) We asked

four fluent speakers of English to create 250-word surveys of the datasets. Then we

determined how well the different automatically generated surveys perform against

these gold standards. If the citation texts have only redundant information with

respect to the abstracts and original papers, then the surveys of citation texts will

not perform better than others.

Nugget-Based Annotations

For our first approach we used a nugget-based evaluation methodology [116, 143,

80, 202]. We asked three impartial annotators (knowledgeable in NLP but not af-

filiated with the project) to review the citation texts and/or abstract sets for each

of the papers in the QA and DP sets and manually extract prioritized lists of 2–8

“nuggets,” or main contributions, supplied by each paper. Each nugget was assigned

a weight based on the frequency with which it was listed by annotators as well as

the priority it was assigned in each case. Our automatically generated surveys were

then scored based on the number and weight of the nuggets that they covered. This

evaluation approach is similar to the one adopted by [159], but adapted here for use

in the multi-document case.

The annotators had two distinct tasks for the QA set, and one for the DP set:

(1) extract nuggets for each of the 10 QA papers, based only on the citation texts

for those papers; (2) extract nuggets for each of the 10 QA papers, based only on

the abstracts of those papers; and (3) extract nuggets for each of the 16 DP papers,

based only on the citation texts for those papers.2

1Creating gold standard data from complete papers is fairly arduous, and was not pursued.
2We first experimented using only the QA set. Then to show that the results apply to other datasets, we asked

human annotators for gold standard data on the DP citation texts. Additional experiments on DP abstracts were
not pursued because this would have required additional human annotation effort to establish a point we had already
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We obtained a weight for each nugget by reversing its priority out of 8 (e.g., a

nugget listed with priority 1 was assigned a weight of 8) and summing the weights

over each listing of that nugget.3

To evaluate a given survey, we counted the number and weight of nuggets that it

covered. Nuggets were detected via the combined use of annotator-provided regular

expressions and careful human review. Recall was calculated by dividing the com-

bined weight of covered nuggets by the combined weight of all nuggets in the nugget

set. Precision was calculated by dividing the number of distinct nuggets covered

in a survey by the number of sentences constituting that survey, with a cap of 1.

F-measure, the weighted harmonic mean of precision and recall, was calculated with

a beta value of 3 in order to assign the greatest weight to recall. Recall is favored

because it rewards surveys that include highly weighted (important) factoids, rather

than just a great number of factoids.

Table 7.1 gives the F-measure values of the 250-word surveys manually generated

by humans. The surveys were evaluated using the nuggets drawn from the QA

citation texts, QA abstracts, and DP citation texts. The average of their scores

(listed in the rightmost column) may be considered a good score to aim for by the

automatic summarization methods.

7.1.2 Experiments

We used four summarization systems for our survey-creation approach: Trimmer,

LexRank, C-LexRank, and C-RR.

Trimmer is a sentence-compression tool that extends the scope of an extractive

summarization system by generating multiple alternative sentence compressions of

made with the QA set, i.e., that abstracts are useful for survey creation.
3Results obtained with other weighting schemes that ignored priority ratings and multiple mentions of a nugget

by a single annotator showed the same trends as the ones shown by the selected weighting scheme, but the latter
was a stronger distinguisher among the four systems.
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Human Performance: Pyramid F-measure
Human1 Human2 Human3 Human4 Average

Input: QA citation surveys
QA–CT nuggets 0.524 0.711 0.468 0.695 0.599
QA–AB nuggets 0.495 0.606 0.423 0.608 0.533

Input: QA abstract surveys
QA–CT nuggets 0.542 0.675 0.581 0.669 0.617
QA–AB nuggets 0.646 0.841 0.673 0.790 0.738

Input: DP citation surveys
DP–CT nuggets 0.245 0.475 0.378 0.555 0.413

Table 7.1: Pyramid F-measure scores of human-created surveys of QA and DP data. The surveys
are evaluated using nuggets drawn from QA citation texts (QA–CT), QA abstracts
(QA–AB), and DP citation texts (DP–CT).

the most important sentences in target documents [214]. Trimmer compressions are

generated by applying linguistically-motivated rules to mask syntactic components

of a parse of a source sentence. The rules can be applied iteratively to compress

sentences below a configurable length threshold, or can be applied in all combinations

to generate the full space of compressions.

Trimmer can leverage the output of any constituency parser that uses the Penn

Treebank conventions. At present, the Stanford Parser [98] is used. The set of

compressions is ranked according to a set of features that may include metadata

about the source sentences, details of the compression process that generated the

compression, and externally calculated features of the compression.

Summaries are constructed from the highest scoring compressions, using the meta-

data and maximal marginal relevance [28] to avoid redundancy and over-representation

of a single source. The summarizer contains a cheap-to-calculate redundancy score

using an index index of the words (w) in the document set.

(7.1)
∑
w

log(λ.P (w|summary) + (1− λ).P (w|corpus))

where λ is a weighting factor (set to 0.3 in our experiments)

We automatically generated surveys for both QA and DP from three different
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System Performance: Pyramid F-measure
Random C-LexRank C-RR LexRank Trimmer

Input: QA citation surveys
QA–CT nuggets 0.321 0.434 0.268 0.295 0.616
QA–AB nuggets 0.305 0.388 0.349 0.320 0.543

Input: QA abstract surveys
QA–CT nuggets 0.452 0.383 0.480 0.441 0.404
QA–AB nuggets 0.623 0.484 0.574 0.606 0.622

Input: QA full paper surveys
QA–CT nuggets 0.239 0.446 0.299 0.190 0.199
QA–AB nuggets 0.294 0.520 0.387 0.301 0.290

Input: DP citation surveys
DP–CT nuggets 0.219 0.231 0.170 0.372 0.136

Input: DP abstract surveys
DP–CT nuggets 0.321 0.301 0.263 0.311 0.312

Input: DP full paper surveys
DP–CT nuggets 0.032 0.000 0.144 * 0.280

Table 7.2: Pyramid F-measure scores of automatic surveys of QA and DP data. The surveys are
evaluated using nuggets drawn from QA citation texts (QA–CT), QA abstracts (QA–
AB), and DP citation texts (DP–CT). * LexRank is computationally intensive and so
was not run on the DP-PA dataset (about 4000 sentences). (Highest scores for each
input source are shown in bold.)

types of documents: (1) full papers from the QA and DP sets—QA and DP full

papers (PA), (2) only the abstracts of the QA and DP papers—QA and DP abstracts

(AB), and (3) the citation texts corresponding to the QA and DP papers—QA and

DP citations texts (CT).

We generated twenty four (4x3x2) surveys, each of length 250 words, by applying

Trimmer, LexRank, C-LexRank on the three data types (citation texts, abstracts,

and full papers) for both QA and DP. (Table 7.5 shows a fragment of one of the

surveys automatically generated from QA citation texts.) We created six (3x2)

additional 250-word surveys by randomly choosing sentences from the citation texts,

abstracts, and full papers of QA and DP. We will refer to them as random surveys.

Table 7.2 gives the F-measure values of the surveys generated by the four auto-

matic summarizers, evaluated using nuggets drawn from the QA citation texts, QA

abstracts, and DP citation texts. The table also includes results for the baseline

random summaries.
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Human Performance: ROUGE-2
human1 human2 human3 human4 average

Input: QA citation surveys
QA–CT refs. 0.1807 0.1956 0.0756 0.2019 0.1635
QA–AB refs. 0.1116 0.1399 0.0711 0.1576 0.1201

Input: QA abstract surveys
QA–CT refs. 0.1315 0.1104 0.1216 0.1151 0.1197
QA-AB refs. 0.2648 0.1977 0.1802 0.2544 0.2243

Input: DP citation surveys
DP–CT refs. 0.1550 0.1259 0.1200 0.1654 0.1416

Table 7.3: ROUGE-2 scores obtained for each of the manually created surveys by using the other
three as reference. ROUGE-1 and ROUGE-L followed similar patterns.

When we used the nuggets from the abstracts set for evaluation, the surveys cre-

ated from abstracts scored higher than the corresponding surveys created from ci-

tation texts and papers. Further, the best surveys generated from citation texts

outscored the best surveys generated from papers. When we used the nuggets from

citation sets for evaluation, the best automatic surveys generated from citation texts

outperform those generated from abstracts and full papers. All these pyramid results

demonstrate that citation texts can contain useful information that is not available

in the abstracts or the original papers, and that abstracts can contain useful infor-

mation that is not available in the citation texts or full papers.

Among the various automatic summarizers, Trimmer performed best at this task,

in two cases exceeding the average human performance. Note also that the random

summarizer outscored the automatic summarizers in cases where the nuggets were

taken from a source different from that used to generate the survey. However, one

or two summarizers still tended to do well. This indicates a difficulty in extracting

the overlapping survey-worthy information across the two sources.

ROUGE evaluation

Table 7.3 presents ROUGE scores [113] of each of human-generated 250-word

surveys against each other. The average (last column) is what the automatic surveys
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System Performance: ROUGE-2
Random C-LexRank C-RR LexRank Trimmer

Input: QA citation surveys
QA–CT refs. 0.11561 0.17013 0.09522 0.13501 0.16984
QA–AB refs. 0.08264 0.11653 0.07600 0.07013 0.10336

Input: QA abstract surveys
QA–CT refs. 0.04516 0.05892 0.06149 0.05369 0.04114
QA–AB refs. 0.12085 0.13634 0.12190 0.20311 0.13357

Input: QA full paper surveys
QA–CT refs. 0.03042 0.03606 0.03599 0.28244 0.03986
QA–AB refs. 0.04621 0.05901 0.04976 0.10540 0.07505

Input: DP citation surveys
DP–CT refs. 0.10690 0.13164 0.08748 0.04901 0.10052

Input: DP abstract surveys
DP–CT refs. 0.07027 0.07321 0.05318 0.20311 0.07176

Input: DP full paper surveys
DP–CT refs. 0.03770 0.02511 0.03433 * 0.04554

Table 7.4: ROUGE-2 scores of automatic surveys of QA and DP data. The surveys are evaluated
by using human references created from QA citation texts (QA–CT), QA abstracts (QA–
AB), and DP citation texts (DP–CT). These results are obtained after Jack-knifing the
human references so that the values can be compared to those in Table 4. * LexRank
is computationally intensive and so was not run on the DP full papers set (about 4000
sentences). (Highest scores for each input source are shown in bold.)

Most of work in QA and paraphrasing focused on folding paraphrasing knowledge into
question analyzer or answer locator Rinaldi et al, 2003; Tomuro, 2003.
In addition, number of researchers have built systems to take reading comprehension exam-
inations designed to evaluate children’s reading levels.
Charniak et al, 2000; Hirschman et al, 1999; Ng et al, 2000; Riloff and Thelen, 2000; Wang
et al, 2000. so-called “ definition ” or “ other ” questions at recent TREC evaluations
Voorhees, 2005 serve as good examples.
To better facilitate user information needs, recent trends in QA research have shifted towards
complex, context-based, and interactive question answering Voorhees, 2001; Small et al,
2003; Harabagiu et al, 2005. [And so on.]

Table 7.5: First few sentences of the QA citation texts survey generated by Trimmer.
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can aim for. We then evaluated each of the random surveys and those generated

by the four summarization systems against the references. Table 7.4 lists ROUGE

scores of surveys when the manually created 250-word survey of the QA citation

texts, survey of the QA abstracts, and the survey of the DP citation texts, were used

as gold standard.

When we use manually created citation text surveys as reference, then the surveys

generated from citation texts obtained significantly better ROUGE scores than the

surveys generated from abstracts and full papers (p < 0.05) [Result 1]. This shows

that crucial survey-worthy information present in citation texts is not available, or

hard to extract, from abstracts and papers alone. Further, the surveys generated from

abstracts performed significantly better than those generated from the full papers

(p < 0.05) [Result 2]. This shows that abstracts and citation texts are generally

denser in survey-worthy information than full papers.

When we use manually created abstract surveys as reference, then the surveys gen-

erated from abstracts obtained significantly better ROUGE scores than the surveys

generated from citation texts and full papers (p < 0.05) [Result 3]. Further, and

more importantly, the surveys generated from citation texts performed significantly

better than those generated from the full papers (p < 0.05) [Result 4]. Again,

this shows that abstracts and citation texts are richer in survey-worthy information.

These results also show that abstracts of papers and citation texts have some over-

lapping information (Result 2 and Result 4), but they also have a significant

amount of unique survey-worthy information (Result 1 and Result 3).

Among the automatic summarizers, C-LexRank and LexRank perform best. This

is unlike the results found through the nugget-evaluation method, where Trimmer

performed best. This suggests that Trimmer is better at identifying more useful
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nuggets of information, but C-LexRank and LexRank are better at producing uni-

grams and bigrams expected in a survey. To some extent this may be due to the fact

that Trimmer uses smaller (trimmed) fragments of source sentences in its summaries.



CHAPTER VIII

Expert-written Historical Notes

8.1 Historical Notes

Researchers and scholars often face the problem of keeping up with the ever in-

creasing number of publications in their fields of research. In addition, research

is increasingly becoming inter-disciplinary, bridging different areas and forcing re-

searchers to familiarize themselves with new areas. For instance, cancer researchers

often have to quickly move into a new area in their research; a pathologist may want

to learn about new medical devices or drug developments; business researchers are

interested in understanding user behavior in an online community; and social scien-

tists may be interested in learning new computational models that explain certain

social phenomena. Inter-disciplinary review panels and funding agencies often need

to make decisions on proposals from a wide range of newly emerging areas. Thus

they have to learn about the development of ideas in a new discipline and be able to

relate their expertise to the proposals.

In this chapter, we present Surveyor, a summary generation system that addresses

such needs by generating surveys of key developments on a research topic. The

solution that we propose uses different sources of information (i.e., source texts and

citations) and exploits the citation network to produce summaries that compete

132
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expert-written surveys.

Previous work has noted the difference between conventional multi-document sum-

marization and summarizing scientific literature [134]. In the case of multi-document

summarization, the goal is to produce a readable presentation of multiple documents,

whereas in the case of technical survey creation, the goal is to convey the key features

and basic underpinnings of a particular field, temporal developments, important con-

tributions, emergence of sub-fields, and basic definitions and examples that enable

rapid understanding of a field by non-experts.

One example of expert-written surveys is the set of end-of-chapter summaries and

“historical notes” that appear at the end of chapters in the Speech and Language Pro-

cessing textbook [89]. Each summary or historical note is about a sub-field in Natural

Language Processing (NLP), and includes information about the background, early

and recent developments, state-of-the-art results, etc. Table 8.1 shows parts of the

historical notes that Jurafsky and Martin wrote for “Machine Translation.” The

example shows that this survey includes various information for non-expert read-

ers including some history, early developments, toolkits, evaluations and additional

references and tutorials for further reading.

The goal of this chapter is to present a framework that generates summaries similar

to the one in Table 8.1. We first present our data preparation, including scanning

and parsing citations in [89] and the ACL Anthology Network [167], which is used as

the source for summary generation in Section 8.2. We propose a new approach that

repurposes both citations and source text of papers and exploits the citation graph

to build a survey in Section 8.3. Finally, Section 8.4 present our experiments and

results on the Jurafsky and Martin textbook.
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Historical Notes: Machine Translation
history Work on models of the process and goals of translation goes back at least to

Saint Jerome in the fourth century (Kelley, 1979)...

early
work

... At the same time, the IBM group, drawing directly on algorithms for speech
recognition (many of which had themselves been developed originally at IBM!)
proposed the Candide system, based on the IBM statistical models we have
described (Brown et al., 1990, 1993) ...

tools ... Progress was made hugely easier by the development of publicly-available
toolkits, particularly tools extended from the EGYPT toolkit developed by the
Statistical Machine Translation team in during the summer 1999 research work-
shop at the Center for Language and Speech Processing at the Johns Hopkins
University. These include the GIZA++ aligner, developed by Franz Joseph Och
by extending the GIZA toolkit (Och and Ney, 2003), which implements IBM
models 1-5 as well as the HMM alignment model ...

evaluations ... These included the use of doze and Shannon tasks to measure intelligibility
as well as a metric of edit distance from a human translation, the intuition that
underlies all modern automatic evaluation metrics like BLEU ...

other
re-
sources

... Nirenburg et al. (2002) is a comprehensive collection of classic readings in
MT. Knight (1999b) is an excellent tutorial introduction to statistical MT ...

Table 8.1: Part of the historical note in [89] signifying the history, early and late developments and
evaluation in “machine translation”

8.2 Datasets

In this section, we first describe the ACL Anthology Network, which is used as

the source dataset for generating system surveys. We then explain our gold standard

preparation from the Jurafsky and Martin textbook.

8.2.1 The ACL Anthology Network

The ACL Anthology1 includes all papers published by ACL and related organiza-

tions as well as the Computational Linguistics journal over a period of four decades.

[167] have further processed this Anthology to produce the the ACL Anthology Net-

work (AAN)2. The AAN includes more than 16, 000 papers, each distinguished with

a unique ACL ID, together with their full-texts, abstracts, and citation information.

It also includes other valuable meta-data such as author affiliations, citation and col-

1http://www.aclweb.org/anthology-new/
2http://clair.si.umich.edu/clair/anthology/
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laboration networks, and various centrality measures [167, 88]. In our experiments,

we generate a set of automatic summaries using the papers in AAN.

8.2.2 Gold Standard Preparation

We use 2 sets of gold standards both extracted from the Jurafsky and Martin

textbook3 Speech and Language Processing [89]: end-of-chapter summaries and the

historical notes.

End-of-chapter Summaries

We were fortunate to obtain the end of chapter summaries in the JM book in text

format. Each summary is generally a few paragraphs long and explains the main

points discussed in the chapter. We will refer to these gold standards as chapter

summaries.

Historical Notes

We also use the historical notes at the end of each chapter in the JM book as

the second set of gold standards. Each historical note, corresponding to one chapter,

is generally 1-2 pages long and summarizes the history, early developments and the

state-of-art methods in each NLP topic.

In order to prepare this gold standard, we first scanned the historical notes of the

chapters as well as the references in the JM book. Next, we used a commercial OCR

tool to convert the scanned files to plain text. We further processed the OCR output

by removing end-of-line hyphens and fixing sentence fragments and line breaks.4

Cleaning-up references included identifying entry boundaries and combining multiple

lines corresponding to one entry.

3we use the shorthand “JM book” in the rest of this paper
4Parsing the bibliographies from the OCR output is more challenging than historical notes because of the smaller

fonts and frequent out-of-vocabulary words such as author names. However, OCR errors are tolerated in bibliogra-
phies since we use minimum edit distance to find the corresponding papers in AAN.
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Chapter src cit |BL| |BR| EB

Words and Transducers 14 255 489 3, 484 202, 940
N-grams 5 73 97 2, 083 32, 690
Part-of-Speech Tagging 16 657 1, 261 3, 385 344, 886
Hidden Markov and Maximum Entropy Models 2 432 659 525 187, 905
Phonetics 1 12 81 216 17, 496
Speech Synthesis 4 54 126 920 29, 357
Automatic Speech Recognition 2 27 103 401 21, 566
Speech Recognition: Advanced Topics 7 189 445 2, 007 96, 467
Syntactic Parsing 4 131 246 763 63, 673
Dialog and Conversational Agents 11 170 368 3, 745 114, 281

Table 8.2: List of chapter historical notes used in our experiments together with the number of
source papers extracted from historical notes (src), the number of citing papers extracted
from AAN (cit), size of the left (BL) and right (BR) components in the bi-partite graph,
and number of edges in the graph (EB).

We used the extracted references and citations in each historical note to extract

the set of papers that are cited by [89] and are part of AAN. We use these papers

as the seed source papers to generate automatic summaries. To extract the list of

AAN papers that are cited in each historical note, we first map each reference in the

JM book to an AAN paper. First, for each reference we represent it by a vector of

metadata that consists of the author names, title (stop words removed), canonical

name of the venue, and publication year. We then compare these vectors with

AAN metadata and find the closest match by computing the minimum edit distance

of corresponding metadata vectors when the publication dates agree. Finally, we

manually verify the output of the above procedure and correct mismatches.

8.3 Approach

Previous work on scientific survey generation have compared surveys that are

generated from different sources such as citations and source paper texts [159, 124,

134]. However, none of these approaches combine these heterogeneous information

sources to produce automatic surveys.

In our approach, we investigate the usefulness of combining different information
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Figure 8.1: A mini-model of the bi-partite graph for Chapter 5 (Part-of-Speech Tagging)
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sources and producing summaries that are both affected by source paper text and

citation information. For a set of papers in the same scientific topic, we extract

survey-worthy sentences from the source texts that cover contributions recognized

by other scholars in citations, and extract citations that cover contributions that are

recognized by the authors in the source text.

In our algorithm, we model the set of papers in a scientific topic t as a bi-partite

graph, B with a left and a right component (BL, BR). Each node in BL is a citation

sentence to one or more papers in t extracted from AAN, and each node in BR,

represents a sentence extracted from the source text of a paper in t. We construct

the edges in B by connecting each citing sentence to all the source sentences in the

papers it cites. Each edge in B is assigned a weight equal to the cosine similarity

of the TF-IDF term vectors of the two sentences it connects. Figure 8.1 illustrates

part of the bi-partite graph built for the “Part-of-Speech Tagging” chapter in the

JM book.

To build the summaries we are interested in citations and source sentences that

cover important contributions in the given scientific topics. Intuitively, contribu-

tions that both the paper authors and other scholars recognize as significant are

important and should be extracted. Surveyor extracts citations that cover impor-

tant contributions mentioned in the source papers as well as source sentences that

discuss important factoids recognized by others in citations.

8.3.1 Ranking

The inherent duality in the source papers and citations suggests that the problem

could be addressed by applying the HITS algorithm [99] to iteratively assign hub

and authority scores to citations and source sentences respectively. The induction

process is as follows. Each citation sentence c ∈ BL is associated with a hub score
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hc, and each source sentence s ∈ BR is associated with an authority score as. These

scores are initialized with a value of 1.0. Hub and authority scores are iteratively

updated using the following equations.

a(i+1)
s =

∑
c∈nei(s)

h
(i)
c

H(i)
(8.1)

h(i+1)
c =

∑
s∈nei(c)

a
(i)
s

A(i)
(8.2)

where a source sentence s is in a citation sentence, c’s neighborhood (s ∈ nei(c))

if there is an edge between s and c in B (c cites the paper that contains s), and their

cosine similarity is greater than a threshold (i.e., cos(s, c) > θ). Here, H(i) and A(i)

are normalization factors:

H(i) = (
∑
c∈BL

h(i)
c

2
)1/2(8.3)

A(i) = (
∑
s∈BR

a(i)
s

2
)1/2(8.4)

In our experiments, we set θ = 0.1. This ranking gives us top authorities (source

sentences) and top hubs (citations) with which we build two different summaries:

HITSsrc and HITScit. Although these summaries are built from different sources

(i.e., source papers and citations) they are affected by each other. In other words,

the scores and thus extraction of top citations affects the extraction of top source

sentences and vice versa.

8.3.2 Adding Weights

In previous section, we described the basic version of our system in which the edges

are considered as binary connections (if the cosine similarity is above a threshold).
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We would like to investigate the effect of similarity on sentence extraction. In other

words, instead of applying a threshold we use the actual edge weights and modify

Equations 8.1, 8.2 as follows.

a(i+1)
s =

∑
c∈nei(s)

wcs · h(i)
c

H(i)
(8.5)

h(i+1)
c =

∑
s∈nei(c)

wsc · a(i)
s

A(i)
(8.6)

where wsc is the is the edge weight between vertices s and c, calculated as the

TF-IDF based cosine similarity between their corresponding sentences.

Intuitively, this modification will take into account the similarity of a sentence with

its neighbors rather than the number of connections, and would result in summaries

that contain more lexically salient sentences. The weighted ranking gives us top

authorities (source sentences) and top hubs (citations) with which we build two

different summaries: HITSsrc with weights and HITScitwith weights.

8.3.3 Citation Bias

The downside of the current HITS-based sentence extraction is that it assumes

equal importance for the papers in a given topic. However, contributions from highly

cited papers are intuitively more important. To address this issue, we propose an

improvement inspired by [123] and modify equations 8.1, 8.2 to include a prior dis-

tribution of prestige.

a(i+1)
s = (1− λ) · p∗(s) + λ ·

∑
c∈nei(s)

h
(i)
c

H(i)
(8.7)

h(i+1)
c = (1− λ) · p∗(c) + λ ·

∑
s∈nei(c)

a
(i)
s

A(i)
(8.8)
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Here, p∗(v) is a distribution which represents the prior preference of vertex v.

When p∗(v) is uniform, the left component is similar to the random jumping prob-

abilities in PageRank. Other possible choices for p∗(v) include a topic sensitive

distribution, inspired by personalized jumping in personalized PageRank [77, 78]. In

Equations 8.7, 8.8 λ obtains a value between 0 and 1. When λ = 1, Equations 8.7, 8.8

lead to the standard HITS algorithm. In our experiments, we set λ = 0.75.

The prior distribution allows us to favor citation sentences that are from more

impactful papers. Therefore we define the prior distributions as the normalized

citation frequency of the paper

p∗(v) =
Cv + 1∑

v∈B Cv + |B|
(8.9)

where Cv is the number of citations to the paper that contains sentence v. Equa-

tions 8.7, 8.8 give us top authorities (source sentences) and top hubs (citations) with

which we build two different summaries: HITSsrc with priors and HITScitwith priors.

System Performance: Rouge-1
Gold Standard: Historical Notes

Method src 95% C.I. cit 95% C.I. Mean

LexRank 0.150 [0.110, 0.190] 0.212 [0.189, 0.235] 0.181
C-LexRank 0.183 [0.147, 0.220] 0.187 [0.158, 0.217] 0.185
HITS 0.202 [0.162, 0.243] 0.152 [0.120, 0.185] 0.177
HITS with weights 0.216 [0.195, 0.237] 0.200 [0.178, 0.222] 0.208
HITS with priors 0.207 [0.182, 0.233] 0.138 [0.100, 0.177] 0.173
HITS with weights/priors 0.204 [0.187, 0.221] 0.215 [0.181, 0.249] 0.209

Table 8.3: Average Rouge-1 scores of automatic surveys of the 10 chapters listed in Table 8.2
evaluated using historical notes as reference (C.I.: Confidence Interval).

8.4 Experiments

Using the procedure described in section 8.2.2, we extract the list of source papers

from 10 chapters’ historical notes in the JM book. For each chapter, the papers cited
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in its historical note are used as the source papers (src) and the set of AAN papers

that cite them are used as citing papers (cit). Table 8.2 summarizes the list of

chapter historical notes used in our experiments together with the number of source

papers, citing papers extracted from AAN, the size of the left (BL) and right (BR)

components in the bi-partite graph, and number of edges in the graph (EB).

For each chapter we generate 2× 2 summaries using the cit and src papers with

a length equal to the length of chapter’s chapter summaries and that of chapter’s

historical notes. We evaluate these summaries using Rouge [113], and compare

them with two state-of-the-art methods in scientific survey generation: LexRank

and C-LexRank.

8.4.1 Baseline Methods

LexRank

LexRank [55] works by first building a graph of all the documents (Di) in a cluster.

The edges between corresponding nodes (di) represent the cosine similarity between

them if the cosine value is above a threshold (0.10 following [55]). Once the network

is built, the system finds the most central sentences by performing a random walk

on the graph.

p(dj) = (1− λ)
1

|D|
+ λ

∑
di

p(di)P (di → dj)(8.10)

C-LexRank

C-LexRank, as discussed in Chapter V, is a clustering-based summarization sys-

tem that is proposed by [159] to summarize different scientific perspectives. In C-

LexRank, we first create a full connected network in which nodes are sentences and

edges are cosine similarities. To create summaries, C-LexRank constructs a fully
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connected network in which vertices are sentences and edges are cosine similarities

calculated using the TF-IDF vectors of citation sentences. It then employs a hier-

archical agglomeration clustering algorithm proposed by [38] to find communities of

sentences that discuss the same scientific contributions.

Once the graph is clustered and communities are formed, we extract sentences

from different clusters to build a summary. We start with the largest cluster and

extract sentences using LexRank within each cluster. In other words, for each cluster

Ωi they make a lexical network of the sentences in that cluster (Ni). LexRank

extracts the most central sentences in Ni as salient sentences of Ωi to include in the

main summary. For each cluster Ωi, the most salient sentence of Ωi is extracted until

the summary length limit is reached. The cluster selection is in order of decreasing

size.

8.4.2 Results and Discussion

Table 8.3 lists the average Rouge-1 scores of different automatic summaries with

each chapter’s historical notes chosen as the gold standard and its length as the

automatic summary length. Similarly, Table 8.4 summarizes the average Rouge-1

scores of different system summaries when chapter summaries are used as refer-

ence.

System Performance: Rouge-1
Gold Standard: Chapter Summaries

Method src 95% C.I. cit 95% C.I. Mean

LexRank 0.205 [0.141, 0.269] 0.232 [0.203, 0.260] 0.218
C-LexRank 0.188 [0.129, 0.246] 0.198 [0.140, 0.256] 0.193
HITS 0.233 [0.191, 0.274] 0.161 [0.122, 0.200] 0.197
HITS with weights 0.242 [0.215, 0.268] 0.222 [0.183, 0.260] 0.232
HITS with priors 0.205 [0.170, 0.239] 0.129 [0.094, 0.165] 0.167
HITS with weights/priors 0.235 [0.198, 0.271] 0.241 [0.198, 0.284] 0.238

Table 8.4: Average Rouge-1 scores of automatic surveys of the 10 chapters listed in Table 8.2
evaluated using chapter summaries as reference (C.I.: Confidence Interval).
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Part of the automatic summary
early devel-
opments

During the early stages of the Penn Treebank project, the initial au-
tomatic POS assignment was provided by PARTS (Church 1988), a
stochastic algorithm developed at AT&T Bell Labs.

methods As shown by Klein and Manning (2002, 2004), the extension to inducing
trees for words instead of P-O-S tags is rather straight-forward since
there exist several unsupervised part-of-speech taggers with high accuracy,
which can be combined with unsupervised parsing (see e.g. Schütze 1996;
Clark 2000).

ambiguity
problem

Jardino and Adda (1994), Schütze (1997) and Clark (2000) have at-
tempted to address the ambiguity problem to a certain extent.

Table 8.5: Part of the automatic survey generated using HITS with weights for “part-of-speech”
tagging signifying early work, state-of-the-art, etc.

Both of these tables show that the HITS method that employs weights on graph

edges leads to significantly better results than other methods both when the sum-

maries are generated from citations (cit) or source texts (src). Moreover, these

tables suggest that our proposed method (HITS with weights/priors) outperforms

the state-of-the-art methods and baselines whether summaries are generated using

source texts (src) or citations (cit) and whether evaluated against historical notes

or chapter summaries. Table 8.5 shows part of the automatic survey generated us-

ing HITS with weights for “part-of-speech tagging” signifying some early work,

state-of-the-art, etc.

We repeat the same experiments using Rouge-L. Figure 8.2 summarizes the aver-

age Rouge-L score for automatic summaries generated using source texts (src) and

citations (cit). This figure confirms that Rouge-L results follow a similar pattern

as Rouge-1. The results in Figure 8.2 and Tables 8.4, 8.3 also suggest that surveys

generated using citations are consistently better that those generated from source

texts in LexRank and C-LexRank. However, when the two summaries are generated

using both sources affecting each other in a bi-partite graph, summaries from source

and citations obtain similar qualities on average.
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Figure 8.2: Average Rouge-L scores of automatic surveys of the 10 chapters listed in Table 8.2 using
chapter summaries and historical notes as reference
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One of the collaborators in this work organized an NLP seminar previously. As

part of the seminar, the students in the class took turns to present surveys of specific

topics in NLP and Information Retrieval (IR) and wrote chapter-length surveys of

their topics. In future work, we plan to make use of the surveys written by NLP

students as gold standard in evaluations. Compared to the chapters from JM book,

these topics are more specific and close to the latest development in NLP and IR.

Examples include Sentiment and Polarity Extraction, Science Maps, Spectral graph-

based methods for NLP, Information Diffusion In Graphs, Financial Networks and

Query Expansion.

Here, we are using the papers cited in each chapter of the JM textbook as seed

source papers (i.e. we assume that the set of seminal papers on each topic are

known). However in the science community, there are thousands more papers that

are related to a given topic. In the future, we will work on a method of automatically

identifying the most influential papers that represent a specific topic from the vast

range of publications.



CHAPTER IX

Conclusion and Future Direction

9.1 Conclusion

In linguistics, discourse structure [72] is composed of three separate but interre-

lated components: the structure of the sequence of utterances, a structure of purposes

and focus of attention. In social media, collective discourse is composed of a set of

(independent) utterances about an object or an artifact focused on different aspects

of that object [162].

The study of collective discourse is especially more important on the Web. With

the growth of Web 2.0, millions of individuals engage in collective discourse. They

participate in online discussions, share their opinions, and generate content about

the same artifacts, objects, and news events in Web portals like amazon.com, epin-

ions.com, imdb.com and so forth. This massive amount of text is mainly written

on the Web by non-expert individuals with different perspectives, and yet exhibits

accurate knowledge as a whole.

In social media, collective discourse is often a collective reaction to an event.

A collective reaction to a well-defined subject emerges in response to an event (a

movie release, a breaking story, a newly published paper) in the form of independent

writings (movie reviews, news headlines, citation sentences) by many individuals.
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9.1.1 Summary of Contributions

The main question we tried to answer in this thesis is: “Can we exploit prop-

erties of collective discourse to have better understanding of the world without an

authoritative view on information?” In particular, we explore properties of “Schol-

arly collective discourse in citations to reach a better understanding of emergent

scientific contributions in a research field?” We had 2 main sub-goals related to

these questions: (i) investigate properties of collective discourse such as diversity of

perspectives, skewed distribution of factoids, and community structure, (ii) develop

methodology to extract communities of perspectives and generate extractive sum-

maries that leverage the observed diversity. Finally, we applied our methodologies

to a broader application: generating surveys of scientific topics. Here we summarize

our contributions in this thesis.

In Chapter II we review prior relevant work in four sections. First, we summarize

previous work on collective systems and collective human behavior in general. Then,

we look at work on modeling natural language as a complex system. Next, we

provide a literature review of graph based summarization systems that represent a

set of documents as a network and produce a summary by applying graph based

methods such as salience detection and ranking. Last, we review work on citation

analysis. Particularly, we review prior work that has looked at the structure and

importance of citations in scholarly work.

Chapter III is focused on studying collective discourse and investigating diverse

perspectives when a number of non-expert Web users engage in collective behavior

and generate content on the Web. We show that the set of people who discuss the

same story or subject have diverse perspectives, introducing new aspects that have

not been previously discussed by others.
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Our experiments on two different categories of human-written summaries (head-

lines and citations) showed that a lot of the diversity seen in human summarization

comes from different nuggets that may actually represent the same semantic infor-

mation (i.e., factoids). We showed that the factoids exhibit a skewed distribution

model, and that the size of the nugget inventory exhibits asymptotic behavior even

with a large number of summaries. We also showed high variation in summary qual-

ity across different summaries in terms of pyramid score, and that the information

covered by reading n summaries has a rapidly growing asymptotic behavior as n

increases.

In Chapter IV, we define latent network, an ensemble of similarity networks be-

tween documents, and show how we can exploit its properties to predict the best

cutoff at which the community structure in the network, and thus the clustering

quality is maximum. We will pursue 3 ideas in future. (1) Apply the clustering

technique to other tasks like text summarization and perform an extensive extrinsic

evaluation of the clustering technique. (2) Extend our datasets to an even wider

range of document types. (3) Examine the relation between phase transition in

document collections and the underlying Zipfian distribution. Such a model would

enable us to explain why some certain patterns are seen in document networks but

not other social networks.

Chapter V investigated the usefulness of directly summarizing citation sentences

(set of sentences that cite a paper) in the automatic creation of technical surveys. We

proposed C-LexRank, a graph-based summarization model and generated summaries

of 30 single scientific articles selected from 6 different topics in the ACL Anthol-

ogy Network (AAN): Dependency Parsing (DP), Phrase-based Machine Translation

(PBMT), Text Summarization (Summ), Question Answering (QA), Textual Entail-
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ment (TE), and Conditional Random Fields (CRF). We compared C-LexRank with

a number of state-of-the-art summarization systems (LexRank, DivRank, and Trim-

mer).

Chapter VI is focused on extracting factoids from the set of documents in collective

discourse. Particularly, we first presented a summarization methodology that em-

ploys keyphrase extraction to find important contributions of scientific articles. The

summarization is based on citation sentences and picks sentences to cover nuggets

(represented by keyphrases) or contributions of the target papers. We used point-wise

KL-divergence to extract statistically significant N-grams and use them to represent

nuggets. We then applied a new set function for the task of summarizing scientific

articles. We have proved that this function is submodular and concluded that a

greedy algorithm will result in a near-optimum set of covered nuggets using only 5

sentences.

Our experiments in this paper confirm that the summaries created based on the

presented algorithm are better than randomly generated summaries, and also out-

perform other state of the art summarization methods in most cases. Moreover, we

showed how this method generates more stable summaries with lower variation in

summary quality when N-grams of size 3 or smaller are employed.

In addition to extracting keyphrases as nuggets, we also discussed finding com-

munities of words and phrases that represent a factoid in Chapter VI. we discussed

C-LexRank when it is applied on words and not documents. We represented the set

of words in a corpus as a network, where edges show the similarity of words using

the distributional hypothesis. By applying C-LexRank on this network, we found

communities of words that are more similar to each other whereby each community

represents the set of words that relate to one factoid.
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In Chapter VII, we extend our experiments on single paper summarization to gen-

erating entire surveys of scientific topics. We generated surveys of a set of Question

Answering (QA) and Dependency Parsing (DP) papers, their abstracts, and their

citation sentences using four state-of-the-art summarization systems (C-LexRank,

C-RR, LexRank, and Trimmer). We then used two different approaches, nugget-

based pyramid and ROUGE, to evaluate the surveys. The results from both ap-

proaches and all four summarization systems show that both citation sentences and

abstracts have unique survey-worthy information. These results also demonstrate

that multi-document summarization—especially technical survey creation—benefits

considerably from citations.

Finally, in Chapter VIII, we performed some additional experiments on gold stan-

dard datasets that are beyond expensive human annotations. We believe that re-

sources such as end-of-chapter historical notes in the leading NLP text book of Ju-

rafsky and Matin [89], student summaries from a seminar class, and survey papers

written by other scholars provide valuable gold standard data that are naturally

generated. Moreover, we presented a framework based on the HITS algorithm that

employs heterogeneous information (i.e., citations and source texts) to generate sur-

veys of scientific paradigms. Using Rouge evaluations, we showed that our proposed

system, Surveyor, generates summaries that have higher quality than the state-of-

the-art methods that use only one source of information (either citations or source

papers) when compared with end of chapter summaries and historical notes in the

Jurafsky and Martin NLP textbook.
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9.2 Future Directions

One promising future direction is to extend our exploration on collective intelli-

gence, particularly in understanding how intelligence emerges by means of language

use in various domains on the Web. Besides work on collective systems on the Web,

we envision several future opportunities to go beyond my current research.

9.2.1 Decision Support Systems

We would like to go beyond developing models of online collective intelligence

to further build information extraction tools that benefit from broader Web users

contributions in contrast to authoritative information sources. Such tools will help

us build better decision support systems that use the crowd wisdom for specific

tasks. For instance, cancer researchers often have to quickly move into a new area in

their research – a pathologist may want to learn about new medical devices or drug

developments. Business researchers are interested in understanding user behavior

in an online community; the National Science Foundation (NSF) is interested in

understanding the development and evolution of new ideas; Internet users may want

to know the general public opinion about a movie or a restaurant; and so on. Using

collective discourse and crowd opinion to build solutions for these problems is both

novel and challenging. In our work, we plan to build a general framework for a

decision support system that can be easily adapted to specific tasks and new domains

with as little effort as possible.

9.2.2 Identifying Misinformation

Beyond Natural Language Processing (NLP) another future direction is the study

of complex systems and in particular social network analysis. We would like to benefit

from theories in complex systems and graph mining to explore the social network of
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people as it intersects with language use. Increasingly, language use on the Internet

is largely influenced by the social networks of people [74]. We believe that there is

an opportunity both in understanding the development of language on the Web as

well as the structure of the social networks of interacting people. We can address

problems such as rumor in microblogs, where some people collectively spread rumors

on social media, by detecting and highlighting misinformation.

9.2.3 Paraphrase Acquisition

Previously, we showed that different citations to the same paper they discuss

various contributions of the cited paper. Moreover we discussed that the number

of factoids (contributions) show asymptotic behavior when the number of citations

grow (i.e., the number of contributions of a paper is limited). Therefore, intuitively

multiple citations to the same paper may refer to the same contributions of that

paper. Since these sentences are written by different authors, they often use different

wording to describe the cited factoid. This enables us to use the set of citing sentence

pairs that cover the same factoids to create data sets for paraphrase extraction. For

example, the sentences below both cite (Turney, 2002) and highlight the same aspect

of Turneys work using slightly different wordings. Therefore, this sentence pair can

be considered paraphrases of each other.

“In (Turney, 2002), an unsupervised learning algorithm was proposed to

classify reviews as recommended or not recommended by averaging senti-

ment annotation of phrases in reviews that contain adjectives or adverbs.”

“For example, Turney (2002) proposes a method to classify reviews as rec-

ommended/not recommended, based on the average semantic orientation

of the review.”
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Similarly, “Eisner (1996) gave a cubic parsing algorithm” and “Eisner (1996)

proposed an O(n3)” could be considered paraphrases of each other. Paraphrase

annotation of citing sentences consists of manually labeling which sentence consists

of what factoids. Then, if two citing sentences consist of the same set of factoids,

they are labeled as paraphrases of each other. As a proof of concept, we annotated

25 papers from AAN using the annotation method described above. This data set

consisted of 33,683 sentence pairs of which 8,704 are paraphrases (i.e., discuss the

same factoids or contributions).

9.2.4 Datasets

Our work on analyzing citations and understanding their importance has resulted

in automatically extracted sets of citation sentences as part of the ACL Anthology

Network1. Moreover, we have made datasets of 25 annotated news clusters with

nearly 1,400 headlines, and 30 clusters of citation sentences with more than 900

citations publicly available2. We believe that these datasets can open new dimensions

in studying diversity and other aspects of automatic text generation.

1http://clair.eecs.umich.edu/aan/index.php
2http://www-personal.umich.edu/ vahed/data.html
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APPENDIX A

Sample Automatic Summaries

In this appendix, we list some of the summaries generated using C-LexRank on the

datasets in Table 5.1.
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C96-1058
Title: Three New Probabilistic Models For Dependency Parsing ...
Summary: At both training and run time, edges are scored independently, and
Eisner’s O(n3) decoder (Eisner, 1996) is used to find the optimal parse.
In dependency reparsing we focus on unlabeled dependencies, as described by Eisner
(1996).
Eisner (1996a, 1996b) describes several dependency-based models that are also closely
related to the models in this article.
Eisner (Eisner, 1996) proposed an O(n3) parsing algorithm for PDG.
In many dependency parsing models such as (Eisner, 1996) and (Macdonald et al,
2005), the score of a dependency tree is the sum of the scores of the dependency
links, which are computed independently of other links.

N03-1017
Title: Statistical Phrase-Based Translation
Summary: The phrase-based decoder extracts phrases from the word alignments
produced by GIZA++, and computes translation probabilities based on the frequency
of one phrase being aligned with another (Koehn et al, 2003).
We use the model of Koehn et al (2003) as a baseline for our experiments.
Currently, the most successful such systems employ so-called phrase-based methods
that translate input text by translating sequences of words at a time [Och, 2002;
Zens et al, 2002; Koehn et al, 2003; Vogel et al, 2003; Tillmann, 2003] phrase-based
machine translation systems make use of a language model trained for the target
language.

A00-1043
Title: Sentence Reduction For Automatic Text Summarization
Summary: Many algorithms exploit parallel corpora (Jing 2000; Knight and Marcu
2002; Riezler et al 2003; Nguyen et al 2004a; Turner and Charniak 2005; Mcdonald
2006) to learn the correspondences between long and short sentences in a supervised
manner, typically using a rich feature space induced from parse trees.
Jing and Mckeown (2000) and Jing (2000) propose a cut-and-paste strategy as a
computational process of automatic abstracting and a sentence reduction strategy to
produce concise sentences.
Sentence reduction the task of the sentence reduction module, described in detail in
(Jing, 2000), is to remove extraneous phrases from extracted sentences.

Table A.1: The output of C-LexRank summarization system for 3 papers from Table 5.1 in 3 topics:
DP, MT, and Summ.
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A00-1023
Title: A Question Answering System Supported By Information Extraction
Summary: Examples of using NLP and IE in question answering include shallow
parsing [Kupiec 1993] [Srihari & Li 2000], deep parsing [Li et al 2002] [Litkowski 1999]
[Voorhees 1999], and IE [Abney et al 2000] [Srihari & li 2000].
If the expected answer types are typical named entities, information extraction engines
(Bikel et al 1999, Srihari and li 2000) are used to extract candidate answers.
We use a qa system supported by increasingly sophisticated levels of ie [Srihari & Li
2000] [Li et al 2002].

D04-9907
Title: Scaling Web-Based Acquisition Of Entailment Relations
Summary: Many recent efforts have also focused on extracting binary semantic rela-
tions between entities, such as entailments (Szpektor et al 2004), is-a (Ravichandran
and Hovy 2002), part-of (Girju et al 2003), and other relations.
The tease algorithm (Szpektor et al, 2004) is an unsupervised method for acquiring
entailment relations from the web for a given input template.
Szpektor et al (2004) automatically identify anchors in web corpus data.
Many recent efforts have also focused on extracting semantic relations between enti-
ties, such as entailments (Szpektor et al 2004), is-a (Ravichandran and Hovy 2002),
part-of (Girju et al 2006), and other relations.

W05-0622
Title: Semantic Role Labelling with Tree CRFs
Summary: Our parsing model is based on a conditional random field model, however,
unlike previous TreeCRF work, e.g., (Cohn and Blunsom, 2005; Jousse et al., 2006),
we do not assume a particular tree structure, and instead find the most likely structure
and labeling.
Some researchers (Xue and Palmer, 2004; Koomen et al., 2005; Cohn and Blunsom,
2005; Punyakanok et al., 2008; Toutanova et al., 2005; Toutanova et al., 2008) used a
pipelined approach to attack the task.
The model can be used for tasks like syntactic parsing (Finkel et al., 2008) and
Semantic Role Labeling (Cohn and Blunsom, 2005).

Table A.2: The output of C-LexRank summarization system for 3 papers from Table 5.1 in 3 topics:
QA, TE, and CRF.
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APPENDIX B

Expert Summaries

In this appendix, we list the 4 manual summaries that were written for Question

Answering for experiments in Chapter VII.
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Question Answering Summaries; Reference: Abstracts

Expert 1
Automatic Question Answering (QA) is intended to model aspects of dialog processing in an eval-
uative task (Voorhees, 2005). Approaches to QA include: (1) the use of surface text patterns for
a Maximum Entropy approach (Ravichandran et al., 2003; Ravichandran and Hovy, 2002); (2)
multi-layered answer construction from factual information scattered in different documents (Sa-
quete et al. 2004); (3) rule-based extraction of sentences that best answer a set of questions (Riloff
and Thelen, 2000); (4) a combination of syntactic and semantic features and machine learning
techniques (Wang et al., 2000); (5) interactive QA wherein users of information systems to pose
questions in natural language and obtain relevant answers (Small et al., 2003); (6) intelligent use
of paraphrases to increase the likelihood of finding the answer to the users question (Rinaldi et al.,
2003). In the layered approach, complex temporal questions are first decomposed into simpler ones
and then answers of each simple question are re-composed, fulfilling the temporal restrictions of the
original complex question. This approach achieved 85% precision and 71% recall. By contrast, the
rule-based approach achieved 40% accuracy. In the interactive approach, clarification dialogue was
often needed to negotiate with the user the exact scope and intent of the question. In evaluating
components of QA systems, Srihari and Li (2000) demonstrate that: (1) Named Entity tagging is
an important component for QA; (2) an NL shallow parser provides a structural basis for questions,
and (iii) high-level domain independent IE can result in a QA breakthrough.
Expert 2
These abstracts focused on system descriptions. Srihari and Li (2000) presents Textract, which uses
named entity tagging to improve QA performance. Ravichandran and Hovy (2002) and Ravichan-
dran et al. (2003) describe a QA system based on automatically generated text patterns. They
reported results on the TREC-10 question set. Riloff and Thelen (2000) presents Quarc, which finds
the sentence in a document that best answers a query using heuristic rules. Wang et al. (2000)
presents a system that uses machine learning on syntactic and semantic features to perform QA.
These abstracts described domain applications. Rinaldi et al. (2003) presents a paraphrase-based
system tailored to technical domains. Squete et al. (2004) presents a system for handling complex
questions, i.e. where the answer requires information from several documents, with focus on a
module dealing with temporal complexity. Small et al. (2003) presents HITIQA, an interactive
system that provides answers to questions for which the type of the answer is dependent on the
content of the document. Users participate in a clarification dialogue to negotiate the scope and
intent of questions. These abstracts dealt with evaluation. Voorhes (2005) describes the TREC
2004 QA track. The task was to give answers to a series of questions in a dialogue. This task was
a good granularity for evaluation because it was small enough to represent a single user interation,
but large enough to avoid scores skewed by single-question answers. Damerau (1981) provides data
about the actual use of Transformational Question Answering during 1978, including problematic
inputs.

Table B.1: Sample expert surveys of Question Answering using abstracts.
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Question Answering Summaries; Reference: Citations

Expert 1
Question answering (QA) requires selection of question keywords, query generation, and answer
generation (Abney et al, 2000) (Moldovan et al, 2000) (Srihari and Li, 2000). QA differs from IR:
(i) instead of keyword terms, the query is a natural language question (ii) instead of documents
or URLs, a list of candidate answers are returned. Factoid QA systems extract query words from
the question, perform IR, identify likely answers, rank and select the best (Harabagiu et al, 2001;
Hovy et al, 2001; Srihari and Li, 2000; Abney et al, 2000). Definition questions involve nuggets
about a particular person, entity, event. If answers are named entities, information extraction is
used (Bikel et al 1999, Srihari and Li 2000). Manually generated rules may be used to select answer
sentences (Riloff and Thelen, 2000). Many approaches learn lexical semantic relations through co-
occurrence patterns (Hearst, 1992; Ravichandran and Hovy, 2002; Moldovan et al, 2004). Saquete
et al (2004) decompose complex temporal questions into simpler ones. Semantics-poor techniques
(Soubbotin, 2002; Ittycheriah et al, 2002), yield answers to factoid questions. More complex tasks,
e.g., disambiguation, require consideration of text meaning (Harabagiu et al, 2000) (Radev et al,
2000) (Srihari and Li, 2000). Relations may be selected through manual selection of entity pairs
(Brin, 1998). The web has been employed for pattern acquisition, query expansion (Yang et al,
2003), and answer validation (Magnini et al, 2002). Ravichandran and Hovy (2002) use an ontology
to extract answers from surface text patterns. Many researchers have used paraphrases for QA
(Agichtein et al, 2001; Florence et al, 2003; Rinaldi et al, 2003; Tomuro, 2003; Lin and Pantel,
2001).
Expert 2
In Question Answering the query is a natural language question, and candidate answers are returned
in response to a query. QA is supported by Natural Language Processing, Information Extraction
and Named Entity Tagging (Srihari and Li 2000). Good answers to factoid and list questions include
interesting nuggets about a particular person, organization, entity or event (Voorhees 2005). The
web has been employed to learn surface patterns automatically from trivia question and answer
pairs. Improvements may come from using a sentence splitter, anaphora resolution, and clustering
of similar snippets (Ravichandran and Hovy 2002). (Saquete et al. 2004) decompose complex
questions into simpler ones. Using lexical patterns to identify answers was competitive (Soubbotin
and Soubbotin 2002). Rote extractors look for textual contexts that convey a relationship between
concepts, such as m characters to the left or the right (Brin 1998), or the longest common substring
of several contexts (Agichtein and Gravano 2000). More complex tasks require consideration of
text meaning, which has motivated work on QA systems that incorporate semantic representation,
ontologies, reasoning and inference engines (Moldovan et al. 2003). (Rinaldi et al. 2003) used
paraphrasing knowledge in the question analyzer and answer locator, using minimal logical forms
to represent texts and questions. Systems have been designed to take reading comprehension
examinations (Charniak et al. 2000, Wang et al. 2000). The answer to a why question often
precedes/follows the sentence with the highest number of matching words (Riloff and Thelen 2000).
Trends have shifted towards interactive query answering (Harabagiu et al. 2005).

Table B.2: Sample expert surveys of Question Answering using citations.
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[132] Jorge Mira, Luıs F Seoane, and Ángel Paredes. Can two languages coexist within the same
community of speakers? Contributions to science, 6(1):21–26, 2011.

[133] Gilad Mishne and Natalie Glance. Predicting movie sales from blogger sentiment. In AAAI
2006 Spring Symposium on Computational Approaches to Analysing Weblogs (AAAI-CAAW
2006), 2006.

[134] Saif Mohammad, Bonnie Dorr, Melissa Egan, Ahmed Hassan, Pradeep Muthukrishan, Va-
hed Qazvinian, Dragomir Radev, and David Zajic. Using citations to generate surveys of
scientific paradigms. In Proceedings of the North American Chapter of the Association for
Computational Linguistics - Human Language Technologies (HLT-NAACL ’09), pages 584–
592, Boulder, Colorado, June 2009.
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