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ABSTRACT

Resource Allocation in Decentralized Systems with Strategic Agents: An
Implementation Theory Approach

by

Ali Kakhbod

Chair: Demosthenis Teneketzis

In this thesis we present an implementation theory approach to decentralized re-

source allocation problems with strategic users/agents in communication networks.

For wired networks we study the unicast and multi-rate multicast service provision-

ing problem. For wireless networks we study the problem of power allocation and

spectrum sharing where each user’s transmissions create interference to all (or subset

of) network users.

We formulate the unicast service provisioning problem as a market allocation

problem, the power allocation and spectrum sharing problem as a public goods al-

location problem, and the multi-rate multicast service provisioning problem as the

combination of a market and a public goods allocation problems.

For unicast and multi-rate multicast service provisioning we develop game

forms/mechanisms that possess the following properties. (P1) The allocations corre-

sponding to all Nash equilibria (NE) of the games induced by the mechanisms are

optimal solutions of the corresponding centralized allocation problems where the ob-

jective is the maximization of the sum of the users’ utilities. (P2) The strategic users

voluntarily participate in the allocation process. (P3) The budget is balanced at the

allocations corresponding to all NE of the game induced by the mechanism as well

as at all other feasible allocations. For the power allocation and spectrum sharing

problem we develop a game form/mechanism that possesses properties (P2) and (P3)

above along with the following property. (P4) The allocations corresponding to all

NE of the game induced by the mechanism are Pareto optimal.
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CHAPTER I

Introduction

1.1 Motivation

Networks exist in a vast variety of real world systems. They have played an impor-

tant role in the social and technological growth of our society. Some prominent exam-

ples of networked systems are urban and transportation systems, military systems,

political/social networks, production and consumer markets, supply-chains, energy

markets, internet, web data centers, electronic commerce systems, sensor networks

and telecommunication systems. Because of the diversity of network applications,

networks are studied in a wide range of professional and academic domains including

engineering, business management and social science.

Irrespective of the diversity of applications, a fundamental similarity in all of the

above networks is that, (i) the network consists of multiple agents that interact with

and influence each other; (ii) each agent has different characteristics and a different

individual role in the network; and (iii) the actions of individual agents together with

their interactions determine the function/performance of the network 1.

Apart from the fundamental similarities in the structure and function of networks

described by the above mentioned features, an identical objective in their design is

their efficient operation. This requires optimization of network performance measures.

As mentioned above, a network’s performance is determined by the collective actions

of network agents. Actions that are critical in determining a network performance

are consumption/generation of resources by network agents and their decisions re-

garding network tasks. Therefore, for a network to achieve its performance objective,

proper allocation of the network’s resources and coordination of the network agents’

1An alternative term for networks that captures the above characteristics is multi-agent systems.
In many applications such as electronic commerce, artificial intelligence and social networks, the use
of the term multi-agent system is more common.
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decisions are extremely important. With the technological and social advancement,

many networks such as the internet, energy markets and e-commerce systems are

expanding at a very fast pace. The resources that are required for the operation of

these networks, e.g. bandwidth, fossil fuels, and web server resources often do not

increase at the same rate. Therefore, in these cases resource allocation and utilization

become even more crucial for efficient network operation.

In the context of communication networks some of the important resources are

bandwidth, energy, coding schemes, relay routes, and the physical space available

for the network. The important performance measures are data communication

rate, probability of error, communication delay, battery life, interference, mobility of

agents, ability to dynamically adjust to varying channel conditions, etc. The require-

ment to efficiently utilize the above resources to achieve desirable performance gives

rise to several challenging resource allocation problems in communication networks.

Examples of such problems are spectrum/rate/code allocation that govern through-

put and delay, power and code allocation that govern interference and battery life,

admission control that governs the number of agents in the network, topology con-

trol that governs the placement and interconnections of network agents, and dynamic

resource allocation that looks at the above aspects under dynamic situations. The

numerous applications and the technical challenge of these resource allocation prob-

lems make them an important and exciting area of communication networks research.

This motivated us to investigate some of these problems in this thesis.

1.2 Key issues and challenges in resource allocation

The challenge in resource allocation comes from: (1) the fact that the network is

an informationally decentralized system; (2) the network’s users/agents may behave

strategically (i.e. they may behave selfishly). Networks are informationally decentral-

ized systems. Each user’s utility is its own private information. Users are unaware of

each others’ utilities and of the resources (e.g. bandwidth, buffers, spectrum) avail-

able to the network. The network (network manager) knows the network’s topology

and its resources but is unaware of the users’ utilities. If information were centralized,

the resource allocation problem could be formulated and solved as a mathematical

programming problem or as a dynamic programming problem. Since information

is not centralized such formulations are not possible. The users’ strategic behavior

along with the decentralization of information lead to problems that are conceptually

difficult and computationally formidable.

2



The challenge is: (1) To determine a message exchange process among the network

and users, and an allocation rule (based on the outcome of the message exchange

process) that eventually lead to a resource allocation that is optimal for the centralized

problem. (2) To take into account, in the determination of the allocation mechanism,

the possible strategic (selfish) behavior of the networks users.

As is evident from the above, addressing decentralized resource allocation prob-

lems requires a framework that can provide a systematic methodology for the design

of decentralized resource allocation mechanisms by harnessing the decentralized in-

formation characteristics of the networks and the behavioral characteristics of the

agents. One such framework for the systematic study of decentralized resource allo-

cation problems with strategic agents is provided by implementation theory which is

a branch of mathematical economics.

1.3 Contribution of the thesis

In this thesis we investigate decentralized resource allocation problems with strate-

gic users. The main contributions of the thesis are:

• The formulation and solution of decentralized resource allocation problems that

arise in communication networks (wired and wireless) within the context of

implementation theory.

• The construction and analysis of game forms for decentralized resource alloca-

tion problems that have not been previously investigated within the context of

implementation theory.

Thus, this thesis contributes not only to the solution of important technological prob-

lems but also to the state of the art of implementation theory.

We have investigated threes classes of decentralized resource allocation problems

motivated by communication networks. (i) Market problems; (ii) public goods prob-

lems; and (iii) problems that are a combination of markets and public goods. For all

these classes of problems we developed game forms/mechanisms which have the fol-

lowing desirable properties. (P1) They implement in Nash equilibria (NE) either the

social welfare maximizing correspondence or the Pareto correspondence. That is, the

allocations corresponding to all NE of the game induced by the game form/mechanism

are either optimal solutions of the corresponding centralized resource allocation prob-

lem or Pareto optimal; conversely, to every optimal solution of the centralized resource

3



allocation problem there corresponds a NE of the game induced by the mechanism.

(P2) They are individually rational. That is, users voluntarily participate in the allo-

cation process, as their utility at the allocations corresponding to all NE of the game

induced by the mechanism is larger than the utility they obtain by not participating

in the allocation process. (P3) They are budget balanced at the allocations corre-

sponding to all NE as well as all feasible allocations corresponding to off equilibrium

strategies.

We proceed now to describe our contribution to each of the aforementioned prob-

lems.

In Chapter III we address the unicast service provisioning problem with strategic

users that arises in wired networks. This is a market problem. When the users’ util-

ities are concave, we propose a mechanism that possesses properties (P2), (P3) and

implements in NE the social welfare maximizing correspondence. When the users’

utilities are quasi-concave, the allocations corresponding to all NE of the game in-

duced by the mechanism are Pareto optimal. The game form proposed in this thesis

for unicast service provisioning problem with strategic users is currently the only ex-

isting mechanism that possesses properties (P1)-(P3).

In Chapter IV we investigate power allocation and spectrum sharing in multi-user

multi-channel systems arising in wireless networks. This is a public goods problem.

We propose a mechanism that possesses properties (P2), (P3) and implements in NE

the Pareto correspondence. The game form proposed for this problem is currently

the only existing mechanism that possesses properties (P1)-(P3). Two key features

of our problem formulation are: (F1) The allocation space is discrete. (F2) There are

no assumptions about concavity, monotonicity, or quasi-linearity of the users’ utility

functions. Decentralized resource allocation problems with features (F1)-(F2) have

not been previously investigated within the context of implementation theory. Thus,

the results of Chapter IV are a contribution to the state of the art of implementation

theory.

In Chapter V we address the multi-rate multicast service provisioning problem.

This is the combination of a market and a public goods problem. We present a

mechanism which possesses properties (P2), (P3) and implements in NE the social

welfare maximizing correspondence. To the best of our knowledge this work is the

4



first to address multi-rate multicast service provisioning with strategic users; in all

previously existing literature on multi-rate multicast service provisioning, users were

assumed to be non-strategic. Problems that are a combination of a market and public

goods were not previously investigated within the context of implementation theory.

Thus, the results of Chapter V are also a contribution to the state of the art of

implementation theory.

1.4 Organization of the thesis

This thesis is organized as follows: In Chapter II we present a brief introduction to

the key ideas and results of implementation theory that are relevant to the problems

we investigate in this thesis. In Chapter III we present the unicast service provisioning

problem with strategic agents arising in wired networks. In Chapter IV we present

the problem of power allocation and spectrum sharing in multi-user, multi-channel

systems with strategic agents arising in wireless networks. In Chapter V we present

the the multi-rate multicast service provisioning problem with strategic agents arising

in wired networks. We conclude in Chapter VI.
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CHAPTER II

Implementation Theory

In this section we present key ideas and results from implementation theory that

are relevant to the topics of the thesis.

2.1 What is Implementation Theory?

2.1.1 Preliminaries

Implementation theory is a component of mechanism design. It provides an analyt-

ical framework for situations where resources have to be allocated among agents/users

but the information needed to make these allocation decisions is dispersed and pri-

vately held, and the agents/users possessing the private information behave strategi-

cally and are self-utility maximizers. In any situation where the information needed

to make decisions is dispersed, it is necessary to have information exchange among the

agents/users possessing the information. Allocation decisions are made after the in-

formation exchange process terminates. Implementation theory provides a systematic

methodology for designing an information exchange process followed by an allocation

rule that leads to allocation decisions that are “optimal” with respect to some pre-

specified performance metric.

The objectives of implementation theory are:

(1) To determine, for any given performance metric, whether or not there exists an

information exchange process and an allocation rule that achieve optimal allo-

cations with respect to that metric when the users possess private information

and are strategic.
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(2) To determine systematic methodologies for designing information exchange pro-

cesses and allocation rules that achieve optimal allocations with respect to per-

formance metrics for which the answer to (1) is positive.

(3) To determine alternative criteria for the design of information exchange pro-

cesses and allocation rules that lead to “satisfactory” allocations for situations

where the answer to (1) is negative.

The key concept in the development of implementation theory is that of game

form or mechanism. A game form/mechanism consists of two components: (1)

A message/strategy space, that is, a communication alphabet through which the

agents/users exchange information with one another. (2) An allocation rule (called

outcome function) that determines the allocations after the communication and infor-

mation exchange process terminates. Most mechanisms employ monetary incentives

and payments to achieve desirable resource allocations. In such cases, the outcome

function specifies the resource allocations as well as the monetary incentives and

payments.

A game form along with the agents’/users’ utilities defines a game. The allocations

made (through the outcome function) at the equilibria of the game determine the

result of the decentralized allocation problem. The key objectives in the design of a

game form/mechanism are:

1. To provide incentives to the strategic agents/users so that they prefer to par-

ticipate in the allocation process rather than abstain from it.

2. To obtain, at all equilibria of the game induced by the mechanism, allocations

that are optimal with respect to some pre-specified performance metric (crite-

rion). For example, it may be desirable that the allocations obtained by the

game form/mechanism are the same as those obtained by the solution of the

corresponding centralized allocation problem.

3. To obtain a balanced budget at all equilibria of the game induced by the mech-

anism. That is, at all equilibria, the money received by some of the system’s

agents/users as part of the incentives provided by the mechanism must be equal

to the money paid by the rest of the agents/users.

2.1.2 Game Forms/Mechanisms

In the implementation theory/mechanism design framework, a centralized resource

allocation problem is described by the triple (E ,A, π): the environment space E ,

7



the action/allocation space A and the goal correspondence/social choice correspon-

dence/social choice rule π. Below, we briefly describe each component separately. Let

N = {1, 2, · · · , N} be the set of agents/users.

Environment Space (E): We define the environment space E of an allocation

problem to be the set of individual preferences (or the set of utilities), endowments

and the technology taken together. The environment E is the set of circumstances

that can not be changed either by the designer of the allocation mechanism or by the

agents/users that participate in the allocation mechanism.

The environment space E is the cartesian product of the users’ individual envi-

ronment spaces Ei, i.e., E := E1×E2 · · · × EN . A realization e ∈ E of the environment

is a collection of the users’ individual realizations ei, ei ∈ Ei, i = 1, 2, · · · , N , that is,

e = (e1, e2, · · · , eN).

Action Space(A): We define the action space A of a resource allocation problem

to be the set of all possible actions/resource allocations.

Goal Correspondence/Social Choice Rule(π): Goal correspondence is a map

from E to A which assigns to every environment e ∈ E the set of actions/allocations

which are solutions to the centralized resource allocation problem associated with/

corresponding to the decentralized resource allocation problem under consideration.

That is,

π : E → A.

The setting described above corresponds to the case where one of the agents (e.g. a

network manager) has enough information about the environment so as to determine

the actions according to the goal correspondence π. Generally this is not the case.

Usually, different agents have different information about the environment. For this

reason it is desired to devise a mechanism for information exchange and resource

allocation that leads, for every instance e of the resource allocation problem, to an

allocation in π(e).

When the system’s agents are strategic the resource allocation mechanism is de-

scribed by a N -user/agent game form (M, f), where M = ΠN
i=1Mi is the mes-

sage space, specifying for each user i, i = 1, 2, · · · , N , the set of messages Mi that

user/agent i can communicate to other users, and f is an outcome function that

8



describes the actions that are taken for every m := (m1,m2, · · · ,mN) ∈M; that is

f :M→A.

The game form (M, f) is common knowledge ((6), (74)) among all theN agents/users.

Note that a game form is different from a game, as the consequence of a profile

m := (m1,m2, · · · ,mN) of messages is an allocation (or a set of allocations if f is a

correspondence) rather than a vector of utility payoffs. Once a realization e ∈ E of

the environment is specified, a game form induces a game.

Within the context of implementation theory, a decentralized resource allocation

process proceeds in three steps:

1. The mechanism designer announces the game form (M, f).

2. An instance e ∈ E of the environment is realized. The realization of environment

e specifies, among other things, the utilities ui, i ∈ N , of all agents. Depending

on its utilities and the specified mechanism, each agent decides whether or not

to participate in the mechanism. The agents that choose not to participate

in the allocation process get some exogenously specified “reservation utility”,

which is usually a number independent of the environment e; we set this number

to be zero.

3. The agents who choose to participate in the allocation process play the game

induced by the mechanism. In this game, Mi is the strategy space of player i,

and for every strategy profile m ∈M, ui(f(m)) is the utility payoff of player i.

We denote this game by (M, f, e)

The mechanism designer is interested in the outcomes that occur at the equilibria of

the game induced by the game form.

2.1.3 Implementation in an appropriate equilibrium concept

A solution/equilibrium concept specifies the strategic behavior of the agents/users

faced with a game (M, f, e) induced by the game form (M, f). Consequently, an

equilibrium concept is a correspondence Λ that identifies a subset ofM for any given

specification (M, f, e). We define for every environment e ∈ E ,

AΛ(m, f, e) := {a ∈ A : ∃m ∈ Λ(M, f, e) : f(m) = a} (2.1)
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as the set of outcomes associated with the solution concept Λ, when the environment

is e.

The solution concept (equilibrium concept) appropriate for a decentralized re-

source allocation problem depends on the information that is available to the agents/

users about the environment. For example, if agent i, i ∈ N , knows ei ∈ Ei and has a

probability mass function on E−i = ΠN
j=1,j 6=iEj, then an appropriate solution concept

is a Baysian Nash equilibrium (BNE), (57). On the other hand, if agent i, i ∈ N
knows ei ∈ Ei, and Ej, for all j 6= i, then an appropriate solution concept is a Nash

equilibrium (NE), (46), or a sub-game perfect NE or a sequential NE, (17).

Definition II.1. A social choice rule/goal correspondence π : E 7→ A is implemented

(respectively, weakly implemented) by the game form (M, f) in the equilibrium con-

cept Λ if AΛ(M, f, e) = π(e) (respectively, AΛ(M, f, e) ⊂ π(e)) for all e ∈ E .

Definition II.2. A goal correspondence π : E → A is said to be implementable (resp.

weakly implementable) in solution/equilibrium concept Λ if there exists a game form

(M, f) that implements (resp. weakly implements) it.

Within the context of implementation theory there have been significant devel-

opments in the characterization of goal correspondences that can be implemented

in the following solution concepts: dominant strategies (13; 18); Nash equilibria

(47; 48; 64; 73); refined Nash equilibria, such as sub-game perfect equilibria (2; 50),

undominated Nash equilibria (1; 25; 27; 55), trembling hand perfect Nash equilibria

(67); Bayesian Nash equilibria (24; 54; 56; 61).

2.1.4 Implementation in Nash Equilibrium and Maskin’s Mechanism

In the problems investigated in this thesis we consider Nash equilibrium (NE) as

the solution/equilibrium concept. For any (M, f, e), a pure NE is a message/strategy

profile m∗ := (m∗1,m
∗
2, . . . ,m

∗
N) ∈M such that for all i ∈ N ,

ui(f(m∗i ,m
∗
−i)) ≥ ui(f(mi,m

∗
−i)), (2.2)

for all mi ∈ Mi, where m∗−i := (m∗1,m
∗
2, . . . ,m

∗
i−1,m

∗
i+1, . . . ,m

∗
N) and ui, i ∈ N , are

the utility functions of the agents under the realization e of the environment. Let
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NE(M, h, e) be the set of NE of the game (M, f, e) and

ANE := ANE(M, f, e) := {a ∈ A|∃m ∈ NE(M, f, e) s.t. f(m) = a}. (2.3)

The game form (M, f) implements (respectively, weakly implements) a social choice

rule π in Nash equilibrium if

ANE(M, f, e) = π(e)

(respectively, ANE(M, f, e) ⊂ π(e)) for all e ∈ E .

In his seminal paper, (46), Maskin characterized social choice rules that can be

implemented in NE, and constructed a mechanism that achieves implementation in

NE. To state and discuss the main result in (46) we need to define the concepts of

weak no-veto power and monotonicity.

Definition II.3. A goal correspondence/social choice rule π : E → A satisfies weak

no-veto power if for any e ∈ E , any outcome a ∈ A that is the top ranked alternative

of at least N − 1 agents under the given environment e (that is, a simultaneously

maximizes individual utilities of at least N − 1 agents) belongs to π(e).

In words, a social choice rule satisfies weak no-veto power if, whenever all agents

except possibly one agree that an alternative is top-ranked, (i.e. no other outcome is

higher in their preference orderings), then that alternative is in the social choice set;

the remaining agents can not veto it.

Definition II.4. A social choice rule π : E → A is monotonic if for all e :=

(e1, e2, . . . , eN), e := (e1, e2, . . . , eN) and a ∈ A, a ∈ π(e1, e2, . . . , eN) whenever:

(i) a ∈ π(e1, e2, . . . , eN),

(ii) for all b ∈ A and i ∈ N , ui(a) ≥ ui(b) implies ui(a) ≥ ui(b),

where ui, ui are utilities of agent i under ei and ei respectively.

In words, monotonicity of π says the following: Suppose that under a profile of

utility functions u1, u2, . . . , uN , ui ∈ ei ∀ i ∈ N , the outcome a is in the choice set

π(e). Furthermore, suppose that the environment e is altered to e so that under the

new profile u := (u1, u2, . . . , uN), ui ∈ ei for all i ∈ N , the outcome a does not fall in

any agent’s preference ordering relative to any outcome in A. Then, the outcome a

11



must be in the choice set π(e). Monotonicity is satisfied by many social choice rules

including the “social welfare maximizing correspondence” and the “Pareto correspon-

dence”1 (110; 47; 98; 26).

We can now state Maskin’s fundamental result on Nash implementation.

Theorem II.5 ((46)). If a social choice rule π : E → A is implementable in NE then

it is monotonic. Furthermore, if the number of agents is at least 3 and π is monotonic

and satisfies the weak no-veto power condition, then π is implementable in NE.

The proof of the above theorem is constructive. Given a social choice rule π

that satisfies monotonicity and weak no-veto power, Maskin constructs a game form

that implements π. We present the construction of the game form in words. Such a

presentation reveals the complexity of the mechanism and provides a justification as

to why we pursue alternative approaches in this thesis. Before we proceed with the

description of the game form we need to define the lower contour set of ui, i ∈ N , at

outcome a ∈ A.

Definition II.6. For each a ∈ A and ui ∈ Ui, i ∈ N , let

LC(a, ui) := {b ∈ A | ui(a) ≥ ui(b)} (2.4)

LC(a, ui) is the lower contour set of ui at a ∈ A.

In words, the lower contour set of ui at a ∈ A is the set of outcomes in A that

someone with utility function ui does not prefer to a.

We now proceed with the description of Maskin’s game form. The message space

for each agent i ∈ N isMi := U1×U2× · · ·×UN ×A×Z++, where Z++ is the space

of positive integers. That is, each agent’s message/strategy is a profile of the agents’

utilities, an outcome a ∈ A, and a positive integer. The outcome function is defined

as follows:

(i) If all agents announce the same message/strategy mi = (u1, u2, . . . , uN , a,K),

i ∈ N , and a ∈ π(e1, e2, . . . , eN), (ui ∈ ei ∀ i ∈ N ), then f(m1,m2, . . . ,mN)

= a. That is, if all agents are unanimous in their strategy, and their proposed

outcome is in the choice set π(e), then the outcome is a.

1In Chapters III and V, the social choice rule/goal correspondence is the social welfare maximizing
correspondence and in Chapter IV the goal correspondence is the Pareto correspondence.
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(ii) Suppose all agents j 6= i announce the same strategy mj = (u1, u2, . . . , uN , a,K)

and a ∈ π(e1, e2, . . . , eN). Let mi = (u′1, u
′
2, . . . , u

′
N , a

′, K ′) be the ith agent’s

message/strategy. Then,

f(m1,m2, . . . ,mN) =

{
a′ if a′ ∈ LC(a, ui)
a if a′ /∈ LC(a, ui).

(2.5)

That is, suppose all players but one propose the same strategy and the pro-

posed outcome a ∈ π(e1, e2, . . . , eN). Then, agent i, the odd-agent out, gets his

proposal a′, provided that a′ is in the lower contour set of a of the ordering that

the other agents proposed for him. Otherwise, the outcome is a.

(iii) If neither (i) nor (ii) applies, then f(m1,m2, . . . ,mN) = ai, where i := max{i |
ki = maxj∈N kj}. In words, when neither (i) nor (ii) applies, the outcome is

the one proposed by the agent that has the highest index among those whose

proposed integer is maximal.

Maskin proved in (46) that the above-described game form/mechanism imple-

ments π in NE.

From the above description it is clear that Maskin’s mechanism requires, in gen-

eral, an infinite dimensional message space. That is why in this thesis we do not

follow Maskin’s approach. We follow a different approach, outlined in Chapters III-

V, which requires a finite dimensional message space and a particular interpretation

of NE. Below we present this interpretation of NE.

2.1.5 Interpreting Nash Equilibrium

We present two interpretations of Nash equilibrium which appear in Nash’s origi-

nal work (99). The first is the “mass-action” interpretation of NE points. According

to this interpretation, it is unnecessary to assume that agents participating in the

game have full knowledge of the structure of the game, or the ability to go through

any complex reasoning process. But it is assumed that the participants have the

ability to accumulate empirical information, obtained through repeated plays of the

game and to evaluate, using this empirical information, the relative advantage of the

various pure strategies they have at their disposal. The evaluation of empirical infor-

mation determines, as the number of repeated plays of the game increases, the agents’

NE strategies. Quoting Nash,
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“It is unnecessary to assume that participants have full knowledge of the

total structure of the game...but the participants are supposed to accumu-

late empirical information on the relative advantages of the various pure

strategies at their proposal”, J. Nash, PhD thesis ((99) pg. 21).

Implicit in this interpretation of NE is the assumption that the game’s environ-

ment e is stable, that is, it does not change before the agents reach their equilibrium

strategies. Nash’s “mass-action” interpretation of NE has also been adopted by Re-

ichelstein and Reiter (100), and Groves and Ledyard (101). The authors of (100),

(101) consider resource allocation problems with strategic agents who have private

information, adopt NE as the solution concept and state,

“We interpret our analysis as applying to an unspecified (message ex-

change) process in which users grope their way to a stationary message

and in which the Nash property is a necessary condition for stationarity”,

Reichelstein and Reiter ((100) pg. 664).

and,

“We do not suggest that each agent knows e2 when he computes m(j,Gi)
3,

.... We do suggest, however, that the ’complete information’ Nash equi-

librium game-theoretic equilibrium messages may be the possible equilib-

rium of the iterative process–that is, the stationary messages–just as the

demand-equal-supply price is thought of the equilibrium of some unspeci-

fied market dynamic process.”, Groves and Ledyard ((101) pp. 69-70).

In the second interpretation of NE, it is assumed that the agents know the full

structure of the game in order to be able to predict the equilibrium strategies. This

interpretation of NE is rationalistic and idealizing.

In this thesis, we will adopt the “mass-action” interpretation of NE. In the prob-

lems we investigate in Chapters III and V the environment is stable (as the network

is wired). In the problem we study in Chapter IV, where the network is wireless, the

environment is assumed to be stable (i.e. it does not change) during the allocation

process.

2In our mechanism e = ×Gi∈N ×j∈Gi
U(j,Gi) × T , that is, a realization of the users’ utilities as

well as of the topology and resources of the network.
3In our problem m(j,Gi) is the strategy of user (j,Gi), j ∈ Gi, Gi ∈ N .
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2.1.6 Desirable Properties of Game Forms

In addition to implementation in an appropriate equilibrium concept, the mecha-

nism designer should try to achieve the other objectives mentioned in Section 2.1.1.

We formally define the properties of a mechanism associated with those objectives in

this section.

2.1.6.1 Individual Rationality

One of the objectives in the design of a game form is to incentivize all the agents

to voluntarily participate in the allocation process under any possible environment.

Consider any environment e ∈ E . If under e, agent i decides not to participate, its

overall utility is zero (see Section 2.1.2). If agent i decides to participate in the game

induced by the mechanism, its utility is ui(f(m∗)) where m∗ is an equilibrium of the

game (M, f, e) induced by the mechanism. Under e ∈ E , an agent participates in the

allocation process if at all equilibria m∗ of the game (M, f, e), ui(f(m∗)) ≥ 0. We

can now define individually rational mechanisms as follows:

Definition II.7. A mechanism/game form (M, f) is individually rational if for all

e ∈ E , for all equilibria m∗ of the game (M, f, e) and for all i ∈ N , ui(f(m∗)) ≥ 0,

where ui is the utility function of agent i in the environment e, and 0 is the reservation

utility a user receives if it decides not to participate in the allocation process (cf.

Section 2.1.2).

2.1.6.2 Budget Balance

Strategic agents are often incentivized to follow the rules of the mechanism through

monetary tax or subsidy. Some agents are induced to accept allocations that may

not be their most preferred ones (under the realization e of the environment) by

receiving money (subsidy). Conversely, some agents are induced to pay money (tax)

for receiving their most preferred allocations. It is desirable that for any environment

e ∈ E , at every equilibrium of the game (M, f, e) the sum of taxes paid by some

agents should be equal to the sum of subsidies received by the rest of the agents. Any

mechanism (M, f) that possesses the above property is said to be budget balanced at

equilibrium. Budget balance is also desirable at all out of equilibrium messages that

result in feasible allocations (i.e. allocations that satisfy the problem’s constraints) for

the following practical reason. Suppose the mechanism designer specifies, along with

the mechanism, an iterative message exchange process (tâtonnement process) which

for any environment e ∈ E is guaranteed to converge to an equilibrium of the game
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induced by the mechanism. In practice, the message exchange process may terminate

when it reaches sufficiently close to the equilibrium (but not the equilibrium). If the

mechanism is not budget balanced at these out of equilibrium terminal messages,

then possible large amounts of unclaimed money may be left.
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CHAPTER III

Unicast Service Provisioning

3.1 Introduction

Most of today’s networks, called integrated services networks support the deliv-

ery of a variety of services to their users each with its own quality of service (QoS)

requirements (e.g. delay, percentage of packet loss, jitter, etc). As the number of

services offered by the network and the demand for the services increase, the need

for efficient network operation increases. One of the key factors that contributes to

efficient network operation is the efficient utilization of the network’s resources.

In this chapter we investigate the unicast service provisioning problem in wired

networks with arbitrary topology and strategic users. We formulate the problem as a

market allocation with strategic users. The key issues and challenges associated with

this problem have been discussed in Section 1.2 of the thesis. Here we propose a game

form/mechanism for the solution of the problem, we analyze the mechanism’s proper-

ties and compare our results to the existing literature on unicast service provisioning

with strategic users.

3.1.1 Contribution of the chapter, (32)

We investigate the unicast service provisioning problem in wired networks with

arbitrary topology and strategic users. The main contribution of this chapter of the

thesis is the discovery of a decentralized rate allocation mechanism for unicast service

provisioning in networks with arbitrary/general topology and strategic users, which

possesses the following properties.

When each user’s utility is concave, then:
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(P1) The mechanism implements the solution of the centralized unicast service pro-

visioning problem in Nash equilibria.

(P2) The mechanism is individually rational, that is, the network users voluntarily

participate in the rate allocation process.

(P3) The mechanism is budget-balanced at all the feasible allocations (cf. Section

2.1.6.2), that is, at all the allocations that correspond to NE messages/strategies

as well as at all the feasible allocations that correspond to off-equilibrium mes-

sages/ strategies.

When each user’s utility is quasi-concave but differentiable, then:

The mechanism possesses properties (P2) and (P3).

(P4) Every NE of the game induced by the mechanism results in a Walrasian equi-

librium ((110) Ch. 15) , consequently, a Pareto optimal allocation.

To the best of our knowledge, none of the decentralized resource allocation mecha-

nisms proposed so far for the unicast service provisioning problem in communication

networks possesses simultaneously all three properties (P1)-(P3) when the network’s

topology is general/arbitrary, the users are strategic and their utilities are concave.

Furthermore, we are not aware of the existence of any publications in unicast ser-

vice provisioning containing the analysis of a decentralized rate allocation mechanism

when the users are strategic and their utilities are quasi-concave.

We now compare in more detail our contributions with the existing literature.

3.1.2 Comparison with related work

Recently, within the context of communication networks, researchers have inves-

tigated decentralized resource allocation problems under the assumption that users

behave strategically (i.e. they are not price-takers, they do not necessarily obey the

rules of the mechanism but have to be induced to follow the rules). Within the context

of wired networks, decentralized resource allocation mechanisms have been proposed

and analyzed in (3; 4; 5; 35; 37; 21; 29; 30; 38; 39; 43; 44; 106) and (76).

We now explain why the proposed mechanism and the above results are distinctly

different from all game forms/mechanisms proposed so far for the unicast service

provisioning problem with strategic users.
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Most of the previous work on the unicast service provisioning problem in networks

with general topology is based on Vickrey-Clark-Groves(VCG)-type mechanisms, (16;

76; 30; 38; 39; 72; 10; 19). The game forms/mechanisms proposed in (76) and (30)

induce games that establish the existence of a unique Nash equilibrium at which

the allocation is globally optimal under some conditions; but these mechanisms are

not budget-balanced even at equilibrium. The mechanisms/game forms proposed in

(16; 38; 39) induce games that have multiple NE; these mechanisms are not budget-

balanced even at equilibrium, and the allocations corresponding to the Nash equilibria

are not always globally optimal ( that is these mechanisms do not implement in Nash

equilibria the solution of the centralized unicast service provisioning problem). Our

mechanism is not of the VCG-type, thus, it is philosophically different from those of

(16; 76; 30; 38; 39).

The work in (43), (44) and (77) deals with single link networks. For these single-

link networks the authors of (44) proposed a class of efficient (optimal) allocation

mechanisms, called ESPA, for the allocation of a single divisible good. ESPA mech-

anisms were further developed in (43). It is not currently known whether ESPA

mechanisms implement in Nash equilibria the optimal solution of the unicast ser-

vice provisioning problem in networks with arbitrary/general topology. The network

model considered in this paper has arbitrary/general topology.

In (21; 29) the authors show that when the resource allocation mechanism pro-

posed in (35) is considered under the assumption that the users are strategic and NE is

the equilibrium concept, the allocations corresponding to any NE are different from

any allocations that are optimal solutions of the corresponding centralized unicast

service provisioning problem; that is, the allocation corresponding to any NE suffer

from a certain efficiency loss. Particularly, in (29) it is shown that there exists a lower

bound on the efficiency loss. The mechanism we propose in this paper is distinctly

different from those of (21; 29). Our mechanism results in the same performance as

optimal centralized allocations, that is, the allocations corresponding to any NE of

the game induced by our mechanism are efficient.

Philosophically, our work is most closely related to (106), but it is distinctly

different from (106) for the following reasons: (1) the game form proposed in our

paper is distinctly different from that of (106). (2) The mechanism of (106) is not

balanced off equilibrium. (3) In the mechanism of (106) there is no coupling among

the games that are being played at different links. In our mechanism such a coupling

exists (see section 3.3), and results in a balanced-budget off equilibrium.

Finally, we are not aware of any publication, other than this paper, containing the
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analysis of a decentralized rate allocation mechanism for unicast service provisioning

when the users are strategic and their utilities are quasi-concave.

3.1.3 Organization of the chapter

The rest of the paper is organized as follows. In section 3.2 we formulate the

unicast service provisioning problem with strategic users. In section 3.3 we describe

the allocation mechanism/game form we propose for the solution of the unicast ser-

vice provisioning problem. In section 3.4 we analyze the properties of the proposed

mechanism. In section 3.5 we discuss how the game form/mechanism presented in

this paper can be implemented in a network. In section 3.6 we investigate the prop-

erties of the game form proposed in this paper when the users’ utilities ui, i ∈ N ,
are quasi-concave. The proofs of all the results established in this chapter appear in

Appendix A.

3.2 The unicast problem with strategic network users,

Problem Formulation

In this section we present the formulation of the unicast problem in wired com-

munication networks with strategic users. We proceed as follows, In section 3.2.1 we

formulate the centralized unicast service provisioning problem the solution of which

we want to implement in Nash equilibria. In section 3.2.2 we formulate the decentral-

ized unicast service provisioning problem with strategic network users, we state our

assumptions, our objective and provide an interpretation of the equilibrium concept

(Nash equilibrium) in which we want to implement the solution of the centralized

problem of section 3.2.1.

3.2.1 The centralized problem

We consider a wired network with N, N > 3, users. The set of these users is

denoted by N , i.e. N = {1, 2, · · · , N}. The network topology, the capacity of the

network links, and the routes assigned to users’ services are fixed and given. The

users’ utility functions have the form

Vi(xi, ti) = ui(xi)− ti, i = 1, 2, · · · , N. (3.1)

The term ui(xi) expresses user i’s satisfaction from the service xi it receives. The

term ti represents the tax (money) user i pays for the services it receives. We assume
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that ui is a concave and increasing function of the service xi user i receives, and

ti ∈ R. When ti > 0 user i pays money for the services it receives; this money is paid

to other network users. When ti < 0 user i receives money from other users. Overall,

the amount of money paid by some of the network users must be equal to the amount

of money received by the rest of the users so that
∑

i∈N ti = 0. Denote by L the set

of links of the network, by cl the capacity of link l, and by Ri the set of links l, l ∈ L,

that form the route of user i, i = 1, 2, · · · , N (as pointed out above each user’s route

is fixed). We assume that a central authority (the network manager) has access to

all of the above information. The objective of this authority is to solve the following

centralized optimization problem that we call Max.

Max max
xi

N∑
i=1

ui(xi) (3.2)

subject to ∑
i:l∈Ri

xi ≤ cl, ∀ l ∈ L, (3.3)

xi ≥ 0, ∀i ∈ N , (3.4)
N∑
i=1

ti = 0, ti ∈ R, ∀i ∈ N . (3.5)

The inequalities in (3.3) express the capacity constraints that must be satisfied at

each network link. The inequalities in (3.4) express the fact that the users’ received

services xi, i ∈ N must be nonnegative. The equality in (3.5) express the fact that

the budget must be balanced, i.e. the total amount of money paid by some of the

users must be equal to the amount of money received by the rest of the users.

Let U denote the set of functions

u : R+ ∪ {0} → R+ ∪ {0}

where u is concave and increasing. Let T denote the set of all possible network

topologies, network resources and user routes. Consider problem Max for all possible

realizations

(u1, · · · , uN , T ) ∈ UN ×T

of the users’ utilities, the network topology, its resources and the users’ routes. Then,

the solution of Max for each (u1, u2 · · · , uN , T ) ∈ UN ×T defines a map

π : UN ×T→ A
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where A ∈ RN
+ × RN is the set of all possible rate/bandwidth allocations to the

network’s users and the taxes (resp. subsidies) paid (resp. received) by the users. We

call π the solution of the centralized unicast service provisioning problem.

3.2.2 The decentralized problem with strategic users

We consider the network model of the previous section with the following assump-

tions on its information structure.

(A1) Each user knows only his own utility; this utility is his own private information.

(A2) Each user behaves strategically, that is, each user is not a price-taker. The

users’s objective is to maximize its own utility function.

(A3) The network manager knows the topology and resources of the network. This

knowledge is the manager’s private information. The network manager is not a

profit-maker (i.e. he does not have a utility function).

(A4) The network manager receives requests for service from the network users.

Based on these requests, he announces to each user i, i ∈ N :

(i) The set of links that form user i’s route, Ri; that is, the network manager

chooses the route for each user and this route remains fixed throughout

the user’s service.

(ii) The capacity of each link in Ri.

(A5) Based on the network manager’s announcement, each strategic user competes

for resources (bandwidth) at each link of his route with the other users in that

link1.

From the above description it is clear that the information in the network is decentral-

ized. Every user knows his own utility but does not know the other users’ utilities or

the network’s topology and its resources. The network manager knows the network’s

topology and its resources, but does not know the users’ utilities. It is also clear that

the network manager (which is not profit maker) acts like an accountant who sets up

the users’ routes, specifies the users competing for resources/bandwidth at each link,

collects the money from the users i that pay tax (i.e. ti > 0) and distributes it to

those users j that receive money (i.e. ti < 0).

1During the play of the game at each link l ∈ L, each user of link l learns the set of the other
users competing for bandwidth at l.
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As a consequence of assumptions (A1)-(A5) we have at each link of the network

a decentralized resource allocation problem which can be studied/analyzed within

the context of implementation theory (98). These decentralized resource allocation

problems are not independent/decoupled, as the rate that each user receives at any

link of his own route must be the same. This constraint is dictated by the nature of

the unicast service provisioning problem and has a direct implication on the nature

of the mechanism/game form we present in section 3.3.

Under the above assumptions the objective is to determine a game form/mechanism

which has the following properties,

(P1) It implements in NE the social welfare maximizing correspondence defined by

the centralized problem Max. (Note that the social welfare maximizing corre-

spondence is implementable in NE, cf. Section 2.1.4).

(P2) It is individually rational, that is, for every realization

(u1, u2, · · · , uN , T ) ∈ UN ×T,

the network users voluntarily participate in the bandwidth allocation process.

(P3) For every realization (u1, u2, · · · , uN , T ) ∈ UN×T it is budget balanced at every

NE of the game it induces, as well as at all off equilibrium messages that result

in feasible allocations.

In the following two sections we present a mechanism/game form for the problem

formulated in this section and prove that it possess properties (P1)-(P3) stated above.

3.3 A Mechanism for Rate Allocation

In section 3.3.1, we specify a mechanism/game form for the decentralized rate

allocation problem formulated in section 3.2. In section 3.3.2, we discuss and interpret

the components of the mechanism.

3.3.1 Specification of the mechanism

A game form/mechanism (cf. Section 2.1.2) consists of two componentsM, f . The

component M denotes the users’ message/strategy space. The component f is the

outcome function; f defines for every message/strategy profile, the bandwidth/rate

allocated to each user and the tax (subsidy) each user pays (receives).
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For the decentralized resource allocation problem formulated in section 3.2 we

propose a game form/mechanism the components of which we describe below.

Message space: The message/strategy space for user i, i = 1, 2, ..., N , is given

by Mi ⊂ R
|Ri|+1
+ . Specifically, a message of user i is of the form

mi = (xi, p
li1
i , p

li2
i , · · · , p

li|Ri|
i )

where 0 ≤ xi ≤ minl∈Ri cl and 0 ≤ p
lik
i ≤ M,k = 1, 2, , · · · , |Ri|, 0 < M < ∞, M

large, and |Ri| denotes the number of links along route Ri, i ∈ N . The component

xi denotes the bandwidth/rate user i requests at all the links of his route. The

component p
lij
i , j = 1, 2, · · · , |Ri|, denotes the price per unit of bandwidth user i is

willing to pay at link lij of his route.

As noted in section 3.2.2, the nature of the unicast service provisioning problem

dictates/requires that the bandwidth/rate allocated to any user i, i ∈ N , must be

the same at all links of his route. Thus, the nature of message mi is a consequence

of the above requirement.

Outcome Function: The outcome function f is given by

f :M1 ×M2 × · · · ×MN → (RN
+ × R× R · · · × R)

and is defined as follows. For any m := (m1,m2, · · · ,mN) ∈M :=M1×M2× · · · ×
MN ,

f(m) = f(m1,m2, · · · ,mN) = (x1, x2, · · · , xN , t1, t2, · · · , tN)

where xi, i ∈ N , is the amount of bandwidth/rate allocated to user i (this is equal

to the amount of bandwidth user i, i ∈ N , requests), and ti, i ∈ N , is determined by

tli, the tax (subsidy) user i pays (receives) for link l, l ∈ Ri, and by other additional

subsidies Qi that user i may receive. We proceed now to specify tli, l ∈ Ri, and Qi

for every user i ∈ N .

The tax t
lij
i , j = 1, 2, · · · , |Ri|, i ∈ N , is defined according to the number of users

using link l. Let Gl denotes the set of users using link l and let |Gl| denote the

cardinality of Gl. We consider three cases2

• Case 1 ,
∣∣G l∣∣ = 2

2We consider only the cases where |Gl| ≥ 2. If |Gl| = 1 and i ∈ Gl, then tli = 0 · 1{xi ≤
cl}+ 1{xi>cl}

1−1{xi>cl} .
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Let i, j ∈ Gl. Then,

tli = pljxi +
(pli − plj)2

α
− 2plj(p

l
i − plj)

(xi + xj − cl

γ

)
+

1{xi > 0}1{xi + xj − cl > 0}
1− 1{xi > 0}1{xi + xj − cl > 0}

(3.6)

tlj = plix
l
j +

(plj − pli)2

α
− 2pli(p

l
j − pli)

(xi + xj − cl

γ

)
+

1{xj > 0}1{xi + xj − cl > 0}
1− 1{xj > 0}1{xi + xj − cl > 0}

(3.7)

where α and γ are positive constants that are sufficiently large and, the function

1{A}, used throughout the chapter, is defined as follows

1{A} =

{
1− ε if A holds;

0 otherwise.

where ε is bigger than zero and sufficiently small3; ε is chosen by the mechanism

designer.

• Case 2,
∣∣G l∣∣ = 3

Let i, j and k ∈ Gl. Then

tli = P l
−ixi + (pli − P l

−i)
2 − 2P l

−i(p
l
i − P l

−i)
(E l−i + xi

γ

)
+

1{xi > 0}1{xi + xj + xk − cl > 0}
1− 1{xi > 0}1{xi + xj + xk − cl > 0}

+ Ωl
i (3.8)

tlj = P l
−jxj + (plj − P l

−j)
2 − 2P l

−j(p
l
j − P l

−j)
(E l−j + xj

γ

)
+

1{xj > 0}1{xi + xj + xk − cl > 0}
1− 1{xj > 0}1{xi + xj + xk − cl > 0}

+ Ωl
j (3.9)

tlk = P l
−kxk + (plk − P l

−k)
2 − 2P l

−k(p
l
k − P l

−k)
(E l−k + xk

γ

)
+

1{xk > 0}1{xi + xj + xk − cl > 0}
1− 1{xk > 0}1{xi + xj + xk − cl > 0}

+ Ωl
k (3.10)

3Therefore, when A and B (both) hold, then 1{A}1{B}
1−1{A}1{B} ≈

1
0+ is well defined and it becomes a

large number.
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where,

P l
−i =

plj + plk
2

, P l
−j =

plk + pli
2

, P l
−k =

plj + pli
2

,

E l−i = xj + xk − cl, E l−j = xi + xk − cl, E l−k = xi + xj − cl
E li = 2xi − cl, E lj = 2xj − cl, E lk = 2xk − cl, (3.11)

and Ωl
i is defined as

Ωl
i =

∑
r∈Gl
r 6=i

∑
s∈Gl
s 6=i,r

(
2plrp

l
s(1 + xr

γ
)− xrpls

)
(|G l| − 1)(|G l| − 2)

−

∑
j∈Gl
r 6=i

pl 2
r

|G l| − 1
− P l 2

−i

−2
E l−iP l 2

−i

γ
. (3.12)

The terms Ωl
j and Ωl

k are defined in a way similar to Ωl
i.

• Case 3,
∣∣G l∣∣ > 3

Let i ∈ Gl ⊆ N . Then,

tli = P l
−ixi + (pli − P l

−i)
2 − 2P l

−i(p
l
i − P l

−i)
(E l−i + xi

γ

)
+

1{xi > 0}1{E l−i + xi > 0}
1− 1{xi > 0}1{E l−i + xi > 0}

+ Φl
i (3.13)

where,

P l
−i =

∑
j∈Gl
j 6=i

plj

|G l| − 1
, E l−i =

∑
j∈Gl
j 6=i

xj − cl, E li = (
∣∣G l∣∣− 1)xi − cl,
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and

Φl
i =

∑
j∈Gl
j 6=i

∑
k∈Gl
k 6=i,j

(
2pljp

l
k(1 +

xj
γ

)− xjplk
)

(|G l| − 1)(|G l| − 2)

+

∑
j∈Gl
j 6=i

∑
k∈Gl
k 6=i,j

∑
r∈Gl
r 6=i,j,k

2plk(p
l
jE lr − xjplr)

γ(|G l| − 1)2(|G l| − 3)

+

∑
j∈Gl
j 6=i

∑
k∈Gl
k 6=i,j

2plk(p
l
jE lk − xjplk)

γ(|G l| − 1)2(|G l| − 2)

−

∑
j∈Gl
j 6=i

pl 2
j

|G l| − 1
− P l 2

−i − 2
E l−iP l 2

−i

γ
. (3.14)

Next we specify additional subsidies Qi that user i, i ∈ N , may receive. For that

matter we consider all links l ∈ L such that |Gl| = 2 or |Gl| = 3. For each link l, with

|Gl| = 2 we define the quantity

Q{l:|Gl|=2}:=−2
(pli − plj)2

α
− pljxi − pli + xj

[
2plj(p

l
i − plj) + 2pli(p

l
j − pli)

](xi + xj − cl
γ

)
= o(1)− pljxi − plixj; (3.15)

for each link with |Gl| = 3 we define

Q{l:|Gl|=3}:=
−2P l

−i
2
x−i + 2P l

−ip
l
iE l−i − 2P l

−j
2
x−j + 2P l

−jp
l
jE l−j − 2P l

−k
2
x−k + 2P l

−kp
l
kE l−k

γ
.

(3.16)

Furthermore for each link l ∈ L where |Gl| = 2 or |Gl| = 3 the network man-

ager chooses at random a user kl /∈ Gl and assigns the subsidy Ql to user kl. Let

l1, l2, · · · , lr be the set of links such that |Gli | = 2 or 3, i = 1, 2, · · · , r, and let kli ,

i = 1, 2, · · · , r, be the corresponding users that receive Qli .

Based on the above, the tax (subsidy) paid (received) by user j, j ∈ N , is the

following. If j 6= kl1 , kl2 , · · · klr then

tj =
∑
l∈Rj

tlj, (3.17)

where for each l ∈ Rj, t
l
j is determined according to the cardinality of Gl. If j =
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kli , i = 1, 2, · · · , r, then

tkli =
∑
l∈Rkli

tlkli
+Qli . (3.18)

where Qli is defined by (3.15) and (3.16).

Note that Qli is not controlled by user kli , that is, Qli does not depend on user

kli ’s message/strategy. Thus, the presence (or absence) of Qli does not influence the

strategic behavior of user kli . We have assumed here that the users kl1 , kl2 , · · · , klr ,
are distinct. Expressions similar to the above hold when the users kl1 , kl2 , · · · , klr are

not distinct.

Remark: For each link l ∈ L with |Gl| = 2 or 3 the network manager could

equally divide the subsidy Ql among all users not in Gl instead of randomly choosing

one user k /∈ Gl. Any other division of the subsidy Ql among users not in Gl would

also work.

3.3.2 Discussion/Interpretation of the Mechanism

As pointed out in section 3.2.2, the design of a decentralized resource allocation

mechanism has to achieve the following goals. (1) It must induce strategic users to

voluntarily participate in the allocation process. (2) It must induce strategic users to

follow its operational rules. (3) It must result in optimal allocations at all equilibria

of the induced game. (4) It must result in a balanced budget at all equilibria and off

equilibrium.

Since the designer of the mechanism can not alter the users’ utility functions,

ui, i ∈ N , the only way it can achieve the aforementioned objectives is through the

use of appropriate tax incentives/tax functions. At each link l, the tax incentive of our

mechanism for user i consists of three components ∆l
1(i), ∆l

2(i) and ∆l
3(i). We specify

and interpret these components for Case 3 (Eq. (3.13)). Similar interpretations hold

for Case 1 and Case 2.

For Case 3 we have,

tli := ∆l
1(i) + ∆l

2(i) + ∆l
3(i) (3.19)
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where

∆l
1(i) := P l

−ixi (3.20)

∆l
2(i) := (pli − P l

−i)
2 − 2P l

−i(p
l
i − P l

−i)
(E l−i + xi

γ

)
+

1{xi > 0}1{E l−i + xi > 0}
1− 1{xi > 0}1{E l−i + xi > 0}

(3.21)

∆l
3(i) := Φl

i (3.22)

• ∆l
1(i) specifies the amount user i has to pay for the bandwidth it gets at link

l. It is important to note that the price per unit of bandwidth that a user pays

is determined by the message/proposal of the other users using the same link.

Thus, a user does not control the price it pays per unit of the service it receives.

• ∆l
2(i) provides the following incentives to the users of a link: (1) To bid/propose

the same price per unit of bandwidth at that link (2) To collectively request a

total bandwidth that does not exceed the capacity of the link. The incentive

provided to all users to bid the same price per unit of bandwidth is described by

the term (pli − P l
−i)

2. The incentive provided to all users to collectively request

a total bandwidth that does not exceed the link’s capacity is captured by the

term

1{xi > 0}1{E l−i + xi > 0}
1− 1{xi > 0}1{E l−i + xi > 0}

. (3.23)

Note that a user is very heavily penalized if it requests a nonzero bandwidth,

and, collectively, all the users of the link request a total bandwidth that exceeds

the link’s capacity. A joint incentive provided to all users to bid the same price

per unit of bandwidth and to utilize the total capacity of the link is captured

by the term

2P−i(p
l
i − P l

−i)
(E l−i + xi

γ

)
(3.24)

• ∆l
3(i), The goal of this component is to lead to a balanced budget. That is,∑

i∈Gl
[∆l

1(i) + ∆l
2(i)] 6= 0, (3.25)
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but, ∑
i∈Gl

[∆l
1(i) + ∆l

2(i) + ∆l
3(i)] = 0. (3.26)

Note that, ∆l
3(i) is not controlled by user i’s messages (simply because there

is no term in ∆l
3(i) under the control of user i), so ∆l

3(i) does not have any

influence on the strategic behavior of the user.

As indicated in (3.26), when the number of users at link l ∈ L is larger than three,

i.e. |Gl| > 3, the mechanism is budget-balanced at that link, that is
∑

i∈Gl t
l
i = 0.

When |Gl| = 2, 3 the mechanism is not budget balanced at link l. The amount

Ql = −
∑

i∈Gl
|Gl|=2,3

tli, is given as subsidy to a randomly chosen user, say j, that does

not compete for resources at link l. Such money transfers results in an overall balanced

budget, and are always possible whenever N > 3. Furthermore, the money transfered

to user j does not alter j′s strategic behavior since Ql does not depend on user j′s

strategy. The existence of the term Qlj in the tax function couples the games that

are taking place at various links of the network. The presence of Qlj implies that

the designer of the mechanism must not consider links individually; for the allocation

of resources at certain links (specially those links l with |Gl| = 2, 3) the design must

consider network users that do not compete for resources in those links.

3.4 Properties of the Mechanism

We prove that the mechanism proposed in section 3.3 has the following properties:

(P1) It implements the solution of Problem Max in Nash equilibria. (P2) It is

individually rational. (P3) It is budget-balanced at every feasible allocation, that is

the mechanism is budget-balanced at allocations corresponding to all NE messages as

well as those corresponding to off-equilibrium messages. We also prove the existence

of NE of the game induced by the mechanism and characterized all of them.

We establish the above properties by proceeding as follows. First we prove that

all Nash equilibria of the game induced by the game form/mechanism of section 3.3

result in feasible solutions of the centralized problem Max, (Theorem V.3). Then,

we show that network users voluntarily participate in the allocation process. We do

this by showing that the allocations they receive at all Nash equilibria of the game

induced by the game form of section 3.3 are weakly preferred to the (0, 0) allocation

they receive when they do not participate in the allocation process (Theorem V.7).
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Afterwards, we establish that the mechanism is budget-balanced at all Nash equilibria;

we also prove that the mechanism is budget-balanced off equilibrium (Lemma V.4).

Finally, we show that the mechanism implements in Nash equilibria the solution of

the centralized allocation problem Max (Theorem III.5).

We present the proofs of the following theorems and lemmas in Appendix A.

Theorem III.1. (Feasibility): If m∗ = (x∗, p∗) is a NE point of the game induced

by the game form and the users’ utility(outcome) functions presented in section 3.3,

then the allocation x∗ is a feasible solution of Problem Max.

The following lemma presents some key properties of NE prices and rates.

Lemma III.2. Let m∗ = (x∗, p∗) be a NE. Then for every l ∈ L and i ∈ G l, we have,

p∗li = p∗lj = P ∗l−i := p∗l, (3.27)

p∗l
(E∗l
γ

)
= 0, (3.28)

∂tli
∂xi

∣∣∣∣
m=m∗

= p∗l, (3.29)

where E∗l =
∑

i∈Gl x
∗
i − cl.

An immediate consequence of Lemma V.4 is the following. At every NE point m∗

of the game induced by the mechanism the tax function has the following form,

tli(m
∗) =


p∗lx∗i if |Gl| = 2;

p∗l(x∗i − x∗−i) +
(p∗l)2(cl−E∗l−i)

γ
if |Gl| = 3;

p∗l(x∗i − x∗−i) if |Gl| > 3.

(3.30)

Thus, by (3.15), (3.16), (3.17), (3.18) and Lemma V.4 we have,

ti(m
∗) =

∑
l∈Ri

tli(m
∗), (3.31)

for i 6= kl1 , kl2 , · · · , klr , (cf section 3.3), and for i = klj , j = 1, 2, · · · , r,

tklj (m
∗) = Q∗lj +

∑
l∈Rklj

tlklj
(m∗). (3.32)

In the following lemma, we prove that the proposed mechanism is always budget

balanced.
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Lemma III.3. The proposed mechanism/game form is always budget balanced at

every feasible allocation. That is, the mechanism is budget-balanced at all allocations

corresponding to NE messages as well as at messages that are off equilibrium.

The next result asserts that the mechanism/game form proposed in section 3.3 is

individually rational.

Theorem III.4. ( Individual Rationality): The game form specified in section

3.3 is individually rational, that is at every NE of the game induced by the mecha-

nism the corresponding allocation (x∗, t∗) is weakly preferred by all users to the initial

allocation (0, 0).

Finally, we prove that the mechanism of section 3.3 implements in NE the corre-

spondence π defined by the solution of Problem Max.

Theorem III.5. (Nash Implementation): Consider any NE m∗ of the game

induced by the mechanism of section 3.3. Then, the allocation (x∗, t∗) corresponding

to m∗ is an optimal solution of the centralized problem Max.

Existence and Characterization of the Nash Equilibria:

So far, we have assumed the existence of NE of the game induced by the proposed

game form/mechanism. In the following theorem, we prove that NE exist (recall the

interpretation of NE we have given at the end of section 3.2) and characterize all of

them.

Theorem III.6. Let (x∗1, x
∗
2, · · · , x∗N) be an optimal solution of Problem Max and

λ∗l, l ∈ L, be the corresponding Lagrange multipliers of the Karush-Kuhn-Tucker

(KKT) conditions. Then

m∗ := (x∗1, x
∗
2, · · · , x∗N , p∗l1 , p∗l2 , · · · , p∗lL)

with p∗l = λ∗l, l ∈ L is a NE of the game induced by the proposed game form.

3.5 Implementation of the decentralized mechanism

First, we discuss how the mechanism specified by the game form of section 3.3

can be implemented at equilibrium. Then, we address the computation of the NE of

the game induced by the game form of this chapter.

We present one way of implementing the proposed mechanism at equilibrium.

Consider an arbitrary link l of the network. The users of that link communicate
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their equilibrium messages to one another and to the network manager. The network

manager determines the rate and tax (or subsidy) of each user and announces this

information to the user. The users i, i ∈ N with tax tli > 0 pay the amount tli to the

network manager; the network manager redistributes the amount of money it receives

to the users j ∈ N with tlj < 0. In the situation where the number of users in the link

is equal to two (resp. three) the network manager chooses randomly a user not using

that link to whom it gives the subsidy Q∗{l:|Gl|=2} (resp. Q∗{l:|Gl|=3}) defined by (3.15)

(resp. (3.16)). The above described process is repeated/takes place at every network

link. This process implements the mechanism described in the paper at equilibrium.

Even though for the specific form of the tax we have provided a complete charac-

terization of the NE of the game induced by the game form proposed in the paper,

currently we do not have an algorithm for the computation of these equilibria. Based

on preliminary investigation, we believe that best response algorithms do not, in

general, guarantee convergence to NE equilibria, because the game induced by the

game form proposed in this chapter is not super-modular (Ch. 12, (17)) (due to the

capacity constraint present at each link). Thus, the algorithmic computation of the

NE of the game induced by the game form proposed in the paper remains as an open

problem.

3.6 An Extension

So far we required that the users’ utility functions be concave. We now weaken

this requirement; we assume that the users’ utilities are quasi-concave. We consider

the game form proposed in section 3.3. By repeating the arguments of Theorem III.1,

Lemma III.2, Lemma III.3 and Theorem III.4 we can show that: every NE of the

game induced by the game form is feasible; the game form/mechanism is individually

rational and budget-balanced at all feasible allocations, i.e. at every NE and off

equilibrium. In the following theorem we prove that every NE of the game induced

by the proposed game form results in a Walrasian Equilibrium (WE) (110).

Theorem III.7. Consider the game (M, f,Vi, i = 1, 2, · · · , N), induced by the game

form of section 3.3, with continuous and quasi-concave utilities ui, i ∈ N . Then,

every NE m∗ of this game results in a Walrasian equilibrium, hence a Pareto optimal

allocation (x∗, t∗).

33



CHAPTER IV

Power Allocation and Spectrum Sharing in

Multi-user, Multi-channel Systems

4.1 Introduction

As wireless communication devices become more pervasive, the demand for the

frequency spectrum that serves as the underlying medium grows. Traditionally, the

problem of allocating the resource of the frequency spectrum has been handled by

granting organizations and companies licenses to broadcast at certain frequencies.

This rigid approach leads to significant under-utilization of this scarce resource. More-

over, frequency utilization varies significantly with time and location. A cognitive ra-

dio is a wireless communication device that is aware of its capabilities, environment,

and intended use, and can also learn new waveforms, models, or operational scenar-

ios (111). Recently, the Federal Communications Commission (FCC) has established

rules (see (104)) that describes how cognitive radios can lead to more efficient use

of the frequency spectrum. These rules along with the cognitive radio’s features and

the fact that information in the wireless network is decentralized and users may be

strategic give rise to a wealth of important and challenging research issues associated

with power allocation and spectrum sharing.

In this chapter we investigate a power allocation and spectrum sharing prob-

lem arising in multi-user, multi-channel systems with decentralized information and

strategic users. The key issues and challenges associated with this problem have been

discussed in Section 1.2 of the thesis. Here we formulate the problem as a public

goods allocation with strategic users. We propose a game form/mechanism for the

solution of the problem, we analyze the mechanism’s properties and compare our

results to the existing literature on power allocation and spectrum sharing problem
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with strategic users.

4.1.1 Contribution of the Chapter, (33)

The main contribution of my research in power allocation and spectrum sharing

is the discovery of a decentralized social welfare maximizing mechanism/game form

which possesses the following properties.

(P1) The allocation corresponding to every NE of the game induced by the game

form/mechanism results in a Lindahl equilibrium, that is, it is weakly Pareto

optimal. Conversely, every Lindahl equilibrium results in a NE of the game

induced by the proposed game form/mechanism.

(P2) It is individually rational, i.e., every user participates voluntarily in the game

induced by the mechanism.

(P3) It is budget balanced at every NE of the game induced by it as well as at all off

equilibrium messages that result in feasible allocations.

All the above desirable properties are achieved without any assumption about,

concavity, monotonicity or quasi-linearity of the users’ utility functions.

4.1.2 Comparison with related work

The results presented in this chapter are distinctly different from those currently

existing in the literature for the reasons we explain below.

Most of previous work within the context of competitive power allocation games

has investigated Gaussian interference games ((105; 113)), that is, situations where the

users operate in a Gaussian noise environment. In a Gaussian interference game, every

user can spread a fixed amount of power arbitrarily across a continuous bandwidth,

and attempts to maximize its total rate over all possible power allocation strategies.

In (113), the authors proved the existence and uniqueness of a NE for a two-player

version of the game, and provided an iterative water-filling algorithm to obtain the

NE. This work was extended in (105), where it was shown that the aforementioned

pure NE can be quite inefficient, but by playing an infinitely repeated game system

performance can be improved. Our results are different from those in (105; 113)

because : (i) The users are allowed to transmit at a discrete set of frequencies, and

the power allocated at each frequency most be chosen from a discrete set. (ii) The
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unique pure NE of the one-stage game in (105; 113) does not necessarily result in a

weakly Pareto optimal allocations. (iii) Most of the NE of the repeated game in (105)

result in allocations that are not weakly Pareto optimal.

In (107), the authors presented a market-based model for situations where every

user can only use one or more than one frequency bands, and the game induced by

their proposed game form is super modular. They developed/presented a distributed

best response algorithm that converges to a NE. However, in general the Nash equi-

libria of the game induced by their mechanism are not efficient, that is, they do

not always result in optimal centralized power allocations, or weakly Pareto optimal

allocations.

In (109) the authors investigated the case where all users have the same utility

function and each user can only use one frequency band. They proved the existence

of a NE in the game resulting from the above assumptions. The NE is, in general,

not efficient. The results in (109) critically depend on the fact that the users’ utilities

are identical and monotonic; these constraints are not present in our model.

The game form/mechanism we have proposed/analyzed in this chapter is in the

category of the mechanisms that economists created for public good problems (114;

108; 106), but it is distinctly different form all of them because the allocation spaces

F and Q in our formulation are discrete. To the best of our knowledge, the game form

we presented in this chapter is the first mechanism for power allocation and spectrum

sharing in multi-user, multi-channel systems with strategic users that achieves all

three desirable properties (P1)-(P3). Furthermore, we do not impose any assumption

about, concavity, differentiability, monotonicity or quasi-linearity of the users’ utility

functions.

4.1.3 Organization of the chapter

The rest of the chapter is organized as follows. In section 4.2 we present our

model, describe the assumptions on the model’s information structure and state our

objective. In section 4.3 we describe the allocation game form/mechanism we propose

for the solution of our problem. In section 4.4 we interpret the components of the

proposed game form/mechanism. In section 4.5 we investigate the properties of the

proposed game form.
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4.2 The Model and Objective

4.2.1 The Model

We consider N users/agents communicating over f frequency bands. Let N :=

{1, · · · , N} be the set of users, and F := {1, 2, · · · , f} the set of frequency bands.

Each user i, i ∈ N , is a communicating pair consisting of one transmitter and one

receiver. There is one additional agent, the (N + 1)th agent, who is different from

all the other N agents/users and whose role will be described below. Each user

has a fixed total power W̄ which he can allocate over the set F of frequency bands.

Let pji , i ∈ N , j ∈ F denote the power user i allocates to frequency band j. The

power pji , i ∈ N , j ∈ F must be chosen from the set Q := {∅, Q1, Q2, · · · , Ql}
where Qk > 0, 1 ≤ k ≤ l and ∅ means that user i does not use frequency band

j ∈ F to communicate information. In other words, Q is a set of quantization lev-

els that a user can use when he allocates power in a certain frequency band. Let

p̄i := (p1
i , p

2
i , · · · , p

f
i ), i ∈ N , denote a feasible bundle of power user i allocates over

the frequency bands in F. That is, pji ∈ Q, ∀j ∈ F, and
∑

j∈F p
j
i ≤ W̄ . Let

P := (p̄1, p̄2, · · · , p̄N) be a profile of feasible bundles of powers allocated by the N

users over the frequency bands in F; let Π denote the set of all feasible profiles P.

Since the sets, N ,F and Q are finite, Π is finite. Let |Π| = GN ; we represent every

feasible power profile by a number between 1 and GN . Thus, Π = {1, 2, · · · , GN}.
If user i allocates positive power in frequency band j, he may experience interfer-

ence from those users who also allocate positive power in that frequency band. The

intensity of the interference experienced by user i, i ∈ N , depends on the power

profiles used by the other users and the ‘channel gains’ hji between the other users

j, j 6= i, and i. The satisfaction that user i, i ∈ N , obtains during the communication

process depends on his transmission power and the intensity of the interference he

experiences. Consequently, user i’s, i ∈ N , satisfaction depends on the whole feasible

bundle k, k ∈ Π, of power and is described by his utility function Vi(k, ti), i ∈ N ,

where ti ∈ R represents the tax (subsidy) user i pays (receives) for communicating.

One example of such a utility function is presented in the discussion following the

assumptions. All taxes are paid to the (N + 1)th agent who is not a profit maker; this

agent acts like an accountant, collects the money from all users who pay taxes and

redistributes it to all users who receive subsidies.

We now state our assumptions about the model, the users’ utility functions, and

the nature of the problem we investigate. Some of these assumptions are restrictions

37



we impose, some others are a consequence of the nature of the problem we investigate.

We comment on each of the assumptions we make after we state all of them.

(A1) We consider a static power allocation and spectrum sharing problem.

(A2) Each agent/user is aware of all the other users present in the system. Users

talk to each other and exchange messages in a broadcast setting. That is, each

user hears every other user’s message; the (N + 1)th agent hears all the other

users’ messages. After the message exchange process ends/converges, decision

about power allocations at various frequency bands are made.

(A3) Each user’s transmission at a particular frequency band creates interference to

every user transmitting in the same frequency band.

(A4) The channel gains hji(f̂), j, i ∈ N , f̂ ∈ F are known to user i, i ∈ N . The gains

hji(f̂), j, i ∈ N , f̂ ∈ F, do not change during the communication process.

(A5) Each user’s utility Vi(x, ti), x ∈ Π ∪ {0}1, is decreasing in ti, ti ∈ R, i ∈ N .

Furthermore, Vi(x, ti) ≥ Vi(0, ti) for any ti ∈ R and x ∈ Π.

(A6) The utility function Vi, i ∈ N , is user i’s private information.

(A7) The quantization set Q is selected from Q; the parameter W̄ is selected from

W , and Vi is selected from V for all i, i ∈ N . Q,Q, W̄ ,W and V are common

knowledge among all users.

(A8) Each user behaves strategically, that is, each user is selfish and attempts to

maximize his own utility function under the constraints on the total power

available to him, and on the set Q of quantization levels.

(A9) The representation/association of every feasible power profile by a number in

the set Π is common knowledge among all users.

We now briefly discuss each of the above assumptions. We restrict attention to

the static power allocation and spectrum sharing problem ((A1)). The dynamic

problem is a major open problem that we intend to address in the future. We assume

that all users are in a relatively small area, so they can hear each other, are aware

of the presence of one another, interfere with one another and exchange messages

in a broadcast setting ((A2),(A3)). Since each user’s satisfaction depends on his

1The number zero denotes every non-feasible allocation.
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transmission power and the interference he experiences, his utility will depend on the

whole power profile x ∈ Π; furthermore, the higher the tax a user pays, the lower is

his satisfaction; moreover any feasible power allocation x, (i.e. x ∈ Π) is preferred to

any non-feasible power allocation denoted by 0. All these considerations justify (A5).

An example of Vi(x, ti) is

Ui

(
hii(1)p1

i
N0

2
+
∑

j,j 6=i hji(1)p1
j

, · · · , hii(f)pfi
N0

2
+
∑

j,j 6=i hji(f)pfj

)
− ti,

where
hii(k)pki

N0
2

+
∑
j,j 6=i hji(k)pkj

is the Signal to Interference Ratio (SIR) in frequency band

k. This example illustrates the following: (1) A user’s utility function may explicitly

depend on the channel gains hji, j, i ∈ N ; (2) User i, i ∈ N , must know hji, j ∈ N , so

that he can be able to evaluate the impact of any feasible power profile x ∈ Π that he

proposes on his own utility. Thus, we assume that the channel gains hji, j ∈ N , are

known to user i, and this is true for every user i ((A4)). These channel gains have to

be measured before the communication process starts. In the situation where users

are cooperative hji can easily be determined; user j sends a pilot signal of a fixed

power to user i, user i measures the received power and determines hji. When users

are strategic/selfish, the measurement of hji can not be achieved according to the

process described above, because user j may have an incentive to use a pilot signal

other than the one agreed beforehand so that he can obtain an advantage over user

i. In this situation procedures similar to ones described in (105) (section V) can be

used to measure hji; we present a method, different from those proposed in (105),

for measuring hji(f̂), j, i ∈ N , f̂ ∈ F, after we discuss all the assumptions. In (A4)

we further assume that hji do not change during the communication process. Such

an assumption is reasonable when the mobile users move slowly and the variation of

the channel is considerably slower than the duration of the communication process.

Assumption (A8) is a behavioral one not a restriction on the model. Since according

to (A8) users are strategic, each user may not want to reveal his own preference over

the set of feasible power allocations, thus assumption (A6) is reasonable. It is also

reasonable to assume that the function space where each user’s utility comes from

is the same for all users and common knowledge among all users ((A7)). The fact

that a user’s utility is his private information along with assumption (A8) have an

immediate impact on the solution/equilibrium concepts that can be used in the game

induced by any mechanism. We will address this issue when we define the objective

of our problem. Assumption (A7) also ensures that each user uses the same quanti-
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zation set. Furthermore, it states that each user knows the power available to every

other user. The solution methodology presented in this chapter works also for the

case where every user knows his total available power, has an upper bound on the

power available to all other users, and this upper bound is common knowledge among

all users. Assumption (A9) is necessary for the proposed game form/mechanism in

this chapter; it ensures that each user interprets consistently the messages he receives

from all other users.

In addition to the method described in (105), another method for determining the

gains hji(f̂), j, i ∈ N , f̂ ∈ F is the following. We assume that the gain hij(f̂) from

the transmitter of pair i to the receiver of pair j is the same as h̄ji(f̂), the gain from

the receiver of pair j to the transmitter of pair i for all i, j ∈ N and f̂ ∈ F. Before

the power allocation and spectrum sharing process starts, the (N + 1)th agent asks

transmitter i and receiver j to communicate with one another at frequency f̂ by us-

ing a fixed power p̄, and to report to him their received powers. This communication

process takes place as follows: First transmitter i sends a message with power p̄ at

frequency f̂ to receiver j; then receiver j sends a message with power p̄ at frequency

f̂ to transmitter i; finally transmitter i and receiver j report their received power to

the (N + 1)th agent. This process is sequentially repeated between transmitter i and

receiver j for all frequencies f̂ ∈ F. After transmitter i and receiver j complete the

above-described communication process, the same process is repeated sequentially for

all transmitter-receiver pairs (k, l), k, l ∈ N , at all frequencies f̂ ∈ F. The (N + 1)th

agents collects all the reports generated by the process described above. If the reports

of any transmitter i and receiver j (i 6= j, i, j ∈ N ) differ at any frequency f̂ ∈ F,

then user i and user j are not allowed to participate in the power allocation and

spectrum sharing process.

The above-described method for determining hji(f̂), i, j ∈ N , f̂ ∈ F, provides an

incentive to user i, i ∈ N , to follow/obey its rules if user i does better by participating

in the power allocation and spectrum sharing process than by not participating in

it. Consequently, the method proposed for determining hji(f̂), i, j ∈ N , f̂ ∈ F, will

work if the game form we propose is individually rational. In this chapter we prove

that individual rationality is one of the properties of the proposed game form.

40



4.2.2 Objective

The objective is to determine a game form/mechanism that, for any realization

(V1, V2, · · · , VN ,Q, W̄ ) ∈ VN ×Q×W , possesses the following features:

(P1) It implements in NE the Pareto correspondence.

(P2) It is individually rational, i.e., the users voluntarily participate in the game

induced by it.

(P3) It is budget balanced at all NE of the game it induces, as well as at all off

equilibrium messages that result in feasible allocations.

We follow the philosophy of implementation theory (cf. Section 2.1.1) for the specifi-

cation of our game form. We note (cf. Section 2.1.4) that the Pareto correspondence

is implementable in NE. In the next section we present a game form/mechanism that

achieves the above objective.

4.3 A Mechanism for Power Allocation and Spectrum Shar-

ing

For the decentralized problem formulated in section 4.2 we propose a game form

the components of which are described as follows.

Message space M := M1 ×M2 × · · ·MN : The message/strategy space for

user i, i = 1, 2, · · · , N, is given by Mi ⊆ Z × R+, where Z and R+ are the sets of

integers and non-negative real numbers, respectively. Specifically, a message of user

i is of the form, mi = (ni, πi) where ni ∈ Z and πi ∈ R+.

The meaning of the message space is the following. The component ni represents

the power profile proposed by user i; the component πi denotes the price per unit of

power user i is willing to pay per unit of the power profile ni. The message ni belongs

to an extended set Z of power profiles. Every element/integer in Z− Π corresponds

to a power profile that is non-feasible. Working with such an extended set of power

profiles does not alter the solution of the original problem since, as we show in section

4.5, all Nash equilibria of the game induced by the proposed mechanism correspond

to feasible power allocations.

Outcome function ~: The outcome function ~ is given by, ~ :M→ N×RN . and
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is defined as follows. For any m := (m1,m2, · · · ,mN) ∈M,

~(m) = ~(m1,m2, · · · ,mN)

=

([
I

(∑N
i=1 ni
N

)]
, t1(m), · · · , tN(m)

)
.

where I
(∑N

i=1 ni
N

)
is the integer number closest (from above) to

(∑N
i=1 ni
N

)
and

[
I

(∑N
i=1 ni
N

)]
=

{
I
(∑N

i=1 ni
N

)
, if I

(∑N
i=1 ni
N

)
∈ Π;

0, otherwise.

The component ti, i = 1, 2, · · · , N, describes the tax (subsidy) that user i pays (re-

ceives). The tax(subsidy) for every user is defined as follows,

ti(m) =

{
I

(∑N
i=1 ni
N

)[
πi+1 − πi+2

N

]
+ (ni − ni+1)2πi − (ni+1 − ni+2)2πi+1

}

×1

{
I

(∑N
i=1 ni
N

)
∈ Π

}
(4.1)

where 1{A} denotes the indicator function of event A, that is, 1{A} = 1 if A is true

and 1{A} = 0 otherwise, and N + 1 and N + 2 are to be interpreted as 1 and 2,

respectively.

4.4 Interpretation of the Mechanism

As pointed out in section 4.2, the design of an efficient resource allocation mecha-

nism has to achieve the following goals. (i) It must induce strategic users to voluntarily

participate in the allocation process. (ii) It must induce strategic users to follow its

operational rules. (iii) It must result in weakly Pareto optimal allocations at all equi-

libria of the induced game. (iv) It must result in a balanced budget at all equilibria

and off equilibrium.

To achieve these goals we propose the tax incentive function described by (4.1). This
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function consists of three components, Ξ1,Ξ2 and Ξ3, that is,

ti(m) = I

(∑N
i=1 ni
N

)[
πi+1 − πi+2

N

]
︸ ︷︷ ︸

Ξ1

+ (ni − ni+1)2πi︸ ︷︷ ︸
Ξ2

−(ni+1 − ni+2)2πi+1︸ ︷︷ ︸
Ξ3

(4.2)

The term Ξ1 specifies the amount that each user must pay for the power profile which

is determined by the mechanism. The price per unit of power, πi+1−πi+2

N
, paid by user

i, i = 1, 2, · · · , N, is not controlled by that user. The terms Ξ2 considered collectively

provide an incentive to all users to propose the same power profile. The term Ξ3 is

not controlled by user i, its goal is to lead to a balanced budget.

4.5 Properties of The Mechanism

We prove the mechanism proposed in section 4.3 has the properties (P1), (P2) and

(P3) stated in subsection 4.2.2 by proceeding as follows. First, we derive a property

of every NE of the game induced by the mechanism proposed in section 4.2, (Lemma

IV.1); based on this result we determine the form of the tax(subsidy) at all Nash

equilibria. Then, we show that every NE of the game induced by the mechanism

proposed results in a feasible allocation, (Lemma IV.2). Afterward, we prove that

the proposed mechanism is always budget balanced, (Lemma IV.3). Subsequently we

show that users voluntarily participate in the game, by proving that the utility they

receive at all NE is greater than or equal to zero, which is the utility they receive by not

participating in the power allocation and spectrum sharing process, (Lemma IV.4).

Finally, we show that every NE of the game induced by the mechanism proposed

in section 4.3 results in a Lindahl equilibrium ((112) Ch. 12.4.2); that is, every NE

results in a weakly Pareto optimal allocation (Theorem IV.5). Furthermore, we prove

that every Lindahl equilibrium can be associated with a NE of the game induced by

the proposed mechanism in section 4.3, (Theorem IV.6).

We now proceed to prove the above-stated properties.

Lemma IV.1. Let m∗ be a NE of the game induced by the proposed mechanism.

Then for every i, i = 1, 2, · · · , N , we have

(n∗i − n∗i+1)2π∗i = 0. (4.3)

Proof. Since m∗ = ((n∗1, π
∗
1), (n∗2, π

∗
2), · · · , (n∗N , π∗N)) is a NE, the following holds for
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every i, i = 1, 2, · · · , N , and ∀ mi ∈Mi,

Vi

([
I

(∑N
k=1 n

∗
k

N

)]
, ti(m

∗)

)
≥ Vi

I
∑N

k=1
k 6=i

n∗k + ni

N

 , ti(mi,m
∗
−i)

 , (4.4)

where m−i := (m1,m2, · · · ,mi−1,mi+1, · · · ,mN).

Set ni equal to n∗i ; then for every πi ≥ 0 Eq. (4.4) along with (4.1) imply

Vi

([
I

(∑N
k=1 n

∗
k

N

)]
, ti(m

∗)

)
≥ Vi

([
I

(∑N
k=1 n

∗
k

N

)]
, ti(mi,m

∗
−i)

)
(4.5)

where

ti(m
∗) =

{
I

(∑N
k=1 n

∗
k

N

)[
π∗i+1 − π∗i+2

N

]
+ (n∗i − n∗i+1)2π∗i − (n∗i+1 − n∗i+2)2π∗i+1

}

×1

{
I

(∑N
i=1 n

∗
i

N

)
∈ Π

}
(4.6)

ti((n
∗
i , πi),m

∗
−i) =

{
I

(∑N
k=1 n

∗
k

N

)[
π∗i+1 − π∗i+2

N

]
+ (n∗i − n∗i+1)2πi − (n∗i+1 − n∗i+2)2π∗i+1

}

×1

{
I

(∑N
i=1 n

∗
i

N

)
∈ Π

}
(4.7)

Since Vi is decreasing in ti Eq. (5.27) along with (4.6) and (4.7) yield

π∗i (n
∗
i − n∗i+1)2 ≤ πi(n

∗
i − n∗i+1)2 ∀ πi ≥ 0. (4.8)

Therefore, π∗i (n
∗
i − n∗i+1)2 = 0 for every i, i = 1, 2, · · · , N , at every NE m∗.

An immediate consequence of Lemma IV.1 is the following. At every NE m∗ of

the game induced by the mechanism the tax function t(m∗) has the form

ti(m
∗) = I

(∑N
k=1 n

∗
k

N

)[
π∗i+1 − π∗i+2

N

]
× 1

{
I

(∑N
i=1 n

∗
i

N

)
∈ Π

}
. (4.9)

In the following lemma, we show that every NE of the game induced by the proposed

mechanism is feasible.
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Lemma IV.2. Every NE of the game induced by the proposed mechanism results in

a feasible allocation.

Proof. We prove the assertion of the lemma by contradiction. Let m∗ be a NE

for the game induced by the mechanism. Suppose m∗ does not result in a feasible

allocation, i.e., I
(∑N

i=1 n
∗
i

N

)
/∈ {1, 2, 3, · · · , GN}. Then

[
I
(∑N

j=1 n
∗
j

N

)]
= 0. Since∑N

j=1(π∗j+1 − π∗j+2) = 0, there exists i, i ∈ {1, 2, · · · , N}, such that

π∗i+1 − π∗i+2 ≤ 0. (4.10)

Keep m∗−i fixed and define mi = (ni, πi) as follows; set πi = 0, and choose ni such

that I
(∑N

j=1,j 6=i n
∗
j+ni

N

)
∈ Π. Now, (4.1) yield that

ti(mi,m
∗
−i) ≤ 0. (4.11)

Equation (4.11) along with Lemma IV.1 and assumption (A5) result in

Vi(0, 0) = Vi

([
I

(∑N
j=1 n

∗
j

N

)]
, ti(m

∗)

)

< Vi

([
I

(∑N
j=1,j 6=i n

∗
j + ni

N

)]
, ti(mi,m

∗
−i)

)
. (4.12)

But (4.12) is in contradiction with the fact that m∗ is a NE. Therefore, every NE of

the game induced by the proposed mechanism results in a feasible allocation.

In the following lemma, we show that the proposed mechanism is always budget

balanced.

Lemma IV.3. The proposed mechanism is always budget balanced.

Proof. To have a balanced budget it is necessary and sufficient to satisfy
∑N

i=1 ti(mi) =

0. It is easy to see that budget balance always holds since from (4.1) we have

N∑
i=1

ti(m) =
N∑
i=1

I

(∑N
i=1 ni
N

)[
πi+1 − πi+2

N

]

+
N∑
i=1

(
(ni − ni+1)2πi − (ni+1 − ni+2)2πi+1

)
= 0. (4.13)
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The last equality in (4.13) holds, because

N∑
i=1

(πi+1 − πi+2) =
N∑
i=1

(
(ni − ni+1)2πi − (ni+1 − ni+2)2πi+1

)
= 0.

The next result asserts that the mechanism/game form proposed in section 4.3 is

individually rational.

Lemma IV.4. The game form specified in section 4.3 is individually rational, i.e., at

every NE m∗ the corresponding allocation
(
I
(∑N

i=1 n
∗
i

N

)
, t1(m∗), t2(m∗), · · · , tN(m∗)

)
is weakly preferred by all users to their initial endowment (∅, 0).

Proof. We need to show that Vi

(
I
(∑N

i=1 n
∗
i

N

)
, ti(m

∗)
)
≥ Vi(∅, 0) = 0 for every i, i =

1, 2, · · · , N. By the property of every NE it follows that for every i ∈ N and (ni, πi) ∈
Mi

Vi

(
I

(∑N
k=1 n

∗
k

N

)
, ti(m

∗)

)
≥ Vi

I
∑N

k=1
k 6=i

n∗k + ni

N

 , ti((ni, πi),m∗−i)
 (4.14)

Choosing ni sufficiently large so that I

∑N
k=1
k 6=i

n∗k+ni

N

 /∈ {1, 2, · · · , GN}, gives

I
∑N

k=1
k 6=i

n∗k + n̂i

N

 = 0, (4.15)

and

ti((ni, πi),m
∗
−i) = 0. (4.16)

because of (4.1). Consequently, (4.15) and (4.16) establish that

Vi

(
I

(∑N
k=1 n

∗
k

N

)
, ti(m

∗)

)
≥ Vi(∅, 0) = 0. (4.17)
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In the following theorem, we show that every NE of the game induced by the

mechanism proposed in section 4.3 results in a Lindahl equilibrium.

Theorem IV.5. Suppose that an allocation Ψm, for any m ∈ M, is determined as

follows

Ψm := (Λ(m), t1(m), · · · , tN(m), L1, · · · , LN)

where Λ(m) :=
[
I
(∑N

k=1 nk
N

)]
, for each i, i = 1, 2, · · · , N, ti(m) is defined by (4.1),

and

Li :=
πi+1 − πi+2

N
. (4.18)

Then Ψm∗ is a Lindahl equilibrium corresponding to the NE

m∗ = ((n∗1, π
∗
1), (n∗2, π

∗
2), · · · , (n∗N , π∗N))

of the game induced by the proposed mechanism.

Proof. Ψm∗ defines a Lindahl equilibrium if it satisfies the following three conditions

((112) Ch. 12.4.2)

1. (C1 ):
∑N

i=1 L
∗
i = 0.

2. (C2 ):
∑N

i=1 ti(m
∗) = 0.

3. (C3 ): For all i, i = 1, 2, · · · , N,
(
I
(∑N

k=1 n
∗
k

N

)
, ti(m

∗)
)

is a solution of the fol-

lowing optimization problem:

maxx,ti Vi(x, ti)

subject to x L∗i = ti

x ∈ Π. (4.19)

By simple algebra we can show that conditions 1 and 2 are satisfied. We need

to prove that condition 3 is also satisfied. We do this by contradiction. Suppose(
I
(∑N

k=1 n
∗
k

N

)
, ti(m

∗)
)

is not a solution of the optimization problem defined by (4.19)

for all i. Then, for some user i, i ∈ {1, 2, · · · , N}, there is a power profile ζ ∈ Π and

ζ 6= I
(∑N

k=1 n
∗
k

N

)
such that

Vi

(
I

(∑N
k=1 n

∗
k

N

)
,

[
I

(∑N
k=1 n

∗
k

N

)]
L∗i

)
< Vi(ζ, ζ L

∗
i ). (4.20)
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Now choose π̄i = 0 and n̄i = I
(
Nζ −

∑N
j=1
j 6=i

n∗j

)
. Using Eq. (4.1) and (4.3) together

with the fact that π̄i = 0 we obtain

ti((n̄i, π̄i),m
∗
−i) = ζ

[
π∗i+1 − π∗i+2

N

]
= ζ L∗i . (4.21)

Then, because of (4.20) and (4.21) we get

Vi(ζ, ζ L
∗
i ) = Vi


I

∑N

j=1
j 6=i

n∗j + n̄i

N


 , ti((n̄i, π̄i),m∗−i)


≥ Vi


I

∑N

j=1
j 6=i

n∗j + n∗i

N


 , ti(m∗)


which is a contradiction, because

m∗ = ((n∗1, π
∗
1), (n∗2, π

∗
2), · · · , (n∗N , π∗N))

is a NE of the game induced by the proposed game form. Consequently,(
I
(∑N

k=1 n
∗
k

N

)
, ti(m

∗)
)

is a solution of the optimization problem defined by (4.19) for

all i. Since Ψm∗ satisfies (C1)-(C3) it defines a Lindahl equilibrium. The allocation{
I

(∑N
k=1 n

∗
k

N

)
, t1(m∗), t2(m∗), · · · , tN(m∗)

}

is also weakly Pareto optimal ((112) Theorem (12.4.1)).

Finally, we establish that any Lindahl equilibrium can be associated with a NE of

the game induced by the proposed mechanism.

Theorem IV.6. Let Ψ =
(
Λ`, t`1, t

`
2, · · · , t`N , L`1, L`2, · · · , L`N

)
be a Lindahl equilibrium.

Then, there does exist a NE m∗ of the game induced by the proposed mechanism so

that

~(m∗) =
(
Λ`, t`1, t

`
2, · · · , t`N

)
(4.22)

where for every i, i = 1, 2, · · · , N , ti(m
∗) = Λ` L`i .

Proof. Consider the message profile m∗ such that for every i, i = 1, 2, · · · , N , m∗i =

(n∗i , π
∗
i ) and, ∀i, i = 1, 2, · · · , N , n∗i = (Λ`) and π∗i ’s are the solution of the following
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system of equations,

L`1 =
π∗2 − π∗3
N

, L`2 =
π∗3 − π∗4
N

, · · · , L`N =
π∗1 − π∗2
N

. (4.23)

Choosing π∗1 sufficiently large guarantees that the following is a feasible solution to

(4.23), i.e., πi ≥ 0,∀ i, π∗1 = sufficiently large, π∗2 = π∗1 − L`N and

π∗i = (i− 1)π∗1 −

(
L`N +

i−2∑
j=1

L`j

)
i, 3 ≤ i ≤ N.

Furthermore,

Λ` =

[
I

(∑N
k=1 n

∗
k

N

)]
. (4.24)

To complete the proof, we need to prove that m∗ is a NE of the game induced by the

mechanism. For that matter, it is enough to show that, for every i, i = 1, 2, · · · , N,

Vi

([
I

(∑N
k=1 n

∗
k

N

)]
, ti(m

∗)

)
≥ Vi

I
∑N

k=1
k 6=i

n∗k + ni

N

 , ti(m∗−i,mi)


∀ mi ∈M. (4.25)

Equation (4.9) along with Eqs. (4.23) imply ti(m
∗) = L`i

[
I
(∑N

k=1 n
∗
k

N

)]
. Furthermore,

positivity of (n∗i+1 − ni)2πi together with fact that Vi is decreasing in ti give that

Vi
(
ξ, L`iξ

)
≥ Vi

(
ξ, L`iξ + (n∗i+1 − ni)2πi

)
∀ ξ, ξ ∈ Π.

Moreover, since Ψ is a Lindahl equilibrium, (C3) implies that the following holds for

every i, i = 1, 2, · · · , N,

Vi
(
Λ`, L`iΛ

`
)
≥ Vi

(
ξ, L`i ξ

)
∀ξ ∈ Π, (4.26)

Consequently, the fact that ti(m
∗) = L`i

[
I
(∑N

k=1 n
∗
k

N

)]
along with (4.25) and (4.26)
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result in

Vi

([
I

(∑N
k=1 n

∗
k

N

)]
, ti(m

∗)

)
= Vi

([
I

(∑N
k=1 n

∗
k

N

)]
, L`i

[
I

(∑N
k=1 n

∗
k

N

)])
≥ Vi

(
ξ, L`iξ

)
≥ Vi

(
ξ, L`iξ + (n∗i+1 − ni)2πi

)
∀ ξ, ξ ∈ Π

= Vi


I

∑N

j=1
j 6=i

n∗j + ni

N


 , ti(mi,m

∗
−i)


∀ mi ∈M.

Therefore m∗ is a NE of the game induced by the proposed mechanism.
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CHAPTER V

Multi-rate Multicast Service Provisioning

5.1 Introduction

5.1.1 Motivation and Challenges

Multicasting provides an efficient method of transmitting data in real time ap-

plications from one source to many users. The source sends one copy of a message

to its users and this copy is replicated only at the branching points of a multicast

tree. Real life examples of such multicast applications are audio/video broadcasting,

teleconferencing, distributed databases, financial information, electronic newspapers,

weather maps and experimental data. Conventional multicast studies the problem in

which the rate received by all the users of the same multicast group is constant. The

inherent problem with such a formulation is that a constant rate will overwhelm the

slow receivers while starving the fast ones. Multi-rate multicast transmissions can

be used to address this problem by allowing a receiver to obtain data at a rate that

satisfies its requirements.

In this chapter we investigate the multi-rate multicast service provisioning problem

in wired networks with arbitrary topology and strategic users. We formulate the

problem as the combination of a market and a public goods allocations with strategic

users. All existing literature on multi-rate multicast assumes non-strategic users. As

we explain in Section 5.1.2 below, the nature of the problem suggests that strategic

behavior may be beneficial to the users. Strategic behavior results in new challenges

(conceptual and technical) in multi-rate multicast. The key issues and challenges

associated with this problem have been discussed in Section 1.2 of the thesis. Here

we propose a game form/mechanism for the solution of the problem, and analyze the

mechanism’s properties.
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5.1.2 Why is strategic behavior justified?

Strategic behavior in multi-rate multicast can be justified as follows. The liter-

ature on multi-rate multicast with non-strategic users reveals that the problem has

characteristics of the free-rider problem. That is, at any network link, a member of

a multicast group is charged only if it requests the maximum rate/bandwidth within

the group at that link. As a result of this feature of the problem, users are incen-

tivized to misrepresent their demand for bandwidth; by slightly reducing its demand,

a user can increase its overall utility because it slightly reduces its own satisfaction

from the quality of service it receives, but pays considerably less tax. Thus, strategic

behavior may result in higher overall utility for a user than non-strategic behavior.

5.1.3 Contribution of the chapter, (34)

The main contributions of this chapter are:

1. The formulation of the multi-rate multicast service provisioning problem in

wired networks with arbitrary topology and strategic users.

2. The discovery of a decentralized rate allocation mechanism for multi-rate multi-

cast service provisioning in networks with arbitrary/general topology and strate-

gic users, which possesses the following properties.

(P1) It implements weakly the solution of the centralized multi-rate multicast

service provisioning problem in Nash equilibria. That is, the allocation

corresponding to each NE of the game induced it is a globally optimal

solution of the corresponding centralized multi-rate multicast service pro-

visioning problem.

(P2) It is individually rational, that is, the network users/users voluntarily

participate in the rate allocation process.

(P3) It is budget balanced at all feasible allocations, that is, at all the al-

locations that correspond to NE messages/strategies as well as at all the

feasible allocations that correspond to off-equilibrium messages/strategies.

The results of this chapter are also a contribution to the theory of mechanism design.

In Section 5.2 we show that the multi-rate multicast problem with strategic users is

the combination of a market and a public goods problem with strategic users. Such

problems have not been previously investigated within the context of mechanism

design.
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5.1.4 Comparison with related work

Within the context of single rate and multi-rate multicast problems, studies have

addressed issues of bandwidth/rate allocation (79; 80; 81; 82; 83; 84; 85; 86; 87; 88;

96; 97), routing (89; 90; 91; 86) and reliability (92; 93). Most of the literature on rate

allocation is done via the notion of fairness (79; 80; 84; 85; 87), specifically max-min

fairness (94) and proportional fairness (95). The authors of (79) develop a unified

framework for diverse fairness objectives via the notion of fair allocation of utili-

ties. A more general approach to rate allocation is via utility maximization. Utility

maximization is more general because rate allocation with the fairness property is

utility maximizing when the utility has a special form. The authors of (88; 96) and

(97) investigated multi-rate multicast problems with a utility maximization objective.

In all the aforementioned papers, it is assumed the agents/users are not strategic,

that is, they are price-takers who are willing to follow/obey the rules of the resource

allocation mechanism.

In contrast to all the above papers, our work considers the multi-rate multicast

problems with strategic users, that is, users which are self-utility maximizers, and do

not necessarily obey the rules of the resource allocation mechanism, but have to be

incentivized/induced to follow them. To the best of our knowledge, the mechanism,

proposed in this chapter, is the first to present a mechanism possessing properties

(P1)-(P3) for the multi-rate multicast service provisioning problem with strategic

users.

5.1.5 Organization of the chapter

The rest of the chapter is organized as follows. In Section 5.2 we formulate the

multi-rate multicast service provisioning problem with strategic users. In Section

5.3 we describe the allocation mechanism/game form we propose for the solution of

the multi-rate multicast service provisioning problem. In Section 5.4 we analyze the

properties of the proposed mechanism. The proofs of all the results established in

this chapter appear in Appendix B.

53



5.2 The multi-rate multicast problem with strategic network

users, Problem Formulation

In this Section we present the formulation of the multi-rate multicast problem

in wired communication networks with strategic users. We proceed as follows, In

Section 5.3.2 we formulate the centralized multi-rate multicast problem the solution

of which we want to implement in Nash equilibria. In Section 5.3.3 we formulate the

decentralized multi-rate multicast problem with strategic network users, and state

our assumptions and objectives.

5.2.1 The centralized problem

We consider a wired network with N disjoint groups of strategic users; we denote

the set of groups by N = {G1, G2, · · · , GN}. The network topology, the capacity of

the network links, and the routes assigned to users’ services are fixed and given. We

denote user j in group Gi by (j,Gi). The utility function of user (j,Gi), Gi ∈ N , has

the form

V(j,Gi)(x(j,Gi), t(j,Gi)) = U(j,Gi)(x(j,Gi))− t(j,Gi). (5.1)

The term U(j,Gi)(x(j,Gi)) expresses user (j,Gi)’s satisfaction from the service x(j,Gi)

it receives. The term t(j,Gi) represents the tax (money) user (j,Gi) pays for the ser-

vices it receives. We assume that U(j,Gi) is a concave and increasing function of the

service x(j,Gi) user (j, Gi) receives, and t(j,Gi) ∈ R. When t(j,Gi) > 0 user (j,Gi) pays

money for the services it receives; this money is paid to other network users. When

t(j,Gi) < 0 user (j,Gi) receives money from other users. Overall, the amount of money

paid by some of the network users must be equal to the amount of money received

by the rest of the users so that
∑

Gi∈N
∑

j∈Gi t(j,Gi) = 0.

Denote: by L the set of links of the network; by cl the capacity of link l; by

R(j,Gi) the set of links l, l ∈ L, that form the route of user (j,Gi), (as pointed out

above each user’s route is fixed); by Gi(l) the set of users in Gi who use link l, i.e.,

Gi(l) = {j : j ∈ Gi and l ∈ R(j,Gi)}; by xGi(l) the maximum amount of band-

width requested by group Gi at link l, i.e., xGi(l) := maxj∈Gi(l){x(j,Gi)}; by Gi
max(l)

the set of users in Gi using link l and request xGi(l) amount of bandwidth, i.e.,

Gi
max(l) := {(j, Gi) : x(j,Gi) = xGi(l)}; by (j,Gmax

i (l)) a user in Gmax
i (l); by LGi the

set links used by users in group Gi, i.e., LGi := {l : ∃(j,Gi) s.t. l ∈ R(j,Gi)}; by
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Rmax
(j,Gi)

the set of links l, l ∈ R(j,Gi), such that x(j,Gi) = xGi(l), i.e. Rmax
(j,Gi)

= {l : l ∈
R(j,Gi) s.t. (j, Gi) = (j, Gmax

i (l))}; by Ql the set of groups that include at least one

user using link l, i.e., Ql := {Gi : l ∈ LGi}.

We assume that a central authority (the network manager) has access to all of the

above information. The objective of this authority is to solve the following centralized

optimization problem that we call Max.0.

max
x,t

∑
Gi∈N

∑
j∈Gi

[
U(j,Gi)(x(j,Gi))− t(j,Gi)

]
Max.0 (5.2)

subject to ∑
Gi∈Ql

max
j∈Gi(l)

x(j,Gi) ≤ cl, ∀ l ∈ L, (5.3)∑
Gi∈N

∑
j∈Gi

t(j,Gi) = 0, (5.4)

x(j,Gi) ≥ 0, ∀j ∈ Gi, Gi ∈ N , (5.5)

where (x, t) = (x(j,Gi), t(j,Gi), j ∈ Gi, Gi ∈ N ). The inequalities in (5.3) express the

capacity constraints that must be satisfied at each network link. The equality in (5.4)

expresses the fact that the budget must be balanced, i.e., the total amount of money

paid by some of the users must be equal to the amount of money received by the rest

of the users. The inequalities in (5.5) express the fact that the users’ received rates

x(j,Gi), Gi ∈ N , must be nonnegative. Every (x, t) that satisfies (5.3)-(5.5) is called a

feasible allocation/solution.

Problem Max.0 is equivalent to problem Max.1 below,

max
x

∑
Gi∈N

∑
j∈Gi

U(j,Gi)(x(j,Gi)) Max.1 (5.6)

subject to ∑
Gi∈Ql

∑
(j,Gi)∈Gi(l)

x(j,Gi) ≤ cl, ∀j ∈ Gi(l), ∀ l ∈ L, (5.7)

x(j,Gi) ≥ 0,∀j ∈ Gi, Gi ∈ N , (5.8)

in the following sense. The set of inequalities in (5.7) and (5.8) result in the same
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domain of solutions x as the set of inequalities in (5.3) and (5.5). Thus, any op-

timal solution (x(j,Gi), j ∈ Gi, Gi ∈ N ) of problem Max.1 along with any t =

{t(j,Gi), j ∈ Gi, Gi ∈ N} such that
∑

Gi∈N
∑

j∈Gi t(j,Gi) = 0 is also an optimal so-

lution (x∗(j,Gi), t
∗
(j,Gi)

, j ∈ Gi, Gi ∈ N ) of Max.0. We will refer to Max.1 as the

centralized multi-rate multicast problem.

Let E(l) be the set of inequalities defined by (5.7) for link l. Evey element of E(l)

is denoted by e(l)(e(l) ∈ E(l)). Define E(l, (j,Gi)) ⊆ E(l) by

E(l, (j,Gi)) := {e(l) ⊆ E(l) : x(j,Gi) appears in e(l)}.

Let U denote the set of functions

U : R+ ∪ {0} → R+ ∪ {0} (5.9)

where U is concave and increasing, and R+ denotes the set of non-negative real

numbers. Let T denote the set of all possible network topologies, network resources

and user routes. Consider problem Max.1 for all possible realizations

×Gi∈N ×j∈Gi U(j,Gi) × T ∈ U
∑
Gi∈N

|Gi| ×T, (5.10)

of the users’ utilities, the network topology, its resources and the users’ routes. Then

the solution of Max.1 for each (U, T ) ∈ U
∑
Gi∈N

|Gi| ×T defines a map

Γ : U
∑
Gi∈N

|Gi| ×T→ A, (5.11)

where A ∈ R
∑
Gi∈N

|Gi|
+ is the set of all possible rate/bandwidth allocations to the

network’s users. We call Γ the solution of the centralized problem.

5.2.2 The decentralized problem with strategic users

We consider the network model of the previous Section with the following assump-

tions on its information structure.

(A1) Each user knows only his own utility; this utility is his own private information.

Each user also knows the function space U to which the utilities of all other

users belong.

(A2) Each user behaves strategically, that is, each user is not a price-taker. The
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users’s objective is to maximize his own utility function.

(A3) The network manager knows the topology and resources of the network. This

knowledge is the manager’s private information. The network manager is not a

profit-maker (i.e. he does not have a utility function).

(A4) The network manager receives requests for service from the network users.

Based on these requests, he announces to each user (j, Gi),

1. The multicast group to which the user belongs.

2. The set of links that form user (j,Gi)’s route, R(j,Gi).

3. The capacity of each link in R(j,Gi).

(A5) Based on the network manager’s announcement, each strategic user competes

for resources (bandwidth) at each link of his route with the other users in that

link1.

From the above description it is clear that the information in the network is decen-

tralized. Every user in each group only knows his own utility but does not know the

other users’ utilities or the network’s topology and its resources. The network man-

ager knows the network’s topology and its resources, but does not know the users’

utilities. It is also clear that the network manager (which is not profit maker) acts

like an accountant who sets up the users’ routes, specifies the users competing for

resources/bandwidth at each link, collects the money from the users (j,Gi) that pay

tax (i.e. t(j,Gi) > 0) and distributes it to those users who receive money.

As a consequence of assumptions (A1)-(A5) we have at each link of the network

a decentralized resource allocation problem which can be studied/analyzed within

the context of implementation theory (98). These decentralized resource allocation

problems are not independent/decoupled, as the rate that each user receives at any

link of his own route must be the same. This constraint is dictated by the nature of

the multi-rate multicast service provisioning problem and has a direct implication on

the nature of the mechanism/game form we present in Section 5.3.

Under the above assumptions the objective is to determine a game form/mechanism

which has the following properties for each realization (T, U(j,Gi), j ∈ Gi, Gi ∈ N ):

1Since in this chapter we present decentralized resource allocation mechanisms in equilibrium
form, it is reasonable to assume that during the play of the game at each link l ∈ L, each user of
link l learns the set of the other users competing for bandwidth at l.
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(P1) It implements weakly in NE the social welfare maximizing correspondence de-

fined by the centralized problem Max.1. (We note the social welfare maximizing

correspondence is implementable in NE, cf. Section 2.1.4.)

(P2) It is individually rational, that is, the network users voluntarily participate in

the decentralized bandwidth allocation process.

(P3) It is budget balanced at every NE of the game it induces, as well as at all off

equilibrium messages/strategies that result in feasible allocations.

5.2.3 Key features/natures of the problem

Multi-rate multicast service provisioning with strategic users is the combination

of a market problem and a public goods problem. Thus, the model as well

as the allocation problem are new, even within the context of the mechanism design.

Specifically, resource allocation among groups is a market problem; resource alloca-

tion among the users of the same group is a public goods problem.

The market component: One can see that bandwidth allocation among groups is

a market problem as follows. One can consider a group as a single agent. The demand

of this group at each link of the network is the maximum of demands of the users

of the group on that link. So, with each group considered a single agent/singleton

the multi-rate multicast service provisioning problem with strategic users becomes

equivalent to the unicast service provisioning problem with strategic users. It is well

known (32) that the unicast service provisioning problem with strategic users is a

market problem with strategic users. At each link, the price per unit of bandwidth

paid collectively by each group2 using the link is the same.

The public goods component: One can see that the resource allocation problem

among the users of the same group is a public goods problem as follows. At equilib-

rium, the group receives at each link of the network a bandwidth/rate equal to the

maximum requested by a user in the group. Each user of the group receives, in gen-

eral, different rate, and the members of the group that use the link must collectively

pay the price per unit of bandwidth charged at the link. At each link, each user of

a group using the link contributes, in general, a different percentage of the price per

of unit of bandwidth charged at that link; this percentage depends on the amount of

2The price per unit of bandwidth paid collectively by each multicast group at a link l is equal to
the sum of the prices paid by the members’ of the group who use the link l.
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bandwidth received by the user, the user’s utility, and the number of users that are

present in the group and use the link. Consequently, the resource allocation problem

along users of the same group is a public goods problem.

In the following two sections we present a mechanism/game form for the problem

formulated in this section and prove that it possess properties (P1-P3) stated in

Section 5.2.2.

5.3 A Mechanism for Rate Allocation

Based on the characteristics of the multi-rate multicast problem, we present guide-

lines for the design of rate allocation mechanisms in Section 5.3.1. In Section 5.3.2,

we specify a mechanism/game form for the decentralized rate allocation problem for-

mulated in Section 5.2. In Section 5.3.3, we discuss and interpret the components of

the mechanism.

5.3.1 Guidelines for the design of the mechanism

In Section 5.2.3 we pointed out that the multi-rate multicast problem with strate-

gic users is the combination of a market problem and a public goods problem. There-

fore, the mechanism for rate allocation must capture both aspects/components of the

problem. We now discuss the attributes a mechansim must have so that it can capture

the market component and the public goods component of the multi-rate multicast

problem.

To address the market characteristics of the problem the mechanism must be such

that:

1. All groups that use a particular link must pay the same price per unit of band-

width at the link.

2. The bandwidth allocation to groups at each link must satisfy the link’s capacity

constraint.

3. The budget must be balanced, that is the sum of payments of all the groups

that use the network must be equal to zero at equilibrium and off equilibrium.

To address the public goods characteristics of the problem the mechanism must

be such that:
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4. At any link l, different users of the same group that use the link pay, in general,

different prices per unit of bandwidth at link l. Specifically: if user a of group

G requires more bandwidth than user b of group G at link l, user a must not

pay less per unit of bandwidth at link l than user b. In general, if users a and b

require the same amount of bandwidth at link l, they do not necessarily pay the

same price per unit of bandwidth at l because they may have different utility

functions.

5. The price that user i of group G pays per unit of bandwidth at a particular

link that he uses must not be under his control; that is, the price must be

determined by the messages/strategies of the other users that use the same

link. This feature of the mechanism is a consequence of the users’ strategic

behavior.

With these considerations in mind we proceed to specify our mechanism.

5.3.2 Specification of the mechanism

A game form/mechanism (c.f. Section 2.1.2) consists of two components M, f .

The component M denotes the users’ message/strategy space, M defines the infor-

mation the users are allowed to communicate with one another during the message

exchange process. The component f is the outcome function; f defines for every mes-

sage/strategy profile, the bandwidth/rate allocated to each user and the tax (subsidy)

each user pays (receives).

For the decentralized resource allocation problem formulated in Section 5.2 we

propose a game form/mechanism the components of which we describe below.

Message space: The message/strategy space for user (j, Gi), j ∈ Gi, Gi ∈ N , is

given by M(j,Gi) = R|R(j,Gi)
|+1

+ . Specifically, a message of user j is of the form

m(j,Gi) =

[
x(j,Gi), π

lj1
(j,Gi)

, π
lj2
(j,Gi)

, · · · , π
lj|R(j,Gi)

|

(j,Gi)

]
,

where |R(j,Gi)| denotes the number of links along the route R(j,Gi). The component

x(j,Gi) denotes the bandwidth/rate user (j, Gi) requests at all the links of his route.

The component π
ljk
(j,Gi)

∈ [0,Υ]3, 0 ≤ Υ < ∞, k = 1, 2, · · · , |R(j,Gi)|, denotes the

price per unit of bandwidth user (j, Gi) is willing to pay at link ljk of his route.

3For technical resons (cf. Theorem 5) we choose Υ to be arbitrary and large but finite.
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Remark V.1. Due to the nature of the multi-rate multicast service provisioning prob-

lem (see Section 5.2) the bandwidth/rate allocated to any user (j,Gi), j ∈ Gi, Gi ∈ N ,

must be the same at all links of his route. Thus, the nature of message m(j,Gi) is a

consequence of the above requirement.

Outcome Function: The outcome function f

f : ×Gi∈N ×j∈GiM(j,Gi) → R
∑
Gi∈N

|Gi|
+ × R

∑
Gi∈N

∑
j∈Gi

|R(j,Gi)
| (5.12)

is defined as follows: for any

m := (mi∈G1 ,mj∈G2 , · · · ,mk∈GN ) ∈M := ×Gi∈N ×j∈GiM(j,Gi),

f(m) = f(mi∈G1 ,mj∈G2 , · · · ,mk∈GN ) (5.13)

=
(
(x(i,G1), t(i,G1))i∈G1 , (x(j,G2), t(j,G2))j∈G2 , · · · , (x(k,GN ), t(k,GN ))k∈GN

)
,

where t(j,Gi) := (t
lj1
j , t

lj2
j , · · · , t

lj|Rj,Gi |

j ), for every (j, Gi), j ∈ Gi, Gi ∈ N , is the tax

(subsidy) that user (j,Gi) pays (receives) to (from) the other users, through the net-

work manager, for each link ljk ∈ R(j,Gi), and x(j,Gi), j ∈ Gi, Gi ∈ N , represents the

amount of bandwidth/rate allocated to user (j,Gi).

The tax t
ljk
j , k = 1, 2, · · · , |R(j,Gi)|,∀j ∈ Gi, Gi ∈ N , is defined in accordance with

the number of multicast groups using link l. We consider four cases.

• Case A. |Ql| = 1

Let Ql = {Gζ}. Then, for any j ∈ Gζ(l),

tl(j,Gζ) = I
{
x(j,Gζ) = xGζ(l)

}{
0 · I{xGζ(l) ≤ cl}+

1{xGζ(l) > cl}
1− 1{xGζ(l) > cl}

}
. (5.14)

The function I{·} denotes the indicator function, i.e.,

I{A} =

{
1 if A holds;

0 otherwise.
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The function 1{A}, used throughout the chapter, is defined as follows

1{A} =

{
1− ε if A holds;

0 otherwise.

where ε is bigger than zero and sufficiently small4; ε is chosen by the mechanism

designer.

• Case B. |Ql| = 2

Let Ql = {Gζ , Gζ+1}. We consider two subcases, |Gζ
max(l)| ≥ 2 and |Gζ

max(l)| = 1.

Part BI: |Gζ
max(l)| ≥ 2.

Let the label of (j, Gζ) in Gmax
ζ (l) be (k,Gmax

ζ (l)). Then:

If (j, Gζ) ∈ Gmax
ζ (l),

tl(k,Gζ) = π(k+1,Gζ
max(l))x(j,Gζ) +

(
PGζmax(l) − PGζ+1

max(l)

)2

α|Gζ
max(l)|

−2
PGζ+1(l)max

|Gζ
max(l)|

[
PGζmax(l) − PGζ+1

max(l)

][
xGζ+1

(l) + x(j,Gζ) − cl
γ

]
+

1{x(j,Gζ) > 0}1{xGζ+1
(l) + x(j,Gζ) − cl > 0}

1− 1{x(j,Gζ) > 0}1{xGζ+1
(l) + x(j,Gζ) − cl > 0}

(5.15)

If (k,Gζ) /∈ Gmax
ζ (l) then

tl(k,Gζ) = 0, (5.16)

where α and γ are sufficiently large constants, PGmax
ζ (l) =

∑
j∈Gζmax(l) π(j,Gζ

max(l)),

and k + 1 is defined mod (|Gmax
ζ |).

Part BII: If |Gζ
max(l)| = 1. Then:

If (j, Gζ) ∈ Gmax
ζ (l),

4Therefore, when A and B (both) hold, then 1{A}1{B}
1−1{A}1{B} ≈

1
0+ is well defined and it becomes a

large number.
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tl(j,Gζ) = PGmax
ζ+1(l)x(j,Gζ) +

(
PGζmax(l) − PGζ+1

max(l)

)2

α

−2PGζ+1
max(l)

[
PGζmax(l) − PGζ+1

max(l)

][
xGζ+1

(l) + x(j,Gζ) − cl
γ

]
+

1{x(j,Gζ) > 0}1{xGζ+1
(l) + x(j,Gζ) − cl > 0}

1− 1{x(j,Gζ) > 0}1{xGζ+1
(l) + x(j,Gζ) − cl > 0}

(5.17)

If (j, Gζ) /∈ Gmax
ζ (l) then

tl(j,Gζ) = 0. (5.18)

• Case C. |Ql| = 3

LetQl = {Gζ , Gζ+1, Gζ+2}. We consider two subcases,|Gζ
max(l)| ≥ 2 and |Gζ

max(l)| =
1.

Part CI: |Gζ
max(l)| ≥ 2. Then:

Let the label of (j, Gζ) in Gmax
ζ (l) be (k,Gmax

ζ (l)). Then:

If (j, Gζ) ∈ Gmax
ζ (l),

tl(j,Gζ) = π(k+1,Gζ
max(l))x(j,Gζ) +

(
PGζmax(l) − P−Gζmax(l)

)2

α |Gζ
max(l)|

−2
P−Gζmax(l)

|Gζ
max(l)|

[
PGζmax(l) − P−Gζmax(l)

][E−Gζmax(l) + x(j,Gζ)

γ

]
+

1{x(j,Gζ) > 0}1{E−Gmax
ζ (l) + x(j,Gζ) > 0}

1− 1{x(j,Gζ) > 0}1{E−Gmax
ζ (l) + x(j,Gζ) > 0}

(5.19)

If (j, Gζ) /∈ Gmax
ζ (l) then

tl(j,Gζ) = 0. (5.20)

Part CII: |Gζ
max(l)| = 1.

If (j, Gζ) ∈ Gmax
ζ (l),
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tl(j,Gζ) = P−Gζmax(l)x(j,Gζ) − 2P−Gζmax

[
π(j,Gζ

max(l)) − P−Gζmax

][E−Gζmax(l) + x(j,Gζ)

γ

]
+

(
π(j,Gζ

max(l)) − P−Gζmax(l)

)2

α
+

1{x(j,Gζ) > 0}1{E−Gmax
ζ (l) + x(j,Gζ) > 0}

1− 1{x(j,Gζ) > 0}1{E l−Gmax
ζ (l) + x(j,Gζ) > 0}

(5.21)

If (j, Gζ) /∈ Gmax
ζ (l) then

tl(j,Gζ) = 0, (5.22)

where

E−Gζmax(l) := xGζ+1
(l) + xGζ+2

(l)− cl,

PGζmax(l) :=
∑

j∈Gζmax(l)

π(j,Gζ
max(l)),

P−Gζmax(l) :=
PGζ+1

max(l) + PGζ+2
max(l)

2
.

• Case D. |Ql| > 3

Let Gi ∈ Ql. We consider two subcases, |Gi
max(l)| ≥ 2 and |Gi

max(l)| = 1.

Part DI: |Gi
max(l)| ≥ 2.

Let the label of (j, Gζ) in Gmax
ζ (l) be (k,Gmax

ζ (l)). Then:

If (j, Gζ) ∈ Gmax
ζ (l),

tl(j,Gi) = π(k+1,Gi
max(l))x(j,Gζ) +

(
PGimax(l) − P−Gimax(l)

)2

|Gi
max(l)|

−2
P−Gimax

|Gi
max(l)|

[
PGimax(l) − P−Gimax(l)

][
E−Gimax(l) + x(j,Gi)

γ

]
+

1{x(j,Gi) > 0}1{E−Gmax
i (l) + x(j,Gi) > 0}

1− 1{x(j,Gi) > 0}1{E−Gmax
i (l) + x(j,Gi) > 0}

+
ΓlGi

|Gmax
i (l)|

(5.23)

If (j, Gζ) /∈ Gmax
ζ (l) then

tl(j,Gζ) = 0. (5.24)
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where E−Gimax(l), PGimax(l), and P−Gimax(l) are defined by equations similar to (5.27)-

(5.29).

Part DII: |Gi
max(l)| = 1.

If (j, Gζ) ∈ Gmax
ζ (l),

tl(j,Gi) = P−Gimaxxj,Gi +
(
π(j,Gi

max(l)) − P−Gimax(l)

)2

−2P−Gimax

[
π(j,Gi

max(l)) − P−Gimax

][
E−Gimax(l) + x(j,Gi)

γ

]
+

1{x(j,Gi) > 0}1{E−Gmax
i (l) + x(j,Gi) > 0}

1− 1{x(j,Gi) > 0}1{E−Gmax
i (l) + x(j,Gi) > 0}

+ ΓlGi (5.25)

If (j, Gζ) /∈ Gmax
ζ (l) then

tl(j,Gζ) = 0, (5.26)

where,

E−Gimax(l) :=
{ ∑
Gk∈Ql
Gk 6=Gi

xGk(l)
}
− cl, (5.27)

PGimax(l) :=
∑

j∈Gimax(l)

π(j,Gi
max(l)), (5.28)

P−Gimax(l) :=

∑
Gk∈Ql
Gk 6=Gi

PGkmax(l)

|Ql| − 1
=

∑
Gk∈Ql
Gk 6=Gi

∑
j∈Gkmax(l) π(j,Gk

max(l))

|Ql| − 1
, (5.29)

ΓlGi :=

∑
Gs∈Ql
Gs 6=Gi

∑
Gr∈Ql

Gr 6=Gi,Gs

(
2PGsmax(l)PGrmax(l)

(
1 +

xGs (l)

γ

))
(|Ql| − 1)(|Ql| − 2)

+

2
∑

Gs∈Ql
Gs 6=Gi

∑
Gr∈Ql

Gr 6=Gi,Gs

∑
Gt∈Ql

Gt 6=Gi,Gs,Gr
PGrmax(l)

(
PGsmax(l)EGtmax(l) − PGtmax(l)xGs(l)

)
(|Ql| − 1)2(|Ql| − 3)γ

+

2
∑

Gs∈Ql
Gs 6=Gi

∑
Gr∈Ql

Gr 6=Gi,Gs
PGrmax(l)

(
PGsmax(l)EGrmax(l) − PGrmax(l)xGs(l)

)
(|Ql| − 1)2(|Ql| − 2)γ

−
2P 2
−Gimax(l) E−Gimax(l)

γ
−

∑
Gs∈Ql
G 6=Gi

PGsmax(l)
2

(|Ql| − 1)
− P 2

−Gimax(l). (5.30)

Next we specify additional subsidies S l that user (j,Gi), j ∈ Gi, Gi ∈ N , may
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receive. For that matter we consider all links l ∈ L where |Ql| ≤ 3. For each such

link l, we define the quantity

S l :=
∑
Gζ∈Ql

∑
(j,Gζ)∈Gζmax(l)

−tl(j,Gζ)

[
I{Case B}+ I{Case C}

]
. (5.31)

Since α and γ are sufficiently large,

S l = o(1)−
∑

Gζ ,Gζ∈Ql

PGmax
ζ (l)xGζ(l)

[
I{Case B(Part BI)}+ I{Case C(Part CI)}

]

−
∑

Gζ ,Gζ∈Ql

P−Gmax
ζ (l)xGζ(l)

[
I{Case B(Part BII)}+ I{Case C(Part CII)}

]
:= o(1)− Sl+. (5.32)

For each l ∈ L where |Ql| ≤ 3 the network manager chooses at random a user

kl /∈
⋃
Gi∈Ql Gi and assigns the subsidy S l to user kl. Let l1, l2, · · · , lr be the set of

links such that |Qli | ≤ 3, and let kli be the corresponding users that receive S li .

Based on the above, the tax (subsidy) paid (received) by user (j,Gi), j ∈ Gi, Gi ∈
N , is the following. If (j, Gi) 6= kl1 , kl2 , · · · klr then

t(j,Gi) =
∑

l∈R(j,Gi)

tl(j,Gi), (5.33)

where for each l ∈ R(j,Gi), t
l
(j,Gi)

is determined in accordance with |Ql|. If (j, Gi) = kln

for some kln ∈
⋃r
m=1 klm , then

tkli =
∑
l∈Rkli

tlkli
+ S li , (5.34)

where S li is defined by (5.31) and Rkli
is the set of links used by user kli .

Note that S li is not controlled by user kli . Thus, the presence (or absence) of S li

does not influence the strategic behavior of user kli . We have assumed here that the

users kl1 , kl2 , · · · , klr , are distinct. Expressions similar to the above hold when the

users kl1 , kl2 , · · · , klr are not distinct.
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5.3.3 Discussion/Interpretation of the Mechanism

We now interpret the mechanism presented in Section 5.3.2, based on the guide-

lines for its design, presented in Section 5.3.1. We focus on Case D (Part DI). The

mechanism’s interpretation is similar in all other cases. To proceed with the inter-

pretation we define:

∆
(j,Gi)
1 (l) := π(j+1,Gi

max(l))x(j,Gi),

∆
(j,Gi)
2 (l) :=

(
PGimax(l) − P−Gimax(l)

)2

|Gi
max(l)|

−2
P−Gimax(l)

|Gi
max(l)|

[
PGimax(l) − P−Gimax(l)

][
E−Gimax(l) + x(j,Gi)

γ

]
+

1{x(j,Gi) > 0}1{E−Gmax
i (l) + x(j,Gi) > 0}

1− 1{x(j,Gi) > 0}1{E−Gmax
i (l) + x(j,Gi) > 0}

∆
(j,Gi)
3 (l) :=

ΓlGi
|Gmax

i (l)|
∆

(j,Gi)
4 (l) := I

{
x(j,Gi) = xGi(l)

}
.

Note that Eqs. (5.23) and (5.24) can be collectively rewritten as follows,

tl(j,Gi) =
[
∆

(j,Gi)
1 (l) + ∆

(j,Gi)
2 (l) + ∆

(j,Gi)
3 (l)

]
×∆

(j,Gi)
4 (l). (5.35)

∆
(j,Gi)
1 (l),∆

(j,Gi)
2 (l),∆

(j,Gi)
3 (l), and ∆

(j,Gi)
4 (l) collectively represent the tax (subsidy)

user (j, Gi) pays (receives) for using link l. The terms ∆
(j,Gi)
1 (l) and ∆

(j,Gi)
4 (l) (re-

spectively, ∆
(j,Gi)
2 (l) and ∆

(j,Gi)
3 (l)) capture/describe the public goods (respectively,

market) component of the problem.

We begin with the interpretation of the public goods terms. Note that user (j, Gi)

pays taxes (receives subsidies) at link l only if his bandwidth demand is the maximum

among the users of group Gi at link l. This is expressed by the term ∆
(j,Gi)
4 (l). By

assumption the cardinality of the set users from Gi who have maximum bandwidth

demand at link l is greater than one. Assume now that (j, Gi) is one of the users of

group Gi that have maximum bandwidth demand at link l, and let (k,Gmax
i (l)) be the

index of this user in Gmax
i (l). The price per unit of bandwidth at link l that this user

pays is not under his control; it is determined by the message/strategy (π(k+1,Gi
max(l)))

of user (k + 1, Gmax
i (l)), that is user k + 1 of the group Gmax

i (l)5. This is reflected

5The situation where (j,Gi) is the only user of group Gi with the maximum demand at link l is
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in the term ∆
(j,Gi)
1 (l) which represents the amount of tax user (j,Gi) pays for the

bandwidth he receives at link l. The two terms are consistent with the design guide-

lines associated with the public goods features of the mechanism presented in Section

5.3.1. Specifically, terms ∆
(j,Gi)
1 (l) and ∆

(j,Gi)
4 (l) demonstrate that: (i) at any link l,

if user a of group Gi receives more bandwidth than user b of the same group, then

user a pays no less for this bandwidth than user b; (ii) if two users a and b of the

same group require maximum amount of bandwidth at link l they do not necessarily

pay the same price per unit of bandwidth at that link.

As a result of the specification and interpretation of the terms ∆
(j,Gi)
1 (l) and

∆
(j,Gi)
4 (l), the price group Gi pays per unit of bandwidth at link l is the sum of the

prices its users with maximum demand at link l pay. That is,

PGmax
i (l) =

∑
(j,Gmax

i (l))∈Gmax
i (l)

π(j,Gmax
i (l)).

We continue with interpretation of the market terms of the tax function. The

term ∆
(j,Gi)
2 (l) provides the following incentives to the groups using link l: (1) To

bid/propose the same price per unit of bandwidth at that link. (2) To collectively

request a total bandwidth that does not exceed the capacity of the link. The incentive

provided to all groups to bid the same price per unit of bandwidth is described by

the term
(PGimax−P−Gimax)

2

|Gimax(l)| . The incentive provided to all users to collectively request

a total bandwidth that does not exceed the link’s capacity is captured by the term

1{x(j,Gi) > 0}1{E−Gmax
i (l) + x(j,Gi) > 0}

1− 1{x(j,Gi) > 0}1{E l−Gmax
i (l) + x(j,Gi) > 0}

.

Note that each group is very heavily penalized if it requests a nonzero bandwidth at

l, and, collectively, all the groups using l request a total bandwidth that exceeds the

link’s capacity cl. A joint incentive provided to all users to bid the same price per

unit of bandwidth and to utilize the total capacity of the link is captured by the term

−2
P−Gimax(l)

|Gi
max(l)|

[
PGimax(l) − P−Gimax(l)

][
E−Gimax(l) + x(j,Gi)

γ

]
.

The goal of the term ∆
(j,Gi)
3 (l) is to lead to a balanced budget. It is important to

discussed in other cases (e.g. Case D (Part DII)), where it is shown again that the price user (j,Gi)
pays per unit of bandwidth at link l is not controlled by him.
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note that the term ∆
(j,Gi)
3 (l) is not controlled by group Gi, consequently, by any user

in group Gi. Therefore, the presence of ∆
(j,Gi)
3 (l) does not affect the behavior of any

user of group Gi. The terms ∆
(j,Gi)
2 (l) and ∆

(j,Gi)
3 (l) are consistent with the guidelines

that were presented in Section 5.3.1 concerning the market featurs of the mechanism.

5.4 Properties of the Mechanism

We prove that the mechanism proposed in Section 5.3 has the following properties.

(P1) It implements the solution of problem Max.0 in Nash equilibria. (P2) It is

individually rational. (P3) It is budget-balanced at every feasible allocation.

We establish the above properties by proceeding as follows. First, we prove that

the game induced by the mechanism proposed in Section 5.3 has at lest one pure NE

(Theorem V.2), and that all NE of the game induced by the game form/mechanism

of Section 5.3 result in feasible solutions of the centralized problem Max.0 (Theorem

V.3). Afterwards, we establish that the mechanism is budget-balanced at all feasible

allocations. (Lemma V.6). Then, we show that network users voluntarily participate

in the allocation process. We do this by showing that each user’s utility/payoff

resulting from the allocations corresponding to all NE of the game induced by the

mechanism is greater than or equal to zero, the payoff each user receives when he does

not participate in the allocation process (Theorem V.7). Finally, we show that the

mechanism implements in Nash equilibria the solution of the centralized allocation

problem Max.0 (Theorem V.8).

We present the proofs of the following theorems and lemmas in the Appendix B.

Theorem V.2 (Existence of NE). The game induced by the mechanism of Section

5.3 has at lest one pure NE.

Theorem V.3 (Feasibility). If m∗ = (x∗,π∗) is a NE of the game induced by the

game form of Section 5.3 and the users’ utility functions, then the allocation x∗ is a

feasible solution of problem Max.0.

The following lemma presents some key properties of NE prices and rates.

Lemma V.4. Let m∗ = (x∗,π∗) be a NE of the game induced by game form of

Section 5.3. Then for every l ∈ L and Gi ∈ Ql, we have,

P ∗−Gimax(l) = P ∗Gimax(l) =: P ∗Gmax(l) ∀ Gi ∈ Ql (5.36)

P ∗Gmax(l)

[
E∗−Gimax(l) + x∗Gi(l)

γ

]
= 0. (5.37)
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For every user (j, Gi
max(l)) where Gi ∈ Ql, we have,

∂tl(j,Gmax
i (l))

∂xGi(l)

∣∣∣
m=m∗

=

{
π∗(j+1,Gi

max(l)), if |Gi
max(l)| ≥ 2 and Gi ∈ Ql,

P ∗Gmax(l), otherwise,
(5.38)

and ∂U(j,Gmax
i (l))(x(j,Gmax

i (l)))

∂x(j,Gmax
i (l))

−
∑

l∈Rmax
(j,Gi)

∂tl(j,Gmax
i (l))

∂x(j,Gmax
i (l))


m=m∗

= 0. (5.39)

An immediate consequence of Lemma V.4 and the specification of the tax for each

user, defined by Eqs. (5.15)-(5.34), is the following.

Corollary V.5. At every NE m∗ of the mechanism the tax function has the following

form,

tl(j,Gmax
i (l))(m

∗) =



π∗(j+1,Gmax
i (l))x

∗
Gi

(l) Case B, Part BI;

P ∗Gmaxx∗Gi(l) Case B, Part BII;

π∗(j+1,Gmax
i (l))x

∗
Gi

(l) Case C, Part CI;

P ∗Gmaxx∗Gi(l) Case C, Part CII;

π∗(j+1,Gmax
i (l))x

∗
Gi

(l)−
P ∗
Gmax(l)

x−Gi (l)
∗

|Gmax
i | Case D, Part DI;

P ∗Gmax(l)

(
x∗Gi(l)− x

∗
−Gi(l)

)
Case D, Part DII


(5.40)

where

x∗−Gi(l) =

∑
Gj

Gj 6=Gi
Gj∈Ql

x∗Gj(l)

|Ql| − 1
.

When (j, Gi) /∈ Gmax
i (l), tl(j,Gi)(m

∗) = 0. Therefore,

t(j,Gi)(m
∗) =

∑
l∈Rmax

(j,Gi)

tl(j,Gi)(m
∗), (5.41)

for (j, Gi) 6= kl1 , kl2 , · · · , klr , (cf. Section 5.3), and for j = kls , s = 1, 2, · · · , r,

t(j,Gi)(m
∗) =

∑
l∈Rmax

(j,Gi)

tl(j,Gi)(m
∗)− S∗j+ (5.42)
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In the following lemma, we prove that the proposed mechanism is always budget

balanced.

Lemma V.6. The proposed mechanism/game form is budget balanced at every fea-

sible allocation. That is, the mechanism is budget-balanced at all allocations corre-

sponding to NE messages as well as to all off-equilibrium messages/strategies that

result in feasible allocations.

The next result asserts that the mechanism/game form proposed in Section 5.3 is

individually rational.

Theorem V.7. ( Individual Rationality): The game form specified in Section

5.3 is individually rational, i.e., at every NE the corresponding allocation (x∗, t∗) is

weakly preferred by all users to zero, the payoff each user receives when he does not

participate in the allocation process.

In the following theorem we show that every NE of the game induced by the game

form proposed in Section 5.3 is efficient.

Theorem V.8. (Nash Implementation): The allocation (f(m∗) = (x∗, t∗)) cor-

responding to a NE message m∗ is an optimal solution of the centralized problem

Max.0.
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CHAPTER VI

Summary and Future Directions

6.1 Summary

In this thesis we investigated static decentralized resource allocation problems

with strategic users. Unicast service provisioning and multi-rate multicast service

provisioning problems arise in wired communication networks; power allocation and

spectrum sharing arise in wireless communication networks. The models associated

with unicast service provisioning, power allocation and spectrum sharing, and multi-

rate multicast service provisioning capture generic issues that arise in market prob-

lems, public goods problems, and problems that are a combination of markets and

public goods, respectively.

For each of the problems arising in wired networks we developed game forms/

mechanisms and analyzed them in equilibrium. We proved that the proposed game

forms possess the following properties. (P1) They implement in NE the social welfare

maximizing correspondence. (P2) They are budget balanced at the allocations corre-

sponding to all NE of the game induced by the mechanism, as well as at all feasible

allocations corresponding to off equilibrium messages. (P3) They are individually

rational, that is users voluntarily participate in the allocation process specified by

the mechanism. For the problem arising in wireless networks we developed a game

form that possesses properties (P2) and (P3), and implements in NE the Pareto cor-

respondence.

Within the context of the above mentioned network problems, the game forms de-

veloped in this thesis are the only currently existing mechanisms that possess all the

above-stated properties. The results on power allocation and spectrum sharing, as

well as the results on multi-rate multicast service provisioning are also a contribution
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to the state of the art of implementation theory.

There are several problems of paramount importance that remain unsolved and

are worthy of investigation. Below we discuss some of these problems.

6.2 Future directions

6.2.1 Algorithmic issues

Currently, we do not have algorithms (tâtonnement processes/iterative processes)

for the computation of the NE of the games induced by the game forms we developed.

The lack of algorithms for decentralized resource allocation problems where strategic

users posses private information is a major open problems in implementation theory.

The major difficulty in constructive algorithms that guarantee to converge to NE is

the following. Consider an algorithm for a decentralized resource allocation problem

where strategic users possess private information. At each stage of the algorithm

each user updates his strategy/message. Since the users’ utilities are not common

knowledge, after each update a strategic user, say user i, can report any strategy

he deems to be advantageous for himself; that is, user i can misreport/misrepresent

his update and the other users can not check whether or not user i is following the

rules of the algorithm. Consequently, the algorithm must provide incentives to the

users/agents to follow its rules at each one of its stages. Such a provision of incentives

must be based on all the information available at the current stage, and must, in

general, take the whole future into account. We have not been able to discover an

algorithm with the above feature. To the best of our knowledge, algorithms with the

above feature are not currently available.

6.2.2 Dynamic environments

In this thesis we focused on static decentralized resource allocation problems where

the system characteristics (e.g. the network topology, the number of users, the users’

utilities) do not change with time. The development of mechanisms (that is, situa-

tions where the network topology and resources, and/or the number of users, and/or

the users’ utilities vary with time) is an important open problem. The dynamic mech-

anisms currently available in the literature (7; 8; 58) are direct game forms/direct rev-

elation mechanisms, and the existing results are on truthful implementation, which

does not guarantee that for any environment all NE of the game induced by the
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direct revelation mechanism result in allocations that are in the choice set of the

social choice rule/goal correspondence (see (13)). In our opinion, progress in the de-

sign of decentralized resource allocation mechanisms for dynamic environments will

require a better understanding of the interplay between implementation theory and

dynamic game theory. We also believe that resolving the key issues associated with

the development of algorithms for static decentralized resource allocation problems

(cf. Section 6.2.1) will help us understand better the nature of dynamic decentralized

resource allocation problems where strategic users possess private information.

6.2.3 Beyond quasi-linear forms

In this thesis, within the context of unicast and multi-rate multicast service pro-

visioning we addressed resource allocation problems where the users’ utilities are

quasi-linear. In many real systems the network objective or the users’ utilities are

not separable in money (tax). Problems with non-quasi-linear objectives are harder

to solve as they do not have a general structure or methodology for their solution,

and have not received much attention in the mechanism design literature. Develop-

ing game forms/mechanisms that implement in some equilibrium concept non-quasi

linear network objectives is a problem of fundamental importance. A step in this di-

rection are the results reported in the power allocation and spectrum sharing problem

we investigated in Chapter IV.
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APPENDIX A

Appendix for Unicast Service Provisioning

Proof of Theorem III.1. By the construction of the mechanism x∗i ≥ 0 for all

i ∈ N . Suppose that x∗ = (x∗1, · · · , x∗N) is such that the capacity constraint is

violated at some link l and x∗j > 0 (i.e. user j will be heavily charged because
1{x∗j>0}1{E∗l−j+x∗j>0}

1−1{x∗j>0}1{E∗l−j+x∗j>0} ≈
1

0+
which is a large number). Now, Consider xj such that: (i)

either xj > 0 and
∑

k∈Gl
k 6=j

x∗k + xj ≤ cl; or (ii) xj = 0. Then,
1{xj>0}1{E∗l−j+xj>0}

1−1{xj>0}1{E∗l−j+xj>0} = 0,

therefore,

Vj(mj,m
∗
−j) > Vj(m∗j ,m∗−j), (A.1)

and (A.1) contradicts the fact that m∗ = (m∗j ,m
∗
−j) is a NE. Consequently, x∗ is a

feasible allocation of problem Max.

Proof of Lemma III.2. We prove this lemma by considering the case |Gl| > 3.

The cases |Gl| = 2 and |Gl| = 3 can be proved similarly.

Consider user i ∈ Gl (|Gl| > 3). Since user i does not control Φl
i defined by (3.14),

(i.e. Φl
i does not depend on xi and pli),

∂Φl
i

∂xi
=
∂Φl

i

∂pli
= 0. (A.2)

Eq. (3.13) along with (A.2) imply

∂tli
∂pli
|m=m∗ = 2

[
(p∗li − P ∗l−i)− P ∗l−i

(E∗l−i + x∗i
γ

)]
= 0. (A.3)
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Summing Eq. (A.3) over all i ∈ G l, we get,

∑
i∈Gl

∂tli
∂pli
|m=m∗ =

∑
i∈Gl

[
(p∗li − P ∗l−i)− P ∗l−i

(E∗l−i + x∗i
γ

)]

=
∑
i∈Gl
−P ∗l−i

(E∗l−i + x∗i
γ

)
= 0, (A.4)

which, because of Theorem V.3 and the positivity of prices, implies

−P ∗l−i
(E∗l−i + x∗i

γ

)
= 0. (A.5)

for every i ∈ G l. Then Eq. (A.5) gives

p∗li = P ∗l−i. (A.6)

for all i ∈ Gl. From Eqs. (A.5) and (A.6) it follows that,

p∗l
(E∗l
γ

)
= 0, (A.7)

p∗li = p∗lj = P ∗l−i = p∗l. (A.8)

Eqs. (A.7) and (A.8) along with (3.13) give

∂tli
∂xi
|m=m∗ = p∗l. (A.9)

By (A.8), (A.7) and (A.9)1 the proof is complete.

Proof of Lemma III.3. Equation (3.30) together with (3.31) and (3.32) imply

that
∑

l∈L
∑

i∈Gl t
∗l
i = 0. Now, we prove that the proposed mechanism is also budget

balanced off equilibrium. First we show that, for every l ∈ L where |Gl| > 3∑
i∈Gl,|Gl|>3

tli = 0. (A.10)

1Note that, since the derivative of an indicator function is a Dirac delta function ((78), p. 94), to
have a well defined derivative of ti with respect to xi at the boundary, i.e., when

∑
i∈Gl xi = cl, the

disecfferentiation is from the left. This observation holds throughout the proofs appearing in this
Appendix.
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By a little algebra we can show the following equalities,

∑
i∈Gl

pli
2

=
∑
i∈Gl

[∑
j∈Gl
j 6=i

pl 2
j

|G l| − 1

]
,

∑
i∈Gl

(
2pliP

l
−i + 2P l

−ip
l
i

xi
γ
− P l

−ixi

)
=

∑
i∈Gl

[∑
j∈Gl
j 6=i

∑
k∈Gl
k 6=i,j

(
2pljp

l
k(1 +

xj
γ

)− xjplk
)

(|G l| − 1)(|G l| − 2)

]
,

∑
i∈Gl

P l
−ip

l
i

E l−i
γ

=
∑
i∈Gl

[∑
j∈Gl
j 6=i

∑
k∈Gl
k 6=i,j

∑
r∈Gl
r 6=i,j,k

2plkp
l
jE lr

γ(|G l| − 1)2(|G l| − 3)
+

∑
j∈Gl
j 6=i

∑
k∈Gl
k 6=i,j

2plkp
l
jE lk

γ(|G l| − 1)2(|G l| − 2)

]
,

∑
i∈Gl

P l
−i

2xi
γ

=
∑
i∈Gl

[∑
j∈Gl
j 6=i

∑
k∈Gl
k 6=i,j

∑
r∈Gl
r 6=i,j,k

xjp
l
r

γ(|G l| − 1)2(|G l| − 3)
+

∑
j∈Gl
j 6=i

∑
k∈Gl
k 6=i,j

xjp
l
k

γ(|G l| − 1)2(|G l| − 2)

]
.(A.11)

From (B.13)-(B.13) we conclude that

∑
i∈Gl

[
P l
−ixi + (pli − P l

−i)
2 − 2P l

−i(p
l
i − P l

−i)
(E l−i + xi

γ

)]
= −

∑
i∈Gl

Φl
i (A.12)

Eq. (B.14) along with Eq. (3.13) imply that
∑

i∈Gl,|Gl|>3 t
l
i = 0.

Next consider all links l ∈ L where |Gl| = 2, 3. In accordance with the notation

in section 3.3, let these links be l1, l2, · · · , lr. Then, by the specification of the tax

function (cf. section 3.3.1, Eqs. (3.6)-(3.10)) we obtain,

r∑
j=1

{[
t
lj
ilj,1

+ t
lj
ilj,2

]
1{|Glj | = 2}+

[
t
lj
ilj,1

+ t
lj
ilj,2

+ t
lj
ilj,3

]
1{|Glj | = 3}

}
+

r∑
j=1

Qlj = 0, (A.13)

where if |Glj | = 2 then {ilj,1 , ilj,2} = Glj and if |Glj | = 3 then {ilj,1 , ilj,2 , ilj,3} = Glj ,
j = 1, 2, · · · , r.
Finally note that,

N∑
i=1

ti =
∑

l∈L:|Gl|=2

∑
i∈Gl

tli +
∑

l∈L:|Gl|=3

∑
i∈Gl

tli +
∑

l∈L:|Gl|>3

∑
i∈Gl

tli +
r∑
j=1

Qlj = 0. (A.14)
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Proof of Theorem III.4. We need to show that Vi(x∗, t∗i ) ≥ Vi(0, 0) = 0 for every

i ∈ N . By the property of NE it follows that

Vi(x∗, t∗) ≥ Vi(x∗−i, xi, ti, t∗−i) ∀ (xi, ti). (A.15)

So, it is enough to find (xi, pi) ∈Mi such that

Vi(x∗−i, xi, ti, t∗−i) ≥ 0. (A.16)

We set xi = 0 and examine the cases |Gl| = 2, |Gl| = 3 and |Gl| > 3, separately.

• Case 1,
∣∣G l∣∣ = 2

With xi = 0, plj = p∗l and xj = x∗j , Eq. (3.6) defines the following function

F2(pli):

F2(pli) :=
(pli − p∗l)2

α
− 2∗l(pli − p∗l)

(
x∗j − cl
γ

)
Clearly, at

pli = p∗l (A.17)

F2(p∗l) = 0. Then, from Eq. (3.6) it follows that

tli(x
∗
−i, 0, p

∗
−i, p

∗l) = 0. (A.18)

• Case 2,
∣∣G l∣∣ = 3

Denote by i, j, k the users of link l. With xi = 0, xj = x∗j , xk = x∗k and plj =

plk = p∗l, Eq. (3.8) defines the following function F3(pli):

F3(pli) := (pli − p∗l)2 − 2p∗l(pli − p∗l)
(
x∗j + x∗k − cl

γ

)
+ Ω∗li

= pli
2 − 2plip

∗l
(

1 +
E∗l−i
γ

)
+ p∗l

2
(

1 + 2
E∗l−i
γ

)
+ Ω∗li (A.19)

F3(pli) is a quadratic polynomial in pli. Setting F3(pli) = 0 we obtain the root
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℘l
i,3 = p∗l

(
1 +
E∗l−i
γ

)
+

√(
p∗l
E∗l−i
γ

)2

+ x∗−ip
∗l +

p∗l
2
(cl − E∗l−i)
γ

(A.20)

Since by its definition γ is sufficiently large, it follows from Eq. (A.20) that

℘l
i,3 > 0, i.e. ℘l

i,3 is a feasible price. Therefore, from Eq. (3.8) we obtain

tli(x
∗
−i, 0, p

∗
−i, ℘

l
i,3) = 0. (A.21)

• Case 3,
∣∣G l∣∣ > 3

With xi = 0, xj = x∗j ∀j 6= i, j ∈ Gl, plj = p∗l, j ∈ Gl, Eqs. (3.13) and (3.14)

define (after a little algebra) the following function F>3(pli),

F>3(pli) := (pli − p∗l)2 − 2p∗l(pli − p∗l)
(E∗l−i
γ

)
+ Φ∗li

= pli
2 − 2plip

∗l
(

1 +
E∗l−i
γ

)
+ p∗l

2
(

1 + 2
E∗l−i
γ

)
− x∗−ip∗l (A.22)

F>3(pli) is a quadratic polynomial in pli. Setting F>3(pli) = 0 we obtain the root

℘l
i,>3 = p∗l

(
1 +
E∗l−i
γ

)
+

√(
p∗l
E∗l−i
γ

)2

+ x∗−ip
∗l (A.23)

where

x∗−i :=

∑
j 6=i x

∗
j

|Gl| − 1
. (A.24)

Since by its definition γ is susecfficiently large, it follows from Eq. (A.23) that

℘l
i,>3 > 0 (i.e. ℘l

i,>3 is a feasible price). Therefore, from Eq. (3.13) we get

tli(x
∗
−i, 0, p

∗
−i, ℘

l
i,>3) = 0. (A.25)
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Consequently, at mi = (xi, pi) = (0, p
li1
i , p

li2
i , · · · , p

li|Ri|
i ), (where, p

lik
i , k =

1, 2, · · · , |Ri|, are defined either by (A.17) or (A.20) or (A.23), depending on

the cardinality Glik , k = 1, 2, · · · , |Ri|), we obtain

Vi(x, t)

∣∣∣∣
m=(mi,m∗−i)

= ui(0)−
|Ri|∑
k=0

t
lik
i (x∗−i, 0, p

∗lik
−i , p

lik
i ) = ui(0) = 0.(A.26)

when i 6= kl1 , kl2 , · · · , klr .

When i = klj , j = 1, 2, · · · , r,

Vi(x, t)|m=(mi,m∗−i)
= ui(0)−

|Ri|∑
k=0

t
lik
i (x∗−i, 0, p

∗lik
−i , p

lik
i )−Q∗lj = −Q∗lj ≥ 0,(A.27)

where Q∗lj = Q∗{lj :|G
lj |=2} or Q∗lj = Q∗{lj :|G

lj |=3}. Combining (A.15), (B.18) and

(B.19) we obtain

Vi(x∗i , t∗) ≥ Vi(x, t)

∣∣∣∣
m=(mi,m∗−i)

≥ 0 (A.28)

and this establishes (A.16) and completes the proof.

Proof of Theorem III.5. Let (x∗, p∗) be an arbitrary NE of the game (M, f,V)

induced by the proposed game form. Then by the properties of NE, we must have

that for every user i ∈ N ,

∂Vi(m)

∂xi
|m=m∗ =

[
∂ui(xi)

∂xi
− ∂ti(m)

∂xi

]
|m=m∗ = 0. (A.29)

By Lemma V.4, Eq. (A.29) is equivalent to

∂ui(xi)

∂xi
−
∑
l∈Ri

p∗l = 0. (A.30)

Furthermore, by Lemma V.4 we have p∗lE∗l/γ = 0 and since γ > 0

p∗lE∗l = p∗l
[∑
k∈Gl

x∗k − cl
]

= 0 (A.31)

Equation (A.29) holds for every user i ∈ N ; equation (A.31) holds for every link

l ∈ L.
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Consider now the centralized problem Max. Since the functions ui, i ∈ N are

concave and differentiable and the constraints are linear, Slater’s condition ((102))

is satisfied, the duality gap is equal to zero, and the Karush Kuhn Tucker (KKT)

conditions are necessary and sufficient to guarantee the optimality of any allocation

x := (x1, x2, · · · , xN) that satisfies them. Let λl be the Lagrange multiplier cor-

responding to the capacity constraint for link l and νi be the Lagrange multiplier

corresponding to the demand constraint. The Lagrangian for problem Max is

L(x, λ, ν) =
∑
i∈N

ui(xi)−
∑
l∈L

λl
(∑
i∈Gl

xi − cl
)

+
∑
i∈N

νixi (A.32)

and the KKT conditions are:

∂L(x∗, λ∗, ν∗)

∂xi
=
∂ui(x

∗
i )

∂xi
−
∑
l∈Ri

λ∗l + ν∗i = 0 (A.33)

λ∗l
(∑
i∈Gl

x∗i − cl
)

= 0 ∀ l ∈ L (A.34)

ν∗i x
∗
i = 0 ∀i ∈ N (A.35)

Since the KKT conditions are necessary and sufficient to guarantee the optimality

of any allocation x = (x1, x2, · · · , xN) that satisfies them, it is enough to find ν∗i and

λ∗l, l ∈ L, such that Eqs. (A.33), (A.34) and (A.35) are satisfied.

Set ν∗i = 0, i ∈ N , and λ∗l = p∗l, l ∈ L. Then (A.35) is satisfied and (A.33) and

(A.34) become,

∂ui(x
∗
i )

∂xi
−
∑
l∈Ri

p∗l = 0 (A.36)

p∗l
(∑
i∈Gl

xi − cl
)

= 0 ∀ l ∈ L (A.37)

respectively, and they are satisfied because they are identical to Eqs. (A.29) and

(A.31), respectively. Furthermore, by the construction of the game form
∑N

i=1 t
∗
i = 0.

Consequently, the solution x∗ = (x∗1, x
∗
2, · · · , x∗N) of (A.36) and (A.37) along with

the specification of t∗i , i = 1, 2, · · · , N, are an optimal solution of Problem Max. At

the same time (A.36) and (A.37) and
∑N

i=1 t
∗
i = 0 are satisfied by the allocation

f(m∗) corresponding to the NE m∗. Consequently, the NE m∗ results in allocation

f(m∗) = (x∗1, x
∗
2, · · · , x∗N , t∗1, t∗2, · · · , t∗N) that is an optimal solution of Problem Max.
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Since the NE m∗ was arbitrarily chosen, every NE m∗ of the game form proposed in

section 3.3 results in an optimal solution of Problem Max.

Proof of Theorem III.6. First we note that an optimal solution

(x∗, t∗) = (x∗1, x
∗
2, · · · , x∗N , t∗1, t∗2, · · · , t∗N)

(where ti, i = 1, 2, · · · , N , are defined in section 3.3.1) of Problem Max exists. This

follows from: (i) the fact that each ui, i ∈ N , is concave and the space of the con-

straints described by Eqs. (3.3) and (3.4) is convex; (ii) the fact that
∑N

i=1 t
∗
i = 0 by

the construction of the game form. The KKT conditions for problem Max result in

the following equations,

∂ui(x
∗
i )

∂x∗i
−
∑
l∈Ri

λ∗l + ν∗i = 0 (N equations) (A.38)

λ∗l(
∑
i∈Gl

x∗i − cl) = 0 (L equations) (A.39)

ν∗i x
∗
i = 0 (N equations) (A.40)

We have N + L + N equations in L + N unknowns, λ∗l, l ∈ L and ν∗i , i ∈ N . In

general we have multiple solutions.

We want to show that for every solution (λ∗l, ν∗i , l = 1, 2, · · · , L, i = 1, 2, · · · , N)

of Eqs. (A.38), (A.39) and (A.40) the message m̄ = (m̄1, m̄2, · · · , m̄N), m̄i = (x̄i, p̄
l
i :

l ∈ Ri) with x̄i = x∗i and p̄li = λ∗l for all i ∈ N and l ∈ Ri, is a Nash equilibrium of

the game induced by the proposed game form.

For that matter we note that by the selection of m̄ we have

p∗li = p∗lj = λ∗l = p∗l (A.41)

for every i and j ∈ Gl. By (A.39) and (A.41)

p∗l
(∑
j∈Gl

x∗j − cl
)

= λ∗l
(∑
j∈Gl

x∗j − cl
)

= 0 (A.42)

and by (3.30) we obtain
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∂t∗li
∂x∗i

= p∗l = λ∗l (A.43)

for every l ∈ Ri and every i ∈ N . Therefore, the message m̄ satisfies all the

conditions of Lemma III.2.

Next we show that for every i ∈ N , m̄i is a solution of the problem,

max
mi∈Mi

{
ui(xi)−

∑
l∈Ri

tli(m̄−i,mi)
}

subject to

xi ≥ 0, pli ≥ 0 ∀l ∈ Ri. (A.44)

Any maximizing solution of (A.44) must satisfy

∂ui(xi)
∂xi

−
∑

l∈Ri
∂tli(m̄−i,mi)

∂xi
+ ri = 0 (A.45)

∂ui(xi)

∂pli
−
∑

l∈Ri
∂tli(m̄−i,mi)

∂pli
+ qli = 0 (A.46)

∀ l ∈ Ri, where ri and qli are the Lagrange multipliers associated with the constraints

xi ≥ 0, and pli ≥ 0, l ∈ Ri, respectively. We set ri = ν∗i and qli = 0 for every l ∈ Ri.

At mi = m̄i, Eq. (A.45) is satisfied because of Eq. (A.38).

Furthermore at mi = m̄i Eq. (A.46) is satisfied since

∂Vi
∂pli
|m=m̄ = −

∑
l∈Ri

∂tli
∂pli
|m=m̄ (A.47)

and

∂tli
∂pli
|m=m̄ =


0 if |Gl| = 2;

−2p∗l
[
x∗i+x∗j+x∗k−cl

γ

]
= 0 if |Gl| = 3;

−2P ∗l−i

[
E∗l−i+x∗i

γ

]
= 0 if |Gl| > 3,

(A.48)

for any l ∈ L because of (A.42). Hence, (x∗1, x
∗
2, · · · , x∗N , λ∗l1 , λ∗l2 , · · · , λ∗lL) is a NE

point of the game induced by the game form proposed in section 3.3.
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Proof of Theorem III.7. Since any NE of the game induced by the mechanism

proposed in Section 3.3, (if such an equilibrium exists), results in a feasible allocation

of Problem Max, (see Theorem III.1), we restrict attention to the spaceM′ =M′
1×

M′
2 · · ·M′

N of strategies that result in feasible allocations of Problem Max. Then,

the users’ utilities Vi(xi, ti) = ui(xi)−ti, i = 1, 2, · · · , N , (where ti is specified by the

game form of section 3.3) are quasi-concave in mi = (xi, pi) and continuous in m =

(m1, · · · ,mN) = ((x1, p1), (x2, p2), · · · , (xN , pN)). Furthermore, the message/strategy

spaces M′
i are compact, convex and non-empty. Therefore, by Glicksberg’s theorem

(17), there exists a pure NE of the game (M, f,Vi, i = 1, 2, · · · , N) induced by the

game form of Section 3.3.

Let m∗ be a NE of this game. Then, for every user i ∈ N ,

Vi(m∗) ≥ Vi(m∗−i,mi) for every mi ∈Mi. (A.49)

That is,

ui(x
∗
i )−

∑
l∈Ri

t∗li (m∗) ≥ ui(xi)−
∑
l∈Ri

tli(m
∗
−i,mi) ∀ mi ∈Mi, (A.50)

where

∑
l∈Ri

t∗li (m∗) =
∑
l∈Ri

p∗lx∗i +
∑
l∈Ri
|Gl|=3

Ω∗li +
∑
l∈Ri
|Gl|>3

Φ∗li +
r∑
j=1

Q∗lj1{i = klj}, (A.51)

Q∗lj is given by Q∗{l:|Gl|=2} or Q∗{l:|Gl|=3} and∑
l∈Ri

tli(m
∗
−i,mi) =

∑
l∈Ri
|Gl|=2

Π2(m∗−i,mi) +
∑
l∈Ri
|Gl|=3

Π3(m∗−i,mi) +
∑
l∈Ri
|Gl|>3

Π>3(m∗−i,mi)

+
r∑
j=1

Q∗lj1{i = klj}, (A.52)

where

Π2(m∗−i,mi) := p∗lxi +
(pli−p∗l)2

α
− 2p∗l(pli − p∗l)

(
xi+x

∗
j−cl
γ

)
,

Π3(m∗−i,mi) := p∗lxi + (pli − p∗l)2 + Ω∗li − 2p∗l(pli − p∗l)
(
xi+x

∗
j+x∗k−cl
γ

)
,

Π>3(m∗−i,mi) := p∗lxi + (pli − p∗l)2 + Φ∗li − 2p∗l(pli − p∗l)
(
xi+E∗l−i

γ

)
. (A.53)
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Since (A.50) holds for every feasible (xi,pi), setting pli = p∗l for every l ∈ Ri we

obtain,

Vi(x∗i ,p∗) = ui(x
∗
i )−

∑
l∈Ri

p∗lx∗i ≥ Vi(xi,p∗) = ui(xi)−
∑
l∈Ri

p∗lxi (A.54)

for every feasible xi. Therefore, for every i = 1, 2, · · · , N ,

x∗i = arg maxxi∈D∗−i

{
ui(xi)−

∑
l∈Ri

p∗lxi

}
(A.55)

where D∗−i :=

{
xi : 0 ≤ xi ≤ minl∈Ri{cl −

∑
j∈Gl
j 6=i

x∗j}
}
. Consequently, (x∗, p∗) is a

Walrasian equilibrium, therefore (x∗, t∗) is Pareto optimal ((110) Chapter 15).
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APPENDIX B

Appendix for Multi-rate Multicast Service

Provisioning

Proof of Theorem V.2. We prove in Theorem V.3 that any NE of the game in-

duced by the mechanism of section 5.3 (if such an equilibrium exists) results in a

feasible allocation of Problem Max.0. Therefore, we restrict to the space

M = ×Gi∈N ×j∈GiM(j,Gi) (B.1)

of strategies that result in feasible allocations of problem Max.0. Then, the users’

utilities

V(j,Gi)(x(j,Gi), t(j,Gi)) = U(j,Gi)(x(j,Gi))− t(j,Gi) (B.2)

(j, Gi) ∈ Gi, Gi ∈ N (where t(j,Gi) is specified by the game form of section 5.3)

are concave in m(j,Gi) = (x(j,Gi),π(j,Gi)) and continuous in m = (m(j,Gi), (j,Gi) ∈
Gi, Gi ∈ N ). Furthermore, the message spaces M(j,Gi) are compact, convex and

nonempty. Therefore, by Gliksberg’s theorem, (103), there exists a pure NE of the

game (M, f, V(j,Gi), (j, Gi) ∈ Gi, Gi ∈ N ) induced by the game form of section 5.3.

Proof of Theorem V.3. By the construction of the mechanism x∗(j,Gi) ≥ 0 for all

(j, Gi), Gi ∈ N . Suppose that x∗ is such that the capacity constraint is violated at

some link l and x∗Gi(l) > 0. Consider an agent (k,Gi) ∈ Gmax
i (l) whose index in

Gmax
i (l) is (j, Gmax

i (l)) and change his strategy to x(k,Gi) = 0. Then

V(k,Gi)(m(k,Gi),m
∗
−(k,Gi)

) > V(j,Gi)(m
∗
(k,Gi)

,m∗−(k,Gi)
),
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and this is in contradiction with the fact that m∗ is a NE. Consequently, every NE

results in a feasible allocation of problem Max.0.

Proof of Lemma V.4. We prove this lemma for Case D, Part DI. In a way sim-

ilar to the following we can prove the assertion of the lemma for all other cases.

Case D (Part DI): Consider Gi ∈ Ql, and (j, Gmax
i (l)) ∈ Gmax

i (l).

Since user (j,Gmax
i (l)) does not control Γ(j,Gi), then

∂Γ(j,Gmax
i (l))

∂π(j,Gmax
i (l))

=
∂Γ(j,Gmax

i (l))

∂xGi(l)
= 0.

Therefore, we must have

∂tl(j,Gmax
i (l))

∂π(j,Gi
max(l))

∣∣∣∣
m=m∗

= −2
P ∗−Gimax(l)

|Gi
max(l)|

(E∗−Gimax(l) + x∗Gi(l)

γ

)
+

2

|Gi
max(l)|

(
P ∗Gimax(l) − P ∗−Gimax(l)

)
= 0. (B.3)

Define ∆(j,Gi
max(l)) as follows,

∆(j,Gi
max(l)) := −

P ∗−Gimax(l)

|Gi
max(l)|

(E∗−Gimax(l) + x∗Gi(l)

γ

)
+

(
P ∗Gimax(l) − P ∗−Gimax(l)

)
|Gi

max(l)|
. (B.4)

Summing over all the users in Gmax
i (l) and using (B.3) we obtain

∑
(j,Gmax

i )∈Gimax(l)

∆(j,Gi
max(l)) = −P ∗−Gimax(l)

(E∗−Gimax(l) + x∗Gi(l)

γ

)
+
(
P ∗Gimax(l) − P ∗−Gimax(l)

)
= 0. (B.5)

Moreover, summing over all |Ql| multicast groups and using (B.3)-(B.5) we get

∑
Gi∈Ql

∑
(j,Gmax

i (l))∈Gimax(l)

∂tl(j,Gmax
i (l))

∂π(j,Gi
max(l))

=
∑
Gi∈Ql

∑
(j,Gmax

i (l))∈Gimax(l)

∆(j,Gi
max(l)) = 0. (B.6)
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Furthermore we note that∑
Gi∈Ql

PGimax(l) =
∑
Gi∈Ql

P−Gimax(l). (B.7)

Equations (B.5)-(B.7) along with Theorem 1 and the fact that P ∗−Gimax(l) ≥ 0 for every

Gi, Gi ∈ Ql, imply that

P ∗−Gimax(l)

(E∗−Gimax(l) + x∗Gi(l)

γ

)
= 0, ∀ Gi ∈ Ql. (B.8)

From Eqs. (B.5) and (B.8) it follows that

P ∗−Gimax(l) = P ∗Gimax(l) =: P ∗Gmax(l), ∀ Gi ∈ Ql. (B.9)

Consequently,

P ∗Gmax(l)

(E∗−Gimax(l) + x∗Gi(l)

γ

)
= 0. (B.10)

Eqs. (B.9) and (B.10) along with (5.23) give

∂tl(j,Gmax
i (l))

∂xGi(l)

∣∣∣∣
m=m∗

= π∗(j+1,Gi
max(l)) − 2

P ∗−Gimax(l)

γ|Gi
max(l)|

(
P ∗Gimax(l) − P ∗−Gimax(l)

)
= π∗(j+1,Gi

max(l)). (B.11)

Proof of Lemma V.6. Equation (5.40) together with (5.41) and (5.42) imply that∑
(j,Gi)

⋃
Gi∈N

Gi
t∗(j,G)

=
∑

l∈L
∑

Gi∈Ql

∑
j∈Gi t

∗l
(j,Gi)

= 0. Thus, the mechanism is bud-

get balanced at allocations corresponding to NE. Now, we prove that the proposed

mechanism is also budget balanced off equilibrium.

For that matter, we first consider links l ∈ L where |Ql| > 3. Based on Eqs. (4.23)

and (2.25) we obtain for every Gi ∈ Ql,∑
(j,Gi)∈Gi(l)

tl(j,Gi) = PGimax(l)xGi(l) +
(
PGimax(l) − P−Gimax(l)

)2

+ ΓlGi

−2P−Gimax(l)

(
PGimax(l) − P−Gimax(l)

)(E−Gimax(l) + xGi(l)

γ

)
.

(B.12)
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Furthermore, by little algebra, we can show that for every l ∈ L where |Ql| > 3

the following equalities hold,

∑
Gi∈Ql

P 2
Gmax
i (l) =

∑
Gi∈Ql

[∑
Gj∈Ql
Gj 6=Gi

P 2
Gmax
i (l)

|Ql| − 1

]
,

∑
Gi∈Ql

[
2PGmax

i (l)P−Gmax
i (l) + 2P−Gmax

i (l)PGmax
i (l)

xGi(l)

γ

]

=
∑
Gi∈Ql

[∑
Gj∈Ql
Gj 6=Gi

∑
Gk∈Ql

Gk 6=Gi,Gj

(
2PGmax

j (l)PGmax
k (l)(1 +

xGj (l)

γ
)
)

(|Ql| − 1)(|Ql| − 2)

]
,

∑
Gi∈Ql

P−Gmax
i (l)PGmax

i (l)

E−Gmax
i (l)

γ
=

∑
Gi∈Ql

∑
Gj∈Ql
Gj 6=Gi

∑
Gk∈Ql

Gk 6=Gi,Gj
2PGmax

k (l)PGmax
j (l)EGmax

k (l)

γ(|Ql| − 1)2(|Ql| − 2)

+

∑
Gi∈Ql

∑
Gj∈Ql
Gj 6=Gi

∑
Gk∈Ql

Gk 6=Gi,Gj

∑
Gr∈Ql

Gr 6=Gi,Gj ,Gk
2PGmax

k (l)PGmax
j (l)EGmax

r (l)

γ(|Ql| − 1)2(|Ql| − 3)

∑
Gi∈Ql

P 2
−Gmax

i (l)

xGi(l)

γ
=
∑
Gi∈Ql



∑
Gj∈Ql
Gj 6=Gi

∑
Gk∈Ql

Gk 6=Gi,Gj

∑
Gr∈Ql

Gr 6=Gi,Gj ,Gk
xGj(l)PGmax

r (l)

γ(|Ql| − 1)2(|Ql| − 3)

+

∑
Gj∈Ql
Gj 6=Gi

∑
Gk∈Ql

Gk 6=Gi,Gj
xGj(l)PGmax

k (l)

γ(|Ql| − 1)2(|Ql| − 2)

(B.13)

Using Eq. (5.30) and (B.12) - (B.13) we obtain∑
Gi∈Ql

[(
PGimax(l) − P−Gimax(l)

)2
]

−
∑
G∈Ql

[
2P−Gimax(l)

(
PGimax(l) − P−Gimax(l)

)(E−Gimax(l) + xGi(l)

γ

)]
+
∑
Gi∈Ql

ΓlGi = 0. (B.14)

Next we consider all links l ∈ L where |Ql| ≤ 3; let these link be l1, l2, · · · , lr. Then,

by using (B.14) and the specification of the tax function for the links l1, l2, · · · , lr (cf.

section 5.3, cases B and C) we obtain

90



∑
(j,Gi)∈

⋃
Gi∈N

Gi

t(j,Gi) =
∑
l∈L

∑
Gi∈Ql

∑
(j,Gi)∈Gi(l)

tl(j,Gi)

=
∑

l∈L:|Ql|=2

∑
Gi∈Ql

∑
(j,Gi)∈Gimax(l)

tl(j,Gi)

+
∑

l∈L:|Ql|=3

∑
Gi∈Ql

∑
(j,Gi)∈Gimax(l)

tl(j,Gi)

+
∑

l∈L:|Ql|>3

∑
Gi∈Ql

∑
(j,Gi)∈Gimax(l)

tl(j,Gi) +
r∑
j=1

S lj

= 0. (B.15)

The last equality in (B.15) is true for the following reason. By Eq. (B.14) the third

sum on the right hand side of the second equality in (B.15) is equal to zero. The sum

of the three remaining terms is also equal to zero because of Eqs. (5.15)-(5.34).

Proof of Theorem V.7. We need to show that

V(j,Gi)(m
∗) =

U(j,Gi)(x(j,Gi))−
∑

l∈R(j,Gi)

tl(j,Gi)


m=m∗

≥ 0,

for every (j, Gi), Gi ∈ N . By the property of NE, it follows that

V(j,Gi) (m∗) ≥ V(j,Gi)

(
m∗−(j,Gi)

,m(j,Gi)

)
. (B.16)

Consequently, it is sufficient to find am(j,Gi) ∈Mi so that V(j,Gi)

(
m∗−(j,Gi)

,m(j,Gi)

)
≥

0. Set x(j,Gi) equal to 0. We separately examine different cases, as follows.

• If x∗Gi(l) > 0 then, tl(j,Gi)|(m∗−(j,Gi)
,m(j,Gi)

) = 0 because j /∈ Gi
max(l).

• If x∗Gi(l) = 0, then in accordance to the possible cases we define,

πl(j,Gi) :=



π∗l(j,Gi)
, for Case B, Part BI;

P ∗Gmax(l), for Case B, Part BII;

π∗l(j,Gi)
, for Case C, Part CI;

P ∗Gmax(l), for Case C, Part CII;

$∗DI(l), for Case D, Part DI;

$∗DII(l), for Case D, Part DII.

(B.17)
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where

$∗DI(l) :=
1

|Gmax
i (l)|

[
P ∗Gmax(l) −

∑
j∈Gmax

i
j 6=i

π∗j,Gmax
i

+
E∗−Gimax(l)

γ

+

√√√√[
P ∗Gmax(l)

E∗−Gimax(l)

γ

]2

+

P ∗Gmax(l)

∑
Gj ,Gj∈Ql
Gj 6=Gi

x∗Gj(l)

|Ql| − 1

]
,

$∗DII(l) := P ∗Gmax(l)

[
1 +
E∗−Gimax(l)

γ

]

+

√√√√[
P ∗Gmax(l)

E∗−Gimax(l)

γ

]2

+

P ∗Gmax(l)

∑
Gj ,Gj∈Ql
Gj 6=Gi

x∗Gj(l)

|Ql| − 1
.

We can1 show that tl(j,Gi) for every l ∈ R(j,Gi) is equal to zero at

m(j,Gi) = (0, πl1(j,Gi), · · · , π
l|R(j,Gi)

|

(j,Gi)
) when πlk(j,Gi), 1 ≤ k ≤ |R(j,Gi)| is defined by (B.17).

In the other hand, by m(j,Gi) where its arguments are defined in the above, we

obtain

V(j,Gi)

(
m∗−(j,Gi)

,m(j,Gi)

)
= U(j,Gi)(0)−

∑
l∈R(j,Gi)

tl(j,Gi)
(
m∗−(j,Gi)

,m(j,Gi)

)
= U(j,Gi)(0)

= 0, (B.18)

when (j,Gi) 6= kl1 , kl2 , · · · , klr .
When (j,Gi) = klq , q = 1, 2, · · · , r,

V(j,Gi)

(
m∗−(j,Gi)

,m(j,Gi)

)
= U(j,Gi)(0)−

∑
l∈R(j,Gi)

tl(j,Gi)
(
m∗−(j,Gi)

,m(j,Gi)

)
− S∗lq

= −S∗lq

≥ 0, (B.19)

1Since γ is sufficiently large then it is guaranteed that $DI and $DII are positive.
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Combining (B.16), (B.18) and (B.19) we obtain

V(j,Gi)(x
∗
(j,Gi)

, t∗) ≥ V(j,Gi)(x, t)

∣∣∣∣
m=(m(j,Gi)

,m∗−(j,Gi)
)

≥ 0 (B.20)

Proof of Theorem V.8. Let m∗ be an arbitrary NE of the game (M, f, V ) in-

duced by the proposed game form. Consider problem Max.1, since the functions

U(j,Gi), j ∈ Gi, Gi ∈ N , are concave and differentiable and the constraints are linear,

Slater’s condition ((102)) is satisfied, the duality gap is equal to zero, and Karush

Kuhn Tucker (KKT) conditions are necessary and sufficient to guarantee the opti-

mality of any allocation x that satisfies them. Let λl be the Lagrange multiplier

corresponding to the capacity constraint for link l and νi be the Lagrange multiplier

corresponding to the demand constraint. The Lagrangian for problem Max.1 is

L(x, λ, ν) =
∑
Gi∈N

∑
(j,Gi)∈Gi

U(j,Gi)(x(j,Gi))

−
∑
l∈L

∑
e(l)∈E(l)

λe(l)

[ ∑
Gi∈Ql

x(j,Gi)I{(j, Gi) ∈ Gi(l)} − cl

]
+
∑
Gi∈N

∑
(j,Gi)∈Gi

ν(j,Gi)x(j,Gi) (B.21)

and the KKT conditions are:

∂L(x∗, λ∗, ν∗)

∂x(j,Gi)

=
∂U(j,Gi)(x

∗
(j,Gi)

)

∂x(j,Gi)

−
∑

l∈R(j,Gi)

∑
e(l,(j,Gi))∈E(l,(j,Gi))

λ∗e(l,(j,Gi)) + ν∗(j,Gi) = 0

λ∗e(l)

[ ∑
Gi∈Ql

x∗(j,Gi)I{(j, Gi) ∈ Gi(l)} − cl

]
= 0, ∀ l ∈ L (B.22)

ν∗(j,Gi)x
∗
(j,Gi)

= 0 ∀Gi ∈ N and j ∈ Gi. (B.23)

Now, define

λ∗l(j,Gi) :=
∑

emax(l,(j,Gi))∈Emax(l,(j,Gi))

λ∗e(l,(j,Gi)) ∀ l ∈ L, Gi ∈ Ql, j ∈ Gi
max(l), (B.24)
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where, Emax(l) is a subset of equations, emax(l) of (5.7), such that every element

x(k,Gs) ∈ emax(l) is equal to xGs(l), and accordingly, we can define Emax(l, (j, Gi)) and

emax(l, (j,Gi)).

Furthermore, (B.22) implies the following

∀ l ∈ L and Gi ∈ Ql, j ∈ Gi(l), if x(j,Gi) < xGi(l) then λ∗e(l,(j,Gj)) = 0. (B.25)

Since m∗ is a NE then for every user (j, Gi), Gi ∈ N , j ∈ Gi, there exists at least

a link in R(j,Gi) such that x(j,Gi) = xGi(l). Now, by using (B.24) and (B.25) we can

reformulate the KKT constraints as follows, suppose that at link l ∈ R(j,Gi), x(j,Gi) =

xGi(l), then

∂L(x∗, λ∗, ν∗)

∂x∗Gi(l)
=
∂U(j,Gi)(x

∗
Gi

(l))

∂xGi(l)
−

∑
l∈Rmax

(j,Gi)

λ∗l(j,Gi) + ν∗(j,Gi) = 0 (B.26)

λ∗l

[ ∑
Gi∈Ql

x∗Gi(l)− cl

]
= 0, ∀ l ∈ L (B.27)

ν∗(j,Gi)x
∗
Gi

(l) = 0 ∀Gi ∈ N and j ∈ Gi. (B.28)

where λ∗l :=
∑

j∈Gimax(l) λ
∗l
(j,Gi)

for every Gi ∈ Ql.

Because of the characteristics of problem Max.1, KKT conditions are necessary

and sufficient for any optimal solution of Max.1. Therefore, to show that any arbi-

trary NE m∗ of the specified game, induced from the game form presented in section

5.3, is correspondent to an optimal solution, it is enough to find ν∗i , λl∗, and λ∗l(j,Gi),

for every Gi ∈ N , j ∈ Gi, l ∈ L, appropriately, such that Eqs. (B.26), (B.27) and

(B.28) are satisfied. If we set ν∗(j,Gi), Gi ∈ N , j ∈ Gi, equal to zero, then (B.28) is sat-

isfied. In addition, if we set λl∗ = P ∗Gmax(l), l ∈ L and λ∗l(j,Gi) equal to (5.38), then the

correctness of (B.27) and (B.28) will be implied from (5.37) and (5.39), respectively.

Furthermore, by the construction of the game form
∑

Gi∈N
∑

j∈Gi

∑
l∈R(j,Gi)

t∗l(j,Gi) is

equal to zero. Consequently, the NE m∗ results in an optimal solution of problem

Max.0. Since the NE m∗ was arbitrary chosen, every NE m∗ of the game induced

by the game form proposed in section 5.3 results in an optimal solution of problem

Max.0.
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