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PREFACE 
 

A note to the multidisciplinarian: 

A colleague of mine, Bart Frischknecht, once referred to scholars of 

multidisciplinary studies as cave men and women, finding their own way in the 

wilderness, far away from the glitzy cities of established disciplines. But I prefer the 

analogy of the multidisciplinarian as a traveler between cities. The ideal 

multidisciplinarian is able to speak multiple languages, serving as an informed 

ambassador, contributing to issues that are valued by the classical disciplines in which 

they reside. Yes, some of their ways may seem strange to single-disciplinarians because 

they are influenced by multiple cultures, but they should be fluent in the methods and 

motivations of each of the disciplines they claim and able to clearly communicate their 

work and its value in the language of each discipline. 

The need for ambassadors between disciplines is clear in issue areas such as the 

environment. Environmental concerns have a pesky tendency to ignore all of the nice and 

neat imaginary boundaries we have established, between jurisdictions, environmental 

media, and scholarly disciplines. Understanding and addressing formidable 

environmental matters such as climate change will require an integration of knowledge 

from the environmental sciences, economics, engineering, politics, and more.  This 

dissertation contributes to a piece of this puzzle, establishing a methodology connecting 

economic analysis of policy with engineering modeling of the physical constraints and 

tradeoffs inherent in product design and production.  

This work will attest to how close I have come to the ideal of a 

multidisciplinarian, as the reader may judge. But I certainly hope it will serve as a 

stepping-stone for future scholars to prove the worth of multidisciplinary studies and 

develop a code of rigor for this crucial work.   
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CHAPTER 1: INTRODUCTION 

 “Technology, combined with improved design, can greatly aid the quest for 
sustainability. Indeed, the notion that technological choice is crucial for 
environmental improvement lies at the core of industrial ecology” 
 —Marian Chertow (2000) 
 

 The design of products is well recognized as a crucial component to achieve 

sustainable development (Anastas and Zimmerman 2003; Chertow 2000). Indeed, a 

majority of the environmental impact of a product is predetermined early on in the design 

stage (Hauschild et al. 1999; Borland and Wallace 2000). Potential opportunities to 

reduce environmental impacts through design have triggered a number of policy actions 

aimed at inducing environmentally preferred design changes. The Corporate Average 

Fuel Economy regulation and appliance standards in the United States and the Energy-

Using Products directive in the E.U. aim to induce product design that minimizes energy 

use (Directive 2005/32/EC). The E.U.’s Waste Electrical and Electronic Equipment 

directive and Japan’s producer take-back requirements aim to encourage product designs 

that reduce waste streams from disposal (Directive 2002/96/EC; Ogushi and Kandlikar 

2007). And, cap and trade policies implemented in the E.U. and proposed in the U.S. 

Congress create the incentive for capped firms to modify products to reduce emissions as 

well as sending a price signal to consumers, which raises demand for products with lower 

embodied emissions (Directive 2003/87/EC; H.R. 2454).  

This expanding interest in policies targeting product design exposes the need for 

methods to support the development of these policies and industrial decision-making in 

response to these policies. Analysis tools are needed to evaluate the ability of these 

policies to effectively and efficiently induce desired design changes and reveal any 

additional positive or negative consequences. The impacts of a policy on design decisions 

are intrinsically connected to the interaction between the policy, consumer demand, 

engineering tradeoffs and constraints, and the economic structure of the industry. 
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Existing literature in economics and engineering design has developed methods to study 

these domains but an integration of these methods of the extent necessary to inform 

policy and industrial decision-making is still needed.   

 This dissertation presents an approach of integrating state-of-the-art models of 

consumer demand and engineering design to examine the relationship between 

environmental policy and product design. Climate change policies impacting the 

automotive industry will serve as the specific focus of the research although the 

methodology is directly applicable to other product categories. Specifically, the approach 

presented in this dissertation is appropriate to analyze industries that can be characterized 

as differentiated-product oligopolies in which policymakers are interested in increasing 

energy efficiency, and manufacturers make design decisions that affect energy efficiency 

and other product attributes that influence product demand. These characteristics 

encompass many industries that are relevant to policies targeting product design, such as 

light- and heavy-duty vehicles, household appliances, and certain consumer electronic 

industries.  

A model of the U.S. automotive market is presented, representing consumer 

purchase decisions and firm design and pricing decisions for the full line of vehicles 

produced in a year. The methodology integrating engineering design models with 

economic analyses produces three contributions. First, the combined model allows for 

policy analysis of the full-scale automotive industry considering design options that may 

be profit-optimal in the presence of the policy even if the design options are not 

observable in current data. Second, the structure of engineering design decisions made 

throughout the product development process is used to address the difficulty of 

econometrically identifying demand parameters for design attributes. Third, cost 

parameters are estimated using engineering data when available and derived from the 

econometric demand model when engineering cost estimates are difficult to obtain. 

 The dissertation is organized as follows. Chapter 2 reviews state-of-the-art 

methods in engineering design, environmental and industrial-organization economics, 

and lifecycle assessment that form the foundation of the presented methodology. Chapter 

3 describes the development of the engineering-design and econometric-demand models 

and synergies of combining these approaches. The approach of integrating these models 
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is then applied to three separate case studies. In Chapter 4, the combined model is used to 

evaluate a policy instrument in terms of its ability to incite the design changes targeted by 

the policy and its impact on firm profits. Chapter 5 uses the developed methodology to 

examine potential influences of a policy instrument on additional design changes that are 

not necessarily the target of the policy. Applications of the approach to lifecycle 

assessment are discussed in Chapter 6 with a demonstrational case study incorporating 

models of consumer demand, engineering design, and firm competition into a lifecycle 

analysis. A summary of this research and opportunities for future developments are 

discussed in Chapter 7. 
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CHAPTER 2: BACKGROUND 

“If I have seen further it is only by standing on the shoulders of giants.”  
—Isaac Newton 

 

2.1 Economic Literature 

A mature body of literature in economics focuses on modeling the impact of a 

change on the Nash equilibrium of a market, which specifies a set of decisions from 

which no individual firm has a profitable incentive to deviate (e.g., Fundenberg and 

Tirole 1993; Viscusi et al. 2005). This literature has developed well-known methods to 

estimate consumer preferences for differentiated products, a category that includes all 

designed-product industries, such as the automotive, consumer electronic, and appliance 

industries. While this research predominantly assumes that the designs of products are 

exogenously determined, increasing attention is being given to the product design 

decisions that producers make in addition to pricing decisions (e.g., Fan 2008; Sweeting 

2007; Klier and Linn 2008; Knittel 2009; Seim 2006). 

 The standard theory of neoclassical economics for differentiated-product 

industries consists of firms maximizing profits with respect to the prices of their products 

given the prices that their competitors have chosen. The equilibrium of this system, called 

Bertrand equilibrium, is therefore defined as the prices for all products that 

simultaneously maximize profits for each firm with respect to their respective products’ 

prices (Viscusi et al. 2005). Common assumptions of models in this literature specify that 

firms are rational; actions are chosen simultaneously (static equilibrium); and information 

is complete, meaning that each firm’s payoff function is common knowledge among all 

firms (Gibbons 1992). A substantial body of research has studied modification of these 

assumptions (e.g., Fundenberg and Tirole 1993; Gibbons 1992), but this research will not 

be discussed here. 
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Typically, consumer demand is represented in this literature by a discrete choice 

utility model. In this model the utility, 𝑢𝒏𝒊, or satisfaction consumer n receives from 

product i, is composed of an observed portion and an unobserved portion of utility: 

𝑢𝒏𝒊 = 𝓯(𝑝𝑖,𝒙𝒊,𝒅𝒏,𝜽𝒏) + 𝜺𝒏𝒊. The observed portion of utility can generically be specified 

as a function of price, pi, observed product attributes, xi, consumer demographics, dn, and 

parameters, θn, which the researcher estimates. The unobserved portion of utility, 𝜺𝒏𝒊, 

depends on unobserved product attributes and other unobserved data  and is commonly 

assumed to be independently and identically distributed according to the Type 1 Extreme 

value distribution (e.g., Louviere 2003, Train 2003). This assumption allows the 

probability, 𝑃𝒏𝒊, that consumer n will purchase product i out of the set of products 𝕴 to be 

written in closed form:  

𝑃𝒏𝒊 =
𝒆𝓯(𝑝𝑖,𝒙𝒊,𝒅𝒏,𝜽𝒏)

∑ 𝒆𝓯�𝑝𝑗,𝒙𝒋,𝒅𝒏,𝜽𝒏�𝒋∈𝕴
 2.1 

In much of the applied economics literature that studies differentiated-product 

industries, the abilities of firms to change product designs is not considered or is largely 

underemphasized (e.g., Goldberg 1998; Jacobsen 2010; Nevo 2000). The majority of this 

work is concerned with firm pricing decisions in response to a policy intervention or 

change in the market, such as a merger, with all product designs considered fixed. This 

model formulation could be thought of as a representation of the short-run firm response 

(less than a year for many industries) but over longer time-spans, firms are able to adjust 

the designs of their products as well as the prices. Increasingly, researchers in the 

environmental economics and industrial organization have recognized the importance of 

accounting for firm decisions regarding product design, but many opportunities exist to 

advance the methods of modeling these decisions.  

2.1.1 Environmental economics literature 

In the environmental economics literature, significant interest has been given to 

studying the ability of policy instruments to induce technological change, but 

representations of technology are generally simplistic. A common approach of modeling 

endogenous technological change in this literature is to represent technology adoption as 
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an investment that leads to a reduction in production costs. For example, Jung et al. 

(1996) analyze policy instruments with respect to the ability to increase the supply of 

renewable electricity. In this study, firms pay some cost for the pollution they emit and 

the firm can choose to invest in a technology that reduces their pollution level. Fischer 

and Newell (2008) analyze the efficiency of policy instruments to encourage renewable 

energy diffusion, representing technology adoption as functions translating R&D 

investment and learning-by-doing experience to cost reductions for renewable energy.  

These approaches model important mechanisms by which policy instruments 

influence design decisions but they ignore potential tradeoffs and constraints involved 

with these decisions. Extending these approaches to account for engineering constraints 

and tradeoffs associated with implementing specific technologies and design strategies 

may yield different results regarding the efficiency and effectiveness of environmental 

policy instruments. For example, higher efficiency dishwashers require longer cycle 

times (Consumer Reports 2010), which may deter consumers from purchasing them. A 

policy analysis that does not account for this tradeoff may undervalue the importance of 

providing additional incentives to consumers to purchase higher efficiency dishwashers. 

This dissertation presents an approach of explicitly accounting for relevant engineering 

tradeoffs and constraints in the analysis of policy instruments. 

2.1.2 Industrial organization economics literature 

As well as contributing to the environmental economics literature, this 

dissertation is relevant to industrial organization (IO) economics. The IO economics 

community has a long history of studying the structure of markets and the organization of 

firms. The decisions firms make regarding product design are an important aspect of firm 

competition and the structure of many differentiated-product industries. Much of the 

existing work modeling product design decisions has focused on relatively 

straightforward design processes that do not have constraints or tradeoffs with other 

product attributes (e.g., Seim 2006; Sweeting 2007; Fan 2008). The types of products that 

are relevant for design-targeting policies, such as automobiles and household appliances, 

present additional challenges because firm design decisions include many engineering 

constraints and tradeoffs that are necessary to consider. Recent research in this literature 
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is just beginning to develop methods to analyze these design decisions (e.g., Gramlich 

2008; Klier and Linn 2008; Knittel 2009).  

In order to estimate the longer run costs of the Corporate Average Fuel Economy 

(CAFE) regulation, Austin and Dinan (2005) and Kleit (2004) introduce an oligopolistic 

equilibrium model of CAFE where product design is not completely fixed, but instead 

firms adjust the fuel economy of their vehicles by implementing fuel-efficiency 

technologies. Changes in fuel economy enter the equilibrium model by assuming 

consumers treat the net-present value of a vehicle’s lifetime fuel savings as a reduction in 

the vehicle’s purchase price. All other vehicle attributes are considered exogenous. Unit 

production costs are modeled as increasing in response to fuel economy improvements 

according to technology cost curves. The only technologies included in the models are 

those that are assumed to increase fuel economy while having no effect on other vehicle 

attributes. The same strategy is incorporated in Jacobsen’s (2010) study of CAFE. 

While this approach advanced the state-of-the-art by incorporating technology 

decisions into an oligopolistic equilibrium using the standard Bertrand model where 

product prices change but all other aspects of the product are considered exogenous, the 

assumptions necessary to apply this method are not supported by consumer research. 

Incorporating decisions on fuel-saving technologies into the Bertrand model requires the 

assumption that consumers value fuel consumption as the net-present value of future fuel 

savings. However, Turrentine and Kurani (2007) present interviews of households across 

consumer-segment groups finding “no household that analyzed their fuel costs in a 

systematic way in their automobile purchases”. These findings imply that consumers do 

not trade off net-present future fuel savings equally with purchase price and therefore 

consumer valuation of fuel economy should be estimated separately from purchase price. 

Fischer (2010) develops a theoretical model of the automotive industry in which 

consumer valuation of fuel economy is not restricted to the net-present value of future 

fuel savings and is allowed to vary between consumers of different vehicle segments. She 

finds that an oligopoly of automotive firms over-provide fuel economy in vehicle 

segments in which consumer valuation of fuel economy is relatively high and under-

provide fuel economy in segments in which consumer valuation is lower to encourage 

market segmentation. Similarly to Austin and Dinan, Fischer represents the ability of 
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firms to increase fuel economy as an increase in production costs and assumes all other 

vehicle attributes are exogenous and unaffected by changes to fuel economy.  

This assumption that automakers will respond to fuel economy policies by 

implementing only design strategies that increase fuel economy and have no effect on 

other attributes is not justified. Many design options that increase fuel economy—for 

example, turbocharging, variable valve timing, and hybridization—will either increase or 

decrease acceleration performance. 

Recognizing the importance of studying firm decisions that impact energy 

efficiency and other product attributes that trade off with efficiency, a few researchers 

have estimated the engineering tradeoffs between product attributes in the automotive 

industry. Knittel (2009) econometrically estimates the tradeoffs that automotive 

manufacturers face between the fuel economy, weight, and engine power of vehicles sold 

in the United States over the period of 1980–2006. He documents both movements along 

and shifts in the production possibility frontier (PPF) of these three vehicle attributes, 

representing the set of attribute combinations where no attribute can be improved without 

a loss in another attribute. Klier and Linn (2008) also econometrically model engineering 

tradeoffs between endogenous vehicle attributes on the supply side, coupling this model 

with a demand-side estimation to analyze the medium-run response to the CAFE 

regulation. The authors exploit an engine data set to estimate tradeoffs between 

endogenous attributes—including horsepower, fuel economy, and weight—using 

variation in observed attributes of vehicle models with the same engine program.  

A notable challenge of econometrically estimating the engineering tradeoffs 

between product attributes is that the PPFs for a product are dependent on many product 

attributes, both observed and unobserved. Accounting for correlation between 

endogenous attributes and unobserved attributes, which are common in the automotive 

industry, is difficult. For example, the 2011 Chrysler 200 with a 2.4 L engine option has a 

combined fuel economy of 20.7 mpg and a 0-60 acceleration of 8.2 s, whereas the 3.6 L 

engine option has 19.2 mpg and 6.4 s. However, engine options are correlated with 

unobservable attributes; in addition to a larger engine, the 3.5 L option also has a 6-speed 

transmission instead of a 4-speed, a 160 amp alternator instead of 140 amps, and a suite 

of electronic accessories including heated seats, a tire-pressure monitor, a touch-screen 
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monitor, satellite radio, and an upgraded stereo system. The addition of these extra 

features affects fuel economy and typically increases demand, violating the certeris 

paribus assumption in counterfactuals. Moreover, many vehicle options have variations 

in design features that are even more difficult to obtain data on than the features listed 

above. For example, the coefficient of friction of engine components such as piston rings, 

material coatings, and lubricants impacts fuel economy, acceleration performance, and 

production costs but this information is rarely reported by manufacturers or available in 

even such detailed vehicle data sets as WARDs Automotive.  

This dissertation contributes to this challenge by integrating an engineering model 

of product design to identify the tradeoffs between product attributes. Physics-based 

engineering simulations are used to construct the PPFs between fuel efficiency, 

acceleration performance, and production costs. This engineering-based approach confers 

two advantages. First, engineering tradeoffs between fuel economy and other product 

attributes can be identified without conflating changes in unobserved attributes that 

typically affect both fuel efficiency and consumer demand. Second, the engineering 

model can capture many combinations of product attributes that are not observed in the 

market to date, but are technologically feasible. This is important because these 

unobserved vehicle designs may be optimal under relevant policy regimes. In fact, 

manufacturers have stated that they will rely on further implementing advanced 

technologies in order to meet fuel economy standards in the future (Amend 2010).  

In addition to the challenges of estimating the engineering tradeoffs between 

product attributes, a defining challenge of the IO economics literature relates to 

estimating consumer preference when endogenous variables are correlated with the 

unobserved portion of utility. If unaccounted for, this correlation produces biased 

estimates of consumer preferences. A common approach of addressing the correlation is 

to choose instrumental variables, which are correlated with the endogenous variables but 

are not correlated with unobserved utility (Wooldridge 2001). Following a two-stage 

least-squares procedure, first regressing the endogenous variables on the instrumental 

variables and then regressing the utility on the instrumented estimates of the endogenous 

variables, produces unbiased estimates of consumer preferences (Berry 1994).  
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In previous work, some researchers have used functions of non-price attributes of 

vehicles as instruments (e.g., Berry et al. 1995; Train and Winston 2007, Beresteanu and 

Li 2008, Petrin 2002). This choice of instruments is subject to the criticism that firms 

presumably choose these non-price attributes and prices simultaneously, and therefore the 

instruments are not independent of unobserved utility. This dissertation contributes to this 

research by using the well-documented structure of the automotive design process to 

identify vehicle attributes that are determined in earlier stages than the endogenous 

attributes of interest. The key identifying assumption is that powertrain architecture (e.g., 

hybrid), drive type (e.g., all-wheel-drive), and major vehicle dimensions are chosen 

earlier in the development process than detailed design variables in the powertrain that 

affect both fuel economy and acceleration performance. This assumption is supported by 

detailed descriptions of the automotive development process (Braess and Seiffert 2005; 

Sörenson 2006; Weber 2009).    

2.2 Engineering literature  

2.2.1 Decision-based Design literature 

The engineering design literature has a long history of modeling the engineering 

tradeoffs and constraints inherent in product design and their relation to the objectives of 

a firm. While the discipline of engineering design originally was viewed as a problem-

solving process aimed at minimizing costs subject to constraints of functional 

requirements, it has developed into a systems analysis of a decision-making process that 

aims to maximize the value of a designed product to a firm considering costs and 

consumer demand for design alternatives (Hazelrigg 1998; Lewis et al. 2006; Wassenaar 

and Chen 2003). This line of research provides a valuable foundation for integrating 

representations of consumer demand together with models of engineering tradeoffs and 

constraints necessary to understand the relationships between policy and product design 

decisions. 

 One goal of the decision-based design (DBD) paradigm is to combine models of 

demand, cost, and engineering performance of products into a comprehensive design 

optimization framework. A firm’s ability to conduct forward-looking product planning 

scenarios in this context requires not only engineering models that link product 
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performance to design attributes but also customer decision models that appropriately 

link design attributes to product demand. The DBD literature has integrated such 

representations of customer decisions, especially applied to automotive design, by 

borrowing and adapting existing demand models from the social sciences (e.g., Besharati 

et al. 2006; Frischknecht and Papalambros 2008; Michalek et al. 2004; Shiau and 

Michalek 2009), estimating new versions (e.g., Kumar et al. 2007; Kumar et al. 2009; 

Shiau and Michalek 2009; Wassenaar et al. 2005), and exploring scenarios of uncertain 

demand (Besharati et al. 2006; Moon et al. 2010; Suh et al. 2007). Reviews of methods in 

this literature are available in Donndelinger et al. (2008), Frischknecht (2009), and 

Michalek (2005). 

This literature has been formative to DBD research by coupling consumer utility 

models with design optimization but representations of both consumer demand and the 

economic structure of the industry are often simplified such that the analyses do not 

suitably represent the industries they aim to study. With respect to demand 

representations, this literature largely does not address the correlation between observed 

product attributes and unobserved product attributes, as described in Section 2.1. Without 

accounting for this issue, it is likely that the estimates of consumer utility parameters are 

biased.  

For example, Kumar et al. (2007) estimate consumer utility coefficients for 

various vehicle product attributes, including price, interior dimensions, power, fuel 

economy, and interactions with these attributes and consumer demographics. The 

estimated coefficient on price of this model is positive, indicating that consumers prefer 

vehicles with higher prices. The authors identify that this unexpected sign is likely due to 

a correlation of price with premium attributes of vehicles, which are often difficult data to 

obtain, but do not attempt to correct the contamination of this parameter. As a result, this 

demand estimation is not appropriate for design studies or other counterfactual 

simulations because the relationship between consumer utility and price changes 

independent of other product attributes has not been identified. While this is an extreme 

example, where the sign of the estimated price coefficient is positive, similar 

contamination of demand parameters are likely to exist in many demand models 

estimated in this literature that use data of consumers’ actual purchases (e.g., Kumar et al. 
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2006; Wassenaar and Chen 2003; Wassenaar et al. 2005). Properly designed stated-

choice surveys (e.g., Luo et al. 2005; Orsborn et al. 2009; Reid et al. 2010) can avoid this 

issue but this approach relies on the assumption that consumer survey results represent 

actual purchasing behavior, which has been shown to not necessarily be the case (see for 

example, Kagal and Roth 1995; Slovic 1995). 

With respect to representations of the economic structure of the industry, the 

DBD literature often uses simplified models where competitor decisions are not 

considered or only a subset of products in the industry are modeled. Li and Azarm (2000) 

and Jiao and Zhang (2005) represent a single firm’s design decisions accounting for 

competing products but all competitor decisions are considered fixed. Williams et al. 

(2008) similarly consider all competitor decisions as fixed, but do account for the 

decisions of retailers that buy products from the manufacturer and sell them to the end 

consumer. Lewis and Mistree (1998) use economic approaches of equilibrium to model 

competing and cooperative decisions between engineering designers within the same firm 

but do not account for any strategic decision-making between firms.  

A subset of DBD research has recognized the influence of economic structure of 

an industry, including relevant government regulations, on firms' optimal design 

decisions. Georgiopoulos et al. (2002) model the optimal product mix of a hypothetical 

automotive firm producing a passenger car and a light truck subject to the constraint of 

U.S. fuel economy standards, demonstrating the influence the regulation has on optimal 

design decisions. Kwak et al. (2007) develops a method to optimize the disassembly 

sequence of products to conform to the constraints of take-back requirements prevalent in 

Europe and Japan. And, Shiau and Michalek (2009) demonstrate that the economic 

structure of the market, namely whether manufacturers control prices directly or through 

a franchised or common retailer, affects optimal design decisions.  

Conversely, Frischknecht (2009), Michalek (2004) and Shiau et al. (2009) 

examine the relationship between a firm’s profit-optimal design decisions and the 

outcome of a policy objective, specifically reduced fuel consumption. Frischknecht 

(2009) demonstrates that efficiency frontier between greater firm profits and improved 

fuel efficiency often follows a concave tradeoff, and that the extent to which these 
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objectives are aligned (or opposed) depends on the technology considered, the extent of 

competition in the market, consumer preferences, and the regulatory environment. 

Perhaps the most closely related research in the DBD literature to the 

contributions of this dissertation is presented in Michalek et al. (2004) and Shiau et al. 

(2009). In both studies, the authors investigate optimal vehicle powertrain designs and 

pricing decisions in response to specific policy measures and evaluate the policies with 

respect to the design responses. Michalek et al. (2004) determines the equilibrium of a 

hypothetical industry in which firms each produce a midsize vehicle model under 

multiple policy scenarios—including a minimum production constraint for diesel 

vehicles, a fine proportional to carbon dioxide emissions from produced vehicles, and an 

increase in the penalty for violating the fuel economy standard. Using the same 

hypothetical industry example, Shiau et al. (2009) evaluates the ability of U.S. fuel 

economy standards to induce design changes. The authors illustrate that if fuel economy 

standards are increased but the fines associated with violating the standards are not 

increased, then firms may have no incentive to improve the fuel economy of their 

vehicles. The results of these studies indicate that policy outcomes (e.g., realized 

reductions in CO2 emissions) depend substantially on how they are linked to design 

decisions. 

The research presented in this dissertation builds from the approach taken in 

existing DBD research (Frischknecht 2009; Michalek et al. 2004; Shiau et al. 2009), 

further developing the methods to inform policy analysis and industrial product planning. 

These developments comprise advancements on both the demand-side and supply-side of 

the system. The methodology presented in this dissertation includes estimation of a 

demand model using state-of-the-art econometric methods, and interfaces this model with 

the firm optimization problem. This addresses an issue with some DBD studies (e.g., 

Frischknecht and Papalambros 2008; Michalek et al. 2004; Shiau and Michalek 2007), 

which adopt demand models from previous literature that may not be valid for design 

optimization studies (Frischknecht et al. 2009). On the supply-side of the system, a full-

scale model of the automotive industry is presented including all vehicle models and 

engine options from twenty brands (~500 products), which is substantially larger than the 

number of products studied in much of the DBD literature (2-25 products) (e.g., 



14 
 

Georgiopoulos et al. 2002; Kumar et al. 2009; Michalek et al. 2004; Shiau and Michalek 

2009; Wassenaar et al. 2005). Solutions to the firm optimization problem depend on both 

the types of products represented in the system and the extent to which product 

heterogeneity is captured. Consequently, the full-scale model should more closely 

represent the automotive industry.  

2.2.2 Automotive engineering literature 

In addition to contributing to the DBD engineering literature, this dissertation is 

relevant to a subset of engineering literature that focuses on the potential to improve 

vehicle fuel efficiency by implementing various technologies and, less frequently, 

compromising other aspects of vehicle performance. This literature can roughly be 

divided into two categories. The first category examines the potential for fuel efficiency 

improvements based on known technology advances (e.g., DeCicco et al. 2001; NHTSA 

2008). The second category aims to predict future improvements in fuel efficiency by 

extrapolating historical trends (e.g., An and DeCicco 2007; Cheah et al. 2008; 

MacKenzie 2009). 

The common approach used in this first category is defining discrete packages of 

technology options and determining the impact of these technology packages on fuel 

efficiency using engineering vehicle simulations. For example, DeCicco et al. (2001) 

determine the maximum feasible increases in fuel efficiency from 2010–2015 considering 

a number of technology packages, including low tire rolling resistance, increased 

aerodynamic efficiency, low-friction engines, lightweighting, and gasoline direct-

injection engines. The authors find that average new-vehicle fuel economy can be 

increased to 36 mpg. Assuming that the costs of implementing these technology packages 

translates into vehicle prices by assuming markups are 1.8 times the manufacturing costs, 

results indicate that this improvement of fuel economy causes an increase of average 

vehicle prices by $1,300.  

NHTSA (2008) takes a similar approach, determining the maximum feasible 

increase in fuel efficiency by implementing technology packages into representative 

vehicles as well as considering the increases in fuel efficiency where the costs of the 

technologies equal the benefits in terms of fuel savings and reduced local emissions. 
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These results indicate that the maximum feasible increase in average new-vehicle fuel 

economy is 39.9 mpg for passenger cars and 31.3 mpg for light trucks, and the increase 

that equates costs and benefits is 38.8 mpg for passenger cars and 30.5 for light trucks. 

Using a markup factor of 1.5 times manufacturing costs, these results imply an increase 

in average new-vehicle prices of $3,264 and $2,785 for passenger cars and light trucks, 

respectively, to achieve the maximum feasible increase and $2,367 and $2,509, 

respectively, to achieve the equal costs and benefits increase. 

This dissertation takes a similar approach of determining the impact of specific 

technologies on fuel efficiency and acceleration performance using engineering vehicle 

simulations. However, the methods presented in this dissertation do not aim to determine 

the maximum feasible improvement in fuel efficiency but rather the change in fuel 

efficiency and other vehicle attributes in response to policy instruments considering 

consumer preferences for vehicles and profit objectives of manufacturers. Furthermore, 

this research does not rely on the condition that vehicle production costs translate into 

vehicle prices through assumptions on markups; instead, manufacturers are modeled as 

setting prices as well as choices on technology options and vehicle attributes in order to 

maximize their profits. 

A separate body of literature examines the impact of technology change on fuel 

efficiency and other aspects of vehicle performance by examining historical trends in the 

automotive industry instead of determining the impact of specific technology options. For 

example, An and DeCicco (2007) propose an indicator of technology change in the 

automotive industry, noting that the product of the sales-weighted average of vehicle size, 

specific power, and fuel economy—specifically, the ratio of horsepower to weight 

multiplied by interior volume and fuel economy—increased linearly over the period of 

1977–2003.  Using this indicator, called the Performance-Size-Fuel Economy Index 

(PSFI), the authors infer periods when technology gains were applied to improvements of 

fuel efficiency, improvements of size or acceleration performance, or some combination. 

Cheah et al. (2008) and MacKenzie (2009) use the same indicator to examine the 

potential to increase fuel efficiency by shifting the allocation of technology gains to 

reducing fuel consumption. 
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 Cheah et al. (2008) define a measure of the allocation of technology gains 

towards fuel efficiency based on the PSFI indicator, called the Emphasis on Reduction of 

Fuel Consumption (ERFC). This measure represents the ratio between the realized fuel 

consumption reduction over a specified period and the potential fuel consumption 

reduction holding vehicle size and specific power constant, which is calculated based on 

sales-weighted average trends of the PSFI. The authors determine that between 1995 and 

2006 the ERFC was 8% in the United States, 54% in Germany, and 83% in Italy. 

Additionally, the authors calculate that fuel consumption could be reduced 26% by 2035 

if all technology gains were applied to fuel efficiency, and could be reduced 33% by also 

compromising acceleration performance such that the sales-weighted average time to 

accelerate from 0–60 mph increased by 5 s. 

Similar to Cheah et al. (2008), MacKenzie (2009) uses the ERFC to determine the 

potential to increase fuel efficiency in the future but also couples the technology indicator 

with the willingness of consumers to pay for fuel efficiency and acceleration 

performance. Using the ERFC to represent the decision to implement technology and 

tradeoff fuel efficiency with acceleration performance, he models the impact of an 

increase in gasoline prices and the impact of CAFE standards on the sales-weighted 

average fuel economy and acceleration performance. This approach models the 

automotive industry as effectively a single decision-maker who adjusts the ERFC in 

response to these system changes. The automotive industry is assumed to make decisions 

on ERFC to maximize the value of the sales-weighted average vehicle attributes to 

consumers. Results of this approach indicate that a CAFE standard of 39 mpg on 

passenger cars in 2020 imposes a cost of $200 per car in terms of consumer value 

compared to a 2005 baseline.       

Similar to this literature, the research presented in this dissertation aims to 

identify the tradeoff between acceleration performance and fuel efficiency and examine 

the impact of CAFE standards on firm decisions regarding vehicle attributes and the 

resulting impact on firm profits and consumer welfare. However, the methods developed 

in this dissertation are distinctive from this literature. Tradeoffs between fuel efficiency 

and acceleration performance are identified at a vehicle level instead of relying on the 

average trend across the industry. This engineering model is coupled with a consumer 
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demand model that considers not only preferences for fuel efficiency and acceleration 

performance, but also vehicle price, size, segment, and additional vehicle attributes such 

as brand and luxury accessories. This approach enables modeling the design and pricing 

decisions of each automotive manufacturer in competition with each other with respect to 

the prices and attributes of their individual vehicles.  

2.3 Lifecycle Assessment 

 Lifecycle assessment (LCA) is a method of conducting an inventory of the 

materials, energy, wastes, and emissions flows through the lifecycle of a product, 

process, or system and assessing the impact of these flows on the environment (SETAC 

1993; ISO 1997). An LCA analysis consists of defining the boundaries of the relevant 

system; gathering data on environmental flows within the system, modeling system 

processes to calculate approximate input and output flows when data aren’t available; 

evaluating the potential environmental impacts associated with the inventory data; and 

interpreting the results to inform decision-making. Over the past decade, practitioners in 

industry, academia, and government have used LCA as a means of understanding 

environmental impacts across lifecycle stages of products and environmental media (e.g., 

water, air) (Schmidt 2000). One common application of LCA is informing consumer 

choice among product alternatives to fulfill a particular need. 

Many researchers have drawn attention to notable limitations of using existing 

LCA methods to inform policymaking, including challenges of setting suitable system 

boundaries, collecting appropriate inventory data, and verifying modeling assumptions 

(e.g., DeCicco 2010; Ross et al. 2002). One major limitation of commonly used LCA 

approaches for policy applications is the focus on individual products in isolation of the 

economic system in which they exist. Because many environmental policies consist of 

creating economic incentives for producers or consumers to reduce environmental 

impact, LCA analyses informing policymaking need to incorporate economic decision-

making, and other crucial aspects such as engineering relationships that affect these 

decisions. This type of systems perspective is particularly important for product-targeting 

policies because the design decisions that producers make, which considerably impact 
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environmental outcomes, are governed by the economic structure of the industry, 

consumer demand, and engineering constraints and tradeoffs.  

Some recent LCA analyses include consideration of certain economic factors such 

as demand elasticities (e.g., Ekvall and Andræ 2006; Sandén and Karlström 2007; 

Schmidt and Weidema 2008) but these studies are limited by considerably simplified 

assumptions. Most notably, they focus only on commodity products, which are uniform 

across all producers, and predominantly consider only the decision of whether to increase 

production of the product. Furthermore, economic parameters such as demand elasticities 

used in these studies are usually estimates adopted from existing literature without a 

substantive discussion on the assumptions associated with the estimation and in some 

cases (e.g., Ekvall and Andræ 2006), these parameters are derived purely from conjecture 

without a strong basis in econometrics. Development of these methods so that they are 

appropriate for informing policymaking will require an integration of state-of-the-art 

econometric approaches and increased transparency of any assumptions associated with 

parameter estimates. This dissertation contributes to these developments. 

Addressing these concerns, policymakers—and in particular, the European 

Commission (EC)—recently called attention to the need to both broaden and deepen 

LCA approaches (Guinée et al. 2010). With regard to broadening LCA, the EC appealed 

for methods to incorporate economic and social analyses into environmental LCA in 

order to implement sustainability assessments using a systems approach. With regard to 

deepening LCA, the EC proposed improving the rigor and suitability of LCA methods to 

analyze a more extensive set of product and process systems relevant for policymaking. 

This dissertation contributes to both the broadening and deepening of LCA methods in 

the context of designed-product systems. With respect to broadening LCA methods, 

linking lifecycle inventory data to the oligopolistic equilibrium approach described in 

Chapters 3-5 provides the means to analyze industry systems of designed products with 

respect to environmental impacts and economic indicators of producer and consumer 

welfare. With respect to deepening LCA methods, the presented methodology integrates 

state-of-the-art methods of demand and engineering design modeling to analyze the 

impact of policy on environmental emissions. While a complete LCA analysis using the 

developed model is not presented, Chapter 4 presents an analysis of fuel consumption and 
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greenhouse gas emissions using the developed model and Chapter 6 provides the 

blueprint for connecting the model or similar models to lifecycle inventory data.   

The industrial ecology and LCA literature has distinguished two types of LCA 

methodologies: attributional LCA (aLCA), which describes the environmentally relevant 

flows to and from a lifecycle, and consequential LCA (cLCA), which describes how 

these flows may change in response to possible decisions (e.g., Finnvedan et al. 2009; 

Curran et al. 2005; Ekvall and Weidema 2004). cLCA extends the boundaries of an 

aLCA to include not only the flows of the product lifecycle of interest but also any flows 

of other products that are significantly affected. The system expansion approach of cLCA 

presents the structure necessary to study a number of indirect “ripple effects”, which have 

been identified as an important area of research in industrial ecology (Hertwich 2005). 

Ripple effects that are most commonly included in cLCA studies to date are the impact of 

increasing production of a product on the displacement of competing products. 

Researchers in this literature have begun to implement cLCAs to study systems of 

commodities. For example, Schmidt and Weidema (2008) present a cLCA of the decision 

to increase vegetable oil production. The authors identify palm oil as the marginal source 

of vegetable oil and determine the products that are displaced from palm oil production—

specifically that barley and soy meal are displaced by palm kernel meal, which is a co-

product of palm oil. The increase in environmental flows resulting from the increase in 

palm oil production is compared to the decrease in environmental flows from displaced 

production of barley and soy meal. Using similar methods, Thomassen et al. (2008) 

studies the effects of an increase in milk production considering the secondary impacts of 

increased production of dairy-cow meat, which displaces beef-cow meat and pork 

products, and the increased production of the soy feedstock, which co-produces soybean 

oil that displaces palm oil. Schmidt (2008) conducts a cLCA of increased demand of 

wheat in Denmark, exploring various scenarios of increasing supply: increasing yield, 

land use, displacing other crops, increasing imports, or some combination.  

A few researchers have demonstrated the capability of cLCA to encompass a 

much broader set of ripple effects than the displacement of other products by a co-

product. For example, Sandén and Karlström (2007) point out that cLCA captures the 

propagation of a decision through cause-effect chains in the studied system, which may 
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include effects on the production of substitutes, demand for related products, technology 

costs, and changing preferences. The authors illustrate how ripple effects concerning 

technology adoption could be incorporated into cLCA, accounting for the effect of 

investing in a new technology—namely fuel cell buses—on the future cost of the 

technology and, consequently, the future demand for the technology. However, this study 

relies on very simplified assumptions of product demand, namely that once the marginal 

production cost of fuel cell buses reaches the cost of diesel buses, only fuel cell buses 

will be used. 

Studies such as these have linked LCA with representations of supply and demand 

characterizing commodity industries, but further advancement of cLCA methods are 

needed to appropriately analyze differentiated products, such as light- and heavy-duty 

vehicles. Analyzing designed products requires extending the current cLCA approach to 

closely interact with models of consumer preferences for differentiated products and 

engineering models of product design, which are inherently coupled in differentiated-

product systems. In the case of differentiated-product markets, such as automobiles and 

consumer electronics, demand depends on the product attributes and prices of all 

products that a consumer may consider purchasing. In these cases, the extent to which 

one particular product displaces competing products is often not known a priori and 

needs to be estimated for the particular study. Moreover, a change in the system—for 

example, a new policy intervention or a change in a competitor’s product—is likely to 

induce firms to adjust the prices and designs of their products, which can significantly 

affect upstream and downstream environmental flows from the system. Both the 

economic structure of the market and the design tradeoffs inherent in production are key 

determinants of these price and design responses and resulting environmental impacts. 

Understanding the cause-effect chains in such a system requires bridging methods from 

economics and engineering design together with lifecycle assessment. 

This dissertation contributes to the cLCA literature by developing a methodology 

that bridges methods from economics and engineering design and demonstrating the 

integration of this methodology with lifecycle inventory data. Together, Chapters 3, 4, 

and 6 provide the blueprint for conducting LCA analyses from a systems perspective, 

considering economic decision-making of producers and consumers and the engineering 
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relationships that govern production options. Moreover, the research in this dissertation 

establishes methods of conducting LCA analyses using modeling approaches commonly 

used in economics, which are supported by a mature body of research establishing 

appropriate data collection, estimation procedures, and interpretation of results. For 

example, the methods presented consist of performing counterfactual simulations, which 

use observed data and a model of behavior to investigate the impact of a change (such as 

a new policy) on the system. The results of these simulations are appropriately interpreted 

as what would have happened in the past conditional on appropriate assumptions, and are 

not meant to be predictive. This approach follows similar principles as the fundamental 

best practices of LCA analysis (ISO 1997).  
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CHAPTER 3: MODEL DEVELOPMENT 

"Design almost invariably involves compromise. Sometimes stated objectives may be 
in direct conflict with each other, as when motorists demand both good acceleration 
and low petrol consumption. Rarely can the designer simply optimize one 
requirement without suffering some losses elsewhere.” —Bryan Lawson (1997) 
  
“Getting to the heart of the reasons people purchase and use different products and 
services can open up new opportunities for resolving the environmental problems 
associated with them.” —Ralph Horne, Tim Grant, and Karli Verghese (2009) 

 

This chapter describes an empirically tractable approach to integrate engineering 

design models with economic analyses of industrial policies. The analysis begins by 

highlighting some relevant features of the automotive design process to both the 

engineering-design and demand-side models. Then, construction of the engineering 

design model is described, which represents the ability of firms to trade off fuel 

efficiency, acceleration performance, and production costs. Next, the development of the 

demand model is described. Finally, the demand model is used to estimate production 

costs that are not captured in the engineering design model. 

3.1 Vehicle Development Process 

The design response of an automotive manufacturer to government policies 

depends substantially on the structure of the vehicle development process. This process is 

a structured sequence of interrelated decisions, many of which constrain choices made at 

later stages (Sörensen 2006). The typical design process begins with concept 

development, followed by a system-level design that defines the geometric layout of the 

vehicle (including target vehicle dimensions), followed by detailed design of all 

subsystems (Sörenson 2006; Weber 2009).  

For a newly designed vehicle model, the development process begins with a target 

catalog specifying the vehicle segment (e.g., compact), powertrain architecture (e.g., 
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hybrid), variations (e.g., four-door sedan), major dimensions, transmission types (e.g., 

automatic, torque classes) and engine versions (Braess and Seiffert 2005; Weber 2009). 

For a redesigned model, the development process begins with the determination of any 

changes to major properties of the vehicle and specifications for subsystems, such as how 

many drivetrain configurations or engine options will be available. In both new design 

and redesign contexts, there are certain earlier design decisions that must be finalized 

before the detailed engineering design of vehicle subsystems can begin (Braess and 

Seiffert 2005; Sörenson 2006; Weber 2009). 

Figure 3.1 provides a stylized representation of this development process. This 

figure is somewhat misleading insofar as it suggests that the design process proceeds in 

sequential, clearly defined stages. In fact, iteration loops and overlapping tasks often exist 

between the stages presented. This caveat notwithstanding, it is possible to identify a 

stage in current automotive development processes where vehicle segment, powertrain 

architecture (e.g., conventional gasoline, hybrid, diesel), and major dimensions are 

finalized but “tuning” of powertrain variables is still possible. 

 
Figure 3.1  Simplified representation of an automotive development process.  
Stages of this process can be roughly be grouped into longer run (Stage A), medium-
run (Stage B) and short-run (Stage C) design decisions 
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The structure of the automotive development process informs the demand- and 

supply-side models in two important ways. On the demand side, we use the variation in 

vehicle attributes determined in earlier stages of the design process (i.e., Stage A in 

Figure 3.1) to instrument for endogenous variables in our demand-side estimation, which 

are determined later in the design process (Stage B). On the supply side, we take as given 

the vehicle segment, powertrain architecture, and other vehicle dimensions that are 

determined in the earlier stages of the design process (Stage A).  Conditional on these 

features and attributes, we model manufacturers’ choice of fuel economy and acceleration 

performance (Stage B) and vehicle pricing strategies (Stage C). Ideally, the supply side 

would be modeled as a two-stage game to represent the sequence of choosing product 

attributes before prices (or prices with smaller adjustments of product attributes). 

However, given the scale of the model, solving the second-stage using traditional 

Newton-based methods is computationally infeasible and faster methods such as fixed-

point calculations that account for the CAFE constraint have not yet been developed 

(Morrow 2008).  

3.2  Engineering Design Model 

Credible modeling of endogenous attribute selection in the design of technical 

products such as automobiles requires accurate representation of engineering and 

economic tradeoffs. We cannot directly observe all of the tradeoffs that firms make 

during different stages of the vehicle design process. We can, however, generate detailed 

engineering models of the tradeoffs that play an important role in determining vehicle 

fuel efficiency in medium-run design decisions.   

Medium-run design tradeoffs are represented by iso-cost production possibility 

frontiers (PPFs) of fuel efficiency and acceleration performance. These frontiers, also 

called efficiency frontiers in the engineering literature, represent the combinations of fuel 

efficiency and acceleration performance where no attribute can be improved without 

incurring a loss in the other or by increasing production costs. The PPFs are constructed 
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by estimating a “surrogate model” using a flexible parametric regression on data 

generated from detailed vehicle simulations.1

3.2.1 Medium-run design decisions affecting fuel efficiency 

  

Our analysis of firms’ response to the CAFE regulations focuses on medium-run 

vehicle design decisions and short-run vehicle pricing decisions (Stage B and C in Figure 

3.1). At this point in the vehicle development process, many major parameters of the 

vehicle have been determined including the segment of vehicle, key internal and external 

dimensions, and the powertrain architecture (e.g., conventional gasoline, hybrid, and 

diesel). The automotive manufacturer can still adjust fuel efficiency and acceleration 

performance at this point in the design process by “tuning” a number of variables in the 

powertrain  (e.g., engine displacement and the final drive ratio) and including technology 

features (e.g., a high efficiency alternator). For example, consider a given vehicle design 

such as the Honda Accord. If Honda wants to increase the fuel efficiency of the Accord, 

it could decrease the displacement size of the engine, or it could simply change the 

programming in the powertrain electronic control unit to favor fuel efficiency over 

acceleration performance. Each of these adjustments to improve fuel efficiency will cause 

some loss in acceleration performance.  

Another means of improving fuel efficiency at this stage in the design process 

involves incorporating various extra “technology features” to the vehicle design. 

Examples include high efficiency alternators, low resistance tires, and improved 

aerodynamic drag of the vehicle body (NHTSA 2008). Adding one or more of these 

features increases the cost of vehicle production. Depending on the specific technology 

features chosen, acceleration performance may increase, decrease, or remain the same. 

For example, cylinder deactivation of the engine can improve fuel efficiency by 

effectively decreasing the size of the engine but, because it only is active during coasting, 

it will not affect acceleration. Reducing aerodynamic drag of the vehicle body can 

improve both fuel efficiency and acceleration performance, whereas early shifting logic 

can improve fuel efficiency but will reduce acceleration performance. These technology 

                                                 
1 The term “surrogate model” is commonly used in the engineering literature to denote a simplified 

model approximating a more complex model simulation, commonly done to reduce computation time and 
improve tractability. 
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features only affect demand through their influence on fuel efficiency and acceleration 

performance; they do not have intrinsic value to the consumer. 

Although our goal is to identify the continuous iso-cost PPFs that define the 

relationship between fuel economy, acceleration performance, and production costs 

dependent on these medium-run design decisions, vehicle simulations and automotive 

data suggest that these PPFs are not in fact continuous. To illustrate this, again consider a 

given vehicle design such as the Honda Accord. The Accord could be described by its 

position on the two dimensional fuel-efficiency vs. acceleration-performance space. 

Honda can decrease the fuel consumption of the Accord without adding any additional 

technology features by trading off acceleration performance, which could be represented 

by the Accord moving along an “iso-technology curve” as in Figure 3.2. Considering that 

Honda could move along this curve in large increments by replacing the engine, smaller 

increments by decreasing the displacement size of the existing engine, or fine increments 

by adjusting the electronic control unit, approximating these possibilities as continuous is 

reasonable. However, incorporating technology features into the vehicle to increase fuel 

efficiency often causes discrete shifts in vehicle attributes. These discrete shifts of the 

iso-technology curves in the fuel-efficiency vs. acceleration-performance space cause 

discontinuities in the iso-cost PPFs as illustrated in Figure 3.2. 

Ideally, we may like to model the discontinuities in the iso-cost PPFs caused by 

discrete technology options. However, because of the large number of discrete 

combinations of technology features, further described in Section 3.4, this is 

computationally infeasible. We address this challenge by approximating the effect of the 

technology features as a continuous variable. To do this, we first construct the iso-

technology curves for each combination of technology features, and then order the 

technology-feature combinations by the position of their corresponding iso-technology 

curves. Finally, we approximate the technology features as continuous in the 

counterfactual simulations to construct the iso-cost PPFs.  
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Figure 3.2  Iso-cost and iso-technology production possibility frontiers. 
Iso-cost PPFs are discontinuous (a to b to c) due to the discrete effect technology 
features have on possible attribute combinations 
 

3.2.2 Vehicle simulations 

We use detailed engineering simulations to construct the “baseline” iso-

technology curves. This represents the engineering tradeoffs between fuel consumption 

and 0-60 mph acceleration time for a vehicle with no extra technology features. To 

determine the baseline iso-technology curves, we use the vehicle simulations software 

AVL Cruise to characterize the engineering tradeoffs between fuel efficiency and 0-60 

mph acceleration time for each vehicle class, then construct a surrogate model of these 

tradeoffs. AVL Powertrain Engineering, Inc. (AVL) is an independent company, founded 

in 1948 and headquartered in Austria, specializing in the development of powertrain 

systems, simulation methods, and engine instrumentation and test systems. The vehicle 

simulation software Cruise, developed by AVL, is commonly used by automotive 

original equipment manufacturers to aid in powertrain development (Mayer 2008).  

Cruise simulates vehicle-driving performance, fuel consumption, and emissions 

based on kinematic calculations. Specifically, Cruise models the physical dynamics that 

occur between subsystems in a vehicle, which translate inputs from a driver into motion 

of the vehicle. For example, as Figure 3.3 shows, the Engine module is physically 

connected to the modules making up the transmission, which include the Torque 
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Converter, Gear Box, Final Drive, and Differential modules. The Combustion Engine 

module calculates the fuel consumption, speed, and torque of the engine based on user 

inputs, such as fuel consumption maps, and input information from other vehicle 

subsystems, including the load on the acceleration pedal from the Cockpit (driver) 

module and the external temperature from the Vehicle module. It then transmits 

information about the torque and speed to the transmission modules. 

The modular structure of Cruise allows researchers to simulate multiple vehicle 

architectures by customizing the subsystem modules (e.g., front or rear wheel drive, 

automatic or manual transmissions), and modifying various input parameters. For 

example, with the Vehicle module, a user can adjust the aerodynamic drag coefficient of 

the vehicle body and the curb weight of the vehicle.  

 
Figure 3.3 Screen shot of the AVL Cruise simulation interface 

 

Using Cruise, a total of 29,575 vehicle simulations were conducted. Design input 

parameters were varied at small intervals so that we can observe the influence of each of 

these parameters and their interactions on attributes of interest (i.e. acceleration 

performance and fuel efficiency).  The fuel efficiency of a vehicle design, dependent on 

input parameters, is determined in AVL Cruise by simulating the EPA’s fuel-economy 
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test procedures. Acceleration performance is determined by simulating a shifting program 

of the vehicle from standstill to 60 mph. Table 3.1 summarizes the range of parameter 

values we consider in our analysis. These include the powertrain variables that can be 

changed in the medium run (i.e., engine displacement and final drive ratio) as well as 

longer run design attributes that are continuous (i.e., curb weight), which are used to 

more accurately construct the PPFs for a specific vehicle conditional on these longer run 

design attributes. 

All other input parameters into the AVL Cruise simulations were determined from 

a representative base vehicle for each class.2

Table 3.1 Ranges and intervals of vehicle simulation parameters 

 Many of these parameters (e.g., front-wheel 

drive) are determined prior to the medium-run decisions we are interested in, but for 

some parameters (e.g., transmission gear ratios), it is possible that they could be modified 

in the same time period. In these cases, omitting these potential design options will only 

make our estimates of the costs of CAFE more conservative, representing an upper 

bound, because we are not accounting for design options that may be cost-effective.   

 
Notes: This table lists the min, max, and interval of input parameters used in the “AVL Cruise” vehicle 
simulations. Engine Displacement is in cm3, Curbweight is in lb, and Final Drive is the final drive gear 
ratio. All other input parameters for the simulations (e.g., front-wheel drive) were taken using data for the 
“base vehicle”. 

Our next step is to determine how the addition of one or more technology features 

affects the position of the iso-technology curve relative to the baseline. To accomplish 

this, we combine the AVL Cruise simulations and data from NHTSA (2008). We 

consider only a subset of the types of technology features identified by NHTSA in our 
                                                 

2 The classes are based on EPA segment classifications, with some grouping of segments based on 
similar ranges of input design variables and similar predicted outputs from AVL Cruise. 

Min Max Int. Min Max Int. Min Max Int.
2seater/Mini Ford Mustang 1,000 8,200 400 1,900 4,300 800 1.0 6.0 0.4
Sub/Compact Honda Civic 1,000 4,200 400 2,200 4,800 800 1.0 6.0 0.4

Midsize Toyota Camry 1,000 4,200 400 2,400 4,800 800 1.0 6.0 0.4
Fullsize Ford Taurus 1,600 6,800 400 3,200 5,400 400 1.0 6.0 0.4
SUV Ford Explorer 2,000 8,400 400 3,200 8,000 800 1.0 6.0 0.4

Small pickup Toyota Tacoma 1,600 8,400 400 2,800 5,200 800 1.0 6.0 0.4
Stand. pickup Ford F150 2,000 8,400 400 3,200 6,600 400 1.0 6.0 0.4

Displacement Curbweight Final DriveVehicle Class Base Vehicle
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analysis. The majority of technology features we omit from our analysis are only 

available in longer run planning stages, but some features are eliminated because of the 

challenges in simulating their effects (e.g., variable valve timing). Consistent with 

NHTSA, we omit the ability to lightweight vehicles by substituting vehicle components 

with lighter materials.3

Table 3.2 Technology costs and effects on fuel economy and 0-60 acceleration time  

 Similar to excluding some design options, omitting these 

technology features will only make our estimated costs of CAFE more conservative. 

 
 Notes: cost represents the unit production cost in $/vehicle produced, % mpg is the percentage increase in 
combined highway-city fuel economy, and % acc is the percentage reduction in 0-60 mph acceleration time 
in seconds. Cost and fuel economy figures are taken from NHTSA (2008). The change in acceleration is 
calculated in the engineering vehicle simulation model, AVL Cruise. 

NHTSA (2008) estimated the effect of each technology feature listed in Table 3.2 

on fuel economy, in terms of the percentage improvement, based on values reported by 

automotive manufacturers, suppliers, and consultants. We use these estimates to 

determine how the baseline iso-technology curve changes with the addition of one or 

more technology features. To do this we also need to know the impact of each technology 

                                                 
3 NHTSA does not consider lightweighting in order to evaluate the ability of manufacturers to meet 

CAFE standards without reducing the weight of vehicles because of concerns that this will increase traffic 
safety risks. Chapter 5 discusses this concern in more detail. 

Technology cost % mpg % acc cost % mpg % acc cost % mpg % acc cost % mpg % acc
Low friction lubricants 3 0.5 0.3 3 0.5 4.1 3 0.5 0.6 3 0.5 0.6
Engine friction reduction 126 1 0.3 84 1 5.6 126 1 1.5 126 1 1.2
Aggressive shift logic 38 1 -0.2 38 1 -5.0 38 1 -0.2 38 1 -0.3
Early torque converter lockup 30 0.5 - 30 0.5 - 30 0.5 - 30 0.5 -
High efficiency alternator 145 1 0.3 145 1 5.6 145 1 1.5 145 1 1.2
Aerodynamic drag reduction 38 3 0.3 38 3 5.1 38 3 0.5 38 3 0.3
Low rolling resistance tires 6 1 0.1 6 1 2.5 6 1 0.2 6 1 0.1
Cylinder deactivation n/a n/a 203 4.5 - 203 4.5 -

Technology cost % mpg % acc cost % mpg % acc cost % mpg % acc
Low friction lubricants 3 0.5 1.6 3 0.5 0.4 3 0.5 0.7
Engine friction reduction 126 1 3.1 126 1 0.7 168 1 1.5
Aggressive shift logic 38 1 0.0 38 1 -0.2 38 1 -2.8
Early torque converter lockup 30 0.5 - 30 0.5 - 30 0.5 -
High efficiency alternator 145 1 3.1 145 1 0.7 145 1 1.5
Aerodynamic drag reduction 38 3 1.4 38 2 0.5 38 2 0.4
Low rolling resistance tires 6 1 0.5 6 1 0.2 0 1 0.1
Cylinder deactivation 203 4.5 - 203 4.5 - 229 4.5 -

SUV Sm Pickup

Two Seater

Lrg Pickup / Van

Compact Midsize / Minivan Fullsize
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feature on 0-60 acceleration time, which is not reported by NHTSA. We determine these 

impacts by simulating each technology feature in AVL Cruise to a level that matches the 

improvement in fuel economy reported by NHTSA. For example, NHTSA reports a 0.5% 

improvement in fuel economy from using “low friction lubricants” in compact vehicles. 

We simulate this impact by reducing the friction losses in the engine of our representative 

compact vehicle model until we observe fuel economy improving by 0.5% and then 

observe the percentage improvement of 0-60 acceleration time. When NHTSA provided a 

range of fuel economy improvement for a technology feature, the lower bound of this 

range is used, consistent with our other assumptions in creating a conservative 

engineering design model. The results of these simulations are reported in Table 3.2. 

3.2.3 Costs of medium-run design decisions 

In addition to representing the impact of medium-run design decisions on vehicle 

attribute performance, we also need to account for the effect of these decisions on 

production costs. We use two separate sources of data to estimate these costs, one 

describing costs dependent on the powertrain variables, which we use to determine costs 

along the baseline iso-technology curve, and another data set detailing production costs 

for each technology feature. The production costs of the baseline iso-technology curve—

representing the costs dependent on choices of engine size and final drive ratio without 

any extra technology features—is taken from Michalek et al. (2004). The authors 

collected cost data from manufacturing, wholesale, and rebuilt engines of varying 

displacements. The additional production costs resulting from each technology feature is 

taken from NHTSA (2008), which are shown in Table 3.2. These cost data were 

estimated by NHTSA based on reported values from automotive manufacturers, 

suppliers, and consultants, and are currently used to perform cost-benefit analyses of the 

CAFE regulations.  

We treat the costs of technology features and the costs of adjusting powertrain 

variables as additively separable. Engines are manufactured separately from other 

subsystems of the vehicle before assembly. The specific technology features we consider 

do not require changes in engine design or affect the assembly of the engine with other 

vehicle subsystems, consistent with our assumption that costs are additively separable, 
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with only two exceptions. Two technology features—engine friction reduction and 

cylinder deactivation—do affect the engine subsystem. Even in these cases, it is 

reasonable to approximate technology costs as additively separable from the baseline 

production cost of the engine. For example, engine friction can be reduced by using 

lubricants, the costs of which are independent of all medium-run decisions considered.4

3.2.4  Model of engineering tradeoffs and costs 

  

Ideally, all of the detailed information about design tradeoffs that are captured by 

the AVL Cruise model would be incorporated directly into our model of supply-side 

design and pricing decisions. However, because of the computational time required to 

execute the vehicle simulations, and the large number of discrete combinations of 

technology features, this is computationally infeasible. Instead, we approximate these 

relationships with a surrogate model using a flexible parametric form. 

Taking all possible combinations of technology features gives automotive firms, 

depending on the vehicle segment, 128–256 options to choose from for each vehicle. 

From this set, we consider only those combinations of features that are cost effective—

meaning that there is no lower cost combination that could achieve the same or better 

level of acceleration performance and  fuel efficiency. Although this reduces the set of 

technology feature combinations to between 20 and76, depending on the vehicle 

segment, it is still computationally infeasible to model this number of choices per vehicle 

for each manufacturer in our counterfactual simulations, so further simplifications are 

necessary.  

We approximate the discrete choices of technology features as a continuous 

variable, tech, ranging from zero (the baseline case) to the maximum number of cost-

effective combinations of technology features for each vehicle class. Note that a 

particular value for tech maps to a specific combination of technology features (e.g., low 

resistance tires and a high efficiency alternator) and does not represent the number of 

                                                 
4 The case of cylinder deactivation poses a larger challenge for treating technology costs as additively 

separable from engine costs. Given large changes in engine displacement achieved by switching the engine 
architecture (e.g., replacing a V-8 engine with a V-6) would slightly reduce the costs of cylinder 
deactivation due to a smaller number of cylinders. However, even with this cost reduction, cylinder 
deactivation is the highest-cost technology feature considered and therefore would not significantly affect 
counterfactual results. 
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technology features. The set of cost-effective technology feature combinations is ordered 

by increasing fuel efficiency (decreasing fuel consumption) for the same acceleration 

performance, which is also increasing in cost. Therefore, a higher value of tech 

corresponds to a higher fuel efficiency and higher cost vehicle conditional on 0-60 

acceleration time. The impact of the continuous approximation on the results is relatively 

small with the average gap between discrete features less than 1 mpg. Furthermore, we 

provide some evidence in Section 3.5 that the particular specification we use to estimate 

the relationships of the continuous tech variable to fuel consumption and cost preserves 

important properties of the discrete technology combinations.  

We use the results of the engineering simulations together with data on the 

technology features and technology costs to estimate Equations 3.1 and 3.2, which 

together define the PPFs between vehicle fuel consumption, acceleration performance, 

and the portion of production costs dependent on design decisions, 𝑤𝑗. Several 

specifications for each equation were tested; the equations below performed the best 

under the Akaike Information Criterion. 

 𝑒𝑓𝑓𝑗 = 𝜅1𝑠 + 𝜅2𝑠𝑒−𝑎𝑐𝑐𝑗 + 𝜅3𝑠 𝑡𝑒𝑐ℎ𝑗+𝜅4𝑠𝑡𝑒𝑐ℎ𝑗 ∙ 𝑎𝑐𝑐𝑗2  + 𝜅5𝑠𝑤𝑡𝑗 + 𝜅6𝑠𝑤𝑡𝑗 ∙ 𝑎𝑐𝑐𝑗 + 𝜀𝑗 3.1 

𝑤𝑗 = 𝜎1𝑠 + 𝜎2𝑠𝑒−𝑎𝑐𝑐𝑗 + 𝜎3𝑠𝑡𝑒𝑐ℎ𝑗 + 𝜎4𝑠𝑤𝑡𝑗 + 𝜎5𝑠𝑤𝑡𝑗 ∙ 𝑎𝑐𝑐𝑗 + 𝜈𝑗 3.2 

The subscript j in Equations 3.1 and 3.2 denotes the vehicle design in vehicle class s, 

where the specific design represents a combination of design parameters which were 

input into the vehicle simulations as described in Section 3.2.2. 

The dependent variable in Equation 3.1 is the fuel efficiency of a vehicle, eff, in 

terms of gallons per 1,000 miles. The 0-60 acceleration time is denoted acc , wt is the 

curb weight of the vehicle, and tech is the scalar measure of technological features 

incorporated. Equation 4 models the portion of production costs that are dependent on the 

medium-run design decisions considered. This portion of production costs is a function of 

curb weight, acceleration time, and the continuous measure of technology features. The 

terms 𝜀𝑗 and 𝜈𝑗 represent the error associated with approximating the calculations 

performed in the vehicle simulations with simplified relationships. Curb weight is 

included in Equations 3.1 and 3.2 although it is considered fixed in our analysis. 

Including curb weight, and estimating the parameters for each vehicle class, conditions 
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the fuel consumption and cost relationships on vehicle parameters that are exogenous in 

the medium run and greatly improves estimation fit.  

3.2.5 Model estimation 

Parameters defining the tradeoffs between vehicle fuel efficiency, acceleration 

performance, and production costs are estimated using the data generated from the 

vehicle simulations described in Section 3.3. Estimated parameters for Equation 3.1, 

summarizing the relationship between vehicle attributes dependent on technology 

features and powertrain parameters for each vehicle class, are reported in Table 3.3. The 

estimated relationships fit the vehicle data in each class reasonably well (R2>0.89) except 

for the two-seater class (R2=0.44). However, the two-seater class comprises less than 1% 

of vehicle sales in MY2006 so the poorer fit of this class should not significantly affect 

counterfactual results.  

All parameter estimates have expected signs. The negative sign on the variable 

representing technology features and positive sign on the interaction between the 

technology variable and acceleration indicate that implementing more fuel-efficient 

combinations of technology features reduces fuel consumption with decreasing returns, 

as illustrated in Section 3.5. The positive sign on the weight parameter and negative sign 

on the weight-acceleration interaction imply that the iso-technology curves in Figure 3.1 

shift up and rotate clockwise with vehicle weight. This indicates that heavier vehicles will 

have worse fuel consumption given the same 0-60 mph acceleration time, as expected, 

but that this effect increases for vehicles with faster acceleration.  

The estimates describing the relationship between production costs and choices of 

acceleration performance and technology implementation, described by Equation 3.2, are 

reported in Table 3.4. These estimates fit all vehicle classes reasonably well (R2>0.83). 

As expected, these results indicate that production costs increase with the level of 

technology implementation and decrease with worse acceleration performance. The 

positive sign on the weight term and negative sign on the weight-acceleration interaction 

term indicate that incrementally improving acceleration is more costly in heavier vehicles 

and this effect is magnified for vehicles with relatively better acceleration performance. 

All parameter estimates in both equations are significant to the 90% level or better. 
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Table 3.3 Estimation results for fuel consumption in technology and design model 

 
 

Table 3.4 Estimation results for cost of technology and powertrain design 

 

param std. err. param std. err. param std. err. param std. err.
constant 20.8484 *** 0.9414 10.7920 *** 0.2158 11.5531 *** 0.5674 10.8515 *** 0.4034
exp(-accj) 89.6806 *** 31.1595 69.5244 *** 5.3977 733.71 *** 55.37 452.55 *** 23.78
techj -0.2049 *** 0.0245 -0.2605 *** 0.0129 -0.0829 *** 0.0018 -0.0794 *** 0.0042
accj

2?techj 0.0016 * 0.0005 0.0013 ** 0.0003 0.0002 *** 2.3E-05 0.0002 *** 2.7E-05
wtj 2.9159 *** 0.3667 12.9897 *** 0.3047 8.6680 *** 0.1119 8.3583 *** 0.1208
wtj?accj 0.0280 0.0476 -0.5593 *** 0.0456 -0.2954 *** 0.0223 -0.2539 *** 0.0079
R2 0.443 0.941 0.896 0.976
Obs. 4473 5117 3542 3542

param std. err. param std. err. param std. err.
constant 14.0535 *** 0.4985 10.5032 *** 0.4049 10.5185 *** 0.4083
exp(-accj) 1329.85 *** 115.80 13387.53 *** 1836.19 2979.10 *** 411.24
techj -0.1540 *** 0.0082 -0.0933 *** 0.0071 -0.0890 *** 0.0065
accj

2?techj 0.0006 *** 0.0001 0.0003 ** 0.0001 0.0003 ** 0.0001
wtj 9.0653 *** 0.1069 8.9932 *** 0.3207 8.6604 *** 0.2813
wtj?accj -0.2934 *** 0.0148 -0.2224 *** 0.0295 -0.2225 *** 0.0299
R2 0.965 0.952 0.952
Obs. 16863 9450 9450
*p<0.1, **p<0.05, ***p<0.01, all others p>0.1, standard errors are clustered by vehicle curb weight

Two seater Compact Midsize / Minivan Fullsize

SUVs Small Pickup Large Pickup / Van

param std. err. param std. err. param std. err. param std. err.
constant 0.3669 * 0.0865 0.7800 *** 0.0091 0.5540 *** 0.0355 0.4029 *** 0.0450
exp(-accj) 10.6686 * 2.2311 1.9716 *** 0.1631 24.3842 *** 1.3842 24.0527 *** 2.7273
techj 0.0175 *** 0.0001 0.0016 *** 0.0002 0.0054 *** 0.0001 0.0057 *** 3.0E-05
wtj 0.2579 *** 0.0132 0.2250 *** 0.0051 0.1963 *** 0.0103 0.2339 *** 0.0052
wtj?accj -0.0082 *** 0.0013 -0.0123 *** 0.0005 -0.0071 *** 0.0012 -0.0069 *** 0.0004
R2 0.890 0.898 0.898 0.931
Obs. 4473 5117 3542 3542

param std. err. param std. err. param std. err.
constant 0.0200 ** 0.1337 0.3025 * 0.0607 0.3025 * 0.0607
exp(-accj) 92.3965 *** 16.4768 719.579 * 162.643 160.560 * 36.291
techj 0.0038 *** 0.0003 0.0066 *** 0.0001 0.0066 *** 0.0001
wtj 0.3470 *** 0.0143 0.2621 *** 0.0137 0.2538 *** 0.0117
wtj?accj -0.0108 *** 0.0016 -0.0055 * 0.0014 -0.0055 * 0.0014
R2 0.887 0.831 0.831
Obs. 16863 9450 9450
*p<0.1, **p<0.05, *** p<0.01, standard errors are clustered by vehicle curb weight

Two seater Compact Midsize / Minivan Fullsize

SUVs Small Pickup Large Pickup / Van
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Taken together, the estimates of Equations 3.1 and 3.2 define the iso-cost PPFs 

conditional on longer run vehicle-design decisions. These results suggest that significant 

improvements in fuel efficiency are possible in the medium run but require either 

substantial tradeoffs with other aspects of vehicle performance or an increase in 

production costs. To illustrate this, Figure 3.4 plots the estimated iso-cost PPFs for 

selected vehicles, indicating that a 10% reduction in fuel consumption can be achieved in 

many vehicles without increasing production costs by reducing acceleration performance 

by 1 s or less.  

On the other hand, fuel efficiency can be increased without affecting acceleration 

performance by implementing technology features, which instead raise production costs. 

Figure 3.6 in Section 3.3 plots the relationship between technology costs and fuel 

economy for select vehicle models. This figure illustrates that the required technology 

costs to incrementally increase fuel economy vary considerably between vehicles 

depending on the vehicle class and characteristics such as fuel economy and weight. For 

many vehicle models, the fuel economy can be increased by 1 mpg by implementing 

$200 or less worth of technology features but these costs are substantially more for larger 

vehicles, up to $600 for the heaviest vehicles.  

 
Figure 3.4  Estimated iso-cost production possibility frontiers for selected vehicles 
(■ current location,       baseline frontier,         $100 design changes,       $200 design changes) 
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Validation tests were performed comparing the estimated model to observed 

vehicle data. Figure 3.5 plots observed and estimated fuel economy of non-hybrid 

gasoline vehicles from model-year 2006. Predicted fuel economy values fit the observed 

data with an R-squared value of 0.80. Additional validation tests comparing the estimated 

model with observed data and representations derived by MacKenzie (2009) are 

discussed in Section 3.6. 

 

 
Figure 3.5 Comparison of compact-segment model to MY-2006 vehicle data 
 

3.3 Demand Model 

In this section, we introduce an econometric model of vehicle demand and a 

supply-side representation of decisions in response to CAFE. The specification and 

estimation of the demand-side model draws from the seminal work by Berry et al. (1995) 

and subsequent work by Train and Winston (2007) and others. The distinguishing feature 

of the demand estimation has to do with our choice of instruments, which is informed by 

our understanding of the vehicle design process as described in Section 3.1. Our model of 

the supply side departs significantly from much of the previous literature insofar as 

critical medium run design decisions are endogenous to the model. 
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3.3.1 Data summary 

We employ a combination of household-level data conducted by Maritz Research 

and vehicle characteristic data available from Chrome Systems Inc. to construct our 

demand-side estimations. The Maritz Research U.S. New Vehicle Customer Study 

(NVCS) collects data monthly from households that purchased or leased new vehicles. 

This survey provides information on socio-demographic data, household characteristics, 

and the vehicle identification number (VIN) for the purchased vehicle. The survey also 

asks respondents to list up to three other vehicles considered during the purchase 

decision. Approximately one-third of respondents listed at least one considered vehicle. 

Because the survey oversamples households that purchase vehicles with low market 

shares, we take a choice-based sample from this data such that the shares of vehicles 

purchased by the sampled households matches the observed 2006 model-year market 

shares. 

We supplement the survey data with information on vehicle characteristics using 

Chrome System Inc.’s New Vehicle Database and VINMatch tool. Vehicle alternatives 

are identified using the reported VIN, distinguishing vehicles by their make, model, and 

engine option, with a few modifications. We eliminate vehicles priced over $100,000, 

which represent a small portion of market sales, and remove seven vehicle alternatives 

that were not chosen or considered by any survey respondent. We further reduce the data 

set by consolidating pickup truck and full-size van models with gross vehicle weight 

ratings over 8,000 lb to only two engine options each. Summary vehicle data are 

described in Table 3.5. 

 

Table 3.5 Summary of Vehicle Characteristic Data 

 
 

Attribute Unit Mean Std. Dev Min Max
MSRP 1,000 2006$ 32.67 16.73 11.93 97.49
Fuel Economy mpg 21.46 5.14 10.98 56.55
Horsepower hp 241 78 65 520
Curb weight 1,000 lb 3.87 0.85 1.98 6.40
Footprint 1,000 in 2 13.92 2.00 9.52 20.05
Make Grps. 38
Obs. 473
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3.3.2 Mixed-logit consumer choice representation 

Demand for new automobiles is modeled using a mixed-logit representation of 

consumer preferences. The indirect utility Unj that consumer n derives from purchasing 

vehicle model j is defined as in Equation 3.3. 

𝑈𝑛𝑗 = 𝑉𝑛𝑗 + 𝜖𝑛𝑗 = 𝛿𝑗 + 𝜷𝒏′𝒙𝒏𝒋 + 𝝁′𝒘𝒏𝒋 + 𝜖𝑛𝑗 3.3 

The model-specific fixed effect, δj, represents the portion of utility that is the same across 

all consumers; wnj are interactions between vehicle attributes and consumer 

characteristics that affect utility homogenously across the population; xnj are vehicle 

attributes and attribute-demographic interactions that heterogeneously affect utility, 

entering the equation through draws , βn, of normal distributions with standard deviations 

σ. Attributes in the vector wnj, which are assumed to have homogeneous effects in the 

utility specification, include the interaction between living in a rural area and the pickup 

truck segment, and interactions between children in the household and SUV and minivan 

segments. Attributes in the vector xnj, which have random effects in the utility 

specification, are the ratio of vehicle price to income; “gallons per mile”, gpm, or the 

inverse of fuel economy; the inverse of 0-60 acceleration time; and vehicle footprint. The 

disturbance term 𝜖nj is the unobserved utility that varies randomly across consumers.  

Assuming that the disturbance term in Equation 3.3, 𝜖nj, is independent and 

identically distributed (iid) Type I extreme value, the probability that consumer n chooses 

vehicle i over all other vehicle choices j≠i or the outside option5

𝑃𝑖𝑛 =
𝑒𝑉𝑛𝑖

1 + ∑ 𝑒𝑉𝑛𝑗𝑗
 

 takes the form: 

3.4 

where 𝑉𝑛𝑗 is the portion of utility of vehicle j for consumer n in Equation 3.3 excluding 

the error term. The predicted market share of vehicle i is ∑ 𝑃𝑖𝑛𝑛 .  

 The model specific fixed effects, δj, capture the average utility associated with the 

observed vehicle attributes denoted zj and unobserved attributes denoted ξj. Vehicle 

attributes in the vector zj include price, fuel consumption, the inverse of 0-60 acceleration 
                                                 

5 The utility of the outside option of not purchasing a new vehicle is assumed to be UnO = 𝛿𝑂 + 𝜖𝑛𝑂, 
where 𝜖𝑛𝑂 is a draw from an extreme value Type 1 distribution, and 𝛿𝑂 is normalized to zero. 
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time, vehicle footprint, and vehicle segment. The segments are based on the EPA’s 

classes (e.g., minivans). The observable variables of primary interest (namely price, fuel 

consumption, and acceleration time) are likely to be correlated with unobserved attributes 

that are simultaneously determined and captured in the error term. Consequently, 

estimating Equation 3.4 directly will yield inconsistent parameter estimates. Following 

Berry (1994), we move this endogeneity problem out of the non-linear Equation 3.4 and 

into a linear regression framework. This allows us to address the endogeneity problem 

using the well developed two-stage least squares approach. More precisely, we define the 

model specific fixed effects to be a function of observed vehicle attributes, zj, including 

all endogenous attributes, and the average utility of unobserved attributes, ξj: 

𝛿𝑗 = 𝜶′𝒛𝒋 + 𝜉𝑗 3.5 

Berry (1994) shows that, given a set of values for μ and σ, a unique δ exists such that 

predicted market shares match observed market shares. Given a set of exogenous 

attributes and instrumental variables for endogenous attributes, y, the condition that 

𝔼�𝑦𝑗|𝜉𝑗� = 0 for all j is sufficient for the instrumental variable estimator of 𝜶 to be 

consistent and asymptotically normal conditional on μ and σ. 

In related automotive studies (e.g., Berry et al. 1995; Train and Winston 2007), 

researchers use functions of non-price attributes as instruments, including vehicle 

dimensions, horsepower and fuel economy. This approach has been criticized because of 

two concerns: 1) firms presumably choose these non-price attributes simultaneously with 

prices and unobserved attributes, and 2) decisions regarding unobserved attributes may 

depend on previously determined non-price attributes, rendering them invalid as 

instruments.6

                                                 
6 Berry et al. (1995), and Train and Winston (2007) both focused on short-run pricing decisions and 

therefore the assumption that many vehicle attributes are exogenous to their analysis is justified. However, 
anecdotal evidence suggests that automotive manufacturers routinely adjust the electronic control unit of 
vehicle engines, which affects fuel economy and acceleration performance, in the same time frame as 
setting suggested retail prices and thus fuel economy may not be exogenous to pricing decisions. 

 As Heckman and Leamer (2007) note, to obtain valid instruments in this 

context requires a model of the determinants of product attributes. Access to the 

engineering design literature provides a description of this model.  
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Availability of literature detailing the automotive development process allows us 

to limit the choice of instruments to only those attributes determined from longer run 

product-planning schedules than the endogenous variables, increasing the credibility of 

these instruments for medium-run analyses.7

Following Train and Winston (2007), the utility formulation is extended to 

include information about ranked choices when these data are available for a respondent. 

The ranking is specified as 𝑉𝑛𝑖 > 𝑉𝑛ℎ1 …𝑉𝑛ℎ𝑚 > 𝑉𝑛𝑗  for all 𝑗 ≠ 𝑖,ℎ1, … ,ℎ𝑚  where i is 

the chosen vehicle; h1 is the second ranked vehicle (the vehicle that would have been 

chosen if vehicle i was not available) and hm is the m ranked vehicle. Therefore, the 

probability that respondent n purchased vehicle i and ranked vehicle h1 through hm is 

defined as: 

 Instruments are selected from attributes that 

can be considered fixed in the medium run as supported by evidence in Section 2.2: the 

moments of vehicle dimensions of same-manufacturer vehicles (din, dsqin) and different-

manufacturer vehicles (dout, dsqout), powertrain architecture (i.e., hybrid, turbocharged, 

and diesel), and drive type (i.e., all wheel drive or 4-wheel drive).  

𝐿𝑛𝑖ℎ1...ℎ𝑚 = �
𝑒𝑉𝑛𝑖

1 + ∑ 𝑒𝑉𝑛𝑗𝑗
 ��

𝑒𝑉𝑛ℎ1
∑ 𝑒𝑉𝑛𝑘𝑘≠𝑖

 �…�
𝑒𝑉𝑛ℎ𝑚

∑ 𝑒𝑉𝑛𝑙𝑙≠𝑖,ℎ1,…,ℎ𝑚−1

 � 3.6 

The first two terms of this formulation correspond to the probability that the consumer 

purchased vehicle i, given all available vehicle models and the outside good, and the 

probability that they would have purchased vehicle h1 if vehicle i and the outside good 

were not available.8

3.6

 The outside good is excluded from the denominator of every term 

but the first because we do not observe whether the respondents would have chosen not 

to purchase a vehicle if their first choice was not available. When no ranking data are 

available for a respondent, the likelihood consists of only the first term in Equation .  

Recently, significant concerns have been raised about the sensitivity of parameter 

estimates using similar random-coefficient discrete choice demand models (Knittel and 

                                                 
7 Literature detailing the automotive design process allows us to address the first criticism of 

instrument choice. A remaining assumption in our approach is that these longer run attributes do not affect 
choices of unobserved attributes in the medium run. 

8 The outside good is removed from the ranked choice set (all but the first term in Eq. 7) because 
respondents indicated that they considered the ranked vehicles during their purchasing decision, but it is not 
clear if they would have chosen the 1st ranked vehicle, for instance, if the vehicle they purchased was not 
available or if they would instead have chosen to not purchase a new vehicle. 
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Metaxoglou 2008). We estimated the model using a series of randomly selected initial 

values to test the robustness of our estimates. Specifically, ten initial values were 

randomly selected from a uniform distribution from -15–15. Initial values outside of this 

range were also tested but these initial points often produced values of the log-likelihood 

that were near negative infinity, indicating a very poor fit to the model, which prevents 

the algorithm from solving the estimation problem.   

Model estimation 

Table 3.6 reports results from estimating Equation 3.6, which represent the 

heterogeneous demand parameters. Results of initial-value tests of these estimates are 

reported in Table 3.7. All ten initial values resulted in the same estimate solutions within 

1e-4. Infinite-norms of the gradients for each solution were on the order of 1e-3 to 1e-4, 

and the hessians at these solutions were all verified to be positive definite. 

 
Table 3.6 Heterogeneous Demand Parameter Results 

 
Notes: The μ’s are the estimates of 
the demand parameters for 
attribute-demographic interactions 
in Equation 3.3, and the σ’s are the 
estimates of the standard deviations 
of the normally distributed random-
variable parameters on vehicle 
attributes. 

 
 
 
 
 
 

param st. err.
p 0.0366 0.0237
gpm 0.0215 0.0131
accinv 0.0335 0.0533
ftp 0.0390 0.0534

param st. err.
p/inc -0.1721 0.0246
minivan-child 7.4388 0.5603
suv-child 0.9447 0.1468
truck-rural 1.8365 0.2422

μ

σ
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Table 3.7 Initial-value tests of heterogeneous demand parameter estimates 

 
Notes: This table presents the initial value tests of the estimates presented in Table 3.6, representing the 
heterogeneous demand parameters. The value of the log-likelihood, and the infinity norm of the gradient is 
reported. Initial values were randomly selected from uniform distributions from -15.0–15.0. 

 

All estimates have the expected signs. Recall that the σ parameters represent the 

standard deviations of the demand parameters in Equation 3.3 that are allowed to vary 

randomly in the population and assumed normally distributed. Only the standard 

deviation of the fuel consumption coefficient is found to be statistically significantly 

different from zero. Several of the parameters that capture the effects of interactions 

between vehicle attributes and consumer attributes are found to be statistically 

significant, including the ratio of price to income (p/inc), and the interactions between 

minivans and children, SUVs and children, and pickup trucks and living in a rural 

location.  

Table 3.8 reports the second-stage IV estimates of the parameters in Equation 3.5. 

The estimates of the first-stage regressions of endogenous decisions (price, fuel 

consumption, and inverse 0-60 mph acceleration time) are presented in Table 3.9, with  

F-tests of 20.68, 19.62, and 21.38, respectively. The SUV indicator variable is positive 

and significant, implying that they are preferred more than sedans; and the minivan 

indicator is negative and significant, implying that they are preferred less than sedans. 

The parameter estimate for two-seater sports cars is negative and the parameter for 

pickup trucks is slightly positive, but neither is significant.    

 

 

test p gpm accinv ftp p/inc
minivan-

child
suv-
child

truck-
rural Log-Lik.

grad.      
norm

1 0.036643 0.021473 0.033539 0.039035 -0.172102 7.438812 0.944718 1.836548 7053.39256 0.0005
2 0.036643 0.021473 0.033540 0.039033 -0.172102 7.438795 0.944720 1.836550 7053.39256 0.0006
3 0.036643 0.021473 0.033539 0.039034 -0.172102 7.438796 0.944720 1.836558 7053.39256 0.0014
4 0.036643 0.021473 0.033539 0.039035 -0.172102 7.438812 0.944718 1.836548 7053.39256 0.0005
5 0.036643 0.021473 0.033539 0.039034 -0.172102 7.438774 0.944718 1.836565 7053.39257 0.0013
6 0.036643 0.021473 0.033540 0.039033 -0.172102 7.438796 0.944719 1.836554 7053.39256 0.0005
7 0.036644 0.021474 0.033538 0.039035 -0.172101 7.438782 0.944723 1.836571 7053.39256 0.0018
8 0.036643 0.021473 0.033539 0.039034 -0.172103 7.438800 0.944717 1.836572 7053.39256 0.0005
9 0.036643 0.021473 0.033539 0.039032 -0.172102 7.438778 0.944720 1.836556 7053.39256 0.0005
10 0.036643 0.021473 0.033539 0.039277 -0.172100 7.438800 0.944720 1.836600 7053.39257 0.0009
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Table 3.8 Homogeneous demand parameter results 

 
 Notes: This table presents the 2nd stage  
IV estimators of the demand parameters 
of vehicle attributes in Equation 3.5.  

 

 
Table 3.9 First stage instrumental variable results 

 
Notes: din and dout are the distances of vehicle 
dimensions (length x width x height) to the average 
dimensions of same and different manufacturers, 
respectively; dsqin and dsqout are these values 
squared. The remaining variables represent 
powertrain architectures— turbo (turbocharged), 
hybrid, diesel—and the type of drive—all wheel or 
four wheel drive, awd. 

 

param st. err.
p -0.4591 0.0998
gpm -0.3677 0.1679
accinv 1.1262 0.3956
ftp 2.4541 0.7504
sport -0.4654 0.3129
truck 0.0440 0.2412
suv 0.6669 0.2116
minivan -5.1827 0.3032
constant -8.0903 0.7262

α

p gpm accinv
din    0.0007 -0.0001  0.0005**
dout    0.1368*** -0.0216*  0.0448***
dsqin  -0.0054*** -0.0012**  0.0002
dsqout  -0.0468   0.0086 -0.0112
awd    0.7622***   0.4325***   0.0512
turbo   -0.1561 -0.1118   0.0896
diesel    0.6513 -0.9733*** -0.2685**
hybrid    0.0554 -1.6513*** -0.3875***
ftp  11.4430***  3.0836***   2.6178***
sport     2.885***  0.8498***   0.6702***
truck   -1.4788*** 0.065436 -0.089059
suv     0.6541***  0.5843***   0.0843
minivan   -0.9603** -0.4317*** -0.2751***
constant -12.5413***  0.3783 -2.1626***
* p<0.1, **p<0.01, ***p<0.001
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Based on these estimates, the average price elasticity is -1.9, (95% CI: -2.0, -1.8), 

and the sales-weighted average is -1.7, (95% CI: -1.8,-1.7). These estimates are 

somewhat lower than those found in previous studies, which range from -2.0 to -3.1 

(Jacobsen 2010; Klier and Linn 2008; Train and Winston 2007; Goldberg 1998). Similar 

to other models of the automotive industry (Berry et al. 1995; Goldberg 1998; Beresteanu 

and Li 2008) we find that, in general, demand is more elastic for cheaper “economy” 

vehicles and less elastic for higher priced vehicles, although this relationship is not 

monotonic.  

Using the demand-side estimates, we calculate the expected willingness-to-pay 

for an increase in fuel economy as illustrated in Figure 3.6. These results indicate that the 

willingness-to-pay for fuel economy varies substantially across vehicle models—both 

because the reduction in fuel consumption due to an increase in 1 mpg varies with the 

fuel economy of the vehicle and because the consumers that are likely to buy cheaper 

vehicles are less willing to pay for any improvements to vehicle attributes. However, the 

willingness-to-pay for fuel economy improvements in any given vehicle is generally 

lower than the technology costs associated with increasing fuel economy in that vehicle, 

and considerably less than the value of the associated (discounted) fuel savings over the 

vehicle’s lifetime.9

  

 This discrepancy of willingness-to-pay for fuel economy with the net-

present-value of fuel savings is well documented in other studies (Helfand and Wolverton 

2009; Alcott and Wozny 2009).  

Figure 3.6 Select vehicles’ technology costs and willingness-to-pay to increase fuel economy 
 

                                                 
9 Back of the envelope calculations, assuming s a discount rate of 4.5%, a vehicle lifespan of 13 years, 

constant gas prices at $2.60 (the average in MY2006) and 14,000 annual vehicle miles traveled (the 
average in 2006 as reported by the Department of Transportation) give a net present value fuel savings of 
$1,100 for increasing the fuel economy of a vehicle with 21 mpg by 1 mpg. 
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Our estimates imply that, in general, consumers’ willingness-to-pay for a 1 mpg 

improvement in fuel economy is lower than their willingness-to-pay for an increase in 

acceleration performance that would correspond to a loss in fuel economy of 1 mpg. As 

expected, we find that the consumers who are more likely to purchase luxury vehicles or 

opt for the higher horsepower vehicle options are willing to pay more for acceleration 

performance relative to other consumers, and much less for fuel economy improvements. 

3.3.3 Production costs 

For all firms, the marginal cost of producing automobile j is represented as:  

𝑐𝑗 = 𝑒𝑛𝑔𝑐𝑜𝑠𝑡𝑗 + 𝜔𝑗 3.7 

The variable 𝑒𝑛𝑔𝑐𝑜𝑠𝑡𝑗 represents the portion of marginal cost dependent on the 

endogenous selection of attributes as described in Section 3.3. The remaining portion of 

marginal cost, 𝜔𝑗, can be determined from the first order conditions of firms’ profit 

maximization assuming that observed vehicle prices are in equilibrium. This procedure is 

standard in much of the IO economics literature, and we follow Jacobsen’s (2010) 

process of determining these costs. Firms’ profit maximization problems follow the 

standard Bertrand equilibrium but are also subject to the CAFE regulations. Similar to 

Jacobsen, we distinguish between American firms, who behave as though they are 

constrained to the CAFE standards, and European firms who often violate the CAFE 

standards and pay corresponding penalty fines. Asian firms are treated similarly to 

European firms but, because the Asian firms exceed the CAFE standards over the time 

period in the data, the constrained and unconstrained formulations are equivalent.  

The optimization problem solved by a constrained firm is to maximize profit 

subject to meeting the CAFE standards (standC and standT) for their fleet of cars, 𝔍𝑐, and 

their fleet of light trucks, 𝔍𝑇, as defined in Equation 3.8. In this equation, qj, and pj are 

respectively the quantity sold and price of vehicle j, rC is 1 − 𝑠𝑡𝑎𝑛𝑑𝐶 𝑚𝑝𝑔𝑗⁄  if 𝑗 ∈

𝔍𝐶  and zero otherwise; and similarly rT is 1 − 𝑠𝑡𝑎𝑛𝑑𝑇 𝑚𝑝𝑔𝑗⁄  if 𝑗 ∈ 𝔍𝑇 and zero 

otherwise. 
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  max
𝑝𝑗∀𝑗

�𝑞𝑗(𝑝𝑗)
𝑗

�𝑝𝑗 − 𝑐𝑗�

 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:     � 𝑞𝑗(𝑝𝑗)
𝑗∈𝔍𝐶

rCj ≥ 0

                            � 𝑞𝑗(𝑝𝑗)
𝑗∈𝔍𝑇

rTj ≥ 0

 3.8 

For firms able to violate the CAFE standards, the profit maximization problem is given 

by: 

 max
,𝑝𝑗∀𝑗

�𝑞𝑗(𝑝𝑗)
𝑗

�𝑝𝑗 − 𝑐𝑗�  − 𝐹𝐶 − 𝐹𝑇 
3.9 

where FC and FT are the respective fines if the firm violates either the passenger car or 

light truck standard:  

𝐹𝐶 = 55 � 𝑞𝑗(𝑝𝑗)
𝑗∈𝔍𝑓,𝐶

�𝑠𝑡𝑎𝑛𝑑𝐶 −
∑ 𝑞𝑗(𝑝𝑗)𝑗∈𝔍𝑓,𝐶

∑ 𝑞𝑗(𝑝𝑗) 𝑚𝑝𝑔𝑗⁄𝑗∈𝔍𝑓,𝐶

�

𝐹𝑇 = 55 � 𝑞𝑗(𝑝𝑗)
𝑗∈𝔍𝑓,𝑇

�𝑠𝑡𝑎𝑛𝑑𝑇 −
∑ 𝑞𝑗(𝑝𝑗)𝑗∈𝔍𝑓,𝑇

∑ 𝑞𝑗(𝑝𝑗) 𝑚𝑝𝑔𝑗⁄𝑗∈𝔍𝑓,𝑇

�
 3.10 

Therefore, the first order conditions of these two optimization problems can be written in 

vector notation as in Equations 3.11 and 3.12: 

fine-paying: 𝒒(𝒑) + 𝛁𝐩𝒒𝑻(𝒑 − 𝒄) − 𝛁𝐩𝑭𝑪 − 𝛁𝐩𝑭𝑻 = 𝟎 3.11 

constrained: 𝒒(𝒑) + 𝛁𝐩𝒒𝑻(𝒑− 𝒄 − 𝜆𝐶𝒓𝐶 − 𝜆𝑇𝒓𝑇) = 𝟎 3.12 

Given data on vehicle sales and prices, and estimates of the cross-price 

elasticities, 𝛁𝐩𝒒𝑻, from the demand model, the vehicle costs for fine-paying firms can be 

directly determined from Equation 3.11. However because the Lagrange multipliers, 𝜆𝐶 

and 𝜆𝑇, are unknown and 𝒓𝐶 and 𝒓𝑇 depend on fuel economy, which is correlated with 
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marginal cost, we cannot directly solve for marginal cost for the firms constrained to the 

CAFE standard. The Lagrange multipliers, which are negative, represent the effect on 

firm profits of incrementally increasing the constraints in Equation 3.8 holding vehicle 

design fixed. If we assume that the Lagrange multipliers are zero then we would 

overestimate the marginal costs of vehicles with fuel economies below the standard and 

underestimate the costs of vehicles that exceed the standard. 

 Following Jacobsen (2010), we estimate these multipliers using the relationship of 

dealer markups to manufacturer markups. Specifically, there is evidence that dealer 

markups, bj, for each vehicle j are a fixed percentage of manufacturer markups 

(Bresnahan and Reiss 1989):  

𝒃 = 𝛾(𝒑 − 𝒄 + 𝜺) 3.13 

Substituting in Eq. 3.12, we can relate dealer markups to the Lagrange multipliers:  

𝒃 = 𝛾 �−�𝛁𝐩𝒒𝑻�
−1
𝒒 + 𝜆𝐶𝒓𝐶 + 𝜆𝑇𝒓𝑇 + 𝜀𝑗� 3.14 

Using data on dealer markups and parameters estimated in the demand model, we can 

obtain estimates for the Lagrange multipliers and then solve for the equilibrium vehicle 

costs for constrained firms from Equation 3.12. This estimation has the disadvantage of 

relying on the imposed form of the relationship between dealer and manufacturer 

markups. However, our interest in the estimates of 𝜆𝐶 and 𝜆𝑇 is limited to their role in 

controlling for the correlation of marginal vehicle costs with 𝑟𝐶 and 𝑟𝑇. We conduct 

sensitivity analyses of marginal cost estimates to the estimates of 𝜆𝐶 and 𝜆𝑇 and find that 

this sensitivity is low. 

3.4 Cost Estimation  

Data on dealer transactions purchased from JD Power and Associates are used to 

estimate the Lagrange multipliers (i.e.,  𝜆𝐶 and 𝜆𝑇) in Equation 3.14. These data were 

collected from approximately 6,000 dealers from the proprietary Power Information 

Network data, aggregated to quarterly invoice costs and transaction prices for each 

vehicle model. 
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Table 3.10 shows the resulting estimates, which represent the effect of 

incrementally increasing the regulatory constraints in Equation 3.8 on domestic firm 

profits. Recall that these constraints are represented as a nonlinear function of the CAFE 

standards, and therefore these estimates do not directly correspond to an incremental 

increase in the CAFE standards. Using point estimates of 𝜆𝐶 and 𝜆𝑇, we calculate the 

corresponding impact of incrementally increasing the passenger car and light truck 

standards of the unreformed CAFE regulation on firm profits, shown in Table 3.11. These 

profit losses, or shadow costs, of increasing the CAFE standards are in the range of those 

estimated by Anderson and Sallee (2009).  

The estimates indicate that, for passenger cars, Chrysler faces a higher cost of 

compliance than Ford or GM. This result is intuitive given that in MY2006, Chrysler 

neither offered many small vehicles nor had any passenger cars with fuel economy higher 

than 26 mpg. For light trucks, the estimates indicate that Ford has the lowest cost of 

compliance and GM has the highest. This result can be explained by the fact that, while 

Ford produces fewer models of light trucks than GM, Ford produces a number of high-

efficiency light trucks including the Escape Hybrid.  

 
Table 3.10 Lagrange multiplier estimates 

 
Notes: This table presents the impact on firm profits of incrementally 
increasing the constraints in Equation 3.8. Because the constraints are 
nonlinear functions of the CAFE standards, these values are not the shadow 
costs of the regulation, but the shadow costs can be derived from these 
estimates as shown in Table 9.  

I II III

Chrysler λC  250.5       863.76***     861.06***
λT 340.98** 355.70***     351.29***

Ford λC 690.95** 733.56***     715.59***
λT 520.84*** 55.33     58.92 

GM λC 1042.98*** 768.31***      760.75***
λT  762.03*** 739.42***      736.28***

Fixed Effects None Manufacturer Manufacturer
and class class, and quarter

Obs. 708 708 708
R2 0.278 0.689 0.9973
legend: * p<.05; ** p<.01; *** p<.001
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Table 3.11 Shadow costs estimates of unreformed CAFE regulation 

 
Notes: This table presents the impacts of incrementally increasing 
the unreformed CAFE standards on firm profits. These values were 
determined from point estimates of the third specification of the 
Lagrange multipliers presented in Table 10. 

The sensitivity of production cost estimates to the estimates of 𝜆𝐶 and 𝜆𝑇was 

assessed by increasing the value of these Lagrange multipliers for each firm by 10% and 

observing the change in production costs. Table 3.12 reports the results of these tests, 

indicating that the absolute value of changes in production costs are between less than 

$0.01 to approximately $63, with a mean absolute value change of $1–$4 depending on 

the firm. The maximum absolute change in these estimates due to increasing the 

Lagrange multipliers is less than 1%. We further tested the effect of completely ignoring 

the effect of the shadow costs of CAFE on production cost estimates, setting each value 

of 𝜆𝐶 and 𝜆𝑇 to zero. This test indicated that the absolute value changes in production 

costs are between less than $0.01 and $170, with a mean absolute value change of $5.60. 

These results suggest that sensitivity of cost estimates to estimates of Lagrange 

multipliers are low and so we do not expect any errors in the Lagrange multiplier 

estimates to significantly affect any counterfactual results using this cost model. 

Table 3.12 Sensitivity of production costs to estimates of Lagrange multipliers 

 
 

profit losses 
(millions) 

 
losses per 

vehicle
Chrysler passenger cars $19.849 $41

light trucks $30.654 $19

Ford passenger cars $27.905 $31
light trucks $5.649 $4

GM passenger cars $52.122 $31
light trucks $92.015 $41

mean absolute 
change

min absolute 
change

max absolute 
change

Chrysler $1.05 < $0.01 $15.57
Ford $4.06    $0.19 $25.36
GM $3.98 < $0.01 $62.68
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3.5 Appendix A: Modeling combinations of technology features 

The specifications for Equations 3.1 and 3.2 were chosen after examining the 

relationship between the discrete technology feature combinations with cost and fuel 

economy. For example, Figure 3.7 plots production cost against the tech variable 

assigned to each cost-effective combination of technology features conditional on 0-60 

mph acceleration time. Each point on the plot represents a potential vehicle design with a 

specified engine size, final drive ratio, and set of discrete technology features. The gaps 

between vehicle designs achieving the same acceleration time is an artifact of the ranges 

of input variables used in the AVL Cruise vehicle simulations. We would expect that as 

the intervals of these input variables approached zero, the gaps would disappear. 

 
Figure 3.7  Relationship of ordered technology feature combinations to production 
cost conditional on 0-60 mph acceleration time 

 
 

Figure 3.7 is generated for a specific vehicle segment (an SUV) and a specific 

curb weight (3,200 lb). Similar trends were found for other segments and other curb 

weights. The figure indicates that conditional on vehicle segment, curb weight, and 0-60 

acceleration time, moving “up the line” of combinations of technology features increases 

cost linearly. It also indicates that the incremental change in cost of changing technology 

features is roughly constant across the various levels of acceleration performance. This 
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structure is preserved in the specification of Equation 3.3 where cost is linear in 

technology conditional on vehicle segment, curb weight, and acceleration time. 

Figure 3.8 plots fuel consumption against combinations of technology features for 

the same vehicle segment (SUV) and curb weight (3,200 lb). This figure indicates that 

conditional on vehicle segment, curb weight, and 0-60 acceleration time, the set of 

combinations of technology features linearly decrease fuel consumption. However, unlike 

cost, the incremental change in cost of changing technology features varies across the 

various levels of 0-60 mph acceleration time. Figure 3.8 shows that the incremental 

decrease in fuel consumption from moving to a higher ordered combination of 

technology features becomes larger as acceleration time becomes faster, and the rate of 

this change increases as acceleration time gets faster. Similar trends were found for other 

segments and other curb weights. These properties are represented in the specification of 

Equation 3.1 by including a linear tech term as well as an interaction term multiplying 

tech by acc squared. 

 

 
Figure 3.8  Relationship of ordered technology feature combinations to fuel 
consumption conditional on 0-60 mph acceleration time 
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3.6 Appendix B: Evaluation of Engineering Model 

The engineering model describing the tradeoffs between acceleration performance 

and fuel efficiency was compared to observed data of MY2006 vehicles and similar 

models in the automotive engineering literature. Based on the work by An and DeCicco 

(2007), several studies have approximated the tradeoff between fuel efficiency and 

acceleration performance by noting that the product of vehicle power, interior size, and 

fuel economy has increased linearly over the period 1978–2008 (Cheah et al. 2008; 

MacKenzie 2009). Combining this trend with the relationship between vehicle power—

specifically the ratio of peak horsepower to curbweight—with 0-60 mph acceleration 

time, these researchers can derive the implied tradeoff between acceleration performance 

and fuel consumption. Figure 3.9 and Figure 3.10 plot the predicted fuel economy using 

the model presented in this dissertation compared to the tradeoff derived from 

MacKenzie (2009) and observed attributes of MY2006 compact vehicles and midsize 

vehicles, respectively. MacKenzie’s (2009) derives the tradeoff for passenger cars only 

so his model results are not compared to light truck segments. 

 

  
Figure 3.9  Comparison of compact vehicle engineering model predictions to 
observed MY2006 data and MacKenzie (2009) model results 
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Figure 3.10  Comparison of midsize vehicle engineering model predictions to 
observed MY2006 data and MacKenzie (2009) model results 

 
 

The figures illustrate that the engineering model presented in this chapter, which 

was based on engineering vehicle simulations, captures the basic tradeoff between fuel 

efficiency and acceleration performance observed in vehicle data. Furthermore, the model 

is able to represent this tradeoff more closely than the model derived by MacKenzie 

(2009). This improved fit is likely due to the more complex functional form of the 

relationship given by Equation 3.1, which conditions on vehicle curb weight and segment 

(i.e., compact, midsize, etc.). Many opportunities exist for future work to extend the 

approach used by Cheah et al. (2008) and MacKenzie (2009) to control for additional 

vehicle attributes to more accurately represent the tradeoff between acceleration 

performance and fuel efficiency, and even combine the approach of extrapolating 

historical technology change with the approach of representing attribute tradeoffs 

presented in this dissertation.  

  

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20

Fu
el

 C
on

su
m

pt
io

n 
(g

al
/1

00
0 

m
i)

0-60 mph acceleration (s)

Market data Model predictions MacKenzie (2009)

Hybrid



55 
 

 
 
 
 

CHAPTER 4: EVALUATING FUEL ECONOMY STANDARDS 
USING AN ENGINEERING MODEL OF ENDOGENOUS 

PRODUCT DESIGN 

“There exist limitless opportunities in every industry. Where there is an open mind, 
there will always be a frontier.” —Charles Kettering 

 

Policies designed to incite product design changes to improve industrial 

environmental performance are increasing in scope and stringency. These policies can 

significantly influence engineering design decisions as firms reoptimize their products 

and processes to meet compliance requirements at minimum cost. This chapter integrates 

the models discussed in Chapter 3 to demonstrate an analysis of the impact of a policy on 

firms’ design and production decisions. As a case in point, a model is presented where 

automotive firms choose optimal medium-run compliance responses to the reformed 

Corporate Average Fuel Economy (CAFE) regulation.  

4.1 Introduction 

In order to reduce greenhouse-gas emissions, local-air pollutants, and dependence 

on foreign energy sources, energy-efficiency standards and incentives are being 

established for many durable goods. In 2007, Congress created efficiency standards for 

many household appliances, including dishwashers and furnaces; in 2009, the State of 

California adopted efficiency regulations for consumer products, such as battery chargers 

and televisions; and the Department of Energy just recently announced new efficiency 

standards for refrigerators and clothes washers. One especially noteworthy effort to 

reduce energy consumption, enacted first by Congress and then by the Obama 

administration, raises fuel efficiency standards for new automobiles to 35 mpg by 2017—

representing a more than 30% reduction in fuel consumption per mile. How firms 

respond to these types of policies can have significant implications for how efficiently 

energy-intensity reductions are achieved and who bears the costs. 
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Firms can comply with energy-efficiency standards through a combination of 

modifying the relative prices of their products, for example by adjusting prices to shift 

demand toward their more-efficient products, and modifying the designs of their products 

to increase energy efficiency.10

 In order to analyze automotive firms’ medium-run options to respond to the 

reformed Corporate Average Fuel Economy (CAFE) regulation, the models described in 

Chapter 3 are integrated into a partial equilibrium, static oligopoly model of the 

automotive industry. We use the partial-equilibrium model to simulate firms’ responses 

to replacing the unreformed CAFE standards with the model-year (MY) 2014 reformed 

CAFE standards under multiple sets of assumptions. First, we account for the full 

complement of medium-run policy responses and then gradually restrict the ability of 

firms to exercise these responses, shutting down the ability to trade off vehicle attributes 

and then the ability to implement technology features.  

 In much of the economics literature that investigates 

industry response to regulatory intervention, the abilities of firms to change product 

designs is underemphasized (e.g., Goldberg 1998; Nevo 2000; Jacobsen 2010). However, 

energy-efficiency regulations are typically announced a number of years before they 

become mandatory, providing firms the opportunity to respond to these policies through 

product design changes. Recent work on the automotive industry indicates that 

engineering design decisions have played a significant role in determining fleet fuel-

efficiency trends, including gains under CAFE (Knittel 2009; Klier and Linn 2008). 

4.2 Overview of CAFE 

Since 1975, the CAFE policy has influenced automotive firms’ decisions by 

setting a minimum standard for the average fuel economy of a manufacturer’s fleet of 

vehicles sold in the United States. The principle motivation for Congress to create the 

CAFE regulation was to reduce dependence on oil consumption in the wake of the 1973-

74 oil embargo. Since that time, interest in maintaining and strengthening the regulation 

                                                 
10 These strategies are analogous to Grossman and Krueger’s (1995) concepts of composition, 

technique, and scale as a basis for understanding links between changes in economic conditions and 
emissions at the country-level. We note that this framework can also be used to characterize firm- or 
industry-level responses to regulations.  
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has been driven by concerns about global climate change as well as dependence on 

foreign oil. 

The average fuel economy for each manufacturer is calculated as a sales-weighted 

harmonic mean fuel economy across the manufacturer’s fleet of vehicles in a particular 

class (i.e., passenger cars or light trucks). Using this particular formulation, a doubling of 

this average fuel economy corresponds with halving fuel consumption, assuming the 

same number of miles driven. In order to comply with the CAFE policy, this average 

must be greater than or equal to the CAFE standard, such that: 

∑ 𝑞𝑗(𝑝𝑗)𝑗∈𝔍𝑓,𝑐

∑ 𝑞𝑗(𝑝𝑗) 𝑚𝑝𝑔𝑗⁄𝑗∈𝔍𝑓,𝑐

≥ 𝑠𝑡𝑎𝑛𝑑𝑐 4.1 

where qj and mpgj are the number of sales and fuel economy of vehicle j, and standc is the 

fuel economy standard for vehicle j’s class. If a firm violates this standard, they must pay 

a fine of $5.50 per 0.1 mpg below the standard for each vehicle produced. Historically, 

there have been three categories of firm responses to the CAFE standard: all domestic 

manufacturers (GM, Ford, and Chrysler) have met the standard within an allowable 

deviation, certain Asian manufacturers (e.g., Toyota and Honda) have consistently 

exceeded the standard, and many European manufacturers have violated the standard and 

paid the fine (Jacobsen 2010). 

The CAFE standards in place over the period 1975-2008 established a 

significantly lower standard for light trucks than for passenger cars. This distinction 

allowed minivans and SUVs, which composed a very small fraction of sales when the 

policy was introduced, to meet the lower light-truck standard despite their expanding role 

as a personal vehicle, giving rise to the so-called “SUV loophole”. In 2007, Congress 

passed the Energy Independence and Security Act (EISA), phasing out this disparity by 

setting a target standard for both vehicle classes of 35 mpg by MY2020, later moved up 

to MY2016 by President Obama’s administration.  

 In addition, Congress modified the design of the CAFE standard. The reformed 

CAFE establishes an individual fuel economy target, Tj, for each vehicle, based on 
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vehicle footprint such that vehicles with larger footprints have lower targets.11

4.2

 The fuel 

economy standard for firm 𝑓 and vehicle class 𝑐 is determined as a sales-weighted 

harmonic average of the fuel economy targets of the firm’s vehicles in class 𝑐 as defined 

in Equation   

𝑠𝑡𝑎𝑛𝑑𝑓,𝑐 =
∑ 𝑞𝑗(𝑝𝑗)𝑗∈𝔍𝑓,𝑐

∑ 𝑞𝑗(𝑝𝑗) 𝑇𝑗⁄𝑗∈𝔍𝑓,𝑐

 4.2 

Unlike the unreformed CAFE standards, the reformed standards vary across 

manufacturers. This change has a number of important implications. With the unreformed 

CAFE, sales of any vehicle that had a higher fuel economy than its class standard (27.5 

mpg for passenger cars and 21.6 mpg for light trucks in MY2006) helped a firm comply 

with the regulation, and any vehicle under the standard hindered a firm’s ability to 

comply. Under the reformed CAFE, any vehicle that has a fuel economy higher than its 

individual footprint-based target will help a firm comply with the regulation. For 

example, a firm may prefer to produce a larger vehicle that can exceed its target versus a 

smaller vehicle that has higher fuel economy but does not exceed its target. Also, because 

domestic manufacturers tend to have larger vehicles than their competitors, the footprint-

based standards allow domestic manufactures to meet a lower standard than European or 

Asian manufacturers. However, even though the footprint-based standards allow larger 

vehicles to meet lower standards, reformed CAFE overall imposes higher standards than 

the unreformed CAFE standards: the lowest standard for MY2014 is 1.5 mpg higher than 

the unreformed standard.  

Both the unreformed and the reformed CAFE regulations provide some flexibility 

to meet the fuel economy standards. Specifically, both regulations allow firms to bank 

and borrow fuel economy credits. This allows a firm to meet the standard in a given year 

by applying any available banked credits earned from exceeding the standard in previous 

                                                 
11 This decision was based on a National Association of Science report which raised concerns that the 

CAFE regulation encouraged production of smaller vehicles, and that smaller vehicles were more unsafe 
for the public (NRC 2002, 24; and dissent to this opinion, app. A). NHTSA responded to these concerns by 
defining the reformed CAFE standards as a function of the footprint (track width multiplied by wheelbase) 
of the vehicles in a manufacturer’s fleet.  
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years or by borrowing credits, which will have to be repaid in future years. In addition to 

this, the reformed CAFE allows a trading program of credits within each firm, between 

the fuel economy and light truck standard, as well as among firms. Trading within each 

firm allows firms to have an average fuel economy for light trucks that is lower than the 

standard as long as this deficit is offset with a corresponding improvement of the average 

fuel economy of passenger cars over the standard, or vice versa. One limitation of this 

trading is that the average fuel economy of passenger cars of any firm must always meet 

a minimum standard, which is 32.4 mpg for MY2014. 

While we do account for trading of fuel economy credits within firms in our 

model, we do not permit trading between firms or banking and borrowing credits. 

Therefore, our results should be interpreted as upper bounds on the producer surplus 

losses resulting from the regulation. This is consistent with our assumptions in the 

engineering design model, which is constructed to be a conservative representation of 

possible producer options to respond to the policy. For a discussion of banking and 

borrowing of fuel economy credits, interested readers should refer to Jacobsen (2010). 

4.3 Industry Model 

The automotive industry is modeled as an oligopoly of multiproduct firms that 

maximize the expected value of profits with respect to vehicle attributes and prices. 

Consistent with historical behavior, auto firms are characterized into two groups: those 

that operate at the CAFE standard (constrained), and those that can violate the standard 

and pay the corresponding fine. Similar to Jacobsen (2010) and Klier and Linn (2008), 

our counterfactual simulations account for heterogeneity in the compliance behavior of 

firms, distinguishing between firms that are constrained to meet the CAFE standards and 

those that can violate the standards and instead pay a fine.  

Although both the unreformed and reformed CAFE regulations allow 

manufacturers to violate the standards and pay corresponding fines, which are 

proportional to the number of miles per gallon under the standard, there is evidence that 

domestic manufacturers should be treated as though they are constrained to the standards 

instead. First, domestic firms have historically always met the CAFE standards within 

allowable levels but have never significantly exceeded them (Jacobsen 2010). Second, 
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these firms have stated that they view CAFE as binding, believing that they would be 

liable for civil damages in stockholder suits were they to violate the standards (Kleit 

1990). In contrast, many European firms, such as BMW and Audi, have chosen to violate 

the standards and pay the fines many times, so we do not model them as constrained in 

our simulations. It is difficult to know whether other foreign firms that have historically 

met the standards, such as Toyota and Honda, would choose to violate the higher 

reformed CAFE standards if it were more profitable. We model these firms as choosing 

whether to meet the standards based on the most profitable option and discuss the effect 

of this assumption on our simulation results.   

In our counterfactual simulations, the domestic Big 3 manufacturers (Chrysler, 

Ford, and General Motors) are constrained to the standard following their historic 

behavior, and expected future behavior, of consistently meeting the CAFE standards 

within allowable banking and borrowing credits (Jacobsen 2010). The remaining firms 

are allowed to violate the standards if it is more profitable to pay the corresponding fines 

than to comply with the regulations.  

The optimization problem solved by a constrained firm is to maximize profit 

subject to meeting the CAFE standards (standC and standT) for their fleet of cars, 𝔍𝑐, and 

their fleet of light trucks, 𝔍𝑇 . Rearranging Equation 4.1, this formulation can be written 

as: 

  max
𝑎𝑐𝑐𝑗,𝑡𝑒𝑐ℎ𝑗,𝑝𝑗∀𝑗

�𝑞𝑗(𝑝𝑗)
𝑗

�𝑝𝑗 − 𝑐𝑗� 4.3 

 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:     � 𝑞𝑗(𝑝𝑗)
𝑗∈𝔍𝐶

rCj ≥ 0

                            � 𝑞𝑗(𝑝𝑗)
𝑗∈𝔍𝑇

rTj ≥ 0
 4.4 

where rC is 1 − 𝑠𝑡𝑎𝑛𝑑𝐶 𝑚𝑝𝑔𝑗⁄  if 𝑗 ∈ 𝔍𝐶  and zero otherwise; and similarly rT is            

1 − 𝑠𝑡𝑎𝑛𝑑𝑇 𝑚𝑝𝑔𝑗⁄  if 𝑗 ∈ 𝔍𝑇 and zero otherwise. 

For firms able to violate the CAFE penalty, the profit maximization problem is 

given by: 
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 max
𝑎𝑐𝑐𝑗,𝑡𝑒𝑐ℎ𝑗,𝑝𝑗∀𝑗

�𝑞𝑗(𝑝𝑗)
𝑗

�𝑝𝑗 − 𝑐𝑗�  − 𝐹𝐶 − 𝐹𝑇 
4.5 

where FC and FT are the respective fines if the firm violates either the passenger car or 

light truck standard as defined in Equation 4.6.  

𝐹𝐶 = 55 � 𝑞𝑗(𝑝𝑗)
𝑗∈𝔍𝑓,𝐶

�𝑠𝑡𝑎𝑛𝑑𝐶 −
∑ 𝑞𝑗(𝑝𝑗)𝑗∈𝔍𝑓,𝐶

∑ 𝑞𝑗(𝑝𝑗) 𝑚𝑝𝑔𝑗⁄𝑗∈𝔍𝑓,𝐶

�

𝐹𝑇 = 55 � 𝑞𝑗(𝑝𝑗)
𝑗∈𝔍𝑓,𝑇

�𝑠𝑡𝑎𝑛𝑑𝑇 −
∑ 𝑞𝑗(𝑝𝑗)𝑗∈𝔍𝑓,𝑇

∑ 𝑞𝑗(𝑝𝑗) 𝑚𝑝𝑔𝑗⁄𝑗∈𝔍𝑓,𝑇

�
 4.6 

Note that, for all types of firms, fuel consumption is determined through decisions 

on acceleration performance and technology features from Eq. 3 and therefore is not 

listed explicitly as a decision variable. We could instead have listed mpg and tech as the 

decision variables and implicitly determined acceleration performance; this convention is 

arbitrary and does not affect the formulation. 

4.4 Counterfactual Simulations 

Using the estimated models of demand and engineering design from Chapter 3, 

we perform counterfactual experiments that simulate replacing the unreformed CAFE 

standards with the reformed CAFE standards that will be applied to the MY2014 fleet of 

vehicles. An underlying assumption of these, or any, counterfactuals is that the structure 

of decision-making is unaffected by the policy change. Because our supply model is 

constructed from physics-based simulations and we have no indication that demand 

would be directly impacted by the change in CAFE, this assumption is justifiable. One 

possible caveat, however, is that firms may have an incentive to allow adjustments of 

vehicle footprint later in the development process because the regulation allows 

manufacturers of larger vehicles to meet lower standards. This behavior is not captured 

here, but is explored in Chapter 5. 
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Twenty firms are represented in these simulations, producing a total of 473 

vehicle models, described by Table 3.5. This represents all vehicle models and engine 

options in MY2006, which is a considerably larger scale than previous studies (e.g., 

Goldberg 1998; Jacobsen 2010). The choice of firms represented in these simulations is 

determined following the EPA’s classification of manufacturers as listed on the MY2006 

fuel-economy test data. For example, Saab is considered as part of GM but Land Rover is 

considered a separate firm from Ford. 

Convergence of the counterfactual simulations to an equilibrium solution required 

between 12–38 cpu hours. At equilibrium, the infinity-norm of the gradient for each 

firm’s profit maximization problem was 1e-5 or less and the hessian was positive 

definite. We are not aware of any proofs of unique equilibrium that apply to this specific 

problem. Shiau and Michalek (2007) searched for possible multiple equilibria in the case 

where automotive firms choose prices and design variables for vehicle powertrains. This 

choice of powertrain variables is similar to the approach used in this dissertation but 

firms were restricted to producing only one vehicle each and the implementation of 

technology features was not considered. The authors could identify only one equilibrium 

in this case, which was determined using both the sequential method used in this 

dissertation and using an alternative solution algorithm that directly solves the first-order 

conditions for each firm and verifies second-order conditions. These results indicate that, 

at least with respect to vehicle prices and tradeoffs between acceleration performance and 

fuel efficiency, multiple equilibrium cannot be easily discovered. However, future 

research is needed to verify that multiple equilibria do not exist. 

4.4.1 Counterfactual baseline  

 Because our endogenous attribute model is derived from engineering simulations 

and cost data, observed attributes are not necessarily restricted to be in equilibrium. We 

therefore perform simulations of the CAFE regulations that were applied to the MY2006 

automotive market to serve as a baseline to compare counterfactual simulations. The 

simulation results are in Nash equilibrium with respect to firm decisions on 0-60 

acceleration time, and technology implementation—which implicitly determines fuel 

economy—as well as price for each of their vehicles. Our results, shown in  
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Table 4.1, indicate that fuel economy and 0-60 acceleration time for MY2006 vehicles 

are very close to equilibrium.  

Due to a lack of data on adoption of each technology feature, we cannot compare 

the results of adopted technology features to those in the MY2006 vehicles. But, the 

simulations results appear to match general information about technology. For instance, 

very few vehicles in MY2006 included cylinder deactivation, which is supported by the 

simulations.  

 
Table 4.1  Comparison of observed attributes and baseline simulation 

 
 

4.4.2 Reformed CAFE simulations  

We simulate the effect of replacing the unreformed CAFE standards with the 

reformed standards under four sets of assumptions with increasing constraints. First, we 

account for the full set of medium-run responses in our model: technology 

implementation, tradeoffs between fuel efficiency and acceleration performance, pricing 

adjustments, and trading fuel economy credits between the passenger-car and light-truck 

standards within a firm. Second, we disallow within-firm trading. Third, we shut down 

the ability of firms to trade off acceleration performance with fuel efficiency, treating 

acceleration performance as exogenous. Fourth, we simulate short-run responses, only 

allowing for price adjustments. 

Simulation results produce the partial-equilibrium price, marginal production cost, 

fuel economy, acceleration performance, and amount of technology implementation for 

every vehicle. Taken together, these simulation results can be used to calculate profits 

and consumer surplus. Point estimates of the effects of the reformed CAFE on producer 

and consumer surplus are shown in Table 4.2. Note that this welfare analysis does not 

account for any indirect benefits associated with reduced fuel consumption, such as 

reduction in environmental damages. All values are measured relative to a baseline of 

Average Fuel 
economy (mpg)

Average 0-60 
acceleration (s)

Average 
tech

Observed 21.5 7.11 -
Baseline
Simulations 7.42 0.1920.7
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partial equilibrium with respect to prices, acceleration performance, and technology 

implementation in the presence of the unreformed CAFE standards, described in    

Section 4.4.1.  

Table 4.2 Impact of MY2014 CAFE on producer and consumer welfare 

 
Notes: This table reports point estimates of changes in producer and consumer surplus resulting from 
replacing the unreformed CAFE standards with the reformed CAFE standards. The Short-Run with within-
firm Trading specification only allows firms to adjust the prices of their vehicles and trade fuel-economy 
credits between the passenger car and light truck standards; all vehicle designs are considered exogenous. 
The Medium-Run Without Tradeoffs specification accounts for price changes and the ability of firms to 
implement fuel-saving technologies but does not allow for any tradeoffs between fuel economy and 
acceleration performance. The Full Medium-Run specification accounts for price changes, technology 
implementation, and tradeoffs between fuel economy and acceleration performance. The Full Medium-Run 
with within-firm Trading specification further adds the ability of firms to trade fuel-economy credits 
between their passenger car and light truck standards. 
† In the short run, neither Chrysler nor Ford could meet the reformed CAFE minimum requirement for 
passenger cars; Chrysler violated it by 4.2 mpg and Ford violated it by 4.0 mpg. 

 

Results of the counterfactual simulations are shown in Table 4.2 using the four 

specifications of firm options to respond to the CAFE standards. These results highlight 

the importance of explicitly accounting not only for price responses but also for both 

technology implementation and tradeoffs between fuel efficiency and other vehicle 

attributes. Accounting for price changes and within-firm credit trading but ignoring any 

ability for firms to adjust vehicle designs results in profit losses of $149 billion for firms 

constrained to the standards. Accounting for technology implementation and design 

tradeoffs in addition to these decision options lowers profit losses to $17 billion. These 

simulations suggest that constrained firms use a combination of all decision options to 

increase fuel economy, but the majority of improvements are due to changes in product 

Full Medium Run with 
within-firm Trading Full Medium Run Medium Run 

Without Tradeoffs
Short Run with 

within-firm Trading
Total -$59 $8 $11 -$113
(billions)

Full Medium Run with 
within-firm Trading Full Medium Run Medium Run 

Without Tradeoffs
Short Run with 

within-firm Trading
Total -$144 -$142 -$163 -$182
(billions)
Constrained firms -$17 -$21 -$44   -$149 †
Fine-paying firms -$127 -$121 -$119 -$33

Change in Producer Welfare

Change in Consumer Surplus
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design. In order to test the relative impact of design changes and price changes on fuel 

economy, we assign the prices from our pre-policy-change baseline to the counterfactual 

vehicle designs from the reformed CAFE simulations. We find that 62% of fuel economy 

improvements derive from changes to vehicle designs and 38% derive from price changes 

and credit trading. 

4.4.3 Impact of firm heterogeneity on fuel economy  

Results indicate that the domestic Big 3 manufacturers improve the fuel economy 

of their vehicle fleets by an average12

However, despite the rise in fuel economy by constrained firms, we find that for 

firms choosing to violate the standard and pay the fine, average fuel economy decreases 

in response to the regulation. This leads to a form of leakage, where efficiency 

improvements from complying firms are offset by reductions in fuel efficiency from non-

compliant firms. This behavior, also noted by Jacobsen (2010), can be explained by the 

residual demand curve for lower fuel economy vehicles, which are larger or have better 

acceleration, shifting to the right in response to other firms producing higher fuel 

economy vehicles.  

 of 4.3 mpg, compromising acceleration 

performance such that the average 0-60 acceleration time is 2.7 s slower. This result is 

consistent with Knittel’s (2009) finding that meeting the reformed CAFE standards will 

require a non-trivial “downsizing” of vehicle performance attributes, such as acceleration, 

but is clearly attainable.  

Simulations that account for design responses in addition to price and credit 

trading responses suggest that the extent of fuel-consumption leakage is large. 

Manufacturers that violate the standard offset the increase in fuel efficiency by compliant 

firms such that both the average fuel economy and acceleration performance across the 

market remain approximately the same—fuel economy increases by only 0.1 mpg and 

acceleration performance changes by less than 0.3 s. Results suggest that it is more 

profitable for even Toyota and Honda to violate the reformed CAFE standards and pay 

the corresponding fines due to the substantial increase in fuel economy required by 

constrained firms under the reformed CAFE standards.  
                                                 

12 All fuel economy averages in this section are sales-weighted harmonic means; all other averages are 
sales-weighted arithmetic means. 
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Simulations that ignore design changes, only accounting for short-run responses, 

produce a much smaller leakage effect. In these simulations, foreign manufacturers only 

decrease fuel economy by an average of 0.3 mpg, resulting in an overall increase in 

average new-vehicle fuel economy by 2.3 mpg. Similar to the medium-run simulations, 

production of more fuel-efficient vehicles by compliant firms shifts the residual demand 

curve for less fuel-efficient vehicles to the right. But, because firms cannot adjust the fuel 

economy of their vehicle fleet as easily in the short run, the profit incentive for fine-

paying firms to increase production of low-efficiency vehicles is much smaller than in 

medium-run simulations. These findings not only highlight the adverse consequences of 

non-compliance to the CAFE standards but also further underscore the importance of 

explicitly accounting for design responses to analyze the policy. 

4.4.4 Impact of attribute tradeoffs on firm behavior and costs 

In the third specification, shown in Table 4.2, we exclude the ability of firms to 

trade off acceleration performance with fuel economy, considering the determination of 

acceleration performance as exogenous. We do this to investigate the effect of ignoring 

the tradeoffs between these attributes on the resulting welfare estimations. Results 

suggest that the costs of the regulation to compliant firms, in terms of profits lost, are 

twice as large as when these tradeoffs are ignored. These results suggest that analyses of 

CAFE that do not account for tradeoffs between fuel economy and other vehicle 

attributes may substantially overestimate the costs of the regulation. Compared to the 

short-run specification, which treats all aspects of vehicle design as exogenous, costs to 

compliant firms are almost nine times lower in the specification that accounts for both 

attribute tradeoffs and technology implementation. Including within-firm credit trading 

further reduces these costs by 23%. 

Contrasting the results of the “full medium run” and “medium-run without 

tradeoffs” specifications highlights the complex relationship between firm compliance 

strategies and production decisions. In the “medium-run without tradeoffs” specification, 

firms can only increase the fuel economy of their vehicles by implementing technology 

features, which increase vehicle production costs. Consequently, domestic firms (which 

are constrained to the standards) increase the prices of their vehicles. This behavior leads 
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to a 13% decrease in the market share of domestic firms. These firms also shift 

production substantially from passenger cars to light trucks, in order to take advantage of 

the lower fuel-economy standards for light trucks. As a result, the share of light trucks 

across the domestic firms’ fleets increases by 25%.  

This behavior does not occur in the simulations that account for tradeoffs between 

acceleration performance and fuel economy. In the “full medium run” specification, 

constrained firms choose to increase fuel economy primarily by compromising 

acceleration performance, which decreases marginal costs but also decreases consumer 

utility. As a result, these firms lower their vehicle prices considerably, by an average of 

$1,300. This behavior leads to a much smaller loss in the market share of domestic firms 

(5.5%) and a much smaller shift to light truck production (4.5%). Including within-firm 

credit trading tempers these responses further: vehicle prices decrease by an average of 

$750, the market share of domestic firms declines by only 4.2% and the shift to light 

trucks is less than 1%. 

Comparing these results to other approaches in the literature, which project the 

impact of technology change on vehicle attributes by extrapolating past behavior (An and 

DeCicco 2007; Cheah et al. 2008; MacKenzie 2009), we find that results indicate that the 

reformed CAFE standards have the effect of inducing technology implementation of 

constrained firms equivalent to the expected technology change over a four-year period in 

the absence of the policy.13

                                                 
13 This comparison was calculated using the Power-Size-Fuel Economy Index created by An and 

DeCicco(2007). While this index uses interior volume, this data was not available in our data set, so instead 
we used exterior volume normalized to the scale of interior volume to approximate the index. 

 Furthermore, using the metric created by Cheah et al. (2008) 

to quantify the allocation of technology used to improve fuel efficiency, called the 

Emphasis on Reducing Fuel Consumption (ERFC) index, we find that the reformed 

CAFE standards increase the ERFC to 112%. This value indicates that not only are all 

technology gains applied to improving fuel efficiency but that manufacturers trade off 

other aspects of vehicle performance, namely acceleration performance, to realize further 

improvements in fuel efficiency. This value of ERFC is slightly higher than the required 

level predicted by MacKenzie (2009), although his calculations were based solely on the 

passenger car fleet. 
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4.4.5 Implications for climate and fuel consumption policies 

Our results suggest that the cost-effectiveness of the reformed CAFE, in terms of 

profit loss per reduction in fuel consumption, is significantly better than cost-

effectiveness estimates of the unreformed CAFE (e.g., Goldberg 1998; Jacobsen 2010). 

For example, Goldberg (1998) estimated the costs of the CAFE standards in 1998 as 

approximately $1,140 per short ton CO2 reduced, or $11.06 per gallon reduced. 

Assuming vehicles have a lifetime of 13 years and are driven 14,000 miles per year with 

a rebound effect of 10.3% (Small and Van Dender 2007), our counterfactual results 

indicate that compliant firms reduce fuel consumption of their vehicles by 14% at a cost 

of $197 per short ton of CO2 reduced, or $1.91 per gallon reduced. Considering CAFE 

solely as climate policy, this estimate is notably larger than cost estimates for other 

potential climate policy instruments such as a comprehensive cap and trade system (e.g., 

Stavins 2008). However, the welfare benefits from reducing fuel consumption are not 

limited to only the benefit of reducing CO2 emissions. Reduced local air pollution and 

dependency on foreign oil also contribute to welfare benefits from CAFE.14

Despite significant gains in fuel economy by compliant firms, our results 

underscore that the effectiveness of CAFE—in terms of both fuel consumption reductions 

and costs—is highly dependent on the behavior of Asian and European manufacturers. 

Given the current fine of $55 per vehicle per mpg under the standard, our results indicate 

that it is more profitable for each of these firms (including Toyota and Honda) to violate 

the standard and pay the corresponding fines. Furthermore, we find that these firms have 

an incentive in the medium run to substantially decrease fuel economy such that the fuel 

consumption across all new vehicles is approximately the same. These results imply 

negligible reductions in CO2 at exceptionally high costs.  

  

It is important to emphasize that, unlike leakage problems that have been 

characterized elsewhere in the literature, the leakage we observe in our simulations can 

be readily mitigated through policy design—namely, by increasing the level of the fine. 

As Shiau et al. (2009) concluded, if it is desirable to encourage firms to meet a high fuel-
                                                 

14 Estimates of the value of these welfare benefits are notably hard to obtain. For a rough comparison, 
estimates of welfare benefits from Parry et al. (2004) attributed to local air pollution and oil dependency 
sum to 22 cents per gallon of gasoline reduced. On the other hand, if the rebound effect leads to 
substantially higher driving during congested periods, CAFE may lead to welfare losses from increased 
traffic congestion. 
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economy standard, the fine for violating this standard must also be increased. These 

findings have direct implications for the recently announced greenhouse-gas emission 

standards for light-duty vehicles, which give the EPA the authority to set the penalties for 

noncompliance on a case-by-case basis. Ideally, the fines should be set equal to the 

marginal damages that would result from increasing fuel consumption above the level 

necessary to exactly meet the standard. Because fuel consumption is the inverse of fuel 

economy, this relationship varies with the standard and with the number of miles per 

gallon that a firm’s average fuel economy is below the standard.  

4.5 Conclusions 

 This study demonstrates the importance of accounting for design responses in the 

analysis of industrial policy impacts using a case study of medium-run firm responses to 

the reformed CAFE standards. In addition to accounting for fuel-saving technologies that 

firms can implement in response to CAFE but are unobserved in data, our model 

explicitly accounts for engineering tradeoffs between fuel efficiency and acceleration 

performance, which provide another mechanism for firms to adjust product designs to 

respond to energy-efficiency regulations.  

 We use this model to estimate the effects of the model-year 2014 CAFE 

regulation on producer and consumer surplus and fuel economy. Results indicate that the 

majority of fuel-efficiency improvements of compliant firms are from changes in product 

designs. Compliant firms also adjust product prices to shift demand to more efficient 

vehicles in response to fuel economy standards, but this has a smaller effect on fuel-

efficiency improvements than design changes.  

Results highlight the substantial sensitivity of profit losses and fuel efficiency 

gains to the product design strategies that firms use to comply with the regulation. When 

we ignore the potential for tradeoffs between acceleration performance and fuel 

economy, our results suggest that the profit losses of constrained firms are twice as high 

as when these tradeoffs are considered. When product designs are considered exogenous, 

the profit losses to constrained firms are over nine times greater. These results suggest 

that welfare analyses of CAFE or similar policy instruments that ignore the potential for 

changes in product design decisions could significantly overestimate the policy costs. 
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Furthermore, our results highlight the notable difficulty of significantly increasing 

fuel economy across the U.S. market of new vehicles when firms choose to violate the 

CAFE standards and instead pay a fine. Without consumer incentives for higher fuel 

economy, results indicate that increases in fuel efficiency from one set of firms could be 

almost entirely offset in the medium run by decreases in fuel efficiency from other firms. 

These results are sensitive to the assumption that Asian manufacturers will choose to 

violate the standard and pay the corresponding fines when it is more profitable, but 

underscore the large effect their behavior has on the outcomes of the CAFE standards. 

A number of limitations to the current analysis exist and may affect these results. 

Sensitivity analyses are needed to test the robustness of our results to the assumptions 

used in our model and the standard errors on parameter estimates. Most notably, future 

work will include sensitivity tests to estimates of engine and technology-feature costs, the 

shadow costs of the unreformed standards, and the specification of our consumer utility 

function.  

As data become available for the early years of the reformed CAFE standards, 

validation tests could be performed comparing the results of counterfactual simulations 

with observed trends in vehicle attributes. Comparing the simulated profit-optimal firm 

behavior with observed changes in fuel efficiency, acceleration performance and shifts in 

sales between passenger cars and light trucks will be valuable to examine how closely the 

presented model captures the predominant factors driving firm response to the reformed 

CAFE standards. Ideally, validation tests could be performed to compare simulation 

results with observed implementation of specific technology features and the extent to 

which firms rely on these technologies and tradeoffs with acceleration performance to 

increase fuel efficiency. However, data on all the technology features considered in this 

analysis are difficult, and in some cases impossible, to obtain. This lack of 

comprehensive data characterizing the design options that are available to automotive 

manufacturers presents a challenge for validating the detailed behavior simulated in the 

analysis but also underscores the value of such an approach that can capture design 

options through engineering modeling that cannot be captured through data alone. 

 

  



71 
 

 
 
 
 

CHAPTER 5: ANALYZING THE POTENTIAL FOR UNDESIRABLE 
DESIGN INCENTIVES FROM FOOTPRINT-BASED FUEL 

ECONOMY STANDARDS 

“You don't have to change the course of the comet very much to miss the keyhole if 
you do it a number of years in advance [but] you don't want to nudge it until you 
know what the nudge is going to do.” —Clark Chapman (Than 2005) 

 

Many policy interventions can induce product design responses other than the 

design changes targeted by the policy. The developed methodology discussed in Chapters 

3 and 4 can be used to analyze the potential of these effects and their magnitudes. This 

chapter extends the methods presented in Chapter 3 to analyze potentially unfavorable 

incentives from the reformed Corporate Average Fuel Economy (CAFE) regulation. The 

regulation sets fuel economy standards based on the footprint (wheelbase by track width) 

of vehicles produced by a manufacturer each year. These footprint-based standards could 

create an incentive for manufacturers to increase the size of their vehicles in order to 

lower their fuel economy targets. An oligopolistic equilibrium model of the automotive 

market is presented where firms can respond to the CAFE regulation by modifying 

vehicle dimensions, implementing technology features that increase fuel economy, or 

compromising acceleration performance to increase fuel economy. The presence and 

magnitude of the incentive to increase vehicle size is determined for a range of simulated 

consumer demand parameters. Results suggest that firms have a significant incentive to 

respond to the footprint-based standards by increasing vehicle size except when 

consumer preference for vehicle size is low and preference for acceleration performance 

is high. Except for this case, simulation results indicate that average vehicle size 

increases by 1–13 sq. ft. depending on consumer preferences, undermining gains in fuel 

consumption reductions by 1–4 mpg.  
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5.1 Introduction 

Passenger-car transportation accounts for 17% of U.S. greenhouse gas emissions 

and 40% of U.S. oil consumption. In order to reduce the effects of this consumption, the 

U.S. Congress has supported regulations on the fuel efficiency of new passenger vehicles 

in the form of the CAFE regulations. Although criticisms have been made regarding the 

efficiency and safety of these regulations, they have been credited with substantially 

restraining U.S. oil consumption (Greene 1998). Furthermore, the regulation is popular 

with the U.S. public, especially compared to alternative policies to reduce greenhouse gas 

emissions and oil consumption (Pew Center 2010). Despite this support for CAFE, the 

criticism that the policy may generate undesirable consequences for passenger safety 

appears to be unresolved and plays a substantial role in the current design of the 

regulation (NHTSA 2009). 

Responding to concerns about CAFE’s effects on vehicle size and weight, and the 

resulting impact on passenger safety, the National Academy of Sciences suggested that 

CAFE regulations could be improved by allowing the fuel economy standards to depend 

on key vehicle attributes (e.g., size, weight, or payload) (NRC 2002). Congress 

subsequently reformed CAFE so that the fuel economy standard for each automotive 

manufacturer’s fleet of vehicles would be determined based on one or more vehicle 

attributes. The resulting standards are currently a function of the footprint of the vehicles 

in a manufacturer’s fleet, allowing manufacturers that produce larger vehicles to meet 

lower fuel economy standards. This regulation design could potentially create an 

undesirable incentive for automotive manufacturers to increase the footprint of their 

vehicles and diminish the policy’s goal of reduced fuel consumption.  

Understanding the relationship between the CAFE standards and the potential 

incentive to increase vehicle size requires characterizing the tradeoffs between size, fuel 

economy and other vehicle attributes, production costs, and consumer demand. Multiple 

confounding factors in observed vehicle and consumer choice data present significant 

challenges to accurately estimating these relationships. As a result, the vast majority of 

analyses of CAFE and alternative fuel-economy incentives have assumed that vehicle 

attributes other than fuel economy cannot change (e.g., Goldberg 1998; Jacobsen 2010), 

and several assume that the production mix of vehicles also remains constant (e.g., 
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Greene and Hopson 2003; Austin and Dinan 2005). In this analysis, we use physics-based 

simulations to characterize the engineering tradeoffs between vehicle size and other 

vehicle attributes, circumventing the challenges presented by confounding factors in 

observed vehicle data. Information on the design and manufacturing processes in 

automotive production allow us to approximate the relationship between vehicle size and 

production costs. Accurate estimation of consumer preference for vehicle size along with 

other vehicle attributes remains a challenge. Instead of attempting to estimate these 

parameters, we simulate multiple combinations of values for these preference parameters 

based on existing literature. 

The potential for CAFE standards to encourage increases in the size of vehicles 

has implications for both fuel economy goals and traffic safety. With respect to fuel 

economy, we examine potential losses in fuel economy gains by determining the change 

in average fuel economy in simulations that allow firms to take advantage of lower fuel 

economy standards by increasing vehicle size and comparing this with fuel economy 

gains assuming vehicle size and sales remain unaffected. With respect to traffic safety, 

both the absolute measures of vehicle size (the dimensions of the vehicle) and the relative 

measures of vehicle size (spread of dimensions across vehicles) can impact safety risks 

(NRC 2002; Kahane 1997). This study does not attempt to predict any impact on traffic 

safety risks, but investigates the impact of footprint-based CAFE standards on both the 

absolute change in vehicle footprint and differences in vehicle footprint changes between 

passenger cars and light trucks. These results could prove useful in conjunction with 

ongoing research of the effects of vehicle size on traffic safety. 

5.2 Background on Reformed CAFE 

5.2.1 Motivation for attribute-based standards 

As requested by Congress, the National Research Council (NRC) conducted a 

study in 2002 on the effectiveness and impacts of CAFE, including implications for 

vehicle safety. This study concluded that the reduction of vehicle weight and size that 

accompanied the early years of the CAFE program posed a significant risk to the safety 

of those vehicles’ occupants and that, pending further investigation, the CAFE regulation 

should be modified so that no incentive exists to reduce vehicle size or weight (NRC 
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2002). The study also acknowledged the unresolved question of whether total traffic 

safety—including occupants of heavier vehicles, occupants of lighter vehicles, and 

pedestrians—would be better or worse if vehicle weight increased. Based on a 1997 

report by NHTSA, the NRC report concluded that a uniform increase in vehicle weight 

for all vehicles would result in a reduction of traffic fatalities. Although the NRC report 

primarily focused on weight-based fuel economy standards, NHTSA established 

footprint-based standards noting that automotive manufacturers can more easily increase 

vehicle weight than vehicle footprint to take advantage of lower fuel economy targets. 

Whereas in the unreformed CAFE, every manufacturer was required to meet the 

same fuel economy standards, one for passenger cars and one for light trucks, the 

reformed CAFE standards are calculated separately for each manufacturer as a function 

of the sizes of the vehicles it produces. Specifically, the regulation sets individual fuel 

economy targets for each vehicle based on the vehicle’s footprint, where larger vehicles 

have lower targets. A firm will comply with the passenger car standard if the sales-

weighted average fuel economy of its fleet of passenger cars is equal to or greater than 

the sales-weighted average target set for these vehicles, and similarly for the light truck 

standard as in Equation 5.1.  

𝑆𝑡𝑎𝑛𝑑𝑐 =
∑ 𝑞𝑗𝑗∈𝔍𝑓,𝑐

∑ 𝑞𝑗 𝑇𝑗⁄𝑗∈𝔍𝑓,𝑐

 5.1 

The variables 𝑞𝑗  and 𝑇𝑗 in this equation are respectively the sales and fuel economy target 

for vehicle 𝑗 in vehicle class 𝑐 (i.e., passenger cars or light trucks), where the set of 

vehicles in class 𝑐 produced by firm 𝑓 is denoted 𝔍𝑓,𝑐. The MY2014 fuel economy 

targets for passenger cars and light trucks as a function of vehicle footprint are described 

by Equation 5.2 and illustrated in Figure 5.1. 

passenger cars: 𝑇𝑗 = 1 𝑚𝑖𝑛 �𝑚𝑎𝑥 �5.308 × 10−4  × 𝑓𝑡𝑝𝑗 + 4.498 × 10−3, 1
38.08

� , 1
29.22

��  

5.2 
light trucks: 𝑇𝑗 = 1 𝑚𝑖𝑛 �𝑚𝑎𝑥 �4.546 × 10−4  × 𝑓𝑡𝑝𝑗 + 1.331 × 10−2, 1

31,30
� , 1

23,09
��  
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Figure 5.1 MY2014 footprint-based fuel economy targets as specified by CAFE 

 

NHTSA chose these particular functions so that fuel economy targets decrease 

with vehicle footprint based on several concerns: 1) the attribute-based standards increase 

fuel savings compared to industry-wide average standards, 2) the standards should 

minimize the incentive for manufacturers to respond to CAFE such that traffic safety risk 

increases, and 3) regulatory burdens should be equally balanced among manufacturers 

(NHTSA 2009). However, no quantitative analysis was performed to assess what effect 

the chosen functions have on any incentives to increase or decrease vehicle size, and the 

resulting impact on average fuel economy. This study conducts such an analysis. 

5.2.2 Safety criticisms of attribute-based standards 

Despite the majority opinion of the NRC report that fuel economy standards have 

significant safety risks, many researchers have presented evidence that this connection is 

highly uncertain and potentially incorrect. Two authors of the NRC report dissented to 

the conclusion that increasing fuel economy has a negative impact on traffic safety 

(Greene and Keller 2002). This dissent focused on two main criticisms: 1) the fact that 

occupants in heavier vehicles are safer when they collide with lighter vehicles does not 

indicate that reducing weight of all vehicles will decrease traffic safety and 2) crash data 

contains many confounding factors that are not adequately addressed in many studies. 

Ahmad and Greene (2005) found no statistically significant relationship between fuel 

economy and traffic fatalities between 1967 and 2002. Anderson and Auffhammer (2011) 
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exposed an additional concern:  assuming that consumers purchase vehicles considering 

only their own safety and not the safety of other vehicle occupants, the authors showed 

that the weight of vehicles on the road will be larger than is optimal considering total 

traffic safety. This study does not address the issue of traffic safety directly but 

investigates the impact of the footprint-based CAFE standards on vehicle size, which 

could be useful in future safety studies. 

5.2.3 Discussion of potential undesirable incentives 

In addition to criticisms of the link between improved fuel economy and increased 

safety risk, several researchers have suggested that footprint-based fuel economy 

standards could create the incentive to increase vehicle size, but a quantitative analysis of 

this incentive has not yet been performed. Norman (1994) recognized early on that 

attribute-based standards could be susceptible to unintended incentives for firms to 

design vehicles to be larger or heavier in order to qualify for a less stringent standard. He 

pointed out that, because these types of standards depend on the chosen attribute, they do 

not ensure that a given overall fuel economy will be achieved. Greene et al. (2005) 

pointed out that, depending on the costs and benefits of changing vehicle footprints, 

manufacturers may have an incentive to change the footprints of their vehicles and also 

noted that it was unfortunate that this incentive was not rigorously investigated by 

NHTSA before implementing the footprint-based CAFE.  

Greene and Hopson (2003) considered the possibility of a weight-based standard 

creating the incentive to increase vehicle weight. They recognized that although 

manufacturers may be able to lower their required fuel economy standard by increasing 

vehicle weight, fuel economy also decreases with increased weight. The authors 

determined that increasing vehicle weight by 1% would reduce fuel economy 

performance by 0.6%. Assuming that increasing vehicle weight by 1% would reduce the 

CAFE requirement by 1%, the loss in fuel economy performance reduces the incentive to 

increase vehicle weight. Given a combined standard of 32.7 mpg by 2015, the authors 

find that the weight-based standard causes an average increase in weight of only 1% and 

a loss of fuel economy gains of 2.5%. 
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Although this analysis of weight-based standards illustrates some important 

tradeoffs necessary to understand the impacts of attribute-based standards, the results 

should not be generalized to footprint-based standards. Given an attribute-based CAFE 

standard, a profit-maximizing manufacturer will weigh various tradeoffs to determine 

whether modifying the key attribute (i.e., weight or footprint) is desirable. These 

tradeoffs include the cost of modifying the key attribute, the impact on fuel efficiency 

and other aspects of vehicle performance such as acceleration, and the resulting change in 

demand. All three of these types of tradeoffs may vary depending on whether the key 

attribute is vehicle weight or vehicle footprint. Consumers may prefer increased vehicle 

size more than increased vehicle weight, or vice versa; increasing the footprint of the 

vehicle may affect production costs differently than vehicle weight; and the degree to 

which fuel economy and acceleration performance are reduced from increasing vehicle 

footprint by 1% may be different than increasing vehicle weight by 1%.  

This study investigates the effect of footprint-based fuel economy standards on 

any potential incentive to increase vehicle size considering consumer preferences, 

production costs, and engineering tradeoffs between vehicle footprint, fuel efficiency, 

and acceleration performance. The automotive market is represented using an 

oligopolistic equilibrium model in which engineering tradeoffs between vehicle attributes 

are derived from physics-based vehicle simulations. This certainly is not the only valid 

approach of analyzing footprint-based standards; indeed, we believe that multiple studies 

using both theoretical and empirical approaches are necessary to fully understand design 

incentives created by these standards. 

5.3 Methodology 

To investigate potentially undesirable incentives from the footprint-based CAFE 

standards, we consider the decisions that an automotive manufacturer may make in 

response to the regulation. If a manufacturer wishes to increase the footprint of a 

particular vehicle, the weight of a vehicle will increase to some extent. This will 

negatively impact both the fuel efficiency of the vehicle and the acceleration 

performance. These losses can be alleviated by incorporating various technology features 

(e.g., lower friction engine components or cylinder deactivation) at some additional cost. 
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Another option is to redesign the powertrain to improve fuel efficiency at some further 

cost of acceleration performance, or vice versa. A profit-maximizing manufacturer would 

balance these decisions based on how the resulting vehicle attributes affect vehicle sales 

(q), production costs (c), and the ability to meet the CAFE standard. This study is the first 

analysis of attribute-based standards to consider each of these tradeoffs. 

These decisions can be formulated as an optimization problem where the 

manufacturer maximizes profits subject to the constraints of the CAFE regulation. The 

manufacturer can choose the footprint (ftp), acceleration performance (acc), level of 

technology features (tech), and price (p) of each vehicle in their fleet. The constraint of 

the CAFE regulation is a function of individual vehicle fuel economy targets (T), which 

depend on the footprint of the vehicle.  

 max
𝑓𝑡𝑝𝑗,𝑎𝑐𝑐𝑗,𝑡𝑒𝑐ℎ𝑗,𝑝𝑗∀𝑗

    �𝑞𝑗�𝑝𝑗 ,𝑚𝑝𝑔𝑗,𝑎𝑐𝑐𝑗 , 𝑡𝑒𝑐ℎ𝑗 ,𝑓𝑡𝑝𝑗�
𝑗

�𝑝𝑗 − 𝑐𝑗�𝑎𝑐𝑐𝑗 , 𝑡𝑒𝑐ℎ𝑗 , 𝑓𝑡𝑝𝑗�� 

          subject to       
∑ 𝑞𝑗𝑗∈𝔍𝑓,𝑐

∑ 𝑞𝑗 𝑚𝑝𝑔𝑗⁄𝑗∈𝔍𝑓,𝑐

≥
∑ 𝑞𝑗𝑗∈𝔍𝑓,𝑐

∑ 𝑞𝑗 𝑇𝑗⁄𝑗∈𝔍𝑓,𝑐

               

 
            where               𝑚𝑝𝑔𝑗 = 𝑓�𝑎𝑐𝑐𝑗, 𝑡𝑒𝑐ℎ𝑗 ,𝑓𝑡𝑝𝑗�                

                                              𝑇𝑗 = 𝑔�𝑓𝑡𝑝𝑗�             
 

5.3 

Because fuel economy, acceleration performance, vehicle footprint, and the types of 

technology features incorporated into the vehicle are all related, the above formulation 

considers fuel economy as a function of the variables acc, ftp and tech, which the 

manufacturer chooses. This formulation choice is arbitrary and is equivalent to the 

manufacturer choosing vehicle footprint, fuel economy and acceleration performance 

with the tech variable determined as a function of those attributes. The fuel economy 

target, 𝑇𝑗, is determined based on the formula prescribed by NHTSA as described by 

Equation 5.2. 

Demand for a particular vehicle, qj, in Equation 5.3 is dependent upon attributes 

of the vehicle j, but is also dependent on the attributes of other vehicles available to 

consumers. We account for this relationship by solving an oligopolistic equilibrium 

model where automotive manufacturers seek to maximize profits according to Equation 



79 
 

5.3. Similar representations of the automotive market as an oligopoly competing in prices 

and other vehicle production decisions are widespread throughout the literature because 

the market is characterized by differentiated products with high barriers to entry. The 

subsections below detail how each of the remaining functions in Equation 5.3 are derived 

and how the equilibrium model is formulated. 

5.3.1 Tradeoffs between fuel economy, footprint, and acceleration performance 

As discussed above, one effect of increasing vehicle footprint is reduced fuel 

economy and acceleration performance of the vehicle due to the increase in vehicle 

weight. We derive these relationships by first determining how vehicle weight changes 

with vehicle footprint and then using the model developed in Chapter 3 to characterize 

the relationship between vehicle weight, fuel economy, and 0-60 mph acceleration time. 

Approximately 42% of a vehicle’s curbweight is attributable to components that are not 

affected by increases in external vehicle dimensions, such as the engine, transmission, 

seats, and wheels (Stodolski et al. 1995; Kelkar et al. 2001). An additional 9.5% of a 

vehicle’s weight can be considered independent of footprint because the height of a 

vehicle is unaffected.15

The engineering model developed in Chapter 3 was used to represent the tradeoffs 

between vehicle weight, fuel economy, and acceleration performance for each of seven 

vehicle segments (e.g., midsize vehicles). Equation 

 Therefore, a 10% increase in a vehicle’s footprint would result in 

approximately a 5% increase in curbweight. 

3.1 and Table 3.3 summarize the 

estimated surrogate models used for each vehicle segment. Taken together with the 

relationship between vehicle footprint and vehicle weight, these surrogate models 

produce the function 𝑓 in Equation 5.3, which determines the fuel economy of a vehicle 

dependent on the footprint, acceleration performance, and level of technology features 

implemented. 

                                                 
15 The body in white, interior less the seats, and window glass makes up 35% of vehicle curbweight 

(Stodolski et al. 1995; Kelkar et al. 2001). We assume that each of these components can be broken down 
into subcomponents that scale with one side of the vehicle body. Approximating a vehicle as a block with 
height h, length l, and width w, the surface area of the vehicle body is 2𝑤𝑙 + 2𝑤ℎ + 2𝑙ℎ. If the footprint 
increases by 1% the vehicle body’s surface area increases by 2.02𝑤𝑙 + 2√1.01𝑤ℎ + 2√1.01𝑙ℎ. Using 
model-year 2006 vehicle dimensions, this represents a 0.73% increase in surface area. Therefore, we 
assume  (0.35)(0.27) =9.5% of a vehicle’s curbweight depends on the vehicle’s height but is independent 
of the vehicle’s footprint. 
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This analysis does not consider the ability of manufacturers to lightweight their 

vehicles by replacing vehicle components with lighter materials. Data on the additional 

costs associated with incrementally lightweighting vehicle components and the resulting 

improvement in fuel efficiency and acceleration performance indicate that lightweighting 

is not as cost effective as the combinations of technology features considered in this 

analysis. Our results indicate that manufacturers do not implement the full extent of 

technology features considered in the vast majority of vehicles (87–99% of sales 

depending on demand parameters), implying that lightweighting is not cost effective for 

these vehicles. Therefore, we do not expect the omission of lightweighting to 

significantly affect results. Supposing the contrary, that lightweighting is actually a cost-

effective option for firms to implement in response to the footprint-based standards, then 

firms would be able to increase the footprint of their vehicles with smaller losses in 

acceleration performance and fuel efficiency. Consequently, the extent to which firms 

have an incentive to increase the size of their vehicles would be, if anything, larger than 

the results presented in this study. 

5.3.2 Tradeoffs between footprint and production costs 

The automotive development process of a vehicle model begins with a target 

catalog specifying vehicle design features, including target vehicle dimensions, followed 

by detailed design of all vehicle subsystems and ending with vehicle production 

(Sörenson 2006; Weber 2009). The choice of target dimensions at the beginning of this 

process impacts the resulting production costs of each vehicle in the model line. Most 

notably, the material costs of the body panels, chassis, glass, driveshaft, axles, and certain 

interior components will increase with vehicle footprint. Production costs associated with 

manufacturing processes may also increase. The typical vehicle assembly process 

involves forming steel sheets into body panels using a series of stamping operations, 

assembling the panels using robotic arms, spot welding the panels together, and installing 

subsystem components (Braess and Seiffert 2005). The costs of these production 

processes may increase with the size of the vehicle footprint, for example if more energy 

is needed to lift heavier body panels or provide additional spot welds to assemble the 

larger panels. Labor costs may also increase if more time is needed to perform assembly 



81 
 

operations, for example if additional fasteners are necessary to attach larger 

subcomponents to the vehicle body. 

As a conservative upper bound, we assume that increasing vehicle footprint will 

increase the incremental production costs according to a 1-to-1 relationship, such that a 

1% change in vehicle footprint linearly increases incremental production costs by 1%. 

This implies that the costs of all components of a vehicle, and all manufacturing 

operations increase linearly and 1-to-1 with vehicle footprint. We expect that many of 

these costs increase at a smaller rate with vehicle footprint or are completely independent 

of footprint and so this assumption represents a substantially conservative estimate of the 

impact of vehicle footprint on production costs. 

Because targets for vehicle dimensions are set early in the product development 

process and subsequent design of vehicle subsystems considers these dimensions, we do 

not expect fixed costs associated with vehicle design to increase with decisions on 

vehicle footprint. We also assume that fixed costs associated with manufacturing 

processes do not increase with decisions on vehicle footprint. One exception is that the 

dies used for body-panel stamping scale with footprint dimensions, and therefore the 

costs associated with the die material increase with footprint. However, the portion of die 

costs that depend on body panel area is small (Clark and Fujimoto 1991; McGee 1973) 

and so is not considered in this study.  

As discussed above, increasing vehicle size will affect other vehicle attributes, 

including fuel economy and acceleration performance. Consequently, any incentive to 

increase vehicle size depends on consumer preferences for vehicle size and the vehicle 

attributes that trade off with size. For this analysis, we consider consumer preferences for 

vehicle size, fuel economy, and acceleration performance. Future work should consider to 

the extent possible any additional performance attributes that may be affected by 

increasing vehicle size, such as vehicle handling. 

Consumer preferences are modeled as a discrete-choice utility model where 

consumer utility is a function of vehicle price, fuel efficiency, acceleration performance, 

and vehicle size:  

𝑈𝑛𝑗 = 𝛼1𝑝𝑗 + 𝛼2𝑒𝑓𝑓𝑗 + 𝛼3𝑎𝑐𝑐𝑗 + 𝛼4𝑠𝑖𝑧𝑒𝑗 + 𝜉𝑗 + 𝜖𝑛𝑗 5.4 
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Vehicle price, 𝑝, in Equation 5.4 is measured in ten thousands of 2011 dollars. Fuel 

efficiency, 𝑒𝑓𝑓, is measured in terms of the gallons of fuel needed to drive 100 miles. 

Vehicle size represents the length multiplied by the width of a vehicle in ten thousands of 

sq. in., and acceleration performance, acc, is the inverse of the time to accelerate from   

0-60 mph in tenths of a second, which is approximately proportional to the ratio of 

horsepower to vehicle weight but also depends on transmission parameters other than 

horsepower. The 𝜉𝑗 parameter represents the mean combined utility for all other vehicle 

attributes, and 𝜖𝑛𝑗 is an error term specific to individual n and vehicle j. 

Demand parameters as in Equation 5.4 are commonly estimated using vehicle 

purchase data. A notable challenge of estimating these parameters is that vehicle prices 

and observed attributes—including fuel consumption, acceleration performance, and 

size—are correlated with unobserved vehicle attributes that consumers value, such as 

exterior and interior styling. This correlation produces biased estimates of the demand 

parameters. Researchers commonly address this problem by conducting an instrumental 

variable regression to recover unbiased estimates of the parameters, relying on a set of 

instruments that are correlated with the observed attributes but are independent of 

unobserved attributes (Wooldridge 2001). However, the vast majority of these studies are 

only concerned with estimating the price parameter; identifying valid instruments for all 

the attributes listed in Equation 5.4 in addition to vehicle prices is difficult.16

Simulating combinations of demand parameters allows us to investigate the 

potential incentive to increase vehicle size over multiple scenarios of consumer 

preferences. This enumeration of demand parameter combinations presents a challenge 

with regard to computational costs. In order to tractably simulate combinations of the 

parameters in Equation 

 Instead of 

attempting to solve this problem, we take a different approach, examining the potential 

incentive to increase vehicle size simulating many combinations of these parameters over 

ranges of plausible values. 

5.4, it is necessary to make a simplifying assumption that the α 

coefficients are common across all consumers, meaning that heterogeneous preferences 

are not accounted for in this model. Following customary assumptions of the logit model, 
                                                 

16 An instrumental variable regression for vehicle attributes was carried out by Klier and Linn (2008) 
who used a data set of vehicle engine platforms to construct instruments for vehicle price, weight, and 
power. 
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the 𝜖𝑛𝑗 parameters are assumed independently and identically distributed across vehicles 

according to a Type 1 extreme value distribution. This assumption allows the expected 

value of sales of vehicle j to be written as in Equation 5.5. 

𝔼�𝑠𝑗� = 𝑁
𝑒𝑉𝑗

𝑒𝑉𝑜𝑔 + ∑ 𝑒𝑉𝑘𝑘∈ℑ
 5.5 

𝑉𝑗 = 𝛼1𝑝𝑗 + 𝛼2𝑒𝑓𝑓𝑗 + 𝛼3𝑎𝑐𝑐𝑗 + 𝛼4𝑠𝑖𝑧𝑒𝑗 + 𝜉𝑗 5.6 

In Equation 5.5, N is the number of consumers; 𝑉𝑗 is the observed portion of utility for 

vehicle j as described by Equation 5.6; ℑ is the set of vehicles in the market including 

vehicle j; and 𝑉𝑜𝑔 is the observed utility of the outside good, representing the utility of not 

purchasing a new vehicle. By substituting Equation 5.6 into Equation 5.5, we can solve 

for 𝜉𝑗 as in Equation 5.7. Consequently, given the sales of vehicle j (𝑠𝑗); the number of 

consumers that did not purchase a new vehicle (𝑠𝑜𝑔), and values of the α coefficients for 

price, fuel efficiency, acceleration performance, and size, the mean utility of all other 

vehicle attributes (𝜉𝑗) can be inferred as:  

𝜉𝑗 = 𝑙𝑜𝑔 �
𝑠𝑗
𝑁
� − 𝑙𝑜𝑔 �

𝑠𝑜𝑔
𝑁
� − �𝛼1𝑝𝑗 + 𝛼2𝑒𝑓𝑓𝑗 + 𝛼3𝑎𝑐𝑐𝑗 + 𝛼4𝑠𝑖𝑧𝑒𝑗� 5.7 

  Plausible values for the α coefficients in the equations above were determined 

based on key properties of consumer demand for new automobiles estimated in the 

literature. Ranges for the price coefficient were based on estimated values for the average 

price-elasticity of demand, which range from -2.0 to -3.1 in the literature (Berry et al. 

1995, Goldberg 1998, Jacobsen 2010, Klier and Linn 2008, Train and Winston 2007). 

Ranges of values for the remaining coefficients were informed based on the willingness 

of consumers to pay for improved fuel consumption, higher acceleration performance, 

and larger size as estimated from the literature. Estimated willingness to pay for an 

additional sq. ft. of size ranges from $340-$2,000, for an increase of 0.01 hp/lb ranges 

from $160-$5,500, and for a reduction in fuel consumption of 1 gal per 100 miles ranges 

from $1100-$9000 (Greene and Liu 1987; Goldberg 1998; Klier and Linn 2009). Helfand 

and Wolverton (2009) recently conducted a survey of consumer valuation for fuel 

economy and found that estimates for consumers willingness to pay for 1 mpg more of 
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fuel economy ranges from approximately $200-$600 in the literature. Using the vehicle 

data input into our simulations, the lower bound of $200 per mpg implies a willingness to 

pay of $800 for improved fuel efficiency of 1 fewer gal. per 100 miles, so this is used as 

the lower bound estimate of consumer preference for fuel efficiency in the simulations. 

Table 5.1 reports the ranges of willingness-to-pay for vehicle attributes as 

estimated in the literature and the α coefficients that correspond to these ranges. Ideally, 

combinations of these parameters for the simulations would be determined by sampling 

from their joint distribution. However, existing literature has not produced estimates of 

this joint distribution or characterized correlations between these parameters. 

Consequently, combinations of these parameters were simulated without accounting for 

any potential correlations. Specifically, the parameter ranges were divided up into three 

levels for each parameter—representing the lower bound, midpoint, and upper bound for 

each parameter—and combinations of these parameter levels were used as simulation 

inputs. Because the parameters are considered independent, the range of the results of this 

study bound the results that would be produced using any correlation of input parameters.   

Table 5.1 Ranges of demand parameters in literature and corresponding model coefficients 

 

5.3.3 Equilibrium model 

Producer decisions regarding vehicle prices and attributes are modeled as an 

oligopolistic equilibrium model where firms maximize profits with respect to the prices, 

acceleration performance, and levels of technology features of their vehicles. Twenty of 

the top automotive firms that sell vehicles in the United States are represented in the 

model. Vehicles are represented as all vehicle models and engine options produced by 

Range of estimated 
willingness to pay

Coefficient range with price 
coefficient=1.00

Footprint (sq. ft) $340–$2,000 2.12–12.71

Acceleration performance 
(0.01 hp/lb) $160–$5,500 0.06–2.07

Fuel efficiency (gal/100 mi) $800–$9000 0.07–0.80

Range of mean elasticity Coefficient range

Price 2.0–3.1 0.65–1.00
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these firms based on MY2006 data, totaling 473 for all firms. Firms are differentiated as 

to whether they are expected to meet the CAFE standards even if it is more profitable to 

violate them. The model allows BMW, Jaguar, Mercedes-Benz, Porsche, and VW to 

violate the standard and pay the appropriate penalties. The profit maximization of these 

firms takes the following form:  

  max
𝑓𝑡𝑝𝑗,𝑎𝑐𝑐𝑗,𝑡𝑒𝑐ℎ𝑗,𝑝𝑗∀𝑗

    �𝑞𝑗
𝑗

�𝑝𝑗 − 𝑐𝑗� − 𝐹𝐶 − 𝐹𝑇        

where    𝑚𝑝𝑔𝑗 = 𝑓�𝑎𝑐𝑐𝑗 , 𝑡𝑒𝑐ℎ𝑗 , 𝑓𝑡𝑝𝑗�                              

                                           𝐹𝐶 = � � 𝑞𝑚
𝑚∈ℭ𝐶

�  � �
𝑞𝑚

𝑞𝑚
𝑇𝑚�𝑚∈ℭ𝐶

− �
𝑞𝑚

𝑞𝑚 𝑚𝑝𝑔𝑚�𝑚∈ℭ𝐶

� 

                      𝐹𝑇 = �� 𝑞𝑛
𝑛∈ℭ𝑇

�  ��
𝑞𝑛

𝑞𝑛
𝑇𝑛�𝑛∈ℭ𝑇

− �
𝑞𝑛

𝑞𝑛 𝑚𝑝𝑔𝑛�𝑛∈ℭ𝑇

� 

5.8 

𝐹𝐶 and 𝐹𝑇in Equation 5.8 are respectively the penalties for violating the fuel economy 

standard for passenger cars and light trucks. Fuel economy targets, 𝑇𝑚 and 𝑇𝑛, for these 

vehicle classes are determined by Equation 5.2. All other firms are treated as constrained 

to the CAFE standards so that their profit maximization problems take the form of 

Equation 5.8. Fuel economy, 𝑚𝑝𝑔𝑗, is calculated from the model described in Section 

3.2.  

 Firm decisions on vehicle footprint are constrained to a maximum of a 10% 

increase. This constraint is imposed to avoid extrapolation outside of the boundaries of 

data used to construct the engineering performance model and to account for any 

potential constraints of dramatically increasing vehicle size. Observations of vehicle 

footprint data from 1997–2010 indicate that firms have increased the footprint of 

redesigned vehicle models by 10% compared to the previous model design, supporting 

that any potential constraints on size are larger than 10%. Imposing this constraint on the 

model causes the results to represent a lower bound of the incentive to increase vehicle 

size.  
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5.4 Results and Discussion 

Simulation results are presented in Table 5.2 for multiple combinations of 

consumer demand parameters. The values presented in this table represent the change in 

the sales-weighted average of vehicle footprint. Input demand parameters for these 

simulations represent combinations of consumer preference for vehicle size, acceleration 

performance, and fuel efficiency. For the results in this particular table, the price 

parameter was chosen such that the average price-elasticity of demand is -3.1 and 

demand parameters for acceleration performance and fuel efficiency are set at the same 

level (i.e., either both low, both high, or both at midpoints). The upper left corner of the 

table represents the lower bound of changes in vehicle footprint, where preferences for 

acceleration performance and fuel efficiency are high, price sensitivity is high, and 

preference for vehicle size is low. Table 5.3 displays the sensitivity of these results to 

independent variations of preference for acceleration performance and preference for fuel 

efficiency, and to variations of the price parameter. Future work will investigate the 

sensitivity of results to assumptions of production costs and vehicle weight. 

Table 5.2 Results of change in vehicle size given combinations of demand parameters 

 

Table 5.3  Sensitivity of results to variations in consumer preference parameters 

 

Low Mid High

High     -1.4 sq. ft.  +3.8 sq. ft.   +7.0 sq. ft.

Mid   +1.5 sq. ft.  +7.5 sq. ft.   +9.2 sq. ft.

Low   +2.1 sq. ft.  +9.6 sq. ft. +13.4 sq. ft.
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Preference for footprint

Price 
Sensitivity

Preference for 
fuel efficiency

Preference for 
acceleration

Preference for 
footprint

Average change 
in footprint

High Mid High Mid -1.0 sq. ft.
High Mid Mid Mid +7.5 sq. ft.
High Mid Low Mid +9.4 sq. ft.
High High Mid Mid +5.9 sq. ft.
High Mid Mid Mid +7.5 sq. ft.
High Low Mid Mid +9.2 sq. ft.
High Mid Mid Mid +7.5 sq. ft.
Mid Mid Mid Mid +10.5 sq. ft.
Low Mid Mid Mid +11.3 sq. ft.
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Results indicate that there is an incentive to increase vehicle size in all 

simulations except the case where consumer preference for footprint is at the lower 

bound and preference for acceleration performance is at the upper bound. In those cases, 

firms have an incentive to shift production of their vehicles such that the average vehicle 

size decreases by 1.0–1.4 sq. ft. due to low consumer preference for vehicle size 

compared to acceleration performance. In all other simulations, firms have an incentive to 

increase the size of vehicles sold, both by increasing the footprint of vehicle models and 

by shifting production toward larger vehicles. The incentive ranges substantially 

depending on consumer preferences, from an average of 1.4–13.4 sq. ft. To put these 

results into context, average vehicle footprint increased 1 sq. ft. between 2008 and 2011. 

Between 7% and 33% of vehicle models and engine options are actively 

constrained by the 10% upper bound on the increase in vehicle footprint, with the larger 

percentage occurring in scenarios where consumer preference for footprint is high and 

preference for acceleration and fuel efficiency are low. This suggests that the increase in 

vehicle size for these scenarios would be even higher if this constraint was increased. 

To test the impact of the incentive to increase vehicle size on fuel efficiency, we 

compare simulations results to the average fuel economy that the CAFE standards would 

require if vehicle footprint and vehicle sales remain unaffected. Specifically, the sales and 

vehicle footprint using MY2006 data was input into Equations 5.1 and 5.2 to determine 

these fuel economy standards. This is similar to the process NHTSA uses to predict 

future levels of fuel economy, except they use product development plans provided by 

automotive firms to extrapolate future vehicle attributes. Using vehicle data from 

MY2006, the required average fuel economy is 30.7 mpg. This is similar to NHTSA’s 

estimated value of 31.5 mpg. Simulation results indicate that the combination of increases 

in vehicle size, and shifts in production to larger vehicles can reduce these fuel economy 

requirements. The resulting required fuel economy standards from the simulations are 

1.4–3.9 mpg lower than if vehicle sales and size remained unaffected.  

Simulations results also suggest a disparity in the incentive to increase vehicle 

size for light trucks and for passenger cars. Figure 5.2 illustrates the change in vehicle 

size and fuel economy from simulation results using midpoint values for consumer 

preference for fuel efficiency, acceleration performance, and vehicle size. Initial vehicle 
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data is displayed in gray with counterfactual simulation results in black. The sizes of the 

circles in the figure are proportional with vehicle sales. 

 
Figure 5.2 Simulation results given midpoint consumer preferences. 
Sales-weighted harmonic mean vehicle attributes are represented as a cross (+). 
Initial data are in gray, with MY2014 CAFE counterfactual simulation results in black. 
Point size is proportional to vehicle sales. 

      Passenger cars 

   

      Light trucks 
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 The figure illustrates that both passenger cars and light trucks increase in size, 

but the increase in size for light trucks is much larger than for passenger cars. This 

behavior can be explained by the larger impact of the CAFE standard for light trucks on 

firm profits than the standard for passenger cars. Simulation results indicate that the 

shadow cost of CAFE, or the incremental profit loss given an incremental increase in the 

CAFE constraint, is 1.5–7.0 times larger for light trucks than passenger cars.17

This difference in incentives between passenger cars and light trucks could create 

a second potential undesirable effect of the footprint-based standards. If the incentive to 

increase vehicle size is greater for light trucks than passenger cars, the regulation could 

cause further divergence in the sizes of vehicles in these classes. This divergence may 

negatively affect traffic safety because the risk of fatality in a two-vehicle crash increases 

if the difference in weight of the two vehicles is larger.    

 Because 

the light truck standard causes larger profit losses than the passenger car standard, firms 

have a larger incentive to increase the sizes of light trucks to take advantage of lower fuel 

economy standards. 

5.5   Summary and Recommendations 

This study investigated the potential for footprint-based fuel economy standards 

to create an incentive to increase vehicle size. An oligopolistic equilibrium model was 

used to study automaker incentives. In this model, firms can adjust vehicle prices, 

tradeoff acceleration performance and fuel efficiency, implement fuel-saving technology 

features, and increase vehicle size. This model was solved using multiple combinations of 

demand parameters representing consumer preference for vehicle size, acceleration 

performance, and fuel efficiency.  

Simulation results indicate that the incentive to increase vehicle size exists except 

in the case in which consumer preferences for vehicle size are low and preferences for 

acceleration performance are high. The average increase in vehicle size from all other 

simulations ranges from 1.4–13.4 sq ft. Results suggest that fuel economy standards can 
                                                 

17 These values were obtained from the Lagrange multipliers of the constraints in Equation 5.3. With 
regard to the unreformed CAFE standards, Anderson and Sallee (2009) also found that the ranges of 
estimated shadow costs of the standard for light trucks were larger than for passenger cars for Ford, GM, 
and Chrysler. Jacobsen (2010) found that the shadow cost for light trucks was larger than passenger cars for 
Ford, but that the shadow cost for passenger cars was lower than for light trucks for GM and Chrysler.  
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be substantially undermined by increases in vehicle size and shifts in production to larger 

vehicles. The required fuel economy standards from simulation results are 1.4–3.9 mpg 

lower than if vehicle size and production mix is assumed unaffected by the policy. 

Furthermore, results suggest that the incentive to increase vehicle size may be larger for 

light trucks than passenger cars. This could create a further divergence in vehicle size 

between these two classes, potentially leading to higher traffic safety risks.  

The footprint-based CAFE standards can be modified to diminish or eliminate 

incentives to increase vehicle size, avoiding losses in fuel economy and a divergence of 

the sizes of passenger cars and light trucks. Flattening the slope of the function 

determining fuel economy targets based on vehicle footprint reduces the incentive to 

increase vehicle size (NHTSA 2009). This study illustrates that the incentive to increase 

vehicle size is considerably sensitive to the strength of consumer preferences for vehicle 

footprint relative to fuel economy and acceleration performance, indicating that the larger 

relative preferences are for vehicle footprint, the flatter the slope of fuel economy targets 

should be. Furthermore, results suggest that the slope of fuel economy targets for light 

trucks should be flattened to a further degree to avoid a divergence between the sizes of 

light trucks and passenger cars. 

Further research is needed to understand the effects of footprint-based fuel 

economy standards and inform future policymaking. One area of research that has not 

been given enough attention in the discussion of attribute-based fuel economy standards 

is consideration of existing vehicles on the road. Fuel economy regulations only affect 

new vehicles but total traffic safety depends on the distribution of all vehicles on the 

road. Even if footprint-based standards induce an identical incentive to increase the 

footprints of all new vehicles so that the spread of new vehicle size remains the same, 

these larger vehicles will pose a greater risk to occupants of existing smaller vehicles.  

Another area of research that should be investigated is whether fuel economy and 

safety goals can be effectively incorporated into one single regulation. The analysis 

presented in this study demonstrates that the incentive to increase vehicle size depends on 

a number of relationships including engineering tradeoffs between vehicle size and other 

vehicle attributes, consumer preferences for all of these attributes, production costs, and 

competition between automotive firms. Designing footprint-based fuel economy 
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standards such that manufacturers have no incentive to adjust the size of their vehicles is 

remarkably difficult considering that these factors may be different not just for light 

trucks and passenger cars but potentially for each individual vehicle model. Many 

economists emphasize that multiple market failures justify multiple policy instruments 

(e.g., Bennear and Stavins 2007; Goulder and Parry 2008). Likewise, two separate 

instruments may be better able to address policy concerns of fuel economy and traffic 

safety than existing footprint-based fuel economy standards. 
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CHAPTER 6: APPLICATIONS TO LIFECYCLE ASSESSMENT 

“If humans set up systems that don’t share nature’s value system, we’re setting up the 
wrong incentives.” —James A. Edmonds, Pacific Northwest National Laboratory 

 
 

To date, the cLCA literature has developed methods to analyze the effect of 

industrial decisions on environmentally relevant flows of energy and mass. However, 

further advancement is needed to incorporate the impacts of product or process design on 

these environmental flows, particularly when multiple firms compete for the product 

market. In these industries, consideration of firm design responses is beneficial because 

these design decisions predetermine many of the dominant sources of environmental 

emissions and resource consumption throughout the products’ lifecycles. This chapter 

presents a framework to capture market-driven design (MDD) responses into a cLCA 

analysis.   

The chapter begins by illustrating the influence of design decisions on 

environmental impacts then reviewing existing cLCA studies with emphasis on 

opportunities to advance these methods to study designed-product systems. The concept 

of cLCA-MDD is then introduced and a case study is presented that demonstrates how 

design responses can be endogenously captured in a cLCA analysis. The case study is 

divided into two parts: first, incorporating endogenous design responses into a cLCA 

study analyzing the effects of an industrial design decision on greenhouse gas (GHG) 

emissions in a midsize vehicle market; and second, conducting a policy analysis using a 

cLCA-MDD approach, investigating the impacts of a policy decision on GHG emissions 

from midsize vehicles. Lifecycle inventory results using attributional LCA (aLCA), 

cLCA without MDD, and cLCA-MDD approaches are compared.  

The case study illustrates that cLCA-MDD can capture multiple “ripple effects” 

resulting from an industrial decision (e.g., downsizing a vehicle’s engine) or a policy 

decision (e.g., raising gasoline taxes) and that these effects significantly influence results. 
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For this case study, endogenous MDD responses are incorporated by determining the 

equilibrium powertrain designs and prices of vehicles, as well as the resulting demand for 

vehicles and vehicle-miles-traveled, in response to the decision analyzed. A key 

challenge of the approach is appropriately managing and communicating uncertainties 

associated with the choice of economic parameters or models. We discuss sources of 

uncertainty in cLCA-MDD and demonstrate a presentation scheme to facilitate 

communication of result sensitivity to uncertainties from input parameters, models, and 

model structure.  

6.1 Introduction 

The design of products and manufacturing processes is well recognized as a 

crucial component to achieve sustainable development. Indeed, a majority of the 

environmental impact of a product is predetermined early in the design stage. This may 

not be the case for products such as wheat and cement, where production processes are 

largely the same across the industry and product variation is rare if not legally restricted. 

But, the majority of human impact on the environment is carried through products that 

are shaped by design. Automobiles, planes, household appliances and climate control, 

consumer electronics, and processed foods—which account for some of the largest 

environmental impacts in most impact categories (Tukker and Jansen 2006)—are all 

designed products with environmental impacts that are inherently connected to design 

decisions.  

Recently, the European Commission identified the need to broaden LCA 

approaches to support sustainable assessment by taking a systems perspective and by 

developing methods to study wider set of applications, including those relevant for 

designed-product industries (Guinée et al. 2010). Consequential lifecycle assessment 

(cLCA) is a potential vehicle for this broadening of LCA but further advancement of 

cLCA methods are needed to accomplish this goal.  

As opposed to the method of LCA formalized by the International Organization 

for Standardization (ISO), which characterizes environmental impacts of a particular 

product throughout its lifecycle, cLCA analyzes how the impacts of a product lifecycle 

and the surrounding system will change in response to a particular decision. A growing 
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body of cLCA literature has developed methods to incorporate cross-lifecycle effects in 

LCA studies (e.g., Ekvall and Andræ 2006; Sandén and Karlström 2007; Schmidt and 

Weidema 2008). However, there is a need to develop methods to incorporate product 

design decisions into cLCA when environmental flows are substantially dependent on 

product design. For example, the total environmental impact of redesigning the VW 

Touareg line so that the vehicles are smaller and more fuel efficient depends not only on 

the resulting changes in emissions from the redesigned Touareg’s lifecycle, but also on 

shifts in sales due to consumers substituting away from the redesigned Touareg to 

competing vehicles (because they prefer a larger vehicle) and any resulting incentives for 

manufacturers to change the size of these competing vehicles. Incorporating product 

design responses endogenously within cLCA can also make a valuable contribution to 

policy analysis. For instance, the effectiveness of carbon taxes, technology subsidies, and 

emission standards are all influenced by the changes to product designs that may result 

from the policy.   

This research contributes to the development of cLCA by demonstrating a 

methodology that endogenously determines market-driven design responses to industrial 

and policy decisions. Specifically, we describe techniques to determine design responses 

in an LCA analysis using economic partial-equilibrium models. We then demonstrate the 

cLCA-MDD approach using a case study. In the first part of the case study, we analyze 

changes in lifecycle greenhouse gas (GHG) emissions associated with a midsize vehicle 

market in response to the decision to reduce the engine size of one vehicle model. For 

clarity, we refer to the product(s) that are the subject of the exogenous decision (the VW 

Touareg in the previous example) as the “protagonist product(s)”, so that they can be 

distinguished from competing products that are indirectly affected. In the second part of 

the case study, we conduct a policy analysis using cLCA-MDD techniques, analyzing the 

changes in lifecycle GHG emissions resulting from increasing gasoline taxes, accounting 

for equilibrium design responses of all firms in the mid-size vehicle market.  

The case study is only meant to be illustrative of the cLCA-MDD methodology. 

To that end, it has many simplifications and should not be interpreted as a comprehensive 

characterization of GHG emissions resulting from the decisions analyzed. We note, 

however, that extension of the case study using more realistic submodels, such as those 
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presented in Chapter 3, is straightforward. Although we focus only on GHG emissions in 

the case study, the method is equally applicable to a complete inventory of emissions, 

wastes, and resource utilization. 

Additionally, we discuss uncertainty in cLCA and present a scheme of 

communicating sensitivity of cLCA results to these uncertainties. The existing cLCA 

literature uses economic parameters such as elasticities and learning curves to incorporate 

cross-lifecycle flows (e.g., Ekvall and Andræ 2006; Sandén and Karlström 2007; Schmidt 

and Weidema 2008). Evaluating the sensitivity of results to such parameters is essential 

given that many of these parameters have large uncertainties. However, in practice, such 

uncertainty analyses are often not performed. In the case of cLCA-MDD, multiple 

economic models must be employed, including consumer demand and use functions 

dependent on product design and pricing, and cost models dependent on design. The need 

for these input models introduces uncertainty associated with the choice of the specific 

models and any uncertainty in model parameters. In the case study, this uncertainty is 

handled by conducting a sensitivity analysis under multiple combinations of available 

input parameters and models, and presenting these results side-by-side to allow for easy 

comparison. 

The remainder of the chapter is structured as follows: Section 6.2 describes the 

development of cLCA-MDD methodology and its relationship to the existing 

computational framework for lifecycle inventory (LCI) analysis. Section 6.3 discusses 

uncertainties and the use of a decision unit in cLCA in addition to a functional unit. 

Section 6.4 describes Part 1 of the case study and presents results and Section 6.4.8 

describes and presents results for Part 2. Section 6.5 offers a summary discussion of the 

value and practice of cLCA-MDD. 

6.2 cLCA-MDD Modeling Approach  

To endogenously incorporate market-driven design responses into LCA, we draw 

on customary economic concepts of Nash equilibrium based on profit maximization of 

firms and utility maximization of consumers (e.g., Samuelson 1983), similarly to the 

approach used in Chapters 4 and 5. A firm’s profits depend not only on their own product 

design and pricing decisions, but also on their competitors’ decisions. Consequently, 



96 
 

firms often have incentives to adjust the designs and prices of their products in response 

to a change in a competing product’s design. We determine these design responses by 

using an oligopolistic partial-equilibrium model where each firm simultaneously 

maximizes their profits with respect to the prices and designs of their products. Using this 

approach, we can determine the equilibrium product designs in response to the decision 

of interest and changes to lifecycle flows resulting from these design adjustments.  

In principle, other methods of incorporating design decisions could be used 

besides equilibrium modeling. For example, researchers have proposed that the 

consequences of economic behavior on LCA results be captured using agent based 

modeling (Axtell et al., 2001) and systems dynamics (Mihelcic et al., 2003). These 

approaches could indeed be incorporated into the cLCA-MDD methodology in place of 

an equilibrium model and consumer behavior models (e.g., for product demand and use). 

Given the added complexity of these models (e.g., Garcia 2005; Bouman et al. 2000), 

significant computational burdens would need to be overcome to adequately account for 

model and parameter uncertainty.   

Let xi be a vector of all the design variables of the protagonist product(s), x-i be a 

(stacked) vector of all competing product design variables. Similarly, let ci and c-i 

respectively be vectors of the production costs of the protagonist products and competing 

products, yi and y-i respectively be vectors of the product attributes that influence demand 

of the protagonist products and competing products, and di and d-i  respectively be vectors 

of the demand of the protagonist products and competing products. Finally, let p be a 

(stacked) vector of the prices of all products, including both protagonist and competing 

products. Throughout this chapter, we denote equilibrium variables with an asterisk (*). 

Figure 6.1A represents a LCI where market-driven design decisions, product 

demand, and design-dependent use-phase behavior are factors that are left exogenous to 

the system boundaries. In this system, lifecycle material and energy flows are determined 

by scaling industrial process data to match exogenously determined demand. For 

instance, an automotive manufacturer estimating lifecycle emissions associated with 

selecting a specific engine for a vehicle via aLCI would typically assume a fixed number 

of units sold and fixed vehicle-miles-travelled (VMT), independent of the engine design. 

Uncertainty in these assumptions could be characterized with sensitivity analyses, but 



97 
 

dependent relationships between these parameters and the engine design would be 

ignored. 

 

 

 
Figure 6.1 LCI system boundaries using an (A) aLCA approach, and (B) cLCA-MDD 
approach. 
 

In the engine selection example, a cLCA-MDD analysis would determine the 

equilibrium horsepower for competing vehicles, x-i*(xi), and equilibrium prices for all 

vehicles, p*(xi, x-i*(xi,)), in response to a change in the protagonist vehicle’s horsepower, 

xi. These equilibrium decisions will depend on submodels characterizing vehicle demand 

as a function of the designs and prices of competing vehicles, and production costs as a 

function of vehicle design. The resulting demand and VMT (as well as associated 
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emissions) for the protagonist vehicle and its competitors can then be calculated given 

these equilibrium designs and prices.   

The cLCA-MDD methodology can be used to analyze the lifecycle environmental 

impacts of a policy decision by endogenously accounting for design and price responses 

of relevant products in equilibrium. For example, if the policy decision were a carbon tax, 

changes to the equilibrium designs and prices of relevant products would be determined 

in response to the tax. The resulting demand and lifecycle flows could then be calculated 

based on these equilibrium decisions.  

cLCA-MDD, unlike aLCA, requires a linkage between equilibrium models and 

LCI data. To explore this further, we build from the computational framework for ISO-

based LCI that is well established in the literature (Heijungs 1994; Heijungs and Suh 

2002; Suh and Huppes 2005; Hertwich 2005). In principle, it is also possible to 

incorporate the MDD approach within the EIO-LCA framework (e.g., by extending the 

approach in Takase et al. 2005) but this is left to future work.  

Let A be a matrix (called the process matrix or coefficients matrix) defining the 

transformation of j inputs (e.g., raw materials and energy) and outputs (e.g., products and 

co-products) through k unit processes. Coefficients associated with the input of material 

or energy have negative values, whereas coefficients associated with the output of 

products have positive values. Let d be a vector of total quantity of products demanded, 

and s be a vector representing the scaling-up of unit processes needed to satisfy the 

product demand. Finally, let B be a l by k matrix (called the emission factor matrix or the 

stressor matrix) defining the amounts of l emissions and wastes associated with the k unit 

processes necessary to produce the product, and the vector v be a vector of length l 

defining the total emissions and wastes associated with the product.  

The construct of LCI as a linear algebraic system of equations (e.g., Heijungs 

1994) usually assumes that inventory parameters in the product system are defined by 

constant factors as shown in Equation 6.1. In Equation 6.1, di represents the total quantity 

of aluminum, steel, energy and generic machined parts required to produce the engine for 

a hypothetical vehicle model, with all other material inputs excluded for simplicity. Data 

collected indicate the inputs required to produce a single vehicle part, with the input of 

steel dependent on the vehicle’s designed horsepower, x1. In an aLCA analysis, both the 
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vehicle design variables, x, and the demand vector for the unit process outputs, d, are 

exogenously determined and may be varied in a sensitivity analysis. 

 

6.1 

The scaling vector, s, can be calculated from Equation 6.2 as long as A is 

invertible:  

𝒔 = 𝑨−1𝒅 6.2 

The manufacturing of products associated with matrix A creates emissions to the 

environment, represented by the matrix B. In our hypothetical example, represented in 

Equation 6.3, the first and last elements in B indicate that production of one MJ of energy 

emits 200 g CO2-equivalent (eq.) emissions, and the production of one machined part 

emits 50 g CO2-eq. for every unit of horsepower). Given the scaling vector, s, and an 

assumed horsepower (100), the cumulative lifecycle emissions, v, associated with 

satisfying demand can be calculated with Equation 6.3:  

 

6.3 

Two distinct extensions of the above formulation differentiate cLCA-MDD from 

aLCA. First, cLCA-MDD takes a systems analysis perspective, determining the 

environmental impacts not just of one product but also of competing products. In a 

cLCA-MDD analysis, d is a stacked vector, containing entries for both the total demand 

of the protagonist product(s), di, and the total demand of competing products, d-i. 
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Similarly, A is a stacked matrix defining all of the unit process inputs and outputs for the 

protagonist product(s) and all competing products, and B is a stacked matrix determining 

the emission intensity factors associated with all of these processes. Second, cLCA-MDD 

determines the environmental impact of lifecycle flows dependent on endogenous 

changes to product design variables and demand as in Equation 6.5.  

𝑨(𝒙𝒊)𝒔(𝒙𝒊,𝒙−𝒊∗(𝒙𝒊)) = 𝒅�𝒙𝒊,𝒙−𝒊∗(𝒙𝒊),𝒑∗(𝒙𝒊,𝒙−𝒊∗(𝒙𝒊))� 6.4 

𝑩(𝒙𝒊)𝒔(𝒙𝒊,𝒙−𝒊∗(𝒙𝒊)) = 𝒗(𝒙𝒊,𝒙−𝒊∗(𝒙𝒊)) 6.5 

The dependency of lifecycle flows on endogenous design responses allows cLCA-

MDD to capture many direct and indirect “ripple effects”, as characterized by Hertwich 

(2005). For example, economists have recognized that automotive firms have an 

incentive to decrease the fuel efficiency of their vehicles in favor of larger size, in 

response to a decrease in size (and increase in fuel efficiency) of a competing vehicle 

(Jacobsen 2010). This indirect effect can be captured in cLCA-MDD, along with direct 

effects such as the classical energy-economics concept of rebound effects, where 

improvements in energy efficiency lead to increases in use that partially diminish 

reductions in energy consumption. 

Equations 4 and 5 present at least two challenges for cLCA-MDD. The first is the 

parameterization of the process matrix A(xi) and the emission factor matrix B(xi) as 

functions of  all relevant design variables. While this certainly is not trivial, similar data 

have been collected and analyzed in sensitivity analyses of design choices (e.g., Keoleian 

et al. 1998). The second issue is the need for models of consumer behavior (e.g., product 

demand and use functions) to determine 𝒅�𝒙𝒊,𝒙−𝒊∗(𝒙𝒊),𝒑∗(𝒙𝒊,𝒙−𝒊∗(𝒙𝒊))� and an 

equilibrium simulation to determine x-i*(xi). These issues increase data requirements and 

computational costs of cLCA-MDD. 

Relevant consumer behavior submodels to determine d in Equation 6.4 include 

consumer utility models of product demand (e.g., how consumer demand for a particular 

vehicle changes with the vehicle’s design and pricing) and use (e.g., how demand for 

VMT changes with vehicle horsepower). Determining equilibrium design responses, x-i*, 

and prices, p*, also requires submodels of production costs, c(x), and product 
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performance (for example fuel economy as a function of engine horsepower), y(x), in 

addition to a model of product demand. Given these models, one can determine 

equilibrium prices and competing product designs by simulating an oligopolistic-

equilibrium model where firms maximize profits with respect to the design variables and 

prices of their product(s), given the prices and design variables of competing products. 

This process is outlined in detail and implemented in Michalek et al. (2004). We also 

refer the reader to other publication examples (e.g., Shiau and Michalek 2009; 

Frischknecht et al. 2009) as well as the methods in Chapters 3–5, which provide 

applications of oligopolistic equilibrium models to product design.  

6.2.1 Functional and decision unit  

Implementing cLCA-MDD requires the same goal definition and scoping stage as 

aLCA. Issues such as the purpose, scope, functional unit, and boundaries for the system 

must be considered. Unit processes must be defined and populated with the most 

representative data available, after a detailed and transparent analysis of the data. The 

complexity of accounting for flows through possibly hundreds of processes and 

managing the inventory of co-produced wastes (Heijungs and Suh 2002) must be 

rigorously addressed through model simplification and careful consideration of system 

boundaries and allocation methods.  

During goal definition and scoping in cLCA, the authors have also found it 

necessary to clearly specify a decision unit along with a functional unit. For example, a 

decision unit for the VW Touareg example in the introduction could be “downsizing the 

VW Touareg model line by 10%”. In the same way that the functional unit is useful to 

help determine which lifecycle unit processes can be excluded from the analysis (e.g., on 

the basis of contribution to overall emissions or consumption), the decision unit helps the 

researcher justify the inclusion or exclusion of specific models and assumptions. In a 

cLCA, where impacts of a decision on the environment can cascade through countless 

indirect impacts on other products and consumer behavior, the significance of including a 

parameter or model to characterize these effects will usually not be evident from the 

functional unit alone without also specifying a decision unit.  
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6.3 LCA Uncertainties 

Given perfectly accurate data and models of firm and consumer behavior, cLCA 

could reduce uncertainty compared to aLCA because the systematic relationships 

between input parameters are defined. However, even with sufficient validation of the 

individual input models and parameters, multiple models and parameters often exist and 

validation of the interaction of several submodels is very challenging and not generally 

possible (see Frischknecht et al. 2009 for a discussion of submodel evaluation). As a 

result, we would expect that cLCA adds significant uncertainties to those already present 

in LCA (see Ross et al. 2002 for a review). Considering the inventory stage, four 

categories of uncertainty that must be managed in both aLCI and cLCI are: 1) structural 

uncertainty, 2) model uncertainty, 3) parameter uncertainty, and 4) variable uncertainty. 

Below we define these four categories of uncertainty. We do not consider the 

uncertainties involved with translating LCI results to environmental impacts (see Lenzen 

2006). 

Structural uncertainty concerns the interconnections between models, embodying 

questions regarding the appropriateness of the overall modeling approach, and 

assumptions of how sub-models are interconnected. For instance, questions of structural 

uncertainty in cLCI could focus on what types of competing products are considered, 

what parameters are considered exogenous, and whether it is reasonable to assume that 

firms behave as though they are in partial-equilibrium. Structural uncertainty questions 

common to both cLCI and aLCI include the definition of the functional unit and the 

incorporation of unit processes inside and outside the system boundary, and have 

previously been addressed using computation-based, hybrid input-output LCI (Williams 

et al. 2009; Lenzen 2001). 

Model uncertainty considers the appropriateness of the selected models to 

determine required outputs. The selection of a product performance model to convert 

design variables, x (e.g., horsepower) into consumer observable attributes, y (e.g., fuel 

economy) would be classified under model uncertainty, as would selection of models 

characterizing lifecycle flows in the absence of direct measurements.  

Parameters are exogenous to the LCA study (e.g., elasticities) and often have 

uncertainties expressed by distributions, confidence intervals, or discrete values. 
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Variables are endogenous to the study and may also have uncertainty if they are 

generated by stochastic models (e.g., fuel economy dependent on random traffic 

conditions). Uncertainty associated with parameters and variables with known 

distributions can be treated using standard methods such as interval assessment, 

bootstrapping, and Monte Carlo analysis (Lloyd and Ries, 2008). Parameter uncertainty 

deriving from discrete values, however, presents additional challenges. For example, 

many different estimates of the elasticity of gasoline demand have been produced from 

the econometrics literature (Graham and Glaister 2002). This cross-study uncertainty 

cannot as easily be analyzed with distributional assumptions.  

To address uncertainties associated with discrete parameters and models, we 

generate results under multiple combinations of selected submodels and parameters 

within models, referred to as scenarios. Structural uncertainty could similarly be handled 

under such a system but is not addressed in the case study. Uncertainty associated with 

input parameters with assumed or estimated distributions are captured with confidence 

intervals within each scenario, generated from bootstrap samples. Multiple scenarios can 

be arranged together in matrices, which we call scenario landscapes, to facilitate easy 

comparison. This presentation scheme complements uncertainty analysis discussed in 

Huijbregts et al. (2003). While the authors suggest assigning a probability of “faith” in 

models and discrete parameters to generate confidence intervals, we avoid this 

aggregation, instead illustrating result sensitivity to specific input parameters and models. 

This type of analysis can be used in cLCA to interpret the integrity of results over a range 

of scenario landscapes that are appropriate to the goals and scope of the analysis. We 

believe that this approach increases the transparency of system boundary decisions and 

overall study conclusions. 

6.4 Case Study Part 1: Industrial decision 

6.4.1 Goal and scope 

This study investigates the change in lifecycle GHG emissions resulting from a 

decision to downsize the engine of a midsize vehicle by 25% (in terms of horsepower). 

Specifically, we evaluate the hypothesis that this level of engine downsizing will reduce 

lifecycle GHG emissions associated with the midsize vehicle market by at least 10%. The 
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scope of the study includes the effects of this decision on equilibrium design adjustments 

to competing vehicles, changes in demand for the protagonist and competing vehicles, 

and changes in VMT of these vehicles. Endogenous design variables considered include 

the horsepower and final drive ratio (the gear ratio between the transmission and wheels) 

of competing vehicles and the final drive ratio of the protagonist vehicle. The study 

includes the effects of these design variables and the protagonist vehicle’s horsepower on 

production costs, fuel economy, 0-60 mph acceleration time and the mass of the vehicle 

body needed to support the engine. All other aspects of the vehicle are assumed fixed and 

equivalent to the midsize vehicle considered in Keoleian et al. (1998). Decisions on 

engine horsepower affect upstream material and manufacturing emissions, downstream 

end-of-life unit processes, and use-phase emissions associated with consumer demand for 

VMT based on the operating cost of the vehicle. The effect of changes to final drive 

ratios on lifecycle flows and production costs are negligible and so are not considered. 

This study represents a type of analysis that a firm may wish to undertake if the 

firm is concerned about environmental impact of their industry and is considering 

potential design changes to reduce this impact. The analysis does not suggest that any 

firm is likely to downsize engine size, but simply investigates the impact of this decision 

on consumer and competing firm behavior and the resulting emissions to the 

environment.   

A number of additional ripple effects are not considered in the boundary of this 

particular case study. For instance, decreases (increases) of vehicle prices in response to 

the decision analyzed may increase (decrease) the money consumers have available for 

other purchases. Consumption (or avoided consumption) of additional goods due to this 

change would have environmental consequences that are not considered. Macroeconomic 

effects such as the relationship of producer welfare to industrial investment, wages, or tax 

receipts are also not considered. Such economic shifts also lead to changes in 

consumption that are outside the boundaries of this case study. These effects could be 

included in a cLCA-MDD analysis and are already included in some large-scale policy 

analyses (EIA 2010). 

The following subsections summarize the lifecycle unit processes and models 

employed in the case study. The descriptions are only meant to demonstrate how 
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submodels of product performance, demand, and use can be incorporated into cLCA. The 

results of the case study are not intended to accurately describe the affects of the 

decisions analyzed, but provide a useful demonstration of the cLCA-MDD approach.  

6.4.2 Unit processes  

The process and emission factor matrices are based on a generic vehicle LCI from 

the US Automotive Materials Partnership (Keoleian et al., 1998), which estimates the 

material and energy profile for a midsize vehicle with a gasoline engine (3 L, 140 hp). 

The baseline vehicle material inputs represent 90% of the body mass, 86.5% of the 

powertrain mass and 97% of the suspension mass; excluded components are not 

significantly impacted by the design decisions. To determine the relationship between 

horsepower and engine mass, we combine power-displacement data from Arnold et al. 

(2005) with the displacement-mass data from Messner (2007). The relationship between 

engine weight and the weight of the vehicle frame and body necessary to support the 

engine is accounted for with a weight-compounding factor of 0.5 from Lave et al. (2000). 

The study assumes that energy inputs for engine manufacture are independent of engine 

horsepower, and that energy used in body manufacture varies with body mass. A 

suspension system of constant size is also manufactured with materials and energy as 

modeled following Keoleian et al. (1998). Vehicles are assembled from the manufactured 

systems with additional inputs of materials (no other systems manufacturing is modeled) 

and energy. After production, the new vehicles are driven their useful life and then sent to 

a shredder, which recovers metals and sends non-metals to a landfill. Additional non-

metal inputs and transportation between processing facilities is not included in the 

analysis.  

6.4.3 Oligopolistic equilibrium model  

We model the market for midsize vehicles as an oligopoly in partial equilibrium. 

Five producers are modeled, but the qualitative results of the case study do not change as 

a result of this assumption. Firms maximize profit with respect to the horsepower 

(between 100 and 210 hp), final drive ratio (between 0.2 and 1.3), and prices of their 

vehicles with demand and costs calculated dependent on these variables from submodels 

described below. The equilibrium is computed by sequentially optimizing each firm’s 
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profits given fixed competitor vehicle designs and prices until convergence. Additional 

details can be found in Skerlos et al. (2005). 

6.4.4 Vehicle performance model 

 The relationship between design variables and product performance attributes 

(fuel economy and acceleration performance) is taken from Michalek et al. (2004). This 

model approximates results from the vehicle simulation software, ADVISOR (AVL LIST 

GmbH, Austria). ADVISOR calculates a vehicle’s fuel economy and 0-60 mph 

acceleration time based on input driving cycles, engine maps, and vehicle parameters, 

including the final drive ratio and scaling of the engine horsepower. 

6.4.5 Product demand model 

A logit model, based on the model estimated by Boyd and Mellman (1980), 

determines consumer demand for vehicles based on price and performance attributes. 

This model, while dated, provides the simplicity and convenience appropriate for 

demonstrating the cLCA-MDD approach in the case study. The model does not account 

for heterogeneity of consumer preferences. The possibility that consumers may not 

choose any of the product offerings is included, modeled as an “outside good”. In this 

study, we assume the outside good is an old vehicle that has a fuel economy of 21.8 mpg, 

equivalent to the average on-road passenger vehicle in 1994 (EIA 1995, 2001). 

6.4.6 Use demand model 

Two econometric models are used to determine demand for VMT, one which 

predicts a lower sensitivity of VMT to the cost of fuel (Jones 1993), and one that predicts 

a higher sensitivity (Goldberg 1998). Demographic and transportation infrastructure 

variables that factor into these models were assigned constant average values using 

1990’s data to align with the input LCI data. Vehicle operating costs and purchase prices 

are determined from the equilibrium model. The lifetime of all vehicles is assumed as 15 

years; the possibility that vehicles could be driven for fewer or more than 15 years is not 

modeled.  
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6.4.7 Comparison of aLCI, cLCI, and cLCI-MDD 

In order to illustrate some of the differences of taking an aLCA, cLCA, or cLCA-

MDD approach, we compare LCI results using the data and models used in this case 

study. Figure 6.2A shows lifecycle GHG emissions using an aLCI approach. The results 

assume that VMT for each vehicle is identical and independent of fuel economy, but 

subject to sensitivity analyses. The figure illustrates the results of varying both VMT 

(5,000 to 30,000 miles/vehicle-year) and engine horsepower (100, 140, and 200 hp). 

Results qualitatively match Keoleian et al. (1998) although values differ slightly because 

of the vehicle system boundary simplifications defined earlier. Figure 6.2B illustrates 

how the lifecycle CO2-eq. emissions are broken down by lifecycle stage for the case 

where VMT per year is 11,200 miles and the selected engine is 140 hp.   

 

 
Figure 6.2 GHG emissions dependent on vehicle miles travelled using an aLCI approach. 
(A) Effect of varying VMT on lifecycle CO2-eq. emissions using an aLCA approach, and 
(B) Emissions from the 140 hp vehicle with 11,200 VMT, broken down by lifecycle stage. 
 

Figure 6.3A illustrates LCI results for the same vehicle model using a simple 

cLCA-approach, where VMT is calculated as a function of fuel price and impacts use-

phase emissions. The horsepower of the vehicle’s engine is assumed 140 hp. Figure 6.3B 

illustrates a cLCA-MDD approach, where both equilibrium design variables (horsepower 

and final drive ratio) and VMT are calculated based on fuel price. Here, emissions from 

all lifecycle stages are impacted by the design variable decisions in addition to use-phase 

emissions from VMT. The figures include evaluation of model uncertainty through the 
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comparison of VMT models by Jones (1993) and Goldberg (1998), and an assumed 

insensitivity of VMT to fuel price, representing a static assumption of VMT as is used in 

aLCA studies. Because both the demand and cost models in this simple example do not 

represent heterogeneity across firms, all firms have the same vehicle design variables in 

equilibrium in Figure 6.3B.  

 
Figure 6.3 Comparison of lifecycle GHG emissions results as a function of fuel price. 
(A) Using a cLCA approach where vehicle design is fixed but VMT is a function of fuel 
price and (B) Using a cLCA-MDD approach where both VMT and equilibrium engine 
horsepower are dependent on fuel price. 

 

Unlike the aLCA approach, shown in Figure 6.2, the cLCA-MDD approach 

accounts for the correlation of VMT and engine horsepower due to their mutual 

dependency on fuel prices. Contrasting Figure 6.3A with Figure 6.3B illustrates how 

endogenously determining design responses within an LCA can capture important ripple 

effects. The cLCA-MDD results suggest that lifetime GHG emissions are significantly 

lower at high gas prices than the cLCA without MDD. The cLCA-MDD results suggest 

that automotive manufacturers downsize their vehicles’ engines in response to higher fuel 

prices and, even considering the rebound effect of VMT increasing due to better fuel 

economy, this downsizing decreases lifecycle GHG emissions. 

6.4.8 Industrial decision results  

The cLCA-MDD methodology was used to examine the changes in GHG 

emissions resulting from the decision to reduce the protagonist vehicle’s horsepower. To 
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do this, we compared the lifecycle GHG emissions from a baseline case, where all firms 

choose the equilibrium design variables (as in Figure 6.3B), to a case where the 

protagonist vehicle horsepower is 25% lower than in equilibrium. The final drive ratio of 

the protagonist vehicle, equilibrium designs for competing vehicles, and all prices were 

determined in response to this decision. Figure 6.4 shows the results of this analysis using 

the Jones (1993) VMT model and assuming a fuel price of $2.60. This figure illustrates 

that the cLCA-MDD approach captures a negative ripple effect: a reduction in 

horsepower of the protagonist vehicle causes residual demand for higher horsepower to 

increase, giving competing firms a profit incentive to increase the horsepower of their 

vehicles. Similar behavior is observed in Chapter 4 and in Jacobsen (2010). GHG 

emissions directly associated with a protagonist vehicle decrease by 11.4 tonnes CO2-eq., 

but the redesign also induces an increase in lifecycle emissions of each competing vehicle 

by 3.3 tonnes CO2-eq. 

 

 
Figure 6.4  Changes in lifecycle GHG emissions resulting from the decision to downsize 
the protagonist vehicle’s engine.  

6.4.9 Sensitivity analysis under parameter and model uncertainty 

We evaluate results, based on the hypothesis that a 25% reduction in the 

(equilibrium) horsepower of a mid-size vehicle can reduce the associated lifecycle GHG 

emissions by at least 10%, considering uncertainty in the fuel price and in the VMT 

model. Figure 6.5 illustrates a landscape of eight scenarios. The scenarios are created by 
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varying the baseline (pre-carbon-tax) gasoline price at four discrete levels from $1.40 to 

$5.00 and using two different VMT models (Jones 1993 and Goldberg 1998).  

 

  
Figure 6.5  GHG emission results evaluated over scenarios of fuel price parameter and 
VMT model. 
 

Ninety-percent confidence intervals are shown in parentheses, calculated using 

1,000 bootstrap samples of input demand-model parameters. Light shaded scenarios 

indicate that the hypothesis is supported, mid-shade regions, that it is not supported or 

rejected. Percentage reductions of GHG emissions are smaller for higher fuel prices 

because the 25% reduction of engine power from equilibrium is smaller. 

6.5 Case Study Part 2: Policy decision 

6.5.1 Goal and scope 

This part of the case study investigates the lifecycle GHG emissions of the 

midsize vehicle market resulting from the decision to add a carbon tax on gasoline of 

$25/tonne CO2. Specifically, we determine lifecycle GHG emissions for the midsize 

vehicle market, modeled as in Section 6.4, with and without a carbon tax on gasoline of 

$25/tonne CO2. We evaluate the hypothesis that this level of a carbon tax on gasoline will 

reduce total lifecycle GHG emissions associated with the midsize vehicle market by at 

least 5% relative to a 1994 baseline when average gasoline prices were $1.64 (adjusted to 

2010 prices using the consumer price index). The scope of the study includes the effects 

of this decision on equilibrium design adjustments to all midsize vehicles and the VMT 

associated with these vehicles. Endogenous design variables considered are the 
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horsepower and final drive ratio of all midsize vehicles. The process and emission factor 

matrices and selected submodels are the same as in the first part of the case study. 

This study illustrates the use of the cLCA-MDD approach to policy analysis. 

Advantages of this approach over an aLCA analysis include expanding the scope of the 

study to incorporate the economic system governing consumer and producer decisions 

that determine environmental impacts and explicitly incorporating engineering 

relationships that determine production options. However, many assumptions are made in 

this simplified analysis so that it should not be interpreted as a suitable policy analysis. In 

addition to the assumptions described in Section 6.4, an additional simplifying 

assumption is that, while this analysis models the impact of a carbon tax on gasoline, no 

changes of producer behavior due to increases in the price of materials, manufacturing 

processes, or other production factors resulting from the increase in gasoline price are 

considered. 

6.5.2 Policy decision results 

Incorporating endogenous design decisions in the analysis gives significantly 

larger estimates of lifetime GHG reductions from midsize vehicles due to the carbon tax. 

For example, using the Jones (1993) VMT model, and assuming pre-carbon-tax gasoline 

prices are $2.60, results indicate that the carbon tax leads to a reduction of lifecycle 

emissions by 3.8% (90% CI: 1.38–5.03). The equilibrium horsepower of the midsize 

vehicles reduced from 210 hp in the baseline case to 200 hp with the carbon tax, and the 

equilibrium final drive ratio increased slightly. Ignoring these design changes, results 

indicate a reduction of only 0.50% (90% CI: 0.48–0.51) of lifecycle emissions in 

response to the tax.  

6.5.3 Sensitivity Analysis under Parameter and Model Uncertainty 

Similar to part 1 of the case study, we generate results over scenarios of the fuel 

price parameter and the VMT model, shown in Figure 6.6. The shade of the scenario 

indicates acceptance (light), rejection (dark), or neither (mid-shade) of the case-study 

hypothesis: a carbon tax of $25/tonne CO2 ($0.08/gallon) can reduce total lifecycle GHG 

emissions of the mid-size vehicle market by at least 5% compared to a 1994 baseline 

where average gasoline prices were $1.64. 
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Figure 6.6 GHG emission results evaluated over scenarios of fuel price parameter and 
VMT model. 

 

6.6 Summary and Conclusions  

LCA analysis is currently used to inform decision-making in industry and 

government but appropriate application of LCA methods for this purpose is limited by 

the customary focus on a single product lifecycle without considering the systems in 

which these products exist. This research contributes to the LCA literature by presenting 

an approach to account for Market Driven Design responses in consequential LCA 

(cLCA-MDD). The cLCA-MDD approach takes a systems perspective, linking economic 

analyses of an industry and the engineering relationships that govern production 

decisions in the industry, to lifecycle inventory data. This chapter introduces the concept 

for a cLCA-MDD approach, demonstrates its feasibility, and illustrates its applicability 

with a simplified case study.  

Development of cLCA methods so that they are appropriate for informing 

policymaking will require an integration of state-of-the-art econometric approaches and 

increased transparency of any assumptions associated with economic parameter 

estimates. Although this chapter presents only a demonstrational analysis with many 

simplifying assumptions, it provides the blueprint for connecting the state-of-the-art 

methods presented in Chapters 3 and 4 with lifecycle inventory data. This approach can 

contribute to LCA analysis by incorporating considerations of economic as well as 

environmental impacts.  

The fundamental relationship between design decisions and environmental 

impacts is evident in industrial ecology: “technology, combined with improved design, 
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can greatly aid the quest for sustainability. Indeed, the notion that technological choice is 

crucial for environmental improvement lies at the core of industrial ecology” (Chertow 

2000). Clearly, design decisions regarding the products and services we use have a close 

link with our impacts on the environment. Equally clearly, simply making available the 

technology or design options that can reduce environmental impacts is not sufficient. We 

also need to understand the various factors that facilitate or hinder their deployment and 

how these factors are influenced by industrial or policy decisions. The development of a 

lifecycle assessment approach that accounts for design decisions made in response to 

market forces is a step in this direction. 
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CHAPTER 7: SUMMARY AND FUTURE OPPORTUNITIES 

“One never notices what has been done; one can only see what remains to be done.”  
—Marie Curie 
 

This dissertation presents an approach of integrating state-of-the-art models of 

consumer demand and engineering design to examine the relationship between 

environmental policy and product design. An oligopolistic equilibrium model was 

developed, capturing consumer purchase decisions and firm design and pricing decisions 

in a full-scale representation of the U.S. automotive industry. Application of this 

approach to policymaking was demonstrated through the analysis of specific policies that 

aim to increase fuel efficiency by inducing changes in vehicle design. 

The unique contributions of this approach are evident in the integration of 

analysis methods from the industrial organization economics literature and the 

engineering design literature to the extent necessary to suitably represent the system by 

which environmental policies induce changes in product design, influenced by consumer 

preferences, engineering design relationships, and competition among firms. Specifically, 

the presented model is the first to simultaneously capture consumer preferences for the 

product attributes accounting for correlation of these attributes with unobserved product 

attributes and the engineering relationships among these attributes categorically 

independent of other changes to the product design, which were identified using 

engineering simulations. These conditions advance policy analysis by enabling a more 

accurate representation of both the engineering relationships and consumer preferences 

that govern firm response to design-targeting policies. In addition, this approach is the 

first to model the full-scale automotive industry, including all vehicle models and engine 

options produced in a year, which enables a more accurate representation of competition 

among products in the industry. 
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As discussed in Chapter 2, the developed methodology contributes to many 

distinct areas of research that span multiple disciplines. In industrial organization 

economics, researchers have struggled with both methods to identify the engineering 

relationships between product attributes and consumer preferences that are necessary to 

model firms’ product design decisions. The presented methodology addresses these 

challenges by integrating engineering design models that explicitly represent engineering 

relationships between attributes together within economic analysis, and using information 

about the product development process to identify consumer preference parameters. In 

environmental economics, researchers have emphasized the importance of endogenously 

capturing changes in technology within their models but representations of technological 

change are often simplified, overlooking many tradeoffs that accompany choices of 

technology. The novel approach of representing design tradeoffs together with 

technology implementation, as described in Chapter 3, enables representations of many 

tradeoffs that firms consider along with choices on specific technologies.  

This approach also contributes to both the decision-based design literature and the 

automotive literature in engineering by providing the means to model both technology 

implementation and design tradeoffs for industries with many products. In the automotive 

engineering literature, design tradeoffs and technology change are represented in 

aggregate by observing changes in average product attributes over time. In decision-

based design, detailed models of design tradeoffs and technology options specific to 

individual products are often constructed based on engineering simulations, but 

representations of the scale of an industry are often compromised for this improved 

fidelity—firm design decisions are limited to only a few, often only one or two, products 

in these models. The presented methodology, as described in Chapter 3, contributes to 

these bodies of research by presenting a tractable method that more accurately represents 

both the heterogeneity and scale of product design options, enabling the modeling of 

approximately 500 products in an industry.  

Finally, the methodology contributes to the lifecycle assessment literature. In this 

literature, researchers and policymakers have acknowledged the need to expand the scope 

and applicability of lifecycle analysis to a systems perspective, incorporating economic 

behavior as well as environmental impacts. The methods presented in this dissertation 
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enable such analyses by modeling the response of producers and consumers to specific 

policies or other changes to the industry system and demonstrating how this model can be 

connected with lifecycle inventory data. This approach contributes to the ability of 

lifecycle assessment to inform policymaking by allowing for analysis of changes in 

environmental impacts, producer profits, and consumer welfare of an industry system in 

response to policy options. 

The developed methodology produces a number of advantages for policy analysis 

that would not be possible using solely an engineering-based or economics-based 

approach. First, incorporating engineering design relationships based on engineering 

simulations in the oligopolistic equilibrium model allows for analysis of the impacts of a 

policy on the automotive industry considering product design options that may be profit-

optimal in the presence of the policy even if these design options are not observable in 

current data. Second, the structure of engineering design decisions made throughout the 

product development process is used to identify instrumental variables to estimate 

demand parameters for endogenous design attributes. Third, taking a hybrid engineering-

economics approach to determine production costs allows a subset of cost parameters to 

be estimated using engineering data while the remaining parameters, for which 

engineering cost estimates are unavailable, can be derived using the econometric demand 

model. 

 The value of the developed methodology was demonstrated through three separate 

case studies. As presented in Chapter 4, the combined model was used to evaluate the 

U.S. CAFE regulation in terms of its ability to produce gains in fuel economy and its 

impact on firm profits. Results of this study illustrated that estimates of the cost 

effectiveness of CAFE are substantially sensitive to the design options considered, 

suggesting that policy analyses that ignore these design changes are considerably 

overestimating the costs of CAFE. This model was extended to include firm decisions on 

vehicle footprint to investigate the potential for footprint-based fuel economy standards 

to cause incentives for manufacturers to increase vehicles size, as presented in Chapter 5. 

These results indicate that footprint-based standards could encourage substantial 

increases in vehicle footprint that diminish gains in fuel economy. Finally, applications of 

the presented approach to lifecycle assessment were demonstrated using a simplified case 
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study incorporating models of consumer demand, engineering design, and firm 

competition into a lifecycle analysis. 

The methodology was demonstrated by analyzing the automotive industry but the 

methods presented are directly applicable to many product categories that are relevant for 

environmental policy. The specific methods described in Chapter 3 and 4 can be directly 

applied to product categories in which policymakers are interested in improving energy 

efficiency, manufacturers make design decisions that impact energy efficiency and other 

product attributes, and the market is characterized as an oligopoly or monopoly. These 

characteristics encompass many important products including light- and heavy-duty 

vehicles, household appliances, and various consumer electronics.  

For example, the U.S. Department of Energy recently established household 

efficiency standards that affect clothes washers and refrigerators. The refrigerator market 

can be characterized by an oligopoly with General Electric, Whirlpool, Amana, and 

Kenmore as some of the top manufacturers (Gupta and Kadiyali 2001). These 

manufacturers make design decisions that affect the energy efficiency of their products, 

including refrigerator capacity, motor efficiency, and features such as automatic 

defrosting, anti-condensation heaters, and through-the-door access. Both consumer 

preferences for these product attributes and the engineering tradeoffs among these design 

decisions could be represented using the methodology described in Chapter 3.  

Given appropriate data on consumer purchases and engineering models 

representing product performance, the presented methods could be applied to not only 

refrigerators but also washing machines, dryers, dishwashers, air conditioners, and 

heaters. Consumer purchase data of household appliances is available through a variety 

of market-research firms (e.g., Bayus 1992; Gupta and Kadiyali 2001). Some researchers 

have estimated consumer utility models for household appliances (Dubin and McFadden 

1984; Rapson 2008) that could potentially be further developed for an analysis similar to 

that presented in this dissertation. 

Although the methodology presented provides the means to conduct analyses on 

household appliances, a few additional challenges exist. One challenge not addressed in 

this dissertation is that options to improve energy efficiency often include discrete 

decisions to remove various product features that consume additional energy, such as 
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automatic defrosting and through-the-door access in refrigerators, as well as choices to 

include technology features that improve energy efficiency. The presented methodology 

incorporates choices of energy-saving technology features, such as cylinder deactivation 

in vehicles, but incorporation of additional choices to remove energy-consuming features 

that increase consumer preference are not addressed.  

Another example of future applications include analyzing energy efficiency 

decisions made by manufacturers of certain consumer electronics, including mobile 

phones, television sets, and computers. For example, energy-efficiency standards on 

computers may impact laptop manufacturer decisions on battery and charger choice, 

product features such as screen brightness, and design decisions affecting heat 

management. These decisions influence consumer preferences by affecting product 

attributes such as processor performance, battery lifetime and charging time, and laptop 

weight. The presented methodology enables an analysis that captures these relationships 

between energy efficiency policies, manufacturer design decisions, and consumer 

purchasing decisions. 

 In addition to these categories, the methodology could be more generally 

extended to include additional market structures and design incentives. One category of 

potential interest is industries where dominant environmental impacts occur in the 

manufacturing or disposal stages of a product’s lifecycle. For example, as automotive 

manufacturers adopt more electric and hybrid-electric vehicles, policymakers may 

become increasingly concerned about energy use and emissions associated with the 

manufacturing and disposal of batteries. In this case, the methodology could be extended 

to analyze how policy instruments affect the equilibrium designs and sales of these 

vehicles and the resulting upstream and downstream environmental impacts, as illustrated 

in Figure 7.1. This extension could be accomplished by linking together models of 

manufacturer design decisions to the required manufacturing processes necessary to 

produce the product designs, and changes in consumer use and disposal dependent upon 

the product design. A simple case study demonstrating this extension was presented in 

Chapter 6 but many opportunities exist to develop this approach further using the 

methodology described in Chapters 3 and 4.  
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Figure 7.1 Diagram of extensions of methodology to incorporate upstream and 
downstream environmental impacts 
  

While applications of the developed methodology are promising, a number of 

open questions remain for future work. First, further research is needed to address the 

choice of instrumental variables for endogenous product attributes in the demand model 

estimation. The methodology provided contributions to addressing this problem by using 

information on the structure of the product development process to choose instrumental 

variables that are fixed before the decisions governing endogenous product attributes. 

However, further work is needed to address the concern that decisions affecting 

unobserved product attributes may depend on these previously determined instrumental 

variables.  

Second, the oligopolistic equilibrium model is solved by sequentially solving each 

firm’s profit optimization problem until convergence. Further research is needed to 

investigate the robustness of results to the computational methods chosen and evaluate 
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the performance of these methods for the type of model presented in this dissertation. 

This research is complicated by the considerable computational times required to 

determine equilibrium solutions of a large-scale industry such as the U.S. automotive 

industry considering multiple design decisions in addition to pricing decisions for each 

product. Many opportunities exist to develop computational methods that can more 

quickly solve the regulation-constrained design and pricing equilibrium, such as fixed-

point or complementary problem approaches (Morrow 2008). Further research could also 

pursue parallel computing as a means of reducing computational time, for example by 

solving each firm’s profit maximization simultaneously in each iteration.  

Finally, validation tests were not performed for every model in the presented 

approach. Validation of the engineering model was performed by comparing estimated 

fuel economy to observations in MY2006 data, but no validation was performed on the 

cost model because of the difficulty of obtaining relevant cost data. With regard to the 

demand model, tests were performed that provide supporting evidence that the estimated 

parameters represent the global optimum using the assumed specification of utility. But, 

further research is needed to examine the sensitivity of results to changes in this 

specification. 
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