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Prologue

I learned about bounded packing in polycyclic groups from a talk Chris Hruska gave at a 

special session of the American Mathematical Society at the University of Illinois in 

Urbana-Champaign.  At the time, I had gotten stuck on a rather hard problem which 

involved understanding the convex hull in arbitrary CAT(0) spaces.  I had a simple idea 

of constructing the convex hull of a set in steps by adjoining geodesic segments until a 

convex set is reached.  I realized that if one is able to show that the number of steps 

needed to produce the convex hull of a quasiconvex subset is finite, one obtains a bound 

on the maximal distance between a point in the convex hull of the set and the nearest 

point in the set itself, which implies cocompactness of certain group actions thus settling 

a special case of a longstanding open problem in the theory of CAT(0) groups.  Later, I 

realized that Hermann Brünn had already investigated this process and had given  upper 

bounds on the number of steps required for the process to terminate in certain Banach 

spaces.  I was unable to procure his original paper in German, which is why I proved  a 

result similar to, but possibly weaker than his own for Euclidean spaces.

At the time I was ready to announce my solution to the bounded packing problem in 

polycyclic groups, I received communication that the problem had been solved.
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ABSTRACT

Solutions to Two Open Problems in Geometric Group Theory

by

Jordan A. Sahattchieve

Chair: G. Peter Scott

We introduce a method for analyzing the convex hull of a set in non-positively curved 

piecewise Euclidean polygonal complexes and we apply this method to prove that with 

the usual action of F m×ℤn on the metric product of a tree with ℝn , every 

quasiconvex subgroup of F m×ℤn is convex.  This answers the question whether a 

quasiconvex subgroup of a CAT(0) group is a CAT(0) group in the affirmative for the 

groups F m×ℤn .  We also prove bounded packing in a special class of polycyclic 

groups, and we introduce the notion of coset growth and provide a bound for the coset 

growth of uniform lattices in Sol.
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Chapter 1

Introduction and Synopsis

Original Results

This dissertation contains the solutions to two unrelated open problems in geo-

metric group theory.

The first part of this dissertation contains a solution to a special case of the

bounded packing problem for polycyclic groups. Without going into too much detail,

having the property of bounded packing for a group means that the cosets of any

of its subgroups are spread out, meaning that large enough collections of distinct

cosets are guaranteed to contain a pair of cosets which are ”uniformly” far from each

other. We use the technique introduced in Section 3.5 for the purpose of showing

bounded packing in certain extensions of Zn to find a bound for the coset growth in

the non-nilpotent groups Z2 o Z in Section 3.7.2.

The second part of this dissertation explores the notion of quasiconvexity in

CAT(0) groups, particularly in the groups Fm × Zn. This work was motivated by

the question of whether subgroups of CAT(0) groups are themselves CAT(0) groups.

While the answer to this question is an emphatic no, one can still hope that answer

may become ”yes” after attaching enough adjectives to the group and the subgroup

in question. We show that in the case of the groups Fm×Zn acting in the usual way

on Tree×Rn, this is indeed the case. In fact, we show something stronger - we show
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that any quasiconvex subgroup of Fm×Zn acts on the convex hull of any of its orbits

with a compact quotient. In more rigorous terms, our result says that for the groups

Fm × Zn, quasiconvex ⇒ convex.

Synopsis

The main body of this dissertation contains three chapters.

Chapter 2 is an introduction to the following notions in geometric group theory

which we make use of in the course of proving our results: Section 2.1 provides a

very quick and informal introduction to the world of metric geometry and CAT(0)

groups. Section 2.2 goes further and provides a relatively self-contained introduction

to CAT(0) metric spaces and their isometry groups, and δ-hyperbolic metric spaces;

much of the the material in this section can be found in [3]. Section 2.3 is an intro-

duction to the notions of ends of groups and ends of group pairs, and also contains a

summary of the basic properties of Sageev’s well-known cubing construction.

Chapter 3 contains a solution to the bounded packing problem in certain exten-

sion of Zn by Z and introduces the notion of growth of group pairs. Section 3.1

discusses the origins of the bounded packing property, while Sections 3.2 and 3.3 pro-

vide rudimentary background on bounded packing and polycyclic groups respectively.

Following a discussion of the dynamics of linear maps on Rn in Section 3.4, the chap-

ter proceeds to analyze the diagonal action of Z on Zn in Section 3.5. The chapter

then concludes with a bound on the growth of the group pair (Z2 o Z, 〈t〉) found in

Section 3.7.

In Chapter 4, we provide an (affirmative) answer the question whether a quasi-

convex subgroup of a CAT(0) group is convex for the groups Fm × Zn with respect

to the usual action of these groups on Tree×Rn. Section 4.1 contains a discussion

of the notion of quasiconvexity in CAT(0) spaces and CAT(0) groups while Section

4.2 outlines the iterative construction of the convex hull in CAT(0) spaces, which we
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use in the following Section 4.3 to prove convexity of all quasiconvex subgroups of

Fm × Zn. Section 4.3 also demonstrates that all quasiconvex subgroups of Fm × Zn

are virtually of the form A×B for A ≤ Fm and B ≤ Zn.

All citations made throughout this dissertation can be found in the bibliography

section at the end of the document.
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Chapter 2

Background

2.1 Non-positive Curvature in Metric Spaces

One would like to study the group of isometries of a metric space in a manner

analogous to the study of discrete groups of isometries of Euclidean and hyperbolic

spaces. While for arbitrary metric spaces this is perhaps a futile endeavor, the idea

to study such isometry groups has proven to be a fertile field of study for geodesic

metric spaces which are non-positively curved in a certain sense which we will define

shortly.

The notion of non-positive curvature has its roots in the realm of differential

geometry. While there is no ambiguity in what it means for a Riemannian manifold to

be non-positively curved, it is not clear how this notion is to be translated to arbitrary

geodesic metric spaces. In fact, there are two distinct, yet intimately related, notions

of non-positive curvature.

One way to approach the issue is by analogy with Hadamard manifolds (man-

ifolds of non-positive sectional curvature). It has long been known that geodesic

triangles in a Hadamard manifold whose sectional curvature is bounded above by

κ ≤ 0 everywhere are thinner in comparison to triangles in the space form of constant

curvature κ (which we shall denote by Mκ). Let x, y and z be points on our favorite

Hadamard manifold whose curvature is bounded above by κ. We can then find three
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points x, y, z ∈ Mκ, such that their relative distances are the same as the relative

distances between x, y and z, more precisely, d(x, y) = d(x, y), d(x, z) = d(x, z), and

d(y, z) = d(y, z). Then, we have the following classical comparison inequality: if a and

b are any two points on the geodesic triangle ∆(x, y, z), and a, b are the correspond-

ing points on the Mκ comparison triangle ∆(x, y, z), we have d(a, b) ≤ d(a, b). In the

differential geometric setting, one proves this as a consequence of the non-positive

sectional curvature condition. In an arbitrary geodesic metric space, where there is

no notion of curvature, we can use this comparison inequality as a means of detecting

the salient features of non-positive curvature. We define a CAT(0) space to be a

geodesic metric space in which geodesic triangles are thinner than the corresponding

triangles in M0 = R2. The letters in the acronym CAT (0) stand for the last initials

of the names of the mathematicians Cartan, Alexandrov, and Toponogov.

One can similarly define metric spaces of curvature bounded above by κ for arbi-

trary κ ∈ R. This definition is due to A. D. Alexandrov, who called them Rκ domains

until Gromov renamed them CAT(κ) spaces. We now define a CAT(0) group G to

be a group that acts properly and cocompactly by isometries on a CAT(0) space.

Another way to define negative curvature in a metric space is due to Gromov

via the δ-slim triangles condition. A group Γ is said to be Gromov hyperbolic if

its Cayley graph is a δ-hyperbolic metric space, for some δ, meaning that given any

geodesic triangle ∆(x, y, z), each side is contained in the δ-neighborhood of the union

of the other two sides.

Finally, there is a more combinatorial approach to geometric group theory de-

scribed in the seminal paper by Scott and Wall [31] which is based on covering space

theory and analyzes the structure of finitely generated groups by examining their

actions on trees.
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2.2 CAT(0) and δ-Hyperbolic Groups

2.2.1 Basic Definitions

In this section we define the basic notion of a metric, metric space, and isometry,

and present some fundamental motivating examples for the study of CAT(0) spaces.

Let X be a set. A function X × X → R is called a pseudometric if for any

x, y, z ∈ X:

1. d(x, y) ≥ 0

2. d(x, y) = d(y, x)

3. d(x, z) ≤ d(x, y) + d(y, z)

If in addition to the above, d also satisfies d(x, y) 6= 0 whenever x 6= y, we call

d a metric, and the pair (X, d) a metric space. Recall from basic topology that

the metric d induces a natural topology on X, which has as basis the open balls

B(x, r) = {y ∈ X : d(x, y) < r}, see for example [20]. This topology makes the metric

space X into a perfectly normal space, in other words, a topological space in which

any two disjoint non-empty closed sets can be separated by a continuous function

f : X → R.

We call the set B(x, r) = {y ∈ X : d(x, y) ≤ r} the closed ball of radius r centered

at x and note that B(x, r) may be strictly larger than the closure of the open ball

B(x, r). A metric space which has the property that B(x, r) is compact for every

x ∈ X and every r > 0 is called a proper metric space. The first examples of

metric spaces one encounters in introductory courses on analysis, namely the finite

dimensional Euclidean spaces Rn, are all proper. So are also all Riemannian manifolds.

For examples of spaces which are not proper, one usually looks at infinite dimensional

Banach spaces. Since Banach spaces are an interesting class of spaces on which we

can do geometry, let us recall their definition here.
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Definition 2.2.1. Let V be a vector space over R. A norm on V is a function

‖·‖ : V → R≥0, satisfying:

1. ‖av‖ = |a| ‖v‖, for all a ∈ R, v ∈ V

2. ‖v + w‖ ≤ ‖v‖+ ‖w‖, for all v,w ∈ V

3. If ‖v‖ = 0, then v = 0

Given a normed linear space V , one obtains a metric on V by setting d(v,w) =

‖v−w‖. A normed linear space V which is complete in the metric d induced by its

norm is called a Banach space. For basics on Banach spaces, see [18].

Recall that lp(R) is the Banach space of all functions x : N → R, such that

‖x‖p = (Σi|xi|p)1/p <∞. The spaces Lp(Rn) are the normed linear spaces of Lebesgue

integrable real-valued functions on Rn with the norm ‖f‖p =
(∫
|f |p dµ

)1/p
<∞. The

integral is taken over all of Rn with respect to the Lebesgue measure dµ. For basic

facts on the Lp and lp spaces such as completeness and duality properties, see the

timeless classic by Walter Rudin [25]. By contrast with the finite dimensional vector

spaces Rn, none of the infinite dimensional Banach spaces lp(R), Lp(R) are proper,

see [18].

Having defined the notion of a metric, it is only natural to consider the maps

between metric spaces which preserve distances.

Definition 2.2.2. Let (X1, d1) and (X2, d2) be two metric spaces. A map f : X1 →

X2 is called an isometric embedding, if d1(x, y) = d2(f(x), f(y)), for all x, y ∈ X1.

Note that an isometric embedding is always a continuous injection. If in addition

to being an isometric embedding, f is also onto, we call f an isometry. We note that

the isometries of a metric space X to itself form a group, called the isometry group of

X, denoted by Isom(X). It is this group that is of interest to us. As we mentioned

in Section 2.1, the group Isom(X) is hard to work with and can often turn out to
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be trivial, in other words, the space X may have very few symmetries. Usually, one

is interested in the isometry group of spaces which have more structure than just a

metric structure. For example, a very active field of research is the study of Kleinian

groups, or discrete groups of isometries of H3. In addition to having a smooth structure

H3 is also simply connected and has constant curvature which equals −1. Kleinian

groups are an important example of both CAT(0) and hyperbolic groups, which we

define below, and provide a source of test questions for the theory of negatively curved

groups. Let us work toward describing the most general sort of spaces on which a

sufficiently rich geometric structure exists. Intuitively, in order to do geometry, one

needs lines and angles. An isometric embedding λ of an interval I ⊆ R into the

metric space X is called a geodesic. For us, geodesics will be the equivalent of lines

in Euclidean geometry. Often, one blurs the distinction between the map λ and its

image. If x, y ∈ X, one calls the image of a geodesic λ : [a, b]→ X such that λ(a) = x

and λ(b) = y a geodesic segment between x and y and denotes it by [a, b] whenever

there is no ambiguity in doing so. Given a geodesic λ : I → R, one calls λ a linearly

parametrized geodesic or geodesic parametrized proportional to arc length if there

exists a constant c such that d(λ(t1), λ(t2)) = c|t1 − t2|, for all t1, t2 ∈ I. A geodesic

ray is a map λ : [0,∞)→ X, such that d(λ(t1), λ(t2)) = |t1 − t2|, for all t1, t2 ≥ 0. In

other words, a geodesic ray is an isometric embedding of the positive real line into X

parametrized with unit speed. A local geodesic in X is a map λ : I → X having the

property that for every t ∈ I there exists ε > 0 such that d(λ(t1), λ(t2)) = |t1 − t2|,

for all t1, t2 ∈ I with |t− t1|+ |t− t2| ≤ ε.

Definition 2.2.3. A metric space (X, d) is called a geodesic metric space, or simply

a geodesic space, if every two points in X can be joined by a geodesic. The geodesic

metric space (X, d) is called uniquely geodesic if given x, y ∈ X there is only one

geodesic joining x to y.

Example 2.2.1. The space Rn with the Euclidean or l2 metric is a uniquely geodesic
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metric space. The map [0, 1]→ Rn defined by λ(t) = tx + (1− t)y parametrizes the

unique geodesic segment joining the points x,y ∈ Rn. Henceforth, we shall denote

Rn with the metric coming from the l2 norm by En. The hyperbolic spaces Hn are

also uniquely geodesic.

Perhaps the most familiar examples of geodesic metric spaces which are not

uniquely geodesic are the spheres (Sn, d). In order to avoid a discussion of Rie-

mannian structures here, we shall simply define the space Sn to be the unit sphere in

Rn with the angular metric: if we denote the origin by O, given any A,B ∈ Sn, we

set d(A,B) to be the acute Euclidean angle between the line segments OA and OB.

If OA⊥OB, we define d(A,B) =
π

2
. It is an easy exercise in spherical geometry to

show that given any two points A,B ∈ Sn with d(A,B) <
π

2
, there exists a unique

geodesic segment joining A to B, namely, the shorter part of the great circle passing

through these two points. On the other hand, if d(A,B) =
π

2
, there are infinitely

many geodesic segments joining A to B.

Recall that the space l∞n (R) is defined to be Rn endowed with the l∞ norm:

‖x‖∞ = max {x1, ..., xn}. It is an instructive exercise to show that ‖x‖p → ‖x‖∞, for

any x ∈ Rn, as p→∞. Here is a more interesting example of a geodesic metric space

which is not uniquely geodesic:

Example 2.2.2. The graph of any monotone function I → R is a geodesic segment

in R2 for the l∞ metric. In any Banach space V , the affine linear segments t →

tx+(1− t)y, for x,y ∈ V , 0 ≤ t ≤ 1 are always geodesics (see [21], Proposition 5.3.7)

and are called affine geodesics.

Whenever (X, d) is a uniquely geodesic space, we shall say that a subset C ⊆ X

is geodesically convex, or simply convex, if for every x, y ∈ C, the geodesic segment

joining x to y is completely contained in C. If (X, d) is a geodesic space which is not

uniquely geodesic, then the definition of convexity becomes slightly more complicated.
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A subset C ⊆ X is called completely geodesically convex if given x, y ∈ C, every

geodesic segment joining x to y is contained in C. In Example 2.2.2, the affine

geodesic segment [x, y] joining any two points in l∞2 (R) is an example of a convex set

which is not completely geodesically convex.

Given a subset S ⊆ X, the smallest convex subset of X which contains S is called

the convex hull of S. We shall denote this convex set by conv(S). It is clear from the

definition that conv(S) is the intersection of all convex subsets of X which contain S.

In what follows, it will be necessary to consider subsets which although not convex

themselves are not far from being convex. We call a subset S ⊆ X quasiconvex

if the convex hull of S is contained in a bounded neighborhood of S, symbolically

conv(S) ⊆ Nν(S), for some ν > 0.

Example 2.2.3. (The Hilbert geometry) In this example, we recall an important

construction due in part to Hilbert (1895) as a generalization of the Klein model of

hyperbolic space. Most of the material here can be found in [21].

Recall that given four ordered points a1, a2, b1, b2 in Rn satisfying a1 6= b1 and

a2 6= b2, one defines their cross ratio [a1, a2, b1, b2] by the formula

[a1, a2, b1, b2] =
d(a2, b1)d(a1, b2)

d(a1, b1)d(a2, b2)

where d is the standard Euclidean metric on Rn. Now, let A be a nonempty bounded

open convex set in Rn. Here, ”convex” means convex relative to the Euclidean met-

ric. Given a1, a2 ∈ A, we consider the Euclidean line L containing them. This line

intersects the topological boundary ∂A of A in exactly two points. Let us denote

these points of intersection by b1 and b2, with the labeling chosen in a way so that

b1, a1, a2, b2 are aligned in that order on L. We define the Hilbert metric hA on A by

hA(a1, a2) =

 ln [a1, a2, b1, b2] if a1 6= a2,

0 if a1 = a2.
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One then proves that:

1. The map hA : A× A→ R≥0 is a metric.

2. The metric space (A, hA) is a proper geodesic metric space.

3. Each affine segment in A is a geodesic segment for hA.

4. The metric space (A, hA) is uniquely geodesic if and only if ∂A does not contain

a pair of affine segments that span a two-dimensional affine plane.

The Hilbert geometries provide us with a family of examples of proper geodesic

metric spaces which are not uniquely geodesic and in which each affine segment is

geodesic. This family of examples is largely distinct from the family of linear spaces

possessing the same properties to which Example 2.2.2 belongs.

2.2.2 Comparison Triangles, Angles, and Rectifiable Curves

The material in this section follows closely the account in [3].

Let X be a metric space, and let a, b, c ∈ X be three points. Because the distances

d(a, b), d(b, c), and d(a, c) satisfy the triangle inequality in X, we can find three

points a, b, c ∈ E2 having the property that d(a, b) = d(a, b), d(b, c) = d(b, c), and

d(a, c) = d(a, c). It is an easy exercise in Euclidean geometry to show that the triangle

∆(a, b, c) is unique up to an isometry. If additionally X is a uniquely geodesic metric

space, we can join a, b, and c by geodesic segments to obtain the geodesic triangle

∆(a, b, c) = [a, b] ∪ [b, c] ∪ [a, c]. In this case, we say that ∆(a, b, c) is a comparison

triangle for ∆(a, b, c). Regardless of whether X is geodesic or not, we shall define the

comparison angle between b and c at a, denoted by ∠a(b, c), to be the interior angle

of ∆(a, b, c) at a. Now, we are ready to state the definition of angle:

Definition 2.2.4. (Alexandrov angle) Let X be a metric space (not necessarily

geodesic), and let λ1, λ2 : [0, L]→ X be two geodesic segments starting at a common
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point a ∈ X, i.e. λ1(0) = λ2(0) = a. Given t1, t2 ∈ [0, L], we consider the com-

parison angle ∠a(λ1(t1), λ2(t2). The Alexandrov angle, or simply the angle between

the geodesic segments λ1 and λ2, denoted by ∠(λ1, λ2) is defined by the formula:

∠(λ1, λ2) = lim supt1,t2→0 ∠a(λ1(t1), λ2(t2)).

Using the law of cosines on the comparison triangle ∆(a, λ1(t1), λ2(t2)), we obtain

∠(λ1, λ2) = lim sup
t1,t2→0

cos−1

(
t21 + t22 − [d(λ1(t1), λ2(t2))]2

2t1t2

)
(2.1)

We should issue a word of caution regarding the Alexandrov angle. While it is true

that the Alexandrov angle between two geodesic segments which are in the same

germ will equal 0, the converse is not true, see [3]. Recall that two geodesic segments

λ1, λ1 : [0, L]→ X are said to be in the same germ if λ1(t) = λ2(t) for t < ε, for some

ε > 0. The relation of being in the same germ is an equivalence relation on the set of

geodesic segments issuing at a point.

Another central notion in metric geometry is the notion of the length of a path:

Definition 2.2.5. (Length) Let X be a metric space. A continuous map from a

compact interval I ⊂ R to X is called a path in X. We define the length of γ to be

the positive number l(γ) = sup
∑n−1

i=0 d(γ(ti), γ(ti+1)), where the supremum is taken

over all possible partitions t0 ≤ t1 ≤ · · · ≤ tn of I (with no bound on n). Here, t0 and

tn are the left and the right endpoints of I.

Even though γ is a continuous map from a compact interval, γ may not have finite

length. Whenever l(γ) <∞, we shall say that γ is rectifiable.

2.2.3 CAT (0) and δ-Hyperbolic Spaces

We are now ready to define one of our central objects of study.

Definition 2.2.6. (CAT(0) Space) Let (X, d) be a metric space. Let ∆(a, b, c) be a

geodesic triangle in X, and let ∆(a, b, c) be a comparison triangle. We shall say that
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∆(a, b, c) satisfies the CAT(0) comparison inequality if given any p, q ∈ ∆(a, b, c) we

have d(p, q) ≤ d(p, q), where p, q ∈ ∆(a, b, c) are the corresponding comparison points

uniquely determined by the conditions d(a, p) = d(a, p), and d(a, q) = d(a, q). We say

that the metric space (X, d) is a CAT(0) space if every geodesic triangle in X satisfies

the CAT(0) comparison inequality.

It is immediate from the definitions that a geodesic CAT(0) space is uniquely

geodesic. Let us state some basic properties of CAT(0) spaces.

Recall that a function f : I → R defined on an interval I ⊆ R is called convex if

the graph of f lies below the line segment joining any two points on it. More precisely,

f((τ−1)t1+τt2) ≤ (τ−1)f(t1)+τf(t2), for any t1, t2 ∈ I, and τ ∈ [0, 1]. Equivalently,

the function f is convex if its epigraph Ep(f) = {(x, y) ∈ I × R : f(x) ≤ y} is a

convex subset of E2, see [21]. We shall say that a function f : X → R defined on a

geodesic metric space is convex if for any geodesic segment λ : I → X parametrized

proportional to arc length, the function f ◦ λ : I → R is convex.

We are now prepared to state:

Proposition 2.2.4. If (X, d) is a CAT(0) metric space, then the metric d : X×X →

R≥0 is convex.

Proof. For a complete proof we refer the reader to Proposition 2.2 in [3]. However,

this result is essential for the work in Chapter 4, so we give a proof of the following

special case: Let λ1, λ2 : [0, 1] → X be two geodesics parametrized proportional to

arc length such that λ1(0) = λ2(0). Consider a comparison triangle ∆ ∈ E2 for

∆(λ1(0), λ1(1), λ2(1)). For 0 ≤ t ≤ 1, we have d(λ1(t), λ2(t)) = td(λ1(1), λ2(1)) =

td(λ1(1), λ2(1)). The CAT(0) inequality gives d(λ1(t), λ2(t)) ≤ d(λ1(t), λ2(t)), hence

d(λ1(t), λ2(t)) ≤ td(λ1(1), λ2(1)). Since d(λ1(0), λ2(0)) = 0, this concludes the proof

of the special case.
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Another fundamental property of CAT(0) spaces is the existence of orthogonal

projections:

Proposition 2.2.5. Let X be a CAT(0) space, and let C ⊆ X be a convex subset,

complete in the induced metric. Then, for every x ∈ X, there exists a unique point

prC(x) ∈ C such that d(x, prC(x)) = infy∈C d(x, y). Further, the map prC : X → C

is a distance non-increasing retraction of X onto C.

Proof. See Proposition 2.4 in [3].

An important consequence of Proposition 2.2.5 is the following:

Corollary 2.2.6. The map h : X × [0, 1] → X which sends (x, t) to the point at

distance td(x, prC(x)) from x along the geodesic segment [x, prC(x)] is a continuous

homotopy from idX : X → X to prC : X → C. In particular, every CAT(0) space is

contractible.

Proof. See Proposition 2.4 in [3].

Having defined what a CAT(0) space is, it is natural to look for examples of

CAT(0) spaces different from the Euclidean spaces En. Perhaps the most historically

important such are furnished by Cartan’s celebrated theorem which we briefly recall.

While Cartan’s result is more general than what we are able to state here, we make

no use of it and will therefore refer the interested reader to Cartan’s original paper

[6] or the exposition in Bridson and Haefliger [3].

Hadamard Manifolds

Let M be a smooth manifold together with a correspondence p → 〈 , 〉p which

to each p ∈ M associates an inner product 〈 , 〉p on the tangent space at p, i.e. a

positive-definite, symmetric, bilinear form. Further, the association p → 〈 , 〉p is

to be smooth in the following sense: if X and Y are C∞ vector fields on M , then

14



p→ 〈X(p),Y(p)〉p is to be a C∞ function on M . One calls M a Riemannian manifold

and 〈 , 〉p a Riemannian metric. Note that given a smooth manifold M , it is not hard

to prove the existence of a Riemannian metric on M : one simply embeds M smoothly

into some Euclidean space and then pulls back the standard inner product on Rn.

One then applies a classical result of Levi-Civita establishing the existence of an

affine connection. If we denote the algebra of C∞ vector fields on M by V(M), an

affine connection is a mapping ∇ : V(M)×V(M)→ V(M), denoted by (X,Y)→ ∇XY

which satisfies the following properties:

1. ∇fX+gYZ = f∇XZ + g∇YZ

2. ∇X(Y + Z) = ∇XY +∇XZ

3. ∇X(fY) = f∇XY + X(f)Y

for any X,Y,Z ∈ V(M), and any f, g ∈ C∞(M), see [17] or [5].

The presence of an inner product allows one to define the length of a C1 curve

γ : [a, b] → M by the formula l(γ) =
∫ b
a

√
〈γ′(t), γ′(t)〉γ(t) dt and subsequently define

a metric d : M ×M → R≥0 on M via d(x, y) = inf l(γ), where the infimum is taken

over all C1 paths joining x to y.

On the other hand, the presence of the Levi-Civita connection allows one to define

the curvature tensor on M . The curvature tensor R is a map which to each pair

(X,Y) ∈ V(M) × V(M) associates a self-map V(M) → V(M) given by R(X,Y)Z =

∇Y∇XZ−∇X∇YZ+∇[X,Y]Z, for Z ∈ V(M). It turns out that the quantity R(X,Y)Z at

p ∈M depends only on the values of X, Y, and Z at p. Therefore, for any x, y, z, t ∈

TpM , we can unambiguously define the number (x, y, z, t)p = 〈R(X,Y)Z,T〉p for any

vector fields X,Y,Z,T ∈ V(M) which evaluated at p give x, y, z and t respectively.

Now, given any two-dimensional subspace σ ⊆ TpM , we define the sectional curvature

of σ at p as the number K(σ) =
(x, y, x, y)p√

〈x, x〉p 〈y, y〉p − 〈x, y〉p
, where {x, y} is any basis

of σ. Again, one checks that this definition does not depend on the choice of a basis.
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We are now finally ready to state Cartan’s theorem:

Theorem 2.2.7. (E Cartan) Let M be a Riemannian manifold such that K(σ) ≤ 0,

for every 2-plane σ ⊆ TpM . Then, (M,d) is a CAT(0) space.

Proof. See [6] or [3].

Corollary 2.2.8. The hyperbolic spaces Hn are CAT(0).

New Spaces from Old

Two very useful constructions in topology are taking products and gluing. It turns

out that if these are carried out in the right way, they will preserve the property of

being non-positively curved in the sense of Definition 2.2.6.

Proposition 2.2.9. Let (X1, d1) and (X2, d2) be CAT(0) spaces. Then the space

X = X1 ×X2 with the metric d((x1, x2), (y1, y2)) =
√
d1(x1, y1)2 + d2(x2, y2)2 is also

a CAT(0) space.

Before we can state the next proposition, we need to recall the following basic

metric construction. Let (Xi, di)i∈I be a family of metric spaces and let Ci ⊆ Xi be

a closed subspace of Xi with each Ci isometric to a given metric space, say C. Let

ιi : C → Ci denote the isometry between C and Ci. Then, the amalgamation of Xi

along C is defined as the quotient of the disjoint union
∐

i∈I Xi by the equivalence

relation generated by (ιi(c) ∼ ιj(c), ∀i, j ∈ I, c ∈ C). The amalgamation can be given

a metric d defined by:

• d(x, y) = di(x, y), if x, y ∈ Xi for some i ∈ I

• d(x, y) = infc∈C {di(x, ιi(c)) + dj(ιj(c), y)}, if x ∈ Xi, y ∈ Xj with i 6= j

such that we have the following:

Lemma 2.2.10. If I is finite and each Xi is proper, then X is proper. If each Xi is

a geodesic space and C is proper, then X is a geodesic space.
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Proof. See Lemma 5.24 in [3]

Fortunately for us, this well-known construction from topology preserves the prop-

erty of being non-positively curved:

Proposition 2.2.11. Let X1 and X2 be CAT(0) spaces and let C be a complete metric

space. Suppose that we have isometric embeddings ι1 : C → X1 and ι2 : C → X2 such

that ι1(C) and ι2(C) are convex subsets of X1 and X2 respectively. Then, X1

∐
C X2

is a CAT(0) space.

Piecewise Euclidean CAT(0) Polyhedral Complexes

Non-positively curved piecewise Euclidean polyhedral complexes are an important

class of CAT(0) spaces and provide the first example for us of non-positively curved

spaces which do not come from Theorem 2.2.7. In this section, we follow closely the

exposition in I.7 of [3].

We shall call the convex hull of a finite set of points in En a polyhedral cell, or

simply a polyhedron. Let P ⊂ En be a polyhedron, the dimension of the smallest

affine subspace of En which contains P is called the dimension of P . The interior of

P viewed as a subset of this affine plane is called the interior of P . If H ⊂ En is a

hyperplane in En, i.e. an affine subspace of En of codimension 1, then H separates

En into two closed half-spaces. If P is contained in one of these closed half-space and

P ∩H 6= ∅, we shall call F = P ∩H a face of P , and if further F 6= P , a proper face

of P . The support of x ∈ P is defined to be the unique face of P which contains x in

its interior.

Definition 2.2.7. (Piecewise Euclidean Polyhedral Complex) Let {Pi}i∈I be a family

of polyhedra not necessarily of the same dimension. Let X =
∐

i∈I Pi denote their

disjoint union. Let ∼ be an equivalence relation on X and let K = X/ ∼. Let

p : X → K be the natural projection map, and let pi : Pi → K denote the inclusion

of Pi into X followed by p. We call K a piecewise Euclidean polyhedral complex if:
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1. for every i ∈ I, pi restricts to an injection on the interior of Pi,

2. for all i, j ∈ I and x1 ∈ Pi, x2 ∈ Pj, if pi(x1) = pj(x2), then there is an isometry

ι : supp(x1)→ supp(x2) such that pi(y) = pj(ι(y)) for all y ∈ supp(x1).

Definition 2.2.7 simply says that a polyhedral complex is an object obtained by

gluing convex Euclidean polyhedra via linear isometries between their faces. Con-

dition (1) guarantees that points in the interior of a polyhedron not get identified,

while condition (2) guarantees that two faces be either identified via a linear isom-

etry between them or not at all. A polyhedral complex all of whose polyhedra are

2-dimensional is called a polygonal complex. The set of isometry classes of faces of

the polyhedra Pi is denoted Shapes(K).

We endow the polyhedral complex K with the following pseudometric: d(x, y) is

defined to be the infimum of the lengths of piecewise linear paths λ : [a, b]→ K, where

the length of a segment passing through a polyhedron is computed using the usual

Euclidean metric on that polyhedron. A relevant for us special case of a theorem

Bridson proved in his Ph.D. thesis, guarantees that under fairly mild hypotheses a

piecewise Euclidean polyhedral complex is indeed a metric space:

Theorem 2.2.12. If a piecewise Euclidean polyhedral complex has only finitely many

isometry types of polyhedra, then it is a complete geodesic metric space.

Proof. See [2] or [3].

For x ∈ K, we call the union of the interiors of the polyhedra that contain x,

the open star of x, and denote it by st(x). Now, let us fix x ∈ K. Given y1, y2 ∈

st(x)−{x}, we shall say that the geodesic segments [x, y1] and [x, y2] define the same

direction at x if either [x, y1] ⊆ [x, y2], or [x, y2] ⊆ [x, y1]. The link of x in K is

the set of directions at x. We shall denote the link of x in K by Lk(x,K). The

measure of a Euclidean angle carried by each polyhedron give rise to a pseudometric
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on Lk(x,K). Under the hypotheses of Theorem 2.2.12, this pseudometric becomes a

metric on Lk(x,K).

Now that we have ”made” the polyhedral complex into a complete geodesic metric

space, we can ask for conditions which will guarantee that this metric space is CAT(0).

We have thus far carefully avoided the discussion of the more general notion of a

CAT(κ) space, in order to keep the statements of the theorems simple. For the next

result, however, we shall need the definition of a CAT(1) space. With the same setup

as in Definition 2.2.6, we define a CAT(1) metric space X to be a metric space in which

every geodesic triangle ∆(a, b, c) having perimeter less than 2π satisfies the following

CAT(1) comparison inequality : if ∆(a, b, c) is a comparison triangle for ∆(a, b, c) in

the unit sphere S2, then for any p, q ∈ ∆(a, b, c), we have d(p, q) ≤ d(p, q). The metric

on S2 is the angular metric described in Example 2.2.1. Compare this definition to

Definition 2.2.6. Also, note the condition on the perimeter of ∆(a, b, c). We need this

restriction on the size of the geodesic triangle ∆(a, b, c) in order to ensure that the

corresponding comparison triangle ∆(a, b, c) ⊂ S2 exists.

Now, we are able to state a necessary and nearly sufficient condition for a piecewise

Euclidean polyhedral complex to be CAT(0):

Definition 2.2.8. A piecewise Euclidean polyhedral complex K is said to satisfy the

link condition if for every vertex v ∈ K, the link Lk(v,K) is a CAT(1) space.

The link condition by itself is not sufficient as it only ensures non-positive cur-

vature locally. The transitional step from local to global is made by the following

well-known theorem:

Theorem 2.2.13. A piecewise Euclidean polyhedral complex K with Shapes(K) finite

is a CAT(0) space if and only if K is simply connected and satisfies the link condition.

Proof. See Theorem 5.2 in [3].
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Having discussed CAT(0) spaces at some length as a generalization of the notion

of non-positive sectional curvature in differential geometry, let us now consider the

corresponding extension of the notion of negative sectional curvature. Again, we make

vague allusions to CAT(κ) spaces (κ ≤ 0) defined in a manner completely analogous to

Definition 2.2.6 with the only difference being that we take our comparison triangles

from some 2-dimensional geometry of constant negative curvature, which is, of course,

just H2 with a rescaled metric. While these do have their uses, it turns out that a

more appropriate generalization was made by Gromov in [11]. Gromov’s definition,

like Alexandrov’s definition of a CAT(0) space, makes use of the observation that

in the presence of negative curvature the geodesic triangles become ”thin”. Unlike

the definition of a CAT(0) space, however, Gromov’s definition does not recourse to

comparing geometric objects in the space, viz geodesic triangles, to objects which

live in a different space. Thus, Gromov’s definition of hyperbolicity is more robust

and consequently many of the nice properties enjoyed by Gromov hyperbolic spaces

and the groups which act on them are not shared by their CAT(0) analogues. This

difference between CAT(0) groups and hyperbolic groups, however, is not seen as a

flaw but rather as a complication which gives rise to interesting questions.

Definition 2.2.9. (Slim Triangles) Let δ > 0. A geodesic triangle in a metric space

is called δ-slim if each of its sides is contained in a δ-neighborhood of the union of the

other two sides. A geodesic space X is called δ-hyperbolic if every geodesic triangle

in X is δ-slim. We shall call a space simply hyperbolic if it is δ-hyperbolic for some

δ > 0.

Example 2.2.14. The hyperbolic space Hn is δ-hyperbolic.

By contrast with the notion of CAT(0) which has to do with non-positive cur-

vature, none of the Euclidean spaces En are hyperbolic for n > 1. In fact, as the

Flat Plane theorem below shows, the presence of isometrically embedded higher rank

Euclidean spaces is one of the main obstruction to hyperbolicity.

20



Theorem 2.2.15. (Flat Plane Theorem) Let X be a proper CAT(0) space such that

Isom(X) acts on X with a compact quotient. Then, X is hyperbolic if and only if it

does not contain a subspace isometric to E2.

Proof. See Theorem 1.5, Chapter III.H in [3].

2.2.4 Isometries of CAT(0) Spaces

Let us introduce some standard terminology. An action of a group Γ on a topolog-

ical space X is a homomorphism Φ : Γ→ Homeo(X), where Homeo(X) is the group

of self-homeomorphisms of X. One usually makes no mention of the homomorphism

Φ and simply writes γ · x for Φ(γ)(x). For a subset Y ⊆ X, we shall write γ · Y for

the image of Y under γ, and Γ · Y for
⋃
γ∈Γ γ · Y . The action Φ is called:

• faithful if Ker Φ = {1},

• free if for every x ∈ X and every γ ∈ Γ− {1}, we have γ · x 6= x,

• cocompact if there exists a compact subset C ⊆ X such that X = Γ · C.

As we stated in Section 2.1, the objects of our study are discrete groups of isometries.

By discreteness, we refer to the following fundamental notion of geometric group

theory:

Definition 2.2.10. (Properly Discontinuous Action) Let Γ be a group acting by

isometries on a metric space X. The action is called properly discontinuous if for each

x ∈ X there exists a number r > 0 such that the set {γ ∈ Γ : γ ·B(x, r) ∩B(x, r) 6= ∅}

is finite.

The somewhat antiquated term ”properly discontinuous” is meant to stand in

contrast to the continuous action of a Lie group on a manifold. Henceforth, we shall

instead use the term proper to mean properly discontinuous in the context of group

actions.
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There is a classical description of the isometries of a CAT(0) space, made by

analogy with the classification of the isometries of H2, which we make use of in

subsequent chapters, so we will recall the basics here. For the remainder of this

section, X will be a CAT(0) space. For γ ∈ Isom(X), the translation length of γ is

defined to be the number |γ| = inf {d(γ · x, x) : x ∈ X}. If |γ| is realized for some

x ∈ X, we distinguish the cases:

• |γ| = 0, in other words γ fixes a point x ∈ X. In this case γ is called elliptic.

• |γ| 6= 0. In this case γ is called hyperbolic or axial.

If |γ| is not realized for any x ∈ X, then γ is called parabolic. The set of points in

X where d(γ · x, x) attains its minimum is denoted Min(γ). Whenever Min(γ) is

non-empty, γ is called semi-simple. Thus, elliptic and hyperbolic isometries are semi-

simple, while parabolic isometries are not. Since the distance function in a CAT(0)

space is convex, see Proposition 2.2.4, the set Min(γ) is a closed, convex, γ-invariant

set. In fact, the action of a hyperbolic isometry γ on Min(γ) is particularly nice:

Theorem 2.2.16. Let X be a CAT(0) space.

1. An isometry γ ∈ Isom(X) is hyperbolic if and only if there exists a geodesic line

λ : R→ X on which γ acts by a non-trivial translation, namely γ·λ(t) = λ(t+a).

Further, the constant a is actually equal to |γ|. The set λ(R) is called an axis

for γ.

2. If X is a complete metric space and some power γm is hyperbolic, then γ is itself

hyperbolic.

3. The axes for a hyperbolic isometry γ are all parallel to each other and their union

is Min(γ), further Min(γ) is isometric to a product Y ×R and the action of γ

on it is of the form (y, t) 7→ (y, t+ |γ|), y ∈ Y , t ∈ R.
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Proof. See Theorem 6.8 in [3].

Finally, we are able to make the definition of CAT(0) group:

Definition 2.2.11. (CAT(0) Group) Let G be a group which acts properly and

cocompactly on some CAT(0) metric space, then G is called a CAT(0) group.

By analogy with Definition 2.2.11 above, we provisionally define a δ-hyperbolic

group to be a group which acts properly discontinuously and by isometries on some

δ-hyperbolic proper metric space with a finite diameter quotient. We postpone the

official definition of a hyperbolic group until the next section where we discuss Cayley

graphs.

2.2.5 Cayley Graphs and Quasi-isometries

Definition 2.2.12. (Quasi-isometry) Let (X1, d1) and (X2, d2) be two metric spaces.

A map f : X1 → X2 is a (C, ε)-quasi-isometric embedding if
1

C
d1(x, y) − ε ≤

d2(f(x), f(y)) ≤ Cd1(x, y) + ε. If in addition there exists a constant A ≥ 0 such

that every point in X2 is in a A-neighborhood of the image of f , then f is called a

(C, ε)-quasi-isometry.

Note that neither the definition of a quasi-isometric embedding nor the definition

of a quasi-isometry requires it to be a continuous map. It turns out, however, that

quasi-isometries are the right kind of maps to consider if one is interested in the coarse

structure of a space. In fact, the notion of a quasi-isometry is indispensable to any

geometric group theorist as it will be to us in the remainder of this work.

Our point of view thus far has been this: we started out with a metric space, then

considered subgroups of its isometry group. This way our groups came naturally with

an action on some topological space. We shall now consider the dual point of view:

we start with a finitely generated group G then proceed to construct an action of G
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on some topological space. In fact, it is an interesting question to find the ”nicest”

possible action that a given finitely generated group admits.

Definition 2.2.13. (Cayley Graph) Let G be a finitely generated group, and let S

be a finite set of generators for G. The Cayley graph of G, relative to the generating

set S, which we shall denote by ΓS(G) is defined as follows: We take the group G

itself to be the set of vertices, V = G. Two vertices g1, g2 ∈ V are joined by an edge

if g2 = g1s, for some s ∈ S. In other words, E = {(g, s) : g ∈ G, s ∈ S}.

When endowed with the length metric, the Cayley graph becomes a metric space:

we first declare each edge in ΓS(G) to have length equal to 1, then define dS(x, y) to

equal the infimum of the lengths of paths joining x to y. Since the group G is now

embedded as the vertex set of the metric graph (ΓS(G), d), G itself becomes a metric

space. The metric dS on G is called the word metric on G relative to the generating

set S. The reason for this terminology is the following:

Lemma 2.2.17. Let G be a finitely generated group with a finite symmetric generating

set S (i.e. S = S−1), and let d be the metric on G defined above. Given a word on

the generators w = s1...sn in G, let ‖w‖ = n. Then, for g1, g2 ∈ G, dS(g1, g2) =

inf
{
‖w‖ : w = g−1

1 g2 ∈ G
}

.

Proof. Obvious.

Definition 2.2.13 begs the question: how does the word metric depend on the

generating set? The answer, which is simple enough, is given by:

Lemma 2.2.18. Let G be a finitely generated group and let S1 and S2 be two finite

symmetric generating sets for G. Then the identity map ι : (G, dS1) → (G, dS2) is a

quasi-isometry. The analogous statement for Cayley graphs is also true: ι : ΓS1(G)→

ΓS2(G) is a quasi-isometry, where ι is any map which extends the identity map on

G ⊆ ΓSi(G), for i = 1, 2.
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Proof. Exercise.

Due to Lemma 2.2.18, one usually suppresses the mention of S. Since the edges

emanating from a vertex are labeled by elements in the generating set, we easily

conclude that Γ(G) is a proper metric space. Further, the group G acts on Γ(G) on

the left via γ · (g, s) = (γg, s). It is easily seen that this action is by isometries. We

are now ready to state the definition of a hyperbolic group:

Definition 2.2.14. (Hyperbolic Group) A finitely generated group G is called a

hyperbolic group if its Cayley graph is a hyperbolic metric space.

We note that Definition 2.2.14 makes sense in view of:

Theorem 2.2.19. The property of being hyperbolic is a quasi-isometry invariant: If

X is a δ-hyperbolic metric space, then any space to which X is quasi-isometric is also

δ-hyperbolic (with a possibly different value of δ).

Proof. See Theorem 1.9, Chapter III.H in [3].

2.3 Ends of Pairs of Groups and Sageev’s Cubing

2.3.1 Overview of Bass-Serre Theory

A central idea in combinatorial group theory is to investigate the algebraic struc-

ture of groups which act on trees. First, let us define some basic notions. Given a

group G and a subset S ⊆ G, the normal closure 〈〈S〉〉 of S in G is defined to be the

smallest normal subgroup of G which contains S.

Definition 2.3.1. (Free Product with Amalgamation) Let G1, G2, and H be groups,

and let ι1 : H → G1, ι2 : H → G2 be monomorphisms. The amalgamated product of

G1 and G2 along H is the group G1 ∗G2/ 〈〈ι1(h)ι2(h−1)〉〉h∈H and we shall denote it

by G1 ∗H G2.
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One may be tempted to define the amalgamated product as a pushout of a certain

diagram in the category of groups and then show its existence. However, this approach

does not give any idea as to the group structure and since we have no need for

categories, we much prefer this explicit description instead.

Definition 2.3.2. (HNN Extension) Let G and H be groups and let ι1, ι2 : H → G

be two monomorphisms. If S is any generating set for G and t /∈ S, the group defined

by the presentation 〈S, t : tι1(h)t−1 = ι2(h)〉 is called the HNN extension of G over H

relative to ι1 and ι2.

Amalgamated products and HNN extensions arise naturally as the fundamental

groups of gluings of topological spaces.

Example 2.3.1. Let (X1, x1), (X2, x2), and (Y, y0) be three based topological spaces.

Let fi : (Y, y0) → (Xi, xi), for i = 1, 2, be continuous injections which induce

monomorphisms of fundamental groups fi∗ : π1(Y, y0) → π1(Xi, xi), for i = 1, 2.

Then, π1 (X1

∐
Y X2, [x0]) ∼= π1(X1, x1) ∗π1(Y,y0) π1(X2, x2) by the Seifert-van Kampen

theorem.

If instead of gluing two distinct spaces along a common subspace, one glues two

subspaces Yi of the topological space (X, x0) via a homeomorphism between them,

one ends up with a fundamental group which is isomorphic to an HNN extension of

the fundamental group of (X, x0). We refer the interested reader to [31] where the

details of these computations have been worked out.

Whenever a group G is isomorphic to either a non-trivial free product with amal-

gamation or an HNN extension over H, we shall say that G splits over H. As it

turns out, there is a close connection between group splittings and actions on trees

as evidenced by the ”fundamental theorem” of Bass-Serre theory:

Theorem 2.3.2. Let G be a finitely generated group. Then, G splits as a non-trivial

free product with amalgamation, or as an HNN extension, if and only if G acts on a
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tree without a global fixed point.

Proof. See [31].

In fact, one can explicitly construct the tree and the group action on it, so this is

not purely an existence result. Conversely, if such an action exists, then one constructs

a decomposition of the group G into free products with amalgamation and HNN

extensions over subgroups which appear as vertex and edge stabilizers of the tree

action.

Perhaps even more remarkable is the classification theorem of finitely generated

groups according to their number of ends, see Theorem 2.3.3. The reader might be

familiar with the notion of ends of a metric space. Let (X, d) be a metric space, and

let Y ⊆ X be a subspace. Let us denote the number of connected components of

Y which are unbounded by c(Y ). Then, the number of ends e(X) of X is defined

as e(X) = sup {c(X −K) : K ⊆ X}, where the supremum is take over all compact

subsets of X. Informally, e(X) is the number of ways to approach infinity in X. We

can now unceremoniously define the number of ends of a group G to be the number

of ends of its Cayley graph Γ(G). However, instead of doing this and then having to

check that the definition is indeed independent of the generating set, we shall outline

the more constructive definition found in [31].

For any set S, the power set of S denoted by P(S) is the set of subsets of S.

It is an exercise in an introductory class on set theory or real analysis to make

P(S) into an abelian group under the operation of taking symmetric difference:

S1 + S2 = S1∆S2. The identity in this group is the empty set, and every el-

ement is its own inverse. Now, if G is a group, we see that the subset F(G) of

P(G) consisting of finite subsets of G forms a subgroup of P(G). So does the subset

Q(G) = {A ∈ P(G) : card (A+ Ag) <∞ ∀g ∈ G}. The elements of Q(G) are called

almost invariant sets. Now, note that since every element in the abelian group P(G)

has order equal to 2, P(G) is a vector space over Z2. The same is true for F(G) and
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Q(G), respectively.

Definition 2.3.3. Let G be a finitely generated group. The number of ends of G is

the number e(G) = dimZ2 (Q(G)/F(G)).

It turns out that unlike the number of ends of a topological space which can equal

really anything, the values of e(G) are severely restricted:

Theorem 2.3.3. Let G be a finitely generated group. Then, e(G) = 0, 1, 2 or ∞ and:

1. e(G) = 0 if and only if G is finite,

2. e(G) = 2 if and only if G contains Z with finite index,

3. if e(G) =∞, then G splits over a finite subgroup.

Proof. See [31].

The proof of part (1) of Theorem 2.3.3 is not too difficult and follows from the

basic properties of ends outlined in [31]. Part (2) is due to Hopf along with the

observation that e(G) can only equal one of 0, 1, 2,∞, while part (3) is a celebrated

result due to John Stallings. In fact, parts (2) and (3) of Theorem 2.3.3 have the

following converse of sorts:

Theorem 2.3.4. If G splits over a finite subgroup, then e(G) ≥ 2.

Proof. See [31].

As a basic property of the number of ends of a group, we have:

Theorem 2.3.5. If G acts freely on a connected CW-complex X such that the quotient

K is a finite CW-complex, in other words G is the group of automorphisms of the

cover X → K, then e(G) = e(X).

Proof. See Theorem 5.4 in [31].
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As a special case of Theorem 2.3.5, we have the following result which justifies our

initial informal definition of e(G):

Proposition 2.3.6. Let G be a finitely generated group, and let S be any finite set of

generators for G. Then, the number of ends of G is the same as the number of ends

of the Cayley graph ΓS(G).

Proof. See Proposition 5.2 in [31].

2.3.2 Ends of Group Pairs

In this section we generalize the notion of ends of a group. Given a subgroup

H ≤ G, we shall define the number of ends of the pair (G,H) in such a way that

when H is the trivial group e(G,H) = e(G). We shall again follow the exposition

in [31]. In order to better understand the definition of e(G,H), let us recast the

definition of e(G) in a new light. Again, we start with a finitely generated group G,

and define the Z2-vector spaces P(G) and F(G) as before. Let E(G) = P(G)/F(G).

The right action of G on itself by right-multiplication induces an action of G on

E(G). If we let E(G)G denote the set of fixed points of this action, then with the

notation already established in Section 2.3.1, we have E(G)G = Q(G)/F(G). Thus,

our definition of e(G) becomes e(G) = dimZ2 E(G)G. Now, let H be a subgroup of G,

and let H\G be the set of right cosets of H. We define the number of ends of the pair

(G,H) to be the number e(G,H) = dimZ2 E (H\G)G. The elements of E(H\G)G are

called H-almost invariant sets, and the nonzero H-almost invariant sets that are not

in the same equivalence class as G are called proper. The analogue of Theorem 2.3.5

is the following:

Lemma 2.3.7. Let X̃ → X be a regular cover of the finite CW-complex X with

automorphism group G. If H is a subgroup of G, then e(G,H) = e(H\X).

Proof. See Lemma 8.1 in [31].
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One even has the following counterpart to Theorem 2.3.4:

Lemma 2.3.8. If G splits over a subgroup H ≤ G, then e(G,H) ≥ 2.

Proof. See Lemma 8.3 in [31]

Unfortunately, this is as far as the analogy can be pushed. Namely, an example

due to Scott exhibits an unsplittable group G and a subgroup H ≤ G such that

e(G,H) ≥ 2. Again, see Chapter 8 of [31]. Thus, in light of Theorem 2.3.2, there is

no action of G on a tree without a fixed point. Now, in the absence of ”interesting”

actions on trees, one may lose hope of ever having a nice geometrical portrait of G in

the style of Bass-Serre. This is where Sageev’s celebrated construction comes to the

rescue.

2.3.3 Sageev’s Cubing

Overview

The remark at the end of Section 2.3.2 reveals that the case when the group

pair (G,H) has at least two ends merits further investigation. We shall call such a

group pair multi-ended following [26]. Equivalently, we say that H is a codimension-1

subgroup of G. The terminology ”codimension-1” comes from topology, where such

a subgroup is typically obtained as the image of the fundamental group of a manifold

under the map induced by a π1-injective immersion into a manifold of one higher

dimension. If a group G has a subgroup H such that the pair (G,H) is multi-ended,

G will be called semi-splittable. In this section, we present a summary of Sageev’s

cubing construction and we closely follow the exposition in [26]. A cube complex X

is a polyhedral complex in which each polyhedron is isometric to the unit cube in En,

for some n. If a cube complex given the path metric described following Definition

2.2.7 is a CAT(0) space, X is called a cubing. Cubings are a natural generalization
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of trees in that a tree is simply a 1-dimensional cubing. The statement of Sageev’s

result is a natural generalization of Theorem 2.3.2:

Theorem 2.3.9. Let G be a finitely generated group. Then, G is semi-splittable if

and only if G acts essentially on a cubing.

Proof. See Theorem 3.1 in [26].

A few words are in order regarding the word ”essentially” in the theorem above.

The existence of an action of G is not itself surprising as we can always consider the

trivial action of G on any space. Thus, we need to set a standard which an action

will need to satisfy before it can be considered ”interesting”. Theorem 2.3.2 asserts

the existence of an interesting action on a tree T in the sense that no point of T is

fixed by all g ∈ G. It turns out that an action of group on a tree without a global

fixed point implies the existence of g ∈ G which as an automorphism of the tree has

no fixed points, see [26]. In order to define properly what an essential action is, we

need to talk about the geometry of a cubing.

Let X be a cubing and let E be the set of oriented edges of X. We shall define two

edges e, f ∈ E to be equivalent if there exists a finite sequence of edges f = e0, ..., en =

e, such that ei and ei+1 are opposite sides of some 2-cube in X. This obviously defines

an equivalence relation on E and we shall call an equivalence class in E under this

relation a combinatorial hyperplane. Let us explain the reason for this terminology.

Recall that if σ is a n-cube and e an edge of σ, then the cube dual to e in σ is

the intersection of σ with a hyperplane in En which is orthogonal to e and bisects it.

Note that dual cubes live combinatorially in the first barycentric subdivision of a cube

complex. Now, let J be the subcomplex of the first barycentric subdivision of X which

consists of cubes dual to the edges in H. This subcomplex is called the geometric

realization of the combinatorial hyperplane H or simply a geometric hyperplane. A

geometric hyperplane J is said to self-intersect if some cube of X contains two cells
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belonging to J . It is a fundamental fact that geometric hyperplanes in cubings behave

much like hyperplanes in En, namely:

Theorem 2.3.10. Suppose that X is a cubing and J a geometric hyperplane in X.

Then, J does not self-intersect and X − J has exactly two components.

Proof. See [7].

The oriented stabilizer of J , which we shall denote by stab(J), is the subgroup of

G which consists of elements of G which preserve the partition of X by J setwise.

In other words, if Y and Y c denote the two components of X − J , then stab(J) =

{g ∈ G : g · Y = Y }. We shall say that the action of G is essential with respect to

J if there exists a vertex v in X such that both V = {g ∈ G : g · v ∈ Y } ⊆ G and

V c = G−V contain infinitely many right cosets of stab(J). Finally, we call an action

essential if it is essential with respect to some hyperplane.

The Cubing Construction

We now describe in more detail how one constructs the cubing promised in Theo-

rem 2.3.9. Let G be a finitely generated group and let H be a codimension-1 subgroup.

This means that we have a proper H-almost invariant set A ⊂ G. By modifying A if

necessary, we may assume that A is an invariant H-set, meaning that A is H-almost

invariant and h · A = A, for all h ∈ H, see Section 2.2 of [26]. Now, we consider

the set Σ = {gA : g ∈ G} ∪ {gAc : g ∈ G} partially ordered under inclusion. First,

we construct the vertices of the cubing. The vertices of X will be the subsets V of Σ

which satisfy the following two properties:

• Given A ∈ Σ, then either A ∈ V , or Ac ∈ V , but not both.

• If A ∈ V and A ⊆ B, then B ∈ V .

Let us denote this set of vertices by Ṽ. Upon seeing this construction for the first

time, one cannot help but notice that the elements of the vertex set look very much
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like ultrafilters on Σ. We recall here that an ultrafilter U on a set S is a subset of

P(S) such that:

1. ∅ /∈ U,

2. if A,B ∈ P(S), and A ∈ U, then A ⊆ B implies that B ∈ U,

3. for any A ∈ P(S), precisely one of A or Ac belongs to U,

4. if A,B ∈ U, then A ∩B ∈ U.

The only difference between an ultrafilter on Σ and a vertex is that a vertex need

not satisfy (4). Of the set of all ultrafilters on S, one distinguishes those which

are generated by a single element s of S. More precisely, consider the ultrafilters

Us = {A ⊆ S : s ∈ A}. These are called principal ultrafilters, perhaps by analogy

with the notion of principal ideals in algebra, and they correspond to the following

vertices:

Example 2.3.11. For g ∈ G, the subset Vg = {A ∈ Σ : g ∈ A} is easily verified to be

a vertex. In fact, the vertices of this form are precisely those which are also principal

ultrafilters on Σ. They are called basic vertices.

Now, we join two vertices V1 and V2 of X by an edge if, as subsets of Σ, they differ

by exactly one element, i.e. V2 = (V1 − {A})∪Ac, for some A ∈ V1. This set of edges

we shall denote by Ẽ. We now have constructed a 1-dimensional complex, namely the

graph (Ṽ, Ẽ) which is too large in the sense that it not only contains a ”copy” of G

comprised of the vertices Vg described in Example 2.3.11 but a lot of other stuff as

well. We shall therefore trim down this graph as follows: let V be the set of vertices

V in Ṽ for which there exists an edge path from V to Vg for some g ∈ G. We shall

denote the set of vertices and edges of the resulting graph by X(1) = (V,E). Once the

1-skeleton has been constructed, one proves that it is connected, see Theorem 3.3 in
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[26]. Then, we begin to attach higher dimensional cubes inductively: we attach an

(n+ 1)-cube if we see its boundary in X(n).

Next, we record some observations all found in [26] leading up to Theorem 2.3.14

below, which will be interesting to us in their own, thereby reversing their logical

order.

Lemma 2.3.12. Suppose V is a vertex and A ∈ V . Then W = (V − {A}) ∪ {Ac} is

also a vertex if and only if A is not properly contained in a subset B ∈ V , in other

words if and only if A is minimal in V with respect to inclusion.

Proof. See Lemma 3.2 in [26].

In light of Lemma 2.3.12, if A is minimal in V , we shall denote the set (V − A)∪

{Ac} by (V ;A) thus borrowing notation from [26]. We define recursively, (V ;A1, ..., An) =

{(V ;A1..., An−1)− An}∪{Acn}, provided that An is minimal in (V ;A1, ..., An−1). The

ordering of A1, ..., An is immaterial. This is obvious, as we can think of the Ai as

certain marked elements of V and note that different arrangements of the Ai give rise

to the same marking of V .

Lemma 2.3.13. Suppose σn is an n-cube in X having V as a vertex and suppose that

the vertices of σn connected to V by an edge are (V ;A1), (V ;A2),...,(V ;An). Then,

the vertex opposite to V is (V ;A1, ..., An).

Proof. See Lemma 3.5 in [26].

With the notation in Lemma 2.3.13, if V is a vertex of the n-cube σn and

V ′ = (V ;A1, ..., An) is its opposite vertex, then any other vertex of σn is of the

form W = (V ;Ai1 , ..., Aik), for some subset {Ai1 , ..., Aik} ⊆ {A1, ..., An}. The result,

which properly belongs to polyhedral combinatorics, is a by-product of the proof of

Lemma 2.3.13.

Finally, we state the central result of Sageev’s paper [26]:
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Theorem 2.3.14. The set X is a cubing.

Proof. See Theorem 3.7 in [26].

The statement of Theorem 2.3.14 would be a fitting conclusion of this chapter

were it not for the following fact: Sageev’s cubing need not be finite dimensional. In

this case, the action of G on X has no hope of being cocompact. To a geometric

group theorist, this is a rather upsetting conclusion. Further, the cubing, by its very

nature, depends on the choice of an H-almost invariant set A, and we shall henceforth

use XA to emphasize this.
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Chapter 3

On the Diagonal Action of Z on Zn

Most of the work of this chapter is contained in [28], however, an important part

of it will appear for the first time in this dissertation. In this chapter we study the

action of Z on Zn from a dynamical perspective. The motivation for this study comes

from the notion of bounded packing introduced by Hruska and Wise in [14]. Our work

in this chapter, however, has only partial overlap with the original idea in [14] and

has some interesting consequences in terms of growth of the set of left cosets which

we study in Section 3.7.2.

3.1 The Origin of Bounded Packing

3.1.1 Disc Packing in the Plane

The term bounded packing was first used by Hruska and Wise in [14]. Very infor-

mally, if G is a finitely generated group and H a subgroup, H is said to have bounded

packing if the cosets of H are not densely packed together. Before we make the notion

precise let us underline the geometrical nature of the idea. We become familiar with

packing problems from early on in life. For example, take the plane E2 and consider

the collection of closed discs S =
{
B(a, 1

2
) : a ∈ Z2 ⊆ E2

}
. Very informally, we shall

say that the discs in S are packed because no two of them overlap except along their
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boundary. Note that every point in E2 is within finite distance of some disc in S.

This way of packing E2 is very nice in the sense that the number of discs in S which

intersect any given ball of radius r > 0 is finite, in other words S has the property

of bounded packing in E2. It is not too hard to enlarge S so as to obtain a new

collection of discs packing E2 which does not have the local finiteness property - we

only need to keep inserting discs in the spaces enclosed by discs in S such that each

newly inserted disc has a boundary circle tangent to the boundary circles of all the

existing discs. We keep ”filling in the gaps” in this manner, a task which we easily

convince ourselves can be accomplished, to build a new collection of discs S′ which

does not have bounded packing.

In the context of group theory however, bounded packing has become intimately

connected to Sageev’s cubing via Lemma 3.1.5 below which is found in Sageev’s paper

[27], and a special case of which is attributed by him to Hopf.

3.1.2 More on Cubings

Let H be a codimension-1 subgroup of the finitely generated group G. This means

that e(G,H) ≥ 2, which by definition means that we have a proper H-almost invariant

set A, see Section 2.3.2. Recall that in order to construct the Sageev cubing in Section

2.3.3, we worked with the set Σ which consisted of left translates of A and Ac. We

shall say that two elements A1, A2 ∈ Σ are nested if one of the following inclusions

holds: A ⊂ gA, A ⊂ gAc, Ac ⊂ gA, Ac ⊂ gAc, following [27]. Further, we define

w(Σ), the width of Σ, to be the size of the largest collection of pairwise non-nested

elements of Σ. We are interested in the width of Σ because of the following result

which in the chain of logical inference precedes Theorem 2.3.14:

Lemma 3.1.1. Suppose V is a vertex and S = {A1, ..., An} ⊂ V . Then (V, S) spans

a cube σn if and only if Ai 6= Aj, each Ai is minimal in V , and no Aci is contained in

an Aj, for all i, j ∈ {1, ..., n}.
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Proof. For the proof, which essentially follows from Lemmas 2.3.12 and 2.3.13, see

[26] Lemma 3.6.

As an immediate consequence of Lemma 3.1.1 we have:

Corollary 3.1.2. The dimension of XA is bounded above by the width of Σ.

Proof. Obvious.

We now seriously consider the question of the dimension of the Sageev cubing. In

order to do that, we need the following definition:

Definition 3.1.1. Let G be a finitely generated hyperbolic group with a generating

set A. The subgroup H ⊆ is a quasiconvex subgroup of G if H is a quasiconvex subset

of ΓA(G).

Standard arguments show that this definition is independent of the generating set

A.

Even though we only define quasiconvexity here in order to state Theorem 3.1.4

below, we emphasize that this notion is central in geometric group theory, interesting

in itself due to the following fact:

Lemma 3.1.3. Let G be a finitely generated group with a generating set A and let H

be a quasiconvex subgroup of G. Then, H is finitely generated and the inclusion map

ι : H ↪→ G is a quasi-isometric embedding.

Quasiconvexity will also be important for us in Chapter 4.

In general, it is possible, in fact even likely that the word length of an element

h ∈ H may decrease when written in the generating set of G, simply because we

have a larger generating set to work with. In fact, the word length may shrink quite

a bit. Analyzing this phenomenon, one is naturally led to the notion of subgroup

distortion, which is implicit in the work in Section 3.7.2. What Lemma 3.1.3 says is

that quasiconvex subgroups are undistorted in G.
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We are now able to state the interesting result of Sageev’s, which explains the

relationship between quasiconvexity and his cubing construction:

Theorem 3.1.4. Suppose that G is a hyperbolic group and H is a codimension-1

quasiconvex subgroup. Then, there exists an H-almost invariant set A such that the

cubing XA is finite dimensional and the action of G on XA is cocompact.

Proof. See Theorem 3.1 in [27].

It is in the proof of this theorem that Sageev implicitly makes use of the notion

of bounded packing of the cosets of a certain subgroup of G. In order to see how the

geometric notion of packing enters the combinatorial construction of Sageev, we need

to turn our attention to the idea of ends once again.

Recall that according to the definition we gave in Section 2.3.2, H is codimension-

1, or equivalently the pair (G,H) is multi-ended, if G contains a proper H-almost

invariant set A. Unfortunately, even though we know that such a set exists, we have

no idea how to find it. At the same time, understanding how A meets its translates

gA and the translates of its complement gAc in G is essential to understanding the

cubing construction; we therefore briefly describe how to explicitly construct such a

proper H-almost invariant set in G, following [27].

Consider the Cayley graph Γ(G) of G, and consider also the action of H on it

given by restricting the left action of G on Γ(G) described in Section 2.2.5. In view

of Lemma 2.3.7 e(G,H) = e(H\Γ(G)), hence some bounded neighborhood of H

in H\Γ(G) separates H\Γ(G) such that at least two components are unbounded.

Therefore, after lifting this neighborhood to Γ(G) we are able to find a bounded

neighborhood Nν(H) of H in Γ which separates Γ in a way that at least two of the

components of Γ(G) − Nν(H) contain vertices arbitrarily far away from H. Now,

the vertices of any one of these components can be taken to be our proper H-almost

invariant set A, see Theorem 2.3 in [26].
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In the setting of Theorem 3.1.4, H is finitely generated which is a consequence of

its being quasiconvex. This allows us to replace the original bounded neighborhood of

H with a connected one, which we still denote by Nν(H), for a possibly larger value of

ν. As Lemma 3.1.1 above shows, the existence of an n-cube in XA can be detected by

the presence of a subset of Σ which consists of nonnested elements. Now, Lemma 3.1.5

below shows that the existence of large subsets of Σ consisting of pairwise non-nested

elements can be prevented by restricting the manner in which the left translates of

Nν(H) intersect one another.

Lemma 3.1.5. If gNν(H) ∩Nν(H) = ∅ for some g ∈ G, then gA and A are nested.

Proof. See Lemma 3.2 in [27].

Given a metric space (X, d), there is a well known distance function on P(X)

defined as follows: d(Y1, Y2) = inf {d(y1, y2) : y1 ∈ Y1, y2 ∈ Y2} for Y1, Y2 ⊆ X. In

light of the previous Lemma, if gNν(H)∩Nν(H) 6= ∅, then d(gH,H) < 2ν, where d is

the distance function on H\G inherited from the word metric on G defined in 2.2.5.

We now come to the result in [27] which motivates Definition 3.2.1 below:

Corollary 3.1.6. If every collection of left cosets of H in G containing at least n

elements has a pair of cosets aH, bH with d(aH, bH) > 2ν, then the width of Σ, and

therefore dim(XA) is bounded above by n.

Proof. By Lemma 3.1.1, in order to have an m-dimensional cube in XA, we must

have a subset of Σ consisting of m pairwise nonnested elements. A subset of Σ having

this property corresponds to a collection of m left translates of Nν which pairwise

intersect nontrivially; this is Lemma 3.1.5. Hence, we find a collection of m left cosets

of H which are pairwise within distance 2ν of each other. However, for m > n such

a collection of left cosets of H cannot exist.
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3.2 Bounded Packing and Coset Growth - Definition and

Basic Properties

If G is a topological group, a metric d on G is called left-invariant if for all g ∈ G,

the map a 7→ ga is an isometry of G to itself. If G is a finitely generated group, the

word metric on G corresponding to a finite generating set is clearly a left-invariant

metric. Throughout this section, G will be a finitely generated group, d will be the

word metric unless otherwise stated, and H will be a subgroup.

Definition 3.2.1. (Bounded Packing) We say that H has bounded packing in G, if

given any r > 0 we can find a number N , which may depend on G, H, and r, such

that any collection of N distinct left cosets of H in G {g1H, ..., gNH} contains a pair

giH, gjH which is separated by distance at least r, or d(giH, gjH) ≥ r.

The original definition in [14] does not mention the word metric on G specifically

but rather refers to an arbitrary proper left-invariant metric. It turns out that the

choice of proper left-invariant metric on G does not matter, since if d1 and d2 are two

such metrics on G, the subgroup H ⊆ G has bounded packing with respect to d1 if

and only if it has bounded packing with respect to d2. See Lemma 2.2 in [14].

It follows immediately from Definition 3.2.1 that any finite index subgroup of

G has bounded packing in G since there are no collections of N distinct cosets for

N > |G : H|. Let us record this observation as:

Lemma 3.2.1. Any finite index subgroup K of a finitely generated countable group

G has bounded packing in G.

Our next Lemma concerns the behavior of the property of bounded packing under

passing to subgroups or supergroups:

Lemma 3.2.2. Suppose that H ≤ K ≤ G, and G is a finitely generated group.

1. If H has bounded packing in G, then H has bounded packing in K.
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2. If H has bounded packing in K and K has bounded packing in G, then H has

bounded packing in G.

Proof. See Lemma 2.4 in [14].

An important property of bounded packing is that it is preserved by replacing the

original subgroup H with a different subgroup K ⊆ G which either contains it or is

contained in it with finite index:

Proposition 3.2.3. Let G be a finitely generated group.

1. If H ≤ K ≤ G and |K : H| <∞, then H has bounded packing in G if and only

if K has bounded packing in G.

2. If H ≤ K ≤ G and |G : K| <∞, then H has bounded packing in K if and only

if H has bounded packing in G.

3. If H,K ≤ G and |G : K| < ∞, then H ∩ K has bounded packing in K if and

only if H has bounded packing in G.

Proof. See Proposition 2.5 in [14].

Part (1) of the proposition has the following immediate corollary:

Corollary 3.2.4. Any finite subgroup of the finitely generated group G has bounded

packing.

Proof. It suffices to show that the trivial group {1} has bounded packing in G, but

that is an easy consequence of the properness of the word metric on G.

The following two results summarize the elementary properties of bounded pack-

ing. For us, Lemma 3.2.5 will be especially important.

Lemma 3.2.5. Let 1 −→ N −→ G −→ Q −→ 1 be a short exact sequence of groups

where G is finitely generated. Let H be a subgroup of G which projects to the subgroup
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H of Q. Then H has bounded packing in Q if and only if HN has bounded packing

in G.

Proof. See Lemma 2.8 in [14].

Corollary 3.2.6. Every normal subgroup N of a finitely generated group G has

bounded packing.

Proof. Follows immediately from Lemma 3.2.5 by taking H = {1}.

Theorem 3.2.7. If G is a finitely generated virtually nilpotent group, then each

subgroup of G has bounded packing in G.

Proof. The proof is by induction on the length of the lower central series of G and

relies mostly on Lemma 3.2.5. See Theorem 2.12 in [14].

The main result of [14] is about bounded packing in relatively hyperbolic groups.

First, we recall the definition of a relatively hyperbolic group following [14]:

Definition 3.2.2. (Relatively hyperbolic group) Let G be a finite generated group

and let P be a finite collection of subgroups of G. Suppose that G acts on a δ-

hyperbolic graph Γ with finite edge stabilizers and finitely many orbits of edges, and

suppose further that for each n ∈ N, each edge in Γ is contained in only finitely many

circuits of length n. If P is a set of representatives of all the conjugacy classes of

infinite vertex stabilizers, then the pair (G,P) is called a relatively hyperbolic group.

The subgroups in the collection P are called peripheral subgroups and their left cosets

are called peripheral cosets.

For an equivalent definition and an explanation of the terminology used in the

definition above, refer to the extremely readable account by Farb [8].

Theorem 3.2.8. Let (G,P) be a relatively hyperbolic group, with a finite generating

set S, and let H be a ν-relatively quasiconvex subgroup of G. Suppose that for each
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peripheral subgroup P ∈ P and each g ∈ G the intersection P ∩ gHg−1 has bounded

packing in P . Then, H has bounded packing in G.

Proof. See Theorem 8.10 in [14].

We do not provide the definition of relative quasiconvexity since we shall not make

use of Theorem 3.2.8, we refer the reader to the original article [14] instead.

In light of Theorem 3.2.7 one can ask the question whether every subgroup of a

solvable group has bounded packing. While an affirmative answer to this question is

unlikely, one has the following conjecture promoted in [14], which has recently been

settled, see [33] and [28]:

Conjecture Every subgroup of a virtually polycyclic group P has the bounded pack-

ing property.

The conjecture, in its entirety, was settled in [33] which was announced simulta-

neously with our proof of the special case which we describe in Section 3.6 below.

While Yang’s approach does answer the question in the affirmative, it relies heavily

on a classical algebraic result by Malcev which states that polycyclic groups are sub-

group separable. In doing so, however, it gives no insight into the beautiful, and as of

yet poorly understood geometry of these groups.

A group G is called subgroup separable if each finitely generated subgroup H ⊆ G is

an intersection of finite index subgroups of G. In [33], Yang approaches the question of

bounded packing by establishing that every separable subgroup has bounded packing

in its ambient group then quoting Malcev’s theorem. By contrast, our approach to

solving this conjecture was much more geometric.
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3.3 Polycyclic Groups and the Groups Pn,φ

First, let us define the main object of study:

Definition 3.3.1. A group G is called polycyclic if there exist subgroups G0 = {1} ⊆

G1 ⊆ · · · ⊆ Gn−1 ⊆ Gn = G with Gi−1 normal in Gi, such that Gi/Gi−1 is a cyclic

group.

An easier to understand from geometrical perspective example of a polycyclic

group is the semidirect product Znoφ Z, φ ∈ Aut(Zn). As a set Znoφ Z is just Zn+1,

however Zn oφ Z is in general far from being quasi-isometric to En+1.

Recall that the semidirect product Zn oφ Z has the following presentation:

Zn oφ Z = 〈Zn, t : tat−1 = φ(a), a ∈ Zn〉,

where t denotes a generator for the Z factor on the right.

As a matter of convenience, we shall denote the semidirect product of Zn with Z

by Pn,φ.

The free abelian group Zn is a normal subgroup of Pn,φ and the quotient Pn,φ/Zn

is isomorphic to Z. Hence, we can write Pn,φ as a disjoint union of the left cosets of

Zn indexed by Z: Pn,φ =
∐

i∈Z t
iZn. We therefore conclude that we can construct

the Cayley graph of Pn,φ in the following way: we take a union of Z copies of the

Cayley graph of Zn and insert an extra edge at each vertex joining tia ∈ tiZn to

ti+1φ−1(a) ∈ ti+1Zn, which corresponds to multiplication on the right by the generator

t.

In Section 3.6 below, we show that in a certain sense Pn,φ has only one interesting

subgroup from the point of view of bounded packing, namely the cyclic subgroup

H = 〈t〉. Therefore, our first goal will be to show that H has bounded packing in

Pn,φ.

It is clear from the description of the Cayley graph of Pn,φ that each left coset of

H is a transversal to the left cosets of Zn. On the other hand, the obvious injection
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ι : Zn → tiZn ⊆ Pn,φ induces a graph monomorphism ι : Γ(Zn) ↪→ Γ(Pn,φ). Therefore,

in addition to the metric on tiZn ⊆ Pn,φ coming from the restriction of the word metric

d of Pn,φ, we have a metric dtiZn which is the push-forward of the word metric on Zn.

Our first result shows that given any D > 0, we can find a N(D) ∈ N, such that

any collection of N(D) distinct left cosets of H will contain a pair aH, bH such that

dtiZn(ati, bti) > D for all i ∈ Z, which in turn implies d(aH, bH) >
D

2
. Then, having

shown bounded packing for H, we prove bounded packing for all of the subgroups of

Pn,φ.

In order to show bounded packing of H in Pn,φ as outlined above, we need to

analyze the action of Z on Zn via φ ∈ Aut(Zn). This requires us to present some

basic results on the dynamics of linear maps.

3.4 The Dynamics of Linear Maps

The main reference for this section is the classical reference on dynamical systems

by Hasselblatt and Katok [12]. Their book, however, offers much more than we need,

in fact, most of the material we require is contained in Section 1.2 of [12].

Throughout this section, let φ : Rn → Rn be a linear map. It is well known

that the algebraic behavior of a linear map φ is, to a large extent, determined by its

eigenvalues. Just for the sake of completeness, we recall that λ ∈ C is an eigenvalue

for φ, considered as a linear map Cn → Cn, if there exists v ∈ Cn such that φ(v) = λv.

The set of eigenvalues of φ is called the spectrum of φ, and the absolute value of the

largest eigenvalue of φ, denoted by ρ(φ), is called the spectral radius of φ. In the

case of bounded linear maps between Banach spaces, see the discussion below, the

spectrum need not be finite. It is, however, always a closed bounded and nonempty

subset of C, see for example [16]. For our purposes, we shall only need to consider

finite spectra, in particular the spectra of linear maps on Rn. We denote the spectrum

of a linear map φ by Spec(φ).
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If we fix a basis for Rn, such as the standard basis, we can represent the linear

map φ by a matrix A ∈ Mn(R). To avoid repetition, let us fix a basis once and for

all: In what follows, {ei}1≤i≤n will denote the standard basis for Zn, Rn, and Cn,

and the matrix representation of φ will always be assumed to be with respect to the

standard basis unless otherwise stated. We shall use φ and its matrix representation

A interchangeably, whenever there is little chance of confusion.

We would like to understand the behavior of the iterates of φ. The linear case is

of fundamental importance in the theory of dynamical systems because the derivative

functor D establishes a connection between the diffeomorphism f of a Riemannian

manifold M and linear maps between finite dimensional vector spaces.

Definition 3.4.1. The n-fold composition of φ with itself, φ ◦ φ ◦ . . . ◦ φ is called the

n-th iterate of φ and is denoted by φn.

More precisely, we are interested in the sets O+
v = {φi(v) : i ∈ N}, for v ∈ Rn, and

Ov = {φi(v) : i ∈ Z}, where we define φ−i = (φ−1)n for i > 0, whenever φ is invertible.

The former set is called the forward orbit of v under φ, and the latter, simply the

orbit of v under φ. In the case when φ is invertible, the forward orbit of φ−1 is called

the backward orbit of φ. It turns out that the eigenvalues of φ also determine the

asymptotic behavior of the orbits of φ, as the following proposition demonstrates:

Proposition 3.4.1. For every δ > 0, there exists a norm on Rn such that

sup||v||=1 ||φ(v)|| < ρ(φ) + δ.

Proof. See Proposition 1.2.2 in [12].

It seems like Proposition 3.4.1 is too vague to be useful, since it only establishes

the bound on the norm of φ for some norm on Rn. However, it is a well know fact

that all norms on a finite dimensional normed space are equivalent in the following

strong sense:
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Proposition 3.4.2. Let ‖·‖1 and ‖·‖2 be two norms on the finite dimensional vector

space V , then there exists C > 0 such that
1

C
‖v‖1 ≤ ‖v‖2 ≤ C ‖v‖1, for all v ∈ V .

Proof. Exercise.

Before we state the interesting for us corollary to Proposition 3.4.1, let us establish

some notation.

The space of all linear maps on a normed vector space V will be denoted by

L(V ). It is easily seen that L(V ) is itself a vector space under the usual rules for

working with linear maps. Given φ ∈ L(V ), the positive real number sup||v||=1 ||φ(v)||

is called the norm of the linear map φ. Unfortunately, however, it does not define a

norm on all of L(V ) since we can have a linear map on an infinite dimensional vector

space V for which this number is not finite. We get around this by defining B(V ) =

{φ : V → V : ||φ|| <∞}. This subspace of L(V ) is called the space of bounded linear

maps on V , and with the supremum norm defined above, B(V ) becomes a Banach

space. A basic result of functional analysis asserts that a linear map is bounded

if and only if it is continuous. Actually, B(V ) has more structure than just that

of a Banach space, namely it possesses the structure of a Banach algebra where

multiplication is given by composition of linear maps. It is an easy exercise to show

that |φ| = supv∈V
||φ(v)||
||v|| , in other words, |φ| ||v|| is an upper bound for ||φ(v)|| for all

v ∈ V . Even though we are interested only in the finite dimensional case, we have

presented these basics on Banach spaces in order to put the present discussion into

proper context. We are now prepared to state the promised corollary to Proposition

3.4.1, which follows immediately in view of Proposition 3.4.2:

Corollary 3.4.3. If φ ∈ L(Rn) is a bounded linear map with spectral radius ρ(φ) < 1,

then limi→∞ φ
i(v) = 0, for all v ∈ Rn. Equivalently, the only accumulation point of

O+(v) in Rn is 0. If in addition φ is also invertible, then the backward orbit of φ

diverges to infinity.
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Proof. See Corollary 1.2.4 in [12].

Even though we are not interested in the speed of convergence, the proof of the

corollary shows that it is exponential. Let us now consider the following easy to

visualize example:

Example 3.4.4. Let φ : R2 → R2 be the map given by the 2 × 2 matrix

λ 0

0 λ

,

where 0 < λ < 1. The map φ act by multiplication by λ < 1 and for every v ∈ R2,

φi(v) converges to 0 exponentially as i→∞.

We are now ready to present our motivating example for much of the discussion

that follows:

Example 3.4.5. Let 0 < µ < 1 < λ and consider the map φ : R2 → R2 given by

A =

µ 0

0 λ

. The matrix A has an eigenbasis {e1, e2} with eigenvalues µ and λ

respectively. Let us define E− = Re1 and E+ = Re2. The forward orbit of any point

in E− approaches the origin at an exponential speed, and the same is true for the

backward orbit of any point in E+.

Now, we proceed to analyze the behavior of the orbit of a point (x0, y0) ∈ R2 −

(E− ∪ E+) and to that end, without loss of generality, we assume that x0, y0 > 0.

We compute φi(x0, y0) = (µix0, λ
iy0), hence φi(x0, y0) lies on the curve F(x0,y0) =

{(x, y) ∈ R2 : xyc = x0y
c
0}, where the constant c > 0 is defined by µ = λ−c. Further,

it is easily shown that φ leaves the curves F(x0,y0) invariant. In the special case where

µ = λ−1, the curves F(x0,y0) give a foliation of the plane by hyperbolae.

Example 3.4.5 motivates the following definition:

Definition 3.4.2. (Hyperbolic map) A linear map φ : Rn → Rn is called hyperbolic,

if the intersection of Spec(φ) with the unit circle in C is empty, or in other words, φ

has no absolute value 1 eigenvalues.
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Next, we recast some familiar notions from linear algebra from the point of view of

dynamics. Recall that to each λ ∈ Spec(φ)∩R, for a given φ ∈ L(Rn), one associates

its root space
⋃
kKer(φ − λI)k denoted by Eλ. Similarly, to each pair of complex

conjugates λ, λ ∈ Spec(φ), we define Eλ,λ to be the intersection of the root space of

the complexified map φ ∈ L(Cn) with Rn. By analogy with Example 3.4.5, we set

E− =
⊕
|λ|<1

Eλ ⊕
⊕
|λ|<1

Eλ,λ, (3.1)

E+ =
⊕
|λ|>1

Eλ ⊕
⊕
|λ|>1

Eλ,λ, (3.2)

and

E0 = E−1 ⊕ E1 ⊕
⊕
|λ|=1

Eλ,λ. (3.3)

Clearly then, Rn = E− ⊕ E+ ⊕ E0, and also φ is a hyperbolic map if and only if

E0 = {0}.

Everything we need from [12] is contained in the following:

Proposition 3.4.6. Let φ ∈ L(Rn) be a hyperbolic map. Then:

1. For every v ∈ E−, the positive iterates φi(v) converge to the origin with expo-

nential speed as i → ∞, and if φ is invertible, then the negative iterates φi(v)

go to infinity with exponential speed as i→ −∞.

2. For every v ∈ E+, the positive iterates of v go to infinity exponentially and if φ

is invertible, then the negative iterates converge exponentially to the origin.

3. For every v ∈ Rn−(E−∪E+), the iterates φi(v) converge to infinity exponentially

as i→ ±∞.

Proof. See Proposition 1.2.8 in [12].
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3.5 The Diagonal Action of Z on Zn

This section contains a couple of technical lemmas which analyze the geometry of

the space of left cosets of H and lays a foundation for the work in Sections 3.6 - 3.7.

Any automorphism of Zn extends to an automorphism of Rn. On the other hand,

an automorphism of Rn which preserves the integer lattice Zn ⊆ Rn restricts to an

automorphism of Zn if and only if it has determinant equal to ±1. Thus, we identify

Aut(Zn) with the group of n × n integer matrices of determinant ±1. This group is

denoted by GLn(Z) and as we noted GLn(Z) ⊆ GLn(R).

Now, given φ ∈ Aut(Zn) we turn our attention to the action of Z on Zn induced

by the homomorphism Φ : Z → Aut(Zn) given by Φ : 1 7→ φ. If the automorphism

φ is diagonalizable over R, we shall say that Z acts diagonally on Zn. Our plan of

attack on the problem of bounded packing of H in Pn,φ, as outlined at the closing of

Section 3.3, is to show that if one takes a large enough collection of distinct left cosets

a1H, ..., aNH, ai ∈ Zn, then one is guaranteed that some pair will stay far apart in

each left coset of Zn in the metric dtiZn . It turns out that this is intimately connected

with the geometry of the orbits of the Z action on Zn via φ.

We begin by showing that given a diagonal action of Z on Zn by a hyperbolic

automorphism, two translates of orbits of this action intersect in at most two points.

The reason for considering diagonal actions is simple, if all of the eigenvalues of φ are

real and positive, the action of Z on Zn extends to a flow on Rn and we can treat the

orbits of the Z-action as differentiable curves in Rn.

Lemma 3.5.1. Let Z act diagonally on Zn via the hyperbolic map φ ∈ Aut(Zn) all

of whose eigenvalues are positive. If Oz and Ow are the orbits of the points z, w ∈

Zn − {0}, then |Oz ∩ (a+ Ow)| ≤ 2 for any non-zero a ∈ Zn.

Proof. Let {v1, ..., vn} be an eigenbasis for φ. For z ∈ Zn, write z = z1v1 + ...znvn, a =

a1v1 + ...+anvn. Then, Oz is contained in the image of the curve t→ (λt1z1, ..., λ
t
nzn).
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Now, given z, w ∈ Zn, set α(t) = (λt1z1, ..., λ
t
nzn) and β(t) = (λt1w1 +a1, ..., λ

t
nwn+an),

and note that Oz ∩ (a+ Ow) ⊆ Im(α) ∩ Im(β). We show that there are at most two

solutions (t, t
′
) to the equation α(t) = β(t

′
). Since a 6= 0, at least two coordinates

of a with respect to the chosen eigenbasis for φ are non-zero (otherwise a would lie

in the intersection of a 1-dimensional eigenspace of φ with Zn, which is impossible).

By reordering the basis, if necessary, we may assume that a1 6= 0 and a2 6= 0. We

consider the following cases:

1. z1 = 0 and w1 6= 0: Considering the equation λt1z1 = λt
′

1 w1 + a1, we see that

there is at most one solution for t
′
. Now, we consider the subcases:

• w2 = 0: Consider the equation λt2z2 = a2. If z2 = 0, this equation has no

solution. If z2 6= 0, there exists at most one solution for t.

• w2 6= 0 and z2 6= 0: Considering λt2z2 = λt
′

2 w2 + a2, with the value for t
′

we

found above, we again conclude that there is at most one solution for t.

• w2 6= 0 and z2 = 0: In this case, since z1 = z2 = 0, we must have some

zi 6= 0 since z 6= 0. Assume that z3 6= 0, and consider λt3z3 = λt
′

3 w3 + a3.

With the value for t
′
, there is again at most one solution for t.

2. z1 6= 0, w1 = 0, z2 6= 0, w2 6= 0: Consider λt1z1 = a1. We conclude that there

is at most one solution for t. With this value for t we solve λt2z2 = λt
′

2 w2 + a2,

and we find at most one solution for t
′
.

3. z1 6= 0, w1 6= 0, z2 6= 0, w2 6= 0: Consider the projections of the curves

α and β on the plane spanned by {v1, v2}. These projections are the curves

t→ (λt1z1, λ
t
2z2) and

t → (λt1w1 + a1, λ
t
2w2 + a2) respectively. Setting t

′
= t + k, λ2 = λp1, λt1 = x,

λk1 = y, we obtain the system:
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xz1 = xyw1 + a1

xpz2 = xpypw2 + a2

Solving for xy and substituting, we get:

xpz2 =
(
xz1−a1
w1

)p
w2 + a2.

We now show that this equation has at most 2 solutions for x. Consider the func-

tion f(x) = xpz2−
(
xz1−a1
w1

)p
w2−a2. Then, f

′
(x) = p

[
z2x

p−1 − z1w2

w1

(
xz1−a1
w1

)p−1
]
.

Note that p 6= 0, as no eigenvalue of φ is equal to 1. Note also that we may

always arrange to have p 6= 1, since if p = 1, then λ1 = λ2, in which case we

look for ai, with i 6= 1, 2, such that ai 6= 0, and λi 6= λ1, λ2, and replace v2 with

vi. If no such ai exists, we conclude that a lies in the intersection of Zn and

an eigenspace of φ, which is impossible. As a1 6= 0, the only possible zero of f
′

must be located at x = a1

z1−w1

(
z2w1
z1w2

) 1
p−1

. Since f has at most one more zero than

f
′
, we conclude that f has at most two zeros. Therefore, we have at most two

solutions for t, and solving for y concludes this final case.

It is an easy exercise for the reader to convince himself that this exhausts all possible

cases up to permutation of the variables involved.

Even though Lemma 3.5 was stated to handle the case where only one of the orbits

was translated by a ∈ Zn, it takes no work at all to show that for any z, w, a, b ∈ Zn,

we still have |(a+ Oz)∩ (b+ Ow)| ≤ 2. Now, using this counting argument, we prove

the following interesting property of the diagonal action of Z. Consider the induced

action of φ on the set F(Zn) of finite subsets of Zn. We show that given D > 0, there

exist N(D) ∈ N, such that any C ∈ F(Zn) with |C| > N(D) is guaranteed to contain

a pair of points whose images in every φk(C) are separated by a distance of at least

D. In other words, there exist a, b ∈ C such that d(φk(a), φk(b)) > D for all k ∈ Z.
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Lemma 3.5.2. Let Z act diagonally on Zn via the hyperbolic automorphism φ all of

whose eigenvalues are positive. Then given D > 0, there exists N > 0 such that for

any collection of m > N distinct points a1, a2, ..., am ∈ Zn, there exist i, j such that

d(φk(ai), φ
k(aj)) > D for all k ∈ Z.

Proof. Let S be the set B(0, D) ∩ Zn. If
∥∥φk(z1)− φk(z2)

∥∥ ≤ D for some z1, z2 ∈ Zn

and k ∈ Z, then z1 − z2 is in the orbit Oz of some z ∈ S under φ. Hence, z2 ∈

z1 +
⋃
z∈S Oz. Now, if we have

∥∥φk(ai)− φk(aj)∥∥ ≤ D for all 1 ≤ i, j ≤ m , then

am ∈
⋂

1≤l≤m−1(al +
⋃
z∈S Oz). To finish the proof, we observe that Lemma 3.5.1

shows that
∣∣⋂

1≤l≤m−1(al +
⋃
z∈S Oz)

∣∣ ≤ 2 |S|2 ∼ 2
(
V ol(B(0, D))

)2
.

3.6 Bounded Packing in Pn,φ

We now use the dynamical properties of the diagonal Z-action on F(Zn) to prove

bounded packing in Zn o Z.

Lemma 3.6.1. Let Z act diagonally on Zn via the hyperbolic automorphism φ, all of

whose eigenvalues are positive. Let Pn,φ = Zn oφ Z and let t denotes a generator for

the copy of Z in G on the right, then the subgroup H = 〈t〉 has bounded packing in

Pn,φ.

Proof. Let d denote the word metric on G, and let dtiZn denote the inherited Euclidean

metric on tiZn described in Section 3.3. We show that given R > 0, there exists D > 0

such that if x, y ∈ tiZn and dtiZn(x, y) > D, then d(x, y) > R. After translating, we

need only show that if dZn(e, y) > D, then d(e, y) > R. Supposing to the contrary,

that given a fixed R > 0, for any D > 0 there exists y ∈ Zn with dZn(e, y) > D

and d(e, y) < R, we construct a sequence {yk} with dZn(e, yk) > k and d(e, yk) < R.

Because the metric d is proper, this is a contradiction. Now, since Rn is quasi-

isometric to the lattice Zn, Lemma 3.5.2 shows that given D > 0, there exists N ∈ N

such that any collection of m distinct cosets of H, with m > N , contains a pair, say
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aH, bH, such that in any coset tiZn, we have dtiZn(ati, bti) > D for all i ∈ Z. This

along with the discussion above shows that given D > 0 we can find N ′ ∈ N such that

any collection of m distinct cosets, with m > N ′, contains a pair, aH, bH, such that

d(ati, bti) > D for all i ∈ Z. Finally, we show that this implies that d(aH, bH) ≥ D

2
.

To this end, let ati ∈ aH, and btj ∈ bH. We have two cases: either |i − j| ≥ D

2
, or

|i− j| < D

2
. In the first case, it is clear that d(ati, btj) ≥ |i− j| ≥ D

2
. In the second,

we have: d(ati, btj) ≥ |d(ati, atj)− d(atj, btj)| >
∣∣∣∣D2 −D

∣∣∣∣ =
D

2
.

Having established bounded packing of H in Pn,φ where the diagonal Z-action

on Zn is via a hyperbolic automorphism, we now work to relax the hyperbolicity

assumption.

Lemma 3.6.2. Let Z act diagonally on Zn via the automorphism φ all of whose

eigenvalues are positive. If Pn,φ = Zn oφ Z and if t denotes a generator for the right

copy of Z in Pn,φ, then the subgroup H = 〈t〉 has bounded packing in Pn,φ.

Proof. The automorphism φ extends to an automorphism φ : Rn 7→ Rn which has

determinant equal to ±1. We have Rn = H⊕E1, where H = E−⊕E+ is the sum of the

expanding and contracting subspaces of φ, and E1 is the eigenspace for the eigenvalue

λ = 1 of φ. Note that since both H and E1 are φ-stable, so is ZH = Zn ∩ H,

so ZH / Pn,φ. Because ZH = Zn ∩ H is a free abelian group on which φ acts as

a hyperbolic automorphism, 〈t〉 has bounded packing in ZH oφ Z = ZH 〈t〉 ⊆ Pn,φ

by Lemma 3.6.1. Now, Pn,φ/ZH embeds in (Rn oφ R) /H ∼= (Rn/H) oφ R which is

isomorphic to Rk since φ is the identity. Therefore, Pn,φ/ZH is abelian hence it has

bounded packing with respect to all of its subgroups. In particular, the image of 〈t〉

has bounded packing in Pn,φ/ZH, and therefore ZH 〈t〉 has bounded packing in Pn,φ.

As 〈t〉 ⊆ ZH 〈t〉 ⊆ Pn,φ, we conclude that 〈t〉 has bounded packing in Pn,φ.

An immediate consequence of Lemma 3.6.2 is:
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Corollary 3.6.3. With the notation from Lemma 3.6.2, for every z ∈ Zn, the sub-

group 〈zx〉 has bounded packing in Pn,φ.

Proof. Since for any z ∈ Zn, we have:

zxw (zx)−1 = zφ(w)z−1 = φ(w) = xzx−1, we have an automorphism of Pn,φ which is

the identity on Zn and which sends x to zx. The conclusion now follows immediately

from Lemma 3.6.2.

This corollary shows that any cyclic subgroup of Pn,φ has bounded packing.

We finally have the means to prove the main result of this section:

Theorem 3.6.4. Let Z act diagonally on Zn via φ ∈ Aut(Zn) all of whose eigenvalues

are real, then every subgroup of Pn,φ = Zn oφ Z has bounded packing in Pn,φ.

Proof. By passing to a subgroup of finite index, we may assume that all of the eigen-

values of φ are real and positive. Let H ⊆ Pn,φ. By further passing to a finite index

subgroup of Pn,φ, we may assume that the projection of H to Z is onto, so that we

have the exact sequence 1 −→ W −→ H −→ Z −→ 1, where W = Zn ∩ H. Note

that W is normal in Pn,φ: let zt ∈ H be an element of H which projects to a gen-

erator of the right-side copy of Z in Pn,φ, where z ∈ Zn, then ztWt−1z−1 = W , so

tWt−1 = z−1Wz = W . Next, by passing to a subgroup of Pn,φ containing H with fi-

nite index, we may assume that Zn/W is free abelian. Here is how: let Zn/W = F⊕T ,

where F is free abelian, and T is torsion; the preimage of T in Zn, say T ′, under the

quotient map is φ-stable, |T ′ : W | < ∞, so T ′ o Z is the desired subgroup. Now,

consider G = Pn,φ/W . Because the diagram

1 // Zn //

��

Pn,φ //

��

Z // 1

1 // Zn/W // Pn,φ/W // Z // 1
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commutes, G ∼= (Zn/W ) oφ Z ∼= Zm oφ Z, where φ is the induced automorphism

on the quotient Zn/W . Corollary 3.6.3 shows that the image of 〈zt〉 has bounded

packing in Pn,φ/W , hence H = W 〈zt〉 has bounded packing in Pn,φ.

Note that Theorem 3.6.4 solves the question of bounded packing in polycyclic

groups of length ≤ 3 as the following corollary demonstrates:

Corollary 3.6.5. If G is a polycyclic group of length ≤ 3, G has bounded packing

with respect to all of its subgroups.

Proof. The statement is trivially true if the length of G is equal to 1 or 2, since in both

cases G is virtually abelian. If G has length 3, then G contains a subgroup isomorphic

to Z2 oφ Z of finite index. Unless φ is hyperbolic, G will be virtually nilpotent. In

the case where φ is hyperbolic, the eigenvalues are real, and the conclusion follows

from Theorem 3.6.4.

3.7 Coset Growth of H in P2,φ

3.7.1 Growth of Groups and Coset Growth

Growth of Groups

In the course of proving bounded packing in Pn,φ, we have developed the tools for

studying the growth of a certain metric space. Recall that given a metric measure

space (X, d, µ), one defines the volume growth to be the function fx0(r) = µ(B(x0, r)),

where B(x0, r) is the open ball of radius r centered at the point x0 ∈ X. In geometric

group theory, the metric space is a finitely generated group G with the word metric,

the measure on G is the counting measure, and the basepoint is the identity element

1 ∈ G. In other words, the function f(r) counts the number of elements which can

be expressed as a word of length at most r in the generators. In order to make the

definition independent of the generating set, we introduce the following equivalence
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relation on the set of non-decreasing functions defined on R≥0: α ∼ β if there exists

C > 0 such that β
( r
C

)
≤ α(r) ≤ β (Cr). We now define the growth rate of G to be

the equivalence class of the growth function f(r).

It is important to note that the growth rate of any finitely generated group is at

most exponential. This is due to the fact that the growth rate of any quotient of the

finitely generated group G is bounded above by the growth rate of G. On the other

hand, every finitely generated group is a quotient of a finitely generated free group

and these are easily shown to have exponential growth. What else can be said of the

growth rate? The free abelian groups Zn provide examples of groups of polynomial

growth of any order n. In [32], Wolf proves that nilpotent groups have polynomial

growth. Actually, [32] contains a stronger result which is of interest for us:

Theorem 3.7.1. A polycyclic group is either virtually nilpotent and is thus of poly-

nomial growth, or is not virtually nilpotent and is of exponential growth.

Proof. See [32].

Coupling this with a result by Milnor, see [19], Wolf deduces:

Theorem 3.7.2. A finitely generated solvable group is either polycyclic and virtually

nilpotent and is thus of polynomial growth, or has no nilpotent subgroup of finite index

and is of exponential growth.

Proof. See [32].

Much progress has been made in the area of geometric group theory concerned

with the growth of groups since the works of Wolf and Milnor. The most notable result

is, of course, Gromov’s celebrated result which characterizes the finitely generated,

virtually nilpotent groups, as precisely the finitely generated groups of polynomial

growth:
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Theorem 3.7.3. A finitely generated group has polynomial growth if and only if it is

virtually nilpotent.

Proof. See [10] or [15].

Gromov’s original proof of this amazing result relies on the solution of Hilbert’s

Fifth Problem which, in its original version, aimed to characterize Lie groups as the

topological groups which are also topological manifolds, a very powerful result in and

of itself. Since Gromov’s original proof in [10], simpler proofs, which do not use the

solution to Hilbert’s Fifth Problem, have appeared. See, for example, the work by

Kleiner in [15].

A question which took some time to resolve was whether there existed groups of

intermediate growth, or in other words, groups whose growth rate is less than expo-

nential but greater than polynomial. The question was answered in the affirmative

by Grigorchuk in [9].

Coset Growth

Let G be a finitely generated group and H be any subgroup. Consider the space

of left cosets G/H ⊆ P(G). The word metric d on G induces a distance function

on P(G), see Section 3.1.2. We define the coset growth fG,H to be the growth rate

of the coset space G/H using the distance function d instead of a true metric. We

immediately observe that fG,{1} is just the growth rate of G, while fG,N is the growth

rate of the quotient group G/N whenever N is normal in G. We shall also refer to

the coset growth of H in G as the growth of the pair (G,H). Having an infinite coset

growth of H in G is equivalent to H not having the property of bounded packing in

G. Our goal in this section is to show that the growth rate of the pair (P2,φ, 〈t〉) is at

most exponential, when P2,φ is not nilpotent. Theorem 3.7.1 shows that the growth

rate of (P2,φ, {1}) is exponential, whereas the growth rate of (P2,φ,Z2) is polynomial

of order 1 as P2/Z2 ∼= Z.
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In order to bound the growth rate of (P2,φ, 〈t〉) above, we need to examine the

distortion of Z2 in P2,φ. To do this, we make use of the fact that P2,φ embeds as

a uniform lattice of finite covolume in the Lie group Sol. In fact, every polycyclic

group can be virtually embedded as a lattice in a simply-connected solvable Lie group.

However, in the case of P2,φ the embedding is far less abstract.

3.7.2 The Sol Geometry

The World of Geometric Manifolds

Quite possibly the first mention of the solvable Lie group Sol in a mathematician’s

vocabulary is as one of the eight Thurston geometries.

Recall that a geometry is a pair (M,G), where M is manifold and G a Lie group

such that G acts transitively on M with compact point stabilizers. We say that

the geometries (M1, G1), (M2, G2) are equivalent if there exists a diffeomorphism

φ : M1 → M2 and an isomorphism φ∗ : G1 → G2 such that φ(g · x) = φ∗(g) · φ(x),

for all x ∈M1 and for all g ∈ G1. This compact definition captures both the essence

of geometry as we understood it from the ancient Greeks and its more contempo-

rary formulation underlying the Erlangen program. Its importance is witnessed by

Thurston’s famous geometrization conjecture, which is now a theorem due to Perel-

man. Very informally, the geometrization theorem states that a closed orientable

3-manifold can be cut up into pieces which carry a geometry.

There are two well-known algorithms for cutting a 3-manifold into simpler pieces:

Theorem 3.7.4. (Kneser, Milnor) Let M be a closed, orientable 3-manifold. Then,

M admits a finite connected sum decomposition (K1]...]Kp)](L1]...]Lq)](S2×S1]...]S2×

S1), where Ki is an irreducible 3-manifold with infinite π1 and Lj is an irreducible

3-manifold with finite π1, for all 1 ≤ i ≤ p, 1 ≤ j ≤ q.

A manifold is said to be closed if it is compact and has no boundary. The boundary
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of a smooth manifold is the subset of M consisting of points which have neighborhoods

diffeomorphic to an open neighborhood of the origin in R3
+ = {(x, y, z) : x, y, z ∈ R, z ≥ 0}.

A 3-manifold is called irreducible if every embedded 2-sphere is the boundary of an

embedded copy of B3 = {x ∈ R3 : ||x|| ≤ 1}. The symbol ] in Theorem 3.7.4 denotes

the operation of forming a connected sum: M1]M2 = (M1− intB3)
∐

S2(M2− intB3).

In other words, one excises the interior of a 3-ball from both M1 and M2 then glues

the resulting manifolds with boundary along their corresponding copies of ∂B3 = S2.

A manifold which cannot be written as a connected sum of two manifolds unless one

of them is S3 is called prime. In addition to the connected sum decomposition result

above, we have the following theorem proved by Jaco-Shalen and independently by

Johannson:

Theorem 3.7.5. (Jaco-Shalen, Johannson) Let M be a closed, orientable, irreducible

3-manifold. Then, there is a finite collection of disjoint incompressible tori in M that

separate M into a finite collection of compact 3-manifolds with toral boundary each

of which is either torus-irreducible or Seifert fibered.

A Seifert fibered space X is a manifold which can be written as a disjoint union of

circles such that each circle has a regular neighborhood diffeomorphic to a fibered solid

torus D2 × I\(φ(z, 0) ∼ φ(z, 1)), where D2 = {z ∈ C : ||z|| ≤ 1}, and φ : D2 → D2 is

given by φ(z) = e2π p
q z for p, q ∈ Z, see [30].

We are finally ready to state the geometrization theorem:

Theorem 3.7.6. (Perelman) Let M be a closed, oriented 3-manifold. Then, each

component obtained by performing the sphere and then the torus decomposition admits

a geometric structure.

For the proof, we refer the reader to the original papers by Perelman: [22], [23],

and [24].
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Any manifold which admits a geometric structure is covered by one of the eight

3-dimensional simply-connected geometries: E3, H3, S3, S2×R, H2×R, S̃L2(R), Nil,

and Sol. An excellent account of the topic can be found in [30].

Definition and Basic Properties of Sol

The Lie group Sol is defined to be the semidirect product of R2 o R, where a

generator t ∈ R acts on R2 via

et 0

0 e−t

. We identify Sol as a set with R3 =

{(x, y, z) : (x, y) ∈ R2, z ∈ R} and thereby obtain a chart on the underlying manifold.

We shall use this chart to introduce a left-invariant Riemannian metric on Sol as fol-

lows: First, we metrically identify the normal copy of R2 with E2. Next, we transport

the metric ds2
z=0 = dx2 + dy2 + dz2 on R2×{0} to R2×{t} for arbitrary t ∈ R using

the multiplication map mt : Sol → Sol given by mt(x, y, z) = (0, 0, t)(x, y, z). This

means that we define ds2
z=t in such a way that it satisfies ds2

z=t(Dmt(v)) = ds2
z=0(v)

for every v ∈ Tp(R2) ⊆ Tp(Sol). It is easy to show that the resulting left-invariant

Riemannian metric is given by ds2 = e2zdx2 + e−2zdy2 + dz2.

We shall denote the associated path metric on Sol by dS. The embedding of E2

into Sol via the map (x, y) 7→ (x, y, z) endows R2 ⊆ Sol with the Euclidean metric

which we shall denote by dR2 . In order to produce the promised bound for the growth

rate of the pair (P2, 〈t〉), we need the following result which provides a lower bound

for the distance in Sol between two points in R2 in terms of their l1 distance in R2:

Lemma 3.7.7. dS((x1, y1, 0), (x2, y2, 0)) ≥ max {2 log |x2 − x1|, 2 log |y2 − y1|}.

Proof. See Lemma 3.5.2 in [1].

We now obtain a lower bound for dS in terms of the Euclidean distance:

dR2((x1, y1), (x2, y2)) ≤
√

2 max {|x2 − x1|, |y2 − y1|} (3.4)
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log dR2((x1, y1), (x2, y2)) ≤ max {log |x2 − x1|, log |y2 − y1|}+ log
1√
2

(3.5)

hence by Lemma 3.7.7

dS((x1, y1, 0), (x2, y2, 0)) ≥ 2 log dR2((x1, y1, 0), (x2, y2, 0)) + log 2 (3.6)

This estimate bounds the distortion of R2 in Sol and our next goal will be to quasify it

to apply to the discrete case of P2. Before we do that however, we provide an explicit

embedding of the non-nilpotent group P2,φ as a uniform lattice in Sol following [1].

The Embedding of P2,φ in Sol

First, we embed Z2 as the standard integer lattice in R2. Let the eigenvalues of

φ be 0 < λ−1 < 1 < λ, and let v− and v+ be eigenvectors for the corresponding

eigenvalues. Let f : R2 → R2 be the linear map defined by v− 7→ e1 and v+ 7→ e2.

Now, we define a map ψ : P2,φ → Sol by ψ(ek1e
l
2t
q) = (f(k, l), q log(λ)), where e1, e2

and t are the standard generators of P2,φ described in Section 3.3, and k, l, q ∈ Z. It

is not hard to show that the map ψ is a monomorphism with a discrete image and

that ψ(P2,φ)\Sol is compact.

Bounding the Growth of (P2,φ, 〈t〉)

By uniformity of the embedding, we have the following quasi-isometry inequality:

dP2,φ
((x1, y1, 0), (x2, y2, 0)) ≥ CdS((x1, y1, 0), (x2, y2, 0)). (3.7)

Now, passing from the continuous metric on R2 to the word metric on Z2 we have

dR2((x1, y1, 0), (x2, y2, 0)) ≥ 1√
2
dZ2((x1, y1, 0), (x2, y2, 0)) (3.8)
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and finally putting all these estimates together we get:

dP2,φ
((x1, y1, 0), (x2, y2, 0)) ≥ C log dZ2((x1, y1, 0), (x2, y2, 0)) + A (3.9)

Proposition 3.7.8. Let fH(r) be the coset growth of H = 〈t〉 in P2,φ, then fH(r) ∼ αr.

Proof. Given r > 0, Lemma 3.5.2 shows that there exists N ∼ 2 (πr2)
2

such that any

N distinct cosets of H, say a1H, ..., aNH, contains a pair aH, bH with

dZ2(φ−k(a), φ−k(b)) > r. Now, we have dP2,φ
(atk, btk) = dP2,φ

(φ−k(a), φ−k(b)), which

combined with (3.9) gives dP2,φ
(atk, btk) > C log r + A. Arguing as in the proof

of Lemma 3.6.1, we conclude that dP2,φ
(aH, bH) ≥ 1

2
(C log r + A). Now, setting

R = 1
4
(C log r +A)− 1, we conclude that the open ball of radius R in P2,φ/H has at

most N ∼ Bαr elements, where B and α depend only on A and C.
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Chapter 4

On the Quasiconvex Subgroups of Fm × Zn

4.1 Introduction and Basic Notions

The motivation for the work in this chapter comes from the following remark found

in the introductory section of [13]: ”...it is currently unknown whether a quasiconvex

subgroup of a CAT(0) group is itself CAT(0).” At the time of first being acquainted

with the problem, it seemed to me almost absurd that the answer to such a basic

question in the theory of CAT(0) groups was not yet known. By comparison, the

corresponding statement in the theory of hyperbolic groups has long been known to

be true, see Lemma 3.1.3.

Let us begin by recalling the definition of quasiconvexity from Section 2.2.1:

Definition 4.1.1. Let X be a (uniquely) geodesic metric space and let Y ⊆ X be

a subspace. We shall say that Y is ν-quasiconvex if there exists ν > 0 such that

[x, y] ⊆ Nν(Y ), for all x, y ∈ Y .

Quasiconvexity is a generalization, or more precisely, a ”quasification” of the no-

tion of convexity in a geodesic space. Recall that a subspace is called convex if

geodesics joining points in that subspace are completely contained in it. By contrast,

the notion of quasiconvexity allows for some wiggle room: a geodesic joining points in
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Y need not be contained in Y itself but is rather allowed to travel in a fixed bounded

neighborhood of Y instead.

Definition 4.1.2. Let G be a CAT(0) group acting geometrically on the CAT(0)

space X, let H ⊆ G be a subgroup, and let x0 ∈ X be a basepoint. The subgroup H

is called ν-quasiconvex if the group orbit Hx0 is a ν-quasiconvex subspace of X.

Often, we make no mention of the quasiconvexity constant ν and simply say that

H is a quasiconvex subgroup. While the value of the constant ν in Definition 4.1.2

may depend on the choice of the basepoint x0, whether H is quasiconvex or not does

not depend on this choice.

Let us compare Definition 4.1.2 with the notion of quasiconvexity in hyperbolic

groups given in Definition 3.1.1. The most obvious difference between the two is that

Definition 3.1.1 is an intrinsic definition, it makes no mention of anything outside

the group G, the subgroup H, and a condition on H in terms of the word metric

on G, while Definition 4.1.2 defines quasiconvexity in terms of a group orbit in a

given CAT(0) space. This difference is the reason why the notion of quasiconvexity

in hyperbolic groups is more robust than its CAT(0) counterpart: as the following

example found in [13] shows, considering two actions of G = F2 × Z on the same

CAT(0) space, we can arrange a subgroup of G to be quasiconvex with respect to one

action but not the other.

Example 4.1.1. We consider the group G = F2 × Z = 〈a, b〉 × 〈t〉. Let X be the

universal cover of the presentation 2-complex of G with the usual action of G. If all

the edges in X have length equal to 1, it is easy to see that the subgroup H = 〈a, b〉 is

ν-quasiconvex for any ν > 1
2
. Note that the subgroup K = 〈a, bt〉 is not quasiconvex,

otherwise the subgroup H ∩K would also be quasiconvex, as the intersection of two

quasiconvex subgroups is quasiconvex. However, the subgroup H ∩K is the subgroup

of H which consists of elements for which the sum of the powers of the generator b
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in a reduced word equals 0. Since quasiconvex ⇒ finitely generated by Lemma 3.1.3,

H ∩K is not quasiconvex as it is not finitely generated.

Now, consider the automorphism φ of G defined by a 7→ a, b 7→ bt, t 7→ t, which

sends H to K. If we compose the action ρ : G → Isom(X) of G on X described

above with φ, we obtain a new action ρ ◦ φ : G→ Isom(X), such that ρ restricted to

K is the same as ρ ◦ φ restricted to H. Thus, H is not quasiconvex with respect to

this new action.

In order to show that a quasiconvex subgroup H of the CAT(0) group G is CAT(0),

we need to exhibit a CAT(0) space Y and a geometric action of H on Y . The reader

may at this point rightfully ask the question, why can we not take the convex hull

of the H-orbit of some point x0 ∈ X? The convex hull is a convex, H-invariant

subspace of a CAT(0) space, and the action of H on it is proper, as the action of G

on X is proper. The problem is this: while the action of G on X was assumed to be

cocompact, it is not at all obvious, and perhaps not even true in general, that quasi-

convexity of H in G should imply cocompactness of the action of H on conv(Hx0).

Of course, even if one were to find a counterexample, that is an example where the

induced action of H on conv(Hx0) is not cocompact, this would not necessarily mean

that H is not a CAT(0) group because there is still the possibility that H may act

geometrically on some other CAT(0) space. As far as we know, the general question

of whether quasiconvexity implies CAT(0) is still wide open. In this chapter, we show

that what should be true is indeed true in one special case, namely, we prove the

following:

Theorem: Let H be a quasiconvex subgroup of G = Fm × Zn, and let X be the

product of the regular 2m-valent tree with Rn with the usual action of G. Then the

action of H on the convex hull of any orbit Hx0 is cocompact.

67



If G is a CAT(0) group acting geometrically on the CAT(0) space X, and there

exists a closed convex H-invariant subset of X on which H acts cocompactly, H is

called convex.

With this terminology our theorem becomes: Any quasiconvex subgroup of G =

Fm × Zn is convex with respect to the usual action of G on Tree×Rn.

In the course of proving this result, we introduce a technique for analyzing the

convex hull in certain CAT(0) spaces and also prove that quasiconvex subgroups of

Fm × Zn are virtually of the form A× B where A ≤ Fm and B ≤ Zn, which may be

regarded as a structure result of sorts.

4.2 Convex Hulls and Quasiconvex Subgroups

As we mentioned in the previous section, every convex subspace of a CAT(0)

space is obviously itself a CAT(0) space with the induced metric. An idea which

dates back to Minkowski and Brunn, and which we independently rediscovered, is

to construct conv(Y ) by means of a sequential process as follows: For S ⊆ X, we

define conv1(S) to be the union of all geodesic segments having both endpoints in S,

or symbolically conv1(S) =
⋃
s1,s2∈S [s1, s2]. Now, we set conv0(Y ) = Y and define

recursively convi(Y ) = conv1(convi−1(Y )). This process of ”convexification” results

in an ascending sequence of subsets of X: Y = conv0(Y ) ⊆ conv1(Y ) ⊆ . . . ⊆

convi(Y ) ⊆ . . . ⊆ conv(Y ) ⊆ X, each of which gets closer to the convex hull of Y in

the following sense:

Lemma 4.2.1. Let X be a uniquely geodesic space and Y a subspace, then conv(Y ) =⋃i=∞
i=0 convi(Y ).

Proof. Obviously, convi(Y ) ⊆ conv(Y ) for all i. It is also clear that⋃i=∞
i=0 convi(Y ) is convex, hence it equals conv(Y ).

Lemma 4.2.1 was the starting point for our investigation of convex hulls. Its proof
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is not difficult and we realized that the result was already attributed to Hermann

Brunn in the case when X is a vector space only after we had proved the results on

convexity in polygonal complexes below.

Remark 4.2.2. A set Y is ν-quasiconvex if and only if conv1(Y ) ⊆ Nν(Y ).

We now relate the foregoing discussion on convexity with non-positive curvature.

In CAT(0) spaces, as a consequence of the convexity of the metric, one has control

over the growth of the sizes of the sets convi(Y ) as the following result shows:

Lemma 4.2.3. Let X be a CAT(0) space and let Y ⊆ X be a ν-quasiconvex subset

of X. Then, convi(Y ) ⊆ Niν(Y ).

Proof. In this proof we assume that all geodesics are parametrized proportional to

arc length and we proceed by induction on i. The starting step i = 1 is handled

by Remark 4.2.2. For the inductive step, suppose that convi−1(Y ) ⊆ N(i−1)ν(Y ) and

let x ∈ convi(Y ). Then, x ∈ [x1, x2], where x1, x2 ∈ convi−1(Y ) ⊆ N(i−1)ν(Y ). Let

x′1, x
′
2 ∈ Y be such that d(xj, x

′
j) < (i− 1)ν, for j = 1, 2. By convexity of the CAT(0)

metric, see Proposition 2.2.4, d([x1, x2] (t), [x′1, x
′
2] (t)) ≤ (1− t)d(x1, x

′
1)+ td(x2, x

′
2) <

(i − 1)ν. This shows that d(x, conv1(Y )) < (i − 1)ν and thus we conclude that

x ∈ Niν(Y ), as desired.

The number k = inf {i : convi(Y ) = conv(Y )} is called the Brunn number. Brunn

gave a lower and an upper bound for k in finite-dimensional vector spaces, see [4]. In

view of Lemma 4.2.3, a uniform bound for the Brunn number over all subsets of a

CAT(0) space has important implications from the point of view of cocompactness of

group actions. Before we proceed to give a bound for the Brunn number for Euclidean

spaces, we make the following important observation: In analyzing the convex hull of

an arbitrary set using Lemma 4.2.1, it suffices to only consider finite sets, which are

substantially easier to work with.
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Lemma 4.2.4. Let X be a geodesic space, let Y ⊆ X, and let i ∈ N+. If convi(S) =

conv(S) for every finite subset S ⊆ Y , then convi(Y ) is convex.

Proof. Let x, y ∈ convi(Y ). Then, we can find a1, a2, b1, b2 ∈ convi−1(Y ) such that

x ∈ [a1, a2] and y ∈ [b1, b2]. Similarly, we can find c1, c2, d1, d2 ∈ convi−2(Y ) such that

a1 ∈ [c1, c2] and a2 ∈ [d1, d2], etc. Proceeding recursively, we see that we can find

points x1, . . . , xm ∈ Y such that x, y ∈ convi({x1, . . . , xm}) = conv({x1, . . . , xm}).

Hence, [x, y] ⊆ convi({x1, . . . , xm}) ⊆ convi(Y ).

As we were unable to procure Brunn’s original paper, we present our own proof

of the intuitively obvious fact that the Brunn number of any subset of Rn is less or

equal to n. Our proof uses Caratheodory’s theorem which we recall below.

Convex Hulls in Euclidean Spaces

Theorem 4.2.5. (Caratheodory) If E is a vector space of dimension d, then, for

every subset X of E, every element in the convex hull conv(X) is an affine convex

combination of d+ 1 elements of X.

Proof. See Proposition 5.2.3 in [21].

Lemma 4.2.6. For any finite set S ⊆ Rn, convn(S) = conv(S).

Proof. By Caratheodory’s theorem, conv(S) =
⋃
conv({s1, ..., sn+1}), where the union

is taken over all s1, ..., sn+1 ∈ S. Therefore, it suffices to show that for any set

{s1, ..., sn+1} ⊆ Rn, convn({s1, ..., sn+1}) = conv({s1, ..., sn+1}). Consider the points

e1, ..., en+1 ∈ Rn+1. Their convex hull is the standard n-simplex ∆n in Rn+1. Suppose

convi−1({e1, ..., en+1}) contains all the (i − 1)-faces of ∆n, then convi({e1, ..., en+1})

contains all joins of the form join {F, ej}, 1 ≤ j ≤ n + 1, where F is an (i− 1)-face.

But all of the i-faces are joins of this form. By induction, convi {e1, ..., en+1} contains

all the i-faces. Hence, convn({e1, ..., en+1}) contains and therefore equals ∆n. Now,
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let φ be the affine map which sends ei to si. This map sends lines to lines, there-

fore φ(convi({e1, ..., en+1})) ⊆ convi({s1, ..., sn+1}). Now, φ(convn({e1, ..., en+1})) is

convex, contains {s1, ..., sn+1}, and is contained in convn({s1, ..., sn+1}). Therefore,

conv({s1, ..., sn+1}) = convn({s1, ..., sn+1}), as desired.

Combining Lemma 4.2.4 and Lemma 4.2.6, we obtain the desired bound on the

Brunn number:

Corollary 4.2.7. For any subset Y ⊆ Rn, convn(Y ) = conv(Y ). Therefore, k ≤ n

for any subset of Rn.

As a straightforward application of Corollary 4.2.7 we have:

Corollary 4.2.8. In any uniquely geodesic Hilbert geometry, the Brunn number of

any subset is bounded above by the dimension of the underlying Euclidean space.

Proof. As we saw in Example 2.2.3, each affine segment in the underlying Euclidean

space is a geodesic for the Hilbert metric. Since the Hilbert geometry we consider is

uniquely geodesic, Corollary 4.2.7 immediately applies.

Unfortunately, obtaining a bound on the Brunn number in an arbitrary CAT(0)

space in the absence of any restrictions on the subsets in consideration is impossible.

We are, however, able to bound the Brunn number in certain ”planar” piecewise

Euclidean CAT(0) polygonal complexes.

Convex Hulls in CAT(0) Planes

Definition 4.2.1. A CAT(0) plane is a simply connected piecewise Euclidean polyg-

onal complex X with Shapes(X) finite, such that Lk(v) is isometric to a circle of

length ≥ 2π for every vertex v ∈ X.

We immediately note that in view of Theorem 2.2.13, a CAT(0) plane is a CAT(0)

metric space. We prove that the Brunn number of any subset of a CAT(0) plane is
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≤ 2. The proof of this intuitively ”obvious” result turned out to be surprisingly

technical. Our proof employs a local-to-global technique which makes use of the

Cartan-Hadamard theorem. The idea is that under mild hypotheses, convexity on

the small scale implies global convexity. Before we are able to state and prove the

promised results, we need to transpose some familiar definitions to the ”small scale”:

Definition 4.2.2. Let (X, d) be a metric space.

1. The metric d is said to be locally convex if every point in X has a neighborhood

in which the induced metric is convex.

2. The metric space is said to be locally CAT(0) if every point in X has a convex

neighborhood U with the property that (U, d) is a CAT(0) metric space.

3. Let f : X → Y be a map between two metric spaces. We shall say that f is a

local isometry if every point x ∈ X has a neighborhood U, such that f restricted

to U is an isometric embedding.

Theorem 4.2.9. (Cartan-Hadamard) Let (X, d) be a complete connected metric space.

If the metric on X is locally convex, the the induced length metric on the universal

covering X̃ is convex. In particular, there is a unique geodesic segment joining each

pair of points in X̃. Further, if X is a locally CAT(0) space, then X̃ with the induced

length metric is a CAT(0) space and the covering map p : X̃ → X is a local isometry.

Proof. See Theorem 4.1 in [3].

In view of the Cartan-Hadamard theorem above, we shall say that a subset Y of

the CAT(0) space X is locally convex if every point of Y has a convex neighborhood

U ⊆ X such that U ∩ Y is convex.

Proposition 4.2.10. Let X be a CAT(0) space. Then, convn(Y ) = conv(Y ) for all

Y ⊆ X if and only if convn(S) is locally convex for every finite subset S ⊆ X.
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Proof. First, we show that for any compact subset S ⊆ X, convi(S) is compact for

every i. The proof is by induction on i, the case i = 0 being trivial. Note that we have

an obvious map ϕ : convi−1(S) × convi−1(S) × I → convi(S) given by ϕ(x, y, t) =

[x, y](t). Since in any CAT(0) space geodesics vary continuously with endpoints,

the map ϕ is a continuous surjection which maps the compact set convi−1(S) ×

convi−1(S)× I to convi(S) thus proving our claim.

Now, suppose that convn(S) is locally convex for every finite subset S ⊆ X. Since

convn(S) is a compact and therefore complete, connected, and locally convex subset

of a CAT(0) space, Theorem 4.2.9 tells us that the universal cover ˜convn(S) endowed

with the length metric is a CAT(0) space, and that the covering map p : ˜convn(S)→

convn(S) is a local isometry. Let x, y ∈ convn(S) and choose any x̃ ∈ p−1(x), and

ỹ ∈ p−1(y). Let α(t) be the unique geodesic in ˜convn(S) joining x̃ to ỹ. Then, because

convn(S) is compact, a simple argument using the Lebesgue covering lemma shows

that p◦α(t) is a local geodesic in X joining x to y. Since in a CAT(0) space any local

geodesic is a geodesic, see Proposition 1.4 in [3], we see that p ◦ α is the geodesic in

X joining x to y. But the image of p ◦ α is contained in convn(S). This shows that

convn(S) is convex, and Lemma 4.2.4 yields the desired conclusion.

In the course of proving Proposition 4.2.13 we will encounter the phenomenon

of bifurcating geodesics. We shall call geodesics which coincide up to a point of

bifurcation or divergence, bifurcating geodesics. The key fact we shall need is that

in a CAT(0) plane, at the point of bifurcation, the geodesic which splits can be

extended in an infinite number of ways. To prove this result, we need the following

reformulation of the CAT(0) condition:

Lemma 4.2.11. Let X be a geodesic metric space. Then, X is a CAT(0) space

if and only if the Alexandrov angle (see Definition 2.2.4) between the sides of any

geodesic triangle in X with distinct vertices is no greater than the angle between the

corresponding sides of its comparison triangle in E2.
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Proof. See Proposition 1.7(4) in [3].

Throughout the proof of Lemma 4.2.12, we employ notation from Section 2.2.2.

Lemma 4.2.12. Let X be a CAT(0) plane and let a1, a2, b, q ∈ X be such that

[a1, b] ∩ [a2, b] = [q, b]. Then, for any c ∈ [a1, a2], the concatenation of the geodesic

segment [c, q] and [q, b] is a geodesic segment.

Proof. The proof is essentially the observation that for any c ∈ [a1, a2], the distance

in Lk(q) between the directions determined by [c, q] and [q, b] is at least π, hence

the Alexandrov angle ∠q (c, b) = π. By Lemma 4.2.11, ∠q (c, b) ≤ ∠q

(
c, b
)
, hence

∠q

(
c, b
)

= π. Now, we conclude that d(c, b) = d(c, q) + d(q, b). Therefore, d(c, b) =

d(c, q) + d(q, b) thus showing that the concatenation of [c, q] and [q, b] is indeed a

geodesic segment.

We are now ready to show that the Brunn number for any subset of a CAT(0)

plane is at most equal to 2.

Proposition 4.2.13. Let X be a CAT(0) plane. Then the Brunn number of any

subset Y ⊆ X is at most 2.

Proof. In view of Proposition 4.2.10, we only need to show that for every finite subset

S ⊆ X, conv2(S) is locally convex at every point p ∈ conv2(S). Suppose to the

contrary that conv2(S) is not locally convex at some p ∈ conv2(S). Then, given

any convex neighborhood U of p in X, since conv2(S) is compact, we can find a

geodesic γ : [0, 1] → U such that γ(0), γ(1) ∈ conv2(S) and γ(t) /∈ conv2(S) for all

0 < t < 1. Let γ(0) = x0 and note that we may have x0 = p. Then, there exist

points x1, x2, y1, y2 ∈ S such that x0 ∈ [[x1, y1] (t1), [x2, y2] (t2)] for some t1, t2 ≥ 0.

Consider the 1-parameter family of geodesics t′ 7→ [[x1, y1] (t′), [x2, y2] (t2)]. If x0 ∈

[[x1, y1] (t′), [x2, y2] (t2)] for all t′ ≥ t1 (or all t′ ≤ t1), then x0 lies on a geodesic

having one endpoint s in S. In this case we consider the family t′ 7→ [s, [x2, y2] (t′)].
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If x0 ∈ [s, [x2, y2] (t′)] for all t′ ≥ t2 (or all t′ ≤ t2), then x0 ∈ conv1(S), which

is a contradiction. Therefore, without loss of generality, we may assume that x0 /∈

[[x1, y1] (t′), [x2, y2] (t2)] for some values of t′ both greater than and less than t1. As X

has no free edges, γ may be extended to γ : [−ε, 1]→ X such that this extension of γ

crosses [[x1, y1] (t1), [x2, y2] (t2)] at x0. Because γ(t) /∈ conv2(S) for t > 0 and because

geodesics vary continuously with endpoints, we can find t′0 < t1 < t′′0 and−ε < −ε′ < 0

such that [[x1, y1] (t′0), [x2, y2] (t2)] and [[x1, y1] (t′′0), [x2, y2] (t2)] intersect at γ(−ε′), and

such that neither of these geodesic segments passes through x0. Because of uniqueness

of geodesics in X, the segments [[x1, y1] (t′0), [x2, y2] (t2)] and [[x1, y1] (t′′0), [x2, y2] (t2)]

must coincide up to some point q which is their point of bifurcation. Then, Lemma

4.2.12 shows that for every t1 < t < t2, the concatenation of the geodesic segments

[[x2, y2] (t2), q] and [q, [x1, y1] (t)] is a geodesic. Again by uniqueness of geodesics, this

concatenation must be the geodesic segment [[x1, y1] (t1), [x2, y2] (t2)], and we conclude

that x0 ∈ [[x1, y1] (t′0), [x2, y2] (t2)] which is a contradiction.

4.3 Free×Free-abelian Groups

Throughout this section, G will be the group Fm × Zn and X will stand for the

product of the regular 2m-valent tree T2m and Rn. The action of G on X is the

product action where F2m acts as the group of deck transformations on the universal

cover of the m-rose, T2m, and Zn acts by translation on Rn.

Lemma 4.3.1. Let H = 〈f1z1, ..., fszs〉, fi ∈ Fm, zi ∈ Zn be a quasiconvex subgroup

of G such that not all of the fi have the same axis of translation in T2m. Then, there

exist positive integers k1, ..., ks such that H contains the subgroup A =
〈
zk11 , ..., z

ks
s

〉
.

Proof. Let 1 ≤ i ≤ s, let j be such that fi and fj have different axes of trans-

lation, and let l be a positive integer. Find an axis of translation for fizi whose

projection to the Euclidean factor passes through 0 ∈ Rn. This can always be done
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by translating the Euclidean component of any given axis for fizi. Let x0 be a

point on the chosen axis of translation for fizi such that prRn(x0) = 0. Consider

the sequences of points (fizi)
lx0 and (fjzj)(fizi)

lx0. Because fi and fj have dif-

ferent axes, there is a vertex v in T2m such that for every l, the geodesic segment[
(fizi)

lx0, (fjzj)(fizi)
lx0

]
passes through the flat {v} × Rn. Let yl denote the point

of intersection of {v} × Rn and
[
(fizi)

lx0, (fjzj)(fizi)
lx0

]
. The orthogonal projec-

tion of this geodesic segment to the flat {v} × Rn ∼= Rn is the geodesic segment

between zli and zli + zj. Since the geodesic
[
(fizi)

lx0, (fjzj)(fizi)
lx0

]
intersects its

orthogonal projection in the point yl, we have d(yl, (v, z
l
i)) ≤ ‖zj‖. The orbit Hx0

is quasiconvex, hence there is ν > 0 and hl ∈ H such that d(hlx0, yl) < ν. Then,

d(hlx0, z
l
ix0) ≤ d(hlx0, yl)+d(yl, z

l
i(v, 0))+d(zli(v, 0), zlix0) < ν+‖zj‖+d(x0, (v, 0)). If

τ = ν+‖zj‖+d(x0, (v, 0)), then Bτ (hlx0)∩Bτ (z
l
ix0) 6= ∅, or Bτ (h

−1
l zlix0)∩Bτ (x0) 6= ∅,

for all l. Because the action of G is proper, h−1
l zli = g ∈ G for infinitely many values

of l. Then, for some k,l we have zl−ki = hlh
−1
k ∈ H. Setting ki = l − k, we obtain

zkii ∈ H.

Let p : T2m × Zn → T2m be the projection onto the first factor, and let V denote

the real span of the vectors zk11 , ..., z
ks
k . We then, have the following:

Lemma 4.3.2. With the same notation as in Lemma 4.3.1, the convex hull of Hx0

equals conv(p(Hx0))× V .

Proof. First, we note that the projection maps p, prRn commute with the operation

of forming the convex hull. That is, p(conv(Hx0)) = conv(p(Hx0)), and similarly for

prRn . Let us show this for the projection map p. We begin by making the observation

that p(conv1(S)) = conv1(p(S)) for any set S, since p maps the geodesic segment

connecting two points to the geodesic segment connecting their images. Therefore, we

have p(conv(Hx0)) = p (
⋃
i conv

i(Hx0)) =
⋃
i p(conv

i(Hx0)) =
⋃
i conv

i(p(Hx0)) =

conv(p(Hx0)).
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Now, we proceed with the proof of the lemma.

’⊆’: Without loss of generality, we may assume that prRn(x0) = 0. Clearly,

conv(Hx0) ⊆ p(conv(Hx0))×prRn(conv(Hx0)), which after commuting the projection

maps past conv gives us the desired inclusion.

’⊇’: Let x ∈ conv(p(Hx0)) × V . Let y ∈ conv(Hx0) be such that p(y) = p(x).

Note that because H contains powers of the Euclidean translations z1, ..., zk, the

projection of the convex hull of the orbit Hx0 to the Euclidean factor will equal V .

Also, conv(Hx0) ⊇ V ·y, as conv(Hx0) is stable under the action of V by translations

on the second factor. Hence, we can write x = w · y, for some w ∈ V , so that

x ∈ conv(Hx0).

Lemma 4.3.3. Let H be as in Lemma 4.3.1. Then, the group H acts cocompactly on

its convex hull. In particular, the Brunn number of the orbit Hx0 is bounded above

by 1 + dim(V ).

Proof. Note that we can write p(conv(Hx0)) = conv(p(Hx0)) as a union of biinfinite

geodesic rays γ, such that any point on γ lies between two points in p(Hx0). Then,

conv(Hx0) =
⋃
γ γ×V , and γ×V ∼= R1+dim(V ). Note that γ×V contains the lattices

p(hx0)×Z-span
〈
zk11 , ..., z

ks
s

〉
, where h ∈ H. Because of the assumption that any point

on γ lies between two points p(h1), p(h2) ∈ p(Hx0), the convex hull of these lattices is

all of γ×V , and by Corollary 4.2.7, conv1+dim(V ) (
⋃

(p(hx0)× Z -span
〈
zk11 , ..., z

ks
s

〉
) =

γ×V . Finally, conv1+dim(V )(Hx0) ⊇ conv1+dim(V ) (
⋃

(p(hx0)× Z -span
〈
zk11 , ..., z

ks
s

〉
)) =

conv(Hx0).

Combining Lemmas 4.3.1-4.3.3, we obtain:

Theorem 4.3.4. Any quasiconvex subgroup of Fm×Zn acts cocompactly on the convex

hull of any of its orbits.

Proof. Lemmas 4.3.1-4.3.3 take care of the case when for each i there is j such that

such that fi and fj have different axes of translation. If H =
〈
fk1z1, ..., f

kszs
〉
,
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f ∈ Fm, then the orbit Hx0 is contained in a single flat af ×V isometric to R1+dim(V ),

where af is a common axis for all fki , and x0 is on a common axis for all the fizi.

Hence, conv(Hx0) = conv1+dim(V )(Hx0), which shows cocompactness of the action

of H. In either of the cases H = 〈f1, ..., fs〉 or H = 〈z1, ..., zs〉, the conclusion is

again trivially true. In the former case conv(Hx0) = conv1(Hx0), while in the latter

conv(Hx0) = convs(Hx0).

In the course of proving the theorem, we have the essential ingredients for the

following corollary:

Corollary 4.3.5. If H is a quasiconvex subgroup of Fm × Zn, then H is virtually of

the form A×B, where A ≤ Fm and B ≤ Zn.

Proof. Let H be as in Lemma 4.3.1. The proof of Lemma 4.3.1 shows that for g =

fz ∈ H, there exists s such that zs ∈ H, and hence f s ∈ H. Let A = Zn ∩ H,

F = Fm∩H. Then, gs ∈ AF . On the other hand, [H,H] ⊆ F , and also AF is normal

in H. Hence, we see that H/AF is a finitely generated, torsion, abelian group, and

is therefore finite. If H =
〈
fk1z1, ..., f

kszs
〉
, or H = 〈z1, ..., zs〉, then H is already free

abelian.
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