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CHAPTER I

Introduction

In models of water waves, it is often sensible to seek solutions on an unbounded

domain. For example, when modeling flow around a vessel on an open sea, effects

from the distant ocean bottom or shorelines are negligible compared to the surface

wave-body interactions. In order to generate computer simulations of such models,

the finiteness of computer memory demands that the domain must first be truncated

to finite size. This is done by introducing an artificial boundary at an arbitrary

distance from the region of interest, ideally not too far away in order to minimize

computational costs.

To complete the description of the computational problem, boundary conditions

need to be prescribed on the artificial boundary. To effectively model the unbounded

domain, the boundary conditions should make the artificial boundary invisible to out-

going waves, so that waves leaving the computational domain act as if the boundary

did not exist at all. This type of boundary condition is often referred to in the

literature as an ”absorbing” or ”non-reflecting” boundary condition, and they are

non-trivial to formulate. Deriving and implementing such a boundary condition for

the Water Wave Equation (WWE), which describes linearized two-dimensional in-

compressible, irrotational, inviscid free surface flow in deep water, is the focus of this

1
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work.

1.1 Artificial Boundary Conditions

What follows is a brief review of commonly used artificial boundary conditions

(ABCs) for free surface flow problems. These ABCs fall into one of several categories,

and in numerical computations it is common to use combinations of techniques from

several categories in order to combine the strengths of the individual techniques. The

categories are the so-called absorbing beach, the Sommerfeld radiation condition, and

approximations to exact absorbing boundary conditions.

1.1.1 Sommerfeld radiation condition

In the free surface flow literature, Sommerfeld’s radiation condition [46] is imple-

mented by requiring

∂φ

∂t
+ C

∂φ

∂x
= 0(1.1)

where C is the wave velocity. A major problem with its use is that the phase

velocity C is typically not known a priori, and if it is set incorrectly noise may be

generated near the boundary that will corrupt the interior solution [29]. Before the

paper of Orlanski [38], C was estimated by setting it to the (constant) value given

by the maximum numerical phase velocity, ∆x
∆t

[30], setting it to ±
√
gh for shallow

water problems with depth h [19], or estimated for the dominant wave using the

linearized dispersion relation [42]. Orlanski improved these techniques by using a

time-dependent approach, in which C is estimated numerically near the boundary

at each timestep and equation (1.1) is imposed using the estimated value. This

technique is widely used for 2D free surface flow problems, but it assumes that the

wave speed may be well approximated using only the local gradients.
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1.1.2 Absorbing Beach

The absorbing beach is a layer near the boundary in which some mechanism is

provided to damp the outgoing waves before they reach the limits of the computa-

tional domain, ideally with no reflection. There are several different techniques in use

to damp outgoing waves, and we describe some of these strategies. One technique is

to add terms directly to the PDE. For example, we may modify the one dimensional

scalar wave equation (given in system form)

ut = wx + µ(x)uxx − ν(x)u(1.2)

wt = ux(1.3)

by adding a ”viscous” term with coefficient µ and a ”friction” term with coefficient

ν [28], either of which may be zero. The coefficients µ and ν are allowed to vary

over space, so that the damping effects may be ramped up over the absorbing beach.

Indeed, it is preferable to slowly turn on damping to minimize reflections - [12] dis-

cusses the relationship between effectiveness of the numerical beach and smoothness

of the transition from undamped region to damped region. In [28], Israeli and Orszag

also selectively apply the damping to waves traveling into the computational domain

from the artificial boundary by solving

utt = uxx − ν(x)

(
∂

∂t
+

∂

∂x

)
u

with ν(x) > 0. For free surface flow problems, the damping idea from [28] is often

implemented by adding dissipative terms to the free surface kinematic or dynamic

boundary conditions (or both) [3, 5, 12].

Another method for damping waves in free surface flow is to add a pressure dis-

turbance at the surface, which creates a negative work against incident waves [22].



4

Figure 1.1: Clement’s computational domain for piston-like absorbing boundaries [12]

Finally, one may implement what is called a ”piston-like” absorbing boundary, which

replaces the local Neumann derivative in the Sommerfield radiation condition (1.1)

with [12]

∂φ

∂x
=

∫
P(t)

(
−∂φ
∂t

)
dl(1.4)

where the integral is over the line P that makes up the piston, as shown in figure

1.1. That is, the local Sommerfeld radiation condition is replaced by condition (1.4),

which is non-local in the vertical spatial variable.

As a general rule, when using an absorbing beach, the beach length should be on

the order of one wavelength [28], so that longer waves require a longer beach. Even

in this case, reflections are expected; for the simple model in equations (1.2)-(1.3),

setting ν = 0 and µ = constant in a damping layer, the layer must be 15 wavelengths

long to get less than 1% reflection. Also, the piston-like absorbing boundary (1.4) is

very effective for low frequencies, but as the frequency of outgoing waves increases,

so does the magnitude of the reflection coefficient [12].

1.1.3 Exact Absorbing Boundary Conditions

For the wave equation, exact non-local boundary conditions were derived in the

1977 paper by Engquist and Majda [16]. The authors consider the two-dimensional
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scalar wave equation

utt = uxx + uyy

in the half plane x ≤ 0. This equation has solutions of the form u = ei(ξx+ηy+ωt).

Without loss of generality let ω > 0 only. For solutions of this type, the dispersion

relation is given by

ω2 = ξ2 + η2

The surfaces of constant phase are the lines ωt+ ξx+ ηy = constant, and therefore

the direction of propagation of the wave is given by (−ξ,−η). The goal is to find

a boundary condition on x = 0 that eliminates incoming waves, i.e. waves with

direction of propagation in the negative x direction, or plane waves with ξ > 0. If

we assume that ω2 − η2 > 0, then we can derive the one-way dispersion relations:

ξ =
√
ω2 − η2(1.5)

which is satisfied by incoming waves, and

ξ = −
√
ω2 − η2(1.6)

which is satisfied by outgoing waves.

Taking the Fourier transform of the wave equation with respect to y and t, we

find

d2û

dx2
= (η2 − ω2)û = −ξ2û

Two linearly independent solutions of this ODE are û1 = C1(y, t)e−i|ξ|x and û2 =

C2(y, t)ei|ξ|x. Since, from equations (1.5)-(1.6), we know that |ξ| =
√
ω2 − η2, once

we take the inverse Fourier transforms we see that the û2 solution corresponds to

incoming waves and is the solution we wish to annihilate at x = 0. In other words, we
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would like for the vector (û(x), dû
dx

)T to be parallel at x = 0 to the vector (û1(x), dû1
dx

)T ,

or (
dû

dx
+ i
√
ω2 − η2û

)
|x=0 = 0(1.7)

This gives a local condition in the transformed space, but as we will see, a non-local

condition in physical space. If we take the PDE

dû

dx
+ i
√
ω2 − η2û = 0

and transform it back into physical space, we get a formula for a more general u

which is a superposition of left-going plane waves

u(x, y, t) =

∫ ∫
ei(
√
ω2−η2x+ηy+ωt)ρ(η, ω)û(0, η, ω)dηdω.(1.8)

Here û(0, η, ω) is a special amplitude function with support for large (η, ω) in the

cone ω2 > η2 and ρ(η, ω) is a smooth function that is homogeneous of degree zero for

|η| + |ω| large with support in ω2 > η2 for (η, ω) large and identically equal to one

in a neighborhood of the support of û(0, η, ω). By superposition of the conditions

(1.7), we derive the boundary condition which exactly annihilates wave packets of

the form (1.8) at the boundary x = 0:(
du

dx
+

∫ ∫
ei(ηy+ωt)i

√
ω2 − η2ρû(0, η, ω)dηdω

)
|x=0 = 0(1.9)

This is an exact absorbing boundary condition, and it is nonlocal in space and time.

Writing this in the symbolic notation of pseudodifferential operators, we have(
d

dx
+ ρ

(
∂

∂y
,
∂

∂t

)√
∂2

∂t2
− ∂2

∂y2

)
u|x=0 = 0

For the wave equation, using the non-local operator
√

∂2

∂t2
− ∂2

∂y2
in physical space

to advance the numerical solution one timestep at one point in the domain would
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require information about all previous times over the entire domain. In order to

reduce computational cost, local approximations to boundary condition (1.9) were

derived. Engquist and Majda set ρ ≡ 1 and using Padé and Taylor approximations

of
√

1− η2/ω2 to produce a hierarchy of approximate (local) boundary conditions.

This technique is exact for waves impinging on the boundary at normal incidence,

but waves reaching the boundary away from normal incidence generate reflected

waves with reflection coefficient magnitude given by
∣∣ cos θ−1

cos θ+1

∣∣, where θ is the angle off

normal incidence. The first two local conditions are:(
∂

∂x
− ∂

∂t

)
u = 0

(
∂2

∂x∂t
− ∂2

∂t2
+

1

2

∂2

∂y2

)
u = 0

Wagatha [48] proposed instead using a least-squares approximation to
√

1− η2/ω2,

and Halpern and Trefethen [24, 47] explored using several other methods, including

Chebyshev, Chebyshev-Padé, Newman, L2, and L∞ approximations. In the free

surface flow literature, the boundary conditions derived by Engquist and Majda,

Wagatha, and Higdon for hyperbolic flows are applied directly to the equations for

free surface flow (see, for example, [44]). In addition, it is accepted (with the notable

exception of the 1D wave equation case) that only approximate absorbing boundary

conditions can be used in numerical computations.

1.1.4 Other Techniques

Other techniques beyond those already mentioned include matching the interior

(often, nonlinear) solution to a simpler (linear) solution in a boundary region (Ro-

mate [44] has a good review of this technique), mapping the infinite fluid domain

to a finite domain [23], and the infinite element technique, in which beyond some
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central region the grid elements are progressively stretched until they encompass the

entire infinite domain (see, for example, [41] for an application and brief review).

1.2 Overview

The focus of this work is the derivation and numerical implementation of absorb-

ing boundary conditions for the water wave equation, a one-dimensional nonlocal

partial differential equation which describes linearized two-dimensional incompress-

ible, irrotational, inviscid free surface flow in deep water. This thesis is organized

as follows. In Chapter II, we give the details of the derivation of the WWE. We

follow the paper of Wu [49], who derives a quasilinear system of equations which

when linearized about the zero solution give the WWE. In Chapter III, we derive

a one-way version of the water wave equation which supports the propagation of

water waves essentially only in the outgoing direction. The one-way equation is a

fractional partial differential equation involving a nonlocal operator corresponding

to half a derivative. The fractional derivative is implemented as a derivative of a

convolution with a singular kernel with locally integrable singularity. Properties of

the OWWWE are given. Numerical methods for the OWWWE are discussed in

Chapter IV, and a family of efficient numerical methods are derived.

We apply the OWWWE in a layer near the boundary, matching it to the full

solution to the water wave equation (WWE) at the interface between the interior

domain and the absorbing layer. Damping may or may not be added within the

absorbing layer to further dissipate the waves before they reach the edge of the

computational domain. In chapter V we describe our absorbing boundary condition

in more detail and present numerical results.



CHAPTER II

Preliminaries

2.1 Notation

We begin with some useful notation. We write Hs(R), −∞ < s <∞, to represent

the Sobolev space consisting of u ∈ S′(R) such that (1 + |ξ|)sû(ξ) ∈ L2(R), with the

Sobolev norm given by

‖u‖s =

(∫
(1 + |ξ|)2s|û(ξ)|2dξ

)1/2

.

We use [A,B] = AB −BA as an abbreviation for the commutator.

We let H : L2(R)→ L2(R) be the Hilbert transform

Hf(x) =
1

π
P.V.

∫ ∞
−∞

f(y)

x− y
dy

with the convention that H1 = 0. It will also be helpful to note that H2 = −I for

functions in Hs. We use that the Fourier transform of the Hilbert transform is given

by

Ĥf(ξ) = −i sgn ξf̂(ξ)(2.1)

We occasionally regard the two dimensional space as the complex space C and write

the pair (x, y) as x+ iy. We denote the real and imaginary parts of a complex-valued

9
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function f as <f and =f , respectively. If we write f ◦g we mean composition of f and

g in terms of the spatial variables (for fixed time), so that f ◦ g(x, t) = f(g(x, t), t).

According to this definition, given f−1, the inverse of f , we have for any fixed time

t that f ◦ f−1(x, t) = f(f−1(x, t), t) = x for all x.

Finally, we use the following definition of the Fourier transform:

f̂(ξ) =

∫ ∞
−∞

f(x)e−2πixξdx, f(x) =

∫ ∞
−∞

f(ξ)e2πixξdξ

2.2 Derivation of the Water Wave Equation (WWE)

In what follows, we give the details of the derivation of the WWE. This derivation

was introduced by Wu in [49], and is presented here with minor modifications for

completeness. We follow the setup of [49]; we consider the motion of the interface

separating an incompressible, irrotational, inviscid fluid in deep water under the

influence of gravity from a region of zero density in two-dimensional space. We

neglect surface tension and assume that the density of the fluid is one and the

gravitational force is given by (0,−1). At time t ≥ 0 we denote the free interface

by Γ(t) and we let Ω(t) denote the region occupied by the fluid (below Γ(t)) (note

that as this is a moving interface, our domain inherently depends on time). Thus

the motion of the fluid is given by the incompressible, irrotational, inviscid Euler

equations:

~vt + (~v · ∇)~v = −(0, 1)−∇p, x ∈ Ω(t), t ≥ 0(2.2)

∇ · ~v = 0 x ∈ Ω(t), t ≥ 0(2.3)

∇× ~v = 0 x ∈ Ω(t), t ≥ 0(2.4)

where ~v = (v1, v2) is the fluid velocity and p is the fluid pressure. Additionally, we
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Figure 2.1: The domain of the fluid in equations (2.2) - (2.4)

have the kinematic and dynamic boundary conditions

p = constant x ∈ Ω(t), t ≥ 0(2.5)

(1, v1, v2) is tangent to the free surface Γ(t) ∀ t ≥ 0(2.6)

The velocities in equation (2.6) are evaluated at (Γ(t), t). Equation (2.5) follows

because we have neglected surface tension, and equation (2.6) states that the free

surface is a streamline. We are seeking a solution of equations (2.2) - (2.6) such that

Γ(t) approaches the horizontal axis at infinity for every t ≥ 0 and |~v(x, y, t)| → 0 as

|(x, y)| → ∞. In [49], Wu proves existence and uniqueness of solutions of this system

of equations, locally in time, for any initial interface which is nonself-intersecting.

In the process, Wu derives the aforementioned system of quasilinear equations that

are equivalent to (2.2) - (2.4) and that we seek to use in our own work. In the next

several sections we present the details of the derivation of the system.

2.2.1 Derivation of Quasilinear System

Rewriting System In Terms of Lagrangian Variable α

First we rewrite equations (2.2) - (2.6) in terms of a Lagrangian variable α, so that

the interface Γ(t) is described by a curve z(α, t) = x(α, t) + iy(α, t), −∞ < α <∞.

Given this curve, we can write the velocity along the interface as

zt(α, t) = ~v(z(α, t), t) = v1(z(α, t), t) + iv2(z(α, t), t).(2.7)

We are only interested in solving for the fluid velocity along the interface, since once

we have solved for zt, the fluid velocity in all of Ω(t) can be recovered by solving
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Laplace’s equation:

∆v = 0 in Ω(t)

v = zt in Γ(t)

which v satisfies because the system is irrotational and incompressible. Taking an-

other derivative with respect to t of equation (2.7), we find that on the interface,

~ztt = ~vt + (~v · ∇)~v = −(0, 1)−∇p.(2.8)

In writing the equation (2.8), we have implicitly used vector notation. At this point

we find it more convenient to rewrite it using complex variables notation. First we

need an important result that we use several times in our derivation, and the proof

follows a result in [40].

Lemma II.1. Let f(z) be analytic in the region =z = y ≤ 0 such that f(x) ∈

L2 ∀x ∈ R. Then

f(x) = −i(Hf)(x)

that is,

v(x) = (Hu)(x) a.e. x ∈ R

u(x) = −(Hv)(x) a.e. x ∈ R

where f(x) = u(x) + iv(x).

Proof. We first prove the result for f ∈ C1. Consider the Cauchy-type integral∫
L

f(t)

t− z
dt(2.9)

where L is the real line −∞ < t < ∞. Fix t0 ∈ R. We would like to take the limit

first as z → t0 in equation (2.9). To do so, we write∫
L

f(t)

t− z
dt =

∫
L−Lε

f(t)

t− z
dt+

∫
Lε

f(t)− f(zL)

t− z
dt+

∫
Lε

f(zL)

t− z
dt
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where zL is the real part of z (i.e. the point on the line L that is closest to z) and

Lε = L\(t0− ε, t0 + ε). The first and third integrals converge as z → t0 and ε→ 0 to

P.V.

∫
f(t)

t− t0
dt− πif(t0).

For the second integral, we have

lim
ε→0

lim
z→t0

∫
Lε

f(t)− f(zL)

t− z
dt = 0,

using differentiability of f along the real axis. Thus we have

lim
z→t0

∫
L

f(t)

t− z
dt = P.V.

∫
f(t)

t− t0
dt− πif(t0)

Now, f analytic in P− = {z ∈ C | =z ≤ 0} implies by the Cauchy integral formula

that

−2πif(z) =

∫
L

f(t)

t− z
dt,

and this gives the desired result for functions f ∈ C1. For general f ∈ L2, the

result follows from the density of C∞0 functions in L2 and the property of the Hilbert

transform that ‖Hf‖L2 ≤ ‖f‖L2 .

We know a system is incompressible and irrotational if and only if v̄ is an analytic

function, and we have assumed |v| → 0 as |(x, y)| → ∞. By Lemma 1, we then

have that z̄t = −iHz̄t. Also, by assumption, p = 0 on Γ(t) (since we are neglecting

surface tension), and so we expect that ∇p will be normal to the interface. Since

zα is tangent to the interface, izα will be normal to it and thus there exists some

a = a(α, t) such that −∇p = iazα. In vector notation we have written Euler’s

equation as ~ztt = −(0, 1) − ∇p, and if we rewrite it using complex notation with

our new representation of p we find the original system (equations (2.2) - (2.6)) is
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equivalent to

ztt + i = iazα Ω(t)(2.10)

z̄t = −iHz̄t Γ(t)(2.11)

Riemann Mapping to Lower Half Plane

Next, we map the fluid domain into the lower half plane (which we write as P−).

For fixed time t, the interface is given by Γ(t) = z(α, t) = x(α, t) + iy(α, t), and Γ(t)

approaches the real axis as α→ ±∞. If we assume that Γ(t) is nonself-intersecting,

then Γ(t) divides the complex plane into two simply connected regions: an upper

region of zero density and a lower region (Ω(t)) in which the fluid lies. Let P−

denote the lower half of the complex plane {x + iy | y ≤ 0}. By the Riemann

mapping theorem, there is a unique Riemann mapping Φ(·, t) : Ω(t) → P− that

extends to an orientation preserving homeomorphism Φ : Γ(t) → {y = 0}, where

limz→∞Φz(z, t) = 1 (Φz = dΦ
dz

).

Let

h(α, t) = Φ(z(α, t), t).

Then h(α, t) : R→ R, h(α, t) is increasing in α, and hα > 0 for all α. Note that h is

real valued for all α and for each fixed t. We also know that Φ is analytic for each

fixed t. We write z(α, t) = Φ−1(h(α, t), t) and Φ−1(α, t) = z(h−1(α, t), t).

Notation and Properties of Mapped Functions in P−

At this point it is useful to develop some more notation. We write Z(β, t) =

z ◦ h−1(β, t) = z(h−1(β, t), t), Zt = zt ◦ h−1, etc.; Z,β = ∂βZ(β, t), Zt,β = ∂βZt(β, t),

etc.; and we use similar notation for the real and imaginary parts of z, i.e. we let

Xt = xt ◦ h−1, Yt = yt ◦ h−1, etc. Notice that Z(β, t) = Φ−1(β, t).
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Recall that the complex conjugate of the velocity is an analytic function. Let

us consider v̄ ◦ Φ−1(α, t). Since Φ is a conformal mapping, Φ and Φ−1 are analytic

functions and we know Φ−1 : P− → Ω(t). Therefore, v̄ ◦ Φ−1(α, t) must be analytic

in P−, and we have for all β ∈ R,

v̄(Φ−1(β, t), t) = v̄(z(h−1(β, t), t), t) = z̄t(h
−1(β, t), t) = Z̄t(β, t)(2.12)

where equation (2.12) gives the value of the holomorphic function v̄ ◦Φ−1 along the

boundary of P−.

Based on lemma II.1, since z̄t ◦ h−1 is the boundary value of a holomorphic function

we have that (writing Uhf(x, t) = f(h(x, t), t)),

z̄t ◦ h−1 = −iHU−1
h z̄t

⇒ z̄t = −iUhHU−1
h z̄t

That is, we have that (I + iUhHU
−1
h )z̄t = 0. Also, since Z̄t = z̄t ◦ h−1, we have that

Z̄t = −iHZ̄t

⇒ Xt − iYt = −iHXt −HYt

so that

Xt = −HYt(2.13)

Yt = HXt.(2.14)

From now on we write K = UhHU
−1
h . By lemma II.1, we know that K has the

property that for any analytic function f(z) = u(z) + iv(z) that is o(1) as |z| → ∞

in the lower half plane, u − iKu is the value of the function f(z) on the boundary.

We also know that since H2 = −1, we have K2 = −1 also.
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Since Φ−1 is an analytic function, Z(β, t) = Φ−1(β, t) and Z,β(β, t) = Φ−1
β (β, t) are

both boundary values of analytic functions. Since Z(β, t) = z ◦ h−1 and we assume

that the interface approaches the horizontal axis as β → ±∞, Z(β, t) → β as |β|

gets large. Also, since we assume that Φz → 1 as z → ∞, and (Φ−1)z = 1
Φz◦Φ−1 , we

must have that

lim
β→±∞

Z,β(β, t)→ 1.(2.15)

Based on equation (2.15), if we write Z,β = [(X,β − 1) + iY,β] + 1 we expect the

expression inside the brackets to go to 0 at infinity and to be holomorphic. Thus by

lemma II.1 we can write

X,β − 1 = HY,β, Y,β = −H(X,β − 1) = −HX,β.

From here on, we write when convenient u = Xt, w = Xtt, and b = ht ◦ h−1. Note

that due to the definition of Xtt as xtt ◦ h−1, we do not have that w = ut. There is,

however, a relationship between u and w that we explore later.

We have already seen in equation (2.14) that Yt = HXt, and we would like to

show that Ytt can also be recovered from Xt and Xtt so that we can concern ourselves

with deriving a PDE in X only. Before we can show this, however, we need another

lemma:

Lemma II.2. [∂t, K]f(α, t) = [ht, K]Uh∂αU
−1
h f(α, t)
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Proof.

[∂t, K]f(α, t) = ∂tUhHU
−1
h f −Kft

= htUh∂αHU
−1
h f + Uh∂tHU

−1
h f −Kft

= htUhH∂αU
−1
h f + UhH((U−1

h ∂αf)(∂th
−1) + U−1

h ∂tf)−Kft

= htUhH∂αU
−1
h f + UhHU

−1
h (∂αf)

(
ht
hα

)
= htUhH∂αU

−1
h f + UhHU

−1
h htUh∂αU

−1
h f

= [ht, K]Uh∂αU
−1
h f(α, t)

Using lemma II.2, we can examine Ytt:

Ytt = U−1
h ytt = U−1

h ∂tyt = U−1
h ∂tUhHXt

= U−1
h [∂t, K]xt + U−1

h Kxtt

= U−1
h [ht, K]Uh∂αXt +HXtt

= [b,H]∂αu+Hw,

and we write u1 = [b,H]∂αu+Hw. Given the relationship

Ytt = [b,H]∂αu+Hw,(2.16)

together with (2.14), we see that we can restrict ourselves to finding a PDE in X,

since Yt and Ytt can be recovered from Xt and Xtt.

Manipulating the PDE

At this point, we return to equations (2.10)-(2.11) and derive the final quasilinear

system. If we take another derivative with respect to t of equation (2.10), we find
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that

zttt − iaztα = iatzα

If we compose this equation with h−1, we have

Z̄ttt + i(a ◦ h−1)Z̄t,α(hα ◦ h−1) = ( ¯iatzα ◦ h−1)(2.17)

Taking the real part of Z̄ttt, we get Xttt. We can simplify this and write it in terms

of u:

Xttt = U−1
h ∂2

tUhXt(2.18)

= U−1
h ∂tUhU

−1
h ∂tUhXt(2.19)

= (∂t + b∂α)2u(2.20)

The progression in equations (2.18)-(2.20) follows from a straightforward application

of derivative rules and is easy to check. We also note that

<(iZ̄t,α) = Yt,α = ∂αHXt = ∂αHu

The only remaining term on the left hand side of our PDE is (ahα) ◦ h−1. We know

from equation (2.10) that ztt + i = iazα, and if we multiply this by z̄α
hα

we find

z̄α
hα

(ztt + i) = ia
|zα|2

hα
= iA1 ◦ h(2.21)

which defines a real-valued function A1 since a and h are real valued. Composing

equation (2.21) with h−1, we find

iA1 = Z̄,α(Ztt + i)(2.22)

Returning to the expression (ahα)◦h−1, since A1◦h = a|zα|2
hα

and iA1 = Z̄,α(Ztt+i),
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we can write

(ahα) ◦ h−1 =

(
A1 ◦ h
| zα
hα
|2

)
◦ h−1

=
A1

| Z,α |2

=
| Ztt + i |2

A1

Thus if we let A = |Ztt+i|2
A1

= u2+(u1+1)2

A1
, when we take the real part of the PDE (2.17)

we get

(∂t + b∂α)2u+ A|D|u = <(iatzα ◦ h−1)(2.23)

where

|D| = H∂α = ∂αH.(2.24)

At this point all that remains is to simplify the right hand side of the equation (2.23).

We can write

<(iatzα ◦ h−1) = <((
at
a
◦ h−1)(iazα ◦ h−1))

= <((
at
a
◦ h−1)Ztt + i)

= w(
at
a
◦ h−1)

and thus we are left only to find a way to express at
a
◦ h−1 in terms of the variables

we are considering. In doing so it is helpful to recall that since a is real valued, at

will also be real valued. Recalling that iazα = ztt + i and denoting

G = (I + iK)(iatzα) = (I + iK)(z̄ttt + iaztα)
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we can write

zα
hα

(z̄ttt + iaz̄tα) = i
at
a
azα

zα
hα

=
at
a

[(ztt + i)
z̄α
hα

]

=
at
a

[iA1 ◦ h]

= −iat
a

(A1 ◦ h)

Thus, since (I + iK)(I − iK)f = 0 and zα
hα

is holomorphic,

(I + iK)(−iat
a

(A1 ◦ h)) =
1

2
(I + iK)[

zα
hα

(I + iK)(z̄ttt + iaz̄tα)+(2.25)

zα
hα

(I − iK)(z̄ttt + iaz̄tα)]

=
1

2
(I + iK)[

zα
hα

(I + iK)(z̄ttt + iaz̄tα)](2.26)

Taking the imaginary part of equation (2.26) and composing with h−1, we find

−(
at
a
◦ h−1)A1 =

1

2
=[(I + iH)(Z,αU

−1
h G)].

Thus, we have succeeded in simplifying the PDE (2.17) to

(∂t + b∂α)2u+ A|D|u =
u

A1

(−1

2
=[(I + iH)(Z,αU

−1
h G)])

We are nearly done. What remains is only to write (−1
2
=[(I + iH)(Z,αU

−1
h G)]) as

f1(u,w) for some function f1. This would require much more tedious calculation, so

we just post here the result derived in the paper [49]. That is,

f1(u,w) =4[w,H]uα + 4[u,H]wα(2.27)

− 4[u,H]

{
∂α

(
<(u− iHu)(uα + iHuα)(w + i(u1 + 1))

iA1

)
+ <(uα + iHuα)2(w + i(u1 + 1))

iA1

}
+ 2[u2 − (Hu)2, H]∂α

(
<(uα + iHuα)(w + i(u1 + 1))

iA1

)
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In summary, the new (quasilinear) system of equations is

wt + bwβ + A|D|u =
w

A1

f1(u,w)(2.28)

ut + buβ − w = 0(2.29)

where

u1 = Hw + [b,H]uβ(2.30)

b = 2[u,H]
w

A1

+ 2u(2.31)

A1 = 2[u,H]uβ + 1(2.32)

A =
w2 + (u1 + 1)2

A1

(2.33)

and f1(u,w) is as given in equation (2.27).

2.2.2 Initial Data

Without loss of generality we let h(α, 0) = α for α ∈ R, which implies also that

xα(α, 0) → 1 as α → ±∞ (see equation (2.15)). In solving the original problem in

equations (2.2) - (2.6), we had initial data at the free surface

xt(α, 0) = u0(α)

Recalling that u = Xt = xt ◦ h−1, we see that

u(β, 0) = xt(h
−1(β, 0), 0) = xt(α, 0) = u0(α)

To compute the initial data w(β, 0), we use the property of xα at infinity to write

xα(α, 0) = x0(α) + 1

Recalling u = Xt and w = Xtt, we use equation (2.22) together with the relations

Ytt = [b,H]∂αw +Hu and Y,β = −HX,β to find that w(β, 0) satisfies

(x0 + 1 + iHx0)(w(α, 0) + i([b,H]∂αu0 +Hw(α, 0) + 1)) = i(2[u0, H]∂αu0 + 1)
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This is the equation to solve for w(β, 0) in terms of the known functions x0(α) and

u0(α), using the formula (2.31) for b (in terms of u and w).

2.2.3 Linearized Equation

In this work, we are primarily interested in small-amplitude solutions to the system

(2.28)-(2.29). A small perturbation u(x, t) to the zero solution of the system (2.28)-

(2.29) satisfies the one-dimensional equation

utt + |D|u = f(u, x, t)(2.34)

where f is a function that is at least quadratic in u.

The linearized equation for u is therefore given by

utt + |D|u = 0(2.35)

where u = xt ◦ h−1 and yt ◦ h−1 can be recovered using the formula Yt = HXt (from

equation (2.14)).

As in section 2.2.2, we can give linearized initial data for the linearized equation

(2.35) which relates back to the original problem. We choose

u(α, 0) = u0(α)

ut(α, 0) =
(Hx0)[2(1 + x0) + 1]

(x0 + 1)2 + (Hx0)2

Note that if x0 � 1, ut(α, 0) = 3Hx0.

Proposition II.3. (Energy Estimate for Linearized Equation) A solution u(x, t) to

equation (2.35) with initial data

u(x, 0) = u0(x)

ut(x, 0) = u1(x)



23

satisfies

‖ut(·, t)‖2
Hs + ‖|D|1/2u(·, t)‖2

Hs = ‖ut(·, 0)‖2
Hs + ‖|D|1/2u(·, 0)‖2

Hs(2.36)

Proof. If we take the Fourier transform of equation (2.34) in x, since Ĥ = −isgnξ

and ∂̂x = iξ, the PDE becomes

ûtt + |2πξ|û = 0.

Multiplying by (1 + ξ)2sût and integrating with respect to ξ, we find that

1

2

d

dt

∫
(1 + ξ)2s|ût|2dξ +

1

2

d

dt

∫
(1 + ξ)2s||2πξ|1/2û|2dξ = 0

⇒ 1

2

d

dt
‖ut(·, t)‖2

Hs +
1

2

d

dt
‖|D|1/2u(·, t)‖2

Hs = 0

leading to the desired result.



CHAPTER III

One Way Water Wave Equation

We have seen that the horizontal velocity on the free surface, u = xt(h
−1(β, t), t),

satisfies (for small u)

utt + |D|u = 0(3.1)

u(β, 0) = u0(β)(3.2)

ut(β, 0) = u1(β)(3.3)

where β originates from the Riemann mapping and represents some parametrization

of the free surface. For convenience, we switch notation β → x and from now on we

write u = u(x, t), where x is related but not identical to the x coordinate.

The one dimensional scalar wave equation can be factorized

utt − uxx =

(
∂

∂t
− ∂

∂x

)(
∂

∂t
+

∂

∂x

)
u = 0

into its left- (−) and right- (+) moving components. We derive such a factorization

of the water wave equation (3.1),

utt + |D|u =

(
∂

∂t
−??

)(
∂

∂t
+??

)
= 0,

and we call the individual factors the One Way Water Wave Equations (OWWWEs).

In this chapter, we derive the one way water wave equations, discuss some of their

24
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properties, and show that the essential one-sidedness of these equations yields im-

proved behavior near the artificial boundary of the truncated domain over the so-

lution to the full WWE. In chapter IV, we also introduce damped versions of the

one-way equations to further improve their absorption properties near the boundary.

Let us begin by getting a better understanding of the PDE (3.1). In Fourier space,

the operator |D| is given by

̂|D|u(ξ) = |2πξ| û(ξ).

As we saw in equation (2.24), it can be related to the Hilbert transform as

|D| = H∂x = ∂xH,

which can be readily seen if we recall from equation (2.1) that the Hilbert transform

is represented in Fourier space as Ĥu(ξ) = −i sgn ξû(ξ). Using the relationship

between |D| and the Hilbert transform and writing the Hilbert transform in integral

form, we may rewrite the WWE (3.1) as

utt(x, t) +
∂

∂x

1

π
P.V.

∫
u(y, t)

x− y
dy = 0(3.4)

The WWE is linear, and as one might expect from the underlying incompressibil-

ity, it is non-local in space. Its dispersion relation is given by

(2πω)2 = |2πξ|

with phase velocity ∣∣∣∣ωξ
∣∣∣∣ =

1√
|2πξ|

(3.5)

and group velocity ∣∣∣∣∂ω∂ξ
∣∣∣∣ =

1

2
√
|2πξ|

.(3.6)
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Figure 3.1: Solution of WWE with increasing time on the vertical axis, computed with initial data
(3.7)-(3.8).

The phase and group velocities reflect the dispersive nature of the equation, namely

that waves with different wave numbers propagate at different speeds. In particular,

small wave numbers propagate infinitely fast.

Typical solutions for the WWE are shown in figure 3.1 for an initial Gaussian

surface perturbation of flow at rest

u(x, 0) =
1

2
exp−

x2

0.04(3.7)

ut(x, 0) = 0(3.8)

The wave splits (symmetrically, in this case) into left and right moving waves, and

disperses as it moves out. The equation is solved in physical space by approximating

the Hilbert transform using the trapezoid rule and the spatial and temporal deriva-

tives using centered differencing. The Hilbert transform is truncated by assuming

that the solution u ≡ 0 outside of the computational domain.

We are interested in the behavior of the WWE as the wave reaches the artificial
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boundary. Figure 3.2 shows the solution of the WWE with wave packet initial data

u(x, 0) =

 cos6
(
π
6
x− 5π

3

)
sin
(
5
(
π
6
x− 5π

3

))
: 7 ≤ x ≤ 13

0 : else

(3.9)

ut(x, 0) = 0(3.10)

Figure 3.2: Solution of WWE with increasing time on the vertical axis, computed with initial
data (3.9)-(3.10). Note the reflection of the wave as it reaches the boundary of the computational
domain.

Notice that as the wave reaches the boundary, it is reflected back into the computa-

tional domain. Without the boundary, the waves would move outward, separating

into components moving to the left and the right, leaving behind a quiet region which

tends to zero. With the boundary present, we see that the solution of the WWE is

far from zero at the center for large t. This is the behavior that we hope to mitigate

with our boundary technique, by replacing the full WWE by the one-way equation

near the computational boundary so that waves will only be allowed to propagate in
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the outgoing direction.

3.1 Derivation of the One Way Water Wave Equation (OWWWE)

Recall the dispersion relation of the WWE (3.4)

(2πiω)2 + |2πiξ| = 0(3.11)

Expressing ω in terms of ξ yields two branches

ω = ± 1√
2π

√
|ξ|(3.12)

The corresponding phase and group velocities are easily obtained

Cp =
ω

ξ
= ± sgn(ξ)

1√
|2πξ|

Cg =
∂ω

∂ξ
= ± 1

2
√

2π
sgn(ξ)|ξ|−1/2

The branches of the dispersion relation (3.12) are illustrated in figure 3.3. Notice that

neither of the branches describe propagation of waves in essentially one direction;

rather, each branch contains both left and right moving waves. However, there is an

Figure 3.3: Square root of WWE dispersion relation using the standard square root
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alternative expression for ω in terms of ξ, and we can re-write the dispersion relation

(3.12) by taking a smart square root (SSR) so that the dispersion relation becomes

ω = ± 1√
2π

sgn(ξ)
√
|ξ|(3.13)

Dispersion relation (3.13) is illustrated in figure 3.4. The branches of the dispersion

relation now have definite sign, and the PDE with dispersion relation (3.13) has

phase/group velocities of definite sign

Cp =± 1√
|2πξ|

Cg =
∂ω

∂ξ
= ± 1

2
√

2π
|ξ|−1/2

Thus, the PDE with dispersion relation (3.13) supports the propagation of waves

Figure 3.4: Square root of WWE dispersion relation using the ”Smart Square Root”

in essentially one way. What remains is to find that PDE. To that end, we write

equation (3.13) as

2πiω = ±i sgn(ξ)
√
|2πξ|(3.14)

We recall that the Hilbert transform is represented in Fourier space as Ĥf(ξ) =

−i sgn ξf̂(ξ), from which it follows that the PDE whose dispersion relation is (3.14)
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is given by

ut ±H|D|1/2u = 0(3.15)

The factorization of the WWE into one-way operators is therefore given by

∂tt + |D| = (∂t +H|D|1/2)(∂t −H|D|1/2) = 0(3.16)

with the (+) corresponds to left-moving waves and the (−) corresponds to right-

moving waves.

In the literature it is common to write the spatial pseudodifferential operator

|D|1/2 as the fractional Laplacian −(−∆)1/4 (see for example [50], which gives details

for more general fractional derivatives). The integral representation of |D|1/2 is given

by

|D|1/2u(x) =
∂

∂x

1√
2π

∫
u(y)√
|x− y|

sgn(x− y)dy.

In practice, we would not like to implement the operator H|D|1/2 because it involves

computing two integral transforms and a derivative. It is less computationally costly

to instead compute the equivalent operator

H|D|1/2 = −i D

|D|1/2

where the operator |D|−1/2 is represented by the singular convolution integral

f(u, x) =
1

|D|1/2
u(x) =

1√
2π

∫
u(y)√
|x− y|

dy.(3.17)

This reduces the problem to computation of a single integral transform and a deriva-

tive. Using this integral representation of f , we may write the respective OWWWEs

as

∂u

∂t
± 1√

2π

∂

∂x

∫
u(y)√
|x− y|

dy = 0(3.18)
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where in this case, the (+) corresponds to right-going waves and the (−) to left-going

waves.

We discuss numerical techniques for approximating solutions to equation (3.18)

in Chapter IV, but it is interesting to note here the improved behavior of the one-

way equations near the boundary compared to the full WWE. In approximating the

solutions to the OWWWE, the integral transform is also truncated by assuming the

solution u ≡ 0 outside of the computational domain. Assuming u ≡ 0 outside of

the computational domain is essentially the same as imposing a Dirichlet boundary

condition, but since the one way equations allow motion in essentially only one

direction, as the outgoing wave reaches the edge of the computational domain it

does not reflect and pollute the interior solution in the same way that the solution to

the full WWE does. This is illustrated in figure 3.5, where the plots of the solution

to the full WWE and the OWWWE over time are shown together.

3.2 Properties of the OWWWEs

The OWWWE is a fractional partial differential equation (FPDE), involving an

operator (∂x|D|−1/2) which corresponds to half a derivative. In fact, the non-local

operator f may be recognized as

f(u, x) =
1√
2

(
(D
−1/2
−∞+u)(x) + (D

−1/2
∞− f)(x)

)
where the operators D

−1/2
−∞+ and D

−1/2
∞− are the left-handed (+) and right-handed (−)

Riemann-Liouville integrals of order 1
2

[39] defined by

(D
−1/2
−∞+u)(x) =

1√
π

∫ x

−∞

u(y)√
x− y

dy(3.19)

(D
−1/2
∞− u)(x) =

1√
π

∫ ∞
x

u(y)√
y − x

dy(3.20)
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(a)

(b)

Figure 3.5: Figure (a) shows the solution of the WWE computed with initial data (3.9)-(3.10),
and figure (b) shows the solution of the right-going OWWWE computed with initial data (3.9),
each with increasing time on the vertical axis. Note that in the solution to the WWE, the wave
reflects as it reaches the edge of the computational domain, but the one-sidedness of the OWWWE
prevents reflections as the wave reaches the edge of the computational domain.
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It is only within the past few decades that researchers have begun using fractional

order derivatives in models to better incorporate non-local effects. Today, space-

fractional partial differential equations in particular arise as models in a variety of

applications including sedimentation ([4], [8]), signal denoising ([2]), finance ([1], [6],

[15], [34]), and hydrology ([36], [50]). The fractional derivatives are incorporated

into the PDEs to represent the solution’s dependence on its values upstream and/or

downstream in the rest of the domain, whereas in corresponding PDEs with only

integer-order derivatives, these effects are neglected. For a more thorough discussion

of the theory of fractional calculus, see for example [26], [37], or [43].

The OWWWE may be viewed as a conservation law with a linear nonlocal singular

flux with integrable singularity. A typical solution to the OWWWE is shown in figure

3.6 for the right-going equation with wave packet initial data (3.9).

Figure 3.6: Solution of OWWWE with increasing time on the vertical axis, computed with initial
data (3.9)
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3.2.1 Relation to Full WWE

The solutions to the left- and right-going equations can be related back to the

solution of the full WWE. The exact solution of the WWE can be written

u(x, t) =

∫ (
α1(ξ)e−i sgn(ξ)

√
|2πξ|t + α2(ξ)ei sgn(ξ)

√
|2πξ|t

)
e2πixξdξ

where the functions α1 and α2 are determined from the initial data

u(x, 0) = u0(x)(3.21)

ut(x, 0) = u1(x)(3.22)

as

α1(ξ) =
1

2

(
û0i sgn(ξ)

√
|2πξ| − û1

i sgn(ξ)
√
|2πξ|

)

α2(ξ) =
1

2

(
û0i sgn(ξ)

√
|2πξ|+ û1

i sgn(ξ)
√
|2πξ|

)

The data α1 and α2 may be recognized as

α1(ξ) =
1

2
F
(
u0 −H|D|−1/2u1

)
α2(ξ) =

1

2
F
(
u0 +H|D|−1/2u1

)
Similarly, the solution of the one way equation (3.15) can be given as

u(x, t) =

∫
α(ξ)e±i sgn(ξ)

√
|2πξ|te2πixξdξ

where α(ξ) is the Fourier transform of the initial data for the OWWWE u(x, 0), with

(−) corresponding to right-going waves and (+) corresponding to left-going waves.

From this we see that, for example, when u1 ≡ 0, the solution to the full equation is

the sum of the solutions to the left- and right-going one way equations with initial

data 1
2
u0. This can be verified numerically, and figure 3.7 shows the solution to the
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Figure 3.7: Solution of WWE with initial data (3.9)-(3.10) plotted with the sum of the one way
solutions with initial data given by half of equation (3.9)

full equation with initial data (3.9)-(3.10) plotted together with the sum of the left-

and right-going solutions computed with half the initial data. In general, the full

equation with initial data u0 and u1 as in equations (3.21)-(3.22) is equal to the

solution of the left-going equation with initial data

1

2

(
u0(x) +H|D|−1/2u1(x)

)
plus the solution to the right-going equation with initial data

1

2

(
u0(x)−H|D|−1/2u1(x)

)
.

3.2.2 Asymptotic Behavior at Infinity

As we saw in the previous section, the solution to the OWWWE

ut ∓H|D|1/2u = 0

u(x, 0) = u0(x)
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can be written in terms of a Fourier transform as

u(x, t) =

∫ ∞
−∞

û0(ξ)e∓i sgn ξ
√
|2πξ|te2πixξdξ(3.23)

We show, using Theorem 4 from [18], that u(x, t) is O(x−3/2) as |x| → ∞ as long as

û0 is compactly supported and û0 ∈ C3(R).

Proposition III.1. Let u(x, t) be the solution to the OWWWE (3.15) with initial

data u(x, 0) = u0(x) which satisfies

1. û0(ξ) is compactly supported

2. The support of û0(ξ) is contained within the interval (−a, a) for some a ∈

R, a > 0

3. û0 ∈ C3(R)

Then u(x, t) = O(x−3/2) as |x| → ∞.

Proof. Without loss of generality we consider only the right-going solutions; that is,

the solutions to

ut −H|D|1/2u = 0

Let t be fixed. First we split the integral (3.23) in two, and make the change of

variables ξ = y2 for positive ξ and ξ = −y2 for negative ξ. Then

u(x, t) =

∫ ∞
0

û0(y2)e∓i
√

2πyte2πixy22ydy +

∫ ∞
0

û0(−y2)e±i
√

2πyte−2πixy22ydy

Let

I1(x, t) =

∫ √a
0

û0(y2)e∓i
√

2πyte2πixy22ydy

I2(x, t) =

∫ √a
0

û0(−y2)e±i
√

2πyte−2πixy22ydy
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We first derive an asymptotic expansion for each of the integrals I1 and I2, and then

sum them to show that u(x, t) = O(x−3/2) for large positive x. For I1 we have (using

the notation of [18])

g1(y) = 2yû0(y2)e−i
√

2πyt

h1(y) = 2πy2

λ1 = µ1 = σ1 = 1

ρ1 = 2

with α = 0 and β =
√
a. This leads to

k1(y) =
1

π
yû0

(
y2

2π

)
e−iyt

l1(y) = − 1

2π
û0

(
h1(β)− y

2π

)
e−i
√
h1(β)−yt

We see that k1(0) = 0. We may write

I1(x, t) =
N−1∑
n=1

1

2(n!)
Γ

(
n+ 1

2

)
k

(n)
1 (0)e

iπ(n+1)
4 x−

n+1
2 −

N−1∑
n=0

1

n!
Γ(n+ 1)l

(n)
1 (0)e−iπ(n+1)/2x−(n+1)eixh1(

√
a) + o(x−N/2)

where g1(y) ∈ CN(R).

To consider I2, we first need to make the change of variables y → −y so that the

function h2(y) will be increasing over the range of integration. Thus

I2(x, t) = −
∫ 0

−
√
a

û0(−y2)e−i
√

2πyte−2πixy22ydy

For now, we forget about the minus sign in front of the integral and write the
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asymptotic expansion for the integral only. We have

g2(y) = 2yû0(−y2)e−i
√

2πyt

h2(y) = −2πy2

λ2 = µ2 = ρ2 = 1

σ2 = 2

with α = −
√
a and β = 0. This leads us to

k2(y) = − 1

2π
û0

(
y + h2(α)

2π

)
e−i
√
−y−h2(α)t

l2(y) =
1

π
yû0

(
− y

2

2π

)
e−iyt

Similar to the I1 case, we see that l2(0) = 0. Thus (factoring in the minus sign again)

I2(x, t) =
N−1∑
n=1

1

2(n!)
Γ

(
n+ 1

2

)
l
(n)
2 (0)e−

iπ(n+1)
4 x−

n+1
2 −

N−1∑
n=0

1

n!
Γ(n+ 1)k

(n)
2 (0)eiπ(n+1)/2x−(n+1)eixh2(−

√
a) + o(x−N/2)

where g2(y) ∈ CN(R).

Adding I1 and I2 back together, we have

u(x, t) =
N−1∑
n=1

1

2(n!)
Γ

(
n+ 1

2

)(
k

(n)
1 (0)e

iπ(n+1)
4 + l

(n)
2 (0)e−

iπ(n+1)
4

)
x−

n+1
2 −

N−1∑
n=0

1

n!
Γ(n+ 1)

(
l
(n)
1 (0)e−iπ(n+1)/2eixh1(

√
a) + k

(n)
2 (0)eiπ(n+1)/2eixh2(−

√
a)
)
x−(n+1)

+ o(x−N/2)

Without any further work, this gives u(x, t) = O(x−1) for large x > 0 if û0 ∈ C2(R),

but if we plug in k′1(0) and l′2(0) we find

k
(1)
1 (0)e

iπ(1+1)
4 + l

(1)
2 (0)e−

iπ(1+1)
4 =

1

π
û0(0)

(
eiπ/2 + e−iπ/2

)
= 0
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and

l
(0)
1 (0)e−iπ/2eixh1(

√
a) + k

(0)
2 (0)eiπ/2eixh2(−

√
a) = − 1

2π
e−i
√

2πat(û0(a)e−iπ/2eix2πa+

û0(−a)eiπ/2e−ix2πa)

= 0

because û0 has support contained within (−a, a), and finally

l
(1)
1 (0)e−iπeixh1(

√
a) + k

(1)
2 (0)eiπeixh2(−

√
a) =

1

(2π)2
e−i
√

2πat(û′0(a)e−iπeix2πa

− û′0(−a)eiπe−ix2πa)+

it

4π
√

2πa
e−i
√

2πat(û0(−a)eiπe−ix2πa

− û0(a)e−iπeix2πa)

= 0

again because of the compact support of û0. Thus for û0 ∈ C3(R) (so that g1, g2 ∈

C3(R)), the terms with powers of x greater than −3/2 disappear, leading to our

desired result.

For x < 0, we have

k1(y) = − 1

2π
û0

(
2πa− y

2π

)
ei
√

2πa−yt

l1(y) =
1

π
yû0

(
y2

2π

)
eiyt

k2(y) = − 1

π
yû0

(
− y

2

2π

)
eiyt

l2(y) = − 1

2π
û0

(
y − 2πa

2π

)
ei
√
y−2πat
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so that

u(x, t) =
N−1∑
n=1

1

2(n!)
Γ

(
n+ 1

2

)
x−(n+1)/2

(
l
(n)
1 (0)e−iπ(n+1)/4 + k

(n)
2 (0)eiπ(n+1)/4

)
−

N−1∑
n=0

1

n!
Γ(n+ 1)x−(n+1)

(
k

(n)
1 (0)eiπ(n+1)/2e−2πixa + l

(n)
2 (0)e−iπ(n+1)/2e2πixa

)
+ o(x−N/2)

Again, we have

l
(1)
1 (0)e−iπ/2 + k

(n)
2 (0)eiπ/2 = 0

k
(0)
1 (0)eiπ/2e−2πixa + l

(0)
2 (0)e−iπ/2e2πixa = 0

k
(1)
1 (0)eiπe−2πixa + l

(1)
2 (0)e−iπe2πixa = 0

The proof for left-going waves proceeds similarly, with the only difference being

the the sign of the power of the exponential term in the formulas for g1 and g2. This

does not change the result.

We can confirm the decay rate of the OWWWE at infinity numerically. Let the

initial data u0(x) be such that its Fourier transform is given by

û0(ξ) = (1 + cos(ξ))p

for ξ ∈ [−π, π], and zero otherwise. The Fourier transform of the initial data is there-

fore an even function of ξ, so that the solution u(x, t) to the right-going OWWWE

may be written

u(x, t) = 2

∫ π

0

(1 + cos(ξ))p cos(
√
|2πξ|t− 2πxξ)dξ

Fix t = 1. We compute the integral numerically using, for example, Matlab’s ”quad”

function for a sequence of x values, and we expect u(x, t) = O(x−3/2). The results

from performing this calculation with p = 2 and p = 4 are shown in table 3.1, and

the expected decay rates are achieved.
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x |u(x, 1)|, p = 2 |u(x, 1)|, p = 4

22 7.3022E-002 2.9316E-001
23 2.3165E-002 9.2742E-002
24 7.5750E-003 3.0306E-002
25 2.5318E-003 1.0128E-002
26 8.4881E-004 3.4372E-003

|u(x, t)| = O(x−1.6047) |u(x, t)| = O(x−1.6023)

Table 3.1: Decay rate at infinity computed with initial data û0(ξ) = (1 + cos(ξ))p

3.2.3 Long Time Decay

We show the long time behavior of solutions to the OWWWEs using van der

Corput’s lemma as stated in Stein [45].

Proposition III.2. Let u(x, t) be the solution to the OWWWE (3.15) with initial

data u(x, 0) = u0(x) which satisfies

1. û0(ξ) is compactly supported

2. The support of û0(ξ) is contained within the interval (a, b) ⊂ R\{0}

3. û0 is absolutely continuous

Then u(x, t) satisfies

max
x
|u(x, t)| = O(t−1/2)

as t→∞.

Proof. Without loss of generality we consider the right-going OWWWE only. The

results for the left-going equation can be obtained similarly. The solution to the

right-going OWWWE may be written

u(x, t) =

∫
û0(ξ)e−i sgn ξ

√
|2πξ|te2πixξdξ
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By assumption, û0 is compactly supported, and we assume the support lies within

an interval (a, b). For each t, we have

max
x
|u(x, t)| = max

c
|u(ct, t)|(3.24)

We proceed by deriving an estimate for u(ct, t) instead of u(x, t). According to the

statement of van der Corput’s lemma in [45], for phase function φ which is real valued

and smooth in (a, b) with |φ′′(x)| ≥ 1 ∀x ∈ (a, b)∣∣∣∣∫ b

a

eiλφ(x)ψ(x)dx

∣∣∣∣ ≤ 8λ−1/2

(
|ψ(b)|+

∫ b

a

|ψ′(x)|dx
)

In our case, let

φ(ξ, c) = − sgn ξ
√
|2πξ|+ 2πcξ

Since (a, b) does not include the point ξ = 0, φ is smooth on (a, b). We have

φξξ(ξ, c) = π2|2πξ|−3/2 sgn ξ

so that

|φξξ(ξ, c)| ≥ π2α

where

α = min

(
1

|2πa|3/2
,

1

|2πb|3/2

)
Let

φ̃(ξ, c) = (π2α)−1φ(ξ, c)

We know that |φ̃ξξ| ≥ 1 ∀(ξ, c) ∈ (a, b)× R. We may write

u(ct, t) =

∫ b

a

û0(ξ)eiφ̃(ξ,c)π2αtdξ
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and the properties of φ̃ together with the assumptions on û0 and van der Corput’s

lemma imply

|u(ct, t)| ≤ 8(π2αt)−1/2

(
|û0(b)|+

∫ b

a

|û′0(ξ)|dξ
)

=
8‖û′0‖L1

π
√
α

t−1/2

The right hand side is independent of c, so we may take the maximum over c of both

sides to arrive at the desired result.

The long-time decay of the (one-dimensional) water wave equation is comparable

to the long-time decay of the two-dimensional scalar wave equation. Since waves

decay as they propagate, moving the artificial boundary out further makes the waves

weaker, and thus easier to absorb. Our experience suggests that the long-time decay

rate from Proposition III.2 can also be obtained for a broader class of initial data

u0, a point which we illustrate in Chapter IV.

3.2.4 Spectrum of H|D|1/2

Proposition III.3. The spectrum of the operator H|D|1/2 (with domain H1/2(R))

is purely continuous, and given by the purely imaginary numbers.

Proof. The operator H|D|1/2, which acts on functions in H1/2(R), is unitarily equiva-

lent (via Fourier transform) to the operator given by multiplication by−i sgn ξ|2πξ|1/2,

with domain domA = FH1/2(R). Thus, these two operators have the same spec-

trum. Let us consider the spectrum of the latter operator, which we from here on

denote as A.

For f ∈ domA,

(Af)(ξ) = (−i sgn ξ|2πξ|1/2)f(ξ)
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Consider for λ ∈ C the operator Cλ = A − λI. The operator Cλ is invertible when

Reλ 6= 0; the inverse is the operator B given by

(Bf)(ξ) = (−i sgn ξ|2πξ|1/2 − λ)−1f(ξ)

When Reλ = 0, however, the operator Cλ is not invertible. In this case, we may

write

λ = iγ, γ ∈ R(3.25)

For λ = iγ as in equation (3.25), the operator Cλ may be written

Cλf = −i(sgn ξ|2πξ|1/2 + γ)f(ξ)

The function sgn ξ|2πξ|1/2 + γ = 0 has a zero at one point which we will call ξγ. For

any function f ∈ L2(R), the function fn defined by

fn(ξ) =


1

−i(sgn ξ|2πξ|1/2+γ)
f(ξ) : a.e. ξ /∈

(
ξγ − 1

n
, ξγ + 1

n

)
0 : a.e. ξ ∈

[
ξγ − 1

n
, ξγ + 1

n

]
is also in L2(R):

‖fn‖2
L2 =

∫
ξ /∈(ξγ− 1

n
,ξγ+ 1

n)

∣∣∣∣ 1

sgn ξ|2πξ|1/2 + γ
f(ξ)

∣∣∣∣2 dξ <∞
since ξγ is the only zero of sgn ξ|2πξ|1/2 +γ, the range of integration is bounded away

from ξγ, and f ∈ L2(R). Moreover, fn ∈ domA:

‖Afn‖2
L2 =

∫
ξ /∈(ξγ− 1

n
,ξγ+ 1

n)

∣∣∣∣ sgn ξ|2πξ|1/2

sgn ξ|2πξ|1/2 + γ
f(ξ)

∣∣∣∣2 dξ <∞.
This sequence {fn} satisfies

‖Cλfn − f‖2
L2 =

∫ ξγ+ 1
n

ξγ− 1
n

|f(ξ)|2dξ → 0 as n→ +∞.

Therefore the range of Cλ is dense in L2(R), and all λ of the form in equation (3.25)

are in the continuous spectrum of the operator A. Thus we see that the spectrum of

the operator A (and therefore, the operator H|D|1/2 with domain H1/2(R)) is purely

continuous, and given by the purely imaginary numbers, {z ∈ C | Re z = 0}.
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3.2.5 Conservation of Energy

Proposition III.4. (Energy Estimate for the OWWWE) A solution u(x, t) to the

OWWWE (3.15) with initial data u(x, 0) = u0(x) satisfies

‖ u(·, t) ‖L2=‖ u(·, 0) ‖L2

Proof. The solution to the OWWWE satisfies

û(ξ, t) = e±i sgn ξ|2πξ|1/2t û(ξ, 0)

Therefore,

‖ û(·, t) ‖L2=‖ û(·, 0) ‖L2

so that by Plancherel’s theorem, the desired result is obtained.



CHAPTER IV

Numerical Methods for the One Way Water Wave Equation

In the previous chapter we introduced the one way water wave equation (OWWWE)

∂u(x, t)

∂t
∓ 1√

2π

∂

∂x

∫
u(y, t)√
|x− y|

dy = 0(4.1)

It is a fractional partial differential equation (FPDE) involving an operator which

corresponds to half a derivative. We view equation (4.1) as a conservation law, with

a nonlocal linear flux involving convolution with a locally integrable singular kernel.

In this chapter, we are concerned with efficient numerical methods for solving

(4.1). As remarked in Chapter III, the nonlocal flux f given by

f(u, x) =
1√
2π

∫ ∞
−∞

u(y)√
|x− y|

dy(4.2)

may be recognized as

f(u, x) =
1√
2

(
(D
−1/2
−∞+u)(x) + (D

−1/2
∞− f)(x)

)
where the operators D

−1/2
−∞+ and D

−1/2
∞− are the left-handed (+) and right-handed (−)

Riemann-Liouville integrals of order 1
2

(see equations (3.19)-(3.20)).

Numerical approaches to approximate this type of integral transform include stan-

dard quadrature rules ([2], [7], [13], [15]), integration by parts to yield convolution

involving ux, which is then approximated by finite difference ([11], [33]), and the

46
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shifted Grünwald formula presented in [35], which utilizes an alternative definition of

the fractional derivative ([10], [14]). Most relevant to the numerical methods derived

in this chapter are [31] and [21]. In [31], numerical methods for fractional integrals

are studied using a finite difference technique. Li et al. present three algorithms for

approximating the fractional integral

(Dα
a+u)(x) =

1

Γ(α)

∫ x

a

(x− y)α−1u(y)dy, α > 0,

all of which involve replacing the function u with a polynomial and integrating the

transform of the polynomial exactly. For convenience, we call this an Exact Polyno-

mial Integration Computation (EPIC). In the second order method u is replaced by

a linear spline, and in the fourth order methods u is replaced either by a piecewise

cubic function or by a cubic spline. In the cubic cases, the polynomials are computed

using first and possibly second order derivatives of u, which if unknown are approx-

imated using finite difference techniques. The authors present a numerical method

for solving a fractional ODE, but approximate the fractional derivative in the ODE

using the product trapezoidal quadrature formula or compound Simpson formula. In

[21], the author presents several techniques for computing the fractional derivative

operator in a fractional diffusion equation

ut − c|D|αu = 0

where 1 ≤ α ≤ 2, including approximating the function u by a linear spline g and

integrating |D|αg exactly. The author also argues the benefit of writing the fractional

diffusion equation in flux form, in order to construct conservative computational

algorithms.

In this chapter, we develop a hierarchy of efficient numerical methods to solve the

fractional partial differential equation (3.15) using EPIC techniques for polynomials
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of increasing accuracy. We adopt numerical approaches from hyperbolic conservation

laws to compute the flux (4.2) by using conservative piecewise polynomial reconstruc-

tion of the solution [25]. Solution cell averages are used to reconstruct the solution

in each computational cell, and the flux at cell interfaces is computed by evaluating

exactly the integral transform associated with the singular convolution. No informa-

tion about solution derivatives is required, and to achieve a higher order of spatial

accuracy one need only increase the order of the interpolating polynomial. Time

integration uses Runge-Kutta (RK) schemes of matching order. We analyze the sta-

bility of the resulting schemes, study the convergence of the numerical solution, and

present numerical results.

4.1 Numerical Scheme

We specialize the discussion to right-going wave propagation only. Left-going

wave propagation is a mirror image and is approximated in complete analogy.

For comparison, figures 4.1a - 4.1b shows the solution to the OWWWE at time T

with transform computed with the trapezoid rule and time derivative approximated

with forward Euler on a sequence of grids. By the finest grid picture, the solution

has yet to converge, and is already taking greater than 14 hours to compute. A

GNU library routine for adaptive quadrature numerical integration of integrals with

singularities failed to converge with the desired tolerance. In Section 4.3.2, we show

similar figures for our higher-order schemes and compare to the results from the

trapezoid rule.

We write the one way water wave equation (OWWWE) (3.15) as

ut + f(u, x)x = 0(4.3)

where f is as in (4.2).
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(a)

(b)

Figure 4.1: Solution u(x, T ) to OWWWE with initial data (3.9) for a sequence of grids as computed
using the trapezoid rule. (b) shows the zoomed in area indicated by the box in figure (a).

Equation (4.3) is a linear conservation law with a non-local flux f involving a

convolution with a singular integrable kernel. We begin by writing the equation in

semi-discrete finite volume framework. We introduce a spatial grid with uniform

space intervals Ij = [xj−1/2, xj+1/2] of length ∆x and centers at xj = (j + 1/2)∆x.

We denote by uj(t) the cell-average of the solution u(·, t) over the corresponding
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intervals Ij

uj(t) =
1

∆x

∫
Ij

u(x, t)dx .

Integrating (4.3) over Ij and dividing by ∆x gives

d

dt
uj(t) =

1

∆x

(
f(u(·, t), xj+1/2)− f(u(·, t), xj−1/2)

)
.(4.4)

A semi-discrete finite volume scheme is defined by computing the approximate in-

tercell flux F (u(·, t), x) at xj±1/2, denoted here as Fj±1/2(t).

4.1.1 Conservative Polynomial Reconstruction of u

We proceed by approximating u(·, t) by a conservative piecewise polynomial in-

terpolant

u(x, t) ≈ P(x, t) =
∑
j

Pj(x, t)χIj(x)(4.5)

where the piecewise polynomial P is reconstructed at each time step from the cell

averages at time t, {ūj(t)}. This well-known procedure is described below for com-

pleteness, since it is put to use in a new context. We omit the time dependence

from all reconstructed quantities, but time dependence is implied. Let v(x) be the

primitive function of u(x)

v(x) =

∫ x

u(y)dy

with intercell values

vj+ 1
2

= v(xj+ 1
2
) =

∫ x+ 1
2

u(y)dy =

j∑∫
Ii

u(y)dy =

j∑
∆xui

and consider the local polynomial of degree r which interpolates v(x) at r + 1 con-

secutive cell interfaces straddling Ij

v(x) ≈ pj(x) =
r∑
l=0

cl(x− xj)l x ∈ Ij .
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We have written the polynomial coefficients here as cl, but the coefficients really

depend not just on the power l but also on the choice of stencil, order of polynomial

interpolant, and gridcell. For a polynomial interpolant of order r, there are r pos-

sible stencils to choose from, and we enumerate them by the index k = 0, ..., r − 1.

Computing the coefficients of the interpolant requires knowing the values of v at the

endpoints of r gridcells, and the index k indicates which set of gridcells are being

used. When k = 0, to compute the polynomial coefficients on Ij requires data from

the set of r contiguous cells whose rightmost cell is Ij, and when k = r − 1 comput-

ing the polynomial coefficients on Ij requires data from the set of r contiguous cells

whose leftmost cell is Ij. Intermediate values of k use intermediate stencils. Table

4.1 gives a visualization of the stencils used for various (r, k) pairs.

Polynomial Order Interpolation Order r Stencil k Stencil Schematic

Linear 2 0

2 1

Quadratic 3 0

3 1

3 2

Cubic 4 0

4 1

4 2

4 3

Table 4.1: Visualization of stencils used for interpolation.

In each gridcell Ij, the coefficients cl for interpolant order / stencil pair (r, k) are
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determined by solving the system of equations

vj+k−r+1/2 =
r∑
l=0

cl(xj+k−r+1/2 − xj)l

· · ·

vj+k+1/2 =
r∑
l=0

cl(xj+k+1/2 − xj)l

The coefficients cl in terms of j are given in table 4.2 for values of r and k which

give stable numerical methods for the one way water wave equation (up to r = 4).

Once we have computed the coefficients cl of the polynomial pj, the polynomial

approximation of u(x) on Ij is recovered by differentiating

u(x) ≈ p′j(x) = Pj(x) , x ∈ Ij(4.6)

with obvious relation between the coefficients of Pj(x) and pj(x). On each interval

Ij, the polynomial reconstruction satisfies

(i) pj(x) = vj− 1
2

+

∫ x

x
j− 1

2

v(y)dy , (ii)
1

∆x

∫
Ij

Pj(y)dy = uj
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4.1.2 Flux Approximation

To approximate the flux at cell interfaces, we replace u(y) by its local polynomial

approximation, u(y) ≈ Pj(y) for x ∈ Ij,

fj+ 1
2

=
1√
2π

∫
u(y)√
|xj+ 1

2
− y|

dy

=
1√
2π

∫ x−
j+1

2 u(y)√
xj+ 1

2
− y

dy +
1√
2π

∫
x+
j+1

2

u(y)√
y − xj+ 1

2

dy

=
1√
2π

(∑
i≤j

∫
Ii

u(y)
√
xj+1/2 − y

dy +
∑
i>j

∫
Ii

u(y)
√
y − xj+1/2

dy

)

≈ 1√
2π

(∑
i≤j

∫
Ii

Pi(y)
√
xj+1/2 − y

dy +
∑
i>j

∫
Ii

Pi(y)
√
y − xj+1/2

dy

)

=
1√
2π

(
(I+u)(xj+1/2) + (I−u)(xj+1/2)

)
= Fj+1/2

The integrals involve expressions of the form

(I+u)(xj+1/2) =

j∑
i=0

r−1∑
l=0

Cl

∫
Ii

(y − xi)l√
xj+1/2 − y

dy

(I−u)(xj+1/2) =
N−1∑
i=j+1

r−1∑
l=0

Cl

∫
Ii

(y − xi)l√
y − xj+1/2

dy

and require the evaluation of integral transform of monomials

I i,l+ (xj+1/2) =

∫
Ii

(y − xi)l√
xj+1/2 − y

dy

I i,l− (xj+1/2) =

∫
Ii

(y − xi)l√
y − xj+1/2

dy.

These integrals can be evaluated exactly. We also note that these integrals are

independent of the solution. Once a grid is specified, they may be pre-computed

once and stored.

Making the change of variables so that only
√
y remains in the denominator of
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each integral

I i,l+ (xj+1/2) =

∫ xj+1/2−xi−1/2

xj+1/2−xi+1/2

(xj+1/2 − xi − y)l
√
y

dy =

∫ (j−i+1)h

(j−i)h

((j − i+ 1/2)h− y)l
√
y

dy

I i,l− (xj+1/2) =

∫ xi+1/2−xj+1/2

xi−1/2−xj+1/2

(y + xj+1/2 − xi)l√
y

dy =

∫ (i−j)h

(i−j−1)h

(y − (i− j − 1/2)h)l
√
y

dy

we see that the integrals I+ and I− may be related to the single integral

w[l][i] =

∫
Ii

(y − xi)l√
y

dy =

∫ (i+1)h

ih

(y − (i+ 1/2)h)l
√
y

dy.

That is,

I i,l+ (xj+1/2) = (−1)lw[l][j − i]

I i,l− (xj+1/2) = w[l][i− j − 1].

The elements of the array w can be found in table 4.3. Given this representation of

the integrals I i,l+ and I i,l− , we rewrite the approximation of the flux function f as

f(u, xj+1/2) ≈ f(P , xj+1/2) =
1√
2π

( j∑
i=0

r−1∑
l=0

(l + 1)cl+1(−1)lw[l][j − i]+

N−1∑
i=j+1

r−1∑
l=0

(l + 1)cl+1w[l][i− j − 1]

)
so that to form the intercell flux, the coefficients of the polynomial reconstruction

Pi(y) of u(y) in cell Ii are multiplied by the integrated monomials over the cell, and

summed over all cells Ij.

Remark IV.1. In hyperbolic conservation laws, there is often interest in discontinuous

solutions. Consequently, numerical schemes often include numerical mechanisms

to suppress/control oscillations near solution discontinuities. For example, ENO

reconstruction chooses the stencil adaptively, WENO adapts the weights. Left/right

approximations of the intercell flux are combined to ensure the solution is TVD. In

the present context, we are not primarily concerned with discontinuities, and have
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used fixed stencils in the reconstruction process. For flows involving large gradients

or discontinuities, stencil adaptivity may be easily incorporated.

Remark IV.2. We fix the choice of stencil in our computations, but the boundaries

require special treatment. We only have data U j in cells {I0, ..., IN−1}. The polyno-

mial coefficients cl may depend on the values of {vj+k−r+1/2, ..., vj+k+1/2}, where we

have defined vj+1/2 =
∑j ∆xui. Due to limited data, this sum may only be com-

puted with indices from i = 0 to j, so that when j < 0, this sum will be computed

to be zero. Computing vj+1/2 for j > N − 1 also involves unknown values of uj. To

avoid this issue and maintain higher order accuracy in boundary cells, we shift the

stencils used for the polynomial interpolation as the cell approaches the boundary.

Precisely, in cells {Ij} on the left boundary for j = 0, 1, ..., r − (k + 1), we shift

from stencil k to stencil r − 1 + j, while in cells {Ij} on the right boundary for

j = N − 1, N − 2, ..., N − (k + 1) we shift from stencil k to stencil N − 1− j.

4.1.3 Accuracy of Scheme

The spatial accuracy of the resulting scheme depends on the order of the piecewise

polynomial reconstruction (4.6). On each interval Ij, for sufficiently smooth u the

polynomial approximant satisfies Pj(x) = u(x) +O(∆xr), from which it follows that

there exists positive constant γj such that for sufficiently small ∆x

|u(x)− Pj(x)| ≤ γj∆x
r(4.7)
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For a function u with support in [−L,L], the error in integrating Pj instead of u is∣∣∣∣∣
∫

u(y)√
|x− y|

dy −
∑
j

∫
Ij

Pj(y)√
|x− y|

dy

∣∣∣∣∣ =

∣∣∣∣∣∑
j

∫
u(y)− Pj(y)√
|x− y|

dy

∣∣∣∣∣
≤
∑
j

γj∆x
r

∫
1√
|x− y|

dy

=
∑
j

γj∆x
r2(
√
L+ x+

√
L− x)

≤ 4
√

2L
∑
j

γj∆x
r(4.8)

where |x| is assumed to be in [0, L]. Thus the flux approximation inherits the order

of approximation of the polynomial reconstruction.

The resulting semi-discrete approximation of (3.15) forms a system of time de-

pendent ODEs. To obtain a fully-discrete scheme, (4.4) needs to be integrated in

time by a stable ODE solver. We have used Runge-Kutta schemes of matching order

to the spatial discretization and determined the time step for stable integration as

described below.

Remark IV.3. The nonlocal flux function f(u, x) involves an integral on the un-

bounded domain, with a square root decay of far field contributions to the flux at x.

In the numerical implementation of the scheme, solution values outside the compu-

tational domain are assumed to be zero. This inevitably results in boundary errors.

The one-sided character of the OWWWE prevents those errors from propagating

back into the domain and polluting the solution.

4.2 Numerical Stability

The intercell flux fj+1/2(t) = f(u(·, t), xj+1/2) is a linear function of u, imply-

ing that the semi-discrete numerical approximation of equation (4.3) has a matrix
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representation

d

dt
U(t) = − 1√

∆x
AU(t)(4.9)

where U(t) = (ū1(t), ū2(t), ..., ūN(t)) are the cell averages of the numerical solution,

and A is an N ×N matrix, representing spatial derivatives of the integral transform

∂
∂x
f(u, x). Due to the nonlocal nature of the transform f , A is a dense matrix. The

stability bounds are given in terms of the parameter

ν =
∆t√
∆x

(4.10)

as should be expected from a FPDE involving half a derivative. The eigenvalues of

the matrix A, denoted by λk, k = 1, · · · , N , cannot be obtained analytically, but

can be computed numerically (for example using the ’eig’ function of MatLab), and

are then used to identify stability regions for the various numerical schemes.

The matrix A is independent of the numerical solution ūj(t), and the stability

region needs to be computed only once. Furthermore, our numerical studies show

that as the grid is refined or as L is increased, the eigenvalues of the corresponding

matrix A appear to converge to a well-defined curve. Further refinement seem to

only fill in the corresponding eigenvalue curve, but not change its shape. We have

used a reasonably converged eigenvalue curve to obtain accurate stability estimates.

We have used Runge-Kutta ODE solvers to integrate the semi-discrete solution

of (4.4) in time. For a given RK integrator, we denote by Γ = {z : |g(z)| = 1} the

boundary of the stability region, and determine the allowable ν for stable integration

by requiring that −νλk is inside the stability region enclosed by Γ, for all eigenvalues

λk. That is, we require

max
k
|g(−νλk)| ≤ 1
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Figure 4.2: Stability regions of various ODE solvers

Figure 4.2 shows the stability regions for various ODE solvers.

Figures 4.3a-4.3d show the eigenvalues −λk of −A for various order of spatial

reconstruction/stencil pairs (r, k). The eigenvalues are plotted together with the

corresponding RK stability region Γ. Also plotted is maxk |g(−νλk)| versus ν, from

which the bound on ν is estimated. These three polynomial order/stencil pairs are

stable for small ν for the right-going problem, but are unstable for the left-going

problem. By contrast, figure 4.3e shows a polynomial/stencil pair which is only sta-

ble for the left-going problem; maxk |g(νλk)| is plotted since the left-going problem is

represented by ut = ∆x−1/2Au. Finally, figure 4.3f shows a polynomial/stencil pair

which is not stable for either the right-going or left-going problem. Table 4.4 sum-

marizes the stability constraints we found for each polynomial order and stencil. In

particular, from this table we see that downwind biased stencils and heavily upwind

biased stencils are not stable for any ν.

Also of interest is the location of the eigenvalues. As shown in Proposition III.3,
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for the continuous problem the operator ∂
∂x
f(u, x) has purely continuous spectrum

given by the purely imaginary numbers. Figures 4.3a to 4.3f show that in general, our

method introduces some dissipation due to the nonzero real part of the eigenvalues

±λk. Symmetric stencils, however, as seen in figure 4.3c, are stable for both left- and

right-going equations and have all strictly imaginary eigenvalues. For these stencils,

other time integrators which include more of the imaginary axis may be better suited.

(a)

(b)
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(c)

(d)

(e)
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(f)

Figure 4.3: Computed eigenvalues plotted with RK stability regions for various polynomial order
/ stencil pairs. Figures (a), (b), (c), (d), and (f) show eigenvalues −λk plotted with RK stability
region on the left and maxk |g(−νλk)| on the right; (e) shows the eigenvalues λk plotted with RK
stability region on the left and maxk |g(νλk)| on the right. (a): linear stencil 0, (b): quadratic
stencil 0, (c): quadratic stencil 1, (d): cubic stencil 1, (e): cubic stencil 2, and (f): cubic stencil 0.

4.3 Numerical Results

4.3.1 Accuracy of Polynomial Interpolation and Integral Transform

In Section 4.1.3, we derived the expected order of accuracy for the polynomial

interpolant (equation (4.7)) and for the flux (equation (4.8)) for polynomials of order

r − 1. In this section, to verify that the numerical schemes achieve the expected

order of accuracy we present the following numerical examples. In each example, we

compute the numerical error for a set of four polynomial and stencil pairs. First we

estimate the error from the polynomial approximation by computing the polynomial

coefficients and using them to compute values of the polynomial interpolant on 100

points in each gridcell. These values are compared to the known exact values of u

to generate the error

Epoly =‖ u(x)− P(x) ‖≤Mpolyh
p
poly

where Mpoly is a constant for each (r, k) pair.
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Next we compute the integral transform for a sequence of h values and estimate

the error

Etrans =‖ f(u, x)− f(P , x) ‖≤Mtransh
p
trans

by comparing f(P)h to f(P)h/2, f(P)h/2 to f(P)h/4, etc. Again, Mtrans is a constant

which depends on r and k. L2 errors as well as computed values of M and p are

given in tables with each example.

Example 1. Consider the function

u(x) = sin(π/Lx), x ∈ [0, L], L = 20

Table 4.5 shows the L2 error in approximating u by a polynomial for the various

(r, k) pairs, and table 4.6 shows the resultant values of Mpoly and ppoly.

Table 4.7 shows the approximate L2 error in computing the integral transform for

the various (r, k) pairs, and table 4.8 shows the resultant values of Mtrans and ptrans.

Example 2. Consider the function

u(x) =

 cos6
(
π
6
x− 5π

3

)
sin
(
5
(
π
6
x− 5π

3

))
: 7 ≤ x ≤ 13

0 : else

Table 4.9 shows the L2 error in approximating u by a polynomial for various values

of (r, k), and table 4.10 shows the resultant values of Mpoly and ppoly.

Table 4.11 shows the approximate L2 error in computing the integral transform

for various values of (r, k), and table 4.12 shows the resultant values of Mpoly and

ppoly.

4.3.2 Accuracy of Solution to the OWWWE

The numerical method described in Section 4.1 was implemented to solve the

time-dependent OWWWE. While the EPIC methods clearly give faster convergence
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and better accuracy, we were unable to establish the expected higher rate of conver-

gence. The polynomial interpolation algorithm achieves the expected accuracy (4.7)

when u is sufficiently smooth. It is easy to enforce the necessary smoothness with

the initial data, but once solutions to the OWWWE are computed and waves ap-

proach the boundaries of the computational domain, a discontinuity appears at the

boundaries (outside of which, the solution is assumed to be zero) which we suspect

affects the numerical accuracy of solutions. In the following figures, the solution to

the OWWWE is shown on a sequence of grids for a selection of interpolant order and

stencil pairs. The figures illustrate the increasing order of accuracy being achieved

by polynomials of increasing order. The solutions were computed on either a 2.53

GHz Intel Xeon E5540 processor with 48 GB RAM or a 2.67 GHz Intel Xeon X5650

processor with 48 GB RAM. On average, it takes five times as long to compute on a

grid with stepsize ∆x/2 as compared to a grid with stepsize ∆x for any given inter-

polant order. It takes on average somewhere between 1.5-2 times as long to compute

with the same grid using the polynomial interpolant of next highest order. From the

grid convergence plots in figure 4.4, one can see that there is a clear advantage to us-

ing a higher-order scheme rather than refining the grid; typically, one can get away

with computing on the next coarsest grid with the next highest order polynomial

interpolant and achieve a savings of at least sixty percent of computational time,

with comparable results. In addition, compare for example the reasonably converged

solution using cubic, stencil 1 and ∆x = 0.0125 to the results for the solution com-

puted on the finest grid (still not converged!) with the trapezoid rule; it takes over

550 times as long to produce the solution using the trapezoid rule, and the quality

is much worse! Clearly there is a significant advantage from computing using the

EPIC scheme.
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(a)

(b)
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(c)

(d)
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(e)

(f)

Figure 4.4: Solution u(x, T ) to OWWWE with initial data (3.9) for a sequence of grids. (a) and
(b) show results for linear stencil 0, (c) and (d) show results for quadratic stencil 0, and (e) and (f)
show results for cubic stencil 1, with images on the right displaying the zoomed-in area indicated
by the box in the images on the left.
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4.3.3 Long Time Decay

In Chapter III, we remarked that in our experience, the O(t−1/2) decay of solutions

to the OWWWE is achievable for a broader class of initial data. In this section we

use initial data (3.9) to compute solutions to the OWWWE. Initial data given by

(3.9) does not have compactly supported Fourier transform; its Fourier transform is

given by

6

π
e20πiξ (61440iξ3(72ξ2 + 235) + 1947520iξ) cos(6πξ)

(16ξ2 − 9)(16ξ2 − 1)(144ξ2 − 121)(144ξ2 − 49)(144ξ2 − 25)(144ξ2 − 1)

Hence this initial data does not satisfy the conditions of Proposition III.2. We

compute the solution on the domain [0, 3L] until time T = 100. For n = 1 to 100, we

compute maxx |u(x, n)|. Figure 4.5 shows n plotted versus maxx |u(x, n)|. Fitting a

straight line through the data log(n) versus log (maxx |u(x, n)|) gives slope −0.4858;

in other words, maxx |u(x, t)| = O(t−0.4858).

Figure 4.5: Plot of t versus maxx |u(x, t)|, where u(x, t) is the solution to the OWWWE with initial
data (3.9)
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4.3.4 Conservation of Energy

In section 3.2.5 we showed that the solution u(x, t) to the OWWWE satisfies

‖ u(·, t) ‖L2=‖ u(·, 0) ‖L2

Figure 4.6 illustrates the conservation of energy achieved by our numerical scheme.

We compute solutions to the right-going OWWWE using initial data (3.9). As

expected, we see that the total energy (as computed using the l2 norm) stays ap-

proximately constant until enough of the waves reach the edge of the computational

domain, at which point the total energy in the system decreases.

Figure 4.6: Plot of ‖ u(·, t) ‖l2 versus t for the solution u(x, t) to the right-going OWWWE with
initial data (3.9)
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Polynomial Order Stencil Stability Bound

Linear 0 ≤ ν ≤ 0.853

−0.853 ≤ ν ≤ 0

Quadratic 0 ≤ ν ≤ 1.213

−1.573 ≤ ν ≤ 1.573

−1.213 ≤ ν ≤ 0

Cubic Unstable

0 ≤ ν ≤ 2.426

−2.426 ≤ ν ≤ 0

Unstable

Table 4.4: Stability bounds for ut = −∆x−1/2Au for polynomial reconstruction of various or-
ders/stencils, L = 20. Negative values of ν correspond to stable conditions for the left-going
problem.

h (r, k) = (2, 0) (r, k) = (3, 0) (r, k) = (3, 1) (r, k) = (4, 1)

0.2 1.0306311E-004 2.1207875E-006 1.2183324E-006 1.8382884E-008
0.1 2.5766663E-005 2.6598678E-007 1.4884834E-007 1.1485795E-009
0.05 6.4427359E-006 3.3302938E-008 1.8386116E-008 7.1784198E-011
0.025 1.6104354E-006 4.1662530E-009 2.2843759E-009 4.4870189E-012
0.0125 4.0260910E-007 5.2099415E-010 2.8467459E-010 2.9758835E-013

Table 4.5: Example 1: L2 error in approximating u by a polynomial for various (r, k) pairs

r k M p

2 0 2.5765486E-003 1.99998481
3 0 2.6447403E-004 2.99785508
3 1 1.5493713E-004 3.01525123
4 1 1.1044352E-005 3.98292489

Table 4.6: Example 1: Values of Mpoly and ppoly for various (r, k) pairs

h (r, k) = (2, 0) (r, k) = (3, 0) (r, k) = (3, 1) (r, k) = (4, 1)

0.2 7.1845386E-006 2.8375790E-007 1.4729194E-007 9.2275084E-010
0.1 1.2494326E-006 2.3370712E-008 9.2602698E-009 3.8217108E-011
0.05 2.1919850E-007 1.9830778E-009 5.8095211E-010 1.6502970E-012
0.025 3.8610608E-008 1.7142037E-010 3.6413100E-011 6.0527523E-014
0.0125 6.8137882E-009 1.4981113E-011 2.2825213E-012 5.4548118E-014

Table 4.7: Example 1: L2 error in computing SSR transform for various (r, k) pairs
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r k M p

2 0 4.9554072E-004 2.51302264
3 0 9.4795811E-005 3.56376074
3 1 9.7363794E-005 3.23956022
4 1 1.6694854E-006 4.62216077

Table 4.8: Example 1: Values of Mtrans and ptrans for various (r, k) pairs

h (r, k) = (2, 0) (r, k) = (3, 0) (r, k) = (3, 1) (r, k) = (4, 1)

0.2 9.7861759E-003 4.6486669E-003 2.5619507E-003 1.0072027E-003
0.1 2.5027162E-003 6.1024771E-004 3.3328856E-004 6.7314224E-005
0.05 6.2925615E-004 7.7225958E-005 4.2081885E-005 4.2788227E-006
0.025 1.5753866E-004 9.6830454E-006 5.2734915E-006 2.6856066E-007
0.0125 3.9398720E-005 1.2113141E-006 6.5960151E-007 1.6802820E-008

Table 4.9: Example 2: L2 error in approximating u by a polynomial for various (r, k) pairs

r k Mpoly ppoly

2 0 0.24296019 1.99026222
3 0 0.57242920 2.97898471
3 1 0.31634598 2.98285903
4 1 0.61667707 3.97121020

Table 4.10: Example 2: Values of Mpoly and ppoly for various (r, k) pairs

h (r, k) = (2, 0) (r, k) = (3, 0) (r, k) = (3, 1) (r, k) = (4, 1)

0.2 1.4987151E-003 8.8119181E-004 4.0768937E-004 1.7892586E-004
0.1 1.9832740E-004 6.4794713E-005 2.4393837E-005 5.7249801E-006
0.05 2.8165944E-005 5.0364005E-006 1.4266410E-006 1.8309317E-007
0.025 4.3502440E-006 4.1513944E-007 8.4103144E-008 6.2620009E-009
0.0125 7.1494763E-007 3.5459857E-008 5.0220311E-009 2.3283230E-010

Table 4.11: Example 2: L2 error in computing SSR transform for various (r, k) pairs

r k Mtrans ptrans

2 0 0.15495930 2.81011027
3 0 0.34909540 3.68403443
3 1 0.31086497 4.08248914
4 1 0.51569524 4.93737570

Table 4.12: Example 2: Values of Mtrans and ptrans for various (r, k) pairs



CHAPTER V

Absorbing Boundary Condition

In Chapter III we introduced the one-way water wave equations

ut ±H|D|1/2u = 0(5.1)

u(x, 0) = g(x)(5.2)

We presented a hierarchy of high-order numerical schemes to approximate (5.1)-(5.2)

in Chapter IV. These equations represent one-sided versions of the full water wave

equation,

utt + |D|u = 0(5.3)

u(x, 0) = u0(x)(5.4)

ut(x, 0) = u1(x)(5.5)

and we showed in Chapter III that the solution to (5.3)-(5.5) can be recovered by

solving

vt +H|D|1/2v = 0

v(x, 0) =
1

2

(
u0(x) +H|D|−1/2u1(x)

)

73
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and

wt −H|D|1/2w = 0

w(x, 0) =
1

2

(
u0(x)−H|D|−1/2u1(x)

)
and setting

u(x, t) = v(x, t) + w(x, t)

In this chapter, we describe the implementation of the one-way wave equations in

layers near the boundary to propagate the one-way components of the full wave

equation. At the differential equation level, the matching is perfect; outgoing waves

are completely transmitted. Once the equations are discretized, reflections can arise

from discrete imperfections in the matching, but we show that the matching is im-

proved by using higher order techniques for the one-way wave equations. Damping

may also lead to some non-physical reflections at the discrete level, but we have seen

that damping is not necessary, since as the wave reaches the edge of the computa-

tional domain, the one-sidedness of the OWWWEs does not allow the wave to be

reflected (despite the Dirichlet-like assumption that u ≡ 0 outside of the computa-

tional domain) and minimizes the effect of errors at the boundary on the interior

solution.

We begin by describing the damping that is used, and then give the numerical

setup for the absorbing boundary layers. Finally, numerical results are presented.

5.1 Damped One Way Water Wave Equations

The decay properties of the OWWWEs, as given in Proposition III.2 and Proposi-

tion III.1, indicate that moving the artificial boundary further away from the region

of interest makes the waves weaker as they reach the boundary, and thus easier to
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absorb. Of course, this is impractical as a numerical technique, because we would

like to limit the size of our computational domain as much as possible.

The decay of solutions to the OWWWE is rather slow, so that the solution is

still of significant amplitude when it reaches the boundary. Since the solution is

taken to be zero outside the computational domain, boundary errors are inevitable.

Our experience is that the one-way character of the equation prevents errors that

may be generated at the artificial boundary from propagating back and polluting the

solution at the interior of the domain, so that extending the computational domain

to take advantage of the decay of solutions is not necessary. In computations, the

one way solution on the truncated domain [0, L] still does a good job of matching the

true solution away from the boundary x = L. Figure 5.1 shows the time evolution

of the one way solution solved on [0, L] and a comparison to the one way solution

computed on the larger domain [0, 2L]. The wave moves to the right, and as it

reaches the boundary it does not reflect, because the one way equation does not

provide a mechanism for waves to move to the left despite the presence of the nonlocal

transform. The waves seem to ”stick” a little bit to the boundary before ultimately

passing through. Compare this to the results for the full equation near the boundary

from figure 3.2, when the waves were fully reflected back into the computational

domain. Because of this, damping may not be necessary in the present 1D context,

but we continue to consider it as it may prove to be more important in 2D water

wave problems.

It is interesting to compare damping strategies for the full WWE and for the

OWWWE. For the WWE, following [9] we add a linear damping term −ν~v to the
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(a)

(b)

Figure 5.1: Solution to OWWWE with initial data (3.9). (a) shows the solution with increasing
time on the vertical axis; note that as the wave reaches the edge of the computational domain it
does not reflect. (b) shows the solution at time T computed on the domain [0, L] plotted together
with the solution at time T as computed on the extended domain [0, 2L]; note how well the solutions
match.
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momentum equations

~vt + (~v · ∇)~v = −(0, 1)−∇p− ν~v

so that equation (2.10) becomes

ztt + i = iazα − νzt

Following the derivation from Chapter II of the WWE, we take another derivative

with respect to t, compose the equation with h−1, and take the real part to find that

the additional term takes the form

−νXtt = −νw = −ν(ut + buα)

which reduces to the additional term −νut when linearized about the zero solution.

Thus, the damped WWE (DWWE) is given by

utt + |D|u = −νut(5.6)

Figure 5.2a shows the solution to the DWWE from equation (5.6). In addition, we

implemented exponential damping by reasoning that v(x, t) = e−d(x−x0)u(x, t), where

u(x, t) satisfies the undamped WWE, satisfies

vtt + e−d(x−x0)|D|
(
ed(x−x0)v

)
= 0(5.7)

Figure 5.2b shows the solution to the DWWE from equation (5.7).

The results from the DWWE are not impressive; ultimately, reflections are clearly

visible not from the boundary itself but due to the introduction of the damping

terms, making the solution far from nonzero as expected in the central region. This

is further validation that our choice to impose the OWWWEs in layers near the

boundary is beneficial, because as we have seen, the OWWWEs are effective at
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(a)

(b)

Figure 5.2: Solution of DWWE with increasing time on the vertical axis, computed with initial data
(3.9)-(3.10). (a) uses equation (5.6) (additive damping) and (b) uses equation (5.7) (exponential
damping).

carrying waves away from the central domain without allowing waves to reflect at the

computational boundary. It is still possible and not difficult to implement damping
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for the OWWWEs as well, and to that end we consider two different techniques to

introduce additional damping to the OWWWE (similarly to what was done for the

WWE). The first is an additive damping,

ut ±
(
H|D|1/2 − r(x)

)
u = 0(5.8)

where the function r(x) is a (possibly regularized) Heaviside function that controls

the rate of damping. The second type is multiplicative damping, where again we

would like to solve for the function u(x, t) = e−d(x−x0)v(x, t) instead of solving for

the usual (undamped) solution v to the OWWWE. The function u satisfies

ut ± e−d(x−x0)(H|D|1/2(ed(x−x0)u)) = 0(5.9)

where d > 0 for right-moving waves and d < 0 for left moving waves in the damping

layer. Exponential damping analytically gives no reflections, but reflections may be

generated at the discrete level on the order of the numerical error.

Figures 5.3a and 5.4a show the one way solution with damping in the region

x ≥ 15, and figures 5.3b and 5.4b show the damped solution plotted with the one

way solution without damping. For the examples shown, the multiplicative damping

is stronger as indicated by the reduced magnitude of the solution in the damping

layer as compared to the additive damping, but the strength of the damping can

be adjusted by changing d or maxx |r(x)|. Both do a good job of matching the

undamped solution outside of the damping layer.

5.2 Absorbing Boundary Layer

In this section we describe an algorithm for solving the full water wave equation

by imposing the one-way water wave equations in a layer near the boundary. Our

goal is to allow outgoing waves to leave the domain without polluting the interior
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(a)

(b)

Figure 5.3: Solution to OWWWE with additive damping, with initial data (3.9). (a) shows the
solution with increasing time on the vertical axis. (b) shows the damped solution at time T plotted
together with the undamped solution at time T ; note how well the solutions match.

full solution. Let the matched solution be written as ũ. Using the relationship

between the solution to the full equation and the solutions to the one way water
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(a)

(b)

Figure 5.4: Solution to OWWWE with exponential damping, with initial data (3.9). (a) shows the
solution with increasing time on the vertical axis. (b) shows the damped solution at time T plotted
together with the undamped solution at time T ; note how well the solutions match.

wave equations, we solve the full equation

utt + |D|u = 0

u(x, 0) = u0(x)

ut(x, 0) = u1(x),
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the right going equation

vt −H|D|1/2v = 0

v(x, 0) =
1

2

(
u0(x)−H|D|−1/2u1(x)

)
,

and the left going equation

wt +H|D|1/2w = 0

w(x, 0) =
1

2

(
u0(x) +H|D|−1/2u1(x)

)
Then we set

ũ(x, t) =


u(x, t) : c1L ≤ x ≤ c2L

v(x, t) : x > c2L

w(x, t) : x < c1L

(5.10)

Figures 5.5a and 5.6a show the time evolution of the matched solution with and

without damping with initial data (3.9)-(3.10). Figures 5.5b and 5.6b show the

matched solutions plotted together with the full solutions solved on an extended

domain, to show that the matched solutions do a good job of matching the full

solution in the interior domain.
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(a)

(b)

Figure 5.5: Solution of full WWE matched with one ways in layers near the boundary, with initial
data (3.9)-(3.10). (a) shows the solution with increasing time on the vertical axis. (b) shows the
solution at time T plotted together with the solution to the WWE at time T ; note how well the
solutions match.
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(a)

(b)

Figure 5.6: Solution of full WWE matched with damped one ways in layers near the boundary,
with initial data (3.9)-(3.10). (a) shows the solution with increasing time on the vertical axis. (b)
shows the solution at time T plotted together with the solution to the WWE at time T ; note how
well the solutions match.



CHAPTER VI

Conclusions and Future Work

6.1 Conclusions

In this work we derived and implemented numerically a novel absorbing boundary

for the Water Wave Equation (WWE), which describes linearized two-dimensional

incompressible, irrotational, inviscid free surface flow in deep water. The equation is

nonlocal and involves the Hilbert transform. In numerical simulations, the domain is

truncated to a finite size and the solution is not available outside of the computational

domain. Cutting off the integral transform at the edge of the computational domain

(which is equivalent to assuming the solution vanishes outside the domain) causes

outgoing waves to reflect back into the domain. Commonly used artificial bound-

ary conditions include the so-called ”absorbing beach” in which outgoing waves are

damped. Damping the WWE directly is not very effective, as non-physical waves of

nontrivial size return to the region of interest in finite time.

We derive a one-way version of the WWE (the OWWWE) which supports the

propagation of water waves essentially only in one direction. The one-way equation is

a fractional partial differential equation involving a nonlocal operator corresponding

to half a derivative. The fractional derivative is implemented as a derivative of a

convolution with a singular kernel with locally integrable singularity. We derive a
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family of numerical methods using an Exact Polynomial Integration Computation

(EPIC) which efficiently and accurately approximate solutions to the OWWWEs.

The one way equation offers an advantage over the full water wave equation in that

errors that are generated do not have a mechanism to propagate back and pollute the

solution in the interior of the domain. The OWWWEs, as approximated using the

EPIC schemes, very effectively model the behavior of the solution to the OWWWE

on the unbounded domain.

We use the OWWWEs to absorb outgoing water waves in absorbing layers near

the computational boundary. We solve the full WWE in the interior domain and

replace it by the OWWWE in a narrow layer near the outer boundary. The matching

of the two equations is reflection free. Damping may or may not be added within

the absorbing layer to further dissipate the waves before they reach the edge of the

computational domain. We show that this technique is very effective at allowing the

waves to leave the domain.

6.2 Future Work

The work in this thesis may be generalized in several directions. The numerical

algorithm to approximate solutions to the OWWWEs may be improved by adding the

ability to use ENO-type adaptive stencil selection [25] or WENO techniques [32] to

better handle propagation of waves with sharp fronts. A more robust implementation

of the EPIC schemes for higher order polynomials may be derived, again taking

inspiration from the vast literature on polynomial interpolating schemes from the

hyperbolic conservation law literature; currently, the exact polynomial integration is

very sensitive to roundoff errors and may lead to instability when high order methods

are implemented on fine grids. The schemes may be generalized to non-uniform grids,
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which will allow for the algorithms to be implemented on grids that are stretched

near the boundary.

On the analytic side, a major generalization is to derive a OWWWE for three

dimensional problems. This can be accomplished as a first attempt by using two-

dimensional ideas in the direction normal to the boundary, and more generally by

following ideas used by Engquist and Majda [16]. In both two- and three-dimensional

problems, the usefulness of OWWWEs as boundary conditions rather than in an

absorbing layer can be investigated.
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