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CHAPTER I

Introduction

Modern data analysis is characterized by the complex nature of available data sets;
modern technology has brought us access to huge amount of data in a variety of fields,
ranging from natural sciences to social sciences and from industry to public sectors,
which had either not simply been available or been ignored before because of the lack
of sufficient computational power. While these data sets are mines of information,
traditional statistical methodologies have become insufficient to effectively extract
information from them. Thus statisticians are now developing the new statistical
techniques for such large and complex data sets. This dissertation contributes to the
statistical analysis of several of such challenging types of data sets. In particular, I
will present the results from three projects concerning functional data analysis and
high-throughput screening assay data analysis.

In Chapter II, we consider a method that clusters a sample and estimates the
regression models for the clusters simultaneously. In a regression analysis, suppose
we suspect that there are several heterogeneous groups in the population that a sample
represents. Mixture regression models have been applied to address such problems
[DeSarbo and Cron (1988), McLachlan and Peel (2000), Naik et al. (2007), Yao et al.
(2011)]. By modeling the conditional distribution of the response given the covariate

as a mixture, the sample can be clustered into groups and the individual regression



models for the groups can be estimated simultaneously. This approach treats the
covariate as deterministic so that the covariate carries no information as to which
group the subject is likely to belong to. Although this assumption may be reasonable
in experiments where the covariate is completely determined by the experimenter, in
observational data the covariate may behave differently across the groups. Thus the
model should also incorporate the heterogeneity of the covariate, which allows us to
estimate the membership of the subject from the covariate.

In this chapter, we consider a mixture regression model where the joint distribution
of the response and the covariate is modeled as a mixture. Given a new observation of
the covariate, this approach allows us to compute the posterior probabilities that the
subject belongs to each group. Using these posterior probabilities, the prediction of
the response can adaptively use the covariate. We introduce an inference procedure
for this approach and show its properties concerning estimation and prediction. The
model is explored for the functional covariate as well as the multivariate covariate. We
present a real-data example where our approach outperforms the traditional approach,
using the well-known Berkeley growth study data.

In Chapter III, we consider a regularization approach to functional linear models.
Functional data analysis is a rapidly growing field as computer technology develops
and data collection power dramatically improves. Within the field functional linear
regression has drawn a particular attention in recent years, where the predictor is a
random function and the response is a scalar. Generally speaking, the inference pro-
cedure for functional linear models can be divided into two ways. The first approach
is to reduce the dimensionality of the functional predictor by mapping it onto a finite
dimensional space. A space spanned by the leading eigenfunctions of the predictor
covariance function is often used. There is, however, no compelling reason to believe
that the eigenfunctions explain the regression structure well. The other approach

is to regularize some aspect of a slope function, often its smoothness, by putting a



penalty on it. This approach can avoid the choice of the finite dimensional space to
map onto by assuming that the regression slope function lies in some reproducing
kernel Hilbert space (RKHS). The property of the RKHS, then, makes the problem
essentially a finite dimensional computation problem. The regularization approach
has been explored by several authors, including Crambes et al. (2009) and Yuan and
Cai (2010), but the derivation is often very technical and difficult to see what is be-
hind the approach. Our goal in this project is two fold. The first goal is to provide
much simpler derivation of the optimal prediction convergence rate in a general set-
ting. It is revealed that the key idea behind the approach is to choose a penalty term
so that the objective function has a unique solution. The second goal is to extend the
practical aspects of the model by accommodating discrete observations and multiple
predictors. The effects on the convergence rates are explored.

In Chapter IV, we consider a method to assess the overall toxicity of a chemical
compound from high-throughput screening assays. Conventionally, toxicity has been
measured by cell culture assays or animal testing to assess the direct effects on living
organisms. However, these methods are costly in terms of time and money. Recently,
advances in assay technology has made it possible to conduct millions of biochemical
tests simultaneously under an automated system using machines. This experimen-
tal approach is called high-throughput screening (HTS) [Zhang et al. (1999), Zhang
(2011)]. A promising way to enhance the exploration of the chemical space is to use
HTS assays as less expensive alternatives to conventional approaches. The prediction
results from the results of the HTS assays can be used to, for example, prioritize the
compounds in terms of risk to save time and cost [Dix et al. (2007), Judson et al.
(2010)]. The HTS assays are, however, limited to those that do not require careful
human attention, such as those focusing on the molecular features of the compounds,
thus it cannot directly evaluate the phenotypic effects. In this context, a prediction

relationship between the HTS and conventional assays must be defined.



In some applications, the lowest value among the conventional assays is of primary
interest, in which case it may be advantageous to predict this minimum value directly
rather than in two stages following prediction of each assay separately. We introduce a
method to directly specify and estimate a model for the parameter of interest through
a profile likelihood function. Through a variety of simulation studies, the property
of this profile likelihood approach is evaluated. In particular, we explore in what
situations the use of the profile likelihood approach can be beneficial. The idea is also
extend to the interval estimation. We apply this method to the ToxCast data of the
EPA and to the 60 cell line screen of the NCI.



CHAPTER 11

Mixture Regression for Observational Data, with
Application to Functional Regression Models

2.1 Introduction

In a regression analysis, suppose we suspect that there are several heterogeneous
groups in the population that a sample represents. Mixture regression models have
been applied to address such problems [DeSarbo and Cron (1988), McLachlan and
Peel (2000)]. It is assumed in mixture regression that, given a p-dimensional covariate
X whose subject belongs to the kth group, the conditional mean of the response Y
is related to the linear function of X through a link function h in the format of
R{E(Y|X,8, = 1)} = oy, + BE X, where J, is the membership variable that returns
one if the subject belongs to the kth group and zero otherwise. For simplicity, we

focus on the normal, identity link model where the conditional density is given by

fyixse=1(ylz) = o(y; an + Bz, 0p),

where ¢(+; i, 0%) is the normal density with mean u and variance 0. The EM algo-
rithm can be used to compute the maximum likelihood estimator (MLE), as often
done for finite mixture models [McLachlan and Peel (2000)]. Information criteria such
as Akaike Information Criterion (AIC) or Bayesian Information Criterion (BIC) can

be used to estimate the number of groups. Naik et al. (2007) introduced a modified



AIC that is tailored for mixture regression models.

Recently, Yao et al. (2011) introduced a mixture regression model where the co-
variate is given by functional data. They conducted a real-data analysis and claimed
that the mixture regression approach works better than the (usual) linear regression
approach in terms of prediction. We reconsider this analysis and show that the mix-
ture regression approach works no better than the linear regression approach when
the membership of a new observation is not available. For the overview on functional
data analysis, readers may refer to excellent monographs written by Ramsay and
Silverman (2002, 2005) and Ferraty and Vieu (2006).

The mixture regression model introduced above treats the covariate as determin-
istic or its distribution as invariant across the groups. Thus the covariate carries no
information as to which group the subject is likely to belong to. Consider the predic-
tion of the response from a new observation of the covariate; the best we can do is to
take the average of the linear predictors over the groups with certain fixed weights.
Although this assumption may be reasonable in experiments where the covariate is
determined in a completely deterministic way, in observational data the covariate
may behave differently across the groups. Thus the model should incorporate the
heterogeneity of the covariate as well so that we can estimate the membership of the
subject from the covariate.

In this chapter, we introduce a mixture regression model, where the joint distri-
bution of the response and the covariate is modeled as a mixture. In particular, we

assume that the joint density of X and Y is given by

fY,X\6k=1(ya ZL‘) = (JO(:% oy + Bl{m7 0-129)(70(1:7 My Ek)

This is a generalization of the traditional mixture regression model; when the co-

variate distribution is identical across the groups, this model becomes equivalent to



the traditional model. Our new approach allows the covariate to behave differently
across the groups as its marginal distribution becomes a mixture. This covariate het-
erogeneity allows us to compute the posterior probabilities that the subject belongs
to each group; using these posterior probabilities, the prediction of the response can
adaptively use the covariate. This assumption is particularly reasonable in functional
data analysis; in many practical situations, functional data appears in observational
studies. We introduce one of such examples in Section 2.5.

The rest of the chapter proceeds as follows. In Section 2.2, we explore our new
approach in more details and introduce an inference procedure. We first consider the
multivariate covariate model, followed by the functional covariate model. Further-
more, we introduce a couple of simple but very effective ways to extend the model
to improve the prediction performance; these tricks are used in Section 2.5. Section
2.3 discusses the properties of the estimator and the predictor in the joint mixture
regression model. In Section 2.4, we explore the properties of our new approach by
simulation studies. Section 2.5 presents a real-data analysis where we show how our
approach can improve the prediction performance from the traditional approach, by
using the well-analyzed Berkeley growth study data. Finally, we conclude the chapter

with some remarks in Section 2.6.

2.2  Joint Mixture Regression

2.2.1 The Multivariate Covariate Model

Let us first consider the model for the multivariate covariate. Denote the response
by Y and the p-dimensional covariate by X. We consider the model where the joint

distribution of (Y, X) is a mixture whose density is given by

K
fly.2) = mepy;an + BLe, o) ol i, Sr). (2.1)
k=1



where ¢(+; 1, %) is the (multivariate) normal density with mean g and variance(-
covariance matrix) 3. «ay and [y are respectively the regression intercept and slope
for the kth mixture component. Within each mixture component, which represents
a group, the marginal distribution of the covariate is given by a normal distribution
whose parameters vary across the components. As noted in Introduction, this model
differs from the traditional mixture regression models in that the traditional approach
does not incorporate the covariate distribution into the model [McLachlan and Peel
(2000), Naik et al. (2007), Yao et al. (2011)]. In particular, the traditional approach
is based on the conditional distribution while in our approach the joint distribution
is assumed to be a mixture. We call the former ordinary mizture regression (OMR)
and the latter joint mizture regression (JMR). (7, ..., 7) are mixing proportions,
ie., m, > 0and ), m = 1, and K is the number of the mixture components. To
avoid identifiability issues, we assume that K is the smallest in the sense that there
is no expression that has fewer components than K but still retains the identical
distribution. We also treat the parameter space as the quotient space with respect to
permutation in axes.

An alternative expression which is equivalent to (3.1) and will become useful when

exploring the functional covariate model in the next section is given by

K
Y = 25k<04k + ﬁgX + éTk)
k=1

(2.2)
K
X =Y 66X,
k=1
where A = (d1,...,dk) follows a multinomial distribution with parameters n = 1

and (m,...,7x), Xi ~ N(ug, 21), e ~ N(0,0%), and Xj, 6 and e are jointly
independent. A is often called the membership vector, which indicates the group to
which the subject belongs. Note that we observe X but not A, i.e., the membership.

Let (z1,91), .-+, (Zn, yn) be n independent observations from (3.1), or equivalently



(4.7). For a fixed positive integer K, we estimate the parameters by maximizing the

log-likelihood

n K
6 (Vs y, ) = Z log { Z T (Yss v + By iy o) p (3 s Ek)},
i=1 k=1
where the parameters to be estimated are

_ 2 2
U = {7.‘—17"'77TK—17a1)/817017M17217"'7aK76K7JKaMK7ZK}'

As commonly used in finite mixture models, the EM algorithm can be used to compute
the MLE, where A is treated as missing values. The explicit formula of the algorithm
is given in Appendix 2.8.
The number of the mixture components K can be estimated through Bayesian
Information Criterion (BIC), i.e.,
V]

K= argmax { max {,(V;y, z) — — logn},
K 4 2

where || is the number of the parameters. Under some regularity conditions such
as the compactness of the parameter space, BIC provides a consistent estimator for
K. For the details, see Keribin (2000).

Given a new observation of the covariate X, the posterior probabilities of the

membership are given by E(d|X). The best predictor of Y is then given by
K
E(Y]X) =Y pr(X)(ax + B{X),

k=1

where

(X5 fk, L)
Zle e (X5 fe, L)

Pe(X) = E(0] X) =



Note that the averaging weights for the conditional group means are given by the
function of X, so that the prediction of the response can adaptively use the covariate
information to adjust the weights. In OMR, in contrast, the best predictor is given by
the weighted average with 7 used as the fixed weights, i.e., Zszl me(ag + BEX). In-
tuitively speaking, the more separated the covariate distribution is across the groups,
the better the prediction performance of the JMR approach will be by adaptively
changing the weights, compared to the OMR approach.

The sample can be clustered by assigning a subject to the group whose empirical

posterior is the largest. For instance, the ith subject is assigned to the group

7oy Gr + BT w62 o2 T 5
argmax 71'k:90(y1704k3+ﬁkﬂfl,0'k)(p(x“plk,7 k)

ko SN BBy an + B, 62) (s ik, Tk

In Section 2.4, JMR and OMR are numerically compared. We show that not
only JMR performs better when the covariate distribution is heterogeneous across
the groups, OMR possesses little advantage over JMR even when the covariate distri-
bution is homogeneous and OMR is the correctly specified approach. Furthermore,
it is shown that OMR works no better than fitting a linear regression model in terms
of the prediction performance. We further confirm these properties with a real data

in Section 2.5.

Remark: One may claim that the assumption of the normality for the covariate
distribution is too restrictive. Another way to see JMR is to treat it as flexible
approximation to the unknown population distribution by a mixture that can account
for the heterogeneity of the covariate distribution as well. Under this interpretation,
the number of the mixture components work as a tuning parameter [Genovese and

Wasserman (2000), Ghosal and van der Vaart (2001)]. In this chapter, we leave this

10



aspect of the problem aside and assume that the population model is (3.1) and the

number of the mixture components have a physical meaning.

2.2.2 The Functional Covariate Model

Let us now extend the joint mixture regression (JMR) model to incorporate the
functional covariate into the model. Replacing the multivariate covariate in (4.7)
with a random function X (¢) € L?[0,1] (for simplicity, assume its domain is [0, 1]),

we have
K
Y =) dklon + (Br, X) + )
k=1

- (2.3)
X =) 66Xy,
k=1

where (;(t) € L?[0,1]. The inner product is defined by the usual L? inner product,
ie., (f,g) = fol f(t)g(t)dt. Let Xi(t) be a Gaussian process with mean function puy(t)
and covariance function I'y(s,?). Assume that the covariance function of X, say I,

allows the eigen-decomposition
D(s,t) =) A ()e(1),
j=1

where \y > Ay > -+ > 0 and {¢1,1»,...} forms a complete orthonormal basis
in L?[0,1] [Mercer’s theorem, see Ash and Gardner (1975)]. Then, X allows the

Karhunen-Loeve decomposition
X(t) = pu(t) + > &by(t), (2.4)
j=1

where pu(t) == EX(t) = S0, myu(t) and & = (X — p,1b;) [see Ash and Gardner

(1975)]. &; has mean 0 and variance \;, and ¢; and & are independent for j #

11



j'; without the Gaussianity assumption, they are uncorrelated but not necessarily

independent. Plugging (2.4) into (2.3) yields

Y = Selax+ ) b+ en), (2.5)

k=1 j=1
where ay = o + D27, brj (e, ¥5) and by = (By,¢;). Note that & = S 0k (Xy —
w, ;) and ((Xg — p, 1), (X — p,¢2), ... ) is a discrete Gaussian process, so that
(&1,&,...) = Zle O (( Xk — p,001), (Xg — 1, 19), ... ) is a finite mixture of discrete
Gaussian processes. Thus the model (2.5) can be viewed as generalization of the
multivariate model (4.7) to the infinite-dimensional covariate model.

Unlike the model (4.7), the problem is now infinite dimensional and we do not
directly observe ;. To reduce the dimensionality we follow the commonly used ap-
proach in the functional data analysis literature [Miiller and Stadtmiiller (2005), Cai
and Hall (2006), Hall and Horowitz (2007), Yao et al. (2011)]. With sufficiently large
positive integer M, assume that [, can be spanned by M leading eigenfunctions, i.e.,

Br(t) = ijvil bijYi(t) for k =1,..., K. This assumption turns (2.5) into

5k(ak + szf* + 6]€), (26)

~
I
T[]~

where b} = (bg1, ..., bpr)? and & = (&,...,&y)T. This is essentially equivalent
to the multivariate covariate model, except that £* is not directly observable. We
estimate £* and use its estimate as a surrogate.

In practice, the functional covariate is not continuously observable; only a finite
number of observations at discrete points per curve are available. Suppose there are

n realizations (Y1, X1),..., (Y, X,,). The form of the sample available to us is

{}/la Xl(tl,l)a L aXl(tl,ml)}a sy {Yn7 Xn(tn,l)a cee 7Xn(tn,’mn)}7

12



where mq, ..., m, are the numbers of observation points per curve, and the sets of
the observation points are not necessarily synchronized nor equally discretized. From
these observations, we have to estimate &j,...,¢:. The analysis of the components
of the Karhunen-Loeve decomposition, i.e., A\;,¢;,&; (i = 1,....n, j = 1,2,...),
is called functional principal component analysis (FPCA), and has been developed
for the past two decades by many authors. To save space, we avoid going into the
details on the FPCA techniques, but interested readers may refer to Yao et al. (2005),
Hall et al. (2006), Benko et al. (2009), and the references therein. The point is that
we can estimate &7, ..., & by using a technique in FPCA. In Section 2.5 where we
apply the functional covariate model to a real-data analysis, we follow Ramsay and
Silverman’s paradigm of mapping a curve onto the space spanned by a finite number
of basis functions [Ramsay and Silverman (2002, 2005); an excellent package “fda” is
available for R and MATLAB|.

Given estimates gj , we can estimate the parameters in the model (2.6) by maximiz-
ing the estimated log-likelihood, where & is replaced with g;* in the true log-likelihood,

ie.,
0(W;,8) = Y log { D meplyis an + T8 oD S0} (27)
i=1 k=1

where the parameters to be estimated are

o x 2 * 2
U = {7r1,...,WK,l,al,bl,al,,ul,El,...,aK,bK,aK,,uK,EK}.

Finally, the regression slope functions fj can be estimated by
M
Bi(t) =D bth(1),
j=1
which is a consistent estimator (Section 2.3).
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The procedures for prediction and clustering are similar to the multivariate co-
variate model. In Section 2.5, we apply the functional covariate model to the Berkley

growth study data.

2.2.3 Tricks to Improve the Model

In this section, we introduce two ways to improve the model. First, recall that the
heterogeneity of the covariate distribution plays a crucial role in prediction because
it allows us to estimate the membership from the covariate. The more separated the
covariance distribution is across the groups, the better the prediction performance
will be, because it becomes easier to differentiate the membership. It is well known
in the functional data analysis literature that sometimes higher order derivatives,
X', X", .- shows a clearer difference by group than the original X. A famous exam-
ple given in Ramsay and Silverman (2005) is a velocity or acceleration curve, which
shows much clearer distinction between gender than a growth curve. One way to

incorporate, say X', into the model is to apply integration by parts to (2.3), which

yields

K

Y = Zék(ak + <ﬁk,X> + €k)
k=1
K
=) Sk — (D)X (1) + (i, X') +e1),

k=1

where v, (t) = — fg Br. These two expressions are identical in theory, but in practice

the latter may perform better if X’ is more distinguishable by group than X. As the
constraint between the regression coefficient of X (1) and the regression slope function

of X' is inconvenient to estimate the model, we may avoid it by treating the regression
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coefficient as a free parameter, i.e.,

=

Y = Z 5k(ak + C].;;X(l) + <’7]<;,X,> + 5k),

k=1

where (j, is a free parameter. This model includes (2.3) as a submodel.

Another way to extend the model (2.3) is to allow two kinds of covariates: one
that behaves similarly across the groups or is deterministic, and the other that be-
haves differently across the groups—sometimes we know beforehand that a certain
covariate, say Z, has an invariant distribution or is deterministic such as covariates

in experiments. Adding Z to the model (4.7), it becomes

k(o + (L Z + BEX + ex).

~
Il
il Ngle

Under this model, the inference should be based on the conditional distribution given
Z so that we can exclude unnecessary parameters from the model that does not
contribute to the membership estimation. The EM algorithm can be straightforwardly
modified to accommodate this model. These two extensions are simple, yet very

effective to improve the prediction performance, as demonstrated in Section 2.5.

2.3 Theoretical Properties

2.3.1 Consistency of the MLE in the Functional Covariate Model

The maximizer of (2.7) does not coincide with the actual maximum likelihood
estimator because £* is replaced with E* Fortunately, the theory in Yao et al. (2011)
straightforwardly applies to the current problem as well; under some regularity con-
ditions the maximum likelihood estimator in (2.7) is still consistent. We assume that

ag, @Zk, k=1,..., M, are obtained by using the technique in Yao et al. (2005).

Proposition II.1. Assume that the population model is (2.6) and the assumptions
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Al to Aj in Yao et al. (2011) hold. For any fixed compact set containing the true
parameter ¥ as an interior point, let U be the mazimizer of (2.7) over the compact set.
Then, T converges to ¥ in probability. Furthermore, Bk, k=1,...,K is uniformly

consistent, i.e., SuP;epo 1) 1B1(t) — Bi(t)| converges to 0 in probability,

There are two aspects of the model that involve the proof: the proximity of @ to

&, and the local behavior of the log-likelihood function

K
((W;y,€) = log { > mrp(y; an + b€, 7)o (ki s Ek)}-
k=1

Since the covariate distribution continues to satisfy the assumptions in Yao et al.
(2011), the conditions concerning the first aspect are satisfied. On the other hand,
since the likelihood function in JMR has a different form than the one in OMR (Yao
et al. (2011) considered the functional covariate model for OMR), we need to check
whether the current likelihood still retains appropriate local behavior. In Appendix
2.7.1, we verify that the log-likelihood function in JMR also satisfies the regularity

conditions.

2.3.2 Asymptotic Mean Squared Prediction Error

As mentioned before, it is essential to estimate the membership from the covariate
in order to predict the response well. In this section, we compare the asymptotic mean
square prediction error (MSPE) between JMR and OMR. Recall that we predict the

response by the empirical best predictor

Y =Y BulX) (@ + 51 X), (2.8)
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where in JMR

~ Tee( X 1 ,f]
pk(X)z KWA( ,UkAk)A ,
> pet TR (X ik, )

(2.9)

while in OMR prp(X) = 7. As seen in the last section, the MLE is consistent
under the JMR model. Now, suppose that the population model is the JMR model,
but the MLE is obtained by applying the OMR approach. It may be reasonable to
suspect that the resulting MLE is no longer consistent. However, several numerical
explorations that the author conducted including those given in Section 2.4 suggest
that the MLE obtained by applying the OMR approach is also consistent. (We have
not been successful in proving either this conjecture is true or false.) We will come
back to this point again in the next section. In the following, we consider two cases
concerning the OMR approach: one where the parameters are consistently estimated,
and the other where the parameters are not consistently estimated.

Consider the multivariate covariate model (4.7). For simplicity, let a; = --+ =
ax = 0 and use the inner-product notation, i.e., {x,y) = zTy. If the covariate
distribution varies across the groups, (2.8) provides the smallest asymptotic MSPE
among any possible predictors because it is the MSPE of the population conditional
mean. The asymptotic MSPE is then given by the error variance, Y := Zszl TROZ,

plus

[E[ZKj[E@\X(f[E G1X) (6 — 6. X)) | (2.10)

If we use pp(X) = 7g, the asymptotic MSPE becomes X plus

[E[i[E((Sk\X (i[ 50) (B — 5Z,X>>2}, (2.11)
k=1 /=1

which is strictly greater than (2.10) unless E(dx|X) = E(dx) for all k, nor (8, X) =
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-+ = (Pk, X) almost surely. The former case implies that the covariate distribution
is invariant across the groups, which contradicts the assumption. In the latter case,
(2.10) = (2.11) = 0; but in this case the ability to differentiate the group is not
necessary because there is no harm by assuming a wrong group.

Now, suppose that the MLE is asymptotically biased and Bk, T converges to some

By, 7, respectively. Then, the asymptotic MSPE becomes X' plus

S me[(Somi(a - ). X) | (212

i
I
~
i

)

This quantity is in fact greater than (2.11) at least when E(X; X{) = -+ = E(Xg XL).
Without this assumption, the effect of the bias is rather involved as it is easy to create

an example where (2.12) is smaller than (2.11). The proofs are given in Appendix

2.7.2.

2.4 Simulation Study

This section illustrates how the JMR approach works in comparison to alternative

methods. We generate a sample from the two-dimensional covariate, two-group model

Y =61(aq +B{ X +e1)+ (1 —6)(aa+ B3 X + €2)

X =6X1+ (106X,

where the mixing proportion is (7, m) = (0.6,0.4) and the error variances are both
0.32. The training sample size is considered for 100 and 300, and the testing sample
size is 500. The other parameters—regression coefficients, covariate means, and co-
variate variance-covariance matrices—are determined to construct the following four

scenarios:

1. X and Y are both well separated by group.
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Figure 2.1: A realization of the training sample of n=150 for each scenario. The
covariate is plotted in the left figure where the two circles show .95th quantile contours.
The response is plotted in the right figure where the two horizontal lines are the
population means.

2. X has the common group means, and Y is well separated by group.
3. X is well separated by group, but Y is not.
4. X has the common cluster distributions, and Y is well separated by group.

Figure 2.1 shows a realization of the sample in each scenario. We calculate the

mean squared prediction error (MSPE), the average misclassification rate (MCR),
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and the mean squared error (MSE) for part of the parameters over 500 iterations.
We compare JMR to three alternative approaches: linear regression by ordinary least
squares (OLS), ordinary mixture regression (OMR), and the two-step model-based
clustering approach (MBC). MCR cannot be computed for OLS as it does not cluster
a sample. MBC works as follows. First, it clusters a sample into two groups by fitting
a mixture of normal to the covariate (model-based clustering); these two groups are
used to compute the MCR. Second, in each cluster the linear regression model is
estimated by fitting OLS. To predict the response, it uses the weighted average of the
linear predictors from the two estimated linear models with the posterior probabilities
calculated from a new observation of the covariate used as weights. We used Fraley
and Raftery’s R package “mclust” for this approach [Fraley and Raftery (2002)].
Note that JMR is the correctly specified approach in Scenarios 1-3 while OMR is the
correctly specified approach in Scenario 4. It is well known that the clusters obtained
in MBC are not identically-distributed samples of the component distributions, so
that the estimates based on the resulting clusters are inevitably biased.

The results are given in Tables 2.1 and 2.2. We first look at the prediction per-
formance (Table 2.1). When the covariate distribution is well separated across the
groups (Scenarios 1 and 3), JMR and MBC outperform the other two methods. When
it is difficult to differentiate the group by the covariate (Scenario 2) or the covariate
distribution is homogeneous (Scenario 4), the overall performance deteriorates and
the relative advantage of JMR reduces. Note that OMR is not even as good as OLS
(Scenarios 1-3), and in Scenario 4 where OMR  is the correctly specified approach, it
is not noticeably better than the other approaches. The reason why OMR is no better
than OLS is that computing the average over the linear predictors of the groups with
fixed weights is essentially equivalent to fitting the linear model globally; then OLS
tends to have a smaller variation because it needs to estimate much fewer parameters

than OMR.
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Method OLS OMR JMR MBC  Method OLS OMR JMR MBC

MSPE 166 225 035 0.44 MSPE 162 223 031 0.33
MCR 074 012 .057 MCR 067 .009  .042

(a) Scenario 1 (n=100) (b) Scenario 1 (n=300)

Method OLS OMR JMR MBC  Method OLS OMR JMR MBC

MSPE 10.46 12.35 9.50 11.05 MSPE 10.11 1221 9.22 10.43
MCR 022 .023 331 MCR 019  .022 274

(¢) Scenario 2 (n=100) (d) Scenario 2 (n=300)

Method OLS OMR JMR MBC  Method OLS OMR JMR MBC

MSPE 4.08 479 119 1.35 MSPE 397 473 0.88 0.98
MCR 048 .063  .080 MCR 041 .013  .061

(e) Scenario 3 (n=100) (f) Scenario 3 (n=300)

Method OLS OMR JMR MBC  Method OLS OMR JMR MBC

MSPE 854 833 894 889 MSPE 837 831 852 857
MCR 015 .016  .441 MCR 015 .016  .449

(g) Scenario 4 (n=100) (h) Scenario 4 (n=300)

Table 2.1: The mean squared prediction error (MSPE) and the average misclassifica-
tion rate (MCR) for four scenarios.

The results with respect to misclassfication seem a little different. The clustering
performance by JMR is fairly well throughout the scenarios, including Scenario 4.
OMR also works well when the covariate distribution is not much separated (Sce-
narios 2 and 4). It is even slightly better than JMR in Scenario 2 where OMR is a
misspecified approach. For scenarios 1 and 3, in contrast, JMR works much better
than OMR, though the overall performance of OMR is still comparable to MBC re-
gardless of the fact that OMR does not take into account the heterogeneity of the
covariate distribution. This implies that to cluster a sample whose clustering struc-

ture lies in the regression structure, clustering based on the regression is at least as
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Method OMR JMR MBC

Method OMR JMR MBC

m[0.6] .056 .048  .074
Bio[l]  .063 .052 279
Bn[2]  .064 049  .206

m[0.6]  .037 .029  .039
B2[1] 033  .028  .166
B[2]  .039  .029  .150

(a) Scenario 1 (n=100)

(b) Scenario 1 (n=300)

Method OMR JMR MBC

Method OMR JMR MBC

m[0.6] .049 .051  .245
Bra[-1] .026 026 2.78
Baol2] 025 026  4.54

m[0.6] .029 .031 .188
Bia[-1]  .015 .014 .362
Baol2] 015 015 .992

(¢) Scenario 2 (n=100)

(d) Scenario 2 (n=300)

Method OMR JMR MBC

Method OMR JMR MBC

m[0.6] .057 .089  .096
Bio[—2] 164 489 618
Bao[l] 183 584  .368

m[0.6] .030 .032  .049
Bra[—2 032 133 429

(e) Scenario 3 (n=100)

%
Bao[l] 030 151  .204
(f) Scenario 3 (n=300)

Method OMR JMR MBC Method OMR JMR MBC

m[0.6] .051 051  .207 m[0.6] .030 .031 .176
Bia[~2] 053 .054  2.50 Bia[—2] 028 .028  2.57
Ball] 053  .053  3.82 Bao[l] 028 028  2.48

(g) Scenario 4 (n=100) (h) Scenario 4 (n=300)

Table 2.2: The square root of the mean squared error for some of the parameters in
the four scenarios. The true parameter is given in the square brackets next to the
symbol.

equally important as taking into account the covariate heterogeneity.

One may wonder whether the differences in the prediction performance in fact at-
tribute to the estimability of the group. Table 2.2 shows the square root of the mean
squared error for some of the parameters. Note that there is not much difference in

the estimation performance between OMR and JMR; in some cases, OMR is even
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better than JMR. As the sample size increases, the MSE of OMR reduces at a similar
rate to JMR. This raises the question as to the consistency of OMR; although OMR
is a misspecified approach under the JMR model, the MLE by OMR may be still
consistent for the parameters under the JMR model. We numerically investigated
this conjecture, and the results seem to support it. (We have not been able to prove
analytically whether this claim is true or not.) Because the parameter estimation by
the two methods seems similar, we claim that the difference in the prediction perfor-
mance mostly attributes to the estimability of the group. In other words, whether
we can predict the response well largely depends on whether we can estimate the
group that the subject of a new observation is likely to belong to from the covariate.

Otherwise, we cannot expect much beyond simply fitting a linear regression model.

2.5 Berkeley Growth Study, Revisited

In this section, we present a real-data example where the joint mixture regression
(JMR) approach improves the prediction performance of the traditional ordinary
mixture regression (OMR) approach. We use the Berkeley growth study data [Tud-
denham and Snyder (1954)], which contains the recorded height of boys and girls from
age 1-18 years old; this is a well-analyzed data set and has been repeatedly used as an
illustrating example in the functional data analysis literature. Recent examples using
this data set include Chiou and Li (2007), Tang and Miiller (2008), Hall et al. (2009),
and Yao et al. (2011). The data set contains 39 boys and 54 girls whose height was
measured quarterly from 1-2 years old, annually from 2-8 years old, and biannually
from 8-18 years old. We reconsider the analysis given in Yao et al. (2011), where
they considered the problem of predicting the height at the age of 18 from the height
transition during the juvenile period.

We first consider the model where the predictor is a growth curve from 3-12 years

old (see Figure 2.2), which is the model that Yao et al. (2011) considered (referred
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Figure 2.2: The growth curves for randomly selected 15 boys and 15 girls from age
3-12 years old. The curves are obtained by mapping observations onto B-splines of
order 5.
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Figure 2.3: Heights at the age of 12 (Left) and 18 (Right). The order is determined
randomly. The vertical lines are the sample means for boys and girls.

as Model 1). This age period usually contains female pubertal growth peaks near
the end of the range; male pubertal growth peaks usually come several years later.
Given the juvenile growth curve of a new subject, we wish to predict the height at

his or her age of 18. Figure 2.3 shows the height at the age of 12 and 18. It can be
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seen that predicting the height at the age of 18 from the height at the age of 12 is
challenging as there is no significant difference in the height distribution at the age of
12 between boys and girls. Thus to predict the height well it is crucial to differentiate
gender from the growth curve; recall that we do not assume that gender information is
available (Yao et al. (2011) claims that JMR works better than simply fitting a linear
regression model, but we suspect that they used gender information when predicting
the response even though they did not use it when fitting the model). We predict the
response by the empirical best predictor (2.8). In addition to OMR and JMR, we also
consider functional principal component regression (PCR) as an alternative approach
for comparison [Cai and Hall (2006), Hall and Horowitz (2007)]. PCR estimates the
linear model so that it does not cluster a sample. For these three methods—PCR,

OMR, and JMR—we calculated leave-one-curve-out cross validation (CV),

93
1 .
CV = % Z(Yz - Y(—i)>27

i=1
where }A/(,Z-) is calculated by: first estimating the parameters from the entire sample
except the ith subject, and then computing the predictor from X;. The results are
given in Table 2.3a; there are several points that are consistent with what we saw in the
simulation study. Note that JMR displays its advantage over the other methods when
using four or more eigenfunctions while using only two or three eigenfunctions it is not
as good as PCR. Now, looking at Figure 2.4a where the scatterplots for the estimated
standardized principal component (PC) scores labeled by gender are shown, it can be
seen that the first three PC scores are not well separated by gender while the fourth
PC score seems to show some heterogeneity between gender. Also, looking at Table
2.4a, which shows the number of the misclassification for gender, it can be seen that
JMR clusters the sample by gender very well no matter how many eigenfunctions are

used while OMR suddenly behaves poorly when using the fourth eigenfunction whose
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# of eigenfunctions 2 3 4 5

PCR 48.785  40.460  27.695  26.465

OMR 53.783  47.521 27.940  28.421

JMR 50.412  42.369  26.618  22.901

CumVar (0.9857) (0.9932) (0.9975) (0.9993)
(a) Model 1

# of eigenfunctions 2 3 4 5

PCR 34.241 21.634  20.682  20.976

OMR 36.617  21.638 22,505  23.012

JMR 32.888 17.889 16.929 15.293

CumVar (0.6584) (0.7830) (0.8908) (0.9882)
(b) Model 2

Table 2.3: Cross Validation using the Berkeley Growth Data. The last row shows
the proportion of the cumulative variance explained by the used eigenfunctions in the
total variation (the sum of the eigenvalues).

PC score shows the differentiability between gender. These observations support the
theory that the prediction performance of JMR depends on the heterogeneity of the
covariance distribution. As we saw in the simulation study, OMR performs no better
than PCR. We may wonder if there is a way to improve the model so that JMR
performs the best regardless of the number of the eigenfunctions to be used. In fact,
as seen in Figure 2.5a, which shows the cross-validated predictors from the leave-
one-curve-out samples using three leading eigenfunctions, JMR suffers from a bias by
gender (most of the male heights locate below the diagonal line while most of the
female heights locate above it). We want JMR to perform in the way that it reduces
this group bias by estimating the membership well. In the second part of this section,
we explore an alternative model that uses the tricks we introduced in Section 2.2.3.
As mentioned in Ramsay and Silverman (2005), a velocity curve, or an accelera-
tion curve, shows much clearer distinction by gender than the original growth curve

does. We incorporate the velocity curve into the model by the way we introduced
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Figure 2.4: Scatterplots for the combinations of the standardized PC scores. The
circles indicate .95th normal-quantile contours transformed by the sample mean and
variance-covariance matrix.

in Section 2.2.3. In particular, we use the velocity curve from 3-12 years old as the
functional covariate and the height at the age of 12 as the scalar covariate (referred

as Model 2). We do, however, treat the latter covariate as an invariant covariate since
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Figure 2.5: The cross-validated predictors from the one-curve-out samples using joint
mixture regression with three leading eigenfunctions.

# of eigenfunctions 2 3 4 5

OMR 5 6 27 25
JMR 5 6 6 5
(a) Model 1

# of eigenfunctions 2 3 4 5

OMR 14 27 31 34
JMR 8 &8 4 6
(b) Model 2

Table 2.4: The number of misclassifications based on the gender (n=93).

the heights at the age of 12 for boys and girls are very similar and almost impossible to
differentiate (recall Figure 2.3a). Thus it is crucial to estimate gender from the veloc-
ity curve to improve the prediction performance. For PCR and OMR, we simply use
these two variables as covariates. The difference between OMR and JMR under this
model is whether we incorporate the distribution of the velocity curve into the model.
The results are given in Table 2.3b. First, we notice that the overall prediction per-
formance has dramatically improved from Model 1. In particular, JMR outperforms

the other two approaches regardless of how many eigenfunctions are used. Looking
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CV for subsamples (Model 1) CV for subsamples (Model 2)

cv

— JMR — JMR
-- OMR --- OMR
PCR PCR
T T T T T T T T T T T T T T
0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.50 0.55 0.60 0.65 0.70 0.75 0.80
Posterior threshold Posterior threshold
(a) Model 1 (b) Model 2

Figure 2.6: Cross validation comparison for subsamples possessing the estimated
posteriors greater than or equal to threshold values.

at Figure 2.4b where the scatterplots for the estimated standardized PC scores of
the velocity curve are shown, the leading PC scores are much more differentiable by
gender than those of the growth curve (cf. Figure 2.4a). Also, Table 2.4b shows that
JMR clusters the sample by gender fairly well while OMR no longer do so no matter
how many eigenfunctions are uses. OMR again performs no better than PCR. Note
that JMR keeps improving the prediction performance with more eigenfunctions used
while PCR and JMR are stuck at the use of three of four eigenfunctions. Finally,
Figure 2.5b shows that JMR under Model 2 considerably reduces the bias by gender.

Now, we may wonder how large posterior probabilities in the JMR approach ac-
tually contribute to improve the prediction. To see this, we calculate CV for the
subsamples whose estimated posteriors are larger than a certain threshold. In this
analysis, we first estimate the parameters from a leave-one-curve-out sample and com-
pute the posteriors (2.9) for the subject that is left out. Then, we compute the mean
squared prediction errors by collecting only those subjects whose greater posterior is
larger than a predetermined threshold. Figure 2.6 shows the transition of the CV

along different thresholds for the two models using three leading eigenfunctions. The
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thresholds used here are from 0.5 through 0.8 by 0.05 with which the resulting sub-
sample sizes are respectively 93, 80, 69, 60, 50, 41, 33 for Model 1 and 93, 86, 84,
79, 73, 69, 59 for Model 2 (0.5 corresponds to the whole sample). Overall, Model
2 provides larger posteriors than Model 1 (at each threshold, the subsample size in
Model 2 is larger than that in Model 2). This is consistent with the fact that the three
PC scores in Model 2 behaves more differently by gender than those in Model 1 as
seen in Figure 2.4. As seen in Figure 2.6b, in Model 2, JMR improves the prediction
performance with a faster rate than the other two methods as the threshold increases.
In contrast, Figure 2.6a does not display such behavior; in fact, PCR performs al-
ways better than the other two. This implies that under Model 2, JMR improves the
prediction performance more than the other two by estimating the membership from

the covariate that is heterogeneous by gender.

2.6 Discussion

In this chapter, we introduced a mixture regression model where the joint distri-
bution of the response and the covariate is modeled as a mixture. We call it joint
mixture regression in contrast to the traditional mixture regression, which we call
ordinary mixture regression. By incorporating the covariate distribution into the
model, the heterogeneity of the covariate distribution across the groups is also taken
into account. From a new observation of the covariate, we can compute the posterior
probabilities that the subject belongs to each group. Using these posterior probabil-
ities, the prediction of the response can adaptively use the covariate. Through the
simulation studies and the real-data analysis using the Berkeley growth study data,
we showed that in order to predict the response well, it is crucial that the covariate
behaves differently across the groups. If the covariate behaves similarly or is deter-
ministic, the mixture regression approach performs no better than simply fitting a

linear regression model. By including the covariate that behaves differently across
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the group, we showed that our approach can significantly improve the prediction
performance from the traditional mixture regression approach.

We conclude this chapter with two question. First, as we saw in the simulation
study the MLE obtained by fitting the ordinary mixture regression model may be
consistent even under the joint mixture regression model. We conducted a large
number of simulation studies, including the one given in this chapter, and they all
seem to support this conjecture. Can we analytically examine the genuineness of this
conjecture? Second, in the functional covariate model we used the eigenfunctions of
the observed data as basis functions onto which the functional covariate is mapped.
However, any basis functions can be used in this procedure. The best basis functions
should be the ones where the projections have the distribution most separable across
the groups so that it becomes easy to estimate the membership from them. Though
using the eigenfunctions of the observed covariate makes an intuitive sense, analytical
justification is lacking. What basis functions yield the best projection in the joint

mixture regression model? We leave these two questions to be solved in the future.

2.7 Appendix: Proofs

2.7.1 Consistency of the MLE in the Functional Covariate Model

We need to verify if the likelihood function under the joint mixture regression

model behaves appropriately. Recall that the log-likelihood function is given by

K
((V;y,§) = log { > mp(y; ak + b€, o2) (& s Zk)}'
k=1

The regularity conditions given in Yao et al. (2011) are as follows. For any V¥, in a

pre-fixed compact set defined in the proposition:

(B1) There exist some functions g(y, &, V) and ¢(¥) such that, for all possible values
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of y,&,&" and ¥ € Ny,, where Ny, is some neighborhood of Wy,

10(W;y, &) — 05y, < gy, &, 0)||€ = &7 + (V) ||IE" = &7,

and g(y,&, V) and (V) satisfy

sup E[g*(y,&,0)] < oo,
\I/ENq;l

sup ¢(¥) < oo,
\I/GNq;l

where the integration is defined by the true parameters.
(B2.1) £(¥;y,&) is upper semicontinuous in ¥ € Ny, for all (y, §).

(B2.2) There exists a function D(y, €) such that ED(y, ) < oo and ((V;y, &) < D(y,§)
for all (y,&) and ¥ € Ny,.

(B2.3) For ¥ € Ny, and sufficiently small 7 > 0, supys,jg/—y <, ¢(y,§, ¥') is measurable
in (y, ).

It is easy to see that (B2.1)—(B2.3) are satisfied. By setting

K
b / */
9. &0) =Y [”0’%” Iy = anl 4+ 16181} + A (B LIE | + llaell}
k=1
vk
C(W) = Z ( 0_]3 + Amax(zjk)>7
k=1

where A\pax(2x) is the maximum eigenvalue of ¥, (B1) is also satisfied, and all the

regularity conditions are satisfied by the likelihood in problem as well.

2.7.2 Asymptotic Mean Squared Prediction Error

We first confirm that (2.11) > (2.10) where the equality holds only when E(dx]| X) =

E(6x) for all k, or (1, X) = --- = (Bk, X) almost surely. Denoting E(dx|X) by ps

32



and (B, X) by ey, the inside of the expectation operator in (2.11) —

by
L —Zpk{ZWE ex —er)}’ —Zpk{Zpe er —€r)}
k=1 k=1
Since ng =1—m —+++—7g_1,forj=1,... . K — 1,

K

k=1

(2.10) is given

K K
aﬂ = QZpk er — € Z mo(er —e) =2 prler —ex) Y miler — er)
= (=1
K

which is zero at 7; = p;. Furthermore,

0*L
=2(ex —e;)lexg —eqr),
a’ﬂ'jaﬂ'j/ ( K J)( K J)
thus [ZL— 7 an ljjr=1...k—1 is strictly positive definite unless e = --- =

conclusion follow.

ex, and the

We now confirm the other claim. Note that (2.12) can be rewritten to

K
I —Zﬂk[ ZW — Be) + B, Xy)?,

=1

where B := Y21 i (6; — B¢), while (2.11) can be rewritten to

H—ZW[EKZ (B — 60, X, ) |

We will prove I — II > 0 under the assumption I' = E(X;X]) = --- =
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Observe

i
Mx

E[O 77 (B — Be) + B, X))

K
(=1

=
Il
—

K-1
(B — Bx) + > m (B — Be) + B, X))

(=1
K-1 -1

T (Be — Br) + T (B — Bo) Y T{(Br — Br) + Y 7 (Bx — Be)}

1 (=1 1

K K1
+ QBTFZWk{(ﬁk — Bk) + ZW (Bk — Be)} + B'TB.
=1 =1

I I
Mwiw

ES
I
~

I

Similarly,

Z (B — Be), Xi)?]

K-1

K-1
_|_Z7r€ /BK—ﬁg} F{(ﬁk—ﬁz( +Z7TZ ﬁK_Bé)}
/=1

(=1

Observe that the first term of I minus II is given by

K-1 K-1 K-1 K-1
- 2{2 7 (Bx — Be) }TF{Z m(Br — B} + {ZW (Bx — Be) }TF{Z ™ (B — Be)}"
=1 =1 (=1 (=1
K—1 K—1 K—1 K—1

+ 20> m(Bx — B)YTLY m(Bx — B} —{> m(Bx — B)YT{Y mlBx — Bo)}"
/=1 /=1

/=1 /=1

= Z —m)(Bx — Be)} F{Z —m)(Bx — Be)}

/=1

The second term of I can be rewritten as

2B'T Z —m0)(Bx — Be).
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Thus, we have

I—H—{Z —7Tg ,6[{—5@ +B}TF{Z —7Tg BK_5€)+B}>0

/=1
2.8 Appendix: The EM Algorithm for Joint Mixture Regres-
sion

Denote the data matrix by X = [21,...,7,]7, and let X = [7,...,T,]" where
7; = [1,2]]7, so that X is a n x (1 + p) matrix. Also, let B, = [ag, B{]7. Once the

M-step is done, the next E-step is given by

T(+) . %Mﬂ(yi; <Bk,fi>, 3/3)80(@; e, Zk)
ik -~ PN )
S e (is (B i), 62) (T Ties Se)

where the inner product is the usual inner product in RP™! and the hat denotes the
estimate obtained in the last M-step.

The M-step is obtained as follows. Define for k =1,..., K,

I//V\k = diag{ﬂk, . ,?nk}, X’k = ﬁ/\klmX, 7}; = Wklﬂy,
1=10,...,1]" er*, 1=Ww""1,

~ T171/2
:Wk/ Y, y:[ylv""yn]T

HI) =1A™)7'17, H(X)) = Xo(Xx Xp) ' Xx |

where 7;;, are the estimates obtained in the last E-step. For &k = 1,..., K, the new

M-step is then given by

u,i“—{@’Ti)*i’TE}T S = @D X {1 - HD}X,,

=T_ . ~e = .
Zﬂk, 5k Xk Xk) "Xt Uk, UZH) = (1"1) "'y {1 — H(Xk)} Y-
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CHAPTER II1

Regularized Smoothing in Functional Linear
Models

3.1 Introduction

For the last two decades, interests have been rapidly growing in functional data
analysis (FDA)—the analysis of data where the observations are modeled to be part
of latent curves. Data of this sort are found in various fields, such as medical science,
chemistry, linguistics, geosciences, finance, marketing, and others. For an excellent
review, see Ramsay and Silverman (2002, 2005) and Ferraty and Vieu (2006).

Since the name first appeared in Ramsay and Dalzell (1991), researchers have
developed many FDA techniques based on traditional statistical procedures, such as
principal component analysis (PCA) [Rice and Silverman (1991), Silverman (1996),James
et al. (2000), Yao et al. (2005), Hall et al. (2006)], linear regression models [Cardot
et al. (1999), Cardot et al. (2003), Cai and Hall (2006), Hall and Horowitz (2007),
Crambes et al. (2009), Hall and Yang (2010), Yuan and Cai (2011)], the general-
ized linear models (GLM) [James (2002), James and Silverman (2005), Miiller and
Stadtmiiller (2005), Dou et al. (2011)], nonparametric regression models [Ferraty and
Vieu (2003, 2004), Ferraty et al. (2007), Hall et al. (2009)], and others.

Among these topics, functional linear regression has particularly drawn the at-
tention of researchers during this decade, making significant progress. Generally, the

approach to functional linear regression is divided into two ways. The first approach
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is based on functional PCA, where the regression is implemented on the basis of
the principal component scores of the predictor covariance function [Cardot et al.
(1999), Cai and Hall (2006), Hall and Horowitz (2007), Hall and Yang (2010)]. In
this approach, predictors are projected onto the space spanned by a finite number of
the leading eigenfunctions. Cai and Hall (2006) showed that this approach attains
the optimal prediction convergence rate. Hall and Horowitz (2007) revealed that it
also attains the optimal estimation convergence rate for the regression slope function
in L?-distance. To the best of our knowledge, this work has been so far the only
prominent result focusing on the estimation error for the slope function. Despite
these attractive, theoretical properties, however, there is no compelling reason why
the leading eigenfunctions are the most relevant in terms of the regression structure;
Hall and Yang (2010) provide the conditions under which the PCA approach in fact
makes a perfect sense.

The second approach is based on the penalized least squares [Cardot et al. (2003),
Crambes et al. (2009), Yuan and Cai (2010)]. This approach constrains the space
where the regression slope function belongs by putting a certain penalty—often the
smoothness penalty—resulting in a finite dimensional optimization problem. Crambes
et al. (2009) used the smoothing-spline approach and demonstrated that the optimal
prediction rate is achieved by this approach. We should mention that these two
approaches—the FPCA approach and the regularization approach—require different
kinds of assumptions and are not directly comparable. Yuan and Cai (2010) consid-
ered the problem in a more general framework using the reproducing kernel Hilbert
space theory. They obtained the optimal convergence rate for the general norm that
accounts for both estimation error and prediction error.

In this chapter, we also consider the regularization approach to the functional
linear model. Our goal is two-fold. The first goal is to generalize their setups. Our

setup yields much simpler derivation of the optimal convergence rate, so that one
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can see what is essentially behind the approach more clearly. The key idea behind
it is to choose a penalty term so that an objective function has a unique solution.
The second goal is to extend the practical aspects of the model by accommodating
discrete observations and multiple predictors. The effects on the convergence rates are
explored. We show that the optimal prediction convergence rates can be still attained
but is dominated by the worst parameters characterizing the regression slope functions
and the predictors.

The outline of this chapter is as follows. In Section 3.2, we set up the functional
linear regression problem, introduce our approach to the problem, and present some
properties regarding the estimator. Section 3.3 presents the asymptotic theory for
the fully observed model. The optimal convergence prediction rate is given. Section
3.4 connects the fully observed model with the discretely observed model. Section
3.5 extends the single predictor model to the multiple predictor model. The chapter

closes with some concluding remarks in Section 3.6.

3.2 Functional Linear Regression

3.2.1 Regularization Approach

Let {X(t),t € [0,1]} be a random function such that EX = 0. Assume E[| X3, <
oo where || ]2, := fol f(t)?dt, which implies that a sample path lies in L?[0, 1] almost

surely. Denote the covariance function of X by
R(s,t) = E[X(s)X(¢)], s, t € [0, 1].

Assume that R(s,t) is continuous on [0, 1]?. Suppose that (X1,Y7),. .., (X,,Y,) con-

stitute a random sample of X and
Yi=(f, Xi)pz +ei, 1<i<n, (3.1)
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where ¢; is random noise with mean 0 and variance o2, and f is an unknown regression
slope function and the object of inference. For simplicity we remove the intercept, but
the generalization is straightforward. We assume that f lies in the Sobolev-Hilbert

space
W2[0,1] :=={f : £, f,..., f Y are absolutely continuous, f™ e L?[0,1]}.
There are several norms that can be assigned to W20, 1]. We assign the norm
v = NIz + 1/, F € Whlo,1]. (3.2)

It is well known that W2[0,1] is a reproducing kernel Hilbert space [Wahba (1990)].
Denote the reproducing kernel associated with (3.2) by K.
Define

and

Lf:<L1f77Lnf)T

L; is a random linear functional defined by X;. It is bounded since, by using the

Cauchy-Schwarz inequality,

Lif | < [ Xill 2 flle2 < WXl 21 Fllwz,-
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Assign to R the norm
2 1 . 2 n
||y||[R":EZyi7 y e R
i=1

Then, L becomes a linear bounded operator from W?2[0,1] to R”. From now on, R"
refers to the Hilbert space associated with the inner product induced by this norm.
Denote the conjugate operator of L by L*, i.e., L* is a linear operator from W20, 1] to
R™ that satisfies the equality (Lf, 2)gn = (f, L*z)w2 for all f € W2[0,1] and z € R™.

Let

Then, (3.1) becomes
Y=Lf+e.

Our goal is to estimate f.
For now, we assume that X, ..., X, are fully observed. In other words, L is fully
observed. We estimate the regression slope function by the regularized least squares

method. Define the objective function by
LA(f) =Y = Lfllgn + M flFvz.  f € Wh[01],

where A € (0,00). We estimate f by minimizing £,(f).

Proposition I1I.1. The unique minimizer of Ly(f) is given by
o= (L' L+ ALY, (3.3)

where I is an identity operator.
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Proof. For simplicity, let G, = L*L+ A\I. Express a candidate solution by f: f,\ +g.

Then,
LACF) = 1Y e + (LF LE)gn — 20Y, L)gn + AL f132 -

Since L*Y = G,\J?,\, we have

(Y, Lf)gn = (L*Y, fywz = (Gafr, Fwa,-
Thus,

LA(F) = IV [Ign + (L°LF, Frae = 2(Gafr, Flwz + M f 1z

= [V [fjtn + (GA(F = 2/2), Fhwa.

But,

(GA(f =25, Pywz = (G (f = £, Pwz — (Gafr, Pwz
= (GA(f = H), f = Pwe + (GA(F = 1), Bowz, — (Gaf, e,

= <G>\g7.g>W,%l - <G)\f)\7 .}/(\‘)\>Wr2n7

where the last equality follows because G is self-adjoint. Since G, is positive definite,

L, is minimized uniquely at g = 0. O

Throughout the chapter, we continue to use the notation G, = L*L + AI. Note
that the existence of I, or || f||3, in the penalty term, makes G invertible. However,
there are many other penalties that makes G invertible. For example, Crambes et al.

(2009) uses a penalty concerning the projection onto the pth order polynomial space.
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By carefully following the derivation, however, it can be seen that the convergence
rate does not depend much on a specific penalty.

We will derive the rate of convergence of fA in terms of the prediction mean square
error. Note that L in (3.3) is random. Also, f € W2[0,1] while X € L?[0,1]. These
facts make the derivation complicated. First, we compute the conditional squared

bias and variance in estimation error.

Theorem II1.2. Let B, refer to the expectation with respect to €. Then,

ILE-(fx — £)lEe < AllF 1

2
~ ~ o -~ "
EIL(A — E-A) = T{ (G L7 L))

Proof. Let us first consider the bias. Note that
E.fx= (L*L+A)"'L*Lf
is the minimizer of
L3(9) = ILf = Lgllgn + Alglliyz -
Thus,
ILE(Fx = )lIfn + ANEAllz = L3EH) < L3(9) = Allf [z

The non-negativity of H[EEJ/”:\HI%VQ leads to the conclusion.
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For the variance, since ]?)\ — [Eeﬁ\ = G;lL*s, we have
E|L(fy — E-f)lfn = E-(LGY ' L*e, LG L*e)gn

1

= —Etr{e" LG 'L*"LG ' L*¢}
n
o2

= —tr{LG,'L* LG, L*}
n

2

- %tr{(G;lL*L)Q}.

We also have the following bound of fy in W20, 1].

Theorem III.3.

Al < 20fg + 2 te(GRLL).
Proof. Note
fr=G'L*Lf + G5 'L*e,
and so
ARz < 2GR L Lf |z, + 211GR Lel vz -
For the first term,

IGX L LS Wz, = (f. L' LG L L Vs, < || f Il
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since L*LG;2L*L < I. For the second term,

2
E.||Gy L] = E. (e, LGy 2L e)gn = %tr(G;QL*L).

To evaluate the rate of the variance in Theorem III1.2, it is crucial to explore the

behavior of the eigenvalues of L*L; if the eigenvalues of L*L are p;,7 > 1, then

(G L) =) (#) .

Jj=1

Recall that K is the reproducing kernel of W2 [0,1]. Define

Then, L* and L*L can be evaluated as follows.
Theorem II1.4.

(a) Denote K,(-) = K(t,-). Then, fory = (y1,...,yn) € R",
Lo
Ly = ;yio/Xi(t)Kt(-)dt.
(b) For f € W2[0,1],
1
L'Lf = / Qu(s. ) f(s)ds.
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.e., L*L = KRR, where K and R, are the integral operators with kernels K and

R, respectively.

Proof. For each f € W2[0,1],

(L*y, lwz = (Y, Lf)w ZyZ/X
1 n
e / X0 (Ko fws dt.

where the last equality follows by the reproducing property of K. By interchanging

the order of integration and inner product, we obtain

1
(L*y:f>w3l = <%Zly¢/Xi(t)tht,f> )
= 0

Wi,

from which (a) follows.

To prove (b), plugging L;f = fol X;(s)f(s)ds into y; in (a), we obtain

L'Lf == Z/X s)ds/lXi(t)Kt(-)dt

110

_ / Qu(s

3.2.2 The Eigen-System of W2[0, 1]

The following result is well known in the spline smoothing literature.

Proposition IIL.5. There exists a complete orthonormal basis, {¢;,j > 1}, o
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L?[0,1] such that
<¢§m)7¢§m)>L2 = p;j0ij, 4,J =1,

where 0;; 15 a Dirac delta, i.e., 0;; = 1 when i = j and d,; = 0 otherwise, and

O=p1="=pPm < pPms1 < Pmy2 < ...,
and for some constants C1,Cy € (0, 00),

C1j*" < Pitm < Cij*",  j >

For the proof, see Speckman (1985) and the references therein.

Define v; = 1 + p;. Then,

(Dir d3Vwz, = (Di ds) 2 + (6™, 6™V 12 = 10 (3.4)

The following result concerning the eigen-system of W2 [0, 1] is straightforward.
Theorem III.6.

(a) The collection of {¢;/./V;,7 > 1} is a complete orthonormal basis of W2[0,1].

Thus any f € W2[0,1] can be written as

F=>"v e (3.5)

J=1
where 3372, f7 < o0.
(b) For anyi,j > 1, (Ry, ¢j)wz = 04
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Proof. Since each function in W2[0,1] is a function in L?[0, 1], we conclude that
{¢;,7 > 1} is also a basis of W2[0,1]. Then the conclusions of (a) follow easily from

(3.4). To prove (b), by interchanging the order of integration and inner product,

(Roi, dj) w2 = </K($:t)¢i(3)dsa¢j(t)>

— /(K(s, t), oF (t)>W3n¢i(s)d8

_ / 61(5)65(s)ds,

0

where the last equality follows from the reproducing property of K. O]

3.3 Asymptotic Theory for Fully Observed Functional Data

In this section we assume that the functional data X;,1 < i < n, are fully ob-
served, and use the results in Theorem III.2 to derive the prediction convergence rate
procedure based on ]/”\A

It is essential to understand the behavior of the eigenvalues of L*L, or in other
words the eigenvalues of 8R, (Theorem II1.4 (b)). It will be convenient to use

expansions based on {¢,}. We can write
oo

%n = Z Z’f‘jkqu ®L2 QSk, (36)

1 k=1

where
n

Tk = % Z(Xiv ®j) 2 {Xi, dr) L2

i=1
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Since L*L = &R, representing f € W?2[0,1] as in (3.5),
L*Lf = Z ZW” * £, 8. (3.7)

The following result follows easily from (3.7) and Theorem II1.6 (b).

Proposition II1.7. Let f,g € W20, 1] have the basis expansions

[e o]

=Y v"?f0 and g =" vy Pgé.
j=1 k=1
Then

(L°Lf, ghwa = D> vy v fige.

By Theorem IIL6 (a), the mapping from W?2(0,1] to ¢* given by

F=> v P hioi e (fi for- ) (3.8)

J=1

is an isometric isomorphism. By the above proposition, the mapping in ¢? that

corresponds to L*L is given by

[e.e] [o.@]
= E E 1/ e] Q2 €,
7=1 k=1

where e; is the element in £ whose jth element is 1 and all the other elements are 0.

Observe that we can write

H=D6D (3.9)
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where

D= Z Vj—l/er ®peej and &= Z erkej Q2 €.

J j k

Let pp1 > pn2 > ... be the eigenvalues of R, in L?[0,1] and so they are also the
eigenvalues of &. Similarly, let p; > ps > ... be the eigenvalues of R in L?[0, 1],

where R is the theoretical covariance operator of X;. For each k, let

bng = an,j and { = ij-

j>k >k

Lemma II1.8. For any sequence k,,

tn,kn - Op<tkn)

Proof. P7(Lk) be the projection on the span of the first £ sample principal components
and let P*) be the projection on the span of the first k theoretical principal compo-

nents. Thus,
tog = tr{R,(I — P} and = tr{R(I — P®)}.
It follows that
tr(R, PP > tr(R, PW)
by the definition of P,E’“), and so

tr{R, (I — P¥)} < tr{R,(I — PW)}.
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By Chebyshev’s inequality, using the fact Etr{9R,(I — P")} = tr{R( — P®)}, we
obtain for K > 0

tr{R(I — P™)}

P(tr{R,(I — P} > K) < P(tr{R,(I — P¥)} > K) < I

Now we evaluate the trace of the variance in Theorem I11.2.

Theorem II1.9. For any j,k > 1,

tn
tr(Gy LA L) < k+j + —2E
Vi+1

Proof. By the isometric isomorphism in (3.8),

tr(GY'L*L) = tr((H + M) 7'9).

Let P be the projection of the span of the first k& eigenvectors of & and P’ = — P.
Then

tr{(H + M) 'O} = tr{(H + A\) 'DESPD} + tr{(H + \) DS P'D}.

Note that & and P commute and so do & and P’. Since $ > DGPD and H >
DGP'D,

tr{($H+ )" 'H} (3.10)

<tr{(DGPD + \I) 'DESPD} + tr{(DGP'D + \I) 'DSP'D}.
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Observe that (DGPD + M) 'DGSPD is self-adjoint and has norm bounded by 1.

Thus,
tr{(DGPD + A\I) 'DGPD} < dim(Im(P)) = k. (3.11)
Similarly, (DG P'D + \I)"'DSP'D is self-adjoint, with norms bounded by 1, and
(DGP'D + M) 'DGP'D < A 'DGP'D.
Thus,

tr(DSP'D + M) 'DEP'D) = Y (e, (DSP'D + AI) 'DSP'De;) 2

1

1 ,
<Jj+ X Z<€Z‘, DSP @€i>g2

1>

1
S )+ €, Gplez
J A1 §< )e2
1
<j+ tr(GP) (3.12)
Vi+1
The result follows from (3.10)—(3.12). O

We now evaluate the estimation error.

Theorem II1.10. Assume that t, = O(k™?) for some 3 > 0. Then, setting X\ =

_ 2mAf+1
n_ 2m+5+2 | we have

_2m4B+1

E[|L(fr — f)]|20 = Op(n~20t582),

Proof. By Lemma II1.8 we conclude that ¢, = O,(k=?). It follows from Theorem
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II1.9, with k = j = [nm], that
tr(Gy L7 L) = O, (n7m+572). (3.13)
Note that G;lL*L is self-adjoint and bounded by I. Thus,
tr((Gy'L*L)?) < tr(G'L*L),

and the result follows from Theorem II1.2. ]

Next, we evaluate the prediction error. Let X be a new independent observation.

We consider
Ex{Lx(f = )Y
where Ly f = (X, f)2. Note that
ILfn = (f, R0 f)r2 and Ex(Lxf)* = (f,Rf) 2.

Thus,

E|L(fr — D120 = E(fr — £, Ra(r — )1z,
Eox{Lx(fr— NP =E(fr = [,R(H— )2

The first expression was already considered by Theorem III.10. It therefore suffices

to consider the difference of the two terms.
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For any f € L?0,1],

<f7 9%nf>L2 = <f7 %f>L2 + <f’ (mn - 9{)f>L2

Below, we follow the argument in Crambes et al. (2009) to deal with the second term.

Let

%: ij€j®€j7

J

where the e; are the principal components of R (in L? [0,1]). Define the scores by
Eir = (Xiye,), 1<i<n,r>1,

and let

n

1
Z(&,r&,s - pr5r5)~
\ nPrpPs i=1

Trs =
Lemma III.11. Suppose that there exists a fired C' < oo such that

Var(§,.&s) < Cprps  for all r,s. (3.14)
Then, for any f € L*[0,1] and any k > 1,

([LRf) L2001

k
< (o Raf)re + Op(n DIf 172 Dt + Op(n ™) f 172t
r=1
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Proof. Write

<f7 (%n - 9{)f>L2 = Ln Z Z f fs\/ PrPsTrs,

r=1 s=1

where f, = (f,e;). Then
[(f (R = R)f) 2|
k
2
S_Zz|frfs\’prps7—7"5 \/— Z Z|f7"fs prpsTrs|
" r=1 s=r r=k+1 s=r
9 ko oo 1/2 o 1/2
< (L) (L3er)
r=1 s=r r=1 s=r
9 o 0 1/2 0o oo 1/2
+—= ( > foff) ( > Zprpsrf,s) .
" r=k+1 s=r r=k+1 s=r
Note that
STR=1fR and Y pf2 = (£ R ) e
r=1 r=1
Thus,

ko
ZZ WJPEE < (R 2 17
S S < I

r=k+1 s=r

Using the assumption that E77, < C for all r, s,

koo k
Z Z pSTrz,s = 0y(1) Z tr—1
r=1

r=1 s=r

Z Zpr,as e = 0p(1) - ;.

r=k+1 s=r
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Combining these derivations,

[(f, (Bn = R) f) 2]

1/2
= O0,(n™2)|| fll. { fLRf)2 (Z t- ) +tkf|L2} .

Now,

<f79%f>L2
1/2
= (£, f) 2 + Op(n )| f 12 { FLRf) (Z ty- ) +tm2} .

Note that if

1/2
(. 9RF) 12 = Op(n ™) 2 f. R )2 (Z“ ) ,

then

k
(F R/ = Opn I3 Yt
r=1

Thus,

<f7 mf>L2

k
< (R f) 200+ Op(FI72 Y s + Op(n™ )| £ 1172t
r=1

We can now compute the prediction convergence rate.
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Theorem II1.12. Assume that (5.14) holds and ty, = O(k=P) for some 3 > 0. Then,

. _ 2m4-B+1 .
taking A\ = n~ 2m+6+2 yields

2mip+l s+1

[EE,X{LX(J?A — )} = Op(n" 252 40727,

Proof. 1t follows from the last lemma that

(Fr— £ R(F — )2
k
< (= LR (P = ez + 0o = FIE2 D bt + Op (™) — fII ot

(3.15)

By Theorem III.3,

A 202 D
Elfa g < 207 B + —tr(GR2L°L).

In view of the fact that tr(Gy?L*L) < A~*r(G'L*L) and (3.13),

1 ok 1 1
ﬁtI'(G)\2L L) = EOP(TL%’I*BJJ) = Op(l)

Thus, ||fx|r2 < ||J/C:\||W% = 0,(1). If we let k = [n'/?], then the second and third
terms of the right-hand side of (3.15) are O,(n~(%*Y/2). The result follows from

inserting the rate found in Theorem III.10 in (3.15). O

_2m+f+1 | ..
Finally, we finish this section by proving that n~ ?m+5+2 is the minimax rate.
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Theorem I11.13. There exists a constant d such that

lim inf inf sup [P([EX{LX(f— Y > dn*iﬁigié) > 0,
N0 feF PeP(B),fEWE,

where F is a collection of measurable functions of (X1,Y1),...,(Xn,Yn), and P is
a collection of probability measures such that X is a centered L*-random function

satisfying t, = O(k™P) and ¢ is a random noise with a mean 0 and a variance o*.

Proof. The proof uses the argument based on the Neyman-Pearson lemma, as seen

in the papers such as Hall and Horowitz (2007) and Yuan and Cai (2010). Define

2Ly

W, 1= {f =S LYk 0kn(t), 0 € {0,1}, L, = Lnimimj}.

k=Lp+1

For a sufficiently large C' > 0, || f||3,, < C for all f € W, and all n. Thus, W, C W},
Note that there are 2°* elements in W,. Next, define a collection of probability
measures P* such that e follows N(0,0?) and X is defined by the expansion X =
Y orey §kk;_%gz5k where &,’s are independent uniform random variables on [—\/5, \/5]
P* actually consists of only one element and obviously P* C P. For notational
simplicity, denote G := (P*,W,). For a given G € G, define Gy such that it is

exactly same as G except that 6 in G is 0, and similarly define Gy;.
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Define an arbitrary estimator by f: 228" 371/2/{_"1«’9;@. Then,

k=s,+1°"N
~ 2Sn ~
sup Ea{Lx(f — f)}* =sup > s,"k O IEG(0, — 0;)°
Geg GeG o 11
1 28p
—17.—(2m+B+1) 0o 2
>3 Y (-0
GeG k=sp+1
2s
n 1 —
=it DL RO ) Ea(B— 60
k=sp+1 Geg
o (e ~ ~
=50 D k_(2m+ﬁ+1)27n > §{Ecko(9k — 01)” + Eg,, (Or — Qk)z}
k=sn+1 Geg
2s
n 1 —
= s;l Z k—(2m+,3+1)2T Z Ec, (6), — 919)2,
k=sn+1 Geg

where Pg, := 3{Pq,, + Pg,, }- Now, define k-th loglikelihood by

- Lle

Rq, = )
e LGkO

Then,

E, (0 — 00)? = B, [Py (0 = O1Y, X)1{fi = 1} + Po, (6 = 1Y, X)1{0 = 0}]
= Eg, [(Re, +1)""1{0; = 1} + Rg,(Rg, + 1)"'1{6, = 0}]

> Eq,[(Ra, +1)'1{Rg, > 1} + Rg, (Rg, + 1) '1{Rg, < 1}]

= [min{ fi, ! }]
B 1+ Rg, 1+ Rg,

1 . Ra 1
2 e min { 55— 5
-2 Gro | T 1+ RGk 1+ RGk

1 9 \ 2
a (EGkoRGk> )

v

where the last inequality comes from Hall (1989). Now, again following Hall’s argu-
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ment on the evaluation of a normal likelihood ratio, we conclude
Ec R, = {1+ O(s;, k™M = {14 O(s s, @) = {1+ O(n ™)},

because s, +1 < k < 2s,,. Thus, there exists a constant C'; > 0, which is independent

of G and k, such that for all sufficiently large n
[EGk (5k — Qk)z > Cl.

Now, we conclude that there exist another constant Cy > 0 such that

sup Eq{Lx(f — f)}? > Con~ Imiaiz,
Geg

To consider the lower bound, we only have to consider estimators such that 0 <

gk < 1. Thus,
2sn 2sn
Z 71]{7 (2m+B+1) ( ek < Z —(2m+p+1)
k=sn+1 k=sn+1

_ 2m4B+1
< n 2m+B+2

Now, we conclude that

~ 2m+p+1
liminf inf sup P(Ex{Lx(f — f,)}? > dn~ 2m+s+2)
o0 feF PeP(B), foEWR,

> liminf inf  sup  P(Ex{Lx(f— f,)}*>dn~ gzigié)
00 feF PEP*,fo€Wn

> 0,

where d > ( is some small constant.
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3.4 Asymptotic Theory for Discretely Observed Functional

Data
In this section, we consider the case where each X, is observed at t;,...,%;,,. Let
I; j be an interval containing ¢; ; and I 1, ..., I;,, form a partition of [0, 1]. Define

Pi
j=1
Accordingly, let
Lif =(Xi, f)zz and Lf=(Lif,...,Lof)".

In the asymptotic theory below, assume that p; = p, ;. Denote by J?,\ the penalized

least squares solution:

Fi = argmin {|IY = L2 + Al f s } (3.16)

Jews

Thus

=G,

where é,\ = L*L + .
Let 5%” be the sample covariance operator of )?1, e ,)?n in L?0,1], and R =
[E(f)?in) Note that %R also depends on n. Also, let p; > p» > ... be the eigenvalues of

Rand f;, =3 ok Pj- Similarly, define

g;,s - <5(117 gs>L27
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where ¢, is the eigenfunction of R that corresponds to the eigenvalue ps. Let

Lyxf=(X,f)r and Lgf= (X, f)

Theorem II1.14. Assume that t;, = O(k~") for some § > 0 and there exists a fized

C < oo such that

Var(gmg,s) < Cppps forallr,s. (3.17)

_2m4B+1

Then, taking A = n~ 2m+6+2 yields

~ _ 2m4B+1 1 n ~
[Ea,X{LX(f)\ - f)}Q = Op (n 2miﬁi2 + R_% + " Z [EH)(Z — XZH%Q) .

Proof. First, we show that

~ o~ 2m+4-38+41
ENIL(fx = F)lfn = Op (n T Z E[l X — X, ||L2> : (3.18)

Write

E-|Z(fx — f)|3e = EIZ(fx — E-fs + Eofs — f)]|20

< 2[Ea||z(f>\_ [Eaf’i\)||2+2||Z[E5(f’i\_f)H[}2?” (319)

The first term on the right of (3.19) is a variance computation, and derivations similar

to the continuous case show that

(3.20)

2m+4B+1 )

E|L(fr — Ef)|? = —tr{(G 'Yy =0, (n—wu
The second term on the right of (3.19) is a square bias computation and can be
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handled as follows. First observe that [Egﬁ\ = é;lz*L f is the minimizer of
IZf = Lfl[gn + M5z,
Thus,
ILf = LEfallgn + MEARz < ILF = LEIEn + Al 12 (3.21)
Since
IZE(fx = Ollgn < 20Lf = Lf(IZ + 2IILf = LE<fx]lfn,
using (3.21) we arrive at the inequality
IZE(fx = Nllgn < BILS = L [zn + 27 f [z, (3.22)
By the Cauchy-Schwarz inequality,
ILF = TFIR < IR 3 1% - K
i=1
=0, (% Zn: El|X; — Xi”%?) ;
i=1
and, by (3.22), we obtain
IZE(F— 1) = O, (A “lye- 5%) . (3.25)
i=1

Then, (3.18) follows from (3.19), (3.20) and (3.23).
Next let X7, ..., X/ be a random sample from the same distribution as X7, and

let Z be a discrete uniform random variable with possible values 1,...,n. Assume
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that X1,..., X,, X{,..., X/, Z are all independent. Define
B pi
X/(t)=>_ X{(ti))I(t € L),
j=1

and
X=> 1(Z=14X]

i=1

By (3.18) and following the lines of proof in Lemma III.11 and Theorem III.12,

[Ee,)z{LX'(}:)\ - f)}2

=0, (miﬁiﬁiﬁ T % i E|IX, - )Z;-Hig) . (3.24)
To relate it to E. x{Lx(fx — f)}2, consider the X defined by
X = zn:I(Z — )X,
i=1
which clearly has the same distribution as X;. Since
L(f=F) =Lz(h =+ (h =X =X
we have

{Lx(fr= NY <2ALg(H— NP +2(/— £, X = X)%a.
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Thus,

Ex{Lx(fx— 1)}’

= [Es,xi ..... Xg,Z{LX(fNA - f)}2

The first term on the right has been handled by (3.24). By the Cauchy-Schwarz

inequality,
Ex g — £ X = X% S EJfu = FILEIX - X|Z..

As in the proof of Theorem III.12 the first term on the right-hand side is O,(1). The

second term is equal to £ > | E[X; — XlH%Q, and this completes the proof. O

Note that f, and f;\ are not natural splines. To compute these estimators one
can use the representer theorem for the reproducing kernel Hilbert space W20, 1].
We focus on ]?A Let & be the representer of the functional f — Q?i,f)Lz,f €
WZ[0,1], namely, (&, f)wz = <)?Z, f)r2. Let K be a reproducing kernel of W?2. By

the reproducing property,

&(t) = (&, Kywa = (X;, Ki)p2

Let U be the matrix contains the elements

Li&; = (X;,6)1 /1/1[( X, (t)dsdt.
0 0
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By the representer theorem, the solution can be written as

f)\ = Zcz‘&

i=1

where

(c1y...,c0) = (UTU + NU) Uy = (U + M)y,

3.5 Functional Linear Regression with Multiple Predictors

In this section, we consider multiple functional predictors. For simplicity, we
consider the two-predictor case. Extension to more than two predictors is straight-
forward. Define a product space W[0,1]* = W2 [0,1] x W2 _[0,1] and the linear
operator L : W[0,1]> — R by Lf = Ly f1 + Laofs; where f = (f1, f2) € W[0,1]* and
Lifi = (X1, fi),---(Xjn, f;)) for j =1,2. Suppose Y is generated by

Y:Lf+€:L1f1+L2f2+€.

We use a natural inner product in WI0,1]* such that for fi,g1 € W72 [0,1] and

f2792 € Wn212[07 1]7

((f1, f2)s (91, 92)) = (f1,91) + (f2, 92)-

It is not difficult to see that L*x = (L}z, Ljz). Define a linear operator A : W[0,1]? —

W[0,1]% by Af := (A1 f1, Aaf2). We use a loss function

LA(f) =Y = LfIIP + (f, Af)

= IY = Lifi = Lofol* + Ml fillwz, + Xall follwz,,
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whose minimizer is, according to Proposition III.1, given by
=i, o) = (L*L+A)"'L*y.

As before, define Gy = L*L + A. Theorems II1.2 and II1.3 hold without any change,

ie.,

EIL(fr — £)I? < (f.Af),

2
~ ~ o _ "
Ec||L(fx — E.A)I? = gtr((leL L)?),
and
2 20° —2 7%
ENRIP < 201+ “-tx(GR2 L L),

Let K; and K be reproducing kernels in W2 [0,1] and W2 _[0, 1], respectively.

The result corresponding to Theorem I11.4 becomes

1y7 L;y)

Zyz (Xui(t Zyz (Xai(t )>>,

= (L
(

L*Lf = <L (Lifi + Laf2), Li(L 1f1+szz))
(

:I>—‘

SIH

Z{ X127f1 X2zaf2>}<X1i(t)7K1(t7'))7

—Z{ Xiiy f1) + (Xai, ) HXail1), K (1))

= (/C1Rn,(1,1)f1 + KR, 1,2 f2, KoRo 2,10 .F1 + /Can,(m)fz);
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where

F= 3 XX f)
=1

Define {¢1;,v1,;} and {¢2, 15} as before. Then,

n (a,b) — ZZ ab)¢a,]®¢bka

where
TJ(-Z’b) = %i(Xam Baj)(Xbis Do)
i=1
Then,
L'Lf = <ZZ(T§i1)V1kl/2f _I_TJ(k‘ V2k/ for) K11
Z Z Tik V1k1/2f1k + T](iQ Vzk/ f2k)’C2¢2J)
Furthermore,

X 1,1 1/2 1,2) —1/2. —1/2
(9, L°Lf) = ZZ (T](k )Vlj & k/ 91 f1k +T§k )V1j/ Vzk/ 91j fok

ik
2,1) —1/2 1/2 —1/2
+Tj(k )Vzg/ 92]f1k+rjk )I/zj/ 1/%/ gzjfzk)
2
_ (ab) —1/2 —1/2
- ZZZZ% Vaji " Vi Gaj Jok-
i k a=1 b=1

Therefore, as in the single predictor case, the mapping corresponding to L*L in £? x (>

is

Z =DGD,
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where

Dy G Gio
D, Go1 U

and

D, _ZV‘U ej ® e, gab_zz Tk 6]®6]

The mapping corresponding to A is given by

Al
Wy =
Aol

Define t;a,)f = Dok p,(w and tk = Dok p] ) for @ = 1,2 similarly to the single

predictor case. The result corresponding to Theorem II1.9 is given as follows.

Theorem II1.15. For all j1,j2, k1, ko > 1,

2 t(a;g
—1 * n _ ™FRa
VL'L (k’ + Ja +

az:; AaVajot1 aVa,jo+1

Proof. Let P be the projection of the span of the first ki + ko eigenvectors of G and
P'=1— P. Then,

tr(Gy'L*L) = tr((Z + Wy) ' 2)
< tr((DGPD + Wy)'DGPD) + tr((DGP'D + W,) 'DGP'D)

< ki + ky + tr((DGP'D +W,) 'DGP'D)
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Define e/ = (e;,0)7 and e!” = (0,¢;)”. Then,

t1((DGP'D +Wy)'DGP'D) = > > (e (DGP'D + W,) ' DGP'De”)

S 1 a a
<jitit ) x > (e, DGP'De(”)
a a i>ja

t(a)

y y n7ka
<n+ip+ Z PV
a a a7ja+1

where the last step follows from the single predictor case. O]

2m+p8+1
Assuming t,(ca) = O(k=P) and setting A\, = n~2m+7+2 we can obtain

2
2ma+pBa+1 )

ENIL(R = NP = Op (Do it

a=1

Next, we consider the prediction convergence rate

Eox{Lx(fr— N} = Ex{Llx,(fi = /i) + Lx,(fo — fo)}?

Define R,, = L*L and R = ExL% Lx. Note

(f,Rf) = Ex||L1if1 + Lo fo|?

< 2([EX1 HLX1f1”2 + [EXQHszfQH2)'

Thus, using the result from the single predictor case, for any ki, ks > 1,
2 ka
(R < {23 o Ruaarfa) + Opn ISP D12 + Op(n ™) £l .
r=1

a=1

Thus again using the result from the single predictor case, we obtain the prediction

convergence rate.
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Theorem I11.16. Assume that (3.14) holds for both Xy and X, and t,(ca) = O(k=P)

ma+Ba
for some B, > 0 and a = 1,2. Then, taking A\, =n ~natpate yields

2mag+PBa+1 Ba+1

Ex{Lx(f = NP = 0p( Do 3055 42,

2ma+pBa+l

Finally, we prove that Zz n_ 2ma+fat? is the optimal rate. The proof is a straight-

forward extension of the one predictor case.

Corollary II1.17. There exists a constant d > 0 such that

liminf inf  sup  P(Ex{Lx(f— f)} >dzn Betsaiz) > 0.
=00 feFPeP(B),fEWR,

Proof. Using linearity, the proof can be derived straightforwardly from the one-
predictor case. Create a set of probability measures P* so that X;; and Xy, are

independent. O

The theory for discretely observed data also straightforwardly applies to the mul-

tiple predictor case.

Corollary III.18. For a = 1,2, assume that tka) = O(k=P) for some 8, > 0 and

there exists a fired C' < oo such that

War(§ &i ) < CRYRD  for all 7, s.

_ 2ma+Ba+l
Then, setting \, =n_ 2ma+bat2 yields

[E&X{LX(.};\ - f)}2 == Op(Z(ni EEZIQZié + n_B +

i = Xaill22)).
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3.6 Discussion

In this chapter, we explored a regularized approach to the functional linear re-
gression under the framework of the reproducing Hilbert kernel space. Our derivation
of the optimal convergence rate is much simpler than the existing literature, such as
Crambes et al. (2009) or Yuan and Cai (2010), showing clearly what is behind the
approach. It reveals that the choice of the penalty is not so important in terms of
the convergence rate as long as the penalty term in the objective function makes it
invertible to find the unique solution. We bypassed the theoretical setting where the
functional predictors are fully observed to the practical setting where the functional
predictors are only discretely observed by a very simple way. We also explored the
model that accommodates the multiple predictors and its effect on the convergence
rate.

This chapter focused primarily on the theoretical aspect of the problem, devoting
all our efforts to the analytical derivation. For a practical purpose, more thorough
numerical explorations are desired since, for example, the choice of the penalty term
or the order of the functional space have a significant impact on the performance in

reality. We leave these computational aspects of the problem for the future study.
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CHAPTER IV

Estimation of the Composite Risk in
High-Throughput Screening Assay Analysis

4.1 Introduction

Advances in assay technology have made it possible to conduct millions of bio-
chemical tests using machines; an automated system saves a vast amount of time
and cost as it no longer necessitates experimenters to manually conduct the tests by
hand. This experimental approach is called high-throughput screening (HTS) [Zhang
et al. (1999), Zhang (2011)]. The limitation of such screening method is that the type
of tests are limited to only those which does not require careful human attention,
such as those focusing on the molecular features of the chemical compounds, rather
than more complicated tests that can directly assess the effects on living organisms or
humans; the HTS assays require only a low effort to obtain but do not directly reveal
the phenotypic features that we are most interested. Animal testing is conducted to
assess the direct effects on living organisms, but it is costly in terms of both time and
money. Furthermore, it also involves ethics issues. One promising way to overcome
such issues is to utilize information from the HTS assay results to predict phenotypic
effects, instead of conducting animal testing one by one. In this respect, it is essen-
tial to explore the prediction relationship between the HTS and conventional assays.
What is challenging in the HTS assay analysis is that it has to deal with the large

dimensionality or the weak signals.
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The specific object of interest in this paper is the toxicity of the chemical com-
pounds. A conventional approach to chemical toxicity testing uses phenotypic live-
cells or animal testing of each chemical compound of interest. Multiple such assays
are performed to characterize the effects of a compound on all organ systems. The
overall risk of a compound can be then determined by the lowest concentration at
which it has an adverse effect of any type. This approach is, however, expensive and
time-consuming. Thus we want to use the results of the HTS assays to predict the
overall toxicity. The prediction results can be used to prioritize the compounds in
terms of risk to save time and cost [Dix et al. (2007), Judson et al. (2010)]. In the
following, we formulate the problem in the statistical model.

Denote a p-dimensional explanatory variable by X € RP and a ¢ multiple de-
pendent variables by Y = (Y3,...,Y;) € R%. In our problem, X corresponds to the
HTS assay results, which require a low effort to obtain, and Y corresponds to the
conventional assay results such as cell-culture assays or animal testing. The unit of
the analysis is a chemical compound. Let p;(X) = E(Y;|X), which corresponds to
the assay-specific risk predictable by the HTS assays. We define the overall risk by
v(X) = min; p1;(X), which we call the composite risk. Our goal is to estimate the
composite risk function v.

There are a couple of naive approaches to estimate v. The first is a two-step
approach where we first regress Y; on X and then compute the minimum of the
estimated assay-specific risk functions. This approach however requires to estimate
a large number of parameters when ¢ is large. Also, the operation of taking the
minimum may cause a serious bias. The second is to regress the observed minimum,
i.e., min; Y;, on X. The observed minimum, however, is biased for v, and the bias
can be a serious issue when ¢ is large. To avoid these issues, we focus the modeling
efforts directly on v. In this paper, we introduce an approach that specifies an explicit

model for v through the profile likelihood function.
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In Section 4.2, we introduce a method to directly specify and estimate a model
for the composite risk function through the profile likelihood function. In Section
4.3, several simulation studies are conducted to explore the properties of the profile
likelihood approach and naive alternative approaches. We investigate under what
situations the profile likelihood approach can be advantageous over the other ap-
proaches. In Section 4.4, we extend the idea of directly specifying a model for the
composite risk through the profile likelihood function to the interval estimation for
it. An alternative approach—namely the Wald-type approach—is also introduced
and compared to the profile likelihood approach. In Section 4.5, we illustrate the
estimation of the composite risk function using the ToxCast data of the EPA and the
60 cell line screen of the NCI. Finally, we conclude this paper with some remarks in

Section 4.6.

4.2 Estimation of the Composite Risk Function

4.2.1 Problem Set-Up

Let us recall the notation first. Denote the p-dimensional explanatory variable
X € R? and the ¢ multiple dependent variables Y = (Y;,...,Y;) € R% Let pu;(X) =
E(Y;|X) and v(X) = min; ;(X). Given a random sample ((X3,Y7),...,(X,,Y,)) of
(X,Y), our goal is to estimate the composite risk function v. (By slightly abusing
the notation, we also use the notation (X,Y]) to refer to the data matrix, i.e., X €
R™*?Y; € R™*!.) This function can be used for two purposes. If we wish to predict
the composite risk for a compound that has not been assessed for overall risk, but
for which the HTS data X are available, v(X) can be used as a prediction. Also, if
we want to improve the experimental overall risk min; Y;;, we can consider estimates
of the form wmin;Y;; + (1 — w)v(X;) where 0 < w < 1. The motivation for doing

this is that v borrows information from other assays and from other compounds that
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can improve the precision of the estimated composite risk. However, relying solely
on v(Xj;), i.e. by setting w = 0, may lead to poor performance if the model is not
sufficiently predictive. We call the first goal “out of sample prediction,” and the
second goal “in sample estimation.”

The features of this problem are as follows. First, the object of interest involves
an extreme, i.e., the minimum in the toxicity analysis. The involvement of the ex-
treme inevitably causes a bias issue if not explicitly accommodated. Suppose that
you have a good prospect about the model for each (X,Y;) and can construct an
unbiased estimator for p;(X), say fi;(X). Then, the natural estimator for v(X) is
given by min; jz;(X). However, this estimator incurs a downward bias due to the min-
imum. This naive two-step approach deteriorates even more when (X)), ..., p1,(X)
are similar to each other and/or when ¢ is large. Second, there is a large number
of nuisance (function) parameters. Note that although v(X) can be computed from
p1(X), ..., pg(X), the entire shapes of {u;} do not appear in v. In this sense, the
effort to understand all of {y;} is redundant for the estimation of v and may cause
an unnecessarily large efficiency loss, in particular when ¢ is large. One may consider
regressing the observed minimum min; Y; on X, but min;Y; is unbiased for v(X);
hence this approach still suffers from a bias, again which can be a serious issue when
q is large. In order to avoid these issues, we consider an approach that specifies an
explicit model for v, rather than pq, ..., y,.

In the following section, we introduce an approach that directly models and esti-
mates v through the profile likelihood function. By profiling the likelihood function
with respect to v, an explicit model for v can be specified. Figure 4.1 provides two
schematics to describe what we want to attain by this approach. The left panel of
the figure represents the case where p; are polynomial functions but v can be well
approximated by a linear function; the right panel of the figure represents the case

where p; are linear functions but v can be well approximated by a polynomial func-
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Figure 4.1: Schematics representing the idea of direct modeling.

tion. The key idea is that by directly specifying the model for v, we can avoid a
large number of nuisance parameters to estimate and the necessity of computing the
minimum.

For simplicity, we focus on the normal additive error model throughout the paper:
Yij = wi(Xs) + 5, €5 ~ N(O, sz),
wherez=1,...,nand 7 =1,...,q.

4.2.2 Estimation Through the Profile Likelihood Function

Denote the conditional log-density of Y; given X by ¢;(y;|p;(x)). Let p(z) =
(pr(z), ..., pg(x)). Then, we define the profile likelihood function of v given X and
Y by

q
V) = max Ci(yilpi(x)), 4.1
90) = 18, D012 (4.1

where

Clu) = {(pm,.- -, ptg) €ER" 1y >w, Vj AN pj=u, 35}
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The form of (4.1) allows us to specify the model for the target parameter v directly;
we can leave the form of p; completely arbitrary, so that we only need to specify a
model for v regardless of the size ¢ and avoid the necessity of modeling and estimating
all p1;. We can also put a constraint on y; such as a smoothness condition if we wish to
interpret each f;. In the following, we leave p; to be completely arbitrary functions.

For simplicity, we assume that v can be approximated by a linear function. More
complex functions such as spline functions or shape restricted functions can also be
used, for example when there is prior information on the shape of v. Let v(X) = 87 X.
Given observations ((z1,y1),- .., (Zn,yn)), We estimate 5 by maximizing the profile

likelihood function

n q

g(p) = max ZZ@ Z/%J|NJ ;) (4.2)

zN a;l)GC(BTzZ i=1 j=1

i.c., B = argmax G(B). To compute this, we can rewrite (4.2) to
B

Z max {£;(vi;| 8" %) -I—ZK (g |yigr V B 23)},

1<j<q
J'#J

because ¢;(y;;|u) is maximized at u = y;;. For each i, we have to calculate the
maximum only when y;; > 87z; for all j, because otherwise the maximum is given
by > 1cicq biWislyij V BTx;). When y;; > 7, for all j, the maximum is given by

maxi<j<g {4 (Yii |87 %) + 35025 € (g |yiy )} Summarizing these, we have

n

G(B) = Z [(1 — 1{y;; > B x; for all j}) Z i (iglyi v B )

i=1 1<j<q

+ 1y > B, for all ]} max {f (yi;187 ) + ZE (Yigr | yigr )}]
J'#7

(4.3)

This can be maximized by using a general optimization package.
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4.2.3 Four Methods to Compare

In Section 4.3, we numerically explore the properties of the profile likelihood
approach in comparison to three alternative approaches. The first approach (referred
as OLS(min)) is the ordinary least squares estimator for the regression of the observed

minimum of Y on X,
U(z) = 2" (XTX) ' X Y im,

where z € RP, X € R™? and Y,,;, € R, and Y,,;, is the vector whose ith element
is min;<j<, Y;;. The second approach (referred as min(OLS)) is the minimum of the
ordinary least squares estimators for the regression of ¥; on X for j =1,...,¢. This

is a two-step approach, and the estimator is given by
P(x) = minfa” (X"X)"' X7V},
J

where Y € R"*4. The third approach (referred as MARS) is similar to the second
approach, min(OLS), where instead of the OLS estimator the Multivariate Adaptive

Regression Splines (MARS) is used to regress Y; on X, i.e.,

() = min{fi; ()},

where j1; is obtained by applying MARS to (X, Y]). For the details about MARS, see
Friedman (1991).
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4.3 Simulation Study for the Estimation of the Composite

Risk Function

In this section, we numerically evaluate the properties of the profile likelihood
approach and the other alternative approaches for the estimation of the composite risk
function. There are several aspects that will affect the performance of the estimation
methods. First, for the profile likelihood approach to work well it is essential to
specify a good model for v, but it may not be easy to specify a perfect model. We
explore how the specification of v influences the performance of the profile likelihood
approach, compared with the other naive approaches. It will be shown that even
if v is not perfectly specified, the profile likelihood approach still begins to show
an advantage over the correctly-specified two-step approach as the specification of v
becomes closer to the true v. Second, the varying dimensionality of the dependent
variable, ¢, may have different effects between the profile likelihood approach and the
other approaches. As mentioned before, larger ¢ produces more nuisance parameters,
and the number of the elements among which the minimum is computed grows.
Thus the naive approaches incur a large bias and variance. In contrast, the profile
likelihood approach estimates v directly, hence it can avoid such issues. Third, the
estimability of p; may deeply affect the naive approaches that need to estimate all
the p;. Because it need not estimate each p;, the profile likelihood approach is
robust against this issue. Finally, the error variances are treated differently by the
procedures. The profile likelihood approach incorporates the variance information in
the procedure as part of the likelihood function while the naive approaches do not
utilize the error variance information in the procedures. It will be shown that the
heteroscedasticity of the error variances has a negative effect on the methods except
the profile likelihood approach, which is robust against this issue. In the following,

we evaluate these aspects of the problem. In particular, we focus on four aspects:
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the dimensionality of the dependent variable, the specification of v, the smoothness

of pj, and the heteroscedasticity of the error variances.

4.3.1 The Specification of the Composite Risk

First, we explore how the profile likelihood approach behaves when the specifi-
cation of v gradually becomes closer to the true one, along with the effect of the
dimensionality of the dependent variable. We generate a sample of size 300 from a

linear model Y; = ] X + &; where p = 10, X; ~ N(0, 1), €; ~ N(0,2?), and

o fi[l] =v1—a? andﬁj[2:p]:oz”'zﬁ for j =2,...,q,

where z; = (2g;,...,2;)" is a standard normal random vector, | z;||* = >_7_, 27;, and
B;[k] means the kth element of 3; and I, is the p-dimensional identity matrix. We
consider three cases: ¢ = 5,15,45. « controls the proximity of the assumed v to the
true v; as a moves from 1 to 0, v becomes closer to a linear function. When a = 1,
B; are on average orthogonal, and v is the farthest from the linear form; when a = 0,
v becomes exactly linear. In fact, v(X) = /X = --- = /X when o = 0 (see a
schematic in Figure 4.2). f; is standardized to have a unit norm, i.e., ||5;|| = 1 for all
7. The covariate X; is generated by the standard normal distribution independently
from ;. Thus, 8] X; is also standardized in the sense that E(S] X;)* = 1 for all 4
and j. We assume a relatively low signal to noise ratio as that is usually the case
in the HTS assay analysis (the individual HTS assays have weak signals in terms of
predicting the outcomes of the traditional assays). The MARS approach is excluded
from this analysis as min(OLS) is the correctly specified approach under this setting.

For each sample, we compute an estimation bias = 7" {v(X;) — 7(X;)} and a
mean squared error (MSE) £ >~ {v(X;)—D(X;)}?, where 7 is the estimate obtained

by each approach. Repeating this procedure 300 times, we compute the average bias
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and the average MSE for ao = (1,0.7,0.5,0.3,0.1,0). The results are shown in Figure
4.3. At a = 1, the profile likelihood approach has much worse MSE than min(OLS).
As « approaches to 0, the profile likelihood approach becomes better in terms of
both bias and MSE while min(OLS) becomes worse, and the superiority reverses
from a certain point on. Why min(OLS) becomes worse is that as « moves toward
0, p; become similar each other, which makes the bias issue more serious; in fact,
min(OLS) has a downward bias due to the minimum and the bias deteriorates as «
approaches 0. The second approach (OLS(min)) is always worse than the other two
approaches in terms of MSE.

Figure 4.4 shows the ratio of the MSE of min(OLS) to that of the profile likelihood
approach. Note that as the specification of v becomes closer to the true v, the
ratio increases and becomes higher than one from a certain point on, where the
profile likelihood approach begins to have a smaller MSE than the two-step approach.
As ¢ increases, the ratio becomes larger and the point where the ratio exceeds one
shifts toward earlier points, indicating that the profile likelihood approach becomes
more advantageous for the larger dimensionality over min(OLS). Note that except
a = 0 the profile likelihood approach is always a misspecified approach while the
third approach is always the correctly specified approach, including o = 0, as p; are
always linear functions regardless of the value of a. Thus, when a good approximation
to v is available, the profile likelihood approach may behave better than the correctly

specified two-step approach.

4.3.2 Varying Smoothness of the Assay-Specific Risk Functions

Next, we consider the case where v is linear while y; are nonlinear. We explore
how varying smoothness of 1, affects the procedures. The MARS approach is now
included in the analysis in addition to the three approaches. Our aim is to investigate

the effect of the smoothness of p;, in particular, on the profile likelihood approach and
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Figure 4.2: Schematic for the simulation study concerning the specification of the
composite risk

the MARS approach. First, we consider the case where 1 are wiggly and difficult to
estimate. We generate a sample of size 300 from Y; = p;(X)+¢; where X; ~ N(0, 1),
p =10, g; ~ N(0,2?), and setting v(X;) = 87 X; where 8 = (1,0,...,0):

e Generate n = 300 random integers from 1 through ¢, and denote them by

(b1, ... k).
® Set ju,(Xi) = BT X;.
e Set 11;(X;) to be BT X; plus a x3-random variable independently for j # k;.

Under this model, v(X;) = minj<j<, 1;(X;) = B7X; while u; becomes extremely
wiggly (see the schematic in Figure 4.5a). We again consider the three cases ¢ =
5,15,45 to see the effect of the dimensionality of the dependent variable. With 300
repetitions, we compute the average MSE and the average bias. The results are given
in Table 4.1. As can be seen, the profile likelihood approach has much better MSE
than all the other methods. It may even be surprising that the performance improves
as the dimension of the dependent variable grows. Since the bias remains the same,
this improvement is solely due to the reduction in variance. That implies that for
the profile likelihood approach a larger sample due to a larger ¢ means simply that

more information is available rather than that it is the cause of the bias. The two
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Figure 4.3: The transition of a bias (Left) and MSE (Right) with varying «. 1: PL,
2: OLS(min), 3: min(OLS)

approaches using OLS become worse as ¢ increases. Most of the MSE of MARS is
attributable to bias, which implies that MARS basically fails to estimate such wiggly

functions.
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Figure 4.5: Schematic for the simulation study concerning the smoothness of the
assay-specific risks

Second, we consider the case where p; is smooth. The above simulation setting

e 11(X;) = BT X; where 8= (1,0, ...

o 1;(Xi) = BT X; +sin{(| X;ll/p+ (G = D/g)m} + 1

70)

84

continues to be used except that p; are now given as follows:

Under this model, v(X;) = B7X; and all u; become smooth functions (see the
schematic in Figure 4.5b). The results are given in Table 4.2. Now, the MARS

approach performs best. Unlike the last setting where p; were wiggly, the MARS



Approach PL OLS(min) min(OLS) MARS

g=>5 0.116  0.179 0.338 0.344
(0.049) (0.062)  (0.472)  (-0.534)

¢=15 0095 0.331 0.632 0.374
(0.050) (0.097)  (0.721)  (-0.569)

g=45 0081  0.528 0.985 0.325

(0.049) (0.127)  (0.933)  (-0.521)

Table 4.1: MSE and bias for the simulation study where the assay-specific risks are
wiggly. The bias is given in the parentheses.

Approach PL OLS(min) min(OLS) MARS

=5 0.117  0.169 0.259 0.054
(0.047) (0.057)  (0.405)  (0.010)

g=15 0084  0.289 0.477 0.045
(0.047) (0.090)  (0.623)  (0.010)

g=45 0076  0.495 0.733 0.045

(0.049) (0.125)  (0.801)  (0.015)

Table 4.2: MSE and bias for the simulation study where the assay-specific risks are
smooth. The bias is given in the parentheses.

approach has fairly small bias and seems robust against the dimensionality of the
dependent variable. The profile likelihood approach again improves as the dimen-
sionality grows. The two approaches using OLS become worse as the dimensionality

grows.

4.3.3 Heteroscedasticity of the Error Variances

In the previous sections, the variance errors were assumed to be homoscedastic.
Now, we show that the heteroscedasticity of the variance errors negatively affect the
MARS approach while it has a positive effect on the profile likelihood approach. We

continue to use the last simulation setting except that:
e 0; =|2+ s zj| where z; ~ N(0,1)

e s=20,0.5,1

85



Approach PL OLS(min) min(OLS) MARS

s=0 0.084  0.289 0.477 0.045
(-0.047) (-0.057)  (-0.405)  (-0.010)

s=05 0074  0.302 0.541 0.047
(-0.043)  (-0.09) (-0.644)  (-0.029)

s=1 0.049  0.403 0.684 0.063

(-0.032) (-0.099)  (-0.711)  (-0.037)

Table 4.3: MSE and bias for the case where v is linear while y; are smooth, but the
error variances are heterogeneous (¢ = 15). The bias is given in the parentheses.

s controls the degree of the heteroscedasticity; as s increases, the error variances
become more heteroscedastic. The results for ¢ = 15 are given in Table 4.3. As the
error variances become more heteroscedastic, all the approaches become worse except
the profile likelihood approach, which actually becomes better in terms of both MSE
and bias. This may be because only the profile likelihood approach automatically
accounts for the heteroscedasticity by including the variances in the profile likelihood
function while the other approaches do not take into account the heteroscedasticity

in their procedures.

4.3.4 Summary

In this section, we numerically evaluated the properties of the profile likelihood
approach and the other naive approaches to estimate the composite risk function.
Because the profile likelihood function need not estimate each assay-specific risk by
specifying an explicit model for the composite risk, it can reduce the dimensionality
of the parameters and avoid the computation of the minimum. Through a variety
of simulation studies, we confirmed what situations the use of the profile likelihood
approach can be beneficial. First, even if the composite risk function is not perfectly
specified, the profile likelihood approach can still display better performance than
the correctly-specified two-step approaches when the specification is relatively well.

Second, the smoothness of the assay-specific risk functions affects the naive two-
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step approach that relies on the estimability of these intermediate quantities; the
profile likelihood approach is not influenced by this issue because it directly estimates
the composite risk. When the assay-specific risk functions are wiggly and difficult
to estimate, the profile likelihood approach performs much better than the two-step
approach. When the assay-specific risks are smooth, the MARS approach works fairly
well though it does not display the performance improvement when ¢ grows unlike the
profile likelihood approach. Third, the heteroscedasticity of the error variances has
a positive effect on the profile likelihood approach, while it has a negative effect on
the naive approaches. These distinct effects seem to be due to whether a procedure
accounts for the heteroscedasticity in its estimation procedure; the profile likelihood
approach incorporates it into the likelihood function while the other approaches do
not explicitly use it in their procedures. Finally, a large dimensionality due to large ¢
reflects the availability of more information for the profile likelihood approach, which
improves the performance with increasing ¢, while it can be the cause of a serious

bias for the other approaches.

4.4 Interval Estimation for the Composite Risk

In this section, we extend the idea of directly specifying a model for v(z) through
the profile likelihood function to construct a confidence interval (CI) for the com-
posite risk. Recall that our motivating problem is the toxicity analysis. In terms
of health protective perspective, interval estimation may be more appropriate than
point estimation as we have control over how conservative we want to be. We intro-
duce two approaches: the profile likelihood CI and the Wald-type CI. We show their

similarities and dissimilarities both numerically and analytically.
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4.4.1 Profile Likelihood Interval Estimation

We introduce an interval estimation method for v(z) through the profile likelihood
function. Denote the log-likelihood function of a sample of size n by ¢,(3) where

= (br,...,0,) € RP*9. Then, define the profile log-likelihood function for v :=
v(z) = min;{5] 2z} by
g(U) = max ‘gn(ﬁ)v

BEC(u)

where
Cu)={BeRr:fx>uforall j A B]x=uforat least one j}. (4.4)
Then, the (1 — a)-level confidence interval for v is given by
T={u€R:G(u) > maxG(v) - Xiahs

where Xia is the upper ath quantile for the y2-distribution with one degree of freedom.

In particular, the confidence lower bound is given by
/V\lb = HllIl{I},

and similarly the confidence upper bound 8y, can be obtained. Note that C (u) is
locally of dimension pg — 1, except where more than one of (8, ..., 5] x) simultane-
ously become the minimum. Therefore, assuming that there exists a unique minimum

in the true parameters (5], ..., 3] z), the likelihood ratio test (LRT) statistic
Ra = 2{maxG(u) - G0}, (45

follows asymptotically a y>?-distribution with one degree of freedom.
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As before, we assume the normality of the errors. Thus, the underlying model

becomes
Y;j = 5]TX1 -+ €ijy (46)

where g;; ~ N(O,UJQ-) for 1 < ¢ <nand1 < j < q. To use the profile likelihood
approach for this model, we need to know the variances. We treat the maximum
likelihood estimator of 0']2» as the proxy for the true parameters, and implement the
profile likelihood approach as described above. In the next section, we present the
algorithm to compute the confidence interval.

4.4.2 Algorithm for Profile Likelihood Interval Estimation

Assume that variances are known; in practice, we can substitute the MLE of the
variances. We describe the algorithm with respect to the lower bound; the algorithm
for the upper bound can be constructed similarly. The key observation is that C(u)

in (4.4) can be decomposed into U_,Cy(u) where
Ce(u)={BeR: Iz >uforall j £k A Blz=u}.

The algorithm proceeds as follows:
1. Fix u < min; B]Tx where E is the unconstrained MLE.
2. Fix k€ [L,2,...,q].
3. Calculate My (u) = maxgec, (u) In(5).
4. Repeat 2-3 to calculate M (u) = maxy My (u).

-~

5. Repeating 1-4, find 75 that satisfies 2{¢,(8) — M (v.p)} = (1.96)>.
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The step 3 can be achieved by constrained quadratic programming under the nor-
mality assumption [Nocedal and Wright (2006)]. Note that we have to calculate the
constrained maximum likelihood for k£ and only j # k such that EJT[L‘ < u because the
remaining parts are canceled out in the step 5. In particular, when calculating the
lower bound, we only need to calculate the constrained maximum likelihood for the
kth variable. For the step 5, we use simple bisection algorithm, which turns out to

be fairly fast in our analysis.

4.4.3 Censored Dependent Variables

In this section, we consider the case where dependent variables are censored. In
the toxicity analysis, the response may be upper-censored because a compound may
cause no significant change within the range of doses. The model for (Y;;, X;) is then
given by

Y= @TXZ + Eijs (4.7)

Y, = min{Y;, T)}.

The censor thresholds Tj are assumed known. Note that this is the well-known Tobit
model, a classic model in econometrics [Tobin (1958)], hence a variety of compu-
tational packages to compute the maximum likelihood estimator is available. The
difference between this model and the non-censored model occurs in the form of the
likelihood function. In the censored model, the likelihood is no longer quadratic,
hence we cannot use quadratic programming in the step 3 of the algorithm. We use a
nonlinear conjugate gradient algorithm for unconstrained optimization, and the con-
strained optimization by linear approximation for constrained optimization [Nocedal
and Wright (2006), Powell (1994)]. In the following, we numerically confirm that
the profile likelihood CI has the correct coverage probability and the null likelihood

ratio statistic does approximately follow a chi-squared distribution with one degree
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of freedom for both non-censored and censored models.

Let us check numerically whether the likelihood ratio test statistic (4.5) under the
model (4.7) has a y?-distribution with one degree of freedom under the hypothesis that
the conditional means 3] X;, ..., 87 X; have no ties. We generate 5000 samples from
the model (4.7) where we set n = 300,p = 10,¢ = 3,0 = 1.5. § and X are generated
from the standard normal distribution, and we computed 5000 LRT statistics. We
considered three cases: non-censoring case, 1T ~ U(2.5,3.5), and T; ~ U(0.5,1.5).
The latter two cases cause censoring, respectively, 23% and 50% of the times. Figure
4.6 shows the Q-Q plots between the LRT statistic and the y2-distribution with
degrees of freedom 1. Note that the more censoring occurs the more the tail of the
LRT statistic deviates from x?(1). However, the two distributions are quite similar
within 95% region, hence the approximate coverage of the profile likelihood approach

remains 95%.

4.4.4 Alternative Approach: the Wald-Type Confidence Interval

As can be seen, the profile likelihood approach can construct the confidence inter-
val for any point, whether a point is within the sample or outside of the sample. When
the goal is to create an estimation interval for a point within the sample, another ap-
proach is possible. Note that the minimum function f(y1,...,y,) = min{y,...,y,}
is differentiable everywhere except there are ties, and its derivative is one. Thus, if
there is no tie among 1 (X;),. .., 1e(X;), the usual Delta-method approach can be

applied, and it can be easily seen that conditional on X;,

min(Y;;) — min(p;(X;)) = Yy — py(X3) ~ N(0,07),

J J J

"is not observable so we use j* =

where j° = argminp;(X;). Unfortunately, j
J
argmin(Y;) as a surrogate. Then, the Wald-type 95% confidence interval for p; (X;)

J
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Figure 4.6: QQ plots between the likelihood ratio test statistic and y2-distribution
with degrees of freedom one. The horizontal line is 0.95th quantile of x?(1).

is given by

min(Y;;) £ 1.960;.
j

Since min;(Y;;) < Yi;+, the coverage probability of this CI will be smaller than 95%.
In particular, as p;; becomes closer to the others or the error variances become larger,

the coverage probability will become worse because they cause j' # j* more often.
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4.4.5 The Profile Likelihood CI vs. the Wald-Type CI

In this section, we compare the profile likelihood confidence interval with the
Wald-type confidence interval both numerically and analytically. It turns out that
the Wald-type is much more robust against the tie issue than the profile likelihood
approach while the both performs similarly when we focus on only the lower bound.
The advantage of the profile likelihood approach is that it can construct a confidence
interval for any point while using the Wald-type approach limits to a point within
the sample.

To see the structure more clearly, we simplify the problem. We generate a sample

from

Y= p;+ej

where ¢ = 15, pi; € R? and ¢; ~ N(0,1). In particular, p; is determined as follows:
e (=2306,12

e For j =1,...,9 — ¢+ 1, generate p; independently from a standard normal

distribution.

o Forj =q—0+2,...,q,set p; = min{y, ..., ptg—et1}+aZ; where Z; is generated

independently from standard normal.

« controls the proximity of the ties around the minimum. /¢ is the number of the
means which coincide with the minimum or are near it, thus it is roughly the number
of ties. As a moves from 2 to 0, £ — 1 means become closer to the minimum, i.e.,
there are ¢ means including the minimum that are close to each other. This setting
simplifies the original model (4.7) as if we know the true §;. Repeating 10000 times,
we plot the coverage probability and the coverage width for the observed points. The

results are given in Figure 4.7. As can be seen in the left figures, the closer the
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means around the minimum become to one another (« approaches to 0), the coverage
probabilities of both the profile likelihood CI and the Wald-type CI deteriorate. This
is even exacerbated as the number of ties, £, increases. Note that the profile likelihood
CI deteriorates much worse than the Wald-type in any case. This can be explained by
the coverage width, which is given in the figures to the right; the width of the Wald-
type CI remains the same while that of the profile likelihood CI becomes narrower
as a becomes closer to 0. This shrinking width makes the deteriorating coverage
probability even worse.

We explain analytically why these happen. Recall that the Wald-type CI for p; is
given by min; Y; £ 1.96, which has the constant width regardless of j* = argmax Y.
The reduction of the coverage probability is due to the bias caused by the] events
jr £ g = argmin f;, which occurs more frequently as a approaches to 0 and/or ¢

J
increases. Now, the profile likelihood function is given by

g(u) = max { ~ %Z(Yj — )},

J

where C(u) = {p: p; > u for all j A p; = u for at least one j}. The upper and lower

2
bounds (u., u*) are given by those that satisfy g(u.) = g(u*) = —(1'926) and 1, < p*.

It is not difficult to see that

fy = minY; — 1.96
J

p" <minY; + 1.96,
j

where the equality happens only when min; Y;+1.96 < Y[, which is the second small-
est number. The discrepancy becomes larger as more u; get closer to the minimum.
Therefore, while the lower bounds of the profile likelihood CI and the Wald-type CI

are similar, the upper bound of the profile likelihood CI tends to be smaller than that
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Figure 4.7: Coverage probability (Left) and coverage width (Right) by the profile
likelihood CI and the Wald-type CI. The horizontal lines in the left figures indicate
the target 0.95 line. « controls the proximity of the means around the minimum.
(av = 0 means complete tie.)

of the Wald-type CI, which makes the overall coverage probability by the profile like-
lihood CI worse than that of the Wald-type CI. Fortunately, when the lower bound is

only of interest (which is the case in the toxicity analysis), the both works similarly.
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4.4.6 Summary

In this section, we considered the interval estimation for the composite risk. The
idea of directly specifying a model for the composite risk through the profile likelihood
function can be naturally extended to construct a confidence interval. We introduced
the algorithm to compute the interval by using constrained quadratic programming.
As is often the case in the toxicity analysis, we also considered the censored-response
model. Computationally, the censoring issue can be handled by assuming a censored
likelihood and using more general constrained optimization; constrained optimization
by linear approximation can be a good candidate to use. We also introduced an
alternative approach, namely the Wald-type approach. The Wald-type CI is limited
to a point within the sample while the profile likelihood approach can be used for any
point. We showed that the Wald-type CI is more robust against ties at the minimum
in terms of coverage probability both numerically and analytically . However, when

interest lies solely on the lower bound, they both work similarly.

4.5 Data Analysis

In this section, we apply the procedures to estimate the composite risk functions

to the ToxCast data of the EPA and to the 60 cell line screen of the NCI.

4.5.1 Application to the ToxCast Data

The ToxCast data is the publicly available HT'S assay data from the EPA (http://w
ww.epa.gov/ncct /toxcast/). The chemical library of the ToxCast contains 320 chem-
ical compounds, which are explored in 25 cell-based HTS assays and 484 cell-free
HTS assays. The outcome of the assays is measured by the lowest effective level,
i.e., the lowest level of the dose where there is a statistically significant change from

the control. The assays are measured in logl0 micromolar (mM) unit. Since many
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compounds cause no significant change in many assays within the range of doses,
we removed the assays whose outcomes are missing for at least 10% of the com-
pounds. This reduces the number of the cell-based assays to 15 and the number of
the cell-free assays to 78. Also, because of the discreteness of the dose points many
compounds show similar outcomes in the cell-based assays. Thus we removed the
cell-based assays whose number of the unique outcomes is less than 100. This fur-
ther reduces the number of the cell-based assays to 3, which are CLM_CellLoss_72hr,
CLM_MitoticArrest_72hr, and ACEA_IC50. Following Judson et al. (2010), the out-
comes of the cell-free assays are converted to binary response according to whether
it displays a significant change below a certain amount of dose (30mM). We reduce
the dimensionality of the cell-free assays through principal component (PC) decom-
position and use 9 leading PC scores as explanatory variables, which is the smallest
number that explains at least 50% of the total variation in the cell-free assays. The
PC scores are standardized to have unit variances. Overall, the data used in this
analysis consists of the 9 leading PC scores of the cell-free assays, which are used as
explanatory variable, and 3 cell-based assays, which are used as dependent variables.
The proportion of the compounds that display the minimum per each cell-based assay
is respectively .1625, .13125, and .70625.

The lowest effective levels may be upper-censored as a cell line may not display
significant change within the range of dose concentrations. Let ¢;,5 = 1,...,¢ be
the thresholds and F} be the cumulative distribution function of €;. The censored

log-likelihood is given by

G (gl (2:)) = Hyij >t} log Fy(pj(w:) — t5) + 1{t; < yij i (yizlp (2)
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Then, the profile likelihood function (4.3) becomes

n q
Gg(B) = Z [1{%‘;‘ < B2, yi; < t; for some j} Z Wiy <t} (vislyis Vv 57 )
i=1 Jj=1
+ 1{otherwise} fg;ig)(q{l{yij < t;};(yij| BT m) + Hyi; >t} log Fj(BTx; — ;)
+ > Wiy >ty My (yiy !yz‘j')}] :
J'#7

The maximum likelihood estimator of 3 is given by 3 = argmax G (B). As the vari-
ances are unknown, we substitute the estimates obtained by iitting the Tobit model
to each cell-based assay; the cross-validated prediction r? is given by 0.60,0.29,0.34
respectively. We compare this approach to the other two linear-regression based ap-
proaches. Figure 4.8 shows the regression coefficients of the Tobit model for each
cell-based assay and those of the profile likelihood approach. Only the intercept (not
shown) and the coefficient of the first PC score are significant at 5% significance level.
The Wald statistic testing the zero coefficients show significance at 5% level for all
the three assays. Note that all the three coefficients for the cell-based assays are
similar; this is a favorable condition for the profile likelihood approach as we saw in
section 4.3.1. Figure 4.9 shows the norm-standardized regression coefficients, where
the weighted average of the three regression coefficients are shown for the min(OLS)
approach with the proportions of the compounds whose minimum occurs at each as-
say used as weights. This figure also shows the similarity of all the coefficients. On
the other hand, the number of the dependent variables is just three, which may not
encourage using the profile likelihood approach. We computed the cross validation

(CV) score using the observed minimum, i.e.,

n

1 - (i)
oV == Y — v,
- ;1 {mjm =Y}

where 1//\;»(%) is the estimate given by each of the three methods. The three CV scores
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Figure 4.8: Regression coefficients of the Tobit model for each cell-based assay and
those of the profile likelihood approach. The estimated intercepts are respectively
2.19, 2.53, 2.27, and 1.99 (not shown). The vertical lines show the 95% confidence

intervals.
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Figure 4.9: The norm-standardized regression coefficients for the three approaches.
For the min(OLS) approach, the weighted average of the three regression coefficients
are shown, where the proportions of the compounds whose minimum occur per assay
are used as weights.

are respectively 0.65, 0.42, and 0.33. Note that min; Y;; is not an unbiased proxy for
the object of interest that we aim to estimate—min; E(Y;;|X;). Still, we presume that

the CV provides some insights as to how profile likelihood approach works.

4.5.2 Application to the NCI60 Cell Line Screen Data

In this section, we apply the methods to the 60 cell line screen of the NCI. The data
consists of 60 different human cell lines, each representing one of nine disease/cancer

types: leukemia, melanoma and cancers of the lung, colon, brain, ovary, breast,
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Figure 4.10: The proportion of the compounds whose minimum occurs per cell line
in terms of the raw observations and the OLS estimates.

prostate, and kidney. The assay outcome is given by GI50, the drug concentration
resulting in 50% inhibition of the growth relative to control cells. The measurement
unit is log10 micro Molar. See Shoemaker (2006) for the details.

We first explore the estimation of the composite risk represented by the cell line
assays from the molecular features of the compounds. We use 10 molecular features
such as diameter, mass, or charge as explanatory variables. The original NCI60 data
we obtained contains 37327 compounds screened for 60 cell lines (the data is publicly
available at the NCI website). We removed six assays that are related to leukemia as
the average level of the leukemia assays are lower than the others so that most of the
times the minimum occurs at one of the leukemia assays (the other assays contribute
little to the evaluation of the overall risk). Thus, dependent variables comprise 54
cell line assays. We further removed the compounds that contain missing values and
the censored values. This reduces the data to 2376 compounds. The mean of cross-
validated prediction r? of the OLS regression for the 54 cell line assays is 0.15 and
the standard deviation is 0.028. Figure 4.10 shows the proportions of the compounds
whose minimum occur at each cell line assay in terms of the raw observations and the
OLS estimates. There are four assays where the estimated minimum often occurs,
which are related to: non-small cell of the lung cancer, the colon cancer, melanoma,

and the breast cancer. Among the assays that represent each type of disease, there
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Figure 4.11: The OLS regression coefficients for the four assays regarding non-small
cell of a lung, colon, melanoma, and breast, as well as the profile likelihood estimates.
The vertical lines show the 95% confidence intervals.

seem to be a typical assay for each disease where the minimum occurs for the OLS
estimates. Figure 4.11 shows the OLS regression coefficients for these four assays and
the profile likelihood estimates. The four OLS regression coefficients are fairly similar,
which is a favorable condition for the profile likelihood approach to use. Fairly high
dimensionality of the dependent variables is also favorable to the profile likelihood

approach. Despite these conditions, though, very low predictive 72

may cast some
doubt on the legitimacy in extracting a firm conclusion from the analysis. Figure
4.12 shows the norm-standardized regression coefficients for the three approaches.
The three coefficients are, again, fairly similar though there are a couple of variables
where the coefficients are different. For example, the third variable (b_rotN) is con-
sidered important by the two OLS-based methods while the ninth variable (density)
is considered relatively important by the profile likelihood approach. If there is prior
information that suggests that either of them is likely to be the case, we may be
able to diagnose which method is working better. The cross-validation scores using
the observed minimum as explored in the ToxCast data analysis for the three ap-
proaches are respectively given by 1.53, 1.27, and 1.71. In contrast to the ToxCast

data analysis, the third approach now becomes worst.

Next, we explore the use of leukemia assays to estimate the composite risk rep-
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Figure 4.12: The norm-standardized regression coefficients for the three approaches.
For the min(OLS) approach, the weighted average of the three regression coefficients
are shown, where the proportions of the compounds whose minimum occur per assay
are used as weights.

resented by the other cell line assays—the same dependent variables as before, but
different explanatory variables. This setting aims to investigate whether the use of
only a fraction of cell line assays possess a predictive power for the overall toxicity
level. Similarly to the previous setting, we removed all the compounds that contain
missing values. This reduces the number of compounds to 2066. The mean of the
cross-validated prediction r? by OLS regression is 0.76 and the standard deviation is
0.065. This high r? makes sense as the cell line assays should roughly behave similarly
against toxic compounds, though there are some selective compounds that are toxic
to some types of cells while innocuous to others. Figure 4.13 shows the proportions
of the compounds whose minimum occur at each cell line assay in terms of the raw
observations and the OLS estimates. The proportions for the raw observations are
exactly same as the previous setting. The proportions for the estimates are also quite
similar to the previous analysis, but there is one difference; the minimum occurs more
often in the two of the assays for the breast cancer (the two peaks near 50 on the
horizontal axis). The four disease assays where the minimum occurs most often are
related to: non-small cell of the lung cancer, the colon cancer, melanoma, and the

breast cancer. Figure 4.14 shows the OLS regression coefficients for these four as-
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Figure 4.13: The proportion of the compounds whose minimum occurs per cell line
in terms of the raw observations and the OLS estimates.
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Figure 4.14: The OLS regression coefficients for the four assays regarding non-small
cell of a lung, colon, melanoma, and breast, as well as the profile likelihood estimates.
The vertical lines show the 95% confidence intervals.

says and the profile likelihood estimates. Now, the four OLS regression coefficients
are not as similar as the previous two analyses. However, Figure 4.15, the norm-
standardized regression coefficients for the three approaches, shows similarity among
the three approaches except the last two assays. The cross-validation scores are 0.27,
0.26, and 0.46. The profile likelihood approach looks relatively good compared to
the previous two analyses, though we cannot make a firm conclusion as the score is
computed for the observed minimum, which is biased for the target—the minimum

of the conditional regression means.
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Figure 4.15: The norm-standardized regression coefficients for the three approaches.
For the min(OLS) approach, the weighted average of the three regression coefficients
are used, where the proportions of the compounds whose minimum occur per assay
are used as weights.

4.6 Discussion

In this paper, we considered the estimation of the composite risk function, the
minimum of the assay-specific risk functions. To avoid the necessity of estimating all
the assay-specific functions, we introduced a method of directly specifying a model
for the composite risk function through the profile likelihood function. Under this
approach, we only need to specify one target parameter function regardless of the
dimensionality of the explanatory variables, hence it also avoids the operation of
computing the minimum.

Through several simulation studies, we explored under what situations it is ben-
eficial to use the profile likelihood approach rather than naive approaches. First, the
performance of the profile likelihood approach greatly depends on whether we can
find a good model for the composite risk; as long as the specified model approximates
the true model relatively well, the profile likelihood approach can perform better
than the correctly specified two-step approach. Second, the high dimensionality of
the dependent variables works simply as a large sample size for the profile likelihood
approach. On the other hand, for the other naive approaches the high dimensionality

requires a large number of parameters to estimate and the operation of computing
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the minimum among a large number of elements, hence the performance deteriorates.
Third, the smoothness of the assay-specific risks deeply influences the performance of
the two-step approaches while the profile likelihood approach is robust against this
issue. For the two-step approach to perform well, all the assay-specific risks need
to be easily estimated. Finally, the heteroscedasticity of the error variances has a
negative effect on the procedures except the profile likelihood approach, on which
the heteroscedasticity shows a positive effect. This may be because the profile likeli-
hood approach incorporates the variance information in its procedure while the other
approaches do not take it into account in their procedures.

We extended the idea of directly specifying a model for the composite risk through
the profile likelihood function to the interval estimation. An alternative approach,
the Wald-type approach, is also introduced. It was shown that the Wald-type CI
is more robust against the ties in the assay-specific risks, but when the goal is to
estimate the minimum, which is actually the case in the toxicity analysis, the both
approaches work similarly. The advantage of the profile likelihood approach is that
it can construct an interval for any point while the Wald-type approach limits to a
point within the sample, hence it cannot be used for prediction.

We demonstrated the estimation of the composite risk function using the ToxCast
data and the NCI60 cell line screen data. Although the inclusion of the profile like-
lihood approach provides another option for the analysis, there is no suitable way to
diagnose the model fitting by the profile likelihood approach. This is mainly because
there is no unbiased proxy for the composite risk unlike usual regression problems
where the response is unbiased for the regression function, hence it can be used for
the model diagnosis, for example, by checking the cross-validation score. We leave the

model diagnosis issue for the profile likelihood approach as a future research problem.
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