Penalized Spline Estimation in the Partially Linear Model

by

Ashley D. Holland

A dissertation submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
(Applied and Interdisciplinary Mathematics)
in The University of Michigan
2012

Doctoral Committee:

Assistant Professor Matias D. Cattaneo, Co-Chair
Professor Virginia R. Young, Co-Chair

Associate Professor Mouli Banerjee

Associate Professor Volker W. Elling

Associate Professor Kristen S. Moore



© Ashley D. Holland 2012

All Rights Reserved



To my husband, family, and friends who have all supported me throughout these years.

ii



TABLE OF CONTENTS

DEDICATION . . . . . . oot e ii

LIST OF TABLES| . . . . . . . . e v

LIST OF APPENDICES| . . ... ... .. . . .. vi

ABSTRACT] . . . . . e vii
CHAPTER

[ [. Introduction| . . . . . . .. . .. .. ... 1

[1.1 The Partially Linear Model . . . . . . ... ... ... ... .. ... 1

[1.2  Spline Estimation| . . . . . .. .. ... oo 3

[.3  [iaterature Reviewl . . . . . . . . . . . L 6

[1.3.1 Spline Estimation - Rates of Convergence] . . . ... . .. 6

[1.3.2  Spline Estimation - Asymptotic Distribution|. . . . . . . . 9

[1.3.3  Series Estimation in the Partially Linear Model| . . . . . . 10

14 Overviewof Results . . . .. ... ... ... ... ... ....... 11

[1.4.1  Empirical and Fixed Mean Squared Error| . . . . . . . .. 12

[1.4.2  Asymptotic Distribution and Standard Error Estimates tor |

| the Parametric Component| . . . . .. ... ... ... .. 14

[1.4.3  Asymptotic Distribution and Standard Errors for the Non- |

| parametric Component{. . . . . . . . . ... ... L. 15

| II. Rates of Convergence| . . . . .. . .. . ... ... .. ... ..., 17

2.1  Eigenvalues of the Design Matrix| . . . ... ... ... ....... 17

[2.2  Kigenvalues for the Penalization Matrix| . . . . . . .. ... ... .. 18

[2.2.1  Convergence of FEigenvalues . . . ... . ... ... .... 18

[2.2.2  Decomposition of the Penalization Matrix| . . . . .. . .. 23

[2.2.3  Asymptotic Representation of Eigenvalues| . . . . . . . .. 26

[2.3  Conditional Mean Squared Error Expansionl . . . .. . .. ... .. 26

2.3.1 Expansion| . . . . . .. ... o oo 27

[2.3.2  Simplication of the Variance Term| . . . . ... ... ... 30

[2.3.3  Simplification of the Penalization Bias Term|. . . . . . . . 31

[2.4  Rate of the Empirical Mean Squared Errorf . . . . . . . ... .. .. 32

iii



2.41 Without Derivatives . . . ... ... .. ... .. ..... 32

2.4.2  With Derivativesl . . . . . ... ... ... ... ... ... 37

[2.5  Rate of the Fixed Mean Squared Error| . . . . .. .. ... .. ... 42

| III. Asymptotic Distribution of the Parametric and Nonparametric |
Components| . . . . . . . . .. . ... 44

13.1  Asymptotic Distribution of the Parametric Component| . . . . . . . 44

[3.2  Asymptotic Distribution of the Nonparametric Component| . . . . . 52

8.2.1 TLower Bound on the Variancel . . . . . ... ... ... .. 52

13.2.2 Upper Bound onthe Bias| . . . .. ... ... ....... 99

13.2.3  Asymptotic Normality] . . . .. ... ... ... .. .... 59

3.3 Standard Errorsl . . . . ... oo 62

13.3.1  Parametric Component|. . . . . . ... ... ... ... .. 62

13.3.2  Nonparametric Component| . . .. ... ... ... .... 66

| IV. Simulations Study|. . . . .. ... ... ... .. o 69
69

69

72

75

BIBLIOGRAPHY 99

v



LIST OF TABLES

Table
|4.1 Parametric component - 9| .......
[4.2 Nonparametric component - §(0.5,0.5)|




LIST OF APPENDICES

Appendix

[A.  Eigenvalues for the Penalization Matrix|

[B.  Eigenvalues of the Design Matrix| . . .

vi



ABSTRACT

Penalized Spline Estimation in the Partially Linear Model
by
Ashley D. Holland

Co-Chairs: Matias D. Cattaneo and Virginia R. Young

Penalized spline estimators have received considerable attention in recent years because
of their good finite-sample performance, especially when the dimension of the regressors
is large. In this project, we employ penalized B-splines in the context of the partially
linear model to estimate the nonparametric component, when both the number of knots
and the penalty factor vary with the sample size. We obtain mean-square convergence rates
and establish asymptotic distributional approximations, with valid standard errors, for the
resulting multivariate estimators of both the parametric and nonparametric components in
this model. Our results extend and complement the recent theoretical work in the literature
on penalized spline estimators by allowing for multivariate covariates, heteroskedasticity of
unknown form, derivative estimation, and statistical inference in the semi-linear model,

using weaker assumptions. The results from a simulation study are also reported.
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CHAPTER I

Introduction

1.1 The Partially Linear Model

The partially linear model has a long tradition in statistics and econometrics (see, e.g.,
Ruppert, Wand & Carroll (2003) and Héardle, Miiller, Sperlich & Werwatz (2004) for recent
textbook discussions). In this model, for a dependent variable y and covariates 2 € R%

and z € [0, 1]%, the conditional mean function is assumed to satisfy

Ely|z, 2] = 20 + g(2),

where both the finite-dimensional parameter 6 and the infinite-dimensional parameter g(-)
are of potential interest. This is a very popular model in empirical work because it pro-
vides a parsimonious, yet flexible, approach to inference in different contexts. Typically,
in this model the dimension of x is small while the dimension of z is large. In the pro-
gram evaluation literature, for example, x is usually a treatment indicator and 6 the scalar
treatment effect of interest, while g(-) is a nonparametric nuisance function which is present
to account for many possible confounding factors in a flexible way (see, e.g., Imbens &
Wooldridge (2008) for a recent survey). The multivariate function g(-) and its derivatives
are also parameters of interest in other cases, for instance in policy analysis (Stock (1989)).

Inference in the partially linear model is an important semiparametric problem. Large
sample results are available for inference on # and ¢(-) when the nonparametric component

is estimated using kernel regression (Robinson (1988)), power series, or regression splines



(Donald & Newey (1994)). These results, however, rely on classical smoothing techniques
which are usually quite sensitive to the specifics of their implementation in applications,
a problem that is only exacerbated when the dimension of z is large. Partially motivated
by the poor finite-sample performance of these classical smoothing techniques, a recent
literature on penalized spline estimation has emerged and is receiving considerable attention.
Originally proposed by O’Sullivan (1986), and later popularized by Eilers & Marx (1996),
this alternative smoothing technique is nowadays commonly used in applications, being
usually perceived as a superior alternative to other classical nonparametric estimators.

Motivated by their recent popularity, and with the explicit goal of increasing the finite-
sample performance of the resulting statistical procedures, in this project we propose to em-
ploy multivariate penalized B-splines estimators, with n-varying knots and penalty (where
n is the sample size), to estimate the nonparametric ingredient in the partially linear model.
We investigate the large sample properties of the resulting estimators of 6 and g(-) under
quite general tuning parameter sequences, providing in particular asymptotic distributional
approximations and consistent standard-error estimates. As an intermediate step, we also
derive the mean-square convergence rate of penalized B-splines estimators of the regression
function and its derivatives under general asymptotic sequences.

Despite the popularity of penalized spline smoothing, there is only a handful of pa-
pers analyzing its theoretical properties. Early work has obtained asymptotic results under
fixed-knot asymptotics, where the number of knots is assumed to be fixed and the penalty
factor converges to zero (see, e.g., Wand (1999); Aerts, Claeskens & Wand (2002); Yu &
Ruppert (2002); and Wand & Ormerod (2008)), or under sequential asymptotics, Hall &
Opsomer (2005). These asymptotics, however, are restrictive and may not always charac-
terize appropriately the finite-sample behavior of the penalized splines. For this reason,
recent work has focused on the asymptotic properties of penalized splines when both the
knots and penalty vary with the sample size. Li & Ruppert (2008) studies univariate pe-
nalized splines when the number of knots is “large” and derive an asymptotic equivalence
between kernel smoothing and penalized (smoothing) splines. Claeskens, Krivobokova &
Opsomer (2009) study univariate penalized splines under quite general sequences of tuning

parameters and show that these estimators are asymptotically equivalent in a mean-square-



error sense to either regression splines or smoothing splines depending on the sequence of
tuning parameters considered. Kauermann, Krivobokova & Fahrmeir (2009) extend some of
the previous result to the context of univariate generalized spline smoothing. Krivobokova,
Kneib & Claeskens (2010) propose asymptotically conservative confidence bands for univari-
ate penalized spline estimators of the regression function. The present project substantially
complements and extends some of the results in this emerging literature by allowing for
multivariate covariates, heteroskedasticity of unknown form, derivative estimation and sta-
tistical inference on both the parametric and nonparametric components in the partially
linear model.

In the rest of Chapter 1, we describe spline estimation, present main results in the
literature on spline estimation and the partially linear model, and give an overview of our
results. Chapter 2 presents the rate of the convergence of the penalized spline estimate of
g(+). Chapter 3 gives the asymptotic distribution and standard errors for both the estimate
of 6 and the penalized spline estimate of g(+). Chapter 4 discusses the results of a Monte
Carlo study aimed to assess the finite-sample performance of these estimators, and Chapter

5 outlines the main contributions of this project.

1.2 Spline Estimation

To construct a B-spline basis {pjk}leidz in direction 7, [0, 1] is partitioned into K/ —
r + 1 intervals
[tjﬂ" tj,r+1], [tj,7"+1a tj,T+2]> ) [tj7K1/dz ) tj7K1/dz+1]7

with knots tj, =0 < -+ <, g1/a.y = 1, where 7 is the desired degree of the splines. A

condition on the mesh ratio is assumed, for example

max by — hixl = o(L/KY%), hy/  min by < M,
lngK)i/dz’ g1 — Dl (1/ ); j/lgkgKl/dz gk < M,

where hj, =t p—tjr—1, h; = 1<]£§1{>§/d2 hjk, and M; > 0 is a constant, in order to guarantee

that 1/M; < K'/%h; < M; (Zhou, Shen & Wolfe (1998)). A weaker alternative is

tik —tjp—1 =< 1/K71L/dz



for all £k = 1,...,K71L/ dz, as in Huang (2003a), where r,, =< 7, indicates r, > c¢;7, and
r, < coTy, for some ¢ > 0 and ¢y < 00.

To manage boundary effects, an extra 2(r—1) knots are added with ¢;; <--- <t;,_; <0
and 1 < tiki/a=qo < -0 <t g1/a.,, Creating an extended partition. The B-splines are

then constructed using the well-known Cox-de Boor recursion relation (De Boor (2001)):

Lotyn < 2 <tjpn
Pjk1(z) =
0 otherwise

Z Lk bikte — 2

— P kt1,0-1(2),
ikt — bkt

Pike(z) = Pjke—1(2) +

tikre—1 = Lik
where p; 1 ¢ is the kth spline of order £ in direction j, and the convention 0/0 = 0 is used.

The set {pj7k7r}§zlidz spans the space
Sur = {s(-) €C"72]0,1] : s(z;) is a polynomial of order r on each subinterval [ty t;x11]}

(see for example Zhou et al. (1998), De Boor (2001), Schumaker (1981)). Normalized B-

splines have the useful property
K1/dz

Z ik = 1.
k=1

(Zhou et al. (1998)). Multivariate tensor product splines are formed using p* = (p1, ..., px)’ =
(P11 s Prgryas) @ -+ @ (Pt ...,pdel/dz)/. Other references on B-splines include Stone
(1994), De Boor (1976), and Eilers & Marx (1996).

The penalized spline estimate of g(-) minimizes the criterion function

d

_ - a2 amg(z) ?
S—;(yz 9(zi))" + A / Z <8Zj182j2”_3zjm dz,

[071]d Jl,“~7.]m:1

where )\, is a smoothing parameter, m = (mi,...,mg), and |m| = my + ... + my (see
Cox (1984) and Utreras (1988)). This method was first introduced by O’Sullivan (1986),
with d, =1, r = 4, and m = 2 (see also Wand & Ormerod (2008)).



Let 0™g = . Th ting that
e g(z) 925,02, 0, en noting tha

‘717"'7]m:1[071]d

K
= Zﬁkﬁz/ D 0" oi(2)0"pe(2)dz

k=1 1] Jdm=1
= DB

d

d

() ? ,
= DA.
w0y (azj18Zj2---azjm) 4z = A DP

[o,1)¢ Jdm =1

Then with the usual method of setting the derivative of S with respect to 8 equal to zero,

we then find that
§(z) = (2)(P'P + AD)"'P'Y, G = P'(P'P + AD)"'P'Y

where P is the n x K matrix of spline basis functions evaluated at the observations z1, ..., z,,

and G = (9(21),---,G(2n))". In the partially linear model, the estimate becomes
§(z) = P'(P’P+ \D)"'P'(Y — X0).

The standard assumption is that the penalty term 5’Df is bounded.

In the familiar framework of regression splines, the smoothing parameter is A, = 0. For
asymptotic results, a rate condition such as K2/n — 0 (Newey (1997), Zhou et al. (1998),
Zhou & Wolfe (2000), Claeskens et al. (2009)) or K, logn/n — 0 (Huang (2003b), Huang

(2003a)) is assumed. In contrast, smoothing spline estimation has K, = n and includes the



penalization term to compensate for the resulting large variance (Cox (1984), Utreras (1988),
Utreras (1979)). Choosing A, has been the topic of much research, and several methods in-
cluding cross-validation and the information criterion have been considered (Wahba (1975),
Wand (1999), Craven & Wahba (1978)), Utreras (1979), Li & Ruppert (2008).)

Penalized splines bridge the gap between regression splines and smoothing splines, in
that the criterion function contains a penalty but K,, = n is not required.

Reference books for splines include Wahba (1990), Green & Silverman (1994), and

Eubank (1999). Also, see Ruppert et al. (2003) for applications of spline regression.

1.3 Literature Review

We define the following norms:

lgllZ. = sup 073 = sup / (099(2))2dF (=),
lq|<a IQISa[O e

1 n
19113 0,0 = sup [0%l3,, = sup — > (99(Z:))?,
|Q|§a \q|§a n i=1

19]13%.a = sup [|97g|[5, = sup sup [97g(z)[.
lal<a lal<a zef0,1)4

Main asymptotic results available in the literature for regression, smooothing, and penalized

spline estimation include the following:

1.3.1 Spline Estimation - Rates of Convergence

e Regression Splines

A paper that considers asymptotics of series estimators is Newey (1997), which gives
mean-square and uniform rates of convergence for multivariate series estimators.

Specifically, he gave the following results:



Newey (1997): If K2/n — 0,
. K _
9~ 910 = 0y (5 + 10l

19— 9llo = sup [3(2) —g(2)| = Op (@( I(TLJrK;p/dZ)),

2€[0,1]%=

for g(-) € CP[0, 1]‘12 and (implicitly) r — 2 > p.

Huang (2003a) presented the same mean-square rate of convergence, specific to poly-
nomial spline estimation, using a projection argument. The conditions were weaker,

and he assumed

Huang (2003):
K,logn .
n

instead of K2/n — 0, by using an argument with Bernstein’s inequality (see Huang
(2003b)). Huang claimed that this rate was minimal, and it is generally considered

to be so. The results improved on Huang (1998).

See also Li & Ruppert (2008), Kohler & Krzyzak (2001), and Nychka (1995) for
similar results. Hall & Opsomer (2005) also obtains mean-square and consistency
results, using a white-noise model, and Li & Ruppert (2008) consider an equivalent
kernel representation for degree zero and one B-splines with first- or second-degree

order penalties.

Smoothing Splines

Using an argument based on projections and Green’s functions, Cox (1984) presented
a mean-square rate of convergence for multivariate smoothing spline estimates, as fol-

lows:

Cox (1984):

. A n(d272m)/2m
Elg —gll30 =0 (n + BV K



where m is the order of the derivative used in the penalty, as above. The argument
relies on the order of the eigenvalues of a differential equation discussed therein, as
in many other smoothing splines papers (Speckman (1985), Utreras (1988), Utreras
(1979)). The order of the kth eigenvalue is shown to be k2m/ds =1, .., K,, from
Agmon (2010). See also Péo (1999), which uses results from Speckman (1985) for a

slightly different treatment of the rates of convergence.

Also, Stone showed that under some conditions, the smoothing spline estimator achieves

the optimal rate (Speckman (1985)).

Penalized Splines

Claeskens et al. (2009) considered the mean-square rate of convergence of penalized
spline estimators and presented a simple condition determining the form of this rate.
Like in Cox (1984) and other smoothing spline papers discussed above, their argument
relies on the eigenvalues of a differential equation, which they use to decompose the

penalization matrix. Specifically, the authors show that for a constant ¢y,

Claeskens, Krivobokova, Opsomer (2009):

If K,y = (K —m)(A\&1)Y2mn~1/2m < 1 for sufficiently large n and g € CP([a, b)), then

. K )\2K2m B
9= 91B0n =0 (52 + 20 4 o).

and if K, > 1 for sufficiently large n and g € W™?[a, b], then

. n _
19— gHg,O,n =0 (}\1/% + Y + K, 2m> .

In both expressions the first term is the rate of the variance, the second term is the
rate of the squared bias resulting from the penalization, and the third term is the rate
of the squared approximation bias. For K,, < 1 and d, = 1, the first and third terms

match those in Newey (1997); and for K,,, > 1, the first and second terms match those



in Cox (1984). The assumption on the number of knots is that
K%/n—0
for the random design case.

1.3.2 Spline Estimation - Asymptotic Distribution

There are also current results for the asymptotic distribution of the (properly standard-
ized) g(-), along with its derivatives, using the multi-index model. These results are of

course necessary for hypothesis testing and inference.

e Regression Splines

In Newey (1997), an asymptotic normality result, along with the standard errors, is

given:

Newey (1997): If \/ﬁKﬁp/dz — 0, then

VRV TR0 = 60) =g N(0,1), VaV=2(8 — 6p) —a N(0,1),

where V. = AQ7'SQ 1A, V = AQ'SQ A, A = (D(p1), ..., D(pk)) (see As-
sumption 5 in that paper), @ = E[p5n(2)p»(2)'], & = E[pf»(2)p&n(2) o (2)?] with
) aa(ﬁ’ K) ,_ PP

o(2)? = Be(2)?, A= 20| 9= = and

£ %Z ) (i —g<zz»>>2.
=1

e Smoothing Splines

For smoothing splines, Péo (1999) gives an asymptotic normality result, with a con-

dition on the rate of \,.



Péo (1999): If A, = n=2m/2m+1) then

19, w0,

where 02(2) = E(§(z) — g(2))?.

Also, some authors have considered methods for controlling the penalization term, other
than the common method of using the eigenvalues of a differential equation. For example,
Eilers & Marx (1996) consider a discretization for the penalty term; that is, they propose
to use finite differences to approximate the integrated second derivative penalty. Similarly,
Schwetlick & Kunert (1993) decouple the order of the derivative in the penalization and the

order of the spline.

1.3.3 Series Estimation in the Partially Linear Model

A main paper on series estimation in the partially linear model is Donald & Newey
(1994), which presents rate of convergence and asymptotic normality results. Specifically,

the authors define e4(K,) and ey, (K,) such that there are 7 and 7 with

sup
n>1

i=1

" 1/2
Z E(g(zi) — pK(Zi),W)2/n] < eg(Kn)

max sup
J on>1

i=1

" 1/2
> E(hj(z) - pK(Zi)'n)Z/n] < en(Kn)

where h;(z;) = E[z;;|2;] with z;; equal to the ith observation of the jth regressor, as above.
Thus, e4(K,,) and ep,(K,,) describe how well an element of S, , can approximate §. The

authors showed that

Donald and Newey (1994) - Rate of Convergence:

BB = Opln™"2)+-0pleq(k)en(K)) + Opleg (Kn)n™ %)+ Oplen(K)n™/2) + Op(K /™),

10



under the assumption that

K,/n — 0.

They also showed that if \/nK~Ps+Pr)/d= _ 0 then

Donald and Newey (1994) - Asymptotic Normality:

(A, 1By An) ™2 /m(B = B) —a N(0, 1),

e I
where A,, = — ZEulu; and B, = — ZEefuzu; are uniformly positive definite, with u; =
n n
i=1 i=1
x; — h(z), as above.
Another important paper on series estimation in the partially linear model is Cattaneo,

Jansson & Newey (2010), in which many regressors are allowed, that is, d, = O(n). We

refer to this paper in our proof of the asymptotic normality of B in Chapter 3.

1.4 Overview of Results

Let (y;, 2}, 2.)', i = 1,...,n be a random sample of the random vector (y,a’, z’)’, where
y € R is a dependent variables and z € R%*! and z € R%*! are explanatory variables. As

discussed above, the partially linear model is given by
yi =20+ 9(zi) +ei, Eleilws, 2] =0, oZ(wi, zi) = Ble} |z, 24),

where v; = z; — h(z;) with h(z;) = E[z;]2;] and 02(z;) = E[v?|2;]. A series estimator of 3 is
obtained by regressing y; on x; and approximating functions of z;.

For this project, we consider asymptotics for both the nonparametric and parametric
components of the partially linear model. Specifically, in Chapter 1, we give mean-square
rates of convergence for 9‘g in the fixed norm ||§ — g||§,£ and the empirical norm ||g —
9”%,2,71' Section 1 handles inversion of P'P/n by showing that its eigenvalues are bounded
above and below by positive constants with probability approaching one under the rate
condition K, logn/n — 0. Section 2 presents an asymptotic expression for the eigenvalues

of (P'P/n)~12D(P'P/n)~'/2, using theory from the field of partial differential equations.

11



Section 3 gives an expression for the conditional mean squared error of 9§, with ¢ =
(b1, ...,4q), £; < r —2, in terms of these eigenvalues, and Section 4 uses this expression to
find the rates of convergence.

Chapter 2 considers the asymptotic distribution of both the parametric and nonpara-
metric components. Section 1 gives the distribution of §. Section 2 presents the distribution
of 9* J(+), and to that end, gives a lower bound on its pointwise variance and an upper bound
on its pointwise bias. Also, Section 3 gives the standard error estimates for the parametric

and nonparametric components.

1.4.1 Empirical and Fixed Mean Squared Error

Define

—2m/d.

(M de/2m _ | (T(5)/2mm) d./2m

Our first theorem present rates for the empirical and fixed mean squared error. As given
above, the fixed mean squared error is the average of (§(z) — g(2))? over the population,

2

and the empirical mean squared error is the average of (§(z) — g(z))* over the observations.

Our assumptions are as follows:

(A1): (y1,71,21)s s (Yn, Tn, 2n) are ii.d.

(A2): o.(z,2)% and f(2) (the density of z) are bounded above and below away from zero,
uniformly in z.
These assumptions are standard in the literature and are difficult to relax without affecting

the rates of convergence.

(A3): K, logn
n

— 0.
This assumption is weaker than that common in the literature for regression splines and

penalized splines, e.g. Newey (1997), Zhou et al. (1998), and Claeskens et al. (2009); and

12



Huang (2003a) claims this assumption is minimal. We use it to bound the eigenvalues of the
design matrix away from zero and to obtain an asymptotic expression for the eigenvalues

used in the decomposition of the penalization matrix.
(A4): For all k and j, tj 11 — tji < 1/K,1/dz.
We also choose m < ry and m > d, /4.

Theorem 1: Under (A1)-(A4), for g(-) € CP[0,1]% and ry = min{p,r — 2}, if C,(m) < 1
for all sufficiently large n, then

. K, X —2ry/d.

n n

~ K )\2 or./d,
g = gll5. = Oy <K§”dz (n" + RIGM  Ky o/d) ) |

and if C,,(m) > 1 for all sufficiently large n, then

(ds—2m)/2m L
19— g”%,é,n =0y (K?%K/dz (n)\dzﬂm + ry + K, g/dz>> )

(dz—2m)/2m A
J n n —2rgy/d,
13— gl5.0 = Op (Kff/dz (W + 4 Ky o/ )) :

These results agree with the literature. In particular, for d, = 1 and £ = 1, we recover the
result in Claeskens et al. (2009). (Note that Claeskens et al. (2009) assumed a different
functional space for g(-) in the case C,(m) > 1 for all sufficiently large n, resulting in K, 2™
instead of K, ? in their result.) Also, when A, = 0, the rate when C,(m) < 1 for all
sufficiently large n matches the result in Newey (1997). For C,(m) > 1 for all sufficiently
large n, the first two terms are the same as in Cox (1984). The third term is not present in
that result since K,, = n.

The first term in each expression is the rate of the variance. For C,(m) < 1, the

variance grows with K, and declines with n, since more observations results in a smoother

13



estimate, and a larger K, allows for a more jagged estimate. For C,(m) > 1, the variance
decreases with A, since a larger penalization forces a smoother estimate. The second term
in each expression is the rate of the squared bias resulting from the penalization. In both
cases, the squared bias decreases with n and increases with \,, since a larger penalization
produces less fidelity to the data. Finally, the third term in each expression is the smoothing
(approximation) bias. As the number of basis functions used increases, the approximation

over S, , improves, causes this bias to decrease.

1.4.2 Asymptotic Distribution and Standard Error Estimates for the Paramet-

ric Component

We present an asymptotic linear representation of é, along with an asymptotic normality
result, under weak conditions on the tuning parameter sequences. We also give simple, plug-
in standard error estimates, which are robust to heteroskedasticity of unknown form.

Define T = [ — P(P'P + \,D)"'P'; V,, = I';'Q, ;! with T,, = XT'TX, Q, =
XT'TETT'X, and ¥ = diag(02(x1, 21), .o, 02(€n, 2)); Vi = 710,001, with Q,, = XT'TSTT' X

and ¥ = diag(¢?, ...,€2); and T' = E[y;1/)], Q = E[vv/e?]. We need the following assumptions:
(A5): E[||vi||*|2:] and E[e}|z;] are bounded above.

Let py be the minimum (over j) number of continuous derivatives of h?, and define 7, =
min{r — 2, pp }.

(A6): (a) \/ﬁK;(ngLrh)/@ — 0, (b) if C,(m) < 1 for all sufficiently large n, then \/ﬁ)\nK}T/dz /n—
0, and (c) if C,(m) > 1 for all sufficiently large n, then \/n\/An/n = X\, — 0.

Note that for C,,(m) < 1, (A6) and (A3) easily ensure that ||g—g||2,0n —p 0, since K,, — oo.

For C,,(m) > 1, since K,, > ((\,/n)~%/?™),

K,logn

> (A /n)~%/2m logn
n n
nd=/2m1og n
)\iz/an
d.—2m)/2m logn
¢TiL/2m

n(
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So by (A3), nld==2m)/2m |og n/)\gﬂm — 0, and again, ||g — g||2,0n —p O.
Theorem 2: Under (Al), (A3), (A5), and (A6),
(a) V.2 /n@—-60)=v 12— Zuzsz + 0p(1) =, N(0,1),

Vo =171 +0,(1), T =E[y1)], Q= E[yvje?]

() Tp=T+0y(1), Qn=Q+0,(1).

The main differences between this result and a similar result in Cattaneo et al. (2010) is

that a penalization is allowed but K, = O(n) is not allowed.

1.4.3 Asymptotic Distribution and Standard Errors for the Nonparametric

Component

The asymptotic distribution for the nonparametric component (and its derivatives) are

also given. The method of proof involves noting that

'9(2) — %(z) = PK(2)(P'P+AD)'P'(Y — X0) — 8g(2)
= 9p%(2)(P'P+AD)'P'(Y — X0) —
DK (2)(P'P+AD)"'P'X(0 — 0) — 8°g(2)
= DK () (PPP+AD) P (Y — G — X0) +
[0 (2)(P'P + AD)"1P'G — 8°g(2)] —

O'p™ (z)(P'P+AD)"'P'X (6 - 0).

The first term approaches a normal distribution, and the second and third terms are bias
terms that approach zero (in probability), under some assumptions.

Define Wy, = 9‘p™ (2)/(P' P+AD)~'P'SP(P'P+AD) 0D (2) and Wy, = 9'p™ (2)'(P' P+
AD)"'P'SP(P'P + AD)~'9'p’(2), with ¥ and ¥ defined as above.
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(AT7): (a) If C,,(m) < 1 for all sufficiently large n, then

AKT% I 1 1{|0] = 0V K o4

VEKn/n

(b) if 1 <Cp(m) < oo, then

+1{|(] > 0}/nK,, T g,

_ —rg/d:
VAn/n+ H{|f] =0} K, 1] > O}ﬁKg(rg—wD/dz o
\/ n(d=—2m)/2m / )\ff/ 2m

(c) and if Cp,(m) = oo, then

)\Ky%m/dz \/m /)\nKZm/dz/n + 1{|£’ _ O}K;Tg/dz

+1{J¢] > 0}k, "IV )
n \/n(dz—2m)/2m/)\gz/2m

)\nKTQLm/dZ n(dz —2m)/2m

— 0.
n )\;izZ/Qm

These assumptions are needed to guarantee that the bias (divided by the variance) disap-

pears asymptotically.

(A8): K25 in — 0.

Note that for || = 0, this condition is already satisfied since K, logn/n — 0.

(A9): sup [g(z) —g(2)] < Op(1).
z€[0,1]4
A discussion of this condition is included in Chapter 3.

Theorem 3: Under (A1)-(A4) and (A7)-(A9),

(b) Win(2) = Win(2) + 0,(1).

Because of the triangular array structure, the Lindeberg-Feller CLT is used in the proof.
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CHAPTER I1

Rates of Convergence

For ease of notation, we let d = d,, K = K,,, and A = \,, throughout Chapters 2 and 3.

2.1 Eigenvalues of the Design Matrix

We first consider the eigenvalues of the design matrix P'P/n, in order to ensure invert-
ibility, required for the mean squared error expansion. We multiply each basis function py
by VK, as a normalization (see Newey (1997)). Our only noteworthy assumption is that
Klogn/n — 0, generally considered to be minimal (see Huang (2003b)). We show that
these eigenvalues are bounded above and below asymptotically.

Let {Ak}le be the set of hyper-intervals (¢1 i, t1 g, +1] X -+ - X (tdkys tdkg+1)s K1y - kg =

1,..., K% and let {A?C ﬁ{d be the set of intervals (t;x,tj 1], & =1, LKV =1, d.

Lemma 2.1: If K'logn/n — 0,
c1+ Op(l) < 5\min < 5\max <co+ Op(l)v

for some constants ¢y, cg > 0.

Proof: Given in the Appendix.
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2.2 Eigenvalues for the Penalization Matrix

We now consider the eigenvalues of the penalization matrix D, where the k¢ element of
D is

9" py, 9" py
02y =02, 023, 0%,

Dy = dz.

[071}(1 ]17---7.7'm:1

as given previously. Let ,uZ’K be the kth such eigenvalue, where Mf’K < ,ug’K <- <L ,u?(’K.

2.2.1 Convergence of Eigenvalues

We show that ,uZ’K approaches the kth eigenvalue uy of a well-known differential equa-
tion as n, K — oo.

Define a(u,v), b(u,v), by(u,v), and a(u,v) to be the bilinear forms

d OMu o™
a(u,v) ' Z ale .. (%jm 6le .. -8xjm x,
[0.1)d J1--sdm=1

bp(u,v) = % Z u(Zi)v(Zy;),
i=1
a(u,v) = a(u,v) + b(u,v).

Define H = W™? = {g € L?([0,1]%) : for all|a| < m,0% € L*([0,1]%)}, where a =
(a1, ...,aq) and |a| = a1 + - - + oy, as usual (see Adams & Fournier (2003) for a discussion

of Sobolev spaces). We consider the eigenvalues of the equation
a(u,v) = pb(u,v) for allv € H, for someu € H. (2.1)

Note that these eigenvalues are the eigenvalues of the equation a(u,v) = ub(u,v), but with a
value of 1 added to each. Since all of the eigenvalues of the latter equation are non-negative
(as shown in the Appendix), all p satisfying ([2.1)) are positive. Thus, a is positive definite

on H x H and is therefore invertible, that is,
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inf  sup |a(u,v)|>C >0
lullz=1|jv|| z=1

and similarly Huﬁle ||vS||111{p: 1 |b(u,v)| > C > 0. These inequalities also hold on S, , since
Spr C H. Also, since a and b are both integrals on finite domains, |a(u,v)| < Cllul|g||v| a
and [b(u, v)| < Clullallolli-

Define the operator T' by a(Tu,v) = ub(u,v) for all v € H. (Note that T exists by the
Riesz Representation Theorem, as discussed in Fix (1972)). Since a and b are both defined
on H x H, T is compact (Aziz & Babuska (1972), p. 305 and 319). Observe that u satisfies
a(u,v) = pb(u,v) if and only if 1/p is an eigenvalue of T', so by the compactness of T', the
eigenvalues form a countable set with accumulation only at infinity. This is confirmed in

the Appendix.

Consider the equations

a(u®, v") = pFb(ug, v™) for allo® € S,,,, for someu”™ € S, (2.2)

a(uf, o) = pBmb, () for allo® € S, ., for someu™ € S, ., (2.3)

We define TX similarly to T, and define

d(p) = inf ) =1 SUP|y| =1 |a(u, v) — pb(u, v)],

)

dic (1) = i o1 SUPyr o o) — b o))
1 (1) = B0 1 SOt o, o) = Kby (w05

We let pg < -+ < pug and plf <. < pf as with Mf’K, ...,M%K.

Lemma 2.2.1: Under (A3), for all k > 1, |ux — MZK| —p 0.
Proof: For conciseness, we drop the k subscript. We present an argument similar to the

proof of Theorem 10.5.1 in Aziz & Babuska (1972).

We first show that if d(p.) = 0, then given small € > 0 and a value x™* such |, —p™%| =
¢ for large n and K, we have d,, jc (™) > Cc+0,(1), for some constant C. > 0 independent
of n and K.

Let d(u.) = 0, then since the eigenvalues p that satisfy are isolated (as shown in

the Appendix), there is some p > 0 such that |, — p| > p for all other . Then given € > 0
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such that € < p, there is no p such that |u. — p| = €.

So given a value g such that |pug — p«| = €, since

sup inf |a(u,v) — pb(u,v)] < inf  sup |a(u,v) — pb(u,v)| =0,

lullg=1llvllz=1 lull =1 ||v|| g=1

we have

d(IU'O) = inf sup |CL(U, U) - ,U,()b(u, U)’

lullz=1 ||y|| =1

> inf sup [(p. — po)b(u,v)| = sup inf [a(u,v) — pb(u,v)]
lull =1 |jv|| g=1 lullg=1llvla=1
> s —pol inf  sup |b(u,v)
lull =1 ||v|| =1
> C..

Given ull € S, ., let wy be such that a(wo, v) = peb(ull,v) for allv € H, and let w{S be such

that a(wl, v%) = peb(ull, v¥) for allv € S, .. Then for allv € H, a(ul,v)—pob(ul,v) =

a(ué(,v) —a(wp,v) = G(U(l){ — wp, ), SO

sup a(ug —wo,v)| = sup |a(ug,v) — pob(ug , v)|
vl z=1 vl z=1
= |lug llu S la(ug /|lug |y v) = pob(ug’ /|[uy ||, )|
v||lg=

lug Nl inf — sup |a(uo, v) — pob(uo,v)|
lull 2=1|jv| =1

K
[ug || 1 Ce.

Y

Then since supjj,(|, =1 la(uls —wo,v)| < |Jufs —wolla, we have ||ul —wollg > ||ull||zCe. As

shown in Fix, wo = poTul and wl = peTHuff. So

K Ky, K
lwo —wy'llr = ol (T =T )ug' ||

< pollul e sap (T = TF)ul | o
luf=1
< pollud || gsnk,

for some sequence s, x — 0 as n, K — oo. As above, for all vk € Snrs a(ué(,vK)
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pob(ull, vE) = a(ull — wl,vX). So by the invertibility of a,

sup |a(up,v™) — pob(uf,v™)| = sup a(ug —wg',0"))
[vE |lm=1 lvX || a=1
> Jluf —wf g inf  supa(uf,v™))|

luflm=1|jpK | g =1

> Cllug — wp ||

> C(|Jul — wollg — [wo — wi || m)
> C(Cellug|lg — posn,illud i)
> Celllug 1 (1 = posn,i/Ce)

> C,

for sufficiently large n and K.

Now as shown above, since K logn/n — 0, for all u® v € S, with |[uf ||y = |[v5||x =

L,
1 i
b(u!, v5) = by (W, 05)| = |E[u (2)0" (2)] — - > uF (2" (Zi)| < B,
=1
for some sequence 5, g —, 0 as n, K — oo, and thus
Sup |a(ué(a UK) - ,uobn(u(l)(?UK)‘ > sSup |(Z(Ué(, UK) - ,uob(u(})(, UK)| -
v || p=1 lvoE || r=1
inf  [b(ul, v%) — by (ull, 05|
o5l =1
> Ce - ,Ufogn,K
> Ce+op(1).

So we have shown that given pg such that g — p.] = € and pf € S,

sSup ’a(ué(v UK) - MObn(ué{a UK)‘ > Ce + Op(l)'
ol =1

So since pig and pfS were arbitrary, we have d,, ;¢ (u™%) > Ce + 0,(1), for all u™ such that
| — .| = €, as desired.

Using this result, we now show that with probability approaching one (wpal), for suffi-
ciently large n and K, there exists ui"™ such that |, — p| < € and dy, g (u2"™) = 0.

Suppose that for all n and K, there is no zero of d,, k(™) such that | — .| < e.
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Then (d,, x(p™¥))~! is subharmonic and attains its maximum on the circumference | —
pe| = € (see Aziz). Thus, (d, k(%)™ < 1/(Ce + 0,(1)) < oo, that is, dp g (u™F) >
Ce + 0p(1), for all ™% such that [ — 1| < € and sufficiently large n and K. Then for

all 4% such that | — p| < e,

= inf sup |a(u®, v®) — pEo(u, o)

)

drc (1

K | K

> it s (e, o) — pon o))
”u HH:1 ”'UK”H::[
p K sup inf o |b(u®, 0" = b, (uf, o))
[uk ||=1 V¥ =1
> Ce+op(1).
So since |ps — | =0 <e,
s Ja(ul,0) — b, o) = [uflg mf swp Ja(u,v) — g, o)
lvE || p=1 luf =1 ||vK| g=1
> [lus || 5 (Ce + 0p(1)).

Let u, satisfy a(u., v) = pib(us,v) for all v € H, then as discussed above, u, = pTu.. So

letting uX = p, THu,, we have |Ju. — ul|| g < pusn sc||ts|| - Then for all v

‘a(u* - u*KavK) - M*b(u* - us{(v’UK)’ < ’CL(’U,* - uf7vK)‘ + M*’b(u* - uf7vK)’

IN

e = w11 L (1 + p)

IN
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Thus,

sup Ja(ue, o) = pb(ue, o) = sup Ja(ul, o) — pb(ul, o) -
%=1 lvE || =1

inf  a(u, — ul, 0" — pb(u, — u, o)
%)l a=1

(Ce+ opW)lwst lrr = s sellwsl |zl (L + o)

v

Y

(Ce+ 0p(1)) (lwsllr — lJus® —

Ull ) = prasn g 1wl (1 + )

Y

(Ce +0p(1) ([l =
pSn g |l 1) = s, it 11 (1 4 1)
= Nl al(Ce + 0p())(1 = prasin, i) =

:u*sn,K<1 + M*)]

v

(Ce + 0p(1)[[usl 7 + 0p(1)

So wpal us does not satisfy which is contrary to our assumption. So wpal it must be
that for sufficiently large n and K, there exists u2™* satisfying (3) such that |, — ™| < €.
Thus we have shown that if u, is an eigenvalue of then given sufficiently small € > 0,

wpal there exists ,uf’K such that |, — MZ’K\ < € and ,ufZ’K satisfies (3). The result follows.

2.2.2 Decomposition of the Penalization Matrix

We now show that (P'P/n)~Y2D(P'P)~'/2 has an eigenvalue decomposition with the
eigenvalues /ﬂf’K, vy MIL{’K just discussed. This decomposition is crucial to the expression for
the mean squared error, shown in a later section, and the eigenvalues determine the rate of

this expression.

Lemma 2.2.2: (P'P/n)"'/2D(P'P/n)~'/?2 = UMU’ where M is the diagonal matrix of
eigenvalues u?’K, e ukK and U is an orthogonal matrix of eigenvectors.

Proof: Let 91, ...,k be the (random) eigenfunctions corresponding to /ff’K, e M;{’K. We
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note that for any j # k,

50 by (¥, ¥) = 0. Thus, 91, ...

a(thy, ¥i) — a(vr, ¥;)
15 b (W7, k) — " b 0)

= (" = bn (s, ),

,¥ g are orthonormal, in the sense that

*Z@Z}j Z;) =Hj=k}

(noting that 1, can be normalized if ||¢x||lg # 1). (Orthogonality of eigenfunctions is a

well-known property of Hermitian operators.) Suppose that Z{f:l e (z) = 0 for some

constants cy, ...,

Socp,=0,k=1,..., K. Thus, 91, ..

write pg = Zle agpy, for g =1,...,

(P,P/n)qr =

K n
> Ck% > kg (Zi) e (Z:)
k=1 =1

K
Z Ckl{k‘ = ko}
k=1

Chy -

K

> ogr g, — Zwkl i)Vn, (Z

kl,kz 1

Z Qgly Qrky 1{k1 = K2}

k1,ko=1

K
Z Ak Ak,
k=1

24

K, for some constants ag, k=1, ...,

cx. Then for any kg € [1, K], Zszl ki, (2)Yr(2) = 0 and thus

., YK are linearly independent and span S, . So we can

K. Then

i)



So defining A such that A;; = o, we have

Zszl a1 - Zszl Q1K
P'P/n =
SN arEIE e Y KKK

o ot 0K a1t QK1

K1 ' OKK 01Kt OKK
= AA.
Also,

(D)gr = / . N
q [0,1]¢ Jts %;1—1 Owj, - - - Oxj,, Oxj, - - - Oxj,

d

_ 3 P ()] 97T i)

ale cee 82Ejm 8ij e aiL'jm

[O,I}d J1yeenjm=1
d

K m m
= > aqklar/@/ > 88 V(@) i@ .

xj, -+ 0xj, Oxj, - Oxj,

k1,ko=1 [0 1]d J1yesdm=1

K

n,K
= Z aqlﬂa?"k‘Q,uk-l 1{k1 - k2}
k1,ko=1

K
_ E : n, K
- Qg Ok,
k=1

Then

K n,K K n,K
Dok My 0RO e D My QRO

K n,K K n,K
Dokt M OREQLE Doy My OKEQKE

n,K 0

11 o 01K 1231 aip - QK1

0 n,K

a1t OKK Mg Q1K 1 OKK

= AMA
So (P'P/n)~Y2D(P'P/n)'/? = (AA)"V2(AMA)(AA)~Y2, Let U = (AA")"'/2A, then
UU' = (AA)"Y2AA (AA)Y? = I. Since U is square, we also have U'U = I
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2.2.3 Asymptotic Representation of Eigenvalues

We now present an expression for the eigenvalues of the equation
a(u,v) = ub(u,v) for allv € H

where u € H, using theory from the field of multivariate differential equations. We use
these eigenvalues in Section 2 above to decompose the penalization matrix.

The expression we give is an asymptotic expression, meaning in this case that it is valid
as k — oo, where k is the index on the eigenvalues. That is, the expression is true for
large eigenvalues. A result without the ox(1) term in the final expression is known in the
univariate case (Claeskens et al. (2009), Speckman (1985)), but the authors are unaware of
an existing result (with or without the og(1)) in the multivariate case. This result is key
for the mean-square and uniform rates of convergence, and we believe it will prove useful

for many researchers in the future.

Lemma 2.2.3: For k£ > 1,

—2m/d

I'(5%)/2mm)4
Ly = ( 1(—\2(7;)—1{(1)) / f(.l?)d/deJ:‘ +0k(1) ka/d7
2m 0.1]

where 0 (1) represents a term that goes to 0 as k — oco.

Proof: The proof is given in the Appendix.

2.3 Conditional Mean Squared Error Expansion

Using the expression for the eigenvalues found above, we now present an expression
for the empirical mean squared error of the nonparametric component, g, of the partially
linear model. We let G = (g(Z1),...,9(Zy,))" as above, and let 1,, be the indicator for
the smallest eigenvalue of P'P/n being greater than ¢; and the smallest eigenvalue of I +
MP'P/n)~Y2D(P'P/n)~'/?/n being greater than 1/2. Note that since u > 0 for all
k > 1 (as discussed in the Appendix), ,u,Z’K = i + op(1) > 0p(1). So the eigenvalues of
I+ X(P'P/n)"Y2D(P'P/n)~Y2/n = I + \UMU' /n are bounded below by 1+ 0,(1), since

A/n - oo. Thus, 1,, =, 1 as n, K — oc.
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2.3.1 Expansion

Lemma 2.3.1: If 0.(z,2) is bounded above and below away from zero, the conditional

empirical mean squared error is

n,K 2
o
. o . i ) 32 i <kn> b?
“E[l(G-G)(G-G)XZ] < L|=-) ——xms+t D — ks
n nem 1+ %/‘271()2 noam 1+ %N?KP

LS (EI9(2)/X, 7] - g<zz->>2) ,
=1

where ¢, is the spline estimate of g when A = 0.

Proof: For ease of notation, assume throughout the proof that 1, = 1. We have

~

E[(G-@)(G-G)X,Z] = E[G-E[GX,Z) (G -E|G|X,Z)|X,Z] +
(E[G — G,|X, Z))(B[G — G,|X, Z]) +

(E[G,|X, Z] - G)(E[G,|X, Z] - G)
Consider E[(G — E[G|X, Z])) (G — E[G|X, Z])|X, Z]. Let B = P(P'P)~'/2U, then

G —-E[GX,Z] = P(P'P+AD)"'P(Y - X0-Q)
= P(P'P)"YV2(I 4+ XUMU'/n)"(P'P)"Y2P'(Y — X0 — G)

= P(P'P)"Y2U(I + AM/n)"'U'(P'P)"V2P/ (Y — X0 - G).
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So

E[(G - E[G|X,Z])) (G - E[GIX,Z)|X,Z] = E[Y —-X60-G)P{P'P)""?U x
(I 4+ XM /n)~'U'(P'P)\/2P'P x
(P'PYV2U(I + AM/n)~*U'(P'P)~Y/2 x
P(Y — X0 — G)|X, Z]
= E[Y — X0 — g)P(P'P)~'/?U x
(I + XM /n)~2U"(P'P)~Y/2P' x

(Y — X0 - G)[X, Z]

Let B = P(P'P)"Y2U and (a1 ---ag) = (Y — X6 — G)'B, then

K 2

(Y = X0~ GYB(I+AM/n)*B'(Y - X0 - G) =y —E
k=1 (1 + ﬁ'uk7 )2

Also,

E[B'(Y — X0 — G)(Y — X0 — G)B|X,Z] = E[B(Y — X0 —-G) x
(Y — X6 — G)'B|X, Z]
= BE[Y - X0-G)x

(Y — X0 — GY|X,Z|B

IN

B'(c?I)B

UEI,

and similarly E[B'(Y — X0 — G)(Y — X0 — G)'B|X,Z] > 621. So since a? is the kth element
along the diagonal of B'(Y — X6 — G)(Y — X0 — G)'B, we have 62 < E[a}|X,Z] < 02. So
K

E[(G - E[G|X,Z)) (G - E[GX, Z))|X,Z] < ) | Aan)Z

i1 (L S,
In the case of homoskedasticity,
K 2

E[(G - E[G|X,Z)(G-E[GX.ZDIX,Z =) —= .
[( [G1X, Z])( [GIX,Z))[X, Z] ;(Hnuk e
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Consider now (E[G' — G,|X, Z])(E[G — G,.|X,Z)).

G'P(P'P)~'2U, we have

(E[G - GT’X7 Z])/(E[G - GT’X7 Z])

Finally, we see that (E[G,|X, Z]

as desired.

Letting by be the kth component of

[P(P'P)"'P'G - P(P'P+ D) 'P'G] x

[P(P'P)"'P'G — P(P'"P +\D)"'P'G]

[P(P'P)~Y2U(I — (I +AM/n)~%) x

U'(P'P)~2P'G) x

[P(P'P)~2U(I — (I + AM/n)™") x

U'(P'P)"2P'@q

G'P(P'

P)Y2U(I — (I 4+ AM/n)™Y) x

U'(P'P)~Y2P' P(P'P)~Y2U x

(-

G'P(P

(I +AM/n)"HU'(P'P)"V?P'G

P)Y"YV2U(I — (I 4+ AM/n)~4)? x

U'(P'P)"'2P' G

>

k=1

- G)/(E[GT|X7 Z]
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2.3.2 Simplication of the Variance Term

Now as shown in Section 2, MZ’K = pg+0p(1) = (s+o0x(1))E>™ % 4-0,(1), where oy (1) de-
notes a term that approaches zero as k — oo. Then for some sequences 5, and 6, such that
O — 0as k — oo and 0, x —p 0 as n, K — oo, we have [LZ’K—I—Op(l) = (¢ +op)k>™ 465, K.
We now show that p, +0,(1) in the above expression can be replaced with its leading term.
Lemma 2.3.2 deals with the first term of the mean-square error, and Lemma 2.3.3 deals

with the second.

Lemma 2.3.2: The first term in the conditional mean squared error expansion can be

rewritten as

f: 1 :zK: L+ €nr Ak VZ 1+ €nr 2k
T ) T A (e ) k) (1 + $3h2m/d)2

where €, g\ —p 0 as n, K — oo.

Proof: We have

K 1 K 1
kzl(lﬂ” Tk - ;(1+2((§+5k)k2m/d+5n,l()2
- 1 (1+ (s + 0g) Ak2m/4)2
- ,; (L4 (S + )5 k2/ D)2 (14 A (g 4 6 k24 + 6, 1))
K
-y !

(1+ (s + 05) Ak2m/d)2
(14 (s + ) 2k2m/d)2
(1+ %<<<+6k>k2m/d) 2 (1 2 (s + SR 20+ (hon)’

e
Il
—

K
- Z 2m/d2[1_
— 1+ <+5k A f2m/d)

2 (14 2((< + 60k %) 25, i + (26,,5)°
(1 + % ((s + o ka/d)Q (1 + < ((C + 5k)k2m/d) %57171( + (%5%[{)2
K

_ Z 1+ €n k2K
— (1+ (¢ + &) 2 k2m/4)2
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where

2 (14 2((s + 60)k>™4) 28, 1 + (26,.5)°
2

En, K\ k = — X d A d\ )\ A 2"
(14 2((s + 0R)R2™/ D) 4+ 2 (14 2((s + 6)k>™/4) 26, 1 + (360,)

Note that €, g xr —+p O forall k=1,..., K, as n, K — 00, since
+ (s + OR)ART Y I > Ay, e /.

Similarly, to deal with dy,

L+ éen kK (1+ %k?m/d)g
(1+ %k‘?m/d)Q 1+ (c+ 5k)%k2m/d)2

-3 L enkak
— (14 %ka/d)Z
2(1 + %ka/d)(gk%k%n/d + ((5k%k‘2m/d)2
1+ %ka/d)2 +2(1+ %k2m/d)5k%k2m/d + (5k%k2m/d)2

K
_ Z 1+ €n 0k
P (1 + %ka/d)Z

K
Z 1+ €m0k
1 1+ +5k k2m/d)2

= 1M~

since
2(1 + g%ka/d)dk%k%n/d + (5k%k2m/d)2 o
€ =
k (1+g%k2m/d)2+2(1+§%k2m/d)5k%k2m/d+(5k%k2m/d)2

as k — oo (since 1+ ¢Ak2™4/n > 5, k>4 /n for large k).

2.3.3 Simplification of the Penalization Bias Term

Lemma 2.3.3: The second term in the conditional mean squared error expansion can be

rewritten as

N <MZK> 2 p (MZ’K> (mkgm/d) R4 )
Z n Z n n k n,K,\k

k:1 1+ ,\MZ K) (1 + (g + 5k)%k.2m/d)2

=
Il
—

n,K
K (Hkn > (%ka/d) (1 + € KAk
= Z (1+%k2m/d>2 ’

k=

[y



where € .\ . —p 0asn, K — oo.

Proof: We have

n,K 2 n,K 2m/d
K <M]?n ) bi K <Hkn ) ((§+6k)k n +5n,K> bz(l 4 En,K,)\yk)
2T heRE T

(L4 2pp™)? pt (1 + (s + 0p) 2k2m/d)>2
n,K
K <Hkn > (§+5kk2m/d> b2(1+€n1{)\k>
B ; (1+ (S + ) 2 k2m/d)2 ’
/ o 571,1(/” .
where €, g\ = €n KAk T o )ka/d/n(l +€n k2 k) —p 0,since €, g Ak —p 0and 0, xk —p
k

0 as n, K — oo, and the first equality follow from Lemma 2.3.2. Also as in Lemma 2.3.2,

ﬂ §+5kk2m/d b2(1 ﬁ mk%n/d b2(1 / 1
K =% R+ € k) " n Rt g (1 +€r)

R Nk

A1.2m
— (1 + Lk2 /d)2
(ngm/d) b2(1 + EnK/\k)

(14 s2f2m/d)2

)

HMN N\l

since J; < ¢ for large k.

2.4 Rate of the Empirical Mean Squared Error

2.4.1 Without Derivatives

We now find the empirical mean squared rate of convergence of g, given the expressions
found in Section 3. We first note that C,(m) = (¢cA/n)¥*™(K —m) — oo if and only if
(sA/n)¥?mK — co. This case is equivalent to smoothing splines if K = O(n), and we find
that the rate of the mean squared error is equivalent to that for smoothing splines. When
Cn(m) — oo but K < O(n), the framework could be considered “almost” smoothing splines,
and the mean-square rate has an additional approximation bias term of order K~ "s/d. If
K is chosen sufficiently large, then this bias will be dominated by the bias resulting from
the penalization, showing that the estimation procedure is asymptotically equivalent to
smoothing spline estimation.

Similarly, C,,(m) — 0 if and only if (¢A\/n)¥?™K — 0, since K —m = O(K). This case
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is equivalent to regression splines if A = 0. If C,,(m) — 0 but A > 0, there is an additional
bias term of order A\K™/¢ /n resulting from the penalization (producing less fidelity to the
data). If A is chosen sufficiently small so that the this penalization bias is smaller order
than the approximation bias, then this framework is asymptotically equivalent to regression
splines.

Finally, if C,,(m) — ¢ for some constant ¢, then since C,,(m) = (¢\/n)¥?™ K —(¢\/n)¥?™m
and K — oo, it must be that (¢A\/n)¥?" K — cand (sA\/n)¥*™m — 0; and if (¢\/n)¥*" K —
¢ for some constant ¢, then since K — oo, we have (¢A\/n)¥?"m — 0, so C,(m) — ¢. So
nlgrolo (cA/n)Y?mE = nlg]go Cn(m). This case is neither asymptotically regression spline esti-
mation nor smoothing spline estimation, and most researchers in penalized spline estimation
are particularly interested in this case. The situation ¢ = 1 can be considered the “knife-

edge” case, in that this is when the form for the rates of convergence switches between that

for regression splines and that for smoothing splines.
For ease of notation, define n;, = ¢k2™/¢. We first present a proof in the case |¢| = 0.

Theorem 1 - empirical norm, |¢| = 0 (restated): If C,(m) < 1 for all sufficiently large

n, then
. K X\ _
13— gll3.0.n = Oy (n + ﬁsz/d + K 2T9/d> :

and if C,,(m) > 1 for all sufficiently large n, then

(d—2m)/2m A
g,O,n =0p (n T K_2Tg/d> )

||g —9g )\d/Qm
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Proof: From Lemmas 2.3.1, 2.3.2, and 2.3.3,

n,K 2

w
1 A 1/ A 1 f: 1 )\2 i < kn ) b%
SELG-eG-axz = 1, |ty L Ay AT
" N (42?2 S (L A2

) (121X, Z) — g Z0))
=1

1 1 & 1+ €n k0 k
RESppn:
k:l( +n77k)

X

n,K
z? i (Fe=) (Z)bp (1 + E;L,K,)\,k)_}_
n

k=1 (1 + %Uk)Q

> (Blon (2)]X, 2) — o(20))*

Define 1, k = 1{1, = 1, |en k2 x| < 0.1, \e;’K)\’k\ < 0.1} =, 1 as n, K — co. Then

2 & (T (g
1 A A 1 1 A tk N (IENp
Yen, vic—oyG-oxz = 1,615 — Lt LA GG
WEllna(@ =GV =GR EL = Lok | 02 (e w2

% Z(E[QT(ZZ)’X7 Z] - g(Zi))2> :

For ease of notation, assume throughout the rest of the proof that 1, x = 1. Con-

sider first C,(m) < 1 for all sufficiently large n. Since Ang/n > 0 for k£ = 1,..., K,

Consider the second term. Since 1+ Ang/n > 1,

K

K n,K K n n,
ﬁzw<ﬁz et (%>b2x)\2K2m/dZMkai,
noi U+ am)? T on " n? = "
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Now

K nK
n
k=1

Define Bk such that s, = B-p™, where s, = inf sup |[s(2) — g(2)|, and Sy = (s4(Z1), ..,

5E€Sn,r 2€[0,1]¢
Then adding and subtracting s, from g, we have

K n,K
3 “’;l B = (G- S, P(P'P)"'D(P'P)"'P'(G - S,) +
k=1

25, P(P'P)"'D(P'P)"'P'(G - S4) + S,P(P'P)"'D(P'P)"'P'S,
= (G- S,)P(P'P)'D(P'P)"'P(G —S,) +
SyP(P'P)"'D(P'P)"'P'S,

= BxDBk + (G- S,)P(P'P)"'D(P'P)"'P'(G - S,).

using 5’; = B} P'. Since the number of observations in any hyper-interval is < n/K, for all

k=1,..K,
Zi < \/E E = L SO

(G- S,)P(P'P)"'D(P'P)"'P'(G-S,) = (G-S,)P(P'P/n)"Y3(P' P/n)~1/%x

D(P'P/n)~Y2(P'P/n)~Y2P'(G - S,)/n?

IA

AL (P'P/n)(G — S,) PUMU'P' x

min

(G = Sg)/n”

1

= ﬁ)\max(M) X

K n 2
> (Z(Q(Zz') - Sg(Zi))pk(Zi))

k=1 \=1

AN

2
LR sup (g(z) — sy(2))? K -
n? 2€[0,1]4 I K

K2(m—rg)/d

A

= 0(1)
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since m < rq. Also, B} DS is the penalty term in our criterion function, which we assumed

K nK
was bounded. So Z at: b2 is bounded, and thus
k=1
K n,K
255 DI 2
nom (U %MZ’KV n?

n

1
Finally, consider the last term, which is — Z(E[QT(ZZ)]X, Z] — g(Z;))?. We have
n

i=1

Note that since sy € S, , we have s,

S (EIG(Z)IX, 2]~ 5y(Z0))
=1

n

=Pp

=1
=SRG2~ 50(Z) +
i=1
LS (0(Z:) — 5(2)”
=1

' (P'P)~'P'S,. Then as above,

(G- S,)P(P'P)'P'P(P'P)'P'(G - S,)/n

Mo (P'P/)(G = S, PP'(G — S,)/n’

K n 2
= (Dg(z@-) - sg<zi>>2pk<zi>)
Kﬁ/;zl/d' =1

Also, 1 Z(g(Zz) —54(Z))* < sup |g(z) — s4(2)* < K~%9/4 by Schumaker (1981) (see
n

k=1 ZE[O,l]d

also Newey (1997)). So

CELk (G- 0)(G-G)

)\2
2[{Qm/d +K_2Tg/d.

K
X2 5=+ 55

Then by Markov’s inequality and the fact that 1, x —p 1,

19 = gl2am = O, (

2

%K?m/d + K—Qrg/d
n

K
—+
n

)

Consider now C,(m) > 1 for all sufficiently large n. Letting r,,, be the remainder term from
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the Euler-Maclaurin formula,

1
(1 + SA ka/d)

™=

K
;1+n B

Tm

1 + C)\me/d)

Il
o\

({A/n)d/QmK

_ (A s / du Y
 \n (14 u2m/d)2 =™
0
A —d/2m
G

since the integral is finite for m > d/4, even if C,,(m) = oo, and where we use the substitu-

A

tion u = (¢\/n)% 2™y,

Consider now the second term. Since z(1+z)"2 < 1 for x > 1,

éK )b2<)\iﬂsz2<A
n e 1+ 21k) dn =~ n e

So using Markov’s inequality and the fact that 1, x —, 1,

(d—2m)/2m A
- 2 _ n —2r,/d
||g - g”O,Q,TL - Op ( )\d/2m + ﬁ + K g >)

as desired.

2.4.2 With Derivatives

We now consider the mean squared rate of convergence in estimating the derivatives of g.
Let £ = ({1, ..., £4) be a vector of nonnegative integers, and let 9°(z) = 8(£)h(z)/8x§1 e 6:5?
with |[¢] = Z;-lzl ¢;. We consider derivatives up to order » — 2 in any one direction, where
is again the order of the B-splines. This includes the popular case of cubic B-splines with
a first-order derivative in any direction.

We first present a lemma giving the best L, approximation rate to derivatives of g over
Sp,r. This sort of result is available in the literature in the univariate case (see Zhou &

Wolfe (2000) and Newey (1997)), but we are unaware of a similar result in the multivariate
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case.

Lemma 2.4.2: Given ¢ = ({1, ...,£4), there exists 5, € Sy, , such that

sup [0°g(2) — 8'54(2)| = O(K 7 1/4),
2€[0,1]¢
where 0%¢(z) = g(2), as usual.
Proof: Let Yy, be defined by 852(9@9 = Sptg, Where sy  is the best Lo approximation to

d%g, as above. Define

z1 21 24 zd
/ h(¢)d¢ = / / / / 8€h(C1,...,Cd)dC1"'dCL"'dCd"'dCd
L2ty ky tiky  tiky taky  tdky 2 g
Zl Zd
for a function h and fo (2t k) = / 9°h(¢)d¢ — h(z). Then over each hyper-
Lty .. ky

interval [tlkl,thlJrl) X oo X [tdkdatd,derl)a ]{51, -'-7kd = 1, ...,Kl/d, define

gg(z) = / Séﬂg(()dc - fe,sg (27 tk1,...,kd) X

Kz € [tigy k1) X - X [takgs taa+1)}
= [Eazg(z) + f@,zazg(z7tk17 "'7tkd) - f@,sg (zutkl,...,kd)] X

Hz € [tiky, trk+1) X - X [tdky, takg+1) }

Since each term in both fg}galg<z, ... k,) and fg}sg(z, k... k) is a function of at most d —1
elements of
2= (21, 2d), yf&iaeg =0 and 8%,8&, =0, so 8K§g = 8y, Thus,

sup [9°g(2) — 0'3(2)| = Ok~ "o/,

z€[0,1]¢

since the modulus of smoothness of 9%g is p — ¢ (Newey (1997)).
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Also, for all z € [0,1]¢,

{z € [tigy, tigy+1) X - X [ty b1 k1) f—
890g(Q)dC = fos (T thy, . kg) | ¥

l{z S [t1k17t17k1+1) XX [t1k17t171€1+1)}’

< 10°9(C) = s9e4(O)]dC | %
0,2tk . kg
Hz € [tiky b1k +1) X - X [tk Bk +1) ) +
|fo.g(Zthy, k) = Jos, (T thy, o ky)| X
Hz € [tk trgy+1) X oo X [tagy b1k +1) }
S osup [0%9(2) = speg(2)] - (21— b)) - (2a — tag,)" X

z€[0,1]4

Hz € [tk tgy 1) X oo X [tigg treg 1)} +
sup [g(z) — s4(2)]

z€[0,1]4

= O(K*(rgflé\)/d) , (Kl/d)€1+~~+€d n O(K*rg/d)

= O(K "9/,

where the third-to-last line follows since each term in fy 4(2,tr,,... k,) — fo.s, (2, thy,... ky) 18 Of

the form g(ay,...,aq) — sg4(a1, ..., ag) where each a; equals z; or ..

We now present the proof for the rate of a convergence for an estimate of 9§, in
the empirical norm. In the proof, we find the rate of ||3 — j3||3 (where 5g = pX'B) from the
rate of [|g — g3, which is key to the result. This shows, as is intuitive, that the rates
are governed by the rate of approximation of the estimated coefficients on the spline basis

functions compared to the best L, coefficients.

Theorem 1 - empirical norm, ¢ > 0 (restated): If C,,(m) < 1 for all sufficiently large n,
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then

K N
16— 913 = Oy (K”/d ( ok K‘%/d>) ,
el n n

and if C,,(m) > 1 for all sufficiently large n, then

(d—2m)/2m Y
2 _ 20/d | T —2ry/d
2’&"—01’(“ : </\d/2m+n+K />>

lg—g

Proof: Let 1, k = 1 throughout the proof, and define DY) = M M- M 0 with

J J
-1
tjr—tjn 0 0 0
1 -1
tjr—=tim  tir+1—tj 149 0 0
0 t; 1t- t; 71t- 0
M — Jyr+17 0y, 14n Jir+27 05240
Jim — (r—mn)
0 0 S — 0
tjr+2—lj24n
: -1
byt /d gy g1/
0 0 0 o 1

tj,Kl/d+r717n7tj,K1/d71
for n =1,...,4;, where t;;, is the kth knot in direction j. As shown in Zhou & Wolfe (2000)

using De Boor (2001), when d =1,

~

§9(=) = "' (2)5) O = pk, (z)DVB,

where pf_fg is the vector of spline basis functions of order r — £. Define pj{{_ 0 to be the vector
of basis functions in direction j of degree r —/;, and let Dj(-ej ) be the matrix D) using the
knots in direction j. Also, let P_, be the spline design matrix using splines of order r — /;
in direction j and D = Dgzl) ®-® Dc(lgd). Finally, let 8 — 8 = (41 — @) ® - - ® (4g — 0q),

where each vector &; — a;, j = 1,...,d, is chosen appropriately, and let &, — @, be the k
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component of &; — @;. Then

K

'4(z) — 0'54(2) = O <2pk(2)(5k - 51:))
=1

ot g1

K1l/d
= o D pik(21) - par,(2a) @1k, — Quky) - (Gaky — Oédkd)>

d K/d
= O[] D_ pir, (zi) (A, — asa;)

j=1k;=1

d
= 9 pr,(zj)(djaj))
j=1

d
= o D @ - ay)
j=1
= [ e enl, ()] [P @0 DY)
(61— ) ® - @ (Ga — aq)]
= pE()DY(B - B)
So 8‘G — 9'S, = P_yDY (5 - B).
Now let 7, ¢ = K/n+ 2K?™/ /n2 4 K=2re/d for C,(m) < 1 and ry, i = nld=2m)/2m /xd/2m

MNn+ K=29/d for C,(m) > 1. Since 54 achieves the optimal rate of approximation for g,

using the results for [¢] =0,

Z(@(Zi) —54(2:))* = (8= B)PLyP—o(B = B)/n 2 (B=B)(5 - B)-

So |8 = Bl3 = (8= B)(B—B) = Op(rnx). Then using the structure of D) and the fact
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that its maximum element is | D], = O(K/%),

~ —

4 4 ~(¢
(GO — S; V(GO —

DY = (8- B)YDY'P'PDYS - B)/n

Amax(P'P/n)(3 — B) DO DO (3 — )

S IDONZNI8 — BI°

~

IN

= OP(K%/dTn’K).

Thus,

g — g”%,e,n =g — ggHg,z,n + 1184 —9 %,Z,n = OP(K%/dTn,K)v

as desired.
2.5 Rate of the Fixed Mean Squared Error

We now consider the rate of convergence in the fixed norm, in which the average is taken
over the full distribution instead of the specific data set. This norm is more common and is
used in particular in Newey (1997). We first find the rate of | D® (5 — B)||? from the rate

in the empirical norm, which allows the rate in the fixed norm to follow easily.
Theorem 1 - fixed norm (restated): If C,(m) < 1 for all sufficiently large n, then
K 2
9= 910 = O (K204 (5 4 Zprmid . 2mid) ),
’ non

and if C,,(m) > 1 for all sufficiently large n, then

(d—2m)/2m Y
A n _o9p
Hg - gH%,@ = Op <K2£/d ( )\d/2m + Z + K 2 g/d>> ’

Proof: For notational convenience, define D(® = T. Similarly to above, since 8Z§g achieves
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the optimal rate of approximation for 9%g, using the results for the empirical norm,

X

U@z - sy = S0~ e Z) +
i=1 =1

>0, (70) - ol
=1

= Op(_KQZ/dTn,K).
Also,
S (@9(2:) — 0'5y(2))* = (8~ YD PLPD' (B~ B)fn 2 (B BY D D3 - ).
i=1

So |[DO(5 - B)||? = Op(K*/7,, k). So

la-lts = [(0'9(2) - o'g(a)Paralc)
= [ WGP - B+ 5 (D5~ o'g() R
= (B=BDY [ P Y dR DO - 5+
[ @54 - 'g()%dRu(c)

Amax (E[p" (2)p™ (2) DIDO (B — B)II5 + :{g%d(aegg(z) —9(2))

IN

= OP(K2€/drTL,K)7

giving the result.
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CHAPTER III

Asymptotic Distribution of the Parametric and

Nonparametric Components

3.1 Asymptotic Distribution of the Parametric Component

We now consider the asymptotic distribution of . Define Q = P’ P/n, R = P(P'P +
AD)"'P'' R, = P(P'P)™'P', T =1 R, and T, = I — R,. Also, as above, let hi(z) =
E[z|2], where x; is the jth component of z, and v/ (z,2) = x — h/(2).

We use the assumptions that (a) /K~ (etm)/d — 0, (b) if C,(m) < 1 for all suffi-

ciently large n, then v/nAK™/?/n — 0, and (c) if C,(m) > 1 for all sufficiently large n, then

Vny/A/n — 0.

Lemma 3.1-1: X'TT'X/n =T + o0,(1), where I" = E[v;v}|z].
Proof: Let 1, = 1. First, we see that

1 1 1 1 1 1
~X'TX =~-HTH+ ~-H'TV +~-V'TH + ~-V'V — —V'RV.
n n n

n n n
Noting as above that Al = p&'(P'P)"'P'H7 and i/ = pX'(P'P + AD)"'P'H7 can be

considered the conditional expectation of regression and penalized spline estimates of A/,
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respectively, we have

H'(T-T)H//n = HI'(P(P'P)"'P' — P(P'P+AD)"'P)H’/n
= HI'E[H! — H|Z)/n

= S WZER(Z) - hs(20)2)
i=1

n

< L sup W(2) S E(Z) - hy(Z)[2
n ZG[O,l]d i=1
n 1/2
< C}]MM&%%wmmﬂ
i=1

Ny . . Ny 1/2
= (Bl - #/\2)) (B[H] - B9|Z))/n) ",

where HI = (hi(Zy)---hi(Zy,)) and similarly for HJ and H{. Then HY' (T — T,)Hi /n =
O,(AK™/4/n) if C,(m) < 1 for all sufficiently large n and H'(T —T,)H7 /n = Op(\/A/n) if
Cn(m) > 1 for all sufficiently large n, using Theorem 1 and the fact that 1, x —, 1. Since
P(P'P)~'P'H’ is the projection of the vector H’ onto S, we have T, H) = HI — S,,;,
where S;,; is the vector of best Lo, approximations to the elements of HJ. So since T, is

idempotent,

H'T,H/n = HI'T,T'H/n
J R
= YW (Z) - s(Z0)?
=1

= O(K~2m/d),
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So H'TH/n = o,(1). Also, since E[VIVJ '|Z] is a diagonal matrix with bounded elements,

E[VY'RVI)/n = E[Tx(RE[VIVZ'|Z])]/n

A

E[Tr(R)]/n
= E[Tx(P(P'P)"Y2U(I 4+ AM/n)~'U'(P'P)~Y2P")/n

= E[Tr(([ + )\M/n)_l)]/n

:*Z ,\nK
-1y

1+ 2,

IA

So by Markov’s inequality and the fact that 1, x —p, 1, V'RV/n = O,(K/n). Finally,
since V'V/n —, Elvyv]] = Oy(1), we have H'TV/n = V'TH = o0,(1). So X'TX/n =
Efviv]) + op(1).

Now

X'TT'X = X'TX+X'T(T-T,)X +X'T(T, — )X

= XTX+X'T(T-T,)X +X'(T-T)T -T,)X + X'T(T, - I)X

Consider the last term. We have

T(T, - 1) = [I—P(P'P+\D)"'P|I—-P(PP)'P —1
= —[I-P(P'P+AD)"'P|P(P'P)"'P
= —[P(P'P)"'P—-P(P'P+\D)'P]
= —[I—-PPP+AD)'P)—(I—-PPP)'P)

= T.-T,
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SO

X'T(T, - DX/n = X'(T,-T)X/n
= H'(T,-T)H/n+H' (T, —T)V/n+V' (T, = T)H/n+ V'(T,, — T)V/n
= H'(T, —-T)H/n+2H (T, —T)V/n+V'RV/n - V'R, V/n

= OP(1)7

by the above arguments (note that V'R,V/n is equal to V'RV /n with A = 0).

Consider the third term. We have

X(T-T)NT-T,)X = X'[P(P'P)"V2(I—(I+AM/n)"1) (P'P)"V2P'] x
[P(P'P)~' 2 (1 — (I +AM/n)~1) (P'P)"V2P|X

— X'P(P'P) V2 (I — (I+AM/n)"Y)* (P'P)"2P.

Since the kth diagonal element of the (diagonal) matrix [I — (I + AM/n)7!] is ,uZ’K /(1 —
NZK) < 1, the elements of (I — (I + /\]\J/n)_l)2 are less than the (absolute value of
the) elements of I — (I + AM/n)~t. So since X'(T — T,)X/n = o,(1), we also have

X'(T = T,)(T — T,)' X /n = op(1).

Consider the second term, and note that since Hi"T, H /n and HY' (T —T,)(T —1T,) H’ /n are
op(1), we have HI'T(T—T,)Hi /n = op(1), and similarly HI'T(T—T,)Vi/n = op(1). Also,
VI'T(T-T,)Vi = Vi'(T=T,)VI - VI'R,(T —T,)V3. Since Vi'R, VI /n = VI'R.R.VI Jn =
0p(1) and V(T — T,)(T — T,)'Vi/n = o,(1), we have VI'R.(T — T,)V7/n = o0,(1).
Then since VI'(T — T,)Vi/n = 0p(1) as shown above, VI'T,(T — T,)V7/n = o,(1). So
X'To(T - Tp)X/n = o,(1).

Thus,

1
~X'TT'X = E[vv}] 4+ 0,(1).
n
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1 1
Lemma 3.1-2: %X’TT’(Y —X0) = %V% + 0p(1).
Proof: Again, let 1, x = 1. We have

1 1 1 1 1 1
—X'T(Y —X0)= —=HTe+ —=V'e — —=V'Re + —H'TG + —=V'TG.
n n n n

vn vn vn vn vn vn
Consider H'Te/\/n. We have

E[(H' (T — T,)e/vn)*|X,Z) = H/(T —T,)Elee'|X,Z)(T — T,)H? /n
< HY'[P(P'P)"'P' — P(P'P+AD)"'P7 x
[P(P'P)™'P' — P(P'P+ A\D)"'P'|H? /n

= (E[H] - 17|2)) (E[H] - 17|Z])/n,

by Chebyshev’s inequality. So if C,(m) < 1 for all sufficiently large n, then Hj,(T —
T.)e//n = Op(AK™%/n), and if C,(m) > 1 for all sufficiently large n, then HI'(T —
T )e//n = Op(y/A/n). Then since

E[(H'T,e/vn)2X,Z] = Tr(HI'T,E[e'|X, Z)T, H')/n
< Te(H'T,HY)/n

= Oy(ET,
we have H'Te/\/n = op(1).
Similarly, consider V'T'G /\/n. We have

E(V/(T = T,)G/Vn)*X,2] = G(T —T,YE[VI'VIX,Z|(T - T,)G/n

< G'[P(P'P)™'P'— P(P'P+AD) P x
[P(P'P)™'P' — P(P'P + A\D)"'P'|G/n

= (E[G, - GIX, Z))(E[G, — GI|X, Z])/n
So if Cp(m) < 1 for all sufficiently large n, then VI'(T' — T,)G/v/n = Op,(AK™/?/n), and if
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Cn(m) > 1 for all sufficiently large n, then V3'(T — T,)G/v/n = O,(y/A/n). Also,

E[(VI'T.G/vn)}Z] = Te(G'T.EVVY|Z|T,G)/n
< Tr(G'T,.G)/n

= Oy(K /).
So V'TG/\/n = op(1).
Next, consider H'(T — T,.)G /+/n. We have

HI'(T - T)G/n = ;ﬁ S W (Z)E[G(Z) — §(20)|X, 2]
=1

n 1/2
< Vi (fl S (Elg(2) —g<zi>|x,zn2>
=1
< Va (E[GT ~ GIX,2)(B[G, — GIX, Z]/n) i

So if C,(m) < 1 for all sufficiently large n, then H'(T —T,)G/v/n = Op(v/nAK™?/n), and
if C,(m) > 1 for all sufficiently large n, then H/ (T — T,.)G/v/n = O,(y/n\/A/n). Also,

(H'T,G/vn)? = GT.HH'T.G/n
= T(T,H HI'T,GG")/n

< ny\/HI'T.HI /n\/G'T,G/n

= O(\/ﬁK*(Tngrh)/d)

So H'TG/+/m = op(1).
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Finally, consider V'Re/+/n. Similarly to above,

E(V/'Re/v/n)’ = E[VVRE[e'|X, Z]R'V/]/n
< E[V/'R'RVI)/n
= E[VJ/P(P/P)71/2U(I+)\M/n)71U/(PIP)fl/QP/P(P,P)fl/ZU «

(I +AM/n)"HU'P(P'P)~Y2Vi]/n

A

)\72

min

(I +AM/n)E[VI' RVI]/n

A

K/n

so V'Re/y/n = o0,(1). Thus,

1 1
—X'T(Y —X0)=—=V' 1).
JEXT(Y = X0) = Vet 0y(1)
Now
iX’TT’(Y - X0) = iX’T(Y -Y0)+ Ly (T -T,) (Y — X0) +
vn vn N '
1 1
—X'(T-T)(T-T) (Y — X0) + —X'T(T, — I)(Y — X6).
NG ( ) )( )+ NG ( )'( )
Consider the last term. Since (7, — ) =T, — T,
XTI 1Y - X0) = ——H(T,—T)e+ ——V'Re — V'R +
NG " NG " vn N
1 1
—H(T,—-T —V(T, - T
RH(L - 1)G+ =V, = T)G
= op(1),

as shown above.
Consider the third term. As discussed above, the diagonal elements of T, — T" have ab-

solute value less than one, so the elements of (T, — T) (T, — T)" are less than the (absolute

value of the) elements of T, — T. So X'(T' —T,)(T — T,.) (Y — X0)/v/n = 0p(1).
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Finally, consider the second term. Since H'(T,—T')(T,—T')'c//n = 0,(1) and H'T,T}e/\/n =
op(1), we have H'T,.(T, — T)'e/\/n = 0,(1), and similarly, H'T,(T, — T)G/+/n = o,(1) and
V'TH (T, — T)G/vn = 0,(1). Also, VI'T,(T — T,)e/ /i = VI'(T — T,)e )/ — VI'Ro(T —
Ty)e/v/n. Since VI'R.e/y/n = 0,(1) and VI'(T — T,)(T — T;)'e/\/n = o0p(1) as shown
above, we have V7' R, (T —T,)e//n = 0,(1). Then since VI'(T' —T,)e//n = 0,(1), we have
VI'T(T — Tp)e/v/n = 0p(1). So X'To(T — Tp)e//n = op(1).

Thus, X'TT'e/\/n = X'Te/\/n+ o0p(1), and therefore

1 1
—X'TT'(Y — X0) = —V' 1).
TRXTT(Y = X0) = Vie 0,1

Theorem 2, part (a) (restated):

VY20 —0) = v — Z%El—l—op —» N(0,1),

Vo =T7'Qr ' 4+ 0,(1), T =E[11]], Q= E[yve?]

Proof: We have § = (X'TT'X)"'X'TT'Y. Note that E[vie;] = E[v;E[;|X, Z]] = 0. So by

independence across observations,

Q, V(V'e/vn|X,Z)

= *V (Z Ui€i|l‘i, Zi>

i=1

= —ZIEUz |xl,zz.

So by the CLT, Q,"/2V’e/\/n —4 N'(0,1). Then since X'TT'X/n =T + 0,(1), X'TT'(Y —
X0)/v/n =V'e//n = o0,(1), Vilf — 0) = (X'TT'X/n) " X'TT'(Y — X6)/+/n, and Q,, —,

Q = E[v;vfe?], we have
Vi P2V/(0 = 0) =, N0, 1),

where V,, = T71QI ! + 0,(1), using Slutzky.
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3.2 Asymptotic Distribution of the Nonparametric Component

3.2.1 Lower Bound on the Variance

We now consider the asymptotic distribution of 9%g. First, we present a lemma giving
a lower bound on the pointwise conditional variance of 9‘g, in order to give conditions for
the bias (divided by the variance) to vanish.

Lemma 3.2.1: Defining Wy, (2) = V(0'pX (2)'(P'P + AD)"'P'¢|X, Z), if C,(m) < 1 for

all sufficiently large n, then
K
Wen(2) Zp KQle‘/d*§

n

if Cp,(m) > 1 and C,,(m) is bounded above for all sufficiently large n, then

(d—2m)/2m

n
Win(2) Zp KAV —m—

and if C,(m) is unbounded for large n, then

2 n(d—2m)/2m
\d/2m

21¢|/d n

Proof: First, consider the structure of D;ej ). We note that since each M;, is a lower

triangular matrix (with the last column missing), D]@j ) is an upper triangular band matrix

¢
. L —
(with the last ¢; rows missing). Also, the kth diagonal entry of DY) i | | S
J tir —tin_
L—1 J,k j.k—r+L

Letting (D](-ej))k be the kth column of D](-ej) and (Dg-ﬁj))k be the kk element of D](-ej).

Then since Dj(.ej ) is upper triangular, we see that

pf(zj‘)/ <D§éj)) = Dj., () <D§€j)>kz N = K/ H

k2 k= 723 Lik, tk —r+L
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So

2;) ~(£5)
P, oy D} Dl

K4y,

P = X (e (7))

.7776]

k=1

(pf(zj)/ (Dj(ej)) ks, ) 2

4 2
= KV H 1
7o Liks, — Uik —r+L

- K(2ej+1)/d.

Y

(This result is also shown in Zhou & Wolfe (2000) but with a different method.) Then since

o'pK(2)!(P'P + \D)™'Pe = pffg(z),D(g)(P'P + AD)~"!'P’e (as shown in the proof for the

rate of ||g — gl|2,em, ¢ > 0), we have

K /
pj,—z(z)

Also,

/
DYDOPE(2) =

/ / l
i, () @ @pk_, () IID\ @ - DY) x
o) )
DI ... DY |pE_, (2)® - @ pE_ (2)]
1 (¢ 1)
iy, (2) DD K, ()@@
1 (L ;)
i, (2) DYDY K, (2)]
d
’ o (ls 0:)!
[TPi s, (=) Dy DS P (2)
j=1

FoLH@I/d)

Amax(I + AM/n) =14+ Mip™ /n =14 M(s + 6) K29 + 6, k] /n = Op(1 + AK?™/4 /),
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S0 Apb (I + AM /n) >, 1/(1 + AK?™4/n). Then since o.(z, 2) is bounded below,

Wen(z) = V(" (2)(P'P+ AD)™'P'e|X, Z)

p%,(2) DO(P'P + AD) " P'E[e¢'|X, Z|P(P'P + AD) DK ()

Vv

p%,(2) DO(P' PY"V2U (I + AM/n)2U"(P'P) /2 DO pE ()

A2 (I 4+ AM/n)p%,(2) DODO'pE, () /n

max

Y

v

Op((l + )\KQm/d/n)_2K1+(2|£|/d)/n).
If limy, 00 Cn(m) < 00, then (1 + AK2™/4/n)=2 = O(1), so

K
Win(z) 2, K2/

n

If lim,, o0 Cp(m) > 1 for all sufficiently large n, then K > O((\/n)~%?™), and thus if

1 < limy 00 Cp(m) < 00, then

(d—2m)/2m

e/an
Wen(2) Zp K/ “dzm

On the other hand, if lim,, s, Cn(m) = 00, then (1+AK?™/4/n)=2 = O((AK?™/?/n)~2), so

2 n(d—2m)/2m

Wen(2) 2p sz/d( n )

ANK2m/d A\d/2m

as desired.
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3.2.2 Upper Bound on the Bias

‘We now note that

)

Lo (a’fg(z) - afg(z)) = lux (0" (2)(P'P +AD)'P/(Y — X0) — a’fg(z))

[afp (2)/(P'P +AD)"P'G — 3%(2)} -

9'p" (2)(P'P + AD) "' P'X (- 9)) .

In the next three lemmas, we consider the second term in this expression. To that end, we
also give an upper bound on the pointwise conditional bias of &g, which is a useful result

in its own right.

Lemma 3.2.2-1: For all z € [0,1]¢, if C,,(m) < 1 for all sufficiently large n,
A
E[@Eg(z) - ag AT(Z)‘X, Z} gp K|é|/d7Km/d’
n

and if C,,(m) > 1 for all sufficiently large n, then

E[0%(2) — 8°9,(2)|X, Z] <, KWd\/X.
n
Proof: Assume throughout that 1, x = 1.
We have
E[0%G(z) — 8°9.(2)|X,Z] = —\pX(2)DY(P'P+\D)"'D(P'P)"'PG

= —E)DYP'P+AD)ID(P'P)"P'S, -

MK (2) DO(P'P 4+ A\D)D(P'P)"*P'(G - §,).
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For the first term,

M (2)(P'P+AD)'D(P'P)"'P'S, = XNp™(2)(P'P)~Y2(I + AM/n)"}(P'P)"\/2D x
(P'P)"Y/2P'S,
= MER)(P'P)Y2(I + AM/n)~ (M /n) x
(P'P)~Y2P'S,

S A K(Z)’(I +AM/n) " (M/n)P'Sy/n

nK
= *ZZ /\ nka )Pk(zi)gg(zi)
i=1 k= 1 "K
< —ZZ A nka; 2)pk(2i).
=1 k= 1

If C,(m) < 1, since 1, k =1 and 1+ A /n > 1

K
n

K
*ZZ )\’unka (2)pe(z1) S %ZZ%pk(z)pk(zi)
i=1 k=1

zlkl

A 1<
EKm/dg Z Z pr(2)pk(zi)
7;:1 ]{?ESZ

A 1

n

N

AN

= Op(AK™/n),

since the number of observations for which py, is nonzero is Op(n/K) as shown above, and

where S, is the set of all k such that pg(z) > 0.

If Ch(m) > 1, A /n — ¢ > 1, 80 /A /n/(1 4+ A, /n) < 1/2. Then

K >\77k

*ZZ A nka 2)pr(zi) = \Flzz /\ nka (2)pi(2z:)

zlkl 'lel

\/571 Zpk(z)pk(zi)
k=1

= Op(v/A/n).

A
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So using the structure of D) as in the proof of Theorem 1 for |[¢| > 0 and the fact that

sup |g(2) — s4(2)|, we obtain the rates KI4/INK?™ /n, KI9/4,/\/n, and
2€[0,1])4

vad\/)\KQm/d/n\/)\/n for /\pK(Z)/D(e)(P'P—{—)\D)_ID(P'P)_lplG,

Lemma 3.2.2-2: For all z € [0, 1]¢,
|0°E[g,(2)|X, Z] — 8°g(z)| < K IO 2= (ramleh/e,

Proof: From Huang (2003b) (see Lemma 5.1), since

sup [54(2) —g(2)| < inf sup [s(z) —g(2)| K79/ we have
2€[0,1]¢ 5€Sn.r ze[0,1]d

sup [E[g:(2)[X,Z] = 5(2)| S sup_g(2) = 5(2)| S K"/,
z€[0,1]¢ ze[0,1)4

which gives the result for |¢| = 0. For || > 0, for all z € [0,1]%,

(0'Elgr(2)|X. Z] — 9'5,(2))* = (9" (=) (P'P)"V2P'(G - 5,))°
= (G —8,)P(P'P)"' DO, (2)p",(2) DO
(P'P)"'P'(G - S,)

Amax (DO D5, (2)p%(2) D) A (P'P) 1) x

IN

(G~ 8,/ P(P'P)"'P'(G - 5,)

AN

KD (G — S, P(P'P)~'P'P(P'P)™ P'(G — S,)/n
1 n
1+(2/¢)/d) L : — 54(2))?
K - ;(E[QT(ZZ)X, Z] — 54(z))
KHQ@I/d) gr=2rg/d

X

N

Then since sup [9°5,(2) — 0g(2)| < K~ra=l/d e have
z€[0,1]4

0"E[§,(2)|X, Z] — 8'9(2)| S VE K a=liD/d,
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giving the result for |[¢| > 0.

Lemma 3.2.2-3: For all z € [0,1]¢, if C,,(m) < 1 for all sufficiently large n,

n

m/d
8£pK(Z)I(P/P+ )\D)i_P/G _ afg(z) S,p K|£|/d (A‘[{/ _’_K’f‘g/d+1{|€>0}/2> 7
and if C,,(m) > 1 for all sufficiently large n,

0" (2)'(P'P+ AD)"P'G — 0'g(2) < K1/4 <\/5 + K—Tg/d+1{lél>0}/2> :

Proof: Combine Lemmas 3.2.2-1 and 3.2.2-2.

We now consider the third term of the above expansion, which is dpg (2)/(P'P+AD) ' P' X (f—
). In order to bound this term, we also give the a bound on the rate of the uniform error
of 8%g. This bound is not sharp but will suffice for our purposes. We expect that the
VK coming from the basis could be replaced with logn, most likely by using Bernstein’s

inequality along with truncation.

Lemma 3.2.2-4: sup |8°G(z) — 9°5,(z)| = O,(K/?\ /K7, k), and thus
z€[0,1]¢

' (2) (P'P+AD)"P'X" = O,(K /K7, x +1).

Proof: As shown previously, for all [¢/| < r — 2, under the assumptions of Theorem 1,

IDO(B = B)|I3 = Op(K24/dp, ). Then since sup |px(z)] < VK,

2€[0,1]¢
sup [0°9(2) = 0°54(2)] = sup [p",(z)’DY(B - B)|
2€[0,1]4 2€[0,1]4

< VE|IIDY(B -5l

= 0O, (1 /K - K”Vd?"n,K) )
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and thus

sup |0°9(2) — 0%54(2)] = sup |0°9(z) — 954(2)| + sup [0°g(2) — 8°5,(2)]
2€[0,1]¢ 2€[0,1]¢ 2€[0,1]¢

= Op(K4\ /K7, 1),

which gives the first result.
Now note that d’pg (z)'(P'P + AD)~'P'X can be considered the penalized spline ap-

proximation 8°h(z) to 8°h(z) = *E|x|z]. Then since 8'E[x|z] is bounded,
0'pi(2) (P'P +AD)"P'X' = (h'(2) — h(2)) + h'(2) = Op(K'V*\/Kry, k +1).
which is the second result.

3.2.3 Asymptotic Normality

We now give a proof for the asymptotic normality of 9g, for ¢; < r —2 (for each j).

We assume that if C,,(m) < 1 for all sufficiently large n, then

NKI% [ 1 1{]0] = 0V K o4

VEn/n

if C,(m) > 1 and C,,(m) is bounded above for all sufficiently large n.

+1{|(] > 0}/nK, T g,

—rg/ds
Vv 1{]¢| = 0} K, " (rg-
An/n 1416 = 0) +1{]] > 0}k oI g,
\/n(dz—Qm)/Zm/)\;ilz/Qm

For C,(m) unbounded for large n, we assume that

)\sz/dz /)\n/n /AnKrsz/dz/n + 1{|£’ _ O}K;Tg/dz

+1{J¢] > 0}k, "IV g,
n \/n(dzme)/Zm/Agz/Zm

The added factor of AK?™/¢/n, is needed since lim C,(m) = oo allows K to go to infinity
n—oo
very quickly, causing the variance to vanish quickly. This can then lead to a degenerate

asymptotic distribution without an extra assumption. We also assume that for C,(m)
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unbounded,
A KQm/dz n(dszm)/Zm
nen — 0.

d./2
n )\n/m

These assumptions are needed to guarantee that the bias (divided by the variance) disap-

pears asymptotically.

Theorem 3, part (a) (restated): Using Wy, = V(9'pk (2)'(P'P + AD)~'P'e|X, Z)),

%G

(2) —9g(2)
an(z) —d N(07 1)7

)

Proof: Let 1, k = 1 throughout. Using the above lemmas, if lim C,(m) <1 for all

n—oo

sufficiently large n,

O'pi(=) (PP 4AD) PG - d9(z) _ (Ké/d (Arm/d Krg/d+1{€>0}/2))
- p

Wen(2) K/, [ K

o AKm/d/TL + K —Tre/d+1{|¢|>0}/2
P K/n

If 1 < lim Cy(m) < oo,
n—oo

e/ <\/5 n K—rg/d+1{|e|>0}/2>

Fellfa, [ult 2o
/N + Ko/ dH1{11>0}/2
= 0,

O'pr(2)(P'P + AD)"'P'G — 0%g(2)
Wé,n(z)

n(d—?m)/Qm/)\d/Qm
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and if lim C,(m) = oo,
n—o0

lel/d A —rg/d+1{]€]>0}/2
() (PPAD) PG dg() | (\/; R )

_ o, (/\sz/d (\/W+K_rg/d+1{|e>o}/2))

n n(d—2m)/2m/Ad/2m

= o0p(1).

Similarly, since § — 6 = O,(n~'/?), if li_}In Cn(m) < o0,

8'prc(2) (P'P +AD)"'P'X (0 — 0) o ((Klfl/d\/m n C)Op(nl/Q))
p

Wen(2) K\/d\ /K ]n
= Op(yrmi +1/KI)
= Op(l)a
and if lim C,(m) = oo,
n—o0
v (2)(P'P+AD)"1P'X(0 — 0) _ 5 (KW, /Ky + C)Op(n~1/2)
Win(z) P Klel/d n/)\KQm/d)\/m
= 0, ((/\KQm/d/n )V + 1/K|£\/d+1/2)>

where 1y, = K/n + AK™/n + K~"9/4 for C,(m) < 1 and ry, g = nld=2m)/4m /\d/am
VA + K~Te/4 for C(m) > 1
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It remains to show that O‘px (2)'(P'P + AD)"1P'e/\/Wi () —a N(0,1). We have

Wen(z) = V(" (2)(P'P+ AD)™'P'e|X, Z)
= p5,(2) DOP'P + A\D) ' P'E[ee|X, Z)P(P'P + AD) "' D®'p& (2)
> pB,(2) DOP'P + AD)"'P'P(P'P + AD)'DO'p¥ ()
Also, 8'pg (2)/(P'P + AD)P'e = Zdiei, where d; = 9'p% (2)/(P'P + AD)~'pX(z;). Since

i=1
pK(z),pK(z) <K and 1, g =1,

a2 = pE,(2)DYO(P'P + AD)p" ()pX (z:) (P'P + AD) - DOpE, (2)

)

)\max(pK(zi)pK(zi)’)pl_{g(z)’D(e)(P'P + )\D)*l(P’P)*lP’P(PIP + )\D)*lD(E)/prg(z)

IN

A

Kp%,(2) DO(P'P+ AD)P'P(P'P + AD) - DW'pE () /n

A

KWy n/n

O(Wﬁ,n)'

1<i<n v

So since Z d? < Wy (), we have max d? = o (Z d2> = 0(Wyn(2)), and by the Lindeberg-
i=1

i=1
Feller CLT,
Lo,k (9°9(2) — 9%g(2))

ng(z) —d N(O, 1).

Then since

as desired.

3.3 Standard Errors

3.3.1 Parametric Component

We now consider the standard errors for the parametric component given in the state-

ment of Theorem 2.
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Theorem 2, part (b) (restated): I' =T + 0,(1) and Q = Q + 0,,(1)
Proof - Theorem 2, part (b): We again assume that 1, x = 1 and note that as shown

above, X'TT'X/n = E[v;v}] + 0,(1), that is, I = T + 0,(1).
So we now consider ! = X'TT'ST'T X /n. We have

En:R?j = Zp ) (P'P + D)~ 'p™ (Z))p™ (Z;) (P'P + AD)~'p" (Z;)
=7 K(z) (P'P)~ I/QU(I+)\M/n)_lU’(P’P)_l/2><
Zp J) (P'P)" 2U(I+ AM /n)~'U"(P'P)~'/?p" (7))

= pK(Zi) (P'P)"2U(L +AM/n)2U"(P'P) V2R (2))

A

IN

P'P/n)\_: (I +AM/n)p ( )’pK(ZZ)/n

Hlln( mln(

S K/n
Let Nj be the number of observations lying in a hyper-interval §, then

”f5
EN; = <7

(Where f is the density of z). So by Markov’s inequality, N5 = Op,(n/K) for all §, and thus
Zpk ) SVEKO,(n/K) = 0,(n/VK). (To be precise, given ¢ > 0, let M = en/K. Then

P(Ns/(n/K)>e¢e) = P(Ns>en/K)
S EN(;/(ETL/K)
S (n/K)/(en/K)

E.

So Ns/(n/K) is tight. Then letting Y, s = Ns/(n/K), we have N5 =Y, sn/K with Y, 5
tight. So by definition, N5 = O,(n/K).)
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IN

v

Y

p"(2:)(P'P)"V2U (I + AM/n)"'U'(P'P 1/2Zp

—/\ L(P'P/n))

min

L (I 4+ XM /n)p™ Z p

) K

EO;D(”/\/E) pe(Z;)
k=1

Op(1).

P (2, (P'P)"V2U (I 4+ AM/n)~'U'(P'P) /% (2,)

A (PP /1) A (I + AM [n)p™ (Z:)'p™ (Z3) /n

0,

Rii = p™(Z)'(P'P)~Y2U(I + A\M /n)~'U"(P'P)~Y2p% (Z)) < p®(2:)p™ (Zi) /n = K /n.

Z R+ (1— Ry) <ZR +2R; + 151,
J=Lj#i

2 2 2
Tz‘j) = ( > Ri+1- Rii) S (Z Rij) + (1= Ri)* = Op(1).
=L j=1

64



Now letting & = Te and similarly for X and 7,

Y - X0-G(Z)

™
Il

— Y - X0—P(P'P+AD)"'P (Y — X6)

Soé; =&+ X/(6 — é) + Gj, where X! is the ith row of X. Then

~

2 =22+25(8 — &)+ (6 — &) =82+ 25(X(0 - 0) + 3(Z)) + (XL(0 — 0) + 5(Z:))*
Consider )_(Z’(é — 0). Noting that Xy; is the jth observation of the fth component of
x, E[X/;|Z] is bounded above, so Xy = Opy(1) for all £ = 1,...,d and j = 1,...,n. So

ZTMXEJ- < O,(1) ZTU = O,(1). Then since § — 6 = O,(n~1/?),
j=1 j=1

d n
Xz{(e—e) :T{X(H—H) :Z ZEjXEj (03—94) :Op(n_l/Q),
=1 \j=1

where 77 is the ith row of 7. Also,

Gi=T/G=Y Tjg(Z;) < sup g(2)> Ti; = Op(1).
j:1 zE[O,l}d j_l

So X!( — 0) + G; = O,(1). Finally,

E[?X.Z] = E[T/e'T|X, 2

= T/E[e€|X, Z]T;
n

= Y TiE[]X,Z]

j=1

1.

AN

So using Markov’s inequality, &2 = O,(1) and thus £7 = O,(1).
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Now letting ), = X'T 3T, X /n, consider Q —Q, = (X'TT'ST'TX — X'T, T, X)/n, which
can be written as a sum of fifteen term, each of the form X’ AA’SSAA’ X /n, where A is either
T, or T'—T,. As above, since the elements of the diagonal matrix 7' — 7T, have absolute
value less than one, the elements of (T'— T,.)(T — T,.)" are less than (the absolute value of)

the elements of T — T,.. Since é2 = O,(1),

i =

XT —T)S(T -~ T)X /n = (HI — HIYS(HI — H))/n

So X'(T —T,)(T = T,,)S(T — T,.)'(T — T,)X/n = 0,(1). Then since Q, = O,(1), it must be
that each term in Q—Q, = (X'TT'ST'TX —X'T,XT, X ) /n is 0,(1), and thus Q = Q,+0,(1).

Then since Q, = Q + 0,(1) as shown in Cattaneo et al. (2010), we have
Q-Q=(Q-Q)+(Q — Q) =0,(1),
as desired.

3.3.2 Nonparametric Component

For part (b) of Theorem 3, we use the assumption that K2/4K /n — 0. More impor-

tantly, we also assume that sup [g(z) — g(2)| = Op(1). Considering the case |¢| = 0, which

z€[0,1]¢
is more familiar, as shown above, sup [Ej(z) — g(2)| = Op,(AK™%/n + Kol = op(1)
2€[0,1]4
for C,,(m) < 1 for all sufficiently large n and sup |Eg(z) — g(2)| = Op(v/A/n + Kraldy = op(1)

2€[0,1]¢
for 1 < Cp(m) < co. So for C,(m) < 1 for all sufficiently large n, K?/n = O(1) would

ensure that sup [g§(z) — g(2)| = Op(1), and for C,(m) > 1 for all sufficiently large n,

z€[0,1]¢
Knld=2m)/2m /xd/2m — (1) would ensure that sup |j(z) — g(2)| = Op(1). However, these
2€[0,1]¢
assumptions are stronger than needed, since the bound on sup |§(z) — g(z)| given above

z€[0,1]4
is not tight. If v/ K in this bound is replaced with logn, as discussed previously, we would
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only need

K1
gn _ (1)
n
for C,,(m) < 1 for all sufficiently large n, and
n(d—2m)/2m logn B (1)
2\d/2m -

for Cp(m) > 1 for all sufficiently large n, so that sup,¢(o 114 [§(2) — g(2)] = Op(1).

Theorem 3, part (b) (restated): For all z € [0,1]%, Wy, (2) = Wyn(2) + 0,(1)
Proof - Theorem 3, part (b): Since Ele;| = E[E[|e;|| X, Z;]] is bounded above, we have
leil = Op(1). Also,

d

d
> Xji(0; — 0;) = 0,(1) > (0 — 0;) = Op(n~1/2).

j=1 j=1

>
=3
D>
|
>
N—
Il
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Then letting (X (2) = (P'P + /\D)_lDelpI_(E(z), since sup [g(z) — g(2)| < Oy(1), we have
2€[0,1]4

Win(z) = Wen(z) = p(2)DOP'P+AD) " P'(S — £)P(P'P + AD) DWW pK (2)

= (M) Y ™ (20) (€ — )¢ (2)
i=1

= > ()P (20))* (268 — &) + (& — €)?)
i=1

= > (R @)™ (20)* (2e:(X[(6 - 0) + §(Z:) — 9(Zi)) +
=1

(X[(0—0)+§(Z:) — 9(Z:))%)

n

Op(1) Y (" (2" (Z)*(2leil + 1)

=1

IN

- 0,,(1)gK(z)’ipK(zi)pK(zi)’CK(Z)

. Op(l)pK(z)’lZ)_(z)(P’P)_l/QU(I +AM/n) 20" (P'P)/2DO K (2)
= 0,()Tr(p% (2) DO DOBE (2))/n

= O (KHVIE /n)

= op(1),

as desired.
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CHAPTER IV

Simulations Study

4.1 Description of Simulations

We have conducted a small simulations study, in order to illustrate the results given
above, using Stata. We have also written a general ado file which will give the penalized
B-spline estimate given a set of observations and a value of K/4 and \. Equally-spaced
knots are used with an extended partition.

First, we used the bivariate (additive) function g(z1,22) = (21 + 2e165) + (sin(222) +
2¢716%3) with 21,29 ~ U(0,1). We also used h(z) = 0.1y/27 + 22 and = 1. The errors
were normally distributed with e, v ~ N (0,1). We generated 500 observations and did 1000
Monte-Carlo repetitions. Since g was additively separable, we used no interactions between
the B-splines for z; and the B-splines for zo, substantially improving run time. Since the
knots were equally spaced, we found the elements of the penalization matrix D in Maple
and entered them in the Stata code. With g additively separable, D has a block diagonal

structure.

4.2 Results

Our results are given in the following tables. These results illustrate the asymptotic
normality given in Theorems 2 and 3 and suggest that the pointwise confidence intervals
using the standard error estimates given produce appropriate coverage rates along assumed
sequences of A\, and K,. The first table illustrates that a larger K,, is needed for a larger

An to achieve the same coverage rate. The second table shows the familiar pattern that for
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0 1 2
4 1.942 | 976 | .995
6 | .931 | .953 | .973
8 | .931 | .951 | .963
10 | 938 | .946 | .954
12 | 935 | .946 | .956
14 | 936 | .943 | .954
16 | 937 | 945 | .954
18 | .935 | 944 | .952
20 | 936 | .941 | .952
221 933 | 945 | .95
24 1 931 | .944 | 948
26 | .926 | .943 | .948
28 | 929 | .944 | 949
30 | 925 | .944 | .947

A~

Table 4.1: Parametric component - 6

each \,, as K, increases, the coverage rate reaches approximately 95% and then decreases

again.

70



0 1 2
4 | .011 | .106 0

6 | .713 | .067 | .208
8 |.952 | 934 | .883
10 | .957 | .955 | .945
121 .96 | 95 | .95
14| .952 | 947 | 94
16 | .945 | 942 | .938
18| .94 | 942 | .938
20 | 936 | .94 .94
221 .935 | .936 | .937
241 93 | .931 | .939
26 | .926 | 93 | .935
28 | 927 | 928 | .93
30 | 928 | .922 | .927

Table 4.2: Nonparametric component - §(0.5,0.5)
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CHAPTER V

Conclusion

In summary, we have presented a method for robust inference in the partially linear
model under weak conditions, along with rates of convergence for the nonparametric com-

ponent. The main contributions previously unavailable include the following:

Chapter 2:

e Rates of convergence of penalized spline estimators for d, > 1

These rates were available in the literature for regression and smoothing splines but

not for penalized splines in the multivariate case

e Weaker conditions needed for consistency (and asymptotic normality)

As discussed above, Huang (2003a) gives a minimal condition K,logn/n — 0, as
opposed to the condition K2/n — 0 used in Newey (1997) and implicitly in Claeskens
et al. (2009) and Zhou et al. (1998). We use this condition to bound the eigenvalues
of P'P/n and convergence of the eigenvalues of (P'P/n)~'/2D(P'P/n)~'/? to the

eigenvalues of a well-known differential equation, as discussed above.
e An asymptotic expression for the eigenvalues used in the penalization matrix D and
a decomposition of D

This has been an open question in the literature and was at the heart of the results
herein, since these eigenvalues are used to the determine the expression for the mean

squared error and the resulting rate. We believe the asymptotic expression given
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will be useful to many researchers in the future considering penalized least squares

estimators in various forms, not specific to spline estimation.
e An formula for ¢ (in the definition of C,(m)) for any density of z that is bounded
above and below away from zero, even for d, = 1

Previously for d, = 1, this expression was known only for densities that were regular
(see Speckman (1981), equation (2.2), or Claeskens et al. (2009), Lemma A3 for a
definition). It was not available in the literature even for regular densities when

d, > 1 to the author’s knowledge.
e An expression for a best L., approximation 5, to g such that 8£§g is also a best Lo
approximation to 95,

This result is crucial for considering 9°§(z) instead of only §(2).

e Rates of convergence for 9°G(z) even for d, = 1.
This result was not previously available to the author’s knowledge.

e Rates for the fixed mean squared error (in which the average is taken over the popu-
lation as opposed to the observations), even for d, = 1

Previously, this rate was available only for the empirical mean squared error. The
fixed mean squared error is more prevalent in the literature, so these results rate to

the literature more clearly.
Chapter 3:

e The asymptotic distribution and standard error estimates for penalized spline estima-

tors

Asymptotic normality results were not previously available for penalized spline esti-
mators even in the univariate case. They were also not available for smoothing spline

estimators, to the author’s knowledge.

e The asymptotic distribution and standard errors for the parametric component of the

partially linear model
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This result was available previously in Donald & Newey (1994) for regression splines

but not for penalized splines.

e Improving the conditions for the asymptotic normality of g(z) for A\, =0

rg/dz

As mentioned above, it was previously assumed in the literature that \/nK, — 0,

which is stronger than the assumptions given in Chapter 3.
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APPENDIX A

Eigenvalues for the Penalization Matrix

Proof of Lemma 2.1: We give the proof in a series of lemmas, following the proofs in
Huang (2003a) (see Lemma 1, Lemma 2, and Corollary 3).

Lemma 2.1-1: We have

ol wp EELIZ)0Z) BRI )
Fach, [7TTg1

P s sy BT ZZ)IAZ) ~EF @G )
N paes, [7algla

1 (nt)?
Kexp| ——= ,
p( CnK+§\/KAKnt>

where 7 is the number of nonzero splines on A € {Ak},i(zl and Ag A = sup H‘|7|(|T’A with
g€Sn,» 11911A
I9lA = Elg*(2)Ia(Z)] and ||gloo,n = Sup l9(2)].
z
Proof: Given A = Al x - x A% € {AMC | with AJ € {AJMEY 5 =1, d, let ka and

KA be the smallest and largest values of k (with a possible reordering of the indices) such

that pr > 0.1v/K on A, and similarly for kx; and K;. Then given f,g € Sp,r, for some

KA KA
constants f ..., fx, g1, ..., 9K, fIn = Z frpr and gl = Z grpr- Then since the density
k=ka k=ka
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of z is bounded away from zero,

Ka 2
Ef’In 2 / (Z fipe(2) | dz

A \k=ka
d Ad 2

= I D fimpin () | dz
I=185 \ki=Fka;
d  Kaj

- H Z f]’ffﬂ/pjk<zj>pjé(zj)dzj7
J=1kj=k e

where f! @@ f¢ = fK with f/ = (fir-- 'ijl/d)/ for j =1,....,d and f& = (f1--- fx),

and z; is the jth component of z. If the degree r — 1 of the B-splines is zero, then for

k0= kn, ..., Kn,

/pjk(Zj)pje(Zj)de > KV =0y = 1{k = ¢},

AJ

Kl/d

77



d Kaj Ka
since the length of A7 is < 1/K'/4. So EfIX > H Z ijk = Z fZ. If r = 1, then
7j=1 k:k'Aj k=ka
letting p; s be the kth sth-degree B-spline in direction j, for £,/ =1, ..., K1/d,

/ij(zj)pjz(zj)dzj - / P 0(25) + T pjkr10(2)) | X
C\ k1 — bk tik+2 — tjk+1

AJ AJ

2i —1liy tipio — 25

J J, 7,442 J

(Pj,e,o(Zj) + —————pje+10(%) ) dz;
tier1 —tje itz = tjer1

zj —t;
_ Kl/d/ <JJJ€1{ZJ. € [tjk tiks1)} +
C\tik+1 — ik
AJ
Ljk+2 — %5
1z € [tj,k+1atj,k+2)}> X
tik+2 = tjk+1

2 — t f
(Hl{zg‘ € [tjotjer)
tjer1 — e

1{z € [tj7£+1,tj,€+2)}> dz;
tjero —tjot1

> Kl/d/ <M1{Zj € [(tj,k+tj,k+1)/2vtj,k+1)}> X
k1 — ik
AJ
o He €l + ) /2, t)} ) dzy
7,4+1 7,0
> Kl/d/].{Zj € [(tjr +tjns1)/2,tj k1) }dzj - 1{k = £}
Ad
1
1/d 16—
Z K K1/d 1{k_£}
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Ka
SoEf*Ia 2 Y fi. Ifr =2, then
k=ka

Z'_t'7k t7k+3_z
/ij(?«’j)pjz(Zj)de = / (tjjpj,k,l(?«‘j) + i ea(z) ) X

k42— Lk bik+3 = Lj k1

AJ AJ

Zj —tje tiprs — 2

J Js 7,4+3 j

(pj,m(zj) + ———pjes1,1(2;) | dz;
tierz = e Lie+s — tjot1

Z'—t‘7k Z'—t‘,k
- /[t et < 1 kel
gk+2 — Lik \tik+1 — Lk

AJ

tjk4+2 — 25
7,k+2 J
— e pirr10(25) | +
tikte — tjkt1

tjk+s — 2§ < Zj = tjk+1
tik+3 = ik+1 \tjk+2 — tjkt1

th3 — 2
— 7 Djk+2,0(25) X
Uet+3 — jk+2

zi —tiyp zi — iy
3~ by, j — U,
|:t- t. (t~ L pj,&()(zj)"'
Jl+2 7 UGl \lil+1 7 bk
biev2 — 2

Pjk+1,0(25)+

oo —Taes Pj,6+1,o(2j)) +
o2 = tier

tjors — 2 ( 2 =t
i3 = tier \tjer2 — tje41

t[ 3 — Zj
+JlUj,e+2,o(Zj)>] dz;

Pje+1,0(z5)+

ters — tjet2
2 Kl/d/l{Zj € (ke + k1) /2, tjp41)} - H{Ek =€}
AJ
> 1{k =1/},

and again

Ka
1V INPA N i

k=ka
We can show the same result similarly for any degree of the spline basis functions.
Now for any k,£ = ka, ..., Ka, since sup,¢(g 1)« [pr(2)] < VI,

V(pe(2)pe(Z)Ia(Z)) < E(pr(Z)pe(Z2)1a(2))? S % K’ =K.
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So for all z € [0,1],

s < S B B (2 2) 152

A AE(pr(Z2)pe(Z)Ia(2))H)Y?
< VEKAga.

IN

By Bernstein’s inequality (Pollard 1984), for any j,¢ = ka, ..., ka,

U ex

for a constant c. So letting ra = KA — ka + 1,

Zpk D)pe(2i)In(Zi) — Epr(2)pe(2)

P (‘i Zpk(Zz‘)pZ(Zi)IA(Zi) — Epg(2)pe(2)Ia(2)

> t, for allk, ¢ = ka, ...,KA> <

Z 2exp (nt) <
2ncK—|— C\/>AKAnt

k=ka

0,2 1 (nt)
A €X
A OXP 2 ncK + C\/ KAg ant

Given f,g € S, if <t/ra, for all k. ¢ =

% > o Zi)pe(Zi)Ia(Zi) — Bpi(2)pe(2)Ia(2)
=1

k'AaKA7

—Zf Z;) —Ef(2)g(2)1a(2))

n Ka Ka

fz S Irgepe(Zi)pe(Zi) — Efrgopr(2)pe(2)| =

i=1 k=ka l=kn

KA KA 1 n

S e <n Zpk(zi)pé(zi) —Epkpe>
k=ka £=ka =1

Kan Ka

> \kagzlf <
k=ka (=kn

1/2 Ka 1/2
1/2 1/2 2 o
(Z fk:) A (Z gﬁ) TAN
k=ka t=kn

tfllallglla,
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where the penultimate line follows from Cauchy-Schwarz and the last line follow from (1).

1 n
So since f and g were arbitrary, if - Zpk(Zi)pg(Zi) — Epr(2)pe(2)| < t/ra for all k, ¢ =
i=1

ka, ..., KA, then
sup ' Zf Zi) —Ef(2)9(2)Ia(z)

f,9€S8n,r i=1

S tfllallglla- Thus,

P<f;él£ iZf(Zz) (Zi)Ia(Zi) —Ef(2)g(2)Ia(2)

1n
p<
mn
=1

Zpk(Zi)pz(Zz‘)IA(Zz‘) — Epi(2)pe(2)1a(2)
1 (nt)?
24 exp ( 2 nek + ; C\FAK Ant)

> tHf!AHQHA) <

> t/ra for allk, £ = ka, ...,KA) <

Also, for all f,g € Sy, if Zf Zi) —Ef(2)9(z)Ia(2)| <t fllallglla for al
A € {AL}E | then
i;f(zi)g(zl)—ﬂifg < Z :Lg AZ —i) —Ef(2)g(2)Ia(2))|

VAN

< ZtIIfIIAHQHA < tllf1gll;

A

by Cauchy-Schwarz and || f||> = YA I fA- So

|L50 ) f(Z)g(Zs) — Ef(2)g(2)] <

sup

Faesn, 11l -

. LS, F(209(Z)1a(Z) — Ef(2)g(2)]5(2)|
up sup ,
2 19en 17 Talgll
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and thus

P <f sup U5 H(Z)9(7) ~ Ef(2)g(2)] > tHfIIIIQII) <
,gESNH,r i=1
P(sgpf Sup % > F(Z0)9(Z)Ia(Zi) — Bf (2)g(2)15(2)| > tl|fllallglla) <
9€On,r i=1

n

> H(Z09(2)1a(2) - Ef()g(I(2)| > el alglla) <

1 (nt)?
2 exp | —= <
Z AP ( 2ncK + écﬁAK,Ant> ~

1 (nt)?
Ke —— ,
P ( CTLK—F%\/KAKnt)

for some positive constant C', since ra is bounded.

Lemma 2.1-2: For all A € {A} | Apa S VK.

Proof: Given g = igkpk € Snr,
k=1
wpealg) _ SWsea|Til, oiph(2)
(Eg2(Z)IA(Z))1/2 <IE (ZkK:AkA gkpk(Z))2> 1/2
SUP.eA (ZkK:AkA g%) v <ZkKﬁkA pk(z)2> v
(ZfﬁkA 9,3) v

< VK.

sup.ea |9(2)] .
S < VK, as desired.
* gesnn (BG(Z)Ia(Z))12 ~ 70 B O

Lemma 2.1-3: sup |2n~ E)f9)|

Tl = Op(v/Klogn/n), and thus if Klogn/n — 0,
f,gESn,r g

c1 + 0p(1) < Amin < Amax < 2 + 0p(1),

for some constants ¢y, co > 0, where Ay, and Apax are the minimum and maximum eigen-

values of P'P/n, respectively.
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Proof: Choosing t = 1/¢K logn/n for sufficiently large ¢ in the above expression, we have

w5 2im F(Z0)9(Z) —Ef(2)9(2)| _ [Klogn
P<f§~° 1Aal >\ﬁ <

K exp (_1 n2e¢K logn/n ) _

CnK + 1Kny/¢Klogn/n

I clogn
ex
P Cl—i— 5V CcKlogn/n

O(K exp(— (c/C) logn))) =
O(K /n®€) =

o(1).
1 n )
So P | sup {E izt [ 2ol % ‘ \—— Klogn =0(1), and thus
1,9€Sn.r Hf\lllgll

ap |nZ /(Z)02) “EF@0E _ o, iciognm).

F.9€Sn,r 1£1I1lgl]

K K
Furthermore, given s = Zakpk €Snr Wicha% =1,defineajy, j =1,...,d, k=1, L KV

k=1
in the same way that f;, was defined. Note that since

K d Kt/d
SRS | DI
k=1

j=1k;=1
K1l/d
we have Z a?k =1,j=1,...,d. As shown in de Boor (1978, p. 155), see also Zhou et. al.
k=1

K1/d 2 K1/d

1
(1998, equation (13)) / Z ajr;Pik; (25) | dzj < K4 Z a?kj (tjk; — tjk;—r). So since
0 \ki=1 =
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the density of 2z is bounded above,

Es?

since each p?kj is nonzero on an interval of length

d L [k
< TL[ | X om0 |
]:10 kj=1
d K1/d
< HKl/dZa? _(tj7k tj,kj—r)
Jj=1 kj=1
d K4
= H a?kj
jzlkal
K
- 3
k=1
= 1,
= K4 So
1
Z;)* —E
s(Z)? —Es(2)?| < sup |5 i1 8(Z)% — Es(2)?|
Sa2=1 Is]1?
C g B (ZD9(Z) ~Ef(2)g(2)]
T f.9€Sns [aliiEl
= op(1).

As already shown, ¢; < Es? < ¢, for some positive constants ¢; and cy. So since

*Z

Then since

Amax

2 = Es(2)* + (:L

1
c1+o — s
A n
i=1
nax a(P'P/n)a= max — E
Zk:laizl Zk 1%—1 i=1

n

= " s(Z)* — Es(2)?

i=1

and similarly for S\min, we have

as desired.

c1+ Op(l) < 5\min < 5\max <c+ 0p<1)7
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APPENDIX B

Eigenvalues of the Design Matrix

Proof of Lemma II.3: The proof is given by Volker Elling, University of Michigan.

Beta and Gamma functions

Gamma function:

[e.o]

I(z):= /tz_le_tdt (B.1)

0

Well-known: I'(k + 1) = kl. Beta function: to generalize

<Z> N k'(nnik)' (B.2)

to real numbers it is natural to write
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(extra inverse and coefficients not quite same...) Convenient formula:

1

00 00
_ 1 4 zt+smtz
://talsbletsd ///3j 2P Lot 2e2 g ds
t=xz,s=(1—x)z
0 0

0
(B.4)
1 o] 1
= /:z“l(l — x)bldx/z“erlezdz = /a:al(l — 2)""YdaT(a + b) (B.5)
0 0 0
Hence
1
B(a,b) = /xa_l(l —z)" ldz (B.6)
0
More convenient for us:
i M1+l (1+4d)
+c +
¢(1—a)%dx = B(c+1,d+1 B.
[ a0 =a)tan = Be+ 1+ )OS (B.7)
0
/P norm unit ball volumes
Let V(d, p;r) be the volume of a d-dimensional p-ball of radius r. Then
V(d,p;r) = r'V(d,p;1) (B.8)
———
=:V(d,p)
Recursion:
V(L,pir) =2r (B.9)

Idea: the dimension d ball is composed of slices of intervals x dimension d — 1 balls that

have at z4 radius (1 — 25)1/? (so that 2§ + ... + 28 < 1). So

1

1
V(d,p;1) = /V(d —1,p; (1 — 2P)YP)day = /V(d —1,p)(1 —2h)@=V/Pdz,  (B.10)
-1 —1
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(could also use V(0,p;r) = 1... but unclean because a O-sphere is 2 points as defined, but

1 in reduced homology...) so we get

d—1 1
V(d,p;1) =V(1,p;1) / aP) Py = H/ (1 —2P)Pdy
5 (=17
Change of variables:
1 1

L'(1/p)T'(1+¢/p)
1+ ¢+1)/p)

o O —

(1/19) d (1 + 0/19) I+ 1/10) 1+ (d—1)/p)

= T yn T+ 2/n) " T+ dp)
2I'(1/p) \q 1

p T ra

=

Higher-order 1d elliptic

Want to solve

(—=0*)™w = pw on [a,b]

for Dirichlet conditions

w=w=..=w™ D=0 inab

or Neumann conditions
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(B.11)

(B.12)

(B.13)

(B.14)

(B.15)

(B.16)

(B.17)

(B.18)

(B.19)



Characteristic:

(=) = p=r"" (B.20)

with r > 0; we already know the eigenvalues must be > 0 except for maybe some at r =0

which we discuss later. Solution

ze=diru® | k=0,...,2m—1 (B.21)
where
() = exp(Zh) (B.22)
U = ex — ) = X — .
P 2m P m

is the first 2mth root of 1. Particular solutions

exp(zpz) = exp(irufz) (B.23)
General solution
2m—1
w(z) = Z ck exp(zxx) (B.24)
k=0
2m—1
w™ (z) = Z ckz) exp(z) (B.25)
k=0
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Boundary conditions: form system Mc = 0 where ¢ = (cy, ..., cam—1) and

29 exp(20a)

2} exp(z0a)

20" exp(2z0a)
20 exp(zob)
2} exp(zob)

20" exp(2ob)

(r1)°u%0 exp(zga)

(ri)'u’t exp(zpa)
(i)™ 10 (m=1) exp(zpa)
(r3)°u®Y exp(2b)

(ri)'u%! exp(zob)

(m’)mfluo'(mfl) exp(zob)

291 exp(22m—1a)

231 €XP(22m-10)
2yt exp(zam-1a)
281 €xp(22m—1b)

231 €xp(22m—1b)

zgnm__ll exp(2z2m—1b)

(m’)ou(Qm_l)'O exp(zom—1a)

(ri) ™= exp(z9m 1)

(i) =D) exp (250 ya)

(Ti)ou@m*l)'o exp(zom—1b)

(1) w11 exp (29, _1b)

(ri)mfl u(2m* 1)(m—1) eXp(Z2m—1b)

(B.26)

(B.27)

To determine M we need to find zeros r of det M. Row j contains (i)’ !, so we may factor

those out:

0

u®Y exp(zoa)

u(2m71)-

Yexp(zom_1a)

exp(zom—1a)

nﬁ( 37 e [N exple0n)
ri e
§=0 u®Y exp(20b) w10 exp(29,,1b)

w9 (=1 exp(zob)

u(?m—l)(m—l)

exp(zom—1b)

(B.28)



This leading factor indicates there is an eigenvalue 0 with multiplicity (m — 1)m.

21 271,
%= ik = exp(T) exp(5 k) = exp(=o) exp( L 2k)
2wt 1

(B.29)

(B.30)

Note: Rz =0 for k=0and k =m. For k =1,...,m — 1 we have Rz > 0, while Rz <0

fork=m+1,...,2m — 1.

Hence, if we take a = —b, the upper half of columns 2, ...,m have exponential growth

in r while the lower half has decay, and the opposite for columns m + 2,...,2m — 1. In the

r — 400 limit the remaining determinant is asymptotic to

where

i u®Y exp(zoa)

a = LA =
w9 (=1 exp(zpa)
i u™ Y exp(zma)

dp = by
uw™ ("= exp(z,a)
[ W00 x4 1D)

B =
WD) (21 10)

a A dy O

det

by 0 by B

u'Vexp(z1a) w10 exp(z,a)

(m—1)-(m-1)

um=Dexp(zia) ... w exp(zma)

0

u%0 exp(zob) u™0 exp(z,b)

—

7b2
w9 (=1 exp(zob)

2m—1)-

Wm0 exp (2,,h)

u(2m=1)-(2-1) exp(zamb)
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w™ (=1 exp(z,b)

(B.31)

, (B.32)

(B.33)

(B.34)



Laplace expansion across column 1 yields that the remaining determinant is (51 is swapped

across
det {@’1 A} - det [52 B} — det [A 52] det [B 51] (B.35)
u® exp(zga) ul¥exp(z1a) o um D0 exp (2, 1a)
— det : (B.36)
u”(m=Dexp(zpa) u' ™ Vexp(zia) ... w0 Dexp(z, 1a)
u™ 0 exp(z,b) w0 exp(z1b) ... uwP D 0exp(29,,-1b)
- det
™M= exp(zy,b) w1 exp(z,010) ... w1 D exp (29, 1b)
(B.37)
u'Vexp(z1a) oo w0 exp(z,_1a) u™ 0 exp(zma)
— det : : : (B.38)
ut D exp(zia) ... w™ DD exp(z,1a) u™ Y exp(zpma)
w0 exp(z,10) ... wP D 0exp(29,,1b) u®Y exp(z0b)
- det
w1 exp(z410) ... uPm D C D exp(z0,,-1b)  u® MY exp(z9b)
(B.39)
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If we take a = —b, we may use z,,1r = —2 to get

uY exp(zoa) .. w10 exp(z,_1a)
det
0 (m=1) exp(zpa) ... u(m=1)-(m-1) exp(zm—1a)
u™ Y exp(zpa) w10 exp(z,_1a)
det
u™mVexp(za) ... uPmVCD exp(z,_ia)
u'Yexp(z1a) oo u™%exp(zma)
— det
yl-(m=1) exp(z1a) ... um (m=1) exp(zma)
w(m+1)0 exp(z1a) . u% exp(z,a)
det
wmtD =D exp(z1a) ... u”"Yexp(zna)

The exp factors are the same for each column, so we get

00 B (m—1)-0 w0
m—1
H exp(2zxa) det : : det
k=0
uO-(m—l) u(m—1)~(m—1) u™m (m—1)
w0 . w0 u(m+1)-0
m
- H exp(2zxa) det : : det
k=
! u1~(m—1) um-(m—l) u(m+1)~(m—l)
We can regard each determinant as a Vandermonde
ay ay,
det | ol = H (a; — ag)
. 1<j<k<m
al"” am~
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2 (2m—1)-0

2y 2m—1)-2-1)

0-0

0-(m—1)

(B.40)

(B.41)

(B.42)

(B.43)

(B.44)

(B.45)

(B.46)



in this case the first determinant is

U= [ &-b (B.47)

0<j<k<m—1
which is obviously # 0, the second is
H (U™ — Ry = W5y (B.48)
0<j<k<m—1
the third is
[ @ —uth) =™ U (B.49)
0<j<k<m—1
and the fourth is
[T -ty = (1) ™= (B.50)
0<j<k<m—1
so that the remaining determinant becomes
! m-1y T (m—1) (m—1)
UQ([ H exp(2zxa)|lu™ 2 — [H exp(2zpa)u 2z w2 ) (B.51)
k=0 k=1
m—1 m(m—1) m m(m—1)
= U2<[H exp(2zga)ju™ 2 — [H exp(2zpa)|umt? "2 ) (B.52)
k=0 k=1
i (m-1) (m—1)
= UQ[H exp(2zga)ju™ 2 (1 — exp(2(zm — 20)a)u’" 2 ) (B.53)
k=0

All factors except the last one are obviously 0. We have to find solutions r of

m(m—1)
1 = exp(2(zm — 20)a)u®" 2 = exp|2ir(u

=—1

m(m—1) m(m—1)
—u)aju®" 7 = exp[—4iraju®" 2

m




SO

m(m— 2 ) m(m— - 1 2 )
exp[—4ira] = v 2 S GXP(%)_Q A eXP(Qm(mQ)%) (B.55)
= exp((1 — m)im) = (=1)™"! (B.56)
—dira =ir(l1—m+2k) , (keZ) (B.57)
—dra=7(1—-m+2k) , (ke€Z) (B.58)
dra=7n(m—1+4+2k) , (keZ) (B.59)
—1+2k
po im0 g (B.60)
4a
If we pick a = —L/2, for a length L interval, then

1 1

r:n(%w)-z . (kez) (B.61)

Maple (maple/selegue/eigenvals) suggests this is correct.

So the solutions r are at %,2%,3%,... for odd m, but %v%’%w" for even m. The

corresponding eigenvalues are

= (B.62)

If the operator comes with a coefficient A, all eigenvalues are multiplied by A,
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For a d-dimensional problem, the eigenvalues would be obtained by separation: asymp-

totically, for any m,
km T
i~ | = (T ki3 (B.63)

For an operator p~*(—A)™ on [0, L]¢ with constant p,

™

)"kl (B.64)

1k _
e~ o = P

We want Cp(s;m,d, L,p), the number of eigenvalues < s for p~1(=A)™ on [0, L]? with

Dirichlet conditions.
ikl <5 & [Elam < (ps(m/L)" 2™V = (ps)!/?™(z /L)~ (B.65)
So
—d 1/2mL

(274 because we only consider the ki, ..., kg > 0 quadrant of the d-dimensional 2m-ball)

T'(1/2m)

2mm

(B.16) d/2mo—d7d —d‘r / d 1 d/2m1d 7
-_ 2 L 2 ] 1 -_ L B.
(pS) m ( ) 415 ) ( ) F(l ’/2 ) (p3> ( 6 )

Some values for Cp(1;m,d, 1,1):

m | d | Cp(l;m,d,1,1)
12| &

2 |2 %

3 |2 | svarer
1|3 g2

2 |3 %

Agree with Courant/Hilbert (VI Theorem 14 and Theorem 15).

Box counting
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Consider the operator A = p(z)~*(—=A)™ on [0, L]%. Let Cp(s;m,d, L, p) be the number of
eigenvalues < s.

Partition [0, L]¢ into M? cubes. We can take an eigenfunction for some x on one cube
and extend it by 0 to the other ones. The functions obtained in this way for different cubes
are obviously orthogonal.

On each small cube, p(z)~! is almost constant, and

L L
Cp(sim, d, 17.p(x)) = Cp(1;m, d, 1,1)s72" (75)p(x).

So we obtain

S Colsimd gppe) = Coltim 116" G B65)

cube at =

Q

Cp(1;m,d,1,1)s%?m / p(@)¥*dz  (B.69)

[0,L]¢

(This agrees with e.g. Courant-hilbert (p. 436, VI1.4.3 eqn (32)) which gives p*/2 in d =
3,m=1and pford=2m=1.)

The extended functions are orthogonal (on different cubes by extension by 0, on the
same cube by construction) and satisfy the constraints for the [0, L]¢ variational problem
which are weaker: derivatives up to m — 1 zero on [0, L]¢ boundary, but not necessarily

individual cube boundaries. Therefore
Colsim,d. Lp) = Cp(tim,d, L )57 [ p()2mda.
[0,L]4

The eigenvalue distribution for the Neumann problem has the same leading-order asymp-
totic term but the constraints for the [0, 1]% variational problem are stronger now (H™ not

only on each side of a subcube, but across cube boundaries, so e.g. jumps across boundaries
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no longer allowed), so

Cw(sim,d, L,p) < Cp(lim,d,1,1)s72" / p(w) " d
[0,L]¢
Cn(1;m,d,1,1)s%?m / p(x)¥ ™ dz.

(0,L]¢

Q

Finally,
Cn(s;m,d, L,p) < Cp(s;m,d, L, p) (B.70)

since the Dirichlet problem minimizes over the smaller space (HJ'[0,L]¢ as opposed to

H™[0, L]%). But since the leading-order terms for the subcubes are the same we get

Cn(sym,d,L,p) =~ Cp(s;m,d,L,p) (B.71)
|' F(l/?m) d ]_ d/2 / d/2

= m Mdz. B.72

( 2mm ) (1 +d/2m)8 p(@) dz. )

[0,L]*

Eigenvalue distribution

Another formulation of the same result: number eigenvalues in non-decreasing fashion by

k € IN. The distribution formula says:

C(s) = #{k : p, < s} = (c+ o(1))s¥?>™ (B.73)

Hence for any § > 0 and for s sufficiently large (= k sufficiently large),

(c— 8)s¥?™ < O(s) < (c+ 6)s¥*™ (B.74)
hence
(S < s < (Zymia (B.75
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so since C'(ug) = k,

< e < (2

c+6 TN T te— 5)2m/d (B.76)

which means

e = (72 4 0y (1)) K2/ (B.77)

as desired.
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