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CHAPTER I

Introduction

Schur s-functions and Q-functions are two important families within the alge-

bra Λ of symmetric functions with applications for other fields. The (non-skew)

s-functions form a basis for Λ and are indexed by partitions (i.e. weakly decreasing

sequences of non-negative integers λ = (λ1 ≥ λ2 ≥ · · · ) converging to zero). They

are fundamental objects in several fields: for example, they are the characters of

irreducible polynomial representations of GLn(C), they encode the character tables

of the symmetric groups, and they represent Schubert classes in the cohomology ring

of the Grassmann manifold of k-planes in n-space. The skew s-functions are indexed

by pairs of partitions λ/µ such that µi ≤ λi for all i. They encode (not neces-

sarily irreducible) representations that arise naturally, for example when branching

from GL(m + n) to GL(m) × GL(n). Both non-skew and skew s-functions have a

combinatorial description as generating functions for semistandard tableaux.

Slightly less well known are the Q-functions. The (non-skew) Q-functions form

a basis for a sub-algebra Ω of Λ and are indexed by strict partitions (i.e. partitions

whose non-zero parts are strictly decreasing). They are also fundamental objects in

several fields: for example, they are the characters of irreducible representations of a

certain family of Lie superalgebras, they encode the character tables of the projective
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representations of the symmetric groups, and they represent Schubert classes in the

cohomology ring of the isotropic Grassmannian in n-space. The skew Q-functions

are indexed by pairs of strict partitions, and both non-skew and skew Q-functions

are expressible as generating functions over shifted tableaux.

One of the stranger recent observations about skew s-functions is the discovery

that there are unexpected collisions among them; that is, there are equalities sλ/µ =

sα/β with no combinatorially or algebraically obvious explanation , with the smallest

such collision occurring in degree 8. The question of when two (possibly skew) s-

functions are equal has been studied in a series of papers by van Willigenburg ([13]),

Billera, Thomas and van Willigenburg ([3]), Reiner, Shaw, and van Willigenburg

([9]), and McNamara and van Willigenburg ([7]), but so far the results are not

definitive and the complete answer appears to be complicated. McNamara and van

Willigenburg ([7]) unify the work to date, providing a sufficiency condition explaining

all currently known collisions and conjecturing a related necessary condition that may

provide an algorithm for generating all s-function collisions.

Since Q-functions play a similar role in the sub-algebra Ω to the role of s-functions

in Λ, and since both families have a combinatorial description in terms of tableux,

it is natural to ask similar questions of Q-functions and the elements of Ω to those

that are posed of s-functions within Λ. Whereas s-functions are monic, Q-functions

are not; in determining equality up to constant multiple between possibly skew Q-

functions, we begin in Chapter 2 by finding the leading coefficient of any skew Q-

function (Theorem II.6). In Chapter 3 we turn to the question of equality up to

constant multiple between an s-function and a Q-function, reducing the s-functions

we need to consider by finding all the s-functions in Ω (Theorem III.5). In Chapter

4 we explore equality among Q-functions, and in particular, determine all the S-
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functions that are a constant multiple of a single non-skew Q-function (Theorem

IV.3). We return in Chapter 5 to relations between s- and Q-functions, providing

a Q-expansion for all s-functions in Ω with non-negative coefficients (Theorem V.5)

and determining all the s-functions that are a constant multiple of a single non-skew

Q-function (Theorem V.3).

1.1 Partitions

Definition I.1. A partition λ is a sequence (λ1, λ2, . . . , λi, . . . ) of weakly decreasing

non-negative integers containing finitely many non-zero terms. We will consider two

partitions equivalent if they differ only by the number of zero terms.

Definition I.2. The ith part of partition λ, λi, is the ith largest term of λ.

Definition I.3. The length of λ, l(λ), is the number of non-zero parts of λ.

Definition I.4. The size of λ, |λ|, is the sum of the parts of λ.

Definition I.5. A strict partition is a partition such that all non-zero parts are

distinct, i.e. there does not exist an i such that λi = λi+1 6= 0.

Definition I.6. The k-staircase partition, δ(k), is the partition (k, k − 1, . . . , 2, 1).

For example, δ(5) is the partition 54321.

Definition I.7. On the set of partitions of size n, the lexicographic order is a total

order such that, for partitions λ and µ, λ ≥ µ if either λ = µ or the first non-zero

difference λi − µi is positive.

Definition I.8. On the set of partitions of size n, the dominance order is a partial

order such that, for partitions λ and µ, λ ≥ µ if λ1 + · · ·+λi ≥ µ1 + · · ·+µi for each

i ≥ 1.
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1.2 Diagrams and Tableaux

Definition I.9. For any partition λ, we define the (unshifted) diagram D(λ) to be

{(i, j) ∈ Z2 : 1 ≤ j ≤ λi, i ≥ 1}. As with matrices, we will use the convention that

the (i, j) position of D(λ) is the cell in the ith row from the top and the jth column

from the left.

Notation I.10. We will use µ ⊆ λ to represent that the diagram of µ is contained

in the diagram of λ, i.e. µi ≤ λi for all i ≤ l(µ).

Definition I.11. For any partitions λ and µ with µ ⊆ λ, we define the skew (un-

shifted) diagram D(λ/µ) to beD(λ)\D(µ) as sets, i.e. {(i, j) ∈ Z2 : µi < j ≤ λi, i ≥ 1}.

Definition I.12. For a partition λ, we define the conjugate of λ, λ′, to be the

partition whose diagram D(λ′) interchanges the rows and columns of D(λ); thus λ′i

is the number of cells in the ith column of D(λ). In the skew case, we will use λ′/µ′

to denote the conjugate of λ/µ, where D(λ′/µ′) = D(λ′) \D(µ′).

Definition I.13. For any strict partition λ, we define the shifted diagram D′(λ)

to be {(i, j) ∈ Z2 : i ≤ j ≤ λi + i− 1, i ≥ 1}, so that D′(λ) may be viewed as the

diagram formed when the ith row of the unshifted diagram D(λ) is shifted (i− 1)

positions to the right. As with matrices, we will use the convention that the (i, j)

position of D′(λ) is the cell in the ith row from the top and the jth column from the

left. Since the rows are not left-justified and are instead a staircase-like shape, for

all D′(λ) if i > j then (i, j) /∈ D′(λ).

Definition I.14. For any strict partitions λ and µ with µ ⊆ λ, we define the skew

shifted diagram D′(λ/µ) to be D′(λ) \ D′(µ) as sets, i.e. {(i, j) ∈ Z2 : µi + i − 1 <

j ≤ λi + i− 1, i ≥ 1}.
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Definition I.15. The kth diagonal of D′(λ/µ), counting from left to right, is the set

{(i, k+i−1) ∈ D′(λ/µ)}. Viewing D′(λ/µ) as D(λ/µ) with the ith row shifted (i− 1)

positions to the right, the kth diagonal of D′(λ/µ) is the image of the kth column

of D(λ/µ), and so the length of (or number of cells in) the kth diagonal is λ′k − µ′k.

In particular, the main or first diagonal of D′(λ/µ) is the set {(i, i) ∈ D′(λ/µ)} and

has length l(λ)− l(µ).

Definition I.16. We define any skew unshifted (or shifted) diagram D(λ/µ) (or

D′(λ/µ)) to be connected if one can move between any two cells in D(λ/µ) (or

D′(λ/µ)) through a series of horizontal and vertical steps while remaining within the

diagram.

Definition I.17. For any partitions λ and µ with µ ⊆ λ, an (unshifted) tableau of

shape λ/µ is an assignment to the positions in D(λ/µ) of symbols from the ordered

alphabet P = {1 < 2 < 3 < · · · } such that the entries are weakly increasing left to

right across each row right and are strictly increasing down each column.

Definition I.18. The content of (unshifted) tableau T is the sequence (α1, α2, . . . )

where αa is the number of a entries in T for each a ≥ 1.

Definition I.19. We define two unshifted shapes to be combinatorially equivalent

if there exists a bijection between the positions such that each tableau of one shape

corresponds to a valid tableau of the other. For example, two shapes are combi-

natorially equivalent if they differ by the insertion or deletion of a column or row

of length zero, by the translation of connected components, by the reordering of

connected components, or by some combination of these.

Notation I.20. We will let P′ be the alphabet of ordered symbols {1′ < 1 < 2′ <

2 < · · · }, where the entries 1, 2, . . . are said to be unmarked and the entries 1′, 2′, . . .
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are said to be marked. We will use a∗ to represent a or a′.

Definition I.21. For any strict partitions λ and µ with µ ⊆ λ, a shifted tableau T

of shape λ/µ is an assignment to the positions in D′(λ/µ) of symbols from P′ under

the following conditions:

(a) The entries are weakly increasing left to right across each row and down each

column;

(b) Each column contains at most one a for each a ≥ 1;

(c) Each row contains at most one a′ for each a ≥ 1.

Definition I.22. The content of shifted tableaux T is the sequence (α1, α2, . . . )

where αa is the number of entries a and a′ in T for each a ≥ 1.

Notation I.23. We will use T (i, j) to represent the entry in the (i, j) position of

unshifted or shifted tableau T . For example, using this notation the first condition

in Definition I.21 is T (i, j) ≤ T (i, j + 1) and T (i, j) ≤ T (i+ 1, j).

Definition I.24. In a shifted tableau T , an entry a∗ in position (i, j) is free if neither

T (i+ 1, j) nor T (i, j − 1) is a∗ and thus the assignment conditions in Definition I.21

allow the entry to be a (unmarked) or a′ (marked). In particular, for a shifted tableau

of diagram D′(λ/µ), the l(λ)− l(µ) main diagonal entries are free since there are no

entries immediately below or to the left of the main diagonal entries.

Remark I.25. As with unshifted shapes in Definition I.19, we define two shifted shapes

to be combinatorially equivalent if there exists a bijection between the positions such

that each shifted tableau of one shape corresponds to a valid shifted tableau of the

other. For example, two shapes are combinatorially equivalent if they differ by the

insertion or deletion of a column or row of length zero, by the translation of connected
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components, by the reordering of connected components, or by some combination

of these. Note that only one connected component can have a leftmost diagonal of

length ≥ 2, and if there is one it cannot be translated off the main diagonal.

1.3 Symmetric Functions

Let x1, x2, . . . be a countable set of independent variables.

Definition I.26. For each r ≥ 1 the rth power sum in x1, x2, . . . is

pr =
∑
i

xri .

Definition I.27. Let ΛQ be the Q-algebra generated by the power sums:

ΛQ = Q[p1, p2, p3, . . . ].

It is well known that ΛQ consists of all formal linear combinations of monomials

in the xi’s that are symmetric under the permutation of the variables (e.g. [6], 1.2).

Definition I.28. Let ΩQ be the sub-algebra of ΛQ generated by the odd power sums:

ΩQ = Q[p1, p3, p5, . . . ].

Definition I.29. Let ω be the ring involution ω : ΛQ → ΛQ such that ω(pr) = (−1)r−1pr.

Notation I.30. With each (unshifted or shifted) tableau T , we may associate a

monomial xT where if the content of T is α = (α1, α2, . . . ) then xT = xα = xα1
1 x

α2
2 · · · .

We can now define combinatorially the four classes of symmetric functions we will

be discussing.

Definition I.31. For any unshifted diagram D(λ/µ),

(a) The s-function sλ/µ is

sλ/µ(x1, x2, . . . ) =
∑
T

xT

summed over all unshifted tableaux T with diagram D(λ/µ).
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(b) The S-function Sλ/µ is

Sλ/µ(x1, x2, . . . ) =
∑
T

xT

summed over all shifted tableaux T with unshifted diagram D(λ/µ), i.e. the

positions included satisfy Definition I.11 but the entries are from P′ and satisfy

the conditions of Definition I.21.

Definition I.32. For any shifted diagram D′(λ/µ),

(a) The Q-function Qλ/µ is

Qλ/µ(x1, x2, . . . ) =
∑
T

xT

summed over all shifted tableaux T with diagram D′(λ/µ).

(b) The P -function Pλ/µ is

Pλ/µ(x1, x2, . . . ) = 2−l(λ)+l(µ)Qλ/µ(x1, x2, . . . ).

Remark I.33. (a) An unshifted shape D(λ/µ) includes the same positions as the

shifted shape D′(λ + δ(k)/µ + δ(k)) where k = l(λ)− 1. Since the entries of

Sλ/µ satisfy the conditions of Definition I.21, we have Sλ/µ = Qλ+δ(k)/µ+δ(k); for

example, S532/1 = Q742/31. Thus the S-functions are the skew Q-functions for

shifted shapes with a single position on the main diagonal.

(b) For any shifted diagram D′(λ/µ), the l(λ) − l(µ) entries on the main diagonal

are free, so we may equivalently define Pλ/µ in terms of the sum of monomials

for shifted tableaux:

Pλ/µ(x1, x2, . . . ) =
∑′

T

xT

summed over shifted tableaux T with diagram D′(λ/µ) where the notation
∑′

indicates that the sum is only over those tableaux with unmarked entries on the

main diagonal.
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(c) Although not obvious from the definition, s-functions are indeed symmetric

(e.g. [6], 1.5). In fact, the non-skew s-functions sλ form a basis for ΛQ (e.g. [6],

1.3). Note also that the s-functions of combinatorially equivalent shapes are

obviously equal.

(d) Similarly, although it is not obvious from the definitions, Q-functions (and hence

S- and P -functions as well) are symmetric and are elements of ΩQ; in fact, the

non-skew Q-functions Qλ and P -functions Pλ are each bases of ΩQ (e.g. [6], 3.8).

Again it is clear that the Q-functions of combinatorially equivalent shapes are

equal (and similarly for the S- and P -functions).



CHAPTER II

The Leading Term of Qλ/µ

Both for the purpose of finding equalities between symmetric functions and be-

cause of the combinatorial significance of their coefficients, it is natural to inquire

after the coefficients of individual terms.

Definition II.1. The leading term of a symmetric function is the unique monomial

xα1
1 x

α2
2 · · · such that the content α = (α1, α2, . . . ) is greatest in lexicographic order.

Note that α is necessarily a partition.

Definition II.2. The column set of D(λ/µ) is the multi-set of the column lengths in

the skew diagram D(λ/µ), listed in no particular order. The column list of D(λ/µ)

is the list of column lengths in the skew diagram D(λ/µ), listed in order from left to

right with the first entry the length of the leftmost column.

Definition II.3. The diagonal set of D′(λ/µ) is the multi-set of the diagonal lengths

in the skew shifted diagram D′(λ/µ), listed in no particular order. The diagonal

list of D′(λ/µ) is the list of diagonal lengths in the skew shifted diagram D′(λ/µ),

listed in order from left to right with the first entry the length of the main diagonal

λ′1 − µ′1 = l(λ)− l(µ).

For s-functions, it is well known that the leading term comes from a single tableau

and so has a coefficient of 1. This tableau has a 1 in every column, a 2 in every column

10
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of length at least two, and an i in every column of length at least i for all i, so that

the content is the conjugate of the column set partition; for non-skew sλ this content

is λ itself. Further, the content of this leading term is greatest in dominance order.

The focus of this chapter is:

Question II.4. What is the coefficient of the leading term of a (possibly skew) Q-

function?

Recall from Definition I.32 that for strict partitions λ and µ the Q-function is:

(2.1) Qλ/µ(x1, x2, . . . ) =
∑
T

xT

summed over all shifted tableaux T with diagram D′(λ/µ). It is not hard to de-

termine the content of the leading term and the unique shifted tableau (up to the

markings of the free entries) associated for any Q-function. This tableau is formed

by including an i∗ in every diagonal of length at least i for all i, so that the content

is the conjugate of the diagonal set partition; we have included a proof in Lemma

II.10 below. Thus, the leading coefficient is a power of two, where the exponent is

the number of free entries in this leading term tableau. In the case of non-skew Qλ,

the content of the leading term is λ itself and the leading coefficient is 2l(λ). In the

case of skew Qλ/µ the number of free entries has a lower bound of l(λ)− l(µ), which

is the length of the first diagonal, and so 2−l(λ)+l(µ)Qλ/µ, which is Pλ/µ of Definition

I.32, has coefficients in Z ([6], 3.8). The primary result of this chapter is a closed

formula for this leading coefficient for a general skew Q-function based only on its

shape.

Notation II.5. For strict partitions µ and λ such that µ ⊆ λ, we will use b(λ, µ)

to represent the number of parts that appear in both λ and µ. For example, for

λ = 87521 and µ = 5421, b(λ, µ) = 3.
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Theorem II.6. For any shifted diagram D′(λ/µ),

(a) the leading coefficient of Qλ/µ is 2l(λ)−b(λ,µ), and

(b) 2−l(λ)+b(λ,µ)Qλ/µ has coefficients in Z.

Note that the second part of this theorem allows us to define another type of

symmetric functions,

Qλ/µ = 2−l(λ)+b(λ,µ)Qλ/µ,

which are all monic. In the non-skew case, b(λ, ∅) = 0 so that Qλ = Pλ.

2.1 Unmarked Shifted Tableaux and the Leading Term of Qλ/µ

Definition II.7. A border strip of D′(λ/µ) (or unshifted D(λ/µ)) is a connected

subset of the diagram such that if position (i, j) is in the border strip then (i+1, j+1))

is not.

Consider any two-by-two subtableau of a shifted tableau T of shape D′(λ/µ):

T (i− 1, j − 1) T (i− 1, j)

◦ T (i, j).

Note that if the entries T (i − 1, j − 1) and T (i, j) are on the main diagonal then

the position marked ◦ is not in D′(λ/µ). The conditions of Definition I.21 require

T (i− 1, j − 1) ≤ T (i− 1, j) ≤ T (i, j). Since there is at most one a in each column,

if T (i, j) = a∗, then T (i − 1, j) ≤ a′. But since there is at most one a′ in each row,

T (i− 1, j − 1) < a′, and thus at most one entry in the diagonal is a∗.

Therefore, for a shifted tableau T the set of cells with entry a∗ for each a is a

disjoint union of border strips. For each border strip β with entries a∗, the assignment

conditions of shifted tableaux uniquely determine whether each entry is marked or

unmarked except for the cell closest to the main diagonal (the position (i, j) such
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that neither T (i+1, j) nor T (i, j−1) is a∗) which is free. Thus the number of border

strips and the number of free entries in T are equal.

Notation II.8. We will use fr(T ) to represent the number of free entries in shifted

tableau T .

Definition II.9. For any strict partitions λ and µ with µ ⊆ λ, an unmarked shifted

tableau T of shape λ/µ is an assignment to the positions in D′(λ/µ) of unmarked

symbols from the set P = (1 < 2 < 3 < · · · ) such that:

(a) The rows are weakly increasing, T (i, j) ≤ T (i, j + 1);

(b) The columns are weakly increasing, T (i, j) ≤ T (i+ 1, j);

(c) The diagonals are strictly increasing, T (i, j) < T (i+ 1, j + 1).

As with marked shifted tableaux, we call the entry closest to the main diagonal

in its border strip free. Every marked shifted tableau may be associated with an

unmarked shifted tableau by simply removing the entry markings. Thus for each

unmarked shifted tableau T there are 2fr(T ) marked shifted tableau with monomial

xT . Then for any D′(λ/µ), an alternative expression for the Q-function equivalent

to (2.1) is:

(2.2) Qλ/µ =
∑
T

2fr(T )xT

summed over all unmarked shifted tableaux T with diagram D′(λ/µ).

Lemma II.10. There is exactly one unmarked shifted tableau of shape λ/µ whose

content is that of the leading term of Qλ/µ. This content is greatest in dominance

order and is the conjugate of the partition formed by the diagonal set of D′(λ/µ).

Proof. For any shifted diagram D′(λ/µ), the unmarked tableau T with content α

greatest in lexicographic order will need to maximize α1. Since there can be at
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most one 1 in each diagonal, T must have exactly one 1 in every diagonal. Having

maximized α1, to then maximize α2 there must be a 2 in every diagonal of length

greater than or equal to two. Note that this also maximizes α1 + α2. To then

maximize α3, there must be a 3 in every diagonal of length greater than or equal

to three, which then also maximizes α1 + α2 + α3, and so forth. Therefore, the

unmarked tableau T such that xT is the leading term of Qλ/µ is unique, and the

content of this unmarked tableau is greater in dominance order than the contents

of all other unmarked tableau. Since the number of a entries in T is the number of

diagonals of length at least a, the leading term of Qλ/µ will have content equal to

the conjugate of the partition that is the diagonal set of D′(λ/µ).

2.2 Ascents and Descents of the Diagonal List of D′(λ/µ)

For any strict partition λ, the length of the kth column in the unshifted diagram

D(λ) must be equal to or one more than the length of the (k+ 1)th column. Other-

wise, if the kth column is shorter than the (k + 1)th then λ is not a partition, and

if the kth column has length at least two more than the length of (k + 1)th column

then λ is not strict. In particular, the rightmost (non-zero) column of λ must have

length one, else λ1 = λ2. Therefore, there are four cases for the relative size and

position of adjacent columns in the skew diagram D(λ/µ), and so, as D′(λ/µ) is

the image of D(λ/µ) after shifting each row (i− 1) positions to the right, there are

four cases for the relative length and position of adjacent diagonals in the shifted

diagram D′(λ/µ). In the following sections, we denote the length of the kth diagonal

of D′(λ/µ) by dk. In Figure 2.1 below we provide an example of each case involving

the first and second diagonal of D′(λ/µ).

Case 1: λ′k = λ′k+1 and µ′k = µ′k+1 + 1. In this case dk = dk+1 − 1, so that as we



15

read from left to right, there is an ascent in the diagonal list of D′(λ/µ) from the

kth element to the (k + 1)th element.

Case 2: λ′k = λ′k+1 and µ′k = µ′k+1. In this case dk = dk+1. Since the diagonals are

of equal length, there is neither a descent nor ascent in the diagonals list of D′(λ/µ)

from the kth element to the (k + 1)th element. We refer to this as a horizontal step

between diagonals of equal length.

Case 3: λ′k = λ′k+1 + 1 and µ′k = µ′k+1 + 1. In this case dk = dk+1. Since the

diagonals are of equal length, there is neither a descent nor ascent in the diagonals

list of D′(λ/µ) from the kth element to the (k + 1)th element. We refer to this as a

vertical step between diagonals of equal length.

Case 4: λ′k = λ′k+1 + 1 and µ′k = µ′k+1. In this case dk = dk+1 + 1, so that as we

read from left to right, there is a descent in the diagonal list of D′(λ/µ) from the

kth element to the (k + 1)th element.

Notation II.11. Let desc(λ/µ) be the number of descents in the diagonal list of

D′(λ/µ) (i.e. the size of set {i|di > di+1}), read from left to right, including the

descent from the rightmost diagonal of positive length to the right-adjacent diagonal

of length 0.

Notation II.12. Let asc(λ/µ) be the number of ascents in the diagonal list of

D′(λ/µ) (i.e. the size of set {i|di < di+1}), read from left to right.

Lemma II.13. For any (possibly skew) shifted diagram D′(λ/µ),

(a) l(λ)− l(µ) = desc(λ/µ)− asc(λ/µ);

(b) asc(λ/µ) = l(µ)− b(λ, µ).

Proof. We proceed by induction on the number of diagonals. When the number of

diagonals is one, then the length of this single diagonal must be one and λ/µ = 1/∅.
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Thus

l(λ)− l(µ) = 1 = desc(λ/µ)− asc(λ/µ),

so hypothesis (a) holds. Since µ = ∅ the length of µ and b(λ, µ) are both 0. Thus

asc(λ/µ) = 0 = l(µ)− b(λ, µ),

so hypothesis (b) holds.

Now assume that the hypotheses hold for all (possibly skew) shifted diagrams

with n− 1 or fewer diagonals. Given any shifted diagram D′(λ/µ) with n diagonals,

let D′(λ/µ)≥2 be the shifted diagram we get by deleting the first diagonal of D′(λ/µ).

Since D′(λ/µ)≥2 has n− 1 diagonals, by assumption the hypotheses hold. Let k be

the length of the first diagonal of D′(λ/µ)≥2. D′(λ/µ) can be reformed by prepending

a diagonal to D′(λ/µ)≥2, that is by shifting every row of D′(λ/µ)≥2 to the right one

position and adding the first diagonal of D′(λ/µ) to the left of the first diagonal

of D′(λ/µ)≥2. We will show that the hypotheses hold when the first and second

diagonals of D′(λ/µ) satisfy each of the four possibilities for the relative size and

position of adjacent diagonals in shifted diagrams. See Figure 2.1 for an example of

each case where D′(λ/µ)≥2 = D′(765431/52) which has diagonal list [4, 3, 4, 3, 2, 2, 1]

with one ascent and five descents.

Case 1: d1 = k − 1 < k = d2 in D′(λ/µ). In this case the number of ascents

in the diagonal list of D′(λ/µ) is one more than in the diagonal list of D′(λ/µ)≥2.

Since each position in D′(λ/µ)≥2 is shifted to the right by one, to form λ each part

of λ≥2 is increased by one. To form µ each part of µ≥2 is increased by one and an

additional part of length one is appended. Therefore,

l(λ)− l(µ) = l(λ≥2)−
(
l(µ≥2) + 1

)
= desc((λ/µ)≥2)−

(
asc((λ/µ)≥2) + 1

)
= desc(λ/µ)− asc(λ/µ),
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•
•
•
•
•
•

◦
◦
◦

Case 1: d1 = d2 − 1,
λ/µ = 876542/631

•
•
•
•
•
•

◦
◦

Case 2: d1 = d2 with Horizontal
Step, λ/µ = 876542/63

•
•
•
•
•
•
•

◦
◦
◦

Case 3: d1 = d2 with Vertical
Step, λ/µ = 8765421/631

•
•
•
•
•
•
•

◦
◦

Case 4: d1 = d2 + 1,
λ/µ = 8765421/63

Figure 2.1: The Four Shifted Diagrams D′(λ/µ) with D′(λ/µ)≥2 = D′(765431/52)

and so hypothesis (a) holds. Since to form λ every existing part of λ≥2 is increased

by one and no additional part is appended, there are no parts of length one in λ,

so that the part of length one appended to form µ does not contribute to b(λ, µ).

Further, since every existing part of λ≥2 and µ≥2 are increased by one to form λ and

µ, every pair of equal parts remain equal, so that b(λ, µ) = b(λ≥2, µ≥2). Therefore,

asc(λ/µ) = 1 + asc((λ/µ)≥2) = 1 + l(µ≥2)− b(λ≥2, µ≥2)

= l(µ)− b(λ, µ),

and hypothesis (b) holds.

Case 2: d1 = k = d2 in D′(λ/µ) with a horizontal step between the first and

second diagonals. In this case the number of ascents and descents in the diagonal list

of D′(λ/µ) are unchanged from those of D′(λ/µ)≥2. To form λ and µ, the shifting

of each row of D′(λ/µ)≥2 to the right by one increases each part of λ≥2 and µ≥2 by

one; with a horizontal step no additional parts are appended to form either λ or µ.
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Therefore,

l(λ)− l(µ) = l(λ≥2)− l(µ≥2) = desc((λ/µ)≥2)− asc((λ/µ)≥2)

= desc(λ/µ)− asc(λ/µ),

so hypothesis (a) holds. Further, we have b(λ, µ) = b(λ≥2, µ≥2), so

asc(λ/µ) = asc((λ/µ)≥2) = l(µ≥2)− b(λ≥2, µ≥2)

= l(µ)− b(λ, µ),

and hypothesis (b) holds.

Case 3: d1 = k = d2 in D′(λ/µ) with a vertical step between the first and second

diagonals. In this case the number of ascents and descents in the diagonal list of

D′(λ/µ) are unchanged from those in D′(λ/µ)≥2. To form λ and µ, the shifting of

each row of D′(λ/µ)≥2 to the right by one increases each part of λ≥2 and µ≥2 by one;

in addition, we append a part of length one to each. Therefore,

l(λ)− l(µ) =
(
l(λ≥2) + 1

)
−
(
l(µ≥2) + 1

)
= desc((λ/µ)≥2)− asc((λ/µ)≥2)

= desc(λ/µ)− asc(λ/µ),

and hypothesis (a) holds. With the addition of a part of length one to each, we have

b(λ, µ) = b(λ≥2, µ≥2) + 1, so

asc(λ/µ) = asc((λ/µ)≥2) = l(µ≥2)− b(λ≥2, µ≥2) =
(
l(µ)− 1

)
−
(
b(λ, µ)− 1

)
= l(µ)− b(λ, µ),

and hypothesis (b) holds.

Case 4: d1 = k + 1 > k = d2 in D′(λ/µ). In this case the number of descents

in the diagonal list of D′(λ/µ) is one more than in the list of D′(λ/µ)≥2, but the

number of ascents is unchanged. Since each row in D′(λ/µ)≥2 is shifted to the right

by one to form λ and µ, each existing part of λ≥2 and of µ≥2 is increased by one; the
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length of µ is equal to the length of µ≥2, but we append a part of length one to λ≥2

to form λ. Therefore,

l(λ)− l(µ) =
(

1 + l(λ≥2)
)
− l(µ≥2) =

(
1 + desc((λ/µ)≥2)

)
− asc((λ/µ)≥2)

= desc(λ/µ)− asc(λ/µ),

and so hypothesis (a) holds. Since the part appended to form λ has length one and

µ has no parts of length one (all part of µ≥2 having been increase by one), we have

b(λ, µ) = b(λ≥2, µ≥2). Therefore,

asc(λ/µ) = asc((λ/µ)≥2) = l(µ≥2)− b(λ≥2, µ≥2)

= l(µ)− b(λ, µ),

and hypothesis (b) holds.

Remark II.14. (a) To understand the significance of the equation in Lemma II.13.(a)

consider that the lengths of consecutive diagonals can differ by at most one. Now

if the first diagonal has length one, then every ascent in the diagonal list will

have a matching descent since we must end at a rightmost diagonal of length

one; we include the descent from this rightmost column of length one to a col-

umn of length zero, and so both sides of the equation equal one in this case.

If the first diagonal has length greater than one, then every ascent still has a

matching descent, but there will be a set of unmatched descents in order to get

down to those final rightmost diagonals of length one and zero.

(b) To interpret the equation in Lemma II.13.(b) consider that for each part µi the

leftmost cell in row i that is in D′(λ/µ) is the northwest cell of a diagonal that

is either an ascent or a vertical step from the previous diagonal. In the case of a

vertical step, the southeast cell of the previous diagonal is the rightmost cell of

its row j, so that µi = λj; see Case 3 in Figure 2.1 where the vertical step leads
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to µ3 = λ7 = 1. In the case of an ascent, the southeast cells of the two diagonals

are in the same row, so that µi 6= λj for all j; see Case 1 in Figure 2.1 where

the vertical step leads to µ3 = 1 being unmatched in λ. Thus b(λ, µ) counts the

number of vertical steps between diagonals of the same length in D′(λ/µ).

2.3 Proof of Theorem II.6

Recall that for unmarked shifted tableau T with diagram D′(λ/µ), we will use

fr(T ) to represent the number of free entries in T , which is equal to the number of

border strips in T . We will use TL to represent the unique unmarked shifted tableau

whose monomial xTL is the leading term of Qλ/µ from Lemma II.10.

We begin by showing that the number of border strips in T is greater than or

equal to the number of descents in the diagonal list of D′(λ/µ) with equality for TL:

(2.3) fr(T ) ≥ fr(TL) = desc(λ/µ).

We proceed by induction on the number of diagonals of D′(λ/µ). If D′(λ/µ) has

one diagonal, then this diagonal has length one and λ/µ = 1/∅. Counting the

descent from the rightmost diagonal of positive length to the right-adjacent diagonal

of length zero, the diagonal list of D′(1/∅) has one descent. Since there is only one

cell in D′(1/∅), all T contain exactly one border strip; for TL the single entry is 1.

Therefore, fr(T ) = desc(λ/µ) and the hypothesis of (2.3) holds.

Assume the hypothesis holds for all (possibly skew) shifted diagrams with n− 1 or

fewer diagonals. Given any shifted diagram D′(λ/µ) with n diagonals, let D′(λ/µ)≥2

be the shifted diagram we get by deleting the first diagonal of D′(λ/µ), as in the

proof of Lemma II.13, and let T≥2 be the resulting unmarked tableau with each entry

unchanged, except that the entries of the first diagonal of T≥2 are now all free. Since

D′(λ/µ)≥2 has n− 1 diagonals, by assumption the hypothesis holds. Let k be the
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1 1

1 1 1 2

1◦ 1 2 2 2

1∗ 2◦ 2 3 3

2∗ 3◦ 3 4~

3∗ 4~

Case 1: d1 = d2 − 1

1 1

1 1 1 2

1∗ 1◦ 1 2 2 2

2∗ 2◦ 2 3 3

3∗ 3◦ 3 4~

4∗ 4◦

Case 2: d1 = d2
with Horizontal Step

1 1

1 1 1 2

1◦ 1 2 2 2

1∗ 2◦ 2 3 3

2∗ 3◦ 3 4~

3∗ 4◦

4∗

Case 3: d1 = d2
with Vertical Step

1 1

1 1 1 2

1∗ 1◦ 1 2 2 2

2∗ 2◦ 2 3 3

3∗ 3◦ 3 4~

4∗ 4◦

5∗

Case 4: d1 = d2 + 1

Figure 2.2: Free Entries in the Four Leading Term Tableau with D′(λ/µ)≥2 = D′(765431/52)

length of the first diagonal of D′(λ/µ)≥2. We will show that the hypothesis holds

when the first and second diagonals of D′(λ/µ) satisfy each of the four possibilities for

the relative size and position of adjacent diagonals in shifted diagrams. See Figure

2.2 for an example of the leading term tableau for each case where D′(λ/µ)≥2 =

D′(765431/52) in which the a◦ are the five free entries of D′(765431/52) and the

a∗ are the free entries of each D′(λ/µ); recall from above that the diagonal list of

D′(765431/52) has five descents.

Case 1: d1 = k − 1 < k = d2 for D′(λ/µ). In this case we have added an ascent

to the diagonal list, but the number of descents is unchanged from D′(λ/µ)≥2 to

D′(λ/µ). For every unmarked tableau T with diagram D′(λ/µ), there are exactly k

border strips that intersect the second diagonal and exactly k − 1 that intersect the

first diagonal. If each entry T (i, i) on the main diagonal equals the entry T (i− 1, i)

directly above, then all of the border strips that intersect the first diagonal also
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intersect the second, so that the total number of border strips is unchanged from

T≥2 to T . Certainly different first diagonal entries of T could increase the number

of border strips, so that

(2.4) fr(T ) ≥ fr(T≥2) ≥ desc((λ/µ)≥2) = desc(λ/µ).

For TL, the entries of the first diagonal are 1, 2, . . . , (k − 1) and the entries of the

second diagonal are 1, 2, . . . , (k− 1), k with the a in the first diagonal directly below

the a in the second diagonal for 1 ≤ a ≤ k − 1, so that equality holds in (2.4).

Case 2: d1 = k = d2 in D′(λ/µ) with a horizontal step between the first and second

diagonals. In this case the number of descents in the diagonal list is unchanged from

D′(λ/µ)≥2 to D′(λ/µ). For every unmarked tableau T with diagram D′(λ/µ), there

are exactly k border strips that intersect the second diagonal and exactly k that

intersect the first diagonal. If each entry T (i, i) in the first diagonal equals the entry

T (i, i + 1) directly to the right, then all of the border strips that intersect the first

diagonal also intersect the second and the total number of border strips is unchanged

from T≥2 to T . Certainly different first diagonal entries could increase the number

of border strips, so that

(2.5) fr(T ) ≥ fr(T≥2) ≥ desc((λ/µ)≥2) = desc(λ/µ).

For TL, the entries of the first and second diagonals are 1, 2, . . . , k with the a in the

first diagonal directly to the left of the a in the second diagonal for 1 ≤ a ≤ k, so

that equality holds in (2.5).

Case 3: d1 = k = d2 in D′(λ/µ) with a vertical step between the first and second

diagonals. Again in this case the number of descents in the diagonal list of D′(λ/µ)

is equal to the number in the diagonal list of D′(λ/µ)≥2. For every unmarked tableau

T with diagram D′(λ/µ), there are exactly k border strips that intersect the second
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diagonal and exactly k that intersect the first diagonal. If each entry T (i, i) in the

first diagonal equals the entry T (i− 1, i) directly above, then all of the border strips

that intersect the first diagonal also intersect the second diagonal and the number of

border strips is unchanged from T≥2 to T . Certainly different first diagonal entries

could increase the number of border strips, so that

(2.6) fr(T ) ≥ fr(T≥2) ≥ desc((λ/µ)≥2) = desc(λ/µ).

For TL, the entries of the first and second diagonals are 1, 2, . . . , k with the a in the

first diagonal directly below the a in the second diagonal for 1 ≤ a ≤ k, so that

equality holds in (2.6).

Case 4: d1 = k + 1 > k = d2 in D′(λ/µ). In this case there is a descent from

the first diagonal to the second diagonal of D′(λ/µ), so that the number of descents

in the diagonal list of D′(λ/µ) is one more than the number in the diagonal list of

D′(λ/µ)≥2. For every unmarked tableau T with diagram D′(λ/µ), there are exactly

k+ 1 border strips that intersect the first diagonal. Since there are exactly k border

strips that intersect the second diagonal, it must be that there is at least one border

strip that intersects the first diagonal but does not intersect the second, and so does

not intersect T≥2. Thus the minimum number of border strips in T is one more

than the number in T≥2. Certainly different first diagonal entries could increase the

number of border strips, so that

(2.7) fr(T ) ≥ fr(T≥2) + 1 ≥ desc((λ/µ)≥2) + 1 = desc(λ/µ).

For TL, the entries of the first diagonal are 1, 2, . . . , k, (k + 1) and the entries of the

second diagonal are 1, 2, . . . , k with the a in the first diagonal directly left of the a

in the second diagonal for 1 ≤ a ≤ k. Thus, the number of border strips increases



24

by exactly one from T≥2L to TL, and so equality holds in (2.7). Therefore, (2.3) holds

in all four cases.

From (2.2), the leading coefficient of Qλ/µ is 2fr(TL). Combining (2.3) and Lemma

II.13, we have:

fr(TL) = desc(λ/µ)

= l(λ)− l(µ) + asc(λ/µ)

= l(λ)− l(µ) + l(µ)− b(λ, µ)

= l(λ)− b(λ, µ),

proving part (a) of the theorem. Since fr(T ) ≥ fr(TL) = l(λ)− b(λ, µ), the leading

coefficient 2l(λ)−b(λ,µ) divides each term in (2.2), proving part (b). �

Remark II.15. In the proof of the theorem, we see there are three ways to find the

number of free entries or border strips in the leading term tableau. The method

of the proof is to show the equivalence of counting the descents in the diagonal

list and finding the tail or northeast cell of each border strip. The free entries are

actually located at the l(λ)− l(µ) positions on the main diagonal and the southeast

cell in each diagonal that is an ascent from the previous diagonal. And finally, the

expression l(λ)− b(λ, µ) in the theorem statement has the advantage of needing only

the shape and not the computation of the diagonal set.



CHAPTER III

Schur s-Functions in ΩQ

Recall that an inspiration for our work is the exploration of answers to:

Question III.1. When are two (possibly skew) Schur s-functions equal?

Definition III.2. For any unshifted diagram D(λ/µ), the rotation of λ/µ, Rot(λ/µ),

is the (possibly skew) shape whose diagram is the 180 degree rotation of D(λ/µ)

viewed as a subset of (λ1)
l(λ), which is the smallest rectangle containing λ.

A basic partial answer to Question III.1 is:

Lemma III.3. For any unshifted diagram D(λ/µ), sRot(λ/µ) = sλ/µ.

Proof. Given a tableau T with diagram D(λ/µ), let n be the minimum entry of T and

N the maximum entry of T . We can form a tableau T ′ of shape Rot(λ/µ) by rotating

the diagram D(λ/µ) by 180 degrees and replacing each entry a with (n + N − a).

The rows of T are weakly increasing and thus so are the rows of T ′; the columns of

T are strictly increasing and thus so are the columns of T ′. Since s-functions are

symmetric and the content of T ′ is a permutation of the the content of T , the terms

of sRot(λ/µ) are simply a reordering of the terms of sλ/µ, and so the two s-functions

are equal.

25
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For the ring involution ω of Definition I.29, recall that ω(pr) = pr for r odd. Thus,

since ΩQ is generated by the odd power sums,

ω(f) = f for all symmetric functions f ∈ ΩQ.

For s-functions, ω(sλ/µ) = sλ′/µ′ (e.g. [6], 1.3), so that

(3.1) sλ′/µ′ = ω(sλ/µ) = sλ/µ for all sλ/µ ∈ ΩQ.

Question III.4. Which s-functions are elements of ΩQ?

From (3.1) we see that answering this question provides a class of s-functions

relevant for Question III.1, as well as being useful later when exploring identities

between s- and Q-functions. The answer to Question III.4 is the main result of this

chapter.

Theorem III.5. For any diagram D(λ/µ), sλ/µ ∈ ΩQ if and only if each connected

component of D(λ/µ) is combinatorially equivalent to δ/η or Rot(δ/η), where δ is a

staircase partition of any length and η is any partition such that η ⊆ δ.

That the s-functions for all δ/η and their rotations are in ΩQ was already known;

what is new that we will establish here is that there are no additional shapes. Thus

there are no other examples of equality between the s-functions of a shape and its

conjugate that can be proved simply by showing inclusion in ΩQ. Note that Rot(δ/η)

is combinatorially equivalent to a shape of the form λ/δ(k), specifically with λ1 = l(λ)

and k = l(λ)− 1 so that the first column and first row both have length one, but the

converse does not hold for a general λ/δ(k). For example, s444/21 /∈ ΩQ.

It is well known that, for a disconnected skew diagram, the entries of each con-

nected component are independent of the entries in the other connected components,

and thus, following from the definition of s-functions in terms of tableaux (I.31.(a)),
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that the s-function for a disconnected skew diagram factors into the s-functions

for the connected components. Since the power sum expansion of the product of

s-functions includes only odd power sums if and only if the power sum expansion

of the s-function for each connected component does, we may reduce the proof of

the theorem to connected D(λ/µ), and so for the rest of the chapter we assume

connectedness unless stated otherwise.

3.1 Domino Skimmings

The algebra ΩQ may alternatively be defined in terms of a cancellation law:

Lemma III.6 ([8], Theorem 2.11; [12]). For a symmetric function f , we have f ∈ ΩQ

if and only if

f(t,−t, x3, x4, . . . ) = f(0, 0, x3, x4, . . . ).

Definition III.7. An odd (even) run in the (possibly skew) diagram D(λ/µ) is a

set of exactly k consecutive columns from column i to column (i+ k − 1) with k

odd (even) such that µ′i = µ′i+1 = · · · = µ′i+k−1 > µ′i+k and, if column (i− 1) is

non-empty, µ′i−1 > µ′i. For example, λ/µ = 10, 7, 5, 5/5, 3, 3 in Figure 3.1 below has

runs, from left to right, of three, two, and five columns.

Definition III.8. An odd (even) block of columns of length c in the (possibly skew)

diagram D(λ/µ) is a set of exactly k consecutive columns with k odd (even) such

that the cells of these columns form a c by k rectangle, and if either the preceding

or following column is included, the cells do not form a rectangle. Note that a block

of length k is a subset of a run of at least k columns where for all columns i in

the block not only are all the µ′i equal but also all the λ′i are equal. For example,

λ/µ = 10, 7, 5, 5/5, 3, 3 in Figure 3.1 below has, from left to right, blocks of three
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columns of length one, two columns of length three, two columns of length two, and

three singleton columns.

Lemma III.9. For any unshifted (possibly disconnected) diagram D(λ/µ)

(3.2) sλ/µ(t,−t, x3, x4, . . . ) =
∑
ν

(−1)N2 t|ν/µ| sλ/ν(x3, x4, . . . )

where the sum is over all ν such that µ ⊆ ν ⊆ λ, all columns of D(ν/µ) have length

ν ′i − µ′i ≤ 2, and all blocks of singleton columns in D(ν/µ) are even, and where N2

is the number of columns of length two in D(ν/µ).

Proof. Recall that a skew s-function sλ/µ is combinatorially defined as the sum of

the monomials for all tableaux with diagram D(λ/µ). Any tableau T can be di-

vided into two smaller tableaux, the possibly disconnected and skew tableau with

diagram D(ν/µ) formed by the 1 and 2 entries and the possibly disconnected and

skew tableau with diagram D(λ/ν) formed by the entries of 3 and greater. Fixing ν,

the entries within these two shapes are independent of each other, and so the sum of

the contributions of all possible assignments to D(λ/ν) is the factor sλ/ν(x3, x4, . . . )

and the sum of the contributions of all possible assignments to D(ν/µ) is the factor

sν/µ(t,−t)).

Since the columns of any tableau are strictly increasing, the columns of D(ν/µ)

have length two or less. Each column of length two has entries 1
2
, so that each

contributes a factor of −t2 to the monomial for each T with diagram D(ν/µ) in

sν/µ(t,−t).

For each block of k columns of length one in D(ν/µ), if the block is connected

to the preceding column then the preceding column must have length two forcing

its top entry to be 1, and if the block is connected to the following column then

the following column must have length two forcing its bottom entry to be 2. Thus
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the entries in the block of singleton columns are independent of all other entries in

D(ν/µ), and any weakly increasing filling with a 1’s and b 2’s, a + b = k, is valid,

which contributes a factor of (−1)btk to the monomial for T . The sum of these

contributions is 0 or tk depending on whether k is odd or even respectively.

Therefore, in sν/µ(t,−t), for each D(ν/µ) which includes an odd block of singleton

columns its set of tableaux contributes 0, and for all other ν the monomials for the

set of tableaux sums to a single term that is the product of the independent factors

just described. For example, for λ/µ = 10, 7, 5, 5/5, 3, 3 in Figure 3.1, if we take the

gray shaded cells in each example to be ν/µ, then the product of independent factors

is t2(−t2)t4s10,7,5,5/9,4,4,2 and t2(−t2)3t4s10,7,5,5/10,6,5,2 respectively.

The grouping of terms in the expansion of sν/µ(t,−t) above leads us to the fol-

lowing definition:

Definition III.10. For any diagram D(λ/µ), a partition ν such that µ ⊆ ν ⊆ λ

is a domino skimming if D(ν/µ) only has columns of length ≤ 2 and can be tiled

by horizontal and vertical dominoes so that every column of length two has exactly

one vertical domino in it. See Figure 3.1 for an example of two domino skimmings,

where D(ν/µ) can be tiled by four dominoes in the first case and six in the second.

Definition III.11. A maximum domino skimming of D(λ/µ) is a domino skimming

such that no other skimming of D(λ/µ) includes more dominoes. The figure on the

right in Figure 3.1 shows a maximum skimming.

We next state a lemma but will save the proof for the end of the chapter.

Lemma III.12. Among the maximum domino skimmings ν of any connected di-

agram D(λ/µ) with rightmost column of length at least two, there is exactly one
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Skimming ν = 9, 4, 4, 2
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Maximum Skimming ν = 10, 6, 5, 2

Figure 3.1: Two Domino Skimmings of λ/µ = 10, 7, 5, 5/5, 3, 3

skimming which maximizes the number of rows in the (possibly disconnected) dia-

gram D(λ/ν).

3.2 Proof of Theorem III.5

First, we consider the case of the s-functions for shapes δ/η and Rot(δ/η). For

λ/µ = Rot(δ/η), since the northwest edge is a staircase-like shape with first column

and first row each of length one, the only ν such that all blocks of singleton columns

in D(ν/µ) are even is µ itself, and so sλ/µ(t,−t, x3, x4, . . . ) = sλ/µ(x3, x4, . . . ) by

Lemma III.9. Thus sδ/η = sRot(δ/η) ∈ ΩQ by Lemma III.6. Alternatively, it is easy

to show using the Murnaghan-Nakayama Rule (e.g. [10], 7.17) that the expansion of

sδ/η(x1, x2, x3, . . . ) contains no even power sums.

We are now able to proceed to the proof of the main result, that there are no

other connected shapes whose s-functions are in ΩQ. If sλ/µ ∈ ΩQ, then from Lemma

III.3 and (3.1) it follows that all four of sλ/µ, sλ′/µ′ , sRot(λ/µ), and sRot(λ′/µ′) are equal.

Thus, in determining whether sλ/µ is in or not in ΩQ, it is sufficient to show the result

for any one of the four. Any shape of size one is combinatorially equivalent to 1/∅

and s1 = p1 ∈ ΩQ, so that we may assume that |λ/µ| > 1. We may also assume that

the rightmost column has length at least two, for if this condition does not hold for

D(λ/µ) then, since D(λ/µ) is connected, the first row must have length λ1−µ1 ≥ 2,

so that Rot(λ′/µ′) does satisfy the condition.
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By Lemma III.6, we see that for sλ/µ to be an element of ΩQ, sλ/µ(t,−t, x3, x4, ...)

must be independent of t. We may restate the expansion of sλ/µ(t,−t, x3, x4, ...) in

(3.2) in terms of domino skimmings and group by the power of t:

sλ/µ(t,−t, x3, x4, . . . ) = tmax
∑
ν

(−1)N2 sλ/ν(x3, x4, . . . )

+ (terms with lower degree in t)

(3.3)

where max is twice the number of dominoes in each maximum skimming, N2 is the

number of columns of length two in D(ν/µ), and the sum in the coefficient of tmax

is over all partitions ν that are maximum skimmings of D(λ/µ).

For all diagrams D(λ/µ) (with rightmost column of length at least two) that are

not of shape Rot(δ/η), there must be some column i such that either µ′i−1 ≥ µ′i + 2

(or the first column has length at least two) so that we may pack a vertical domino

or µ′i−1 = µ′i so that we may pack a horizontal domino (since the northwest edge is

not a staircase shape). Thus, domino skimmings ν with |ν/µ| > 0 do exist and we

will show that the degree of sλ/µ(t,−t, x3, x4, . . . ) in t is positive. By Lemma III.12,

we know that among the sλ/ν in the coefficient of tmax there is exactly one λ/νp

with strictly more non-empty rows than all others. We claim that the linear span

of all skew s-functions for shapes with < r non-empty rows does not contain the

s-function for any shape with exactly r non-empty rows. Toward a contradiction, for

any D(λ/ν) with exactly r non-empty rows we suppose:

(3.4) sλ/ν =
∑
α/β

a(α, β)sα/β

summed over shapes α/β with < r rows of positive length and for some constants

a(α, β). When we apply the involution ω to both sides of (3.4), we get the equivalent

equation:

sλ′/ν′ =
∑
α/β

a(α, β)sα′/β′ .
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Since D(λ/ν) has exactly r rows of positive length, D(λ′/ν ′) has exactly r columns

of positive length, and so, considering the leading monomial, the degree of sλ′/ν′ in

x1 is r. Since each D(α′/β′) has strictly fewer than r columns of positive length, all

sα′/β′ are of degree strictly less than r in x1, and so sλ′/ν′ cannot be in their span.

Thus sλ/νp is not in the span of the sλ/ν for all other maximum skimmings ν, and

therefore the coefficient of tmax in (3.3) is non-zero. �

3.3 Proof of Lemma III.12

Definition III.13. Let m be the smallest column index i in a connected diagram

D(λ/µ) such that either column i− 1 is the rightmost column of an even run or

µ′i ≤ µ′i−1 − 2. The domino sparse part of D(λ/µ), denoted sparse(λ/µ), is the

diagram consisting of the first m− 1 columns of D(λ/µ) and the domino dense part

of D(λ/µ), denoted dense(λ/µ), is the diagram consisting of the columns to the

right of and including the mth column. For the example in Figure 3.2, the first nine

columns form sparse(λ/µ) = D(9999/743) and columns 10-23 form dense(λ/µ) =

D(14, 14, 10, 6, 5, 5, 2, 2, 2, 1/11, 9, 3, 3, 3).

Lemma III.14. Of the top two cells in each column for a connected diagram D(λ/µ),

a domino skimming cannot include:

(a) in sparse(λ/µ), the top cell of the rightmost column of each odd run as well as

the second cell in each column;

(b) in dense(λ/µ), for each odd block of singleton columns, either the rightmost cell

in the odd block or the second cell in the column of length at least two which

precedes the odd block of singleton columns.

In the example in Figure 3.2, the top two cells in each column, which we would

hope to include in a skimming, are colored gray. Of these cells, those that we claim
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Figure 3.2: The Cells That Cannot Be Included in a Domino Skimming

cannot be included as described in part (a) of the lemma are marked with a �. Three

pairs of the cells described in part (b) are marked A, B, and C; we will show that

at least one of each pair must also be excluded.

Proof. In sparse(λ/µ), by definition, the difference between µ′i−1 and µ′i is at most

one and every run is odd, except for possibly the rightmost run. Thus for any run

of k columns only the top cell of the leftmost column is exposed so that we may not

pack a vertical domino. When k is odd, we may cover the top cell of the first k − 1

columns in the run with horizontal dominoes, forcing in any skimming the top cell

of the rightmost column in each odd run to be uncovered. In the next run it remains

that only the top cell of the leftmost column is exposed so that we still may not pack

a vertical domino. In dense(λ/µ), the leftmost column must have length at least

two since it begins a new run and D(λ/µ) is connected, so that every odd block of

singleton columns in dense(λ/µ) must be preceded by a column of length at least

two. Let us consider the intersection of the skimming and any group of a column of

length at least two followed by an odd block of k singleton columns. We may pack a

vertical domino in the column of length at least two and k−1
2

horizontal dominoes in

the first k − 1 singleton columns, leaving the rightmost singleton column uncovered,
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or we may pack k/2 horizontal dominoes in the group, which leaves the second cell

in the leftmost column uncovered but covers the rightmost singleton column. So for

each such group no skimming can include both the second cell in the leftmost column

and the rightmost singleton column.

For any connected diagram D(λ/µ) with rightmost column of length at least

two, we propose a skimming νp which will include the top and second cell in each

column except those cells which Lemma III.14 shows cannot be covered by a skim-

ming, thereby proving that this skimming is indeed a maximum skimming. Within

sparse(λ/µ), we pack horizontal dominoes in each odd run of k columns covering

the top cell of the first k − 1 columns in the run. If the final run of sparse(λ/µ) is

an even run of k columns, then we pack k
2

horizontal dominoes in this run. Within

dense(λ/µ), we pack dominoes according to the following rules:

(a) we cover an even block of k singleton columns with k
2

horizontal dominoes;

(b) we pack k+1
2

horizontal dominoes in any group of a column of length at least

two followed by an odd block of k singleton columns;

(c) we pack a vertical domino in all other columns of length at least two.

The leftmost column of dense(λ/µ) (column m of D(λ/µ)) must have length at least

two and by definition either m = 1, µ′m−1 − 2 ≥ µ′m, or the final run of sparse(λ/µ)

is even with the top cell in each column included in νp, so that we may always pack

a vertical domino in column m. Thus the rules force every instance in dense(λ/µ)

of the three types of column groups described to be preceded by either a column of

length one which we have covered by a horizontal domino or a column of length at

least two in which we have packed a vertical domino, so that the top two cells in
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Alternate Skimming 1
va = 10, 10, 6, 5, 2, 2
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Alternate Skimming 2
va = 10, 10, 6, 4, 4, 1
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Alternate Skimming 3
va = 10, 7, 7, 5, 3, 1

Figure 3.3: Domino Skimmings of λ/µ = 10, 10, 7, 6, 4, 2, 2/8, 5, 5, 3

each column can be included in νp. See the Proposed Skimming in Figure 3.3 for an

example (with m = 1).

Proof of Lemma III.12 : We let D(λ/νp) be the possibly disconnected diagram we

get by deleting from connected D(λ/µ) the cells in the proposed skimming νp just

described. We will show that any alternate skimming νa is either not a maximum

skimming or that D(λ/νa) has fewer (non-empty) rows than D(λ/νp).

In Lemma III.14, we showed that within sparse(λ/µ) we are forced to pack only

horizontal dominoes with the rightmost cell in each odd run left uncovered, and

that within dense(λ/µ) we are forced to leave uncovered one cell from each group

of a column of length at least two followed by an odd run of singleton columns.

Since the proposed skimming covers every top and second cell in each column except

these, so must every other maximum skimming. Thus the only differences between
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maximum skimmings occur within dense(λ/µ) in the groups of a column of length

at least two followed by an odd block of k singleton columns. Recall that for such

a group we can cover k + 1 cells either with k+1
2

horizontal dominoes leaving the

second cell in the leftmost column uncovered, as in the proposed skimming νp, or

with a vertical domino and k−1
2

horizontal dominoes leaving the rightmost singleton

column uncovered. Any other difference would mean that there is a cell uncovered

in the alternate skimming that is covered in the proposed skimming, but there does

not exist a column where the alternate skimming can make up for the missing cell.

Since the theorem assumes that the rightmost column of D(λ/µ) must have length

at least two, every instance in dense(λ/µ) of a column of length at least two followed

by an odd block of singleton columns must be followed by a right-adjacent column

of length at least two. We will focus on such a group where a difference occurs.

If with the proposed skimming the bottom cell of the right-adjacent column is

uncovered, which occurs when the right-adjacent column has length at least three or

has length two and is followed by an odd block of singleton columns, then packing

k+1
2

horizontal dominoes leaves two (non-empty) rows that intersect D(λ/νp) in these

k + 2 columns, a singleton row formed by the second cell in the leftmost column and

a row whose leftmost cell is the bottom cell in the right-adjacent column. If instead,

the alternate skimming packs a vertical domino and k−1
2

horizontal dominoes, then

the uncovered cell from the group of a column of length at least two and the odd

block of singleton columns is in the same row as the bottom cell of the right-adjacent

column, and so D(λ/νa) has at least one fewer (non-empty) row than D(λ/νp). In

Figure 3.3, compare the Proposed Skimming to columns 2-4 of Alternate Skimming

1 and columns 4-6 of Alternate Skimming 2. In both cases D(λ/νa) has only four

(non-empty) rows compared to five for D(λ/νp).
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Now consider the case when the bottom cell of the right-adjacent column is cov-

ered (i.e. it has length exactly two and is not followed by an odd block of singleton

columns) with the proposed skimming. If the alternate skimming packs a vertical

domino and k−1
2

horizontal dominoes, then the uncovered rightmost singleton col-

umn will prevent the packing of a vertical domino in the right-adjacent column, so

that the second cell in this column will be left uncovered. There is no column where

the alternate skimming can make up for this missing cell and so the alternate skim-

ming is not a maximum skimming. In Figure 3.3, compare the Proposed Skimming

to columns 7-10 of Alternate Skimming 3 and notice the alternate skimming only

includes six dominoes instead of seven. �



CHAPTER IV

Equality between Sλ and Qν

In this chapter, we discuss partial answers to the following questions:

Question IV.1. When are two (possibly skew) Q-functions equal up to a constant

multiple?

and, as a particular case of this:

Question IV.2. When is a skew Q-function equal to a constant multiple of a non-

skew Q-function?

The primary focus of this chapter is the special case where the shifted skew shape

has exactly one position on the main diagonal. In this case, the diagram is also a

valid unshifted shape and so these skew Q-functions are the S-functions of Definition

I.31:

Sλ/µ(x1, x2, . . . ) =
∑
T

xT

summed over all shifted tableaux T for the unshifted diagram D(λ/µ). From Remark

I.33, the Qν form a basis of ΩQ and so every element of the sub-algebra can be written

as a linear combination of the non-skew Q-functions. Thus our second question

reduces to determining whether for a skew Q-function there is more than one term

with non-zero coefficient in its Q-expansion. The main result of this chapter answers

this question for all S-functions.

38
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Theorem IV.3. If D(λ/µ) is an unshifted diagram such that

Sλ/µ = c Qν

for some strict partition ν and scalar c, then λ/µ is combinatorially equivalent either

to 21/1, in which case S21/1 = 2Q2, or to mk/∅, for which

S(mk) = Q(m+k−1,m+k−3,...,|m−k|+1).

4.1 The Shifted Littlewood-Richardson Rule

Since the Schur s-functions form a basis of ΛQ, we may define coefficients cλµν by:

sλ/µ =
∑
ν

cλµνsν .

These coefficients are known to be non-negative integers and have a combinatorial

interpretation known as the Littlewood-Richardson rule (e.g. [6], 1.9).

Definition IV.4. For a (possibly skew) unshifted tableau T , the word w(T ) =

w1w2 · · · is the sequence formed by reading the rows of T from right to left beginning

with the top row, so that w1 is the rightmost entry in the top row.

Definition IV.5. A word w = w1w2 · · ·wn over the alphabet P is said to satisfy the

lattice property if the number of instances of i− 1 in w1w2 · · ·wr is greater than or

equal to the number of instances of i for 1 ≤ r ≤ n and i > 1.

We can now state the Littlewood-Richardson rule:

Theorem IV.6. (LR rule) For partitions λ, µ, and ν, cλµν is the number of tableaux

T with diagram D(λ/µ) and content ν such that w(T ) satisfies the lattice property.

In Chapter 2, we discussed the well known fact that the leading term of sλ/µ

has content equal to the conjugate of the column set partition and is greatest in
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dominance order. Since there is a single tableau with this content, the LR coefficient

of the s-function for this leading term partition is 1. Note also that unless µ, ν ⊆ λ,

|ν| = |λ/µ|, and the leading term partition dominates ν, we have cλµν = 0.

For the proof of Theorem IV.3, we will use the shifted analogue of the Littlewood-

Richardson rule developed by Stembridge ([11], Theorem 8.3).

Definition IV.7. For a (possibly skew) shifted tableau T , the word w(T ) = w1w2 · · ·

is the sequence formed by reading the rows of T from left to right, beginning with

the last row, so that w1 is the leftmost entry in the bottom row.

Definition IV.8. For any word w = w1w2 · · ·wn over alphabet P′, we define mi(j),

the multiplicity of i at the j-th step of w, for i ≥ 1 and 0 ≤ j ≤ 2n, as:

mi(j) = the multiplicity of i in wn−j+1, . . . , wn 0 ≤ j ≤ n

mi(j) = mi(n) + the multiplicity of i′ in w1, . . . , wj−n n < j ≤ 2n.

The multiplicities can be computed by scanning the word first from right-to-left

counting the instances of i and then from left-to-right adding the instances of i′. So

in particular, mi(0) = 0 for all i and (m1(2n),m2(2n), . . . ) is the content of T .

Definition IV.9. A word w over alphabet P′ is said to satisfy the lattice property

if, whenever mi(j) = mi−1(j):

wn−j 6= i, i′ if 0 ≤ j < n(4.1a)

wj−n+1 6= i− 1, i′ if n ≤ j < 2n(4.1b)

Note that wn−j or wj−n+1 is the next letter read after the jth step. We are now

able to state the shifted analogue of the Littlewood-Richardson rule:

Theorem IV.10. (Shifted LR Rule) For any shifted diagram D′(λ/µ)

(4.2) Qλ/µ =
∑
ν

fλµνQν
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summed over all strict partitions ν, where the coefficient fλµν is the number of shifted

tableaux T with diagram D′(λ/µ) and content ν such that:

(i) w = w(T ) satisfies the lattice property;

(ii) the leftmost i∗ in w is unmarked, for 1 ≤ i ≤ l(ν).

In Chapter 2, we discussed that the leading term of Qλ/µ has content equal to the

conjugate of the diagonal set partition. We showed that this leading term content

is greatest in dominance order and that, up to the marking of the free entries, there

is a single shifted tableau with this content. Thus, the shifted LR coefficient of the

Q-function for this leading term partition in Qλ/µ is non-zero, specifically the ratio

of the leading coefficients which is a power of two where the power is the difference

between l(λ)− b(λ, µ) and the length of this leading term partition. Note also that

unless µ, ν ⊆ λ, |ν| = |λ/µ|, and the leading term partition dominates ν, we have

fλµν = 0.

4.2 The Flip of D′(λ/µ)

In this section we discuss a transformation of shifted shapes that is well known

to lead to equal skew Q-functions.

Definition IV.11. For a strict partition λ ⊆ δ(k), the k-complement λ∗ is the strict

partition that is the conjugate of the (not necessarily strict) partition which is equal

to δ(k)− λ as sets. For example, in Figure 4.1, 6421 and 53 are 6-complements.

Definition IV.12. For a shifted diagram D′(λ/µ), the flip φ(λ/µ) is the (possibly

skew) shifted shape whose diagram is formed by reflection across a line perpendicular

to the main diagonal, so that the top row and rightmost column are interchanged.

Thus, the leftmost position in the first row of D′(λ/µ) becomes the bottom position
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ν = 6421

•
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•

ν∗ = 53 φ(ν) = 654321/53

• •
• • •
• • •
• •
•

λ/µ = 7631/42

•
• •
• •
•

φ(λ/µ) = 76531/542

Figure 4.1: Complements and Flips of Shifted Diagrams

in the last column of D′(φ(λ/µ)). For µ∗ and λ∗ the λ1-complements of µ and λ

respectively, φ(λ/µ) = µ∗/λ∗. Figure 4.1 provides two pairs of diagrams related by

flipping: 6421 with δ(6)/53 and 7631/42 with 76531/542.

Proposition IV.13. For any shifted diagram D′(λ/µ), Qφ(λ/µ) = Qλ/µ.

Proof. Let T be any unmarked shifted tableau, as in Definition II.9, with diagram

D′(λ/µ) and let n be the minimum entry of T and let N be the maximum entry of

T . To create the unmarked shifted tableau φ(T ) of shape φ(λ/µ), flip the diagram

D′(λ/µ) and replace each entry a with (n+N − a). Since the rows of T are weakly

increasing, the columns of φ(T ) are weakly increasing, and since the columns of T

are weakly increasing, the rows of φ(T ) are weakly increasing. Since each diagonal is

reflected on itself to form φ(T ) and since the diagonals of T are strictly increasing,

the diagonals of φ(T ) are strictly increasing. Therefore, φ(T ) is an unmarked shifted

tableau. Now if the content of T is α = (α1, α2, . . . , αn), then the content of φ(T )
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is the reverse permutation of α, (αn, . . . , α2, α1). The image of the left-adjacent (re-

spectively, bottom-adjacent) position to (i, j) in T is bottom-adjacent (respectively,

left-adjacent) to the image of (i, j) in φ(T ), so that (i, j) is free in T if and only if

its image is free in φ(T ). Thus, fr(φ(T )) = fr(T ). Therefore, since Q-functions are

symmetric, the terms of Qφ(λ/µ) are simply a reordering of the terms of Qλ/µ, and so

the two Q-functions are equal.

This provides examples relevant for Question IV.1, as well as in a special case for

Question IV.2. For any staircase partition δ(k), the k-complement is ∅, leading to

the following corollary of Proposition IV.13.

Corollary IV.14. For any strict partition µ ⊆ δ(k) where µ∗ is the k-complement

of µ, Qδ(k)/µ = Qµ∗.

For example, the Q-function for δ(6)/53, shown in Figure 4.1, is equal to the

Q-function of its non-skew flip 6421.

4.3 Transformations leading to equal S-functions

In the previous section, we showed that the flip transformation leads to a shifted

shape with identical Q-function. In this section we discuss two additional transfor-

mations for the S-function class of skew Q-functions that are well known to lead to

an identical S-function.

Proposition IV.15. For any unshifted diagram D(λ/µ),

(a) Sλ/µ = Sλ′/µ′

(b) Sλ/µ = SRot(λ/µ)

Proof. For (a), let T be an unmarked shifted tableau, as in Definition II.9, with

unshifted diagram D(λ/µ). Let T ′ be the result when we conjugate the diagram
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and leave the entries unchanged. Since the rows of T are weakly increasing, the

columns of T ′ are weakly increasing; similarly, since the columns of T are weakly

increasing, the rows of T ′ are weakly increasing. Since the diagonals of T ′ are simply

a reordering of the diagonals of T with the last diagonal of T the first diagonal

of T ′, each diagonal remains strictly increasing. Thus T ′ is indeed an unmarked

shifted tableaux of unshifted diagramD(λ′/µ′). Since the border strips remain intact,

fr(T ) = fr(T ′) and so the term 2fr(T
′)xT

′
in the unmarked shifted tableau expansion

as in (2.2) for Q-function Sλ′/µ′ is identical to the 2fr(T )xT term in the unmarked

shifted tableau expansion for Sλ/µ. Therefore, the two functions are equal.

Since Rot(λ/µ) = φ(λ′/µ′), (b) is a corollary of (a) and Proposition IV.13.

4.4 Proof of Theorem IV.3: The Case µ = ∅

We continue our focus on S-functions and now begin the proof of the main result

of this chapter. In this section we prove Theorem IV.3 for all Sλ/µ with µ = ∅. For

this class of skew Q-functions, whether or not Sλ is equal to a scalar multiple of a

single non-skew Q-function is determined by a single characteristic: whether λ is a

rectangle.

The proof will rely on showing that particular tableaux satisfy the conditions of

the shifted Littlewood-Richardson rule (Theorem IV.10), and so we begin with a pair

of lemmas proving that words of particular forms always satisfy the lattice property

of Definition IV.9.

Definition IV.16. For partition λ, the (i,j)-hook is the set of positions in D(λ)

directly to the right of and directly below (i, j), including the (i, j)-position itself.

The hook length h(i, j) is the number of positions in the (i, j)-hook, counting (i, j)

exactly once, so that h(i, j) = λi + λ′j − i− j + 1.
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` b a` a a

i′ i i . . . i i . . . i i

i′ i+1′ i+1 . . . i+1

> i′ i+1′

...
...

c
i′ i+1′

⊥ i′ i+1

> i′

...
d

i′

⊥ i

Figure 4.2: The (i, i) and (i+ 1, i+ 1) Hooks of Shifted Tableau TH

Notation IV.17. Given a word w over alphabet P′, we will use w|i,j to denote the

(i,j)-subword, which includes only the instances of i∗ and j∗ and is formed by simply

deleting from w all other entries.

Lemma IV.18. For any unshifted diagram D(λ), let TH be the unique shifted tableau

of shape λ where all the entries in the (i, i)-hook are i∗ and where the instance of i∗

that is leftmost in w(TH) is unmarked. Then w(TH) satisfies the lattice property.

Proof. Let r be the smallest integer such that (r + 1, r + 1) /∈ D(λ). To prove that

TH is a shifted tableau whose word satisfies the lattice property, we will show that

w(TH)|i,i+1 satisfies the lattice property for each i < r (for i ≥ r the lattice property

is clearly satisfied). Since i + 1 ≤ r, (i + 1, i + 1) ∈ D(λ), so that the i and i + 1

hooks have the form in Figure 4.2 with a, b, c, d ≥ 0. In that case,

w(TH)|i,i+1 = i(i′)d(i+ 1)(i′(i+ 1)′)c(i+ 1)bi′i1+b+a.

Note if c = 0 then the (2, 2) entry in Figure 4.2 is actually unmarked and if d = 0

then the (c + 2, 1) entry is unmarked, but the word expression is still valid. During

the right-to-left reading mi(j) −mi+1(j) is smallest as the underlined i + 1 is read,
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at which point

mi(j) = 1 + b+ a ≥ 1 + b = mi+1(j).

Even if a = 0 and equality holds, the next letter read is i′ (if d > 0) or i so that the

lattice property holds. As we finish the right-to-left reading,

mi(n) = 2 + b+ a > 1 + b = mi+1(n)

where n is the length of this subword. Thus, since during the left-to-right reading of

w(TH)|i,i+1 every instance of (i+ 1)′ is immediately preceded by i′, mi(j) > mi+1(j)

for n ≤ j ≤ 2n. Therefore, w(TH)|i,i+1 satisfies the lattice property for all i and thus

w(TH) does.

The content of TH is an example of the following partition.

Notation IV.19. For any unshifted diagram D(λ), we will use H(λ) to denote the

partition whose ith part is the (i, i)-hook length:

H(λ) = (h(1, 1), h(2, 2), . . . , h(r, r))

where r is the smallest i such that (i+ 1, i+ 1) /∈ D(λ).

Lemma IV.20. If a word w = w1w2 · · ·wn−1 in i∗ and (i + 1)∗ satisfies the lattice

property, then the word formed by prepending an i, w′ = iw1w2 · · ·wn−1, also satisfies

the lattice property.

Proof. During the right-to-left reading up to the prepended i, w′ is identical to w

and so satisfies the lattice property to this point. As each letter is read during the

left-to-right reading of w, mi must be at least as great as mi+1 since w satisfies

the lattice property. The prepended i in w′ increases mi by one and leaves mi+1

unchanged, so that mi is strictly greater than mi+1 during the left-to-right reading

of w′, and therefore w′ satisfies the lattice property.
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1∗ 1 1 1 1 1 1 1

◦ 2∗ 2 2 2 2 2 2

◦ ◦ 3∗ 3 3 3 3 3

◦ ◦ ◦ 4∗ 4 4 4 4

◦ ◦ ◦ ◦ 5∗ 5 5 5

Partial

1′ 1 1 1 1 1 1 1

1′ 2′ 2 2 2 2 2 2

1′ 2′ 3′ 3 3 3 3 3

1′ 2′ 3′ 4′ 4 4 4 4

1 2 3 4 5 5 5 5

Complete

Figure 4.3: The Shifted Tableau of Unshifted Shape λ/µ = 85/∅

We now proceed to the proof of the theorem in the case of µ = ∅. We have split

this case into two subcases. First we will show that for any rectangular λ = mk

S(mk) = Q(m+k−1,m+k−2,...,|m−k|+1).

Proof of Theorem IV.3, The Case µ = ∅ and λ = mk: By Proposition IV.15, S(mk) =

S(km) and so it is sufficient to show the result holds for m ≥ k. We will show that

the conditions in the shifted LR rule allow only a single shifted tableau of unshifted

shape mk. Let T be such a tableau and w = w(T ) = w1w2 · · ·wmk. Since mi(0) = 0

for all i, the lattice property (4.1a) requires that wmk = 1∗, and since the row must

be weakly increasing left-to-right with at most one 1′, the first row of T is 1∗1m−1.

Since (4.1a) forces the rightmost entry of the second row to be < 3′ and since there

can be at most one 1 in each column, the second row must be ◦2∗2m−2, where the ◦

indicates a position whose entry is yet to be determined. Following the same logic

for the lower rows, we know that the ith row of T , from the (i, i)-position of D(mk)

to the right must have entries i∗ii · · · i = i∗im−i. See the partial tableau of shape 85

in Figure 4.3 for an example of the entries deduced thus far.

Now if in T the number of unmarked i entries is equal to the number of unmarked

(i− 1) entries, then in terms of the statistics mi−1(mk) = mi(mk) after completing

the right-to-left reading. Since condition (ii) of the shifted LR rule requires the

leftmost instance of (i− 1)∗ to be unmarked, during the left-to-right reading of w we
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would read an (i− 1) before mi−1 is increased by reading the first (i− 1)′, and so w

would fail the lattice property condition in (4.1b). Thus for all i, 1 < i ≤ k, it must

be that the number of unmarked (i − 1) entries is strictly greater than the number

of unmarked i entries. Since the leftmost instance of 1∗ in w must be unmarked and

there is at most one 1 per column, there must be a 1 in the first column so that the

number of 1 entries is m. Then for all i ≥ 1 the number of unmarked i entries is no

more than m+ 1− i.

Since i′ < i and the leftmost instance of i∗ in w must be unmarked, we know

that there are no marked entries in the lowest row. Thus, as we see in the partial

tableau in Figure 4.3 where the 5∗ entry must be an unmarked 5, the tableau already

includes the maximum number of k entries, m+ 1− k. Then T (k, k − 1), the entry

in the bottom row immediately left of the entries km+1−k, must be unmarked and

(k − 1) or smaller; since it is also below a (k − 1)∗, T (k, k − 1) = k − 1 and thus

T (k − 1, k − 1) = (k − 1)′. But now the number of k − 1 entries is m − k + 2, the

maximum allowed, so that T (k, k − 2) must be unmarked and

(k − 2)∗ ≤ T (k − 2, k − 2) ≤ T (k, k − 2) ≤ T (k, k − 1) = (k − 2),

forcing T (k, k − 2) = k − 2. Therefore, continuing this logic, the kth row of T must

be 123 · · · (k − 1)km+1−k. The definition of shifted tableaux (I.21) then uniquely

determines the remaining entries, including the marking of the entries T (i, i), so

that all entries in the (i, i)-hook are i∗ with the entry in the lowest row unmarked,

as seen in the complete tableau for 85 in Figure 4.3.

In this T all m + k − 2i + 1 entries in the (i, i)-hook are i∗, so that w(T ) does

satisfy the lattice property by Lemma IV.18 and the content of T is

(m+ k − 1,m+ k − 3, . . . ,m− k + 1).
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Thus for λ = (mk) there is exactly one shifted tableau T satisfying the conditions of

the shifted LR rule. Therefore, in the Q-expansion as in (4.2) for S(mk), f
λ
µν = 1 for

v = (m + k − 1,m + k − 3, . . . ,m − k + 1) while fλµν = 0 for all other ν and so the

theorem holds in this case. �

We now proceed to the remaining cases where µ = ∅. We will prove that for all

other λ 6= mk there is no ν and c such that Sλ = cQν by showing there are at least

two tableaux with different content partitions satisfying the conditions of the shifted

LR rule (Theorem IV.10).

Proof of Theorem IV.3, The Case µ = ∅ and λ 6= mk: Since Sλ = Sλ′ by Lemma

IV.15, it is sufficient to show the theorem holds for either. Therefore, for the smallest

i such that h(i, i)− 2 > h(i+ 1, i+ 1), which is the smallest i such that λi > λi+1 or

λ′i > λ′i+1, we will assume that λi > λi+1.

First, consider the unique shifted tableau TH where all the entries of the (i, i)-hook

of D(λ) are i∗ and with the leftmost instance of i∗ in w(TH) unmarked for each i ≥ 1

to satisfy condition (ii) in the shifted LR rule. The content of TH is the partition

H(λ). By Lemma IV.18, we know that TH satisfies the lattice property. Therefore,

by the shifted LR rule the coefficient of QH(λ) in Sλ is nonzero.

Next we will form a tableau Ta whose content is a partition distinct from H(λ).

Although the proof is valid for any value of i, to simplify the argument we will assume

that the smallest i such that h(i, i)− 2 > h(i+ 1, i+ 1) is i = 2. In the case that λ

is a hook, so that i = 1, the proof is even simpler since, when we consider whether

the tableau satisfies the lattice property below, we will not need to compare 0 and 1.

Then, given the assumptions in the first paragraph, λ1 = λ2 > λ3, else we would have

chosen to show the result for Sλ′ . Also, λ′1 = λ′2 ≥ λ′3, so that every row except the

first includes a position in the (2, 2)-hook. Since by assumption λ is not a rectangle,
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1′ 1 1

1′ 2 2

1 3

λ = 332

1′ 1 1 1

1′ 2′ 2 2

1′ 2 3

1 3

λ = 4432

1′ 1 1 1 1

1′ 2′ 2 2 2

1′ 2′ 3′ 3

1′ 2 3′ 4′

1 3 3 4

λ = 55444

Figure 4.4: Examples of Tableaux of Form Ta

λ3 > 0 so that both of the bottom two rows of TH include a 2∗. To form Ta we begin

with TH and make the following changes:

(i) replace the 2 in the lowest row, which is the leftmost 2∗ in w(TH), with a 3; and

(ii) replace the 2′ in the row second from the bottom with a 2, which is now the

leftmost 2∗ in w(Ta), in order to satisfy condition (ii) of the shifted LR rule.

Figure 4.4 shows Ta for several small examples for which 2 is the smallest i such that

h(i, i)− 2 > h(i+ 1, i+ 1).

We have added an unmarked 3 and changed the new leftmost 2∗ entry in w(Ta)

to be unmarked, so that we have already ensured that condition (ii) of the shifted

LR rule is satisfied. Since in Ta the only changes from TH involve 2∗ and 3∗ entries,

w(Ta) will satisfy the lattice property as long as the subwords w(Ta)|1,2, w(Ta)|2,3,

and w(Ta)|3,4 each do. If (3, 3) ∈ D(λ), then the (1, 1)-, (2, 2)-, and (3, 3)-hooks of Ta

form the general diagram in Figure 4.5 where a > 0 and b, c, d ≥ 0. If (3, 3) /∈ D(λ),

then the (3, 3)-hook is empty so b = c = 0 in Figure 4.5, but since λ is not a rectangle

it must be that (2, 3) ∈ D(λ), and so the number of unmarked 2 entries in the second

row is 1 + a with a ≥ 0. A small example of Ta for a diagram with empty (3, 3)-hook

is λ = 332 in Figure 4.4.

First, we consider the subword containing only 1∗ and 2∗ entries. In the diagram

formed by the 1∗ and 2∗ entries, all the entries in the (1, 1)-hook are 1∗ and all the
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` b a` a a
1′ 1 1 1 . . . 1 1 . . . 1

1′ 2′ 2 2 . . . 2 2 . . . 2

1′ 2′ 3′ 3 . . . 3
> 1′ 2′ 3′

...
...

...
c

1′ 2′ 3′

⊥ 1′ 2′ 3
> 1′ 2′

...
...

d 1′ 2′

1′ 2

⊥ 1 3

Figure 4.5: The (1, 1)-, (2, 2)-, and (3, 3)-Hooks of a General Tableau of Form Ta

entries in the (2, 2)-hook are 2∗, and so w(Ta)|1,2 satisfies the lattice property by

Lemma IV.18. Second, we consider the subword containing only 3∗ and 4∗ entries.

Since in TH the 3∗ entries form the (3, 3)-hook and the 4∗ entries form the (4, 4)-

hook, by Lemma IV.18 we know that the w(TH)|3,4 satisfies the lattice property. In

forming Ta, the only change we make to w(TH)|3,4 to form w(Ta)|3,4 is prepending a

3, so w(Ta)|3,4 satisfies the lattice property by Lemma IV.20.

Finally, we consider the subword containing only 2∗ and 3∗ entries. Now if the

(3, 3)-hook is empty, w(Ta)|2,3 consists of a 3 followed by 2∗ entries at least two of

which are unmarked, for example λ = 332 in Figure 4.4 with subword 322, and so

the lattice property is clearly satisfied. Thus we may assume that (3, 3) ∈ D(λ).

Then

w(TH)|2,3 = 2(2′)d3(2′3′)c3b2′21+b+a

with a > 0 and b, c, d ≥ 0. The algorithm changes the leftmost 2 to a 3 and the

leftmost 2′ to a 2, so that
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w(Ta)|2,3 =



32(2′)d−13(2′3′)c3b2′21+b+a if d > 0

3323′(2′3′)c−13b2′21+b+a if d = 0, c > 0

333b221+b+a if d = c = 0

where the entries that have changed from w(TH)|2,3 are underlined. In each case

since a > 0, w(Ta)|2,3 satisfies the lattice property.

Therefore, Ta is a tableau satisfying the shifted LR rule with content

ν = (h(1, 1), h(2, 2)− 1, h(3, 3) + 1, h(4, 4), . . . , h(r, r)).

Since by assumption 2 is the smallest i such that h(i, i)− 2 > h(i + 1, i + 1),

h(2, 2)− 1 > h(3, 3) + 1 and so ν is indeed a strict partition distinct from H(λ).

Thus there is a second term Qν in the Q-expansion of Sλ with a non-zero coefficient:

Sλ = a1QH(λ) + a2Qν + · · ·

with a1, a2 6= 0 and, therefore, the theorem holds for all λ 6= mk and µ = ∅. �

4.5 Proof of Theorem IV.3: The Case µ 6= ∅

To finish the proof of Theorem IV.3, we now turn our focus from non-skew to skew

S-functions, and consider the question of whether there are any cases with µ 6= ∅

such that Sλ/µ = cQν . We claim S21/1 is the single example.

This proof relies on different but equivalent expressions for the s- and S-functions

than our definitions. As mentioned in Stembridge ([12]):

Proposition IV.21. There is a (surjective) ring homomorphism θ : ΛQ → ΩQ such

that Sλ = θ(sλ) for any D(λ).

We claim there is a similar expression for skew S-functions.
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Lemma IV.22. For any diagram D(λ/µ), Sλ/µ = θ(sλ/µ).

Proof. By the Jacobi-Trudi Identity (e.g. [10], 7.16), for any diagram D(λ/µ),

(4.3) sλ/µ = det[sλi−µj−i+j].

For any unshifted diagram D(λ/µ), Sλ/µ is a skew Q-function with shape combina-

torially equivalent to λ + δ(l(λ))/µ + δ(l(λ)). Any Sλ/µ has the following Jósefiak-

Pragacz Pfaffian expression ([5]; [6], 3.8 Example 9):

Sλ/µ = Pf(Mλ+δ,µ+δ)

where Mλ+δ,µ+δ is the skew symmetric block matrix

Mλ+δ,µ+δ =

 Mλ+δ Nλ+δ,µ+δ

−NT
λ+δ,µ+δ 0


in which all blocks are l(λ)×l(λ) matrices of Q-functions, and specifically Nλ+δ,µ+δ =

(Qλi−µj−i+j). In this case,

Pf(Mλ+δ,µ+δ) = det(Nλ+δ,µ+δ) = det[Qλi−µj−i+j].

Applying θ to the expansion of sλ/µ in (4.3), we see

θ(sλ/µ) = θ(det[sλi−µj−i+j])

= det[Sλi−µj−i+j]

= det[Qλi−µj−i+j]

= Sλ/µ

Applying θ to the expansion

(4.4) sλ/µ =
∑
ν

cλµνsν
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from the LR rule (Theorem IV.6), we have

Sλ/µ =
∑
ν

cλµνSν

summed over all partitions ν with the cλµν the LR coefficients and hence non-negative

integers. From the proof of Theorem IV.3 for the case µ = ∅, we know that if there

is a ν 6= mk with cλµν > 0 then there are at least two Q-functions with non-zero

coefficients in the expansion of Sν and hence in the expansion of Sλ/µ. Thus it is

sufficient to show that in the s-expansion of sλ/µ there is a non-zero cλµν such that ν

is not a rectangle.

As previously mentioned, when ν is the leading term partition of sλ/µ, the LR

coefficient is 1. This leading term partition is a rectangle if and only if all the

columns have the same length. Recall that for the ring involution ω of Definition

I.29, ω(sλ/µ) = sλ′/µ′ . By applying ω and then θ to the expansion of sλ/µ in (4.4),

we have

Sλ′/µ′ =
∑
ν

cλµνSν′

which, as with Sλ/µ, will have at least two terms in its Q-expansion if the column

set of D(λ′/µ′) is not a rectangle. Since Sλ/µ = Sλ′/µ′ by Proposition IV.15.(a), Sλ/µ

will have at least two terms in its Q-expansion unless all the columns have length

k and all rows have length m for some constants k and m. Thus, if Sλ/µ = cQν ,

each connected component of D(λ/µ) must be a k by m rectangle; for example, see

Figure 4.6 where each connected component is rectangular with two rows of length

three.

First, if D(λ/µ) has a single connected component, then µ = ∅, which is the

case we have already demonstrated. Second, for λ/µ = 21/1, since the only strict

partition of size two is ν = 2, S21/1 is a constant multiple of Q2. We can determine the
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Figure 4.6: A Skew λ/µ with Constant Row and Column Lengths

scale factor of the leading terms, and thus of the functions, by counting the number

of marked shifted tableaux of each shape with all 1∗ entries, so that S21/1 = 2Q2.

Finally, consider the remaining cases, for which D(λ/µ) has a ≥ 2 connected

components each a rectangle of k rows of length m. The LR coefficient cλµν counts the

number of unshifted tableaux of shape λ/µ and content ν. There is a single tableau

TL with the leading term content (am)k, in which all entries in the ith row of each of

the a connected components are i. For this tableau w(TL) = (1m2m · · · km)a, which

clearly satisfies the lattice property of Definition IV.5. If we change the rightmost k

in the bottom row of D(λ/µ) to k + 1 to form tableau Ta, then

w(Ta) = (1m2m · · · km)a−11m2m · · · (k − 1)m(k + 1)km−1,

which also satisfies the lattice property when the number of connected components

is a ≥ 2. Thus, sν with ν = (am, am, . . . , am, am − 1, 1) has non-zero coefficient

in sλ/µ, and so Sν has non-zero coefficient in Sλ/µ. Except when m = k = 1 and

a = 2 which is the case λ/µ = 21/1 discussed above, ν is not a rectangle. Therefore,

there are at least two Q-functions with non-zero coefficients in the expansion Sν , and

hence in the expansion of Sλ/µ as claimed. �
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4.6 Alternate Proof of Theorem IV.3: The Case mk/∅

In this section, we show an alternate proof for the case

(4.5) S(mk) = Q(m+k−1,m+k−3,...,|m−k|+1)

that does not require finding specific tableaux. Yet a third proof is provided by

Worley ([14]).

Definition IV.23. For any unshifted diagram D(λ/µ), a standard tableau of shape

λ/µ is an assignment to the positions in D(λ/µ) of symbols 1, 2, . . . , n with n = |λ/µ|

such that each appears exactly once with both columns and rows strictly increasing.

Definition IV.24. For any shifted diagram D′(λ/µ), a shifted standard tableau of

shape λ/µ is an assignment to the positions in D′(λ/µ) of (unmarked) symbols

1, 2, . . . , n with n = |λ/µ| such that each appears exactly once with both columns

and rows strictly increasing.

For non-skew shapes, there are closed formulas for the number of standard tableaux

and the number of shifted standard tableaux:

Lemma IV.25.

(a) For any partition λ of n, if fλ represents the number of standard tableaux of

shape λ, then:

(4.6) fλ =
n!∏

i(λi + l − i)!
∏
i<j

(λi − λj + j − i)

for 1 ≤ i, j ≤ l(λ) = l (e.g. [10], 7.21).

(b) For any strict partition ν of n, if gν represents the number of shifted standard

tableaux of shape ν, then:

(4.7) gν =
n!∏
i νi!

∏
i<j

νi − νj
νi + νj
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for 1 ≤ i, j ≤ l(λ) = l (e.g. [6], 3.8 Example 12).

Proposition IV.26. For any m and k,

f (mk) = gH(mk)

where H(mk) = (m+ k − 1,m+ k − 3, . . . , |m− k|+ 1).

Proof. Substituting λi = m and λ′i = k for all i into (4.6):

f (mk) =
n!∏

i(m+ k − i)!
∏
i<j

(m−m+ j − i)

=
n!∏

i(m+ k − i)!
∏
i<j

(j − i).
(4.8)

For ν = H(mk), since νi is the (i, i)-hook length of D(mk):

νi = λi + λ′i − i− i+ 1 = m+ k − 2i+ 1,

νi − νj = (m+ k − 2i+ 1)− (m+ k − 2j + 1) = 2(j − i), and

νi + νj = (m+ k − 2i+ 1) + (m+ k − 2j + 2) = 2(m+ k − i− j + 1).

Substituting these into (4.7):

gH(mk) =
n!∏

i(m+ k − 2i+ 1)!

∏
i<j

2(j − i)
2(m+ k − i− j + 1)

=
n!∏

i(m+ k − 2i+ 1)!

∏
i<j

j − i
m+ k − i− j + 1

.

(4.9)

To show that this is equivalent to f (mk), we regroup the factors of the denominator:
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∏
i

(m+ k − 2i+ 1)!
∏
i<j

(m+ k − i− j + 1)

=
∏
j

(
(m+ k − 2j + 1)!

∏
i<j

(m+ k − i− j + 1)
)

=
∏
j

(m+ k − 2j + 1)!(m+ k − (j − 1)− j + 1)

(m+ k − (j − 2)− j + 1) · · · (m+ k − 1− j + 1)

=
∏
j

(m+ k − 2j + 1)!(m+ k − 2j + 2)(m+ k − 2j + 3) · · · (m+ k − j)

=
∏
j

(m+ k − j)!

so that (4.9) becomes

gH(mk) =
n!∏

i(m+ k − i)!
∏
i<j

(j − i),

which is the expression we found for f (mk) in (4.8).

Remark IV.27. Haiman has given a bijective proof of this identity for k ≤ m ([4],

Proposition 8.11).

We may now proceed with the alternate proof of Theorem IV.3 for the case λ/µ =

mk/∅, for any m and k. From Definition I.31 of Sλ and Definition II.9 of unmarked

shifted tableaux, we know that Sλ =
∑

2fr(T )xT summed over all unmarked shifted

tableaux T of unshifted diagram D(λ). Let n = |λ|. The unmarked shifted tableaux

whose entries are 1, 2, . . . , n without repetition are the shifted standard tableaux of

unshifted shape λ, but are also the unshifted standard tableaux of shape λ. Thus,

the coefficient of x1x2 · · ·xn in Sλ is 2nfλ.

Now from Definition I.32 of Qν and Definition II.9 of unmarked shifted tableaux,

we know that Qν =
∑

2fr(T )xT summed over all unmarked shifted tableaux of shape
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ν. Thus for ν of size n, the coefficient of x1x2 · · ·xn in Qν is 2ngν . Since Sλ is a skew

Q-function, Sλ =
∑
aλνQν with integers aλν ≥ 0 by the shifted LR rule. Thus the

coefficient of x1x2 · · ·xn in Sλ is:

2n
∑
ν

aλνg
ν

summed over all strict partitions ν of size n.

These two expressions for the coefficient of x1x2 · · ·xn in Sλ must be equal. The

ith part of the leading term partition of Sλ is the (i, i)-hook length of D(λ), in this

case the partition H(mk) = (m+ k − 1,m+ k − 3, . . . , |m− k|+ 1). For both S(mk)

and QH(mk), the number of free entries in the leading term tableau is the number of

non-zero (i, i)-hook lengths of D(mk), so aλν = 1 for QH(mk) in S(mk). By Proposition

IV.26, f (mk) = gH(mk), and since all the shifted LR coefficients are non-negative, we

must have aλν = 0 in S(mk) for all other ν. Therefore, (4.5) holds. �



CHAPTER V

Equality between sδ(n)/λ and Qν

We now consider equality between a third pairing of symmetric functions:

Question V.1. When is a (possibly skew) s-function equal to a constant multiple of

a (possibly skew) Q-function?

We focus on the particular case:

Question V.2. When is a (possibly skew) s-function equal to a constant multiple of

a non-skew Q-function?

From Definition I.32 of P -functions, P - and Q-functions only differ by a power of

two, so we could have posed these questions equivalently in terms of P -functions. In

this chapter we answer Question V.2 completely.

Theorem V.3. If D(λ/µ) is a diagram such that

sλ/µ = c Qν

for some strict partition ν and scalar c, then

sλ/µ = sδ(n)/(mk) = PH(mk)∗

for some n, where H(mk) = (m+ k − 1,m+ k − 3, . . . , |m− k|+ 1) and H(mk)∗ is

the n-complement of H(mk).

60
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δ(9)/53

•
• •
• • •
• • •
• • •
• •
•

H(53)∗ = 986421

Figure 5.1: An Example of Theorem V.3, sδ(9)/(53) = PH(53)∗

5.1 The P -Expansion of sδ(n)/λ

We begin with a known special case of Theorem V.3, the case λ = ∅; Macdonald

([6], 3.8 Example 3) describes an alternate proof.

Lemma V.4. For a staircase partition δ of any size, sδ = Pδ.

Proof. Since sδ ∈ ΩQ, we know sδ has a Q-expansion, and hence a P -expansion. The

leading term partition of sδ is δ, which is the strict partition of size |δ| lowest in

dominance order. Hence Pδ is the only P -function with non-zero coefficient in sδ.

The number of tableaux with content δ of diagram D(δ) and shifted diagram D′(δ),

and thus the leading coefficient of sδ and Pδ, is 1 in both cases.

Since the s-functions form a basis of ΛQ, we may define coefficients gνλ for a strict

partition ν and a partition λ with |λ| = |ν| by

(5.1) Pν =
∑
λ

gνλsλ

where the sum is over all partitions λ. These coefficients also appear in the Q-

expansion of Sλ ([11]):

(5.2) Sλ =
∑
ν

gνλQν

summed over all strict partitions ν. Since Sλ is a skew Q-function, the gνλ are shifted

Littlewood-Richardson coefficients (Theorem IV.10) and thus are non-negative inte-

gers. We will show the coefficients gνλ appear in a third expansion.
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Theorem V.5. For partitions λ and strict partitions ν, define an integer matrix

[gνλ] by (5.1). Then

(5.3) sδ(n)/λ =
∑
ν

gνλPν∗

summed over all strict partitions ν with |ν| = |λ| where ν∗ is the n-complement of ν.

Proof. If we consider the tableaux contributing terms to sδ(n)(x, y) as having entries

from the ordered alphabet 1x < 2x < . . . < 1y < 2y < . . . , we may view the tableaux

as assignments of 1x < 2x < . . . to an inner diagram D(λ) and assignments of

1y < 2y < . . . to an outer diagram D(δ(n)/λ), so that

(5.4) sδ(n)(x, y) =
∑
λ

sλ(x)sδ(n)/λ(y)

summed over all partitions λ such that λ ⊆ δ(n). Similarly, considering the tableaux

contributing terms to Pδ(n)(x, y) as having entries from the (marked) ordered alpha-

bet 1′x < 1x < 2′x < 2x < . . . < 1′y < 1y < 2′y < 2y < . . . , we may view the tableaux

as assignments to an inner and an outer shifted diagram, so that:

(5.5) Pδ(n)(x, y) =
∑
ν

Pν(x)Pδ(n)/ν(y)

summed over all strict partitions ν such that ν ⊆ δ(n). By Proposition IV.13, the

Q-functions of a shifted shape and its flip are equal, and since they have an equal

number of entries on the main diagonal, so are their P -functions. By Corollary IV.14,

the flip of δ(n)/ν is the non-skew shifted shape ν∗, the n-complement of ν. Thus

(5.5) becomes

(5.6) Pδ(n)(x, y) =
∑
ν

Pν(x)Pν∗(y).

From the definition of the integers gνλ in (5.1), the coefficient of sλ(x) in each Pν(x)

is gνλ. Thus, from the expansion in (5.6), the coefficient of sλ(x) in Pδ(n)(x, y) is∑
ν

gνλPν∗(y)
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summed over all strict partitions ν ⊆ δ(n) with |λ| = |ν|. From (5.4), since non-skew

s-functions are linearly independent, in sδ(n)(x, y) the coefficient of sλ(x) is sδ(n)/λ(y).

Since Pδ(n)(x, y) = sδ(n)(x, y) by Lemma V.4, these coefficients of sλ(x) are equal,

and therefore

sδ(n)/λ(y) =
∑
ν

gνλPν∗(y).

Since, as mentioned above, the coefficients gνλ in the P -expansion of sδ(n)/λ are

shifted LR coefficients, we have:

Corollary V.6. For any n and partition λ ⊆ δ(n), sδ(n)/λ is P -positive; more pre-

cisely, the coefficients in the P -expansion of sδ(n)/λ are particular shifted Littlewood-

Richardson coefficients.

Since Pν = 2−l(ν)Qν , we can similarly state that sδ(n)/λ is Q-positive and the

coefficients in the Q-expansion are, up to a power of two factor, particular shifted

LR coefficients. A different combinatorial interpretation of the coefficients and their

positivity in the P -expansion of sδ(n)/λ has been proven independently by Ardila and

Serrano ([1]).

5.2 Equality of sδ(n)/λ and Pν∗

Proof of Theorem V.3. By Theorem III.5 a (possibly skew) s-function is in ΩQ if and

only if each of the connected components of its diagram is combinatorially equivalent

to δ/α or Rot(δ/α). Since sRot(δ/α) = sδ/α by Lemma III.3, we see, by rotating each

connected component 180 degrees if necessary, that every s-function in ΩQ is equal

to the s-function for a shape that is combinatorially equivalent to δ(n)/λ for some

constant n and partition λ. Thus we need only compare sδ(n)/λ to Pν . For λ 6= mk,
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Theorem IV.3 states that in the Q-expansion of Sλ there are at least two Qν with

non-zero coefficient; these coefficients are the gνλ in (5.2). Therefore, substituting

these gνλ into (5.3), we see there are at least two Pν∗ with non-zero coefficients

in the P -expansion of sδ(n)/λ. By Theorem IV.3, Smk = QH(mk), so that gνλ = 1

for ν = H(mk) and gνλ = 0 for all other ν in (5.2). Therefore, substituting the

coefficients into (5.3), we have sδ/mk = PH(mk)∗ . �

Recall from Lemma IV.25 that for a non-skew diagram D(λ) there is a closed

formula for the number of standard tableaux fλ; similarly, for a shifted diagram

D′(ν) there is a closed formula for the number of shifted standard tableaux gν .

In general, for a skew diagram D(λ/µ) there is no known product formula for the

number of standard tableaux, which we may denote fλ/µ. However, by Theorem

V.3 in the particular case of λ/µ = δ(n)/mk, we may find the number of standard

tableaux for this skew shape by counting the number of shifted standard tableaux of

the non-skew shifted shape H(mk)∗.

Corollary V.7. For any n, m and k with H(mk)∗ the n-complement of H(mk),

f δ(n)/m
k

= gH(mk)∗ .

We now focus on the result of Theorem V.3 in the special case when D(δ(n)/mk)

disconnects. The diagram D(δ(n)/mk) is connected for m + k < n, but disconnects

for m + k = n. In the latter case, sδ(n)/(mk) factors into sδ(m)sδ(k), and thus by

Theorem V.3 so does PH(mk)∗ , even though D′(H(mk)∗) is connected and non-skew.

From Lemma V.4 sδ(n) = Pδ(n), so that:

Corollary V.8. For shifted diagram D′(H(mk)∗) where H(mk)∗ is the (m + k)-

complement of H(mk) = (m+ k − 1,m+ k − 3, . . . , |m− k|+ 1),

PH(mk)∗ = Pδ(m)Pδ(k).
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Worley ([14]) provides an alternate proof of this factorization, since in this case

H(mk)∗ = δ(m) + δ(k).

We have already seen an example of such a shape in Figure 4.1: 6421 is the 6-

complement of 53 = H(42), and so P6421 = P4321P21. This is an interesting difference

between s-functions and P -functions (equivalently, Q-functions), since the s-function

for a connected diagram is an irreducible polynomial (e.g. [2]), and thus suggests the

inclusion of an additional question in future examinations of the relationships among

the elements of ΩQ:

Question V.9. When is a (possibly skew) Q-function for a connected shifted diagram

an irreducible polynomial?

Corollary V.8 provides a class of reducible Q-functions. In fact, we have already

seen an example of a reducible Q-function in Theorem IV.3,

Q2 =
1

2
S21/1 =

1

2
Q2

1,

which is the Q-function version of the case m = k = 1 of Corollary V.8. For any

strict partitions λ and µ, it is also known that Q2
λ/µ is, up to a power of 2, a skew

Q-function, see ([6], 3.8 Example 10).
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