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CHAPTER I

Introduction

Survival analysis plays an important role in the evaluation of center effects. In

this dissertation, we focus on the development of parametric and semi-parametric

methods to evaluate centers in the presence of censored data. The data which moti-

vate the proposed methods arise in the kidney transplant setting. Kidney transplant

centers may use a variety of surgical protocols, and such center-specific practices may

lead to significantly different post-transplant outcomes across centers. It is impor-

tant to correctly identify those centers with significantly lower mortality or higher

mortality. For instance, specific procedures in centers with significantly lower sur-

vival need to be corrected or updated. In contrast, various procedures in centers

with significantly greater survival can be recommended to other centers. Given the

high stakes of center-specific evaluations, it is important that the statistical methods

used for identifying outlying centers be accurate.

It is well known that factors may vary considerably across centers, including both

patient characteristics and medical practices. These factors can have substantial

impact on the expected outcomes at a given center. A fair comparison of center-

specific medical practices needs to adequately account for the imbalance of patient

characteristics among centers. Otherwise, the inclusion of some high-risk patients
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in a particular center can artificially make that center’s survival appear poor. The

establishment of appropriate methods for analysis of center-specific outcomes has

received a lot of attention in the biostatistical literature. Breslow et al. (1983) studied

a fully parametric multiplicative model assuming that the death intensity for subject

i, λi(t), is the product of known standard mortality λ0(t) and a factor consisting of

a covariate vector,

λi(t) = λ0(t) exp(β
′Zi),

where β is an unknown parameter vector. Andersen et al. (1985) introduced a semi-

parametric multiplicative regression model with known standard mortality, λ0(t),

and unknown relative mortality, θ(t),

(1.1) λi(t) = λ0(t)θ(t) exp(β
′Zi),

using a model which is essentially a special case of the Cox (1972) model. If the

model has no adjustment variables, then the death rate at time t is a product of a

known standard mortality λ0(t) and an unknown relative mortality θ(t), as in the

approach of Andersen and Væth (1989). In addition, if θ(t) = θ, a constant, then θ̂ is

the standardized mortality ratio (SMR), defined as the ratio of the observed number

of deaths to the number expected in the selected population (if the death rates in

the selected population were equivalent to those in the standard population).

Each of the aforementioned methods require a known covariate-specific standard

mortality. To relax this requirement, the unstratified Cox model has been used

to generate the semiparametric generalization of the SMR, which we here call the

Cox SMR. However, the basic properties and implicit assumptions of this Cox SMR

are not well understood. Failure to appreciate the limitations of the Cox SMR

may lead to the inappropriate use of this measure. To address these concerns, in
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Chapter 2, we first provide a rigorous examination of the assumptions required for

valid inference through the Cox SMR. We then develop a modification of the Cox

SMR based on a stratified Cox model, which remedies some significant limitations

of the typically employed unstratified version. We also propose a semiparametric

generalization of direct standardization through a Cox model based standardized

rate ratio (SRR). The proposed measures are process-based and therefore allow one

to not only identify whether the mortality associated with a center is outlying, but

also determine when during follow-up the excess mortality tends to occur. Each of

the measures we consider are jump-processes due to the nonparametric nature of the

cumulative baseline hazard estimator. As such, we develop a smoothed version of

the time-dependent SRR, which should generally be more appealing to investigators

than a step function. Finally, we propose hypothesis testing procedures to evaluate

whether a given center’s SRR is constant across follow-up time.

A variety of methodological approaches has been used to evaluate centers. The

most frequently used methods rely on statistical comparison of observed versus ex-

pected outcomes. The estimator for the expected number of events, which we dis-

cussed in Chapter 2, is one such example. An alternative measure is difference in

average restricted mean lifetime; e.g., Karrison (1987), Zucker (1998). It is worth

noting that existing methods using restricted mean lifetime focus on short- and

medium-term clinical outcomes. This is for good reason, since they are relatively

easy to measure, and presumably most directly related to stratum-specific perfor-

mance. However, these measures may fail to capture the long-term effects that reveal

the quality of stratum. This is highly relevant in the case of kidney transplants, be-

cause the majority of mortality and graft failures occur in the long-term. Long term

center-specific profiling may offer important insight into variation in processes with
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respect to adequacy of follow-up care.

In our motivating example, as is often seen in nation-wide studies, there are many

centers that have relatively few patients. As a consequence, fixed effect models are

not feasible because the estimated regression coefficients will be imprecise. Thus, al-

ternative methods are needed. To address these concerns, in Chapter 3, we propose

a method that combines a log-normal frailty model and piece-wise exponential base-

line rates to compare the mean survival time across centers. The proposed methods

allow for the valid estimation of mean survival time as opposed to restricted mean

lifetime and, within this context, more robust profiling of long-term center-specific

outcomes. Maximum likelihood based estimation is carried out using a Laplace ap-

proximation for integration. Direct standardization methods are applied to contrast

mean survival time by center.

The methods we proposed in Chapter 2 and 3 are based on relative hazard models,

for which the covariate effects are multiplicative. An alternative approach is the

additive hazard model. For instance, Andersen and Væth (1989) studied a additive

hazard model (excess mortality model) assuming the death intensity λi(t) for an

individual is the sum of known standard mortality λ0(t) and an unknown relative

mortality θ(t). A more general additive model is that of Lin and Ying (1994),

where the hazard function is a summation of covariates and unknown baseline hazard

function. In the Chapter 4, we develop methods for evaluating center-specific survival

using a center-stratified additive hazards model. We propose to estimate each center

effect by an ratio of baseline survival functions. The proposed measure amounts

to a semiparametric version of a commonly used measure, the relative risk. Given

the additive hazard structure, the ratio of survival function for a particular subject

reduces to the ratio of baseline survival function. In this light, the proposed measure
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has an interpretation at the individual level, which is perhaps more relevant to a

patient than estimators based on standardized or averaging. Under an additive

hazard model, the ratio of baseline survival functions is invariant to the choice of

baseline covariate level. That means, the ratio of survival functions represents the

contrast between subject i at center j versus subject i at the hypothetical center with

baseline hazard function equal to the national average; where subject i can have any

covariate value. To implement the proposed estimator, we propose to use a stratified

additive model. An interesting feature of the methods proposed in this chapter is

the use of an additive hazard model to generate a center effect measure based on

relative survival.

For each of the proposed methods in Chapter 2, 3 and 4, we derive the asymp-

totic properties of the center effect estimators. Finite sample properties are assessed

through simulation. Each method is applied to kidney transplant data obtained from

a national registry.



CHAPTER II

Modifications of and Alternatives to the

Standardized Mortality Ratio in Evaluating

Center-Specific Mortality

The standardized mortality ratio (SMR) based on a Cox regression model is often

used to evaluate center-specific mortality. However, the asymptotic properties and

finite-sample behavior of the Cox SMR are not well-studied. In the first chapter,

we describe some strong limitations of the Cox SMR that relate to its underlying

assumptions. To address these limitations, we then develop modifications to the Cox

SMR based on a stratified Cox model. In addition, since center effects computed

through indirect standardization are not comparable, we propose a semiparametric

generalization of direct standardization. The measures we consider are process-based

and, therefore, allow us to not only identify if a center’s mortality is outlying, but also

when during the follow-up the excess mortality tends to occur. Kernel-smoothing is

performed for the proposed measures. Hypothesis testing procedures are developed

to identify outlying centers and to evaluate whether a particular center has an effect

that is constant over time. Asymptotic properties of proposed estimators are derived,

with finite-sample properties examined through an extensive simulation study. The

methods considered and developed are applied to national kidney transplant data.

6
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2.1 Introduction

Data from clinical and epidemiologic studies are frequently derived from multiple

centers. In such multicenter studies, time to an event is often of interest and may not

be observed due to random loss to follow-up or administrative censoring. Indeed, the

evaluation of center effects frequently plays an important role in survival analysis.

For instance, such evaluations could be used to compare mortality among patients

from a specific region or center to that in the general population. A frequently used

tool for such purposes is the standardized mortality ratio (SMR), defined as the ratio

of the observed number of deaths to the number expected in the selected population

if the death rates in the selected population were equivalent to those in the stan-

dard population. Existing methods of comparing center-specific mortality typically

require a table of mortality rates to serve as a standard population. To relax the

assumption that standard population mortality rates are known, a semiparametric

generalization of the SMR (which we refer to as the Cox SMR) has been adopted

based on the well-known Cox regression model (Cox (1972)). Despite its popular-

ity, the implicit assumptions of the Cox SMR are not well understood. Moreover,

large-sample properties of the Cox SMR have not been well-studied, and simulation

studies are quite limited. In this report, we first carry out a detailed examination of

the Cox SMR. We then propose and evaluate alternative methods which remedy the

most important limitations of the measure.

Our interest in quantifying center effects is motivated by the study of post-

transplant mortality for end-stage renal disease (ESRD) patients. It is well known

that post-transplant mortality may differ significantly across centers. To quantify

such differences (with a view to ultimately improving patient care), the compari-



8

son of mortality rates by center is a commonly used strategy. Centers with higher

mortality rates relative to the national average could be targeted for more frequent

surveillance and, if improvement is not subsequently observed, could ultimately lose

their accreditation. Given the high stakes of such evaluations, it is crucial that the

measurements used to classify centers be accurate. In this sense, it is not surprising

that the appropriateness of methods used for quantifying center effects has been a

topic of ongoing debate. Specifically, discussion has focused on whether the SMR

is a defensible measurement for studying center effects (Berry (1983), Hazel (2005),

Lacson et al. (2001)). Further study of the SMR is required and, in this report, we

pay particular attention to the Cox SMR.

The SMR is an example of indirect standardization, a method that has been

widely used in epidemiology and sociology to compare mortality among subpopu-

lation. Another commonly used approach in such comparisons is direct standard-

ization, usually through a measure termed the Standardized Rate Ratio (SRR) or

Comparative Mortality Figure (CMF). One can express the SRR as the ratio of ex-

pected to observed numbers of deaths in the whole study population; the numerator

of the SRR represents the expected number of deaths if all patients were treated at

the given center, while the denominator equals the total observed number of deaths

in the study population. Both indirect standardization and direct standardization

were among the earliest statistical techniques developed, as noted in the review of

Keiding (1987). Breslow and Day (1985) compared the strengths and weaknesses of

these two methods in the framework of person-year methods. The main disadvan-

tage of the SMR is that ratios of SMRs for two groups do not necessarily summarize

the ratios of their component covariate-specific rates, a phenomenon analogous to

Simpson (1951) Paradox. Essentially, the SMR’s comparison of observed to expected
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mortality involves center-specific standardization. Hence, SMRs for different centers

are not directly comparable since they are standardized to different populations. In

contrast, this drawback is not inherent to the SRR, since the same standard popu-

lation is applied to all centers. However, a criticism of the SRR is that it generally

has a larger standard error than the SMR, especially when the sample size is small.

Originally, the SMR was applied in settings where standard mortality rates were

known rather than estimated. For example, Wolfe et al. (1992) calculated SMRs

among ESRD patients using mortality tables published by the United States Renal

Data Systems. Breslow and Langholz (1987) proposed nonparametric estimation of

the SMR as a continuous function of time. Andersen et al. (1999) constructed a test

of whether the mortality rate in a population is the same as that of the reference

population over a given time interval. It is worth noting that these standardization

methods involving expected deaths are closely connected to the regression models

for relative mortality; e.g., Breslow et al. (1983), Andersen et al. (1985), Andersen

and Væth (1989), Andersen et al. (1993).

Each method referenced in the previous paragraph requires that standard mor-

tality rates are known. It is desirable to relax this requirement since the estima-

tion of standard mortality is often required. Moreover, when standard mortality is

estimated, accurate inference generally entails incorporating the variability in the

standard rates into the estimated standard errors of the center effects. To relax the

assumption of known standard mortality rates, the Cox model has been used to gen-

erate the semiparametric generalization of standardized mortality ratio, which we

here call the Cox SMR. However, the basic properties and implicit assumptions of

this Cox SMR are not well understood. In particular, this indirect standardization

has not been validated by comparing it with direct standardization in the framework
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of semiparametric models. In consequence, failure to appreciate the limitation of

Cox SMR may lead to the inappropriate use of this measure.

Another challenging aspect of the evaluation of center-specific mortality is that

the center effects often depend on follow-up time; in other words, the center effects

are non-proportional. However, most existing methods of comparing center-specific

mortality (including the Cox SMR) rely on the proportional hazards assumption. A

more appropriate analysis needs to account for the non-proportionality, an issue we

wish to address.

In this report, we first provide a rigorous examination of the assumptions required

for valid inference through the Cox SMR. We then develop a modification of the Cox

SMR based on the stratified Cox model, which remedies some significant limitations

of the typically employed unstratified version. We also propose a semiparametric

generalization of direct standardization (through a Cox model based SRR). The

measures are process-based and allow us not only to identify whether the mortality

associated with a center is outlying, but also when during the follow-up the excess

mortality tends to occur. Each of the measures we consider are jump-processes due to

the nonparametric nature of the cumulative baseline hazard estimator. As such, we

develop a smoothed version of the time-dependent SRR, which should generally be

more appealing to investigators than a step function. Finally, we propose hypothesis

testing procedures to evaluate whether a given center’s SRR is constant across follow-

up time.

The remainder of this chapter is organized as follows. The Cox SMR, its pro-

posed modifications, as well as the proposed SRR are described in the next section.

Asymptotic properties for each estimator are derived in Section 3. Finite-sample

properties are examined in Section 4 through extensive simulation studies. Section
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5 applies the proposed methods to Canadian kidney transplant data. We provide

some discussion of the proposed and related methods in Section 6.

2.2 Methods

First, we provide the notation to be used in this article. Let Ti and Ci represent

the survival and censoring time, respectively, for the i’th patient, where i = 1, ..., n.

Let J be the number of centers. The total number of subjects is denoted by n =

∑J
j=1 nj, where nj is the number of subjects in center j. Observation times are

denoted by Xi = Ti ∧ Ci, with at-risk indicator Yi(t) = I(Xi ≥ t), where a ∧ b =

min{a, b} and I(A) is an indicator function taking the value 1 when condition A

holds and 0 otherwise. The observed death indicators are denoted by ∆i = I(Ti ≤

Ci), and the death counting process is defined as Ni(t) = ∆iI(Xi ≤ t). Let Gi

denote the center for subject i and set Gij = I(Gi = j). Correspondingly, we set

Yij(t) = Yi(t)Gij and Nij(t) = Ni(t)Gij. The observed data consist of n independent

vectors, (Xi,∆i, Gi, Zi), where Zi is a vector of adjustment covariates.

2.2.1 Standardized Mortality Ratio (SMR)

To introduce the Cox SMR, we consider a semiparametric multiplicative model

(2.1) λij(t) = λ0(t)θj exp(β
TZi)

where λ0(t) is an unspecified baseline hazard function common for all centers, and

θj is an unknown constant for relative center effect. In view of the martingale,

Mij(τ) = Nij(τ)−
∫ τ

0

Yij(u) exp(β
TZi)θjdΛ0(u),
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it is natural to estimate θj by the semiparametric generalization of the standardized

mortality ratio (Cox SMR),

ŜMRj =
Oj(τ)

Ej(τ)
(2.2)

Oj(τ) =
n∑

i=1

Nij(τ)

Ej(τ) =
n∑

i=1

∫ τ

0

Yij(u) exp{β̂TZi}dΛ̂0(u; β̂)

where the quantity τ satisfies P (Xi ≥ τ) > 0 and can be set to the maximum

observation time (such that all observed events are included in the analysis). The

SMR defined above has an interpretation easily understood by clinical investigators:

the ratio of the observed number of events for center j to the expected number of

events for center j (if center j subjects belonged to a hypothetical center with hazard

function equal to the national average).

Traditionally, the Cox SMR is calculated from an unstratified Cox model,

(2.3) λi(t) = λ0(t) exp{βTZi}.

The partial likelihood (Cox (1975)) estimator of β is denoted by β̂ and is given by

the solution to U(β) = 0, where 0 is a vector of zeros,

U(β) =
n∑

i=1

∫ τ

0

{Zi − Z(u; β)}dNi(u),

where Z(u; β) = S(0)(u; β)−1S(1)(u; β) and S(d)(u; β) = n−1
∑n

i=1 Yi(u)Z
⊗d
i exp{βTZi}

for d = 0, 1, 2. The cumulative baseline hazard can be estimated by the Breslow

(1972) estimator,

(2.4) Λ̂0(t; β̂) =
1

n

n∑
i=1

∫ t

0

dNi(u)

S(0)(u; β̂)
.
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In the denominator of the Cox SMR, the expected number of events is calculated

based on (2.3). The validity of this model requires an important assumption:

λi(t|Zi, Gi) = λi(t|Zi).(A.1)

Under assumption (A.1), the hazards are conditionally independent of center given

the covariates. Only under assumption (A.1) is β̂ from the unstratified Cox model

unbiased; otherwise, this is not the case. It is quite common for (A.1) to fail in prac-

tice. The motivation for carrying out center-specific evaluations (through the SMR

or otherwise) is often that mortality is suspected to differ by center, perhaps greatly.

For example, in the data set which motivated our current work, it is suspected that

mortality following kidney transplantation may differ significantly across Canadian

transplant centers. In such cases, the failure to include center effects in model (2.3)

produces biased parameter estimates (i.e., even if Zi is independent of Gi) because

the Cox model employs a non-linear link function. As a consequence, β̂ converges to

an unknown vector β∗ 6= β. Thus, the expected number in the denominator of the

Cox SMR would not be accurate. The corresponding standard error estimators and

confidence intervals would also be invalid. Moreover, since β̂ is biased, so will be

Λ̂0(t; β̂) since, as implied by (2.4), the consistency of the baseline hazard estimator

depends on that of β̂.

2.2.2 SMR based on Stratified Model: SMR?

To address the important limitations identified in the preceding subsection, we

now propose a modification of the Cox SMR, which we refer to as SMR?, which is

based on the center-stratified Cox model,

(2.5) λij(t) ≡ λi(t|Gi = j) = λ0j(t) exp{βTZi},
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where λ0j(t) is an unspecified center-specific baseline hazard function and β is a

parameter vector. Under this stratified model, proportionality is not assumed to

hold across centers, and is assumed only with respect to the adjustment covariates.

The partial likelihood estimator of β is denoted by β̂? and is given by the solution

to U?(β) = 0 where

U?(β) =
J∑

j=1

n∑
i=1

∫ τ

0

{Zij − Zj(u; β)}dNij(u)

with Zj(u; β) = S
(0)
j (u; β)

−1
S
(1)
j (u; β) and S

(d)
j (u; β) = n−1

∑n
i=1 Yij(u)Z

⊗d
i exp{βTZi}

for d = 0, 1, 2. To estimate SMR?
j , we first estimate β, then we use β̂? to replace the

non-stratified coefficient β̂ in formula (2.2). The SMR?
j is then estimated by

ŜMR
?

j =
Oj(τ)

E?
j (τ)

(2.6)

where Oj(τ) is as previously defined in (2.2) and

E?
j (τ) =

n∑
i=1

∫ τ

0

Yij(u) exp{β̂T
? Zi}dΛ̂0(u; β̂?)

where Λ̂0(t; β̂?) represents an estimator of the average cumulative baseline hazard,

(2.7) Λ̂0(t; β̂?) =
J∑

j=1

∫ t

0

S
(0)
j (u; β̂?)S

(0)(u; β̂?)
−1dΛ̂0j(u; β̂?),

with the center-specific cumulative hazards are estimated by

(2.8) Λ̂0j(t; β̂?) =
1

n

n∑
i=1

∫ t

0

dNij(u)

S
(0)
j (u; β̂?)

.

Two important aspects of ŜMR
?

j are worth noting. First, β̂? is unbiased even if

assumption (A.1) fails and, as a consequence, hazards are allowed to be center-

dependent. Second, Λ̂0(t; β̂?) is employed in (2.6) since using Λ̂0j(t; β̂?) would result

in ŜMR
?

j ≡ 1 for all j.
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2.2.3 Time-dependent Standardized Mortality Ratio

The measures defined in (2.2) and (2.6) provide a one-number summary calculated

at time t = τ . An advantage of this approach is using all observed events and, thus in

a sense, making maximum use of the available data. However, a potential limitation

is that each measure reflects only the average center effect over the follow-up time

period. In practice, the center effects may change over follow-up time (i.e., non-

proportionality, in the context of Cox regression). Therefore, it is often of interest

to view each center effect as a process over time. This is particularly relevant in

long-term follow-up studies where there may be considerable changes in the mortality

pattern within a given center. For example, in the context of our motivating example,

it is possible that a transplant center could have a substandard surgery protocol (and

hence have relatively high death rates early in the post-transplant follow-up period),

but also have high quality follow-up strategies (which result in lower death rates

at later follow-up stages). Such trends are important to identify, since they can

guide strategies for improving the quality of care delivered to patients. If the hazard

functions cross, however, the Cox SMR may fail to detect any difference. To address

this problem, a natural solution is to use a time-dependent version of the Cox SMR,

which we define as

(2.9) ŜMRj(t) =
Oj(t)

Ej(t)
,

where 0 < t ≤ τ . Similarly, the time-dependent SMR? is obtained by

(2.10) ŜMR
?

j(t) =
Oj(t)

E?
j (t)

.

Each of the estimators in (2.9) and (2.10) can be used to identify both if a center’s

mortality is outlying, and determine when during the follow-up period the excess
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mortality tends to occur. For the reasons described in Section 2.2, ŜMR
?

j(t) would

be a better choice than ŜMRj(t).

2.2.4 Direct Standardization: Standardized Rate Ratio (SRR)

The SMR-type estimators defined thus far are based on indirect standardization.

Each of SMRj(t) and SMR?
j(t) can be interpreted as the ratio of observed to expected

number of deaths for patients treated at center j; where the expected pertains to

the average number of deaths at a hypothetical center with the national average

hazard function. Estimators based on indirect standardization are generally easily

understood by non-statisticians.

It is worth noting, however, that the estimators based on indirect standardization

can be viewed as a weighted ratio of center-specific cumulative hazards, with weight

functions based on center-specific S
(0)
j (t; β). These weight functions have an obvi-

ous disadvantage: they involve center-specific censoring and covariate distributions,

which can differ considerably across centers. It is well known that two centers with

equal covariate-specific mortality hazards could have different SMRs, merely due to

differences in their respective covariate distributions. What is perhaps less known

is that, in the presence of censored data, the same phenomenon can occur due to

differences in center-specific censoring distributions.

Referring again to our motivating data, there is a certain appeal of an estimator

that pertains to patients actually treated at center j. For example, if the goal

is to determine whether a center has higher or lower mortality rates than expected,

SMR?
j(t) is still a useful measure for evaluating center j in isolation; which may indeed

be the goal of surgeons and clinicians at center j. However, for a governing body (e.g.,

oversight committee), SMR?
j(t) is much less useful. In particular, a set of SMR?

j(t)
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estimators cannot be validly ranked to determine an ordering of centers, since each

estimator is essentially adjusted using different covariate and censoring distribution.

These factors can have a substantial impact on the weight function S
(0)
j (t; β). Based

on results from indirect methods, we cannot conclude that center j actually has

higher mortality than center j′ if the covariate and/or censoring distributions in the

two centers are different. To rule out the possibility that differences among centers are

due merely to different censoring and/or covariate distributions, the weight function

should be specified such that differences among centers with respect to the resulting

measure are a function only of corresponding differences in center-specific hazards.

Motivated by such considerations, we propose an alternative method, referred to

as the Standardized Rate Ratio (SRR), which can be interpreted as a semiparametric

generalization of direct standardization

(2.11) ŜRRj(t) =
Ej(t)
O(t)

with O(t) =
∑J

j=1Oj(t) being the total observed number of deaths in the population;

and where we define

(2.12) Ej(t) =
J∑

`=1

n∑
i=1

∫ t

0

Yi`(u) exp{β̂T
? Zi}dΛ̂0j(u)

to represent the total expected number of deaths up to time t if all patients in

the population were treated at center j. Note that, although the estimation of

SRRj(t) also involves censoring and covariate distributions, the same weight function

is applied across all centers; thus factoring out the impact of imbalances in center-

specific censoring and covariate distributions.

2.2.5 Smoothed SRR Estimator

Each of the estimators described in this section is a step function with jumps

at observed death times. This property of the estimators may be difficult for non-
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statisticians to understand and thus trust. Following Ramlau-Hansen (1983), we

can compute a kernel-smoothed version of the SRR. In particular, we define the

density-type estimator f̃(t; b) as:

f̃(t; b) =
1

b

∫ τ

0

κ

(
t− u

b

)
d ŜRR(u),

where κ is the optimal kernel function (Epanechikov Kernel),

κ(y) =
3

4
(1− y2)I{|y| < 1}.

and b is a bandwidth. The kernel estimate S̃RR(t; b) is then obtained by integrat-

ing the density-type estimator f̃(t; b) accordingly. For the motivating data set, we

tried several fixed bandwidths. Among them, one tenth of the range of event times

was chosen as the bandwidth to give a desired degree of smoothness. More formal

methods for choosing b include cross-validation techniques.

2.2.6 Tests for Constant Center Effect

In preceding subsections, we have advocated the use of time-dependent center

effect measures. In the interests of parsimony, it is natural to question whether the

center effect is constant over time. This issue could be examined using techniques

similar to those used to derive simultaneous confidence bands (Lin et al. (1994,

2000)). We propose Kolmogorov-Smirnov-type statistics based on the SRR to eval-

uate whether center effects are constant over time, for which the null hypothesis is

H0 : SRRj(t) = SRRj. The test statistic is given by

T̂j = sup
0≤t≤τ

∣∣∣n 1
2

{
(ŜRRj(t)− ŜRRj(τ)

}∣∣∣ .(2.13)

The advantage of this test is that its implementation is straightforward. The refer-

ence value, SRRj(τ), uses all the information until time τ ; and it will be the same
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as the average SRR if the center effects are constants over time. An alternative test

statistic is,

F̂j = sup
0≤t≤τ

∣∣∣∣n
1
2

{
(ŜRRj(t)−

∫ τ

0

ŜRRj(u)du/τ

}∣∣∣∣ ,

for which the reference value is perhaps more general, but the computation is much

more complicated. We will explore these tests further in the following sections.

2.3 Asymptotic Properties

We now derive the asymptotic properties for each of the measures investigated

thus far. Proofs are provided in the Web Appendices.

To derive the large-sample properties for the Cox SMR, we impose the following

regularity conditions under the unstratified Cox model.

(a) (Xi,∆i, Gi, Zi) are independent and identically distributed random vectors.

(b) P (Xi ≥ τ) > 0 where τ is a pre-specified time point.

(c) Zik have bounded total variation, i.e., |Zik| < κ for all i = 1, ...n and k = 1, ..., p,

where κ is a constant and Zik is the kth component of Zi.

(d)
∫ τ

0
λ(t)dt < ∞.

(e) Continuity of the following functions:

s(1)(t; β) =
∂

∂β
s(0)(t; β), s(2)(t; β) =

∂2

∂β∂βT
s(0)(t; β)

where s(d)(t; β) is the limiting value of S(d)(t; β) for d = 0, 1, 2, with s(1)(t; β)

and s(2)(t; β) bounded and s(0)(t; β) bounded away from 0 for t ∈ [0, τ ] and β

in an open set.
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(f) Positive-definiteness of matrix Ω(β):

Ω(β) =

∫ τ

0

v(t; β)s(0)(t; β)λ0(t)dt,

v(t; β) =
s(2)(t; β)

s(0)(t; β)
− z(t; β)⊗2

and z(t; β) = s(1)(t; β)s(0)(t; β)−1 is the limiting value of Z(t; β).

(g) P (Gij = 1|Zi) > 0.

Condition (a) is employed in the application of the Functional Central Limit Theorem

(Pollard (1990)). Condition (b) is a standard identifiability requirement. Condition

(c) leads to the boundedness of several quantities and is applicable in most practi-

cal applications. Conditions (d) and (e) are not essential but simplify our proofs.

Note that conditions (d)-(f) pertain to the unstratified Cox model; analogous con-

ditions are assumed under the stratified Cox model. With respect to condition (g),

the selection probability given covariates is non-zero for all centers. This condition

guarantees that the sample size nj of each center goes to ∞ as the total sample size

n goes to ∞.

THEOREM 1: Under conditions (a) to (f) and assumption (A.1), ŜMRj(t)

converges almost surely to 1 uniformly in t ∈ [0, τ ], and n
1
2{ŜMRj(t) − 1} con-

verges weakly to a zero-mean Gaussian process with covariance function σj(s, t) =

E[ξij(s; β)ξij(t; β)], where

ξij(t; β) =

{∫ t

0

s
(0)
j (u; β)dΛ0(u)

}−1 ∫ t

0

{
Gij − sj

(0)(u; β)

s(0)(u; β)

}
dMi(u; β)

− ψT
j (t; β)Ω(β)

−1

∫ τ

0

{Zi − z(u; β)}dMi(u; β)

ψj(t; β) =

∫ t

0

{
sj

(1)(u; β)− sj
(0)(u; β) z(u; β)

}
dΛ0(u),

where dMi(u; β) =
∑J

`=1 dMi`(u; β).
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The covariance function can be consistently estimated by σ̂j(s, t; β̂), where σ̂j(s, t; β̂) =

n−1
∑n

i=1 ξ̂ij(s; β̂)ξ̂ij(t; β̂), with ξ̂ij(t; β̂) obtained by replacing limiting values in ξij(t; β)

with their empirical counterparts. With respect to the proof of Theorem 1, through

various results from empirical processes (Bilias et al. (1997); Lin et al. (2000); Pollard

(1990)), the process n
1
2{ŜMRj(t)−1} can be shown to be asymptotically equivalent

to n− 1
2

∑n
i=1 ξij(t; β). A demonstration of tightness then completes the proof. The

consistency of the covariance estimators is established using the Uniform Strong Law

of Large Numbers. Details of the proof are provided as follow.

ŜMRj(t) ≡ Oj(t)

Ej(t)
=

∫ t

0
S
(0)
j (u; β̂)dΛ̂0j(u)∫ t

0
S
(0)
j (u; β̂)dΛ̂0(u)

Based on the uniform consistency, boundedness and monotonicity of Λ̂0(u), to-

gether with condition (e), we can apply Lemma 1 of Lin et al (2000) to prove that

∫ t

0
S
(0)
j (u; β̂)dΛ̂0j(u) converges almost surely to

∫ t

0
s
(0)
j (u; β)dΛ0j(u) uniformly in t for

t ∈ [0, τ ]. Similarly,
∫ t

0
S
(0)
j (u; β̂)dΛ̂0(u) converges almost surely to

∫ t

0
s
(0)
j (u; β)dΛ0(u)

uniformly in t for t ∈ [0, τ ]. Under the assumption (A.1) defined in the main pa-

per and using stochastic equicontinuity, ŜMRj(t) then converges almost surely to 1

uniformly in t for t ∈ [0, τ ].

To prove the weak convergence, we decompose the quantity as follows

n
1
2

{
Oj(t)

Ej(t)
− 1

}
= n

1
2

{ ∑n
i=1

∫ t

0
dNij(u)

n
∫ t

0
S
(0)
j (u; β̂)dΛ̂0(u)

−
∫ t

0
S
(0)
j (u; β)dΛ0(u)∫ t

0
S
(0)
j (u; β̂)dΛ̂0(u)

}
(2.14)

+ n
1
2

{∫ t

0
S
(0)
j (u; β)dΛ0(u)∫ t

0
S
(0)
j (u; β̂)dΛ̂0(u)

−
∫ t

0
S
(0)
j (u; β)dΛ0(u)∫ t

0
S
(0)
j (u; β)dΛ0(u)

}
(2.15)

By the strong law of large number (SLLN), S
(0)
j (u; β)

a.s.−−→ s
(0)
j (u; β). This, combined

with the fact that Λ̂0(u)
a.s.−−→ Λ0(u) (Anderson and Gill, 1982) results in that

(1) =
n− 1

2

∑n
i=1

∫ t

0
dMij(u; β)∫ t

0
s
(0)
j (u; β)dΛ0(u)

+ op(1)
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Through a Taylor expansion,

(2) = −
{∫ t

0

s
(0)
j (u; β)dΛ0(u)

}−1

n
1
2

{∫ t

0

S
(0)
j (u; β̂)dΛ̂0(u)−

∫ t

0

s
(0)
j (u; β)dΛ0(u)

}
+ op(1),

where

n
1
2

{∫ t

0

S
(0)
j (u; β̂)dΛ̂0(u)−

∫ t

0

s
(0)
j (u; β)dΛ0(u)

}

= n− 1
2

n∑
i=1

∫ t

0

s
(0)
j (u; β)

s(0)(u; β)
dMi(u; β)

+

∫ t

0

{
s
(1)
j (u; β)− s

(0)
j (u; β)z(u; β)

}
dΛ0(u)n

1
2 (β̂ − β) + op(1)

with Mi(u; β) =
∑J

`=1Mi`(u; β) and

n
1
2 (β̂ − β) = Ω(β)−1n− 1

2

n∑
i=1

∫ τ

0

[Zi − z(u; β)]dMi(u; β) + op(1)

Therefore, the process n
1
2{ŜMRj−1} is asymptotically equivalent to n− 1

2

∑n
i=1 ξij(t; β)

with ξij(t; β) defined in the main paper. To complete the proof, we now focus on

the tightness. It is obvious that Mi(t) is the difference of two monotone functions

in t. The boundedness conditions of Zi, S
(0)
j and Λ̂0 enable us to prove that (1)

and (2) are also differences of two monotone functions in t with pseudodimension

1, which suffices to prove that they are manageable (Pollard 1990). It then follows

that the tightness holds, and thus, n
1
2{ŜMRj − 1} converges weakly to a zero-mean

Gaussian process. The consistency of the covariance estimators is established using

the Uniform Strong Law of Large Number.

To derive the large-sample properties for SMR? and SRR, we impose the following

regularity conditions under the stratified Cox model.

(a2) (Xi,∆i, Gi, Zi) are independent and identically distributed random vectors.

(b2) P (Xi ≥ τ) > 0 where τ is a pre-specified time point.
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(c2) Zik have bounded total variation, i.e., |Zik| < κ for all i = 1, ...n and k = 1, ..., p,

where κ is a constant and Zik is the kth component of Zi.

(d2)
∫ τ

0
λ0j(t)dt < ∞.

(e2) Continuity of the following functions:

s
(1)
j (t; β) =

∂

∂β
s
(0)
j (t; β), s

(2)
j (t; β) =

∂2

∂β∂βT
s
(0)
j (t; β)

where s
(d)
j (t; β) is the limiting value of S

(d)
j (t; β) for d = 0, 1, 2, with s

(1)
j (t; β)

and s
(2)
j (t; β) bounded and s

(0)
j (t; β) bounded away from 0 for t ∈ [0, τ ] and β

in an open set.

(f2) Positive-definiteness of matrix Ωj(β):

Ωj(β) =

∫ τ

0

vj(t; β)s
(0)
j (t; β)λ0j(t)dt,

vj(t; β) =
s
(2)
j (t; β)

s
(0)
j (t; β)

− zj(t; β)
⊗2

and zj(t; β) = s
(0)
j (t; β)

−1
s
(1)
j (t; β) is the limiting value of Zj(t; β).

THEOREM 2: Under the regularity conditions for the stratified Cox model, the

ŜMR
?

j(t) converges almost surely to SMR?
j(t) uniformly in t ∈ [0, τ ], where

SMR?
j (t) =

∫ t

0
s
(0)
j (u; β)dΛ0j(u)∫ t

0
s
(0)
j (u; β)dΛ0(u)

with

Λ0(t) =
J∑

`=1

∫ t

0

s
(0)
` (u; β)

s(0)(u; β)
dΛ0`(u)

and n
1
2{ŜMR

?

j(t) − SMR?
j (t)} converges weakly to a zero-mean Gaussian process
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with covariance function σ?
j (s, t) = E[ξ?ij(s; β)ξ

?
ij(t; β)], where

ξ?ij(t; β) =

{
J∑

`=1

∫ t

0

s
(0)
j (u; β)

s
(0)
` (u; β)

s(0)(u; β)
dΛ0`(u)

}−1

Mij(t; β)

−hj(t; β)
J∑

`=1

∫ t

0

s
(0)
j (u; β)

s(0)(u; β)
dMi`(u; β)

−hj(t; β)
J∑

`=1

∫ t

0

kT
j (u; β)s

(0)
` (u; β)dΛ0`(u)Ω(β)

−1

J∑

`=1

∫ τ

0

{Zi` − z`(u; β)}dMi`(u; β),

with

hj(t; β) =

{
J∑

`=1

∫ t

0

s
(0)
j (u; β)

s
(0)
` (u; β)

s(0)(u; β)
dΛ0`(u)

}−2 ∫ t

0

s
(0)
j (u; β)dΛ0j(u)

kj(u; β) =
{
s(0)(u; β)

}−1
{
s
(1)
j (u; β)− s

(0)
j (u; β) z(u; β)

}
.

The proof of Theorem 2 is essentially the same as that of Theorem 1. Hence, we

focus only on parts that are different.

n
1
2

{
ŜMR

?

j(t)− SMR?
j (t)

}
= (3) + (4)

(3) = n
1
2

{
J∑

`=1

∫ t

0

S
(0)
j (u; β̂?)

S
(0)
` (u; β̂?)

S(0)(u; β̂?)
dΛ̂0`(u)

}−1

∗
{∫ t

0

S
(0)
j (u; β̂?)dΛ̂0j(u)−

∫ t

0

s
(0)
j (u; β)dΛ0j(u)

}

= n− 1
2

{
J∑

`=1

∫ t

0

s
(0)
j (u; β)

s
(0)
` (u; β)

s(0)(u; β)
dΛ0`(u)

}−1 n∑
i=1

∫ t

0

dMij(u; β) + op(1)

(4) =

∫ t

0

s
(0)
j (u; β)dΛ0j(u) n

1
2

{
J∑

`=1

∫ t

0

S
(0)
j (u; β̂?)

S
(0)
` (u; β̂?)

S(0)(u; β̂?)
dΛ̂0`(u)

}−1

−
∫ t

0

s
(0)
j (u; β)dΛ0j(u) n

1
2

{
J∑

`=1

∫ t

0

s
(0)
j (u; β)

s
(0)
` (u; β)

s(0)(u; β)
dΛ0`(u)

}−1
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= − hj(t, β) n
1
2

J∑

`=1

{∫ t

0

S
(0)
j (u; β̂?)

S
(0)
` (u, β̂?)

S(0)(u; β̂?)
dΛ̂0`(u)−

∫ t

0

s
(0)
j (u; β)

s
(0)
` (u; β)

s(0)(u; β)
dΛ0`(u)

}

+op(1)

with

hj(t, β) =

{
J∑

`=1

∫ t

0

s
(0)
j (u; β)

s
(0)
` (u; β)

s(0)(u; β)
dΛ0`(u)

}−2 ∫ t

0

s
(0)
j (u; β)dΛ0j(u).

Note that

n
1
2

J∑

`=1

{∫ t

0

S
(0)
j (u; β̂?)

S
(0)
` (u; β̂?)

S(0)(u; β̂?)
dΛ̂0`(u)−

∫ t

0

s
(0)
j (u; β)

s
(0)
` (u; β)

s(0)(u; β)
dΛ0`(u)

}

= n− 1
2

J∑

`=1

n∑
i=1

∫ t

0

s
(0)
j (u; β)

s(0)(u; β)
dMi`(u; β) +

J∑

`=1

∫ t

0

kT
j (u; β)s

(0)
` (u; β)dΛ0`(u) n

1
2 (β̂? − β)

+op(1),

where

kj(u; β) =
{
s(0)(u; β)

}−1
{
s
(1)
j (u; β)− s

(0)
j (u; β)z(u; β)

}

and

n
1
2 (β̂? − β) =

{
J∑

`=1

Ω`(β)
−1

}
n− 1

2

J∑

`=1

n∑
i=1

∫ τ

0

[Zi` − z`(u; β)]dMi`(u; β) + op(1)

Therefore, the process n
1
2{ŜMR

?

j(t) − SMR?
j (t)} is asymptotically equivalent to

n− 1
2

∑n
i=1 ξ

?
ij(t; β) with ξ?ij(t; β). It then follows from the multivariate central limit

theorem, together with a proof of tightness, that n
1
2{ŜMR

?

j(t) − SMR?
j (t)} con-

verges weakly to a zero-mean Gaussian process with covariance function σ?
j (s, t) =

E[ξ?ij(s; β)ξ
?
ij(t; β)].

Note that the limiting value of ŜMR
?

j(t) depends not only on the center-specific

hazards, but also on the censoring and covariate distributions of center j. The SRR
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is desirable in this light since center-specific limiting values would differ only due to

corresponding differences in center-specific hazards.

THEOREM 3: Under the regularity conditions for the stratified Cox model,

ŜRRj(t) converges almost surely to SRRj(t) uniformly in t ∈ [0, τ ], where

SRRj(t) =

∑J
`=1

∫ t

0
s
(0)
` (u; β)dΛ0j(u)∑J

`=1

∫ t

0
s
(0)
` (u; β)dΛ0`(u)

and n
1
2{ŜRRj(t)−SRRj(t)} converges weakly to a zero-mean Gaussian process with

covariance function σS
j (s, t) = E[ξSij(s; β)ξ

S
ij(t; β)], where

ξSij(t; β) = w(t; β)

∫ t

0

s(0)(u; β)

s
(0)
j (u; β)

dMij(u; β)

−w(t; β)2
∫ t

0

s(0)(u; β)dΛ0j(u)
J∑

`=1

∫ t

0

dMi`(u; β)

+w(t; β)

∫ t

0

rTj (u; β)dΛ0j(u)Ω(β)
−1

∫ τ

0

{Zi` − z`(u; β)}dMij(u; β)

with

w(t; β) =

{
J∑

`=1

∫ t

0

s
(0)
` (u; β)dΛ0`(u)

}−1

rj(u; β) = s(1)(u; β)− s(0)(u; β) zj(u; β).

We can decompose the quantity of interest in Theorem 3 as follows

n
1
2{ŜRRj(t)− SRRj(t)} = (5) + (6),

where we have

(5) = w(t; β)n
1
2

{∫ t

0

S(0)(u; β̂?)dΛ̂0j(u)−
∫ t

0

s(0)(u; β)dΛ0j(u)

}

= w(t; β)

{
n− 1

2

n∑
i=1

∫ t

0

s(0)(u; β)

s
(0)
j (u; β)

dMij(u; β) +

∫ t

0

rTj (u; β)dΛ0j(u) n
1
2 (β̂? − β)

}
+ op(1),
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with

w(t; β) =

{
J∑

`=1

∫ t

0

s
(0)
` (u; β)dΛ0`(u)

}−1

rj(u; β) = s(1)(u; β)− s
(1)
j (u; β)z(u; β)

n
1
2 (β̂? − β) =

{
J∑

`=1

Ω`(β)
−1

}
n− 1

2

J∑

`=1

n∑
i=1

∫ τ

0

[Zi` − z`(u; β)]dMij(u; β) + op(1),

and

(6) =

∫ t

0

s(0)(u; β)dΛ0j(u) n
1
2

{
J∑

`=1

∫ t

0

S
(0)
` (u; β̂?)dΛ̂0`(u)

}−1

−
∫ t

0

s(0)(u; β)dΛ0j(u) n
1
2

{
J∑

`=1

∫ t

0

s
(0)
` (u; β)dΛ0`(u)

}−1

= −
∫ t

0
s(0)(u; β)dΛ0j(u)

{∑J
`=1

∫ t

0
s
(0)
` (u; β)dΛ0`(u)}2

n− 1
2

J∑

`=1

∫ t

0

dMi`(u; β) + op(1)

Therefore, the process n
1
2{ŜRRj(t)− SRRj(t)} is asymptotically equivalent to

n− 1
2

∑n
i=1 ξ

s
ij(t; β). It converges asymptotically to a zero-mean Gaussian process with

covariance function σs
j (s, t) = E[ξsij(s; β)ξ

s
ij(t; β)].

We now focus on the asymptotic properties of the supremum test for constant cen-

ter effects. Under the null hypothesis, H0 : SRRj(t) = SRRj, we have n
1
2{ŜRRj(t)−

ŜRRj(τ)} is asymptotically equivalent to n− 1
2

∑n
i=1{ξ̂Sij(t; β) − ξ̂Sij(τ ; β)}. This sug-

gests that the quantity n− 1
2

∑n
i=1Ri{ξ̂Sij(t; β̂)− ξ̂Sij(τ ; β̂)} would have the same distri-

bution as n
1
2{ŜRRj(t)− ŜRRj(τ)} under H0, where Ri is a standard normal random

variable. Repeatedly generating independent standard normal random samples Ri

(i = 1, ..., n), we can determine the empirical critical values of this test. The prop-

erties of the test based on F̂j are obtained similarly.
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2.4 Simulation Study

Finite-sample properties of the estimators described in Section 3 were evaluated

through a series of simulation studies. We considered J = 10 centers. Death times

were generated from the Weibull model, λij(t) = αjγjt
γj−1 exp(βTZi) for i = 1, . . . , nj

and j = 1, . . . , 10, where Zi = (Zi1, Zi2)
T , Zi1 was a Normal variate and Zi2 followed

a Bernoulli distribution. We set βT = (β1, β2) = (0.02,−0.2). We varied the sample

size for each center as nj = 50, 100, 500. The censoring percentages were approxi-

mately 20%. The Cox SMR was calculated at the end of the study period, while

other estimators were calculated at various percentiles of observation time. Each

data configuration was replicated 1000 times.

2.4.1 Setting 1: Hazards equal across centers

First, we considered a simulation setting where the hazard functions were equal

across centers. Note that under this setting, the limiting values of all estimators equal

1. Whether or not the covariate or censoring distributions were center-dependent

should have no influence on the results in this setting. The results with sample

size nj = 100 are displayed in Table 1. Not surprisingly, each of the measures was

very close to 1. The variation of the Cox SMR was uniformly smaller than each of

the alternative estimators. In terms of the asymptotic approximation, estimators

based on indirect standardization were sufficiently well-behaved, in the sense that

the average asymptotic standard errors (ASE) were generally close to the empirical

standard deviations (ESD), while the empirical coverage probabilities (CP) were

generally consistent with the nominal value 0.95. The performance of the SRR

tended to improve as sample sizes increased: poor CP (i.e., in the 0.87-0.89 range)

for sample size nj = 50; moderate CP (0.91-0.93) for nj = 100; good CP (0.93-0.95)
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for nj = 500.

2.4.2 Setting 2: Center-dependent hazards

For the second set of simulations, different values of αj and γj were used, such

that the hazard functions increased with increasing center number (j = 1, . . . , 10).

Both the censoring and covariate distributions were chosen to be center-independent,

where the covariate Zi1 came from a Normal (50, 10) distribution; Zi2 followed a

Bernoulli (0.5) distribution; and the censoring times were generated from a Uniform

(3, 10) distribution. Results based on sample size nj = 100 are given in Table 2.

Three aspects are noteworthy here. First, we report the time-dependent estimators

calculated at t=5, which was roughly the 70th percentile of the observation time

distribution. We observed similar performance for these estimators calculated at

other percentiles of the observation time distribution. Second, ŜMRj tended to dif-

fer notably from other estimators, consistent with the failure of the proportionality

assumption. Third, the means for ŜMRj(t) and ŜMR
?

j(t) were quite close to each

other in this setting, due to the covariate distributions being center-independent. Al-

though the unstratified model omitting the center effects results in biased estimators

of (β1, β2)
T , this bias turned out to be only moderate in this case.

We now focus on the finite-sample performance of the asymptotic results per-

taining to ŜMRj. For a center with hazard lower than the population average, the

ASE of ŜMRj was too large compared to the ESD, leading to a CP much greater

than 0.95. In contrast, for a center with hazard greater than the population aver-

age, the ASE was too small, leading to a notably low CP. These performances did

not improve as we increased the sample size from nj = 100 to nj = 500. Clearly,

the flaws in the variance estimation yield either an overestimated or underestimated
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confidence interval for the Cox SMR based on an unstratified model. In contrast,

the SE estimator for ŜMR
?

j was sufficiently accurate for this setting. Finally, the

performance of the asymptotic SE for ŜRRj was sensitive to the sample size, with

CP being similar to that from Setting 1.

2.4.3 Setting 3: Center-dependent censoring distribution

As we mentioned previously, even with the proposed modifications, estimators

based on indirect standardization may be misleading if either the censoring or co-

variate distributions are center-dependent. To illustrate this point, we performed

simulations with the following three conditions: (i) the hazard functions were center-

dependent and increased with center index (j = 1, . . . , 9), while center j = 10 had

exactly the same hazard function as that of center j = 9; (ii) the censoring distribu-

tions for center j = 9 and j = 10 were substantially different. For center j = 9, the

censoring times were generated from a Weibull distribution such that the censoring

mainly occurred in the later stages, while for center j = 10 the censoring times were

generated from a Weibull distribution for which the censoring tended to occur in the

early stages; (iii) the covariate distributions were center-independent (same as those

in setting 2). We compared the estimators for centers j = 9 and j = 10 in Table

3. The results showed that the SRR performed well, in the sense that empirical

means for centers j = 9 and j = 10 were approximately equal. The limiting values

of ŜRR9(t) and ŜRR10(t) were exactly the same. In contrast, each of the estimators

based on indirect standardization tended to provide misleading results, since the lim-

iting values and the corresponding estimators were notably different between centers

j = 9 and j = 10.
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2.4.4 Setting 4: Center-dependent covariate distributions

We also performed simulations under a setting in which the distribution of the

covariate vector differed by center. The set up for hazard functions was exactly

the same as for Setting 3. Censoring times were generated from Uniform (3, 10)

distribution, while center j = 9 and j = 10 had substantially different covariate

distributions. In center j = 9 the covariate Zi1 came from a Normal distribution

with mean 30 and Zi2 followed a Bernoulli (0.8) distribution; while in center j =

10, the covariate Zi1 was derived from a Normal distribution with mean 70 and

Zi2 followed a Bernoulli (0.2) distribution. To connect this to the data set that

motivated our research, suppose that we are comparing two kidney transplant centers

which differ greatly with respect to both mean age and the fraction of patients with

diabetes. Patterns in the estimators paralleled those of Setting 3. Estimators based

on indirect standardization tended to differ between these two centers. Only the

ŜRRj performed well, from this perspective.

2.4.5 Test for constant center effect

We explored the performance of the supremum test introduced at the end of

Section 3 to evaluate whether a particular center effect was constant over time. The

values of γj were chosen to be equal across centers. The values of αj were center-

dependent and increased with center index j (j = 1, . . . , 10). The censoring times

were generated from a center-dependent Weibull distribution. The covariate Zi1 was

derived from a Normal distribution with center-dependent means and Zi2 followed

a Bernoulli distribution with center-dependent probabilities. Under this setting, the

center effects are constant over time. For each simulated data set, we obtained 1000

realizations of (R1, . . . , Rn), where Ri ∼ N(0, 1) in order to compute T̂j. Results
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based on sample size nj = 100 are given in Table 4. The proposed sup test appeared

to yield the desired Type I error rate, with empirical significance levels being close

to 0.05.

Table 2.1: Simulation Setting 1: hazards are center independent; censoring and
covariate distributions are center independent; nj=100; t=5; SMRj=Cox SMR given
in (2.2); SMRj(t)=time-dependent SMR given in (2.9); SMR?

j=modification to SMR
given in (2.10); SRRj= standardized rate ratio, given in (2.11); only centers with
even number (j = 2, . . . , 10) are shown in this table)

Center (γj, αj) Measure True Value BIAS ESD ASE CP
j = 2 (0.90, 0.049) SMRj 1 0.006 0.137 0.138 0.96

SMRj(t) 1 0.011 0.161 0.162 0.96
SMR?

j(t) 1 0.011 0.161 0.161 0.95
SRRj(t) 1 -0.003 0.158 0.157 0.93

j = 4 (0.90, 0.049) SMRj 1 0.005 0.142 0.138 0.95
SMRj(t) 1 0.012 0.169 0.162 0.94
SMR?

j(t) 1 0.012 0.170 0.161 0.94
SRRj(t) 1 -0.003 0.167 0.156 0.92

j = 6 (0.90, 0.049) SMRj 1 0.012 0.140 0.139 0.96
SMRj(t) 1 0.023 0.164 0.163 0.95
SMR?

j(t) 1 0.023 0.164 0.162 0.95
SRRj(t) 1 0.010 0.162 0.157 0.92

j = 8 (0.90, 0.049) SMRj 1 -0.001 0.143 0.138 0.95
SMRj(t) 1 0.009 0.168 0.162 0.95
SMR?

j(t) 1 0.009 0.168 0.161 0.94
SRRj(t) 1 -0.006 0.166 0.156 0.92

j = 10 (0.90, 0.049) SMRj 1 0.008 0.140 0.138 0.95
SMRj(t) 1 0.015 0.166 0.162 0.96
SMR?

j(t) 1 0.015 0.166 0.161 0.95
SRRj(t) 1 -0.000 0.163 0.157 0.93

2.5 Application to Kidney Transplant Data

We applied each of the methods considered to investigate the performance of

Canadian transplant centers with respect to post kidney transplant survival. Data
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Table 2.2: Simulation Setting 2 (hazards are center dependent; censoring and co-
variate distributions are center independent; nj=100; t=5; SMRj=Cox SMR given
in (2.2); SMRj(t)=time-dependent SMR given in (2.9); SMR?

j=modification to SMR
given in (2.10); SRRj= standardized rate ratio, given in (2.11); only centers with
even number (j = 2, . . . , 10) are shown in this table)

Center (γj, αj) Measure True Value BIAS ESD ASE CP
j = 2 (0.840, 0.029) SMRj 0.530 0.004 0.096 0.120 0.98

SMRj(t) 0.544 0.005 0.108 0.120 0.98
SMR?

j(t) 0.543 0.004 0.108 0.107 0.94
SRRj(t) 0.546 0.002 0.108 0.106 0.92

j = 4 (0.920, 0.037) SMRj 0.778 0.003 0.120 0.129 0.96
SMRj(t) 0.778 0.002 0.136 0.141 0.96
SMR?

j(t) 0.778 0.001 0.137 0.130 0.94
SRRj(t) 0.775 -0.003 0.135 0.128 0.92

j = 6 (1, 0.045) SMRj 1.085 0.006 0.140 0.140 0.93
SMRj(t) 1.065 0.005 0.164 0.154 0.94
SMR?

j(t) 1.065 0.005 0.164 0.156 0.94
SRRj(t) 1.060 0.000 0.164 0.152 0.92

j = 8 (1.080, 0.054) SMRj 1.469 0.006 0.172 0.155 0.92
SMRj(t) 1.415 0.002 0.184 0.172 0.92
SMR?

j(t) 1.417 0.004 0.185 0.187 0.95
SRRj(t) 1.419 -0.002 0.190 0.181 0.91

j = 10 (1.160, 0.062) SMRj 1.875 -0.001 0.202 0.174 0.89
SMRj(t) 1.794 -0.001 0.215 0.174 0.92
SMR?

j(t) 1.799 0.003 0.217 0.219 0.95
SRRj(t) 1.826 -0.006 0.231 0.213 0.91
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Table 2.3: Simulation Setting 3 (center j = 9 and j = 10 have same hazards but
different censoring distributions) and Simulation Setting 4 (center j = 9 and j = 10
have same hazards but different covariate distributions); nj=100; t=5

Setting Measure Center True value Mean ESD
3 SMRj 9 2.111 2.116 0.197

10 1.735 1.747 0.215
SMRj(t) 9 1.777 1.802 0.235

10 1.664 1.679 0.220
SMR?

j(t) 9 1.867 1.894 0.235
10 1.768 1.784 0.234

SRRj(t) 9 1,945 1.944 0.262
10 1.945 1.940 0.308

4 SMRj 9 2.313 2.312 0.232
10 1.960 1.957 0.172

SMRj(t) 9 2.128 2.125 0.253
10 1.896 1.892 0.177

SMR?
j(t) 9 2.102 2.097 0.326

10 1.942 1.940 0.241
SRRj(t) 9 2.118 2.117 0.343

10 2.118 2.112 0.296

Table 2.4: Empirical significance levels (ESL) of supremum-based test for constant
center effect, given in (2.13)

Center (γj, αj) ESL
1 (1, 0.025) 0.050
2 (1, 0.027) 0.060
3 (1, 0.029) 0.055
4 (1, 0.031) 0.042
5 (1, 0.033) 0.059
6 (1, 0.035) 0.058
7 (1, 0.037) 0.053
8 (1, 0.039) 0.074
9 (1, 0.041) 0.044
10 (1, 0.043) 0.050
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were obtained from the Canadian Organ Replacement Register (CORR), which is ad-

ministered by the Canadian Institute for Health Information. CORR is a nation-wide

and population-based organ-failure registry that includes all organ failure programs

in Canada. The study population included patients receiving a kidney transplant

in Canada between 1988 and 1997. Patients were followed from the date of trans-

plantation to the time of graft failure, death or December 31, 1997. Graft failure

was considered to occur when the transplanted kidney ceased to function. Patients

younger than 18 and centers with sizes less than 50 were excluded. The final sample

size was n = 5143 patients from J = 20 different centers. Of this sample, thirty-six

percent of the patients experienced the event of interest (death or graft failure).

Cox regression was employed to investigate the mortality hazards. Adjustment

covariates included age, diagnosis and donor type. Technically, the Cox SMR is

simple to implement because it can be calculated based on martingale residuals.

With an offset statement, the ŜMRj(t) and ŜMR
?

j(t) can also be easily calculated

(e.g., SAS’s PROC PHREG). The directly standardized estimator, ŜRRj(t), was

computed using SAS IML. Center numbers are re-ordered by values of ŜRRj(t) at

t =5 years.

A comparison of the estimators across centers is displayed in Figure 1. The

Cox SMRs for several centers were notably different from the time-dependent SMRs,

which suggests that the center effects were not proportional. Note that the unstrat-

ified and stratified Cox models provided similar coefficients in this example because

the differences in hazard, censoring and covariate distributions among centers were

moderate. Therefore, the time-dependent ŜMRj(t), ŜMR
?

j(t) and ŜRRj(t) were

generally quite similar.

Using the asymptotic normality of the proposed estimators, we constructed the
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point-wise confidence intervals using SAS IML. Center j = 12 had a Cox SMR signif-

icantly larger than 1, while all other estimators for this center were non-significant.

These findings suggest that center j = 12 offered good performance in the early stage

of post-transplant follow-up, and thus, lower mortalities than the national average;

however, poorer performance was observed in the later stages of follow-up. This

trend was clear in Figure 2, in which the ŜRR12(t) and its smoothed counterpart,

S̃RR12(t), are illustrated.

The confidence interval of SMR? for all the centers at t =5 years are depicted

in Figure 3A and compared to the corresponding results from the SRR through

Figure 3B. These figures demonstrate that ŜMR
?

j and ŜRRj were quite similar in

this particular example.

2.6 Discussion

The aim of this study was to evaluate existing semi-parametric regression methods

for comparing center-specific mortality and to propose alternative methods. The

Cox SMR, calculated from an unstratified Cox model, is often used to estimate

center effects. However, relatively little information is currently available in the

literature regarding the assumptions and limitations associated with this method.

Despite its ease of calculation, the Cox SMR does have some drawbacks. First,

if the center-specific hazards cross, the Cox SMR, when calculated at the end of

the follow up time, may fail to detect a difference. Second, the Cox SMR leads

to invalid variance estimation and, hence, confidence intervals and hypothesis tests

which may be inaccurate when the hazard functions are center-dependent. The

first disadvantage can be addressed using a time-dependent version of the SMR.

The second limitation can be remedied by a modified version of the SMR which
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uses the regression parameter estimate from a center-stratified Cox model. Even

with such modifications, estimators based on indirect standardization still converge

to values which depend on center-specific censoring or covariate distributions. The

SRR, directly standardized measure, does not share this drawback. The SRRs for

two given centers will be unequal only because the center-specific mortality hazards

differ, since direct standardization accounts for imbalance with respect to center-

specific covariate and censoring distributions. We have seen, however, that larger

sample sizes are typically required to implement the SRR.

Despite the fact that the SMR from the unstratified Cox model has been widely

used, we do not generally recommend it as method for estimating center effects, given

the afore-listed concerns. The modified SMR (based on a center-stratified Cox model)

is preferred if the goal is to determine whether an individual center has higher or

lower mortality rates than expected. If the goal of the study is to order centers based

on performance, centers cannot be compared through methods based on indirect

standardization (such as the SMR or its proposed modification) because the ordering

of the SMRs across centers may be due to center-specific censoring and covariate

distributions. Finally, for studies with moderate to large center sizes, the proposed

direct standardization estimator SRR shares the SMR’s ease of interpretation but

rectifies its disadvantages, and hence is a more appropriate choice.

Analysis of multi-center studies has been the subject of much discussion. Existing

methods of comparing center-specific mortality, whether based on fixed or random

effect models, measure the average center effect and, thus, rely on the proportional

hazards assumption; an assumption borne out of convenience, and one which will of-

ten fail in practice. A distinguishing feature of the methods we propose in this report

is that center effects are estimated without assuming proportionality with respect to
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center. The time-dependent measures we propose would be preferred in situations

where center-specific hazard functions may cross. An alternative approach to ac-

counting for non-proportional hazards a Cox model with a time-varying regression

coefficient. This approach has drawbacks when applied in studies of center-specific

mortality. For example, the choice of reference center is arbitrary, and different

choices of the reference center may lead to different results. Another limitation is

that the number of time-varying regression coefficients increase as the number of

centers increase, which leads to difficulty in identifying the correct functional form

for the the time-varying aspects. These two weaknesses are remedied by our pro-

posed approaches, which do not require the specification of either a reference center

or form for the time-dependence of center effects.

The material in this report could be extended in several useful directions. Perhaps

most notably, it is often of interest to evaluate center effects in the setting where

Ni(t) counts an event that is recurrent (i.e., may occur multiple times per subject;

e.g., hospitalizations). Although there would be some overlap among the key issues

of concern in the recurrent event setting and those discussed in this report, there are

likely many additional methodologic issues.
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Figure 2.1: Evaluation of J=20 Canadian kidney transplant centers: ŜMRj,

ŜMRj(5), ŜMR
?

j(5), ŜRRj(5), where t represents years post-transplant. Center

numbers are ordered by ŜRRj(5)
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Figure 2.2: Evaluation of center j=12: ŜRRj(t) and its kernel-smoothed counterpart,

S̃RRj(t), where t represents years.
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Figure 2.3: Evaluation of J=20 Canadian kidney transplant centers: Point estimates

and 95% confidence interval of ŜRRj(t) and ŜMR
?

j(t) at t = 5 years. Center numbers

are ordered by ŜRRj(5)

(a) Figure 3A
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CHAPTER III

Evaluating Center-specific Long Term Outcomes

Through Difference in Mean Survival Time

In the context of survival data, the difference in mean lifetime is arguably a more

meaningful measure than the ratio of death rates. Existing methods based on re-

stricted mean lifetime tend to focus on short- and medium-term clinical outcomes.

Such measures may fail to capture the long-term effects that relate to the quality of

follow-up care. Another challenging part of measuring center-specific performance

is that multi-center studies tend to generate heterogeneous samples; e.g., the effect

of certain important covariates can be unequal across centers. In this chapter, we

propose a method that combines a log-normal frailty model and piece-wise exponen-

tial baseline rates to compare the mean survival time across centers. The proposed

methods allow for estimation of mean survival time as opposed to restricted mean

lifetime and, within this context, more robust profiling of long-term center-specific

outcomes. Maximum likelihood based estimation is carried out using a Laplace ap-

proximation for integration. Direct standardization methods are applied to contrast

mean survival time by center. Asymptotic properties of the proposed estimators are

derived. Finite-sample properties are examined through simulation. The methods

developed are then applied to national kidney transplant data.

42
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3.1 Introduction

Survival analysis plays an important role in the analysis of multi-center studies.

Often of particular interest is the determination of which medical centers have signif-

icantly better or significantly worse long term outcomes. For instance, the methods

we propose in this chapter are motivated by the need to profile center-specific long-

term kidney transplant outcomes in the United States. Kidney transplantation has

a sophisticated and well-established program for center specific outcomes reporting

and quality assurance. The data from this program are used by transplant centers

for quality improvement, by payers and regulators to achieve quality assurance, and

by referring physicians and patients to identify the appropriate center for treatment.

Thus, valid measurements are crucial. In particular, the evaluation of center-specific

outcomes is important to determine how therapy procedures at a given center affect

patient outcomes.

A variety of methodological approaches have been used to evaluate centers. The

most frequently used methods rely on the comparison of observed versus expected

outcomes. The estimator for the difference in mean survival time is one such exam-

ple. Although mean survival time is often of interest, the quantity may not be well

estimated in the presence of censoring, since the estimated survival function need not

drop to zero. To address this concern, a commonly used alternative measure is the

restricted mean lifetime, interpreted as the expected number of time units survived,

out of a pre-determined upper limit L. To incorporate covariates, Karrison (1987)

compared the restricted mean lifetime between two groups using a piecewise expo-

nential model. Zucker (1998) extended Karrison’s approach based on the stratified

Cox model, in which the relationship between groups and hazard are left arbitrary.
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Chen and Tsiatis (2001) proposed estimators for the average causal treatment dif-

ference in restricted mean lifetime between treatment groups, which accounts for the

treatment imbalance in prognostic factors. Zhang and Schaubel (2011) extended the

method to accommodate dependent censoring. Due to the use of the truncation time,

L, restricted mean lifetime is a useful measure for short- and medium-term clinical

outcomes. However, for patients receiving kidney transplantation, the majority of

death and graft failures occur in the long-term (Wolfe et al. 1999). In such cases,

measures for short- and medium-term outcomes may fail to capture the long-term

effects that reveal the overall quality of care provided by the center. For instance, in

our motivating example, the longest term outcome available in existing center-specific

reports is 3−year survival (OPTN/SRTR). The events after 3 years are ignored and

the loss of information corresponding to the later events may be substantial. Long

term center-specific profiling may offer important insight into variations in processes

and intensity of care. Thus, in order to motivate and investigate long-term kidney

transplant outcomes, valid metrics of long term function are needed. With these

concerns, restricted mean lifetime may not be a good substitute and mean survival

time are often of interest.

The purpose of this chapter is to propose a valid method to profile centers with

respect to mean survival time. Within this context, we have developed novel meth-

ods to profile center-specific measures of transplant utility. These methods allow for

a reliable measurement of the expected mean survival time for each transplant, and

within this context robust profiling of long-term center specific outcomes. Consider-

ing such measures may provide new perspectives on the relationship between short-

term outcomes, long-term outcomes, intensity of care, and costs of kidney transplant

care and how all these impact the overall utility of kidney transplantation.
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The remainder of this chapter is organized as follows. The data sources and

study population are described in the next section. In Section 3.3, we summarize

some important issues in the comparison of long-term center-specific outcomes. In

Section 3.4, we describe our proposed model and method to estimate the difference

of mean survival time. Finite-sample properties are examined in Section 3.5 through

simulations. The proposed methods are applied to national kidney transplant data

in Section 3.6. The article concludes with a discussion in Section 3.7, which includes

a comparison with pertinent methods in the existing literature.

3.2 Data sources and study population

Data were obtained from the Scientific Registry of Transplant Recipients (SRTR).

The SRTR data system includes data on all donors, wait-listed candidates, and

transplant recipients in the United States, as submitted by the members of the

Organ Procurement and Transplantation Network (OPTN). The Health Resources

and Services Administration (HRSA), of the U.S. Department of Health and Human

Services, provides oversight to the activities of the OPTN and SRTR contractors.

Included in the analysis were adult patients (≥ 18 years of age at transplant)

who underwent deceased donor kidney transplantation between January 1990 and

December 2008. Adjustment covariates in this study included age, race, gender,

diagnosis, donation after cardiac death (DCD), Expanded Criteria Donor (ECD),

BMI, duration of pre-transplant dialysis, indicator of previous kidney transplant, and

cold ischemic time. Transplant centers with sample size smaller than 10 and patients

who received living donor transplants were eliminated from additional analysis. The

final sample size was n = 146, 248 from J = 282 centers across the United States.

The sample sizes varied considerably across centers and some centers have only a
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few patients. The mean age at transplant was 48 and mean donor age was 36.

The median survival time over the study period was 10.8 years across centers. Graft

failure was considered to occur when the transplanted kidney ceased to function, such

that failure time (recorded in years) was defined as the time from transplantation to

graft failure or death, whichever occurred first.

3.3 Assumed model

In this section, we describe the most important issues in the analysis of long-

term center-specific outcomes for kidney transplant centers. After some requisite

preliminaries, we discuss the model we choose for center-effect measures.

3.3.1 Piece-wise exponential baseline rates

Estimating mean survival time is generally difficult to carry out in the presence

of censoring. We propose a method based on piece-wise exponential baseline rates

with log-normal random effect. The main reason that we select a parametric hazard

model instead of the Cox model is that the later allows for inference only on the

(0, τ ] intervals where τ is the maximum observation time. In the Cox regression, the

baseline hazard function is completely unknown and estimation involving the base-

line may not be stable at later follow-up times when the risk set is small. Therefore,

although the Cox model is a reasonable choice in the context of estimating restricted

mean lifetime, it may not be a suitable choice when mean survival time is of interest.

Another advantage of piecewise exponential baseline rates is that we can make use of

the link between mixed models and the log-normal random effect model. Holford, T.

R. (1980) noted that the piece-wise exponential model was equivalent to a Poisson

log-linear regression model with count either 0 or 1 for each combination of individ-

ual and interval, where the death indicator is the response and the log of exposure
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time enters as an offset. Such connections lead to both computational and theoret-

ical simplification. For instance, existing generalized linear mixed model software,

such as PROC GLIMMIX in SAS, can be applied to estimate the parameters. This

is especially important for our motivating example, since estimating center effects

can be a computationally intense task in nation-wide studies with large numbers of

patients and centers. Finally, the choice of this parametric baseline hazard functions

leads to fully parametric marginal likelihood, such that we can make use of maxi-

mum likelihood techniques to estimate the parameters. In contrast, for Cox models

with log-normal random effects, the asymptotic properties of the penalized partial

likelihood approach are not yet well established. We will discuss the motivation for

using the log-normal distribution for the random effects in the next subsection.

3.3.2 Log-normal random effect

Another important consideration in center effect studies is that the comparison

of center-specific outcomes should be based on risk-adjusted models that account

for center-specific heterogeneity with respect to the types of patients treated. For

such purposes, a fixed effect model with centers as indicator variables is a simple

choice. Despite its ease of implementation, a common limitation for this model is

the assumption of equal coefficients across centers, which is often violated in practice.

For instance, variations may exist among centers in both the baseline risk and the

effectiveness of follow-up therapy. In other words, just as it is reasonable to think

that baseline survival may differ across centers, it is possible that center-specific

covariate effects may also be unequal. Evaluations of such variations are important

to determine how a particular therapy should be administered. This concern can

be addressed using a center-specific fixed effect model. However, this approach is
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attractive only if the sample sizes across centers are large relative to the number of

centers. In our motivating example, as is often seen in nation-wide studies, there are

many centers with relatively few patients. Thus, fixed effect models are not feasible

in our setting because the estimated regression coefficients may be quite imprecise.

For this reason, alternative methods for estimating center effects are needed. An

alternative to a fixed effects approach is the random effect or frailty model, in which

subjects in a center share some common effects, with center-specific effects treated as

a sample from a specific probability distribution. Under this framework, the number

of parameters does not increase with the number of centers. Note that our motivating

example includes not only a large number of centers, but also some centers with small

sample sizes. A random effect approach is appealing from this perspective, since such

an approach is more robust to small center sizes and allows all such centers to be

included in the analysis.

A wide variety of random effect models have been studied in survival analysis.

Among them, the gamma frailty model [Clayton (1978); Clayton and Cuzick (1985)]

and log-normal frailty model [McGilchrist (1993); McGilchrist and Aisbett (1991);

Yamaguchi and Ohashi (1999)] are the most extensively studied approach. In par-

ticular, the log-normal random effect model is applied in our study, the reason being

that interactions between covariate and random effects can be readily implemented.

For instance, in our motivating example, we have interest in both the center-specific

follow-up therapy effects as well as the baseline risks.

3.4 Estimation

First, we provide the notation to be used in this article. Let Ti and Ci represent

the survival and censoring time, respectively, for the i’th patient, where i = 1, ..., n.



49

Observation times are denoted by Xi = Ti∧Ci, where a∧b = min{a, b}. Correspond-

ingly, we set the observed death indicators to ∆i = I(Ti ≤ Ci). Let J be the number

of centers, with the total number of subjects denoted by n =
∑J

j=1 nj, where nj is

the number of subjects in center j. Each subject is characterized by a time-constant

covariate vector, Zi. Correspondingly, let β be the fixed effect coefficient vector for

Zi. Let Gi denote the center for subject i. Let ai(t) be a time-dependent covariate

for attained-age; βa is the fixed effect coefficient for attained-age. Let b = (b0, b1) be

an vector of random effect, where b0 = (b01, · · ·, b0J) and b1 = (b11, · · ·, b1J) are vectors

of random intercepts and random slopes, respectively, assumed to follow independent

normal distributions with b0 ∼ N(0J×1, θ0IJ×J) and b1 ∼ N(0J×1, θ1IJ×J).

Our proposed estimation procedure involves two stages. In Stage 1, we obtain

parameter estimates under the assumed parametric model, then compute subject-

and center-specific fitted survival functions. In Stage 2, we estimate center-specific

mean survival time by averaging across the marginal covariate distribution using

fitted values based on parameters obtained from Stage 1. Details are discussed in

the following subsections.

3.4.1 Stage 1: Model and parameter estimation

To approximate the baseline hazard by piecewise constants, we divide the ob-

served time period into K follow-up time intervals with cutpoints 0 = t0 < t1 <

· · · < tK = ∞. Within each of the intervals, the hazard function, λ0(t), is assumed

to be:

λ0(t) = λk, t ∈ Ωk ≡ [tk−1, tk), k = 1, · · ·, K

Thus, the baseline hazard is constant within each interval, but is allowed to vary

across intervals. The choice of intervals is arbitrary. However, as shown by Lawless
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(1998), models using a piecewise constant baseline hazard with suitable intervals

often yield accurate estimates for fixed effect and frailty parameters.

One advantage for piecewise exponential model is that it can easily accommodate

time-varying covariates provided that they change values only at interval boundaries.

In our study, the only time-varying covariates is attained-age. To accommodate the

change of attained-age, we further split each of the time interval Ωk into multiple

subintervals Ωkq, where q = 1, · · ·, kq and kq is the number of subintervals within

Ωk. The values of attained-age is then defined as the age at the left boundary of

each subinterval. The boundaries of subintervals are chosen as either the cut points

for original interval or the time scales corresponding to an integer value of attained-

age. Note that by this way each subinterval get its own measure of exposure and

its own death indicator, but all subintervals would be tagged as belonging to the

same interval, so they would get the same baseline hazard. This procedure may be

best explained by way of example. For individual i with age-at-transplant equal to

18.3 and with 3 year follow-up time, we can split the particular intervals [0, 1), and

[1, 3) hazard functions into subinterval [0, 0.7), [0.7, 1), [1, 1.7), [1.7, 2.7), [1.7, 2.7) and

[2.7, 3), and the corresponding values of attained-age are recorded as step functions:

ai(t) = 18.3, 19, 19.3, 20, 21 and 21.3 for each sub-interval.

The assumed proportional hazards frailty model is formulated as

λij(t) = λk exp {Z ′
iβ + b0j + ai(t)(βa + b1j)} ,(3.1)

for t ∈ Ωk, where λij(t) ≡ λ(t|Zi, ai(t), Gi = j, bj) denotes the hazard function for

the subject i in time interval k conditional on Zi, ai(t), Gi = j, and bj = (b0j, b1j).

Based on the assumed model, λij(t) is a piece-wise function of follow-up, t. Note

that the attained-age are step functions over time: ai(t) = aikq for t ∈ Ωkq.
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The main reason we consider a time-dependent age (i.e. attained age) instead

of time-constant age (age at transplant) is that age is one of the most important

risk factors for long-term studies, and separating contributions of attained age and

follow-up time is important to determine how therapy procedures affect patient out-

comes. This is particularly relevant in long-term follow-up studies where there may

be considerable changes in the mortality pattern. For example, in the context of

our motivating example, preliminary analysis indicated that the trends associated

with follow-up time diminish considerably as follow-up time increases. In contrast,

the effect of attained age plays a more important role as age increases (details will

be provided in Section 3.5). Since one of the concepts motivating our work is that

trends over time may differ by center, it then makes sense to allow for the effect

of attained age to differ by center. We therefore allow attained age, ai(t), to be

associated with both fixed effect and random effects. Finally, it should be noted

that the variable ai(t), although inherently time-dependent, is a fixed-path covariate

and, hence, an external time-dependent covariate (Kalbfleisch and Prentice 2002). If

internal covariates were being considered (i.e. Zi(t) 6= Zi, Zi(t) measurable only if

Ti ≥ t), then the methods we propose in this report do not apply.

Under independent and noninformative censoring, Holford (1980) and Laird and

Oliver (1981), noted that the piece-wise exponential model is equivalent to a certain

Poisson regression model. Moreover, the conditional frailty likelihood of center j (i.e.,

conditional on bj) has been shown to be proportional to the conditional likelihood of

a Poisson regression model with count either 0 or 1 by Andersen et al. (1989). As a

consequence, the conditional likelihood is given by
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L(λ1, · · ·, λK , β; bj) ∝ Π
nj

i=1Π
K
k=1Π

Kq

q=1 {λktikq exp(X
′
iβ + b0j + aikq(βa + b1j))}∆ikl

exp {−λktikq exp(X
′
iβ + b0j + aikq(βa + b1j))} ,

where tikq is the total time for subject i in subinterval Ωkq and ∆ikq is the event indi-

cator for subject i in subinterval Ωkq. Assuming that the J centers are independent,

the conditional likelihood across all the centers is given by

L(λ1, · · ·, λK , β, b) =
J∏

j=1

L(λ1, · · ·, λK , β, bj).

Then, the marginal likelihood has the form

L(λ1, · · ·, λK , β, θ) =
J∏

j=1

∫
exp{g(λ1, · · ·, λK , β, θ)}dbj,

where

g(λ1, · · ·, λK , β, θ) = `(λ1, · · ·, λK , β, bj)− 1

2
b′jD

−1(θ)bj − log

{
1√

(2π)d|D(θ)|

}
.

The objective function for numerical minimization is twice the negative of the corre-

sponding log likelihood approximation. For given θ̂, the estimating equations come

from setting the derivative of `(λ1, · · ·, λK , β, θ̂), with respect to the parameters

(λ1, · · ·, λK , β), equals zero. One difficulty is that the marginal likelihood involves

high dimensional integrals without closed forms. To simplify the computations, we

use a Laplace approximation to approximate each such integral with a function that

has a closed form. When the center-specific sample sizes are large, the Laplace

approximation to the marginal log likelihood is as follows,

J∏
j=1

{
njg(λ1, · · ·, λK , β, θ̂) +

R

2
log(2π)− 1

2
log | − njg

′′(λ1, · · ·, λK , β, θ̂)|
}
,
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where R is the dimension of random effect and

g′′(β, λ1, · · ·, λK , θ̂) =
∂2g(β, λ1, · · ·, λK , θ)

∂θ∂θ′

∣∣∣∣
θ̂

.

To complete the singly iterative estimation process, θ satisfies the first-order condi-

tion:

∂g(β, λ1, · · ·, λK , θ)

∂θ
= 0,

for given values of β and λ (Vonesh et al. 2002). Further derivatives can be found in

Feng et al. (2005). Vonesh et al. (1996) show that the maximum likelihood estimator

based on the Laplace approximation is a consistent estimator with order rate of con-

vergence depending on both the number of centers and the number of subjects within

centers. The influences of J and nj on our proposed estimators will be evaluated in

Section 3.

3.4.2 Stage 2: Difference in mean survival time

It is well known that patient characteristics may vary significantly across centers.

These factors can have a substantial impact on the expected center-specific survival

outcomes. Accurate estimation of center effects must account for potential covariate

imbalances across centers. To address this concern, we use a technique based on

direct standardization. Specifically, we define the difference in mean survival time

corresponding to the center j as

δj = µj − µ.

where µj = E[E(Ti|Zi, Gi = j)], with the outer expectation taken with respect to

the marginal distribution of Zi, and µ = E(Ti). An estimator for δj is given by

δ̂j = µ̂j − µ̂.
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Note that µj has the interpretation of mean survival time for the population, under

the hypothetical scenario wherein all subjects were treated in center j. We estimate

µj through

µ̂j = n−1

n∑
i=1

∫ ∞

0

Ŝij(u)du,

where Sij(u) = P (Ti > u|Zi, Gi = j) and

Ŝij(u) = exp

{
−

K∑

k=1

kq∑
q=1

λ̂k ∗ (tikq ∧ u) ∗ exp{Z ′
iβ̂ + b̂0j + aikq(β̂a + b̂1j)}

}
.

In contrast, we estimate µ using

µ̂ = n−1

J∑

`=1

n∑̀
i=1

∫ ∞

0

Ŝi`(u)du,

which has the interpretation of estimated mean survival time for the population,

where Ŝi`(u) is the estimated survival for a subject i in center `. Note that based on

the definition of mean survival time, the integral of survival function should go to

∞. However, in practice, it is more reasonable to calculate this integral until patient

achieve certain age. We will provide more detail in Section 5 about how we choose

this upper limit for our analysis. δ̂j = µ̂j − µ̂ amounts to direct standardization,

since the averaging in each of [δ1, · · ·, δJ ] is with respect to the marginal covariate

distribution. Therefore, this approach accounts for potential covariate imbalances

across centers and allows for valid comparison between centers.

3.4.3 Variance estimation

The proposed Difference of Mean Survival Time, δ̂j = f(β̂, b̂), a function of fixed

effects and random effects. Therefore, the Delta method can be used to obtain a

variance estimator for δ̂j based on the variance-covariance matrix for fixed effects

and random effects [β̂, b̂]′. Specifically, let the matrix, C = V̂ ([β̂, b̂]′), be the variance



55

matrix for [β̂, b̂]′, and let M be the vector of derivative of Difference of Mean Survival

Time with respect to [β̂, b̂]′. Using Delta method, M ′CM = V̂ (δ̂j), is the desired

variance estimator for δ̂j.

3.4.4 Implementation of proposed methods

To fit the model and obtain the parameter estimators in Stage 1, we implement

the Laplace approximation using the SAS procedure GLIMMIX, with the option

METHOD=LAPLACE for the required integral approximation. The mean survival

time in Stage 2 is a numerical integration of scalar functions in one dimension over

connected finite intervals. We programmed this estimation process using SAS func-

tion QUAD. The QUAD call is an adaptive global-type integrator that produces a

quick, rough estimate of the integration result and then refines the estimate until

achieving the prescribed accuracy.

With some simple data manipulations, the proposed variance estimators can be

obtained from the SAS procedure GLIMMIX, which forms the approximation pre-

diction variance matrix, C, for [β̂, b̂]′. However, this variance covariance matrix,

however, cannot be outputted directly. To solve this problem, we make use of the

ESTIMATE statement and propose the following estimation procedure. With a

constant-specifications 〈 fixed effect values ...〉 〈 | random effect values ...〉, the ESTI-

MATE statement of SAS GLIMMIX procedure constructs the vector M ′ = [M ′
1M

′
2],

where M1 is a vector of derivative of Difference in Mean Survival Time with respect

to the fixed effect parameters, β, and M1 is a vector of derivative of Difference in

Mean Survival Time with respect to the G-side random effect parameters, b. Then

the M ′CM output from the ESTIMATE statement is the desired variance estimator

for δ̂j.
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3.5 Simulation Study

The finite-sample properties of the estimators described in previous section were

evaluated through a series of simulation studies. We considered J = 10, J = 25, and

J = 50 centers. Death times were generated from the piecewise exponential model.

To mimic the motivating example, we divided the whole follow-up period into the

following intervals: [0, 1], (1, 2], (2, 3], (3, 5], (5, 10], (10,∞]. For the kth interval, the

hazard function for subject i in center j is given by formula (3.1), where Xi followed

a Bernoulli distribution. We set β0 = −0.1; ai(t) = a0i + t, where a0i came from

a Normal distribution with constant variance and center-dependent means, and t is

the follow-up time. Random effects b0j and b1j (j = 1, · · ·J) were generated from

independent Normal distributions N(0, θ0) and N(0, θ1), respectively, with θ0 = 0.25

and θ1 = 0.005. We varied the sample size for each center as nj = 25, 50, 100.

The censoring percentages were approximately 20%. Each data configuration was

replicated 500 times. We used 95% prediction interval in all simulations. We choose

the same upper limit as that in Section 5 to calculate the mean survival time for

each observation (until the age 85).

In Table 1, we list the results for fixed effect and random effect parameters. The

fixed effect parameter estimators were sufficiently well-behaved, in the sense that

the bias was quite small, and the average asymptotic standard errors (ASE) were

generally close to the empirical standard deviations (ESD), while the empirical cov-

erage probabilities (CP) were generally consistent with the nominal value 0.95. The

performance of the random effect parameters depended on sample size. If the sample

size was small, we failed to obtain the random effect parameters in certain number of

replicates, and hence, the corresponding CP is poor. It is worth noting that, for such
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replicates, even the random effect variance estimators could not be computed, we

still obtained the point estimators b0j and b1j for j = 1, · · ·J , which lead to reliable

estimation for our proposed measures (Table 2). We reported the performance of

proposed estimators in Table 2. The ASE estimators for were sufficiently accurate

and the CP were generally consistent with the nominal value 0.95. The results for

setting with J = 10 or J = 25 centers are not shown. In general, for fixed J , as nj

increase, the CP increase. On the other hand, for fixed nj, as J increase, the CP also

increases. Overall, the simulation results indicate that the method is performing in

a reasonable manner.

3.6 Application to Kidney Transplant Data

To separately examine the effects of follow-up time and attained age, we first

fitted two preliminary piece-wise exponential models. In the first model, the effect

of attained age was approximated as piece-wise linear (Figure 1A). In the second

model, attained age was treated as time axis and follow-up time was considered as

categorical covariate. The corresponding effect of follow-up time was shown in Figure

1B, which suggests that the hazards associated with follow-up stabilized as follow-

up time increased. This finding motived us to assume that the hazard functions

remains to be constant after the maximum follow-up time. Note that this choice

evolves extrapolation outside of oberservation range and is an arbitrary choice for

our particular dataset. In a more general situation, we may use linear function for

extrapolation. Another preliminary analysis we performed is to choose a reasonable

upper limit for calculating the mean survival time. The maximum observed value

for attained-age in our data is 96. However, analysis based on person-year indicated

that only a few observations had attained age larger than 85 (< 0.005%). Therefore,

we calculate the mean survival time for each patient until they achieve age 85.

In the next step, we performed a log-normal frailty model with piece-wise expo-

nential baseline rate. Specifically, we choose 6 intervals for time. A random effect
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Table 3.1: Simulation results: Performance of fixed effect and random effect param-
eters.

J , nj Parameters TRUE BIAS ESD ASE CP

J = 50, nj = 100 λ0 0.160 0.002 0.020 0.019 0.94
λ1 0.130 0.002 0.017 0.016 0.95
λ2 0.100 0.001 0.013 0.012 0.93
λ3 0.090 0.001 0.012 0.011 0.93
λ5 0.085 0.001 0.011 0.011 0.93
λ10 0.105 0.002 0.015 0.014 0.93
β1 0.100 -0.001 0.019 0.018 0.94
β2 -0.100 0.001 0.032 0.033 0.97
θ1 0.250 -0.02 0.079 0.078 0.92
θ2 0.005 -0.000 0.002 0.002 0.95

J = 50, nj = 50 λ0 0.160 0.003 0.023 0.024 0.95
λ1 0.130 0.002 0.020 0.020 0.94
λ2 0.100 0.001 0.013 0.012 0.93
λ3 0.090 0.002 0.014 0.014 0.96
λ5 0.085 0.002 0.013 0.014 0.96
λ10 0.105 0.003 0.018 0.018 0.95
β1 0.100 -0.000 0.023 0.024 0.96
β2 -0.100 -0.000 0.049 0.047 0.96
θ1 0.250 0.002 0.097 0.097 0.94
θ2 0.005 -0.002 0.003 0.003 0.95

J = 50, nj = 25 λ0 0.160 0.004 0.032 0.032 0.94
λ1 0.130 0.003 0.028 0.027 0.93
λ2 0.100 0.002 0.021 0.022 0.95
λ3 0.090 0.003 0.020 0.020 0.93
λ5 0.085 0.002 0.019 0.019 0.93
λ10 0.105 0.003 0.026 0.025 0.93
β1 0.100 0.000 0.033 0.033 0.97
β2 -0.100 -0.000 0.067 0.068 0.96
θ1 0.250 -0.005 0.121 0.124 0.92
θ2 0.005 0.000 0.004 0.004 0.88

J = 50, nj = 10 λ0 0.160 0.009 0.054 0.052 0.94
λ1 0.130 0.007 0.045 0.044 0.94
λ2 0.100 0.005 0.036 0.035 0.95
λ3 0.090 0.005 0.032 0.031 0.94
λ5 0.085 0.004 0.032 0.030 0.93
λ10 0.105 0.010 0.044 0.043 0.94
β1 0.100 0.000 0.053 0.053 0.95
β2 -0.100 0.004 0.113 0.111 0.95
θ1 0.212 -0.048 0.151 0.187 0.86
θ2 0.005 0.001 0.005 0.007 0.69



59

Table 3.2: Simulation results: Performance of center effect estimators; δ = average
of δj over j = 1 · · · J .

J , nj Parameters TRUE BIAS ESD ASE CP

J = 50, nj = 100 δ1 -5.273 -0.108 0.212 0.234 0.93
δ5 -4.180 0.074 0.296 0.322 0.98
δ15 -2.533 0.146 0.473 0.439 0.93
δ25 -0.819 0.020 0.613 0.565 0.93
δ35 1.219 -0.049 0.782 0.737 0.94
δ45 5.046 -0.164 1.112 1.045 0.94
δ50 11.284 -0.252 1.396 1.372 0.94

δ 0.000 -0.000 0.740 0.636 0.94

J = 50, nj = 50 δ1 -5.225 -0.084 0.330 0.333 0.94
δ5 -4.110 0.081 0.426 0.455 0.97
δ15 -2.500 0.168 0.616 0.615 0.96
δ25 -0.866 0.088 0.786 0.784 0.96
δ35 1.193 -0.052 1.099 1.012 0.93
δ45 5.021 -0.255 1.456 1.422 0.96
δ50 11.025 -0.261 1.806 1.862 0.96

δ -0.003 0.003 1.006 0.878 0.95

J = 50, nj = 25 δ1 -5.168 -0.036 0.449 0.482 0.96
δ5 -4.040 0.131 0.590 0.649 0.98
δ15 -2.479 0.239 0.872 0.859 0.95
δ25 -0.797 0.035 1.164 1.069 0.94
δ35 1.232 -0.104 1.481 1.373 0.93
δ45 4.485 -0.257 1.974 1.892 0.94
δ50 10.510 -0.258 2.535 2.463 0.96

δ 0.000 -0.001 1.384 1.197 0.94

J = 50, nj = 10 δ1 -5.273 -0.108 0.212 0.234 0.93
δ5 -3.854 0.315 1.034 1.030 0.95
δ15 -2.533 0.146 0.473 0.439 0.93
δ25 -0.643 -0.022 1.786 1.533 0.93
δ35 1.219 -0.049 0.782 0.737 0.94
δ45 4.438 -0.308 2.711 2.550 0.94
δ50 11.284 -0.252 1.396 1.372 0.94

δ 0.013 -0.013 2.010 1.692 0.93
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for intercept was chosen for the heterogeneity in baseline risk, and a random effect

for attained age was estimated for the heterogeneous effect of age at transplant and

follow up time. We then estimate the mean survival time across centers. We also

constructed the standard error estimator for the difference of mean survival time

based on Delta method described in section 2.4.

We ordered centers based on difference in mean survival time and we provided

the plots of confidence intervals in Figure 2. Centers with confidence intervals higher

than 0 were identified as significantly better than the national average, while centers

with confidence intervals lower than 0 were identified as significantly worse than the

national average. A total of 50 centers had mean survival time significantly lower

than the expected, while 29 centers were significantly above the average.

3.7 Discussion

Survival analysis plays an important role in the analysis of multi-center studies.

Often of particular interest is the determination of which medical centers have signif-

icantly better or significantly worse long term outcomes. For instance, the methods

we propose in this report are motivated by the need to profile center-specific long-

term kidney transplant outcomes in the United States. Existing measures of center-

specific performance tend to focus on short- and medium-term outcomes. However,

long term center-specific comparisons are often of great interest. In this report, we

propose methods which combine a log-normal frailty model and piece-wise expo-

nential baseline hazard to compare mean survival time across centers. The Laplace

approximation for integration is applied in order to obtain maximum likelihood es-

timations in a computationally tractable fashion. Our proposed methods can be

reliably used for multi-center studies with a large number of centers, even some cen-

ters have small sample sizes. The distinguishing feature of our methods is that they

allow for prediction of the overall mean survival time for each center and, within this

context, consistently profiling of long-term center-specific outcomes.

The Cox model has been widely used in survival analysis setting. In this report,
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we did not use this model because the mean survival time may not be well estimated,

due to the fact that the survival function may not drop to zero in the presence of cen-

soring. In contrast, we predict mean survival time using parametric baseline hazard

functions. For simplicity, we suggest to use a pre-specified number of time intervals

for the piece-wise exponential model. An alternative method would be to choose an

optimized grid points based on tree methods (Demarqui et al. 2008; Huang et al.

1998). This approach is not applied in this report because the motivating data set

is extremely large, meaning that numerical calculation would be very cumbersome.

Random effect models have received a lot of attention for the analysis of multi-

center survival data. One of the main problems in the application of random effect

models to real data is the limited availability of standard software. Thus, of special

interest in this report is how existing standard software and well established large-

sample theory can be applied to real data. In this study, we take advantage of the

connection between the log-normal frailty model and the generalized linear mixed

model. The proposed estimators and their corresponding variance estimators can

be easily computed through the SAS procedure GLIMMIX. The major difference

between our proposed method compared to existing applications of frailty models is

that previous studies mainly focus on the appropriate evaluation of main effect (e.g.,

treatment effect) in the presence of center effects. In other words, the main interest

of these studies is to remove the potential confounding effect of centers from the

analysis. There are not so many studies which estimate the center effects themselves

using random effects. Although random effect estimators of baseline risk and their

exponential transformations have been used to describe the relative center effects,

these estimator are intuitively difficult to understand for non-statisticians. More-

over, in addition to the variation in the baseline risk, there may also exist variation

in some important covariates across centers. Such variation should also be taken into

consideration to accurately estimate center effects. For instance, in our motivating

example, centers may use a variety of therapy procedures. Therefore, it is desirable

to determine how the collection of therapy procedure affects patient outcomes. To
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our knowledge, how to make use of the combination of these multivariate random

effect estimators to evaluate center effects has not been addressed by previous stud-

ies. In this report, we illustrated both theoretically and through simulations that

log-normal frailty model with piece-wise exponential baseline rates provides a simple

and interpretable summaries to evaluate center effects directly. Furthermore, since a

large number of centers will be examined, some centers may be identified as outlier

centers by chance alone, due to multiple-testing issues. With respect to this concern,

random effect model has advantages comparing to fixed effect models since the pre-

vious methods are shrunken estimator closer to the mean level and, thus, are more

conservative and less likely to classify centers as outliers.

Finally, it is worth noting that another technique to compare the mean survival

time across center is the indirect standardization method, in which the difference

of the mean survival time for each center is defined as the observed minus the ex-

pected mean survival time, where the expected mean survival time for a center is

calculated assuming the subjects from this center have the same hazards and center-

specific slopes as the average. This estimator averages with respect to the covariate

distribution within each center and hence, it is sensitive to center-specific covariate

distributions. Given this property, indirect standardization is a useful tool to quan-

tify center performance relative to the national average. However, if the goal is to

order centers based on performance, direct standardization is a more appropriate

measure.

One of the key issues with the piece-wise exponential model involves determining

the appropriate number of time intervals to be used. The number of time intervals

is something that must be determined by the analyst. Although any number of time

periods can be chosen, it is important to recognize that there is always a tradeoff to

be made. If one chooses a large number of time periods, then we will get a better

approximation of the unknown baseline hazard but we will have to estimate a larger

number of coefficients and this may cause problems. Alternatively, if one chooses

a small number of time periods, then there will be fewer estimation problems but
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the approximation of the baseline hazard will be worse. A key requirement when

choosing the number of time periods is that there should be units that fail within

each of the different time intervals. If this is not the case, then one will not obtain

sensible estimates.
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Figure 3.1: Confidence Interval Plots.
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CHAPTER IV

Semi-parametric Methods for Relative Risk

Center Effect Measures

Although multiplicative hazard models are used most frequently in biomedical

studies, additive hazard models are available and may be preferable in certain set-

tings. In the third chapter, we develop methods for evaluating center-specific survival

using a center-stratified additive hazards model. We propose to estimate the relative

center effects by the ratio of baseline survival functions. The proposed measure is

a semiparametric generalization of the relative risk, which is often used in clinical

studies. An attractive property of our proposed method is that the ratio of survival

functions is invariant to the adjustment covariate. That is, the ratio of baseline sur-

vival functions represents the contrast between subject i at center j versus subject i at

the hypothetical center with baseline hazard function equal to the national average;

where subject i can have any covariate value. We derive the asymptotic properties of

the proposed estimators, and assess finite-sample characteristics through simulation.

The proposed methods will be applied to national kidney transplant data.

4.1 Introduction

In medical studies, when time to a failure event is of interest, the effect of the

groups is often estimated by comparing the survival functions across groups. The

survival function is more interpretable to non-statisticians than other measures, such

as hazard function. In the setting of clinical trials, KaplanMeier estimator is a com-

65
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monly used measure to compare survival functions across groups. In observation

studies, the groups effect represents the impact of the factors that are center specific

and are not accounted for the adjustment covariates. Therefore, an accurate com-

parison of groups needs to adequately account for the imbalance of risk factors across

groups. It is well known that patient characteristics may vary considerably across

groups. The inclusion of some high-risk patients at a given group can make that

group’s survival appear sub-standard. Thus, valid measures of group effects need to

adjust for the covariate imbalance across groups.

The motivating example for this study is to evaluate the center-specific survival

outcomes of kidney transplant centers. The appropriate analysis of center-specific

outcome has been a subject of much discussion. Substantial variations may exist

in patient survival among transplant centers. Centers whose observed mortality is

significantly higher than expected are highlighted and face both public and pro-

fessional scrutiny regarding the potential reasons for their deviation from expected

performance. Accurate measures of center effect are needed.

There are mainly two types of models for studying center effects. The methods

commonly used to evaluate centers are based on relative hazard models (e.g. Cox

(1972, 1975)), for which the covariate effects are multiplicative. An alternative ap-

proach is the additive hazard model, in which covariate effects are expressed through

hazard differences. Previous studies(e.g., Breslow and Day (1980); Cox and Oakes

(1984); O’Neill (1986)) have shown that use of the proportional hazards model can

result in serious bias when the additive hazards model is correct.

Additive hazards models have been studied by several authors. For instance,

Aalen (1980, 1989) proposed nonparametric methods for additive hazard models. Lin

and Ying (1994, 1995) proposed a semiparametric additive model and provided an

explicit parameter estimators. Extensions of the additive hazards model which allow

time-varying coefficients have been studied by several authors. Huffer and Mckeague

(1991) studied weighted least squares estimation for a nonparametric additive risk

model. McKeague and Sasieni (1994) developed a partly parametric additive hazards
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model that includes both time-dependent and constant regression coefficients. Other

extensions include marginal additive hazard models for multivariate survival data

(Yin and Jianwen Cai 2004) and additive transformation models for alternative link

function other than linear (Zeng and Cai 2010).

Lin and Ying (1994)’s models have received a lot of attention for the analysis of

survival data. One reason for the popularity is that it is computational convenience

and it is a natural analogue of the Cox model. Based on the Lin and Ying (1994)

model, one approach that can be used to estimate center effects is to code center

using indicator variables. This simple approach has drawbacks when applied in

studies of center-specific mortality. For example, the choice of reference center is

arbitrary. Different choice of the reference center may had a strong impact on the

results, which would of course lead to controversy. Another limitation is that this

simple fixed center effect models assume that the center effects are constant over time,

which is often violated in practice. If the number of centers is small, we may apply

the extensions of the additive hazards model with time-varying coefficients. However,

the number of centers is often very large for multi-centers studies. The number of

regression coefficients increases as the number of centers increases, in violation of

the regularity conditions upon which the asymptotic theory for the model is based.

Moreover, it is difficult to estimate a large number of time-dependent parameters

simultaneously. To address these limitations, we propose to estimate center effects

through a stratified additive hazard model.

The remainder of this chapter is organized as follows. The proposed model and

method are described in the next section. Asymptotic properties are derived in

Section 3. Finite-sample properties are examined in Section 4 through simulation

studies. Section 5 applies the proposed methods to kidney transplant data from

a national organ failure registry. We provide some discussion of the proposed and

related methods in Section 6.
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4.2 Proposed methods

First, we provide the notation to be used in this article. Let Ti and Ci represent

the survival and censoring time, respectively, for the i’th patient, where i = 1, ..., n.

Let J be the number of centers. The total number of subjects is denoted by n =
∑J

j=1 nj, where nj is the number of subjects in center j. Observation times are

denoted by Xi = Ti ∧ Ci, with at-risk indicator Yi(t) = I(Xi ≥ t), where a ∧ b =

min{a, b} and I(A) is an indicator function taking the value 1 when condition A

holds and 0 otherwise. The observed death indicators are denoted by ∆i = I(Ti ≤
Ci), and the death counting process is defined as Ni(t) = ∆iI(Xi ≤ t). Let Gi

denote the center for subject i and set Gij = I(Gi = j). Correspondingly, we set

Yij(t) = Yi(t)Gij and Nij(t) = Ni(t)Gij. The observed data consist of n independent

vectors, (Xi,∆i, Gi, Zi), where Zi is a vector of adjustment covariates.

4.2.1 Excess mortality model

Andersen and Væth (1989) studied an additive hazard (excess mortality) model,

assuming the death intensity for individual i at center j, λij(t), is the sum of a known

standard mortality hazard, λi(t), and an unknown center-specific component, θj(t),

λij(t) = λi(t) + θj(t).

It is useful to generalize this model from two directions. First, it would be

desirable to relax the assumption with a known covariate-specific standard mortality.

For instance, if the standard mortality is treated as fixed rather than random, the

variation of the standard mortality is not taken into consideration. Second, patient

characteristics may vary considerably across centers. The inclusion of some high-risk

patients in a center can make its survival appear poor. Therefore, a fair comparison

of center effect needs to adequately account for the imbalance of risk factors among

centers. To address these concerns, we propose a stratified additive hazard model.
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4.2.2 Stratified additive hazards model

The stratified additive hazard model can be formulated as

(4.1) λij(t) ≡ λ(t|Zi, Gi = j) = λ0j(t) + βTZi,

where λ0j(t) is an unspecified center-specific baseline hazard function. Note that

in formula (4.1), λ0j(t) is an unspecified center-specific baseline hazard function.

Therefore, the model assumes only that the covariate effects are additive, but does

not require any functional form for the relationship among the hazard functions

across censers. If the baseline component is also additive,

(4.2) λ0j(t) = λ0(t) + θj(t),

where the baseline hazard for center j, is the sum of unknown center common baseline

and an unknown center-specific component λ0j(t) = λ0(t), and an unknown center-

specific component, θj(t). Integrating both sides of the formula (4.2), we obtain

(4.3) Λ0j(t) = Λ0(t) + Θj(t),

where Λ0(t) =
∫ t

0
λ0(u)du and Θj(t) =

∫ t

0
θj(u)du.

4.2.3 Center effect measure

We then evaluate center effects using the ratio of baseline survival function ψ0 =

[ψ10, · · ·, ψJ0]
T , where

(4.4) ψ0j(t) =
S0j(t)

S0(t)
,

where S0j(t) = exp{−Λ0j(t)} is the baseline survival function for center j, and S0(t) is

the baseline survival function for a hypothetical center with baseline survival function

equal to the average across all centers:

(4.5) S0(t) =
J∑

`=1

p`S0`(t),

where pl = P (Gi = `) is the probability that subject i belongs to censer j. A simple

estimator for pl can be defined as p̂l = n`/n.
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One advantage for our proposed method is that, given the additive hazard struc-

ture, the ratio of survival function, for a particular subject reduces to the ratio of

baseline survival functions. For instance, we can define Sij(t) = P (Ti > t|Zi, Gi =

j) = exp{−Λ0j(t)−βTZit}, the survival function for subject i in center j; and define

Si0(t) = P (Ti > t|Zi, Gi = G0) =
∑J

`=1 p` exp{−Λ0`(t)− βTZit)}, to be the survival

function for subject i if this subject is treated at a hypothetical center, G0, with

baseline survival function equal to the average across all centers. Then, considering

the ratio of baseline survival functions

(4.6) ψij(t) =
Sij(t)

Si0(t)
,

terms involving subject-specific covariates will cancel out in the ratio. Hence, ψij(t) =

ψ0j(t), the ratio of survival function for a particular subject reduces to the ratio of

baseline survival functions at the center level. In this light, the proposed measure

has an interpretation at the individual level, which may be desirable for patients and

perhaps investigators.

Consider formula (4.3),

ψ0j(t) =
exp{−Λ0(t)−Θj(t)}∑J

`=1 p` exp{−Λ0(t)−Θ`(t)}
,

the average baseline survival function defined in formula (4.5), lead to the following

constrain for relative center effects
J∑

`=1

p` exp{−Θ`(t)} = 1.

Thus, the proposed estimator and the relative center effect has the relationship:

ψ0j(t) = exp{−Θj(t)}

Note that the excess cumulative hazard model can be transformed to relative

survival function model. In other words, model (4.3) could be represented as

(4.7) S0j(t) = S0(t)ρj(t),

where ρj(t) = exp{−Θj(t)}. Therefore, ψj(t) is also an estimator for the relative

survival function ρj(t). We then have the following individual level relationship:

(4.8) Sij(t) = Si0(t)ρj(t).
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4.2.4 Estimation of center effects

Extending Lin and Ying (1994) estimation approach, we propose the following

estimation function to estimate β,

(4.9) U(β) =
J∑

j=1

n∑
i=1

∫ τ

0

{Zi − Zj}{dNij(t)− Yij(t)β
TZidt},

where

Zj =

∑n
i=1 Yij(t)Zi∑n
i=1 Yij(t)

The resulting estimator for β takes the form

β̂ = Â−1

J∑
j=1

n∑
i=1

∫ τ

0

{Zi − Zj}dNij(t),

where

Â =
1

n

[
J∑

j=1

n∑
i=1

∫ τ

0

Yij(t){Zi − Zj}⊗2dt

]

In view of the counting process for each center,

Nij(t) = Mij(t) +

∫ t

0

Yij(u){dΛ0j(u) + βTZidt},

it is natural to estimate Λ0j(t) by

(4.10) Λ̂0j(t) =

∫ t

0

∑n
i=1{dNij(u)− Yij(u)β̂

TZidu}∑n
i=1 Yij(u)

.

Finally, to make sure that the cumulative hazard Λ̂0j(t) is monotone in t, a

modification similar to Lin and Ying (1994) can be defined as

Λ̂∗
0j(t) = max

s≤t
Λ̂0j(β̂, s).

Note that, with this modification, the invariant-to-baseline property does not hold

for finite samples. However, it is asymptotically true since as sample size increase,

Λ̂∗
0j(t) converges uniformly to Λ0j(t).
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4.3 Asymptotic Properties

To derive the large-sample properties for the proposed measure, we impose the

following regularity conditions throughout this chpater.

(a) (Xi,∆i, Gi, Zi) are independent and identically distributed random vectors.

(b) P (Xi ≥ τ) > 0 where τ is a pre-specified time point.

(c) Zik have bounded total variation, i.e., |Zik| < κ for all i = 1, ...n and k = 1, ..., p,

where κ is a constant and Zik is the kth component of Zi.

(d)
∫ τ

0
λ(t)dt < ∞.

(e) Positive-definiteness of matrix A, where A is the limit of Â.

(f) P (Gij = 1|Zi) > 0.

With a simple algebraic manipulation, formula (4.9) yields

U(β0) =
J∑

j=1

n∑
i=1

∫ τ

0

{Zi − zj}dMij(t),

The strong representation theorem ((Pollard 1990), Theorem 9.4) or the lemma of Lin

et al. (2000)) entails that n− 1
2U(β0) is essentially a sum of independent and identically

distributed random variables, which entails that multivariate central limit theorem

can be used to derive the asymptotical distribution. The asymptotic properties of

the regression coefficient estimates are given in the following theorem. The proof in

this chapter is a direct extension of that provided by Yin and Jianwen Cai (2004).

THEOREM 1: the random vector n
1
2 (β̂ − β0) converges weakly to a random

vector with variance-covariance matrix, σβ = E[ξβi
ξTβi

], where

ξβi
= A−1Ui(β̂),

and A is a positive-definiteness of matrix defined previously. A consistent estimator

of the covariance matrix is given by

σ̂β = n−1

n∑
i=1

ξ̂βi
ξ̂Tβi

,
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with ξ̂β obtained by replacing limiting values in ξβ with their empirical counterparts.

We now consider the asymptotic properties of the random vector n
1
2 (Λ̂0 − Λ0),

where

n
1
2 (Λ̂0 − Λ0) = n

1
2 [{Λ̂10 − Λ10}, · · ·, {Λ̂J0 − ΛJ0}]T

THEOREM 2: the random vector n
1
2 (Λ̂0−Λ0) converges weakly to a J− dimen-

sional random vector with variance-covariance matrix between n
1
2 (Λ̂0j(s) − Λ0j(s))

and n
1
2 (Λ̂0k(t)− Λ0k(t)) is σΛjk(s, t) = E[ξΛj(s)ξΛk(t)], where

ξΛij(s) =

∫ s

0

dMij(u)∑n
i=1 Yij(u)

− {
∫ s

0

zj(u; β)du}A−1

J∑
j=1

∫ τ

0

[Zi − zj(u; β)]dMij(u; β),

The covariance function can be consistently estimated by σ̂Λjk(s, t) = n−1
∑n

i=1 ξ̂Λij(s)ξ̂Λik(t),

with ξ̂Λij(s) obtained by replacing limiting values in ξΛij(s) with their empirical coun-

terparts.

Applying the Functional Delta method (Theorem 20.8, van der Vaart 1998), we

have

n
1
2 (ψ̂0(t)− ψ0(t)) = H(t)n

1
2{Λ̂0j(t)− Λ0j(t)}+ op(1),

where H(t) = [H1(t), · · ·, HJ(t)],

Hj(t) =

{
exp{−Λ̂0j(t)}

n−1
∑J

`=1 n` exp{−Λ̂0`(t)}
− exp{−Λ0(t)}∑J

`=1 p` exp{−Λ0(t)}

}
∗

{
− exp{−Λ0j(t)}

∑J
`=1 p` exp{−Λ0`(t)}+ pj exp{−2Λ0j(t)}

[
∑J

`=1 p` exp{−Λ0`(t)}]2

}

THEOREM 3: the random vector n
1
2 (ψ̂0 −ψ0) converges weakly to a J− dimen-

sional random vector with variance-covariance matrix between n
1
2 (ψ̂0j(s) − ψ0j(s))

and n
1
2 (ψ̂0k(t)− ψ0k(t)) is σψjk(s, t) = E[ξψj(s)ξψk(t)], where

ξψij(s) = Hj(s)ξΛij(s)

The covariance function can be consistently estimated by σ̂ψjk(s, t) = n−1
∑n

i=1 ξ̂ψij(s)ξ̂ψik(t),

with ξ̂ψij(s) obtained by replacing limiting values in ξψij(s) with their empirical coun-

terparts.



74

4.4 Simulation Study

The finite-sample properties of the estimators described in previous section were

evaluated through a series of simulation studies. We considered J = 10 centers, with

death times generated as

Tij =
− log(Ui)

λj + βTZi

for i = 1, . . . , nj and j = 1, . . . , 10, where Ui is a Uniform(0,1) random variable;

Zi = (Zi1, Zi2, Zi3)
T , Zi1 followed a Bernoulli (0.5) distribution, Zi2 followed a

Bernoulli distribution with probability depend on Zi1, and Z3i came from a Nor-

mal distribution with constant variance 25 and mean depend on Zi1 and Zi2. We

set βT = (β1, β2, β3) = (0.1,−0.1, 0.01). We varied the sample size for each center

as nj = 50, 100. The censoring time was generated from Uniform(1,10) distribution

with percentages were approximately 15%. Each data configuration was replicated

1000 times.

In Table 1, we considered a simulation setting where the hazard functions and

covariate distribution were equal across centers. In Table 2, the hazards functions are

center-dependent and the covariate distribution are center-independent. In Table 3,

both hazards and covariates are center-dependent. We list the results for performance

of proposed model and methods. In all simulation settings, the coefficient estimators,

cumulative hazard function and proposed estimator for center effects were sufficiently

well-behaved, in the sense that the bias was quite small, and the average asymptotic

standard errors (ASE) were generally close to the empirical standard deviations

(ESD), while the empirical coverage probabilities (CP) were generally consistent

with the nominal value 0.95.

4.5 Application to Kidney Transplant Data

We applied the proposed methods to evaluate U.S. kidney transplant centers with

respect to mean post-transplant survival time. Data were obtained from the Scientific

Registry of Transplant Recipients (SRTR). The SRTR data system includes data on

all donor, wait-listed candidates, and transplant recipients in the US, submitted
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Table 4.1: Simulation Setting 1: hazards and covariate are center independent; t=3;
Λj=cumulative hazard functions; ψj(t)=ratio of survival function; only centers with
odd number are shown.

λj Parameters TRUE BIAS ESD ASE CP

β1 0.010 0.000 0.057 0.055 0.95
β2 -0.100 0.001 0.056 0.054 0.94
β3 0.100 0.000 0.064 0.062 0.95

0.8 Λ1(t) 2.400 0.010 0.603 0.607 0.94
ψ1(t) 1 -0.000 0.307 0.307 0.92

0.8 Λ3(t) 2.400 0.025 0.627 0.609 0.94
ψ3(t) 1.000 -0.013 0.308 0.305 0.93

0.8 Λ5(t) 2.400 -0.002 0.605 0.606 0.94
ψ5(t) 1.000 0.011 0.303 0.308 0.92

0.8 Λ7(t) 2.400 -0.001 0.616 0.697 0.93
ψ7(t) 1.000 0.008 0.300 0.308 0.95

0.8 Λ9(t) 2.400 0.025 0.608 0.608 0.94
ψ9(t) 1.000 -0.014 0.305 0.304 0.93
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Table 4.2: Simulation Setting 2: hazards are center dependent; covariate are center
independent; t=3; Λj=cumulative hazard functions; ψj(t)=ratio of survival function;
only centers with odd number are shown.

λj Parameters TRUE BIAS ESD ASE CP

β1 0.010 -0.001 0.049 0.048 0.94
β2 -0.100 0.001 0.048 0.048 0.94
β3 0.100 -0.003 0.056 0.055 0.94

0.5 Λ1(t) 1.500 0.009 0.476 0.487 0.94
ψ1(t) 1.793 -0.019 0.312 0.324 0.95

0.6 Λ3(t) 1.800 0.024 0.503 0.507 0.95
ψ3(t) 1.328 -0.020 0.294 0.291 0.94

0.7 Λ5(t) 2.100 0.027 0.527 0.531 0.94
ψ5(t) 0.984 -0.007 0.254 0.258 0.93

0.8 Λ7(t) 2.400 0.015 0.569 0.562 0.94
ψ7(t) 0.729 0.015 0.225 0.229 0.93

0.9 Λ9(t) 2.700 0.046 0.601 0.606 0.95
ψ9(t) 0.540 0.006 0.195 0.199 0.93
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Table 4.3: Simulation Setting 3: hazards and covariate are center dependent; t=3;
Λj=cumulative hazard functions; ψj(t)=ratio of survival function; only centers with
odd number are shown.

λj Parameters TRUE BIAS ESD ASE CP

β1 0.010 0.000 0.048 0.049 0.96
β2 -0.100 -0.003 0.049 0.049 0.95
β3 0.100 0.002 0.053 0.052 0.96

0.5 Λ1(t) 1.500 0.005 0.487 0.488 0.93
ψ1(t) 1.793 -0.022 0.316 0.326 0.95

0.6 Λ3(t) 1.800 0.004 0.502 0.512 0.94
ψ3(t) 1.328 -0.004 0.287 0.293 0.94

0.7 Λ5(t) 2.100 0.026 0.549 0.545 0.93
ψ5(t) 0.984 -0.011 0.256 0.260 0.94

0.8 Λ7(t) 2.400 0.034 0.579 0.583 0.95
ψ7(t) 0.729 -0.003 0.235 0.230 0.93

0.9 Λ9(t) 2.700 -0.009 0.604 0.623 0.94
ψ9(t) 0.540 0.032 0.204 0.207 0.95
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by the members of the Organ Procurement and Transplantation Network (OPTN).

The Health Resources and Services Administration (HRSA), U.S. Department of

Health and Human Services provides oversight to the activities of the OPTN and

SRTR contractors. Included in the analysis were adult patients (≥ 18 years of

age at transplant) who underwent kidney transplantation between January 2000

and December 2008. Adjustment covariates included age, race, gender, diagnosis,

donation after cardiac death (DCD), Expanded Criteria Donor (ECD), BMI, dialysis

time, indicator of previous kidney transplant, cold ischemic time, Patients with donor

type other than deceased and centers with sample size less than 50 were eliminated

from additional analysis. The final sample size was n = 72, 302 from J = 185 centers

across the United States. The median survival time over the study period was 3

years across centers.

We fit the stratified additive hazard model and estimate the baseline survival

function for each center at year 3. We ordered centers based on the ratio of baseline

survival function and we provided the plots of confidence intervals in Figure 1. Cen-

ters with lower confidence limit higher than 1 were identified as significantly better

than the national average, while centers with upper confidence bound lower than 1

were identified as significantly worse than the national average. A total of 6 centers

had ratio of survival function significantly worse than the expected, while 3 centers

were significantly above the average.

4.6 Discussion

In this study, we develop methods for evaluating center-specific survival using a

center-stratified additive hazards model. We propose to estimate each center effect by

an ratio of baseline survival functions. The proposed measure is a semiparametric

generalization of the relative risk, which is often used in clinical studies. Given

the additive hazard structure, the ratio of survival function for a particular subject

reduces to the ratio of baseline survival function. In this light, the proposed measure

has an interpretation at the individual level, which is perhaps more relevant to a
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Figure 4.1: Analysis of SRTR Data: Point Estimates ψ̂j (j = 1, · · ·, 185) at year 3
and 95% Confidence Intervals .
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patient than estimators based on standardized or averaging. Under an additive

hazard model, the ratio of baseline survival functions is invariant to the choice of

baseline covariate level. That means, the ratio of survival functions represents the

contrast between subject i at center j versus subject i at the hypothetical center

with baseline hazard function equal to the national average; where subject i can

have any covariate value. The proposed measure is a semiparametric generalization

of the relative risk, which is often used in clinical studies. One advantage for our

proposed method is that the ratio of survival functions is invariant to the choice

of baseline covariate level. Therefore, the ratio of survival functions represents the

contrast between subject i at center j versus subject i at the hypothetical center

with baseline hazard function equal to the national average; where subject i can

have any covariate value. To implement the proposed estimator, we propose to use

a stratified additive model, which is a extension of the center-stratified Cox model.

The major difference between this model and the commonly used survival models is

that it allows the regression effect to be additive, in the meanwhile it also allow the

baseline hazards be center-specific.

In this study, we focused on the additive hazard model. A more general hazard

model can be defined as

(4.11) λij(t) = g{λ0(t), θj(t)}h1(β
TZi(t)) + h2(β

TZi(t))

where g is an unknown function, and h is a known function (e.g., an exponential

function, exp(βTZ); or an additive function, βTZ).

When h1 = 1 and h2 is a linear link function, the hazard function reduces to

the additive function, the stratified additive model and the ratio of baseline survival

function proposed in this study can be used to evaluate center effect.

When h1 is the exponential function and h2 = 0, the hazard function reduces to

the multiplicative hazard model

(4.12) λij(t) = λ0j(t)exp(β
TZ).

For such a model, the cumulative hazard ratio proposed by Wei and Schaubel (2008)

can be used to evaluate the center effects. For instance, Wei and Schaubel (2008)
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proposed measures to compare two treatment groups,for which they assume that

there exist a natural (default) choice for the reference (e.g. placebo group).

Λ0j(t)

Λ0k(t)
.

In our motivating example with multi-centers, it is not clear how to choose the

reference center. Different choice of the reference center may had a strong impact on

the results, which would of course lead to controversy. This concern can be solved by

our proposed method with the reference defined as national average. A generalization

of Wei and Schaubel (2008)’s method can then be applied to multi-groups (i.e. multi-

centers) as following

(4.13)
Λ0j(t)

Λ0(t)

where Λ0(t) =
∑J

`=1 p`Λ0(t), with p` =
1
n

∑J
`=1 n`.



CHAPTER V

Conclusion

In observational studies, patient characteristics may vary considerably across cen-

ters, and this can have substantial impact on the expected outcomes at a given center.

An accurate evaluation of center effects needs to adequately account for the imbal-

ance of patient characteristics. In this dissertation, we propose three novel statistical

methods to compare the performances of kidney transplant centers in the presence

of censored data.

The standardized mortality ratio (SMR) based on a Cox regression model is often

used to evaluate center-specific mortality. However, the asymptotic properties and

finite-sample behavior of the Cox SMR are not well-studied. Chapter II evaluates

some strong limitations of the Cox SMR that relate to its underlying assumptions.

To address these limitations, modifications to the Cox SMR has been developed

based on a stratified Cox model. In addition, since center effects computed through

indirect standardization are not comparable, semiparametric generalization of direct

standardization are proposed.

In the context of survival data, the difference in mean lifetime is arguably a more

meaningful measure than the ratio of death rates. In Chapter III, we propose a

method which combines a log-normal frailty model and piece-wise exponential base-

line rates to compare the mean survival time across centers. The proposed methods

allow for valid estimation of mean survival time as opposed to the restricted mean life-

time and, within this context, robust profiling of long-term center-specific outcomes.

Maximum likelihood based estimation is carried out using a Laplace approximation

82
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for integration. The proposed methods work well with a large database and can

accommodate a large number of centers.

Chapter IV develops methods for evaluating center-specific survival using a center-

stratified additive hazards model. The relative center effects are estimated using the

ratio of baseline survival functions. The proposed measure is a semiparametric gen-

eralization of the relative risk, which is often used in clinical studies. One attractive

feature for the proposed method is that the ratio of survival function for a particular

subject reduces to the ratio of baseline survival function, and such ratio of baseline

survival functions is invariant to the choice of baseline covariate level.

The direct standardization methods in Chapter II could be extended in several

useful directions. Perhaps most notably, it is often of interest to evaluate center

effects in settings with recurrent events. Further generalizations of these problems

include issues of competing risks and the incorporation of additive hazard models.

For instance, a directly standardized cumulative incidence function could be used

to estimate center effects in the competing risk setting. Furthermore, the direct

standardization method is a version of the G-computation method for average causal

effects, for which we need to correctly specify a model relating survival and covariates.

If such a model was incorrectly specified, then the resulting center effects would

be biased. Another approach that has been advocated for estimating the average

causal effect is through the use of inverse probability weighted estimators. In this

approach, both the censoring distribution and the probability of receiving one of the

treatment (propensity score) are modeled as functions of the covariates. If these

models were incorrectly specified, then the inverse probability weighted estimators

would be biased. To address these concerns, a double robust estimator based on

augmented inverse probability weighting may provide better solutions. The double

robust estimator would be consistent if either the model for survival or the models

for censoring and treatment were correctly specified.
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