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Abstract 
 
 
Genetic information is stored in a manner that facilitates retrieval and promotes 

regulation of cellular processes. In eukaryotic genomes the largest collection of co-

regulated genes is the transfer RNA (tRNA) gene family, transcribed by RNA 

polymerase III (Pol III). The budding yeast, Saccharomyces cerevisiae, has 274 tRNA 

genes widely dispersed throughout the 16 nuclear chromosomes, yet in three dimensions 

these genes cluster together at the nucleolus. This work investigates the mechanism and 

consequences of this spatial organization of tRNA genes. 

 Clustering of tRNA genes had initially been observed by fluorescence 

microscopy, but limits on resolution prevented seeing associations for individual tRNA 

genes. Here, in vivo chemical crosslinking identified physical interactions between 

genomic loci that are closely associated in three dimensions. This confirmed nucleolar 

clustering of tRNA genes and further demonstrated that specific association of tRNA 

genes along the nucleolar ribosomal RNA (rRNA) gene repeats is dependent upon tRNA 

gene identity. Although tRNA gene clustering is not necessarily the primary driving force 

of genome organization, the results suggest they are local organizers. 

 The mechanism of tRNA gene clustering was examined. Previous work showed 

the conserved condensin complex is required for clustering and is directly bound to tRNA 

gene transcription complexes in vivo. This work shows that binding of the Pol III 

transcription factor TFIIIC to the tRNA gene is necessary and sufficient for condensin to 

specifically recognize the tRNA gene. 

 Clustering of tRNA genes contributes to “silencing” of nearby transcription by 

RNA polymerase II (Pol II), but the molecular mechanisms are unknown. Work in both 

bacterial and mammalian systems has shown that other tRNA-related RNAs bind Pol II 

and inhibit transcription. However, this work shows not specific RNAs but a broad 

spectrum of RNAs directly binds to purified yeast Pol II, preventing it from subsequently 

binding DNA template. Globally, this result necessitates immediate ribonucleoprotein 
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assembly and transport of nascent transcripts to sequester inhibitory RNAs away from the 

polymerase.  

Overall, the findings from this dissertation further our understanding of how 

families of genes are spatially organized and reveal important consequences of nuclear 

organization on cellular processes. 
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Chapter I 

 

Introduction 

 

Abstract 

 

The DNA of living cells is highly compacted. Inherent in this spatial constraint is the 

need for cells to organize individual genetic loci so as to facilitate orderly retrieval of 

information. Complex genetic regulatory mechanisms are crucial to all organisms, and it 

is becoming increasingly evident that spatial organization of genes is one very important 

mode of regulation for many groups of genes. In eukaryotic nuclei it appears not only that 

DNA is organized in three-dimensional space but also that this organization is dynamic 

and interactive with the transcriptional state of the genes. Spatial organization occurs 

throughout evolution and with genes transcribed by all classes of RNA polymerases in all 

eukaryotic nuclei, from yeast to human. There is an increasing body of work examining 

the ways in which this organization and consequent regulation are accomplished. The 

following is a discussion of the diverse strategies that cells use to preferentially localize 

various classes of genes. 

 

 

Introductory remarks 

 

It has long been realized that DNA is often organized in a manner that contributes to the 

regulated and efficient expression of gene products. Even so, the fact that most 

collections of co-regulated genes, or “regulons,” are not co-linear has led to the tacit 

assumption that co-regulation of linearly scattered genes is achieved by diffusible 

transcription factors and other regulators. This assumption of diffusible, location-
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independent regulation is consistent with the fact that the linear arrangement of most 

genes in chromosomes is not tightly conserved, even when the sequences of the genes 

themselves are. A growing body of work indicates, however, that preferential three-

dimensional positioning of many genes in eukaryotic nuclei is part of their transcriptional 

programming and, at least in some cases, facilitates use of their RNA transcripts.   

 

 

Operons and other linear organizational strategies 

 

In bacteria it is common to have all or part of a regulon made as a single transcription 

unit, a polycistronic operon. The operon was the earliest genetic regulatory system to 

have its physical DNA arrangement elucidated in the study of the lac operon, which 

controls lactose utilization in Escherichia coli (Jacob et al., 1960). The prokaryotic 

operon exemplifies how cells use linear organization to achieve regulation in one 

dimension and is perhaps the simplest example of spatial regulation of gene expression. 

Although it was thought for some time that only bacteria and archaea contain 

operons, it is now known that some eukaryotes also have genomic regions that fit the 

classical definition of an operon. The completion of the genome sequence of the 

trypanosome Leishmania major reveals global arrangement of genes in polycistronic 

clusters of various sizes (Ivens et al., 2005). There are several examples of operons in 

other metazoans such as flatworms and certain primitive chordates (Ganot et al., 2004), 

but the best studied example of operons in eukaryotes remains the nematode 

Caenorhabditis elegans, the first eukaryotic organism in which extensive operons were 

discovered (Spieth et al., 1993). It is estimated that approximately fifteen percent of C. 

elegans genes are present in operons (Blumenthal et al., 2002; Blumenthal and Gleason, 

2003). Unlike with prokaryotic operons, though, the products of the individual genes 

encoded by most of the operons in C. elegans are mostly not functionally related. Thus, it 

has been suggested that C. elegans operons are evolutionarily distinct from those present 

in bacteria and may have arisen, not for purposes of co-regulation as with prokaryotic 

operons, but from a need either to select for a smaller genome or to confer a more optimal 

spatial arrangement for the genes themselves. That being said, the genome of C. elegans 
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does contain a few polycistronic transcripts whose component genes do encode related 

protein products (Clark et al., 1994; Huang et al., 1994; Page, 1997; Treinin et al., 1998). 

In these instances there is an argument to be made in favor of preferential localization of 

gene products for co-regulation. In some cases it has been suggested that C. elegans 

operons serve purposes of co-regulation in response to a global signal (Blumenthal and 

Gleason, 2003), and in fact there is emerging evidence consistent with this idea (Baugh et 

al., 2009; Garrido-Lecca and Blumenthal, 2010). Thus, in the case of C. elegans, the 

same type of gene structure might have arisen for different needs, whether for pure 

spatial compaction or for regulation of gene expression. 

 In addition to operons, there are other varieties of linear clusters of genes in 

eukaryotes (Figure 1.1). Some have probably arisen originally by gene duplication, but in 

many cases the linear arrangements appear to benefit from regional regulatory signals 

that control substantial distances on the linear chromosomes. Homeotic genes, and in 

particular the HOX gene clusters, provide one example. First discovered in Drosophila, 

HOX genes encode several transcription factors responsible for establishing the pattern of 

development along the anterior-posterior axis. They are linearly positioned within the 

clusters in the order in which they are developmentally expressed (Kaufman et al., 1980; 

Lewis, 1978). HOX genes were subsequently discovered in metazoans (Akam, 1989; 

Duboule and Dolle, 1989; Graham et al., 1989), and their clustering has been preserved 

throughout evolution, although the reasons for this conservation are not fully understood 

(Garcia-Fernandez, 2005; reviewed in Kappen and Ruddle, 1993; Kmita and Duboule, 

2003; Lappin et al., 2006; Mann, 1997). There are also several non-HOX homeotic genes 

that are arranged in linear clusters, and these too have evolutionary conservation in higher 

metazoans (reviewed in Holland, 2001). Another well-studied linear grouping is the 

mammalian globin genes (Cao and Moi, 2002; Liang et al., 2008; Noordermeer and de 

Laat, 2008; Palstra et al., 2008; Proudfoot et al., 1980; Shen et al., 2001). As with the 

HOX clusters, they are arranged linearly in the order in which they are expressed and are 

particularly interesting in that there is not only linear but also spatial coordination 

(discussed below).  

 An emerging body of work shows that many small noncoding RNAs are 

expressed as polycistronic units and then cut up into their functional components. In 
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particular, these small functional RNAs include the small nucleolar (sno) RNAs and 

microRNAs (Lee et al., 2002; Tycowski and Steitz, 2001). In yeast, while most snoRNAs 

are encoded by dispersed monocistronic genes, there are also five polycistronic clusters 

of two to seven snoRNA genes; the precursor transcripts are then processed by RNase III 

family members (Chanfreau et al., 1998; Lowe and Eddy, 1999; Qu et al., 1999). While 

some snoRNAs in yeast and most in mammals are intron-encoded, in plants most 

snoRNAs are polycistronic. In Arabadopsis thaliana, the majority of snoRNA genes are 

present in clusters transcribed from a single promoter and then processed (Leader et al., 

1997). There are also some intron-encoded clusters of snoRNAs in plants, particularly in 

the rice genome (Liang et al., 2002). In addition, there have been dicistronic transfer 

RNA (tRNA)-snoRNA genes found in both Arabadopsis and in rice, whose precursor 

transcripts are processed by RNase Z (Kruszka et al., 2003). This could lead to an even 

higher degree of regulation between the component tRNA and snoRNA products. 

Likewise, microRNAs are present in clusters even more extensively in metazoans. At 

least 40% of microRNAs in humans have been shown to be present in clusters with 

pairwise distances of less than 3000 nucleotides (Altuvia et al., 2005), and while the 

functional relevance of these clusters is not entirely clear, at least one recent study 

suggests that some components of microRNA clusters do in fact have functional 

associations with each other (Kim et al., 2009). 

 

 

Linear and spatial organization of ribosomal genes 

 

One type of DNA sequence that is found as linear groupings in nearly all life forms is the 

transcription unit encoding the ribosomal RNA (rRNA) subunits (reviewed in Haeusler 

and Engelke, 2006). The ribosomal DNA (rDNA) is transcribed as a single polycistronic 

unit and then processed into its component RNAs while being assembled into pre-

ribosomal particles with protein subunits. In prokaryotes the mature RNA components 

are the 16S, 23S, and 5S rRNAs. In eukaryotes RNA polymerase I (Pol I) transcribes the 

rDNA polycistronic unit, which is then processed into the 18S, 28S, and 5.8S mature 

ribosomal RNAs. The rDNA transcription unit is typically found as many tandem linear 
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repeats in genomes in all phyla of life—approximately 150-200 copies in S. cerevisiae 

and about 400 copies in human. In the case of S. cerevisiae, a single tandem array of 

rRNA genes is located on the right arm of chromosome XII. In other metazoans the 

ribosomal genes are also present as clusters, although there is typically not one single 

cluster but rather a few chromosomal locations. For example, the human tandem repeat 

clusters are located on the five acrocentric chromosomes (Henderson et al., 1972).  

 Whether present in the linear genome map as a single cluster or as multiple 

clusters, the ribosomal gene arrays act as the organization points of dense nuclear 

subcompartments termed nucleoli, the location of rRNA transcription, processing, and 

assembly into pre-ribosomal nucleoprotein particles (reviewed in Boisvert et al., 2007; 

Gerbi et al., 2003; Pederson, 1998; Prieto and McStay, 2005). Because of this role of the 

ribosomal clusters, they are often termed Nucleolar Organizer Regions (NORs). Yeast 

contain a single nucleolus visible by fluorescence in situ hybridization (FISH) 

microscopy or electron microscopy as a large crescent-shaped structure at one end of the 

nucleus, with other species containing varying numbers of nucleoli (Figure 1.2). The 

nucleolus exemplifies one way in which cells have developed preferential spatial 

positioning of genes of like function in order to maximize efficiency of cellular 

processes. By concentrating rRNA genes all in one place within the nucleus, the 

machinery needed for their transcription, processing, and assembly into ribosomes can be 

localized to a distinct nuclear subdomain, resembling a “factory” that Henry Ford would 

have envied. The framework (RNA) moves along an assembly line while the appropriate 

components (proteins) are loaded on at the right time and the necessary finishing steps 

(processing) are carried out. While localization at the nucleolus may not be essential 

(Oakes et al., 1998; Oakes et al., 1993), concentration and organization of various 

components there could facilitate timely and efficient incorporation, rather than if the 

components were dispersed throughout the nucleus. This sort of “assembly line” 

efficiency may be particularly important for ribosome biosynthesis, since it is a massive 

and highly complex effort that often occupies over half the RNA synthetic expenditure of 

the cell. The substructures associated with the rDNA Pol I transcription units and pre-

ribosome assembly have been examined extensively for several decades (Hernandez-
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Verdun, 2006; Olson and Dundr, 2005; reviewed in Puvion-Dutilleul et al., 1991; Scheer 

and Weisenberger, 1994; Schwarzacher and Wachtler, 1991). 

 There is one type of rRNA gene that is not part of the large Pol I transcripts in 

eukaryotic nuclei: the 5S rRNA gene. The 5S genes are transcribed by RNA polymerase 

III (Pol III) and are organized differently from the other rRNA genes, although there are 

distinct similarities. In some cases, notably in S. cerevisiae, the 5S genes are interspersed 

within the Pol I-transcribed ribosomal tandem arrays (Bell et al., 1977), but in most 

eukaryotes they are arranged in various numbers of tandem repeat clusters that are 

linearly separate from the large ribosomal clusters. In some cases they are present in a 

single cluster, as in the chicken genome (Daniels and Delany, 2003), and in other cases 

5S rRNA gene types that are expressed at distinctive times in development are found in 

separate clusters, as with the oocyte-type vs. somatic genes in Xenopus (Harper et al., 

1983). Linear clustering of the 5S genes might facilitate the same types of regulatory 

benefits that are seen in the clustering of the large ribosomal clusters. Placement of the 5S 

genes away from the other ribosomal genes in higher eukaryotes may serve further 

regulatory roles.  

 In a smaller number of cases, such as in Schizocaccharomyces pombe (Mao et al., 

1982) or in Neurospora crassa (Metzenberg et al., 1985), the 5S genes are more 

dispersed throughout the linear map. In at least one case, in the non-conventional 

dimorphic yeast Yarrowia lipolytica, while the many of the 5S genes are scattered 

throughout the genome, nearly half of the 5S genes appear to be present in dicistronic 

tRNA-5S gene clusters (Acker et al., 2008). This unique type of linear cluster could 

potentially allow very tightly regulated transcription between the tRNA and the 5S RNA 

transcripts. There is also evidence that 5S genes that are otherwise clustered can be 

retrotransposed and that these copies are scattered throughout the genome, some of which 

are expressed (Drouin, 2000). In these select cases, a further level of organization might 

come into play for spatial regulation of expression. This would not be much of a surprise, 

as a substantial body of work suggests that in metazoans with separate 5S gene clusters, 

there is a high degree of spatial organization throughout evolution. Since the 5S genes of 

S. cerevisiae are within the large ribosomal cluster, they are necessarily nucleolar. 

Additionally, FISH and electron microscopy have shown nucleolar localization of the 
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transcribed 5S gene clusters in other organisms as well (reviewed in Haeusler and 

Engelke, 2006). Thus, the three-dimensional localization of 5S genes to the nucleolus, 

whether arranged in linear clusters or scattered across the genome, might be a component 

of coordinating the overall regulation of ribosomal processing and assembly. 

 

 

Yeast tRNA genes: Co-localization of many linearly dispersed loci 

 

The ribosomal RNA genes are not the only class of genes that are thought to be localized 

to the nucleolus. Recently it has been shown in S. cerevisiae that the 274 tRNA genes, 

which are Pol III transcription units scattered throughout the linear map of the sixteen 

chromosomes, are preferentially localized to the nucleolus (Thompson et al., 2003). At 

the time of this finding, there was some knowledge in the field about global positioning 

of specific regions of the yeast genome—centromeres, telomeres, and the silent mating 

loci are all localized to the nuclear periphery (reviewed in Gasser, 2001; Loidl, 2003). 

The finding that tRNA genes dispersed throughout the genome were localized to a single 

nuclear substructure was a somewhat astonishing observation, though it had been 

foreshadowed by earlier findings that components of the pre-tRNA processing pathway 

are found there. Imaging by FISH had shown that pre-tRNA transcripts are localized 

primarily to the nucleolus in S. cerevisiae, and some early tRNA processing enzymes in 

S. cerevisiae—specifically the endoribonuclease, RNase P, and the tRNA 

isopentenyltransferase, Mod5—are also nucleolar (Bertrand et al., 1998; Tolerico et al., 

1999). Direct visualization of tRNA gene clusters at the nucleolus has since been 

confirmed by higher resolution technologies involving chemical crosslinking of nuclei 

and high throughput sequencing across crosslinked regions of the genome (Rodley et al., 

2009). In retrospect, the concentration of tRNA genes and early processing machinery to 

nucleolus makes a certain amount of logistical sense, since it is the site of massive 

synthesis of the other non-messenger RNAs involved in translation—5S, 5.8S, and the 

large ribosomal RNAs. Synthesis of these RNAs is co-regulated under various conditions 

with tRNAs (Briand et al., 2001), and spatial coordination of these biosynthetic pathways 
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could provide possibilities for co-regulation, in addition to an assembly line for tRNAs, 

as well as ribosome synthesis and transport.  

 The spatial organization of tRNA genes is not likely to be a static situation. 

Although the majority of the tRNA genes appears to remain associated with the nucleolus 

throughout the cell cycle in yeast, even during late mitotic division (Haeusler et al., 

2008), individual genes could vary. In fact, individual tRNA genes do dissociate into the 

nucleoplasm if transcription by Pol III is interrupted (Hull et al., 1994; Thompson et al., 

2003). Disruption of nucleolar architecture also disperses tRNA genes and pre-tRNA 

transcripts throughout the nucleoplasm (Wang et al., 2005b), and thus individual tRNA 

genes likely become transiently dissociated from the cluster during division of the 

replicated nucleoli, even while the bulk of the genes seems to remain associated with the 

nucleolus. It is also possible that the tRNA genes can be either transiently or for long 

periods dissociated from the nucleolus in response to more dominant positioning 

imperatives from neighboring genes. No pattern of which other genes surround tRNA 

genes has yet made itself obvious, although genes that exist very near tRNA genes might 

need to be adapted to the environment. In general, transcription promoters for Pol II tend 

to be severely underrepresented within 500 base pairs of tRNA genes (Bolton and Boeke, 

2003), yet the Ty retrotransposon elements have developed a strong preference for 

inserting near tRNA genes, by at least two different mechanisms (Chalker and 

Sandmeyer, 1990, 1992; Devine and Boeke, 1996). This suggests not only that the 

retrotransposons have adapted but that there is some selective advantage to the Ty or the 

host cell in this genomic arrangement. There is evidence that the proximity to the tRNA 

gene influences expression of the Ty element (Hull et al., 1994), consistent with a 

transcriptional regulatory adaptation. 

 

 

The potential for condensation by Pol III complexes in mammals 

 

Since the discovery of tRNA gene clusters in budding yeast, clustering of tRNA genes 

has also been observed in fission yeast, although these clusters co-localize with 

centromeres rather than the rDNA (Iwasaki et al., 2010). In metazoans tRNA genes can 
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be found in single or multiple copies, but little is known about their expression or 

localization. There is some recent information about which families of tRNA genes are 

actively transcribed in humans and in mice (Coughlin et al., 2009; Dittmar et al., 2006; 

Lowe and Eddy, 1997), but we still know relatively little about their localization. While 

there is no direct evidence of clustering of Pol III-transcribed genes outside of S. 

cerevisiae, it would seem possible that global organization by clustering of this type of 

transcription unit is not evolutionarily restricted to a single species. This hypothesis is 

supported by data that the clustering of tRNA genes in yeast appears to be mediated by at 

least one protein complex that is highly conserved throughout evolution. Chromatin 

immunoprecipitation followed by hybridization to high resolution oligonucleotide 

microarrays revealed that the multi-subunit protein complex condensin is present 

throughout the cell cycle over all tRNA genes and over a small number of other sites 

bound by Pol III transcription factors across the entire S. cerevisiae genome (D'Ambrosio 

et al., 2008). Additionally, FISH microscopy of S. cerevisiae nuclei in cells containing 

temperature-sensitive alleles of all five subunits of condensin shows a dispersal or gross 

mislocalization of tRNA genes away from the nucleolus (Haeusler et al., 2008). Co-

immunoprecipitation experiments further show association of condensin with a DNA-

mediated complex of the general transcription factors TFIIIC and TFIIIB, although not 

with Pol III itself, suggesting that a potentially direct interaction of condensin with the 

tRNA gene transcription complex may be mediating the clustering of tRNA genes to the 

nucleolus. Condensin is also responsible for mediating centromeric localization of tRNA 

gene clusters in fission yeast (Iwasaki et al., 2010). 

 The involvement of condensin in the dynamic positioning of chromosomal loci, 

while not immediately intuitive, is not overly surprising. Condensin is a member of the 

Structural Maintenance of Chromosomes (SMC) family of protein complexes, whose 

components have a high degree of structural and functional conservation throughout 

evolution (reviewed in Cobbe and Heck, 2000; Hirano, 2002, 2006; Huang et al., 2005; 

Jessberger, 2002; Losada and Hirano, 2005; Uhlmann and Hopfner, 2006). At least three 

distinct eukaryotic SMC complexes evolved from a single prokaryotic SMC complex, 

whose structure is remarkably similar to its eukaryotic counterparts. SMC complexes are 

thought to associate directly with DNA to mediate various activities such as chromosome 
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condensation and cohesion and to be essential for processes such as replication and 

repair. Most studies on the condensin complex in the decade and a half since its 

identification have focused on its functions during mitosis and meiosis. There is, 

however, emerging evidence for a more widespread role for condensin during interphase 

in various eukaryotic models (reviewed in Hirano, 2005; Legagneux et al., 2004; Tsang et 

al., 2007b). Specific examples come from studies on gene regulation and transcriptional 

control in Drosophila (Cobbe et al., 2006; Dej et al., 2004; Lupo et al., 2001) and 

maintenance of genome structure in yeast (Tsang et al., 2007a). Thus, it would not be 

surprising if, as the eukaryotic genome grew larger and the job of organizing the genome 

became more complex, cells evolved alternate functions outside of mitosis and meiosis 

for condensin in the localization of genes during interphase. Additionally, the presence of 

condensin at tRNA genes located at the nucleolus is consistent with data from several 

groups showing that condensin is highly enriched at the rDNA cluster in both budding 

yeast and in fission yeast and is required to maintain proper compaction of the rDNA 

cluster during interphase (Freeman et al., 2000; Lavoie et al., 2004; Nakazawa et al., 

2008; Tsang et al., 2007a; Wang et al., 2005a; Wang and Strunnikov, 2008). 

 The involvement of highly conserved protein complexes at tRNA gene clusters 

brings into question whether clustering of Pol III elements occurs in higher eukaryotes. 

While the 5S and tRNA genes encode the most abundant gene products of Pol III-

transcribed genes, there are other, far more abundant DNA elements containing tRNA-

class Pol III promoters. In many organisms, particularly vertebrates, the most abundant 

Pol III elements are the short interspersed nuclear elements (SINEs) (reviewed in 

Belancio et al., 2008; Deininger and Batzer, 2002; Okada, 1991). Some of the better 

studied SINEs include the five major families of mouse SINEs, which are 

retrotransposons derived from pre-tRNA and 7SL RNA and make up about 7% of the 

murine genome (Waterston et al., 2002). In humans, the predominant SINEs are the Alu 

elements, which arose from 7SL RNA transcripts and are thought to comprise at least 

10% of the human genome (Lander et al., 2001). Since the discovery of SINEs forty 

years ago, various hypotheses have been advanced for possible evolutionary advantages 

conferred by these “junk” sequences in the large genomes of higher eukaryotes. In many 

cases they have been proposed to serve as regulatory sequences, both positive and 
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negative (Ferrigno et al., 2001; Saffer and Thurston, 1989; Saksela and Baltimore, 1993; 

Thorey et al., 1993; Tomilin et al., 1990). In support of this idea, it has been shown that 

mouse B2 SINE transcripts can directly bind to Pol II and negatively regulate Pol II 

transcription (Allen et al., 2004; Espinoza et al., 2004). Newer studies reveal that human 

Alu transcripts can also bind to Pol II and repress its transcriptional activity (Mariner et 

al., 2008; Yakovchuk et al., 2009). Additionally, B2 SINE DNA can act as a chromatin 

“boundary element” (Lunyak et al., 2007), a block to propagation of nucleosome-

mediated chromatin regulation, similarly to the function of tRNA genes and even 

partially assembled Pol III transcription complexes as boundary elements in yeast (Donze 

et al., 1999; Donze and Kamakaka, 2001; Simms et al., 2008).  

In vitro, SINEs can be transcribed efficiently by tRNA gene-like complexes, 

although they are not normally expressed at significant levels inside cells (Carey et al., 

1986; Jang and Latchman, 1989; Kim et al., 1995). It is not known if the SINEs—or a 

significant percentage of them—have complexes similar to the tRNA gene complexes 

(TFIIIC + TFIIIB + Pol III) associated with them in vivo. If they do have similar 

complexes, it may very well be possible that, as with yeast, they are similarly able 

through clustering to serve as chromosomal compaction and organizational signals. This 

would be consistent with at least one study showing clustering of SINE elements in 

human lymphocyte nuclei (Kaplan et al., 1993). Since mammalian genomes are up to a 

hundred times larger than those of yeast, but have only two or three times as many bona 

fide tRNA genes, one could surmise that SINE elements might serve the compaction 

function that tRNA genes assume in yeast, even without making stable, functional 

transcripts. Furthermore, since metazoans have at most a few nucleoli, the potential 

compaction function of SINE elements is likely to be independent of localization to any 

specific nuclear subcompartment (Figure 1.3). 

 

 

Transcription factories and chromosome territories 

 

The nucleolus can be thought of as a specialized version of what has been termed a 

“transcription factory” (Bartlett et al., 2006; Carter et al., 2008; Faro-Trindade and Cook, 
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2006; reviewed in Pombo and Cook, 1996; Pombo et al., 2000; Sexton et al., 2007). Just 

as localization of Pol I and Pol III transcription to the nucleolus serves to regulate 

coordinated cellular processes, so too has it been suggested that some actively elongating 

RNA polymerase II (Pol II) complexes are localized to factories of Pol II transcription. 

These were initially identified as foci of nascent transcription and later found to contain 

high local levels of Pol II (Iborra et al., 1996; Jackson et al., 1993; Wansink et al., 1993). 

Since such a significant amount of the genome is encoded by Pol II, spatially-coordinated 

transcription by Pol II might also have a significant impact on the three-dimensional 

organization of the nucleus, similarly to how clustering and localization of tRNA and 

rRNA genes organize the yeast genome. Indeed, while the details of transcription factory 

formation are not entirely clear, it appears that these factories are formed not only by 

genes from linearly distant regions of the same chromosome, as initially proposed, but 

also by genes on different chromosomes (Osborne et al., 2004; Osborne et al., 2007). 

Consequently, there is the possibility of a high degree of spatial organization resulting 

from Pol II factory formation. Nevertheless, the factory model is likely to be an 

oversimplified look at how genes come together, and the functional reasons for how and 

why various genes come together are only starting to be understood (Brown et al., 2008).  

 The co-localization of genes from different chromosomes is, on the surface, at 

odds with the idea that in most higher eukaryotes the interphase genome is widely 

thought to be arranged into chromosome territories (reviewed in Cremer and Cremer, 

2001; Cremer et al., 2006; Gilbert et al., 2005; Meaburn and Misteli, 2007; Parada and 

Misteli, 2002; Parada et al., 2004). A territory is a distinct spatial region of the nucleus in 

which a chromosome is contained during interphase. Visualization of chromosomes in 

nuclei from various species, by “painting” each chromosome with distinct fluorescent 

probes, shows individual chromosomes occupying distinct subnuclear sections that can 

be easily distinguished from one another. Nevertheless, as distinct as territories may 

appear, within the established territory model there are examples of individual genomic 

loci that have been found well outside their expected territories, even for genes that are 

generally localized to their home territories (Chambeyron and Bickmore, 2004; Mahy et 

al., 2002a; Volpi et al., 2000). Given the necessarily dynamic nature of the nucleus, 
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though, it should not come as much of a surprise that genes can position and re-position 

themselves, even within the otherwise established territory model. 

 The majority of higher eukaryotes are now thought to have chromosome 

territories, although these have not been as clearly delineated in S. cerevisiae, despite the 

recent demonstration of ordered gene positions in yeast (Berger et al., 2008). The yeast 

genome is comparatively much smaller than those of higher eukaryotes, so it is possible 

that its chromosome organization evolved around a different format. It has been proposed 

that the yeast genome undertakes a Rabl-type organization, with centromeres and 

telomeres at opposite poles of the nucleus (Bystricky et al., 2004; Bystricky et al., 2005; 

Duan et al., 2010; Therizols et al., 2010). The existence of chromosome territories or 

other global organization scheme in a particular organism does not preclude the 

possibility of organization by Pol III elements (tRNA genes or SINEs), although it 

probably means that any resulting condensation is a local, rather than broadly 

interchromosomal, phenomenon.  

 A model for interactions between chromosome territories was initially proposed 

and termed the interchromosome domain (ICD) model (Cremer et al., 1993). The basis 

for this model was that transcriptionally active regions of the genome must be readily 

accessible to the nuclear machinery that are localized to the interchromosomal regions 

between territories. Individual genes can thus be strategically positioned at the interface 

of two or more territories to allow for maximum regulation and energetic favorability. 

Individual chromatin fibers would occasionally loop out into the ICD, where rare 

chromosomal contacts between loci would occur; some have called these contacts 

“chromosome kissing” (Cavalli, 2007; de Laat, 2007; Kleckner and Weiner, 1993). While 

this paradigm seems compelling, newer data indicate that there is a much higher degree 

of interaction between the territories than the ICD model suggests (reviewed in Chubb et 

al., 2002; Hlatky et al., 2002; Holley et al., 2002; Sachs et al., 2000; Spilianakis et al., 

2005).  

In order to revise the ICD model and attempt a better picture of how chromosome 

territories interact, Branco and Pombo developed a novel cryo-FISH method that 

preserves chromatin structure while providing very high microscopic resolution (Branco 

and Pombo, 2006). They proposed a new model for interaction between territories that 
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they call the interchromosomal network model (ICN). This model lays out a much more 

plastic arrangement of territories, where they are still localized to distinct regions of the 

nucleus but are much freer to intermingle with each other at their boundaries. The ICN 

model implies that significant interchromosomal contacts would drive the shape of 

territories in the nuclei of metazoans, and indeed, active transcription does affect the 

nature of interchromosomal contacts (Branco and Pombo, 2006). In fact, there are a 

variety of factors that shape territories. In particular, the overall architecture of territories 

has been shown to change, often drastically, in response to developmental cues in cells 

(Bartova and Kozubek, 2006; Kuroda et al., 2004; Stadler et al., 2004; Wegel and Shaw, 

2005). Altered epigenetic marks such as methylation can also instigate changes in nuclear 

organization by reorganizing chromosome territories (Matarazzo et al., 2007). We should 

therefore look at territories as pliable, rather than rigid or impenetrable structures, 

especially in light of data that transcriptional machinery is shown to have the ability to 

access the interior of chromosome territories (Mahy et al., 2002b). In fact, most 

transcriptional factors are quite capable of accessing the interiors of territories. Thus, the 

idea that active genes are mainly positioned at the surface of chromosome territories is 

likely to be an oversimplification. 

 Positions of individual genes, in addition to overall territory architecture, can also 

change quite drastically in response to differentiation, developmental signals, or other 

changes in their transcriptional state. Much work has been done on spatial positioning of 

the human globin genes, in addition to their linear organization (Brown et al., 2006; 

Brown et al., 2001; Ragoczy et al., 2006; Tolhuis et al., 2002; Zhou et al., 2006). Active 

globin genes become clustered and localize to nuclear speckles (Brown et al., 2008), 

similar to how active tRNA genes cluster and localize at nucleoli in yeast. Studies on the 

oncogenes, bcr, abl, and c-myc, show that they change positions relative to each other in 

response to cell cycle or developmental cues (Bartova et al., 2000; Neves et al., 1999), 

suggesting that spatial positioning of developmentally important genes aids in the 

differentiation processes of the cell. Studies on mammalian adipogenesis genes have 

revealed that not only do adipogenesis-related genes change position during that process, 

but also that entire chromosome territories change positions, and the adipogenesis genes 

are often found on loops away from the main territories (Szczerbal et al., 2009). Activity-
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dependent repositioning has been shown with many human genes (Lanctot et al., 2007; 

Meaburn and Misteli, 2008), and ligand binding to nuclear receptors can activate specific 

interactions between genes, which appear to be important for ligand-induced 

transcriptional regulation (Hu et al., 2008). Re-positioning of one gene can also bring 

along with it adjacent, functionally unrelated genes (Zink et al., 2004), similar to how 

individual yeast tRNA genes might become positioned away from the nucleolus in 

response to more dominant localization signals from adjacent loci. Functionally distinct 

alleles of the same gene can, at least in one example, occupy different positions within 

the nucleus (Takizawa et al., 2008).   

Recently it has been shown possible to construct a map of the three-dimensional 

organization of the human interphase genome in relation to the transcriptome, thus tying 

together global genomic structure and function (Goetze et al., 2007). Indeed, there is an 

emerging body of work suggesting that functional interactions across chromosomes can 

drive gene localization (Rajapakse et al., 2009). Work with the mouse globin genes 

demonstrates a vast interaction network across nearly all the chromosomes with 

transcribed genes (Schoenfelder et al., 2010). It is becoming appreciated that transcription 

factor-mediated organization of linearly dispersed loci happens throughout eukaryotes. In 

fission yeast, highly expressed genes are often co-localized to a higher degree than 

average, and genes in the same gene ontology (GO) family have been shown to co-

localize with each other (Tanizawa et al., 2010). Intriguingly, these spatial clusters of 

genes often have identical short DNA motifs in their promoter regions, further providing 

evidence of transcription factor-mediated co-localization. This observation is consistent 

with the idea of “DNA Zip Codes” that direct certain sequences of DNA to specific 

subnuclear regions (Ahmed et al., 2010). 

 

 

Positioning of genes as a component of regulation 

 

Several studies, particularly in yeast and flies, have provided further evidence and 

mechanistic insight as to how individual genes can become dramatically re-positioned 

based on gene activity. Multiple studies in S. cerevisiae have shown large-scale re-
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localization of gene positions when cells are induced under certain conditions. When 

cells are treated with alpha-factor, the FIG2 gene becomes highly localized to the nuclear 

periphery, specifically toward the side of mating projection (Casolari et al., 2005). The 

SUC2 gene, which encodes a sucrose invertase, is mobile within the nucleus when 

repressed in glucose media, but when cells are grown in the absence of glucose to 

activate SUC2, the gene becomes tightly localized to the nuclear periphery (Sarma et al., 

2007). Localization of genes to the periphery is often accompanied by physical and 

genetic connection to the nuclear pore complex (Cabal et al., 2006; Casolari et al., 2005; 

Casolari et al., 2004). One would suspect certain signaling cues to direct this localization, 

and it has in fact been demonstrated that phosphorylation of nuclear pore components is 

one of potentially many ways in which the localization of active genes is mediated 

(Brickner and Brickner, 2010). Additionally, there appears to be some pathway-

dependence on gene dynamics. Transcriptional activation of the subtelomeric gene HXK1 

by growth on a non-glucose carbon source has been shown to relocate it to the nuclear 

pore complex (Taddei et al., 2006); however, when the same gene is activated via an 

alternative pathway, using the VP16 activator, nuclear pore association is eliminated. 

This result would suggest that a single gene would need to be differentially positioned 

within the nucleus in order to be regulated by different pathways. Recent work in 

Drosophila indicates that the hsp70 gene cluster is anchored to the nuclear periphery, and 

proteins that are involved in retaining the hsp70 cluster at the periphery are also 

implicated in its transcriptional regulation (Kurshakova et al., 2007). Additional work in 

Drosophila suggests a potential link between dosage compensation and localization of 

the X-chromosome to the nuclear pore complex (Mendjan et al., 2006). 

Several studies in yeast demonstrate that artificial tethering of genes to the nuclear 

periphery can alter the expression of those genes or other regulatory genes. Tethering the 

yeast INO1 locus to the nuclear periphery activates the INO1 gene itself and can 

additionally promote either silencing or activation of other regulatory genes (Brickner 

and Walter, 2004). Doing the same to the HXK1 gene also promotes its own 

transcriptional activation (Taddei et al., 2006). Tethering genes to the nuclear periphery 

can also be sufficient to activate an artificial promoter (Menon et al., 2005). These data 
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appear to be contrary to the original view that the nuclear periphery is a transcriptionally 

silenced domain in yeast.  

In addition to these observations from yeast, several intriguing studies on artificial 

tethering of loci have been done recently in human cells. It has been shown that a gene 

can be artificially targeted to the periphery and is subsequently able to recruit its 

transcriptional machinery (Kumaran and Spector, 2008). Other work shows repression of 

certain loci when artificially targeted to the nuclear lamina (Reddy et al., 2008), while 

another report indicates that when specific chromosomes are tethered to the nuclear 

periphery, it is possible to change the expression patterns of certain genes to varying 

degrees (Finlan et al., 2008). This latter finding could have intriguing effects on human 

health, as aberrant gene positioning of selected marker genes may be a diagnostic tool to 

identify diseased alleles (e.g., Meaburn and Misteli, 2008).  

 In addition to the relatively recently discovered phenomenon of activation at the 

yeast nuclear periphery, there can be a type of transcriptional “memory” at the periphery 

(reviewed in Ahmed and Brickner, 2007). Upon activation, the INO1 and GAL1 genes are 

recruited to the periphery, but when repressed they continue to remain associated with the 

periphery for several generations before returning to their previous location in the 

nucleoplasm. Studies with the GAL1 gene show that retention at the periphery allows the 

cells to turn these genes back on after re-activation more rapidly than nucleoplasmic 

GAL1 loci. Brickner and colleagues propose that cells have a mechanism to identify 

recently repressed genes and suggest that this is a novel type of epigenetic memory for 

the cell (Brickner, 2009).  Rapid re-activation of both GAL1 and INO1 genes and 

retention of either locus at the periphery are dependent on the histone variant H2A.Z 

(Brickner et al., 2007). In the case of the GAL1 gene, rapid re-activation is also dependent 

on the SWI/SNF chromatin remodeling complex and the Gal1 protein itself (Kundu et al., 

2007; Zacharioudakis et al., 2007). We can compare these requirements of specific 

nuclear factors in the efficient expression and localization of these loci to the requirement 

of condensin in positioning tRNA genes to the nucleolus, where pre-tRNA synthesis and 

initial processing might be readily coordinated with 5S and other rRNA biosynthetic 

pathways.  
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Concluding remarks 

 

Computers use a tool called a cache for temporary storage of data that will likely be 

accessed again in the near future. Access to that data from the cache is easier or faster 

than from where it was originally located. In other words, once a specific memory 

location is accessed, that location or nearby locations can be made easier to access in the 

short term. We can relate this to the idea of epigenetic transcriptional memory. The 

nuclear periphery might act as a sort of “cache” for the GAL1 and INO1 genes, and 

retention of these genes in the “cache” of the periphery allows for faster gene activation 

than if those genes needed to be accessed from their original location, the nucleoplasm.  

 Indeed, the overall idea that cells use preferential positioning of genetic loci to 

regulate expression and use of gene products can be seen as one of efficient information 

retrieval. For thousands of years, library science has dealt with the problem of storing 

large numbers of documents so that they may be found and accessed readily. Computers 

eventually made it possible to store information in numbers that were previously beyond 

human limits, and the subsequent science of information retrieval allowed the creation of 

models to facilitate orderly and efficient access of information. The prompt recovery of 

genetic material from within the three-dimensional space of our nuclei is a problem not 

entirely different from this. As an example, the placement of tRNA genes at the nucleolus 

facilitates orderly retrieval of those “documents” by those who are looking for them, i.e., 

the tRNA processing and assembly machineries. The yeast genome contains in total 6000 

genes, and humans are thought to contain 20,000-25,000 genes by most recent estimates. 

The rapid recovery of this large amount of information from as compact and complex of 

a space as the nucleus necessitates cells to develop “models” of their own for searching 

and using this data. 
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Aims of this work 

 

The mechanics and consequences of the spatial organization of tRNA genes provides a 

useful system in which to study eukaryotic genome organization, as tRNA genes are the 

largest group of co-regulated genes in eukaryotic genomes. The budding yeast S. 

cerevisiae is an ideal model in which to study this phenomenon; tRNA genes in larger 

eukaryotes have largely not been annotated in detail. As detailed in this chapter, it has 

now been shown that the linearly dispersed tRNA genes in yeast are spatially clustered at 

the rDNA repeats (nucleolus). In Chapter II we examine the interaction of individual 

tRNA genes, which was previously not possible due to the low resolution of microscopy 

in yeast nuclei. Surprisingly, the identity of the tRNA gene affects individual gene-gene 

interactions; in particular, it affects where exactly along the rDNA repeats the tRNA gene 

associates.  

 The involvement of condensin in the formation of tRNA gene clusters has now 

been established both in budding yeast and in fission yeast. Thus, dissecting the 

mechanism of condensin interaction with a tRNA gene is helpful in understanding how 

tRNA genes cluster together. Previous work showed in vivo association of condensin 

with the Pol III transcription factors TFIIIC and TFIIIB. In Chapter III we show that 

TFIIIC bound to a tRNA gene is necessary and sufficient for condensin to specifically 

recognize the tRNA gene. These results are discussed in terms of TFIIIC-condensin 

associations facilitating tRNA gene organization and regulation. 

 One consequence of nucleolar clustering of tRNA genes is tgm silencing, 

although the mechanism of this silencing is not understood. Gene regulation by small 

RNAs is ubiquitous in both prokaryotes and eukaryotes, and in some cases, certain small 

RNAs can directly bind to RNA polymerases and inhibit their transcription. Thus, it was 

hypothesized that transcripts from nearby tRNA genes might directly inhibit Pol II 

locally. In Chapter IV we show that a wide variety of RNAs directly binds to Pol II near 

the enzyme’s active site, in turn preventing binding of Pol II to a DNA template, thus 

inhibiting transcription. These results have consequences as a potential mechanism for 

tgm silencing but also create a need for nascent transcripts to be packaged and 

transported away from the site of transcription. 
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Figure 1.1. Methods of linear gene organization. Eukaryotic cells have developed a 

variety of ways to arrange genetic information on the linear map to regulate gene 

expression. From top to bottom: Operons, which are transcribed as a single polycistronic 

transcript under control of an upstream operator; Linear clusters, such as the HOX genes, 

which are under control of a common regulator; Small RNAs, such as microRNAs, which 

are transcribed as a polycistronic unit and then processed into smaller RNAs; the Pol I-

transcribed ribosomal repeats, transcribed in eukaryotes as a 35S transcript and then 

processed into 18S, 5.8S, and 28S rRNAs; and the small Pol III-transcribed 5S genes, 

which in most eukaryotes are present in tandemly repeated linear clusters. 
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Figure 1.2. Comparison of yeast and metazoan nucleoli. The eukaryotic nucleolus is 

defined by the Pol I-transcribed ribosomal cluster. In yeast, the ribosomal cluster is 

located on the linear map in one group on chromosome XII; consequently, the yeast 

nucleolus can be visualized by FISH microscopy as a single crescent-shaped structure, 

typically localized to one side of the nucleus. In yeast, the tRNA genes can be visualized 

by FISH microscopy as a single cluster localized to the nucleolus. Metazoans generally 

have multiple clusters of ribosomal genes; thus, metazoan nuclei usually have several 

nucleoli spread throughout the nucleus. The metazoan nucleus is generally several times 

larger than the yeast nucleus. 
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Figure 1.3. FISH microscopy showing distribution of mouse B2 SINEs. Mouse 

embryonic fibroblasts were fixed in 1% paraformaldehyde and adhered to slides. 

Fluorescent oligonucleotides complementary to B2 SINEs hybridized to genomic DNA. 

There appears to be speckled signal of B2 elements throughout the nucleoplasm, 

suggesting clusters, but this signal appears not to be preferentially associated with either 

the nucleoli or the nuclear periphery. Red B2 SINE DNA, blue DAPI stain of AT-rich 

heterochromatin. Thanks to Paul Good for data. 
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Chapter II 

 

tRNA gene identity affects local partner selection but not necessarily global genome 

arrangement 

 

Abstract 

 

The three-dimensional organization of genomes is dynamic and plays a critical role in the 

regulation of cellular development and phenotypes. The tRNA genes in yeast provide a 

useful system in which to study the spatial organization of a single large family of co-

regulated genes. In this chapter, proximity-based ligation methods (i.e., chromosome 

conformation capture [3C] and circularized chromosome conformation capture [4C]) are 

used to explore the spatial organization of tRNA genes and their locus-specific 

interactions with the ribosomal DNA. The results indicate that these interactions depend 

on both tRNA coding sequence identity as well as the surrounding chromosomal loci. 

These observations support a model whereby the three-dimensional, spatial organization 

of tRNA loci within the nucleus utilizes tRNA gene-specific signals to affect local 

interactions, though broader organization of chromosomal regions are determined by 

factors outside the tRNA genes themselves.  

 

 

Introduction 

 

DNA in the nuclei of eukaryotic organisms is arranged in an ordered yet dynamic 

manner, necessary for establishing and maintaining proper compaction and regulation of 

our genomes. Structural genome organization is manifested on different levels, such as 

linear operons (Blumenthal and Gleason, 2003) and arrays of genes, as well as spatial 

arrangement of chromosome territories (Cremer et al., 2006; Meaburn and Misteli, 2007). 
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Recent studies have implicated interactions that form between genomic loci in the 

regulation of genes (Brown et al., 2008; Lanctôt et al., 2007) and of cellular processes 

such as development and differentiation (Brown et al., 2006; Ragoczy et al., 2006). These 

phenomena have been studied in many eukaryotic systems (see Chapter 1 for a full 

review), yet the spatial organization of a single family of genes not present as a linear 

cluster has not extensively been investigated. 

Examination of the spatial organization of gene families can provide insight into 

how position relates to evolutionary or functional imperatives. The largest family of co-

regulated genes in the eukaryotic genome is the RNA polymerase III (Pol III)-transcribed 

tRNA gene family. The budding yeast Saccharomyces cerevisiae has 274 tRNA genes 

that are dispersed throughout the linear maps of the 16 chromosomes. Fluorescence in 

situ hybridization (FISH) microscopy has shown that these tRNA genes are clustered 

throughout the cell cycle, with the assistance of condensin complexes bound at each 

gene, and that clusters localize to the boundary of the nucleolus in a microtubule-

dependent manner (Haeusler et al., 2008; Thompson et al., 2003; Wang et al., 2005). 

Condensin has also been localized to the nucleolar ribosomal DNA (rDNA) repeats, and 

mutants of condensin affect proper compaction of the rDNA repeats (D'Ambrosio et al., 

2008; Freeman et al., 2000; Machin et al., 2004; Tsang et al., 2007; Wang and 

Strunnikov, 2008). Clustering of tRNA genes has also been observed in fission yeast 

(Iwasaki and Noma, 2010; Iwasaki et al., 2010), although their subnuclear localization is 

different from that seen in budding yeast.  

Fluorescence microscopy provided an initial picture of the general arrangement of 

tRNA genes within the budding yeast nucleus, but the limited resolution of the technique 

combined with the small size of yeast nuclei prohibited further understanding of the 

details of these spatial interactions. Proximity-based ligation methodologies, which 

crosslink spatially adjacent loci, now permit investigation of direct physical interactions 

between genes in greater detail. Two of these techniques, genome conformation capture 

(GCC) and a variant of HiC, have previously been used to produce a yeast genome 

contact map (Duan et al., 2010; Rodley et al., 2009). These methods confirmed the 

microscopy results by showing preferential interactions between tRNA genes (Rodley et 

al., 2009), consistent with the physical clustering observed by fluorescence microscopy.  
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Since the localization of a large number of dispersed genes to a single subnuclear 

region necessarily requires a vast rearrangement of the genome, it is of interest to 

investigate whether individual tRNA gene associations are a controlling influence on the 

overall organization of the genome, or merely serve as non-specific “fasteners.” In the 

latter case, the tRNA genes as “fasteners” would provide a level of local condensation, 

while global organization would be determined by factors other than tRNA genes. In this 

chapter we use three methods that rely on proximity—GCC, chromosome conformation 

capture (3C), and circularized chromosome conformation capture (4C)—to examine the 

contributions that tRNA genes make to the positioning of specific loci within the S. 

cerevisiae nucleus.  

 

 

Results 

 

Genome conformation capture was performed on unsynchronized, exponentially growing 

S. cerevisiae cells (Figure 2.1A) and (Rodley et al., 2009). Briefly, cells were chemically 

crosslinked in vivo, digested with the restriction enzyme MspI, diluted, and ligated to 

promote intramolecular ligation. Crosslinks were reversed to generate a DNA library 

representing the set of in vivo DNA interactions in the genome. The library was analyzed 

as described. In agreement with FISH imaging studies (Bertrand et al., 1998; Haeusler et 

al., 2008; Thompson et al., 2003; Wang et al., 2005), GCC revealed that many tRNA 

genes formed multiple interactions with the ribosomal DNA locus (RDN) on 

Chromosome XII (Rodley et al., 2009), which contains multiple tandem copies of the 

ribosomal RNA (rRNA) genes and forms the nucleolus. While numerous of these 

interactions were well above background, there was an extremely strong and specific 

interaction between one particular DNA fragment containing a tRNALys gene on 

Chromosome XVI, tK(CUU)P (Chr XVI: 581,025-583,522; Figure 2.1B, top panel, and 

Figure 2.2), and the non-transcribed spacer sequence (NTS1) in the RDN locus, adjacent 

to the Pol III-transcribed 5S rRNA gene (Chr XII: 460,025-460,609). None of the MspI 

restriction fragments adjacent to the tK(CUU)P tRNALys gene fragment interacted with 

NTS1 (Figure 2.2). In fact only two of the nearby fragments (Chr XVI: 585884-589137 
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and 549477-580469, respectively) interacted with the rDNA at levels even slightly above 

the background (Figure 2.2; compare “-2” and “+2” fragments with the middle fragment). 

It is theoretically possible that some of the tK(CUU)P-NTS1 interactions involve the 

extra-chromosomal rDNA circles (ERCs) that are present within the yeast nucleus 

(Ganley et al., 2009; Sinclair and Guarente, 1997). However, preliminary data indicate 

that high ERC copy number does not correlate with increased interaction frequencies 

(data not shown; communicated by Justin O’Sullivan). We conclude that the interaction 

is driven by signals within the fragment and, given that tRNA genes are known to cluster 

with the nucleolus (Haeusler et al., 2008; Thompson et al., 2003; Wang et al., 2005), we 

hypothesized that the tRNA gene was responsible for this interaction. 

 Clustering of the tRNA genes is mediated by one or more condensin complexes 

bound to the tRNA genes (D'Ambrosio et al., 2008; Haeusler et al., 2008). Since 

condensin is also bound to the rDNA repeats and concentrated adjacent to the 5S rRNA 

gene (D'Ambrosio et al., 2008), we hypothesized that the tK(CUU)P-NTS1 association 

might be determined by a condensin-condensin interaction between the tRNA gene 

complex and the NTS1 region. However, we remained open to the possibility that there 

might be other contributors that direct this particular tRNA gene to this specific region of 

the RDN locus. Therefore, to examine to what extent the tRNA gene was responsible for 

this tight association, we performed 3C on both a wild type (WT) strain and the same 

strain from which only the tRNA gene coding region, including its intragenic 

transcription promoter, had been precisely deleted (yDP97, tK(CUU)P::kanMX6 

(Longtine et al., 1998); Figure 2.1B, bottom panel). Quantitative analysis of locus 

proximities by 3C (O'Sullivan et al., 2009; Rodley et al., 2009) showed that precise 

deletion of the tK(CUU)P coding sequence did not significantly alter the frequency of 

interaction between the general locus (fragments F1 or F2’ on Chromosome XVI) and a 

HindIII fragment spanning the 5S rRNA gene and including the NTS1 region (Figures 

2.1C and 2.1D). Furthermore, the deletion did not significantly affect growth rate, 

determined by co-culturing the two strains for 100 generations (Figure 2.1E). This lack of 

growth defect suggests an absence of serious disruption to nuclear organization, in 

contrast to the strong growth defects that were previously observed in mutants that 

disrupted general tRNA gene clustering or nucleolar organization (Haeusler et al., 2008; 
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Kendall et al., 2000; Wang et al., 2005). Together, these results indicate that the 

tK(CUU)P tRNALys gene itself does not provide the major driving force that determines 

the proximity of this chromosomal segment to the rDNA repeats. Rather, the general 

spatial arrangement of these chromosomal loci is driven by factors outside the tRNA 

gene. Despite this, this result does not preclude the possibility that the tRNA gene might 

determine the positions of local contacts.  

The coding regions of yeast tRNA genes contain the major transcriptional 

promoter elements and are bound by identical sets of transcription components (i.e., 

TFIIIC, TFIIIB, and Pol III) (Kassavetis et al., 1990; Moqtaderi and Struhl, 2004; 

Roberts et al., 2003), consistent with the finding that all tested tRNA gene loci can be 

expressed. Therefore, it was predicted that the nature of the tRNA coding sequences 

would not alter the interaction behavior of a locus. To test this prediction, we precisely 

replaced the mature tRNA coding regions of two different tRNALeu loci—tL(UAA)B2 on 

Chromosome II, and tL(CAA)G3 on Chromosome VII. The coding regions of these 

tRNALeu genes interacted with the RDN locus in the parental strain, although with 

different patterns across the rDNA repeats (Figure 2.3B). The tL(UAA)B2 and 

tL(CAA)G3 coding regions were precisely replaced with the coding region from a 

tRNATyr gene-variant, the SUP4-1 ochre suppressor (Kurjan et al., 1980), to allow 

selection for the insertion (Figure 2.3A). In each case the 5’ and 3’ flanking regions, 

including upstream transcription initiation and downstream termination sites, and the 

primary transcript processed leader and trailer sequences were retained from the original 

tRNALeu locus. As expected, the SUP4-1 replacements of the tRNALeu coding regions 

continued to allow association of both loci with the RDN locus. Yet, unexpectedly, the 

preferred positions of the associations along the RDN locus were altered (Figure 2.3B). 

The dataset represents the results of a single 4C experiment. Inter-experiment variation 

can arise through differences in growth, crosslinking, digestion, and ligation; these can 

affect comparison between different datasets, so replicate experiments were not 

performed. However, none of these issues affect relative comparisons of interaction 

frequencies within a single experiment.  

As a control for general disruption of tRNA gene contacts, quantitative 3C 

analyses of the S. cerevisiae strains yPH499, yDP77, and yDP84 identified no significant 
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differences in the interactions between the wild-type SUP4 tRNATyr gene at its native 

locus (tY(GUA)J2 on Chr X: 542960-543119) and the 25S rDNA (Chr XII: 451928-

452600) locus (Figure 2.4). These results are consistent with the tK(CUU)P tRNALys 

gene replacement data above, suggesting that external sequences specify general 

positioning within the nuclear space but that internal factors affect precise local 

positioning.  

The finding that the identity of the tRNA gene itself affects partner selection was 

surprising to us, and in fact, upon further investigation of the dataset, we found many 

other interactions demonstrating that the identity of the internal tRNA gene sequences 

does indeed affect partner selection. Looking at the interactions between the replaced 

tRNA genes and other non-repetitive genes, some preferred interaction partners were 

gained following replacement of the original tRNALeu gene sequence with the SUP4-1 

sequence (Table 2.1). The most pronounced of these were the interactions between 

SUP4-1 at the new loci and the genes SRB2 and MED6 (Table 2.1, Lines 15 and 16, 

respectively). These two genes do not interact at all with the tRNALeu genes, but when the 

tRNALeu genes are replaced with the SUP4-1 sequence, the tRNA gene loci interact with 

strikingly high frequency with MED6 and SRB2. Of additional note is that the original 

tRNALeu genes do not interact with the genomic copy of SUP4, but the SUP-1 

replacement gains interactions with genomic SUP4 (Table 2.1, Line 17). This ability of 

the internal tRNA gene sequences to contribute to binding partner selection is at once 

intriguing and puzzling. However, the overall effect can be explained by the hypothesis 

that the flanking sequences act to direct a locus to a particular region of the nucleus. Once 

within this region, partner selection is influenced by the tRNA gene sequence itself.  

 

 

Discussion 

 

The effect of the tRNA gene internal sequences on the positioning of the tRNA gene was 

completely unexpected, given that all tRNA gene transcription complexes bind the same 

required components to the internal promoters, as far as is known (Kassavetis et al., 

1990; Moqtaderi and Struhl, 2004; Roberts et al., 2003). However, in spite of the 
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unexpected nature of this finding, this phenomenon could have several causes. One 

possible explanation is that there might be an epigenetic component to the interaction 

patterns. In the recombination event that leads to the insertion of a new tRNA gene at the 

locus, the cells would rewrite the epigenetic state, generating a new pattern of 

positioning. 

Another explanation involves TFIIIC, the transcription factor that initially 

recognizes the gene, has a bipartite binding site within the tRNA coding region (Paule 

and White, 2000). The spacing between these sites in the original tRNALeu genes and in 

the replacement tRNATyr gene (i.e., SUP4-1) is slightly different, and the resulting change 

in the topology or strength of the TFIIIC-DNA interaction might subtly alter its 

interaction with other binding partners. For example, TFIIIC has been shown to directly 

interact with condensin (Haeusler et al., 2008), which is required for clustering of tRNA 

genes, so differences in TFIIIC-DNA binding properties could affect how individual 

tRNA genes interact with each other. Moreover, since the degree of occupation of all the 

genomic tRNA genes by TFIIIC, TFIIIB, and Pol III is variable across the genome 

(Moqtaderi and Struhl, 2004; Moqtaderi et al., 2010; Oler et al., 2010; Roberts et al., 

2003), the nature of the complexes could be changed by having different geometries or 

stability of occupation by one or more components.  

A more speculative yet possible explanation might also be that tRNA gene 

complexes recruit tRNA-specific protein components to them due to differences in their 

transcript sequences. For example, although both tRNALeu and tRNATyr are cleaved at 

their 5’ and 3’ mature ends early in biosynthesis, the exact order and location of 

nucleotide modification events is not clear. Many processing reactions are tRNA-specific 

(Phizicky and Hopper, 2010), and some of these tRNA-specific reactions could happen 

either co-transcriptionally or very soon after transcription. It therefore remains possible 

that some enzymes associate with tRNA gene complexes through the nascent RNAs in a 

sequence-dependent manner.  

It has never been entirely clear why tRNA genes generally cluster together at the 

nucleolus. The idea of a transcription factory is appealing. The tRNA genes along with 

the 5S rRNA genes that are embedded in the ribosomal repeats are all transcribed by Pol 

III, and co-localizing them would provide efficiency in transcription, as well as in early 
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processing steps, such as cleavage of their 5’ leaders and 3’ trailers. Additionally, it has 

been suggested that Pol III transcription is co-regulated with Pol I transcription (Briand et 

al., 2001), providing a further level of spatial regulation. Yet the results of this study 

indicate that it is not necessarily the tRNA genes themselves that provide the driving 

force of global genome organization. Thus, it is likely convenient and even beneficial for 

the tRNA genes to co-localize with the nucleolus, but their positioning in the proximity 

of the nucleolus is likely dictated by other chromosomal localization signals. Indeed, it is 

unlikely that all 274 tRNA genes in the S. cerevisiae genome are required to be clustered 

together at the nucleolus at all times. Some tRNA genes may never find their way to the 

nucleus, and others may be there at times and elsewhere at other times, driven by the 

spatial commands of neighboring genes. These tRNA genes would not lose functionality, 

but those that are at the nucleolus reap the benefits of more efficient transcription and 

processing. 

Overall, this study supports a model whereby the locus-specific tRNA 

transcription complexes serve as “fasteners” to determine local interactions and promote 

clustering, but that this occurs in combination with other determinants that dominate 

global nuclear positioning.  

 

 

Materials and Methods 

 

Strain construction. The coding sequence of tK(CUU)P in S. cerevisiae BY4741 (MATa 

his3Δ1 leu2Δ0 met15Δ0 ura3Δ0), including mature coding sequence and intron, was 

precisely replaced with the kanMX6 expression cassette by recombination using PCR 

fragments generated from plasmid pFA6a-kanMX6 (Longtine et al., 1998) to create 

yDP97. Transformants were selected on medium containing G418, and exact gene 

replacement was verified by PCR and sequencing. 

 The coding sequence and intron of tL(UAA)B2 (Chr II, coordinates 347583 to 

347699) in the wild-type strain (yPH499; MATa ura3-52 lys2-801_amber ade2-

101_ochre trp1-Δ63 his3-Δ200 leu2-Δ1) was precisely replaced by recombination with 

the SUP4-1 ochre suppressor tRNATyr coding sequence and intron (Kurjan et al., 1980) 
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and selection for suppression of the ochre ade2 mutation to create yDP77. Correct 

replacement was subsequently confirmed by PCR analysis and sequencing. Similarly, 

tL(CAA)G3 (Chr VII, coordinates 857511 to 857374) was precisely replaced in yPH499 

using the same method to create yDP84.  

 

Growth competition. Competitions were done essentially as described (Torres et al., 

2010). Briefly, BY4741 and yDP97 were mixed in equal amounts to OD600 = 0.2 in 50 

mL of synthetic complete medium. Cells were maintained in exponential phase by 

dilution back to OD600 = 0.2 every 18-24 hours. Cells were plated at intervals to YPD and 

YPD containing G418, and the ratio of G418-resistant (G418R) colonies to total colonies 

was plotted. 

 

Genome conformation capture (GCC) (Rodley et al., 2009). Briefly, BY4741 cells 

were grown in 2% glucose to mid-logarithmic phase and crosslinked with 1% 

formaldehyde. For each experiment, chromatin was prepared from 15 sets of 108 (i.e., a 

total of 1.36 x 109) cells. Chromatin was digested with MspI (Fermentas) and ligated (T4 

ligase; Invitrogen). Crosslinks were reversed in the presence of proteinase K (final 

concentration 7-11µg, Roche). Samples were treated with RNase A (final concentration 

10 µg/mL) prior to purification by phenol:chloroform extraction and column purification 

(Zymo Clean and Concentrator, Zymo Research). Paired-end sequencing (36 bp) was 

performed on 5μg DNA using the Illumina Genome Analyzer platform (Allan Wilson 

Centre, Massey University, New Zealand & Friedrich Miescher Institute for Biomedical 

Research, Basel, Switzerland). Sequences were deposited with the Gene Expression 

Omnibus (GEO) accession number GSE30103.  

 External controls for random ligation events. To experimentally control for 

spurious inter-molecular ligation events, during the GCC process samples were spiked 

with two ligation controls during library preparation. The first ligation control consisted 

of PCR products that were added (1:1 ratio with the nuclear genome copy number) before 

the GCC ligation step. These controls were designed to estimate the frequency of random 

inter-molecular ligation events during GCC library preparation. A maximum of 47 

separate ligation events were observed, none of which occurred at levels above the 
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statistically defined experimental noise. The second ligation control consisted of the 

addition of pUC19 plasmid to the sample following the GCC ligation in order to control 

for random ligation events during preparation of the samples for sequencing. We 

observed a maximum of six interactions between pUC19 and the rest of the genome; 

again, none of these interactions were above the statistically defined experimental noise. 

In conclusion, the fact that the high copy number rDNA and mitochondrial DNA 

elements do not show significant levels of random inter-molecular interactions with our 

internal control sequences is empirical evidence that the interactions we observe result 

from intra-molecular ligation events. Therefore, random ligation events during sample 

preparation do not account for the interactions we observe. 

 Determination of noise threshold. Statistical analyses are performed to determine 

whether the GCC dataset is something other than random. 100,000 simulations of random 

pairings were done to determine the maximum count of a particular interaction that 

would be observed under this noise model, given the same number of sequences, 

interactions, and fragments as in the experimental data. The results of the simulations 

lead us to conclude that the interaction patterns cannot be attributed to noise alone with a 

p-value less than 10-5. Secondly, we performed analyses to determine what frequency 

individual interactions have to achieve before they are deemed to be present at a level 

above experimental noise. It is justified to assume the pairings are independent and 

therefore the number of times one specific pairing occurs is a binomially distributed 

random variable. S1 (13,622) and S2 (6277.4) are the number of mitochondrial and 

nuclear segments, respectively, which participate in at least one interaction. We calculate 

the probability P(X≥k), where N is number of observed pairings (478,978), and p is 1 

divided by S1 multiplied by S2, for one specific pairing to occur k or more times. L, the 

number of possible pairings, is S1 multiplied by S2. We then expect to see L[P(X≥k)] = 

2.4167 pairings occurring k or more times by chance, i.e., the expected number of false 

positives. Therefore, 3 or more interactions (k=3) was selected as an acceptable noise cut-

off value.  

 Analysis of repetitive elements. Repetitive elements are those genomic features 

which occur more than once within the genome (e.g., tRNA genes and rRNA genes). We 

were particularly interested in the interactions between the rDNA repeats and the rest of 
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the genome, specifically Fragment #13476, containing tK(CUU)P, itself a repetitive 

element. Statistical calculations were performed on datasets in which the sequences could 

be uniquely positioned on the reference genome. Where the analysis was concerned with 

connections between repetitive elements, connections between sequences deemed 

“unique” and connections involving sequences deemed “repetitive” were analyzed 

separately. For the analyses in this chapter, only the unique datasets were used. The copy 

number of the rDNA repeats in our samples was calculated by aligning the sequence files 

against a short section of rDNA (Chr XII: 460517-460612) and comparing it against the 

single copy GAL1 locus (Chr II: 279790-279909). We calculated the ratio of rDNA to the 

unique nuclear element (GAL1) to be 141.72.  

 

Chromosome conformation capture (3C) (Dekker et al., 2002) BY4741 and yDP97 

strains were grown to mid-logarithmic phase in synthetic complete media containing 2% 

glucose (w/v). Chromatin was prepared according to (Rodley et al., 2009) using HindIII 

or MspI restriction enzyme. HindIII cleaves the kanMX6 expression cassette and thus 

results in three restriction fragments in yDP97, as opposed to two fragments in BY4741. 

Interactions between F1 and F2 of the WT strain (F1 and F2’ of the yDP97 strain) on Chr 

XVI, and the rDNA HindIII fragment (Chr XII: 457,910-460,634 bp) were measured for 

three biological replicates. 

Quantitative 3C analyses (O'Sullivan et al., 2009; Rodley et al., 2009) were 

performed by comparison to dedicated standards using FAM labeled BHQ Probes 

(BioSearch Technologies) and Taqman® Gene Expression Master Mix (Applied 

Biosystems) on an ABI Prism 7000 Sequence Detection System (SDS7000). Samples (2 

µl) were analyzed in triplicate in 20 µl reactions (final volume). Real-time analyses were 

performed using a 3-stage program (50°C, 2:00 min; 95°C, 10:00 min; 45x [95°C, 0:15 

sec; 60°C, 1:00 min]). To standardize between samples, GAL1 copy number was 

determined by qPCR using Sybr-green and a five stage program (50°C, 2:00 min; 95°C, 

2:00 min; 40x [95°C, 0:15 sec; 59.5°C, 0:30 sec; 72°C, 0:30 sec]; 55°C, 1:00; followed 

by a dissociation analysis). 
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Circular chromosome conformation capture (4C) (O'Sullivan et al., 2009). YPH499, 

yDP77, and yDP84 strains were grown to mid-logarithmic phase in synthetic complete 

media containing 2% glucose (w/v). Chromatin was harvested and prepared as for 3C 

samples using the MspI restriction enzyme.  

Nested inverse PCR primers were designed to amplify out of the ‘bait’ MspI 

fragments that contained the intact tL(UAA)B2 or tL(CAA)G3 gene. SUP4-1 contains an 

additional MspI site, which was compensated for by performing nested amplifications of 

the two fragments independently upon the same 4C library. PCR conditions were as 

follows 1) first round (95°C, 2:00 min; 35x [95°C, 0:30 sec; 59°C, 0:30 sec; 72°C, 2:00 

min]; 72°C, 5:00) and 2) nested second round (95°C, 2:00 min; 35x [95°C, 0:30 sec; 

62°C, 0:30 sec; 72°C, 2:00 min]; 72°C, 5:00). The primer annealing temperatures for 

fragment 1 and 2 of the yDP77 strain were 68.1°C and 60°C, respectively. Nested 

primers contained unique 6 bp tags (TCTCTG [yPH499 wild type arrangement of the 

yDP84 strain], TGATGC [yDP84 fragment 1], and AGCACG [yDP84 fragment 2], 

AGAGAC [yPH499 wild type arrangement of the yDP77 strain], ACAGAG [yDP77 

fragment 1], TAGATC [yDP77 fragment 2]) to enable pooling of the 4C PCR products 

for sequencing (100 bp paired end) on an Illumina Genome Analyser (Allan Wilson 

Centre, Massey University). Sequences were mapped onto the S. cerevisiae S288c 

genome sequence using Topography v1.19 (Rodley et al., 2009). Sequence files are 

available from GEO (series record GSE30103). 

A total of 73,010,074 100 bp sequences were generated for the pooled 4C 

libraries, sorted, trimmed (17 bp either side of the MspI restriction site) and mapped onto 

the S. cerevisiae S288C genome using Topography (v1.19; (Rodley et al., 2009)). No 

mismatches were allowed. Similar numbers of inter- and non-adjacent intra-chromosomal 

interactions were observed for the tL(UAA)B2 and tL(CAA)G3 loci in the wild-type 

background (233,456 and 250,195, respectively). The tRNA replacement on Chr VII 

(yDP84) resulted in the most interactions associated with it overall (1,513,787), while the 

yDP77 mutant resulted in considerably less (173,546) map able interactions. 

Sorting involved some pre-processing of sequence tags. Each of the individual 

samples was isolated from the sequence files according to its 6 bp tag and primer 

sequence and trimmed to 34 bp (with the MspI recognition sequence in the centre). The 
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sequences for fragment 1 and 2 for each mutant (yDP77 and yDP84) were pooled. Since 

SUP4-1 shares considerable identity with the 9 copies of the tY(GUA) tRNATyr gene in 

the yeast genome, particularly around the MspI restriction site, the primer sequences 

which hybridized adjacent to the novel restriction site within this locus could not be 

uniquely positioned to the bait fragment on the reference genome. Therefore, the unique 

primer sequences from the opposite ends of the bait fragments were substituted for the 17 

bp repetitive sequences that abut the novel restriction site within SUP4-1, prior to 

analysis. Thus, sequences that crossed the SUP4-1 restriction site within the bait 

fragments were accurately mapped to either tL(UAA)B2 or tL(CAA)G3, depending on the 

interaction under investigation. For analysis, adjacent interaction frequencies were used 

to correct for between sample comparisons. 
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Figure 2.1. Deletion of a tRNA gene retains interactions between that locus and the rDNA 

repeats. a) Schematic of proximity-based ligation methodologies. b) The wild-type (WT) S. 

cerevisiae strain BY4741 had the tK(CUU)P tRNA gene replaced with the kanMX6 expression 

cassette. c) The 3C partner sequence was located across the 5S rDNA. Gray bars denote HindIII 

restriction sites; arrows denote 3C primer positions. d) Quantitative 3C PCR demonstrates no 

significant reduction in interaction frequency for the F1 or F2/F2’ fragments due to removal of 

the tRNA gene. Results are expressed as percentage of WT F1 or F2 interactions, and GAL1 was 

used to standardize between samples (Rodley et al., 2009). e) Co-culturing BY4741 and yDP97 

for 100 generations in a batch competition assay and measuring relative rate of G418 resistance 

demonstrates that the deletion strain has no major growth defects.  
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Figure 2.2. The high frequency interactions between the tK(CUU)P-containing fragment 

and the NTS1 sequence is isolated and not mirrored at adjacent sites. GCC was 

performed on unsynchronized exponentially growing S. cerevisiae cells, and interactions 

that occurred above the experimental false detection rate were counted and mapped 

between restriction fragments surrounding Fragment #13476 on Chr XVI (relevant 

portion of linear chromosome map illustrated on left) and restriction fragments across the 

entire rDNA repeat (illustrated below the graphs). Of the six fragments which 

immediately flank the tK(CUU)P-containing fragment (#13476) (Chr XVI: 581,025-

583,522), only the “-2” and “+2” fragments interact with the rDNA. However, neither 

interacts with the NTS1 fragment, and the maximum number of interactions observed 

was three orders of magnitude lower. A) Map of interaction frequencies between 

Fragment “+2” (Chr XVI: 585884-589137) and the rDNA locus. B) Map of interaction 

frequencies between Fragment #13476 and the rDNA locus. C) Map of interaction 

frequencies between Fragment “-2” (Chr XVI: 549477-580469) and the rDNA locus. 
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Figure 2.3. tRNA gene identity dictates interaction patterns with the rDNA repeats. A) 

Two tRNALeu genes [tL(CAA)G3 and tL(UAA)B2], which are located on different 

chromosomes, were replaced with the tRNATyr variant SUP4-1 suppressor gene to 

generate strains yDP84 and yDP77, respectively. Gray bars denote MspI restriction sites; 

arrows denote 4C primer positions. B) Interactions with the rDNA locus were identified 

by 4C coupled to high throughput sequencing. Raw interaction frequencies have been 

plotted across a tandem rDNA repeat for clarity. Note, only patterns of interaction along 

the rDNA locus should be compared, as inter-experiment variation has not been corrected 

for. 
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Figure 2.4. Genetic background does not affect interaction frequency between tY(GUA)J2 

and the 25S rDNA. 3C was performed using MspI on crosslinked chromatin isolated from 

yPH499, yDP77, and yDP84. Interaction frequencies were determined by quantitative 3C 

analyses using fluorescent probes and have been corrected for nuclear genome copy 

number to facilitate inter-strain comparisons (see Methods). Interaction values are 

expressed as percentages of the yPH499 sample (set at 100%) +/- standard error of the 

mean (n=3) 
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Line tL(UAA)B2 tL(CAA)G3 Chr 
Chromosomal 
coordinates Genes contained within fragment 

 
WT SUP4-1 WT SUP4-1   Start Stop   

1 0 153 0 11 I 57456 57688 YAL044W 
2 0 74 0 2 II 168544 170155 RPL19B 
3 0 1 0 99 IV 30590 30807 LRC1 
4 0 174 0 6 IV 946425 946524 between SUP2 and AMD2 
5 0 1 0 26 IV 1108925 1109604 ASP1 
6 0 139 0 53 IV 1198674 1198905 TFC6 
7 0 4 0 570 IV 1251279 1251371 RVS167 
8 0 315 0 2 IV 1268016 1268117 UTP5 
9 0 1 0 110 IV 1367585 1367804 NHX1 

10 0 7 0 8 V 171720 171958 SEC3 
11 0 96 0 2 VI 209975 210610 CDC14, SUP6 
12 0 481 0 2 VII 730784 731066 COG2 
13 0 1 0 39 VII 798801 798859 CYS4 
14 0 2 0 3770 VII 901128 901626 ELP2 
15 0 386 0 16190 VIII 189377 189488 SRB2 
16 0 123 0 30471 VIII 219090 219185 MED6 
17 0 484 0 253 X 542361 542952 YJR056C, SUP4 
18 0 2 0 16 XI 386088 386154 TFA1 
19 0 66 0 3 XI 514497 515593 GAP1 
20 0 40 0 4 XIII 168876 169176 SUP5, YML053C 
21 0 2 0 5 XIII 398049 398171 AEP1 
22 0 16 0 2 XIII 592567 592857 PAH1 
23 0 1875 0 1 XIII 837399 838007 YMRWdelta21, SUP8 
24 0 239 0 3 XIV 413951 414121 DBP2 
25 0 1 0 11 XV 956789 956927 YOR338W 
26 0 2690 0 8 XV 986036 986929 PYK2, PUT4 
27 0 14 0 398 XVI 115139 115441 USV1 
28 0 117 0 1 XVI 204335 205567 CTI6, TCO89 

 

Table 2.1. Gain of interactions upon tRNA gene replacement. This table outlines the 

interaction frequencies captured by 4C between the “bait” fragments (which contain 

either the tL(UAA)B2 or tL(CAA)G3 gene in the WT strain, or these genes replaced with 

the SUP4-1 sequence ) and the captured "prey" fragments, the chromosomal location and 

genetic makeup of which are described. 
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Chapter III 

 

Condensin binds specifically to tRNA genes by recognizing TFIIIC 

 

Abstract 

 

The multi-subunit condensin complex is required for the proper compaction of genetic 

material in the nucleus and is conserved throughout eukaryotes. In budding yeast 

condensin is responsible for the spatial clustering of the tRNA genes at the nucleolus, 

mediated via direct interactions between condensin and the transcription factors bound to 

the tRNA gene. Here we show that the specificity of interaction between condensin and 

the tRNA gene transcription complex is mediated by the RNA polymerase III (Pol III) 

transcription factor TFIIIC. This study demonstrates a specific mechanism for 

recognizing tRNA genes by condensin for the purpose of their spatial organization.  

 

 

Introduction 

 

Condensin is a five-subunit member of the Structural Maintenance of Chromosomes 

(SMC) family of protein complexes found in organisms from bacteria to eukaryotes. 

Condensin in yeast is composed of the Smc2p-Smc4p coiled-coil heterodimer along with 

the associated proteins Ycg1p, Ycs4p, and Brn1p (Hirano, 2005, 2006; Losada and 

Hirano, 2005). Along with the other two SMC protein complexes, cohesin and the 

Smc5/6 complex, condensin serves a variety of functions in the nucleus. The primary role 

of condensin is to compact and individualize chromatin into discrete chromosomes in 

preparation for mitosis or meiosis. However, it is now clear that condensin is not just 

important for cell division but that it has many roles in the interphase nucleus as well, 

particularly in genome maintenance, gene regulation, and DNA repair (Hudson et al., 
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2009; Wood et al., 2010). For example, although it has been known for some time that 

condensin is required for proper condensation and faithful transmission of the ribosomal 

DNA (rDNA) cluster during mitosis (Freeman et al., 2000), it is now evident that 

condensin is required for maintenance of rDNA integrity even in interphase (Tsang et al., 

2007a; Tsang et al., 2007b). 

It was recently shown that condensin is bound to every tRNA gene in the yeast 

genome (D'Ambrosio et al., 2008). Further studies indicated that nucleolar clustering of 

tRNA genes (Thompson et al., 2003; Wang et al., 2005) requires condensin, and 

mutations in any one of the five subunits of condensin alleviate tgm silencing (Haeusler 

et al., 2008). Condensin also mediates the centromeric localization of tRNA genes in 

fission yeast (Iwasaki et al., 2010). Additionally, condensin interacts in vivo in S. 

cerevisiae with a subset of the Pol III transcription machinery (i.e., TFIIIC and TFIIIB) 

(Haeusler et al., 2008) and is also found bound to the nine extra-TFIIIC (ETC) sites in the 

yeast genome that only bind TFIIIC but are not Pol III genes (D'Ambrosio et al., 2008; 

Moqtaderi and Struhl, 2004). Therefore, we hypothesized that TFIIIC may be the 

recognition factor for condensin association with tRNA genes.  

In this work we explore the interaction of purified condensin with tRNA gene 

complexes in vitro. We demonstrate that the Pol III transcription factor TFIIIC is 

necessary and sufficient for condensin to specifically recognize a tRNA gene, though 

TFIIIC-TFIIIB complexes can also support condensin binding. As expected, in the 

absence of TFIIIC, condensin does not specifically recognize the tRNA gene, instead 

binding nonspecifically to the DNA. Further work is necessary to determine the details of 

this interaction.  

 

 

Results and Discussion 

 

To test the hypothesis that TFIIIC is required for condensin to recognize a tRNA gene, 

we used an electrophoretic mobility shift assay (EMSA) to demonstrate the ability of 

purified condensin to bind stably to a tRNA gene-TFIIIC complex. We first verified that 

purified TFIIIC can bind stably to a tRNA gene in vitro. A radiolabeled DNA fragment 
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containing the SUP4 tRNATyr gene variant (Figure 3.1A) was mixed with molar excess 

amount of pUC19 supercoiled carrier plasmid as a nonspecific DNA competitor for 

protein binding. This mixture was incubated with TFIIIC, and complexes were separated 

on a native gel. Addition of TFIIIC yields a discrete shifted band, indicating specific 

recognition of the tRNA gene-containing fragment by TFIIIC (Figure 3.1B, third lane). 

The complexes appear to be partially unstable under electrophoresis conditions, 

evidenced by smearing in the shifted lanes. 

Having confirmed that TFIIIC binds to the expected site on a tRNA gene in vitro, 

we tested whether purified condensin alone could bind selectively to the tRNA gene. 

When condensin was incubated in large molar excess over labeled tRNA gene in the 

absence of nonspecific DNA competitor, it caused aggregation consistent with both 

binding of condensin to the DNA and aggregation due to protein-protein interaction 

between condensin-DNA complexes (Figure 3.1C, middle lane). Adding the competitor 

plasmid DNA back into the reaction mixture inhibited the aggregation and formation of 

stable complexes between the labeled tRNA gene fragment and the condensin (Figure 

3.1B, left lane, and Figure 3.1C, left lane). Condensin is a DNA-binding protein and has 

been shown to bind non-specifically along the length of random DNA (Stray et al., 2005). 

Our results are consistent with both non-specific DNA binding by condensin and 

condensin-condensin-mediated aggregation of the DNA-condensin complexes, the 

proposed method of DNA compaction by condensin (Losada and Hirano, 2005). Our 

results also confirm lack of DNA sequence specificity in the binding of condensin alone 

to tRNA genes. 

We next tested the ability of condensin to recognize a tRNA gene-TFIIIC 

complex. After incubation with TFIIIC, the DNA fragment was then incubated with 

condensin, and the assembled complex was separated on a native gel. Addition of 

condensin to the TFIIIC-DNA complex yields a discrete super-shifted band in addition to 

the original shifted band (Figure 3.1B, second lane, and Figure 3.1C, third lane), 

indicating that condensin is recognizing the TFIIIC-DNA complex. This result is 

consistent with in vivo data showing that condensin is bound to the ETC sites where only 

TFIIIC but no other factor is bound and supports the hypothesis that condensin 

recognizes tRNA genes via TFIIIC. The condensin is present in the reaction mixtures at 
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1.5-fold molar excess to the TFIIIC, yet only a fraction of the TFIIIC-shifted band is 

super-shifted upon addition of condensin. The reason for this incomplete occupancy of 

condensin on the tRNA gene complex is unclear but could be due to instability of the 

complexes. We also verified that condensin is able to bind to a more fully assembled Pol 

III transcription complex, consisting of TFIIIC and TFIIIB bound to a tRNA gene. Before 

addition of condensin, we added purified TFIIIB onto the DNA-TFIIIC complex and then 

added condensin. The DNA-TFIIIC-TFIIIB complexes, while very unstable through 

electrophoresis conditions, are able to accommodate condensin binding (not shown). 

Our results indicate overall that condensin is bound to tRNA genes in the yeast 

genome via direct recognition of the Pol III transcription factor TFIIIC. However, while 

we have determined what the interaction is, our data leave unanswered exactly how that 

interaction occurs. Early studies used DNA footprinting to demonstrate that TFIIIC binds 

stably to the internal promoter regions of a tRNA gene, and that TFIIIB then binds 

upstream of the tRNA gene (Kassavetis et al., 1989). We performed the footprinting 

assays as described (Kassavetis et al., 1990; Kassavetis et al., 1989) to determine where 

along the DNA fragment condensin is binding. While we were able to reproduce the 

TFIIIC footprint, we were unable to demonstrate an additional footprint upon the addition 

of condensin (Figure 3.2). It is possible that the lack of an additional footprint means that 

there is something intrinsic to this assay that is not allowing us to visualize the condensin 

protection of DNA from DNase I digestion. However, another possible explanation is that 

the condensin may be binding directly on top of the TFIIIC, making minimal or no 

contacts directly with the DNA (Figure 3.3). Because condensin is a DNA-binding 

protein complex, one would expect there to be at least minimal DNA contacts, so perhaps 

the contacts are not sufficiently stable or position-specific to observe beyond the existing 

TFIIIC footprint. Were condensin to bind directly to TFIIIC without extensive DNA 

contacts, this would also be consistent with in vivo co-IP data showing that the TFIIIC-

condensin association persists even when the DNA is digested (Haeusler et al., 2008). 

Binding on top of TFIIIC would also allow the upstream region of the tRNA gene to be 

free of bulky protein complexes, so that TFIIIB may bind in preparation for Pol III 

recruitment. 
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Since the footprint was unable to yield a definite result, direct visualization would 

be useful in examining the structure of these complexes. Further assessment of the 

TFIIIC-condensin complex on a tRNA gene is theoretically possible via electron 

microscopy (EM). However, preliminary attempts at visualization have been difficult 

because the condensin appears too heterogeneous when placed on a charged EM grid 

(Figure 3.4), even though all five individual subunits of the condensin complex appear 

intact via silver stain ((St-Pierre et al., 2009) and communicated by Damien D’Amours, 

Université de Montreal). In spite of this setback, it may still be possible to visualize 

condensin bound to tRNA genes in the future, and work is being done to improve the EM 

procedure. 

While many functions for condensin have been revealed in the past decade, very 

little is still known about its mechanism of action. No crystal structure has yet been 

determined, perhaps because the heterogeneity seen in our EM studies also makes 

producing crystals difficult. It has been proposed that condensin compacts DNA with a 

DNA-binding domain that binds DNA, and then condensin-condensin interaction 

domains bring condensin-bound regions of DNA together (Hirano et al., 2001; Losada 

and Hirano, 2005). In the case of tRNA genes, though, there may be a TFIIIC-recognition 

domain in condensin, along with the DNA-binding domain, that specifically allows tRNA 

genes to cluster together. Once bound to TFIIIC-bound DNA, condensin may recognize 

other TFIIIC-bound condensin molecules and thus specifically cluster tRNA genes 

together. Condensin-bound tRNA gene complexes would then be able to cluster with the 

condensin-bound rDNA repeats, somehow based on the identity of the individual tRNA 

genes (see Chapter II). Therefore, while many questions about the mechanism of 

condensin function are still unanswered, the results of this study begin to assess the 

molecular mechanisms by which condensin clusters tRNA genes. 

 

 

Methods and Materials 

 

Electrophoretic mobility shift assays. Radiolabeled DNA was generated by end-

labeling DNA oligonucleotide oDP115 (5’-GAATTCCTTCGGAGGGCTGT-3’) with 
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gamma-32P-ATP. 50 pmol of end-labeled oDP115 was then paired with 50 pmol of 

unlabeled DNA oligonucleotide oDP118 (5’-CACACCCGTCCTGTGGAT-3’) in a PCR 

reaction using plasmid template pSUP4o (Hull et al., 1994) to generate an end-labeled 

288-bp PCR product containing the SUP4 tRNATyr gene (Figure 3.1A). The PCR product 

was purified away from free oligonucleotides by passive elution out of a nondenaturing 

polyacrylamide gel and precipitated.  

All binding reactions were done in 20 µL of modified EMSA buffer (40 mM Tris 

pH 8; 7.5% glycerol; 7 mM MgCl2; 3 mM DTT; 80 mM NaCl; 0.3 mg/mL bovine serum 

albumin). Where appropriate, the probe was first mixed with 20 ng of pUC19 plasmid 

and then incubated with 300 fmol of purified TFIIIC (Kassavetis et al., 1990; Kassavetis 

et al., 1989) for 30 minutes at 25°C. Where condensin was added, the indicated amount 

of purified condensin (St-Pierre et al., 2009) was added and incubated for an additional 

30 minutes at 25°C. (Total reaction time for all complexes was 1 hour.) Complexes were 

separated on a 4% nondenaturing polyacrylamide gel (40:1 acrylamide:bis), 

supplemented with 5% glycerol and 5 mM MgCl2 and run in Tris-borate buffer 

supplemented with 5 mM MgCl2. The gel was dried and exposed onto a Typhoon Trio+ 

cassette (Molecular Dynamics), and total radioactive signal per lane was quantitated with 

Image J (NIH) and plotted with GraphPad Prism. 

 

DNase I Footprinting. Radiolabeled DNA (generated as for the EMSAs) was mixed 

with 20 ng of pUC19 and Footprint Buffer (40 mM Tris pH 8; 7 mM MgCl2; 80 mM 

NaCl; 5% glycerol; 3 mM DTT). 300 fmol of TFIIIC were added to the reaction to a final 

volume of 20 µL and incubated for 30 minutes at 25°C. Where condensin was added, 450 

fmol of condensin were added to the reaction to a final volume of 20 µL and incubated 

for an additional 30 minutes at 25°C. (Total reaction time for all complexes was 1 hour.) 

DNase I (Sigma-Aldrich) was then added to a final concentration of 7.8 units/nL and 

allowed to incubate for exactly 15 minutes at 25°C. Stop Mix (final concentrations of 

0.2% SDS; 10 mM EDTA; 100 µg/mL Proteinase K) was added to each reaction and 

incubated for 1 hour at 37°C. Samples were precipitated, resuspended in loading buffer 

(10 mM Tris pH 8; 10 mM EDTA; 0.0166% SDS; and 65% formamide), boiled, and 
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loaded onto a 6% denaturing gel that had been pre-run for 1 hour. Gel was dried and 

exposed as above. 

 

Electron microscopy. Complexes were mixed in EM buffer (10 mM Tris pH8, 50 mM 

NaCl, 5 mM MgCl2, 1 mM DTT) before being stained with uranyl formate and placed on 

a charged grid via the conventional negative staining protocol (Ohi et al., 2004). 

Complexes were visualized on a Morgagni 288 electron microscope. 

 

 

Acknowledgements 

 

Purified TFIIIC and TFIIIB were provided by Dr. George Kassavetis at University of 

California San Diego. Purified condensin was provided by Dr. Damien D’Amours at 

Université de Montreal. I would like to thank Drs. Jeffrey Herbstman and Giorgios 

Skiniotis of the University of Michigan for collaboration in acquiring preliminary EM 

data. 

 

 

References 

 

D'Ambrosio, C., Schmidt, C.K., Katou, Y., Kelly, G., Itoh, T., Shirahige, K., and 
Uhlmann, F. (2008). Identification of cis-acting sites for condensin loading onto budding 
yeast chromosomes. Genes Dev 22, 2215-2227. 

Freeman, L., Aragon-Alcaide, L., and Strunnikov, A. (2000). The condensin complex 
governs chromosome condensation and mitotic transmission of rDNA. J Cell Biol 149, 
811-824. 

Haeusler, R.A., Pratt-Hyatt, M., Good, P.D., Gipson, T.A., and Engelke, D.R. (2008). 
Clustering of yeast tRNA genes is mediated by specific association of condensin with 
tRNA gene transcription complexes. Genes Dev 22, 2204-2214. 

Hirano, M., Anderson, D.E., Erickson, H.P., and Hirano, T. (2001). Bimodal activation of 
SMC ATPase by intra- and inter-molecular interactions. The EMBO journal 20, 3238-
3250. 



68 
 

Hirano, T. (2005). Condensins: organizing and segregating the genome. Curr Biol 15, 
R265-275. 

Hirano, T. (2006). At the heart of the chromosome: SMC proteins in action. Nat Rev Mol 
Cell Biol 7, 311-322. 

Hudson, D.F., Marshall, K.M., and Earnshaw, W.C. (2009). Condensin: Architect of 
mitotic chromosomes. Chromosome Res 17, 131-144. 

Hull, M.W., Erickson, J., Johnston, M., and Engelke, D.R. (1994). tRNA genes as 
transcriptional repressor elements. Mol Cell Biol 14, 1266-1277. 

Iwasaki, O., Tanaka, A., Tanizawa, H., Grewal, S.I., and Noma, K. Centromeric 
localization of dispersed Pol III genes in fission yeast. Molecular biology of the cell 21, 
254-265. 

Kassavetis, G.A., Braun, B.R., Nguyen, L.H., and Geiduschek, E.P. (1990). S. cerevisiae 
TFIIIB is the transcription initiation factor proper of RNA polymerase III, while TFIIIA 
and TFIIIC are assembly factors. Cell 60, 235-245. 

Kassavetis, G.A., Riggs, D.L., Negri, R., Nguyen, L.H., and Geiduschek, E.P. (1989). 
Transcription factor IIIB generates extended DNA interactions in RNA polymerase III 
transcription complexes on tRNA genes. Molecular and cellular biology 9, 2551-2566. 

Losada, A., and Hirano, T. (2005). Dynamic molecular linkers of the genome: the first 
decade of SMC proteins. Genes & development 19, 1269-1287. 

Moqtaderi, Z., and Struhl, K. (2004). Genome-wide occupancy profile of the RNA 
polymerase III machinery in Saccharomyces cerevisiae reveals loci with incomplete 
transcription complexes. Molecular and cellular biology 24, 4118-4127. 

Ohi, M., Li, Y., Cheng, Y., and Walz, T. (2004). Negative Staining and Image 
Classification - Powerful Tools in Modern Electron Microscopy. Biological procedures 
online 6, 23-34. 

St-Pierre, J., Douziech, M., Bazile, F., Pascariu, M., Bonneil, E., Sauve, V., Ratsima, H., 
and D'Amours, D. (2009). Polo kinase regulates mitotic chromosome condensation by 
hyperactivation of condensin DNA supercoiling activity. Molecular cell 34, 416-426. 

Stray, J.E., Crisona, N.J., Belotserkovskii, B.P., Lindsley, J.E., and Cozzarelli, N.R. 
(2005). The Saccharomyces cerevisiae Smc2/4 condensin compacts DNA into (+) chiral 
structures without net supercoiling. The Journal of biological chemistry 280, 34723-
34734. 

Thompson, M., Haeusler, R.A., Good, P.D., and Engelke, D.R. (2003). Nucleolar 
clustering of dispersed tRNA genes. Science 302, 1399-1401. 



69 
 

Tsang, C.K., Li, H., and Zheng, X.S. (2007a). Nutrient starvation promotes condensin 
loading to maintain rDNA stability. Embo J 26, 448-458. 

Tsang, C.K., Wei, Y., and Zheng, X.F. (2007b). Compacting DNA during the interphase: 
condensin maintains rDNA integrity. Cell Cycle 6, 2213-2218. 

Wang, L., Haeusler, R.A., Good, P.D., Thompson, M., Nagar, S., and Engelke, D.R. 
(2005). Silencing near tRNA genes requires nucleolar localization. J Biol Chem 280, 
8637-8639. 

Wood, A.J., Severson, A.F., and Meyer, B.J. Condensin and cohesin complexity: the 
expanding repertoire of functions. Nature reviews 11, 391-404. 
 
 
  



70 
 

 
 

 
Figure 3.1. TFIIIC mediates specific binding between condensin and a tRNA gene. A. 

DNA fragment used for in vitro EMSA and DNA footprinting assays. tRNA gene shown 

in red; the internal promoters to which TFIIIC binds are shown in blue; direction of 

transcription indicated by arrow; radiolabel as indicated is on the upstream end of the 

fragment. B. Binding of condensin to a tRNA gene-TFIIIC complex. Radiolabeled DNA 

containing the SUP4 tRNA gene was incubated with TFIIIC or condensin as indicated 

and separated on a 5% native polyacrylamide gel. C. Effect of competitor DNA on 

condensin binding. Complexes were assembled with TFIIIC and/or plasmid competitor 

before addition of condensin and separation on a native gel.  
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Figure 3.2. DNA footprint of a tRNA gene with bound factors. End-labeled DNA 

fragment containing the SUP4 tRNA gene was incubated with TFIIIC where indicated for 

30 minutes and with condensin where indicated for an additional 30 minutes. Complexes 

were digested with DNase I, samples were treated with Proteinase K, and the remaining 

DNA was precipitated and run out on a 6% denaturing gel. The TFIIIC footprint is 

indicated. 
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Figure 3.3. Proposed model of condensin binding to a tRNA gene complex. The top panel 

shows a tRNA gene with bound factors TFIIIC and TFIIIB. Our results indicate that 

condensin directly interacts with TFIIIC. Based on lack of DNA footprint, we propose 

that condensin binds directly on top of TFIIIC, making little or no contacts with the DNA 

(dashed line indicates weak or no interaction between condensin and DNA). Presence of 

TFIIIB on the complex does not prevent condensin binding. 
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Figure 3.4. Electron micrograph of purified condensin. Condensin appears heterogeneous 

when visualized. 
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Chapter IV 

 

RNAs inhibit Pol II transcription by preventing Pol II binding to DNA template 

 

Abstract 

 

Many RNAs are known to act as regulators of transcription in eukaryotes, including 

certain small RNAs that directly inhibit RNA polymerases both in prokaryotes and in 

eukaryotes. We have examined the potential for a variety of RNAs to directly inhibit 

transcription by yeast Pol II. We find that several structured and unstructured RNAs are 

able to bind Pol II purified from yeast, and can subsequently block its transcriptional 

activity. The inhibition is achieved by the RNAs binding in or near the active site of the 

enzyme and blocking the enzyme’s ability to bind a DNA template. Unstructured RNAs 

are more potent at this activity than structured ones, suggesting flexibility of the RNA is 

necessary for efficient blocking of DNA binding. The RNA must find the enzyme before 

the DNA template does, as RNA is not able to invade into and displace DNA template 

that is already bound to Pol II, nor can RNA inhibit elongating Pol II. These results 

suggest a need for co-transcriptional removal of nascent RNAs from the vicinity of 

transcription initiation, either by packaging the RNAs into ribonucleoprotein complexes 

or by efficiently transporting them away from the site of synthesis. 

 

 

Introduction 

 

Noncoding RNAs (ncRNA) can be potent regulators of eukaryotic gene expression, both 

through modulation of RNA function and stability and through directed modification of 

chromatin [reviewed in (Hawkins and Morris, 2008; Kurokawa et al., 2009; Storz et al., 

2005)]. There is emerging evidence that some RNAs are able to directly inhibit RNA 
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polymerases. The bacterial 6S RNA inhibits transcription by binding stably in the active 

site of RNA polymerase (Wassarman and Saecker, 2006). In addition there is evidence 

that certain RNAs in mammalian cells might directly inhibit RNA polymerase II (Pol II). 

The RNA transcripts of B2 and Alu small interspersed elements (SINEs) inhibit 

transcription initiation by purified Pol II in vitro, by binding directly to mammalian Pol II 

(Allen et al., 2004; Espinoza et al., 2004; Mariner et al., 2008; Yakovchuk et al., 2009). 

SINEs can be actively transcribed in vitro by RNA polymerase III (Pol III), as expected 

since the various families of these high copy DNA elements in vertebrates are mostly 

derived by retrotransposition from tRNA, 7SL RNA, or 5S rRNA genes [reviewed in 

(Batzer and Deininger, 2002; Hasler and Strub, 2006; Okada, 1991; Price et al., 2004; 

Weiner, 2002)]. Some SINE elements can also be transcribed by Pol II in vivo, and 

although SINEs are not normally found stably expressed at significant levels in vivo, they 

can be expressed under certain conditions of cell stress, viral infection, or in specific cell 

types (reviewed in Lunyak and Atallah, 2011). It is not clear whether the relative paucity 

of RNA from these high copy elements is entirely due to lack of transcription in vivo, or 

whether rapid turnover of the RNA transcripts also takes place.  

 Direct inhibition of Pol II by RNAs has not been tested extensively in a yeast 

system, although an early report suggested that tRNA can inhibit Pol II (Sawadogo, 

1981). The hypothesis that tRNA transcripts might directly inhibit Pol II transcription is 

particularly interesting, given that Pol II transcription is antagonized in the immediate 

vicinity of tRNA genes (Bolton and Boeke, 2003; Hull et al., 1994; Kinsey and 

Sandmeyer, 1991). This local silencing of Pol II transcription by tRNA genes, termed 

tRNA gene-mediated (tgm) silencing, involves subnuclear clustering of the tRNA genes 

to the nucleolus (Wang et al., 2005) and requires condensin (Haeusler et al., 2008), but 

other aspects of the molecular mechanism are uncharacterized. Since tRNA and 5S rRNA 

genes are the only repetitive Pol III transcription units in yeast, there being no SINE 

elements in these small genomes, we set out to investigate the ability of tRNAs to bind 

directly to purified Pol II from Saccharomyces cerevisiae and inhibit transcription. 

Surprisingly, we show that a variety of RNAs inhibit Pol II transcription by binding 

directly to Pol II and preventing Pol II from binding to a DNA template. Unstructured 

RNAs are in fact more effective inhibitors than highly structured tRNAs or 5S rRNA. 
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These results are discussed in terms of the possible need to remove nascent transcripts 

from the site of synthesis through ribonucleoprotein assembly and transport. 

 

 

Results 

 

We first asked whether pre-incubation of Pol II with RNAs could inhibit Pol II 

transcription in a non-specific in vitro transcription assay. To start, we assessed inhibitory 

activity of the Pol III-transcribed pre-tRNATyr. Pol II purified from Saccharomyces 

cerevisiae was pre-bound to unlabeled pre-tRNATyr, followed by addition of plasmid 

template, unlabeled nucleotide triphosphate (NTP) substrates, and α-32P-UTP. Pol II 

initiates non-specifically off the plasmid, creating a random size distribution of 

radioactive products that were quantitated (Figure 4.1A, right-most lane). With increasing 

amounts of pre-tRNATyr, Pol II transcripts are severely reduced in number (Figure 4.1A, 

right to left), indicative of the pre-tRNA inhibiting Pol II transcription (Figure 4.1B, top 

left panel).  

 One hypothesis for the tgm silencing phenomenon is that the nascent transcripts 

from S. cerevisiae tRNA genes act locally as repressors of Pol II; therefore, our result that 

tRNA directly inhibits Pol II was intriguing. Yet it was not clear whether this inhibition 

would actually be specific to tRNAs. Specificity would not be unprecedented, since, for 

example, certain SINE transcripts have been shown to inhibit mammalian Pol II 

significantly better than others (Mariner et al., 2008). To determine whether Pol II 

inhibition by RNA was limited to tRNAs, we tested other RNAs with varied degrees of 

intrinsic structure for their ability to inhibit Pol II transcription in vitro, from tightly 

structured RNAs (5S rRNA) (Garrett and Olesen, 1982) to ones predicted to be 

completely unstructured in solution (polyU RNA). We also tested a half-tRNA molecule, 

containing the first half of the pre-tRNATyr sequence but truncated just past the anticodon 

loop and lacking the tertiary structure of the full tRNA. Another RNA tested is a 250 nt 

region of the transcribed PHO84 ORF of the yeast genome that is expected to have 

various local structures in aqueous solution, characteristic of mixed sequence RNAs, but 

to not be tightly structured overall. The transcription inhibition assay was repeated as for 
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the pre-tRNATyr and plotted (Figure 4.1B). As with the pre-tRNA, the other three RNAs 

tested all inhibited transcription, but to different degrees. Contrary to the hypothesis that 

tRNAs might have some specific ability to inhibit Pol II, the half-tRNA and the 250 nt 

ORF RNA inhibited better than the pre-tRNA and the 5S rRNA. For all RNAs, the levels 

of inhibition approach zero but never reach it at the concentrations tested, particularly for 

the more structured RNAs, suggesting that the intrinsic structure of those RNAs 

somehow hampers its ability to inhibit the enzyme. Thus, while a variety of RNAs can 

inhibit Pol II transcription, unstructured RNAs seem to be better at this activity than 

structured ones.  

To determine whether Pol II inhibition is due to a direct physical interaction 

between RNA and Pol II, the ability of purified Pol II to bind stably to RNA was 

demonstrated by electrophoretic mobility shift assays (EMSA). Incubation of the 

polymerase with RNA resulted in a complex that was stable to conditions of native 

electrophoresis (Figure 4.2A, shown for the pre-tRNATyr). We next asked whether RNA 

binding was interfering with template binding, transcription initiation, or transcript 

elongation. To do this, we performed a number of assays. For template binding, purified 

Pol II binding to purely double stranded DNA templates (“closed complexes”) proved too 

unstable for reliable analysis by EMSA, so we directly tested the ability of RNA pre-

bound to Pol II to interfere with the ability of Pol II to bind an “open complex,” where 

the two DNA strands have been separated in a pre-initiation bubble. RNA was pre-bound 

to Pol II, as in the transcription assays, then added to a radiolabeled 50 bp DNA template 

constructed to have a pre-existing 15 nt unpaired region. The pre-bound RNA-Pol II 

complex was incubated with this open DNA, and then complexes were separated on a 

native gel EMSA. Pol II stably binds the open DNA complex in the absence of RNA 

(Figure 4.2B, second lane from right), though the Pol II-DNA complexes appear to be 

slightly unstable through the electrophoresis conditions, as evidenced by the slight 

smearing in the lane. As increasing amounts of RNA are pre-incubated with the Pol II 

(Figure 4.2B, right to left), less of the DNA is bound to Pol II. Shifted signal was 

quantitated in triplicate and compared to total signal per lane. This ratio of shifted DNA 

to total DNA was plotted for pre-tRNA, half-tRNA, 5S rRNA, and the 250 nt ORF RNA 

competitions (Figure 4.2C). Once again, the unstructured RNAs prevent binding to the 
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template more potently than the structured pre-tRNA and 5S rRNA. Together, these 

results indicate that RNAs bind to Pol II and inhibit transcription by preventing the Pol II 

from accessing the DNA template. 

We next assessed what length of the unstructured RNA was required to bind Pol 

II to achieve inhibition. Poly(U) RNA was used for this purpose, to avoid issues of 

structure or sequence specificity as the length increases. Binding and inhibition assays 

were carried out as for the other RNAs, quantitated in triplicate, and plotted (Figure 

4.2D). The results using increasing poly(U) lengths demonstrate clearly that as the length 

of the RNA increases, binding of Pol II to the DNA template is inhibited more potently. 

Of note is an apparent break point between 25 and 30 nt, suggesting RNA of this length 

or greater fits into the structure of Pol II in such a way that is desired for optimum 

inhibition. This 25-30 nt length is considerably longer than the 10 nt active site-to-exit 

channel length of Pol II (Gnatt et al., 2001), suggesting RNA is contacting the 

polymerase at sites not normally accessible during transcription. One possibility is that 

sites normally used for DNA template contacts are in use, which would be compatible 

with the observed inhibition of DNA binding. Less intrinsic structure appears to facilitate 

positioning the RNA properly within the polymerase and more effectively block binding 

to DNA.  

This model predicts that pre-formation of a stable open complex between Pol II 

and the DNA template might preclude inhibition by RNA, as long as the RNA was not 

able to invade the complex to displace the DNA or to inhibit some other aspect of 

transcription (e.g., nucleotide acquisition). To test the first prediction, we first pre-bound 

the radiolabeled open DNA to Pol II, and then added increasing levels of RNA. We used 

the pre-tRNA as an example of a structured RNA and the half-tRNA as an unstructured 

RNA. Analysis was done via EMSA as in Figure 4.2. RNAs did not cause displacement 

of Pol II from the open DNA to any observable degree (Figure 4.3A). We further tested 

the ability of RNAs to inhibit an elongation complex. Elongation inhibition assays were 

performed with the more unstructured RNAs, half tRNA and the 250 nt ORF RNA, to 

test optimal inhibitory conditions. In both cases, the RNAs were not able to significantly 

inhibit elongation by Pol II (Figure 4.3B). Taken together, these results show that the 
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RNA needs to pre-bind the polymerase in order to prevent binding of the polymerase to 

DNA. 

In the course of our experiments, we observed that Pol II was able to transfer 

radiolabel to the inhibitory RNAs. Such activity is consistent with the RNA-dependent 

RNA polymerase (RdRP) activity observed for Pol II previously (Johnson and 

Chamberlin, 1994; Lehmann et al., 2007). To test whether Pol II directly labels RNAs in 

this system, the structured and unstructured RNAs were incubated with Pol II and α-32P-

UTP, in the absence of DNA template (Figure 4.4A). All four RNAs were labeled, albeit 

inefficiently. We determined that this labeling was likely not due to self-templating by 

the RNA, since all four α-32P-labeled NTPs can be added to the RNA substrate (Figure 

4.4B), when used alone in the absence of other nucleotides. The assumption that reactions 

were catalyzed by the Pol II active site was confirmed by inhibition at low levels of the 

Pol II-specific inhibitor, α-amanitin (Figure 4.4C). This non-templated addition of 

nucleotides to RNA appears to be highly inefficient, as only ~0.1% of the RNA 

molecules become labeled. Digestion with RNase T1 confirms that the radiolabel is being 

added onto the 3’ end of the RNA (data not shown), consistent with previously observed 

RDRP activity of Pol II. The size heterogeneity of labeled RNA is likely due to 

heterogeneity at the 3’ end of the RNA substrate that results from T7 transcription. 

Assaying for increasing times (2 minutes to 2 hours) shows that the RNA doesn’t 

processively increase in size, though the number of labeled molecules does increase with 

time (Figure 4.4D). We conclude that inhibition of Pol II by RNAs is due to this binding 

near the active site in such a way as to exclude DNA binding and allow at least inefficient 

incorporation of nucleotides into the RNA.  

 

 

Discussion 

 

It has been known for some time now that the presence of a tRNA gene adjacent to a Pol 

II gene in yeast reduces expression of the Pol II gene. Yet the mechanism of this tgm 

silencing of Pol II genes is to date unknown and proceeds by a mechanism distinct from 

other forms of transcriptional silencing in yeast [(Hull et al., 1994; Wang et al., 2005), 
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and reviewed in (Perrod and Gasser, 2003; Rusche et al., 2003)]. The tRNA genes 

causing the silencing require an active tRNA gene transcription complex, including 

condensin (Haeusler et al., 2008; Hull et al., 1994), and all tRNA genes genome-wide 

appear capable of forming such complexes (D'Ambrosio et al., 2008; Haeusler et al., 

2008; Kassavetis et al., 1990; Moqtaderi and Struhl, 2004; Roberts et al., 2003). Thus, the 

hypothesis for this study was that nascent pre-tRNAs might bind to Pol II in the 

immediate vicinity and inhibit transcription. 

The results of this study show that tRNAs do indeed inhibit transcription by Pol 

II, though the inhibition is not specific to tRNA transcripts. Thus, if this process is 

involved in tgm silencing in vivo, interaction of the pre-tRNA with Pol II would likely 

need to be either facilitated by a directed mechanism or due to a very high buildup of the 

local pre-tRNA concentration at the spatially clustered tRNA genes (Bertrand et al., 

1998; Thompson et al., 2003). We had not anticipated that many different RNAs would 

inhibit purified Pol II. There is no stringent sequence requirement for inhibition, since 

poly(U) homopolymers are able to inhibit at least as well as mixed sequence RNAs 

lacking polyU stretches, consistent with RNAs interacting with surfaces of Pol II that 

form non-specific nucleic acid interactions. In addition, the fact that the unstructured 

RNAs that we tested (half-tRNA, ORF RNA, and poly(U) RNA) inhibit much better than 

the more tightly structured RNAs suggests pre-existing tight structure interferes with 

inhibition, rather than fitting into an evolved binding site. Eukaryotes might possess this 

general RNA inhibition property for functional reasons and may have simply evolved 

away from this function. 

The apparent break point between a 25 and 30 nt RNA in the ability to displace 

DNA template (Figure 4.2D) suggests something in this length range is important for 

efficient intrusion into the Pol II structure. This length requirement is significantly longer 

than the 10 nt distance between the active site and the exit tunnel of Pol II. This suggests 

that the RNA might be making contacts in the Pol II that RNAs do not normally make in 

the presence of DNA template. One hypothesis is that the RNA is making contacts in the 

enzyme that normally are in contact with template DNA. This would be consistent with 

the fact that the RNA pre-bound to the Pol II blocks the DNA from binding the enzyme. 

Additional support for this idea comes from the result that pre-bound DNA is unable to 
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be disrupted by RNA (Figure 4.3A), suggesting that the region where the RNA would 

enter or bind Pol II for inhibition is already occupied by the DNA template. 

 Unstructured RNAs prevent the binding of Pol II to DNA more potently than 

structured ones, and in light of the hypothesis that the RNAs are making contacts in the 

enzyme that RNAs normally do not make, one might suspect that greater conformational 

possibilities of the more flexibly structured half-tRNA, ORF RNA, and the poly(U) 

RNAs would help make the required contacts in the enzyme needed for optimal binding. 

The apparent lack of strong sequence dependence is consistent with Pol II not having 

position-specific contacts with the nucleotide bases, but rather binding the sugar-

phosphate backbone as it does with both the DNA template and RNA product during 

transcription. The nucleotide addition activity, though extremely inefficient, suggests the 

3’ end of the RNA is positioned for at least part of the time at the active site of the 

enzyme. 

This phenomenon that RNAs, particularly less structured RNAs, can tightly bind 

and inhibit Pol II poses an interesting set of questions. In retrospect, nuclear processes are 

largely arranged in a way that does not allow substantial concentrations of naked RNAs 

to accumulate in the vicinity of Pol II transcription. Co-transcriptional assembly of pre-

mRNA into ribonucleoprotein complexes has been studied in detail, and the massive 

synthesis of ribosomal RNAs is resolved by not only assembling and processing them co-

transcriptionally, but generally segregating them into specific subnuclear areas, the 

nucleoli. The timing and spatial organization of assembly of the small RNAs into RNPs 

is somewhat less understood. All acquire some number of protein partners early in their 

biosynthesis. In yeast, the most abundant small RNAs made by Pol III, pre-tRNA and 5S 

rRNA, not only bind La and Lsm proteins (Maraia and Intine, 2002; Phizicky and 

Hopper, 2010; Wilusz and Wilusz, 2005), but also have their genes clustered at the 

nucleolus (Bertrand et al., 1998; Thompson et al., 2003; Wang et al., 2005), thus 

sequestering them away from most of the centers of Pol II transcription.  

Overall, this study demonstrates that RNAs can bind to Pol II at or near its active 

site, preventing binding of Pol II to a DNA template. While flexible RNA structure is 

necessary for efficient inhibition, both structured and unstructured RNAs do prevent Pol 

II transcription, suggesting cellular mechanisms to segregate the highly transcribed 
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structured RNAs away from Pol II are likely necessary. In light of the many RNAs that 

have been shown to regulate eukaryotic gene expression, our results are consistent with 

the possibility that transcribed RNAs can be direct trans-acting repressors of 

transcription. 

 

 

Materials and Methods 

 

RNA preparation. Yeast precursor tRNATyr (pre-tRNATyr) (Goodman et al., 1977), a 

half-pre-tRNATyr generated by inserting a poly(T) terminator in the coding sequence of 

pre-tRNATyr just past the anticodon loop (5’-

CUCUCGGUAGCCAAGUUGGUUUAAGGCGCAAGACUGUAAUUUUUUU-3’), 

yeast 5S ribosomal RNA (rRNA), and a 250 nt mixed-sequence RNA from the PHO84 

gene (Chromosome XIII, coordinates to 24237 to 25486) were in vitro transcribed from 

DNA templates using T7 RNA polymerase (Milligan and Uhlenbeck, 1989). 

Radiolabeled pre-tRNATyr was transcribed using T7 RNA polymerase in reactions 

containing 1 µM α-32P-UTP (Milligan and Uhlenbeck, 1989). The RNAs were then 

purified by passive elution from denaturing polyacrylamide gels. Poly(U)50 RNA was 

purchased from Integrated DNA Technology. The smaller sizes of poly(U) RNA were 

generated by alkaline hydrolysis and subsequent purification by passive elution from 

denaturing polyacrylamide gels (Marvin et al., 2011). 

 

Pol II transcription assays. In vitro-transcribed RNAs to be used in Pol II transcription 

inhibitions were serially diluted in water. 300 fmol of purified 12-subunit Pol II (Elmlund 

et al., 2010) were added to desired amount of RNA in 5 µL of transcription buffer (20 

mM Tris pH 8.0, 40 mM KCl, 5 mM MgCl2, and 1 mM DTT). Pol II-RNA complexes 

were allowed to bind for 15 minutes at 30°C. 400 ng of supercoiled plasmid pSUP4o 

(Hull et al., 1994), containing no Pol II promoter sequences, were added to the reaction, 

incubated briefly (2-3 minutes) at 30°C, before nucleotide triphosphates (NTPs) were 

added (ATP, CTP, and GTP at 500 µM final; UTP at 9 µM final; and α-32P-UTP at 1 µM 

final) to a final reaction volume of 10 µL. Transcription by Pol II from non-specific 
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initiation sites was allowed to proceed for 25 minutes at 30°C. Samples were boiled in 

formamide and analyzed on a 10% denaturing gel. The gel was dried and exposed onto a 

Typhoon Trio+ cassette (Molecular Dynamics), and total radioactive signal per lane was 

quantitated with Image J (NIH) and plotted with GraphPad Prism. 

 

Electrophoretic mobility shift assays. For the Pol II-RNA binding assay, amounts of 

Pol II as shown were added to 7 nmol of radiolabeled pre-tRNATyr in EMSA buffer (20 

mM Tris pH 8.0, 10% glycerol, 1 mM DTT, 5 mM MgCl2, 40 mM KCl, and 100 µg/mL 

bovine serum albumin) to a final reaction volume of 10 µL. Pol II-tRNA complexes were 

allowed to bind for 15 minutes at 30°C and then separated on a 5% nondenaturing 

polyacrylamide gel (40:1 acrylamide:bis, supplemented with 5% glycerol and 5 mM 

MgCl2 in Tris-Borate buffer supplemented with 5 mM MgCl2). The gel was dried, 

exposed, and scanned as above. 

 For Pol II-DNA binding inhibition assays, radiolabeled DNA was generated by 

end-labeling DNA oligonucleotide CKO433 (5’-

gggttggcttttcgccGTGTCCCTCTCGATGgctgtaagtaaggctatgg-3’) with γ-32P-ATP. The 

end-labeled oligonucleotide was then annealed to DNA oligonucleotide CKO432 (5’-

ccatagccttacttacagcGTAGCTCTCCCTGTGggcgaaaagccaaccc-3’) by slow cooling from 

65°C to 25°C to generate a “bubbled” DNA fragment (the sequences in capital letters 

denote the mismatched, “bubbled” region) used to create open pre-initiation complexes 

with Pol II. After annealing the two strands, the double stranded DNA was purified away 

from free oligonucleotide by passive elution out of a 6% nondenaturing polyacrylamide 

gel and precipitated. For inhibition assays, Pol II was pre-incubated with RNA for 15 

minutes at 30°C in 5 µL of EMSA buffer. The labeled CKO433-CKO432 open DNA 

complex was then added to Pol II-RNA complexes in a final volume of 10 µL EMSA 

buffer. Complexes were allowed to bind for 15 minutes at 30°C. Formation of Pol II-

DNA complexes was analyzed by EMSA as above. Where pre-binding of Pol II-DNA 

was tested, Pol II was first added to end-labeled DNA, allowed to bind for 15 minutes at 

30°C, and then RNA was added for 15 minutes. Reactions proceeded otherwise the same. 
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Elongation inhibition assays. Transcription on annealed oligonucleotide elongation 

scaffolds was performed basically as described in (Kaplan et al., 2008) with the following 

modifications. Elongation scaffolds were formed using partially mismatched DNA 

oligonucleotides, allowing single-step annealing of template, non-template and 5′-

radiolabeled RNA primer. 2 µM of template DNA (CKO433), non-template DNA 

(CKO432) and nine nucleotide RNA primer (RNA9) in 10 µl in vitro transcription buffer 

(IVT buffer) (5 mM MgCl2, 20 mM Tris-HCl, pH 8.0, 40 mM KCl, 2 mM DTT) were 

annealed by slow cooling from 65°C to 25°C to form elongation scaffolds. 5 µl of 

scaffold were mixed with 5 µl purified Pol II (~ 2 µM) (Kaplan et al., 2008) and 

incubated for 5 minutes at room temperature. Complexes were diluted 20-fold in IVT 

buffer and aliquoted for addition of NTPs with or without inhibitory RNAs. Productive 

scaffolds were advanced one nucleotide by the addition of 10 µM GTP (in IVT buffer) to 

a final concentration of 1 µM for 5 minutes at room temperature. Run-off transcription 

was initiated by the addition of 10 µM of all four NTPs with or without differing 

concentrations of inhibitory RNA species. Aliquots of each reaction at time points from 

10 seconds to 5 minutes were quenched and analyzed by polyacrylamide gel 

electrophoresis as previously described (Kaplan et al., 2008). 

 

Non-templated labeling of RNAs by Pol II. 0.5 µg of Pol II was pre-incubated with 1 

µg of desired RNA for 15 minutes at 30°C in 5 µL of transcription buffer. α-32P-UTP was 

added in to 1 µM in a final volume of 10 µL of transcription buffer, and the reaction was 

allowed to proceed for 30 minutes at 30°C. Reactions were then run out on a 10% 

denaturing gel. The gel was dried, exposed, and scanned as above. RNA labeling 

efficiency was estimated by measuring α-32P incorporation into otherwise unlabeled 

RNA. For treatment with α-amanitin, the inhibitor was added to a 50 ng/µL final 

concentration and allowed to bind for 5 minutes prior to adding RNA. 
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Figure 4.1. Pre-incubation of Pol II with RNAs inhibits transcript formation. A. Inhibition 

of Pol II transcription by pre-tRNATyr. Serially diluted pre-tRNATyr was incubated with 

constant amount of Pol II for 15 min at 30°C. The Pol II-RNA complex was then 

incubated with pSUP4o plasmid template, and then added to NTPs. Reactions proceeded 

for 25 mins, then boiled in formamide and loaded onto a 10% denaturing gel. B. The 

reaction in panel A was repeated in triplicate for four different RNAs. Total radioactive 

signal per lane was quantitated and plotted.  
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Figure 4.2. RNAs bind directly to Pol II and prevent the binding of Pol II to an open 

DNA complex. A. Binding of Pol II to a pre-tRNATyr transcript. Constant amount of α-
32P pre-tRNATyr was incubated with titrated amounts of purified yeast Pol II for 15 

minutes and separated on a 5% native polyacrylamide gel. B. Inhibition by RNA of Pol 

II-DNA complex formation. tRNATyr was serially diluted and incubated with constant 

amount of Pol II for 15 min at 30°C. The Pol II-RNA complexes were then incubated 

with the CKO432-CKO433 pre-formed open DNA complex for 15 minutes to a final 

volume of 10 µL. Complexes were separated on a 5% native gel. Pol II-DNA band 

separated from free DNA. The reaction in Panel B was repeated in triplicate for four 

different RNAs. Total radioactive signal per lane was quantitated and plotted. D. 

Inhibition of Pol II by RNA is not sequence-specific but is size-dependent. Varying 

lengths of poly(U) RNA were incubated with Pol II for 15 minutes at 30°C. The Pol II-

RNA complex was then incubated with radiolabeled CKO432-CKO433 open DNA for 

15 minutes, and complexes were separated on a 5% native gel. Shifted bands were 

quantitated relative to total signal, in triplicate for each RNA.  
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Figure 4.3. Pre-formed Pol II-DNA open complexes and pre-formed elongation scaffolds 

are not disrupted by RNAs. A. Pol II is first incubated with the radiolabeled open DNA 

template for 15 minutes at 30°C. Serial dilutions of RNA are then added into the complex 

and incubated for 15 minutes at 30°C. Complexes are separated on a 5% native gel. 

Increasing RNA does not displace Pol II off the DNA. B. Template oligonucleotide 

DNA, RNA primer and partially mismatched non-template DNA were annealed to form 

oligonucleotide elongation scaffolds. Purified Pol II was pre-bound to the scaffold, and 

active elongation complexes were advanced from nine nucleotides to ten by the addition 

of GTP (1 µM). Complexes were then allowed to transcribe to the end of the template by 

the addition of all four NTPs (10 µM each) in the presence or absence of different 

concentrations of RNA (half tRNA, top; 250 nt ORF RNA, bottom). 
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Figure 4.4. Template-independent labeling of RNAs by Pol II. A. Pol II was incubated for 

15 minutes at 30°C with 1 µg each of pre-tRNATyr, half tRNATyr, 5S rRNA, and the 250 

nt ORF RNA. α-32P-UTP was added to the Pol II-RNA complexes, with no DNA present 

in the reactions, and reactions proceeded for 30 minutes at 30°C. Samples were analyzed 

on a 10% denaturing gel. All RNAs tested get radiolabel added in the absence of template 

DNA. B. All 4 α-32P-labeled NTPs add label on to the RNAs (labeled 5S rRNA shown 

here). C. Treatment with the Pol II-specific inhibitor α-amanitin prior to addition of RNA 

abolishes this labeling activity (5S rRNA shown here). D. Time course of Pol II labeling 

5S rRNA. Labeling reactions were stopped at the times indicated by heating samples to 

95°C for 5 minutes. More label is added with time, but the labeled species do not get 

larger with time. 
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Chapter V 

 

Conclusions and Future Directions 

 

It has been fifty years since Jacob and Monot described operons in E. coli. Much has 

since been revealed about genomic organization, yet the study of how eukaryotic 

genomes are packaged and arranged in three dimensions is still a relatively new field. 

The work presented here addressed several questions concerning the spatial organization 

of tRNA genes in yeast. The results of this study continue our understanding of how this 

large family of co-regulated genes is organized and how this organization is coordinated 

with function. Still, the findings presented here, while answering some questions, leave 

many others unanswered and raise some interesting new ones. 

We have known for nearly a decade that tRNA genes in yeast cluster and co-

localize to the nucleolus. This phenomenon was shown at the time by designing 

oligonucleotide probes to tRNA genes that are present in multiple copies and visualizing 

clusters of these families. Interactions between the individual tRNA genes, and 

interactions between a single tRNA gene and the rDNA repeats, were at the time not 

discernible due to the low resolution of microscopy and the small size of yeast nuclei. In 

Chapter II we employed newer technologies to investigate the interaction of individual 

tRNA genes. Since all tRNA genes bind to the same protein complexes (TFIIIC, TFIIIB, 

and condensin), it was compelling to think that the identity of the tRNA gene would not 

matter in its positioning at the rDNA repeats. However, results of this work indicate 

otherwise, that the identity of the gene does indeed affect binding partner selection. In 

particular, it affects where exactly along the rDNA repeats the interaction occurs, but also 

appears to strongly affect many non-tRNA gene binding partners of tRNA genes (e.g., 

SRB2 and MED6). This confers a level of complexity to organization of tRNA genes 

previously unsuspected.  
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However, contrary to the idea that tRNA genes might be global drivers of genome 

organization, our results indicate that deletion of a tRNA gene does not specifically 

dissociate the genomic locus away from its site. This result does not necessarily mean 

that tRNA genes are not strong localization signals to the nucleolus, because it is possible 

that other signals are stronger in retaining the locus there. One way to test the relative 

strength or importance of tRNA gene localization signals would be to place adjacent to a 

tRNA gene a known strong localization signal, for example, one of the “DNA zip codes” 

that direct regions of the genome to the nuclear pore complex (see Chapter I). These 

localization signals can be activated under nutrient conditions and, provided that signal is 

stronger than the imperative for tRNA genes to remain associated, the hypothesis is that 

the tRNA gene adjacent to the signal would now get localized to the nuclear pore rather 

than remaining at the nucleolus.  

The GCC and/or 4C experiments can also be repeated in strains with condensin 

mutations, since it has been shown in both budding yeast and in fission yeast that 

condensin mutants have defects in tRNA gene organization. While the results of this 

experiment would mostly be simple confirmation of the microscopy showing dissociation 

of tRNA gene clusters in condensin mutants (Haeusler et al., 2008), it might reveal 

unexpected tRNA gene localization patterns in the absence of a proper mechanism for 

compaction. The microscopy shows that the clusters disperse, but the limits of the 

microscopy prevent visualizing the dispersal pattern of the tRNA genes. The temperature-

sensitive mutants of condensin used in microscopy were viable at permissive 

temperatures, suggesting that nucleolar localization of tRNA genes is not essential for 

growth. As discussed in Chapter II, it likely provides for efficiency in transcription and 

processing of tRNAs to co-localize them, along with potential co-regulation with Pol I 

transcription of the 35S rRNA, even if these functions are not essential. 

The experiments in Chapter III demonstrate an aspect of the mechanism of tRNA 

gene organization that had not previously been tested, that the Pol III transcription factor 

TFIIIC provides the specificity needed for condensin to recognize a tRNA gene. Very 

little is still known about the structure and mechanism of the condensin complex. The 

Smc2/4 coiled-coil heterodimer of condensin has been shown to indiscriminately coat 

DNA (Stray et al., 2005); in our system, aggregation of DNA by purified condensin was 
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observed in the absence of TFIIIC bound to a tRNA gene. Therefore, condensin appears 

to be able to bind DNA nonspecifically, unless specificity is provided. In the course of 

the experiments determining TFIIIC-mediated condensin binding, we consistently 

noticed incomplete occupancy of condensin on a TFIIIC-tRNA gene complex (Figure 

3.1). It is possible that simply the conditions of the electrophoresis destabilize this large 

complex (over 1 megadalton in total size) to such an extent that only a small amount of 

the condensin remains bound to the DNA. However, it is also possible that binding of 

condensin to the TFIIIC-tRNA gene is inefficient in our in vitro system without other 

cellular factors. It has been shown that the cohesin loader Scc2/4 co-localizes with 

condensin binding in vivo (D'Ambrosio et al., 2008). One could investigate whether the 

cohesin loader is additionally needed for efficient loading of condensin onto the tRNA 

gene complex by repeating our experiments with purified or partially purified Scc2/4. 

Direct visualization of tRNA gene-condensin complexes would greatly advance 

our understanding of the mechanism of tRNA gene clustering and of general condensin 

function. Although electron microscopy experiments so far have been unsuccessful at 

visualizing condensin complexes on DNA with TFIIIC, were this protocol to be 

optimized, there are additional experiments to perform in order to understand the 

mechanism of how condensin brings two pieces of DNA together. Ideally one would like 

to be able to visualize condensins bound to two regions of DNA and bringing them 

together. One way to do this would be to design a DNA fragment containing two tRNA 

genes, with sufficient length of DNA between them so that one could observe whether 

intramolecular looping can be caused by condensin-condensin interaction, or whether 

additional components would be necessary to mimic tRNA gene “clustering” in the 

reconstituted system. We also do not know whether condensin binding to a tRNA gene 

complex is directional. The looping experiment would be done with the tRNA genes 

either in the same or in opposite orientation to see whether that affects condensin binding 

and/or condensin-condensin interactions. 

While TFIIIC is the recognition factor for condensin, in vivo interaction data 

indicate that a complex consisting of TFIIIC, TFIIIB, and condensin associates together 

at tRNA genes, and remains intact even when the associated DNA is digested (Haeusler 

et al., 2008). While initiation of Pol III transcription is dependent simply on the proper 
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loading of TFIIIC and TFIIIB, it is becoming clear that the presence of other protein 

complexes is important for other cellular imperatives, such as maintaining genome 

structure. Additionally, the finding of proteins other than Pol III transcription factors at 

tRNA genes, such as condensin and Ctf18 (see Appendix A), suggests other proteins yet 

to be identified may also be at tRNA genes. A technique called proteomics of isolated 

chromatin segments (PICh) has been developed to allow one to purify proteins from 

genomic regions of interest and then to identify these proteins by mass spectrometry 

(Dejardin and Kingston, 2009). Although it would not be possible to isolate individual 

tRNA genes due to their repetitive nature, because the technique employs hybridization 

of oligonucleotide probes of 20-25 nt, this is of sufficient length to capture families of 

tRNA genes. Using this technique, one could rather readily identify any other protein 

complexes associated with tRNA genes. 

Assembled Pol III transcription factors and nucleolar localization of tRNA genes 

are required for silencing of Pol II genes adjacent to tRNA genes (tgm silencing). The 

work in Chapter IV initially started as an investigation of the tgm silencing phenomenon, 

with the hypothesis that the nascent pre-tRNA transcripts inhibit nearby Pol II. The idea 

was that there is something intrinsic about the structure of the tRNA that allows it to 

specifically recognize Pol II, bind to it, and prevent transcription. This would have been 

consistent with data that certain mammalian SINE RNAs directly bind to and inhibit Pol 

II (mouse B2 RNA, e.g.), but other SINE RNAs are incapable of this activity (mouse B1 

RNA) (Mariner et al., 2008). Contrary to this hypothesis, though, the results presented in 

Chapter IV indicate that not only is the binding and inhibition not specific to tRNAs, but 

that the tight structure of tRNAs actually makes them less potent inhibitors than fully 

unstructured RNAs. This does not rule out local Pol II inhibition by pre-tRNA transcripts, 

particularly because the nucleolar clustering of tRNA genes required for tgm silencing 

(Wang et al., 2005) would provide locally high concentration of nascent pre-tRNA 

transcripts needed for strong silencing of Pol II at the nucleolus. Pre-tRNAs might 

additionally possess a means of mediating its direct interaction with Pol II that is not 

available to other RNAs in the nucleus. The tRNA modifiying enzyme Mod5 has been 

shown to interact in vivo with the tRNA gene complex, and deletions of MOD5 alleviate 

tgm silencing (M. Pratt-Hyatt, unpublished data). While the role of Mod5 in the cytosol is 
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understood, the function of Mod5 at tRNA genes is unclear; it could bind to nascent 

transcripts and chaperone them to Pol II. In vitro binding assays to determine the ability 

of tRNA to directly bind Mod5 will be needed to address this question. Were Mod5 

shown to not possess this ability, the PICh experiments proposed above might reveal 

additional tRNA binding proteins that are present at the site of transcription. 

Inhibition of Pol II is dependent upon the RNA being able to gain access to the 

enzyme prior to template engagement, consistent with the mechanism of 6S RNA 

inhibiting bacterial RNA polymerase by preventing template binding (Wassarman and 

Saecker, 2006). In contrast to that study, in our Pol II inhibition experiments, the least 

structured RNAs that we tested were the best inhibitors, suggesting that rather than 

needing an evolved inhibitory structure, “floppiness” of RNAs might facilitate the 

contacts in the polymerase required for inhibition of template. Based upon this reasoning, 

our data suggest that multiple contacts are being made between the RNA and the 

polymerase. To test this further, one could crosslink either chemically or using ultraviolet 

light a pre-bound Pol II-RNA complex and then identify the contact positions on the 

RNA by primer extension.  

The finding that RNAs can directly inhibit polymerase defines an interesting 

problem for cells: how to eliminate the possibility of nascent transcripts binding either to 

a nearby polymerase, or perhaps even binding to the very polymerase that is synthesizing 

it, once the template is released. Pol II-transcribed mRNA is co-transcriptionally 

packaged into ribonucleoprotein complexes, thus providing a way to prevent Pol II from 

being inhibited by its own transcripts. Furthermore, spatial organization of tRNA genes at 

the nucleolus would serve to keep centers of Pol II transcription away from the high 

levels of synthesis both of tRNA genes and of rRNA genes. In this way, clustering of 

tRNA genes would not only confer the benefit of coordination of their own transcription 

and processing, but also would benefit Pol II genes by sequestering naked transcripts 

away from those sites. 

The goal of this work was to examine the mechanism and consequences of spatial 

organization of tRNA genes in yeast. We have shown that the identity of tRNA genes 

matters in binding partner selection but that other nuclear signals seem to be stronger than 

tRNA gene localization in driving overall genome arrangement. In addition, we have 
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shown that these gene interactions are specified by condensin recognizing TFIIIC bound 

to the tRNA gene. Finally, we have shown that RNAs directly inhibit Pol II transcription, 

consistent with clustering of tRNA genes at the nucleolus segregating these highly 

transcribed RNAs away from Pol II genes. 
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Appendix A 

 

Genes tested for alleviation of tgm silencing 

 

Rationale 

 

tRNA gene-mediated (tgm) silencing occurs when expression of a Pol II gene next to a 

tRNA gene is silenced. Many genes have been previously tested for the ability to 

alleviate tgm silencing when the gene is either deleted or, for essential genes, replaced 

with a conditional mutation. In this work a number of previously untested genes were 

tested for alleviation of tgm silencing, using either a deletion strain or a temperature-

sensitive mutant strain. In the case of one result (CTF18), a positive result in this assay 

was used to do further studies (see Appendix B). 

 

Results 

 

This table shows results of the tgm silencing screen for a number of yeast genes: 

Gene Allele 
tested Gene product description Alleviates tgm 

silencing? 
SMC1 smc1-3 Essential subunit of the cohesin complex no 
SMC3 smc3-2 Essential subunit of the cohesin complex no 
MCD1 mcd1-1 Essential subunit of the cohesin complex no 
PDS5 pds5-3 Co-localizes with the cohesin complex no 
SMC5 smc5-6 Essential subunit of the Smc5/6 complex no 
SMC6 smc6-9 Essential subunit of the Smc5/6 complex no 

CTF4 ctf4Δ Chromatin-associated protein required for sister 
chromatid cohesion no 

CTF18 ctf18Δ Subunit of the Ctf18-Replication Factor C (RFC) 
complex yes 

CTF8 ctf8Δ Subunit of the Ctf18-RFC complex no 
DCC1 dcc1Δ Subunit of the Ctf18-RFC complex yes (weak) 
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RAD24 rad24Δ 
Subunit of the Rad24-RFC clamp loader 
complex, may have redundant function with 
Ctf18-RFC 

no 

ELG1 elg1Δ Subunit of the alternative Elg1-RFC complex no 

TOF2 tof2Δ 
Required for rDNA silencing and mitotic rDNA 
condensation. Rationale for testing, along with 
next two, is from (Johzuka and Horiuchi, 2009) 

no 

CSM1 csm1Δ Nucleolar protein required for condensin 
recruitment to replication fork barrier site no 

LRS4 lrs4Δ Forms complex with Csm1 no 

ULS1 uls1Δ Involved in sumoylation; antagonizes silencing 
during mating-type switching yes 

 

 

Materials and Methods 

 

Yeast strains. The smc1-3 and smc3-2 alleles were provided by Rohinton Kamakaka of 

University of California Santa Cruz; mcd1-1 and pds5-3 alleles were provided by Doug 

Koshland of University of California Berkeley; smc5-6 and smc6-9 alleles were provided 

by Luis Aragon of the Medical Research Council (UK); all deletion strains come from the 

yeast deletion library (Open Biosystems). 

 

tgm silencing assay. Plasmid reporter assays to test for tgm silencing are as described 

(Hull et al., 1994; Wang et al., 2005). 
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Appendix B 

 

Ctf18 is present at tRNA genes 

 

Rationale 

 

Ctf18 is a subunit (along with Ctf8 and Dcc1) of the Ctf18-Replication factor complex 

(Ctf18-RFC), one of three alternate clamp loaders that load proliferating cell nuclear 

antigen onto unwinding DNA during replication (Rad24-RFC and Elg1-RFC being the 

other two). Defects in Ctf18 function have numerous defects in genome stability, 

particularly in the DNA replication checkpoint. In budding yeast tRNA genes have been 

demonstrated to transiently pause replication forks. Therefore, we hypothesized that 

certain protein complexes involved in replication, particularly those involved in the early 

stages, may be present at tRNA genes. Based on results of tgm silencing screen (see 

Appendix A), where ctf18Δ strongly alleviated silencing, and dcc1Δ weakly alleviated 

silencing, we decided to test for the presence of Ctf18 at tRNA genes. 

 

 

Results 

 

To test whether Ctf18 is preferentially bound to tRNA genes, we performed chromatin 

immunoprecipitations with myc-tagged Ctf18. Ctf18-associated chromatin was used in 

semi-quantitative PCRs to detect the presence of several tRNA genes relative to a non-

tRNA gene control (Figure B.1). Results indicate four-fold enrichment of the tRNAPhe 

gene tF(GAA), and slightly lower yet still significant levels of enrichment of the tRNAIle 

gene tI(AUU) and the tRNAGln gene tQ(UUG).  

Condensin was shown to both bind to tRNA genes by ChIP and to associate with 

TFIIIC and TFIIIB by co-IP. We therefore performed co-IP experiments to determine 



102 
 

association of Ctf18 with TFIIIC, TFIIIB, and condensin. Myc-tagged Ctf18 was 

immunoprecipitated from cell extracts and blotted to detect the presence of the TAP tag 

on Tfc1, Brf1, or Smc4, respectively. Tfc1 and Brf1 both associate with Ctf18, yet 

curiously we did not see association with Smc4 (Figure B.2). It is possible that while both 

Ctf18 and condensin associate with TFIIIC and TFIIIB, they associate in different places 

so that they do not associate with each other. An alternative hypothesis is that they both 

transiently associate and so their association with each other is at too low of a level to be 

detected. Further work is necessary to investigate these interactions. 

 

 
 

 

Materials and Methods 

 

Yeast strains. S. cerevisiae strain yDP120 was derived from BY4741 (MATa his3Δ1 

leu2Δ0 met15Δ0 ura3Δ0). PCR fragments generated from plasmid template (Knop et al., 

1999) contained 18 tandemly repeated copies of the myc gene (18x myc) fused to a LEU 

selection marker. PCR fragments were recombined exactly at the 3’ end of the CTF18 

coding sequence, eliminating the stop codon to allow the 18x myc gene to be expressed 

from the promoter of CTF18. Transformants were selected on medium lacking leucine, 
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and presence of the myc tag was verified by PCR and sequencing to check for proper 

integration and by Western Blot to check for expression of the tagged protein. 

 Strains yDP126, yDP128, and yDP130 were derived from TFC1-TAP, BRF1-

TAP, and SMC4-TAP, respectively (Open Biosystems). CTF18 was tagged in these 

strains exactly as above with the 18x myc gene.  

 

Chromatin immunoprecipitation assay (ChIP). Cell prep was done essentially as 

described (Ren et al., 2000) with the following modifications. 100 mL of yDP120 were 

grown in YPD with 2% glucose to mid-logarithmic phase at 30°C. Cells were crosslinked 

by adding paraformaldehyde (Electron Microscopy Sciences) to 1% final for 30 minutes 

at 25°C and then quenched in 125 mM glycine for 10 minutes at 25°C. Glass bead lysis 

was done for 4 minutes in a FastPrep 24 (MP Biomedicals). After separating cell 

suspension away from the glass beads, sonication was done with a Branson Sonifier 250, 

10 times for 10 seconds each at Hold and Constant power setting, yielding 30% output; 

this allowed DNA to be sheared to an average size of 700 bp, the majority of it being no 

greater than 1200 bp. Samples were centrifuged and the supernatant was added to 

Magnabind Protein A magnetic beads (Thermo Scientific) that had been pre-incubated 

overnight with myc antibody (1 µg total antibody added per immunoprecipitation; 9E10, 

Santa Cruz). Complexes were allowed to bind for four hours. Samples were washed as 

described and eluted in elution buffer for 15 mins at 65°C with frequent mixing. 

Crosslinks were reversed overnight at 65°C, and samples were purified and precipitated 

as described and resuspended in 100 µL water. 1 uL of this was used per PCR reaction. 

Semi-quantitative PCR analysis was done in 50 µL volumes with the following 

tRNA gene-specific primers: for the tRNAGln gene tQ(UUG), 5’-

GTGGTTATCACTTTCGGTTTTGATCC-3’ and 5’-

GAAAGCGGGTGTTTCTCCAATAAAT-3’; for the tRNAIle gene tI(AUU), 5’-

GCGCTTCCACCACTTAGTATGATTC-3’ and 5’-

TTATTAGCACGGTGCCTTAACCAACT-3’; and for the tRNAPhe gene tF(GAA) as 

described (Haeusler et al., 2008). To the TRA1 gene, the primers 5’-

CCAATTTTTGATAAGCCACCCTAG-3’ and 5’-

CGTAATTTCTAAGGTCTTGTTCTCCCA-3’ were positioned at least 5 kb away from 
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any promoter region, repetitive sequence, or autonomous replicating sequence. PCR 

conditions were as described (Haeusler et al., 2008) for the indicated number of cycles. 

 

Co-immunoprecipitation assay (co-IP). 50 mL each of yDP126, yDP128, and yDP130 

were grown in YPD with 2% glucose to mid-logarithmic phase at 30°C (without 

crosslinking). Extract prep and immunoprecipitation were done as for the ChIP assay. 

Beads were washed four times in ChIP lysis buffer and once in TE, and eluted in ChIP 

elution buffer as above. Eluted samples were assayed by Western blot to detect presence 

of either the myc tag (1:400 dilution of the 9E10 antibody) or of the TAP tag (1:2000 

dilution of TAP antibody; A00683, GenScript). 
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Appendix C 

 

Smc5/6 does not associate strongly with condensin in vivo 

 

Rationale 

 

The three members of the structural maintenance of chromosomes (SMC) family of 

protein complexes (condensin, cohesin, and Smc5/6) are evolutionarily conserved 

throughout eukaryotes. The condensin complex is responsible, outside of its well-studied 

roles in mitosis and meiosis, for maintaining proper compaction of the tandemly repeated 

ribosomal DNA (rDNA) cluster during interphase. Similarly, it has also been shown that 

the Smc5/6 complex is required for maintaining rDNA integrity during interphase. Since 

condensin and Smc5/6 are both present at the rDNA locus, we hypothesized that the 

Smc5/6 complex might be present along with condensin at or near tRNA genes as well. 

 

 

Results 

 

To test for the presence of the Smc5/6 complex at tRNA gene transcription complexes, 

we performed co-IP assays to condensin. Myc-tagged Smc5 was immunoprecipitated 

from cell extracts and blotted to detect the presence of the TAP tag on Smc4 (Figure C.1). 

There is no clear association between Smc5 and Smc4 (the faint band seen in the elution 

lane is likely due to spill-over from the neighboring well; this is confirmed by the results 

of Figure C.2). This experiment was repeated by crosslinking growing cells before extract 

preparation, in order to stabilize potentially low-level interactions; no association was 

seen under crosslinked conditions either (Figure C.2). This does not, however, preclude 

the possibility that Smc5/6 is present at tRNA genes, since Ctf18 associated with TFIIIC 
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and TFIIIB but not with condensin. Co-IP assays between Smc5/6 and both TFIIIC and 

TFIIIB should be performed to verify these results. 

 

 
 

Materials and Methods 

 

Yeast strains. The S. cerevisiae strain yDP57 was derived from the SMC4-TAP strain 

(Open Biosystems). PCR fragments generated from a plasmid template (Longtine et al., 

1998) contained 13 tandemly repeated copies of the myc gene (13x myc) fused to the 

kanMX6 expression cassette. PCR fragments were recombined exactly at the 3’ end of the 

coding sequence of SMC4, removing the stop codon, so the 13x myc gene is expressed 

from the promoter of SMC4. Transformation and screening of transformants were 

performed essentially as in Appendix B except selection was done on medium containing 

G418. 

 

Co-immunoprecipitation assay. 50 mL of yDP57 were grown in YPD with 2% glucose 

to mid-logarithmic phase. Where crosslinking was tested, it was done as for the ChIP 

assay in Appendix B. Cells were harvested and samples were immunoprecipitated with 

the myc antibody as in Appendix B. Where DNase treatment was tested, extracts were 

treated with 50 units of DNase I (Sigma-Aldrich) for 30 minutes at 4°C prior to IP. 

Samples were assayed by Western blot to detect presence of the TAP tag (1:2000 dilution 

of TAP antibody; A00683, GenScript).  
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Appendix D 

 

RNase P is not directly bound to tRNA genes 

 

Rationale 

 

Ribonuclease P (RNase P) is a multi-subunit ribozyme that catalyzes the cleavage of the 

5’ leader sequence of precursor tRNAs. This activity is thought to occur either co-

transcriptionally or very soon after transcription, and the enzyme has been localized in 

vivo to the nucleolus coincident with the clusters of tRNA genes. Co-localization of the 

enzyme at the site of transcription allows for efficiency in the process, since all tRNA 

genes are transcribed with a 5’ leader that needs to be cleaved. Direct physical 

association of the enzyme to the site of transcription could help in this spatial 

coordination. Therefore, it was hypothesized that RNase P might be bound directly at or 

near tRNA genes in order to facilitate efficient activity. 

 

 

Results 

 

We performed ChIP assays to determine association of Pk-tagged Rpr2 (the only unique 

subunit of RNase P that is not also shared with the mitochondrial RNase MRP). Rpr2-

associated chromatin was used in semi-quantitative PCRs to detect the presence of 

several tRNA genes relative to a non-tRNA gene control (Figure D). While the 

experiments were not repeated to give quantitative data, initial results do not show 

enrichment of Rpr2 at tRNA genes above the control (1.4-fold enrichment maximum 

with the tRNAIle gene). These experiments were also repeated by performing the 

immunoprecipitations using streptavidin binding to the S1 RNA aptamer tag to RPR1, the 
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RNA subunit of RNase P; no enrichment of the two tRNA genes tested was detected with 

the RPR1 IPs either. We conclude that RNase P is not strongly bound to tRNA genes. 

 

 
 

 

Materials and Methods 

 

Yeast strains. RPR2-9Pk strain was derived from W303-1a (leu2-3,112 trp1-1 can1-100 

ura3-1 ade2-1 his3-11,15). PCR fragments generated from plasmid template (Knop et al., 

1999 ) contained 9 copies of the tandemly repeated Pk tag derived from the 

paramyxovirus Simian Virus 5 (Southern et al., 1991) conjugated to a TRP selection 

marker. Transformation and screening of transformants were performed essentially as in 

Appendix B except they were selected on medium lacking tryptophan. The RPR1-S1 

strain is as described (Srisawat and Engelke, 2001). 

 

ChIP Assay. ChIP assays were performed with the Pk tag essentially as in Appendix B. 5 

µg of the Pk antibody (abcam) were added per immunoprecipitation. For the S1 tag, 

streptavidin-conjugated beads were pre-blocked with egg white avidin to remove 

nonspecific binding, incubated with extract and washed as above, and eluted with 5 mM 

biotin as described (Srisawat and Engelke, 2001). For the PCRs, the same primers to the 

tRNA genes were used as in Appendix B, but for the baseline control, primers were 

designed to the ATG22 gene (Haeusler et al., 2008), positioned at least 2 kb away from 

any tRNA genes or other repetitive sequences. 
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