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CHAPTER I

Introduction

1.1 String theory in general

The Standard Model, or quantum field theory with SU(3)× SU(2)× U(1) gauge sym-

metry plus three generations of quarks and leptons and a spin-0 Higgs boson provides a

consistent description of reality up to scales of roughly 10−18m. It formulates electro-

magnetic, weak and strong interactions in a uniform framework. Classical gravity, the

fourth interaction, is governed by General Relativity and remains to be unified. Attempts

to quantize the graviton field quickly lead to non-renormalizable terms due to the power

counting of the coupling constant.

The ultra-violet divergence problem of quantum gravity indicates the presence of new

physics at short distances beyond the Planck length. One approach is to give up the

pointlike structure of particles and incorporate one-dimensional extended objects, namely

strings, as the fundamental elements. The spectrum of oscillation modes of strings cor-

responds to quantized spacetime fields, including the spin-2 graviton. String theory was

originally constructed as an attempt to describe the various types of mesons and hadrons

discovered in 1960’s. Although this description was superseded by quarks and QCD, string

theory now has become the most promising theory in quantum gravity and unifying gravity

with the standard model.

Curiously, string theory is not consistent in arbitrary dimensions. In flat space string

1
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theory, the two-dimensional world-sheet field theory preserves Weyl symmetry.

gµν → e2ω(xµ)gµν(I.1)

The world-sheet Weyl symmetry is required to guarantee the unitarity and preserve the

spacetime Lorentz invariance. In a quantum field theory, the Weyl anomaly for the con-

formal symmetry is only canceled in 26 dimensional spacetime for the bosonic string and

10 dimensional spacetime for the superstring. String theory is unique because it avoids

adjustable parameters or any ad hoc gauge symmetry or discrete symmetry assumptions.

String theory also includes spacetime supersymmetry, a symmetry that relates elementary

particles of one spin to their superpartners that differ by half spin. Supersymmetry is a

successful model in solving the hierarchy problem of the standard model, namely why higgs

masses are so much less than the Plank mass. A lot of recent work on string theory has fo-

cused on the use of dualities in trying to understand strongly coupled and non-perturbative

physics.

1.2 D-branes

In string theory, toroidal compactification is the most basic way to compactify over

extra small curved dimensions. T-duality interchanges a small compact internal space

with a large one. When we apply the duality to open strings, we have hyperplanes where

open strings end, namely D-branes 1. D-branes themselves are dynamical objects which

have mass, tension and carry charges. Different string theories are actually different vacua

of a single theory containing general D-brane configurations.

D-branes highly resemble extremal black p-branes [98]. As a family of ten dimen-

sional spacetime solutions for type II supergravity, black p-branes represent p-dimensional

extended objects with 9 − p dimensional transverse space. The black p-branes usually

preserve Poincaré symmetry along the directions of branes and spherical symmetry in the
1”D” stands for Dirichlet boundary conditions for open strings.



3

transverse space. The black p-branes look like localized objects with mass and charge for

transverse spacetime observers. This is a generalization of the Reissner-Nordström black

hole. D-branes natually couple to a Cp+1 potential 2, which resembles the source of the

charge of black p-branes. The tension and mass of D-branes are related to the mass M of

the black p-branes. Furthermore, from the horizon structure of Reissner-Nordström solu-

tions, we know there is an upper bound for the supergravity p-brane’s charge, Q ≤M , to

avoid having a naked singularity. This resembles the bound for central charges of spacetime

supersymmetry.

To generate a D-brane, T-duality breaks the conservation of momentum in a transverse

direction by mirror reflecting the right moving modes. This also breaks half of space-

time supersymmetry. So D-branes are essentially BPS states 3 because exactly half of

supersymmetry is broken. D-branes are essentially extremal black p-branes 4. This type of

correspondence is significant because it implies a gauge / gravity dualilty. Consider N coin-

cident D-branes in flat spacetime. Each open string ending on those D-branes has strength

gs, so we have gsN strength in total. We can understand the open string spacetime as

a gauge field in the perturbative region gsN � 1. On the black p-brane side, however,

the effective curvature is R2 ∼ gsN . So gravity is perturbatively understood at slightly

curved spacetime, or gsN � 1. The correspondence of D-branes and supergravity p-branes

provides a complimentary image of each other at strong coupling or the non-perturbative

region.

1.3 Kaluza-Klein reduction

String theory does not exist in arbitrary dimensions. Spacetime unitarity and Lorentz

invariance are required to be preserved in the full quantum theory. The world-sheet Weyl

2An anti-symmetric p+ 1 potential form. For instance, electro-magnetic potential Aµ is a C1 potential.
3BPS states are massive representations of an extended supersymmetry algebra with mass equal to the supersym-

metry central charge. A BPS state breaks exactly half of the supersymmetry.
4In the Reissner-Nordström solutions, extremal black holes are the solutions with Q = M .
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anomaly is cancelled only in 10D spacetime for the superstring. For a realistic theory in 4D,

the extra 6D space has to be compactified over a small internal manifold. The procedure

of such a compactification is known as Kaluza-Klein reduction. The general procedure is

to start from a field in the full space time, and expand it in terms of a complete set of

harmonic functions of internal space, so that we get a spectrum of a reduced field only

depending on the external spacetime. The simplest model is to reduce a free massless

scalar field in flat spacetime in d dimension to d− 1 dimension.

S =

∫
ddx∂µφ∂

µφ(I.2)

Compactify the d dimensional theory around S1 over dxd with radius R:

φ(xµ, z) =
∞∑

n=−∞
φn(xµ)ei

n
R
z(I.3)

over the complete set ei
n
R
z. So we have a spectrum of reduced scalar fields over xµ:

φn(xµ) =

∫ 2πR

0
φ(xµ, z)e−i

n
R
zdz(I.4)

Because the original scalar field is massless, then:

�φ(xµ, z) =
∞∑

n=−∞

[
�φn(xµ)ei

n
R
z − φn(xµ)(

n

R
)2ei

n
R
z
]

=

∞∑
n=−∞

[
m2
n − (

n

R
)2
]
φne

i n
R
z = 0(I.5)

which implies mn = n
R . So we get an infinite tower of massive states except for the zero

mode. If we take the limit R → 0, it takes infinite energy to excite the first and higher

modes. So the theory reduces to a massless scalar field in a lower dimension.

Now we turn to a more complicated example. We reduce 5D pure gravity over S1 with

radius R.

S =
1

16πG5

∫
d5x
√
−GR5, ds2

5 = GMNdx
MdxN(I.6)
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When we compactify the 5D gravity around T 1 over dx5 with small radius R, we make

the following ansätz where only zero modes are kept, meaning the fields φ, gµν and Aµ are

fields of 4D spacetime coordinates only:

ds2 = e
1√
3
φ
gµνdx

µdxν + e
− 2√

3
φ
(dz +Aµdx

µ)2, µ = 0, 1, 2, 3(I.7)

Here gµν , φ,Aµ are fields over all coordinates of dxµ only, which are defined as:

e
− 2√

3
φ

= G55, Aµ = e
2√
3
φ
Gµ5, gµν = e

− 1√
3
φ
Gµν − e−

√
3φAµAν(I.8)

All of these bosonic fields in 4D spacetime are massless due to the Einstein equations.

We get a massless graviton, a massless vector field and a massless dilaton in the lower

dimension from a graviton in one higher dimension. Integrating out the action over the

internal space S1, we get:

S =
1

16πG4

∫
dx4√−g

[
R− 1

2
(∂φ)2 − 1

4
e−
√

3φFµνF
µν

]
, G4 =

G5

2πR
(I.9)

In this action, all fields are massless ground states in the Kaluza-Klein tower. We see the

massless vector field Aµ is actually a U(1) gauge field. The graviton and dilaton are neutral

under this gauge field.

In the above Kaluza-Klein reduction procudure, we have made a hidden assumption

that the truncation is consistant, which means all solutions of the truncated theory at

lower dimensions are solutions of the full theory. That is, the ground state modes solves the

equations of motion of the original and truncated Lagrangian at the same time. This looks

trivial in this example, but when we go to more complicated internal spaces and include

higher Kaluza-Klein modes, the consistency is not trivial and needs manual inspection.

The requirement of consistency sets a strong restriction on the truncation ansatz. In this

thesis, we prove the consistency of our truncation ansatz. We also propose some conjectures

on what properties of the ansatz would lead to consistency truncations.
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Going back to string theory, for the type II superstring 5, we need to compactify over 6D

to get a realistic theory. However, the hope that 4D theory resembles the observed world

strongly restricts the nature of the compact manifold. Especially the requirement that

supersymmetry is preserved restricts us to a special class of manifolds known as Calabi-

Yau manifolds. It looks too restrictive to preserve supersymmetry in the 4D theory, since

the standard model itself is not supersymmetric. The reason to preserve supersymmetry

under compactification is not that we want supersymmetry to persist in the 4D theory, but

rather that we do not want to break it at the string scale. Supersymmetry breaking scale

is closely related to the higgs masses, which is far below the Planck scale. We preserve

supersymmetry at the string scale and break it at a much lower energy level to solve the

hierarchy problem. To satisfy the supersymmetry preservation, we require a global spinor

as a supersymmetry transformation generator under which the variation of all fermions

vanish. Such a global spinor is a Killing spinor over internal space. The existence of such a

global Killing spinor requires the internal space to be Ricci-flat and admit a Kähler form,

in the absence of fluxes. Conjectured by Calabi and proved by Yau, such manifolds are

essentially Kähler manifolds with vanishing first Chern class, or Calabi-Yau manifolds.

People are also interested in compactifying over 5D internal space to yield a 5D anti-de

Sitter (AdS) background due to the AdS/CFT correspondence (to be discussed in more

details in the next section). It is believed that the low energy supergravity theory in AdSd+1

is dual to strongly coupled d-dimensional conformal field theory living on the boundary of

AdS. In terms of supersymmetry preservation, the truncation of AdS5×S5 describes N = 8

gauged supergravity 6 in 5D sitting near the horizon of AdS5, which preserves the maximum

32 supersymmetries. One way to see that is that both AdS5 and S5 preserve the maximal

5Type II superstring: a theory of closed orinted superstrings. The right-movers and left-movers transform under
seperate spacetime supersymmetries. If they have opposite chiralities, it is type IIA superstring. If they have the
same chirality, it is type IIB superstring.

6Gauged supergravities are supergravity theories with non-abelian gauge fields in the supermultiplet of the gravi-
ton. Namely, the gravitino fields are gauged under R symmetry.



7

symmetry in 5D. Less symmetric internal space could preserve fewer supersymmetries and

contain richer structure.

Truncation of type IIB supergravity over AdS5 × S5 admits N = 8 supergravity, which

further leads toN = 4 super Yang-Mills due to AdS/CFT duality. If we relax the restriction

to allow less supersymmetries to be preserved in the compactification, we can truncate

type IIB supergravity over AdS5 ×M5. Since a Calabi-Yau three-fold is required for 6D

compactification to preserve supersymmetry, we can think of the compactified 4D theory

to be living on the boundary of AdS5 space. Thus it is natural to write the Calabi-Yau

threefold in terms of:

ds2(CY 3) = dr2 + r2ds2(M5)(I.10)

A Sasaki-Einstein five-manifold M5 is such a manifold that constructs CY 3 in I.10. That

is, the metric cone of M5 is Ricci-flat and Kähler. On the AdS side, by inserting a stack

of D3 branes sitting at the tip of the CY 3 cone, IIB supergravity compactifies on Sasaki-

Einstein M5 to a 5D supergravity. On the CFT side, the dual theory is a N = 1 super-

conformal field theory (SCFT). The most trivial and maximally symmetric SE5 is S5, and

the corresponding CY cone is simply C3. In Sasaki-Einstein geometry, we can always have

a killing vector with constant norm [11], which is called the characteristic or Reeb vector

field. So we can in general write a Sasaki-Einetein metric as:

ds2
SE5

= (dψ +A)2 + ds2
4(B)(I.11)

where ∂
∂ψ is the killing vector. What is more, the remaining base metric ds2

4(B) have a

Kähler-Einstein structure. The base Kähler-Einstein manifold admits a Kähler (1, 1) form

J and holomorphic (2, 0) form Ω which satisfies dA = 2J and dΩ = 3i(dψ + A)Ω. So

SE2m+1 manifolds are essentially U(1) bundles over KE2m manifolds. More details will be

discussed in the next chapter.
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The key to obtaining a consistent truncation is expanding the full fields in the right

ansatz. Assume the full theory has symmetry group G and the compactified space has

symmetry K ⊆ G. When we expand the full fields over a complete set of K, we get

K singlets φ and also non-singlets denoted by φα which form a representation tower for

K. When we make the ansatz that all fields except for singlets vanish, the equations of

motion can be solved and the solutions are good for the original full theory. However if we

include non-singlet fields, the equations of motion usually lead to more restrictions than

modes to be solved. Essentially, under truncation, non-singlet fields are usually sources for

higher level modes, leading to an infinite tower of modes, which is usually not realistic for

effective theories which can only excite a few low energy level modes. There is generically

no guarantee of consistency of an ansatz containing non-singlet modes. Such ansätze need

to be checked case by case. The way we check consistency is to write the full equations of

motion in terms of lower dimensional fields according to the ansatz first, then decompose

each full equation of motion into several equations of motions in the lower dimensional

fields. The truncation is consistent if and only if all of these equations of motion of lower

dimensional fields are consistent with each other. In the next chapter we will discuss the

consistent truncation of type IIB supergravity over a SE5 manifold up to the second level

of Kaluza-Klein reduction. The compactified theory is N = 2 gauged supergravity coupled

to a massless LH + RH chiral supermultiplet 7, a massive LH + RH massive gravitino

multiplet and a massive vector multiplet. The resulting fields nicely fit into representations

of the 4D SCFT [53]:

SU(2, 2|1) ⊃ SO(2, 4)× U(1)q ⊃ U(1)E × SU(2)L × SU(2)R × U(1)q(I.12)

The full truncated theory corresponds to five-dimensional N = 4 theory. We may truncate

7In the superspace notion of supersymmetry, a LH chiral supermultiplet has field contents of a superfield on chiral
superspace, a RH supermultiplet has field contents of an superfield on anti-chiral superspace, which is the complex
conjugate of chiral superspace.
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out the N = 2 massive gravitino multiplet to bring it down to N = 2.

This type of consistent truncation have been of particular interested recently due to the

applications of AdS/CFT on condensed matter systems. In one of our further consistent

truncations, we demonstrated a supersymmetric completion of a bosonic superconductor

theory first demonstrated in [49]. Such truncations implies the possibility of constructing

superconductor theories from string theory.

1.4 AdS/CFT duality

The AdS/CFT correspondence by Maldacena [83, 47, 100] has been a popular topic in

string theory. The correspondence is a relation between a conformal field theory (CFT) in

d dimensions and a gravity theory in d + 1 anti de-Sitter (AdS) space. It is a successful

realization of the holographic principle, stating that the description of the bulk of spacetime

is encoded on its boundary. The first hint of AdS/CFT correspondence is the SO(2, d)

symmetry. On the AdS side, it is the maximal symmetric solution with negative curvature

for d+ 1 spacetime which could be embeded in flat d+ 2, implying SO(2, d). On the CFT

side, the conformal symmetry includes a special conformal transformation vector generator

and a dilatation scalar generator, which are integrated into the normal Poincare group to

form a larger SO(2, d) group. AdS/CFT is not only a correspondence, but a weak/strong

coupling duality, or a gravity/ gauge duality. One of the applications of AdS/CFT duality is

to understand the strongly coupled condensed matter system with high critic temperature

Tc. In chapter 2, we derive an AdS dual background to a supersymmetric superconductor

model as a consistent truncation of IIB supergravity on Sasaki-Einstein manifold.

From a string theory point of view, if we introduce N D3 branes as sources for a five-

form in the flat 10D spacetime, we get a compact S5 and an AdS5 spacetime solution. On

the boundary of AdS5, we get a 4D super Yang-Mills field theory with SU(N) gauge group.

Compactifying over S5 will preserve all 32 fermionic charges. The super conformal field
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theory has maximal N = 4 supersymmetry which contains 16 fermionic charges. However,

for super conformal symmetry, there is another set of 16 fermionic charges. So all 32

fermionic charges are preserved after compactification. The correspondence implies the

relation of parameters:

L4

α′2
= 4πgsN = g2

YMN(I.13)

where L is the AdS radius,
√
α′ = ls is the string length, gs is string coupling and gYM is the

Yang-Mills coupling. In order to implement low energy superstring theory, or supergravity,

we require small gs. On the other hand, we require the AdS background not to be strongly

curved to remain within low evergy supergravity, i.e.: L� ls, which leads to large ’t Hooft

coupling λ = g2
YMN on the CFT side. Thus we obtain a weak/strong or gravity/gauge

duality theory. On one side we have low energy supergravity L� ls, gs � 1. On the other

side, we have large N and strong λ CFT.

Another point of view is to view both gravity and gauge theory as two decoupled actions.

For super Yang-Mills theory, the action is written as S = Sbulk +Sbrane +Sint, where Sbulk

represents background 10D supergravity. Sbrane is defined on the 3+1 world volume which

represents the theory near the D3-brane stack and contains super Yang-Mills theory. Sint

represent the interaction between these two modes. On the AdS side, the p-brane solution

is given by [2]:

ds2 = f−
1
2 (−dt2 + dx2

1 + dx2
2 + dx2

3)2 + f
1
2 (dr2 + r2dΩ2

5)

F5 = (1 + ∗)dt ∧ dx1 ∧ dx2 ∧ dx3 ∧ df−1

f = 1 + (
R

r
)4, R4 ≡ 4πgsα

′2N(I.14)

Where F5 is the field strength coupled to the D3 branes. Denote Ep to be the energy

measured by an observer at position r, and E to be the energy measured at infinity. We

have: E = f−
1
4Ep. When we take the limit r → 0 and fix Ep, we get E → 0. This is the
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theory at low energy from the point of view of the observer at infinity. In this limit r � R,

we have:

ds2 =
r2

R2
(−dt2 + dx2

1 + dx2
2 + dx2

3) +R2dr
2

r2
+R2dΩ2

5(I.15)

which is AdS5 × S5. On the other hand, r → ∞ corresponds to the large wave length

limit of gravity, which is free gravity. So the theory contains two decoupled low energy

regions, r → 0 and r → ∞. The interaction between these two regions is decoupled due

to the high energy wall in between. Since r →∞ is described by low energy supergravity

corresponding to Sbulk in CFT, the r → 0 theory corresponds to Sbrane, or N = 4 SU(N)

super Yang-Mills CFT.

As a dual theory, it is essential to have a dictionary which maps physical observables

of the two theories. The natural objects for CFT are operators O(x). The generating

function for O(x) is < e
∫
d4xφ0(x)O(x) >, where φ0(x) corresponds to the source coupled to

O(x). On the AdS side, it is natural to consider a field whose boundary is fixed to φ0(x).

Thus the string partition function is written as:

Z[φ0(x)] = exp {−SSUGRA,Classical[φ(x, z)]|φ(x, 0) = φ0(x)}(I.16)

Note that we are using the classical action for supergravity. The identification of the

CFT generation function and string partition function provides the so-called GKP-Witten

relation of AdS/CFT duality [47, 100].

1.5 Application of AdS/CFT for holographic superconductors

One motivation to study the consistent truncation of IIB supergravity on Sasaki-Einstein

manifold is to study the superconductors of high critical temperatures Tc. Such supercon-

ductors are in the strongly coupling region, which are not well-studied under perturba-

tive field theories. AdS/CFT correspondence provides an applicable approach due to its
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strong/weak duality feature. To study the d-dimensional strongly coupled superconductor

system, we study the corresponding d + 1 dimensional AdS gravity theory. For instance,

to study a 2+1 dimensional superconductor, we start from a four-dimensional AdS gravity

with a massive scalar charged under a U(1) gauge symmetry:

L4 = R+
6

L2
− 1

4
F 2
µν − |∂µφ− iqAµφ|2 −m2|φ|2(I.17)

The Hawking temperature is dual to the superconductivity temperature. The scalar is

dual to the order parameter which breaks U(1) symmetry and condensates below the

critical temperature. We can study the condensation of the charged scalar below critical

temperature from the AdS side. If we are able to derive such a superconductor theory from

superstring or supergravity theory, we have a UV complete model for the system.

1.6 c-theorem

Conformal invariance requires vanishing trace of the energy-momentum tensor Tµµ = 0.

However the conformal anomaly is related to the background spacetime curvature. In 2D

CFT, the anomaly form is simple:

〈Tµµ 〉 = − c

12
R(I.18)

where R is the 2D Ricci scalar and c is the central charge of the Virasoro algebra, which

is directly related to the degrees of freedom of the theory. Zamolodchikov [101] proved a

“c-theorem” stating that in 2D field theory, there exists a c-function which monotonically

decreases from UV to IR, and whose values at fixed points are identical to the central

charges of the conformal field theory. The Zamolodchikov c-theorem has a powerful physics

intuition that the degrees of freedom of CFT are removed as the theory flows from UV to

IR.

Numerous attempts have been made to generalize the c-theorem to higher dimensions.

However, there are multiple candidates for a “c-charge” in higher dimensions. For example,
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in 4D:

〈Tµµ 〉 =
c

16π2
C2
µνρσ −

a

16π2
E4(I.19)

where Cµνρσ is the Weyl tensor and E4 = R2
µνρσ−4R2

µν+R2 is the Euler density in 4D. It has

been shown that the function a (coefficient for Euler density in corresponding dimension)

appears to have a monotonic behavior in the flow toward IR, while the coefficient c has

counter-examples. Even though there is no exact physics interpretation of the coefficient

a, people still believe it is related to degrees of freedom of the theory. Meanwhile, a

holographic proof of the c-theorem is provided based on AdS/CFT duality. The even

d-dimensional a-charge is calculated in a holographic manner:

a = −π
− d

2

2κ2

ld+1

(d/2)!2
f(AdS)(I.20)

where l is the radius of the AdS background, and f(AdS) is simply the on-shell Lagrangian

at asymptotic AdS fixed points. When we construct a metric ansatz:

ds2 = e2A(r)(−dt2 + d~x2
d−1) + dr2(I.21)

it becomes AdSd+1 with A(r) = r/l at fixed points. We define an a-function where all

l in I.20 is replaced by A′(r)−1. Then such an a-function automatically converges to the

a-charge at fixed points. We can derive a monotonic flow of a(r) due to the null-energy

condition for the matter fields in the bulk gravity theory. The technique is used to derive

a c-theorem for gravity with higher derivative corrections. In chapter III, we will prove a

c-theorem for higher curvature Lovelock gravity, and discuss the condition for the existence

of a c-theorem for arbitrary f(R) and f(Rabcd) gravity.

1.7 Structure of the thesis

The remainder of this thesis is organized as follows. In chapter II we discuss the con-

struction of consistent supersymmetric truncations of IIB supergravity on five dimensional



14

squashed Sasaki-Einstein manifolds. We first focus on the bosonic sector of gauged D = 5,

N = 2 supergravity coupled to massive multiplets up to the second Kaluza-Klein level.

We derive the effective five-dimensional Lagrangian of the truncated theory and prove the

consistency of the truncation. We also discuss some further truncations by setting some

supermultiplets to vanish or to dependent on other multiplets. Especially, we present a

particular truncation which contains only the LH+RH chiral multiplet, along with the

supergravity multiplet. This is essentially the truncation to the lowest non-trivial Kaluza-

Klein level. This truncation is particularly interesting as it represents the bosonic sector of

a holographic superconductor. We then present the reduction of the fermionic sector of IIB

supergravity. We organize the spectrum in terms of AdS supermultiplets, as a supersym-

metric completion of the bosonic sector. The supersymmetry variations of the fermions are

derived and shown to be consistent with the supermultiplet structure. We construct the

Lagrangian for the full truncated theory from the fermionic equations of motion. Finally,

we further truncate the fermionic sector to match the holographic superconductor system

mentioned above (which is also consistent), as a supersymmetric completion of the bosonic

sector.

In chapter III we investigate another broadly discussed application of AdS/CFT corre-

spondence, namely holographic c-theorems. In AdS/CFT, the holographic Weyl anomaly

computation relates the a-anomaly coefficient to the properties of the bulk action at the

UV fixed point. This universal behavior suggests the possibility of a holographic c-theorem

for the a-anomaly under flows to the IR. We prove such a c-theorem for higher curvature

Lovelock gravity, where the bulk equations of motion remain second order. We also ex-

plore f(R) gravity as a toy model where higher derivatives cannot be avoided. In this case,

monoticity of the flow requires an additional condition related to the higher derivative

nature of the theory. This is in contrast to the case of f(R) black hole entropy, where
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the second law follows from application of the full Einstein equations and the null energy

condition. We also prove a holographic c-theorem for the a central charge where the bulk

is described by a gravitational action built out of an arbitrary function f(Rabcd) of the

Riemann tensor coupled to bulk matter. This theorem holds provided a generalized null

energy condition involving both matter and higher curvature gravitational interactions is

satisfied. As an example, we consider the case of a curvature-squared action, and find that

generically the generalized null energy condition involves not just the bulk matter, but also

the sign of R′′ where a prime denotes a radial derivative and where R is the bulk scalar

curvature.

This thesis is based on the following papers, all of which were completed in collaboration

with (some combination of) James Liu, Phillip Szepietowski and Wafic Sabra:

• [77] – J. T. Liu, P. Szepietowski, Z. Zhao, “Consistent massive truncations of IIB

supergravity on Sasaki-Einstein manifolds,” Phys. Rev. D81, 124028 (2010)

• [78] – J. T. Liu, P. Szepietowski, Z. Zhao, “Supersymmetric massive truncations of

IIb supergravity on Sasaki-Einstein manifolds,” Phys. Rev. D82, 124022 (2010).

• [75] – J. T. Liu, W. Sabra, Z. Zhao, “Holographic c-theorems and higher derivative

gravity,” arXiv:1012.3382 [hep-th].

• [79] – J. T. Liu, Z. Zhao, “A holographic c-theorem for higher derivative gravity,”

arXiv:1108.5179 [hep-th].



CHAPTER II

Consistent truncations of IIB supergravity on squashed
Sasaki-Einstein manifold

In this chapter we present a consistent truncation of IIB supergravity on Sasaki-Einstein

manifolds. A detailed analysis of the bosonic reduction of IIB is presented, followed by the

reduction of the fermionic sector. This chapter is based on work published in [77, 78] in

collaboration with James Liu and Phillip Szepietowski.

2.1 Motivations for Studying Massive Truncations of String/M-theory

Recent developments in AdS/CFT have expanded the scope of applications from the

realm of strongly coupled relativistic gauge theories to various condensed matter systems

whose dynamics are expected to be described by a strongly coupled theory. These include

systems with behavior governed by a quantum critical point [60, 56], as well as cold atoms

and similar systems exhibiting non-relativistic conformal symmetry [97, 8]. Much current

attention is also directed towards holographic descriptions of superfluids and superconduc-

tors [48, 54, 59, 55].

The main feature used in the construction of a dual model of superconductivity is

the existence of a charged scalar field in the dual AdS background [54, 55]. Turning on

temperature and non-zero chemical potential corresponds to working with a charged black

hole in AdS. Then, as the temperature is lowered, the charged scalar develops an instability

16
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and condenses, so that the black hole develops scalar hair1. This condensate breaks the

U(1) symmetry, and is a sign of superconductivity (in the case where the U(1) is “weakly

gauged” on the boundary).

The basic model dual to a 2+1 dimensional superconductor is simply that of a charged

scalar coupled to a Maxwell field and gravity, and may be described by a Lagrangian of

the form

(II.1) L4 = R+
6

L2
− 1

4
F 2
µν − |∂µψ − iqAµψ|2 −m2|ψ|2.

The properties of the system may then be studied for various values of mass m and charge

q. While this is a perfectly acceptable framework, a more complete understanding demands

that this somewhat phenomenological Lagrangian be embedded in a more complete theory

such as string theory, or at least its supergravity limit. For AdS4 duals of 2+1 dimensional

superconductors, this was examined at the linearized level in [27], and embedded into

D = 11 supergravity at the full non-linear level in [37, 39, 40] for the case m2L2 = −2

and q = 2. Similarly, a IIB supergravity model for an AdS5 dual to 3+1 dimensional

superconductors was constructed in [49] with m2L2 = −3 and q = 2.

The AdS4 model of [37, 39, 40] and the AdS5 model of [49] are based on Kaluza-

Klein truncations on squashed Sasaki-Einstein manifolds. They both have the unusual

feature where the q = 2 charged scalar arises from the massive level of the Kaluza-Klein

truncation. This appears to go against the standard lore of consistent truncations, where

it was thought that truncations keeping only a finite number of massive modes would

necessarily be inconsistent. A heuristic argument is that states in the Kaluza-Klein tower

carry charges under the internal symmetry, and hence would couple at the non-linear level

to source higher and higher states, all the way up the Kaluza-Klein tower. This hints

that one way to obtain a consistent truncation is simply to truncate to singlets of the

1Recent models have generalized this construction to encompass both p-wave [50, 90] and d-wave [19] condensates.
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internal symmetry group, and indeed such a construction is consistent. An example of

this is a standard torus reduction, where only zero modes on the torus are kept. On

the other hand, sphere reductions to maximal gauged supergravities in D = 4, 5 and 7

do not follow this rule, as they are expected to be consistent, even though some of the

lower-dimensional fields (such as the non-abelian graviphotons) are charged under the R-

symmetry. In fact, the issue of Kaluza-Klein consistency is not yet fully resolved, and

often must be treated on a case by base basis. This has led us to explore the squashed

Sasaki-Einstein compactifications to see if additional consistent massive truncations may

be found.

In addition to embedding holographic models of superconductivity into string theory,

several groups have demonstrated the embedding of dual non-relativistic CFT backgrounds

into string theory [61, 82, 1]. These geometries where originally constructed from a toy

model of a massive vector field coupled to gravity with a negative cosmological constant

[97, 8] of the form (given here for a deformation of AdS5):

(II.2) L5 = R+
12

L2
− 1

4
F 2
µν −

m2

2
A2
µ,

with mass related to the scaling exponent z according to m2L2 = z(z + 2). The z = 2 and

z = 4 models (m2L2 = 8 and m2L2 = 24, respectively) were subsequently realized within

IIB supergravity in terms of consistent truncations retaining a massive vector (along with

possibly other fields as well) [61, 82, 1]. These results have further opened up the possibility

of obtaining large classes of consistent truncations retaining massive modes of various spin.

2.1.1 Consistent massive truncations of IIB supergravity

For the most part, the massive consistent truncations used in the study of AdS/condensed

matter systems have not been supersymmetric2. Nevertheless this has motivated us to

2The massive truncation given in [37] is supersymmetric, although the connection to a holographic superconductor
was done through the non-supersymmetric skew-whiffed case.
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investigate the possibility of obtaining new supersymmetric massive truncations of IIB

supergravity. In particular, we are mainly interested in reducing IIB supergravity on a

Sasaki-Einstein manifold to obtain gauged supergravity in D = 5 coupled to possibly mas-

sive supermultiplets.

Following the construction of D = 11 supergravity [22] and the realization that it admits

an AdS4×S7 vacuum solution [36], it was soon postulated that the Kaluza-Klein reduction

on the sphere would give rise to gauged N = 8 supergravity at the “massless” Kaluza-Klein

level [33, 31, 32]. This notion was reinforced by a linearized Kaluza-Klein mode analysis

demonstrating that the full spectrum of Kaluza-Klein excitations falls into supermultiplets

of the D = 4, N = 8 superalgebra OSp(4|8) [10, 93, 15]. However, demonstrating full

consistency of the non-linear reduction to gauged N = 8 supergravity has remained elusive.

Nevertheless, all indications are that the reduction is consistent [87], and this has in fact

been demonstrated for the related case of reducing to D = 7 on S4 [86, 87].

The story is similar for the case of IIB supergravity reduced on S5. A linearized Kaluza-

Klein mode analysis demonstrates that the spectrum of Kaluza-Klein excitations falls into

complete supermultiplets of the D = 5, N = 8 superalgebra SU(2, 2|4), with the lowest

one corresponding to the ordinary N = 8 supergravity multiplet [52, 71]. In this case, only

partial results are known about the full non-linear reduction to gauged supergravity, but

there is strong evidence for its consistency [70, 23, 81, 24].

More generally, it was conjectured in [89, 30] and [41], that, for any supergravity re-

duction, it is always possible to consistently truncate to the supermultiplet containing the

massless graviton. This is a non-trivial statement, as the truncation must satisfy rather

restrictive consistency conditions related to the gauge symmetries generated by the isome-

tries of the internal manifold [29, 62]. This conjecture has recently been shown to be true

for Sasaki-Einstein reductions of IIB supergravity on SE5 [13] and D = 11 supergravity
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on SE7 [41], yielding minimal D = 5, N = 2 and D = 4, N = 2 gauged supergravity,

respectively (see also [38, 42]).

While states in the same supermultiplet do not necessarily have the same mass in gauged

supergravity, the minimal supergravity multiplets, which contain the graviton, gravitino

and a graviphoton, are in fact massless. Thus one may suspect that truncations to massless

supermultiplets are necessarily consistent. However, it turns out that this is not the case.

This was explicitly demonstrated in [62], where, for example, it was shown to be inconsistent

to retain the SU(2)× SU(2) vector multiplets that naturally arise in the compactification

of IIB supergravity on T 1,1.

For many of the above reasons, it has often been a challenge to explore consistent

supersymmetric truncations, even at the massless Kaluza-Klein level. However, bosonic

truncations retaining massive breathing and squashing modes [12] have been known to be

consistent for some time. In this case, consistency is guaranteed by retaining only singlets

under the internal symmetry group SU(4) × U(1) for the squashed S7 or SU(3) × U(1)

for the squashed S5. The supersymmetry of background solutions involving the breathing

and squashing modes was explored in [76], where it was further conjectured that a super-

symmetric consistent truncation could be found that retains the full breathing/squashing

supermultiplet.

Although this massive consistent truncation conjecture was made for squashed sphere

compactifications, it naturally generalizes to compactification on more general internal

spaces, such as Sasaki-Einstein spaces. ForD = 11 supergravity compactified on a squashed

S7, written as U(1) bundled over CP 3, truncation of the N = 8 Kaluza-Klein spectrum

to SU(4) singlets under the decomposition SO(8) ⊃ SU(4)×U(1) yields the N = 2 super-
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gravity multiplet3

(II.3) n = 0 : D(2, 1)0 = D(3, 2)0 +D(
5

2
,
3

2
)−1 +D(

5

2
,
3

2
)1 +D(2, 1)0,

at the massless (n = 0) Kaluza-Klein level. No SU(4) singlets survive at the first (n = 1)

massive Kaluza-Klein level, and the breathing and squashing modes finally make their

appearance at the second (n = 2) Kaluza-Klein level in a massive vector multiplet [76]

n = 2 : D(4, 0)0 = D(5, 1)0 +D(
9

2
,
1

2
)−1 +D(

9

2
,
1

2
)1 +D(

11

2
,
1

2
)−1 +D(

11

2
,
1

2
)1

+D(4, 0)0 +D(5, 0)0 +D(5, 0)−2 +D(5, 0)2 +D(6, 0)0.(II.4)

Replacing S7 by SE7 amounts to replacing CP 3 by an appropriate Kahler-Einstein base B.

In this case, the internal isometry is generically reduced from SU(4)×U(1). Nevertheless,

the notion of truncating to SU(4) singlets may simply be replaced by the prescription of

truncating to zero modes on the base B. This procedure was in fact done in [37], which

constructed the non-linear Kaluza-Klein reduction for all the bosonic fields contained in the

above supermultiplets (II.3) and (II.4) and furthermore verified the N = 2 supersymmetry.

For the case of IIB supergravity compactified on SE5, it is straightforward to generalize

the squashed S5 conjecture of [76]. In this case, however, the Kaluza-Klein spectrum is more

involved, and is given in Table 2.1. A curious feature shows up here in that an additional

LH+RH chiral matter multiplet shows up at the ‘massless’ Kaluza-Klein level. The E0 = 4

scalar in this multiplet corresponds to the IIB axi-dilaton, while the additional E0 = 3

charged scalar is precisely the charged scalar constructed in the holographic model of [49].

At the higher Kaluza-Klein levels, the breathing and squashing mode scalars correspond

to the E0 = 8 and E0 = 6 scalars in the massive vector multiplet. In addition, consistent

truncations involving the E0 = 5 (m2L2 = 8) doublet of vectors in the semi-long LH+RH

massive gravitino multiplet and the E0 = 7 (m2L2 = 24) vector in the massive vector

3The OSp(4|2) super-representations D(E0, s)q and SO(2,3) representations D(E0, s)q are labeled by energy E0,
spin s and U(1) charge q under OSp(4|2) ⊃ SO(2, 3)×U(1) ⊃ SO(2)× SO(3)×U(1).
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n Multiplet SU(2, 2|1) SO(2, 4)× U(1)
0 supergraviton D(3, 12 ,

1
2 )0 D(4, 1, 1)0 +D(3 1

2 , 1,
1
2 )−1 +D(3 1

2 ,
1
2 , 1)1 +D(3, 12 ,

1
2 )0

0 LH chiral D(3, 0, 0)2 D(3 1
2 ,

1
2 , 0)1 +D(3, 0, 0)2 +D(4, 0, 0)0

0 RH chiral D(3, 0, 0)−2 D(3 1
2 , 0,

1
2 )−1 +D(3, 0, 0)−2 +D(4, 0, 0)0

1 LH massive gravitino D(4 1
2 , 0,

1
2 )1 D(5 1

2 ,
1
2 , 1)1 +D(5, 12 ,

1
2 )0 +D(5, 0, 1)2

+D(6, 0, 1)0 +D(4 1
2 , 0,

1
2 )1 +D(5 1

2 , 0,
1
2 )−1

1 RH massive gravitino D(4 1
2 ,

1
2 , 0)−1 D(5 1

2 , 1,
1
2 )−1 +D(5, 12 ,

1
2 )0 +D(5, 1, 0)−2

+D(6, 1, 0)0 +D(4 1
2 ,

1
2 , 0)−1 +D(5 1

2 ,
1
2 , 0)1

2 massive vector D(6, 0, 0)0 D(7, 12 ,
1
2 )0 +D(6 1

2 ,
1
2 , 0)−1 +D(6 1

2 , 0,
1
2 )1

+D(7 1
2 , 0,

1
2 )−1 +D(7 1

2 ,
1
2 , 0)1 +D(6, 0, 0)0

+D(7, 0, 0)−2 +D(7, 0, 0)2 +D(8, 0, 0)0

Table 2.1: The truncated Kaluza-Klein spectrum of IIB supergravity on squashed S5 [76], or equiv-
alently on SE5. Here n denotes the Kaluza-Klein level. The consistent truncation is
expected to terminate at level n = 2 with the breathing mode supermultiplet.

multiplet were constructed in [61, 82, 1] in the context of investigating non-relativistic

conformal backgrounds in string theory.

What we have seen so far is that massive consistent truncations of IIB supergravity

have been obtained keeping various subsets of the bosonic fields identified in Table 2.1.

The goal of the first part of this chapter is to construct a complete non-linear Kaluza-Klein

reduction of IIB supergravity on SE5 retaining all the bosonic fields in the multiplets

up to the n = 2 level. This complements the massive Kaluza-Klein truncation of D =

11 supergravity [37], and provides another example of a consistent truncation retaining

the breathing mode supermultiplet. We proceed in Section 2.2 with the Sasaki-Einstein

reduction of IIB supergravity. Then in Section 2.3 we connect the full non-linear reduction

with the linearized Kaluza-Klein analysis of [52, 71] and show how the bosonic fields in

Table 2.1 are related to the original IIB fields. In Section 2.4 we relate the complete non-

linear reduction to previous results by performing additional truncations to a subset of

active fields. Finally, we conclude in Section 2.5 with some further speculation on massive

consistent truncations of supergravity.

For a discussion of the N = 4 nature of the general reduction on Sasaki-Einstein mani-

folds see [17, 43] which independently worked out the massive consistent truncation of IIB
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supergravity on SE5. Also [96] reports related results for a particular truncation of these

theories.

2.2 Sasaki-Einstein reduction of IIB supergravity

The bosonic field content of IIB supergravity consists of the NSNS fields (gMN , BMN , φ)

and the RR potentials (C0, C2, C4). Because of the self-dual field strength F+
5 = dC4, it is

not possible to write down a covariant action. However, we may take a bosonic Lagrangian

of the form

(II.5) LIIB = R ∗ 1− 1

2τ2
2

dτ ∧ ∗dτ̄ − 1

2
MijF

i
3 ∧ ∗F

j
3 −

1

4
F̃5 ∧ ∗F̃5 −

1

4
εijC4 ∧ F i3 ∧ F

j
3 ,

where self-duality F̃5 = ∗F̃5 is to be imposed by hand after deriving the equations of

motion.

We have given the Lagrangian in an SL(2,R) invariant form where

(II.6) τ = C0 + ie−φ, M =
1

τ2

|τ |2 −τ1

−τ1 1

 ,

and where

(II.7) F i3 = dBi
2, Bi

2 =

B2

C2

 , F̃5 = dC4 +
1

2
εijB

i
2 ∧ dB

j
2.

The equations of motion following from (II.5) and the self-duality of F̃5 are

dF̃5 =
1

2
εijF

i
3 ∧ F

j
3 , F̃5 = ∗F̃5,

d(Mij ∗ F j3 ) = −εijF̃5 ∧ F j3 ,

d ∗ dτ
τ2

+ i
dτ ∧ ∗dτ

τ2
2

= − i

2τ2
G3 ∧ ∗G3,(II.8)

and the Einstein equation (in Ricci form)

RMN =
1

2τ2
2

∂(Mτ∂N)τ̄ +
1

4
Mij

(
F iMPQF

j PQ
N − 1

12
gMNF

i
PQRF

j PQR

)
+

1

4 · 4!
F̃MPQRSF̃N

PQRS .(II.9)
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In the above we have introduced the complex three-form G3 = F 2
3 − τF 1

3 . If desired, this

allows us to rewrite the three-form equation of motion as

(II.10) d ∗G = −i dτ
2τ2
∧ ∗(G3 + Ḡ3) + iF̃5 ∧G3.

2.2.1 The reduction ansatz

Before writing out the reduction ansatz, we note a few key features of Sasaki-Einstein

manifolds. A Sasaki-Einstein manifold has a preferred U(1) isometry related to the Reeb

vector. This allows us to write the metric as a U(1) fibration over a Kahler-Einstein base

B

(II.11) ds2(SE5) = ds2(B) + (dψ +A)2,

where dA = 2J with J the Kahler form on B. Moreover, B admits an SU(2) structure

defined by the (1,1) and (2,0) forms J and Ω satisfying

(II.12) J ∧ Ω = 0, Ω ∧ Ω̄ = 2J ∧ J = 4 ∗4 1, ∗4J = J, ∗4Ω = Ω,

as well as

(II.13) dJ = 0, dΩ = 3i(dψ +A) ∧ Ω.

Note that we are taking the ‘unit radius’ Einstein condition Rij = 4gij on the Sasaki-

Einstein manifold, which corresponds to Rab = 6gab on the Kahler-Einstein base.

For the reduction, we write down the most general decomposition of the bosonic IIB

fields consistent with the isometries of B. For the metric, we take

(II.14) ds2
10 = e2Ads2

5 + e2Bds2(B) + e2C(η +A1)2,

where η = dψ + A. Since A1 gauges the U(1) isometry, it will be related to the D = 5

graviphoton. Note, however, that the graviphoton receives additional contributions from

the five-form.
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The three-form and five-form field strengths can be expanded in a basis of invariant

tensors on B. For the three-forms, we work with the potentials

(II.15) Bi
2 = bi2 + bi1 ∧ (η +A1) + bi0Ω + b̄i0Ω̄.

The scalars bi0 are complex, while the remaining fields are real. Note that we do not include

a term of the form b̃i0J in the ansatz, as this field will act simply as a Stückelburg field in

the five-dimensional theory. In particular, it does not give rise to any new dynamics in the

equations of motion as it can be repackaged as a total derivative plus terms which would

simply shift bi2 and bi1,

(II.16) 2b̃i0J = d(̃bi0 ∧ (η +A1))− db̃i0 ∧ (η +A1)− b̃i0F2.

Taking F i3 = dBi
2 gives

F i3 = (dbi2 − bi1 ∧ F ) + dbi1 ∧ (η +A1)− 2bi1 ∧ J +Dbi0 ∧ Ω +Db̄i0 ∧ Ω̄

+3ibi0Ω ∧ (η +A1)− 3ib̄i0Ω̄ ∧ (η +A1),(II.17)

where D is the U(1) gauge covariant derivative

(II.18) Dbi0 = dbi0 − 3iA1b
i
0.

For convenience, we write this as

(II.19) F i3 = gi3 +gi2∧(η+A1)+gi1∧J+f i1∧Ω+ f̄ i1∧Ω̄+f i0∧Ω∧(η+A1)+ f̄ i0∧Ω̄∧(η+A1),

where our notation is such that the gi’s are real and the f i’s are complex.

For the self-dual five-form, we take

(II.20)

F̃5 = (1+∗)[(4+φ0)∗41∧(η+A1)+A1∧∗41+p2∧J∧(η+A1)+q2∧Ω∧(η+A1)+q̄2∧Ω̄∧(η+A1)],

where ∗41 denotes the volume form on the Kahler-Einstein base B. Note that we have

pulled out a constant background component

(II.21) F̃5 = 4(1 + ∗)vol(SE5),
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which sets up the Freund-Rubin compactification4. The two-forms q2 are complex, while

the other fields are real. For later convenience, we take the explicit 10-dimensional dual in

the metric (II.64) to obtain

F̃5 = (4 + φ0) ∗4 1 ∧ (η +A1) + A1 ∧ ∗41 + p2 ∧ J ∧ (η +A1) + q2 ∧ Ω ∧ (η +A1)

+q̄2 ∧ Ω̄ ∧ (η +A1) + e5A−4B−C(4 + φ0) ∗ 1− e3A−4B+C ∗ A1 ∧ (η +A1)

+eA−C ∗ p2 ∧ J + eA−C ∗ q2 ∧ Ω + eA−C ∗ q̄2 ∧ Ω̄,(II.22)

where ∗ now denotes the Hodge dual in the D = 5 spacetime.

2.2.2 Reduction of the equations of motion

In order to obtain the reduction, it is now simply a matter of inserting the above

decompositions into the IIB equations of motion. The F̃5 equation yields

d(eA−C ∗ p2) = 2e3A−4B+C ∗ A1 − p2 ∧ F2 + εijg
i
1 ∧ g

j
3,

Dq2 = 3ieA−C ∗ q2 + εij(f
i
1 ∧ g

j
2 − f

i
0g
j
3),(II.23)

along with the constraints

φ0 = −2i

3
εij(f

i
0f̄

j
0 − f̄

i
0f

j
0 ),

p2 =
1

4
εijg

i
1 ∧ g

j
1 − d[A1 +

1

4
A1 +

i

6
εij(f

i
0f̄

j
1 − f̄

i
0f

j
1 )].(II.24)

The implication of this is that F̃5 gives rise to two physical D = 5 fields, namely a massive

vector A1 and a complex antisymmetric tensor q2 satisfying an odd-dimensional self-duality

equation and with m2 = 9. The mass of A1 is not directly apparent from (II.23) as it mixes

with A1 from the metric to yield the massless graviphoton as well as a m2 = 24 massive

vector.
4For simplicity, we have assumed a unit radius (L = 1) compactification.
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The F i3 equation yields

D(e3A+CMij ∗ f j1 ) = −3ie5A−CMijf
j
0 ∗ 1 + εij [(4 + φ0)e5A−4B−Cf j0 ∗ 1− q2 ∧ gj3

+eA−C ∗ q2 ∧ gj2 + e3A−4B+C ∗ A1 ∧ f j1 ],

d(eA+4B−CMij ∗ gj2) = Mij [e
−A+4B+C ∗ gj3 ∧ F + 4e3A+C ∗ gj1]

+εij [−2eA−C ∗ p2 ∧ gj1 − A1 ∧ gj3 − 4eA−C(∗q2 ∧ f̄ j1 + ∗q̄2 ∧ f j1 )],

d(e−A+4B+CMij ∗ gj3) = εij [−(4 + φ0)gj3 + A1 ∧ gj2 − 2p2 ∧ gj1 − 4(q2 ∧ f̄ j1 + q̄2 ∧ f j1 )

+4eA−C(f̄ j0 ∗ q2 + f j0 ∗ q̄2)].(II.25)

These correspond to a pair of charged scalars f i0, a pair of m2 = 8 massive vectors gi1 and

a pair of massive antisymmetric tensors bi2.

The ten-dimensional Einstein equation (II.9) reduces to a five-dimensional Einstein

equation, as well as the equations of motion for the breathing and squashing modes B

and C and the graviphoton A1. In particular, in the natural vielbein basis, the frame

components of the ten-dimensional Ricci tensor corresponding to the reduction (II.64) are

given by

10Rαβ = e−2A[Rαβ −∇α∇β(3A+ 4B + C)− ηαβ∂γA∂γ(3A+ 4B + C)− ηαβ�A

+3∂αA∂βA− 4∂αB∂βB − ∂αC∂βC + 4(∂αA∂βB + ∂αB∂βA)

+(∂αA∂βC + ∂αC∂βA)]− 1

2
e2C−4AFαγFβ

γ ,

10Rab = δab[6e
−2B − 2e2C−4B − e−2A(�B + ∂γB∂

γ(3A+ 4B + C))],

10R99 = 4e2C−4B +
1

4
e2C−4AFγδF

γδ − e−2A(�C + ∂γC∂
γ(3A+ 4B + C)),

10Rα9 =
1

2
eC−3A[∇γFαγ + Fαγ∂

γ(A+ 4B + 3C)].

(II.26)

The α and β indices correspond to the D = 5 spacetime, while a and b correspond to

the Kahler-Einstein base B and 9 corresponds to the U(1) fiber direction. The covariant
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derivatives and frame indices on the right hand side of these quantities are with respect to

the D = 5 metric. In order to reduce to the D = 5 Einstein frame metric, we now choose

3A+ 4B + C = 0, or

(II.27) A = −4

3
B − 1

3
C.

For convenience, we will retain A in the expressions below. However, it is not independent,

and should always be thought of as a shorthand for (II.27).

Equating the ten-dimensional Ricci tensor (II.26) to the stress tensor formed out of F i3

and F̃5 of (II.67) and (II.22), we obtain the D = 5 Einstein equation

Rαβ =
1

3
ηαβ(−24e2A−2B + 4e5A+3C +

1

2
e8A(4 + φ0)2) +

28

3
∂αB∂βB +

8

3
∂(αB∂β)C

+
4

3
∂αC∂βC +

1

2τ2
2

∂(ατ∂β)τ̄ +
1

2
e2C−2A(FαγFβ

γ − 1

6
ηαβFγδF

γδ) +
1

2
e−8BAαAβ

+eA−C [(pαγpβ
γ − 1

6
ηαβpγδp

γδ) + 4(q(α
γ q̄β)γ −

1

6
ηαβqγδ q̄

γδ)]

+Mij [
2

3
e5A−Cηαβ(f i0f̄

j
0 + f̄ i0f

j
0 ) +

1

2
e−2A−2C(giαγg

j γ
β −

1

6
ηαβg

i
γδg

j γδ)

+
1

4
e−4A(giαγδg

j γδ
β − 2

9
ηαβg

i
γδεg

j γδε) + e−4B(giαg
j
β + 2(f iαf̄

j
β + f̄ iαf

j
β))],(II.28)

as well as the B, C and A1 equations of motion

d ∗ dB = [6e2A−2B − 2e5A+3C − 1

4
e8A(4 + φ0)2] ∗ 1− 1

4
e−8BA1 ∧ ∗A1

+Mij [
1

8
e−2A−2Cgi2 ∧ ∗g

j
2 +

1

8
e−4Agi3 ∧ ∗g

j
3 −

1

2
e5A−C(f i0f̄

j
0 + f̄ i0f

j
0 ) ∗ 1

−1

4
e−4B(gi1 ∧ ∗g

j
1 + 2(f i1 ∧ ∗f̄

j
1 + f̄ i1 ∧ ∗f

j
1 ))],

d ∗ dC = [4e5A+3C − 1

4
e8A(4 + φ0)2] ∗ 1 +

1

2
e2C−2AF2 ∧ ∗F2 +

1

4
e−8BA1 ∧ ∗A1

−1

2
eA−C(p2 ∧ ∗p2 + 4q2 ∧ ∗q̄2) +Mij [−

3

8
e−2A−2Cgi2 ∧ ∗g

j
2

+
1

8
e−4Agi3 ∧ ∗g

j
3 −

3

2
e5A−C(f i0f̄

j
0 + f̄ i0f

j
0 ) ∗ 1

+
1

4
e−4B(gi1 ∧ ∗g

j
1 + 2(f i1 ∧ ∗f̄

j
1 + f̄ i1 ∧ ∗f

j
1 ))],

d(e2C−2A ∗ F2) = (4 + φ0)e−8B ∗ A1 − p2 ∧ p2 − 4q2 ∧ q̄2

+Mij [4e
−4B ∗ (f i0f̄

j
1 + f̄ i0f

j
1 ) + e−4A ∗ gi3 ∧ g

j
2].(II.29)
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Note that, in order to obtain the D = 5 Einstein equation, we had to shift the reduction

of 10Rαβ an appropriate combination of 10Rab and 10R99 in order to remove the ηαβ�A

component in the first line of (II.26).

The IIB equations of motion thus reduce to (II.23), (II.25), (II.28) and (II.29) as well

as the axi-dilaton equation, which we have not written down explicitly, but which will be

shown to be consistent below.

2.2.3 The effective five-dimensional Lagrangian

We now wish to construct an effective D = 5 Lagrangian which reproduces the above

equations of motion. This may be done by noting that the D = 5 Einstein equation (II.28)

arises naturally from a Lagrangian of the form

L = R ∗ 1 + (24e2A−2B − 4e5A+3C − 1

2
e8A(4 + φ0)2) ∗ 1− 28

3
dB ∧ ∗dB − 8

3
dB ∧ ∗dC

−4

3
dC ∧ ∗dC − 1

2τ2
2

dτ ∧ ∗dτ̄ − 1

2
e2C−2AF2 ∧ ∗F2 −

1

2
e−8BA1 ∧ ∗A1

−eA−C(p2 ∧ ∗p2 + 4q2 ∧ ∗q̄2) +Mij [−2e5A−C(f i0f̄
j
0 + f̄ i0f

j
0 ) ∗ 1

−1

2
e−2A−2Cgi2 ∧ ∗g

j
2 −

1

2
e−4Agi3 ∧ ∗g

j
3 − e

−4B(gi1 ∧ ∗g
j
1 + 2(f i1 ∧ ∗f̄

j
1 + f̄ i1 ∧ ∗f

j
1 ))]

+LCS .(II.30)

We have included a Chern-Simons piece LCS which cannot be determined from the Einstein

equation.

It is now possible to verify that (II.30) reproduces all the terms in the equations of

motion (II.23), (II.25) and (II.29) involving the metric (ie the Hodge *). The remaining
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terms may be obtained from the addition of the topological piece

LCS =
2i

3
(q2 ∧ dq̄2 − q̄2 ∧ dq2)− 4A1 ∧ q2 ∧ q̄2 + 2εijb

i
2 ∧ db

j
2

+
4i

3
[(q̄2 −

i

6
εij f̄

i
0g
j
2) ∧ εkl(fk1 ∧ gl2 − fk0 gl3)− (q2 +

i

6
εijf

i
0g
j
2) ∧ εkl(f̄k1 ∧ gl2 − f̄k0 gl3)]

−A1 ∧ (p2 −
1

4
εijg

i
1 ∧ g

j
1) ∧ (p2 −

1

4
εklg

k
1 ∧ gl1)

−2[
1

4
A1 +

i

6
εij(f

i
0f̄

j
1 − f̄

i
0f

j
1 )] ∧ εkl(gk1 ∧ gl3 −

1

4
gk1 ∧ gl1 ∧ F2).(II.31)

Here we recall the definitions

(II.32) f i0 = 3ibi0, f i1 = Dbi0, gi1 = −2bi1, gi2 = dbi1, gi3 = dbi2 − bi1 ∧ F2,

implicit in (II.17) and (II.67). Furthermore, φ0 and p2 are given by (II.24). Note that,

while A1 is massive, and does not have a gauge invariance associated with it, it is natural

to make the shift

(II.33) A1 → A′1 −
2i

3
εij(f

i
0f̄

j
1 − f̄

i
0f

j
1 ),

so that

(II.34) p2 =
1

4
εijg

i
1 ∧ g

j
1 − F2 −

1

4
F′2,

where F′2 = dA′1.

We now turn to the axi-dilaton equation obtained from (II.30). Since τ only shows up in

the kinetic term and inMij , we see that the τ equation of motion obtained from the D = 5

Lagrangian reproduces that obtained from the original IIB Lagrangian. This is because the

quantity in the square brackets multiplyingMij in (II.30) is the straightforward reduction

of −1
2F

i
3 ∧ ∗F

j
3 in the original IIB Lagrangian (II.5).

2.3 Matching the linearized Kaluza-Klein analysis

The complete D = 5 Lagrangian, as given by (II.30) and (II.31), is somewhat opaque.

Thus in this section, we demonstrate that it in fact contains the fields corresponding to
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the Kaluza-Klein mass spectrum noted in Table 2.1. To do this, it is sufficient to look at

the linearized level. We first note that the effective D = 5 fields are the complex scalars

(τ, bi0), real scalars (B,C), one-form potentials (A1, b
i
1,A1), pair of real two-forms (bi2), the

complex two-form (q2), and of course the metric (gµν). The D = 5 equations of motion

(II.23), (II.25) and (II.29) may be linearized on the matter fields to obtain the set

d ∗ dbi0 = (9δij + 12iN i
j)b

j
0 ∗ 1,

d ∗ dbi1 = −8 ∗ bi1,

d ∗ dbi2 = −4N i
jdb

j
2,

dq2 = 3i ∗ q2,

d ∗ F2 = 4 ∗ A1, d ∗ F2 +
1

4
d ∗ F2 = −2 ∗ A1,

d ∗ dB = 4(7B + C) ∗ 1, d ∗ dC = 16(B + C) ∗ 1.(II.35)

Here we have introduced

(II.36) N =M−1ε =
1

τ2

 −τ1 1

−|τ |2 τ1

 ,

with eigenvalues +i and −i, corresponding to eigenvectors

(
1 τ

)T
and

(
1 τ̄

)T
, respec-

tively.

The first equation in (II.35) then decomposes into a pair of equations for the complex

scalars bm
2=−3

0 and bm
2=21

0 with masses m2 = −3 and m2 = 21 according to

(II.37) bi0 =

1

τ

 bm
2=−3

0 +

1

τ̄

 bm
2=21

0 .

The second equation is that of an SL(2,R) doublet of real vectors bi1 with mass m2 = 8.

The third equation can be converted to an odd-dimensional self-duality equation [98] dbi2 =

4N i
j∗bj2, for a doublet of antisymmetric tensors bi2 with mass m2 = 16. The fourth equation
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is already in odd-dimensional self-duality form, and shows that the complex antisymmetric

tensor q2 has mass m2 = 9.

The vector equations can be diagonalized

(II.38) d ∗ (F2 +
1

6
F2) = 0, d ∗ F2 = −24 ∗ A1,

to identify the massless graviphoton A1 + 1
6A1 and the massive m2 = 24 vector A1. Finally

the B and C equations may be diagonalized to identify the m2 = 32 breathing and m2 = 12

squashing modes

(II.39) d ∗ dρ = 32ρ ∗ 1, d ∗ dσ = 12σ ∗ 1,

where

(II.40) B = ρ+
1

2
σ, C = ρ− 2σ.

It is now possible to see how the above linearized modes are organized into N = 2

supermultiplets. As shown in Table 2.1, at the zeroth Kaluza-Klein level, we have the

graviton supermultiplet

(II.41) D(3,
1

2
,
1

2
)0 = D(4, 1, 1)0 +D(3

1

2
, 1,

1

2
)−1 +D(3

1

2
,
1

2
, 1)1 +D(3,

1

2
,
1

2
)0,

with bosonic fields being the graviton gµν and the massless graviphoton A1 + 1
6A1. Still at

the zeroth level, there is also a LH+RH chiral multiplet

D(3, 0, 0)2 = D(3
1

2
,
1

2
, 0)1 +D(3, 0, 0)2 +D(4, 0, 0)0,

D(3, 0, 0)−2 = D(3
1

2
, 0,

1

2
)−1 +D(3, 0, 0)−2 +D(4, 0, 0)0.(II.42)

The charged E0 = 3 scalar corresponds to the m2 = −3 scalar bm
2=−3

0 , while the complex

E0 = 4 scalar is the axi-dilaton τ .
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n Multiplet State Field
0 supergraviton D(4, 1, 1)0 gµν

D(3, 12 ,
1
2 )0 A1 + 1

6A1

0 LH+RH chiral D(3, 0, 0)±2 bm
2=−3

0

D(4, 0, 0)0 +D(4, 0, 0)0 τ
1 LH+RH massive gravitino D(5, 12 ,

1
2 )0 +D(5, 12 ,

1
2 )0 bi1

D(5, 0, 1)2 +D(5, 1, 0)−2 q2
D(6, 0, 1)0 +D(6, 1, 0)0 bi2

2 massive vector D(7, 12 ,
1
2 )0 A1

D(6, 0, 0)0 σ

D(7, 0, 0)±2 bm
2=21

0

D(8, 0, 0)0 ρ

Table 2.2: Identification of the bosonic states in the Kaluza-Klein spectrum with the linearized
modes in the reduction.

At the first Kaluza-Klein level, we have a semi-long LH+RH massive gravitino multiplet

D(4
1

2
, 0,

1

2
)1 = D(5

1

2
,
1

2
, 1)1 +D(5,

1

2
,
1

2
)0 +D(5, 0, 1)2 +D(6, 0, 1)0

+D(4
1

2
, 0,

1

2
)1 +D(5

1

2
, 0,

1

2
)−1,

D(4
1

2
,
1

2
, 0)−1 = D(5

1

2
, 1,

1

2
)−1 +D(5,

1

2
,
1

2
)0 +D(5, 1, 0)−2 +D(6, 1, 0)0

+D(4
1

2
,
1

2
, 0)−1 +D(5

1

2
,
1

2
, 0)1.(II.43)

The bosonic field content is an SL(2,R) doublet of m2 = 8 (E0 = 5) vectors bi1, a charged

m2 = 9 (E0 = 5) anti-symmetric tensor q2, and a doublet of m2 = 16 (E0 = 6) anti-

symmetric tensors bi2.

At the second Kaluza-Klein level, we have a massive vector multiplet

D(6, 0, 0)0 = D(7,
1

2
,
1

2
)0 +D(6

1

2
,
1

2
, 0)−1 +D(6

1

2
, 0,

1

2
)1 +D(7

1

2
, 0,

1

2
)−1 +D(7

1

2
,
1

2
, 0)1

+D(6, 0, 0)0 +D(7, 0, 0)−2 +D(7, 0, 0)2 +D(8, 0, 0)0.(II.44)

The massive E0 = 7 vector is the m2 = 24 mode A1. The real E0 = 6 and E0 = 8 scalars

are the m2 = 12 squashing and m2 = 32 breathing modes, σ and ρ, respectively. The

charged E0 = 7 scalar is bm
2=21

0 with m2 = 21. This identification of the linearized fields

with the Kaluza-Klein modes is shown in Table 2.3.

For the case of IIB supergravity on S5, is interesting to note that these fields lie at
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the lowest level of the massive trajectories in the Kaluza-Klein mode decomposition of

the D = 10 fields [52, 71]. We note that the massive Kaluza-Klein tower is built out of

scalar, vector and tensor harmonics on S5, and the lowest harmonics generally have simple

behavior on the internal sphere coordinates. For example, the lowest scalar harmonic is

the constant mode on the sphere, while the lowest vector harmonics generate the Killing

vectors on the sphere. It is presumably the simplicity of the lowest harmonics that allows

the truncation to be consistent, even at the non-linear level.

Although the harmonics on SE5 are more involved (see e.g. [18] for the case of T 1,1), it

is clear that the decomposition (II.15) and (II.22) of the D = 10 fields in terms of invariant

tensors on SE5 is equivalent to the truncation to the lowest harmonics on the sphere. This

appears to be an essential feature guaranteeing the consistency of the massive truncation,

and hence we do not expect to be able to keep any additional multiplets in the Kaluza-Klein

tower beyond the n = 2 level.

2.4 Further truncations

In order to make a connection with previous results on massive consistent truncations

of IIB supergravity, we note that the semi-long LH+RH massive gravitino multiplet at the

first Kaluza-Klein level may be truncated out by setting

(II.45) bi1 = 0, bi2 = 0, q2 = 0.

It is easy to see that this truncation is consistent, since the respective equations of motion

for q2 in (II.23) and gi2 and gi3 in (II.25) are trivially satisfied in this case. The resulting
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D = 5 Lagrangian takes the form

L = R ∗ 1 + (24e2A−2B − 4e5A+3C − 1

2
e8A(4 + φ0)2) ∗ 1− 28

3
dB ∧ ∗dB − 8

3
dB ∧ ∗dC

−4

3
dC ∧ ∗dC − 1

2τ2
2

dτ ∧ ∗dτ̄ − 1

2
e2C−2AF2 ∧ ∗F2 − eA−C(F2 +

1

4
F′2) ∧ ∗(F2 +

1

4
F′2)

−1

2
e−8B[A′1 −

2i

3
εij(f

i
0f̄

j
1 − f̄

i
0f

j
1 )] ∧ ∗[A′1 −

2i

3
εij(f

i
0f̄

j
1 − f̄

i
0f

j
1 )]

−2Mij [e
5A−C(f i0f̄

j
0 + f̄ i0f

j
0 ) ∗ 1 + e−4B(f i1 ∧ ∗f̄

j
1 + f̄ i1 ∧ ∗f

j
1 )]

−A1 ∧ (F2 +
1

4
F′2) ∧ (F2 +

1

4
F′2),(II.46)

where

(II.47) f i0 = 3ibi0, f i1 = Dbi0, φ0 = −2i

3
εij(f

i
0f̄

j
0 − f̄

i
0f

j
0 ).

A further truncation to the massless N = 2 supergravity sector may be obtained by

setting

(II.48) bi0 = 0, B = 0, C = 0, A1 = 0,

along with taking a constant background for the axi-dilaton, τ = τ0. This leaves only

gµν and A1, and yields the standard Lagrangian for the bosonic fields of minimal gauged

supergravity

(II.49) L = R ∗ 1 + 12g2 ∗ 1− 1

2
F2 ∧ ∗F2 −

1

3
√

3
A1 ∧ F2 ∧ F2,

where we have rescaled the graviphoton, A1 → 1√
3
A1, so that it has a canonical kinetic

term, and where we have restored the dimensionful gauged supergravity coupling g.

2.4.1 Truncation to the zeroth Kaluza-Klein level

Beyond the truncation to minimal supergravity discussed above, the first nontrivial

truncation involves keeping only the lowest Kaluza-Klein level fields {τ, bm2=−3
0 } dynamical.

In what follows we will denote bm
2=−3

0 simply as b so that (b10, b
2
0) = (b, τb). This truncation

is not as simple as setting all other fields to zero, as the equations of motion demand certain
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constraints to be satisfied. For this case we start with the Lagrangian (B.1), obtained by

setting bi2 = bi1 = q2 = 0. We then impose the constraints

(II.50) bm
2=21

0 = 0, e4B = e−4C = 1− 4τ2|b|2, A1 = −4iτ2(bDb̄− b̄Db) + 4|b|2dτ1.

These in turn imply that

(II.51) φ0 = −24τ2|b|2, p2 = −dA1.

To guarantee consistency, we have to check four constraints from the equations of motion

(the B, C, f i0, and combined Maxwell Equation). They are all verified to hold identically,

and hence the truncation to the supergravity plus the LH+RH chiral multiplet is consistent.

The Lagrangian is given by

L = R ∗ 1 +

[
24(1− 3τ2|b|2)e−4B − 4e−8B − 1

2
e−8B(4 + φ0)2

]
∗ 1− 8dB ∧ ∗dB

−3

2
F2 ∧ ∗F2 −

1

2
e−8BA1 ∧ ∗A1 − 8e−4Bτ2Db ∧ ∗Db̄− 2ie−4B(b̄Db ∧ ∗dτ̄ − bDb̄ ∧ ∗dτ)

− 1

2τ2
2

(1 + 8e−4Bτ2|b|2)dτ ∧ ∗dτ̄ −A1 ∧ F2 ∧ F2.(II.52)

This expression can be simplified by defining λ ≡ 4τ2|b|2, giving

L = R ∗ 1 +
6(2− 3λ)

(1− λ)2
∗ 1− dλ ∧ ∗dλ

2(1− λ)2
− (1 + λ)dτ ∧ ∗dτ̄

2(1− λ)τ2
2

− 3

2
F2 ∧ ∗F2 −

A1 ∧ ∗A1

2(1− λ)2

−8τ2Db ∧ ∗Db̄
1− λ

− 2i

1− λ
(b̄Db ∧ ∗dτ̄ − bDb̄ ∧ ∗dτ)−A1 ∧ F2 ∧ F2.(II.53)

If we further truncate the model by setting τ = ie−φ0 = ig−1
s , which is consistent with

the equation of motion for τ given in (II.8), this reproduces the model used in [49] to

describe a holographic superconductor using a m2 = −3 and q = 2 charged scalar. If we

denote b =
√
gsfe

iθ, the truncated Lagrangian reads

L = R ∗ 1− 3

2
F2 ∧ ∗F2 −A1 ∧ F2 ∧ F2

+12
(1− 6f2)

(1− 4f2)2
∗ 1− 8

df ∧ ∗df
(1− 4f2)2

− 8f2 (dθ − 3A1) ∧ ∗(dθ − 3A1)

(1− 4f2)2
.(II.54)

A further redefinition f = 1
2 tanh η

2 then reproduces the Lagrangian given in [49].
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2.4.2 Truncation to the second Kaluza-Klein level

Starting with the Lagrangian (B.1) with bi2 = bi1 = q2 = 0, it is possible to retain

the bm
2=21

0 scalar by setting bm
2=−3

0 = 0. In this case, we first let b20 = τ̄ b10 and define

b10 =
√
gshe

iξ, so that (h, ξ) describe the m2 = 21 scalar. Again, the scalar equations of

motion lead to constraints, and in particular the first equation in (II.25) yields the equation

of motion for h and ξ as well as

(II.55) d(e3A+C ∗ dτ) + ie3A+C 1

τ 2
dτ ∧ ∗dτ = 0.

This is simply the τ equation of motion without any sources, and the simplest thing to

do is to set τ to be constant, τ = ie−φ0 = ig−1
s . The remaining field content is then

{gµν , A1, ρ, σ, b
m2=21
0 ,A1}, corresponding to the supergravity multiplet coupled to the mas-

sive vector multiplet. It is now straightforward to complete the truncation, and the La-

grangian is given by

L = R ∗ 1 +
(
24e−

16
3
ρ−σ − 4e−

16
3
ρ−6σ − 8e−

40
3
ρ(1 + 6h2)2

)
∗ 1− 40

3
dρ ∧ ∗dρ− 5dσ ∧ ∗dσ

−1

2
e

16
3
ρ−4σF2 ∧ ∗F2 − e−

8
3
ρ+2σ(F2 +

1

4
F′2) ∧ ∗(F2 +

1

4
F′2)

−1

2
e−8ρ−4σ(A′1 + 8h2Γ) ∧ ∗(A′1 + 8h2Γ)−A1 ∧ (F2 +

1

4
F′2) ∧ (F2 +

1

4
F′2)

−8
(
e−4ρ−2σdh ∧ ∗dh+ e−4ρ−2σh2Γ ∧ ∗Γ + e−

28
3
ρ+2σh2 ∗ 1

)
,(II.56)

where we have defined Γ = dξ − 3A1.

We can further truncate this by removing the m2 = 21 scalar (i.e. by setting h = ξ = 0),

giving the Lagrangian

L = R ∗ 1 + (24e−
16
3
ρ−σ − 4e−

16
3
ρ−6σ − 8e−

40
3
ρ) ∗ 1− 40

3
dρ ∧ ∗dρ− 5dσ ∧ ∗dσ

−1

2
e

16
3
ρ−4σF2 ∧ ∗F2 − e−

8
3
ρ+2σ(F2 +

1

4
F′2) ∧ ∗(F2 +

1

4
F′2)− 1

2
e−8ρ−4σA′1 ∧ ∗A′1

−A1 ∧ (F2 +
1

4
F′2) ∧ (F2 +

1

4
F′2),(II.57)

which corresponds to the m2 = 24 massive vector field truncation of [82].
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2.4.3 Non-supersymmetric truncations

All the truncations we have listed so far have field content which fills the bosonic

sector of AdS5 supermultiplets and so are presumably supersymmetric truncations. It

is also useful to consider truncations which contain dynamical fields belonging to different

supermultiplets, without keeping the entire multiplet. In this sense these truncations are

not supersymmetric, although they are perfectly consistent truncations and solutions of the

ten-dimensional equations of motion. For these truncations, we start with the complete

Lagrangian given in (II.30) and (II.31).

Massive vector field

The first non-supersymmetric truncation we will discuss involves keeping the m2 = 8

vector field, bi1, and has already been noted in [82]. The field content in this truncation

consists of one component of bi1 (denoted b1), τ2, ρ, σ and gµν . Note that the graviphoton is

turned off here so that even at the lowest level this cannot be supersymmetric. Furthermore,

by keeping only one component of bi1, the τ equation of motion demands that we must set

τ1 = 0. With this field content, the D = 10 constraints (II.24) are trivially satisfied with

φ0 = 0 and p2 = 0, and the Lagrangian (II.30) becomes [82]

L = R ∗ 1 + (24e−
16
3
ρ−σ − 4e−

16
3
ρ−6σ − 8e−

40
3
ρ) ∗ 1− 40

3
dρ ∧ ∗dρ− 5dσ ∧ ∗dσ

− 1

2τ2
2

dτ2 ∧ ∗dτ2 −
1

2
τ2e

4
3
ρ+4σdb1 ∧ ∗db1 − 4τ2e

−4ρ−2σb1 ∧ ∗b1.(II.58)

Complex massive anti-symmetric tensor

We can also truncate to theories containing the m2 = 9 complex anti-symmetric tensor

field q2. The field content here is given by, q2, A1, B, C, τ , gµν and A1. The D = 10

constraints become φ0 = 0 and p2 = −dA1 − 1
4dA1. All the other equations of motion are
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either satisfied by setting the rest of the fields to zero or can be derived from the Lagrangian

L = R ∗ 1 + (24e−
16
3
ρ−σ − 4e−

16
3
ρ−6σ − 8e−

40
3
ρ) ∗ 1− 40

3
dρ ∧ ∗dρ− 5dσ ∧ ∗dσ

−1

2
e

16
3
ρ−4σF2 ∧ ∗F2 − e−

8
3
ρ+2σ(p2 ∧ ∗p2 + 4q2 ∧ ∗q̄2)− 1

2τ2
2

dτ ∧ ∗dτ̄

−1

2
e−8ρ−4σA1 ∧ ∗A1 +

2i

3
(q2 ∧ dq̄2 − q̄2 ∧ dq2)−A1 ∧ p2 ∧ p2 − 4A1 ∧ q2 ∧ q̄2.(II.59)

Note that it is consistent to further truncate to a constant axi-dilaton τ = τ0.

Real massive anti-symmetric tensor

Along similar lines to the case above for a massive vector field, we can set A1 = 0 and

make a truncation including the m2 = 16 real anti-symmetric tensor doublet bi2 by keeping

only the graviton coupled to bi2, τ , ρ and σ. Again, the equations of motion for the other

fields are trivially satisfied and the constraints are also trivial φ0 = 0 and p2 = 0. This

leaves the Lagrangian

L = R ∗ 1 + (24e−
16
3
ρ−σ − 4e−

16
3
ρ−6σ − 8e−

40
3
ρ) ∗ 1− 40

3
dρ ∧ ∗dρ− 5dσ ∧ ∗dσ

− 1

2τ2
2

dτ ∧ ∗dτ̄ − 1

2
e

20
3
ρMijdb

i
2 ∧ ∗db

j
2 + 2εijb

i
2 ∧ ∗db

j
2.(II.60)

As in the previous truncation it is consistent to further truncate to τ = τ0.

2.5 Discussion

In the above, we have examined massive reductions of 10-dimensional IIB supergravity

on Sasaki-Einstein manifolds. By utilizing the structure of SE5, we have given a general

decomposition of the IIB fields based on the invariant tensors associated with the internal

manifold. The field content obtained in five-dimensions completes the bosonic sector of

various AdS5 supermultiplets, and in particular they fill out the lowest Kaluza-Klein tower

up to the breathing mode supermultiplet. This proves, at least at the level of the bosonic

fields, the conjecture raised in [76] that a consistent massive truncation may be obtained
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by truncating to the singlet sector on the Kahler-Einstein base B (which is CP 2 for the

squashed S5) and further restricting to the level of the breathing mode multiplet and below.

As suggested at the end of Section 2.3, it is this truncation to constant modes on the

base B that ensures the consistency of the reduction. In a sense, this is a generalization of

the old consistency criterion of restricting to singlets of the internal isometry group, except

that here restricting to singlets of an appropriate subgroup turned out to be sufficient. For

this reason, we believe it is not that the breathing mode is special in itself which allows

for a consistent truncation retaining its supermultiplet, but rather that in the examples

given here and in [37], the breathing mode superpartners so happen to be the lowest

harmonics in their respective Kaluza-Klein towers. It is an unusual feature of Kaluza-

Klein compactifications on curved internal spaces that states originating from different

levels of the harmonic expansion may combine into a single supermultiplet. Thus, while

the breathing mode is always the lowest state in its tower (being a constant mode on the

internal space), its superpartners may carry excitations on the internal space. This does

not occur for the N = 2 compactification of IIB supergravity on SE5 (nor does it for

D = 11 supergravity on SE7). However, in extended theories, such as IIB supergravity

on the round S5, the superpartners will involve non-trivial harmonics. In particular, the

N = 8 superpartners to the breathing mode include a massive spin-2 excitation of the

graviton involving the second harmonic (d-waves) on the sphere. Thus we believe it to

be unlikely that an N = 8 massive truncation with the breathing mode multiplet will be

consistent.

Consistent truncations of the type discussed here have recently been of particular inter-

est in the growing literature on AdS/CFT applications to condensed matter systems. Until

recently a strictly phenomenological approach has been taken in this area. In these systems

the inclusion of a scalar condensate is required in the gravity theory to source an operator
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whose expectation value acts as an order parameter describing superconductor/superfluid

phase transitions in the strongly coupled system. In the phenomenological approach, the

origin of this scalar and its properties have not been of immediate interest; rather the gen-

eral behavior was determined and many interesting similarities to real condensed matter

systems have been noted. However, this approach lacks strong theoretical control in that

systems are described by a set of free parameters which can be tuned to provide the prop-

erty of interest. Recently there has been some work to embed these models in UV complete

theories, where the parameters are no longer free but are determined by the underlying

features of the theory, such as an origin in string theory. The discussion here has put these

reductions into a more general framework and gives further examples of UV complete

systems whose duals may have useful applications in the AdS/CMT correspondence.

Given that the fields in these truncations fall into specific supermultiplets it is an obvious

and relevant question to discuss their fermionic partners. This would involve reducing the

supersymmetry variations and fermion equations in ten-dimensions down to five-dimensions

and determining the complete supersymmetric action of these truncations. This is also of

interest in terms of AdS/CFT where there has been much interest in describing fermion

behavior in condensed matter systems such as the Fermi-liquid theory using the holographic

correspondence. In particular, the full supersymmetric action could give us examples of

specific interactions studied in these systems coupling scalar condensates to the fermionic

excitations [20, 34, 51].

While the consistent truncation procedure in these cases is guaranteed to preserve su-

persymmetry, until now much of the focus has been on the bosonic sectors. Nevertheless

it would be useful to have an explicit realization of the fermion reduction as well. This is

especially interesting in light of holographic models of superconductivity in 2+1 [39, 40]

and 3+1 [49] dimensions, where electronic properties often involve fermion correlators and
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not just the bosons. Along these lines, the fermion sector of the reduction of D = 11

supergravity on squashed SE7 was recently constructed in [7]. The procedure is similar to

that used in the bosonic reduction. In particular, the eleven-dimensional fermions may be

expanded in terms of invariant tensors multiplying Killing spinors. This naturally retains

the lowest modes in spinor harmonics in each of the Kaluza-Klein towers, and ensures the

overall consistency of the reduction.

In the remaining sections of the chapter, we focus on the N = 2 truncation of IIB

supergravity reduced on squashed SE5, and demonstrate the consistent reduction of the

fermion sector, at least to quadratic order in the fermions. As demonstrated in [17, 77, 43,

96], the full bosonic sector of this reduction corresponds to an N = 4 theory. However, by

truncating out the N = 2 massive gravitino multiplet, we may bring this down to N = 2.

While our main motivation for doing so is to avoid unnecessarily cumbersome expressions

related to the massive gravitino sector, we do not see any obstacles to achieving the full

reduction if desired. Furthermore, this allows us to highlight some of the features of the

reduction from an N = 2 perspective.

Since the reduction of the fermionic sector uses the bosonic reduction as a starting point,

we begin with a brief review of the bosons in Section 2.6. We then turn to the reduction

of the IIB fermions in Section 2.7 and present the effective five-dimensional theory in

Section 2.8. Moreover, as shown in Section 2.9, the resulting N = 2 theory admits a

truncation to gauged supergravity coupled to a single hypermultiplet, corresponding to the

model of [49] for a holographic superconductor in 3+1 dimensions.

2.6 Review of the bosonic reduction

The reduction of the bosonic sector of IIB supergravity on a squashed Sasaki-Einstein

manifold carried out in the previous sections was first done in [17, 77, 43, 96]. From an

N = 2 point of view, the resulting theory has on-shell fields corresponding to that of five-
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dimensional gauged supergravity coupled to a massive hypermultiplet, massive gravitino

multiplet and massive vector multiplet [76, 77].

Before turning to the fermions, we review the reduction of the bosonic sector, following

the notations and conventions of [77]. For readers’ convenience, here we highlight the

truncation presented in section 2.4.

Although IIB supergravity does not admit a covariant action, we may take a bosonic

Lagrangian of the form

(II.61) LIIB = R ∗ 1− 1

2τ2
2

dτ ∧ ∗dτ̄ − 1

2
MijF

i
3 ∧ ∗F

j
3 −

1

4
F̃5 ∧ ∗F̃5 −

1

4
εijC4 ∧ F i3 ∧ F

j
3 ,

where self-duality F̃5 = ∗F̃5 is to be imposed by hand after deriving the equations of

motion. Here we have chosen to write the Lagrangian in an SL(2,R) invariant form using

(II.62) τ = C0 + ie−φ, V =
1
√
τ2

−τ1 1

τ2 0

 , M = VTV =
1

τ2

|τ |2 −τ1

−τ1 1

 .

For convenience when coupling to fermions, we also introduce the complexified vielbein

vi = V1
i − iV2

i, so that

(II.63) viF
i
3 = τ

−1/2
2 (F 2

3 − τF 1
3 ) = τ

−1/2
2 G3,

where G3 = F 2
3 − τF 1

3 .

The reduction ansatz follows by taking a metric of the squashed Sasaki-Einstein form

(II.64) ds2
10 = e2Ads2

5 + e2Bds2(B) + e2C(η +A1)2,

where dη = 2J and where we set 3A + 4B + C = 0 to remain in the Einstein frame. The

key to the reduction is to expand the remaining bosonic fields in terms of the invariant

forms J and Ω based on the SU(2) structure of the base B and satisfying

(II.65) J ∧ Ω = 0, Ω ∧ Ω̄ = 2J ∧ J = 4 ∗4 1, ∗4J = J, ∗4Ω = Ω,
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as well as

(II.66) dJ = 0, dΩ = 3i(dψ +A) ∧ Ω.

The bosonic reduction follows by expanding the three-form and five-form field strengths

in a basis of invariant tensors on B. Since we will truncate out the massive gravitino

multiplet, we set the corresponding bosonic fields to zero. (The complete reduction is

given in [77].) In this case, the three-form gives rise to two complex scalars bi, and is given

by

(II.67) F i3 = f i1 ∧ Ω + f̄ i1 ∧ Ω̄ + f i0 ∧ Ω ∧ (η +A1) + f̄ i0 ∧ Ω̄ ∧ (η +A1),

where

(II.68) f i1 = Dbi, f i0 = 3ibi,

with D the U(1) gauge covariant derivative

(II.69) Dbi = dbi − 3iA1b
i.

Furthermore, introducing

(II.70) bi =

1

τ

 bm
2=−3 +

1

τ̄

 bm
2=21,

it is easy to see that

(II.71) vif
i
0 = 6

√
τ2 b

m2=21, v̄if
i
0 = −6

√
τ2 b

m2=−3,

while

vif
i
1 = −2i

√
τ2[Dbm

2=21 +
i

2τ2
(bm

2=−3dτ + bm
2=21dτ̄)],

v̄if
i
1 = 2i

√
τ2[Dbm

2=−3 − i

2τ2
(bm

2=−3dτ + bm
2=21dτ̄)].(II.72)

These expressions will show up extensively in the fermion reduction below.
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For the self-dual five-form, we have

(II.73) F̃5 = (1 + ∗)[(4 + φ0) ∗4 1 ∧ (η +A1) + A1 ∧ ∗41 + p2 ∧ J ∧ (η +A1)],

where ∗41 denotes the volume form on the Kahler-Einstein base B. The fields φ0 and p2

are constrained by

φ0 = −2i

3
εij(f

i
0f̄

j
0 − f̄

i
0f

j
0 ),

p2 = −d[A1 +
1

4
A1 +

i

6
εij(f

i
0f̄

j
1 − f̄

i
0f

j
1 )].(II.74)

Hence the only additional field arising from the five-form is the vector A1.

Finally, we note that the bosonic field content of this massive truncation is that of

gauged supergravity coupled to a hypermultiplet with fields (τ, bm
2=−3) and a massive

vector multiplet with fields (B,C, bm
2=21,A1). This massive multiplet is actually a vector

combined with a hypermultiplet. However, since we are working on shell, one of the scalars

has been absorbed into the massive vector. If desired, this scalar may be restored by an

appropriate Stueckelberg shift of A1.

2.7 Reduction of the IIB fermions

We are now prepared to examine the fermionic sector of IIB supergravity [92]. For

simplicity in working out the reduction, we follow a Dirac convention throughout. In this

case, the fermions consist of a spin-3
2 gravitino ΨM and a spin-1

2 dilatino λ, with opposite

chiralities

(II.75) Γ11ΨM = ΨM , Γ11λ = −λ.

Our Dirac conventions are detailed in Appendix A.1. In particular, as opposed to [92], we

are using a mostly plus metric signature.

In the following we always work to lowest order in the fermions. In this case, the IIB
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supersymmetry variations on the fermions are given by [92]

δλ =
i

2τ2
ΓA∂Aτε

c − i

24
ΓABCviF

i
ABCε,

δΨM = DM ε ≡
(
∇M +

i

4τ2
∂Mτ1 +

i

16 · 5!
ΓABCDEF̃ABCDEΓM

)
ε

+
i

96

(
ΓM

ABC − 9δAMΓBC
)
viF

i
ABCε

c.(II.76)

The supersymmetry parameter ε is chiral with Γ11ε = ε, and the complexified SL(2,R)

vielbein, vi, was defined above in (II.63). In addition the fermion equations of motion are

[92]

0 = ΓMDMλ−
i

8 · 5!
ΓMNPQRFMNPQRλ,

0 = ΓMNPDNΨP +
i

48
ΓNPQΓMv∗i F

i∗
NPQλ−

i

4τ2
ΓNΓM∂Nτλ

c,(II.77)

where the supercovariant derivative acting on the gravitino is defined in the gravitino

variation (II.76). On the other hand, the supercovariant derivative acting on the dilatino

takes the form

(II.78) DMλ =

(
∇M +

3i

4τ2
∂Mτ1

)
λ− i

2τ2
ΓN∂NτΨc

M +
i

24
ΓNPQviF

i
NPQΨM ,

and is defined so that ∇M ε terms drop out of the variation DMδλ, as appropriate to

supercovariantization.

2.7.1 Killing spinors on SE5

The starting point of the fermion reduction is the construction of Killing spinors on

SE5. Starting with the undeformed Sasaki-Einstein metric

(II.79) ds2(SE5) = ds2(B) + (dψ +A)2,

the Killing spinor equations then follow from the internal components of the gravitino

variation in (II.76) with a constant five-form flux

(II.80) F̃5 = 4 ∗5 1 + 4 ∗4 1 ∧ (dψ +A)
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and take the form

0 = δΨa = D̂aη ≡ [∇̂a −Aa∂ψ +
1

2
Jabτ

bτ9 +
i

2
τa]η,

0 = δΨ9 = [∂ψ −
1

4
Jabτ

ab +
i

2
τ9]η.(II.81)

We proceed by assigning a U(1) charge q to the Killing spinor η, so that ∂ψη = iqη.

Furthermore, since (Jabτ
ab)2 = −8(1−τ9), we see that Jabτ

ab has eigenvalues (4i,−4i, 0, 0)

with corresponding τ9 eigenvalues (−1,−1, 1, 1). The variation δΨ9 then vanishes for the

charges q = (3
2 ,−

1
2 ,−

1
2 ,−

1
2). The N = 2 Killing spinor is thus obtained by taking q = 3

2

and Jabτ
abη = 4iη.

Having exhausted the content of the δΨ9 equation, we now turn to integrability of δΨa,

which gives the requirement

(II.82) 0 = τ b[D̂a, D̂b]η = τ b[δab(τ
9 − 1)− iJab(τ9 + 2q)]η.

For q = 3
2 and τ9η = −η, this gives the condition Jabτ

bη = iτaη, which is easily seen to be

consistent with the above requirement that Jabτ
abη = 4iη. After defining η = e3iψ/2η̃, we

are finally left with the condition

(II.83) [∇̂a −
3i

2
Aa]η̃ = 0,

which is solved by taking η̃ to be a gauge covariantly constant spinor on the Kahler-Einstein

base [44].

To summarize the above, the system (II.81) may be solved to yield a single complex

Killing spinor η satisfying

(II.84) ∂ψη =
3i

2
η, τ9η = −η, τ bJabη = iτaη, τ bΩabη = 0.

The final condition may be obtained by multiplying the penultimate one by Ωca on both

sides and making use of the identity ΩcaJab = −iΩcb, which follows from the relations [43]

(II.85) ΩacΩ
bc = 0, ΩacΩ̄

bc = 2δa
b − 2iJa

b.
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The Killing spinor η and its conjugate ηc provide a natural basis of invariant spinors in

which to expand the fermions. Furthermore, as discussed in [7], these represent singlets of

the SU(2) structure group, thus ensuring consistency of the reduction. Note that η and ηc

are related by

(II.86) τ bΩ̄abη = 2τaη
c,

and ηc satisfies the conjugated relations

(II.87) ∂ψη
c = −3i

2
ηc, τ9ηc = −ηc, τ bJabη

c = −iτaηc, τ bΩ̄abη
c = 0.

2.7.2 IIB spinor decomposition

We are now in a position to present the fermion decomposition ansatz by expanding the

ten-dimensional fermions in terms of η and ηc. Although we will ultimately truncate away

the massive gravitino multiplet, we find it instructive to start with the complete ansatz.

This allows us to identify which fermions belong in which multiplets, and hence will guide

the truncation.

Starting with the IIB dilatino, since it has negative chirality, it may be decomposed as5

(II.88) λ = e−A/2λ⊗ η ⊗
[

0

1

]
+ e−A/2λ′ ⊗ ηc ⊗

[
0

1

]
.

The IIB transformation parameter ε and gravitino ΨA each have positive chirality. Thus

we expand the gravitino in ten dimensional flat indices as

Ψα = e−A/2ψα ⊗ η ⊗
[

1

0

]
+ e−A/2ψ′α ⊗ ηc ⊗

[
1

0

]
,

Ψa = e−A/2ψ ⊗ τaη ⊗
[

1

0

]
+ e−A/2ψ′ ⊗ τaηc ⊗

[
1

0

]
,

Ψ9 = e−A/2ψ9 ⊗ τ9η ⊗
[

1

0

]
+ e−A/2ψ′9 ⊗ τ9η

c ⊗
[

1

0

]
,(II.89)

5Note that this is a slight abuse of notation, in that λ shows up as both ten-dimensional and five-dimensional
fields. The correct interpretation will be obvious from the context.
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and the transformation parameter as

(II.90) ε = eA/2ε⊗ η ⊗
[

1

0

]
.

Note that in all the above we have included relevant warp factors to account for the

breathing and squashing modes.

While we have started with a theory with 32 real supercharges, only a quarter of these

are preserved in the AdS5×SE5 background. By focusing on supersymmetries generated by

(II.90), we are thus restricting our study to five-dimensional supersymmetry parameterized

by a single Dirac spinor. This corresponds to an N = 2 theory, and provides a motivation

for us to remove the massive gravitino from subsequent consideration. (If desired, the

full spontaneously broken N = 4 symmetry may be obtained by introducing an ε ⊗ ηc

component in (II.90). However, we will not pursue this here.)

2.7.3 Linearized analysis and the N = 2 supermultiplet structure

Before presenting the fermionic reduction, it is instructive to analyze the linearized

equations of motion. Doing so allows us to group the effective five-dimensional fermions

into the relevant N = 2 supermultiplets as highlighted in [77]. We start by noting that

the five-dimensional fermions consist of the two gravitini ψα and ψ′α, two dilatini λ and λ′

and four additional spin-1/2 fields ψ, ψ′, ψ9 and ψ′9 arising from the internal components

of the ten-dimensional gravitino.

In the linearized theory, the equations are greatly simplified and the fermions satisfy

free massive Dirac and Rarita-Schwinger equations. The λ and λ′ equations are naturally

diagonal and the gravitino equations are diagonalized by the following modes,

ψ̂α = ψα +
i

3
γα (4ψ + ψ9) , ψm=11/2 = 4ψ + ψ9, ψm=−9/2 = ψ − ψ9,

ψ̂′α = ψ′α +
i

10
(γα + 2∇α)

(
4ψ′ + ψ′9

)
, ψ′m=5/2 = ψ′ − ψ′9.(II.91)
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n Multiplet State Field
0 supergraviton D(4, 1, 1)0 gµν

D(3 1
2 , 1,

1
2 )−1 +D(3 1

2 ,
1
2 , 1)1 ψ̂µ

D(3, 12 ,
1
2 )0 A1 + 1

6A1

0 LH+RH chiral D(3, 0, 0)±2 bm
2=−3

D(3 1
2 ,

1
2 , 0)1 +D(3 1

2 , 0,
1
2 )−1 λ′

D(4, 0, 0)0 +D(4, 0, 0)0 τ

1 LH+RH massive gravitino D(5 1
2 ,

1
2 , 1)1 +D(5 1

2 , 1,
1
2 )−1 ψ̂′µ

D(5, 12 ,
1
2 )0 +D(5, 12 ,

1
2 )0 bi1

D(5, 0, 1)2 +D(5, 1, 0)−2 q2
D(6, 0, 1)0 +D(6, 1, 0)0 bi2
D(4 1

2 , 0,
1
2 )1 +D(4 1

2 ,
1
2 , 0)−1 ψ′m=5/2

D(5 1
2 , 0,

1
2 )−1 +D(5 1

2 ,
1
2 , 0)1 λ

2 massive vector D(7, 12 ,
1
2 )0 A1

D(6 1
2 ,

1
2 , 0)−1 +D(6 1

2 , 0,
1
2 )1 ψm=−9/2

D(7 1
2 , 0,

1
2 )−1 +D(7 1

2 ,
1
2 , 0)1 ψm=11/2

D(6, 0, 0)0 σ

D(7, 0, 0)±2 bm
2=21

D(8, 0, 0)0 ρ

Table 2.3: Identification of the bosonic and fermionic states in the Kaluza-Klein spectrum with the
linearized modes in the reduction.

In all, the linearized modes satisfy,

γµαβ∇αψ̂β =
3

2
γµαψ̂α, γµαβ∇αψ̂′β = −7

2
γµαψ̂′α,

γα∇αλ =
7

2
λ, γα∇αλ′ = −

3

2
λ′,

γα∇αψm=11/2 =
11

2
ψm=11/2, γα∇αψm=−9/2 = −9

2
ψm=−9/2,

γα∇αψ′m=5/2 =
5

2
ψ′m=5/2.(II.92)

Note that the massive gravitino obtains its mass by absorbing the spin-1/2 combination

4ψ′ + ψ′9.

As with the fields in the bosonic truncation, we have arrived at a field content which, in

the case of the round five-sphere, saturates the lowest harmonic in each of the respective

Kaluza-Klein towers as determined in [52, 71]. Noting that, in five dimensions, the relation

between the conformal weight ∆ and mass m of the fermions is |m| = ∆− 2, we can map

the fermion fields into N = 2 AdS multiplets. First, it is straightforward to see that ψ̂µ

has m = 3/2, corresponding to a massless spin-3/2 field in AdS5. Hence it should be
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identified with the massless gravitino sitting in the supergraviton multiplet. Also at the

zeroth Kaluza-Klein level, the LH+RH chiral multiplet contains an m = 3/2 fermion which

may be identified as λ′. At level n = 1, the massive gravitino multiplet has three fermions;

one spin-3/2 particle with m = −7/2 corresponding to the massive gravitino ψ̂′µ and two

spin-1/2 particles with m = 5/2 corresponding to ψ′m=5/2 and m = 7/2 corresponding to λ.

Finally, at the n = 2 Kaluza-Klein level, the massive vector multiplet contains two spin-1/2

particles, ψm=−9/2 and ψm=11/2. These identifications will be further justified by examining

the supersymmetry transformations. The complete field content of the supermultiplets is

shown in Table 2.3, where the bosonic fields are fully defined in [77].

2.8 The Five-dimensional Theory and N = 2 Supergravity

The linearized analysis above demonstrates that the fields ψ′α, ψ′, ψ′9 and λ belong to

the massive gravitino multiplet. We thus proceed with the N = 2 truncation by setting

these to zero

(II.93) ψ′α = 0, ψ′ = 0, ψ′9 = 0, λ = 0.

It is straightforward to show this this is a consistent truncation, provided the bosonic fields

in the massive graviton multiplet are set to zero6. Moreover, other than just simplifying

the resulting equations, this truncation is natural when explicitly discussing N = 2 su-

persymmetry as the massive gravitino should really be thought of as descending from a

spontaneously broken N = 4 theory.

2.8.1 Supersymmetry Variations

We start with the reduction of the IIB supersymmetry variations given in (II.76). In-

serting the fermion ansätze (II.88), (II.89) and (II.90) into the IIB variations, we arrive at

6The consistency of this truncation in the bosonic sector has been previously shown in [77, 43, 17].
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the following five-dimensional variations7

δψ̂α ≡ Dαε =
[
Dα +

i

24
eC−A (γα

νρ − 4δα
νγρ)

(
Fνρ − 2e−2B−2Cpνρ

)
+

1

12
γα
(
4eA−2B+C + 6eA−C − (4 + φ0)eA−4B−C) ]ε

−e−2B

(
vif

i
α −

i

3
eA−Cvif

i
0γα

)
εc,(II.94)

δψm=11/2 =
[
− i

2
γµ∂µ (4B + C)− 3

8
e−4BγµAµ +

1

8
eC−Aγµν

(
Fµν + e−2B−2Cpµν

)
− ieA−2B+C

−3i

2
eA−C +

5i

8
(4 + φ0)eA−4B−C

]
ε+ e−2B

(
3i

4
γµvif

i
µ +

7

4
eA−Cvif

i
0

)
εc,(II.95)

δψm=−9/2 =
[
− i

2
γµ∂µ (B − C)− 1

4
e−4BγµAµ −

1

8
eC−Aγµν

(
Fµν + e−2B−2Cpµν

)
−3i

2
eA−2B+C +

3i

2
eA−C

]
ε+ e−2B

(
i

2
γµvif

i
µ −

1

2
eA−Cvif

i
0

)
εc,(II.96)

δλ′ = − 1

2τ2
γµ∂µτε

c − ie−2B
(
γµvif̄

i
µ − ieA−Cvif̄ i0

)
ε.(II.97)

The gauge covariant derivative Dα acting on ε is given by Dα ≡ ∇α− 3i
2 (Aα+ 1

6e
−4BAα)+

i
4τ2
∂ατ1, where the latter term descends from the traditional charge with respect to the

U(1) compensator field, QM , in the ten dimensional IIB theory [92]. Furthermore, we have

defined the five-dimensional supercovariant derivative Dα through the gravitino variation

in (II.94).

There are several facts worth noting about these expressions. Firstly, we see that these

variations fit nicely into the multiplet structure as presented in Table 2.3. In particular,

the dilatino variation is built out of τ and v̄if
i, both of which belong to the LH+RH chiral

multiplet, since the latter corresponds to bm
2=−3 according to (II.71). On the other hand,

δψm=11/2 and δψm=−9/2 contain only terms involving fields from the graviton and massive

vector multiplets. [Note that the combination F2 + e−2B−2Cp2 appearing in (II.96) and

(II.97) essentially selects the field strength of the massive vector A1, as can be seen from

the definition of p2 given in (II.74)]. These observations give further justification for the

multiplet structure presented in section 2.7.3.

7Note that with the Dirac matrix conventions described in the appendix we have εc = iεc ⊗ ηc ⊗
[ 1
0

]
.
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Furthermore, since the breathing mode is ρ ∼ 4B + C, and the squashing mode is

σ ∼ B − C, we can identify ψm=11/2 with the fermionic partner of the breathing mode

and ψm=−9/2 as the fermionic partner of the squashing mode as first demonstrated in

[76]. Finally, from the gauge covariant derivative, it is evident that the combination Aµ +

1
6e
−4BAµ may be identified with the graviphoton, which is consistent with the linearized

analysis in [77]. (The combination F2 − 2e−2B−2Cp2 appearing in the gravitino variation

is similarly the effective graviphoton field strength.)

The gravitino variation (II.94) is particularly interesting, as we may attempt to read off

an N = 2 superpotential from the term proportional to γαε

(II.98) W = 2eA−2B+C + 3eA−C − 1

2
(4 + φ0)eA−4B−C .

Recalling the relations 3A + 4B + C = 0 and φ0 = −2i
3 εij

(
f i0f̄

j
0 − f̄ i0f

j
0

)
, we see that the

scalar potential can be written as

(II.99) V = 2(G−1)ij∂iW∂jW −
4

3
W 2,

where (G−1)ij is the inverse scalar metric which can be read off from the scalar kinetic

terms in the Lagrangian and {i, j} run over all scalars in the theory.

To verify (II.99), we made use of the fact that the scalar metric given in [77] is composed

of three independent components, pertaining to the independent sets of scalars {B,C},

{b10, b20} and τ , with explicit components

(II.100) (G−1
{B,C})

ij =
1

16

 1 −1

−1 7

 , (G−1
{b10,b20}

)ij =
e4B

4τ2

 1 τ1

τ1 |τ |2

 , G−1
τ = τ2

2 .

Inserting these expressions into (II.99) then exactly reproduces the scalar potential ap-

pearing in the bosonic Lagrangian. This is, however, a somewhat surprising relation as

the actual gravitino variation (II.94) contains not only the term proportional to the super-

potential written above, but another term involving vif
i
0ε
c where vif

i
0 is proportional to
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bm
2=21

0 , as indicated in (II.71). Based on general N = 2 gauged supergravity arguments,

this should conceivably also contribute to the scalar potential, but is not taken into account

by (II.99).

2.8.2 Equations of Motion

Turning to the equations of motion, the reduction of the dilatino equation is the most

straightforward. After a bit of manipulation, we obtain

0 =

[
γµDµ +

i

8
γµν

(
eC−AFµν − 2e−A−2B−Cpµν

)
− 1

4
(4 + φ0)eA−4B−C + eA−2B+C +

3

2
eA−C

]
λ′

−e−2Bvi

[
4

5
γµf̄ iµ +

28i

15
f̄ i0

]
ψm=11/2 − e−2Bvi

[
4

5
γµf̄ iµ −

4i

5
f̄ i0e

A−C
]
ψm=−9/2,

(II.101)

where the supercovariant derivative acting on the dilatino is defined by

(II.102) Dµλ′ ≡ Dµλ
′−K(λ′)ψ̂µ =

[
∇µ +

3i

4τ2
∂µτ1 +

3i

2

(
Aµ +

1

6
e−4BAµ

)]
λ′−K(λ′)ψ̂µ.

The supercovariantization term K(λ′) acting on ψ̂µ is given by the right hand side of the

dilatino variation (II.97) with ε replaced by ψ̂µ (and similarly εc replaced by ψ̂cµ).

Starting with the IIB gravitino, we arrive at three equations, corresponding to the α,

a, and 9 components. After a fair bit of manipulations, and the appropriate redefinitions
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given in the first line of (II.91), we obtain the ψm=11/2 and ψm=−9/2 equations

0 =
[
γµDµ +

3i

5
e−4BγµAµ −

i

120
eC−AγµνFµν −

11i

60
e−A−2B−Cγµνpµν

+eA
(
−17

12
(4 + φ0)e−4B−C +

1

15
e−2B+C − 1

10
e−C

)]
ψm=11/2

[3i

5
e−4BγµAµ +

i

5
eC−AγµνFµν −

i

10
e−A−2B−Cγµνpµν + eA

(
12

5
e−2B+C − 12

5
e−C

)]
ψm=−9/2

+vie
−2B

[(
−2

5
γµf iµ +

34i

15
eA−Cf i0

)
ψcm=11/2 +

(
3

5
γµf iµ −

7i

5
eA−Cf i0

)
ψcm=−9/2

]
+v̄ie

−2B

(
3

4
γµf iµ +

7i

4
eA−Cf i0

)
λ′,

(II.103)

0 =
[
γµDµ +

2i

5
e−4BγµAµ −

3i

40
eC−AγµνFµν −

3i

20
e−A−2B−Cγµνpµν

+eA
(

1

4
(4 + φ0)e−4B−C +

13

5
e−2B+C +

9

20
e−C

)]
ψm=−9/2

[2i

5
e−4BγµAµ +

2i

15
eC−AγµνFµν −

i

15
e−A−2B−Cγµνpµν + eA

(
8

5
e−2B+C − 8

5
e−C

)]
ψm=11/2

+vie
−2B

[(2

5
γµf iµ −

14i

5
eA−Cf i0

)
ψcm=11/2 +

(
−3

5
γµf iµ −

3i

5
eA−Cf i0

)
ψcm=−9/2

]
+v̄ie

−2B

(
1

2
γµf iµ −

i

2
eA−Cf i0

)
λ′.

(II.104)

As in the dilatino case, we have defined the supercovariant derivatives

Dµψm=11/2 =

[
∇µ +

i

4τ2
∂µτ1 −

3i

2
(Aµ +

1

6
e−4BAµ)

]
ψm=11/2 −K(ψm=11/2)ψ̂µ,

Dµψm=−9/2 =

[
∇µ +

i

4τ2
∂µτ1 −

3i

2
(Aµ +

1

6
e−4BAµ)

]
ψm=−9/2 −K(ψm=−9/2)ψ̂µ,

(II.105)

with K(ψm=11/2) and K(ψm=−9/2) similarly obtained from the variations (II.96) and

(II.97), respectively.

Finally, the gravitino equation takes the form

(II.106)

0 = γµνρDνψ̂ρ −
8

15
K̃(ψm=11/2)γµψm=11/2 − 4

5
K̃(ψm=−9/2)γµψm=−9/2 − 1

2
K̃(λ′)γµλ′,
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where the supercovariant derivative acting on the gravitino is given by the right hand

side of the gravitino variation (II.94), and where the K̃ terms are essentially the Dirac

conjugates of K. The above equations have the appropriate structure to be obtained from

an effective N = 2 Lagrangian of the form8

e−1L =
¯̂
ψµγ

µνρDνψ̂ρ +
8

15
ψ̄m=11/2γµDµψ

m=11/2 +
4

5
ψ̄m=−9/2γµDµψ

m=−9/2 +
1

2
λ̄′γµDµλ

′

+

[
¯̂
ψµ

(
− 8

15
K̃(ψm=11/2)γµψm=11/2 − 4

5
K̃(ψm=−9/2)γµψm=−9/2 − 1

2
K̃(λ′)γµλ′

)
+ h.c.

]
+ · · · .

(II.107)

The full fermionic Lagrangian (to quadratic order in the fermions) is given in Appendix B.1.

Although we have worked only to quadratic order in the fermions, it is clear from the

nature of the invariant spinors η and ηc that higher spinor harmonics would not be excited

by this subset of states. Thus, if desired, the consistent truncation may be extended to the

four-fermi terms as well. However, we expect this to be quite tedious and not particularly

worth pursuing.

2.9 A supersymmetric holographic superconductor

In this final section we demonstrate the consistency of a particularly interesting trunca-

tion to the lowest Kaluza-Klein level, namely the supersymmetric completion of the bosonic

truncation first demonstrated in [49]. As we demonstrate, this is a fully consistent trunca-

tion, so long as we keep all fields in the graviton and LH+RH chiral multiplets. However,

it is a nontrivial truncation, in that it is not consistent to naively set the other fields in

the above reduction to zero. Instead, the “backreaction” on the truncated fields must be

taken into account, effectively setting these modes equal to something depending on the

8Note that some care must be taken when considering the conjugate spinor terms. Nevertheless, the various
conjugate terms do assemble themselves properly into a consistent effective fermionic Lagrangian. This is one place
where a more conventional symplectic-Majorana approach would allow the manipulations to be more transparent.
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dynamical fields. Due to this backreaction on the non dynamical fields, the resulting La-

grangian is nonlinear and so describes a non-trivial coupling of N = 2 supergravity with a

single hypermultiplet.

In the bosonic sector the truncation amounts to keeping only {τ, bm2=−3} and the gravi-

ton and graviphoton dynamical. In what follows, we will denote bm
2=−3 simply as b so

that (b10, b
2
0) = (b, τb). This requires the following constraints on the other terms in the

reduction [17, 77]

(II.108) bm
2=21 = 0, e4B = e−4C = 1−4τ2|b|2, A1 = −4iτ2(bDb̄− b̄Db)+4|b|2dτ1,

and

(II.109) φ0 = −24τ2|b|2, p2 = −dA1.

For the fermions, by analyzing the supersymmetry transformations of the spin-1
2 fields

in this truncation, it is evident that if we set

(II.110) ψ = −ψ9 = − i
2
bτ

1/2
2 e−2Bλ′,

the resulting system will be consistent with the supersymmetry transformations. It turns

out that under this identification the fermion equations of motion also degenerate into a

single expression, resulting in a theory containing only λ′ and ψ̂µ in the fermionic sector.

Moving directly to the Lagrangian, we write this as a sum of bosonic and fermionic

contributions L = Lb + Lf , where

Lb = R ∗ 1 +
6(2− 3χ)

(1− χ)2
∗ 1− dχ ∧ ∗dχ

2(1− χ)2
− (1 + χ)dτ ∧ ∗dτ̄

2(1− χ)τ2
2

− 3

2
F2 ∧ ∗F2 −

A1 ∧ ∗A1

2(1− χ)2

−8τ2Db ∧ ∗Db̄
1− χ

− 2i

1− χ
(b̄Db ∧ ∗dτ̄ − bDb̄ ∧ ∗dτ)−A1 ∧ F2 ∧ F2,(II.111)
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and

e−1Lf =
¯̂
ψαγ

αβσDβψ̂σ +
3i

8
¯̂
ψα

(
γαβρσ + 2gαβgρσ

)
Fβρψ̂σ +

1

2
¯̃
λγαDαλ̃+

3i

16
¯̃
λγµνFµν λ̃

+
1

2
e−4B

(
3τ2(bD̄µb− b̄Dµb)

¯̃
λγµλ̃+

3

2
(1 + 8τ2|b|2)

¯̃
λλ̃

)
+e−4B

(
−3

2
¯̂
ψαγ

ασψ̂σ + τ2(b̄Dβb− bD̄βb)
¯̂
ψαγ

αβσψ̂σ

)
+τ

1/2
2 e−4B

(
Dµb

¯̂
ψαγ

µγαλ̃+ 3b
¯̂
ψαγ

αλ̃+ h.c.
)

+
e−2B

τ
1/2
2

(
−b ¯̂
ψαγ

αβσ∂βτψ̂
c
σ + τ

1/2
2

¯̂
ψαγ

µ∂µτγ
αλ̃c + h.c.

)
,(II.112)

where we have defined λ̃ ≡ e−2Bλ′, χ = τ2|b|2 and we have redefined the gauge covariant

derivative acting on b as Dµb =
(
∂µ − 3iAµ − i

2τ2
∂µτ1

)
b, and similarly for λ̃ and ψ̂α.

This truncation is of interest for many of the condensed matter applications of the

AdS/CFT correspondence involving the coupling of a charged scalar and fermion. In

particular the original motivation for the bosonic truncation was in describing a supercon-

ducting phase transition using holographic methods within a controlled system, i.e, one

which is derived directly from a UV complete theory. This truncation hence completes the

story by demonstrating the embedding into a fully supersymmetric theory. It would be

interesting to consider the dynamics of this theory, and whether there is a supersymmetric

superconducting phase transition. Note however that this analysis would be complicated

by the presence of the gravitino. After all, it is not consistent to simply set the gravitino

field defined here to be zero. Since the gravitino couples to the supercurrent, this suggests

that the holographic superconductor model of [49] in fact has an underlying (although

spontaneously broken) supersymmetry.

While the truncation first presented in [49] did not include the axi-dilaton, as in the
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bosonic case, it is consistent to fix τ as well. This simplifies the Lagrangian to be

e−1L = R− 3

4
FµνF

µν − e−1A1 ∧ F2 ∧ F2

+12
(1− 6f2)

(1− 4f2)2
− 8

∂µf∂
µf

(1− 4f2)2
− 8f2 (∂µθ − 3Aµ)(∂µθ − 3Aµ)

(1− 4f2)2

+
¯̂
ψαγ

αβσDβψ̂σ +
1

2
¯̃
λγαDαλ̃+

3i

8
¯̂
ψα

(
γαβρσ + 2gαβgρσ

)
Fβρψ̂σ +

3i

16
¯̃
λγµνFµν λ̃

+
1

1− 4f2

(
3

4
(1 + 8f2)

¯̃
λλ̃− 3

2
¯̂
ψαγ

ασψ̂σ − if2(∂µθ − 3Aµ)
(

3
¯̃
λγµλ̃+ 2

¯̂
ψαγ

αβσψ̂σ

))
+

(
eiθ

1− 4f2

(
(∂µf + if(∂µθ − 3Aµ))

¯̂
ψαγ

µγαλ̃+ 3f
¯̂
ψαγ

αλ̃
)

+ h.c.

)
,

(II.113)

where we have defined b =
√
gsfe

iθ and τ = ig−1
s .

Finally, it is worth noting that although this theory involves a charged scalar coupled to

the fermion λ̃, it lacks the Majorana coupling φλλ that has been of recent interest in studies

involving gapped fermions in the bosonic condensate [20, 34, 51]. While this coupling is

allowed by charge conservation, the explicit reduction shows that it is not present. More

generally, examination of Table 2.3 demonstrates that the bm
2=21 scalar in the massive

vector multiplet may have such a coupling, and in fact the equations of motion (II.103)

and (II.104) show that it is exists for both ψm=11/2 and ψm=−9/2. It would be curious to

see if this bm
2=21 scalar may play a role in novel models of holographic superconductors.



CHAPTER III

Holographic c-theorems for higher derivative gravity

In this chapter we prove a holographic c-theorem for higher curvature Lovelock gravity,

where the bulk equations of motion remain second order. We also explore gravitational

action built out of arbitrary functions f(R) and f(Rabcd) coupled to bulk matter. In both

cases, monoticity of the flows require additional conditions related to the higher derivative

nature of the theory. This chapter is based on [75, 79] in collaboration with James Liu and

Wafic Sabra.

3.1 Motivation for a holographic c-theorem for higher derivative gravity

Central charges in conformal field theories can often be thought of as a proxy for the

number of degrees of freedom exhibited by the theory. In this context, the Zamolodchikov

c-theorem [101] is a powerful result for two-dimensional conformal field theories. It states

that there exists a c-function which is monotonically decreasing along flows from the UV

to IR, and which is equal to the central charge at the fixed points of the flow. This is a

direct indication that UV degrees of freedom of the CFT are removed as the theory flows

to the IR.

While two dimensional conformal field theories are rather special, there have been nu-

merous attempts to generalize the c-theorem to higher dimensions. However, one obstacle

that needs to be surmounted in doing so is the realization that there may be multiple can-

60
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didates for a satisfactory c-function. For example, in four dimensions, the Weyl anomaly

has the well known form

(III.1) 〈Tµµ 〉 =
c

16π2
C2
µνρσ −

a

16π2
E4,

where E4 = R2
µνρσ − 4R2

µν + R2 is the four-dimensional Euler density. In this context,

Cardy demonstrated that, while the c anomaly coefficient may not be the proper object to

investigate, the a coefficient appears to have the desired monotonicity property along flows

[14]. This has subsequently been confirmed in various situations [88, 68, 6, 5], and further

investigated in the context of a-maximization [65, 74, 73, 9].

While the above investigations have been carried out in a field theory context, AdS/CFT

allows the possibility of a holographic version of the c-theorem. At large N , the a and c

anomalies are equal, and can be computed holographically; for N = 4 super-Yang-Mills,

the result is simply a = c = N2/4 [58]. This result may be extended to renormalization

group flows, which correspond to radial flow in the bulk dual. A c-theorem can then

be proven at leading order in large N by examining the flow equations for domain wall

solutions interpolating between the UV and IR [3, 45, 35, 91].

Myers and Sinha have extended the leading order holographic c-theorem to the case

where the bulk theory may contain higher order curvature terms, corresponding to moving

away from the leading behavior in AdS/CFT [94, 84, 95, 85]. In particular, they considered

the addition of a Gauss-Bonnet and ‘quasi-topological’ curvature-cubed term to the bulk

action. By generalizing the holographic a-anomaly, computed for a general bulk action in

[64], they constructed an appropriate a-function that is monotonic along radial flow. A key

element of this holographic c-theorem rests on the fact that the equations of motion contain

no higher than second derivatives of the metric when expanded on the AdS background.

Gauss-Bonnet gravity manifestly satisfies this requirement, as does the quasi-topological

theory, which was explicitly constructed to have this property.
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Here we extend the investigation of Myers and Sinha in two directions. Firstly, we prove

a holographic c-theorem for the case of Lovelock bulk theories. These theories generalize

Gauss-Bonnet gravity in d+ 1 dimensions by the addition of d′ dimensional Euler densities

where d′ < d. While this result is mostly formal, in the sense that higher Lovelock terms are

only present in theories in dimensions too large for practical applications, it nevertheless

suggests that the holographic c-theorem extends to arbitrary orders in the bulk curvature,

so long as higher derivative terms in the equations of motion are able to be controlled.

Secondly, we address what happens when the bulk action is not restricted to second

order equations of motion by examining f(R) gravity as a toy model. In this case, we find

that the constructed a-function may deviate from monotonicity by a term that is explicitly

of higher derivative order. We suggest that this term, which may lead to a violation of

the holographic c-theorem, is related to the additional ghost modes of the theory. From

an AdS/CFT point of view, this would correspond to a breakdown of unitarity in the dual

field theory.

3.2 A holographic c-theorem for Lovelock gravity

While higher-curvature gravitational actions generically lead to higher derivative equa-

tions of motion and ensuing pathologies such as ghosts, a special class of higher-curvature

actions may be constructed that nevertheless give rise to second order equations of mo-

tion for the metric. These are the Lovelock actions, which are constructed out of the

(d+ 1)-dimensional continuation of lower dimensional Euler densities [80]

(III.2) S =
1

2κ2

∫
dd+1x

√
−g
∑
m

αmL
(m) + Smatter.

Here the m-th Lovelock term is the Euler invariant in 2m dimensions

(III.3) L(m) =
1

2m
δa1b1···ambmc1d1···cmdmRa1b1

c1d1 · · ·Rambmcmdm .
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In particular, L(0) = 1 is a cosmological constant, L(1) = R is the ordinary Einstein-Hilbert

term and L(2) = R2
µνρσ−4R2

µν +R2 is the Gauss-Bonnet invariant. The equation of motion

following from (III.2) is simply Gab = κ2Tab, where the generalized Einstein tensor is given

by Gab =
∑

m αmG
(m)
ab , with

(III.4) G
e (m)
f = − 1

2m+1
δea1b1···ambmfc1d1···cmdmRa1b1

c1d1 · · ·Rambmcmdm .

With a suitable choice of the cosmological constant, we take the bulk Lovelock action

(III.2) to be dual to a d-dimensional CFT. As demonstrated in [64], the d-dimensional

type A trace anomaly (i.e. the term proportional to the Euler characteristic) is universal

in holographic renormalization, and its coefficient may be expressed as

(III.5) aUV = −π
d/2

2κ2

`d+1

(d/2)!2
f(AdS),

where

(III.6) f(AdS) =
∑
m

αmL
(m)
∣∣∣
AdS

is the on-shell Lagrangian evaluated on the asymptotic AdS background with radius `.

In order to construct a suitable a-function, we need to promote the aUV central charge

(III.5) at the UV fixed point into a function a(r) of the radial flow. Here, for simplicity,

we consider a radial slicing of the bulk space into flat slices of the form

(III.7) ds2 = e2A(r)(−dt2 + d~x2
d−1) + dr2,

with curvature components

(III.8) Rµνρσ = −A′2(gµρgνσ − gµσgνρ), Rµrνr = −(A′′ +A′2)gµν .

This allows us to evaluate the individual Lovelock terms

(III.9) L(m) = (−A′2)m
(d+ 1)!

(d+ 1− 2m)!
− 2mA′′(−A′2)m−1 d!

(d+ 1− 2m)!
.
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The second term is unimportant at AdS fixed points since we have

(III.10) A ∼ r/`, A′ ∼ 1/`, A′′ ∼ 0, as r →∞.

As a result, the on-shell value of L(m) takes the form

(III.11) L(m)
∣∣∣
AdS

= (−1)m
(d+ 1)!

(d+ 1− 2m)!`2m
,

so that the aUV central charge (III.5) may be expressed as

(III.12) aUV = − πd/2

2κ2(d/2)!2

∑
m

αm(−1)m
(d+ 1)!`d+1−2m

(d+ 1− 2m)!
.

The extension of aUV → a(r) into the bulk is by no means unique. As a first attempt

to do so, we make the substitution

(III.13) `→ `eff(r) ≡ 1

A′(r)
,

so that

(III.14) a0(r) = − πd/2

2κ2(d/2)!2

∑
m

αm(−1)m
(d+ 1)!

(d+ 1− 2m)!(A′)d+1−2m
.

This satisfies the requirement that a(r) reproduces the central charge at fixed points of the

flow. In addition, it incorporates the metric function at the first derivative level, so that

(III.15) a′0(r) = − πd/2

2κ2(d/2)!2
A′′

(A′)d

∑
m

αm(−1)m+1 (d+ 1)!(A′)2m−2

(d− 2m)!

is linear in A′′. Following [35, 84], we aim to demonstrate that a′0(r) is monotonic by

appealing to the bulk equations of motion. To do so, we first compute the generalized

Einstein tensor components (III.4) using the curvature components (III.8) for the bulk

metric. The resulting two independent components are

G
t (m)
t = − d!

2(d− 2m)!
(−A′2)m +

m(d− 1)!

(d− 2m)!
A′′(−A′2)m−1,

Gr (m)
r = − d!

2(d− 2m)!
(−A′2)m,(III.16)
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so that

(III.17) Gtt −Grr = A′′
∑
m

mαm(−1)m+1 (d− 1)!(A′)2m−2

(d− 2m)!
.

Comparison with (III.15) shows that, while the form of a′0(r) is suggestive, it nevertheless

does not match with the difference Gtt − Grr. However, as indicated above, a0(r) is not

necessarily unique, and using the Einstein equation as a guide, we now construct a modified

a-function which is monotonic.

To proceed, we first note that, at AdS fixed points where the bulk matter sector con-

tributes vanishing vacuum energy, the background satisfies the vacuum Einstein equation

(III.18) 0 = Grr

∣∣∣
AdS

=
∑
m

αm(−1)m+1 d!(A′)2m

2(d− 2m)!

∣∣∣∣
AdS

.

(Recall that the cosmological constant term is included in the gravitational sector through

α0.) This allows us to add a vanishing on-shell contribution to (III.6), so that

(III.19) f(AdS) = 2Grr +
∑
m

αmL
(m)
∣∣∣
AdS

=
∑
m

2mαm(−1)m
d!

(d+ 1− 2m)!`2m
.

In this case, we are led to the definition

(III.20) a(r) = − πd/2

κ2(d/2)!2

∑
m

mαm(−1)m
d!

(d+ 1− 2m)!(A′)d+1−2m
.

Note that the shift removes the cosmological constant term α0 from the definition of a(r),

and matches what is done in constructing a suitable a-function in the leading two-derivative

gravity. This a-function can now be seen to satisfy

(III.21) a′(r) = − dπd/2

κ2(d/2)!2
Gtt −Grr

(A′)d
= − dπd/2

(d/2)!2
T tt − T rr

(A′)d
≥ 0,

where the inequality corresponds to the null energy condition. Therefore we have found

an appropriate extension of the a central charge which is indeed monotonic along flows

from the UV to the IR. This result extends the observation of [84, 85] that a general

holographic c-theorem may be obtained in the presence of higher order corrections, provided

the (linearized) equations of motion remain second order.
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3.3 f(R) gravity

In proving the holographic c-theorem for Lovelock gravity, we have constructed the

a(r) function (III.20) entirely out of the first derivative of the metric function, A′. This

ensures that a(r) reproduces the a central charge at fixed points of the flow where A′ ∼ 1/`.

However, this construction also guarantees that a′(r) is linear in the second derivative A′′ so

that it may be connected to the equations of motion. This connection suggests that having

second order equations is an essential aspect of obtaining the c-theorem. On the other

hand, bulk AdS duals are often considered to be effective theories where higher derivative

corrections naturally arise (e.g. in the string α′ expansion). Thus it is important to address

whether any holographic c-theorem could hold in such higher derivative theories as well.

Here we take one step towards a fully general investigation by considering the case of

f(R) gravity. Such theories have been considered from a cosmological point of view, and

are closely related to Brans-Dicke theory (see e.g. [26]). However, here we are mainly

interested in f(R) gravity as a toy model exhibiting higher derivative equations of motion.

The action is given by

(III.22) S =
1

2κ2

∫
dd+1x

√
−gf(R) + Smatter,

where f(R) is a fixed but arbitrary function of the scalar curvature R. The resulting

equation of motion is

(III.23) Gab ≡ FRab −
1

2
fgab + (gab�−∇a∇b)F = κ2Tab,

where

(III.24) F (R) =
df(R)

dR
.

Since F (R) is second order in derivatives, the equation of motion is in general fourth order.
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In order to construct an appropriate a-function for f(R) gravity, we follow [35, 84] and

explore the difference in the Einstein equation components Gtt −Grr. To proceed, we take

the same metric (III.7) as used above, and compute the Ricci components

(III.25) Rµν = −(A′′+dA′2)gµν , Rrr = −d(A′′+A′2), R = −d(2A′′+(d+1)A′2).

In this case, the Einstein equation (III.23) splits into

Gµν = −[F (A′′ + dA′2) +
1

2
f − (d− 1)A′F ′ − F ′′]δµν = κ2Tµν ,

Grr = −F (dA′′ + dA′2)− 1

2
f + dA′F ′ = κ2T rr .(III.26)

Taking the difference of Gtt and Grr gives

(III.27) Gtt −Grr = (d− 1)A′′F −A′F ′ + F ′′ = κ2(T tt − T rr ).

Note that F is a function of R, which is in turn a function of A according to (III.25). Thus

the higher derivatives of A are encoded in the −A′F ′ + F ′′ terms in this equation.

Our aim is to construct a suitable a(r) which reproduces the a-anomaly at the UV

boundary and which is subject to a flow governed by (III.27). We start with the anomaly

coefficient itself, given by (III.5)

(III.28) aUV = −π
d/2

2κ2

`d+1

(d/2)!2
f(AdS),

where this time f(AdS) is simply the on-shell value of f(R) at the asymptotic AdS fixed

point

(III.29) f(AdS) = f(−d(d+ 1)`−2).

As we saw above, the extension of aUV to the interior is not unique. A straightforward

choice would be to replace f(AdS) by f(R), so that

(III.30) a0(r) = − πd/2

2κ2(d/2)!2
f(R)

(A′)d+1
.
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This is similar to our choice of a0(r) in (III.14), although here we allow f(R) to contain

A′′ through the dependence on the curvature scalar. However, differentiation of a0(r) with

respect to r does not give any obvious correspondence with the difference (III.27). Thus

we seek an improvement to a0(r), just as we did for the Lovelock case.

Since we do not want to destroy the matching of the a-function with the actual a-

anomaly at AdS critical points, we can adjust a0(r) by at most functions which vanish at

such points. A natural possibility for such a function is to take the equations of motion at

a critical point. In this case, the stress tensor Tab vanishes, and furthermore the functions

f and F become constant. The rr equation of motion (III.26) then simplifies to

(III.31) Grr

∣∣∣
AdS

=

[
−dA′2F − 1

2
f

]
AdS

= 0,

where A′ = 1/`. This suggests that we shift f(R) in (III.30) by 2Grr, just as we did in the

Lovelock case. The resulting a-function then takes the form

(III.32) a(r) =
dπd/2

κ2(d/2)!2
F (R)

(A′)d−1
,

where R is given in (III.25). Note that F (R) in the numerator of this expression is es-

sentially the derivative of the Lagrangian with respect to R (or equivalently with respect

to Rtrtr). This suggests a natural connection with an entropy function, as pointed out in

[84, 85].

With the definition (III.32), we now see that

a′(r) =
dπd/2

κ2(d/2)!2
−(d− 1)A′′F +A′F ′

(A′)d

=
dπd/2

(d/2)!2
−(T tt − T rr ) + F ′′/κ2

(A′)d
,(III.33)

where the second line follows from the equation of motion (III.27). If it were not for the

F ′′ term, we would then use the null energy condition, −(T tt − T rr ) ≥ 0, to demonstrate

that a′(r) ≥ 0. This suggests that the higher derivative nature of f(R) gravity directly
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impacts the fate of the holographic c-theorem. In particular, a non-trivial F ′′ contribution

is a direct sign that the gravitational background incorporates up to four derivatives of A.

Taking a step back, it is perhaps not surprising that in this case monoticity of a′(r) re-

quires not just the weak energy condition on the matter sector, but also a further condition

F ′′ ≥ 0 on the gravity sector. While we do not see a direct connection with unitarity, it

is certainly plausible that this F ′′ ≥ 0 condition would be related to the absence of ghost

modes in the background of the flow. One way to investigate this would be to map f(R)

gravity onto Brans-Dicke theory. In this case, F plays the role of the Brans-Dicke scalar.

However, it is not clear to us how F ′′ may be related to any obvious pathologies of the

theory.

In searching for a holographic c-theorem, we may also need to make a distinction be-

tween perturbative versus non-perturbative expansions in the higher derivative terms. For

example, at the R2 level, we may take f = R+ d(d− 1)/`20 + αR2, so that F = 2αR. The

AdS vacuum with radius ` is given by the solution to (III.31), and in this case admits two

branches

(III.34)

(
`

`0

)2

=
1

2
±

√
1

4
− α

`20

d(d+ 1)(d− 3)

d− 1
.

This may be expanded for small α

`+ = `0

(
1− α

2`20

d(d+ 1)(d− 3)

d− 1
+ · · ·

)
,

`− =
α

2`0

d(d+ 1)(d− 3)

d− 1
+ · · · .(III.35)

We thus see that only the positive branch is smoothly connected to the finite radius back-

ground in the perturbative limit α→ 0. In the context of AdS/CFT, it is natural to view α

as an expansion parameter in an effective theory with higher curvature interactions. In this

case, we ought to restrict to only the positive branch. Perhaps the sign of F ′′ can somehow

be attributed to this choice. In particular, we have readily found numerical solutions for
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this example model coupled to a massless scalar where a′(r) changes sign (from positive to

negative) along the flow to the IR. However, all such resulting solutions involve a domain

wall interpolating between the positive and negative branches of (III.34), and have the

form

(III.36) A(r)→


r/`+, r →∞

|r|/`− r → −∞.

This ‘kink up’ domain wall solution has the characteristic of a negative tension wall inter-

polating between two regions that both open up into AdS boundaries. Nevertheless, we

have checked that the scalar matter is not responsible for this negative tension. Hence, it

must have its origin in the higher derivative gravitational sector. This at least suggests

that violation of the c-theorem is closely related to pathologies in the gravity sector of the

theory that would not arise when treated in a proper perturbative expansion where the

equations of motion can be perturbatively arranged to use no higher than second order

derivatives in the expansion.

3.4 Discussion

In both the Lovelock and the f(R) case, we have defined the a-function based on a

shifted form of the Lagrangian

(III.37) aUV = −π
d/2

2κ2

`d+1

(d/2)!2
f(AdS) ⇒ a(r) = − πd/2

2κ2(d/2)!2
f + 2Grr
(A′)d+1

,

where f = e−1L is the Lagrangian density in the gravity sector (not including matter).

Since we take the matter energy density to vanish at AdS fixed points, the addition of

2Grr does not affect the identification of a(r) with the a anomaly coefficient. However, this

improvement allows a′(r) to be related to the difference of the Einstein equations Gtt −Grr

along the flow.
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As noted in [84], the a-function has a second interpretation in terms of entanglement

entropy. This can be seen to arise in a natural manner, provided we perform the 2Grr shift.

In particular, consider a general higher curvature action of the form

(III.38) S =
1

2κ2

∫
dd+1x

√
−gf(Rabcd) + Smatter.

The corresponding Einstein equation may be written as

(III.39) Gab ≡ F(a
cdeRb)cde −

1

2
fgab + 2∇c∇dFacbd = κ2Tab,

where

(III.40) Fab
cd =

δf(Ref gh)

δRabcd
.

This generalizes the f(R) equation of motion given in (III.23). The higher derivative terms

are manifestly present in the Einstein tensor. However, they vanish on the AdS background

where Fabcd is covariantly constant (as it is constructed out of the maximally symmetric

Riemann tensor). Further taking Tab to vanish in the asymptotic AdS region, we end up

with

(III.41) Grr

∣∣∣
AdS

=

[
−2A′2F rµrµ −

1

2
f

]
AdS

=

[
−2dA′2F trtr −

1

2
f

]
AdS

.

The general a-function (III.37) then takes the form

(III.42) a(r) =
2dπd/2

κ2(d/2)!2
F trtr

(A′)d−1
.

If we were to consider black hole entropy in the presence of higher curvature corrections,

it would be natural to use the Wald entropy formula [99, 66, 67]

(III.43) S = − 2π

2κ2

∫
Σ
dd−1x

√
−g δf

δRabcd
εabεcd =

4π

κ2

∫
Σ
dd−1x

√
hF trtr,

where the integral is over the area of the horizon with unit binormal εab along t and r.

This reduces to the familiar one-quarter of the horizon area (in GN = κ2/8π units) in the
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absence of higher curvatures, where F abcd = 1
2δ
ab
cd . Although this expression is intended to

be evaluated at the black hole horizon, it can nevertheless be generalized into an entropy

function [46, 21]

(III.44) C̃(r) =
4π

κ2
F trtr

√
h =

4π

κ2
e(d−1)AF trtr,

where we have used the explicit form of the metric (III.7).

Flows of C̃(r) have been investigated in the context of the second law of black hole

thermodynamics in higher curvature gravity, including both Lovelock and f(R) gravity

[69, 21, 4]. In the case of f(R) gravity, a c-theorem can be proven which generalizes the

Hawking area theorem [57] by use of the Raychaudhuri equation [69, 21]. In particular, we

consider an affinely parameterized null congruence given by the tangent vector ka∂a = d/dλ

and define

(III.45) θ̃ =
d log C̃

dλ
= θ + ka∂a logF,

where θ is the expansion of the null congruence. The Raychaudhuri equation then gives

(III.46)
dθ̃

dλ
= − 1

d− 1
θ2 − σabσab + ωabω

ab − kakbRab + kakb∇a∇b logF,

and further application of the Einstein equation (III.23) reduces this to

(III.47)
dθ̃

dλ
= − 1

d− 1
θ2 − σabσab + ωabω

ab −
(
d logF

dλ

)2

− κ2kakbTab
F

.

Provided the congruence is twist-free, and assuming the null energy condition kakbTab ≥ 0

along with positivity of F , the terms on the right-hand-side are all non-positive, and as a

result we may conclude that dθ̃/dλ ≤ 0, which is the statement of the second law in f(R)

gravity [69, 21].

For f(R) gravity with the metric written in the explicit form (III.7), we define ka∂a =

−e−2A∂t + e−A∂r, in which case

(III.48) θ̃ = e−A
[
(d− 1)A′ +

F ′

F

]
,
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so that

θ̃′ = e−A

[
−(d− 1)A′2 −

(
F ′

F

)2

+
(d− 1)A′′F −A′F ′ + F ′′

F

]

= −e−A
[

(d− 1)A′2 +

(
F ′

F

)2

− κ2(T tt − T rr )

F

]
≤ 0.(III.49)

We see here that, even with a higher order equation of motion, the terms involving higher

derivatives arrange themselves in just the proper manner to match with the Einstein equa-

tion combination (III.27). This is in contrast with the holographic a-function, where a′(r)

given in (III.33) picks up an additional contribution proportional to F ′′. Nevertheless, it

would be interesting to see if a connection can be made between the black hole entropy

function (III.58) and the holographic a-function (III.42).

Ideally, it would be desirable to construct a general proof of a holographic c-theorem for

the a-function of (III.42) using techniques such as the generalized Raychaudhuri equation

(III.46). This would allow the c-theorem to be separated from the particular bulk AdS

flow parameterization of (III.7). However, unlike the Raychaudhuri equation itself, which

is independent of dynamics, the incorporation of F trtr into the generalized expansion θ̃

necessarily brings higher derivative dynamics into the picture. Thus it appears unlikely

that the proof of a holographic c-theorem for higher curvature gravity can be fully decoupled

from the exact form of the higher order interactions. (In fact, we do not expect any c-

theorem to hold unless additional unitarity constraints are imposed.) Nevertheless, we

anticipate that it would be possible to make a general statement in the restricted case

where the linearized equations of motion remain second order in the AdS background.

3.5 A holographic c-theorem for arbitrary f(Rab
cd) gravity

In previous sections, we investigated the possibility of constructing a holographic c-

theorem for f(R) gravity [75], and demonstrated that monoticity of the a central charge

will be ensured by a combination of the null energy condition on the bulk matter and a
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condition related to the higher derivative nature of the gravitational sector. This second

condition appears to be a weaker version of the unitarity requirement of [85]. In the

remaining sections of the chapter, we extend the investigation of [75] by constructing a

general a-function which is applicable to a large class of higher derivative gravity theories

in the bulk coupled to matter. As in the f(R) case, monoticity is ensured by a combination

of conditions on the bulk matter and gravitational sectors of the theory.

3.6 Defining the a-function

Consider a general bulk action of the form

(III.50) S =
1

2κ2

∫
dd+1x

√
−gf(Rabcd) + Smatter.

Here, a, b, . . . = 0, 1, . . . , d correspond to bulk indices, and below we will use µ, ν, . . . =

0, 1, . . . , d− 1 to denote boundary indices. For simplicity, we take f(Rabcd) to be built out

of the Riemann tensor with raised and lowered indices as indicated. In particular, it does

not contain any implicit metric factors nor derivatives of the Riemann tensor. In this case,

the Einstein equation reads

(III.51) Gab ≡ F(a
cdeRb)cde −

1

2
fgab + 2∇c∇dFacbd = κ2Tab,

where

(III.52) Fab
cd =

δf(Ref gh)

δRabcd
.

Following [85, 75], we consider the metric

(III.53) ds2 = e2A(r)(−dt2 + d~x2
d−1) + dr2,

and define the a-function

(III.54) a(r) =
2dπd/2

κ2(d/2)!2
F trtr

(A′)d−1
.
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As shown in [85, 75], this function reproduces the holographic a-anomaly [58, 64] when

evaluated at an AdS fixed point of the holographic flow. To see this, consider, for example,

the case of Einstein gravity where F trtr = 1/2. In this case, the a-function takes the form

(III.55) a(r) =
dπd/2

κ2(d/2)!2
`d−1
eff ,

where `eff = 1/A′ is the ‘effective’ AdS radius. Setting d = 4 and taking `eff to be a

constant AdS radius L then gives the familiar holographic expression [58]

(III.56) a =
π2

κ2
5

L3 =
N2

4
,

where we have used the AdS5/CFT4 dictionary L4 = 4πα′2gsN and 2κ2
5 = 2κ2

10/Vol(S5) =

(2π)7g2
sα
′4/π3L5.

In the more general higher curvature case, the expression (III.54) is somewhat reminis-

cent of the Wald entropy formula [99, 66, 67]

(III.57) S =
4π

κ2

∫
Σ
dd−1x

√
hF trtr,

where the integral is taken over the horizon of the black hole. Although the bulk spacetimes

we are interested in are not necessarily that of black holes, we may nevertheless define an

entropy function [46, 21]

(III.58) C̃(r) =
4π

κ2
e(d−1)AF trtr,

corresponding to the metric (III.53). While we are primarily focused on the holographic a

anomaly, we will also comment on the behavior of C̃(r) below.

3.7 A holographic c-theorem and the null energy condition

Given the a-function (III.54), we now wish to demonstrate that a′(r) ≥ 0, or at least

understand the conditions for this to hold. Motivated by the holographic c-theorem in or-

dinary Einstein gravity [3, 45, 35, 91], which makes crucial use of the null energy condition,
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we focus on the combination Gtt−Grr, where the generalized Einstein tensor Gab is defined

in (III.51). For the metric (III.53), this takes the form

(III.59) Gtt −Grr = 2(d− 1)(F txtxR
tx
tx − F trtrRtrtr) + 2∇a∇b(F tatb − F rarb).

Note that, because of the isometries of the metric, we have taken x to be an arbitrary

spatial direction (which we can take to be x1).

Computing the Riemann tensor corresponding to the metric (III.53) is straightforward,

and gives

(III.60) Rµνρσ = −A′2(δµρ δ
ν
σ − δµσδνρ), Rµrνr = −(A′′ +A′2)δµν .

The covariant derivatives acting on F abcd are somewhat more cumbersome to evaluate. We

find

∇a∇bF tatb = F trtr
′′ + (d− 1)[A′(2F trtr

′ − F txtx′) + (A′′ + (d− 1)A′2)(F trtr − F txtx)],

∇a∇bF rarb = dA′F trtr
′ + d(d− 1)A′2(F trtr − F txtx).

(III.61)

Combining the above, we obtain

(III.62) Gtt −Grr = 2(d− 1)A′′F trtr − 2A′F trtr
′ + 2F trtr

′′ + 2(d− 1)[A′(F trtr − F txtx)]′.

We are now in a position to examine flows of the a-function. Taking a radial derivative

of (III.54) and substituting in (III.62) yields

(III.63) a′(r) =
dπd/2

κ2(d/2)!2
−(Gtt −Grr) + 2[(d− 1)A′(F trtr − F txtx) + F trtr

′]′

(A′)d
.

Assuming d is even, the sign of a′(r) is then given by the sign of the numerator above.

By imposing the null energy condition on bulk matter, −(T tt − T rr ) ≥ 0, and using the

Einstein equation, we see that the first term in the numerator is indeed non-negative.
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However, there does not appear to be any obvious constraint on the sign of the second

term. What this demonstrates is that the null energy condition by itself is no longer

sufficient to guarantee monoticity of the a-function in a higher derivative bulk theory of

gravity. Instead, what is required is that the entire numerator is non-negative. At the same

time, however, there appears to be a clear physical separation between the two terms in

the numerator; the first term is related to the bulk matter, while the second is related to

the higher derivative gravitational interactions. As suggested in [75], the sign of the latter

term may be connected to unitarity and ghost issues in the gravitational sector.

One way to ensure that the a-function defined in (III.54) is monotonic increasing in

flows to the UV is to impose separate conditions on the matter and gravitational sectors:

(i) the bulk matter must satisfy the null energy condition −(T tt − T rr ) ≥ 0, and (ii) the

gravitational sector must satisfy ∆′ ≥ 0 where

(III.64) ∆ ≡ (d− 1)A′(F trtr − F txtx) + F trtr
′.

Of course ∆ = 0 for Einstein gravity. Furthermore, for f(R) gravity, the function Fab
cd is

simply

(III.65) F abcd =
1

2
(δac δ

b
d − δadδbc)F (R).

Hence ∆ = F ′(R)/2, and the condition ∆′ ≥ 0 is identical to the condition F ′′ ≥ 0 obtained

in [75]. Note that this condition is entirely expressed in terms of the scalar curvature R,

and in particular does not involve explicit factors of the metric scale factor A.

To further develop our understanding of the ∆′ ≥ 0 condition, we may examine a general

R2 action of the form

(III.66) f(Rabcd) = R+ Λ + α1R
2 + α2RabR

ab + α3RabcdR
abcd.

In this case, F abcd takes the form

(III.67) F abcd = (1+2α1R)
1

2
(δac δ

b
d−δadδbc)+2α2

1

4
(δacR

b
d−δadRbc−δbcRad+δbdR

a
c )+2α3R

ab
cd.
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Decomposing this into µ and r components, and using (III.60), we obtain

(III.68) ∆ =
4dα1 + (d+ 1)α2 + 4α3

4d
R′,

where R = −d(2A′′ + (d + 1)A′2). What is curious is that this is again written only in

terms of the curvature scalar R, even though f(Rabcd) involves the full Ricci tensor.

Note that ∆ vanishes identically when 4dα1 +(d+1)α2 +4α3 = 0, as noted in [85]. This

encompasses the Gauss-Bonnet combination {α1, α2, α3} = {1,−4, 1}, but also allows for

a two-parameter family of R2 theories that satisfy the c-theorem with only the null energy

condition.

3.8 More discussion

As we have seen, monoticity of flows of a(r) for a general higher derivative bulk theory

follows from both the null energy condition and a gravitational sector condition ∆′ ≥ 0.

The latter condition is explicitly higher than second order in derivatives, and encodes the

content of the higher curvature terms in the bulk gravitational action. As argued in [85], we

would like to impose the physical requirement that the boundary theory is unitary, both

at fixed points and along the RG flow. This requirement corresponds to the constraint

that the bulk metric fluctuations are second order in derivatives, and is thus equivalent to

demanding that ∆ = 0.

While the restriction to bulk theories with only second order fluctuations makes physical

sense, we nevertheless believe additional information can be obtained even in the presence

of higher order fluctuations. After all, we ought to view the bulk theory as an effective

gravity theory, in which case any breakdown in unitarity could potentially be relegated

to energy scales above those of interest. For example, in the case of R2 gravity, we have

found a non-trivial ∆ given in (III.68). However, at linearized order, a field redefinition
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gab → gab + λ1Rab + λ2gabR can be used to put f(Rabcd) into the Gauss-Bonnet form

(III.69) f(Rabcd) = R+ Λ + α3(RabcdR
abcd − 4RabR

ab +R2) + · · · .

In this frame, the linearized action is second order in derivatives, and ∆ vanishes identically.

Of course, what we have done is pushed the higher derivative interactions to higher orders.

Nevertheless, this demonstrates that in some cases a theory with non-trivial ∆ (and hence

explicit higher derivative terms) may be equivalent up to any finite order in the higher

curvature expansion to a theory with ∆ = 0.

In fact, the issue of field redefinitions is somewhat more involved for the matter coupled

gravity system in the bulk. For R2 gravity at linearized order, one expects that only

α3 is physical, and yet both α1 and α2 show up in the expression (III.68) for ∆. While

∆ itself is not a direct physical observable, its behavior along radial flows does have an

impact on the monoticity of a(r). Thus its dependence on α1 and α2 is perhaps somewhat

unexpected. We believe that the resolution to this apparent paradox is that the above

field redefinition of the metric necessarily mixes the gravitational and matter sectors of the

original action (III.50), so that in particular Smatter will now depend on both curvature

and actual matter fields. This suggests that there is in fact no sharp distinction between

the gravity and matter sectors of the bulk theory, and that unitarity of the gravity theory

cannot be completely disentangled from unitarity of the bulk matter.

With the above in mind, we note that the Einstein equation (III.51) may be used to

rewrite (III.63) as

(III.70) a′(r) =
dπd/2

κ2(d/2)!2
−κ2(T tt − T rr ) + 2∆′

(A′)d
.

In this case, a weaker form of the c-theorem may be obtained by demanding only that the

numerator is non-negative

(III.71) −κ2(T tt − T rr ) + 2∆′ ≥ 0.
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We believe this may be viewed as a generalized null energy condition that takes both

matter and gravity into account. It would be interesting to see if this form of a generalized

null energy condition can be made more precise. In particular, we believe this ought to

be directly related to the unitarity of dilaton scattering in the field theoretic proof of the

c-theorem presented in [72].

In addition to the holographic Weyl anomaly and the a-function, it is also possible to

define an entropy function, (III.58), based on the Wald entropy formula. Although both

a(r) and C̃(r) depend linearly on F trtr, they differ in their dependence on metric factors:

a(r) depends on the effective radius `d−1
eff = 1/(A′)d−1, while C̃(r) depends on the horizon

volume e(d−1)A. As a result, the proof of the second law of black hole thermodynamics

involving C̃(r) differs from that of the holographic c-theorem given above.

It is in fact instructive to contrast flows of a(r) with flows of C̃(r). For the latter, we

consider an affinely parameterized null congruence given by the tangent vector kµ∂µ = d/dλ

and define

(III.72) θ̃ =
d log C̃

dλ
= θ + kµ∂µ logF trtr,

where θ is the expansion of the null congruence. In particular, for the metric given in

(III.53), we take d/dλ = −e−2A∂t + e−A∂r, in which case

(III.73) θ̃ = e−A
[
(d− 1)A′ +

F trtr
′

F trtr

]
.

Taking a further radial derivative gives

(III.74) θ̃′ = −e−A
[

(d− 1)A′2 +

(
F trtr

′

F trtr

)2

− (d− 1)A′′F trtr −A′F trtr ′ + F trtr
′′

F trtr

]
.

We now substitute in the combination Gtt −Grr given in (III.62) to obtain

θ̃′ = −e−A
[

(d− 1)A′2 +

(
F trtr

′

F trtr

)2

+
−κ2(T tt − T rr ) + 2(d− 1)[A′(F trtr − F txtx)]′

2F trtr

]
.

(III.75)
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Since the first two terms in the square brackets are non-negative, monoticity of θ̃′ will be

ensured so long as the third term is also non-negative. This again involves something like

a generalized null energy condition

(III.76) −κ2(T tt − T rr ) + 2∆̃′ ≥ 0,

however with a different ∆̃ = (d−1)A′(F trtr−F txtx) from that given in (III.64). Note that

∆̃ vanishes for f(R) gravity [21, 69], as in this case F trtr = F txtx = F (R)/2. However, for

R2 gravity, we have

(III.77) ∆̃ = −(d− 1)[(d− 1)α2 + 4α3]

4
(A′2)′.

In particular, this does not vanish for the Gauss-Bonnet combination. This leads to the

curious observation that the null energy condition is sufficient to prove monoticity of the

a-function, yet does not appear to be sufficient for ensuing monoticity of the entropy

function.

Finally, recent developments suggest that the a-anomaly is closely related to the holo-

graphic entanglement entropy of the boundary CFT [84, 85, 28, 25, 63, 16]. This connec-

tion suggests that the holographic c-theorem is a universal means of capturing the effective

number of degrees of freedom along renormalization group flows of the boundary theory.

3.9 Final remarks

In this thesis we have discussed several aspects of the AdS/CFT correspondence. First

we presented consistent supersymmetric truncations of IIB supergravity on squashed Sasaki-

Einstein manifolds up to the second Kaluza-Klein level. We presented the equations of

motion of both bosonic and fermionic sectors of the truncated theory. The full Lagrangian

based on these equations of motion was then constructed. We also determined the su-

persymmetry variation of fermions. We organized the bosons and fermions into D = 5,
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N = 2 supermultiplets and proved the consistency of the truncation. We demonstrated

some further truncations, one of which is particularly interesting because it describes a

holographic superconductor system.

In the second part of the thesis, we proved a holographic c-theorem for higher curvature

Lovelock gravity, where the bulk equations of motion remain second order. Based on the

null energy condition, we also discussed additional sufficient conditions for monoticity of

the a-anomaly coefficient flow where the bulk is described by a gravitational action built

out of an arbitrary function f(R) of the Ricci scalar, or f(Rabcd) of the Riemann tensor

coupled to bulk matter.
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APPENDIX A

Fermion Conventions and Reduced Action: Dirac Matrix
Conventions

A.1 Dirac Matrix Conventions

We work with a mostly plus metric signature, and take the conventional Clifford algebra

{ΓA,ΓB} = 2ηAB. Note, in particular, that Γ0 is anti-hermitian, so that (Γ0)† = −Γ0 and

(Γi)† = Γi. The ten-dimensional Chirality matrix is given by

(A.1) Γ11 ≡ 1

10!
εA1···A10ΓA1 · · ·ΓA10 = Γ0 · · · Γ9,

and squares to the identity.

Corresponding to the metric reduction (II.64), we decompose the ten-dimensional Dirac

matrices according to

Γα ≡ γα ⊗ 14 ⊗ σ1,

Γa ≡ 14 ⊗ τa ⊗ σ2,

Γ9 ≡ 14 ⊗ τ9 ⊗ σ2,(A.2)

where γα are Dirac matrices in the 5d spacetime with γ4 ≡ iγ0γ1γ2γ3 and τa are Dirac

matrices in the 5d internal space with τ9 ≡ τ5τ6τ7τ8. The Chirality matrix Γ11 is then

given by

(A.3) Γ11 = Γ0 · · · Γ9 = 14 ⊗ 14 ⊗ σ3.
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We furthermore take the following conventions for the A, C and D intertwiners which

map between different representations of the Dirac matrices

(A.4) A10ΓMA
−1
10 = Γ†M , C−1

10 ΓMC10 = −ΓTM , D−1
10 ΓMD10 = −Γ∗M .

Here C10 denotes the charge conjugation matrix. These may be decomposed as

(A.5) A10 = A4,1 ⊗A5 ⊗ σ1, C10 = C4,1 ⊗ C5 ⊗ σ2, D10 = iD4,1 ⊗D5 ⊗ σ3,

where the five-dimensional intertwiners are defined as

A4,1γµA
−1
4,1 = −γ†µ, C−1

4,1γµC4,1 = γTµ , D−1
4,1γµD4,1 = −γ∗µ

A5τaA
−1
5 = τ †a , C−1

5 τaC5 = τTa , D−1
5 τaD5 = τ∗a .(A.6)

It turns out the following is a consistent decomposition:

(A.7) A10 = Γ0 = γ0 ⊗ 1⊗ σ1, C10 = C4,1 ⊗ C5 ⊗ σ2, D10 = iγ0C4,1 ⊗ C5 ⊗ σ3.

The five dimensional charge conjugation matrices on both spacetime and the internal man-

ifold satisfy

(A.8) C5 = −CT5 = C∗5 = −C−1
5 .

Finally, we define the charge conjugate of a spinor in any dimension to be ψc = CATψ∗,

which is equivalent to ψc = −Γ0C10ψ
∗. Therefore, letting χ and η be spinors on M and

SE5, respectively, the charge conjugates are given by χc = −γ0C4,1χ
∗ and ηc = C5η

∗.
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APPENDIX B

Fermion Conventions and Reduced Action: The Reduced
Lagrangian

B.1 The Reduced Lagrangian

The bosonic Lagrangian with the massive gravitino multiplet removed was presented in

[77], and takes the form

Lb = R ∗ 1 + (24e2A−2B − 4e5A+3C − 1

2
e8A(4 + φ0)2) ∗ 1− 28

3
dB ∧ ∗dB − 8

3
dB ∧ ∗dC

−4

3
dC ∧ ∗dC − 1

2τ2
2

dτ ∧ ∗dτ̄ − 1

2
e2C−2AF2 ∧ ∗F2 − eA−C(F2 +

1

4
F′2) ∧ ∗(F2 +

1

4
F′2)

−1

2
e−8B[A′1 −

2i

3
εij(f

i
0f̄

j
1 − f̄

i
0f

j
1 )] ∧ ∗[A′1 −

2i

3
εij(f

i
0f̄

j
1 − f̄

i
0f

j
1 )]

−2Mij [e
5A−C(f i0f̄

j
0 + f̄ i0f

j
0 ) ∗ 1 + e−4B(f i1 ∧ ∗f̄

j
1 + f̄ i1 ∧ ∗f

j
1 )]

−A1 ∧ (F2 +
1

4
F′2) ∧ (F2 +

1

4
F′2),(B.1)

where A′1 = A1 + 2i
3 εij(f

i
0f̄

j
1 − f̄ i0f

j
1 ), and where F′2 = dA′1.

The corresponding fermionic Lagrangian may be obtained from the equations of motion



87

presented in Section 2.8.2. At quadratic order in the fermions, we have

e−1Lf =
¯̂
ψµγ

µνρDνψ̂ρ

+
[
− 8

15
ψ̄m=11/2γµK(ψm=11/2)ψ̂µ −

4

5
ψ̄m=−9/2γµK(ψm=−9/2)ψ̂µ

−1

2
λ̄′γµK(λ′)ψ̂µ + h.c.

]
+

8

15
ψ̄m=11/2

[
γµDµ +

3i

5
e−4BγµAµ −

i

120
eC−AγµνFµν −

11i

60
e−A−2B−Cγµνpµν

+eA
(
−17

12
(4 + φ0)e−4B−C +

1

15
e−2B+C − 1

10
e−C

)]
ψm=11/2

+
4

5
ψm=−9/2

[
γµDµ +

2i

5
e−4BγµAµ −

3i

40
eC−AγµνFµν −

3i

20
e−A−2B−Cγµνpµν

+eA
(

1

4
(4 + φ0)e−4B−C +

13

5
e−2B+C +

9

20
e−C

)]
ψm=−9/2

+
1

2
λ̄′
[
γµDµ +

i

8
γµν

(
eC−AFµν − 2e−A−2B−Cpµν

)
−1

4
(4 + φ0)eA−4B−C + eA−2B+C +

3

2
eA−C

]
λ′

+
8

15

[
ψ̄m=11/2

(3i

5
e−4BγµAµ +

i

5
eC−AγµνFµν −

i

10
e−A−2B−Cγµνpµν

+eA
(

12

5
e−2B+C − 12

5
e−C

))
ψm=−9/2 + h.c.

]
+

8

15

[
vie
−2Bψ̄m=11/2

(
−2

5
γµf iµ +

34i

15
eA−Cf i0

)
ψcm=11/2 + h.c.

]
+

8

15

[
vie
−2Bψ̄m=11/2

(
3

5
γµf iµ −

7i

5
eA−Cf i0

)
ψcm=−9/2 + h.c.

]
+

4

5

[
vie
−2Bψ̄m=−9/2

(
−3

5
γµf iµ −

3i

5
eA−Cf i0

)
ψcm=−9/2 + h.c.

]
+

8

15

[
v̄ie
−2Bψ̄m=11/2

(
3

4
γµf iµ +

7i

4
eA−Cf i0

)
λ′ + h.c.

]
+

4

5

[
v̄ie
−2Bψ̄m=−9/2

(
1

2
γµf iµ −

i

2
eA−Cf i0

)
λ′ + h.c.

]
,(B.2)

and the full Lagrangian up to quadratic order in the fermions is given by

(B.3) L = Lb + Lf .
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