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ABSTRACT 

 

Peptide transporter 1 (PEPT1), predominantly expressed in the small intestine, is 

responsible for the intestinal uptake of di-/tri-peptides and other peptidomimetics. PEPT1 

is a tempting delivery target for increasing the oral absorption of drugs and prodrugs 

which might otherwise have poor absorption. This dissertation project proposes to 

delineate the quantitative importance of PEPT1 in the intestinal absorption and 

pharmacokinetics of the model PEPT1-targeted prodrug valacyclovir. 

In wildtype and Pept1 knockout mice, the effective permeability of valacyclovir 

was evaluated as a function of perfusate pH, drug concentration, potential inhibitors and 

regional segments of the intestines using in situ perfusions. Results from the in situ 

studies showed that PEPT1 accounted for approximately 90% of valacyclovir 

permeability in mouse small intestine. Absorbed valacyclovir was rapidly and completely 

converted to its active drug acyclovir after passing through the enterocyte. In wildtype 

mice, valacyclovir permeability was pH independent, concentration dependent, saturable 

with a Km of about 10 mM, and inhibited by several PEPT1 substrates. In vivo 

pharmacokinetic studies showed that PEPT1 had little impact on the pharmacokinetic 

profiles of acyclovir following its oral or intravenous dosing, whereas PEPT1 deletion led 

to approximately 78% and 58% reduction in acyclovir maximum plasma concentration 

(Cmax) and area under the plasma concentration-time curve (AUC), respectively, after oral 
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administration of valacyclovir. Tissue distribution results suggested that PEPT1 had little 

if any effect on the in vivo distribution of acyclovir. Lastly, a mechanistic ACAT model 

was used to simulate the intestinal absorption and pharmacokinetic profiles of 

valacyclovir after its oral administration, in which the primary input parameters were 

obtained from previous in situ and in vivo studies. Simulation results were in good 

agreement with in vivo pharmacokinetic data for both genotypes. The duodenum (>40%) 

was the primary absorption site of valacyclovir in wildtype mice while the more distal 

jejunal (~13%) and ileal (~10%) segments played a more important role in valacyclovir 

absorption for Pept1 knockout animals. Rapid luminal hydrolysis was the main cause of 

incomplete valacyclovir absorption in wildtype mice. 

In conclusion, results from this dissertation provided convincing evidence to 

validate the major contribution of PEPT1 on the intestinal absorption of valacyclovir and, 

furthermore, the utilization of PEPT1 as an oral delivery target. In silico mechanistic 

modeling aided in the interpretation of in situ and in vivo experimental results, and could 

be a useful tool in facilitating our understanding of valacyclovir’s complicated intestinal 

absorption processes.  
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CHAPTER 1 RESEARCH OBJECTIVE 

 

Oligopeptide transporter 1 (PEPT1), a proton/substrate co-transporter 

predominantly expressed in the small intestine, plays a pivotal role in the intestinal 

uptake of di-/tri-peptides and diverse peptidomimetics with high capacity and low affinity. 

The transport properties, broad substrate specificity and apical membrane localization of 

PEPT1 also make it a tempting target for oral drug delivery. PEPT1 targeted prodrugs, 

mainly synthesized by conjugating pharmacologically active drugs to amino acid or 

dipeptide carriers, are being actively explored as a promising strategy for enhancing the 

oral absorption of poorly permeable compounds.  

Valacyclovir, an L-valyl ester prodrug of the antiviral drug acyclovir, is 

exemplary of the success of this PEPT1 targeted prodrug strategy. Oral administration of 

valacyclovir delivers significantly higher concentrations of acyclovir to the systemic 

circulation compared with oral acyclovir. A number of cell culture studies demonstrated 

the uptake of valacyclovir by PEPT1 while other studies also showed the interaction of 

valacyclovir with various membrane transporters other than PEPT1. The current 

consensus is that the enhanced oral availability of acyclovir derived from oral 

administration of valacyclovir is mainly attributed to PEPT1-mediated intestinal 

absorption of valacyclovir. However, no existing research can actually substantiate this 

claim. In other words, the quantitative significance of intestinal PEPT1 in the oral 
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absorption of valacyclovir and other PEPT1 targeted prodrugs alike remain ambiguous or 

even controversial, as increasingly realized by different researchers. Given the ambiguity 

about PEPT1’s contribution, the prospect of rationally designed PEPT1 prodrugs as a 

versatile approach for the enhancement of oral absorption is uncertain. 

The availability of Pept1 knockout mice in our laboratory offers a unique 

opportunity to resolve this long-standing controversy. An in-depth investigation of the in 

vivo role of PEPT1 in the oral absorption and pharmacokinetics of valacyclovir utilizing 

the Pept1 knockout mouse model will help elucidate the in vivo quantitative significance 

of PEPT1 and lead to a refined rational design of PEPT1-targeted prodrugs. 

The ultimate objective of this proposal is to delineate the exact contribution of 

PEPT1 to the intestinal absorption and pharmacokinetics of PEPT1 targeted prodrugs. 

Valacyclovir, as a model PEPT1 targeted prodrug, will be studied for this purpose. This 

research proposal consists of three specific aims:  

i. To characterize the relative importance of PEPT1 in the in situ intestinal 

permeability of valacyclovir in wildtype and Pept1 knockout mice; 

ii. To determine the in vivo relevance of PEPT1 in the oral absorption, 

disposition and pharmacokinetic profiles of valacyclovir in wildtype and Pept1 knockout 

mice; 

iii. To evaluate the advanced compartmental absorption and transit (ACAT) 

model as a means to define and simulate the absorption process of valacyclovir and the 

significance of PEPT1 in this process. 
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CHAPTER 2 BACKGROUND AND LITERATURE REVIEW 

 

PROTON-COUPLED OLIGOPEPTIDE TRANSPORTER 1 (PEPT1) 

At present, membrane transporters are increasingly recognized to be key 

determinants in regulating drug pharmacokinetics and pharmacodynamics. Proton-

coupled oligopeptide transporter 1 (PEPT1) is one of the most intensively studied 

transporters with physiological and pharmacological importance. PEPT1 is a member of 

the proton-coupled oligopeptide transporter (POT) family. POTs, also known as solute 

carrier 15A (SLC15A) in man, include oligopeptide transporter 2 (PEPT2, SLC15A2), 

peptide histidine transporter 1 (PHT1, SLC15A4) and peptide histidine transporter 2 

(PHT2, SLC15A3) in addition to PEPT1 (SLC15A1). PEPT1 as well as PEPT2 are 

responsible for the handling of di-/tri-peptides and a broad range of peptidomimetics in 

organisms whereas PHT1 and PHT2 have been shown to translocate histidine in addition 

to some selected di-/tri-peptides (Rubio-Aliaga and Daniel, 2008). Both PEPT1 and 

PEPT2 have been extensively studied and reviewed with regard to their structural 

characteristics, transport mechanisms, substrate specificity, tissue distribution and 

regulation. In contrast, little is known about PHT1 and PHT2. The present review mainly 

focuses on PEPT1 since it is the topic of interest for my thesis project.  
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Structural features and genetic polymorphisms of PEPT1. PEPT1 was first 

cloned and characterized by Fei et al. by expressing rabbit PEPT1 cRNA in an X. laevis 

oocyte system (Fei et al., 1994). Later PEPT1 was also isolated from various other 

species such as human (Liang et al., 1995), rat (Saito et al., 1995; Miyamoto et al., 1996) 

and mouse (Fei et al., 2000). Mammalian PEPT1 consists of 707-710 amino acid residues 

depending on species. Human PEPT1 is composed of 708 amino acid residues with a 

molecular weight of 78 kDa, and the gene located on chromosome 13. Structurally, 

mammalian PEPT1 and PEPT2 are predicted to possess 12 putative transmembrane 

domains (TMDs), a large extracellular loop between the ninth and tenth TMDs, and two 

putative protein kinase C-dependent phosphorylation sites; both the N- and C-termini of 

PEPT1 face the cytosolic side (Figure 2.1). PEPT1 shows a high degree of sequence 

homology at both the nucleotide and amino acid levels across species. The genomic 

organization of human PEPT1 shows high similarity with its mouse orthologue (Urtti et 

al., 2001). PEPT1 is highly homologous between humans (Liang et al., 1995) and mice 

(Fei et al., 2000) with an amino acid identity of 83%. The three dimensional protein 

structure of PEPT1 is still unknown for the mammalian SLC transporter. However, the 

recently identified crystal structure of a bacterial peptide transporter, a prokaryotic 

homologue of mammalian PEPT1, provides a useful high-resolution structural model for 

understanding drug transport with PEPT1 and other POT proteins (Newstead et al., 2011). 

Construction of chimeric proteins revealed that TMDs 1-4 and 7-9 contribute to substrate 

binding and affinity. By means of site-directed mutagenesis, some amino acid residues 

such as Y12, Y56, Y64, Y91, Y167, H57, W294 and E595 were found to be important in 

modulating substrate binding and the transport activity of PEPT1 (Brandsch et al., 2008; 
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Rubio-Aliaga and Daniel, 2008). For instance, the mutations of Y12 in the first TMD and 

Y64 in the second TMD to other amino acids were found to reduce the transport capacity 

of PEPT1. A summary of amino acid residues that may affect the function of PEPT1 is 

illustrated in Figure 2.1.  

Limited genetic variants of human PEPT1 have been reported. Zhang and 

coworkers reported nine non-synonymous single nucleotide polymorphisms (SNPs), 

among which only the P586L variant showed reduced transport capacity for PEPT1 

substrates when expressed in HeLa cells (Zhang et al., 2004). In another study, a low-

frequency PEPT1- F28Y variant was found to display significantly increased Km toward 

a typical PEPT1 substrate cephalexin (Anderle et al., 2006). Taken together, a low level 

of genetic polymorphisms has been found for human PEPT1. 

Mechanism of PEPT1-mediated transport. PEPT1 has been found to couple the 

transport of their substrates uphill with the movement of protons down an inwardly 

directed electrochemical proton gradient (Ganapathy and Leibach, 1983; Brandsch et al., 

2008). The detailed mechanism of PEPT1-mediated transport of di-/tri-peptides or 

peptide-like drugs is graphically depicted in Figure 2.2, which illustrates that the inward 

proton gradient is maintained by the apical sodium/proton exchanger 3 (NHE3) on the 

epithelial cells. The driving force for NHE3 is the inwardly directed sodium gradient 

which is maintained by Na
+
-K

+
-ATPase located on the basolateral membrane of polarized 

epithelial cells. Once entering enterocytes, some peptides are further hydrolyzed to 

generate free amino acids, which can be pumped cross the basolateral membrane via 

basal amino acid transporters. Hydrolysis-resistant peptides can be shuttled into the 

systemic circulation in their intact form by poorly characterized basal peptide transporters 
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that are different from PEPT1. PEPT2 also shares the same transport mechanism with 

PEPT1. The transport model established PEPT1 and PEPT2 as proton-dependent 

transporters whose activity can be modulated directly by proton gradient, indirectly by 

sodium gradient, and also by membrane potential. 

Substrate specificity. One of the most intriguing features of PEPT1 is its 

capacity to transport a wide range of substrates including naturally occurring di-/tri-

peptides and diverse peptidomimetics with high capacity and low affinity. Nearly all di-

/tri-peptides can be transported by PEPT1; free amino acids or tetra-oligopeptides are not 

recognized by PEPT1. As for foreign PEPT1 substrates, some of them are important 

pharmaceutical drugs including orally active β-lactam antibiotics such as ceftibuten, 

cephalexin and cefadroxil, angiotensin converting enzyme inhibitors such as captopril 

and enalapril, the anticancer drug bestatin, the photosensitizing agent 5-aminolevulinic 

acid, selected renin inhibitors and the antiviral prodrugs valacyclovir and valganciclovir. 

Our current understanding of favorable structural requirements for PEPT1 substrates 

were obtained mainly from pharmacophore models. The minimal requirement for PEPT1 

substrates is summarized as two oppositely charged head groups separated by a spacer 

carbon unit with a distance > 500 pm and < 650 pm (Rubio-Aliaga and Daniel, 2008). 

Surprisingly, a peptide bond is not essential in the substrate structure. Other preferred 

features include a free N-terminal amino group, an electron-rich terminal carboxylic 

group and hydrophobic side chains. PEPT1 and PEPT2 share similar basic requirements 

for the structures of their substrates. However, unlike the low-affinity high-capacity 

transport feature of PEPT1, PEPT2 is usually known as a high-affinity low-capacity 

transporter. In addition, both PEPT1 and PEPT2 are stereoselective and prefer trans- 
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rather than cis-conformations. These structure-affinity models are useful in the discovery 

and development of new chemical entities recognized by peptide transporters PEPT1 and 

PEPT2. In addition, the crystal structure of a bacterial peptide transporter (Newstead et 

al., 2011), which shares sequence and functional similarities with mammalian PEPT1 

proteins, could be another powerful tool for the design of new PEPT1 and PEPT2 

substrates. 

PEPT1 substrates were identified utilizing a variety of experimental 

methodologies. Caco-2 cells have been used to determine whether a drug is a PEPT1 

substrate by some competitive inhibition studies with known PEPT1 substrates such as 

the synthetic non-metabolizable dipeptide glycylsarcosine. Other mammalian cell lines 

that were transiently or stably transfected with human PEPT1, such as HeLa, MDCK and 

CHO cells, were also used to examine PEPT1-mediated uptake of drugs. In addition, due 

to the electrogenic feature of PEPT1 activity, the uptake of PEPT1 substrates were also 

probed in Xenopus laevis oocytes injected with cRNA encoding PEPT1 using two-

microelectrode voltage-clamp technique. Other in vitro techniques, such as brush border 

membrane vesicles and Ussing chamber with the small intestine, have been applied in the 

study of PEPT1 substrates as well. More complicated experimental methods, such as in 

situ intestinal perfusion techniques or in vivo pharmacokinetic studies, were also used to 

study PEPT1 substrates. An advantage of in situ and in vivo methods, based on whole 

animals, was that they can more reliably reflect the interaction of PEPT1 with substrates 

under physiological conditions although they require huge consumption of experimental 

animals and long experimental time periods. Recently, genetically modified mice 

deficient of PEPT1 were developed and validated in our laboratory (Hu et al., 2008), 
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which is deemed as a useful platform for studying the role of PEPT1 by performing 

different in situ and in vivo studies.  

Tissue distribution. In mammalian species, PEPT1 displays a heterologous tissue 

distribution with predominant expression in the small intestine (Lu and Klaassen, 2006). 

PEPT1 is localized on the brush border membrane of epithelial cells along the small 

intestine (Ogihara et al., 1996; Lu and Klaassen, 2006; Jappar et al., 2010). Low-level 

expression of PEPT1 was found in S1 cells of the proximal convoluted tubule, where it 

was considered to play a minor role in the reabsorption of small peptides and peptide-like 

drugs (Shen et al., 1999). Moreover, expression of PEPT1 in extrahepatic biliary duct 

(Knutter et al., 2002), nuclei and lysosomes of the pancreas (Bockman et al., 1997), 

monocytes (Charrier et al., 2006) and reproductive organs (Lu and Klaassen, 2006) were 

also reported. However few details are available on the possible function of PEPT1 in 

tissues other than small intestine and kidney.  

Due to the abundant expression of PEPT1 in the small intestine and its capacity of 

transporting various drugs and di-/tri-peptides, PEPT1 is believed to play an essential role 

in the intestinal absorption of its substrates. Therefore, some studies focused on the 

mapping of PEPT1 expression along the digestive tract in different species. Reverse-

transcriptase polymerase chain reaction (RT-PCR) has been used as the main tool for 

studying mRNA expression of PEPT1 in various intestinal regions in man. Englund et al. 

(2006) reported a relatively uniform distribution of PEPT1 in the small intestine but 

extremely low PEPT1 mRNA levels in the colon by analyzing biopsy samples of human 

duodenum, jejunum, ileum and colon. Similar findings were later reported by another 

group of researchers independently (Meier et al., 2007). However, Herrera-Ruiz et al. 



9 

 

(2001) found predominant expression of PEPT1 in the duodenum and much lower 

expression levels in other segments of the human intestine. On the other hand, nearly 

uniformly high expression of PEPT1 in the small intestine and negligible expression in 

the colon have been reported in both rat (Hironaka et al., 2009) and mouse (Jappar et al., 

2010) at the protein level. Moreover, mice and humans were found to have similar 

expression levels of PEPT1 in duodenum while rats exhibited three- to five-fold higher 

expression profiles (Kim et al., 2007). The available quantitative distribution information 

of PEPT1 can be potentially useful in understanding and modeling the intestinal 

absorption of PEPT1 substrates. 

Regulation mechanism. Expression and function of PEPT1 are under the tight 

regulation of numerous physiological, pharmacological and pathological factors. High-

protein diet and starvation (Katsura and Inui, 2003), pharmaceutical agents including 

pentazocine (Fujita et al., 1999), cyclosporine and tacrolimus (Motohashi et al., 2001), 5-

fluorouracil (Inoue et al., 2005), various hormones (Rubio-Aliaga and Daniel, 2008) as 

well as inflammation (Dalmasso et al., 2008; Nguyen et al., 2009; Ingersoll et al., 2012) 

are some important regulators reported in literature. In particular, high protein diets and 

starvation were found to increase the expression of PEPT1 mRNA, protein and 

subsequently PEPT1 activity in rats (Naruhashi et al., 2002; Adibi et al., 2003; Katsura et 

al., 2003). Similarly, Ma et al. (2011) also showed fasting could up-regulate the 

expression of PEPT1 protein and consequently the in vivo oral absorption of PEPT1 

substrate glycylsarcosine in mice. Regulators of PEPT1 deserve further investigation to 

elucidate the intra-/inter-individual variability in PEPT1 expression and activity and 
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consequently the absorption, distribution, elimination and pharmacokinetics of PEPT1 

substrates. 
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PEPT1 TARGETED PRODRUGS  

As discussed in the preceding section, the localization and abundant expression of 

PEPT1 determines its physiological and pharmacological relevance in the intestinal 

absorption of its substrates. Furthermore, PEPT1 shows exceptionally broad substrate 

specificity and low-affinity high-capacity transport characteristics, therefore making it a 

tempting drug delivery target for improving the oral absorption of poorly absorbable 

drugs. In different stages of drug discovery and development, the concept of targeting 

intestinal PEPT1 for improved oral absorption and availability is emerging as one of the 

promising means of mitigating the permeability-related absorption limitation of oral 

drugs (Li et al., 2008; Varma et al., 2010).  

Currently, for the rational design of PEPT1 targeted prodrugs, a widely employed 

synthesis approach is to form dipeptide or amino acid conjugated prodrugs by linking the 

active parent drugs that are not recognized by PEPT1 with dipeptides or amino acid 

moieties (sometimes through a linker if necessary). As a result of the covalent 

conjugation, the entire prodrugs can be recognized as PEPT1 substrates and efficiently 

transported by intestinal PEPT1, leading to improved intestinal absorption. In addition to 

increased permeability, another key determinant of successful PEPT1 targeted prodrugs 

is adequate stability in the intestinal lumen but rapid and extensive enzymatic hydrolysis 

after absorption for exertion of its pharmacological effects. Incomplete bioconversion 

could impair the effectiveness of the prodrug approach and potentially lead to the 

formation of inactive or even toxic metabolites.  
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A vast number of PEPT1 targeted prodrugs, synthesized following the above-

mentioned approach, have shown improved PEPT1-mediated transport and oral 

availability. A recent successful example is LY544344, a rationally synthesized alanyl 

prodrug of the potent and selective group II/cAMP-coupled metabotropic glutamate 

receptor agonist LY354740. LY544344 displayed PEPT1-mediated uptake in Caco-2 

cells and intestinal permeability during perfusions in rats (Varma et al., 2009; Eriksson et 

al., 2010), and showed approximately 17-fold higher dose-normalized area under the 

plasma concentration-time curve (AUC) of  LY354740 compared with oral dosing of the 

active drug (Perkins and Abraham, 2007). An L-valyl prodrug of the poorly orally 

absorbed chemotherapy agent cytarabine showed PEPT1-mediated uptake in Caco-2 cells 

that could be inhibited by an excess of PEPT1 substrate glycylsarcosine and 

approximately 3-fold increase in the AUC of drug following its oral administration (Sun 

et al., 2009).  

Other examples of PEPT1 targeted prodrugs include midodrine (Tsuda et al., 

2006), a series of amino acid  monoester prodrugs of floxuridine (Tsume et al., 2008), 

prodrugs of some benzyl or benzoyl molecules conjugated with thiodipeptide carriers 

(Foley et al., 2009), prodrugs of polar [3-(hydroxymethyl)-phenyl]guanidine conjugated 

with L-valine, L-isoleucine, and L-phenylalanine (Sun et al., 2010), and L-valyl prodrug 

of zanamivir (Gupta et al., 2011). This PEPT1 targeted prodrug strategy has 

demonstrated to be suitable and feasible for improving oral absorption of highly polar 

and poorly permeable drugs. Recently, a shift in the discovery of new chemical entities 

toward more hydrophilic libraries has become noticeable, due to toxicities and metabolic 

liabilities frequently reported for lipophilic drugs (Varma et al., 2010). Due to the 
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increased importance of hydrophilic compounds, PEPT1 targeted prodrugs for enhancing 

permeability and absorption is likely to be continuously pursued since oral delivery is 

still the favorable and preferred route of drug delivery.  
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VALACYCLOVIR 

The prototype of PEPT1 targeted prodrugs is valacyclovir, an L-valyl ester 

prodrug of the antiviral agent acyclovir, which shows three- to five-fold higher oral 

availability compared with oral acyclovir in humans. Chemical structures of acyclovir 

(ACV) and valacyclovir (VACV) are shown in Figure 2.3. Both acyclovir and 

valacyclovir are highly polar molecules with Log P values of -1.59 and -1.08, 

respectively. Historically, the identification of valacyclovir as a PEPT1 targeted prodrug 

was made retrospectively through extensive uptake and transport studies after its 

demonstrated improved oral availability. Although the discovery of valacyclovir’s 

absorption mechanism was to some extent by serendipity, the knowledge and insights 

gained from its success lead to the concept of rationally designed PEPT1 targeted 

prodrugs.  

In this project, valacyclovir was chosen as the model PEPT1 targeted prodrug for 

the assessment of the quantitative significance of intestinal PEPT1 in enhancing the oral 

absorption and availability of PEPT1 targeted prodrugs. We were motivated to propose 

such a project because, in spite of ongoing research in the area of PEPT1 targeted 

prodrugs, no existing studies quantitatively evaluated the importance of PEPT1 in 

facilitating the absorption of these targeted prodrugs. In other words, given the 

overlapping substrate specificity of multiple transporters and their co-expression in the 

small intestine, it is possible that other known or unknown transporters (or passive 

processes) may play an important role in the absorption of PEPT1 targeted prodrugs. 
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Without characterizing the quantitative relevance of PEPT1, it is risky to develop 

increasingly selective PEPT1 substrates with the aid of computational drug design.  

In the following section, the transport mechanism, hydrolysis and 

pharmacokinetics of valacyclovir and/or its active drug acyclovir will be presented.  

Transport mechanism of valacyclovir. The intriguing question about the 

mechanism responsible for the improved oral absorption of valacyclovir was raised 

shortly after its discovery. To investigate this question, numerous uptake and transport 

studies of valacyclovir were conducted. The influx of valacyclovir in cynomologus 

monkey intestine brush border membrane vesicles (BBMV) was found to be 6- to 10-

time higher than the influx of acyclovir and was inhibited by several dipeptides, 

suggesting the possible involvement of intestinal PEPT1 (Smith et al., 1993). Similarly in 

Caco-2 cells, valacyclovir showed 7-fold higher apical-to-basolateral transport than that 

of acyclovir and competitively inhibited the uptake of glycyclsarcosine (de Vrueh et al., 

1998; Ganapathy et al., 1998). Other cell culture systems transfected with rat PEPT1 or 

human PEPT1 were also used to examine the interaction of valacyclovir with PEPT1 

(Balimane et al., 1998; Guo et al., 1999; Sawada et al., 1999; Balimane and Sinko, 2000; 

Bhardwaj et al., 2005). All in all, these studies suggested that valacyclovir was 

transported by PEPT1 in a saturable, concentration- and pH-dependent manner in vitro. 

Moreover, findings of two in situ perfusion studies in rat small intestine again confirmed 

the interaction of valacyclovir with intestinal PEPT1 (Han et al., 1998; Sinko and 

Balimane, 1998).  
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Although different studies collectively confirmed the ability of PEPT1 to 

transport the non-peptidic drug valacyclovir in cell cultures, their findings differed with 

respect to the transport characteristics of PEPT1-mediated uptake of valacyclovir. From 

these studies, the affinity of valacyclovir for PEPT1, as judged by the inhibition constant 

(Ki), ranged from 0.49 mM (Ganapathy et al., 1998) to 4.08 mM (Balimane et al., 1998) 

and, as judged by the Michaelis-Menten constant (Km), ranged from 0.3 mM (Han et al., 

1998) to about 6 mM (Balimane et al., 1998), depending on different experimental 

settings. Conflicting results were also reported for the pH-dependency of PEPT1-

mediated uptake of valacyclovir. One study performed in Caco-2 cells reported a pH-

independent PEPT1-mediated valacyclovir uptake when the medium pH was 6.0 and 7.4 

(de Vrueh et al., 1998). Other cell-based studies used different optimal pH values for 

measuring valacyclovir uptake, such as pH 6.0 in MDCK expressing hPEPT1 cells 

(Bhardwaj et al., 2005), pH 6.5 in oocytes expressing hPEPT1 (Balimane et al., 1998), 

and pH 7.5 in CHO cells transfected with hPEPT1 (Guo et al., 1999). Balimane and 

Sinko (2000) conducted a systematic investigation regarding the effect of external pH 

values on valacyclovir uptake in CHO/hPEPT1 cells, and found that different ionic 

species of valacyclovir exhibited differential affinities for PEPT1. In that study, the Km of 

neutral and cationic forms of valacyclovir was estimated at 1.2 and 7.4 mM, respectively.  

Nevertheless, PEPT1 is not the only transporter that can recognize and transport 

valacyclovir. In addition to PEPT1, PEPT2 has also been shown to be able to transport 

valacyclovir (Ganapathy et al., 1998). In the rat intestinal perfusion study (Sinko and 

Balimane, 1998), the jejunal permeability of valacyclovir was significantly inhibited by a 

typical organic anion p-aminohippuric acid or a typical organic cation quinine in addition 
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to PEPT1 substrates, suggesting the possible interaction between valacyclovir and 

organic anion transporters (OATs) and cation transporters (OCTs). In S2 cells transfected 

with human OAT-3, valacyclovir was found to be transported in a concentration-

dependent manner with Km and maximum transport velocity (Vmax) estimated to be 57.9 

μM and 200 pmol/mg protein/min, respectively (Takeda et al., 2002). Hatanaka et al. 

(2004) showed that valacyclovir can be transported by a Na
+
/Cl

-
 coupled amino acid 

transporter ATB
0,+

. The ability of ATB
0,+ 

to
 
transport valacyclovir was comparable to that 

of hPEPT1 using HRPE cells expressing mouse ATB
0,+

 and human PEPT1 

heterologously. The significance of this finding is that ATB
0,+

, which is abundantly 

expressed on the apical membrane of colonocytes, may be a potential delivery target for 

amino acid based prodrugs. In addition, PHT1 was reported to significantly increase the 

uptake of valacyclovir into COS-7 cells expressing human PHT1 compared to mock 

control cells, suggesting that PHT1 may participate in the intestinal uptake of 

valacyclovir considering the reported expression of PHT1 protein along the human 

intestinal tract (Bhardwaj et al., 2006). Finally, a putative human peptide transporter 

(HPT1) has also been shown to actively mediate the cellular uptake of valacyclovir 

(Landowski et al., 2003). Overall, more than six transporters have been implicated in the 

intestinal transport of valacyclovir with most studies being focused on PEPT1. 

Hydrolysis of valacyclovir. Chemical and enzymatic stability of valacyclovir is 

another prominent topic since both premature hydrolysis of valacyclovir in the intestinal 

lumen and incomplete bioactivation after intestinal absorption could decrease the 

systemic availability of acyclovir. In vitro stability of valacyclovir was evaluated in 

various aqueous solutions, biological fluids and different tissue or cell homogenates 
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(Burnette and de Miranda, 1994; Sinko and Balimane, 1998; Granero and Amidon, 2006). 

Overall, valacyclovir is chemically stable under acidic pH (pH < 4) conditions but 

degrades in alkaline medium by base-catalyzed pseudo-first-order kinetics. In addition, 

valacyclovir is stable in stomach fluid while its degradation in intestinal fluid is faster 

than in phosphate buffer at the same pH, suggesting its susceptibility to hydrolyzing 

enzymes. Valacyclovir stability, expressed in terms of its degradation half-lives under 

different conditions, is shown in Table 2.1. Enzymes responsible for the hydrolysis of 

valacyclovir have been characterized in man and rats. Burnette et al. (1995) purified and 

characterized a rat liver enzyme that preferentially catalyzes the hydrolysis of 

valacyclovir and some other amino acid esters of acyclovir. In man, a biphenyl 

hydrolase-like protein (BPHL), also called human valacyclovirase, was purified and 

enriched from the solubilized membrane of Caco-2 cells. It was later identified as a novel 

human serine hydrolase selectively and efficiently catalyzing the biotransformation of 

ester prodrugs, for example, valacyclovir (Kim et al., 2003). Other generally occurring 

esterases or carboxylesterases may also play a role in the in vivo hydrolysis of 

valacyclovir. These highly efficient hydrolyzing enzymes for valacyclovir ensure 

complete and rapid activation of valacyclovir to acyclovir in the intestine and liver of 

different species. For instance, valacyclovir peak plasma levels in human subjects were 

less than 3% of corresponding acyclovir levels (Soul-Lawton et al., 1995). Similarly, 

rapid and complete conversion of valacyclovir to acyclovir was also demonstrated in 

preclinical models (Burnette and de Miranda, 1994; de Miranda and Burnette, 1994). 

Because of the nearly complete presystemic hydrolysis of valacyclovir, the in vivo 
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pharmacokinetics of acyclovir is the best measure of the performance of this orally 

administered prodrug.  

Pharmacokinetics of valacyclovir. The mean absolute availability of acyclovir 

after oral administration of a single dose of valacyclovir in monkeys (10 mg/kg), rats (25 

mg/kg) and humans (1000 mg) were approximately 67%, 65% and 54%, respectively 

(Burnette and de Miranda, 1994; de Miranda and Burnette, 1994; Soul-Lawton et al., 

1995). Acyclovir, derived from oral valacyclovir, exhibited dose-independent 

pharmacokinetics at 10 mg/kg and 25 mg/kg in both rats and monkeys (Burnette and de 

Miranda, 1994; de Miranda and Burnette, 1994).  Linear correlations were observed 

between valacyclovir doses and acyclovir Cmax and AUC. However, in human subjects, 

inconsistent results about dose proportionality of pharmacokinetic parameters have been 

found. It was reported that Cmax and AUC values for acyclovir increased in a slightly less 

than dose-proportional manner in healthy volunteers receiving 100-1000 mg of 

valacyclovir orally (Weller et al., 1993). Acyclovir Cmax ranged from 0.83 to 5.65 mg/L, 

Tmax from 0.88 to 1.75 hr, and AUC ranged from 2.28 to 19.52 mg·hr/L. Another study 

also showed non-linear increases in acyclovir Cmax and AUC following multiple dosing 

regimens of valacyclovir in the range of 250-2000 mg (Jacobson, 1993). In contrast, in 

patients with genital HSV disease, the increase of acyclovir Cmax and AUC was linear 

over the dose range of 250 - 1000 mg (Ormrod et al., 2000). The in vivo distribution, 

metabolism, and elimination properties of acyclovir after its entry into the systemic 

circulation are identical following dosing of valacyclovir or acyclovir, and reviewed later. 
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Detailed pharmacokinetics of acyclovir following oral administration of 

valacyclovir in preclinical species and human subjects are extracted from the literature 

and summarized in Tables 2.2 and 2.3, respectively. 

Uptake mechanism of acyclovir. The poorly permeable active drug acyclovir is 

not transported by PEPT1 (Han et al., 1998). The reported mechanism of acyclovir 

transport in the intestine is mainly passive diffusion (Meadows and Dressman, 1990; 

Fujioka et al., 1991). Using in vitro intestinal ring and in situ single-pass perfusion 

methods, Meadows and Dressman (1990) showed that the permeability of acyclovir was 

linear over a wide range of concentrations and was also unaffected by the addition of 

metabolic inhibitors. The apparent permeability of acyclovir in rat jejunum was reported 

to be 1.0 × 10
−5

 cm/sec (Zakelj et al., 2004). Because of the low jejunal permeability and 

high polarity of acyclovir, Kagan and Hoffman (2008) postulated that acyclovir mainly 

undergoes paracellularly passive diffusion in the intestine without substantiating the 

claim with experimental evidence. In other cell culture studies, acyclovir was found to be 

actively transported by OAT1 and OCT1, which may principally affect the elimination of 

acyclovir in the kidney (Wada et al., 2000; Takeda et al., 2002). 

Pharmacokinetics of acyclovir. The kinetics and disposition of the active drug 

acyclovir in different species will be briefly summarized. 

Plasma protein binding and distribution. Acyclovir displays minimal plasma 

protein binding in different species. Binding of acyclovir to plasma proteins was 15.4±4.4% 

by ultrafiltration of 12 plasma samples of patients receiving [
14

C]acyclovir (de Miranda et 

al., 1981b). In vitro acyclovir plasma protein binding was about 13% in mouse plasma at 
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a drug concentration of 88 µM, and about 22% and 33% in human plasma at acyclovir 

plasma concentrations of 17.8 µM and 1.8 µM, respectively (de Miranda et al., 1981a). In 

a dog given intravenous acyclovir, the extent of acyclovir plasma ranged from 30% to 36% 

(de Miranda et al., 1981a). Acyclovir distributes well into most body tissues including the 

vesicular fluid and central nervous system (de Miranda et al., 1981a; Fletcher and Bean, 

1985). 

Renal excretion of acyclovir. The major route of acyclovir elimination is by renal 

excretion of unchanged drug. Renal clearance (CLR) of acyclovir was two to three times 

higher than glomerular filtration over the oral dose range of 2.5-15.0 mg/kg acyclovir, 

suggesting the involvement of an active tubular secretion mechanism in its elimination 

(Laskin et al., 1982; Whitley et al., 1982).  

Metabolism of acyclovir. Acyclovir metabolism exhibits significant species 

differences. In rats, mice, dogs and humans, acyclovir is excreted unchanged in the urine. 

Following intravenous dosing of [
14

C] acyclovir, unchanged acyclovir accounted for 62-

91% (de Miranda et al., 1981b), 94% (de Miranda et al., 1981a) and 95% (de Miranda et 

al., 1981a) of the urinary radioactivity in humans, mice and rats, respectively. In contrast, 

in pigs, rabbits and monkeys, acyclovir is extensively metabolized into one or two major 

metabolites: 9-carboxymethoxymethylguanine (9-CMMG) and 8-hydroxyacyclovir (de 

Miranda et al., 1981a; de Miranda and Good, 1992; de Miranda and Burnette, 1994).  

 Pharmacokinetics of acyclovir. Oral availability of acyclovir exhibits species 

differences after its oral administration. The urinary recoveries of acyclovir in dogs, mice, 

rats, and rhesus monkeys were estimated to be approximately 75.3%, 43.2%, 19.2%, and 
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3.7% respectively (de Miranda et al., 1981a). Moreover, acyclovir urinary recovery 

decreased with increasing doses of 100-300 mg/kg in rats and mice, suggesting a dose-

limited absorption. Pharmacokinetic parameters of acyclovir following its oral or 

intravenous dosing in animals are shown in Table 2.4. 

The availability of oral acyclovir in human subjects is low and variable, which 

also decreases during dose escalation (Laskin, 1983).  Acyclovir was often administered 

as 1-hr intravenous infusions, which demonstrated dose-independent kinetics in single-

dose studies over 0.5 to 5.0 mg/kg (de Miranda et al., 1979) and 2.5 to 15 mg/kg (Laskin 

et al., 1982), or multiple-dose studies (Whitley et al., 1982). Results from these studies 

showed that acyclovir usually displayed a biexponential decline, with a terminal half-life 

(T1/2) of 2 to 3 hours, an apparent volume of distribution at steady state (Vdss) of 44 to 55 

L/1.73 m
2
, a total clearance (CL) of 200-300 mL/min/1.73 m

2
 and a renal clearance (CLR) 

similar to or slightly smaller than total CL (de Miranda and Blum, 1983). Moreover, both 

total and renal clearances of acyclovir were found to decrease with renal impairment 

while Vdss estimates were independent of renal function. Kinetic parameters of acyclovir 

after intravenous acyclovir are shown in Table 2.5. 

 



23 

 

 

Figure 2.1 Membrane topology model of mammalian PEPT1 with key structural features 

and influential amino acid residues displayed (Adopted from Rubio-Aliaga and Daniel, 

2008). 
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Figure 2.2 Schematic of PEPT1-mediated transport in epithelial cells: 1 represents PEPT1, 

2 the sodium proton exchanger 3 (NHE3), 3 the certain amino acid transporters, 4 the 

Na
+
-K

+
-ATPase and 5 the basolateral peptide transporters. (Adopted from Brandsch et al., 

2008).  
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Figure 2.3 Chemical structures of (A) valacyclovir and (B) acyclovir. 
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Table 2.1 In vitro half-lives of valacyclovir  

 

Medium pH 37°C 25°C References 

Deionized water   2~16 days 1 

TCA solution, 3%   203 days 1 

Sodium phosphate buffer, 0.1 M 6.0 95 hr  3 

Phosphate buffer 6.3 15.5 hr  3 

Phosphate buffer 7.4 10.6 hr  3 

MES buffer 5.0  577.5 hr 2 

MES buffer 6.5  38.5 hr 2 

MES buffer 7.5  19.3 hr 2 

Gastric fluid, simulated 1.2 ND
a
  1 

Intestinal fluid, simulated 7.5 6.6 hr  1 

Dog gastric fluid 2.3 63 hr  3 

Dog intestinal fluid 7.5 6 hr  3 

Human gastric fluid 1.2 1122 hr  3 

Human intestinal fluid 6.3 9.4 hr  3 

Rat plasma, EDTA-treated  7.9 hr 10 hr 1 

Rat intestine homogenate 7.5  1.5 hr 2 

Rat intestine homogenate 7.5 0.25 hr  2 

Rat intestine homogenate 7.5 4.7 hr  1 

Rat liver homogenate 7.5 16 min  1 

a
No detectable hydrolysis during 1-hr incubation. 

1: Burnette and de Miranda, 1994. 

2: Sinko and Balimane, 1998. 

3: Granero and Amidon, 2006.  
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Table 2.2 Pharmacokinetic parameters of acyclovir after oral dosing of valacyclovir in 

preclinical animals
a
  

 

Parameter (unit) 
Monkeys Rats 

Dose (mg/kg) 
10 25 10 25 

Availability  

(%) 
67±13    

Urinary Recovery 

(%) 
   65±2 

Tmax 

(hr) 
2.2±0.8 2.2±0.8 0.4±0.2 0.6±0.2 

Cmax 

(µM) 
8.2±2.6 22.9±6.7 4.8±1.1 12.8±2.5 

AUC0-inf 

(µM·hr) 
23.7±2.4 60.2±14.6 7.4±2.2 17.8±2.3 

Terminal T1/2 

(hr) 
1.5±0.3 1.3±0.3 1.1±0.3 0.8±0.3 

References 1 1 2 2 

Data are expressed as mean ±SD (n=3). 
a
Estimated using non-compartmental analysis. 

1: de Miranda P and Burnette TC, 1994. 

2: Burnette TC and de Miranda P, 1994. 

 



 

 

Table 2.3 Pharmacokinetic parameters of acyclovir after oral dosing of valacyclovir in humans
a 

 

Parameter (unit)  

Dose (mg) 100 250 500 750 1000 1000 

Availability 

(%) 
     54.2

b
 

Urinary Recovery 

(%) 
75.9±8.6 65.0±8.9 71.6±6.1 49.0±11.8 44.3±10.0 45.8±17.1 

Tmax 

(hr) 
0.9±0.1 1.0±0.3 1.5±0.6 1.5±0.6 1.8±0.6 1.7±0.7 

Cmax 

(µM) 
3.7±0.6 9.5±2.2 14.6±3.7 18.5±5.1 25.1±10.5 29.5 ±12.5 

CLR (mL/min)      255.3±85.8 

AUC0-inf 

(µM·hr) 
10.1±1.8 25.6±2.7 51.5±7.9 62.7±15.7 86.7±26.8 89.4±19.4 

Terminal T1/2 

(hr) 
2.8±0.6 2.8±0.4 2.9±0.2 2.9±0.5 3.0±0.1 2.6±0.4 

References 1 1 1 1 1 2 

Data are expressed as mean ±SD unless otherwise stated. 
a
Estimated using non-compartmental analysis. 

b
Mean availability only, with a 95% confidence interval of 49.4%-59.5%.   

1: Weller et al., 1993. 

2: Soul-Lawton et al., 1995.  
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Table 2.4 Pharmacokinetic parameters of acyclcovir after intravenous or oral dosing of acyclovir in animals  

 

Parameter (unit) Dog Monkey Rat Mouse 

Dose (mg/kg) 
20  

(oral) 

25  

(oral) 

25  

(oral) 

25  

(intravenous) 

25  

(oral) 

Urinary Recovery 

(%) 
75.3 ±1.3 3.7±0.5 

19.2 ± 8.1 

↓
c
 

 
43.2

a 

↓
b
 

Tmax 

(hr) 
2.0  1.0  0.25 

Cmax 

(µM) 
60.5 ± 3.5 <2 2.7 ± 3.5  52

a
 

Terminal T1/2 

(hr) 
   14.4  

Vdss 

(L/kg) 
   2.22  

References 1 

Data are expressed as mean ±SD unless otherwise stated. 
a
A single value was estimated after pooling blood of five mice. 

b
Progressively decreased from 48.5% to 11.0% when dose increased from 100 mg/kg to 300 mg/kg. 

c
Progressively decreased from 12.2% to 3.2% when dose increased from 100 mg/kg to 300 mg/kg. 

1: de Miranda P et al., 1981a. 
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Table 2.5 pharmacokinetic parameters of acyclovir after intravenous or oral dosing of acyclovir in humans 

 

Parameter (unit)  

Dose, by 1-hr 

infusion 
350 mg 2.5 mg/kg 5.0 mg/kg 10.0 mg/kg 15.0 mg/kg 

Urinary Recovery 

(%) 
86.7 ±19.9     

Tmax (hr) 0.98±0.07     

Cmax (µM) 41.0 ±8.4 20.1 ±1.4 36.8 ±11.6 64.8±10.2 100.8±46.2 

CL (mL/min)
b
 322.0 ± 68.0 239.2 ±26.8

 a
 268.8 ±94.1

a
 321.1±110.2

a
 394.0±97.1

a
 

CLR (mL/min)
b
 282.9 ± 103.0 158.2 ±18.5

 a
 225.1 ±99.6

 a
 238.4±63.7

 a
 398.2±66.6

 a
 

AUC0-inf 

(µM·hr) 
84.0 ± 14.2 55.8 ±9.5 102.9 ±39.0 160.6±37.8 191.7±52.1 

Vdss (L/1.73 m
2
)  44.1 ±6.9 43.1 ±4.6 55.9±4.9 53.4±11.8 

Terminal T1/2 (hr) 2.4±0.3 2.9±0.2 2.8±0.9 3.3±1.1 2.4±0.4 

References 1 2 2 2 2 

Data are expressed as mean ±SD unless otherwise stated. 
a
Data are in mL/min/1.73m

2
. 

b
Decreased with impaired renal function. 

1: Soul-Lawton J et al., 1995.  

2: Laskin OL et al., 1982. 
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CHAPTER 3  

SIGNIFICANCE OF PEPT1 IN THE IN SITU INTESTINAL PERMEABILITY 

OF VALACYCLOVIR IN WILDTYPE AND PEPT1 KNOCKOUT MICE 

 

ABSTRACT 

Purpose. The study evaluated the quantitative contribution of PEPT1 to the 

intestinal permeability of valacyclovir, an ester prodrug of the antiviral drug acyclovir.  

Methods. Valacyclovir effective permeability (Peff) was examined by in situ 

single-pass intestinal perfusion studies performed in wildtype and Pept1 knockout mice. 

In particular, valacyclovir Peff was measured as a function of perfusate pH, potential 

inhibitors, drug concentrations and intestinal segments under steady-state conditions. 

Valacyclovir effective permeability was calculated as: Peff = -Q×ln(Cout/Cin)/(2πRL), after 

correcting for water flux with a gravimetric method as well as correcting for valacyclovir 

luminal degradation. At the end of perfusion procedures, portal vein plasma samples were 

collected and analyzed to determine the extent of intestinal bioconversion of valacyclovir. 

All perfusate and plasma samples were analyzed using a validated HPLC method coupled 

with fluorescence detection. 

Results. Valacyclovir jejunal Peff in wildtype mice was significantly inhibited by 

glycylsarcosine and cefadroxil, suggesting PEPT1-specific active uptake of valacyclovir. 

Valacyclovir uptake kinetics in wildtype jejunum was fitted by a major Michaelis–
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Menten uptake term (apparent affinity constant Km=10 mM) and a minor linear uptake 

term. Valacyclovir Peff values were comparably high in the duodenum, jejunum and 

ileum and substantial lower in the colon in wildtype mice, a finding consistent with 

PEPT1 not being expressed in large intestine. Valacyclovir Peff values in the small 

intestinal segments of Pept1 knockout mice were reduced by about 90% compared to that 

in wildtype mice, and not significantly different from colon Peff. No significant 

differences were observed for colon Peff between the two genotypes. Jejunal Peff was also 

insensitive to changes in perfusate pH over the range of 5.5 - 7.5. In portal vein plasma 

samples, only the active drug acyclovir was detected while valacyclovir levels were 

below the limit of detection. 

Conclusions. Our findings demonstrate that PEPT1 accounted for approximately 

90% of valacyclovir permeability in mouse small intestine. Other membrane transporters 

appeared to play a minor role, if any, in facilitating the intestinal absorption of 

valacyclovir. Valacyclovir was rapidly and completely converted to acyclovir, under the 

current study conditions, after passing the intestinal wall. 
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INTRODUCTION 

Efficient intestinal absorption is necessary to achieve optimal clinical plasma 

exposure of oral pharmaceutical products. For polar and hydrophilic drugs, poor 

permeability across the brush border membrane of epithelial cells along the intestine 

poses a major barrier for their intestinal absorption and systemic availability. Recently, 

the permeability barriers for hydrophilic compounds seem even more relevant in light of 

the appreciable shift in the chemical space of new chemical entities from lipophilic to 

hydrophilic compounds, which is primarily driven by concerns about toxicities, 

metabolism liabilities and drug-drug interactions frequently reported for lipophilic drugs 

(Varma et al., 2010) 

Currently, limited options are available to breach permeability barriers for 

hydrophilic drugs. Bioconvertable derivatives with increased lipophilicity have shown 

some success in improving the intestinal permeability and uptake of hydrophilic 

compounds (Jana et al., 2010). Alternatively, a novel type of prodrugs, designed to target 

intestinal transporters, is emerging as an attractive approach for permeability 

enhancement (Li et al., 2008; Varma et al., 2010). Epithelial cells in the small intestine 

express a variety of influx transporters including peptide transporters, amino acid 

transporters, organic anion transporting polypeptides, and many others, which function to 

actively uptake their substrates (Brandsch et al., 2008; König, 2011; Thwaites and 

Anderson, 2011). Targeted prodrugs of poorly permeable compounds are usually 

designed to hijack one or several intestinal transporter-mediated active uptake; 
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consequently carrier-mediated uptake of prodrugs can lead to improved absorption and 

oral availability of their parent molecules. 

Among all the delivery target candidates for targeted oral prodrugs, peptide 

transporter 1 (PEPT1) is particularly promising due to some unique properties. PEPT1 is 

a proton-coupled oligopeptide transporter abundantly expressed on the apical membrane 

of both human and mouse small intestinal epithelial cells (Groneberg et al., 2001; Jappar 

et al., 2010). The physiological role of PEPT1 is to facilitate the uptake of dietary di-/tri-

peptides after protein digestion in the intestine (Daniel, 2004). As a high-capacity low-

affinity influx transporter, PEPT1 couples the active uptake of its substrates against their 

concentration gradients with the downhill influx of proton into enterocytes (Brandsch et 

al., 2008; Rubio-Aliaga and Daniel, 2008). Apical localization, abundant intestinal 

expression and high-capacity low-affinity transport features imply that PEPT1 can 

transport PEPT1-targeted prodrugs efficiently without being easily saturated even at 

relatively high oral doses. Moreover, PEPT1 transports structurally diverse compounds 

including di-/tri-peptides such as glycylsarcosine and glycyl-L-proline, β-lactam 

antibiotics such as cefadroxil and cephalexin, angiotensin converting enzyme (ACE) 

inhibitors such as captopril and enalapril, the anticancer drug bestatin and the 

photosensitizing agent 5-aminolevulinic acid. Broad substrate specificity suggests that 

intestinal PEPT1 can be a potentially versatile delivery target for prodrugs with distinct 

structures.  

Various PEPT1 targeted prodrugs, which are commonly synthesized by linking 

poorly permeable active drugs with some amino acid or dipeptide carriers, are under 

intensive investigation (Tsume et al., 2008; Sun et al., 2010; Gupta et al., 2011; Yan et al., 
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2011). Among all the PEPT1 targeted prodrugs, valacyclovir is viewed as the prototype 

of PEPT1 targeted prodrugs with most abundant uptake or pharmacokinetic findings 

available for this compound. 

Valacyclovir is an L-valyl ester prodrug of the potent antiviral agent acyclovir 

that is orally administered for the treatment and prophylaxis of herpes simplex, varicella 

zoster, and cytomegalo viruse infection. In human subjects, oral valacyclovir delivered 

about 54% oral bioavailability of acyclovir, a value 3-5 times higher than that of oral 

acyclovir (Soul-Lawton et al., 1995). However, even for valacyclovir, the principal 

contribution of PEPT1 to the enhanced oral availability of acyclovir following orally 

administered valacyclovir remains controversial. Over the past two decades, numerous 

transport or uptake studies demonstrated the interaction of valacyclovir with multiple 

transporters including PEPT1. For instance, significantly increased valacyclovir cellular 

uptake was found in different PEPT1-expressing cells, as compared to their respective 

mock control cells (de Vrueh et al., 1998; Ganapathy et al., 1998; Han et al., 1998; Guo 

et al., 1999; Balimane and Sinko, 2000; Bhardwaj et al., 2005). In addition, valacyclovir 

was also found to be a substrate for another peptide transporter PEPT2 (Ganapathy et al., 

1998), an amino acid transporter ATB
0,+

 (Hatanaka et al., 2004), peptide histidine 

transporter 1 (PHT1) (Bhardwaj et al., 2006), a human peptide transporter (HPT1) 

(Landowski et al., 2003), as well as organic anion and cation transporters (Sinko and 

Balimane, 1998; Takeda et al., 2002). Since some of these valacyclovir transporters co-

exist in the intestine, it is crucial to quantify the major contribution of PEPT1 in 

mediating the intestinal absorption of valacyclovir. Such quantitative evidence will 

strongly validate the effectiveness of selectively targeting PEPT1, which is the basis of 
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rationally designed PEPT1 targeted prodrugs. Unfortunately, studies demonstrating the 

quantitative importance of PEPT1 is completely lacking for the model prodrug 

valacyclovir and any other PEPT1 targeted prodrugs.  

In our laboratory, a Pept1 knockout mouse model has been successfully 

developed, validated and utilized for exploring the function of PEPT1 in nutrition 

absorption (Hu et al., 2008; Jappar et al., 2010; Ma et al., 2011). Pept1 knockout mice 

could be a powerful tool for assessing the quantitative role of PEPT1 in vivo. Therefore, 

in the current study, we aimed to evaluate the quantitative significance of intestinal 

PEPT1 in the intestinal permeability of the model PEPT1 targeted prodrug valacyclovir 

by performing comparative in situ intestinal perfusions in wildtype and Pept1 knockout 

mice. 
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MATERIALS AND METHODS 

Animals. Animal studies were conducted in accordance with the Guide for the 

Care and Use of Laboratory Animals as adopted and promulgated by the U.S. National 

Institutes of Health. Gender matched wildtype and Pept1 knockout mice, 8 to 10 weeks 

of age, were used for all experiments. The mice were kept in a temperature-controlled 

environment with 12-hr light/dark cycle and received a standard diet and water ad libitum 

(Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, MI). 

Materials. Valacyclovir hydrochloride, acyclovir, glycylsarcosine (GlySar), 

cefadroxil, tetraethylammonium (TEA), para-aminohippuric acid (PAH), L-histidine, L-

valine and all other reagents were purchased from Sigma-Aldrich (St. Louis, MO).  

In situ single-pass intestinal perfusion procedure. Prior to experiment, wildtype 

and Pept1 knockout mice were fasted overnight (~16 hrs) with free access to water. The 

perfusion procedure has been previously reported (Adachi et al., 2003; Jappar et al., 

2010). Briefly, animals were anesthetized with sodium pentobarbital (40-60 mg/kg, i.p.) 

and placed on a warming pad to maintain body temperature. Isopropyl alcohol was used 

to sterilize the abdominal area and a 1.5 cm midline incision was made longitudinally to 

expose the small intestine. An 8-cm segment of proximal jejunum was isolated (i.e., ~2 

cm distal to Treitz ligament), and incisions were then made at the proximal and distal 

ends. Glass cannulas (2.0 mm outer diameter) attached to flexible PVC tubings were 

inserted into both ends of the jejunum and secured with silk sutures. The inlet tubing was 

connected to a 20-mL syringe placed on a perfusion pump (Model 22, Harvard Apparatus, 

South Natick, MA) and the outlet tubing was placed in a collection vial. The perfusion 
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buffer (pH 6.5) containing 10 mM MES, 135 mM NaCl, 5 mM KCl and 100 µM 

valacyclovir with an osmolarity of 290 mOsm/L was incubated at 37 ℃ to maintain 

temperature and then pumped through the intestinal segment at a rate 0.1 mL/min for 90 

min. The perfusion buffer was first perfused up to 30 min to ensure steady-state 

conditions. Based on our previous experience, 30 minutes was sufficient for achieving 

steady state. The exiting perfusates were then collected at 10-min intervals for up to 1 hr 

(40 min, 50 min, 60 min, 70 min, 80 min, and 90 min). All samples, including inlet and 

outlet perfusates as well as standard drug solutions, were assayed by a validated HPLC 

method coupled with fluorescence detection. Upon the completion of the experiment, the 

length of perfused intestinal segment was accurately measured.  

For pH-dependent studies performed in the jejunum of wildtype mice, different 

combinations of 10 mM MES/Tris or HEPES/Tris were used in perfusate to adjust pH 

values between 5.5 and 7.5 with osmolarity being held constant. 

For competitive inhibition studies performed in the jejunum of wildtype mice, 

various putative competitive inhibitors were co-perfused with 100µM valacyclovir at pH 

6.5. These putative inhibitors included 25 mM GlySar, 25 mM cefadroxil, 25 mM TEA, 

25 mM PAH, 25 mM L-histidine, and 25 mM L-valine, respectively. 

  For concentration-dependent uptake studies, drug concentrations in the perfusate 

were varied in a wide range of 0.01-50 mM to assess the kinetic characteristics of 

valacyclovir jejunal uptake in wildtype mice.  
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In another separate perfusion study, perfusion buffer containing 100 µM acyclovir, 

instead of 100 µM valacyclovir, was perfused through the jejunum of both wildtype and 

Pept1 knockout mice, following the perfusion procedure described earlier. 

Segment-dependent perfusion study. To characterize valacyclovir effective 

permeability (Peff) in different intestinal regions of two genotypes, duodenum, jejunum, 

ileum and colon of wildtype and Pept1 knockout mice were perfused simultaneously. The 

simultaneous perfusion procedure was adapted from published reports (Dahan et al., 2009; 

Jappar et al., 2010). A 2-cm segment of duodenum (i.e., ~0.25 cm distal to the pyloric 

sphincter), 8-cm segment of jejunum (i.e., ~2 cm distal to Treitz ligament), 6-cm segment 

of ileum (i.e., ~1 cm proximal to the cecum) and 3-cm segment of colon (i.e., ~ 0.5 cm 

distal to the cecum) were perfused as described previously. 

Bioconversion of valacyclovir in mouse. In addition to effective permeability, 

the extent of valacyclovir conversion to acyclovir after passing the intestinal wall in 

mouse was also investigated. Experimentally, portal vein blood samples were taken upon 

the completion of perfusion procedures. Each blood sample was then immediately 

transferred to a 7.5% EDTA-containing centrifuge vial and centrifuged at 3000 g for 3 

min at room temperature. A 100 µL aliquot of plasma was then collected and mixed with 

200 µL of acetonitrile for deproteinization. The mixture was vigorously vortex-mixed for 

1 minute and then centrifuged at 15000 g for 10 min. The clear supernatant was 

transferred to another clean centrifuge vial, blown dry under vacuum and reconstituted in 

100 µL mobile phase prior to HPLC analysis. 
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Analytical methods. The HPLC system consisted of a Waters 616 pump, a 

Waters 717 autosampler, a Waters 2487 dual λ absorbance detector and a Waters 2475 

multi λ fluorescent detector (Waters Inc., Milford, MA). A waters ODS-3 column 

(250×4.6 mm, 5μM), fitted with a refillable guard column, was used for the 

chromatographic separation. For the assay of acyclovir and valacyclovir in perfusate and 

plasma samples, the isocratic mobile phase consisting of 5% organic phase (0.1% v/v 

trifluoroacetic acid (TFA) in acetonitrile) and 95% aqueous phase (0.1% v/v TFA in 

water) was used at a flow rate of 1 mL/min. Excitation wavelength of 270 nm and 

emission wavelength of 360 nm were selected for fluorescence detection. When 

valacyclovir was co-perfused with various inhibitors, the mobile phase was modified 

accordingly if necessary. The injection volume was 50 μL. All perfusate samples were 

centrifuged at 15000 g for 10 min and the clear supernatants were directly taken for 

HPLC analysis.  External standard method was used for quantifying the concentrations of 

valacyclovir and acyclovir in perfusates. Two separate calibration curves were 

constructed for the quantification of valacyclovir and acyclovir, respectively.  

HPLC method validation. The HPLC method was thoroughly validated in terms 

of specificity, sensitivity, linearity, precision, accuracy and stability. 

Specificity. The interference from endogenous compounds in perfusates was 

investigated by analyzing blank perfusates collected in at least six different batches. 

Linearity and sensitivity. Linearity was evaluated by preparing calibration 

standards in the range of 200, 100, 50, 20, 10, 5 and 2 µM for valacyclovir and 50, 20, 10, 

5, 2.5, 1 and 0.5 µM for acyclovir.  The lower limit of quantification (LLOQ) was 
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calculated as the lowest concentration giving a peak with a signal to noise ratio greater 

than 10. 

Precision and accuracy. The three concentration levels for quality control (QC) 

solutions of high, medium and low concentrations were 200, 50 and 5 µM for 

valacyclovir and 50, 10 and 1 µM for acyclovir, respectively. Intra-day precision and 

accuracy were assessed by the analyses of QC samples of high, medium and low 

concentrations in triplicate and inter-day precision and accuracy was evaluated by three 

replicate measurements of QC samples on three consecutive days. Method precision was 

expressed as relative standard deviation (RSD %) and method accuracy was expressed as 

the percentage of the mean observed concentration divided by the nominal spiked 

concentration. 

Stability. Stability of QC samples was evaluated after storage at 4 ºC for 1 month 

and at room temperature for 4 hours. Stability was expressed as relative error (RE, (mean 

observed concentration-nominal concentration)/nominal concentration×100%). 

Data analysis. Valacyclovir was reported to undergo luminal hydrolysis of 

varying degrees at different concentrations in rat intestinal perfusion studies (Sinko and 

Balimane, 1998). In order to accurately estimate valacyclovir Peff, the loss of valacyclovir 

due to hydrolysis in the lumen, rather than uptake across the apical membrane, had to be 

accounted for. Therefore, both valacyclovir and luminally formed acyclovir 

concentrations in outlet perfusates were simultaneously quantified by the validated HPLC 

method. Furthermore, it was assumed that acyclovir intestinal permeability was 



49 

 

negligibly small compared to that of valacyclovir and did not affect the estimation of 

valacyclovir effective permeability. 

Net water flux in the perfusion studies was corrected by a gravimetric method.  

Gravimetric correction was shown to be comparable or even superior to other water flux 

correction methods using nonabsorbable markers such as PEG-3350 and phenol red 

(Sutton et al., 2001).  

Overall, drug concentration in an effluent perfusate after appropriate correction, 

denoted as Cout’, can be calculated as:  

                                           Eq. (1) 

where Cout,valacyclovir and Cout, acyclovir are uncorrected concentrations of valacyclovir and 

acyclovir in an outlet perfusate, Qin and Qout are measured perfusate flow rates (weight/10 

min, density set as 1.0 g/mL). 

Valacyclovir Peff was estimated from the following equation under the parallel 

tube assumption: 

                                                                                    Eq. 

(2) 

,where Qin is the fixed inlet flow rate of 0.1 mL/min, Cout’ is the corrected outlet 

concentration as defined in Eq. (1), Cin is the inlet valacyclovir concentration, R is the 

radius, and L is the length of the perfused segment, respectively. 
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The concentration-dependent flux (V) of valacyclovir in the jejunum of wildtype 

mice was best fitted by an equation consisting of a Michaelis-Menten term and a 

nonsaturable linear term, as shown below: 

                                                           Eq. (3) 

,where Vmax is the maximal rate of carrier-mediated flux, Km is the apparent Michaelis-

Menten constant when referenced to the inlet concentration and Kd is the first-order rate 

constant of the linear process.  

Data were reported as mean ± standard error (SE) (n≥4 per genotype) unless 

stated otherwise. An unpaired two-sample t-test was used to compare statistical 

differences between wildtype and Pept1 knockout mice. One-way analysis of variance 

(ANOVA) followed by Dunnett’s test or Bonfferoni’s test was used in pairwise 

comparisons with the control group or multiple pairwise comparisons, respectively 

(GraphPad Prism 4.0; GraphPad Software Inc., La Jolla, CA). p≤0.05 was considered 

statistically significant. Nonlinear regression analyses were performed using GraphPad 

Prism software, where the goodness of fit was determined by the coefficient of 

determination (R
2
), and visual inspection of the residuals. 
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RESULTS 

HPLC method validation. The developed HPLC method was thoroughly 

validated with regard to specificity, linearity, sensitivity, precision, accuracy and stability. 

Specificity. Figure 3.1A shows a representative chromatogram for the analysis of 

a blank perfusate sample. Clearly no endogenous substances in intestinal perfusates 

interfered with the determination of acyclovir or valacyclovir.  

Linearity and sensitivity. Typical calibration curves of valacyclovir and acyclovir 

were constructed by least squares linear regression analysis of the peak areas of analytes 

(y) versus their concentrations (x). A typical regression equation was y=990371x+909422 

for valacyclovir, with a correlation coefficient (R
2
) of 0.9999, and y=1752725x+899476 

for acyclovir, with R
2
 of 0.9994. Good linearity was shown in the specified concentration 

range for both compounds. The LLOQ was 0.2 and 0.1 µM for valacyclovir and acyclovir, 

respectively.  

Precision and Accuracy. For valacyclovir, the intra-day and inter-day precision 

(RSD%) was found to be less than 8% while the accuracy varied from 94.0% to 104.0% 

for all the three QC levels. Similarly for acyclovir, the intra-day and inter-day precision 

and accuracy ranged from 5%-9% and 96%-103%, respectively. 

Stability. Stability results, under all experimental conditions, show that relative 

errors were less than 5% for both compounds. 

Bioconversion of valacyclovir in mouse. Figure 3.1(B-E) suggest that 

valacyclovir had substantial degradation in the intestinal lumen in mice, indicating that 

both acyclovir and valacyclovir in outlet perfusate samples should be measured for the 
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accurate estimation of valacyclovir Peff values. Figure 3.1F shows that the 

chromatographic peak corresponding to valacyclovir was completely absent in the 

chromatogram for a typical portal vein plasma sample, indicating that valacyclovir was 

rapidly and completely degraded in enterocytes under our experimental conditions.  

In situ single-pass perfusion study. In single-pass intestinal perfusion studies, 

effective jejunal permeability of 100 µM valacyclovir in wildtype mice was evaluated as 

a function of perfusate pH values and potential inhibitors. As depicted in Figure 3.2, 

although different valacyclovir Peff values were obtained over the pH range of 5.5 - 7.5, 

none of the differences was statistically significant. Co-perfusion of valacyclovir with 

different putative inhibitors showed varied effects on the jejunal permeability of 

valacyclovir. As shown in Figure 3.3, valacyclovir jejunal Peff values were significantly 

decreased by the presence of 25 mM cefadroxil or 25 mM dipeptide GlySar in perfusates, 

suggesting the involvement of PEPT1 in the jejunal permeability of valacyclovir. In 

contrast, co-perfusion of valacyclovir with all other inhibitors, including 25 mM TEA, 25 

mM PAH, 25 mM L-histidine and 25 mM L-valine, had no significant effect on 

valacyclovir jejunal Peff.  

Valacyclovir jejunal uptake in wildtype mice was also evaluated at various drug 

concentrations (0.01–50 mM) to assess the uptake kinetics. Figure 3.4 show that 

valacyclovir uptake was concentration-dependent and best fitted by the sum of a 

Michaelis-Menten kinetic term and a minor linear term. When referenced to the inlet 

valacyclovir concentrations, the model parameters Vmax, Km and Kd were estimated to be 

1.4 ± 0.5 nmol/cm
2
/sec, 10 ± 4.6 mM and 3.0×10

-5
 ± 0.6×10

-5 
cm/sec, respectively.  
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Segment-dependent study. The quantitative contribution of PEPT1 to 

valacyclovir regional permeability in four intestinal segments was probed by comparing 

segmental permeability data obtained in both wildtype and Pept1 knockout mice. As 

demonstrated in Figure 3.5, in wildtype mice the effective permeability of 100 µM 

valacyclovir was segment-dependent, with mean Peff values of 2.37 × 10
-4

 cm/sec in 

duodenum, 1.68 × 10
-4

 cm/sec in jejunum, 2.11 × 10
-4

 cm/sec in ileum, and 0.27 × 10
-4

 

cm/sec in colon. While there were no statistical differences in valacyclovir Peff estimates 

for different small intestinal segments, they were substantially higher than colon Peff 

(p<0.05). In Pept1 knockout mice, valacyclovir Peff values for duodenal, jejunal, and ileal 

segments were less than 10% of that in wild-type animals. Valacyclovir Peff was similarly 

low in the colon of both genotypes. In addition, there were no statistical differences in 

valacyclovir Peff values between any of the intestinal regions of Pept1 knockout mice. 

Figure 3.6 shows the jejunal effective permeability of acyclovir in wildtype and Pept1 

knockout mice were very low with no significant difference between them. Acyclovir 

intestinal permeability was indeed negligible compared to that of valacyclovir, 

corroborating our assumption that luminally formed acyclovir had negligible contribution 

to the estimation of valacyclovir permeability in perfusion studies. 
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DISCUSSION 

In previous reports, PEPT1-mediated valacyclovir uptake was demonstrated in a 

number of in vitro studies using PEPT1-expressing cell culture systems (de Vrueh et al., 

1998; Ganapathy et al., 1998; Han et al., 1998; Guo et al., 1999; Balimane and Sinko, 

2000; Bhardwaj et al., 2005). However, findings from these studies are qualitative in 

nature and could not truthfully represent the complicated in vivo intestinal uptake process. 

In this study, we explored the quantitative contribution of PEPT1 to the intestinal 

permeability of valacyclovir by performing in situ intestinal perfusion studies in wildtype 

and Pept1 knockout mice. Use of Pept1 knockout mouse model provided us with the 

unique opportunity of unequivocally defining the quantitative significance of PEPT1-

mediated uptake of valacyclovir relative to other uptake pathways in whole animals, 

which maintained intact blood supply and the complexity of transporting pathways in 

intestinal segments. 

In wildtype mice, valacyclovir Peff values were similarly high in duodenum, 

jejunum, and ileum while valacyclovir colon Peff value was only about 11-16% of those 

permeability values in the three small intestinal regions. On the other hand, PEPT1 

protein levels were found to be comparably abundant in the duodenum, jejunum and 

ileum and undetectable in the colon of wildtype mice (Jappar et al., 2010). Therefore 

good correlation between PEPT1 protein regional expression and valacyclovir regional 

Peff values along the intestinal tract was observed. In sharp contrast, the residual Peff of 

valacyclovir in the duodenal, jejunal, and ileal segments of Pept1 knockout mice was 

about 10% of that in wildtype animals (p<0.01) and was similar to colon Peff, suggesting 
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that PEPT1 was responsible for approximately 90% of valacyclovir uptake in mouse 

small intestine. Although other transporters such as
 
human peptide transporter HPT1, 

peptide histidine transporter PHT1, and organic anion as well as cation transporters were 

suggested to be capable of transporting valacyclovir, their contributions were apparently 

insignificant in the absorption of valacyclovir in mouse small intestine.  

Amino acid transporter ATB
0,+

 was reported to be abundant on the apical 

membrane of colonocytes and actively shuttle valacyclovir into HRPE cells transfected 

with ATB
0,+

 (Hatanaka et al., 2004). In our experimental setting, low colon Peff of 

valacyclovir was observed in both genotypes, which could not support the significant 

contribution of colonic ATB
0,+

. Moreover, following colonic administration of 

valacyclovir to rats, zero plasma levels of acyclovir were detected (Kagan and Hoffman, 

2008), indicating the poor permeability of valacyclovir in rat colon as well. Furthermore, 

in light of the extensive luminal degradation of valacyclovir and a high fraction of 

acyclovir excreted in feces (de Miranda et al., 1981; Granero and Amidon, 2006), it is 

plausible that the contribution of the colonic transporter ATB
0,+

 to the intestinal 

absorption of valacyclovir is marginal. 

Inhibition studies in wildtype jejunum further supported the principal role of 

PEPT1 in mediating the absorption of valacyclovir. Only 25 mM GlySar or 25 mM 

cefadroxil, two typical PEPT1 substrates, significantly reduced valacyclovir jejunal Peff 

values, suggesting PEPT1-specific uptake of valacyclovir. The lack of inhibition by 

typical organic anion PAH and typical organic cation TEA at high concentrations seemed 

to be contradictory to the results from rat intestinal perfusion studies (Sinko and 

Balimane, 1998). However it is always challenging to directly compare results obtained 
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in two different experimental systems. Factors such as species difference in regional 

transporter expression and different experimental conditions could all contribute to the 

discrepancy observed between the two studies.  

In the current perfusion studies we also found that valacyclovir intestinal uptake 

was insensitive to bulk perfusate pH changes in the range of 5.5-7.5, which basically 

covers the physiological pH range for human intestine (Rouge et al., 1996). This finding 

seems to be conflicting with the common notion of PEPT1 being a proton dependent co-

transporter. This apparent pH-independent uptake of valacyclovir might be associated 

with the fact that changes in luminal bulk pH do not necessarily translate to significant 

changes in pH at the membrane surface of enterocytes where a low microclimate pH is 

tightly maintained (Lucas et al., 1980; Hogerle and Winne, 1983; Shiau et al., 1985). 

Furthermore, atypical pH-dependence patterns have been frequently reported for PEPT1-

mediated uptake of valacyclovir performed in various cell culture systems. For instance, 

de Vrueh et al. (1998) showed that varying extracellular medium pH from 6 to 7.4 almost 

did affect valacyclovir permeability in Caco-2 cells while Guo and his colleagues (1999) 

showed that maximum uptake of valacyclovir occurred at basic pH 7.5 and was almost 

two times higher than that at acidic pH in Chinese hamster ovary. Balimane and Sinko 

(2000) systematically examined the effect of ionization on the variable uptake of 

valacyclovir via human PEPT1 in CHO cells. Affinity constants (Km) for the cationic and 

neutral forms of valacyclovir were estimated to be 7.4 mM and 1.2 mM, respectively.  

Given these literature reports, our finding might also be interpreted by taking into 

account the dual effect of pH changes (if there is any on the enterocyte membrane surface) 

on proton gradient (the driving force of PEPT1) as well as on the ionization state of 
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valacyclovir. On one hand, PEPT1 has an optimal proton gradient under lower pH (i.e. 

pH 5.5) conditions while this driving force of PEPT1 is attenuated at higher pH (i.e. pH 

7.5) conditions. On the other hand, the predominant ionic species of valacyclovir is 

cationic at lower pH (i.e. pH 5.5) and neutral at higher pH conditions (i.e. pH 7.5) 

(Balimane and Sinko, 2000). Consequently, the combined effect of varied driving force 

for PEPT1 and variable affinities of different valacyclovir species towards PEPT1, could 

result in little net changes in effective permeability of valacyclovir in the bulk pH range 

of 5.5-7.5. 

Valacyclovir uptake kinetics in wildtype jejunum, estimated in the range of 0.01-

50 mM of valacyclovir, was fitted by the sum of a Michaelis-Menten term and a minor 

linear term. Apparent Michaelis-Menten constant (Km) was estimated at about 10 mM 

when referenced to inlet valacyclovir concentration, characteristic of low affinity 

transport activity of PEPT1. In existing literature, valacyclovir Km estimates were 

remarkably variable, from approximately 0.3 mM in Caco-2 cells (Han et al., 1998) to 

about 6 mM in oocytes injected with PEPT1 (Balimane et al., 1998). As described earlier, 

cationic valacyclovir showed a Km of 7.4 mM while neutral form of valacyclovir 

possessed a Km of 1.2 mM (Balimane and Sinko, 2000). Therefore our Km estimate is in 

line with literature values and consistent with the low-affinity feature of PEPT1-mediated 

transport. In addition, Kd was the first-order rate constant of the minor linear transport 

process of valacyclovir. As shown in Eq. (3), valacyclovir jejunal effective permeability 

could be factored as the sum of a linear component, expressed as Kd, and a PEPT1-

mediated component, expressed as Vmax/Km, at drug concentrations far below its Km. It is 

clear that approximately 83% of valacyclovir Peff could be attributed to the PEPT1-
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mediated pathway, again supporting the major contribution of PEPT1 in facilitating the 

intestinal absorption of valacyclovir. 

Finally, it is also worth noting that valacyclovir Peff values in the small intestine of 

wildtype mice were much higher than that of metoprolol, which was reported to be 

approximately 0.5 × 10
-4

 cm/sec by Jappar (2009) in her doctoral dissertation. Since 

metoprolol is a model compound absorbed via trans-cellular passive diffusion and a 

reference drug for low/high Peff class border, this comparison between the permeability of 

the two drugs suggests that the PEPT1-targeted prodrug approach effectively overcame 

the permeability barrier for the poorly permeable drug acyclovir. 

In conclusion, we have demonstrated the predominant contribution of PEPT1 in 

enhancing the intestinal permeability of the model prodrug valacyclovir by comparative 

in situ intestinal perfusion studies performed in wildtype and Pept1 knockout mice. These 

findings can strongly support the application of rationally designed PEPT1-targeted 

prodrugs to improving the intestinal permeability and absorption of otherwise poorly 

absorbable drugs. 
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(A)                                                                     (B) 

     

(C)                                                                     (D) 

 

(E)                                                                     (F) 

 

Figure 3.1 HPLC analyses of acyclovir and valacyclovir in perfusates from: (A) blank, (B) 

duodenum, (C) jejunum, (D) ileum, (E) colon, and (F) from portal vein plasma. The 

chromatographic peaks at 4.6 min and 13.4 min are corresponding to acyclovir and 

valacyclovir, respectively. 
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Figure 3.2 Effect of perfusate pH (5.5-7.5) on the effective permeability of 100 µM 

valacyclovir during jejunal perfusions of wildtype mice. Data are presented as mean ± SE 

(n = 4-5). No significant differences were found among different groups after one-way 

ANOVA followed by Bofferoni’s test. 
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Figure 3.3 Effect of putative competitive inhibitors (25 mM) on the effective 

permeability of 100 µM valacyclovir during jejunal perfusions of wildtype mice. Data are 

presented as mean ± SE (n = 4-5). * p<0.05; *** p<0.001, compared to control values. 

 



62 

 

 

 

 

 

0 10 20 30 40 50 60
0

1

2

3

Cin (mM)

F
lu

x
 (

n
m

o
l/

c
m

2
/s

e
c
)

 

Figure 3.4 Concentration dependent flux of valacyclovir (0.01 – 50 mM) during jejunal 

perfusions of wildtype mice. Solid, dashed and dotted lines are simulated results using 

the sum of a Michaelis-Menten and a linear term, the Michaelis-Menten term, and the 

linear term, respectively. Inset represents the lower concentration range of 0.01–5 mM. 

Data are presented as mean ± SE (n = 4-5). 
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Figure 3.5 Permeability of valacyclovir in different intestinal segments of wildtype and 

Pept1 knockout mice. Data are expressed as mean ± SE (n=4-5). Data with the same 

capital letters were not statistically different.  

 

 



64 

 

 

 

W
ild

ty
pe

Pep
t1

 k
noc

kou
t

0.0

0.5

1.0

1.5

2.0

P
e
ff

(
1

0
-5

c
m

/s
e
c
)

 

Figure 3.6 Jejunal permeability of 100 µM acyclovir during perfusions of wildtype and 

Pept1 knockout mice. Data are expressed as mean ± SE (n=4). Data from the two groups 

were not statistically different. 
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CHAPTER 4  

IMPACT OF PEPT1 ON THE INTESTINAL ABSORPTION AND 

PHARMACOKINETICS OF VALACYCLOVIR DURING DOSE ESCALATION 

IN WILDTYPE AND PEPT1 KNOCKOUT MICE 

 

ABSTRACT 

Purpose. To assess the quantitative significance of PEPT1 on the intestinal 

absorption and pharmacokinetics of orally administered valacyclovir during dose 

escalation in wildtype and Pept1 knockout mice.  

Methods. [
3
H]Valacyclovir was administered to wildtype and Pept1 knockout 

mice by oral gavage at increasing doses of 10, 25, 50 and 100 nmol/g body weight. 

[
3
H]Acyclovir (25 nmol/g body weight), which is not a PEPT1 substrate, was also 

administered to both genotypes via intravenous or oral routes. Serial blood samples (20 

µL per sample) following acyclovir or valacyclovir dosing were collected up to 180 

minutes. Tissue distribution studies were performed 20 minutes and 360 minutes after 

oral dosing of 25 nmol/g valacyclovir in two genotypes. [
14

C]Dextran (0.25 μCi per 

mouse) was administered by tail vein injection 5 min prior to harvesting tissue samples to 

correct for vascular space. Acyclovir concentrations in select tissue, plasma and blood 

samples were determined by liquid scintillation counting. Pharmacokinetic parameters 
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such as peak plasma concentration of acyclovir (Cmax), time to reach Cmax (Tmax), and area 

under the acyclovir plasma concentration-time curve (AUC), as well as acyclovir tissue 

distribution profiles were compared between the two genotypes. 

Results. Upon oral administration of [
3
H]valacyclovir at all four doses, acyclovir 

Cmax and AUC0-180min were on average 78% (p<0.05) and 58% (p<0.01) lower in Pept1 

knockout mice than that in wildtype mice. Acyclovir Tmax estimates in Pept1 knockout 

mice were also significantly greater than those in wildtype mice (p<0.05). Acyclovir Cmax 

and AUC0-180min were linearly correlated with valacyclovir doses in the range of 10-100 

nmol/g for both genotypes (i.e., dose proportionality). On the other hand, acyclovir 

plasma concentration-time curves obtained after intravenous or oral administration of 

acyclovir in both genotypes were almost superimposable. For tissue samples other than 

from gastrointestinal segments, acyclovir tissue concentrations were significantly higher 

in wildtype mice than in Pept1 knockout mice 20 minutes after dosing but were similar 

360 minutes after dosing. After acyclovir concentrations in non-gastrointestinal tissues 

were corrected by corresponding blood levels, no statistical differences were observed.  

Conclusions. These findings suggest that PEPT1 played a crucial role in 

facilitating the intestinal absorption of valacyclovir; its deletion significantly reduced the 

rate and extent of the intestinal absorption of valacyclovir. Dose proportionality of 

acyclovir Cmax and AUC0-180min over a wide oral dose range of valacyclovir was consistent 

with the high-capacity, low-affinity feature of PEPT1-mediated transport. PEPT1 

ablation showed no effect on the in vivo absorption, distribution and disposition of 

acyclovir after oral and intravenous acyclovir dosing. 
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INTRODUCTION 

Proton-coupled peptide transporter 1 (PEPT1) is one of the best characterized 

membrane transporters because of its physiological and pharmacological importance 

(Herrera-Ruiz and Knipp, 2003; Brandsch et al., 2008; Rubio-Aliaga and Daniel, 2008). 

PEPT1, a member of the proton-coupled oligopeptide transporter (POT) family, is a 

highly conserved influx transporter and commonly expressed in different mammalian 

species including human, rat and mouse. The mammalian PEPT1, comprised of 707-710 

amino acid residues depending on species, is predicted to have 12 trans-membrane 

domains with both N- and C-terminal facing the cytosolic side. PEPT1 couples the influx 

of its substrates and proton, where the inwardly directly proton gradient and negative 

membrane potential are the driving force for this movement. As a high-capacity low-

affinity influx transporter, PEPT1 is principally localized on the brush border membrane 

of epithelial cells in the small intestine and functions as the active uptake carrier of di-

/tri-peptides generated by the digestion of dietary proteins. Since approximately 80% of 

digested proteins are absorbed in the form of di-/tri-peptides while only 20% in the form 

of free amino acids, PEPT1 plays an essential physiological role in protein assimilation 

(Daniel, 2004). 

The pharmacological relevance of PEPT1 mainly lies in its ability to transport a 

wide spectrum of drugs from some important therapeutic classes, in addition to its 

physiological substrates. For example, many cephalosporins and aminopenicillins and 

some selected angiotensin-converting enzyme inhibitors are known substrates for PEPT1 

(Bretschneider et al., 1999; Knutter et al., 2008). More interestingly, a number of amino 
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acid or dipeptide conjugated prodrugs such as midorine, valacyclovir, valaganciclovir and 

LY544344, were also found to undergo PEPT1-mediated transport (Han et al., 1998; 

Sinko and Balimane, 1998; Sugawara et al., 2000; Tsuda et al., 2006; Varma et al., 2009; 

Eriksson et al., 2010). Prodrugs of this type are commonly called PEPT1 targeted 

prodrugs. This targeted prodrug strategy is under intensive investigation as a promising 

way to improve the oral availability of polar and hydrophilic compounds (Varma et al., 

2010). 

Valacyclovir is widely viewed as the model of PEPT1 targeted prodrugs. 

Valacyclovir is an L-valyl ester prodrug of the potent antiviral agent acyclovir used for 

the treatment and prophylaxis of herpes, varicella zoster, and cytomegalovirus infection. 

In humans, the absolute oral availability of acyclovir after oral administration of 

valacyclovir was nearly 54.2%, as opposed to only 10-20% after oral dosing of acyclovir 

(Soul-Lawton et al., 1995). Among these PEPT1 targeted prodrugs, the uptake and 

pharmacokinetic characteristics of valacyclovir have been most extensively with some 

inconsistent or even controversial findings. On one hand, numerous cell culture studies 

showed PEPT1-mediated valacyclovir uptake into cells constitutively expressing or 

transfected with PEPT1 (Balimane et al., 1998; Ganapathy et al., 1998; Han et al., 1998; 

Guo et al., 1999; Balimane and Sinko, 2000). One the other hand, valacyclovir was also 

found to interact with other transporters such as organic anion transporter 3 (OAT3) 

(Takeda et al., 2002), peptide histidine transporter 1 (PHT1) (Bhardwaj et al., 2006), 

organic cation transporters (OCTs) (Sinko and Balimane, 1998), a human peptide 

transporter (HPT1) (Landowski et al., 2003), and an amino acid transporter ATB
0,+ 

(Hatanaka et al., 2004). Currently, the general consensus is that the improved oral 
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availability of acyclovir after oral dosing of valacyclovir is mainly attributable to PEPT1 

mediated uptake; however, convincing quantitative evidence is completely lacking 

supporting the main contribution of PEPT1 relative to other valacyclovir transporters. 

Moreover, some human pharmacokinetic studies failed to reveal the relevance of 

PEPT1 in the intestinal absorption of valacyclovir, making the role of PEPT1 in 

valacyclovir absorption even more controversial. For instance, Landowski and his 

coworkers (2003) showed a strong positive correlation of pharmacokinetic parameters of 

acyclovir, after oral dosing of valacyclovir, with human oligopeptide transporter (HPT1) 

levels but no significant correlation with PEPT1 expression. Another pharmacokinetic 

study showed that co-administration of valacyclovir and cephalexin, another PEPT1 

substrate, at a single oral dose of 500 mg for both compounds had minimal impact on the 

pharmacokinetic parameters of oral valacyclovir, suggesting either higher doses of 

cephalexin or more potent PEPT1 substrates are needed for noticeable PEPT1-related 

drug-drug interactions or PEPT1-mediated uptake is not the only important pathway for 

the oral absorption of valacyclovir (Phan et al., 2003). 

 Given these inconsistencies, future studies that can conclusively elucidate the 

quantitative importance of PEPT1 in the absorption of valacyclovir and other PEPT1 

targeted prodrugs are warranted. The aim of the current study was to clarify the 

ambiguous contribution of PEPT1 to the in vivo oral absorption and pharmacokinetics of 

valacyclovir, by performing comparative pharmacokinetic and tissue distribution studies 

in wildtype and Pept1 knockout mice. With the use of Pept1 knockout animal model, this 

study can provide the first quantitative evidence supporting PEPT1 targeted prodrug 

strategy. 
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MATERIALS AND METHODS 

Animals. Animal studies were conducted in accordance with the Guide for the 

Care and Use of Laboratory Animals as adopted and promulgated by the U.S. National 

Institutes of Health. Gender matched wildtype and Pept1 knockout mice, 8 to 10 weeks 

of age, were used for all experiments. The mice were kept in a temperature-controlled 

environment with a 12-hr light/dark cycle and received a standard diet and water ad 

libitum (Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, MI). 

Materials. Unlabeled valacyclovir hydrochloride, unlabeled acyclovir and 

hydrogen peroxide were purchased from Sigma-Aldrich (St. Louis, MO). Hyamine 

hydroxide was purchased from ICN Radiochemicals (Irvine, CA). [
3
H]Valacyclovir (2.1 

Ci/mmol), [
3
H]acyclovir (12.1 Ci/mmol) and [

14
C]dextran-carboxyl (1.1 mCi/g) were 

acquired from Moravek Biochemicals and Radiochemicals (Brea, CA). 

Pharmacokinetic (PK) studies following oral valacyclovir. Wildtype and Pept1 

knokout mice were fasted overnight (~16 hours) prior to each experiment. Valacyclovir 

solutions were prepared by dissolving appropriate amounts of 
3
H-labeled and unlabeled 

valacyclovir in normal saline. Valacyclovir solution (200 µL, 10 μCi per mouse) was 

administered by gastric gavage at single doses of 10, 25, 50 and 100 nmol/g body weight. 

Serial blood samples (20 µL per sample) were collected by tail nicks at 0, 5, 15, 30, 45, 

60, 90, 120, and 180 after dosing. Blood samples were transferred to 0.2 mL 

microcentrifuge tubes containing 7.5% potassium EDTA and centrifuged at 3000 g for 3 

min, ambient temperature. A 5-10 µL aliquot of plasma was then transferred to a 

scintillation vial and 6 mL CytoScint scintillation fluid (MP Biomedicals, Solon, OH) 
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was added to the sample. Radioactivity of the plasma sample was measured on a dual-

channel liquid scintillation counter (Beckman LS 6000 SC; Beckman Coulter Inc., 

Fullerton, CA). Mice were returned to cages between blood sampling and had free access 

to water.   

In a separate pharmacokinetic study, acyclovir plasma concentrations following 

oral administration of 100 nmol/g unlabeled valacyclovir in wildtype mice were also 

determined using a validated HPLC method.  Due to the low quantification sensitivity of 

the HPLC method, at least 20 µL aliquot of plasma was needed for HPLC analysis. On 

the other hand, due to the limited blood volume that can be taken from a mouse, no more 

than 4 blood samples (40~60 µL per sample) could be collected from each animal. Since 

only 4 mice were used in this preliminary study, one single acyclovir plasma 

concentration-time curve was constructed by plotting a single concentration value (or an 

average of two concentration data if available) against time. Detailed blood sampling 

scheme is listed in Table 4.1. 

Tissue distribution studies following oral valacyclovir. Tissue distribution 

studies were performed 20 minutes and 360 minutes after oral administration of 25 

nmol/g [
3
H]valacyclovir in both wildtype and Pept1 knockout mice. 100 µL [

14
C]dextran 

solution (0.25 μCi per mouse) was administered by tail vein injection to each mouse 5 

minutes before harvesting tissues to determine the tissue vascular space. Following 

decapitation, selected organs/tissues including brain, eyes, heart, lung, liver, kidney, 

spleen, muscle and gastrointestinal (GI) segments including stomach, duodenum, jejunum, 

ileum and colon were isolated, blotted dry, weighed, and then solubilized in 330 µL of 1 
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M hyamine hydroxide at 37℃ overnight, as described by the manufacturer. Three 10-µL 

whole blood samples were also collected. The GI segments were flushed 2-3 times with 

ice-cold saline solution to remove contents prior to weighing. After solubilization of all 

organs/tissues, 40 µL H2O2 (30%) was slowly added to each sample for decolorization. 6 

mL CytoScint scintillation fluid was added to each sample and the radioactivity of tissue 

samples were also measured by a dual-channel liquid scintillation counter.  

Pharmacokinetic studies following oral or intravenous acyclovir. Acyclovir 

solutions were prepared by dissolving appropriate amounts of 
3
H-labeled and unlabeled 

acyclovir in normal saline. For oral studies, 200 µL acyclovir solution (10 μCi per mouse) 

was administered to each animal by gastric gavage at a single acyclovir dose of 25 

nmol/g body weight. Blood sample collection time points were the same as for oral 

valacyclovir. For intravenous studies, 100 µL acyclovir solution (5 μCi per mouse) was 

administered by tail vein injection at a single dose of 25 nmol/g body weight. Serial 

blood samples (20 μL per sample) were collected at 0, 2, 5, 15, 30, 60, 90, 120 and 180 

minutes after intravenous dosing. Other experimental procedures such as plasma 

collection and radioactivity assay were the same as previously described. 

Sample preparation and HPLC analysis. A 20-µL aliquot of plasma sample 

obtained in PK studies was mixed with an 80-µL blank mouse plasma sample containing 

internal standard (IS) ganciclovir to prepare a final plasma sample. Each final plasma 

sample (100 µL) was mixed with HPLC-grade acetonitrile at a ratio of 1:2 (v/v) and then 

vigorously vortex-mixed for 1 minute at room temperature for complete protein 

precipitation. The resulting mixture was then centrifuged at 15000 g at 4 °C for 10 
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minutes. Clean supernatant was carefully collected and transferred to a new 1.5-mL 

centrifuge tube and evaporated to dryness under vacuum. The residue was then 

reconstituted by the addition of 40 µL mobile phase prior to HPLC analysis. Each 

calibration standard plasma sample of acyclovir (20 µL per sample) was also mixed with 

80 µL blank IS-containing mouse plasma and then prepared following the above-

mentioned procedure. The linearity range of acyclovir concentration in the 20-µL plasma 

sample was 6.25 to 500 µM. In the HPLC analysis, The isocratic mobile phase consisted 

of 3% organic phase (0.1% v/v trifluoroacetic acid (TFA) in acetonitrile) and 97% 

aqueous phase (0.1% v/v TFA in water). Other HPLC conditions were the same as 

previously described in Chapter 3.  

Data analysis. Acyclovir plasma concentration versus time curves following 

different dosing routes were fitted by non-compartmental analysis (WinNonlin, version 

5.3; Pharsight Inc., Mountainview, CA). Following oral administration of valacyclovir or 

acyclovir, peak acyclovir plasma concentrations (Cmax) and time to reach Cmax (Tmax) 

were observed values. Area under the acyclovir plasma concentration-time curve (AUC) 

was calculated by linear trapezoidal rules. For intravenous administration of acyclovir, 

AUC, total clearance (CL), the volume of distribution at steady state (Vdss) were also 

reported. Terminal half-life (T1/2) was estimated as T1/2=ln2/λz, where λz is the log-linear 

slope determined by using ≥ 3 data points from the terminal phase. 

For tissue distribution studies, acyclovir tissue concentrations were corrected for 

the vascular space using the following equation: Ctiss, corr=Ctiss - DS×Cb, where Ctiss, corr 

and Ctiss stand for the corrected and uncorrected acyclovir tissue concentrations (nmol/g), 



78 

 

DS is the dextran space (blood vascular space) in the tissue (mL/g), and Cb is acyclovir 

blood concentrations (nmol/mL). 

All results were expressed as mean ± standard error (SE) unless otherwise 

indicated. Unpaired two-tail T-test was used to compare differences between two 

different experimental groups of mice. A p value of less than 0.05 was considered 

statistically significant. 
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RESULTS 

HPLC analysis. Figure 4.1 depicts representative HPLC chromatograms for the 

quantification of acyclovir in mouse plasma. The IS and acyclovir were well separated 

with no interference from endogenous substances in plasma. A calibration curve was 

constructed by least squares linear regression analysis of the peak area ratios of acyclovir 

to the IS (y) versus analyte concentrations (x). A typical regression equation was 

y=0.066x-0.063 with a correlation coefficient (R
2
) of 0.9997. Good linearity was shown 

in the stated concentration range. 

Pharmacokinetic studies following oral or intravenous acyclovir. As 

demonstrated in Figure 4.2 (A-D), mean acyclovir plasma concentration versus time 

curves were almost superimposable following either oral or intravenous administration of 

25 nmol/g acyclovir in wildtype and Pept1 knockout mice. Non-compartmental PK 

parameters of acyclovir derived after its oral or intravenous administration for each 

genotype are shown in Table 4.2. Lack of significant difference in each PK parameter 

between two genotypes confirms that PEPT1 ablation does not affect the absorption and 

in vivo disposition of acyclovir in mice.  

Pharmacokinetic studies following oral valacyclovir. The mean acyclovir 

plasma concentration-time curves following oral administration of valacyclovir at 

increasing doses in both wildtype and Pept1 knockout mice are depicted in both linear 

(Figure 4.3) and logarithmic (Figure 4.4) scales. As shown in Figures 4.3 and 4.4, 

acyclovir plasma concentrations displayed different time courses in the two genotypes. In 

wildtype mice, acyclovir plasma concentrations increased quickly to reach Cmax within 30 
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minutes after oral dosing of valacyclovir. Right after reaching peak concentrations, 

acyclovir plasma concentrations decreased rapidly up to 60 minutes, followed by a much 

slower deccline up to 180 minutes. In contrast, Pept1 knockout mice had substantially 

lower acyclovir peak concentrations at much delayed time points for each dose group. In 

addition, acyclovir concentrations nearly plateaued out with time after reaching Cmax in 

Pept1 knockout mice.  

In addition to the visual inspection of acyclovir plasma concentration-time curves, 

the contribution of PEPT1 to the rate and extent of valacyclovir absorption was further 

assessed by comparing metrics including Cmax, Tmax, early cumulative partial AUC, and 

AUC, among which the first three metrics are proposed as indicators of absorption rate 

while AUC is a measure of the extent of oral absorption (Chen et al., 2001). As seen in 

Table 4.3, there was approximately a 54-65% reduction in AUC0-180 min in Pept1 knockout 

mice compared with wildtype animals (p<0.01), suggesting reduced extent of 

valacyclovir systemic exposure due to PEPT1 ablation. Acyclovir Cmax was 

approximately 5-fold lower in Pept1 knockout than that in wildtype mice at four doses 

(p<0.05). Meanwhile, mean Tmax ranged from 15 to 24 minutes in wildtype mice and 

from 71 to 156 minutes in Pept1 knockout mice (p<0.05). Furthermore, the ratio of early 

partial AUC of Petp1 knockout to wildtype mice, when truncated at 60 minutes, was 22%, 

14%, 21% and 17%, for the four increasing dose levels. Cumulative partial AUC vs. time 

curves were also used in order to investigate the potential impact of PEPT1 deletion on 

the absorption rate of valacyclovir at four examined doses. As illustrated in Figure 4.5 

(A-D), the curve slopes for wildtype mice were much steeper than those for Pept1 

knockout mice during early time intervals (5-60 min). However, the curves from both 
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genotypes appear to be parallel to each other and have similar slopes from 90 to 180 min. 

As shown in Table 4.4, at 5-60 min, the slopes were approximately 78% lower in Pept1 

knockout mice compared with wildtype mice, whereas from 90-180 min, the slopes for 

both genotypes were similar with less than 21% difference. Jointly, comparison of all 

these metrics described above suggests significantly reduced rate and extent of 

valacyclovir absorption due to PEPT1 deficiency. 

Following oral dosing of 100 nmol/g unlabeled valacyclovir in wildtype mice, the 

plasma concentration-time curve of acyclovir was also measured by HPLC coupled with 

fluorescence detection. As shown in Figure 4.6, the acyclovir plasma concentration-time 

curve determined by HPLC was similar to the previously shown mean concentration-time 

curve determined by radioactive assay, suggesting the total radioactivity measured in 

plasma was attributable to plasma acyclovir rather than prodrug valacyclovir and possible 

minor metabolites of acyclovir. 

Dose-proportionality of acyclovir Cmax and AUC0-180min following oral 

valacyclovir in both genotypes was evaluated over the oral dose range of 10-100 nmol/g 

valacyclovir. As shown in Figure 4.7 (A-B), both Cmax and AUC0-180min of acyclovir were 

linearly correlated with oral valacyclovir doses in the two genotypes, with non-zero 

regression slopes (p<0.0001). Figure 4.7 (C-D) shows that ratios of Cmax/dose and AUC0-

180min/dose were independent of doses, evidenced by the slopes of linear regression lines 

not being different from zero. 

Acyclovir tissue distribution following oral valacyclovir. Tissue distribution 

studies were performed 20 minutes and 360 minutes after oral administration of 25 
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nmol/g valacyclovir to examine the impact of PEPT1 ablation on the in vivo distribution 

of acyclovir. As shown in Figure 4.8 (A), 20 minutes after oral dosing of valacyclovir, 

acyclovir concentrations in non-GI tissues were always significantly higher in wildtype 

mice than that in Pept1 knockout mice. A 5-fold significant difference was also observed 

between whole blood concentrations (p<0.001). As demonstrated in Figure 4.8 (B), for 

proximal GI segments including stomach, duodenum and jejunum, no significant 

differences in these tissue concentrations were observed between two genotypes; 

however, for distal intestinal segments including ileum and colon, significantly higher 

tissue concentrations were found in wildtype mice, similar to the pattern observed in non-

GI tissues.  As shown in Figure 4.9 (A-B), 360 minutes after oral dosing of valacyclovir, 

no statistically significant differences were observed in acyclovir tissue and whole blood 

concentrations between wildtype and Pept1 knockout mice, except for brain. Acyclovir 

brain concentrations were significantly higher in Pept1 knockout mice with a p value of 

0.017.  

After oral administration of valacyclovir, non-GI tissues only received acyclovir 

from arterial blood perfusing them. Therefore acyclovir concentrations in non-GI tissues, 

corrected by their corresponding whole blood concentrations, were also examined to rule 

out the differences in tissue concentrations caused by the differences in systemic 

exposure. As shown in Figure 4.10, except for brain, no significant differences were 

observed between two genotypes for the tissue-to-blood concentration ratios of non-GI 

samples at both 20 min and 360 min. 20 minutes after dosing, acyclovir brain-to-blood 

concentration ratios were significantly higher in Pept1 knockout mice with a p value of 

0.025. 
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DISCUSSION 

Valacyclovir was found to be actively transported by PEPT1 in various cell 

culture systems expressing PEPT1. Our in situ intestinal perfusion studies of valacyclovir 

in wildtype and Pept1 knockout mice further demonstrated that intestinal PEPT1 is the 

predominant route of valacyclovir uptake in mouse small intestine, accounting for nearly 

90% of valacyclovir permeability in various small intestinal segments of wildtype mice. 

The finding on PEPT1-mediated intestinal permeability of valacyclovir provides the first 

quantitative measure for the relative significance of PEPT1 in enhancing intestinal 

absorption of valacyclovir. However, the potential limitation of perfusion studies is that it 

does not account for other simultaneous intestinal kinetic processes of valacyclovir such 

as physiological gastrointestinal transit kinetics and valacyclovir luminal degradation. 

Furthermore, the direct influence of PEPT1 on the in vivo absorption and overall 

pharmacokinetic profiles of valacyclovir cannot be reflected by permeability studies. The 

current pharmacokinetic and tissue distribution studies, performed in wildtype and Pept1 

knockout mice in parallel, were designed to examine the in vivo contribution of PEPT1 

over a wide dose range. 

When parent drug acyclovir was administered to wildtype and Pept1 knockout 

mice via oral or intravenous routes, no significant differences were observed in either 

acyclovir plasma concentration versus time curves (Figure 4.2) or its PK parameters 

(Table 4.1), indicating that PEPT1 does not affect the oral absorption and in vivo 

disposition of acyclovir, consistent with the previous in situ perfusion finding of 

acyclovir not being transported by PEPT1. Furthermore, lack of significant differences in 
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acyclovir pharmacokinetics between two genotypes also suggests that pharmacokinetic 

processes that may affect the in vivo disposition of acyclovir, such as distribution and 

elimination, remain similar in two genotypes. When the ratio of AUC following oral and 

intravenous dosing of acyclovir was used to measure oral bioavailability, the mean oral 

bioavailability of acyclovir was 51% in wildtype and 46% in Pept1 knockout mice 

respectively, similar to the previous report that the oral availability of acyclovir in mouse 

was 43.2%, a value higher than the oral availability of acyclovir in rat and human (de 

Miranda et al., 1981; Soul-Lawton et al., 1995).  

The purpose of comparing acyclovir plasma concentration time profiles 

determined by HPLC and radioactivity assay was to confirm that the total radioactivity 

measured in mouse plasma (or tissues) is only corresponding to acyclovir. As shown 

Figure 4.6, the two curves are nearly superimposable with each other. Besides, in 

previous perfusion studies, valacyclovir was found to undergo rapid and nearly complete 

hydrolysis in the intestinal wall and only acyclovir was detected in portal vein blood. 

Previous metabolic studies of acyclovir also showed 94% of the urinary radioactivity in 

mice was unchanged acyclovir (de Miranda et al., 1981). Given all the literature and our 

own experimental evidence, we concluded that the measured radioactivity in plasma is 

attributable to acyclovir and the pharmacokinetics of the active drug acyclovir is a 

suitable measure of the prodrug’s performance in vivo. 

In the PK studies following oral administration of valacyclovir, marked 

differences were observed in acyclovir plasma concentration versus time profiles between 

two genotypes. For each dose, acyclovir plasma levels in wildtype were always 

significantly higher than that in Pept1 knockout mice at the same time point up to 90 
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minutes after administration, indicative of different absorption profiles between two 

genotypes (Figure 4.3 and 4.4). Various metrics were also employed to assess the 

differences in the extent and rate of valacyclovir absorption in mouse. The key finding 

from this part of the pharmacokinetic study is that PEPT1 deletion leads to 2-fold 

difference in AUC (a well-accepted indicator of systemic exposure) and 5-fold difference 

in Cmax (a much-criticized indicator of the absorption rate), supporting the quantitative 

significance of PEPT1 in the intestinal absorption of valacyclovir. Partial AUC during 

early time interval after drug administration was also proposed as a measure of the rate of 

absorption, which is more discriminating than Cmax and/or Tmax in the evaluation of 

absorption rates (Chen, 1992; Chen et al., 2001). In our study, partial AUC in Pept1 

knockout mice, when truncated at 60 minutes, was 80% less than that in wildtype mice, 

revealing marked differences in the rate of valacyclovir absorption. Similarly, slopes of 

the cumulative partial AUC-time curves (from 5 to 60 minutes) were also reduced by 

about 80% in Pept1 knockout mice compared to wildtype mice, again suggesting 

significantly decreased absorption rate of valacyclovir due to PEPT1 deletion.  

Wide dose proportionality of AUC and Cmax of acyclovir was revealed after oral 

dosing of valacyclovir in two genotypes in the dose range of 10-100 nmol/g. This dose 

range was selected by allometric scaling of commonly prescribed clinical doses based on 

body weight. In perfusion studies, apparent affinity constant of valacyclovir toward 

intestinal PEPT1 was estimated to be approximately 10 mM at pH 6.5. Assuming a 

stomach volume of 0.4 mL, the maximum possible stomach concentration of valacyclovir 

after oral administration of 100 nmol/g body weight valacyclovir (assuming a typical 

body weight of 20 g) was 5 mM, which is much lower than apparent Km for PEPT1. The 
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luminal concentration of valacyclovir down the intestinal tract longitudinally may further 

decrease due to various factors such as simultaneous transit, absorption, degradation and 

changes in fluid volume of each segment. Consequently, no appreciable saturation in the 

pharmacokinetics of orally administered valacyclovir was observed. Overall, the apparent 

linearity of PK parameters with doses in wildtype animals is in agreement with the low-

affinity high-capacity characteristics of PEPT1-mediated transport.  

Results from the current comparative pharmacokinetic study corroborate our 

previous in situ perfusion findings regarding the major role of PEPT1 in the intestinal 

uptake of valacyclovir; however, the magnitude of the contribution of PEPT1 was found 

to be less pronounced in vivo than in situ. Intuitively, one reasonable explanation for the 

discrepancy is the effect of the in vivo transit of valacyclovir from proximal small 

intestine to distal large intestine. The transit time was reported to be around 1 hour in 

mouse small intestine. Assuming identical transit kinetics for wildtype and Pept1 

knockout mice, valacyclovir can be expected to undergo rapid PEPT1-mediated 

absorption in the small intestine and negligible absorption in the colon due to small 

concentration gradient available for passive diffusion in wildtype mice. In contrast, in 

Pept1 knockout mice, valacyclovir has a slow passive absorption in the small intestine 

with greater residual concentration of drug reaching the colon, leading to greater 

compensatory passive absorption in the distal segment for a sufficient time period. In 

addition, in the in vivo absorption process, valacyclovir is simultaneously degraded to 

generate acyclovir in the lumen all the time, resulting in less valacyclovir available for 

rapid PEPT1 mediated uptake in the small intestine of wildtype mice. In the following 

chapter, simulation and modeling will be used as a means to integrate in situ and in vivo 
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results and further facilitate our mechanistic understanding of variable factors that may 

affect valacyclovir absorption. 

The rationale of characterizing tissue distribution of acyclovir at 20 minutes after 

oral valacyclovir was that on average acyclovir Tmax was found to be nearly 20 minutes in 

wildtype animals. Conceivably, absorption process is still playing a major role in 

determining the systemic levels of acyclovir at this time point. To the contrary, 360 

minutes after dosing was selected based on the assumption that valacyclovir intestinal 

absorption is completed and only the in vivo disposition kinetics dictates the tissue levels 

of acyclovir. 

For non-GI tissues, when acyclovir tissue levels were examined at 20 minutes and 

360 minutes post dosing, it was confirmed that the differences in acyclovir tissue 

concentrations was only driven by the differences in acyclovir blood levels under 

equilibrium conditions, as evidenced by lack of significant differences in tissue-to-blood 

concentration ratios between two genotypes (Figure 4.10). These results support our 

previous finding that PEPT1 does not play a role in affecting the in vivo disposition of 

acyclovir. The only exception was brain, which showed significantly higher brain-to-

blood concentration ratios in Pept1 knockout than in wildtype mice at 20 minutes. This 

erratic result might be explained by altered uptake of acyclovir in the brain of Pept1 

knockout mice. However no existing experimental results can support this postulation.  

Gastrointestinal segments are the site of absorption for orally administered 

valacyclovir. 20 Minutes after oral administration of valacyclovir, the gastrointestinal 

tissues may still receiving valacyclovir from the luminal side. Therefore, we expected the 
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differences in valacyclovir intestinal uptake between two genotypes would translate into 

different tissue levels of acyclovir in GI segments. However, no significant differences in 

acyclovir concentrations were found for upper GI segments (stomach, duodenum and 

jejunum) between the two genotypes while acyclovir ileal and colonic concentrations 

were significantly higher in wildtype mice than those in Pept1 knockout mice. At first, 

the lack of differences in acyclovir levels in upper GI segments between the two 

genotypes was ascribed to a flawed experimental procedure, in which the washing step 

might not be sufficient for the removal of high luminal levels of valacyclovir that may 

attach onto the membrane surface of GI tissue samples. However, increasing the number 

of washes did not improve the result. Future experiment is warranted for a meaningful 

interpretation of this result. 360 Minutes post dosing, acyclovir levels in GI tissues are 

presumably only in equilibration with plasma acyclovir. No significant differences were 

found either in acyclovir blood levels or in acyclovir tissue levels for GI segments 

(Figure 4.9).  

In conclusion, this study demonstrates that PEPT1 deletion significantly reduced 

the extent and rate of the intestinal absorption of valacyclovir in Pept1 knockout mice 

while PEPT1 did not affect the in vivo distribution and disposition of acyclovir. Future 

modeling studies are needed to extrapolate in situ findings to in vivo cases in a 

quantitative way. 
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Figure 4.1 HPLC chromatograms for the analyses of acyclovir and the internal standard 

(IS) ganciclovir in: (A) a blank plasma sample; (B) an acyclovir calibration standard of 

250 µM; (C) a real PK sample 15 minutes after oral administration of 100 nmol/g 

unlabeled valacyclovir in a wildtype mouse. Chromatographic peaks at 5.1 and 6.1 

minutes correspond to ganciclovir and acyclovir, respectively. 
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Figure 4.2 Acyclovir plasma concentration-time curves in wildtype and Pept1 knockout 

mice after dosing acyclovir: (A) intravenous bolus administration of 25 nmol/g body 

weight (y-axis shown as a linear scale); (B) intravenous bolus administration of 25 

nmol/g body weight (y-axis shown as a logarithmic scale); (C) oral administration of 25 

nmol/g body weight (y-axis shown as a linear scale); (D) oral administration of 25 nmol/g 

body weight (y-axis shown as a logarithmic scale). Data are expressed as mean ± SE 

(n=3-6). 
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Figure 4.3 Acyclovir plasma concentration-time curves in wildtype and Pept1 knockout 

mice after oral administration of [
3
H]valacyclovir of: (A) 10 nmol/g body weight; (B) 25 

nmol/g body weight; (C) 50 nmol/g body weight; (D) 100 nmol/g body weight (y-axis 

shown as a linear scale). Data are expressed as mean ± SE (n=4-7). 
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Figure 4.4 Acyclovir plasma concentration-time curves in wildtype and Pept1 knockout 

mice after oral administration of [
3
H]valacyclovir of: (A) 10 nmol/g body weight; (B) 25 

nmol/g body weight; (C) 50 nmol/g body weight; (D) 100 nmol/g body weight (y-axis 

shown as a logarithmic scale). Data are expressed as mean ± SE (n=4-7). 
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Figure 4.5 Partial AUC of acyclovir as a function of time in wildtype and Pept1 knockout 

mice after oral administration of valacyclovir of: (A) 10 nmol/g body weight; (B) 25 

nmol/g body weight; (C) 50 nmol/g body weight; (D) 100 nmol/g body weight. Data are 

expressed mean ±SE (n=4-7). 
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Figure 4.6 Comparison of acyclovir plasma concentration-time curves following oral 

administration of 100 nmol/g valacyclovir in wildtype mice measured by HPLC and 

radioactive assay: (A) in a linear scale; (B) in a logarithmic scale. Data are expressed as 

mean ± SE for radioactive assay (n=4) while a single or duplicate value is used for HPLC.
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Figure 4.7 Dose proportionality of (A) acyclovir Cmax; (B) acyclovir AUC0-180min; (C) 

dose normalized acyclovir Cmax; (D) dose normalized acyclovir AUC0-180min for wildtype 

and Pept1 knockout mice. Linear regression lines, regression equations and associated r
2
, 

fitted between pharmacokinetic parameters (y) and valacyclovir doses (x), are displayed 

for each dose group. Data are expressed as mean ± SE (n=4-7). 
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Figure 4.8 Tissue concentrations of acyclovir 20 min after oral administration of 25 

nmol/g [
3
H]valacyclovir in wildtype and Pept1 knockout mice: (A) non-gastrointestinal 

tissues; (B) Gastrointestinal segments. Data are expressed as mean ± SE (n=4-6). * 

p<0.05, ** p<0.01, *** p<0.001, compared with wildtype mice. 
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Figure 4.9 Tissue concentrations of acyclovir 360 min after oral administration of 25 

nmol/g [
3
H]valacyclovir in wildtype and Pept1 knockout mice: (A) non-gastrointestinal 

tissues; (B) gastrointestinal segments. Data are expressed as mean ± SE (n=4-7). * 

p<0.05, compared with wildtype mice.
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Figure 4.10 Tissue-to-blood concentration ratios of acyclovir for non-gastrointestinal 

tissues (A) 20 minutes and (B) 360 minutes after oral administration of 25 nmol/g [
3
H] 

valacyclovir in wildtype and Pept1 knockout mice. Data are expressed as mean ± SE 

(n=4-7). * p<0.05, compared with wildtype mice. 
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Table 4.1 Blood sampling scheme for HPLC analysis after oral administration of 100 

nmol/g unlabeled valacyclovir in wildtype mice 

 

 

 

 

 

 

 

 

 

Mouse ID Time points (min) Blood sample volume (µL) 

1 5, 15, 30 40-60 

2 15,  30, 45 40-60 

3 45, 60, 90 40-60 

4 120, 180 40-60 
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Table 4.2 Pharmacokinetic parameters of acyclovir after oral (p.o.) or intravenous (i.v.) 

administration of 25 nmol/g acyclovir in wildtype (WT) and Pept1 knockout (KO) mice 

 

 

Route Parameter (unit) 

Acyclovir (25 nmol/g) 

WT KO 

p.o. 

T
max 

(min) 43±6 45±15 

C
max 

(µM) 3.1±0.3 3.2±0.2 

AUC0-180min 

(µmol /L·min) 
405±42 431±21 

i.v. 

CL (L/hr/kg) 1.33 ± 0.12 1.17 ± 0.15 

Vdss (L/kg) 2.3 ± 0.5 1.4 ± 0.3 

T1/2 (min) 135 ± 16 88 ± 15 

AUC0-180min 

(µmol/L·min) 
941 ± 126 1181 ± 192 

Data are expressed as mean ±SE (n=3). No significant differences were found for 

all these pharmacokinetic parameters between the two genotypes. 
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Table 4.3 Pharmacokinetic parameters of acyclovir after oral administration of 

valacyclovir in wildtype (WT) and Pept1 knockout (KO) mice 

 

 Parameter (unit) 

Dose (nmol/g body weight) 

10 25 50 100 

WT 

T
max 

(min) 24±4 19±3 15±0 15±0 

C
max 

(µM) 3.8±0.5 9.6±0.5 20.9±1.5 40.6±6.8 

AUC0-180min 

(µmol/L·min) 
278±13 663±34 1675±66 2923±190 

KO 

T
max 

(min) 71±11
*
 96±16

**
 156±24

**
 150±19

**
 

C
max 

(µM) 0.9±0.1
**

 1.7±0.1
***

 5.0±0.5
***

 8.8±0.5
*
 

AUC0-180min 

(µmol/L·min) 
128±8

***
 235±11

***
 743±78

***
 1233±79

**
 

Ratios of AUC
0-180min

 

(KO/WT) 
46% 35% 44% 42% 

Data are expressed as mean ±SE (n=4-7). * p<0.05, ** p<0.01, *** p<0.001, compared 

with wildtype mice given the same doses. 
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Table 4.4 Dose-corrected slopes of cumulative partial AUC vs. time in wildtype (WT) 

and Pept1 knockout (KO) mice (Corresponds to Figure 4.5) 

 

Dose 

(nmol/g) 

Slope for 5-60 min Slope for 90-180 min 

WT KO 
Ratio 

(KO/WT) 
WT KO 

Ratio 

(KO/WT) 

10 0.27 0.060 0.22 0.092 0.076 0.83 

25 0.28 0.041 0.15 0.075 0.059 0.79 

50 0.31 0.062 0.20 0.12 0.10 0.83 

100 0.27 0.046 0.17 0.11 0.084 0.76 
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CHAPTER 5  

IN SILICO SIMULATION OF THE INTESTINAL ABSORPTION AND 

PHARMACOKINETICS OF VALACYCLOVIR IN WILDTYPE AND PEPT1 

KNOCKOUT MICE 

 

ABSTRACT 

Purpose. To delineate the contribution of PEPT1 on the intestinal absorption of 

valacyclovir and to predict acyclovir plasma concentration-time profiles in wildtype and 

Pept1 knockout mice after oral administration of valacyclovir.  

Methods. The mechanism-based “advanced compartmental absorption and transit” 

(ACAT) model implemented in GastroPlus was used in these simulations. The ACAT 

model needed all parameters to be solved prior to predictions. Mouse gastrointestinal 

physiology values were extracted from the literature and PEPT1 protein expression, 

passive and/or PEPT1-mediated permeability of valacyclovir, and luminal degradation of 

prodrug were estimated in previously described in situ perfusions. The in vivo disposition 

kinetics of acyclovir was determined by a 3-compartment model after intravenous dosing 

of acyclovir. After optimizing the model parameters, the in vivo absorption of 

valacyclovir and acyclovir plasma concentration-time profiles were predicted in both 

genotypes after oral administration of 10, 25, 50 and 100 nmol/g valacyclovir. 

Predictions were compared with our own experimental data. 
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Results. For wildtype mice, the predicted acyclovir plasma concentration-time 

profiles at four escalating doses of oral valacyclovir agreed well with experimental data 

in vivo. Predicted maximum acyclovir plasma concentrations (Cmax) and area under the 

acyclovir plasma concentration-time curve (AUC) values were also comparable with 

observed values. For Pept1 knockout mice, permeability values were optimized 

separately for each dose group, which were all within the 90% confidence intervals of 

mean estimated Peff values and provided a reasonable model fit. In wildtype mice, the 

duodenum (42%) was the primary site of valacyclovir absorption, with less absorption 

occurring in the jejunum (24%), ileum (4%) and colon (<1%) for a total of 70%. In the 

absence of luminal degradation, the intestinal absorption of valacyclovir was nearly 

complete. In Pept1 null mice, intestinal absorption by the duodenum (4%), jejunum 

(13%), ileum (10%) and colon (12%) accounted for a total of only 40%. 

Conclusions. The ACAT model, developed herein, proved to be a useful tool in 

bridging the gap between in situ and in vivo experimental findings, and in facilitating our 

understanding of the complicated intestinal absorption process of valacyclovir. Under 

normal circumstances, the enhanced permeability of valacyclovir by PEPT1 resulted in 

almost all the prodrug being absorbed in duodenal and jejunal regions.  In the absence of 

PEPT1, the absorption of valacyclovir was favored in jejunal, ileal and colonic regions. 

The ACAT model is potentially useful for predicting the intestinal absorption and in vivo 

pharmacokinetics of valacyclovir in man based on animal data. 
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INTRODUCTION 

Modeling and simulation are becoming increasingly powerful tools in several 

stages of drug development. In preclinical and clinical studies, one area with intense 

application of model-based approaches is the predictive mechanistic modeling of the 

intestinal absorption of oral drugs, where a multitude of mechanism or physiology-based 

models have been published and well documented (Huang et al., 2009). Among these 

mechanistic models, ADAM, Grass, GITA and the advanced compartmental absorption 

and transit (ACAT) models are all compartmental models that take into consideration 

fluid movement along the digestive tract and absorption over time from each 

gastrointestinal compartment. These mechanistic absorption models have been 

successfully applied to describe the intestinal absorption of a number of oral drugs and 

greatly facilitated our understanding of the impact of various formulation-related, 

physicochemical and physiological factors on oral absorption (Yu and Amidon, 1998; 

Yokoe et al., 2003; Tubic et al., 2006; Haddish-Berhane et al., 2009; Hironaka et al., 

2009; Thelen et al., 2011). 

The ACAT
TM

 model, modified from the original CAT model (Yu et al., 1996; Yu 

and Amidon, 1999) to include first-pass metabolism and colonic absorption, is a flexible 

comprehensive compartmental model accounting for almost all intestinal processes such 

as drug release, dissolution, precipitation, luminal degradation, active and passive uptake 

as well as gastrointestinal transit. Details about the ACAT model were thoroughly 

reviewed (Agoram et al., 2001). The commercial software GastroPlus is based on the 
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ACAT model and suitable for the purpose of predictive simulation of the complex 

intestinal absorption of our model prodrug valacyclovir.  

Valacyclovir is an L-valyl ester prodrug of the potent antiviral agent acyclovir and 

is commonly viewed as a model PEPT1 targeted prodrug. Intensive research efforts have 

been focused on delineating the quantitative importance of PEPT1 in the intestinal 

absorption of valacyclovir, which understandably lays a solid basis for promoting the 

rational design of prodrugs selectively targeting intestinal PEPT1 to improve the oral 

absorption and availability of poorly permeable molecules. Using Pept1 knockout mice, 

we have thoroughly evaluated the quantitative contribution of intestinal PEPT1 in 

facilitating the intestinal absorption of valacyclovir in whole animals by in situ (see 

Chapter 3) and in vivo (see Chapter 4) experimental methods. Our previous in situ 

intestinal perfusion studies demonstrated that valacyclovir is actively transported by 

intestinal PEPT1, which contributes approximately 90% of the intestinal permeability of 

valacyclovir in mouse small intestine. In the in vivo pharmacokinetic studies, 5-fold and 

2-fold differences were observed, respectively, for peak acyclovir plasma concentrations 

(Cmax) and area under the acyclovir plasma concentration-time curve (AUC) values 

between the two genotypes.  

Based on the in situ and in vivo findings, we concluded that PEPT1 had a major 

role in mediating the intestinal absorption of valacyclovir. However, there methods were 

more descriptive and lacked a systematic means to interpret the marked difference in 

plasma concentration-time profiles between wildtype and Pept1 knockout mice. 

Conceivably, the intestinal absorption of valacyclovir, under either in situ or in vivo 

conditions, is governed by a unified absorption mechanism in mouse. Therefore, it is 
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feasible to utilize a mechanism-based absorption model such as ACAT to integrate these 

experimental findings and, more importantly, to predict a priori the involvement of 

PEPT1 in the intestinal absorption and pharmacokinetics of valacyclovir. In addition, the 

intestinal absorption of valacyclovir is influenced by numerous physicochemical, 

physiological and biochemical variables such as pH, absorption surface area, gastric 

emptying and intestinal transit among others. Therefore modeling approaches also offer 

the unique opportunity to assess the impact of changes of these variables on the rate and 

extent of valacyclovir intestinal absorption.  

The main objective of the current work is to retrospectively predict and simulate 

the in vivo pharmacokinetic profiles of acyclovir, derived from oral administration of 

valacyclovir, in wildtype and Pept1 knockout mice by integrating in situ findings about 

valacyclovir permeability and degradation into the ACAT model. This work was 

completed using GastroPlus since this software allowed us to simulate active and passive 

transport process and other simultaneous kinetic processes in the intestine.  
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MATERIALS AND METHODS 

Software. Simulations were run on a standard Dell desktop computer using 

GastroPlus (version 7, Simulations Plus, Lancaster, California, USA).  

The ACAT theoretical model. The flexible mechanism-based ACAT model was 

tailored to represent the intestinal process of dissolved valacyclovir in mouse. Briefly, the 

ACAT model describes the gastrointestinal (GI) tract as a series of nine consecutive 

compartments in which one compartment represents the stomach and eight compartments 

represent the different intestinal regions. Valacyclovir in the stomach is only governed by 

gastric emptying while luminal concentrations of valacyclovir within a given intestinal 

compartment are subjected to several simultaneous kinetic processes including intestinal 

transit in and out of that compartment, luminal degradation and absorption across the 

apical membrane of intestinal epithelial cells. Inside epithelial cells, intra-cellular 

valacyclovir is further governed by instantaneous biotransformation into acyclovir, which 

is further controlled by bi-directional passive efflux into the luminal or blood side, 

depending on its concentration gradient. Thus, it is possible acyclovir can be passively 

secreted back into the lumen.  

All the GI kinetic processes describe above, combined with the in vivo disposition 

kinetics of acyclovir in mouse, can be mathematically represented by a system of coupled 

first-order and Michaelis-Menten rate equations. Therefore, accurate parameters of the 

equation systems are needed in order to obtain accurate predictions using this ACAT 

model in GastroPlus. 
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Key model assumptions. For predicting acyclovir plasma concentration-time 

profiles, the following six key assumptions were common for wildtype and Pept1 

knockout mice: 1) the stomach is not an absorption site; 2) GI transit is a first-order 

process; 3) valacyclovir luminal degradation is a first-order process; 4) valacyclovir 

undergoes instantaneous, complete and non-saturated metabolic biotransformation to 

acyclovir in intestinal epithelial cells; 5) only the active drug acyclovir is pumped bi-

directionally into the intestinal lumen or portal blood by a passive (first-order) diffusion; 

and 6) acyclovir has linear disposition kinetics in vivo across the dose range studied. 

In wildtype mice, one additional key assumption was that only the absorption of 

valacyclovir across the apical membrane of intestinal epithelial cells, via PEPT1-

mediated and passive pathways, was considered. However, in Pept1 knockout mice, two 

critical assumptions about the luminal absorption process that were different from the 

assumption for wildtype mice were needed: 1) the absorption of both valacyclovir and 

luminally formed acyclovir were considered; and 2) the two compounds were assumed to 

have identical intestinal passive permeability along the entire intestinal tract.  

Schematic representations of the ACAT model with underlying assumptions for 

wildtype mice and Pept1 knockout mice were adapted from the literature (Agoram et al., 

2001) and illustrated in Figure 5.1 (A and B).  

Model parameters. Information regarding physicochemical properties of 

valacyclovir and acyclovir, mouse GI physiology, acyclovir and valacyclovir 

permeability, valacyclovir degradation as well as acyclovir in vivo disposition was 

necessary for adequate model predictions. 
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Physicochemical properties. Physicochemical properties of valacyclovir and 

acyclovir are summarized in Table 5.1. Default values in Gastroplus
®
 were used when no 

other information was available.  

GI physiology. Physiological information regarding mouse GI transit time, 

segmental volumes, length (L) and radius (R), used for the estimation of GI transit 

kinetics, were all default values in GastroPlus
®

 as shown in Table 5.2. pH profiles in the 

GI tract of fasted mice were also included in this table. Intestinal pH may influence 

various physicochemical and biochemical parameters such as drug luminal solubility, 

luminal degradation, ionization state and subsequently passive diffusion as well as the 

driving force of PEPT1. Absorption scale factors (ASF) were used to scale regional 

intestinal permeability (Peff) to regional absorption rate constant (ka), based on the 

theoretical relationship between Peff and ka:  

                                                                                Eq. (1) 

Intestinal permeability of valacyclovir in wildtype mice. Valacyclovir jejunal 

permeability coupled with PEPT1 protein expression data were used as input parameters 

characterizing the uptake kinetics in wildtype mice. Based on our previous analysis of in 

situ permeability, jejunal Peff of valacyclovir in wildtype mice was factored as the sum of 

a minor passive component and a major PEPT1-mediated component. The passive 

permeability was assumed to be equal in both small and large intestine. In the simulation, 

the passive permeability of valacyclovir (Peff,passive) was set at 0.27×10
-4

 cm/sec. PEPT1-

mediated permeability of valacyclovir (Peff,PEPT1) was described by a Michaelis-Menten 

function as follows: 



114 

 

                                                                               Eq. (2) 

,where maximum transport velocity Vmax was estimated to be 1.4 nmol/cm
2
/sec and 

apparent Michaelis-Menten affinity constant Km 10 mM from previous perfusion studies. 

Cluminal was the time-varying luminal concentration of valacyclovir automatically 

generated in GastroPlus
®
. In the simulation, PEPT1-mediated valacyclovir permeability 

was assumed to be pH-independent in the physiological pH range of 4.63 to 5.24 in mice 

(McConnell et al., 2008). The ACAT model further assumed PEPT1 has similar intrinsic 

activity in different segments of small intestine.  

Immunoblot analyses showed that PEPT1 expression was highest in the jejunum, 

closely followed by duodenum and ileum while PEPT1 was not detected in the colon in 

wildtype mice (Jappar et al., 2010). Given this result, a uniform distribution of PEPT1 in 

the small intestine and zero expression in the large intestine of wildtype mice were 

employed as input parameters in the prediction. Overall, by coupling jejunal permeability 

of valacyclovir with PEPT1 regional distribution in the small intestine of wildtype mice, 

the uptake kinetics of valacyclovir could be adequately characterized. 

Intestinal permeability of valacyclovir and acyclovir in Pept1 knockout mice. As 

stated previously, an identical passive Peff was assumed for valacyclovir and acyclovir 

along the intestine in Pept1 knockout mice. Four mean Peff values, corresponding to the 

mean valacyclovir Peff for the small intestine (method #1), the mean valacyclovir Peff for 

the entire intestine (method #2), the mean valacyclovir Peff for the duodenum (method #3), 

and the mean acyclovir jejunal Peff (method #4) in Pept1 knockout mice, were all 

estimated from in situ perfusion studies and separately used as input Peff values in the 
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simulation. The four mean Peff values, combined with their 90% confidence intervals, are 

summarized in Table 5.3. As seen in this table, Peff values of valacyclovir and acyclovir 

in intestinal segments of Pept1 knockout mice had substantial inter-subject variability in 

spite of the lack of statistical differences between them. 

Valacyclovir luminal degradation. Luminal degradation of valacyclovir is 

another key kinetic process that can significantly influence the absorption of valacyclovir 

along the GI tract. Parameters characterizing valacyclovir degradation kinetics were also 

evaluated from the in situ intestinal perfusion studies under steady state conditions as 

shown below. 

Assuming first-order degradation of valacyclovir at a given pH and negligible 

acyclovir absorption, valacyclovir first-order degradation rate constant, denoted by kde, 

was estimated from the following mass balance equation system:  

             Eq. (3) 

                                     Eq. (4) 

                                           Eq. (5) 

                                                                                         Eq. (6) 

,where Q is the flow rate in the perfusion studies (0.1 mL/min), V is the volume of the 

given intestinal compartment, and Cave is the logarithmic mean of valacyclovir luminal 

concentration and can be calculated as a function of inlet (Cin,valacyclovir) and outlet 

(Cout,valacyclovir) valacyclovir concentrations as follows: 
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                                                  Eq. (7) 

Using the above equation system, kde values were estimated in the pH range of 

5.5-7.5, using experimental data collected from the jejunal perfusions of wildtype mice. 

The relationship between kde and pH was then fitted with monotonic functions such as 

linear and exponential functions, and goodness of fit was assessed by the coefficient of 

determination R
2
. kde at physiological pH was estimated by extrapolation with the best 

fitting equation. kde was also estimated for different intestinal segments of wildtype mice 

at pH 6.5 to assess if regional differences may exist.  

In vivo disposition of acyclovir. Acyclovir plasma concentration-time curves after 

its intravenous administration in wildtype and Pept1 knockout mice were fitted to one-, 

two- and three-compartment pharmacokinetic models in WinNonlin. AIC and SBC were 

the main criteria for selection of the specific compartmental model. After the selection of 

the compartmental model, mean pharmacokinetic parameters of acyclovir were calculated 

by averaging fitted pharmacokinetic parameters from individual animals and then applied 

in the simulation.  

In addition, unbound fraction of acyclovir was set at 0.87, which was obtained 

from the literature (de Miranda et al., 1981). 

Parameter sensitivity analyses. Parameter sensitivity analyses (PSA) were 

performed to assess the sensitivity of predicted acyclovir Cmax and AUC values to input 

model parameter values. Population variability of input parameters could potentially 

impair the predictability of the ACAT model. Input parameters associated with PEPT1-
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mediated and passive permeability of valacyclovir, and in vivo disposition of acyclovir, 

were examined in the PSA step for oral administration of 25 nmol/g valacyclovir in 

wildtype mice. These input parameter values were changed by multiplying initial values 

with 10 scaling factors in the range of 0.1-10 to allow an order of magnitude increase or 

decrease.  

Optimization. Optimization can be used to fine-tune input parameters for better 

model predictions when one or several experimental pharmacokinetic profiles were 

available as “training” datasets. The training dataset used in the current optimization step 

were acyclovir plasma concentration-time profiles in wildtype mice receiving oral 

administration of 25 nmol/g valacyclovir. Input parameters that were found to be highly 

influential on the predictions were selected for optimization. In addition, in vivo values 

for PEPT1 Vmax were obtained by optimization since the in situ Vmax value cannot be 

directly scaled to the in vivo value needed in GastroPlus
®
. 

Simulation of acyclovir pharmacokinetic profiles. The same fixed set of input 

parameter values, after proper optimization (if performed), were used for predicting 

acyclovir concentration-time profiles after oral administration of 10, 25, 50 and 100 

nmol/g valacyclovir in wildtype mice. Only input permeability values were modified for 

the simulation of acyclovir pharmacokinetic profiles in Pept1 knockout mice as described 

earlier. The quality of the simulation was evaluated by: 1) visual evaluation of the 

predicted and observed acyclovir plasma concentration-time curves; 2) comparison of the 

predicted and observed Cmax and AUC; 3) the coefficient of determination R
2
. 



118 

 

Model application. The final ACAT model was used to address two important 

aspects of drug absorption. Firstly, the ACAT model was used to quantify the 

contribution of each intestinal segment to the oral absorption of valacyclovir in wildtype 

and Pept1 knockout mice. The fraction of oral dose absorbed in each segment was 

calculated as the ratio of the amount of drug disappearing from the segment as a function 

of time to the administered dose. Secondly, the influence of luminal degradation on the 

oral availability of valacyclovir was examined.  
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RESULTS 

Valacyclovir luminal degradation. Figure 5.2 shows that there were no 

significant differences in kde for different intestinal segments of wildtype mice at pH 6.5. 

Valacyclovir kde values in the pH range of 5.5-7.5 are summarized in Table 5.4. As 

demonstrated in Figure 5.3, when linear function was used to describe the relationship of 

mean degradation rate constant or log-transformed mean kde (log-kde) and pH, the R
2
 

values were 0.823 and 0.910 respectively. Therefore, a linear function between log-kde 

and pH was favored for its better quality of fit as well as for its natural non-negative 

constraint on kde. The function, after exponentiation, for the relationship of kde (y) and pH 

(x) was: y=0.0008·e
0.771x

. By using this equation, kde values for valacyclovir were 

estimated for the physiological pH range of the intestinal lumen of fasted mice and are 

listed in Table 5.5. Degradation half-lives, calculated as 0.693/kde, are also included in 

this table. 

Acyclovir in vivo disposition. A three compartmental model achieved the 

smallest AIC and SBC values when fitted to acyclovir plasma concentration-time profiles 

following intravenous administration of 25 nmol/g acyclovir in both genotypes and 

therefore was chosen for the estimation of acyclovir pharmacokinetic parameters.  

Pharmacokinetic parameters needed to fully describe a three compartmental 

model included the volume of central compartment (V1), clearance from central 

compartment (CL), micro-rate constants k12 and k21 for the transfer of acyclovir between 

central and the first peripheral compartment, and micro-rate constants k13 and k31 for the 

transfer of acyclovir between central and the second peripheral compartment. As shown 
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in Table 5.6, mean pharmacokinetic parameters were estimated by averaging model 

derived pharmacokinetic parameters for individual animals.  

Parameter sensitivity analyses. As shown in Figure 5.4, when each parameter 

was changed within two orders of magnitude, predicted acyclovir Cmax was most sensitive 

to changes in V1, followed by changes in Vmax and Km. Cmax was relatively less sensitive 

to the other parameters examined. Similarly, predicted acyclovir AUC was most sensitive 

to changes in CL and less sensitive to changes in V1, k13, k31, Vmax and Km. Both acyclovir 

AUC and Cmax were insensitive to changes in passive permeability of valacyclovir (Peff, 

passive), showing less than 30% and 60% changes, respectively, when Peff, passive was varied 

over a 100-fold range. Since prediction was similarly sensitive to changes in Vmax and Km 

and in situ Vmax was not directly applicable in the simulation, only Vmax was selected for 

subsequent optimization. Pharmacokinetic parameters including V1, CL, k13 and k31 were 

also optimized based on the PSA result. 

Optimization. Maximum PEPT1-mediated transport velocity Vmax was optimized 

to be 0.00726 mg/sec. In addition, V1, CL, k13 and k31 were also fine-tuned using the 

selected training dataset. Optimized pharmacokinetic parameters are also included in 

Table 5.6, most of which showed a fold change of less than 1.5 compared with the 

original input values with the exception of k31. But even for k31, optimized k31 had an 

acceptable 2.1-fold change relative to the original mean value fitted in a three 

compartment analysis. 

Simulation of acyclovir pharmacokinetic profiles following oral valacyclovir. 

Figure 5.5 depicts the simulated and experimental acyclovir plasma concentration-time 
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profiles in wildtype mice receiving oral valacyclovir at 10, 25, 50, and 100 nmol/g body 

weight. Figure 5.5A suggests that the simulated curves are within the range of 

individually observed data while Figure 5.5B shows good agreement between the 

simulation and mean observations with slight under-prediction at two terminal time 

points of two higher dose groups (50 nmol/g and 100 nmol/g). As shown in Table 5.7, 

adequate model prediction was further confirmed by 1) high R
2
 values (on average 

R
2
>0.9) and 2) similar simulated and observed acyclovir Cmax and AUC. 

For Pept1 knockout mice, the simulation results over-predicted the mean 

observed acyclovir pharmacokinetic data for all dose groups when the simulation was run 

using a uniform Peff value of 0.18 × 10
-4

 cm/sec (method #1), the mean Peff value of 

valacyclovir estimated for the small intestine of Pept1 knockout mice (Figure 5.6). 

Similarly, the other two higher mean Peff input values (method #2 and #3) led to even 

more severe over-prediction of acyclovir plasma concentration-time profiles (figures not 

shown). 

In contrast, when input Peff was set at 0.074 × 10
-4

 cm/sec (method #4), the mean 

jejunal Peff value of acyclovir in Pept1 knockout mice, goodness of fit was improved for 

all four dose groups. However, as shown in Figure 5.7, under-prediction was still 

pronounced for early time points (time ≤ 45 minutes) in all dose groups. Overall, the 

average R
2
 value was smaller than 0.8. 

The lack of fit in Pept1 knockout mice using four different Peff methods suggests 

the high sensitivity of the simulation to Peff input values for poorly permeable compounds. 

In order to improve model prediction, Peff was optimized separately for each dose in 
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Pept1 knockout mice (method #5). The resultant optimal Peff values were 0.09627 × 10
-4

 

cm/sec, 0.07047 × 10
-4

 cm/sec, 0.10129 × 10
-4

 cm/sec and 0.08627 × 10
-4

 cm/sec for 10, 

25, 50 and 100 nmol/g dose groups, respectively. These optimal Peff values were similar 

to the jejunal Peff value of acyclovir in Pept1 knockout mice and they fell within the 90% 

confidence intervals of mean Peff estimates listed in Table 5.3.  

Figure 5.8 (A and B) suggests that model predictions agreed with experimental 

data reasonably well for each dose when the optimal Peff values for each dose level were 

used. As shown in Table 5.8, there was good agreement between predicted and observed 

acyclovir Cmax and AUC; R
2 

on average was found to be greater than 0.85.  

In addition to the optimization of permeability, we also attempted to generate 

simulations using the upper and lower limits corresponding to the 90% CI of the mean 

Peff value of valacyclovir estimated for the small intestine of Pept1 knockout mice 

(method #6). As shown in Figure 5.10, at a typical dose of 25 nmol/g oral valacyclovir, 

the observations fell between the interval enclosed by the two simulations. This 

suggested that even without the optimization step, a prediction interval can be generated 

although it is challenging to match the exact observations. Similar results were observed 

for the other dose groups (figures not shown).  

Model application. Figure 5.10 (A-D) shows the segmental contribution to the 

intestinal absorption of oral valacyclovir in wildtype mice. Similar results were observed 

for all four dose groups in wildtype mice. For a typical dose of 25 nmol/g valacyclovir, 

duodenum was the most important absorption site, contributing to more than 40% of the 

dose absorbed. The two jejunal segments combined accounted for approximately 24% of 
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dose absorbed. Total fraction absorbed was predicted to be about 70%. In contrast, as 

shown in Figure 5.11, jejunum was the primary absorption site of valacyclovir (~13%), 

followed closely by combined colonic (~12%) and ileal (~10%) segments in Pept1 

knockout mice receiving 25 nmol/g oral valacyclovir. The contribution of duodenum was 

significantly reduced to about 4%. Total fraction absorbed from the entire intestinal tract 

was predicted to be about 40%. Similar results were also reported for other dose groups 

in Pept1 knockout mice.  

Lastly, we examined the effect of luminal degradation on the oral availability of 

valacyclovir in wildtype mice. As shown in Figure 5.12, in the absence of luminal 

degradation, valacyclovir was nearly 100% absorbed within 3 hours after oral dosing of 

25 nmol/g valacyclovir, suggesting that incomplete absorption of valacyclovir observed 

in wildtype mice was due to the competing luminal degradation rather than insufficient 

permeability or intestinal residence times. Duodenum and jejunum accounted for about 

90% of the dose absorbed in this hypothetical scenario.  
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DISCUSSION 

Model assumptions. Wildtype and Pept1 knockout mice had common model 

assumptions regarding GI physiology, luminal and intracellular biotransformation of 

valacyclovir and in vivo disposition of acyclovir, based on our understanding that these 

kinetic processes theoretically remained unchanged in our validated Pept1 knockout mice 

compared to their wildtype counterparts. The main difference between model 

assumptions made for the two genotypes is associated with the intestinal permeability of 

valacyclovir and/or acyclovir. Based on the analysis of in situ perfusions (see Chapter 3), 

valacyclovir has much higher intestinal permeability than acyclovir in the small intestine 

of wildtype mice. For example, in situ jejunal permeability of valacyclovir was about 40 

times higher than that of acyclovir, suggesting that the absorption of luminally formed 

acyclovir might be negligible. Considering that Gastroplus
®
 can only simulate the 

absorption of one compound, we made the assumption that only valacyclovir was 

absorbed, via active and passive pathways, in wildtype mice. However, this assumption 

may be invalid in Pept1 knockout mice. In the absence of PEPT1, valacyclovir and 

acyclovir showed similarly low jejunal permeability in situ. In addition, valacyclovir 

permeability was not statistically different between the different intestinal segments of 

Pept1 knockout mice. Results from in situ studies showed that, during valacyclovir 

ablation, valacyclovir underwent rapid and extensive degradation to form acyclovir in the 

lumen. Consequently, the intestinal absorption of acyclovir and valacyclovir, in Pept1 

knockout mice should be accounted for in the simulation. Excluding the absorption of 

luminally formed acyclovir in Pept1 knockout mice may lead to severe under-prediction. 

Based on these considerations and previous experimental results, the two “low-
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permeability” compounds were assumed to be passively absorbed, with identical 

intestinal permeability along the entire intestinal tract of Pept1 knockout mice. In other 

words, the two compounds were no longer differentiable in terms of absorption kinetics. 

Overall, these underlying model assumptions for both genotypes are reasonable. However, 

they are still flawed since a number of realistic aspects have to be ignored. For instance, 

the permeability of valacyclovir and acyclovir may vary for different intestinal regions of 

Pept1 knockout mice. However, these potential flaws are unavoidable when constructing 

a physiologically sound and practical model under our simulation settings. 

Model parameters. The accuracy of the ACAT model predictions mainly 

depends upon the accuracy of model parameters, the model structure and the underlying 

assumptions. Prior to the execution of simulation, the parameters pertaining to intestinal 

uptake, luminal degradation and in vivo disposition were reliably estimated and, when 

necessary, optimized. 

In the current simulation work, luminal degradation of valacyclovir was first 

characterized by re-analyzing our previous in situ intestinal perfusion data in mice. 

Valacyclovir degradation increased with increasing pH values, a finding consistent with 

the literature showing that valacyclovir was stable under acidic conditions but 

metabolically liable under basic conditions in rats and humans (Sinko and Balimane, 

1998; Granero and Amidon, 2006). In addition, valacyclovir degradation rate constants in 

the lumen of mice were much higher than that in buffer solutions of the same pH, 

suggesting that membrane-bound enzymes accelerated the hydrolysis of valacyclovir in 

the intestinal lumen. Only monotonic functions were used to describe the relationship of 

pH and degradation rate. In a preliminary analysis, a quadratic function achieved a R
2
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value of 0.95 when used to characterize valacyclovir degradation as a function of pH. 

Even though it provided a better apparent model fit, a severe drawback of the quadratic 

function is that it predicted minimal degradation at about pH 5.5 and dramatically 

increased degradation at even more acidic conditions, which is not physiologically 

plausible. Therefore, non-monotonic functions were not suitable for the determination of 

degradation rate constants at physiological pH values (less than 5.5).  

Using the best-fitting function, the degradation half-life of valacyclovir was 

estimated to range from 15 to 22 minutes in mouse intestinal lumen under physiological 

pH conditions, and was less than 5 minutes at pH 7.5. Sinko and Balimane (1998) 

reported that the degradation half-life of valacyclovir was about 15 minutes in rat 

intestine homogenates at pH 7.4 while Sun et al. (2010) reported a valacyclovir 

degradation half-life of about 31 minutes in Caco-2 cell homogenates at pH 7.4. Our 

results suggest a faster degradation of valacyclovir in vivo compared with these other 

values estimated using cell/tissue homogenates. Possible explanations may be due to 

species differences or experimental design. 

In addition to the estimation of luminal degradation, accurate parameter estimates 

were needed for active and passive intestinal permeability of valacyclovir, and in vivo 

disposition of acyclovir. Substantial inter-subject variability was observed for some of 

these parameters. Population variability in any pharmacokinetic parameter is commonly 

observed and well-accepted. For this reason, parameter sensitivity analysis was first 

performed to evaluate the influence of parameter imprecision on the prediction results. 

Given the dominance of PEPT1-mediated uptake of valacyclovir, it is understandable that 

predictions are sensitive to changes in parameters characterizing this process (i.e. Vmax 
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and Km). Conversely, predicted acyclovir AUC and Cmax were almost invariant to the 100-

fold changes in passive permeability of valacyclovir in the context of sufficient PEPT1-

mediated uptake of valacyclovir. Furthermore, acyclovir AUC and Cmax also showed high 

sensitivity to in vivo disposition parameters of acyclovir such as clearance and volume of 

central compartment, suggesting imprecision in these parameters could significantly bias 

the model predictions. 

Following the sensitivity analysis, optimization was performed for selected model 

parameters. Small differences were observed between optimized and initially fitted 

disposition parameters. For example, the optimized clearance value is less than 10% 

greater than the mean fitted clearance value. Overall, for all optimized pharmacokinetic 

parameters, less than 2.1-fold changes were observed. In addition to pharmacokinetic 

parameters of acyclovir, the Vmax characterizing the maximum transport rate of 

valacyclovir by PEPT1 was optimized for two reasons. Firstly, predicted acyclovir Cmax 

and AUC values were sensitive to changes in Vmax. Secondly, in situ Vmax values could 

not be directly scaled to in vivo Vmax values by GastroPlus
®
. Considering the 

independence of prediction on passive permeability of valacyclovir, Peff, passive was set at 

the estimated value of duodenal permeability of valacyclovir in Pept1 knockout mice 

with no further optimization.  

The default physiological parameters in the ACAT model were not optimized 

since we assumed these values represent the best estimates of mouse GI physiology in the 

absence of our own experimental findings. Degradation kinetics was not optimized 

because GastroPlus® does not allow for this process. Furthermore, it should be noted that 

it is only feasible to perform parameter optimization in the current retrospective 
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prediction where experimental pharmacokinetic data are available. In the absence of 

observed pharmacokinetic data, population approaches accounting for the variation in 

input parameters might be more suitable to generate prediction intervals. 

Simulation and validation. Using the mechanism-dependent ACAT model, we 

simulated the in vivo plasma concentration versus time profiles of acyclovir following 

oral administration of valacyclovir to mice at four different doses. For wildtype mice, 

reasonably good predictions were made by incorporating previously described parameters 

into the ACAT model. Slight under-prediction of acyclovir plasma concentrations were 

observed for the last two or three time points during the 50 and 100 nmol/g dose groups. 

One possible explanation is the inaccuracy (i.e. population variances) of a set of input 

model parameters for the two cohorts of mice. In addition, we assumed linear disposition 

of acyclovir in mice for the examined dose range. In human subjects, dose-independent 

pharmacokinetics of acyclovir was demonstrated following intravenous infusion of 2.5-

15 mg/kg acyclovir (Laskin et al., 1982).  However, dose proportionality of acyclovir 

pharmacokinetics was not examined at the two highest doses used in our study. 

Considering that acyclovir is a substrate for organic anion and cation transporters (Wada 

et al., 2000; Takeda et al., 2002), dose-dependent pharmacokinetics of acyclovir is 

possible, resulting in the currently observed under-prediction.  

For Pept1 knockout mice, the success of simulating acyclovir plasma 

concentration-time profiles was critically determined by the selection of passive 

permeability values of valacyclovir and acyclovir along the intestinal tract. As shown in 

Figures 5.6 and 5.7, simulation using the estimated passive permeability values could not 

completely match the experimental pharmacokinetic profiles of acyclovir. The use of 
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acyclovir jejunal permeability provided a “somewhat” better model fit compared with 

other values. However, we believe the improved prediction was more by chance than 

indicative of the suitableness of using jejunal permeability data. Overall, the quality of 

model prediction is worse for Pept1 knockout mice (mean R
2
 value of 0.85) than for 

wildtype mice (mean R
2
 value of 0.9) even in the case of using the optimized 

permeability values. A number of factors may have contributed to the suboptimal 

prediction in Pept1 knockout mice. Firstly, the assumption of equal permeability for 

valacyclovir and acyclovir in the intestine of Pept1 knockout mice is flawed. As shown in 

Chapter 4, the acyclovir plasma concentration-time curves following oral dosing of 

valacyclovir or acyclovir in Pept1 knockout mice are similar in shape but not exactly 

superimposable; mean acyclovir Cmax in Pept1 knockout mice is 1.7 µM following oral 

valacyclovir (Figure 4.3B) and 3.2 µM following oral acyclovir (Figure 4.2B), 

respectively. This comparison suggests that acyclovir and valacyclovir should have 

similarly low but different intestinal permeability in Pept1 knockout mice. However, 

GastroPlus
®
 can only simulate the absorption process of a single compound. Therefore, 

we had to treat acyclovir and valacyclovir interchangeably with respect to their 

permeability. Another potentially flawed assumption is equal permeability of 

valacyclovir (and acyclovir) in all intestinal regions of Pept1 knockout mice, which may 

also contribute to the differences between model simulation and observations. Besides, as 

for wildtype mice, population variability of input parameters might be an additional 

contributor to the lack of fit observed in Pept1 knockout mice at certain time points.  

In their study, Bolger et al. (2009) showed adequate predictions of acyclovir 

plasma concentration-time profiles in human subjects using the ACAT model in 
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combination with parameter values extracted from previously published in vitro or 

animal findings. Our study can be differentiated from their work in several key aspects. 

Firstly, our simulation is part of an integrated effort in studying the quantitative 

significance of PEPT1 in the intestinal absorption of valacyclovir. Therefore, some 

pivotal parameter values were estimated in our experimental studies with minimal 

modification in the simulation. In particular, we used luminal degradation kinetic 

parameters that were more physiologically relevant and accurate and, therefore, 

eliminated the need of imposing an arbitrary first-pass extraction value of acyclovir in 

addition to specified luminal degradation. Without reliable PEPT1 protein expression 

data, they had to use multiple PEPT1 mRNA distribution data and selected the uniform 

distribution after comparing the prediction with experimental pharmacokinetic profiles. 

In our case, since PEPT1 protein expression is a more reliable indicator of PEPT1 

activity than mRNA expression, we could build a predictive model by directly applying 

the regional PEPT1 protein distribution values as input values. In addition, we directly 

estimated the intestinal permeability of valacyclovir and acyclovir in Pept1 knockout 

mice. In contrast, the passive permeability of valacyclovir in their work was obtained by 

simply scaling up valacyclovir permeability in Caco-2 cells using the ratio of propranolol 

human permeability to propranolol Caco-2 permeability as the scaling factor. Moreover, 

the absorption of luminally formed acyclovir from valacyclovir was completed ignored in 

their work. As a result, the availability of acyclovir was predicted to be merely 1.5% due 

to PEPT1 deficiency, which substantially underpredicts the in vivo situation.  

The final ACAT model was used to examine segmental contribution to the 

absorption of valacyclovir. Our results indicated that the duodenum played a major role 
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in the absorption of valacyclovir in wildtype mice while more distal intestinal segments 

were more important for valacyclovir absorption in Pept1 knockout mice. This 

conclusion supports our intuitive interpretation of experimental results for in vivo 

pharmacokinetic studies (Jappar et al., 2011), where a larger compensatory uptake in 

lower segments was assumed to occur. Similar findings were also reported by others in 

another simulation work. The quantitative role of PEPT1 in the intestinal absorption of 

cephalexin (another PEPT1 substrate) in rats has been examined using the GITA model 

(Hironaka et al., 2009). In their work, they found that PEPT1 accounted for about 50% of 

the drug absorbed. However, only a 17% reduction in bioavailability of cephalexin was 

predicted due to PEPT1 deficiency, which they attributed to greater absorption of drug in 

the lower intestinal segments. Their and our findings collectively point to the quantitative 

importance of PEPT1 in the small intestinal absorption of its substrates. The two studies 

also revealed a compensatory effect of passive diffusion in lower intestinal segments 

where long residence times may occur in the absence of PEPT1.  

Through simulation, we also concluded that luminal hydrolysis caused the 

incomplete systemic availability of oral valacyclovir. This type of simulation might be 

potentially useful for the rational design of prodrugs, for which effective permeability, 

sufficient luminal stability, and conversion to active drug need to be carefully balanced. 

By virtually modulating these parameters for different prodrugs and examining the varied 

effect on the prediction of oral absorption in the ACAT model, researchers can be 

equipped with a roadmap for the selection of proper prodrug candidates a priori. 

In conclusion, we used an ACAT model to integrate our experimental findings 

from in situ perfusions and in vivo pharmacokinetic studies, as well as to deepen our 



132 

 

knowledge about the intestinal absorption processes of valacyclovir. More importantly, 

this simulation tool allowed us to examine the quantitative contribution of PEPT1 to the 

absorption of valacyclovir and provided a successful example of a modeling strategy that 

might be generally useful for the design of other PEPT1 targeted prodrugs. 
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Figure 5.1 Schematic representation of the ACAT model for valacyclovir and/or 

acyclovir absorption. For simplicity, only the stomach, and one intestinal lumen and 

enterocyte compartment are shown. Black and red circles represent valacyclovir and 

acyclovir, respectively. The blue triangle (upper panel) represents the PEPT1-mediated 

pathway. i: intestinal lumen index that can represent any of the eight intestinal 

compartments; j: enterocyte compartment index; kstomach: the gastric emptying rate 

constant; kin,i and kout,i: first-order rate constants for drug transfer in and out of the lumen 

i; kde,i: first-order degradation rate constant of valacyclovir in the lumen i; kai,passive: first-

order rate constant for the passive pathway of valacyclovir and/or acyclovir; Vmax and Km: 

PEPT1-mediated pathway.  
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Figure 5.2 Degradation rate constant (kde) of 100 µM valacyclovir in intestinal segments 

of wildtype mice at pH 6.5. Data are expressed as mean ± SE (n=4-5). No significant 

differences were found between different segments, as determined by one-way ANOVA 

followed by Bonferroni’s test. 
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Figure 5.3 Relationship between (A) kde and pH and (B) log-transformed kde and pH 

when fitted by linear functions. Regressed lines, regression equations and R
2
 are 

displayed. 
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Figure 5.4 Sensitivity of predicted values for acyclovir (A) AUC and (B) Cmax to input 

parameters after oral administration of 25 nmol/g valacyclovir in wildtype mice. 

Parameters were changed by multiplying the initial input value with scaling factors in the 

range of 0.1-10.  
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Figure 5.5 Model predicted (solid lines) and observed acyclovir plasma concentration-

time profiles (open diamonds) in wildtype mice using (A) individual levels and (B) mean 

levels. Observed data are expressed as mean ± standard deviation in (B) (n=4-7). 
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Figure 5.6 Model predicted (solid lines) and mean observed acyclovir plasma 

concentration-time profiles (open diamonds) in Pept1 knockout mice. Model simulations 

were obtained using a Peff input value of 0.18 × 10
-4

 cm/sec (method #1). Observed data 

are expressed as mean ± standard deviation (n=4-7). 
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Figure 5.7 Model predicted (solid lines) and mean observed acyclovir plasma 

concentration-time profiles (open diamonds) in Pept1 knockout mice. Model simulations 

were obtained using a Peff input value of 0.074 × 10
-4

 cm/sec (method #4). Observed data 

are expressed as mean ± standard deviation (n=4-7). 
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Figure 5.8 Model predicted (solid lines) and observed acyclovir plasma concentration-

time profiles (open diamonds) in Pept1 knockout mice using (A) individual levels and (B) 

mean levels. Model simulations were obtained using separately optimized Peff values 

(method #5). Observed data are expressed as mean ± standard deviation in (B) (n=4-7). 
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Figure 5.9 Comparison of mean observations (open diamonds) with simulations using 

0.04 ×10
-4

 cm/sec (lower line) and 0.32 × 10
-4 

cm/sec (upper line) as input Peff values 

following oral administration of 25 nmol/g valacyclovir. The two Peff values were the 

upper and lower limits of the 90% confidence interval of the estimated Peff for the small 

intestine of Pept1 knockout mice, respectively (method #6). Observed data are expressed 

as mean ± standard deviation (n=7). 
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Figure 5.10 Segmental contributions to the intestinal absorption of oral valacyclovir in 

wildtype mice at doses of (A) 10 nmol/g, (B) 25 nmol/g, (C) 50 nmol/g, and (D) 100 

nmol/g. 
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Figure 5.11 Segmental contributions to the intestinal absorption of oral valacyclovir in 

Pept1 knockout mice at doses of (A) 10 nmol/g, (B) 25 nmol/g, (C) 50 nmol/g, and (D) 

100 nmol/g. 
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Figure 5.12 Segmental contributions to the intestinal absorption of 25 nmol/g oral 

valacyclovir in the absence of luminal degradation in wildtype mice.  
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Table 5.1 Physicochemical properties of valacyclovir and acyclovir 

 

Property Valacyclovir Acyclovir 

Molecular formula C13H20N6O4 C8H11N5O3 

Molecular weight 324.3 225.2 

Predicted logP (neutral)
a
 -0.95  

pKa1 (valacyclovir)
b
 1.9   

pKa2 (valacyclovir)
b
 7.47  

pKa3 (valacyclovir)
b
 9.43  

Aqueous solubility
c
 174 mg/mL at pH 7  

Solubility factor 10  

Dosage forms  Valacyclovir solution  

Initial doses 

10 nmol/g 

25 nmol/g 

50 nmol/g 

100 nmol/g 

0.044 mg
d
 

0.11 mg
d
  

0.22 mg
d
  

0.44 mg
d
 

Dose volume 0.2 mL  

Mean precipitation time
e
 900 sec  

Diff coefficient 7.50×10
-6 

cm/sec  

Drug particle density
e
 1.2 g/mL  

Particle size
e
 25 µm  

a
Bolger et al., 2009. 

b
Balimane and Sinko, 2000. 

c
Merck index, 14

th
 edition, 2006. 

d
Converted to the mass of acyclovir, assuming a typical weight of 20 gram per mouse. 

e
GastroPlus

®
 (version 7) default values. 
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Table 5.2 ACAT physiological parameters
a
  

 

Compartment pH ASF 
Transit 

time (hr) 

Volume 

(mL) 

Length 

(cm) 

Radius 

(cm) 

Stomach 4.04 0 0.02 0.370 0.75 0.4 

Duodenum 4.74 14.29 0.15 0.130 5.3 0.14 

Jejunum1 5.01 15.38 0.27 0.238 11.2 0.13 

Jejunum2 5.01 16.67 0.23 0.203 11.2 0.12 

Ileum1 5.24 18.18 0.13 0.114 7.5 0.11 

Ileum2 5.24 20.00 0.11 0.094 7.5 0.1 

Ileum3 5.24 22.22 0.09 0.076 7.5 0.09 

Cecum 4.63 3.226 1.04 0.422 3.5 0.62 

Colon 5.02 6.061 2.96 0.342 10 0.33 

a
Derived from Gastroplus

®
, version 7.
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Table 5.3 Intestinal permeability input values of valacyclovir and acyclovir for Pept1 

knockout mice 

 

Mean Peff  estimate (method) 
Mean value 

(×10
-4

 cm/sec) 

90% CI 

(×10
-4

 cm/sec) 

Valacyclovir Peff in small intestine (#1) 0.18 (0.04, 0.32) 

Valacyclovir Peff in entire intestine (#2) 0.23 (0.11, 0.35) 

Valacyclovir Peff in duodenum (#3) 0.27 (-0.02, 0.57) 

Acyclovir Peff in jejunum (#4) 0.074 (-0.023, 0.72) 
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Table 5.4 Luminal degradation rate constants (kde) of valacyclovir at different pH values 

 

pH kde (min
-1

)
a
 

5.5 0.055±0.0031 

6 0.096±0.019 

6.5 0.087±0.011 

7 0.16±0.029 

7.5 0.29±0.058 

Data are expressed as mean ± SE (n=4-5). 
a
Determined using the equations described in the “Materials and Methods” 

section. 
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Table 5.5 Derived degradation rate constants of valacyclovir at physiological pH values 

of the intestinal lumen of fasted mice 

 

Segment pH
a
 kde (min

-1
)
b
 Half-life (min) 

Duodenum 4.74 0.031 22 

Jejunum 5.01 0.038 18 

Ileum 5.24 0.045 15 

Caecum 4.63 0.028 24 

Colon 5.02 0.038 18 

a
Gastroplus

®
 (version 7) default values. 

b
Determined using the equation kde=0.0008×e

0.771pH
. 
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Table 5.6 Disposition parameters of acyclovir derived from a three compartment model 

 

Parameter (unit) Fitted
a
 Optimized

b
 Optimized/Fitted

c
 

V1 (L/kg) 0.38±0.08 0.545 1.4 

k12 (hr
-1

) 6.54±3.25 _ _ 

k21 (hr
-1

) 13.2±7.4 _ _ 

k13 (hr
-1

) 2.91±0.68 2.2213 0.8 

k31 (hr
-1

) 0.44±0.36 0.908 2.1 

CL (L/hr/kg) 1.0±0.5 1.0783 1.1 

Estimated parameters are expressed as mean ± standard deviation (n=6). 
a
Determined by WinNolin, version 5.3. 

b
Determined using Gastroplus

®
, version 7. 

c
Ratio of b/a. 
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Table 5.7 Simulations after oral administration of valacyclovir in wildtype mice 

 

Dose 

(nmol/g)  

Cmax  (µM)  

AUC0-180min 

(µmol/L·min) 
R

2
 

observed  predicted  observed  predicted 

10 3.8 3.9 278 279 0.898 

25 9.6 9.7 663 691 0.969 

50 20.9 19.0  1675 1364 0.902 

100 40.6 35.9  2923 2636 0.875 

R
2
 is the coefficient of determination. 
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Table 5.8 Simulations after oral administration of valacyclovir in Pept1 knockout mice 

(method #5) 

 

Dose 

(nmol/g)  

Cmax  (µM)  

AUC0-180min 

(µmol/L·min) 
R

2
 

observed  predicted  observed  predicted 

10 
0.9 1.0 128 131 

0.897 

25 
1.7 1.8 235 238 

0.877 

50 
5.0 5.2 743 687 

0.814 

100 
8.8 8.8 1233 1176 

0.885 

R
2
 is the coefficient of determination. 
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