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ABSTRACT

Penalized Spline Estimation in the Partially Linear Model

by

Ashley D. Holland

Co-Chairs: Matias D. Cattaneo and Virginia R. Young

Penalized spline estimators have received considerable attention in recent years because

of their good finite-sample performance, especially when the dimension of the regressors

is large. In this project, we employ penalized B-splines in the context of the partially

linear model to estimate the nonparametric component, when both the number of knots

and the penalty factor vary with the sample size. We obtain mean-square convergence rates

and establish asymptotic distributional approximations, with valid standard errors, for the

resulting multivariate estimators of both the parametric and nonparametric components in

this model. Our results extend and complement the recent theoretical work in the literature

on penalized spline estimators by allowing for multivariate covariates, heteroskedasticity of

unknown form, derivative estimation, and statistical inference in the semi-linear model,

using weaker assumptions. The results from a simulation study are also reported.
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CHAPTER I

Introduction

1.1 The Partially Linear Model

The partially linear model has a long tradition in statistics and econometrics (see, e.g.,

Ruppert, Wand & Carroll (2003) and Härdle, Müller, Sperlich & Werwatz (2004) for recent

textbook discussions). In this model, for a dependent variable y and covariates x ∈ Rdx

and z ∈ [0, 1]dz , the conditional mean function is assumed to satisfy

E[y|x, z] = x′θ + g(z),

where both the finite-dimensional parameter θ and the infinite-dimensional parameter g(·)

are of potential interest. This is a very popular model in empirical work because it pro-

vides a parsimonious, yet flexible, approach to inference in different contexts. Typically,

in this model the dimension of x is small while the dimension of z is large. In the pro-

gram evaluation literature, for example, x is usually a treatment indicator and θ the scalar

treatment effect of interest, while g(·) is a nonparametric nuisance function which is present

to account for many possible confounding factors in a flexible way (see, e.g., Imbens &

Wooldridge (2008) for a recent survey). The multivariate function g(·) and its derivatives

are also parameters of interest in other cases, for instance in policy analysis (Stock (1989)).

Inference in the partially linear model is an important semiparametric problem. Large

sample results are available for inference on θ and g(·) when the nonparametric component

is estimated using kernel regression (Robinson (1988)), power series, or regression splines
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(Donald & Newey (1994)). These results, however, rely on classical smoothing techniques

which are usually quite sensitive to the specifics of their implementation in applications,

a problem that is only exacerbated when the dimension of z is large. Partially motivated

by the poor finite-sample performance of these classical smoothing techniques, a recent

literature on penalized spline estimation has emerged and is receiving considerable attention.

Originally proposed by O’Sullivan (1986), and later popularized by Eilers & Marx (1996),

this alternative smoothing technique is nowadays commonly used in applications, being

usually perceived as a superior alternative to other classical nonparametric estimators.

Motivated by their recent popularity, and with the explicit goal of increasing the finite-

sample performance of the resulting statistical procedures, in this project we propose to em-

ploy multivariate penalized B-splines estimators, with n-varying knots and penalty (where

n is the sample size), to estimate the nonparametric ingredient in the partially linear model.

We investigate the large sample properties of the resulting estimators of θ and g(·) under

quite general tuning parameter sequences, providing in particular asymptotic distributional

approximations and consistent standard-error estimates. As an intermediate step, we also

derive the mean-square convergence rate of penalized B-splines estimators of the regression

function and its derivatives under general asymptotic sequences.

Despite the popularity of penalized spline smoothing, there is only a handful of pa-

pers analyzing its theoretical properties. Early work has obtained asymptotic results under

fixed-knot asymptotics, where the number of knots is assumed to be fixed and the penalty

factor converges to zero (see, e.g., Wand (1999); Aerts, Claeskens & Wand (2002); Yu &

Ruppert (2002); and Wand & Ormerod (2008)), or under sequential asymptotics, Hall &

Opsomer (2005). These asymptotics, however, are restrictive and may not always charac-

terize appropriately the finite-sample behavior of the penalized splines. For this reason,

recent work has focused on the asymptotic properties of penalized splines when both the

knots and penalty vary with the sample size. Li & Ruppert (2008) studies univariate pe-

nalized splines when the number of knots is “large” and derive an asymptotic equivalence

between kernel smoothing and penalized (smoothing) splines. Claeskens, Krivobokova &

Opsomer (2009) study univariate penalized splines under quite general sequences of tuning

parameters and show that these estimators are asymptotically equivalent in a mean-square-
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error sense to either regression splines or smoothing splines depending on the sequence of

tuning parameters considered. Kauermann, Krivobokova & Fahrmeir (2009) extend some of

the previous result to the context of univariate generalized spline smoothing. Krivobokova,

Kneib & Claeskens (2010) propose asymptotically conservative confidence bands for univari-

ate penalized spline estimators of the regression function. The present project substantially

complements and extends some of the results in this emerging literature by allowing for

multivariate covariates, heteroskedasticity of unknown form, derivative estimation and sta-

tistical inference on both the parametric and nonparametric components in the partially

linear model.

In the rest of Chapter 1, we describe spline estimation, present main results in the

literature on spline estimation and the partially linear model, and give an overview of our

results. Chapter 2 presents the rate of the convergence of the penalized spline estimate of

g(·). Chapter 3 gives the asymptotic distribution and standard errors for both the estimate

of θ̂ and the penalized spline estimate of g(·). Chapter 4 discusses the results of a Monte

Carlo study aimed to assess the finite-sample performance of these estimators, and Chapter

5 outlines the main contributions of this project.

1.2 Spline Estimation

To construct a B-spline basis {pjk}K
1/dz

k=1 in direction j, [0, 1] is partitioned into K1/dz −

r + 1 intervals

[tj,r, tj,r+1], [tj,r+1, tj,r+2], ..., [tj,K1/dz , tj,K1/dz+1],

with knots tj,r = 0 ≤ · · · ≤ tj,K1/dz+1 = 1, where r is the desired degree of the splines. A

condition on the mesh ratio is assumed, for example

max
1≤k≤K1/dz

|hj,k+1 − hj,k| = o(1/K1/dz), hj/ min
1≤k≤K1/dz

hj,k ≤Mj ,

where hj,k ≡ tj,k−tj,k−1, hj ≡ max
1≤k≤K1/dz

hj,k, andMj > 0 is a constant, in order to guarantee

that 1/Mj ≤ K1/dzhj ≤Mj (Zhou, Shen & Wolfe (1998)). A weaker alternative is

tjk − tj,k−1 � 1/K1/dz
n
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for all k = 1, ...,K
1/dz
n , as in Huang (2003a), where rn � r̄n indicates rn ≥ c1r̄n and

rn ≤ c2r̄n for some c1 > 0 and c2 <∞.

To manage boundary effects, an extra 2(r−1) knots are added with tj,1 ≤ · · · ≤ tj,r−1 ≤ 0

and 1 ≤ tj,K1/dz+2 ≤ · · · ≤ tj,K1/dz+r, creating an extended partition. The B-splines are

then constructed using the well-known Cox-de Boor recursion relation (De Boor (2001)):

pj,k,1(zj) =

 1 tj,k ≤ z < tj,k+1

0 otherwise

pj,k,`(z) =
z − tj,k

tj,k+`−1 − tj,k
pj,k,`−1(z) +

tj,k+` − z
tj,k+` − tj,k+1

pj,k+1,`−1(z),

where pj,k,` is the kth spline of order ` in direction j, and the convention 0/0 = 0 is used.

The set {pj,k,r}K
1/dz

k=1 spans the space

Sn,r ≡ {s(·) ∈ Cr−2[0, 1] : s(zj) is a polynomial of order r on each subinterval [tjk, tj,k+1]}

(see for example Zhou et al. (1998), De Boor (2001), Schumaker (1981)). Normalized B-

splines have the useful property
K1/dz∑
k=1

pjk = 1.

(Zhou et al. (1998)). Multivariate tensor product splines are formed using pK ≡ (p1, ..., pK)′ =

(p11, ..., p1K1/dz )′ ⊗ · · · ⊗ (pdz1, ..., pdzK1/dz )′. Other references on B-splines include Stone

(1994), De Boor (1976), and Eilers & Marx (1996).

The penalized spline estimate of g(·) minimizes the criterion function

S ≡
n∑
i=1

(yi − ĝ(zi))
2 + λn

∫
[0,1]d

d∑
j1,...,jm=1

(
∂mĝ(z)

∂zj1∂zj2 · · · ∂zjm

)2

dz,

where λn is a smoothing parameter, m = (m1, ...,md), and |m| = m1 + ... + md (see

Cox (1984) and Utreras (1988)). This method was first introduced by O’Sullivan (1986),

with dz = 1, r = 4, and m = 2 (see also Wand & Ormerod (2008)).
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Let ∂mĝ(z) =
∂mĝ(z)

∂zj1∂zj2 · · · ∂zjm
. Then noting that

∫
[0,1]d

d∑
j1,...,jm=1

(∂mĝ(z))2 dz =

d∑
j1,...,jm=1

∫
[0,1]d

(
∂m

(
K∑
k=1

βkpk(z)

))2

dz

=

d∑
j1,...,jm=1

∫
[0,1]d

(
K∑
k=1

βk∂
mpk(z)

)2

dz

=
K∑

k,`=1

βkβ`

∫
[0,1]d

d∑
j1,...,jm=1

∂mpk(z)∂
mp`(z)dz

= β′Dβ

with (D)k` =

∫
[0,1]d

d∑
j1,...,jm=1

∂mpk(z)∂
mp`(z)dz, we rewrite the penalty term as

λn

∫
[0,1]d

d∑
j1,...,jm=1

(
∂mĝ(z)

∂zj1∂zj2 · · · ∂zjm

)2

dz = λβ′Dβ.

Then with the usual method of setting the derivative of S with respect to β equal to zero,

we then find that

ĝ(z) = pKn(z)′(P ′P + λD)−1P ′Y, Ĝ = P ′(P ′P + λD)−1P ′Y

where P is the n×K matrix of spline basis functions evaluated at the observations z1, ..., zn,

and Ĝ = (ĝ(z1), ..., ĝ(zn))′. In the partially linear model, the estimate becomes

ĝ(z) = P ′(P ′P + λD)−1P ′(Y −Xθ).

The standard assumption is that the penalty term β′Dβ is bounded.

In the familiar framework of regression splines, the smoothing parameter is λn = 0. For

asymptotic results, a rate condition such as K2
n/n → 0 (Newey (1997), Zhou et al. (1998),

Zhou & Wolfe (2000), Claeskens et al. (2009)) or Kn log n/n → 0 (Huang (2003b), Huang

(2003a)) is assumed. In contrast, smoothing spline estimation has Kn = n and includes the
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penalization term to compensate for the resulting large variance (Cox (1984), Utreras (1988),

Utreras (1979)). Choosing λn has been the topic of much research, and several methods in-

cluding cross-validation and the information criterion have been considered (Wahba (1975),

Wand (1999), Craven & Wahba (1978)), Utreras (1979), Li & Ruppert (2008).)

Penalized splines bridge the gap between regression splines and smoothing splines, in

that the criterion function contains a penalty but Kn = n is not required.

Reference books for splines include Wahba (1990), Green & Silverman (1994), and

Eubank (1999). Also, see Ruppert et al. (2003) for applications of spline regression.

1.3 Literature Review

We define the following norms:

‖g‖22,a = sup
|q|≤a
‖∂qg‖22 = sup

|q|≤a

∫
[0,1]d

(∂qg(z))2dF (z),

‖g‖22,a,n = sup
|q|≤a
‖∂qg‖22,n = sup

|q|≤a

1

n

n∑
i=1

(∂qg(Zi))
2,

‖g‖2∞,a = sup
|q|≤a
‖∂qg‖2∞ = sup

|q|≤a
sup

z∈[0,1]d
|∂qg(z)|2.

Main asymptotic results available in the literature for regression, smooothing, and penalized

spline estimation include the following:

1.3.1 Spline Estimation - Rates of Convergence

� Regression Splines

A paper that considers asymptotics of series estimators is Newey (1997), which gives

mean-square and uniform rates of convergence for multivariate series estimators.

Specifically, he gave the following results:
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Newey (1997): If K2
n/n→ 0,

‖ĝ − g‖22,0 = Op

(
Kn

n
+K−2p/dz

n

)
‖ĝ − g‖∞ ≡ sup

z∈[0,1]dz
|ĝ(z)− g(z)| = Op

(√
Kn

(√
Kn

n
+K−p/dzn

))
,

for g(·) ∈ Cp[0, 1]dz and (implicitly) r − 2 ≥ p.

Huang (2003a) presented the same mean-square rate of convergence, specific to poly-

nomial spline estimation, using a projection argument. The conditions were weaker,

and he assumed

Huang (2003):

Kn log n

n
→ 0

instead of K2
n/n → 0, by using an argument with Bernstein’s inequality (see Huang

(2003b)). Huang claimed that this rate was minimal, and it is generally considered

to be so. The results improved on Huang (1998).

See also Li & Ruppert (2008), Kohler & Krzyzak (2001), and Nychka (1995) for

similar results. Hall & Opsomer (2005) also obtains mean-square and consistency

results, using a white-noise model, and Li & Ruppert (2008) consider an equivalent

kernel representation for degree zero and one B-splines with first- or second-degree

order penalties.

� Smoothing Splines

Using an argument based on projections and Green’s functions, Cox (1984) presented

a mean-square rate of convergence for multivariate smoothing spline estimates, as fol-

lows:

Cox (1984):

E‖ĝ − g‖22,0 = O

(
λn
n

+
n(dz−2m)/2m

λ
dz/2m
n

)
,
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where m is the order of the derivative used in the penalty, as above. The argument

relies on the order of the eigenvalues of a differential equation discussed therein, as

in many other smoothing splines papers (Speckman (1985), Utreras (1988), Utreras

(1979)). The order of the kth eigenvalue is shown to be k2m/dz , k = 1, ...,Kn, from

Agmon (2010). See also Póo (1999), which uses results from Speckman (1985) for a

slightly different treatment of the rates of convergence.

Also, Stone showed that under some conditions, the smoothing spline estimator achieves

the optimal rate (Speckman (1985)).

� Penalized Splines

Claeskens et al. (2009) considered the mean-square rate of convergence of penalized

spline estimators and presented a simple condition determining the form of this rate.

Like in Cox (1984) and other smoothing spline papers discussed above, their argument

relies on the eigenvalues of a differential equation, which they use to decompose the

penalization matrix. Specifically, the authors show that for a constant c̃1,

Claeskens, Krivobokova, Opsomer (2009):

If Km ≡ (K−m)(λnc̃1)1/2mn−1/2m < 1 for sufficiently large n and g ∈ Cp([a, b]), then

‖ĝ − g‖22,0,n = O

(
Kn

n
+
λ2K2m

n

n2
+K−2p

n

)
,

and if Km ≥ 1 for sufficiently large n and g ∈ Wm,2[a, b], then

‖ĝ − g‖22,0,n = O

(
n1/2m−1

λ
1/2m
n

+
λn
n

+K−2m
n

)
.

In both expressions the first term is the rate of the variance, the second term is the

rate of the squared bias resulting from the penalization, and the third term is the rate

of the squared approximation bias. For Km < 1 and dz = 1, the first and third terms

match those in Newey (1997); and for Km ≥ 1, the first and second terms match those
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in Cox (1984). The assumption on the number of knots is that

K2
n/n→ 0

for the random design case.

1.3.2 Spline Estimation - Asymptotic Distribution

There are also current results for the asymptotic distribution of the (properly standard-

ized) ĝ(·), along with its derivatives, using the multi-index model. These results are of

course necessary for hypothesis testing and inference.

� Regression Splines

In Newey (1997), an asymptotic normality result, along with the standard errors, is

given:

Newey (1997): If
√
nK
−p/dz
n → 0, then

√
nV −1/2(θ̂ − θ0)→d N (0, 1),

√
nV̂ −1/2(θ̂ − θ0)→d N (0, 1),

where V = A′Q−1ΣQ−1A, V̂ = Â′Q̂−1Σ̂Q̂−1Â, A = (D(p1), ..., D(pK))′ (see As-

sumption 5 in that paper), Q = E[pKn(z)pKn(z)′], Σ = E[pKn(z)pKn(z)′σ(z)2] with

σ(z)2 = Eε(z)2, Â =
∂a(β′pK)

∂β
|β=β̂, Q̂ =

P ′P

n
, and

Σ̂ =
1

n

n∑
i=1

pK(zi)p
K(zi)

′(yi − ĝ(zi))
2.

� Smoothing Splines

For smoothing splines, Póo (1999) gives an asymptotic normality result, with a con-

dition on the rate of λn.
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Póo (1999): If λn � n−2m/(2m+1), then

ĝ(z)− g(z)

σ(z)
→d N (0, 1),

where σ2(z) = E(ĝ(z)− g(z))2.

Also, some authors have considered methods for controlling the penalization term, other

than the common method of using the eigenvalues of a differential equation. For example,

Eilers & Marx (1996) consider a discretization for the penalty term; that is, they propose

to use finite differences to approximate the integrated second derivative penalty. Similarly,

Schwetlick & Kunert (1993) decouple the order of the derivative in the penalization and the

order of the spline.

1.3.3 Series Estimation in the Partially Linear Model

A main paper on series estimation in the partially linear model is Donald & Newey

(1994), which presents rate of convergence and asymptotic normality results. Specifically,

the authors define eg(Kn) and eh(Kn) such that there are π and η with

sup
n≥1

[
n∑
i=1

E(g(zi)− pK(zi)
′π)2/n

]1/2

≤ eg(Kn)

max
j

sup
n≥1

[
n∑
i=1

E(hj(zi)− pK(zi)
′η)2/n

]1/2

≤ eh(Kn)

where hj(zi) = E[xji|zi] with xji equal to the ith observation of the jth regressor, as above.

Thus, eg(Kn) and eh(Kn) describe how well an element of Sn,r can approximate ĝ. The

authors showed that

Donald and Newey (1994) - Rate of Convergence:

β̂−β = Op(n
−1/2)+Op(eg(k)eh(Kn))+Op(eg(Kn)n−1/2)+Op(eh(Kn)n−1/2)+Op(K

1/2
n n−1),
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under the assumption that

Kn/n→ 0.

They also showed that if
√
nK−(pg+ph)/dz → 0, then

Donald and Newey (1994) - Asymptotic Normality:

(Ā−1
n B̄nĀn)−1/2√n(β̂ − β)→d N (0, I),

where Ān =
1

n

n∑
i=1

Euiu′i and B̄n =
1

n

n∑
i=1

Eε2
iuiu

′
i are uniformly positive definite, with ui =

xi − h(zi), as above.

Another important paper on series estimation in the partially linear model is Cattaneo,

Jansson & Newey (2010), in which many regressors are allowed, that is, dz = O(n). We

refer to this paper in our proof of the asymptotic normality of β̂ in Chapter 3.

1.4 Overview of Results

Let (yi, x
′
i, z
′
i)
′, i = 1, ..., n be a random sample of the random vector (y, x′, z′)′, where

y ∈ R is a dependent variables and x ∈ Rdx×1 and z ∈ Rdz+1 are explanatory variables. As

discussed above, the partially linear model is given by

yi = x′iθ + g(zi) + εi, E[εi|xi, zi] = 0, σ2
ε(xi, zi) = E[ε2

i |xi, zi],

where vi = xi − h(zi) with h(zi) = E[xi|zi] and σ2
v(zi) = E[v2

i |zi]. A series estimator of β is

obtained by regressing yi on xi and approximating functions of zi.

For this project, we consider asymptotics for both the nonparametric and parametric

components of the partially linear model. Specifically, in Chapter 1, we give mean-square

rates of convergence for ∂`ĝ in the fixed norm ‖ĝ − g‖22,` and the empirical norm ‖ĝ −

g‖22,`,n. Section 1 handles inversion of P ′P/n by showing that its eigenvalues are bounded

above and below by positive constants with probability approaching one under the rate

condition Kn log n/n→ 0. Section 2 presents an asymptotic expression for the eigenvalues

of (P ′P/n)−1/2D(P ′P/n)−1/2, using theory from the field of partial differential equations.
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Section 3 gives an expression for the conditional mean squared error of ∂`ĝ, with ` =

(`1, ..., `d), `j ≤ r − 2, in terms of these eigenvalues, and Section 4 uses this expression to

find the rates of convergence.

Chapter 2 considers the asymptotic distribution of both the parametric and nonpara-

metric components. Section 1 gives the distribution of θ̂. Section 2 presents the distribution

of ∂`ĝ(·), and to that end, gives a lower bound on its pointwise variance and an upper bound

on its pointwise bias. Also, Section 3 gives the standard error estimates for the parametric

and nonparametric components.

1.4.1 Empirical and Fixed Mean Squared Error

Define

Cn(m) =

(
ςλn
n

)dz/2m
(Kn −m), ς =

(Γ( 1
2m)/2πm)dz

Γ(1 + dz
2m)

∫
[0,1]d

f(x)dz/2mdx


−2m/dz

Our first theorem present rates for the empirical and fixed mean squared error. As given

above, the fixed mean squared error is the average of (ĝ(z) − g(z))2 over the population,

and the empirical mean squared error is the average of (ĝ(z)− g(z))2 over the observations.

Our assumptions are as follows:

(A1): (y1, x1, z1), ..., (yn, xn, zn) are i.i.d.

(A2): σε(x, z)
2 and f(z) (the density of z) are bounded above and below away from zero,

uniformly in z.

These assumptions are standard in the literature and are difficult to relax without affecting

the rates of convergence.

(A3):
Kn log n

n
→ 0.

This assumption is weaker than that common in the literature for regression splines and

penalized splines, e.g. Newey (1997), Zhou et al. (1998), and Claeskens et al. (2009); and
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Huang (2003a) claims this assumption is minimal. We use it to bound the eigenvalues of the

design matrix away from zero and to obtain an asymptotic expression for the eigenvalues

used in the decomposition of the penalization matrix.

(A4): For all k and j, tj,k+1 − tjk � 1/K
1/dz
n .

We also choose m ≤ rg and m > dz/4.

Theorem 1: Under (A1)-(A4), for g(·) ∈ Cp[0, 1]dz and rg = min{p, r − 2}, if Cn(m) < 1

for all sufficiently large n, then

‖ĝ − g‖22,`,n = Op

(
K2`/dz
n

(
Kn

n
+
λ2
n

n2
K2m/dz
n +K

−2rg/dz
n

))
,

‖ĝ − g‖22,` = Op

(
K2`/dz
n

(
Kn

n
+
λ2
n

n2
K2m/dz
n +K

−2rg/dz
n

))
,

and if Cn(m) ≥ 1 for all sufficiently large n, then

‖ĝ − g‖22,`,n = Op

(
K2`/dz
n

(
n(dz−2m)/2m

λ
dz/2m
n

+
λn
n

+K
−2rg/dz
n

))
,

‖ĝ − g‖22,` = Op

(
K2`/dz
n

(
n(dz−2m)/2m

λ
dz/2m
n

+
λn
n

+K
−2rg/dz
n

))
,

These results agree with the literature. In particular, for dz = 1 and ` = 1, we recover the

result in Claeskens et al. (2009). (Note that Claeskens et al. (2009) assumed a different

functional space for g(·) in the case Cn(m) ≥ 1 for all sufficiently large n, resulting in K−2m
n

instead of K−2p
n in their result.) Also, when λn = 0, the rate when Cn(m) < 1 for all

sufficiently large n matches the result in Newey (1997). For Cn(m) ≥ 1 for all sufficiently

large n, the first two terms are the same as in Cox (1984). The third term is not present in

that result since Kn = n.

The first term in each expression is the rate of the variance. For Cn(m) < 1, the

variance grows with Kn and declines with n, since more observations results in a smoother
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estimate, and a larger Kn allows for a more jagged estimate. For Cn(m) ≥ 1, the variance

decreases with λn, since a larger penalization forces a smoother estimate. The second term

in each expression is the rate of the squared bias resulting from the penalization. In both

cases, the squared bias decreases with n and increases with λn, since a larger penalization

produces less fidelity to the data. Finally, the third term in each expression is the smoothing

(approximation) bias. As the number of basis functions used increases, the approximation

over Sn,r improves, causes this bias to decrease.

1.4.2 Asymptotic Distribution and Standard Error Estimates for the Paramet-

ric Component

We present an asymptotic linear representation of θ̂, along with an asymptotic normality

result, under weak conditions on the tuning parameter sequences. We also give simple, plug-

in standard error estimates, which are robust to heteroskedasticity of unknown form.

Define T = I − P (P ′P + λnD)−1P ′; Vn = Γ−1
n ΩnΓ−1

n with Γn = XT ′TX, Ωn =

XT ′TΣTT ′X, and Σ = diag(σ2
ε(x1, z1), ..., σ2

ε(xn, zn)); V̂n = Γ−1
n Ω̂nΓ−1

n , with Ω̂n = XT ′T Σ̂TT ′X

and Σ̂ = diag(ε̂2
1, ..., ε̂

2
n); and Γ = E[νiν

′
i], Ω = E[νiν

′
iε

2
i ]. We need the following assumptions:

(A5): E[‖vi‖4|zi] and E[ε4i |zi] are bounded above.

Let ph be the minimum (over j) number of continuous derivatives of hj , and define rh =

min{r − 2, ph}.

(A6): (a)
√
nK
−(rg+rh)/dz
n → 0, (b) if Cn(m) < 1 for all sufficiently large n, then

√
nλnK

m/dz
n /n→

0, and (c) if Cn(m) ≥ 1 for all sufficiently large n, then
√
n
√
λn/n = λn → 0.

Note that for Cn(m) < 1, (A6) and (A3) easily ensure that ‖ĝ−g‖2,0,n →p 0, since Kn →∞.

For Cn(m) ≥ 1, since Kn & ((λn/n)−dz/2m),

Kn log n

n
&

(λn/n)−dz/2m log n

n

=
ndz/2m log n

λ
dz/2m
n n

=
n(dz−2m)/2m log n

λ
d/2m
n

.
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So by (A3), n(dz−2m)/2m log n/λ
d/2m
n → 0, and again, ‖ĝ − g‖2,0,n →p 0.

Theorem 2: Under (A1), (A3), (A5), and (A6),

(a) V −1/2
n

√
n(θ̂ − θ) = V −1/2

n

1√
n

n∑
i=1

νiεi + op(1)→p N (0, 1),

Vn = Γ−1ΩΓ−1 + op(1), Γ = E[νiν
′
i], Ω = E[νiν

′
iε

2
i ]

(b) Γn = Γ + op(1), Ω̂n = Ω + op(1).

The main differences between this result and a similar result in Cattaneo et al. (2010) is

that a penalization is allowed but Kn = O(n) is not allowed.

1.4.3 Asymptotic Distribution and Standard Errors for the Nonparametric

Component

The asymptotic distribution for the nonparametric component (and its derivatives) are

also given. The method of proof involves noting that

∂`ĝ(z)− ∂`g(z) = ∂`pK(z)′(P ′P + λD)−1P ′(Y −Xθ̂)− ∂`g(z)

= ∂`pK(z)′(P ′P + λD)−1P ′(Y −Xθ)−

∂`pK(z)′(P ′P + λD)−1P ′X(θ̂ − θ)− ∂`g(z)

= ∂`pK(z)′(P ′P + λD)−1P ′(Y −G−Xθ) +

[∂`pK(z)′(P ′P + λD)−1P ′G− ∂`g(z)]−

∂`pK(z)′(P ′P + λD)−1P ′X(θ̂ − θ).

The first term approaches a normal distribution, and the second and third terms are bias

terms that approach zero (in probability), under some assumptions.

DefineW`,n = ∂`pK(z)′(P ′P+λD)−1P ′ΣP (P ′P+λD)−1∂`pK(z) and Ŵ`,n = ∂`pK(z)′(P ′P+

λD)−1P ′Σ̂P (P ′P + λD)−1∂`pK(z), with Σ and Σ̂ defined as above.
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(A7): (a) If Cn(m) < 1 for all sufficiently large n, then

λK
m/dz
n /n+ 1{|`| = 0}K−rg/dzn√

Kn/n
+ 1{|`| > 0}

√
nK
−(rg−|`|)/dz
n → 0,

(b) if 1 ≤ Cn(m) <∞, then

√
λn/n+ 1{|`| = 0}K−rg/dzn√

n(dz−2m)/2m/λ
dz/2m
n

+ 1{|`| > 0}
√
nK
−(rg−|`|)/dz
n → 0.

(c) and if Cn(m) =∞, then

λK
2m/dz
n

n

√λn/n
√
λnK

2m/dz
n /n+ 1{|`| = 0}K−rg/dzn√
n(dz−2m)/2m/λ

dz/2m
n

+ 1{|`| > 0}
√
nK
−(rg−|`|)/dz
n

→ 0,

λnK
2m/dz
n

n

n(dz−2m)/2m

λ
dz/2m
n

→ 0.

These assumptions are needed to guarantee that the bias (divided by the variance) disap-

pears asymptotically.

(A8): K
2|`|/dz
n Kn/n→ 0.

Note that for |`| = 0, this condition is already satisfied since Kn log n/n→ 0.

(A9): sup
z∈[0,1]d

|ĝ(z)− g(z)| ≤ Op(1).

A discussion of this condition is included in Chapter 3.

Theorem 3: Under (A1)-(A4) and (A7)-(A9),

(a)
∂`ĝ(z)− ∂`g(z)√

W`,n(z)
→d N (0, 1),

(b) Ŵ`,n(z) = W`,n(z) + op(1).

Because of the triangular array structure, the Lindeberg-Feller CLT is used in the proof.
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CHAPTER II

Rates of Convergence

For ease of notation, we let d ≡ dz, K ≡ Kn, and λ ≡ λn throughout Chapters 2 and 3.

2.1 Eigenvalues of the Design Matrix

We first consider the eigenvalues of the design matrix P ′P/n, in order to ensure invert-

ibility, required for the mean squared error expansion. We multiply each basis function pk

by
√
K, as a normalization (see Newey (1997)). Our only noteworthy assumption is that

K log n/n → 0, generally considered to be minimal (see Huang (2003b)). We show that

these eigenvalues are bounded above and below asymptotically.

Let {∆k}Kk=1 be the set of hyper-intervals (t1,k1 , t1,k1+1]×· · ·× (td,kd , td,kd+1], k1, ..., kd =

1, ...,K1/d, and let {∆j
k}
K1/d

k=1 be the set of intervals (tj,k, tj,k+1], k = 1, ...,K1/d, j = 1, ..., d.

Lemma 2.1: If K log n/n→ 0,

c1 + op(1) ≤ λ̃min ≤ λ̃max ≤ c2 + op(1),

for some constants c1, c2 > 0.

Proof : Given in the Appendix.
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2.2 Eigenvalues for the Penalization Matrix

We now consider the eigenvalues of the penalization matrix D, where the k` element of

D is

Dk` =

∫
[0,1]d

d∑
j1,...,jm=1

∂mpk
∂zj1 · · · ∂zjm

∂mp`
∂zj1 · · · ∂zjm

dz.

as given previously. Let µn,Kk be the kth such eigenvalue, where µn,K1 ≤ µn,K2 ≤ · · · ≤ µn,KK .

2.2.1 Convergence of Eigenvalues

We show that µn,Kk approaches the kth eigenvalue µk of a well-known differential equa-

tion as n,K →∞.

Define ã(u, v), b(u, v), bn(u, v), and a(u, v) to be the bilinear forms

ã(u, v) ≡
∫

[0,1]d

d∑
j1,...,jm=1

∂mu

∂xj1 · · · ∂xjm
∂mv

∂xj1 · · · ∂xjm
dx,

b(u, v) ≡
∫

[0,1]d

u(x)v(x)f(x)dx,

bn(u, v) ≡ 1

n

n∑
i=1

u(Zi)v(Zi),

a(u, v) = ã(u, v) + b(u, v).

Define H ≡ Wm,2 = {g ∈ L2([0, 1]d) : for all |α| ≤ m, ∂αg ∈ L2([0, 1]d)}, where α =

(α1, ..., αd) and |α| = α1 + · · ·+αd, as usual (see Adams & Fournier (2003) for a discussion

of Sobolev spaces). We consider the eigenvalues of the equation

a(u, v) = µb(u, v) for all v ∈ H, for some u ∈ H. (2.1)

Note that these eigenvalues are the eigenvalues of the equation ã(u, v) = µb(u, v), but with a

value of 1 added to each. Since all of the eigenvalues of the latter equation are non-negative

(as shown in the Appendix), all µ satisfying (2.1) are positive. Thus, a is positive definite

on H ×H and is therefore invertible, that is,
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inf
‖u‖H=1

sup
‖v‖H=1

|a(u, v)| ≥ C > 0

and similarly inf
‖u‖H=1

sup
‖v‖H=1

|b(u, v)| ≥ C > 0. These inequalities also hold on Sn,r since

Sn,r ⊂ H. Also, since a and b are both integrals on finite domains, |a(u, v)| ≤ C‖u‖H‖v‖H

and |b(u, v)| ≤ C‖u‖H‖v‖H .

Define the operator T by a(Tu, v) = µb(u, v) for all v ∈ H. (Note that T exists by the

Riesz Representation Theorem, as discussed in Fix (1972)). Since a and b are both defined

on H ×H, T is compact (Aziz & Babuska (1972), p. 305 and 319). Observe that µ satisfies

a(u, v) = µb(u, v) if and only if 1/µ is an eigenvalue of T , so by the compactness of T , the

eigenvalues form a countable set with accumulation only at infinity. This is confirmed in

the Appendix.

Consider the equations

a(uK , vK) = µKb(uK , v
K) for all vK ∈ Sn,r, for some uK ∈ Sn,r (2.2)

a(uK , vK) = µK,nbn(uK , vK) for all vK ∈ Sn,r, for some uK ∈ Sn,r, (2.3)

We define TK similarly to T , and define

d(µ) ≡ inf‖u‖H=1 sup‖v‖H=1 |a(u, v)− µb(u, v)|,

dK(µ) ≡ inf‖uK‖H=1 sup‖vK‖H=1 |a(uK , vK)− µKb(uK , vK)|,

dn,K(µ) ≡ inf‖uK‖H=1 sup‖vK‖H=1 |a(uK , vK)− µn,Kbn(uK , vK)|.

We let µ1 ≤ · · · ≤ µK and µK1 ≤ · · · ≤ µKK as with µn,K1 , ..., µn,KK .

Lemma 2.2.1: Under (A3), for all k ≥ 1, |µk − µn,Kk | →p 0.

Proof : For conciseness, we drop the k subscript. We present an argument similar to the

proof of Theorem 10.5.1 in Aziz & Babuska (1972).

We first show that if d(µ∗) = 0, then given small ε > 0 and a value µn,K such |µ∗−µn,K | =

ε for large n and K, we have dn,K(µn,K) ≥ Cε+op(1), for some constant Cε > 0 independent

of n and K.

Let d(µ∗) = 0, then since the eigenvalues µ that satisfy (2.1) are isolated (as shown in

the Appendix), there is some ρ > 0 such that |µ∗−µ| > ρ for all other µ. Then given ε > 0
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such that ε < ρ, there is no µ such that |µ∗ − µ| = ε.

So given a value µ0 such that |µ0 − µ∗| = ε, since

sup
‖u‖H=1

inf
‖v‖H=1

|a(u, v)− µ∗b(u, v)| ≤ inf
‖u‖H=1

sup
‖v‖H=1

|a(u, v)− µ∗b(u, v)| = 0,

we have

d(µ0) = inf
‖u‖H=1

sup
‖v‖H=1

|a(u, v)− µ0b(u, v)|

≥ inf
‖u‖H=1

sup
‖v‖H=1

|(µ∗ − µ0)b(u, v)| − sup
‖u‖H=1

inf
‖v‖H=1

|a(u, v)− µ∗b(u, v)|

≥ |µ∗ − µ0| inf
‖u‖H=1

sup
‖v‖H=1

|b(u, v)|

≥ Cε.

Given uK0 ∈ Sn,r, let w0 be such that a(w0, v) = µ0b(u
K
0 , v) for all v ∈ H, and let wK0 be such

that a(wK0 , v
K) = µ0b(u

K
0 , v

K) for all vK ∈ Sn,r. Then for all v ∈ H, a(uK0 , v)−µ0b(u
K
0 , v) =

a(uK0 , v)− a(w0, v) = a(uK0 − w0, v), so

sup
‖v‖H=1

|a(uK0 − w0, v)| = sup
‖v‖H=1

|a(uK0 , v)− µ0b(u
K
0 , v)|

= ‖uK0 ‖H sup
‖v‖H=1

|a(uK0 /‖uK0 ‖H , v)− µ0b(u
K
0 /‖uK0 ‖H , v)|

≥ ‖uK0 ‖H inf
‖u‖H=1

sup
‖v‖H=1

|a(u0, v)− µ0b(u0, v)|

≥ ‖uK0 ‖HCε.

Then since sup‖v‖H=1 |a(uK0 −w0, v)| ≤ ‖uK0 −w0‖H , we have ‖uK0 −w0‖H ≥ ‖uK0 ‖HCε. As

shown in Fix, w0 = µ0Tu
K
0 and wK0 = µ0T

KuK0 . So

‖w0 − wK0 ‖H = µ0‖(T − TK)uK0 ‖H

≤ µ0‖uK0 ‖H sup
‖uK‖=1

‖(T − TK)uK0 ‖H

≤ µ0‖uK0 ‖Hsn,K ,

for some sequence sn,K → 0 as n,K → ∞. As above, for all vK ∈ Sn,r, a(uK0 , v
K) −
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µ0b(u
K
0 , v

K) = a(uK0 − wK0 , vK). So by the invertibility of a,

sup
‖vK‖H=1

|a(uK0 , v
K)− µ0b(u

K
0 , v

K)| = sup
‖vK‖H=1

|a(uK0 − wK0 , vK)|

≥ ‖uK0 − wK0 ‖H inf
‖uK‖H=1

sup
‖vK‖H=1

|a(uK0 , v
K)|

≥ C‖uK0 − wK0 ‖H

≥ C(‖uK0 − w0‖H − ‖w0 − wK0 ‖H)

≥ C(Cε‖uK0 ‖H − µ0sn,K‖uK0 ‖H)

≥ Cε(‖uK0 ‖H(1− µ0sn,K/Cε)

≥ Cε,

for sufficiently large n and K.

Now as shown above, since K log n/n→ 0, for all uK , vK ∈ Sn,r with ‖uK‖H = ‖vK‖H =

1,

|b(uK , vK)− bn(uK , vK)| =

∣∣∣∣∣E[uK(z)vK(z)]− 1

n

n∑
i=1

uK(Zi)v
K(Zi)

∣∣∣∣∣ ≤ s̃n,K ,
for some sequence s̃n,K →p 0 as n,K →∞, and thus

sup
‖vK‖H=1

|a(uK0 , v
K)− µ0bn(uK0 , v

K)| ≥ sup
‖vK‖H=1

|a(uK0 , v
K)− µ0b(u

K
0 , v

K)| −

µ0 inf
‖vK‖H=1

|b(uK0 , vK)− bn(uK0 , v
K)|

≥ Cε − µ0s̃n,K

≥ Cε + op(1).

So we have shown that given µ0 such that |µ0 − µ∗| = ε and µK0 ∈ Sn,r,

sup
‖vK‖H=1

|a(uK0 , v
K)− µ0bn(uK0 , v

K)| ≥ Cε + op(1).

So since µ0 and µK0 were arbitrary, we have dn,K(µn,K) ≥ Cε + op(1), for all µn,K such that

|µn,K − µ∗| = ε, as desired.

Using this result, we now show that with probability approaching one (wpa1), for suffi-

ciently large n and K, there exists µn,K∗ such that |µ∗ − µn,K∗ | < ε and dn,K(µn,K∗ ) = 0.

Suppose that for all n and K, there is no zero of dn,K(µn,K) such that |µn,K − µ∗| < ε.
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Then (dn,K(µn,K))−1 is subharmonic and attains its maximum on the circumference |µn,K−

µ∗| = ε (see Aziz). Thus, (dn,K(µn,K))−1 < 1/(Cε + op(1)) < ∞, that is, dn,K(µn,K) >

Cε + op(1), for all µn,K such that |µn,K − µ∗| < ε and sufficiently large n and K. Then for

all µK such that |µK − µ∗| < ε,

dK(µK) = inf
‖uK‖H=1

sup
‖vK‖H=1

|a(uK , vK)− µKb(uK , vK)|

≥ inf
‖uK‖H=1

sup
‖vK‖H=1

|(a(uK , vK)− µKbn(uK , vK))| −

µn,K sup
‖uK‖=1

inf
‖vK‖H=1

|b(uK , vK)− bn(uK , vK)|

≥ Cε + op(1).

So since |µ∗ − µ∗| = 0 < ε,

sup
‖vK‖H=1

|a(uK∗ , v)− µ∗b(uK∗ , v)| ≥ ‖uK∗ ‖H inf
‖uK‖H=1

sup
‖vK‖H=1

|a(uK , v)− µ∗b(uK , v)|

≥ ‖uK∗ ‖H(Cε + op(1)).

Let u∗ satisfy a(u∗, v) = µ∗b(u∗, v) for all v ∈ H, then as discussed above, u∗ = µ∗Tu∗. So

letting uK∗ = µ∗T
Ku∗, we have ‖u∗ − uK∗ ‖H ≤ µ∗sn,K‖u∗‖H . Then for all vK ,

|a(u∗ − uK∗ , vK)− µ∗b(u∗ − uK∗ , vK)| ≤ |a(u∗ − uK∗ , vK)|+ µ∗|b(u∗ − uK∗ , vK)|

≤ ‖u∗ − uK∗ ‖‖vK‖H(1 + µ∗)

≤ µ∗sn,K‖u∗‖H‖vK‖H(1 + µ∗).
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Thus,

sup
‖vK‖H=1

|a(u∗, v
K)− µ∗b(u∗, vK)| ≥ sup

‖vK‖H=1

|a(uK∗ , v
K)− µ∗b(uK∗ , vK)| −

inf
‖vK‖H=1

|a(u∗ − uK∗ , vK)− µ∗b(u∗ − uK∗ , vK)|

≥ (Cε + op(1))‖uK∗ ‖H − µ∗sn,K‖u∗‖H‖(1 + µ∗)

≥ (Cε + op(1))(‖u∗‖H − ‖uK∗ −

u∗‖H)− µ∗sn,K‖u∗‖H(1 + µ∗)

≥ (Cε + op(1))(‖u∗‖H −

µ∗sn,K‖u∗‖H)− µ∗sn,K‖u∗‖H(1 + µ∗)

= ‖u∗‖H [(Cε + op(1))(1− µ∗sn,K)−

µ∗sn,K(1 + µ∗)]

≥ (Cε + op(1))‖u∗‖H + op(1)

So wpa1 µ∗ does not satisfy 2.1, which is contrary to our assumption. So wpa1 it must be

that for sufficiently large n and K, there exists µn,K∗ satisfying (3) such that |µ∗−µn,K∗ | < ε.

Thus we have shown that if µ∗ is an eigenvalue of 2.1, then given sufficiently small ε > 0,

wpa1 there exists µn,K∗ such that |µ∗ − µn,K∗ | < ε and µn,K∗ satisfies (3). The result follows.

2.2.2 Decomposition of the Penalization Matrix

We now show that (P ′P/n)−1/2D(P ′P )−1/2 has an eigenvalue decomposition with the

eigenvalues µn,K1 , ..., µn,KK just discussed. This decomposition is crucial to the expression for

the mean squared error, shown in a later section, and the eigenvalues determine the rate of

this expression.

Lemma 2.2.2: (P ′P/n)−1/2D(P ′P/n)−1/2 = UMU ′ where M is the diagonal matrix of

eigenvalues µn,K1 , ..., µn,KK and U is an orthogonal matrix of eigenvectors.

Proof : Let ψ1, ..., ψK be the (random) eigenfunctions corresponding to µn,K1 , ..., µn,KK . We
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note that for any j 6= k,

0 = a(ψj , ψk)− a(ψk, ψj)

= µn,Kj bn(ψj , ψk)− µn,Kk bn(ψk, ψj)

= (µn,Kj − µn,Kk )bn(ψj , ψk),

so bn(ψj , ψk) = 0. Thus, ψ1, ..., ψK are orthonormal, in the sense that

1

n

n∑
i=1

ψj(Zi)ψk(Zi) = 1{j = k}

(noting that ψk can be normalized if ‖ψk‖H 6= 1). (Orthogonality of eigenfunctions is a

well-known property of Hermitian operators.) Suppose that
∑K

k=1 ckψk(x) = 0 for some

constants c1, ..., cK . Then for any k0 ∈ [1,K],
∑K

k=1 ckψk0(x)ψk(z) = 0 and thus

0 =
K∑
k=1

ck
1

n

n∑
i=1

ψk0(Zi)ψk(Zi)

=

K∑
k=1

ck1{k = k0}

= ck0 .

So ck = 0, k = 1, ...,K. Thus, ψ1, ..., ψK are linearly independent and span Sn,r. So we can

write pq =
∑K

k=1 αqkψk, for q = 1, ...,K, for some constants αqk, k = 1, ...,K. Then

(P ′P/n)qr =
1

n

n∑
i=1

pq(Zi)pr(Zi)

=
1

n

n∑
i=1

[

K∑
k=1

αqkψk(Zi)][

K∑
k=1

αrkψk(Zi)]

=

K∑
k1,k2=1

αqk1αrk2

1

n

n∑
i=1

ψk1(Zi)ψk2(Zi)

=
K∑

k1,k2=1

αqk1αrk21{k1 = k2}

=
K∑
k=1

αqkαrk,
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So defining A such that Ajk = αjk, we have

P ′P/n =


∑K

k=1 α1kα1k · · ·
∑K

k=1 α1kαKk
...

. . .
...∑K

k=1 αKkα1k · · ·
∑K

k=1 αKkαKk



=


α11 · · · α1K

...
. . .

...

αK1 · · · αKK




α11 · · · αK1

...
. . .

...

α1K · · · αKK


= AA′.

Also,

(D)qr =

∫
[0,1]d

d∑
j1,...,jm=1

∂mpq(x)

∂xj1 · · · ∂xjm
∂mpr(x)

∂xj1 · · · ∂xjm
dx

=

∫
[0,1]d

d∑
j1,...,jm=1

∂m[
∑K

k=1 αqkψk(x)]

∂xj1 · · · ∂xjm
∂m[

∑K
k=1 αrkψk(x)]

∂xj1 · · · ∂xjm
dx

=
K∑

k1,k2=1

αqk1αrk2

∫
[0,1]d

d∑
j1,...,jm=1

∂mψk1(x)

∂xj1 · · · ∂xjm
∂mψk2(x)

∂xj1 · · · ∂xjm
dx

=

K∑
k1,k2=1

αqk1αrk2µ
n,K
k1

1{k1 = k2}

=
K∑
k=1

αqkαrkµ
n,K
k

Then

D =


∑K

k=1 µ
n,K
k α1kα1k · · ·

∑K
k=1 µ

n,K
k α1kαKk

...
. . .

...∑K
k=1 µ

n,K
k αKkα1k · · ·

∑K
k=1 µ

n,K
k αKkαKk



=


α11 · · · α1K

...
. . .

...

αK1 · · · αKK




µn,K1 0

. . .

0 µn,KK




α11 · · · αK1

...
. . .

...

α1K · · · αKK


= AMA′

So (P ′P/n)−1/2D(P ′P/n)1/2 = (AA′)−1/2(AMA′)(AA′)−1/2. Let U = (AA′)−1/2A, then

UU ′ = (AA′)−1/2AA′(AA′)1/2 = I. Since U is square, we also have U ′U = I.
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2.2.3 Asymptotic Representation of Eigenvalues

We now present an expression for the eigenvalues of the equation

a(u, v) = µb(u, v) for all v ∈ H

where u ∈ H, using theory from the field of multivariate differential equations. We use

these eigenvalues in Section 2 above to decompose the penalization matrix.

The expression we give is an asymptotic expression, meaning in this case that it is valid

as k → ∞, where k is the index on the eigenvalues. That is, the expression is true for

large eigenvalues. A result without the ok(1) term in the final expression is known in the

univariate case (Claeskens et al. (2009), Speckman (1985)), but the authors are unaware of

an existing result (with or without the ok(1)) in the multivariate case. This result is key

for the mean-square and uniform rates of convergence, and we believe it will prove useful

for many researchers in the future.

Lemma 2.2.3: For k ≥ 1,

µk =


(Γ( 1

2m)/2πm)d

Γ(1 + d
2m)

∫
[0,1]d

f(x)d/2mdx


−2m/d

+ ok(1)

 k2m/d,

where ok(1) represents a term that goes to 0 as k →∞.

Proof : The proof is given in the Appendix.

2.3 Conditional Mean Squared Error Expansion

Using the expression for the eigenvalues found above, we now present an expression

for the empirical mean squared error of the nonparametric component, g, of the partially

linear model. We let G = (g(Z1), ..., g(Zn))′ as above, and let 1n be the indicator for

the smallest eigenvalue of P ′P/n being greater than c1 and the smallest eigenvalue of I +

λ(P ′P/n)−1/2D(P ′P/n)−1/2/n being greater than 1/2. Note that since µk ≥ 0 for all

k ≥ 1 (as discussed in the Appendix), µn,Kk = µk + op(1) ≥ op(1). So the eigenvalues of

I + λ(P ′P/n)−1/2D(P ′P/n)−1/2/n = I + λUMU ′/n are bounded below by 1 + op(1), since

λ/n9∞. Thus, 1n →p 1 as n,K →∞.
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2.3.1 Expansion

Lemma 2.3.1: If σε(x, z) is bounded above and below away from zero, the conditional

empirical mean squared error is

1

n
E[1n(Ĝ−G)′(Ĝ−G)|X,Z] � 1n

 1

n

K∑
i=1

1

(1 + λ
nµ

n,K
k )2

+
λ2

n

K∑
i=1

(
µn,Kk
n

)2

b2i

(1 + λ
nµ

n,K
k )2

+

1

n

n∑
i=1

(E[ĝr(Zi)|X,Z]− g(Zi))
2

)
,

where ĝr is the spline estimate of g when λ = 0.

Proof : For ease of notation, assume throughout the proof that 1n = 1. We have

E[(Ĝ−G)′(Ĝ−G)|X,Z] � E[(Ĝ− E[Ĝ|X,Z])′(Ĝ− E[Ĝ|X,Z])|X,Z] +

(E[Ĝ− Ĝr|X,Z])′(E[Ĝ− Ĝr|X,Z]) +

(E[Ĝr|X,Z]−G)′(E[Ĝr|X,Z]−G)

Consider E[(Ĝ− E[Ĝ|X,Z])′(Ĝ− E[Ĝ|X,Z])|X,Z]. Let B = P (P ′P )−1/2U , then

Ĝ− E[Ĝ|X,Z] = P (P ′P + λD)−1P ′(Y −Xθ −G)

= P (P ′P )−1/2(I + λUMU ′/n)−1(P ′P )−1/2P ′(Y −Xθ −G)

= P (P ′P )−1/2U(I + λM/n)−1U ′(P ′P )−1/2P ′(Y −Xθ −G).
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So

E[(Ĝ− E[Ĝ|X,Z])′(Ĝ− E[Ĝ|X,Z])|X,Z] = E[(Y −Xθ −G)′P (P ′P )−1/2U ×

(I + λM/n)−1U ′(P ′P )1/2P ′P ×

(P ′P )1/2U(I + λM/n)−1U ′(P ′P )−1/2 ×

P ′(Y −Xθ −G)|X,Z]

= E[(Y −Xθ − g)′P (P ′P )−1/2U ×

(I + λM/n)−2U ′(P ′P )−1/2P ′ ×

(Y −Xθ −G)|X,Z]

Let B = P (P ′P )−1/2U and (a1 · · · aK) ≡ (Y −Xθ −G)′B, then

(Y −Xθ −G)′B(I + λM/n)−2B′(Y −Xθ −G) =
K∑
k=1

a2
k

(1 + λ
nµ

n,K
k )2

.

Also,

E[B′(Y −Xθ −G)(Y −Xθ −G)′B|X,Z] = E[B′(Y −Xθ −G)×

(Y −Xθ −G)′B|X,Z]

= B′E[(Y −Xθ −G)×

(Y −Xθ −G)′|X,Z]B

≤ B′(σ2
εI)B

= σ2
εI,

and similarly E[B′(Y −Xθ−G)(Y −Xθ−G)′B|X,Z] ≥ σ̃2
εI. So since a2

k is the kth element

along the diagonal of B′(Y −Xθ −G)(Y −Xθ −G)′B, we have σ̃2
ε ≤ E[a2

k|X,Z] ≤ σ2
ε . So

E[(Ĝ− E[Ĝ|X,Z])′(Ĝ− E[Ĝ|X,Z])|X,Z] �
K∑
k=1

1

(1 + λ
nµ

n,K
k )2

.

In the case of homoskedasticity,

E[(Ĝ− E[Ĝ|X,Z])′(Ĝ− E[Ĝ|X,Z])|X,Z] =
K∑
k=1

σ2
ε

(1 + λ
nµ

n,K
k )2

.
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Consider now (E[Ĝ − Ĝr|X,Z])′(E[Ĝ − Ĝr|X,Z]). Letting bk be the kth component of

G′P (P ′P )−1/2U , we have

(E[Ĝ− Ĝr|X,Z])′(E[Ĝ− Ĝr|X,Z]) = [P (P ′P )−1P ′G− P (P ′P + λD)−1P ′G]′ ×

[P (P ′P )−1P ′G− P (P ′P + λD)−1P ′G]

= [P (P ′P )−1/2U(I − (I + λM/n)−1)×

U ′(P ′P )−1/2P ′G]′ ×

[P (P ′P )−1/2U(I − (I + λM/n)−1)×

U ′(P ′P )−1/2P ′G]

= G′P (P ′P )−1/2U(I − (I + λM/n)−1)×

U ′(P ′P )−1/2P ′P (P ′P )−1/2U ×

(I − (I + λM/n)−1)U ′(P ′P )−1/2P ′G

= G′P (P ′P )−1/2U(I − (I + λM/n)−1)2 ×

U ′(P ′P )−1/2P ′G

=
K∑
k=1

b2k

(
λ
nµ

n,K
k

1 + λ
nµ

n,K
k

)2

.

Finally, we see that (E[Ĝr|X,Z]−G)′(E[Ĝr|X,Z]−G) =

n∑
i=1

(g(Zi)− E[ĝr(Zi)|X,Z])2. So

1

n
E[1n(Ĝ−G)′(Ĝ−G)|X,Z] � 1n

 1

n

K∑
k=1

1

(1 + λ
nµ

n,K
k )2

+
λ2

n

K∑
k=1

(
µn,Kk
n

)2

b2k

(1 + λ
nµ

n,K
k )2

+

1

n

n∑
i=1

(E[ĝr(Zi)|X,Z]− g(Zi))
2

)
,

as desired.
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2.3.2 Simplication of the Variance Term

Now as shown in Section 2, µn,Kk = µk+op(1) = (ς+ok(1))k2m/d+op(1), where ok(1) de-

notes a term that approaches zero as k →∞. Then for some sequences δk and δn,K such that

δk → 0 as k →∞ and δn,K →p 0 as n,K →∞, we have µn,Kk +op(1) = (ς+δk)k
2m/d+δn,K .

We now show that µk +op(1) in the above expression can be replaced with its leading term.

Lemma 2.3.2 deals with the first term of the mean-square error, and Lemma 2.3.3 deals

with the second.

Lemma 2.3.2: The first term in the conditional mean squared error expansion can be

rewritten as

K∑
k=1

1

(1 + λ
nµ

n,K
k )2

=
K∑
k=1

1 + εn,K,λ,k

(1 + (ς + δk)
λ
nk

2m/d)2
�

K∑
k=1

1 + εn,K,λ,k

(1 + ςλ
n k

2m/d)2
,

where εn,K,λ,k →p 0 as n,K →∞.

Proof : We have

K∑
k=1

1

(1 + λ
nµ

n,K
k )2

=
K∑
k=1

1(
1 + λ

n((ς + δk)k2m/d + δn,K
)2

=

K∑
k=1

1

(1 + (ς + δk)
λ
nk

2m/d)2

(1 + (ς + δk)
λ
nk

2m/d)2(
1 + λ

n((ς + δk)k2m/d + δn,K)
)2

=
K∑
k=1

1

(1 + (ς + δk)
λ
nk

2m/d)2
×

(1 + (ς + δk)
λ
nk

2m/d)2(
1 + λ

n((ς + δk)k2m/d
)2

+ 2
(
1 + λ

n((ς + δk)k2m/d
)
λ
nδn,K +

(
λ
nδn,K

)2
=

K∑
k=1

1

(1 + (ς + δk)
λ
nk

2m/d)2
[1−

2
(
1 + λ

n((ς + δk)k
2m/d

)
λ
nδn,K +

(
λ
nδn,K

)2(
1 + λ

n((ς + δk)k2m/d
)2

+ 2
(
1 + λ

n((ς + δk)k2m/d
)
λ
nδn,K +

(
λ
nδn,K

)2
]

=
K∑
k=1

1 + εn,K,λ,k

(1 + (ς + δk)
λ
nk

2m/d)2
,
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where

εn,K,λ,k = −
2
(
1 + λ

n((ς + δk)k
2m/d

)
λ
nδn,K +

(
λ
nδn,K

)2(
1 + λ

n((ς + δk)k2m/d
)2

+ 2
(
1 + λ

n((ς + δk)k2m/d
)
λ
nδn,K +

(
λ
nδn,K

)2 .
Note that εn,K,λ,k →p 0 for all k = 1, ...,K, as n,K →∞, since

1 + (ς + δk)λk
2m/d/n & λδn,K/n.

Similarly, to deal with δk,

K∑
k=1

1 + εn,K,λ,k

(1 + (ς + δk)
λ
nk

2m/d)2
=

K∑
k=1

1 + εn,K,λ,k

(1 + ςλ
n k

2m/d)2

(1 + ςλ
n k

2m/d)2

(1 + (ς + δk)
λ
nk

2m/d)2

=
K∑
k=1

1 + εn,K,λ,k

(1 + ςλ
n k

2m/d)2
[1−

2(1 + ςλ
n k

2m/d)δk
λ
nk

2m/d + (δk
λ
nk

2m/d)2

(1 + ςλ
n k

2m/d)2 + 2(1 + ςλ
n k

2m/d)δk
λ
nk

2m/d + (δk
λ
nk

2m/d)2

]

�
K∑
k=1

1 + εn,K,λ,k

(1 + ςλ
n k

2m/d)2
,

since

εk ≡
2(1 + ς λnk

2m/d)δk
λ
nk

2m/d + (δk
λ
nk

2m/d)2

(1 + ς λnk
2m/d)2 + 2(1 + ς λnk

2m/d)δk
λ
nk

2m/d + (δk
λ
nk

2m/d)2
→ 0

as k →∞ (since 1 + ςλk2m/d/n > δkλk
2m/d/n for large k).

2.3.3 Simplification of the Penalization Bias Term

Lemma 2.3.3: The second term in the conditional mean squared error expansion can be

rewritten as

K∑
k=1

(
µn,Kk
n

)2

b2k

(1 + λ
nµ

n,K
k )2

=
K∑
k=1

(
µn,Kk
n

)(
ς+δk
n k2m/d

)
b2k(1 + ε′n,K,λ,k)

(1 + (ς + δk)
λ
nk

2m/d)2

�
K∑
k=1

(
µn,Kk
n

)(
ς
nk

2m/d
)
b2k(1 + ε′n,K,λ,k)

(1 + ςλ
n k

2m/d)2
,
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where ε′n,K,λ,k →p 0 as n,K →∞.

Proof : We have

K∑
k=1

(
µn,Kk
n

)2

b2k

(1 + λ
nµ

n,K
k )2

=
K∑
k=1

(
µn,Kk
n

)(
(ς+δk)k2m/d+δn,K

n

)
b2k(1 + εn,K,λ,k)

(1 + (ς + δk)
λ
nk

2m/d)2

=

K∑
k=1

(
µn,Kk
n

)(
ς+δk
n k2m/d

)
b2k(1 + ε′n,K,λ,k)

(1 + (ς + δk)
λ
nk

2m/d)2
,

where ε′n,K,λ,k = εn,K,λ,k +
δn,K/n

(ς + δk)k2m/d/n
(1 + εn,K,λ,k)→p 0, since εn,K,λ,k →p 0 and δn,K →p

0 as n,K →∞, and the first equality follow from Lemma 2.3.2. Also as in Lemma 2.3.2,

K∑
k=1

(
µn,Kk
n

)(
ς+δk
n k2m/d

)
b2k(1 + ε′n,K,λ,k)

(1 + (ς + δk)
λ
nk

2m/d)2
=

K∑
k=1

(
µn,Kk
n

)(
ς+δk
n k2m/d

)
b2k(1 + ε′n,K,λ,k)(1 + εk)

(1 + ςλ
n k

2m/d)2

�
K∑
k=1

(
ς
nk

2m/d
)2
b2k(1 + ε′n,K,λ,k)

(1 + ςλ
n k

2m/d)2
,

since δk < ς for large k.

2.4 Rate of the Empirical Mean Squared Error

2.4.1 Without Derivatives

We now find the empirical mean squared rate of convergence of ĝ, given the expressions

found in Section 3. We first note that Cn(m) = (ςλ/n)d/2m(K −m)→∞ if and only if

(ςλ/n)d/2mK →∞. This case is equivalent to smoothing splines if K = O(n), and we find

that the rate of the mean squared error is equivalent to that for smoothing splines. When

Cn(m)→∞ but K < O(n), the framework could be considered “almost” smoothing splines,

and the mean-square rate has an additional approximation bias term of order K−rg/d. If

K is chosen sufficiently large, then this bias will be dominated by the bias resulting from

the penalization, showing that the estimation procedure is asymptotically equivalent to

smoothing spline estimation.

Similarly, Cn(m)→ 0 if and only if (ςλ/n)d/2mK → 0, since K −m = O(K). This case
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is equivalent to regression splines if λ = 0. If Cn(m) → 0 but λ > 0, there is an additional

bias term of order λKm/d/n resulting from the penalization (producing less fidelity to the

data). If λ is chosen sufficiently small so that the this penalization bias is smaller order

than the approximation bias, then this framework is asymptotically equivalent to regression

splines.

Finally, if Cn(m)→ c for some constant c, then since Cn(m) = (ςλ/n)d/2mK−(ςλ/n)d/2mm

andK →∞, it must be that (ςλ/n)d/2mK → c and (ςλ/n)d/2mm→ 0; and if (ςλ/n)d/2mK →

c for some constant c, then since K → ∞, we have (ςλ/n)d/2mm → 0, so Cn(m) → c. So

lim
n→∞

(ςλ/n)d/2mK = lim
n→∞

Cn(m). This case is neither asymptotically regression spline esti-

mation nor smoothing spline estimation, and most researchers in penalized spline estimation

are particularly interested in this case. The situation c = 1 can be considered the “knife-

edge” case, in that this is when the form for the rates of convergence switches between that

for regression splines and that for smoothing splines.

For ease of notation, define ηk ≡ ςk2m/d. We first present a proof in the case |`| = 0.

Theorem 1 - empirical norm, |`| = 0 (restated): If Cn(m) < 1 for all sufficiently large

n, then

‖ĝ − g‖22,0,n = Op

(
K

n
+
λ2

n2
K2m/d +K−2rg/d

)
,

and if Cn(m) ≥ 1 for all sufficiently large n, then

‖ĝ − g‖22,0,n = Op

(
n(d−2m)/2m

λd/2m
+
λ

n
+K−2rg/d

)
,
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Proof : From Lemmas 2.3.1, 2.3.2, and 2.3.3,

1

n
E[1n(Ĝ−G)′(Ĝ−G)|X,Z] � 1n

 1

n

K∑
k=1

1

(1 + λ
nµ

n,K
k )2

+
λ2

n

K∑
k=1

(
µn,Kk
n

)2

b2k

(1 + λ
nµ

n,K
k )2

+

1

n

n∑
i=1

(E[ĝr(Zi)|X,Z]− g(Zi))
2

]

� 1n

[
1

n

K∑
k=1

1 + εn,K,λ,k

(1 + λ
nηk)

2
+

λ2

n

K∑
k=1

(
µn,Kk
n )(ηkn )b2k(1 + ε′n,K,λ,k)

(1 + λ
nηk)

2
+

1

n

n∑
i=1

(E[ĝr(Zi)|X,Z]− g(Zi))
2

]
.

Define 1n,K = 1{1n = 1, |εn,K,λ,k| < 0.1, |ε′n,K,λ,k| < 0.1} →p 1 as n,K →∞. Then

1

n
E[1n,K(Ĝ−G)′(Ĝ−G)|X,Z] � 1n,K

 1

n

K∑
k=1

1

(1 + λ
nηk)

2
+
λ2

n

K∑
k=1

(
µn,Kk
n )(ηkn )b2k

(1 + λ
nηk)

2
+

1

n

n∑
i=1

(E[ĝr(Zi)|X,Z]− g(Zi))
2

)
.

For ease of notation, assume throughout the rest of the proof that 1n,K = 1. Con-

sider first Cn(m) < 1 for all sufficiently large n. Since ληk/n > 0 for k = 1, ...,K,

1

n

K∑
k=1

1

(1 + λ
nηk)

2
≤ K

n
.

Consider the second term. Since 1 + ληk/n ≥ 1,

λ2

n

K∑
k=1

(
µn,Kk
n )(ηkn )b2k

(1 + λ
nηk)

2
≤ λ2

n

K∑
k=1

(
µn,Kk
n

)(ηk
n

)
b2k �

λ2

n2
K2m/d

K∑
k=1

µn,Kk
n

b2k.
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Now

K∑
k=1

µn,Kk
n

b2k = g′P (P ′P )−1/2UMU ′(P ′P )−1/2P ′g/n = g′P (P ′P )−1D(P ′P )−1P ′g.

Define βK such that sg = β′Kp
K , where sg = inf

s∈Sn,r
sup

z∈[0,1]d
|s(z)− g(z)|, and Sg = (sg(Z1), ..., sg(Zn)).

Then adding and subtracting sg from g, we have

K∑
k=1

µn,Kk
n

b2k = (G− Sg)′P (P ′P )−1D(P ′P )−1P ′(G− Sg) +

2S′gP (P ′P )−1D(P ′P )−1P ′(G− Sg) + S′gP (P ′P )−1D(P ′P )−1P ′Sg

� (G− Sg)′P (P ′P )−1D(P ′P )−1P ′(G− Sg) +

S′gP (P ′P )−1D(P ′P )−1P ′Sg

= β′KDβK + (G− Sg)′P (P ′P )−1D(P ′P )−1P ′(G− Sg).

using S′g = β′KP
′. Since the number of observations in any hyper-interval is � n/K, for all

k = 1, ...,K,
n∑
i=1

pk(Zi) .
√
K · n

K
=

n√
K

. So

(G− Sg)′P (P ′P )−1D(P ′P )−1P ′(G− Sg) = (G− Sg)′P (P ′P/n)−1/2(P ′P/n)−1/2 ×

D(P ′P/n)−1/2(P ′P/n)−1/2P ′(G− Sg)/n2

≤ λ−1
min(P ′P/n)(G− Sg)′PUMU ′P ′ ×

(G− Sg)/n2

� 1

n2
λmax(M)×

K∑
k=1

(
n∑
i=1

(g(Zi)− sg(Zi))pk(Zi)

)2

.
1

n2
K2m/d sup

z∈[0,1]d
(g(z)− sg(z))2 ·K · n

2

K

. K2(m−rg)/d

= O(1)
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since m ≤ rg. Also, β′KDβK is the penalty term in our criterion function, which we assumed

was bounded. So

K∑
k=1

µn,Kk
n

b2k is bounded, and thus

λ2

n

K∑
k=1

(
µn,Kk
n )(ηkn )b2k

(1 + λ
nµ

n,K
k )2

.
λ2

n2
K2m/d.

Finally, consider the last term, which is
1

n

n∑
i=1

(E[ĝr(Zi)|X,Z]− g(Zi))
2. We have

1

n

n∑
i=1

(E[ĝr(Zi)|X,Z]− g(Zi))
2 =

1

n

n∑
i=1

(E[ĝr(Zi)|X,Z]− sg(Zi))2 +

1

n

n∑
i=1

(g(Zi)− sg(Zi))2.

Note that since sg ∈ Sn,r, we have sg = p′K(P ′P )−1P ′Sg. Then as above,

1

n

n∑
i=1

(E[ĝr(Zi)|X,Z]− sg(Zi))2 = (G− Sg)′P (P ′P )−1P ′P (P ′P )−1P ′(G− Sg)/n

≤ λ−1
min(P ′P/n)(G− Sg)′PP ′(G− Sg)/n2

� 1

n2

K∑
k=1

(
n∑
i=1

(g(Zi)− sg(Zi))2pk(Zi)

)2

� K−2rg/d.

Also,
1

n

n∑
k=1

(g(Zi)− sg(Zi))2 ≤ sup
z∈[0,1]d

|g(z)− sg(z)|2 . K−2rg/d, by Schumaker (1981) (see

also Newey (1997)). So

1

n
E[1n,K(Ĝ−G)′(Ĝ−G)|X,Z] .

K

n
+
λ2

n2
K2m/d +K−2rg/d.

Then by Markov’s inequality and the fact that 1n,K →p 1,

‖ĝ − g‖20,2,n = Op

(
K

n
+
λ2

n2
K2m/d +K−2rg/d

)
.

Consider now Cn(m) ≥ 1 for all sufficiently large n. Letting rm be the remainder term from
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the Euler-Maclaurin formula,

K∑
k=1

1

(1 + λ
nηk)

2
=

K∑
k=1

1

(1 + ςλ
n k

2m/d)2

=

K∫
0

dx

(1 + ςλ
n x

2m/d)2
+ rm

=

(
ςλ

n

)−d/2m (ςλ/n)d/2mK∫
0

du

(1 + u2m/d)2
+ rm

.

(
λ

n

)−d/2m
,

since the integral is finite for m > d/4, even if Cn(m) =∞, and where we use the substitu-

tion u = (ςλ/n)d/2mx.

Consider now the second term. Since x(1 + x)−2 ≤ 1
4 for x ≥ 1,

λ

n

K∑
k=1

(
µn,Kk
n )(ληkn )b2k

(1 + λ
nηk)

2
≤ λ

4n

K∑
k=1

µn,Kk
n

b2k .
λ

n
.

So using Markov’s inequality and the fact that 1n,K →p 1,

‖ĝ − g‖20,2,n = Op

(
n(d−2m)/2m

λd/2m
+
λ

n
+K−2rg/d

)
,

as desired.

2.4.2 With Derivatives

We now consider the mean squared rate of convergence in estimating the derivatives of g.

Let ` = (`1, ..., `d) be a vector of nonnegative integers, and let ∂`(z) ≡ ∂(`)h(z)/∂x`11 · · · ∂x
`d
d

with |`| =
∑d

j=1 `j . We consider derivatives up to order r− 2 in any one direction, where r

is again the order of the B-splines. This includes the popular case of cubic B-splines with

a first-order derivative in any direction.

We first present a lemma giving the best L∞ approximation rate to derivatives of g over

Sn,r. This sort of result is available in the literature in the univariate case (see Zhou &

Wolfe (2000) and Newey (1997)), but we are unaware of a similar result in the multivariate
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case.

Lemma 2.4.2: Given ` = (`1, ..., `d), there exists s̄g ∈ Sn,r such that

sup
z∈[0,1]d

|∂`g(z)− ∂`s̄g(z)| = O(K−(rg−|`|)/d),

where ∂0g(z) ≡ g(z), as usual.

Proof : Let Σ∂`g be defined by ∂`Σ∂`g = s∂`g, where s∂`g is the best L∞ approximation to

∂`g, as above. Define∫
`,z,tk1,...,kd

h(ζ)dζ ≡
z1∫

t1k1

· · ·
z1∫

t1k1︸ ︷︷ ︸
`1

· · ·
zd∫

tdkd

· · ·
zd∫

tdkd︸ ︷︷ ︸
`d

∂`h(ζ1, ..., ζd) dζ1 · · · dζ1︸ ︷︷ ︸
`1

· · · dζd · · · dζd︸ ︷︷ ︸
`d

for a function h and f`,h(z, tk1,...,kd) =

∫
`,x,tk1,...,kd

∂`h(ζ)dζ − h(z). Then over each hyper-

interval [t1k1 , t1,k1+1)× · · · × [tdkd , td,kd+1), k1, ..., kd = 1, ...,K1/d, define

s̄g(z) =

 ∫
`,z,tk1,...,kd

s∂`g(ζ)dζ − f`,sg(z, tk1,...,kd)

×
1{z ∈ [t1k1 , t1,k1+1)× · · · × [tdkd , td,kd+1)}

= [Σ∂`g(z) + f`,Σ
∂`g

(z, tk1 , ..., tkd)− f`,sg(z, tk1,...,kd)]×

1{z ∈ [t1k1 , t1,k1+1)× · · · × [tdkd , td,kd+1)}

Since each term in both f`,Σ
∂`g

(z, tk1,...,kd) and f`,sg(z, tk1,...,kd) is a function of at most d−1

elements of

z = (z1, ..., zd), ∂
`f`,Σ

∂`g
= 0 and ∂`f`,sg = 0, so ∂`s̄g = s∂`g. Thus,

sup
z∈[0,1]d

|∂`g(z)− ∂`s̄(z)| = O(K−(rg−`)/d),

since the modulus of smoothness of ∂`g is p− ` (Newey (1997)).
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Also, for all z ∈ [0, 1]d,

|g(z)− s̄g(z)| =

∣∣∣∣∣∣∣
 ∫
`,z,tk1,...,kd

∂`g(ζ)dζ − f`,g(z, tk1,...,kd)

 ×
1{z ∈ [t1k1 , t1,k1+1)× · · · × [t1k1 , t1,k1+1)}− ∫
`,z,tk1,...,kd

s∂`g(ζ)dζ − f`,sg(x, tk1,...,kd)

 ×
1{z ∈ [t1k1 , t1,k1+1)× · · · × [t1k1 , t1,k1+1)}|

≤

 ∫
`,z,tk1,...,kd

|∂`g(ζ)− s∂`g(ζ)|dζ

×
1{z ∈ [t1k1 , t1,k1+1)× · · · × [t1k1 , t1,k1+1)}+

|f`,g(z, tk1,...,kd)− f`,sg(x, tk1,...,kd)| ×

1{z ∈ [t1k1 , t1,k1+1)× · · · × [t1k1 , t1,k1+1)}

. sup
z∈[0,1]d

|∂`g(z)− s∂`g(z)| · (z1 − t1,k1)`1 · · · (zd − td,kd)
`d ×

1{z ∈ [t1k1 , t1,k1+1)× · · · × [t1k1 , t1,k1+1)}+

sup
z∈[0,1]d

|g(z)− sg(z)|

= O(K−(rg−|`|)/d) · (K1/d)`1+...+`d +O(K−rg/d)

= O(K−rg/d),

where the third-to-last line follows since each term in f`,g(z, tk1,...,kd)− f`,sg(z, tk1,...,kd) is of

the form g(a1, ..., ad)− sg(a1, ..., ad) where each aj equals zj or tjkj .

We now present the proof for the rate of a convergence for an estimate of ∂`ĝ, in

the empirical norm. In the proof, we find the rate of ‖β̂ − β̄‖22 (where s̄g = pK
′
β̄) from the

rate of ‖ĝ − g‖22,0,n, which is key to the result. This shows, as is intuitive, that the rates

are governed by the rate of approximation of the estimated coefficients on the spline basis

functions compared to the best L∞ coefficients.

Theorem 1 - empirical norm, ` > 0 (restated): If Cn(m) < 1 for all sufficiently large n,
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then

‖ĝ − g‖22,`,n = Op

(
K2`/d

(
K

n
+
λ2

n2
K2m/d +K−2rg/d

))
,

and if Cn(m) ≥ 1 for all sufficiently large n, then

‖ĝ − g‖22,`,n = Op

(
K2`/d

(
n(d−2m)/2m

λd/2m
+
λ

n
+K−2rg/d

))
,

Proof : Let 1n,K = 1 throughout the proof, and define D
(`j)
j = M ′j,1M

′
j,2 · · ·M ′j,`j with

Mj,η = (r − η)



−1
tj,r−tj,η 0 0 · · · 0

1
tj,r−tj,η

−1
tj,r+1−tj,1+η

0 · · · 0

0 1
tj,r+1−tj,1+η

−1
tj,r+2−tj,2+η

· · · 0

0 0 1
tj,r+2−tj,2+η

. . . 0

...
...

...
. . . −1

t
j,K1/d+r−1−η−tj,K1/d−1

0 0 0 · · · 1
t
j,K1/d+r−1−η−tj,K1/d−1


for η = 1, ..., `j , where tjk is the kth knot in direction j. As shown in Zhou & Wolfe (2000)

using De Boor (2001), when d = 1,

ĝ(`)(z) = (pK
′
(z)β̂)(`) = pK−`

′
(z)D(`)β̂,

where pK−` is the vector of spline basis functions of order r− `. Define pKj,−`j to be the vector

of basis functions in direction j of degree r− `j , and let D
(`j)
j be the matrix D(`j) using the

knots in direction j. Also, let P−` be the spline design matrix using splines of order r − `j

in direction j and D` = D
(`1)
1 ⊗ · · · ⊗D(`d)

d . Finally, let β̂− β̄ = (α̂1− ᾱ1)⊗ · · · ⊗ (α̂d− ᾱd),

where each vector α̂j − ᾱj , j = 1, ..., d, is chosen appropriately, and let α̂jk − ᾱjk be the k
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component of α̂j − ᾱj . Then

∂`ĝ(z)− ∂`s̄g(z) = ∂`

(
K∑
k=1

pk(z)(β̂k − β̄k)

)

= ∂`

 K1/d∑
k1,...,kd=1

p1k1(z1) · · · pdkd(zd)(α̂1k1 − ᾱ1k1) · · · (α̂dkd − ᾱdkd)


= ∂`

 d∏
j=1

K1/d∑
kj=1

pjkj (zj)(α̂jkj − ᾱjkj )


= ∂`

 d∏
j=1

pKj
′
(zj)(α̂j − ᾱj)


=

d∏
j=1

pKj,−`j
′
(zj)D

(`j)
j (α̂j − ᾱj)

=
[
pK1,`1

′
(zj)⊗ · · · ⊗ pKd,`d

′
(zj)

] [
D

(`1)
1 ⊗ · · · ⊗D(`1)

d

]
×

[(α̂1 − ᾱ1)⊗ · · · ⊗ (α̂d − ᾱd)]

= pK−`(z)
′D(`)(β̂ − β̄)

So ∂`Ĝ− ∂`S̄g = P−`D
(`)(β̂ − β̄).

Now let rn,K = K/n+λ2K2m/d/n2+K−2rg/d for Cn(m) < 1 and rn,K = n(d−2m)/2m/λd/2m+

λ/n + K−2rg/d for Cn(m) ≥ 1. Since s̄g achieves the optimal rate of approximation for g,

using the results for |`| = 0,

1

n

n∑
i=1

(ĝ(Zi)− s̄g(Zi))2 � 1

n

n∑
i=1

(ĝ(Zi)− g(Zi))
2 +

1

n

n∑
i=1

(s̄g(Zi)− g(Zi))
2 = Op(rn,K).

Also,

1

n

n∑
i=1

(ĝ(Zi)− s̄g(Zi))2 = (β − β̄)′P ′−`P−`(β̂ − β̄)/n & (β̂ − β̄)′(β̂ − β̄).

So ‖β̂ − β̄‖22 ≡ (β̂ − β̄)′(β̂ − β̄) = Op(rn,K). Then using the structure of D(`) and the fact
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that its maximum element is ‖D(`)‖∞ = O(K`/d),

(Ĝ(`) − S̄(`)
g )′(Ĝ(`) − S̄(`)

g )/n = (β̂ − β̄)′D(`)′P ′PD(`)(β̂ − β̄)/n

≤ λmax(P ′P/n)(β̂ − β̄)′D(`)′D(`)(β̂ − β̄)

. ‖D(`)‖2∞‖β̂ − β̄‖2

= Op(K
2`/drn,K).

Thus,

‖ĝ − g‖22,`,n � ‖ĝ − s̄g‖22,`,n + ‖s̄g − g‖22,`,n = Op(K
2`/drn,K),

as desired.

2.5 Rate of the Fixed Mean Squared Error

We now consider the rate of convergence in the fixed norm, in which the average is taken

over the full distribution instead of the specific data set. This norm is more common and is

used in particular in Newey (1997). We first find the rate of ‖D(`)(β̂ − β̄)‖22 from the rate

in the empirical norm, which allows the rate in the fixed norm to follow easily.

Theorem 1 - fixed norm (restated): If Cn(m) < 1 for all sufficiently large n, then

‖ĝ − g‖22,` = Op

(
K2`/d

(
K

n
+
λ2

n2
K2m/d +K−2rg/d

))
,

and if Cn(m) ≥ 1 for all sufficiently large n, then

‖ĝ − g‖22,` = Op

(
K2`/d

(
n(d−2m)/2m

λd/2m
+
λ

n
+K−2rg/d

))
,

Proof : For notational convenience, define D(0) ≡ I. Similarly to above, since ∂`s̄g achieves
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the optimal rate of approximation for ∂`g, using the results for the empirical norm,

1

n

n∑
i=1

(∂`ĝ(Zi)− ∂`s̄g(Zi))2 � 1

n

n∑
i=1

(∂`ĝ(Zi)− ∂`g(Zi))
2 +

1

n

n∑
i=1

(∂`s̄g(Zi)− ∂`g(Zi))
2

= Op(K
2`/drn,K).

Also,

1

n

n∑
i=1

(∂`ĝ(Zi)− ∂`s̄g(Zi))2 = (β − β̄)′D`′P ′−`P−`D
`(β̂ − β̄)/n & (β̂ − β̄)′D`′D`(β̂ − β̄).

So ‖D(`)(β̂ − β̄)‖2 = Op(K
2`/drn,K). So

‖ĝ − g‖2`,2 =

∫
(∂`ĝ(z)− ∂`g(z))2dF0(z)

=

∫
(pK(z)′D(`)(β̂ − β̄) + pK(z)′D(`)β̄ − ∂`g(z))2dF0(z)

� (β̂ − β̄)′D(`)′
∫
pK(z)pK(z)′dF0(z)D(`)(β̂ − β̄) +∫

(∂`s̄g(z)− ∂`g(z))2dF0(z)

≤ λmax(E[pK(z)pK(z)′])‖D(`)(β̂ − β̄)‖22 + sup
z∈[0,1]d

(∂`s̄g(z)− ∂`g(z))2

= Op(K
2`/drn,K),

giving the result.
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CHAPTER III

Asymptotic Distribution of the Parametric and

Nonparametric Components

3.1 Asymptotic Distribution of the Parametric Component

We now consider the asymptotic distribution of θ̂. Define Q = P ′P/n, R = P (P ′P +

λD)−1P ′, Rr = P (P ′P )−1P ′, T = I − R, and Tr = I − Rr. Also, as above, let hj(z) =

E[xj |z], where xj is the jth component of x, and vj(x, z) = x− hj(z).

We use the assumptions that (a)
√
nK−(rg+rh)/d → 0, (b) if Cn(m) < 1 for all suffi-

ciently large n, then
√
nλKm/d/n→ 0, and (c) if Cn(m) ≥ 1 for all sufficiently large n, then

√
n
√
λ/n→ 0.

Lemma 3.1-1: X ′TT ′X/n = Γ + op(1), where Γ = E[viv
′
i|zi].

Proof : Let 1n,K = 1. First, we see that

1

n
X ′TX =

1

n
H ′TH +

1

n
H ′TV +

1

n
V ′TH +

1

n
V ′V − 1

n
V ′RV .

Noting as above that ĥjr ≡ pK
′
(P ′P )−1P ′Hj and ĥj ≡ pK

′
(P ′P + λD)−1P ′Hj can be

considered the conditional expectation of regression and penalized spline estimates of hj ,
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respectively, we have

Hj ′(T − Tr)Hj/n = Hj ′(P (P ′P )−1P ′ − P (P ′P + λD)−1P ′)Hj/n

= Hj ′E[Ĥj
r − Ĥj |Z]/n

=
1

n

n∑
i=1

hj(Zi)E[ĥjr(Zi)− ĥj(Zi)|Z]

≤ 1

n
sup

z∈[0,1]d
hj(z)

n∑
i=1

E[ĥjr(Zi)− ĥj(Zi)|Z]

.

(
1

n

n∑
i=1

(E[ĥjr(Zi)− ĥj(Zi)|Z])2

)1/2

=
(

(E[Ĥj
r − Ĥj |Z])′(E[Ĥj

r − Ĥj |Z])/n
)1/2

,

where Hj = (hj(Z1) · · ·hj(Zn))′ and similarly for Ĥj and Ĥj
r . Then Hj ′(T − Tr)Hj/n =

Op(λKm/d/n) if Cn(m) < 1 for all sufficiently large n and Hj ′(T −Tr)Hj/n = Op(
√
λ/n) if

Cn(m) ≥ 1 for all sufficiently large n, using Theorem 1 and the fact that 1n,K →p 1. Since

P (P ′P )−1P ′Hj is the projection of the vector Hj onto Sn,r, we have TrH
j = Hj − Shj ,

where Shj is the vector of best L∞ approximations to the elements of Hj . So since Tr is

idempotent,

Hj ′TrH
j/n = Hj ′TrT

′
rH

j/n

=
1

n

n∑
i=1

(hj(Zi)− shj (Zi))2

= O(K−2rh/d).

45



So H ′TH/n = op(1). Also, since E[V jV j ′|Z] is a diagonal matrix with bounded elements,

E[V j ′RV j ]/n = E[Tr(RE[V jV j ′|Z])]/n

. E[Tr(R)]/n

= E[Tr(P (P ′P )−1/2U(I + λM/n)−1U ′(P ′P )−1/2P ′)]/n

= E[Tr((I + λM/n)−1)]/n

=
1

n

K∑
k=1

1

1 + λ
nµ

n,K
k

� 1

n

K∑
k=1

1

1 + λ
nηk

≤ K/n.

So by Markov’s inequality and the fact that 1n,K →p 1, V ′RV/n = Op(K/n). Finally,

since V ′V/n →p E[viv
′
i] = Op(1), we have H ′TV/n = V ′TH = op(1). So X ′TX/n =

E[viv
′
i] + op(1).

Now

X ′TT ′X = X ′TX +X ′T (T − Tr)′X +X ′T (Tr − I)′X

= X ′TX +X ′Tr(T − Tr)′X +X ′(T − Tr)(T − Tr)′X +X ′T (Tr − I)′X

Consider the last term. We have

T (Tr − I)′ = [I − P (P ′P + λD)−1P ′][I − P (P ′P )−1P ′ − I]

= −[I − P (P ′P + λD)−1P ′]P (P ′P )−1P ′

= −[P (P ′P )−1P − P (P ′P + λD)−1P ′]

= −[(I − P (P ′P + λD)−1P ′)− (I − P (P ′P )−1P )]

= Tr − T,
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so

X ′T (Tr − I)X/n = X ′(Tr − T )X/n

= H ′(Tr − T )H/n+H ′(Tr − T )V/n+ V ′(Tr − T )H/n+ V ′(Tr − T )V/n

= H ′(Tr − T )H/n+ 2H ′(Tr − T )V/n+ V ′RV/n− V ′RrV/n

= op(1),

by the above arguments (note that V ′RrV/n is equal to V ′RV/n with λ = 0).

Consider the third term. We have

X ′(T − Tr)(T − Tr)′X = X ′[P (P ′P )−1/2
(
I − (I + λM/n)−1

)
(P ′P )−1/2P ′]×

[P (P ′P )−1/2
(
I − (I + λM/n)−1

)
(P ′P )−1/2P ′]X

= X ′P (P ′P )−1/2
(
I − (I + λM/n)−1

)2
(P ′P )−1/2P ′.

Since the kth diagonal element of the (diagonal) matrix |I − (I + λM/n)−1| is µn,Kk /(1 −

µn,Kk ) < 1, the elements of
(
I − (I + λM/n)−1

)2
are less than the (absolute value of

the) elements of I − (I + λM/n)−1. So since X ′(T − Tr)X/n = op(1), we also have

X ′(T − Tr)(T − Tr)′X/n = op(1).

Consider the second term, and note that since Hj ′TrH
j/n and Hj ′(T−Tr)(T−Tr)′Hj/n are

op(1), we have Hj ′Tr(T−Tr)Hj/n = op(1), and similarly Hj ′Tr(T−Tr)′V j/n = op(1). Also,

V j ′Tr(T−Tr)V j = V j ′(T−Tr)V j−V j ′Rr(T−Tr)V j . Since V j ′RrV
j/n = V j ′RrR

′
rV

j/n =

op(1) and V j ′(T − Tr)(T − Tr)
′V j/n = op(1), we have V j ′Rr(T − Tr)V

j/n = op(1).

Then since V j ′(T − Tr)V
j/n = op(1) as shown above, V j ′Tr(T − Tr)V

j/n = op(1). So

X ′Tr(T − Tr)X/n = op(1).

Thus,

1

n
X ′TT ′X = E[viv

′
i] + op(1).

47



Lemma 3.1-2:
1√
n
X ′TT ′(Y −Xθ) =

1√
n
V ′ε+ op(1).

Proof : Again, let 1n,K = 1. We have

1√
n
X ′T (Y −Xθ) =

1√
n
H ′Tε+

1√
n
V ′ε− 1√

n
V ′Rε+

1√
n
H ′TG+

1√
n
V ′TG.

Consider H ′Tε/
√
n. We have

E[(Hj ′(T − Tr)ε/
√
n)2|X,Z] = Hj ′(T − Tr)E[εε′|X,Z](T − Tr)′Hj/n

. Hj ′[P (P ′P )−1P ′ − P (P ′P + λD)−1P ′]′ ×

[P (P ′P )−1P ′ − P (P ′P + λD)−1P ′]Hj/n

= (E[Ĥj
r − Ĥj |Z])′(E[Ĥj

r − Ĥj |Z])/n,

by Chebyshev’s inequality. So if Cn(m) < 1 for all sufficiently large n, then Hj ′(T −

Tr)ε/
√
n = Op(λK

m/d/n), and if Cn(m) ≥ 1 for all sufficiently large n, then Hj ′(T −

Tr)ε/
√
n = Op(

√
λ/n). Then since

E[(Hj ′Trε/
√
n)2|X,Z] = Tr(Hj ′TrE[εε′|X,Z]TrH

j)/n

. Tr(Hj ′TrH
j)/n

= Op(K
−rh/d),

we have H ′Tε/
√
n = op(1).

Similarly, consider V ′TG/
√
n. We have

E[(V j ′(T − Tr)G/
√
n)2|X,Z] = G′(T − Tr)′E[V j ′V j |X,Z](T − Tr)G/n

. G′[P (P ′P )−1P ′ − P (P ′P + λD)−1P ′]′ ×

[P (P ′P )−1P ′ − P (P ′P + λD)−1P ′]G/n

= (E[Ĝr − Ĝ|X,Z])′(E[Ĝr − Ĝ|X,Z])/n

So if Cn(m) < 1 for all sufficiently large n, then V j ′(T − Tr)G/
√
n = Op(λK

m/d/n), and if
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Cn(m) ≥ 1 for all sufficiently large n, then V j ′(T − Tr)G/
√
n = Op(

√
λ/n). Also,

E[(V j ′TrG/
√
n)2|Z] = Tr(G′TrE[V jV j ′|Z]TrG)/n

. Tr(G′TrG)/n

= Op(K
−2rg/d).

So V ′TG/
√
n = op(1).

Next, consider H ′(T − Tr)G/
√
n. We have

Hj ′(T − Tr)G/
√
n =

1√
n

n∑
i=1

hj(Zi)E[ĝr(Zi)− ĝ(Zi)|X,Z]

.
√
n ·

(
1

n

n∑
i=1

(E[ĝr(Zi)− ĝ(Zi)|X,Z])2

)1/2

≤
√
n
(
E[Ĝr − Ĝ|X,Z])′(E[Ĝr − Ĝ|X,Z]/n

)1/2

So if Cn(m) < 1 for all sufficiently large n, then Hj ′(T −Tr)G/
√
n = Op(

√
nλKm/d/n), and

if Cn(m) ≥ 1 for all sufficiently large n, then Hj(T − Tr)G/
√
n = Op(

√
n
√
λ/n). Also,

(Hj ′TrG/
√
n)2 = G′TrH

jHj ′TrG/n

= Tr(TrH
jHj ′TrGG

′)/n

≤
√
n

√
Hj ′TrHj/n

√
G′TrG/n

= O(
√
nK−(rg+rh)/d)

So H ′TG/
√
n = op(1).
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Finally, consider V ′Rε/
√
n. Similarly to above,

E(V j ′Rε/
√
n)2 = E[V j ′RE[εε′|X,Z]R′V j ]/n

. E[V j ′R′RV j ]/n

= E[V j ′P (P ′P )−1/2U(I + λM/n)−1U ′(P ′P )−1/2P ′P (P ′P )−1/2U ×

(I + λM/n)−1)U ′P (P ′P )−1/2V j ]/n

. λ−2
min(I + λM/n)E[V j ′RV j ]/n

. K/n

so V ′Rε/
√
n = op(1). Thus,

1√
n
X ′T (Y −Xθ) =

1√
n
V ′ε+ op(1).

Now

1√
n
X ′TT ′(Y −Xθ) =

1√
n
X ′T (Y − Y θ) +

1√
n
X ′Tr(T − Tr)′(Y −Xθ) +

1√
n
X ′(T − Tr)(T − Tr)′(Y −Xθ) +

1√
n
X ′T (Tr − I)′(Y −Xθ).

Consider the last term. Since T (Tr − I) = Tr − T ,

1√
n
X ′T (Tr − I)′(Y −Xθ) =

1√
n
H ′(Tr − T )ε+

1√
n
V ′Rε− 1√

n
V ′Rrε+

1√
n
H ′(Tr − T )G+

1√
n
V ′(Tr − T )G

= op(1),

as shown above.

Consider the third term. As discussed above, the diagonal elements of Tr − T have ab-

solute value less than one, so the elements of (Tr − T )(Tr − T )′ are less than the (absolute

value of the) elements of Tr − T . So X ′(T − Tr)(T − Tr)′(Y −Xθ)/
√
n = op(1).
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Finally, consider the second term. SinceH ′(Tr−T )(Tr−T )′ε/
√
n = op(1) andH ′TrT

′
rε/
√
n =

op(1), we have H ′Tr(Tr − T )′ε/
√
n = op(1), and similarly, H ′Tr(Tr − T )G/

√
n = op(1) and

V ′Tr(Tr − T )G/
√
n = op(1). Also, V j ′Tr(T − Tr)ε/

√
n = V j ′(T − Tr)ε/

√
n − V j ′Rr(T −

Tr)ε/
√
n. Since V j ′Rrε/

√
n = op(1) and V j ′(T − Tr)(T − Tr)

′ε/
√
n = op(1) as shown

above, we have V j ′Rr(T −Tr)ε/
√
n = op(1). Then since V j ′(T −Tr)ε/

√
n = op(1), we have

V j ′Tr(T − Tr)ε/
√
n = op(1). So X ′Tr(T − Tr)ε/

√
n = op(1).

Thus, X ′TT ′ε/
√
n = X ′Tε/

√
n+ op(1), and therefore

1√
n
X ′TT ′(Y −Xθ) =

1√
n
V ′ε+ op(1).

Theorem 2, part (a) (restated):

V −1/2
n

√
n(θ̂ − θ) = V −1/2

n

1√
n

n∑
i=1

νiεi + op(1)→p N (0, 1),

Vn = Γ−1ΩΓ−1 + op(1), Γ = E[νiν
′
i], Ω = E[νiν

′
iε

2
i ]

Proof : We have θ̂ = (X ′TT ′X)−1X ′TT ′Y . Note that E[viεi] = E[viE[εi|X,Z]] = 0. So by

independence across observations,

Ωn ≡ V(V ′ε/
√
n|X,Z)

=
1

n
V

(
n∑
i=1

viεi|xi, zi

)

=
1

n

n∑
i=1

E[viv
′
iε

2
i |xi, zi].

So by the CLT, Ω
−1/2
n V ′ε/

√
n→d N (0, 1). Then since X ′TT ′X/n = Γ + op(1), X ′TT ′(Y −

Xθ)/
√
n = V ′ε/

√
n = op(1),

√
n(θ̂ − θ) = (X ′TT ′X/n)−1X ′TT ′(Y −Xθ)/

√
n, and Ωn →p

Ω ≡ E[viv
′
iε

2
i ], we have

V
−1/2
n

√
n(θ̂ − θ)→p N (0, 1),

where Vn ≡ Γ−1ΩΓ−1 + op(1), using Slutzky.
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3.2 Asymptotic Distribution of the Nonparametric Component

3.2.1 Lower Bound on the Variance

We now consider the asymptotic distribution of ∂`g. First, we present a lemma giving

a lower bound on the pointwise conditional variance of ∂`g, in order to give conditions for

the bias (divided by the variance) to vanish.

Lemma 3.2.1: Defining W`,n(z) ≡ V(∂`pK(z)′(P ′P + λD)−1P ′ε|X,Z), if Cn(m) < 1 for

all sufficiently large n, then

W`,n(z) &p K
2|`|/dK

n
;

if Cn(m) ≥ 1 and Cn(m) is bounded above for all sufficiently large n, then

W`,n(z) &p K
2|`|/dn

(d−2m)/2m

λd/2m
;

and if Cn(m) is unbounded for large n, then

W`,n(z) &p K
2|`|/d

( n

λK2m/d

)2 n(d−2m)/2m

λd/2m
.

Proof : First, consider the structure of D
(`j)
j . We note that since each Mjη is a lower

triangular matrix (with the last column missing), D
(`j)
j is an upper triangular band matrix

(with the last `j rows missing). Also, the kth diagonal entry of D
(`j)
j is

`j∏
L=1

L− r
tj,k − tj,k−r+L

.

Letting
(
D

(`j)
j

)
k

be the kth column of D
(`j)
j and

(
D

(`j)
j

)
kκ

be the kκ element of D
(`j)
j .

Then since D
(`j)
j is upper triangular, we see that

pKj (zj)
′
(
D

(`j)
j

)
kzj

= pjkzj (zj)
(
D

(`j)
j

)
kzj kzj

� K1/2d

`j∏
L=1

L− r
tj,kzj − tj,kzj−r+L

.
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So

pKj,−`j (zj)
′D

(`j)
j D

(`j)
j

′
pKj,−`j (z) =

K1/d−`j∑
k=1

(
pKj (zj)

′
(
D

(`j)
j

)
k

)2

≥
(
pKj (zj)

′
(
D

(`j)
j

)
kzj

)2

� K1/d

 `j∏
L=1

1

tj,kzj − tj,kzj−r+L

2

� K(2`j+1)/d.

(This result is also shown in Zhou & Wolfe (2000) but with a different method.) Then since

∂`pK(z)′(P ′P + λD)−1P ′ε = pK−`(z)
′
D(`)(P ′P + λD)−1P ′ε (as shown in the proof for the

rate of ‖ĝ − g‖2,`,n, ` > 0), we have

pKj,−`(z)
′
D(`)D(`)′pK−`(z) = [pK1,−`1(z)

′ ⊗ · · · ⊗ pKd,−`d(z)
′
][D

(`1)
1 ⊗ · · · ⊗D(`d)

d ]×

[D
(`1)
1

′
⊗ · · · ⊗D(`d)

d

′
][pK1,−`1(z)⊗ · · · ⊗ pKd,−`d(z)]

= [pK1,−`1(z)
′
D

(`1)
1 D

(`1)
1

′
pK1,−`1(z)]⊗ · · · ⊗

[pKd,−`d(z)
′
D

(`d)
d D

(`d)
d

′
pKd,−`d(z)]

=
d∏
j=1

pKj,−`j (z)
′
D

(`j)
j D

(`j)
j

′
pKj,−`j (z)

� K1+(2|`|/d).

Also,

λmax(I + λM/n) = 1 + λµn,KK /n = 1 + λ[(ς + δk)K
2m/d + δn,K ]/n = Op(1 + λK2m/d/n),
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so λ−1
max(I + λM/n) &p 1/(1 + λK2m/d/n). Then since σε(x, z) is bounded below,

W`,n(z) ≡ V(∂`pK(z)′(P ′P + λD)−1P ′ε|X,Z)

= pK−`(z)
′
D(`)(P ′P + λD)−1P ′E[εε′|X,Z]P (P ′P + λD)−1D(`)′pK−`(z)

& pK−`(z)
′
D(`)(P ′P )−1/2U(I + λM/n)−2U ′(P ′P )−1/2D(`)′pK−`(z)

≥ λ−2
max(I + λM/n)pK−`(z)

′
D(`)D(`)′pK−`(z)/n

≥ Op((1 + λK2m/d/n)−2K1+(2|`|/d)/n).

If limn→∞ Cn(m) <∞, then (1 + λK2m/d/n)−2 = O(1), so

W`,n(z) &p K
2|`|/dK

n
.

If limn→∞ Cn(m) ≥ 1 for all sufficiently large n, then K ≥ O((λ/n)−d/2m), and thus if

1 ≤ limn→∞ Cn(m) <∞, then

W`,n(z) &p K
2|`|/dn

(d−2m)/2m

λd/2m
.

On the other hand, if limn→∞ Cn(m) =∞, then (1 +λK2m/d/n)−2 = O((λK2m/d/n)−2), so

W`,n(z) &p K
2|`|/d

( n

λK2m/d

)2 n(d−2m)/2m

λd/2m
,

as desired.
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3.2.2 Upper Bound on the Bias

We now note that

1n,K

(
∂`ĝ(z)− ∂`g(z)

)
= 1n,K

(
∂`pK(z)′(P ′P + λD)−1P ′(Y −Xθ̂)− ∂`g(z)

)
= 1n,K

(
∂`pK(z)′(P ′P + λD)−1P ′(Y −Xθ)−

∂`pK(z)′(P ′P + λD)−1P ′X(θ̂ − θ)− ∂`g(z)
)

= 1n,K

(
∂`pK(z)′(P ′P + λD)−1P ′ε+[

∂`pK(z)′(P ′P + λD)−P ′G− ∂`g(z)
]
−

∂`pK(z)′(P ′P + λD)−1P ′X(θ̂ − θ)
)
.

In the next three lemmas, we consider the second term in this expression. To that end, we

also give an upper bound on the pointwise conditional bias of ∂`g, which is a useful result

in its own right.

Lemma 3.2.2-1: For all z ∈ [0, 1]d, if Cn(m) < 1 for all sufficiently large n,

E[∂`ĝ(z)− ∂`ĝr(z)|X,Z] .p K
|`|/dλ

n
Km/d,

and if Cn(m) ≥ 1 for all sufficiently large n, then

E[∂`ĝ(z)− ∂`ĝr(z)|X,Z] .p K
|`|/d
√
λ

n
.

Proof : Assume throughout that 1n,K = 1.

We have

E[∂`ĝ(z)− ∂`ĝr(z)|X,Z] = −λpK(z)′D(`)(P ′P + λD)−1D(P ′P )−1P ′G

= −λpK(z)′D(`)(P ′P + λD)−1D(P ′P )−1P ′S̄g −

λpK(z)′D(`)(P ′P + λD)−1D(P ′P )−1P ′(G− S̄g).
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For the first term,

λpK(z)′(P ′P + λD)−1D(P ′P )−1P ′S̄g = λpK(z)′(P ′P )−1/2(I + λM/n)−1(P ′P )−1/2D ×

(P ′P )−1/2P ′S̄g

= λpK(z)′(P ′P )−1/2(I + λM/n)−1(M/n)×

(P ′P )−1/2P ′S̄g

. λpK(z)′(I + λM/n)−1(M/n)P ′S̄g/n

=
λ

n

n∑
i=1

K∑
k=1

µn,Kk
n

1 + λ
nµ

n,K
k

pk(z)pk(zi)S̄g(zi)

.
λ

n

n∑
i=1

K∑
k=1

µn,Kk
n

1 + λ
nµ

n,K
k

pk(z)pk(zi).

If Cn(m) < 1, since 1n,K = 1 and 1 + ληk/n ≥ 1

λ

n

n∑
i=1

K∑
k=1

µn,Kk
n

1 + λ
nµ

n,K
k

pk(z)pk(zi) .
λ

n

n∑
i=1

K∑
k=1

ηk
n
pk(z)pk(zi)

.
λ

n
Km/d 1

n

n∑
i=1

∑
k∈Sz

pk(z)pk(zi)

.
λ

n
Km/d

√
K

1

n

n∑
i=1

pk(zi)

= Op(λK
m/d/n),

since the number of observations for which pk is nonzero is Op(n/K) as shown above, and

where Sz is the set of all k such that pk(z) ≥ 0.

If Cn(m) ≥ 1, ληk/n→ c ≥ 1, so
√
ληk/n/(1 + ληk/n) ≤ 1/2. Then

λ

n

n∑
i=1

K∑
k=1

µn,Kk
n

1 + λ
nµ

n,K
k

pk(z)pk(zi) =

√
λ

n

1

n

n∑
i=1

K∑
k=1

√
ληk
n

1 + λ
nµ

n,K
k

pk(z)pk(zi)

.

√
λ

n

1

n

K∑
k=1

pk(z)pk(zi)

= Op(
√
λ/n).
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So using the structure of D(`) as in the proof of Theorem 1 for |`| > 0 and the fact that

sup
z∈[0,1]d

|g(z)− sg(z)|, we obtain the rates K |`|/dλK2m/n, K |`|/d
√
λ/n, and

K |`|/d
√
λK2m/d/n

√
λ/n for λpK(z)′D(`)(P ′P + λD)−1D(P ′P )−1P ′G.

Lemma 3.2.2-2: For all z ∈ [0, 1]d,

|∂`E[ĝr(z)|X,Z]− ∂`g(z)| . K1{|`|>0}/2K−(rg−|`|)/d.

Proof : From Huang (2003b) (see Lemma 5.1), since

sup
z∈[0,1]d

|s̄g(z)− g(z)| � inf
s∈Sn,r

sup
z∈[0,1]d

|s(z)− g(z)| . K−rg/d, we have

sup
z∈[0,1]d

|E[ĝr(z)|X,Z]− s̄g(z)| . sup
z∈[0,1]d

|g(z)− s̄g(z)| . K−rg/d,

which gives the result for |`| = 0. For |`| > 0, for all z ∈ [0, 1]d,

(∂`E[ĝr(z)|X,Z]− ∂`s̄g(z))2 = (∂`pK(z)
′
(P ′P )−1/2P ′(G− S̄g))2

= (G− S̄g)′P (P ′P )−1D(`)′pK−`(z)p
K
−`(z)

′
D(`) ×

(P ′P )−1P ′(G− S̄g)

≤ λmax(D(`)′pK−`(z)p
K
−`(z)

′
D(`))λmax((P ′P )−1)×

(G− S̄g)′P (P ′P )−1P ′(G− S̄g)

. K1+(2|`|/d)(G− S̄g)′P (P ′P )−1P ′P (P ′P )−1P ′(G− S̄g)/n

� K1+(2|`|/d) 1

n

n∑
i=1

(E[gr(zi)|X,Z]− s̄g(zi))2

. K1+(2|`|/d)K−2rg/d.

Then since sup
z∈[0,1]d

|∂`s̄g(z)− ∂`g(z)| . K−(rg−|`|)/d, we have

|∂`E[ĝr(z)|X,Z]− ∂`g(z)| .
√
KK−(rg−|`|)/d,
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giving the result for |`| > 0.

Lemma 3.2.2-3: For all z ∈ [0, 1]d, if Cn(m) ≤ 1 for all sufficiently large n,

∂`pK(z)′(P ′P + λD)−P ′G− ∂`g(z) .p K
|`|/d

(
λKm/d

n
+K−rg/d+1{|`|>0}/2

)
,

and if Cn(m) ≥ 1 for all sufficiently large n,

∂`pK(z)′(P ′P + λD)−P ′G− ∂`g(z) .p K
|`|/d

(√
λ

n
+K−rg/d+1{|`|>0}/2

)
,

Proof : Combine Lemmas 3.2.2-1 and 3.2.2-2.

We now consider the third term of the above expansion, which is ∂`pK(z)′(P ′P+λD)−1P ′X(θ̂−

θ). In order to bound this term, we also give the a bound on the rate of the uniform error

of ∂`ĝ. This bound is not sharp but will suffice for our purposes. We expect that the
√
K coming from the basis could be replaced with log n, most likely by using Bernstein’s

inequality along with truncation.

Lemma 3.2.2-4: sup
z∈[0,1]d

|∂`ĝ(z)− ∂`s̄g(z)| = Op(K
|`|/d√Krn,K), and thus

∂`pK(z)′(P ′P + λD)−P ′X ′ = Op(K
|`|/d√Krn,K + 1).

Proof : As shown previously, for all |`| ≤ r − 2, under the assumptions of Theorem 1,

‖D(`)(β̂ − β̄)‖22 = Op(K
2|`|/drn,K). Then since sup

z∈[0,1]d
|pK(z)| ≤

√
K,

sup
z∈[0,1]d

|∂`ĝ(z)− ∂`s̄g(z)| = sup
z∈[0,1]d

|pK−`(z)′D(`)(β̂ − β̄)|

≤
√
K‖D(`)(β̂ − β̄)‖2

= Op

(√
K ·K2|`|/drn,K

)
,
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and thus

sup
z∈[0,1]d

|∂`ĝ(z)− ∂`s̄g(z)| � sup
z∈[0,1]d

|∂`ĝ(z)− ∂`s̄g(z)|+ sup
z∈[0,1]d

|∂`g(z)− ∂`s̄g(z)|

= Op(K
|`|/d√Krn,K),

which gives the first result.

Now note that ∂`pK(z)′(P ′P + λD)−1P ′X can be considered the penalized spline ap-

proximation ∂`ĥ(z) to ∂`h(z) = ∂`E[x|z]. Then since ∂`E[x|z] is bounded,

∂`pK(z)′(P ′P + λD)−P ′X ′ = (ĥ`(z)− h`(z)) + h`(z) = Op(K
|`|/d√Krn,K + 1).

which is the second result.

3.2.3 Asymptotic Normality

We now give a proof for the asymptotic normality of ∂`ĝ, for `j ≤ r − 2 (for each j).

We assume that if Cn(m) < 1 for all sufficiently large n, then

λK
m/dz
n /n+ 1{|`| = 0}K−rg/dzn√

Kn/n
+ 1{|`| > 0}

√
nK
−(rg−|`|)/dz
n → 0,

if Cn(m) ≥ 1 and Cn(m) is bounded above for all sufficiently large n.

√
λn/n+ 1{|`| = 0}K−rg/dzn√

n(dz−2m)/2m/λ
dz/2m
n

+ 1{|`| > 0}
√
nK
−(rg−|`|)/dz
n → 0.

For Cn(m) unbounded for large n, we assume that

λK
2m/dz
n

n

√λn/n
√
λnK

2m/dz
n /n+ 1{|`| = 0}K−rg/dzn√
n(dz−2m)/2m/λ

dz/2m
n

+ 1{|`| > 0}
√
nK
−(rg−|`|)/dz
n

→ 0,

The added factor of λK2m/d/n is needed since lim
n→∞

Cn(m) =∞ allows K to go to infinity

very quickly, causing the variance to vanish quickly. This can then lead to a degenerate

asymptotic distribution without an extra assumption. We also assume that for Cn(m)
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unbounded,

λnK
2m/dz
n

n

n(dz−2m)/2m

λ
dz/2m
n

→ 0.

These assumptions are needed to guarantee that the bias (divided by the variance) disap-

pears asymptotically.

Theorem 3, part (a) (restated): Using W`,n = V(∂`pK(z)′(P ′P + λD)−1P ′ε|X,Z]),

∂`ĝ(z)− ∂`g(z)√
W`,n(z)

→d N (0, 1),

Proof : Let 1n,K = 1 throughout. Using the above lemmas, if lim
n→∞

Cn(m) < 1 for all

sufficiently large n,

∂`pK(z)′(P ′P + λD)−1P ′G− ∂`g(z)√
W`,n(z)

= Op

K |`|/d (λnKm/d +K−rg/d+1{|`|>0}/2)
K |`|/d

√
K
n


= Op

(
λKm/d/n+K−rg/d+1{|`|>0}/2√

K/n

)
= op(1).

If 1 ≤ lim
n→∞

Cn(m) <∞,

∂`pK(z)′(P ′P + λD)−1P ′G− ∂`g(z)√
W`,n(z)

= Op

K
|`|/d

(√
λ
n +K−rg/d+1{|`|>0}/2

)
K |`|/d

√
n(d−2m)/2m

λd/2m


= Op

(√
λ/n+K−rg/d+1{|`|>0}/2

n(d−2m)/2m/λd/2m

)
= op(1),
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and if lim
n→∞

Cn(m) =∞,

∂`pK(z)′(P ′P + λD)−1P ′G− ∂`g(z)√
W`,n(z)

= Op

K
|`|/d

(√
λ
n +K−rg/d+1{|`|>0}/2

)
K |`|/d

(
λK2m/d

n

)−1√
n(d−2m)/2m

λd/2m


= Op

(
λK2m/d

n

(√
λ/n+K−rg/d+1{|`|>0}/2

n(d−2m)/2m/λd/2m

))
= op(1).

Similarly, since θ̂ − θ = Op(n
−1/2), if lim

n→∞
Cn(m) <∞,

∂`pK(z)′(P ′P + λD)−1P ′X(θ̂ − θ)√
W`,n(z)

= Op

(
(K |`|/d

√
Krn,K + C)Op(n

−1/2)

K |`|/d
√
K/n

)
= Op(

√
rn,K + 1/K |`|/d+1/2)

= op(1),

and if lim
n→∞

Cn(m) =∞,

∂`pK(z)′(P ′P + λD)−1P ′X(θ̂ − θ)√
W`,n(z)

= Op

(
(K |`|/d

√
Krn,K + C)Op(n

−1/2)

K |`|/d(n/λK2m/d)
√
K/n

)
= Op

(
(λK2m/d/n)(

√
rn,K + 1/K |`|/d+1/2)

)
= op(1).

where rn,K = K/n + λKm/d/n + K−rg/d for Cn(m) < 1 and rn,K = n(d−2m)/4m/λd/4m +√
λ/n+K−rg/d for Cn(m) ≥ 1.
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It remains to show that ∂`pK(z)′(P ′P + λD)−1P ′ε/
√
W`,n(z)→d N (0, 1). We have

W`,n(z) ≡ V(∂`pK(z)′(P ′P + λD)−1P ′ε|X,Z)

= pK−`(z)
′
D(`)(P ′P + λD)−1P ′E[εε′|X,Z]P (P ′P + λD)−1D(`)′pK−`(z)

& pK−`(z)
′
D(`)(P ′P + λD)−1P ′P (P ′P + λD)−1D(`)′pK−`(z)

Also, ∂`pK(z)′(P ′P + λD)P ′ε =

n∑
i=1

diεi, where di = ∂`pK(z)′(P ′P + λD)−1pK(zi). Since

pK(z)
′
pK(z) ≤ K and 1n,K = 1,

d2
i = pK−`(z)

′D(`)(P ′P + λD)−1pK(zi)p
K(zi)

′(P ′P + λD)−1D(`)′pK−`(z)

≤ λmax(pK(zi)p
K(zi)

′)pK−`(z)
′D(`)(P ′P + λD)−1(P ′P )−1P ′P (P ′P + λD)−1D(`)′pK−`(z)

. KpK−`(z)
′D(`)(P ′P + λD)−1P ′P (P ′P + λD)−1D(`)′pK−`(z)/n

. KW`,n/n

= o(W`,n).

So since
n∑
i=1

d2
i �W`,n(z), we have max

1≤i≤n
d2
i = o

(
n∑
i=1

d2
i

)
= o(W`,n(z)), and by the Lindeberg-

Feller CLT,

1n,K(∂`ĝ(z)− ∂`g(z))√
W`,n(z)

→d N (0, 1).

Then since
(1n,K − 1)(∂`ĝ(z)− ∂`g(z))√

W`,n(z)
→p 0, we have

∂`ĝ(z)− ∂`g(z)√
W`,n(z)

→d N (0, 1),

as desired.

3.3 Standard Errors

3.3.1 Parametric Component

We now consider the standard errors for the parametric component given in the state-

ment of Theorem 2.
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Theorem 2, part (b) (restated): Γ̂ = Γ + op(1) and Ω̂ = Ω + op(1)

Proof - Theorem 2, part (b): We again assume that 1n,K = 1 and note that as shown

above, X ′TT ′X/n = E[viv
′
i] + op(1), that is, Γ̂ = Γ + op(1).

So we now consider Ω̂ = X ′TT ′Σ̂T ′TX/n. We have

n∑
j=1

R2
ij =

n∑
j=1

pK(Zi)
′(P ′P + λD)−1pK(Zj)p

K(Zj)
′(P ′P + λD)−1pK(Zi)

= pK(Zi)
′(P ′P )−1/2U(I + λM/n)−1U ′(P ′P )−1/2 ×

n∑
j=1

pK(Zj)p
K(Zj)

′(P ′P )−1/2U(I + λM/n)−1U ′(P ′P )−1/2pK(Zi)

= pK(Zi)
′(P ′P )−1/2U(I + λM/n)−2U ′(P ′P )−1/2pK(Zi)

≤ λ−1
min(P ′P/n)λ−2

min(I + λM/n)pK(Zi)
′pK(Zi)/n

. K/n

Let Nδ be the number of observations lying in a hyper-interval δ, then

ENδ =
n
∫
δ f(z)dz∫

[0,1]d f(z)dz
.

n

K

(where f is the density of z). So by Markov’s inequality, Nδ = Op(n/K) for all δ, and thus
n∑
i=1

pk(Zi) .
√
KOp(n/K) = Op(n/

√
K). (To be precise, given ε > 0, let M = εn/K. Then

P(Nδ/(n/K) > ε) = P(Nδ > εn/K)

≤ ENδ/(εn/K)

. (n/K)/(εn/K)

= ε.

So Nδ/(n/K) is tight. Then letting Yn,δ ≡ Nδ/(n/K), we have Nδ = Yn,δn/K with Yn,δ

tight. So by definition, Nδ = Op(n/K).)
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So

n∑
j=1

Rij = pK(Zi)
′(P ′P )−1/2U(I + λM/n)−1U ′(P ′P )−1/2

n∑
j=1

pK(Zj)

≤ 1

n
λ−1

min(P ′P/n)λ−1
min(I + λM/n)pK(Zi)

′
n∑
j=1

pK(Zj)

=
1

n
Op(n/

√
K)

K∑
k=1

pk(Zi)

= Op(1).

Also,

Rii = pK(Zi)
′(P ′P )−1/2U(I + λM/n)−1U ′(P ′P )−1/2pK(Zi)

≥ λ−1
max(P ′P/n)λ−1

max(I + λM/n)pK(Zi)
′pK(Zi)/n

≥ 0,

so |Rii| = Rii, and

Rii = pK(Zi)
′(P ′P )−1/2U(I + λM/n)−1U ′(P ′P )−1/2pK(Zi) . pK(Zi)

′pK(Zi)/n = K/n.

Then
n∑
j=1

T 2
ij =

n∑
j=1,j 6=i

R2
ij + (1−Rii)2 ≤

n∑
j=1

R2
ij + 2Rii + 1 . 1,

and

 n∑
j=1

Tij

2

=

 n∑
j=1,j 6=i

Rij + 1−Rii

2

.

 n∑
j=1

Rij

2

+ (1−Rii)2 = Op(1).
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Now letting ε̄ = Tε and similarly for X̄ and ȳ,

ε̂ = Y −Xθ̂ − Ĝ(Z)

= Y −Xθ̂ − P (P ′P + λD)−1P ′(Y −Xθ̂)

= T (Y −Xθ̂)

= Ȳ − X̄θ̂ + Ḡ− Ḡ− X̄θ + X̄θ

= ε̄+ X̄(θ − θ̂) + Ḡ.

So ε̂i = ε̄i + X̄ ′i(θ − θ̂) + Ḡi, where X ′i is the ith row of X. Then

ε̂2
i = ε̄2

i + 2ε̄i(ε̂i − ε̄i) + (ε̂i − ε̄i)2 = ε̄2
i + 2ε̄i(X̄

′
i(θ̂ − θ) + ḡ(Zi)) + (X̄ ′i(θ̂ − θ) + ḡ(Zi))

2.

Consider X̄ ′i(θ̂ − θ). Noting that X`j is the jth observation of the `th component of

x, E[X`j |Z] is bounded above, so X`j = Op(1) for all ` = 1, ..., d and j = 1, ..., n. So
n∑
j=1

TijX`j ≤ Op(1)

n∑
j=1

Tij = Op(1). Then since θ̂ − θ = Op(n
−1/2),

X̄ ′i(θ̂ − θ) = T ′iX(θ̂ − θ) =
d∑
`=1

 n∑
j=1

TijX`j

 (θ̂` − θ`) = Op(n
−1/2),

where T ′i is the ith row of T . Also,

Ḡi = T ′iG =

n∑
j=1

Tijg(Zj) ≤ sup
z∈[0,1]d

g(z)

n∑
j=1

Tij = Op(1).

So X̄ ′i(θ̂ − θ) + Ḡi = Op(1). Finally,

E[ε̄2
i |X,Z] = E[T ′iεε

′Ti|X,Z]

= T ′iE[εε′|X,Z]Ti

=

n∑
j=1

T 2
ijE[ε2

j |X,Z]

. 1.

So using Markov’s inequality, ε̄2
i = Op(1) and thus ε̂2

i = Op(1).
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Now letting Ω̂r = X ′TrΣ̂TrX/n, consider Ω̂− Ω̂r = (X ′TT ′Σ̂T ′TX −X ′TrΣ̂TrX)/n, which

can be written as a sum of fifteen term, each of the form X ′AA′Σ̂AA′X/n, where A is either

Tr or T − Tr. As above, since the elements of the diagonal matrix T − Tr have absolute

value less than one, the elements of (T − Tr)(T − Tr)′ are less than (the absolute value of)

the elements of T − Tr. Since ε̂2
i = Op(1),

Xj ′(T − Tr)Σ̂(T − Tr)Xj/n = (Ĥj
r − Ĥj)′Σ̂(Ĥj

r − Ĥj)/n

= Op(1)
1

n

n∑
i=1

(Ĥj
r (Zi)− Ĥj(Zi))

2

≤ Op(rn,K).

So X ′(T − Tr)(T − Tr)′Σ̂(T − Tr)′(T − Tr)X/n = op(1). Then since Ω̂r = Op(1), it must be

that each term in Ω̂−Ω̂r = (X ′TT ′Σ̂T ′TX−X ′TrΣ̂TrX)/n is op(1), and thus Ω̂ = Ω̂r+op(1).

Then since Ω̂r = Ω + op(1) as shown in Cattaneo et al. (2010), we have

Ω̂− Ω = (Ω̂− Ω̂r) + (Ω̂r − Ω) = op(1),

as desired.

3.3.2 Nonparametric Component

For part (b) of Theorem 3, we use the assumption that K2|`|/dK/n → 0. More impor-

tantly, we also assume that sup
z∈[0,1]d

|ĝ(z)− g(z)| = Op(1). Considering the case |`| = 0, which

is more familiar, as shown above, sup
z∈[0,1]d

|Eĝ(z)− g(z)| = Op(λK
m/d/n+K−rg/d) = op(1)

for Cn(m) < 1 for all sufficiently large n and sup
z∈[0,1]d

|Eĝ(z)− g(z)| = Op(
√
λ/n+K−rg/d) = op(1)

for 1 ≤ Cn(m) < ∞. So for Cn(m) < 1 for all sufficiently large n, K2/n = O(1) would

ensure that sup
z∈[0,1]d

|ĝ(z)− g(z)| = Op(1), and for Cn(m) ≥ 1 for all sufficiently large n,

Kn(d−2m)/2m/λd/2m = O(1) would ensure that sup
z∈[0,1]d

|ĝ(z)− g(z)| = Op(1). However, these

assumptions are stronger than needed, since the bound on sup
z∈[0,1]d

|ĝ(z)− g(z)| given above

is not tight. If
√
K in this bound is replaced with log n, as discussed previously, we would
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only need

K log n

n
= O(1)

for Cn(m) < 1 for all sufficiently large n, and

n(d−2m)/2m log n

λd/2m
= O(1)

for Cn(m) ≥ 1 for all sufficiently large n, so that supz∈[0,1]d |ĝ(z)− g(z)| = Op(1).

Theorem 3, part (b) (restated): For all z ∈ [0, 1]d, Ŵ`,n(z) = W`,n(z) + op(1)

Proof - Theorem 3, part (b): Since E|εi| = E[E[ |εi||Xi, Zi]] is bounded above, we have

|εi| = Op(1). Also,

X ′i(θ̂ − θ) =

d∑
j=1

Xji(θ̂j − θj) = Op(1)

d∑
j=1

(θ̂j − θj) = Op(n
−1/2).
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Then letting ζK(z) ≡ (P ′P + λD)−1D`′pK−`(z), since sup
z∈[0,1]d

|ĝ(z)− g(z)| ≤ Op(1), we have

Ŵ`,n(z)−W`,n(z) = pK(z)′D(`)(P ′P + λD)−1P ′(Σ̂− Σ)P (P ′P + λD)−1D(`)′pK(z)

= ζK(z)′
n∑
i=1

pK(zi)p
K(zi)

′(ε̂2
i − ε2

i )ζ
K(z)

=
n∑
i=1

(ζK(z)′pK(zi))
2(2εi(ε̂i − εi) + (ε̂i − εi)2)

=
n∑
i=1

(ζK(z)pK(zi))
2(2εi(X

′
i(θ̂ − θ) + ĝ(Zi)− g(Zi)) +

(X ′i(θ̂ − θ) + ĝ(Zi)− g(Zi))
2)

≤ Op(1)
n∑
i=1

(ζK(z)pK(Zi))
2(2|εi|+ 1)

= Op(1)ζK(z)′
n∑
i=1

pK(zi)p
K(zi)

′ζK(z)

= Op(1)pK(z)′D(`)(P ′P )−1/2U(I + λM/n)−2U ′(P ′P )1/2D(`)′pK(z)

= Op(1)Tr(pK(z)′D(`)′D(`)pK(z))/n

= Op(K
2|`|/dK/n)

= op(1),

as desired.
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CHAPTER IV

Simulations Study

4.1 Description of Simulations

We have conducted a small simulations study, in order to illustrate the results given

above, using Stata. We have also written a general ado file which will give the penalized

B-spline estimate given a set of observations and a value of K1/dz and λ. Equally-spaced

knots are used with an extended partition.

First, we used the bivariate (additive) function g(z1, z2) = (z1 + 2e−16z2
1 ) + (sin(2z2) +

2e−16z2
2 ) with z1, z2 ∼ U(0, 1). We also used h(z) = 0.1

√
z2

1 + z2
2 and θ = 1. The errors

were normally distributed with ε, ν ∼ N (0, 1). We generated 500 observations and did 1000

Monte-Carlo repetitions. Since g was additively separable, we used no interactions between

the B-splines for z1 and the B-splines for z2, substantially improving run time. Since the

knots were equally spaced, we found the elements of the penalization matrix D in Maple

and entered them in the Stata code. With g additively separable, D has a block diagonal

structure.

4.2 Results

Our results are given in the following tables. These results illustrate the asymptotic

normality given in Theorems 2 and 3 and suggest that the pointwise confidence intervals

using the standard error estimates given produce appropriate coverage rates along assumed

sequences of λn and Kn. The first table illustrates that a larger Kn is needed for a larger

λn to achieve the same coverage rate. The second table shows the familiar pattern that for
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0 1 2

4 .942 .976 .995
6 .931 .953 .973
8 .931 .951 .963
10 .938 .946 .954
12 .935 .946 .956
14 .936 .943 .954
16 .937 .945 .954
18 .935 .944 .952
20 .936 .941 .952
22 .933 .945 .95
24 .931 .944 .948
26 .926 .943 .948
28 .929 .944 .949
30 .925 .944 .947

Table 4.1: Parametric component - θ̂

each λn, as Kn increases, the coverage rate reaches approximately 95% and then decreases

again.
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0 1 2

4 .011 .106 0
6 .713 .067 .208
8 .952 .934 .883
10 .957 .955 .945
12 .96 .95 .95
14 .952 .947 .94
16 .945 .942 .938
18 .94 .942 .938
20 .936 .94 .94
22 .935 .936 .937
24 .93 .931 .939
26 .926 .93 .935
28 .927 .928 .93
30 .928 .922 .927

Table 4.2: Nonparametric component - ĝ(0.5, 0.5)

71



CHAPTER V

Conclusion

In summary, we have presented a method for robust inference in the partially linear

model under weak conditions, along with rates of convergence for the nonparametric com-

ponent. The main contributions previously unavailable include the following:

Chapter 2:

� Rates of convergence of penalized spline estimators for dz > 1

These rates were available in the literature for regression and smoothing splines but

not for penalized splines in the multivariate case

� Weaker conditions needed for consistency (and asymptotic normality)

As discussed above, Huang (2003a) gives a minimal condition Kn log n/n → 0, as

opposed to the condition K2
n/n→ 0 used in Newey (1997) and implicitly in Claeskens

et al. (2009) and Zhou et al. (1998). We use this condition to bound the eigenvalues

of P ′P/n and convergence of the eigenvalues of (P ′P/n)−1/2D(P ′P/n)−1/2 to the

eigenvalues of a well-known differential equation, as discussed above.

� An asymptotic expression for the eigenvalues used in the penalization matrix D and

a decomposition of D

This has been an open question in the literature and was at the heart of the results

herein, since these eigenvalues are used to the determine the expression for the mean

squared error and the resulting rate. We believe the asymptotic expression given
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will be useful to many researchers in the future considering penalized least squares

estimators in various forms, not specific to spline estimation.

� An formula for ς (in the definition of Cn(m)) for any density of z that is bounded

above and below away from zero, even for dz = 1

Previously for dz = 1, this expression was known only for densities that were regular

(see Speckman (1981), equation (2.2), or Claeskens et al. (2009), Lemma A3 for a

definition). It was not available in the literature even for regular densities when

dz > 1 to the author’s knowledge.

� An expression for a best L∞ approximation s̄g to g such that ∂`s̄g is also a best L∞

approximation to ∂s̄g

This result is crucial for considering ∂`ĝ(z) instead of only ĝ(z).

� Rates of convergence for ∂`ĝ(z) even for dz = 1.

This result was not previously available to the author’s knowledge.

� Rates for the fixed mean squared error (in which the average is taken over the popu-

lation as opposed to the observations), even for dz = 1

Previously, this rate was available only for the empirical mean squared error. The

fixed mean squared error is more prevalent in the literature, so these results rate to

the literature more clearly.

Chapter 3:

� The asymptotic distribution and standard error estimates for penalized spline estima-

tors

Asymptotic normality results were not previously available for penalized spline esti-

mators even in the univariate case. They were also not available for smoothing spline

estimators, to the author’s knowledge.

� The asymptotic distribution and standard errors for the parametric component of the

partially linear model
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This result was available previously in Donald & Newey (1994) for regression splines

but not for penalized splines.

� Improving the conditions for the asymptotic normality of ĝ(z) for λn = 0

As mentioned above, it was previously assumed in the literature that
√
nK
−rg/dz
n → 0,

which is stronger than the assumptions given in Chapter 3.
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APPENDIX A

Eigenvalues for the Penalization Matrix

Proof of Lemma 2.1: We give the proof in a series of lemmas, following the proofs in

Huang (2003a) (see Lemma 1, Lemma 2, and Corollary 3).

Lemma 2.1-1: We have

P

(
sup

f,g∈Sn,r

| 1n
∑n

i=1 f(Zi)g(Zi)− E[f(z)g(z)]|
‖f‖‖g‖

> t

)
≤

P

(
sup
∆

sup
f,g∈Sn,r

| 1n
∑n

i=1 f(Zi)g(Zi)I∆(Zi)− E[f(z)g(z)I∆(z)]|
‖f‖∆‖g‖∆

> t

)
.

K exp

(
− 1

C

(nt)2

nK + 1
3

√
KAKnt

)
,

where r∆ is the number of nonzero splines on ∆ ∈ {∆k}Kk=1 and AK,∆ = sup
g∈Sn,r

‖g‖∞,∆
‖g‖∆

with

‖g‖2∆ = E[g2(Z)I∆(Z)] and ‖g‖∞,∆ = sup
z∈∆
|g(z)|.

Proof : Given ∆ = ∆1 × · · · ×∆d ∈ {∆}Kk=1 with ∆j ∈ {∆j
k}
K1/d

k=1 , j = 1, ..., d, let k∆ and

K∆ be the smallest and largest values of k (with a possible reordering of the indices) such

that pk ≥ 0.1
√
K on ∆, and similarly for k∆j and K∆j . Then given f, g ∈ Sn,r, for some

constants f,..., fK , g1, ..., gK , fI∆ =

K∆∑
k=k∆

fkpk and gI∆ =

K∆∑
k=k∆

gkpk. Then since the density
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of z is bounded away from zero,

Ef2I∆ &
∫
∆

 K∆∑
k=k∆

fkpk(z)

2

dz

=
d∏
j=1

∫
∆j

 K
∆j∑

kj=k∆j

fjkjpjkj (zj)

2

dzj

=
d∏
j=1

K
∆j∑

kj=k∆j

fjkfj`

∫
∆j

pjk(zj)pj`(zj)dzj ,

where f1 ⊗ · · · ⊗ fd = fK with f j = (fj1 · · · fjK1/d)′ for j = 1, ..., d and fK = (f1 · · · fK)′,

and zj is the jth component of z. If the degree r − 1 of the B-splines is zero, then for

k, ` = k∆, ...,K∆, ∫
∆j

pjk(zj)pj`(zj)dzj &
1

K1/d
·K1/d1{k = `} = 1{k = `},
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since the length of ∆j is � 1/K1/d. So EfI2
∆ &

d∏
j=1

K
∆j∑

k=k∆j

f2
jk =

K∆∑
k=k∆

f2
k . If r = 1, then

letting pj,k,s be the kth sth-degree B-spline in direction j, for k, ` = 1, ...,K1/d,

∫
∆j

pjk(zj)pj`(zj)dzj =

∫
∆j

(
zj − tj,k

tj,k+1 − tj,k
pj,k,0(zj) +

tj,k+2 − zj
tj,k+2 − tj,k+1

pj,k+1,0(zj)

)
×

(
zj − tj,`

tj,`+1 − tj,`
pj,`,0(zj) +

tj,`+2 − zj
tj,`+2 − tj,`+1

pj,`+1,0(zj)

)
dzj

= K1/d

∫
∆j

(
zj − tj,k

tj,k+1 − tj,k
1{zj ∈ [tj,k, tj,k+1)} +

tj,k+2 − zj
tj,k+2 − tj,k+1

1{zj ∈ [tj,k+1, tj,k+2)}
)
×(

zj − tj,`
tj,`+1 − tj,`

1{zj ∈ [tj,`, tj,`+1)}+

tj,`+2 − zj
tj,`+2 − tj,`+1

1{zj ∈ [tj,`+1, tj,`+2)}
)
dzj

≥ K1/d

∫
∆j

(
zj − tj,k

tj,k+1 − tj,k
1{zj ∈ [(tj,k + tj,k+1)/2, tj,k+1)}

)
×

(
zj − tj,`

tj,`+1 − tj,`
1{zj ∈ [(tj,` + tj,`+1)/2, tj,`+1)}

)
dzj

& K1/d

∫
∆j

1{zj ∈ [(tj,k + tj,k+1)/2, tj,k+1)}dzj · 1{k = `}

& K1/d · 1

K1/d
· 1{k = `}

= 1{k = `}
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So Ef2I∆ &
K∆∑
k=k∆

f2
k . If r = 2, then

∫
∆j

pjk(zj)pj`(zj)dzj =

∫
∆j

(
zj − tj,k

tj,k+2 − tj,k
pj,k,1(zj) +

tj,k+3 − zj
tj,k+3 − tj,k+1

pj,k+1,1(zj)

)
×

(
zj − tj,`

tj,`+2 − tj,`
pj,`,1(zj) +

tj,`+3 − zj
tj,`+3 − tj,`+1

pj,`+1,1(zj)

)
dzj

=

∫
∆j

[
zj − tj,k

tj,k+2 − tj,k

(
zj − tj,k

tj,k+1 − tj,k
pj,k,0(zj)+

tj,k+2 − zj
tj,k+2 − tj,k+1

pj,k+1,0(zj)

)
+

tj,k+3 − zj
tj,k+3 − tj,k+1

(
zj − tj,k+1

tj,k+2 − tj,k+1
pj,k+1,0(zj)+

tk+3 − zj
tk+3 − tj,k+2

pj,k+2,0(zj)

)]
×[

zj − tj,`
tj,`+2 − tj,`

(
zj − tj,`

tj,`+1 − tj,`
pj,`,0(zj)+

tj,`+2 − zj
tj,`+2 − tj,`+1

pj,`+1,0(zj)

)
+

tj,`+3 − zj
tj,`+3 − tj,`+1

(
zj − tj,`+1

tj,`+2 − tj,`+1
pj,`+1,0(zj)+

t`+3 − zj
t`+3 − tj,`+2

pj,`+2,0(zj)

)]
dzj

& K1/d

∫
∆j

1{zj ∈ [(tj,k + tj,k+1)/2, tj,k+1)} · 1{k = `}

≥ 1{k = `},

and again

Ef2I∆ &
K∆∑
k=k∆

f2
k . (A.1)

We can show the same result similarly for any degree of the spline basis functions.

Now for any k, ` = k∆, ...,K∆, since supz∈[0,1]d |pk(z)| ≤
√
K,

V(pk(Z)p`(Z)I∆(Z)) ≤ E(pk(Z)p`(Z)I∆(Z))2 .
1

K
·K2 = K.
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So for all z ∈ [0, 1]d,

|pk(z)p`(z)I∆(z)| ≤ supz∈∆ |pk(z)p`(z)|
(E(pk(Z)p`(Z)I∆(Z))2)1/2

· (E(pk(Z)p`(Z)I∆(Z))2)1/2

≤ AK,∆(E(pk(Z)p`(Z)I∆(Z))2)1/2

.
√
KAK,∆.

By Bernstein’s inequality (Pollard 1984), for any j, ` = k∆, ..., k∆,

P

(∣∣∣∣∣ 1n
n∑
i=1

pk(Zi)p`(zi)I∆(Zi)− Epk(z)p`(z)

∣∣∣∣∣ > t

)
≤ 2 exp

(
−1

2

(nt)2

ncK + 1
3c
√
KAK,∆nt

)
,

for a constant c. So letting r∆ = K∆ − k∆ + 1,

P

(∣∣∣∣∣ 1n
n∑
i=1

pk(Zi)p`(Zi)I∆(Zi)− Epk(z)p`(z)I∆(z)

∣∣∣∣∣ > t, for all k, ` = k∆, ...,K∆

)
≤

K∆∑
k=k∆

2 exp

(
−1

2

(nt)2

ncK + 1
3c
√
KAK,∆nt

)
≤

2r2
∆ exp

(
−1

2

(nt)2

ncK + 1
3c
√
KAK,∆nt

)
.

Given f, g ∈ Sn,r, if

∣∣∣∣∣ 1n
n∑
i=1

pk(Zi)p`(Zi)I∆(Zi)− Epk(z)p`(z)I∆(z)

∣∣∣∣∣ ≤ t/r∆, for all k, ` =

k∆,K∆,

∣∣∣∣∣ 1n
n∑
i=1

f(Zi)g(Zi)I∆(Zi)− Ef(z)g(z)I∆(z))

∣∣∣∣∣ =∣∣∣∣∣∣ 1n
n∑
i=1

K∆∑
k=k∆

K∆∑
`=k∆

fkg`pk(Zi)p`(Zi)− Efkg`pk(z)p`(z)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
K∆∑
k=k∆

K∆∑
`=k∆

fkg`

(
1

n

n∑
i=1

pk(Zi)p`(Zi)− Epkp`

)∣∣∣∣∣∣ ≤
K∆∑
k=k∆

K∆∑
`=k∆

|fk||g`|
t

r∆
≤

r
1/2
∆

 K∆∑
k=k∆

f2
k

1/2

r
1/2
∆

 K∆∑
`=k∆

g2
`

1/2

t

r∆
.

t‖f‖∆‖g‖∆,
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where the penultimate line follows from Cauchy-Schwarz and the last line follow from (1).

So since f and g were arbitrary, if

∣∣∣∣∣ 1n
n∑
i=1

pk(Zi)p`(Zi)− Epk(z)p`(z)

∣∣∣∣∣ ≤ t/r∆ for all k, ` =

k∆, ...,K∆, then

sup
f,g∈Sn,r

∣∣∣∣∣ 1n
n∑
i=1

f(Zi)g(Zi)I∆(Zi)− Ef(z)g(z)I∆(z)

∣∣∣∣∣ . t‖f‖∆‖g‖∆. Thus,

P

(
sup

f,g∈Sn,r

∣∣∣∣∣ 1n
n∑
i=1

f(Zi)g(Zi)I∆(Zi)− Ef(z)g(z)I∆(z)

∣∣∣∣∣ > t‖f‖∆‖g‖∆

)
≤

P

(∣∣∣∣∣ 1n
n∑
i=1

pk(Zi)p`(Zi)I∆(Zi)− Epk(z)p`(z)I∆(z)

∣∣∣∣∣ > t/r∆ for all k, ` = k∆, ...,K∆

)
≤

2r2
∆ exp

(
−1

2

(nt)2

ncK + 1
3c
√
KAK,∆nt

)
,

Also, for all f, g ∈ Sn,r, if

∣∣∣∣∣ 1n
n∑
i=1

f(Zi)g(Zi)I∆(Zi)− Ef(z)g(z)I∆(z)

∣∣∣∣∣ ≤ t‖f‖∆‖g‖∆ for all

∆ ∈ {∆k}Kk=1, then

∣∣∣∣∣ 1n
n∑
i=1

f(Zi)g(Zi)− Efg

∣∣∣∣∣ ≤ ∑
∆

| 1
n

n∑
i=1

f(Zi)g(Zi)I∆(Z − i)− Ef(z)g(z)I∆(z))|

≤
∑
∆

t‖f‖∆‖g‖∆ ≤ t‖f‖‖g‖,

by Cauchy-Schwarz and ‖f‖2 =
∑

∆ ‖f‖2∆. So

sup
f,g∈Sn,r

∣∣ 1
n

∑n
i=1 f(Zi)g(Zi)− Ef(z)g(z)

∣∣
‖f‖‖g‖

≤

sup
∆

sup
f,g∈Sn,r

∣∣ 1
n

∑n
i=1 f(Zi)g(Zi)I∆(Zi)− Ef(z)g(z)Iδ(z)

∣∣
‖f‖∆‖g‖∆

,
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and thus

P

(
sup

f,g∈Sn,r

∣∣∣∣∣ 1n
n∑
i=1

f(Zi)g(Zi)− Ef(z)g(z)

∣∣∣∣∣ > t‖f‖‖g‖

)
≤

P (sup
∆

sup
f,g∈Sn,r

∣∣∣∣∣ 1n
n∑
i=1

f(Zi)g(Zi)I∆(Zi)− Ef(z)g(z)Iδ(z)

∣∣∣∣∣ > t‖f‖∆‖g‖∆) ≤

∑
∆

P ( sup
f,g∈Sn,r

∣∣∣∣∣ 1n
n∑
i=1

f(Zi)g(Zi)I∆(Zi)− Ef(z)g(z)Iδ(z)

∣∣∣∣∣ > t‖f‖∆‖g‖∆) ≤

∑
∆

2r2
∆ exp

(
−1

2

(nt)2

ncK + 1
3c
√
KAK,∆nt

)
.

K exp

(
− 1

C

(nt)2

nK + 1
3

√
KAKnt

)
,

for some positive constant C, since r∆ is bounded.

Lemma 2.1-2: For all ∆ ∈ {∆}Kk=1, AK,∆ .
√
K.

Proof : Given g =

K∑
k=1

gkpk ∈ Sn,r,

supz∈∆ |g(z)|
(Eg2(Z)I∆(Z))1/2

=
supz∈∆

∣∣∣∑K∆
k=k∆

gkpk(z)
∣∣∣(

E
(∑K∆

k=k∆
gkpk(Z)

)2
)1/2

≤
supz∈∆

(∑K∆
k=k∆

g2
k

)1/2 (∑K∆
k=k∆

pk(z)
2
)1/2

(∑K∆
k=k∆

g2
k

)1/2

.
√
K.

So sup
g∈Sn,r

supz∈∆ |g(z)|
(Eg2(Z)I∆(Z))1/2

.
√
K, as desired.

Lemma 2.1-3: sup
f,g∈Sn,r

|(En − E)(fg)|
‖f‖‖g‖

= Op(
√
K log n/n), and thus if K log n/n→ 0,

c1 + op(1) ≤ λ̃min ≤ λ̃max ≤ c2 + op(1),

for some constants c1, c2 > 0, where λ̃min and λ̃max are the minimum and maximum eigen-

values of P ′P/n, respectively.
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Proof : Choosing t =
√
c̃K log n/n for sufficiently large c̃ in the above expression, we have

P

(
sup

f,g∈Sn,r

∣∣ 1
n

∑n
i=1 f(Zi)g(Zi)− Ef(z)g(z)

∣∣
‖f‖‖g‖

>

√
K log n

n

)
≤

K exp

(
− 1

C

n2c̃K log n/n

nK + 1
3Kn

√
c̃K log n/n

)
=

K exp

(
− 1

C

c̃ log n

1 + 1
3

√
c̃K log n/n

)
=

O(K exp(−(c̃/C) log n))) =

O(K/nc̃/C) =

o(1).

So P

(
sup

f,g∈Sn,r

∣∣ 1
n

∑n
i=1 f(Zi)g(Zi)− Ef(z)g(z)

∣∣
‖f‖‖g‖

/√
K log n

n
> 1

)
= o(1), and thus

sup
f,g∈Sn,r

∣∣ 1
n

∑n
i=1 f(Zi)g(Zi)− Ef(z)g(z)

∣∣
‖f‖‖g‖

= Op(
√
K log n/n).

Furthermore, given s =

K∑
k=1

akpk ∈ Sn,r with

K∑
k=1

a2
k = 1, define ajk, j = 1, ..., d, k = 1, ...,K1/d

in the same way that fjk was defined. Note that since

1 =

K∑
k=1

a2
k =

d∏
j=1

K1/d∑
kj=1

a2
jkj
,

we have
K1/d∑
k=1

a2
jk = 1, j = 1, ..., d. As shown in de Boor (1978, p. 155), see also Zhou et. al.

(1998, equation (13)),

1∫
0

K1/d∑
kj=1

ajkjpjkj (zj)

2

dzj ≤ K1/d
K1/d∑
kj=1

a2
jkj

(tj,kj − tj,kj−r). So since
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the density of z is bounded above,

Es2 �
d∏
j=1

1∫
0

K1/d∑
kj=1

ajkjpjkj (zj)

2

dzj

≤
d∏
j=1

K1/d
K1/d∑
kj=1

a2
jkj

(tj,kj − tj,kj−r)

�
d∏
j=1

K1/d∑
kj=1

a2
jkj

=

K∑
k=1

a2
k

= 1,

since each p2
jkj

is nonzero on an interval of length � K1/d. So

sup∑
a2
k=1

∣∣∣∣∣ 1n
n∑
i=1

s(Zi)
2 − Es(z)2

∣∣∣∣∣ . sup∑
a2
k=1

∣∣ 1
n

∑n
i=1 s(Zi)

2 − Es(z)2
∣∣

‖s‖2

≤ sup
f,g∈Sn,r

∣∣ 1
n

∑n
i=1 f(Zi)g(Zi)− Ef(z)g(z)

∣∣
‖f‖‖g‖

= op(1).

As already shown, c1 ≤ Es2 ≤ c2, for some positive constants c1 and c2. So since

1

n

n∑
i=1

s(Zi)
2 = Es(z)2 +

(
1

n

n∑
i=1

s(Zi)
2 − Es(z)2

)
= Es(z)2 + op(1), we have

c1 + op(1) ≤ 1

n

n∑
i=1

s(Zi)
2 ≤ c2 + op(1).

Then since

λ̃max = max∑K
k=1 a

2
k=1

a′(P ′P/n)a = max∑K
k=1 a

2
k=1

1

n

n∑
i=1

(
K∑
k=1

akpk(Zi)

)2

= max∑K
k=1 a

2
k=1

Ens
2

and similarly for λ̃min, we have

c1 + op(1) ≤ λ̃min ≤ λ̃max ≤ c2 + op(1),

as desired.
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APPENDIX B

Eigenvalues of the Design Matrix

Proof of Lemma II.3: The proof is given by Volker Elling, University of Michigan.

Beta and Gamma functions

Gamma function:

Γ(z) :=

∞∫
0

tz−1e−tdt (B.1)

Well-known: Γ(k + 1) = k!. Beta function: to generalize

(
n

k

)
=

n!

k!(n− k)!
, (B.2)

to real numbers it is natural to write

B(a, b) := 1/
Γ(a+ b)

Γ(a)Γ(b)
. (B.3)
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(extra inverse and coefficients not quite same...) Convenient formula:

Γ(a)Γ(b) =

∞∫
0

∞∫
0

ta−1sb−1e−t−sds
z=t+s,x=t/z

=
t=xz,s=(1−x)z

∞∫
0

1∫
0

xa−1(1− x)b−1za+b−2e−zz dx dz

(B.4)

=

1∫
0

xa−1(1− x)b−1dx

∞∫
0

za+b−1e−zdz =

1∫
0

xa−1(1− x)b−1dxΓ(a+ b) (B.5)

Hence

B(a, b) =

1∫
0

xa−1(1− x)b−1dx (B.6)

More convenient for us:

1∫
0

xc(1− x)ddx = B(c+ 1, d+ 1)
Γ(1 + c)Γ(1 + d)

Γ(2 + c+ d)
(B.7)

`p norm unit ball volumes

Let V (d, p; r) be the volume of a d-dimensional p-ball of radius r. Then

V (d, p; r) = rdV (d, p; 1)︸ ︷︷ ︸
=:V (d,p)

(B.8)

Recursion:

V (1, p; r) = 2r (B.9)

Idea: the dimension d ball is composed of slices of intervals × dimension d − 1 balls that

have at xd radius (1− xpd)
1/p (so that xp1 + ...+ xpd < 1). So

V (d, p; 1) =

1∫
−1

V (d− 1, p; (1− xpd)
1/p)dxd =

1∫
−1

V (d− 1, p)(1− xpd)
(d−1)/pdxd (B.10)
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(could also use V (0, p; r) = 1... but unclean because a 0-sphere is 2 points as defined, but

1 in reduced homology...) so we get

V (d, p; 1) = V (1, p; 1)︸ ︷︷ ︸
=2

d−1∏
`=1

1∫
−1

(1− xp)`/pdx =
d−1∏
`=0

1∫
−1

(1− xp)`/pdx (B.11)

Change of variables:

1∫
−1

(1− xp)`/pdx = 2

1∫
0

(1− xp)`/pdx x=y1/p

= 2

1∫
0

(1− y)`/p
1

p
y

1
p
−1
dy (B.12)

(B.7)
=

2

p

Γ(1/p)Γ(1 + `/p)

Γ(1 + (`+ 1)/p)
(B.13)

V (d, p; 1) = (
2Γ(1/p)

p
)d
d−1∏
`=0

Γ(1 + `/p)

Γ(1 + (`+ 1)/p)
(B.14)

= (
2Γ(1/p)

p
)d

Γ(1 + 0/p)

Γ(1 + 1/p)

Γ(1 + 1/p)

Γ(1 + 2/p)
...

Γ(1 + (d− 1)/p)

Γ(1 + d/p)
(B.15)

= (
2Γ(1/p)

p
)d

1

Γ(1 + d/p)
(B.16)

Higher-order 1d elliptic

Want to solve

(−∂2)mw = µw on [a, b] (B.17)

for Dirichlet conditions

w = w′ = ... = w(m−1) = 0 in a, b (B.18)

or Neumann conditions

w(m) = ... = w(2m−1) = 0 in a, b. (B.19)
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Characteristic:

(−z2)m = µ = r2m (B.20)

with r > 0; we already know the eigenvalues must be > 0 except for maybe some at r = 0

which we discuss later. Solution

zk = iruk , k = 0, ..., 2m− 1 (B.21)

where

u = exp(
2πi

2m
) = exp(

πi

m
) (B.22)

is the first 2mth root of 1. Particular solutions

exp(zkx) = exp(irukx) (B.23)

General solution

w(x) =

2m−1∑
k=0

ck exp(zkx) (B.24)

w(n)(x) =
2m−1∑
k=0

ckz
n
k exp(zkx) (B.25)
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Boundary conditions: form system Mc = 0 where c = (c0, ..., c2m−1) and

M =



z0
0 exp(z0a) . . . z0

2m−1 exp(z2m−1a)

z1
0 exp(z0a) . . . z1

2m−1 exp(z2m−1a)

...
...

zm−1
0 exp(z0a) . . . zm−1

2m−1 exp(z2m−1a)

z0
0 exp(z0b) . . . z0

2m−1 exp(z2m−1b)

z1
0 exp(z0b) . . . z1

2m−1 exp(z2m−1b)

...
...

zm−1
0 exp(z0b) . . . zm−1

2m−1 exp(z2m−1b)



(B.26)

=



(ri)0u0·0 exp(z0a) . . . (ri)0u(2m−1)·0 exp(z2m−1a)

(ri)1u0·1 exp(z0a) . . . (ri)1u(2m−1)·1 exp(z2m−1a)

...
...

(ri)m−1u0·(m−1) exp(z0a) . . . (ri)m−1u(2m−1)(m−1) exp(z2m−1a)

(ri)0u0·0 exp(z0b) . . . (ri)0u(2m−1)·0 exp(z2m−1b)

(ri)1u0·1 exp(z0b) . . . (ri)1u(2m−1)·1 exp(z2m−1b)

...
...

(ri)m−1u0·(m−1) exp(z0b) . . . (ri)m−1u(2m−1)(m−1) exp(z2m−1b)



(B.27)

To determine M we need to find zeros r of detM . Row j contains (ri)j−1, so we may factor

those out:

detM = (
m−1∏
j=0

(ri)j︸ ︷︷ ︸
=(ri)(m−1)m/2

)2 det



u0·0 exp(z0a) . . . u(2m−1)·0 exp(z2m−1a)

...
...

u0·(m−1) exp(z0a) . . . u(2m−1)(m−1) exp(z2m−1a)

u0·0 exp(z0b) . . . u(2m−1)·0 exp(z2m−1b)

...
...

u0·(m−1) exp(z0b) . . . u(2m−1)(m−1) exp(z2m−1b)


(B.28)
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This leading factor indicates there is an eigenvalue 0 with multiplicity (m− 1)m.

zk
r

= iuk = exp(
iπ

2
) exp(

2πi

2m
k) = exp(

2iπm

4m
) exp(

2πi

4m
2k) (B.29)

= exp(
2πi

2m
(
1

2
+ k)) (k = 0, ..., 2m− 1) (B.30)

Note: <zk = 0 for k = 0 and k = m. For k = 1, ...,m− 1 we have <zk > 0, while <zk < 0

for k = m+ 1, ..., 2m− 1.

Hence, if we take a = −b, the upper half of columns 2, ...,m have exponential growth

in r while the lower half has decay, and the opposite for columns m+ 2, ..., 2m− 1. In the

r → +∞ limit the remaining determinant is asymptotic to

det

~a1 A ~a2 0

~b1 0 ~b2 B

 (B.31)

where

~a1 =


u0·0 exp(z0a)

...

u0·(m−1) exp(z0a)

 , A =


u1·0 exp(z1a) . . . u(m−1)·0 exp(zma)

...
...

u1·(m−1) exp(z1a) . . . u(m−1)·(m−1) exp(zma)

 , (B.32)

~a2 =


um·0 exp(zma)

...

um·(m−1) exp(zma)

 ,~b1 =


u0·0 exp(z0b)

...

u0·(m−1) exp(z0b)

 ,~b2 =


um·0 exp(zmb)

...

um·(m−1) exp(zmb)

 (B.33)

B =


u(m+1)·0 exp(zm+1b) . . . u(2m−1)·0 exp(z2mb)

...
...

u(m+1)·(m−1) exp(zm+1b) . . . u(2m−1)·(2−1) exp(z2mb)

 (B.34)
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Laplace expansion across column 1 yields that the remaining determinant is (~b1 is swapped

across

det

[
~a1 A

]
· det

[
~b2 B

]
− det

[
A ~a2

]
det

[
B ~b1

]
(B.35)

= det


u0·0 exp(z0a) u1·0 exp(z1a) . . . u(m−1)·0 exp(zm−1a)

...

u0·(m−1) exp(z0a) u1·(m−1) exp(z1a) . . . u(m−1)·(m−1) exp(zm−1a)

 (B.36)

· det


um·0 exp(zmb) u(m+1)·0 exp(zm+1b) . . . u(2m−1)·0 exp(z2m−1b)

...
...

...

um·(m−1) exp(zmb) u(m+1)·(m−1) exp(zm+1b) . . . u(2m−1)·(2−1) exp(z2m−1b)


(B.37)

− det


u1·0 exp(z1a) . . . u(m−1)·0 exp(zm−1a) um·0 exp(zma)

...
...

...

u1·(m−1) exp(z1a) . . . u(m−1)·(m−1) exp(zm−1a) um·(m−1) exp(zma)

 (B.38)

· det


u(m+1)·0 exp(zm+1b) . . . u(2m−1)·0 exp(z2m−1b) u0·0 exp(z0b)

...
...

u(m+1)·(m−1) exp(zm+1b) . . . u(2m−1)·(2−1) exp(z2m−1b) u0·(m−1) exp(z0b)


(B.39)
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If we take a = −b, we may use zm+k = −zk to get

det


u0·0 exp(z0a) . . . u(m−1)·0 exp(zm−1a)

...
...

u0·(m−1) exp(z0a) . . . u(m−1)·(m−1) exp(zm−1a)

× (B.40)

det


um·0 exp(z0a) . . . u(2m−1)·0 exp(zm−1a)

...
...

um·(m−1) exp(z0a) . . . u(2m−1)·(2−1) exp(zm−1a)

 (B.41)

− det


u1·0 exp(z1a) . . . um·0 exp(zma)

...
...

u1·(m−1) exp(z1a) . . . um·(m−1) exp(zma)

× (B.42)

det


u(m+1)·0 exp(z1a) . . . u0·0 exp(zma)

...
...

u(m+1)·(m−1) exp(z1a) . . . u0·(m−1) exp(zma)

 (B.43)

The exp factors are the same for each column, so we get

m−1∏
k=0

exp(2zka) det


u0·0 . . . u(m−1)·0

...
...

u0·(m−1) . . . u(m−1)·(m−1)

det


um·0 . . . u(2m−1)·0

...
...

um·(m−1) . . . u(2m−1)·(2−1)


(B.44)

−
m∏
k=1

exp(2zka) det


u1·0 . . . um·0

...
...

u1·(m−1) . . . um·(m−1)

det


u(m+1)·0 . . . u0·0

...
...

u(m+1)·(m−1) . . . u0·(m−1)

 (B.45)

We can regard each determinant as a Vandermonde

det


a0

1 . . . a0
m

...
...

am−1
1 . . . am−1

m

 =
∏

1≤j<k≤m
(aj − ak) (B.46)

92



in this case the first determinant is

U :=
∏

0≤j<k≤m−1

(uj − uk) (B.47)

which is obviously 6= 0, the second is

∏
0≤j<k≤m−1

(um+j − um+k) = um
m(m−1)

2 U (B.48)

the third is

∏
0≤j<k≤m−1

(um+j − um+k) = u
m(m−1)

2 U (B.49)

and the fourth is

∏
0≤j<k≤m−1

(um+j − um+k) = u(m+1)
m(m−1)

2 U (B.50)

so that the remaining determinant becomes

U2
(

[
m−1∏
k=0

exp(2zka)]1um
m(m−1)

2 − [
m∏
k=1

exp(2zka)]u
m(m−1)

2 u(m+1)
m(m−1)

2

)
(B.51)

= U2
(

[
m−1∏
k=0

exp(2zka)]um
m(m−1)

2 − [
m∏
k=1

exp(2zka)]u(m+2)
m(m−1)

2

)
(B.52)

= U2[

m−1∏
k=0

exp(2zka)]um
m(m−1)

2

(
1− exp(2(zm − z0)a)u2

m(m−1)
2

)
(B.53)

All factors except the last one are obviously 0. We have to find solutions r of

1 = exp(2(zm − z0)a)u2
m(m−1)

2 = exp[2ir( um︸︷︷︸
=−1

− u0)a]u2
m(m−1)

2 = exp[−4ira]u2
m(m−1)

2

(B.54)
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so

exp[−4ira] = u−2
m(m−1)

2 = exp(
2πi

2m
)−2

m(m−1)
2 = exp(−2

m(m− 1)

2

2πi

2m
) (B.55)

= exp((1−m)iπ) = (−1)m−1 (B.56)

−4ira = iπ(1−m+ 2k) , (k ∈ Z) (B.57)

−4ra = π(1−m+ 2k) , (k ∈ Z) (B.58)

4ra = π(m− 1 + 2k) , (k ∈ Z) (B.59)

r =
π(m− 1 + 2k)

4a
, (k ∈ Z) (B.60)

If we pick a = −L/2, for a length L interval, then

r = π(
m+ 1

2
+ k) · 1

L
, (k ∈ Z) (B.61)

Maple (maple/selegue/eigenvals) suggests this is correct.

So the solutions r are at π
L ,

2π
L ,

3π
L , ... for odd m, but π

2L ,
3π
2L ,

5π
2L , ... for even m. The

corresponding eigenvalues are

µ =


( πL)2m, (2π

L )2m, (3π
L )2m, ..., m odd.

( π
2L)2m, ( 3π

2L)2m, ( 5π
2L)2m, ..., m even

(B.62)

If the operator comes with a coefficient A, all eigenvalues are multiplied by A
1

2m .
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For a d-dimensional problem, the eigenvalues would be obtained by separation: asymp-

totically, for any m,

µk ≈ |
kπ

L
|2m2m = (

π

L
)2m|k|2m2m (B.63)

For an operator p−1(−∆)m on [0, L]d with constant p,

µk ≈ p−1|kπ
L
|2m2m = p−1(

π

L
)2m|k|2m2m (B.64)

We want CD(s;m, d, L, p), the number of eigenvalues ≤ s for p−1(−∆)m on [0, L]d with

Dirichlet conditions.

|µk| ≤ s ⇔ |k|2m ≤ (ps(π/L)−2m)1/2m = (ps)1/2m(π/L)−1 (B.65)

So

CD(s;m, d, L, p) ≈ 2−dV (d, 2m; (ps)1/2mL

π
) (B.66)

(2−d because we only consider the k1, ..., kd > 0 quadrant of the d-dimensional 2m-ball)

(B.16)
= (ps)d/2m2−dLdπ−dV (d, 2m; 1) = (

Γ(1/2m)

2πm
)d

1

Γ(1 + d/2m)
(ps)d/2mLd (B.67)

Some values for CD(1;m, d, 1, 1):

m d CD(1;m, d, 1, 1)

1 2 1
4π

2 2 π−1/2

4Γ(3/4)2

3 2 Γ(2/3)

2π
√

3Γ(5/6)2

1 3 1
6π2

2 3
√

2
24Γ(3/4)4

Agree with Courant/Hilbert (VI Theorem 14 and Theorem 15).

Box counting
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Consider the operator A = p(x)−1(−∆)m on [0, L]d. Let CD(s;m, d, L, p) be the number of

eigenvalues ≤ s.

Partition [0, L]d into Md cubes. We can take an eigenfunction for some µ on one cube

and extend it by 0 to the other ones. The functions obtained in this way for different cubes

are obviously orthogonal.

On each small cube, p(x)−1 is almost constant, and

CD(s;m, d,
L

M
, p(x)) ≈ CD(1;m, d, 1, 1)sd/2m(

L

M
)dp(x).

So we obtain

∑
cube at x

CD(s;m, d,
L

M
, p(x)) = CD(1;m, d, 1, 1)(p(x)s)d/2m

∑
x

(
L

M
)d (B.68)

≈ CD(1;m, d, 1, 1)sd/2m
∫

[0,L]d

p(x)d/2mdx (B.69)

(This agrees with e.g. Courant-hilbert (p. 436, VI.4.3 eqn (32)) which gives p3/2 in d =

3,m = 1 and p for d = 2,m = 1.)

The extended functions are orthogonal (on different cubes by extension by 0, on the

same cube by construction) and satisfy the constraints for the [0, L]d variational problem

which are weaker : derivatives up to m − 1 zero on [0, L]d boundary, but not necessarily

individual cube boundaries. Therefore

ĈD(s;m, d, L, p) ≥ CD(1;m, d, 1, 1)sd/2m
∫

[0,L]d

p(x)d/2mdx.

The eigenvalue distribution for the Neumann problem has the same leading-order asymp-

totic term but the constraints for the [0, 1]d variational problem are stronger now (Hm not

only on each side of a subcube, but across cube boundaries, so e.g. jumps across boundaries
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no longer allowed), so

ĈN (s;m, d, L, p) ≤ CD(1;m, d, 1, 1)sd/2m
∫

[0,L]d

p(x)d/2mdx

≈ CN (1;m, d, 1, 1)sd/2m
∫

[0,L]d

p(x)d/2mdx.

Finally,

ĈN (s;m, d, L, p) ≤ ĈD(s;m, d, L, p) (B.70)

since the Dirichlet problem minimizes over the smaller space (Hm
0 [0, L]d as opposed to

Hm[0, L]d). But since the leading-order terms for the subcubes are the same we get

ĈN (s;m, d, L, p) ≈ ĈD(s;m, d, L, p) (B.71)

(B.67)
≈ (

Γ(1/2m)

2πm
)d

1

Γ(1 + d/2m)
sd/2m

∫
[0,L]d

p(x)d/2mdx. (B.72)

Eigenvalue distribution

Another formulation of the same result: number eigenvalues in non-decreasing fashion by

k ∈ N. The distribution formula says:

C(s) = #{k : µk ≤ s} = (c+ o(1))sd/2m (B.73)

Hence for any δ > 0 and for s sufficiently large (= k sufficiently large),

(c− δ)sd/2m ≤ C(s) ≤ (c+ δ)sd/2m (B.74)

hence

(
C(s)

c+ δ
)2m/d ≤ s ≤ (

C(s)

c− δ
)2m/d (B.75)
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so since C(µk) = k,

(
k

c+ δ
)2m/d ≤ µk ≤ (

k

c− δ
)2m/d (B.76)

which means

µk = (c−2m/d + ok(1))k2m/d, (B.77)

as desired.
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